WorldWideScience

Sample records for hormone ethylene ii

  1. Ethylene and Hormonal Cross Talk in Vegetative Growth and Development1

    Science.gov (United States)

    Van de Poel, Bram; Smet, Dajo; Van Der Straeten, Dominique

    2015-01-01

    Ethylene is a gaseous plant hormone that most likely became a functional hormone during the evolution of charophyte green algae, prior to land colonization. From this ancient origin, ethylene evolved into an important growth regulator that is essential for myriad plant developmental processes. In vegetative growth, ethylene appears to have a dual role, stimulating and inhibiting growth, depending on the species, tissue, and cell type, developmental stage, hormonal status, and environmental conditions. Moreover, ethylene signaling and response are part of an intricate network in cross talk with internal and external cues. Besides being a crucial factor in the growth control of roots and shoots, ethylene can promote flowering, fruit ripening and abscission, as well as leaf and petal senescence and abscission and, hence, plays a role in virtually every phase of plant life. Last but not least, together with jasmonates, salicylate, and abscisic acid, ethylene is important in steering stress responses. PMID:26232489

  2. Autosomal Dominant Growth Hormone Deficiency (Type II).

    Science.gov (United States)

    Alatzoglou, Kyriaki S; Kular, Dalvir; Dattani, Mehul T

    2015-06-01

    Isolated growth hormone deficiency (IGHD) is the commonest pituitary hormone deficiency resulting from congenital or acquired causes, although for most patients its etiology remains unknown. Among the known factors, heterozygous mutations in the growth hormone gene (GH1) lead to the autosomal dominant form of GHD, also known as type II GHD. In many cohorts this is the commonest form of congenital isolated GHD and is mainly caused by mutations that affect the correct splicing of GH-1. These mutations cause skipping of the third exon and lead to the production of a 17.5-kDa GH isoform that exerts a dominant negative effect on the secretion of the wild type GH. The identification of these mutations has clinical implications for the management of patients, as there is a well-documented correlation between the severity of the phenotype and the increased expression of the 17.5-kDa isoform. Patients with type II GHD have a variable height deficit and severity of GHD and may develop additional pituitary hormone defiencies over time, including ACTH, TSH and gonadotropin deficiencies. Therefore, their lifelong follow-up is recommended. Detailed studies on the effect of heterozygous GH1 mutations on the trafficking, secretion and action of growth hormone can elucidate their mechanism on a cellular level and may influence future treatment options for GHD type II.

  3. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin.

    Science.gov (United States)

    Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2016-07-01

    Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Hormonal control of root development on epiphyllous plantlets of Bryophyllum (Kalanchoe) marnierianum: role of auxin and ethylene.

    Science.gov (United States)

    Kulka, Richard G

    2008-01-01

    Epiphyllous plantlets develop on leaves of Bryophyllum marnierianum when they are excised from the plant. Shortly after leaf excision, plantlet shoots develop from primordia located near the leaf margin. After the shoots have enlarged for several days, roots appear at their base. In this investigation, factors regulating plantlet root development were studied. The auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) abolished root formation without markedly affecting shoot growth. This suggested that auxin transport from the plantlet shoot induces root development. Excision of plantlet apical buds inhibits root development. Application of indole-3-acetic acid (IAA) in lanolin at the site of the apical buds restores root outgrowth. Naphthalene acetic acid (NAA), a synthetic auxin, reverses TIBA inhibition of plantlet root emergence on leaf explants. Both of these observations support the hypothesis that auxin, produced by the plantlet, induces root development. Exogenous ethylene causes precocious root development several days before that of a control without hormone. Ethylene treatment cannot bypass the TIBA block of root formation. Therefore, ethylene does not act downstream of auxin in root induction. However, ethylene amplifies the effects of low concentrations of NAA, which in the absence of ethylene do not induce roots. Ag(2)S(2)O(3), an ethylene blocker, and CoCl(2), an ethylene synthesis inhibitor, do not abolish plantlet root development. It is therefore unlikely that ethylene is essential for root formation. Taken together, the experiments suggest that roots develop when auxin transport from the shoot reaches a certain threshold. Ethylene may augment this effect by lowering the threshold and may come into play when the parent leaf senesces.

  5. Cooperative ethylene receptor signaling

    OpenAIRE

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The gaseous plant hormone ethylene is perceived by a family of five ethylene receptor members in the dicotyledonous model plant Arabidopsis. Genetic and biochemical studies suggest that the ethylene response is suppressed by ethylene receptor complexes, but the biochemical nature of the receptor signal is unknown. Without appropriate biochemical measures to trace the ethylene receptor signal and quantify the signal strength, the biological significance of the modulation of ethylene responses ...

  6. Effects of ethylene on photosystem II and antioxidant enzyme activity in Bermuda grass under low temperature.

    Science.gov (United States)

    Hu, Zhengrong; Fan, Jibiao; Chen, Ke; Amombo, Erick; Chen, Liang; Fu, Jinmin

    2016-04-01

    The phytohormone ethylene has been reported to mediate plant response to cold stress. However, it is still debated whether the effect of ethylene on plant response to cold stress is negative or positive. The objective of the present study was to explore the role of ethylene in the cold resistance of Bermuda grass (Cynodon dactylon (L).Pers.). Under control (warm) condition, there was no obvious effect of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or the antagonist Ag(+) of ethylene signaling on electrolyte leakage (EL) and malondialdehyde (MDA) content. Under cold stress conditions, ACC-treated plant leaves had a greater level of EL and MDA than the untreated leaves. However, the EL and MDA values were lower in the Ag(+) regime versus the untreated. In addition, after 3 days of cold treatment, ACC remarkably reduced the content of soluble protein and also altered antioxidant enzyme activity. Under control (warm) condition, there was no significant effect of ACC on the performance of photosystem II (PS II) as monitored by chlorophyll α fluorescence transients. However, under cold stress, ACC inhibited the performance of PS II. Under cold condition, ACC remarkably reduced the performance index for energy conservation from excitation to the reduction of intersystem electron acceptors (PI(ABS)), the maximum quantum yield of primary photochemistry (φP0), the quantum yield of electron transport flux from Q(A) to Q(B) (φE0), and the efficiency/probability of electron transport (ΨE0). Simultaneously, ACC increased the values of specific energy fluxes for absorption (ABS/RC) and dissipation (DI0/RC) after 3 days of cold treatment. Additionally, under cold condition, exogenous ACC altered the expressions of several related genes implicated in the induction of cold tolerance (LEA, SOD, POD-1 and CBF1, EIN3-1, and EIN3-2). The present study thus suggests that ethylene affects the cold tolerance of Bermuda grass by impacting the antioxidant system

  7. Transarterial Embolization of Type II Endoleaks after EVAR: The Role of Ethylene Vinyl Alcohol Copolymer (Onyx)

    International Nuclear Information System (INIS)

    Müller-Wille, René; Wohlgemuth, Walter A.; Heiss, Peter; Wiggermann, Philipp; Güntner, Oliver; Schreyer, Andreas G.; Hoffstetter, Patrick; Stroszczynski, Christian; Zorger, Niels

    2013-01-01

    Purpose: To determine the feasibility and efficacy of transarterial endoleak embolization using the liquid embolic agent ethylene vinyl alcohol copolymer (Onyx). Methods: Over a 7-year period eleven patients (6 women, 5 men; mean age 68 years, range 37–83 years) underwent transarterial embolization of a type II endoleak after endovascular aortic aneurysm repair using the liquid embolic agent Onyx. Two patients (18 %) had a simple type II endoleak with only one artery in communication with the aneurysm sac, whereas 9 patients (82 %) had a complex type II endoleak with multiple communicating vessels. We retrospectively analyzed the technical and clinical success of transarterial type II endoleak embolization with Onyx. Complete embolization of the nidus was defined as technical success. Embolization was considered clinically successful when volume of the aneurysm sac was stable or decreased on follow-up CT scans. Result: Mean follow-up time was 26.0 (range 6–50) months. Clinical success was achieved in 8 of 11 patients (73 %). Transarterial nidus embolization with Onyx was technically successful in 6 of 11 patients (55 %). In three cases the nidus was embolized without direct catheterization from a more distal access through the network of collateral vessels. Conclusion: Onyx is a favorable embolic agent for transarterial endoleak embolization. To achieve the best clinical results, complete occlusion of the nidus is mandatory

  8. Transarterial Embolization of Type II Endoleaks after EVAR: The Role of Ethylene Vinyl Alcohol Copolymer (Onyx)

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Wille, Rene, E-mail: rene.mueller-wille@ukr.de; Wohlgemuth, Walter A., E-mail: walter.wohlgemuth@ukr.de; Heiss, Peter, E-mail: peter.heiss@ukr.de; Wiggermann, Philipp, E-mail: philipp.wiggermann@ukr.de; Guentner, Oliver, E-mail: oliverguentner@yahoo.de; Schreyer, Andreas G., E-mail: andreas.schreyer@ukr.de; Hoffstetter, Patrick, E-mail: p.hoffstetter@asklepios.com; Stroszczynski, Christian, E-mail: christian.stros@ukr.de [University Medical Center Regensburg, Department of Radiology (Germany); Zorger, Niels, E-mail: niels.zorger@barmherzige-regensburg.de [Krankenhaus Barmherzige Brueder Regensburg, Department of Radiology (Germany)

    2013-10-15

    Purpose: To determine the feasibility and efficacy of transarterial endoleak embolization using the liquid embolic agent ethylene vinyl alcohol copolymer (Onyx). Methods: Over a 7-year period eleven patients (6 women, 5 men; mean age 68 years, range 37-83 years) underwent transarterial embolization of a type II endoleak after endovascular aortic aneurysm repair using the liquid embolic agent Onyx. Two patients (18 %) had a simple type II endoleak with only one artery in communication with the aneurysm sac, whereas 9 patients (82 %) had a complex type II endoleak with multiple communicating vessels. We retrospectively analyzed the technical and clinical success of transarterial type II endoleak embolization with Onyx. Complete embolization of the nidus was defined as technical success. Embolization was considered clinically successful when volume of the aneurysm sac was stable or decreased on follow-up CT scans. Result: Mean follow-up time was 26.0 (range 6-50) months. Clinical success was achieved in 8 of 11 patients (73 %). Transarterial nidus embolization with Onyx was technically successful in 6 of 11 patients (55 %). In three cases the nidus was embolized without direct catheterization from a more distal access through the network of collateral vessels. Conclusion: Onyx is a favorable embolic agent for transarterial endoleak embolization. To achieve the best clinical results, complete occlusion of the nidus is mandatory.

  9. Catalytic copolymerization of CO and ethylene with a charge neutral palladium(II) zwitterion.

    Science.gov (United States)

    Lu, Connie C; Peters, Jonas C

    2002-05-15

    The synthesis of a zwitterionic Pd(II) complex supported by an anionic bis(phosphino)borate ligand, Ph(2)B(CH(2)PPh(2))(2) (abbreviated as [Ph(2)BP(2)]), is reported. The new complex, [Ph(2)BP(2)]PdMe(THF), is active for CO and ethylene copolymerization. The copolymerization activity and polyketone molecular weight for the neutral, zwitterionic system are compared with those for the cationic systems [R(2)E(CH(2)PPh(2))(2)PdMe(THF)][B(C(6)F(5))(4)] where ER(2) = SiPh(2) and CH(2). Surprisingly, the more electron rich zwitterionic system is a catalyst of activity comparable to that of the more conventional cationic systems.

  10. Ethylene Regulates the Physiology of the Cyanobacterium Synechocystis sp. PCC 6803 via an Ethylene Receptor.

    Science.gov (United States)

    Lacey, Randy F; Binder, Brad M

    2016-08-01

    Ethylene is a plant hormone that plays a crucial role in the growth and development of plants. The ethylene receptors in plants are well studied, and it is generally assumed that they are found only in plants. In a search of sequenced genomes, we found that many bacterial species contain putative ethylene receptors. Plants acquired many proteins from cyanobacteria as a result of the endosymbiotic event that led to chloroplasts. We provide data that the cyanobacterium Synechocystis (Synechocystis sp. PCC 6803) has a functional receptor for ethylene, Synechocystis Ethylene Response1 (SynEtr1). We first show that SynEtr1 directly binds ethylene. Second, we demonstrate that application of ethylene to Synechocystis cells or disruption of the SynEtr1 gene affects several processes, including phototaxis, type IV pilus biosynthesis, photosystem II levels, biofilm formation, and spontaneous cell sedimentation. Our data suggest a model where SynEtr1 inhibits downstream signaling and ethylene inhibits SynEtr1. This is similar to the inverse-agonist model of ethylene receptor signaling proposed for plants and suggests a conservation of structure and function that possibly originated over 1 billion years ago. Prior research showed that SynEtr1 also contains a light-responsive phytochrome-like domain. Thus, SynEtr1 is a bifunctional receptor that mediates responses to both light and ethylene. To our knowledge, this is the first demonstration of a functional ethylene receptor in a nonplant species and suggests that that the perception of ethylene is more widespread than previously thought. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Suspensions: to be continued: the consequences of the Appellate Body report in 'Hormones II'

    NARCIS (Netherlands)

    Koops, C.E.

    2009-01-01

    In October 2008, the WTO Appellate Body (AB) issued its report on Hormones II, marking the next stage in the long-running Hormones case. This comment discusses the AB’s findings on the matter. It outlines how the AB has shown the correct procedural avenue for cases involving compliance panels,

  12. MinimalSpild – Ethylene

    DEFF Research Database (Denmark)

    2017-01-01

    Ethylene is a gas and an important plant hormone, which can have an adverse effect on quality af potted plants......Ethylene is a gas and an important plant hormone, which can have an adverse effect on quality af potted plants...

  13. Growth Control by Ethylene: Adjusting Phenotypes to the Environment

    NARCIS (Netherlands)

    Pierik, R.; Sasidharan, R.; Voesenek, L.A.C.J.

    2007-01-01

    Plants phenotypically adjust to environmental challenges, and the gaseous plant hormone ethylene modulates many of these growth adjustments. Ethylene can be involved in environmentally induced growth inhibition as well as growth stimulation. Still, ethylene has long been considered a growth

  14. GAMMA RADIATION INITIATED POLYMERIZATION OF FLUOROMONOMERS. II. COPOLYMER OF CHLOROTRIFLUOROETHYLENE AND ETHYLENE

    Energy Technology Data Exchange (ETDEWEB)

    Manno, P. J.

    1963-06-15

    The radioinduced copolymerization of chlorotrifluoro ethylene and ethylene was studied. The polymerization rate increased with time and radiation intensity, and the Gvalues after 50% polymerization varied from 13,000 at 10/sup 5/ rep/hr to 25,000 at 6 x 10/sup 3/ rep/hr. The polymerization rate is proportional to the 0.7 or 0.8th power of the radiation intensity. The polymerization reaction is highly exothermic, and the optimum conditions for the best polymer properties occurred in a stirred autoclave cooled to 0 deg C containing a monomer-- water mixture and irradiated at 10/sup 4/ rep/hr. Catalytic polymerization was also studied, and the economics of or the preparation of the copolymer by catalytic and radiation processes is discussed briefly. (D.L.C.)

  15. Ethylene Regulates the Physiology of the Cyanobacterium Synechocystis sp. PCC 6803 via an Ethylene Receptor1[OPEN

    Science.gov (United States)

    2016-01-01

    Ethylene is a plant hormone that plays a crucial role in the growth and development of plants. The ethylene receptors in plants are well studied, and it is generally assumed that they are found only in plants. In a search of sequenced genomes, we found that many bacterial species contain putative ethylene receptors. Plants acquired many proteins from cyanobacteria as a result of the endosymbiotic event that led to chloroplasts. We provide data that the cyanobacterium Synechocystis (Synechocystis sp. PCC 6803) has a functional receptor for ethylene, Synechocystis Ethylene Response1 (SynEtr1). We first show that SynEtr1 directly binds ethylene. Second, we demonstrate that application of ethylene to Synechocystis cells or disruption of the SynEtr1 gene affects several processes, including phototaxis, type IV pilus biosynthesis, photosystem II levels, biofilm formation, and spontaneous cell sedimentation. Our data suggest a model where SynEtr1 inhibits downstream signaling and ethylene inhibits SynEtr1. This is similar to the inverse-agonist model of ethylene receptor signaling proposed for plants and suggests a conservation of structure and function that possibly originated over 1 billion years ago. Prior research showed that SynEtr1 also contains a light-responsive phytochrome-like domain. Thus, SynEtr1 is a bifunctional receptor that mediates responses to both light and ethylene. To our knowledge, this is the first demonstration of a functional ethylene receptor in a nonplant species and suggests that that the perception of ethylene is more widespread than previously thought. PMID:27246094

  16. Hormones

    Science.gov (United States)

    Hormones are your body's chemical messengers. They travel in your bloodstream to tissues or organs. They work ... glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, ...

  17. Efficient removal of cobalt(II) and strontium(II) metals from water using ethylene diamine tetra-acetic acid functionalized graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Amer, Hany; Moustafa, Wafaa M. [Nuclar Fuel Cycle Department, Nuclear and Radiological Regulatory Authority (NRRA), Naser City, Cairo (Egypt); Farghali, Ahmed A.; El Rouby, Waleed M.A. [Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PASA), Beni-Suef University (Egypt); Khalil, Waleed F. [Nuclar Fuel Cycle Department, Nuclear and Radiological Regulatory Authority (NRRA), Naser City, Cairo (Egypt); Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PASA), Beni-Suef University (Egypt)

    2017-12-04

    Graphene oxide (GO) with high specific surface area was prepared and functionalized with ethylene diamine tetra-acetic acid (EDTA). The as-prepared GO and the functionalized one (GO-EDTA) were characterized using high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and Raman spectroscopy. The as-prepared and EDTA functionalized GO were applied as adsorbent to remove strontium(II) and cobalt(II) from water. The results indicated that the prepared materials are efficient adsorbents for strontium(II) and cobalt(II) removal. The adsorption of Co{sup II} and Sr{sup II} under effects of contact time, temperature, and pH was investigated It is concluded that the maximum adsorption capacities of GO for Co{sup II} and Sr{sup II} were about 168 and 140 mg.g{sup -1}, whereas of GO-EDTA the values were about 197 and 158 mg.g{sup -1}, respectively. It is indicated that pH 6 and temperature 40 C are the best condition for Co{sup II} and Sr{sup II} removal from water. The application of Langmuir and Freundlich isotherms indicated that Langmuir isotherm is best fit for Co{sup II} and Sr{sup II} equilibrium adsorption. Adsorption kinetics were studied by applying pseudo first-order, pseudo second-order, and intraparticle diffusion models on the experimental data. The results proved that pseudo second-order model is the best represented adsorption kinetics. Appling the intraparticle diffusion regressions on the experimental data indicated that intraparticle diffusion involved in adsorption process, which was not the only rate-controlling step. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. After-ripening induced transcriptional changes of hormonal genes in wheat seeds: the cases of brassinosteroids, ethylene, cytokinin and salicylic acid.

    Directory of Open Access Journals (Sweden)

    Vijaya R Chitnis

    Full Text Available Maintenance and release of seed dormancy is regulated by plant hormones; their levels and seed sensitivity being the critical factors. This study reports transcriptional regulation of brassinosteroids (BR, ethylene (ET, cytokinin (CK and salicylic acid (SA related wheat genes by after-ripening, a period of dry storage that decays dormancy. Changes in the expression of hormonal genes due to seed after-ripening did not occur in the anhydrobiotic state but rather in the hydrated state. After-ripening induced dormancy decay appears to be associated with imbibition mediated increase in the synthesis and signalling of BR, via transcriptional activation of de-etiolated2, dwarf4 and brassinosteroid signaling kinase, and repression of brassinosteroid insensitive 2. Our analysis is also suggestive of the significance of increased ET production, as reflected by enhanced transcription of 1-aminocyclopropane-1-carboxylic acid oxidase in after-ripened seeds, and tight regulation of seed response to ET in regulating dormancy decay. Differential transcriptions of lonely guy, zeatin O-glucosyltransferases and cytokinin oxidases, and pseudo-response regulator between dormant and after-ripened seeds implicate CK in the regulation of seed dormancy in wheat. Our analysis also reflects the association of dormancy decay in wheat with seed SA level and NPR independent SA signaling that appear to be regulated transcriptionally by phenylalanine ammonia lyase, and whirly and suppressor of npr1 inducible1 genes, respectively. Co-expression clustering of the hormonal genes implies the significance of synergistic and antagonistic interaction between the different plant hormones in regulating wheat seed dormancy. These results contribute to further our understanding of the molecular features controlling seed dormancy in wheat.

  19. Infrared Spectra and Optical Constants of Astronomical Ices: II. Ethane and Ethylene

    Science.gov (United States)

    Hudson, Reggie L.; Gerakines, Perry A.; Moore, M. H.

    2014-01-01

    Infrared spectroscopic observations have established the presence of hydrocarbon ices on Pluto and other TNOs, but the abundances of such molecules cannot be deduced without accurate optical constants (n, k) and reference spectra. In this paper we present our recent measurements of near- and mid-infrared optical constants for ethane (C2H6) and ethylene (C2H4) in multiple ice phases and at multiple temperatures. As in our recent work on acetylene (C2H2), we also report new measurements of the index of refraction of each ice at 670 nm. Comparisons are made to earlier work where possible, and electronic versions of our new results are made available.

  20. (cGnRH-II) on plasma steroid hormone, maturation and ovulation

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-01

    Dec 1, 2009 ... (LHRHa) and salmon gonadotropin-releasing hormone analogue (sGnRHa) in ..... Four out of six fish reached GVBD at 12 h after injection. Egg quality .... of the sbGnRH and cGnRH-II genes from the striped bass, Morone.

  1. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis

    Science.gov (United States)

    The gaseous phytohormone ethylene (C2H4) mediates numerous aspects of growth and development. Genetic analysis has identified a number of critical elements in the ethylene signaling (1), but how these elements interact biochemically to transduce the signal from the ethylene receptor complex at the e...

  2. Human pituitary and placental hormones control human insulin-like growth factor II secretion in human granulosa cells

    International Nuclear Information System (INIS)

    Ramasharma, K.; Li, C.H.

    1987-01-01

    Human granulosa cells cultured with calf serum actively proliferated for 18-20 generations and secreted progesterone into the medium; progesterone levels appeared to decline with increase in generation number. Cells cultured under serum-free conditions secreted significant amounts of progesterone and insulin-like growth factor II (IGF-II). The progesterone secretion was enhanced by the addition of human follitropin, lutropin, and chorionic gonadotropin but not by growth hormone. These cells, when challenged to varying concentrations of human growth hormone, human chorionic somatomammotropin, human prolactin, chorionic gonadotropin, follitropin, and lutropin, secreted IGF-II into the medium as measured by specific IGF-II RIA. Among these human hormones, chorionic gonadotropin, follitropin, and lutropin were most effective in inducing IGF-II secretion from these cells. When synthetic lutropin-releasing hormone and α-inhibin-92 were tested, only lutropin-releasing hormone was effective in releasing IGF-II. The results described suggest that cultured human granulosa cells can proliferate and actively secrete progesterone and IGF-II into the medium. IGF-II production in human granulosa cells was influenced by a multi-hormonal complex including human growth hormone, human chorionic somatomammotropin, and prolactin

  3. Selective vibrational excitation of the ethylene--fluorine reaction in a nitrogen matrix. II

    International Nuclear Information System (INIS)

    Frei, H.

    1983-01-01

    The product branching between 1,2-difluoroethane and vinyl fluoride (plus HF) of the selective vibrationally stimulated reaction of molecular fluorine with C 2 H 4 has been studied in a nitrogen matrix at 12 K and found to be the same for five different vibrational transitions of C 2 H 4 between 1896 and 4209 cm -1 . The HF/DF branching ratio of the reaction of F 2 with CH 2 CD 2 , trans-CHDCHD, and cis-CHDCHD was determined to be 1.1, independent of precursor C 2 H 2 D 2 isomer and particular mode which excited the reaction. These results, as well as the analysis of the mixtures of partially deuterated vinyl fluoride molecules produced by each C 2 H 2 D 2 isomer indicate that the product branching occurs by αβ elimination of HF(DF) from a vibrationally excited, electronic ground state 1,2-difluoroethane intermediate. Selective vibrational excitation of fluorine reactions in isotopically mixed matrices t-CHDCHD/C 2 H 4 /F 2 /N 2 and CH 2 CD 2 /C 2 H 4 /F 2 /N 2 , and in matrices C 2 H 2 /C 2 H 4 /F 2 /N 2 revealed a high degree of isotopic and molecular selectivity. The extent to which intermolecular energy transfer occurred is qualitatively explained in terms of dipole coupled vibrational energy transfer. A study of the loss of absorbance of the C 2 H 4 x F 2 pairs in case of ν 9 as a function of both the laser irradiation frequency within the absorption profile, and the ethylene concentration showed that the C 2 H 4 x F 2 absorption is inhomogeneously broadened. Substantial depletion of reactive pairs which did not absorb laser light is interpreted in terms of Forster transfer

  4. Surface characterization and free thyroid hormones response of chemically modified poly(ethylene terephthalate) blood collection tubes

    Science.gov (United States)

    Jalali Dil, Ebrahim; Kim, Samuel C.; Saffar, Amir; Ajji, Abdellah; Zare, Richard N.; Sattayapiwat, Annie; Esguerra, Vanessa; Bowen, Raffick A. R.

    2018-06-01

    The surface chemistry and surface energy of chemically modified polyethylene terephthalate (PET) blood collection tubes (BCTs) were studied and the results showed a significant increase in hydrophilicity and polarity of modified PET surface. The surface modification created nanometer-sized, needle-like asperities through molecular segregation at the surface. The surface dynamics of the modified PET was examined by tracking its surface properties over a 280-day period. The results showed surface rearrangement toward a surface with lower surface energy and fewer nanometer-sized asperities. Thromboelastography (TEG) was used to evaluate and compare the thrombogenicity of the inner walls of various types of BCTs. The TEG tracings and data from various types of BCTs demonstrated differences in the reactionand coagulation times but not in clot strength. The performance of the modified tubes in free triiodothyronine (FT3) and free thyroxine (FT4) hormone tests was examined, and it was found that the interference of modified PET tubes was negligible compared to that of commercially available PET BCTs.

  5. Ethylene-producing bacteria that ripen fruit.

    Science.gov (United States)

    Digiacomo, Fabio; Girelli, Gabriele; Aor, Bruno; Marchioretti, Caterina; Pedrotti, Michele; Perli, Thomas; Tonon, Emil; Valentini, Viola; Avi, Damiano; Ferrentino, Giovanna; Dorigato, Andrea; Torre, Paola; Jousson, Olivier; Mansy, Sheref S; Del Bianco, Cristina

    2014-12-19

    Ethylene is a plant hormone widely used to ripen fruit. However, the synthesis, handling, and storage of ethylene are environmentally harmful and dangerous. We engineered E. coli to produce ethylene through the activity of the ethylene-forming enzyme (EFE) from Pseudomonas syringae. EFE converts a citric acid cycle intermediate, 2-oxoglutarate, to ethylene in a single step. The production of ethylene was placed under the control of arabinose and blue light responsive regulatory systems. The resulting bacteria were capable of accelerating the ripening of tomatoes, kiwifruit, and apples.

  6. The role of ethylene perception in plant disease resistance

    NARCIS (Netherlands)

    Geraats, Bart Peter Johan

    2003-01-01

    Ethylene is a plant hormone that is involved in responses of the plant to various stress situations, such as pathogen attack. The role of ethylene in plant-pathogen interactions seems to be diverse. Exposure of plants to ethylene can induce disease resistance, but treatment with ethylene during

  7. Treatment of Plants with Gaseous Ethylene and Gaseous Inhibitors of Ethylene Action.

    Science.gov (United States)

    Tucker, Mark L; Kim, Joonyup; Wen, Chi-Kuang

    2017-01-01

    The gaseous nature of ethylene affects not only its role in plant biology but also how you treat plants with the hormone. In many ways, it simplifies the treatment problem. Other hormones have to be made up in solution and applied to some part of the plant hoping the hormone will be taken up into the plant and translocated throughout the plant at the desired concentration. Because all plant cells are connected by an intercellular gas space the ethylene concentration you treat with is relatively quickly reached throughout the plant. In some instances, like mature fruit, treatment with ethylene initiates autocatalytic synthesis of ethylene. However, in most experiments, the exogenous ethylene concentration is saturating, usually >1 μL L -1 , and the synthesis of additional ethylene is inconsequential. Also facilitating ethylene research compared with other hormones is that there are inhibitors of ethylene action 1-MCP (1-methylcyclopropene) and 2,5-NBD (2,5-norbornadiene) that are also gases wherein you can achieve nearly 100% inhibition of ethylene action quickly and with few side effects. Inhibitors for other plant hormones are applied as a solution and their transport and concentration at the desired site is not always known and difficult to measure. Here, our focus is on how to treat plants and plant parts with the ethylene gas and the gaseous inhibitors of ethylene action.

  8. Does circadian disruption play a role in the metabolic-hormonal link to delayed lactogenesis II?

    Directory of Open Access Journals (Sweden)

    Manjie eFu

    2015-02-01

    Full Text Available Breastfeeding improves maternal and child health. The American Academy of Pediatrics recommends exclusive breastfeeding for six months, with continued breastfeeding for at least one year. However, in the US, only 18.8% of infants are exclusively breastfed until six months of age. For mothers who initiate breastfeeding, the early postpartum period sets the stage for sustained breastfeeding. Mothers who experience breastfeeding problems in the early postpartum period are more likely to discontinue breastfeeding within two weeks. A major risk factor for shorter breastfeeding duration is delayed lactogenesis II (i.e. onset of milk coming in more than 72 h postpartum. Recent studies report a metabolic-hormonal link to delayed lactogenesis II. This is not surprising because around the time of birth the mother’s entire metabolism changes to direct nutrients to mammary glands. Circadian and metabolic systems are closely linked, and our rodent studies suggest circadian clocks coordinate hormonal and metabolic changes to support lactation. Molecular and environmental disruption of the circadian system decreases a dam’s ability to initiate lactation and negatively impacts milk production. Circadian and metabolic systems evolved to be functional and adaptive when lifestyles and environmental exposures were quite different from modern times. We now have artificial lights, longer work days, and increases in shift work. Disruption in the circadian system due to shift work, jet lag, sleep disorders and other modern life style choices are associated with metabolic disorders, obesity, and impaired reproduction. We hypothesize delayed lactogenesis II is related to disruption of the mother’s circadian system. Here we review literature that supports this hypothesis, and describe interventions that may help to increase breastfeeding success.

  9. Role of ethylene metabolism in Amaranthus retroflexus

    International Nuclear Information System (INIS)

    Raskin, I.; Beyer, E. Jr.

    1989-01-01

    14 C-Ethylene was metabolized by etiolated pigweed seedlings (Amaranthus retroflexus L.) in the manner similar to that observed in other plants. The hormone was oxidized to 14 CO 2 and incorporated into 14 -tissue components. Selected cyclic olefins with differing abilities to block ethylene action were used to determine if ethylene metabolism in pigweed is necessary for ethylene action. 2,5-Norbornadiene and 1,3-cyclohexadiene were effective inhibitors of ethylene action at 800 and 6400 μ1/1, respectively, in the gas phase, while 1,4-cyclohexadiene and cyclohexene were not. However, all four cyclic olefins inhibited the incorporation and conversion of 14 C-ethylene to 14 CO 2 by 95% with I 50 values below 100 μ1/1. The results indicate that total ethylene metabolism does not directly correlate with changes in ethylene action. Additionally, the fact that inhibition of ethylene metabolism by the cyclic olefins did not result in a corresponding increase in ethylene evolution, indicates that ethylene metabolism does not serve to significantly reduce endogenous ethylene levels

  10. Apolipoprotein A-II polymorphism: relationships to behavioural and hormonal mediators of obesity

    Science.gov (United States)

    Smith, CE; Ordovás, JM; Sánchez-Moreno, C; Lee, Y-C; Garaulet, M

    2011-01-01

    Background The interaction between apolipoprotein A-II (APOA2) m265 genotype and saturated fat for obesity traits has been more extensively demonstrated than for any other locus, but behavioural and hormonal mechanisms underlying this relationship are unexplored. In this study, we evaluated relationships between APOA2 and obesity risk with particular focus on patterns of eating and ghrelin, a hormonal regulator of food intake. Design Cross-sectional study. Subjects Overweight and obese subjects (n = 1225) were evaluated at baseline in five weight loss clinics in southeastern Spain. Methods Behavioural data were assessed using a checklist of weight loss obstacles. Logistic regression models were fitted to estimate the risk of a specific behaviour associated with APOA2 genotype. Relationships between APOA2 genotype and saturated fat intakes for anthropometric traits and plasma ghrelin were evaluated by analysis of variance. To construct categorical variables to evaluate interactions, saturated fat intake was dichotomized into high and low according to the population median intake or as tertiles. Results Homozygous minor (CC) subjects were more likely to exhibit behaviours that impede weight loss (‘Do you skip meals’, odds ratio (OR) = 2.09, P=0.008) and less likely to exhibit the protective behaviour of ‘Do you plan meals in advance’ (OR = 0.64, P=0.034). Plasma ghrelin for CC subjects consuming low saturated fat was lower compared with (1) CC subjects consuming high saturated fat, (2) TT + TC carriers consuming low saturated fat and (3) TT+TC carriers consuming high saturated fat (all Pghrelin. Expansion of knowledge of APOA2 and obesity to include modulation of specific behaviours and hormonal mediators not only broadens understanding of gene–diet interactions, but also facilitates the pragmatic, future goal of developing dietary guidelines based on genotype. PMID:21386805

  11. Effect of Blood Glucose Fluctuation on Some Trace Elements and Aldosterone Hormone among Type II Diabetic Patients with Metabolic Syndrome

    International Nuclear Information System (INIS)

    Ezz El-Arab, A.; El Fouly, A.H.; Mahmoud, H.H.

    2014-01-01

    There is accumulating evidence determine that the metabolism of some trace elements is altered in diabetes mellitus (DM) type II. The current study aimed to evaluate the effect of serum blood glucose fluctuation during (Random, Fasting and Postprandial 2 hours state) on some trace elements such as Cadmium (Cd), Chromium (Cr), Manganese (Mn), Magnesium (Mg), Zinc (Zn), Copper (Cu), Sodium (Na), Potassium (K), and Aldosterone hormone in type II Diabetic patients associated with metabolic syndrome in comparison with healthy volunteers. The International Diabetes Federation (IFD) consensus the diagnosis of metabolic syndrome according to central obesity, lipid profile, blood glucose level and blood pressure. A significant change was observed in trace elements level (Cd, Cr, Mg, Mn, Zn, Cu, Na, and K) and Aldosterone hormone as a result of glucose fluctuation among type II diabetic patients.

  12. Ethylene Regulates Levels of Ethylene Receptor/CTR1 Signaling Complexes in Arabidopsis thaliana*

    Science.gov (United States)

    Shakeel, Samina N.; Gao, Zhiyong; Amir, Madiha; Chen, Yi-Feng; Rai, Muneeza Iqbal; Haq, Noor Ul; Schaller, G. Eric

    2015-01-01

    The plant hormone ethylene is perceived by a five-member family of receptors in Arabidopsis thaliana. The receptors function in conjunction with the Raf-like kinase CTR1 to negatively regulate ethylene signal transduction. CTR1 interacts with multiple members of the receptor family based on co-purification analysis, interacting more strongly with receptors containing a receiver domain. Levels of membrane-associated CTR1 vary in response to ethylene, doing so in a post-transcriptional manner that correlates with ethylene-mediated changes in levels of the ethylene receptors ERS1, ERS2, EIN4, and ETR2. Interactions between CTR1 and the receptor ETR1 protect ETR1 from ethylene-induced turnover. Kinetic and dose-response analyses support a model in which two opposing factors control levels of the ethylene receptor/CTR1 complexes. Ethylene stimulates the production of new complexes largely through transcriptional induction of the receptors. However, ethylene also induces turnover of receptors, such that levels of ethylene receptor/CTR1 complexes decrease at higher ethylene concentrations. Implications of this model for ethylene signaling are discussed. PMID:25814663

  13. Adverse eff ects of polymeric nanoparticle poly(ethylene glycol- block-polylactide methyl ether (PEG-b-PLA on steroid hormone secretion by porcine granulosa cells

    Directory of Open Access Journals (Sweden)

    Scsukova Sona

    2017-04-01

    Full Text Available Objectives. Development of nanoparticles (NPs for biomedical applications, including medical imaging and drug delivery, is currently undergoing a dramatic expansion. Diverse effects of different type NPs relating to mammalian reproductive tissues have been demonstrated. Th e objective of this study was to explore the in vitro effects of polymeric nanoparticle poly(ethylene glycol-blockpolylactide methyl ether (PEG-b-PLA NPs on functional state and viability of ovarian granulosa cells (GCs, which play an important role in maintaining ovarian function and female fertility.

  14. Root-to-shoot hormonal communication in contrasting rootstocks suggests an important role for the ethylene precursor aminocyclopropane-1-carboxylic acid in mediating plant growth under low-potassium nutrition in tomato

    Directory of Open Access Journals (Sweden)

    Cristina Martínez-Andújar

    2016-11-01

    Full Text Available Selection and breeding of rootstocks that can tolerate low K supply may increase crop productivity in low fertility soils and reduce fertilizer application. However, the underlying physiological traits are still largely unknown. In this study, 16 contrasting recombinant inbred lines (RILs derived from a cross between domestic and wild tomato species (Solanum lycopersicum x S. pimpinellifolium have been used to analyse traits related to the rootstock-mediated induction of low (L, low shoot fresh weight or high (H, high shoot fresh weight vigour to a commercial F1 hybrid grown under control (6 mM, c and low-K (1mM, k. Based on hormonal and ionomic composition in the root xylem sap and the leaf nutritional status after long-term (7 weeks exposure low-K supply, a model can be proposed to explain the rootstocks effects on shoot performance with the ethylene precursor aminocyclopropane-1-carboxylic acid (ACC playing a pivotal negative role. The concentration of this hormone was higher in the low-vigour Lc and Lk rootstocks under both conditions, increased in the sensitive HcLk plants under low-K while it was reduced in the high-vigour Hk ones. Low ACC levels would promote the transport of K vs Na in the vigorous Hk grafted plants. Along with K, Ca and S, micronutrient uptake and transport were also activated in the tolerant Hk combinations under low-K. Additionally, an interconversion of trans-zeatin into trans-zeatin riboside would contribute to decrease ACC in the tolerant LcHk plants. The high vigour induced by the Hk plants can also be explained by an interaction of ACC with other hormones (cytokinins and salicylic, abscisic and jasmonic acids. Therefore, Hk rootstocks convert an elite tomato F1 cultivar into a (micro nutrient-efficient phenotype, improving growth under reduced K fertilization.

  15. Dendritic chelating agents. 1. Cu(II) binding to ethylene diamine core poly (amidoamine) denderimers in aqueous solutions

    International Nuclear Information System (INIS)

    Diallo, Mamadou S.; Christie, Simone; Swaminathan, Pirabalini; Balogh, Lajos; Shi, XIANGYANG; Um, Wooyong; Papelis, Charalambos; Goddard, William A.; Johnson, J. H.

    2004-01-01

    The overall results of the proton and metal ion binding measurements suggest that the uptake of Cu(II) by EDA core PAMAM dendrimers involves both the dendrimer tertiary amine and terminal groups. However, the extents of protonation of these groups control the ability of the dentrimers to bind Cu(II). Analysis of the EXAFS spectra suggests that Cu(II) forms octahedral complexes involving the tertiary amine groups of Gx-NH2 EDA core PAMAM dendrimers at pH 7.0. The central Cu(II) metal ion of each of these complexes appears to be coordinated to 2-4 dendrimer tertiary amine groups located in the equatorial plane and 2 axial water molecules. Finally, we combine the results of our experiments with literature data to formulate and evaluate a phenomenological model of Cu(II) uptake by Gx-NH2 PAMAM dendrimers in aqueous solutions. At low metal ion-dendrimer loadings, the model provides a good fit of the measured extent of binding of Cu(II) in aqueous solutions of G4-NH2 PAMAM dendrimers at pH 7.0

  16. Ethylene, a key factor in the regulation of seed dormancy

    Directory of Open Access Journals (Sweden)

    Françoise eCORBINEAU

    2014-10-01

    Full Text Available Ethylene is an important component of the gaseous environment, and regulates numerous plant developmental processes including seed germination and seedling establishment. Dormancy, the inability to germinate in apparently favorable conditions, has been demonstrated to be regulated by the hormonal balance between abscisic acid (ABA and gibberellins (GAs. Ethylene plays a key role in dormancy release in numerous species, the effective concentrations allowing the germination of dormant seeds ranging between 0.1 and 200 μL L-1. Studies using inhibitors of ethylene biosynthesis or of ethylene action and analysis of mutant lines altered in genes involved in the ethylene signaling pathway (etr1, ein2, ain1, etr1, and erf1 demonstrate the involvement of ethylene in the regulation of germination and dormancy. Ethylene counteracts ABA effects through a regulation of ABA metabolism and signaling pathways. Moreover, ethylene insensitive mutants in Arabidopsis are more sensitive to ABA and the seeds are more dormant. Numerous data also show an interaction between ABA, GAs and ethylene metabolism and signaling pathways. It has been increasingly demonstrated that reactive oxygen species (ROS may play a significant role in the regulation of seed germination interacting with hormonal signaling pathways. In the present review the responsiveness of seeds to ethylene will be described, and the key role of ethylene in the regulation of seed dormancy via a cross-talk between hormones and other signals will be discussed.

  17. Targeting Plant Ethylene Responses by Controlling Essential Protein-Protein Interactions in the Ethylene Pathway.

    Science.gov (United States)

    Bisson, Melanie M A; Groth, Georg

    2015-08-01

    The gaseous plant hormone ethylene regulates many processes of high agronomic relevance throughout the life span of plants. A central element in ethylene signaling is the endoplasmic reticulum (ER)-localized membrane protein ethylene insensitive2 (EIN2). Recent studies indicate that in response to ethylene, the extra-membranous C-terminal end of EIN2 is proteolytically processed and translocated from the ER to the nucleus. Here, we report that the conserved nuclear localization signal (NLS) mediating nuclear import of the EIN2 C-terminus provides an important domain for complex formation with ethylene receptor ethylene response1 (ETR1). EIN2 lacking the NLS domain shows strongly reduced affinity for the receptor. Interaction of EIN2 and ETR1 is also blocked by a synthetic peptide of the NLS motif. The corresponding peptide substantially reduces ethylene responses in planta. Our results uncover a novel mechanism and type of inhibitor interfering with ethylene signal transduction and ethylene responses in plants. Disruption of essential protein-protein interactions in the ethylene signaling pathway as shown in our study for the EIN2-ETR1 complex has the potential to guide the development of innovative ethylene antagonists for modern agriculture and horticulture. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  18. Ethylene glycol blood test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003564.htm Ethylene glycol blood test To use the sharing features ... enable JavaScript. This test measures the level of ethylene glycol in the blood. Ethylene glycol is a ...

  19. Thyroid hormone is required for the pruning of afferent type II spiral ganglion neurons in the mouse cochlea

    Science.gov (United States)

    Sundaresan, Srividya; Balasubbu, Suganthalakshmi; Mustapha, Mirna

    2015-01-01

    Afferent connections to the sensory inner and outer hair cells in the cochlea refine and functionally mature during the thyroid hormone (TH)- critical period of inner ear development that occurs perinatally in rodents. In this study, we investigated the effects of hypothyroidism on afferent type II innervation to outer hair cells (OHCs) using the Snell dwarf mouse (Pit1dw). Using a transgenic approach to specifically label type II spiral ganglion neurons, we found that a lack of TH causes persistence of excess type II SGN connections to the OHCs, as well as continued expression of the hair cell functional marker, otoferlin, in the OHCs beyond the maturation period. We also observed a concurrent delay in efferent attachment to the OHCs. Supplementing with TH during the early postnatal period from postnatal day (P) 3 to P4 reversed the defect in type II SGN pruning but did not alter otoferlin expression. Our results show that hypothyroidism causes a defect in the large-scale pruning of afferent type II spiral ganglion neurons in the cochlea, and a delay in efferent attachment and the maturation of otoferlin expression. Our data suggest that the state of maturation of hair cells, as determined by otoferlin expression, may not regulate the pruning of their afferent innervation. PMID:26592716

  20. Investigations of the metabolism of the hormones ethylen, abscisic acid and indol-3-acetic acid in coniferous trees in forest die-back areas of south western Germany; Untersuchungen zum Haushalt der Hormone Ethylen, Abscisinsaeure und Indol-3-essigsaeure in Nadelbaeumen aus Waldschadensgebieten Suedwestdeutschlands

    Energy Technology Data Exchange (ETDEWEB)

    Christmann, A.

    1993-12-31

    The author investigated changes in the hormone metabolism of affected trees; he intended to analyze as many hormones as possible. The investigations were carried out on needles, owing to the fact that the symptoms observed suggested specific disturbances of the needle hormone metabolism. Further, needles are the main point of attack of airborne pollutants. In physiologically healthy trees, the seasonal changes in hormone levels were investigated as a function of different parameters such as forest site, needle age, tree age, and position of sample branches in the tree crown. On this basis, hormone changes resulting from tree disease were characterized for the sample trees. SO{sub 2} and ozone were taken into account in the investigations. It was found that although the development with time of physiological and structural characteristics suggests premature aging of the needles of affected trees, the changes in the hormone metabolism do not correspond to the hormonal control patterns of natural needle aging. SO-2 exposure or a lack of minerals at the forest site are excluded as causes of the observed damage. No conclusive information could be obtained on the effects of ozone. (orig./MG) [Deutsch] Es war ein Ziel dieser Arbeit, nachzuweisen, welche Veraenderungen im Hormonhaushalt erkrankter Baeume vorliegen und dabei moeglichst viele Hormone zu bearbeiten. Die Untersuchungen wurden an Nadeln durchgefuehrt, da die beobachtbaren Symptome fuer eine Stoerung des Hormonhaushaltes vor allem dieser Organe sprachen und sie zudem Hauptangriffsort fuer Luftschadstoffe sind. An physiologisch gesunden Baeumen wurde das Verhalten der einzelnen Hormone im Jahresverlauf in Abhaengigkeit von verschiedenen Einflussgroessen wie Standort, Nadelalter, Baumalter und Position von Probenaesten innerhalb der Baumkrone erarbeitet. Danach wurden die krankheitsbedingten Veraenderungen im Hormonhaushalt der entsprechenden Versuchsbaeume charakterisiert. Die Schadgase SO{sub 2} und Ozon wurden

  1. Physiological studies on photochemical oxidant injury in rice plants. II. Effect of abscisic acid (ABA) on ozone injury and ethylene production in rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y.H.; Nakamura, H.; Ota, Y.

    1981-12-01

    In order to determine the effect of ABA on ozone injury to rice plants, ethylene production, rate of chlorophyll retention and ozone-sensitivity of rice plants pretreated with ABA solution were investigated. The experiments were carried out in pots using rice plants at the 7-8 leaf stage. The results obtained are summarized as follows: ethylene production by the leaf blades exposed to ozone increased with the increase in the dosage of ozone; ethylene production was higher in cv. Nihonbare which was more sensitive to ozone than in cv. Tongil; pre-treatment with ABA solution one hour before ozone treatment reduced ethylene production by the leaf blades exposed to ozone; and the rate of chlorophyll retention decreased following injury, but increased remarkably by the pre-treatment with ABA solution. In conclusion, it could be demonstrated that ozone injury of rice plants can be reduced by the pre-treatment with ABA solution. 28 references, 5 figures, 1 table.

  2. Enzalutamide monotherapy: Phase II study results in patients with hormone-naive prostate cancer

    DEFF Research Database (Denmark)

    Tombal, Bertrand; Borre, Michael; Rathenborg, Per

    2013-01-01

    1 or 2). Most frequent treatment-emergent AEs included gynaecomastia (36%), fatigue (34%), and hot flush (18%). 7% of men experienced SAEs; none were drug-related. Conclusions: ENZA monotherapy (160 mg) was associated with significant PSA response in nearly all men with hormone-naïve prostate cancer...

  3. Dynamics of ethylene production in response to compatible Nod factor

    DEFF Research Database (Denmark)

    Reid, Dugald; Liu, Huijun; Kelly, Simon

    2018-01-01

    Establishment of symbiotic nitrogen-fixation in legumes is regulated by the plant hormone ethylene, but it has remained unclear whether and how its biosynthesis is regulated by the symbiotic pathway. We established a sensitive ethylene detection system for Lotus japonicus and found that ethylene...... production increased as early as six hours after inoculation with Mesorhizobium loti. This ethylene response was dependent on Nod factor production by compatible rhizobia. Analyses of nodulation mutants showed that perception of Nod factor was required for ethylene emission, while downstream transcription...... factors including CYCLOPS, NIN and ERN1 were not required for this response. Activation of the nodulation signalling pathway in spontaneously nodulating mutants was also sufficient to elevate ethylene production. Ethylene signalling is controlled by EIN2, which is duplicated in L. japonicus. We obtained...

  4. Research tools: ethylene preparation. In: Chi-Kuang Wen editor. Ethylene in plants. Springer Netherlands. Springer Link

    Science.gov (United States)

    Ethylene is a plant hormone that regulates many aspects of plant growth and development, germination, fruit ripening, senescence, sex determination, abscission, defense, gravitropism, epinasty, and more. For experimental purposes, one needs to treat plant material with ethylene and its inhibitors t...

  5. Ethylene Control of Fruit Ripening: Revisiting the Complex Network of Transcriptional Regulation1

    Science.gov (United States)

    Chervin, Christian; Bouzayen, Mondher

    2015-01-01

    The plant hormone ethylene plays a key role in climacteric fruit ripening. Studies on components of ethylene signaling have revealed a linear transduction pathway leading to the activation of ethylene response factors. However, the means by which ethylene selects the ripening-related genes and interacts with other signaling pathways to regulate the ripening process are still to be elucidated. Using tomato (Solanum lycopersicum) as a reference species, the present review aims to revisit the mechanisms by which ethylene regulates fruit ripening by taking advantage of new tools available to perform in silico studies at the genome-wide scale, leading to a global view on the expression pattern of ethylene biosynthesis and response genes throughout ripening. Overall, it provides new insights on the transcriptional network by which this hormone coordinates the ripening process and emphasizes the interplay between ethylene and ripening-associated developmental factors and the link between epigenetic regulation and ethylene during fruit ripening. PMID:26511917

  6. Ontogenic studies of the neural control of adenohypophyseal hormones in the rat. II. Prolactin.

    Science.gov (United States)

    Becú-Villalobos, D; Lacau-Mengido, I M; Díaz-Torga, G S; Libertun, C

    1992-02-01

    1. Serum prolactin levels are low during the first 20 days of life and gradually increase toward puberty, in both male and female rats. 2. There is an age-related increase in the cell population engaged in prolactin secretion, as well as an increase in the synthesis of prolactin and of the amount of prolactin secreted from individual lactotropes. 3. The gradual increase in prolactin levels in the third week of life is not related to a decrease in dopaminergic inhibition but to an increase in the efficiency of prolactin releasing factors such as estrogen, serotonin, opiates, and posterior pituitary extracts. 4. Prolactin release induced by physiological factors, such as stress, cervical stimulation, or the expression of spontaneous diurnal and nocturnal surges, requires maturational events within the hypothalamic-pituitary axis which are evident at the end of the third week of life. 5. In the female rat the steadily increasing levels of prolactin are involved in the timing of puberty eclosion acting at the ovary and at the brain. 6. In the prepubertal male rat increasing titers of prolactin may be involved in testicular and accessory organ development and may facilitate the actions of luteinizing hormone, follicle stimulating hormone, and testosterone on male sexual organs.

  7. Fasting in king penguin. II. Hormonal and metabolic changes during molt.

    Science.gov (United States)

    Cherel, Y; Leloup, J; Le Maho, Y

    1988-02-01

    The coincidence of fast and molt in penguins is an interesting condition for investigating the factors controlling protein metabolism; avian molt involves the utilization of amino acids for synthesis of new feathers, whereas a major factor for adaptation to fasting in birds, as for mammals, is reduction in net protein breakdown. Hormonal and biochemical changes were studied in seven molting king penguins. Their initial body mass was 18 kg. It decreased by 58% over 41 days of fasting. Feather synthesis lasted for the first 3 wk of the fast. It was marked by plasma concentrations of alanine and uric acid 1.5 to 2 times those for nonmolting fast, and plasma thyroxine was increased five times. At the completion of molt all these values returned to levels comparable to those in nonmolting fast. As indicated by high plasma levels of beta-hydroxybutyrate, lipid stores were mobilized readily during molting. The fast ended by a phase of enhancement in protein utilization that was characterized by a fivefold increase in uricacidemia and coincided with an 80% drop in plasma beta-hydroxybutyrate and a fourfold increase in plasma corticosterone. These data suggest that two different hormones control the two successive periods marked by an increased protein mobilization during the molting fast, i.e., thyroxine during feather growth and corticosterone toward the end of the fast, when the molt is completed.

  8. The influence of hormone therapies on type I and II endometrial cancer

    DEFF Research Database (Denmark)

    Mørch, Lina S.; Kjær, Susanne K.; Keiding, Niels

    2016-01-01

    identified from the National Cancer Registry: 4,972 Type I tumors and 500 Type II tumors. Incidence rate ratios (RRs) and 95% confidence intervals (Cls) were estimated by Poisson regression. Compared with women never on HT, the RR of endometrial cancer was increased with conjugated estrogen: 4.27 (1...

  9. Enzalutamide monotherapy: Phase II study results in patients with hormone-naive prostate cancer

    DEFF Research Database (Denmark)

    Tombal, Bertrand; Borre, Michael; Rathenborg, Per Zier

    2013-01-01

    al, N Engl J Med 2012;367:1187). Compared with bicalutamide in nonclinical studies, enzalutamide had higher androgen receptor– binding affinity, prevented nuclear translocation, showed no DNA binding, and induced apoptosis (Tran et al, Science 2009;324:787). In contrast to previous phase II and III...

  10. Keragaman Genetik Gen Hormon Pertumbuhan (GH|MboII pada Itik Sikumbang Janti Menggunakan Penciri PCR-RFLP

    Directory of Open Access Journals (Sweden)

    T.D. Nova

    2016-02-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui keragaman gen hormon pertumbuhan (GH dengan enzim MboII pada itik Sikumbang Janti dengan menggunakan penciri PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism. Penelitian ini menggunakan sebanyak 50 sampel darah itik Sikumbang Janti. Sampel darah itik Sikumbang Janti diambil melalui vena achilaris sebanyak ± 1 ml. DNA sampel darah diisolasi menggunakan protocol Genomik DNA Purification Kit (Promega. DNA total diamplifikasi menggunakan sepasang primer F : 5’-CTG GAG CAG GCA GGA AAA TT-3’ dan R: 5’-TCC AGG GAC AGT GAC TCA AC-3’ yang menghasilkan fragmen exon 1 gen GH dengan panjang 801 bp. Produk amplifikasi direstriksi dengan menggunakan MboII yang mengenali situs pemotongan GAAGA (N/8↓ . Dari 46 sampel hasil restriksi diperoleh dua posisi. Pada posisi 618 bp dengan genotip yaitu genotip heterozigot (+/- yang terdiri dari 3 pita (266 bp, 535 bp dan 801 bp, genotip homozigot (+/+ yang terdiri dari 3 pita (109 bp, 266 bp, 426 bp dan genotip homozigot (-/- yang terdiri dari 1 pita ( 801 dan terdapat dua tipe alel, yaitu alel (+ dan all (-, all (+ sebesar 0,79 dan alel (- sebesar 0,21. Sedangkan pada posisi 727 bp memiliki genotip yaitu genotip heterozigot (+/- yang terdiri dari 3 pita (109 bp, 266 bp, 426 bp, dan genotip homozigot (-/- yang terdiri dari 3 pita dan terdapat dua tipe alel, yaitu frekuensi alel (+ sebesar 0,61 dan frekuensi alel (- sebesar 0,39. Dari hasil penelitian ini dapat disimpulkan bahwa gen GH-MboII memiliki keragamanan yang tinggi serta menunjukkan adanya keseimbangan atau tidak menyimpang dari keseimbangan Hardy Weinberg pada posisi keragaman 618 bp dan pada posisi 727 dalam ketidakseimbangan Hardy Weinberg.

  11. A Phase II Trial of 17-Allylamino-17-Demethoxygeldanamycin (17-AAG) in Patients with Hormone-Refractory Metastatic Prostate Cancer

    Science.gov (United States)

    Heath, Elisabeth I.; Hillman, David W.; Vaishampayan, Ulka; Sheng, Shijie; Sarkar, Fazlul; Harper, Felicity; Gaskins, Melvin; Pitot, Henry C.; Tan, Winston; Ivy, S. Percy; Pili, Roberto; Carducci, Michael A.; Liu, Glenn

    2011-01-01

    Purpose 17-Allylamino-17-Demethoxygeldanamycin (17-AAG) is a benzoquinone ansamycin antibiotic with anti-proliferative activity in several mouse xenograft models including prostate cancer models. A two-stage phase II study was conducted to assess the activity and toxicity profile of 17-AAG administered to patients with metastatic, hormone-refractory prostate cancer. Experimental Design Patients with at least one prior systemic therapy and a rising PSA were eligible. Patients received 17-AAG at a dose of 300 mg/m2 IV weekly for three out of four weeks. The primary objective was to assess the PSA response. Secondary objectives were to determine overall survival, to assess toxicity, to measure IL-6, IL-8 and maspin levels and quality of life. Results Fifteen eligible patients were enrolled. The median age was 68 years and the median PSA was 261 ng/mL. Patients received 17-AAG for a median number of 2 cycles. Severe adverse events included: grade 3 fatigue (4 pts), grade 3 lymphopenia (2 pts) and grade 3 back pain (2 pts). The median PSA progression free survival was 1.8 months (95% CI: 1.3–3.4 months). The six-month overall survival was 71% (95% CI: 52%–100%). Conclusion 17-AAG did not show any activity with regards to PSA response. Due to insufficient PSA response, enrollment was stopped at end of first stage per study design. The most significant severe toxicity was grade 3 fatigue. Further evaluation of 17-AAG at a dose of 300 mg/m2 IV weekly as a single agent in patients with metastatic, hormone-refractory prostate cancer who received at least one prior systemic therapy is not warranted. PMID:19047126

  12. A phase II study of preoperative capecitabine in women with operable hormone receptor positive breast cancer

    International Nuclear Information System (INIS)

    Tolaney, Sara M; Jeong, Joon; Guo, Hao; Brock, Jane; Morganstern, Daniel; Come, Steven E; Golshan, Mehra; Bellon, Jennifer; Winer, Eric P; Krop, Ian E

    2014-01-01

    Conventional preoperative chemotherapy regimens have only limited efficacy in hormone receptor positive (HR+) breast cancer and new approaches are needed. We hypothesized that capecitabine, which is effective in metastatic breast cancer, may be an active preoperative treatment for HR+ breast cancer. Women with HR+, HER2-negative operable breast cancer received capecitabine, 2000 mg/m 2 daily in divided doses for 14 days, followed by a 7-day rest period. Treatment was repeated every 21 days for a total of four cycles. The primary endpoint of the study was to determine the rate of pathological complete response (pCR). Because of slow accrual, the study was closed after 24 patients were enrolled. Three patients had a complete clinical response, and eight patients had a partial clinical response, for an overall clinical response rate of 45.8%. There were no cases of pCR. Of the 22 patients who had pathological response assessment by the Miller–Payne grading system, there were six grade 3 responses, and no grade 4 or 5 responses. Toxicity was manageable: the only grade 3 toxicities observed were one case each of diarrhea, palmar plantar erythrodysesthesia, hypokalemia, and mucositis. There was no association between baseline levels, or change in level from baseline to cycle 1, or from baseline to time of surgery, of thymidine phosphorylase (TYMP), thymidylate synthase (TYMS), dihydropyrimidine dehydrogenase (DPYD), or Ki67 and pathological, clinical, or radiographic response. Preoperative capecitabine is a well-tolerated regimen, but appears not lead to pCR when used as monotherapy in HR+ breast cancer

  13. ROLE OF ETHYLENE IN RESPONSES OF PLANTS TO NITROGEN AVAILABILITY

    Directory of Open Access Journals (Sweden)

    M Iqbal R Khan

    2015-10-01

    Full Text Available Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signalling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under suboptimal conditions. Among the plant nutrients, the nitrogen (N is one the most important mineral element required for plant growth and development. The availability of N significantly influences plant metabolism, including ethylene biology. The interaction between ethylene and N affects several physiological process such as leaf gas exchanges, roots architecture, leaf, fruits and flowers development. Low plant N use efficiency leads to N loss and N deprivation, which affect ethylene biosynthesis and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond differently to N availability balancing ethylene production through its signalling network. This review discusses the recent advances in the interaction between N availability and ethylene at whole plant and different organ levels, and explores how N availability induces ethylene biology and plant responses. Exogenously applied ethylene seems to cope the stress conditions and improves plant physiological performance. This can be explained considering the expression of ethylene biosynthesis and signalling genes under different N availability. A greater understanding of the regulation of N by means of ethylene modulation may help to increase N use efficiency and directly influence crop productivity under conditions of limited N availability, leading to positive effects on the environment. Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees, where ethylene can have detrimental effects especially during postharvest.

  14. Mechanistic Insights in Ethylene Perception and Signal Transduction1

    Science.gov (United States)

    Ju, Chuanli; Chang, Caren

    2015-01-01

    The gaseous hormone ethylene profoundly affects plant growth, development, and stress responses. Ethylene perception occurs at the endoplasmic reticulum membrane, and signal transduction leads to a transcriptional cascade that initiates diverse responses, often in conjunction with other signals. Recent findings provide a more complete picture of the components and mechanisms in ethylene signaling, now rendering a more dynamic view of this conserved pathway. This includes newly identified protein-protein interactions at the endoplasmic reticulum membrane, as well as the major discoveries that the central regulator ETHYLENE INSENSITIVE2 (EIN2) is the long-sought phosphorylation substrate for the CONSTITUTIVE RESPONSE1 protein kinase, and that cleavage of EIN2 transmits the signal to the nucleus. In the nucleus, hundreds of potential gene targets of the EIN3 master transcription factor have been identified and found to be induced in transcriptional waves, and transcriptional coregulation has been shown to be a mechanism of ethylene cross talk. PMID:26246449

  15. Circadian variation in serum free and total insulin-like growth factor (IGF)-I and IGF-II in untreated and treated acromegaly and growth hormone deficiency

    DEFF Research Database (Denmark)

    Skjaerbaek, Christian; Frystyk, Jan; Kaal, Andreas

    2000-01-01

    to the nocturnal increase in IGF binding protein-1. In this study we have investigated the circadian variation in circulating free IGF-I and IGF-II in patients with acromegaly and patients with adult onset growth hormone deficiency. PATIENTS: Seven acromegalic patients were studied with and without treatment...... no significant circadian variations in free IGF-I or free IGF-II in either of the two occasions. In contrast, there was a significant circadian variation of total IGF-I after adjustment for changes in plasma volume in both treated and untreated acromegaly and GH deficiency in all cases with a peak between 0300 h...

  16. Ethylene, seed germination, and epinasty.

    Science.gov (United States)

    Stewart, E R; Freebairn, H T

    1969-07-01

    Ethylene activity in lettuce seed (Lactuca satina) germination and tomato (Lycopersicon esculentum) petiole epinasty has been characterized by using heat to inhibit ethylene synthesis. This procedure enabled a separation of the production of ethylene from the effect of ethylene. Ethylene was required in tomato petioles to produce the epinastic response and auxin was found to be active in producing epinasty through a stimulation of ethylene synthesis with the resulting ethylene being responsible for the epinasty. In the same manner, it was shown that gibberellic acid stimulated ethylene synthesis in lettuce seeds. The ethylene produced then in turn stimulated the seeds to germinate. It was hypothesized that ethylene was the intermediate which caused epinasty or seed germination. Auxin and gibberellin primarily induced their response by stimulating ethylene production.

  17. The involvement of ethylene in regulation of Arabidopsis gravitropism

    Science.gov (United States)

    Li, Ning; Zhu, Lin

    Plant gravitropism is a directional response to gravity stimulus. This response involves a com-plex signaling network. Ethylene, a major plant hormone, has been found to modulate grav-itropism. The biosynthesis of ethylene is induced by the gravi-stimulus and the requirement for ethylene during gravitropism is tissue-dependent. While ethylene plays a modulating role in inflorescence stems, the light-grown hypocotyls of Arabidopsis requires ethylene to achieve a maximum gravicurvature. Because both inhibitory and stimulatory effects of ethylene on gravitropism have been overwhelmingly documented, there is a need to postulate a new theory to consolidate the apparently contradictory results. A dual-and-opposing effects (DOE) theory is therefore hypothesized to address how ethylene is involved in regulation of Arabidopsis grav-itropism, in which it is suggested that both stimulatory and inhibitory effects act on the same organ of a plant and co-exist at the same time in a mutually opposing manner. The final out-come of gravitropic response is determined by the dynamic display between the two opposing effects. A prolonged pretreatment of ethylene promotes the gravitropism in both inflorescence and light-grown hypocotyls, while a short ethylene pretreatment inhibits gravitropism. Gener-ally speaking, the inhibitory effect of ethylene is dominant over the expression of the stimula-tory effect in light-grown hypocotyls, whereas the stimulatory effect is dominant in inflorescence stem. Each effect is also positively correlated with concentrations of ethylene and in a time-dependent manner. The stimulatory effect occurs slowly but continues to react after the removal of ethylene, whereas the inhibitory effect takes place abruptly and diminishes shortly after its removal. Forward genetic screening based on the DOE phenotype of ethylene-treated Arabidop-sis has revealed a novel component in gravity signaling pathway: EGY1 (ethylene-dependent gravitropism-deficient and yellow

  18. Radiation chemically induced telomerization of ethylene with selected telogens

    International Nuclear Information System (INIS)

    Wachtendunk, H.J. von.

    1975-01-01

    The suitability of different compounds for the use as telogenes in the telomerization of ethylene has been studied. In all cases the reactions are initiated by the γ-radiation of a 60 Co-source. Temperature programed gas chromatography has proved to be an adequate method of analysis. In the teleomerization process with ethylene also methane tri carboxylic acid tri-ethylene ester (MTE), ortho-formic acid tri-ethylene ester (o-ASE), formic acid, bromium cyane, chlorine cyane and dicyane have been used. The telomerization of MTE and ethylene has been performed successfully with a high yield. The dependence of the reaction on temperature, pressure, radiation dose has been studied as well as the influence of a solvent (acetonitrile). In the attempt to telomerize ortho-formic acid tri-ethylene ester only high molecular weight solid product could be isolated. No interpretable results could be obtained for the telomerization of formic acid with ethylene. In the case of the radiation induced telomerization of chlorine cyane or di-cyane with ethylene in the gas phase, no reaction products could be found. No telomerization between di-cyane and ethylene has been observed even when palladium (II)-cyanide is used as a catalyst of after cocatalys is with triphenyl-phosphile in acetonitrile. (orig./HK) [de

  19. Thap Maeo bananas: Fast ripening and full ethylene perception at low doses.

    Science.gov (United States)

    Saraiva, Lorenzo A; Castelan, Florence P; Gomes, Bruna L; Purgatto, Eduardo; Cordenunsi-Lysenko, Beatriz R

    2018-03-01

    Brazil is a major producer and consumer of various banana types. Thap Maeo is a promising cultivar for the market due to its resistance to Black and Yellow Sigatoka disease. However, a lack of information and postharvest technologies concerning Thap Maeo physiology seems to be a significant problem limiting its expansion in the market. Thus, this study aims to establish Thap Maeo fruit's physical, biochemical, and physiological aspects, defining the best ethylene dosage for treatment considering fruit ripening parameters. Bananas were harvested and monitored during both natural and ethylene-induced ripening processes. Assessments of pulp firmness, peel color and endogenous ethylene production showed different profiles between ethylene-treated and non-treated fruits, whereas the ethylene responses concerning the carbohydrates and hormones profiles, as well as the ethylene receptors expression, were observed in all ethylene-treated fruits, even applying low concentrations of the hormone. It thus indicated the high ethylene-sensitivity of Thap Maeo cultivar. Such postharvest behaviors reverberate in lower ethylene requirements for treatment, which was established at 10μLL -1 . Ethylene-inducible changes in fruit volatile compounds throughout ripening are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Analysis of ethylene biosynthesis and perception during postharvest cold storage of Marsh and Star Ruby grapefruits.

    Science.gov (United States)

    Lado, Joanna; Rodrigo, María Jesús; Zacarías, Lorenzo

    2015-10-01

    Grapefruits are among the citrus species more sensitive to cold and develop chilling injury symptoms during prolonged postharvest storage at temperatures lower than 8 ℃-10 ℃. The plant hormone ethylene has been described either to protect or potentiate chilling injury development in citrus whereas little is known about transcriptional regulation of ethylene biosynthesis, perception and response during cold storage and how the hormone is regulating its own perception and signaling cascade. Then, the objective of the present study was to explore the transcriptional changes in the expression of ethylene biosynthesis, receptors and response genes during cold storage of the white Marsh and the red Star Ruby grapefruits. The effect of the ethylene action inhibitor, 1-MCP, was evaluated to investigate the involvement of ethylene in the regulation of the genes of its own biosynthesis and perception pathway. Ethylene production was very low at the harvest time in fruits of both varieties and experienced only minor changes during storage. By contrast, inhibition of ethylene perception by 1-MCP markedly induced ethylene production, and this increase was highly stimulated during shelf-life at 20 ℃, as well as transcription of ACS and ACO. These results support the auto-inhibitory regulation of ethylene in grapefruits, which acts mainly at the transcriptional level of ACS and ACO genes. Moreover, ethylene receptor1 and ethylene receptor3 were induced by cold while no clear role of ethylene was observed in the induction of ethylene receptors. However, ethylene appears to be implicated in the transcriptional regulation of ERFs both under cold storage and shelf-life. © The Author(s) 2014.

  1. The evolution of ethylene signaling in plant chemical ecology.

    Science.gov (United States)

    Groen, Simon C; Whiteman, Noah K

    2014-07-01

    Ethylene is a key hormone in plant development, mediating plant responses to abiotic environmental stress, and interactions with attackers and mutualists. Here, we provide a synthesis of the role of ethylene in the context of plant ecology and evolution, and a prospectus for future research in this area. We focus on the regulatory function of ethylene in multi-organismal interactions. In general, plant interactions with different types of organisms lead to reduced or enhanced levels of ethylene. This in turn affects not only the plant's response to the interacting organism at hand, but also to other organisms in the community. These community-level effects become observable as enhanced or diminished relationships with future commensals, and systemic resistance or susceptibility to secondary attackers. Ongoing comparative genomic and phenotypic analyses continue to shed light on these interactions. These studies have revealed that plants and interacting organisms from separate kingdoms of life have independently evolved the ability to produce, perceive, and respond to ethylene. This signature of convergent evolution of ethylene signaling at the phenotypic level highlights the central role ethylene metabolism and signaling plays in plant interactions with microbes and animals.

  2. Change in Serum Lipid during Growth Hormone Therapy in a Growth Hormone-Deficient Patient with Decreased Serum Apolipoprotem C-II

    OpenAIRE

    Tadashi, Moriwake; Masanori, Takaiwa; Masako, Kawakami; Shouichi, Tanaka; Tetsuya, Nakamura; Department of Pediatrics, Iwakuni National Hospital; Department of Pediatrics, Iwakuni National Hospital; Department of Pediatrics, Iwakuni National Hospital; Department of Internal Medicine, Iwakuni National Hospital; Department of Radiology, Iwakuni National Hospital

    2003-01-01

    Introduction The effects of GH on lipid metabolism have been discussed frequently in relation to quality of adult life in childhood-onset GH deficiency, but its effects on lipid metabolism were not fully understood. In the present study, we analyzed the longitudinal change in serum lipid metabolites and apolipoproteins in a GH-deficient patient who had a history of cholelithiasis with decreased apolipoprotein C-II. Case K.Y. Four-year old boy visited the emergency clinic of Iwakuni National H...

  3. Alkyne Hydroamination and Trimerization with Titanium Bis(phenolate)pyridine Complexes: Evidence for Low-Valent Titanium Intermediates and Synthesis of an Ethylene Adduct of Titanium(II)

    KAUST Repository

    Tonks, Ian A.

    2013-06-24

    A class of titanium precatalysts of the type (ONO)TiX2 (ONO = pyridine-2,6-bis(4,6-di-tert-butylphenolate); X = Bn, NMe2) has been synthesized and crystallographically characterized. The (ONO)TiX2 (X = Bn, NMe2, X2 = NPh) complexes are highly active precatalysts for the hydroamination of internal alkynes with primary arylamines and some alkylamines. A class of titanium imido/ligand adducts, (ONO)Ti(L)(NR) (L = HNMe2, py; R = Ph, tBu), have also been synthesized and characterized and provide structural analogues to intermediates on the purported catalytic cycle. Furthermore, these complexes exhibit unusual redox behavior. (ONO)TiBn2 (1) promotes the cyclotrimerization of electron-rich alkynes, likely via a catalytically active TiII species that is generated in situ from 1. Depending on reaction conditions, these TiII species are proposed to be generated through Ti benzylidene or imido intermediates. A formally TiII complex, (ONO)Ti II(η2-C2H4)(HNMe2) (7), has been prepared and structurally characterized. © 2013 American Chemical Society.

  4. Update: An efficient synthesis of poly(ethylene glycol)-supported iron(II) porphyrin using a click reaction and its application for the catalytic olefination of aldehydes

    KAUST Repository

    Chinnusamy, Tamilselvi R.; Rodionov, Valentin; Kü hn, Fritz; Reiser, Oliver

    2012-01-01

    The facile synthesis of polyethylene glycol (PEG)-immobilized iron(II) porphyrin using a copper-catalyzed azide-alkyne [3+2] cycloaddition "click" reaction is reported. The prepared complex 5 (PEG-C 51H 39FeN 7O) was found to be an efficient

  5. Alkyne Hydroamination and Trimerization with Titanium Bis(phenolate)pyridine Complexes: Evidence for Low-Valent Titanium Intermediates and Synthesis of an Ethylene Adduct of Titanium(II)

    KAUST Repository

    Tonks, Ian A.; Meier, Josef C.; Bercaw, John E.

    2013-01-01

    A class of titanium precatalysts of the type (ONO)TiX2 (ONO = pyridine-2,6-bis(4,6-di-tert-butylphenolate); X = Bn, NMe2) has been synthesized and crystallographically characterized. The (ONO)TiX2 (X = Bn, NMe2, X2 = NPh) complexes are highly active precatalysts for the hydroamination of internal alkynes with primary arylamines and some alkylamines. A class of titanium imido/ligand adducts, (ONO)Ti(L)(NR) (L = HNMe2, py; R = Ph, tBu), have also been synthesized and characterized and provide structural analogues to intermediates on the purported catalytic cycle. Furthermore, these complexes exhibit unusual redox behavior. (ONO)TiBn2 (1) promotes the cyclotrimerization of electron-rich alkynes, likely via a catalytically active TiII species that is generated in situ from 1. Depending on reaction conditions, these TiII species are proposed to be generated through Ti benzylidene or imido intermediates. A formally TiII complex, (ONO)Ti II(η2-C2H4)(HNMe2) (7), has been prepared and structurally characterized. © 2013 American Chemical Society.

  6. Solid-State Polymerization of Poly(Ethylene Furanoate Biobased Polyester, II: An Efficient and Facile Method to Synthesize High Molecular Weight Polyester Appropriate for Food Packaging Applications

    Directory of Open Access Journals (Sweden)

    Nejib Kasmi

    2018-04-01

    Full Text Available The goal of this study was to synthesize, through a facile strategy, high molecular weight poly(ethylene furanoate (PEF, which could be applicable in food packaging applications. The efficient method to generate PEF with high molecular weight consists of carrying out a first solid-state polycondensation under vacuum for 6 h reaction time at 205 °C for the resulting polymer from two-step melt polycondensation process, which is catalyzed by tetrabutyl titanate (TBT. A remelting step was thereafter applied for 15 min at 250 °C for the obtained polyester. Thus, the PEF sample was ground into powder, and was then crystallized for 6 h at 170 °C. This polyester is then submitted to a second solid-state polycondensation (SSP carried out at different reaction times (1, 2, 3.5, and 5 h and temperatures 190, 200, and 205 °C, under vacuum. Ultimately, a significant increase in intrinsic viscosity is observed with only 5 h reaction time at 205 °C during the second SSP being needed to obtain very high molecular weight PEF polymer greater than 1 dL/g, which sufficient for manufacturing purposes. Intrinsic viscosity (IV, carboxyl end-group content (–COOH, and thermal properties, via differential scanning calorimetry (DSC, were measured for all resultant polyesters. Thanks to the post-polymerization process, DSC results showed that the melting temperatures of the prepared PEF samples were steadily enhanced in an obvious way as a function of reaction time and temperature increase. It was revealed, as was expected for all SSP samples, that the intrinsic viscosity and the average molecular weight of PEF polyester increased with increasing SSP time and temperature, whereas the number of carboxyl end-group concentration was decreased. A simple kinetic model was also developed and used to predict the time evolution of polyesters IV, as well as the carboxyl and hydroxyl end-groups of PEF during the SSP.

  7. Update: An efficient synthesis of poly(ethylene glycol)-supported iron(II) porphyrin using a click reaction and its application for the catalytic olefination of aldehydes

    KAUST Repository

    Chinnusamy, Tamilselvi R.

    2012-05-09

    The facile synthesis of polyethylene glycol (PEG)-immobilized iron(II) porphyrin using a copper-catalyzed azide-alkyne [3+2] cycloaddition "click" reaction is reported. The prepared complex 5 (PEG-C 51H 39FeN 7O) was found to be an efficient catalyst for the selective olefination of aldehydes with ethyl diazoacetate in the presence of triphenylphosphine, and afforded excellent olefin yields with high (E) selectivities. The PEG-supported catalyst 5 was readily recovered by precipitation and filtration, and was recycled through ten runs without significant activity loss. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Recovery and purification of ethylene

    Science.gov (United States)

    Reyneke, Rian [Katy, TX; Foral, Michael J [Aurora, IL; Lee, Guang-Chung [Houston, TX; Eng, Wayne W. Y. [League City, TX; Sinclair, Iain [Warrington, GB; Lodgson, Jeffery S [Naperville, IL

    2008-10-21

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  9. An ethylene-induced regulatory module delays rose flower senescence by regulating cytokinin content

    Science.gov (United States)

    In many plant species, including rose (Rosa hybrida), flower senescence is promoted by the gaseous hormone, ethylene, and inhibited by cytokinin (CTK) class of hormones. However, the molecular mechanisms underlying these antagonistic effects are not well understood. In this current study, we charact...

  10. Interaction of PLS and PIN and hormonal crosstalk in Arabidopsis root developmentHormonal crosstalk in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Junli eLiu

    2013-04-01

    Full Text Available Understanding how hormones and genes interact to coordinate plant growth is a major challenge in developmental biology. The activities of auxin, ethylene and cytokinin depend on cellular context and exhibit either synergistic or antagonistic interactions. Here we use experimentation and network construction to elucidate the role of the interaction of the POLARIS peptide (PLS and the auxin efflux carrier PIN proteins in the crosstalk of three hormones (auxin, ethylene and cytokinin in Arabidopsis root development. In ethylene hypersignalling mutants such as polaris (pls, we show experimentally that expression of both PIN1 and PIN2 significantly increases. This relationship is analysed in the context of the crosstalk between auxin, ethylene and cytokinin: in pls, endogenous auxin, ethylene and cytokinin concentration decreases, approximately remains unchanged and increases, respectively. Experimental data are integrated into a hormonal crosstalk network through combination with information in literature. Network construction reveals that the regulation of both PIN1 and PIN2 is predominantly via ethylene signalling. In addition, it is deduced that the relationship between cytokinin and PIN1 and PIN2 levels implies a regulatory role of cytokinin in addition to its regulation to auxin, ethylene and PLS levels. We discuss how the network of hormones and genes coordinates plant growth by simultaneously regulating the activities of auxin, ethylene and cytokinin signalling pathways.

  11. Structural elucidation of the hormonal inhibition mechanism of the bile acid cholate on human carbonic anhydrase II

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Christopher D. [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States); Tu, Chingkuang [University of Florida, PO Box 100245, Gainesville, FL 32610 (United States); McKenna, Robert, E-mail: rmckenna@ufl.edu [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States)

    2014-06-01

    The structure of human carbonic anhydrase II in complex with cholate has been determined to 1.54 Å resolution. Elucidation of the novel inhibition mechanism of cholate will aid in the development of a nonsulfur-containing, isoform-specific therapeutic agent. The carbonic anhydrases (CAs) are a family of mostly zinc metalloenzymes that catalyze the reversible hydration/dehydration of CO{sub 2} into bicarbonate and a proton. Human isoform CA II (HCA II) is abundant in the surface epithelial cells of the gastric mucosa, where it serves an important role in cytoprotection through bicarbonate secretion. Physiological inhibition of HCA II via the bile acids contributes to mucosal injury in ulcerogenic conditions. This study details the weak biophysical interactions associated with the binding of a primary bile acid, cholate, to HCA II. The X-ray crystallographic structure determined to 1.54 Å resolution revealed that cholate does not make any direct hydrogen-bond interactions with HCA II, but instead reconfigures the well ordered water network within the active site to promote indirect binding to the enzyme. Structural knowledge of the binding interactions of this nonsulfur-containing inhibitor with HCA II could provide the template design for high-affinity, isoform-specific therapeutic agents for a variety of diseases/pathological states, including cancer, glaucoma, epilepsy and osteoporosis.

  12. Mechanistic studies of ethylene biosynthesis in higher plants

    International Nuclear Information System (INIS)

    McGeehan, G.M.

    1986-01-01

    Ethylene is a plant hormone that elicits a wide variety of responses in plant tissue. Among these responses are the hastening of abscission, ripening and senescence. In 1979 it was discovered that 1-amino-1-cyclopropane carboxylic acid is the immediate biosynthetic precursor to ethylene. Given the obvious economic significance of ethylene production the authors concentrated their studies on the conversion of ACC to ethylene. They delved into mechanistic aspects of ACC oxidation and they studied potential inhibitors of ethylene forming enzyme (EFE). They synthesized various analogs of ACC and found that EFE shows good stereodiscrimination among alkyl substituted ACC analogs with the 1R, 2S stereoisomer being processed nine times faster than the 1S, 2R isomer in the MeACC series. They also synthesized 2-cyclopropyl ACC which is a good competitive inhibitor of EFE. This compound also causes time dependent loss of EFE activity leading us to believe it is an irreversible inhibitor of ethylene formation. The synthesis of these analogs has also allowed them to develop a spectroscopic technique to assign the relative stereochemistry of alkyl groups. 13 C NMR allows them to assign the alkyl stereochemistry based upon gamma-shielding effects on the carbonyl resonance. Lastly, they measured kinetic isotope effects on the oxidation of ACC in vivo and in vitro and found that ACC is oxidized by a rate-determining 1-electron removal from nitrogen in close accord with mechanisms for the oxidation of other alkyl amines

  13. Arabidopsis CPR5 regulates ethylene signaling via molecular association with the ETR1 receptor.

    Science.gov (United States)

    Wang, Feifei; Wang, Lijuan; Qiao, Longfei; Chen, Jiacai; Pappa, Maria Belen; Pei, Haixia; Zhang, Tao; Chang, Caren; Dong, Chun-Hai

    2017-11-01

    The plant hormone ethylene plays various functions in plant growth, development and response to environmental stress. Ethylene is perceived by membrane-bound ethylene receptors, and among the homologous receptors in Arabidopsis, the ETR1 ethylene receptor plays a major role. The present study provides evidence demonstrating that Arabidopsis CPR5 functions as a novel ETR1 receptor-interacting protein in regulating ethylene response and signaling. Yeast split ubiquitin assays and bi-fluorescence complementation studies in plant cells indicated that CPR5 directly interacts with the ETR1 receptor. Genetic analyses indicated that mutant alleles of cpr5 can suppress ethylene insensitivity in both etr1-1 and etr1-2, but not in other dominant ethylene receptor mutants. Overexpression of Arabidopsis CPR5 either in transgenic Arabidopsis plants, or ectopically in tobacco, significantly enhanced ethylene sensitivity. These findings indicate that CPR5 plays a critical role in regulating ethylene signaling. CPR5 is localized to endomembrane structures and the nucleus, and is involved in various regulatory pathways, including pathogenesis, leaf senescence, and spontaneous cell death. This study provides evidence for a novel regulatory function played by CPR5 in the ethylene receptor signaling pathway in Arabidopsis. © 2017 Institute of Botany, Chinese Academy of Sciences.

  14. Involvement of ethylene in sex expression and female flower development in watermelon (Citrullus lanatus).

    Science.gov (United States)

    Manzano, Susana; Martínez, Cecilia; García, Juan Manuel; Megías, Zoraida; Jamilena, Manuel

    2014-12-01

    Although it is known that ethylene has a masculinizing effect on watermelon, the specific role of this hormone in sex expression and flower development has not been analyzed in depth. By using different approaches the present work demonstrates that ethylene regulates differentially two sex-related developmental processes: sexual expression, i.e. the earliness and the number of female flowers per plant, and the development of individual floral buds. Ethylene production in the shoot apex as well as in male, female and bisexual flowers demonstrated that the female flower requires much more ethylene than the male one to develop, and that bisexual flowers result from a decrease in ethylene production in the female floral bud. The occurrence of bisexual flowers was found to be associated with elevated temperatures in the greenhouse, concomitantly with a reduction of ethylene production in the shoot apex. External treatments with ethephon and AVG, and the use of Cucurbita rootstocks with different ethylene production and sensitivity, confirmed that, as occurs in other cucurbit species, ethylene is required to arrest the development of stamens in the female flower. Nevertheless, in watermelon ethylene inhibits the transition from male to female flowering and reduces the number of pistillate flowers per plant, which runs contrary to findings in other cucurbit species. The use of Cucurbita rootstocks with elevated ethylene production delayed the production of female flowers but reduced the number of bisexual flowers, which is associated with a reduced fruit set and altered fruit shape.

  15. Gonadotropin-releasing hormone type II (GnRH-II) agonist regulates the invasiveness of endometrial cancer cells through the GnRH-I receptor and mitogen-activated protein kinase (MAPK)-dependent activation of matrix metalloproteinase (MMP)-2

    International Nuclear Information System (INIS)

    Wu, Hsien-Ming; Wang, Hsin-Shih; Huang, Hong-Yuan; Lai, Chyong-Huey; Lee, Chyi-Long; Soong, Yung-Kuei; Leung, Peter CK

    2013-01-01

    More than 25% of patients diagnosed with endometrial carcinoma have an invasive primary cancer accompanied by metastases. Gonadotropin-releasing hormone (GnRH) plays an important role in reproduction. In mammals, expression of GnRH-II is higher than GnRH-I in reproductive tissues. Here, we examined the effect of a GnRH-II agonist on the motility of endometrial cancer cells and its mechanism of action in endometrial cancer therapy. Immunoblotting and immunohistochemistry (IHC) were used to determine the expression of the GnRH-I receptor protein in human endometrial cancer. The activity of MMP-2 in the conditioned medium was determined by gelatin zymography. Cell motility was assessed by invasion and migration assay. GnRH-I receptor si-RNA was applied to knockdown GnRH-I receptor. The GnRH-I receptor was expressed in the endometrial cancer cells. The GnRH-II agonist promoted cell motility in a dose-dependent manner. The GnRH-II agonist induced the phosphorylation of ERK1/2 and JNK, and the phosphorylation was abolished by ERK1/2 inhibitor (U0126) and the JNK inhibitor (SP600125). Cell motility promoted by GnRH-II agonist was suppressed in cells that were pretreated with U0126 and SP600125. Moreover, U0126 and SP600125 abolished the GnRH-II agonist-induced activation of MMP-2. The inhibition of MMP-2 with MMP-2 inhibitor (OA-Hy) suppressed the increase in cell motility in response to the GnRH-II agonist. Enhanced cell motility mediated by GnRH-II agonist was also suppressed by the knockdown of the endogenous GnRH-I receptor using siRNA. Our study indicates that GnRH-II agonist promoted cell motility of endometrial cancer cells through the GnRH-I receptor via the phosphorylation of ERK1/2 and JNK, and the subsequent, MAPK-dependent activation of MMP-2. Our findings represent a new concept regarding the mechanism of GnRH-II-induced cell motility in endometrial cancer cells and suggest the possibility of exploring GnRH-II as a potential therapeutic target for the

  16. Isolation and characterisation of mRNA encoding the salmon- and chicken-II type gonadotrophin-releasing hormones in the teleost fish Rutilus rutilus (Cyprinidae).

    Science.gov (United States)

    Penlington, M C; Williams, M A; Sumpter, J P; Rand-Weaver, M; Hoole, D; Arme, C

    1997-12-01

    The complementary DNAs (cDNA) encoding the [Trp7,Leu8]-gonadotrophin-releasing hormone (salmon-type GnRH; sGnRH:GeneBank accession no. u60667) and the [His5,Trp7,Tyr8]-GnRH (chicken-II-type GnRH; cGnRH-II: GeneBank accession no. u60668) precursor in the roach (Rutilus rutilus) were isolated and sequenced following reverse transcription and rapid amplification of cDNA ends (RACE). The sGnRH and cGnRH-II precursor cDNAs consisted of 439 and 628 bp, and included open reading frames of 282 and 255 bp respectively. The structures of the encoded peptides were the same as GnRHs previously identified in other vertebrates. The sGnRH and cGnRH-II precursor cDNAs, including the non-coding regions, had 88.6 and 79.9% identity respectively, to those identified in goldfish (Carassius auratus). However, significant similarity was not observed between the non-coding regions of the GnRH cDNAs of Cyprinidae and other fish. The presumed third exon, encoding partial sGnRH associated peptide (GAP) of roach, demonstrated significant nucleotide and amino acid similarity with the appropriate regions in the goldfish, but not with other species, and this may indicate functional differences of GAP between different families of fish. cGnRH-II precursor cDNAs from roach had relatively high nucleotide similarity across this GnRH variant. Cladistic analysis classified the sGnRH and cGnRH-II precursor cDNAs into three and two groups respectively. However, the divergence between nucleotide sequences within the sGnRH variant was greater than those encoding the cGnRH-II precursors. Consistent with the consensus developed from previous studies, Northern blot analysis demonstrated that expression of sGnRH and cGnRH-II was restricted to the olfactory bulbs and midbrain of roach respectively. This work forms the basis for further study on the mechanisms by which the tapeworm, Ligula intestinalis, interacts with the pituitary-gonadal axis of its fish host.

  17. Ethylene glycol poisoning

    African Journals Online (AJOL)

    Ethylene glycol poisoning. A 22-year-old male presented to the emergency centre after drinking 300 ml of antifreeze. Clinical examination was unremarkable except for a respiratory rate of 28 bpm, GCS of 9 and slight nystagmus. Arterial blood gas revealed: pH 7.167, pCO2. 3.01 kPa, pO2 13.0 kPa (on room air), HCO3-.

  18. Ethylene and protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, D J

    1973-01-01

    Ethylene reduces the rate of expansion growth of cells and it is suggestive that the rate of expansion is controlled at least in part by the synthesis of hydroxyproline rich glycopeptides that are secreted with other polysaccharide material through the plasmalemma into the cell wall, thereby enhancing the thickness of the cell wall and also rendering it poorly extensible. In combination, auxin would appear to counteract the effect of ethylene in this respect, for although auxin enhances the synthesis of protein and the content in the cell walls, as well as causing some increase in wall thickness, it reduces the amount of hydroxyproline reaching the wall. Such effects may be instrumental in enhancing wall plasticity, the rate of expansion and the final cell size. These results indicate that ethylene and auxin together afford a dual regulatory system exerted through a control of a specific part of the protein synthetic pathway, the products of which regulate the rate of expansion, and the potential for expansion, of the plant cell wall. 38 references, 3 figures, 8 tables.

  19. Do mollusks use vertebrate sex steroids as reproductive hormones? II. Critical review of the evidence that steroids have biological effects.

    Science.gov (United States)

    Scott, Alexander P

    2013-02-01

    In assessing the evidence as to whether vertebrate sex steroids (e.g. testosterone, estradiol, progesterone) have hormonal actions in mollusks, ca. 85% of research papers report at least one biological effect; and 18 out of 21 review papers (published between 1970 and 2012) express a positive view. However, just under half of the research studies can be rejected on the grounds that they did not actually test steroids, but compounds or mixtures that were only presumed to behave as steroids (or modulators of steroids) on the basis of their effects in vertebrates (e.g. Bisphenol-A, nonylphenol and sewage treatment effluents). Of the remaining 55 papers, some can be criticized for having no statistical analysis; some for using only a single dose of steroid; others for having irregular dose-response curves; 40 out of the 55 for not replicating the treatments; and 50 out of 55 for having no within-study repetition. Furthermore, most studies had very low effect sizes in comparison to fish-based bioassays for steroids (i.e. they had a very weak 'signal-to-noise' ratio). When these facts are combined with the fact that none of the studies were conducted with rigorous randomization or 'blinding' procedures (implying the possibility of 'operator bias') one must conclude that there is no indisputable bioassay evidence that vertebrate sex steroids have endocrinological or reproductive roles in mollusks. The only observation that has been independently validated is the ability of estradiol to trigger rapid (1-5 min) lysosomal membrane breakdown in hemocytes of Mytilus spp. This is a typical 'inflammatory' response, however, and is not proof that estradiol is a hormone - especially when taken in conjunction with the evidence (discussed in a previous review) that mollusks have neither the enzymes necessary to synthesize vertebrate steroids nor nuclear receptors with which to respond to them. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  20. Ethylene and the Regulation of Physiological and Morphological Responses to Nutrient Deficiencies

    Science.gov (United States)

    García, María José; Romera, Francisco Javier; Lucena, Carlos; Alcántara, Esteban; Pérez-Vicente, Rafael

    2015-01-01

    To cope with nutrient deficiencies, plants develop both morphological and physiological responses. The regulation of these responses is not totally understood, but some hormones and signaling substances have been implicated. It was suggested several years ago that ethylene participates in the regulation of responses to iron and phosphorous deficiency. More recently, its role has been extended to other deficiencies, such as potassium, sulfur, and others. The role of ethylene in so many deficiencies suggests that, to confer specificity to the different responses, it should act through different transduction pathways and/or in conjunction with other signals. In this update, the data supporting a role for ethylene in the regulation of responses to different nutrient deficiencies will be reviewed. In addition, the results suggesting the action of ethylene through different transduction pathways and its interaction with other hormones and signaling substances will be discussed. PMID:26175512

  1. GnRH-I and GnRH-II-induced calcium signaling and hormone secretion in neonatal rat gonadotrophs

    Czech Academy of Sciences Publication Activity Database

    Balík, Aleš; Jindřichová, Marie; Bhattacharyya, Sharmistha; Zemková, Hana

    2009-01-01

    Roč. 58, č. 5 (2009), s. 709-716 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/07/0681; GA AV ČR(CZ) IAA500110702; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : gonadotrophs * GnRH-II * melatonin Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.430, year: 2009

  2. Ethylene thiourea: thyroid function in two groups of exposed workers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.M.

    1984-08-01

    Ethylene thiourea is manufactured at one factory in the United Kingdom and is mixed into masterbatch rubber at another. Clinical examinations and thyroid function tests were carried out over a period of three years on eight process workers and five mixers and on matched controls. The results show that the exposed mixers, but not exposed process workers, have significantly lower levels of total thyroxine (T4) than the controls. One mixer had an appreciably raised level of thyroid stimulation hormone (TSH).

  3. Ethylene thiourea: thyroid function in two groups of exposed workers.

    Science.gov (United States)

    Smith, D M

    1984-08-01

    Ethylene thiourea is manufactured at one factory in the United Kingdom and is mixed into masterbatch rubber at another. Clinical examinations and thyroid function tests were carried out over a period of three years on eight process workers and five mixers and on matched controls. The results show that the exposed mixers, but not exposed process workers, have significantly lower levels of total thyroxine (T4) than the controls. One mixer had an appreciably raised level of thyroid stimulation hormone (TSH).

  4. Reductive transformation and inhibitory effect of ethylene under methanogenic conditions in peat-soil

    DEFF Research Database (Denmark)

    Elsgaard, Lars

    2013-01-01

    Ethylene (C2H4), which is a potent gaseous plant hormone, has often been found to accumulate in anoxic soils where pathways of anaerobic C2H4 oxidation are so far unknown and other C2H4 transformation processes are uncommon. The present study shows that ethylene was reduced almost...... stoichiometrically (89–92%) to ethane (C2H6) in peat-soil microcosms incubated under methanogenic conditions. Methanogenesis started after a prolonged anoxic lag-phase (>29 weeks) where added ethylene prevailed despite the availability of nitrate (NO3−) as an alternative electron acceptor. Methanogenesis, as well...... as ethylene reduction to ethane, was inhibited by 90% at 1% oxygen. Likewise, methanogenesis and ethane formation was gradually inhibited (to a similar extent) by increasing ethylene concentrations above 0.2%; this inhibition eventually reached 90–95% at 2.2–4.5% C2H4. The present results extend the known...

  5. Hormone assay

    International Nuclear Information System (INIS)

    Eisentraut, A.M.

    1977-01-01

    An improved radioimmunoassay is described for measuring total triiodothyronine or total thyroxine levels in a sample of serum containing free endogenous thyroid hormone and endogenous thyroid hormone bound to thyroid hormone binding protein. The thyroid hormone is released from the protein by adding hydrochloric acid to the serum. The pH of the separated thyroid hormone and thyroid hormone binding protein is raised in the absence of a blocking agent without interference from the endogenous protein. 125 I-labelled thyroid hormone and thyroid hormone antibodies are added to the mixture, allowing the labelled and unlabelled thyroid hormone and the thyroid hormone antibody to bind competitively. This results in free thyroid hormone being separated from antibody bound thyroid hormone and thus the unknown quantity of thyroid hormone may be determined. A thyroid hormone test assay kit is described for this radioimmunoassay. It provides a 'single tube' assay which does not require blocking agents for endogenous protein interference nor an external solid phase sorption step for the separation of bound and free hormone after the competitive binding step; it also requires a minimum number of manipulative steps. Examples of the assay are given to illustrate the reproducibility, linearity and specificity of the assay. (UK)

  6. Phase I/II trial evaluating combined radiotherapy and in situ gene therapy with or without hormonal therapy in the treatment of prostate cancer--A preliminary report

    International Nuclear Information System (INIS)

    Teh, Bin S.; Aguilar-Cordova, Estuardo; Kernen, Kenneth; Chou, C.-C.; Shalev, Moshe; Vlachaki, Maria T.; Miles, Brian; Kadmon, Dov; Mai, W.-Y.; Caillouet, James; Davis, Maria; Ayala, Gustavo; Wheeler, Thomas; Brady, Jett; Carpenter, L. Steve; Lu, Hsin H.; Chiu, J. Kam; Woo, Shiao Y.; Thompson, Timothy; Butler, E. Brian

    2001-01-01

    Purpose: To report the preliminary results of a Phase I/II study combining radiotherapy and in situ gene therapy (adenovirus/herpes simplex virus thymidine kinase gene/valacyclovir) with or without hormonal therapy in the treatment of prostate cancer. Methods and Materials: Arm A: low-risk patients (T1-T2a, Gleason score <7, pretreatment PSA <10) were treated with combined radio-gene therapy. A mean dose of 76 Gy was delivered to the prostate with intensity-modulated radiotherapy. Arm B: high-risk patients (T2b-T3, Gleason score ≥7, pretreatment PSA ≥10) were treated with combined radio-gene therapy and hormonal therapy. Hormonal therapy was comprised of a 4-month leuprolide injection and 2-week use of flutamide. Arm C: Stage D1 (positive pelvic lymph node) patients received the same regimen as Arm B, with the additional 45 Gy to the pelvic lymphatics. Treatment-related toxicity was assessed using Cancer Therapy Evaluation Program common toxicity score and Radiation Therapy Oncology Group (RTOG) toxicity score. Results: Thirty patients (13 in Arm A, 14 in Arm B, and 3 in Arm C) completed the trial. Median follow-up was 5.5 months. Eleven patients (37%) developed flu-like symptoms (Cancer Therapy Evaluation Program Grade 1) of fatigue and chills/rigors after gene therapy injection but recovered within 24 h. Four patients (13%) and 2 patients (7%) developed Grade 1 and 2 fever, respectively. There was no patient with weight loss. One patient in Arm B developed Grade 3 elevation in liver enzyme, whereas 11 and 2 patients developed Grade 1 and 2 abnormal liver function tests. There was no Grade 2 or above hematologic toxicity. Three patients had transient rise in creatinine. There was no RTOG Grade 3 or above lower gastrointestinal toxicity. Toxicity levels were as follows: 4 patients (13%), Grade 2; 6 patients (20%), Grade 1; and 20 patients (67%), no toxicity. There was 1 patient with RTOG Grade 3 genitourinary toxicity, 12 patients (40%) with Grade 2, 8 patients

  7. Microtubule bundling plays a role in ethylene-mediated cortical microtubule reorientation in etiolated Arabidopsis hypocotyls.

    Science.gov (United States)

    Ma, Qianqian; Sun, Jingbo; Mao, Tonglin

    2016-05-15

    The gaseous hormone ethylene is known to regulate plant growth under etiolated conditions (the 'triple response'). Although organization of cortical microtubules is essential for cell elongation, the underlying mechanisms that regulate microtubule organization by hormone signaling, including ethylene, are ambiguous. In the present study, we demonstrate that ethylene signaling participates in regulation of cortical microtubule reorientation. In particular, regulation of microtubule bundling is important for this process in etiolated hypocotyls. Time-lapse analysis indicated that selective stabilization of microtubule-bundling structures formed in various arrays is related to ethylene-mediated microtubule orientation. Bundling events and bundle growth lifetimes were significantly increased in oblique and longitudinal arrays, but decreased in transverse arrays in wild-type cells in response to ethylene. However, the effects of ethylene on microtubule bundling were partially suppressed in a microtubule-bundling protein WDL5 knockout mutant (wdl5-1). This study suggests that modulation of microtubule bundles that have formed in certain orientations plays a role in reorienting microtubule arrays in response to ethylene-mediated etiolated hypocotyl cell elongation. © 2016. Published by The Company of Biologists Ltd.

  8. OLIGOMERIZATION AND LIQUEFACTION OF ETHYLENE

    African Journals Online (AJOL)

    oligomerize ethylene gas in a packed bed reactor operated at 100-300°C under apressure of 500psi and ... The gas flow was then switched back to N, gas and temperature controller was simultaneously set to the desired reaction temperature. Once the desired .... be considered non-ideal for ethylene oligomerization.

  9. Photo- and radiation chemical cycloaddition of maleic acid derivatives to ethylene and acetylene under elavated pressure

    International Nuclear Information System (INIS)

    Mirbach, M.

    1975-01-01

    Based on spectroscopic and kinetic measurements the influence of high pressure on some selected photochemical cycloaddition-reactions is studied. The photo-cycloaddition-reaction of maleic acid anhydride with ethylen has been performed under high ethylen pressures ( 90%). Surprisingly the quantum yield of the cyclo aduct decreases with increasing ethylene pressure from PHI = 0.06 at p = 1 bar to PHI = 0.022 at p = 42 bar. Based on Stern-Volmer quenching experiments, the decrease in ring formation with increasing ethylene concentrations could be explained by an endoergic triplet energy transfer from maleic acid anhydride to ethylene. The type II dissociation of butyrophenone has been quenched also with ethylene. With a lifetime for the first excited butyrophenone triplett state of tau = 6.8 x 10 -8 sec, obtained from kinetic data, the velocity constant can be calculated for this reaction with the result k 5 = 3 x 10 6 M -1 sec -1 . (orig./HK) [de

  10. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics.

    Science.gov (United States)

    Prescott, Aaron M; McCollough, Forest W; Eldreth, Bryan L; Binder, Brad M; Abel, Steven M

    2016-01-01

    Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene

  11. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics

    Directory of Open Access Journals (Sweden)

    Aaron M. Prescott

    2016-08-01

    Full Text Available Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. However, the dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB. In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB. Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms

  12. Genetic introgression of ethylene-suppressed, long shelf-life transgenic tomatoes with higher-polyamines trait overcomes many unintended effects due to reduced ethylene on metabolome

    Science.gov (United States)

    Ethylene regulates a myriad physiological and biochemical processes in ripening fruits and is accepted as the ripening hormone for the climacteric fruits. However, its effects on metabolome and resulting fruit quality are not yet fully understood, particularly when some of the ripening-associated bi...

  13. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea.

    Science.gov (United States)

    Foo, Eloise; McAdam, Erin L; Weller, James L; Reid, James B

    2016-04-01

    The regulation of arbuscular mycorrhizal development and nodulation involves complex interactions between the plant and its microbial symbionts. In this study, we use the recently identified ethylene-insensitive ein2 mutant in pea (Pisum sativum L.) to explore the role of ethylene in the development of these symbioses. We show that ethylene acts as a strong negative regulator of nodulation, confirming reports in other legumes. Minor changes in gibberellin1 and indole-3-acetic acid levels in ein2 roots appear insufficient to explain the differences in nodulation. Double mutants produced by crosses between ein2 and the severely gibberellin-deficient na and brassinosteroid-deficient lk mutants showed increased nodule numbers and reduced nodule spacing compared with the na and lk single mutants, but nodule numbers and spacing were typical of ein2 plants, suggesting that the reduced number of nodules innaandlkplants is largely due to the elevated ethylene levels previously reported in these mutants. We show that ethylene can also negatively regulate mycorrhizae development when ethylene levels are elevated above basal levels, consistent with a role for ethylene in reducing symbiotic development under stressful conditions. In contrast to the hormone interactions in nodulation, ein2 does not override the effect of lk or na on the development of arbuscular mycorrhizae, suggesting that brassinosteroids and gibberellins influence this process largely independently of ethylene. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Role of Ethylene in Lactuca sativa cv ;Grand Rapids' Seed Germination.

    Science.gov (United States)

    Abeles, F B

    1986-07-01

    Promotion of thermoinhibited (30 degrees C) lettuce (Lactuca sativa cv ;Grand Rapids') seed germination by ethylene is similar to the action of the gas in other hormonal systems. Ethylene was more active than propylene and ethane was inactive. An inhibitor of ethylene production, aminoethoxy-vinylglycine, reduced ethylene evolution and germination. Inhibitors of ethylene action such as, 5-methyl-7-chloro-4-ethoxycarbonylmethoxy-2,1,3-benzothiadiazole, 2,5-norbornadiene, and silver thiosulfate inhibited germination and the effect was reversed by the addition of ethylene to the gas phase. The action of ethylene appears to be due to the promotion of radial cell expansion in the embryonic hypocotyl. The action of N6-benzyladenine and fusiccocin, which also overcome thermoinhibition, appears to be due to a promotion of hypocotyl elongation. None of the germination promoters studied appeared to function by lowering the mechanical resistance of the endosperm to embryonic growth. Data presented here are consistent with the view that ethylene plays a role in lettuce seed germination under thermoinhibited and normal conditions.

  15. 46 CFR 154.1725 - Ethylene oxide.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ethylene oxide. 154.1725 Section 154.1725 Shipping COAST....1725 Ethylene oxide. (a) A vessel carrying ethylene oxide must: (1) Have cargo piping, vent piping, and... space of an ethylene oxide cargo tank for a period of 30 days under the condition of paragraph (e) of...

  16. Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis.

    Science.gov (United States)

    Wang, Likai; Zhang, Fan; Rode, Siddharth; Chin, Kevin K; Ko, Eun Esther; Kim, Jonghwan; Iyer, Vishwanath R; Qiao, Hong

    2017-07-17

    Histone acetylation and deacetylation are essential for gene regulation and have been implicated in the regulation of plant hormone responses. Many studies have indicated the role of histone acetylation in ethylene signaling; however, few studies have investigated how ethylene signaling regulates the genomic landscape of chromatin states. Recently, we found that ethylene can specifically elevate histone H3K14 acetylation and the non-canonical histone H3K23 acetylation in etiolated seedlings and the gene activation is positively associated with the elevation of H3K14Ac and H3K23Ac in response to ethylene. To assess the role of H3K9, H3K14, and H3K23 histone modifications in the ethylene response, we examined how ethylene regulates histone acetylation and the transcriptome at global level and in ethylene regulated genes both in wild type (Col-0) and ein2-5 seedlings. Our results revealed that H3K9Ac, H3K14Ac, and H3K23Ac are preferentially enriched around the transcription start sites and are positively correlated with gene expression levels in Col-0 and ein2-5 seedlings both with and without ethylene treatment. In the absence of ethylene, no combinatorial effect of H3K9Ac, H3K14Ac, and H3K23Ac on gene expression was detected. In the presence of ethylene, however, combined enrichment of the three histone acetylation marks was associated with high gene expression levels, and this ethylene-induced change was EIN2 dependent. In addition, we found that ethylene-regulated genes are expressed at medium or high levels, and a group of ethylene regulated genes are marked by either one of H3K9Ac, H3K14Ac or H3K23Ac. In this group of genes, the levels of H3K9Ac were altered by ethylene, but in the absence of ethylene the levels of H3K9Ac and peak breadths are distinguished in up- and down- regulated genes. In the presence of ethylene, the changes in the peak breadths and levels of H3K14Ac and H3K23Ac are required for the alteration of gene expressions. Our study reveals that

  17. Friends or foes: new insights in jasmonate and ethylene co-actions.

    Science.gov (United States)

    Zhu, Ziqiang; Lee, Benjamin

    2015-03-01

    One strategy for sessile plants to adapt to their surrounding environment involves the modulation of their various internal phytohormone signaling and distributions when the plants sense environmental change. There are currently dozens of identified phytohormones in plant cells and they act in concert to regulate plant growth, development, metabolism and defense. It has been determined that phytohormones often act together to achieve certain physiological functions. Thus, the study of hormone-hormone interactions is becoming a competitive research field for deciphering the underlying regulatory mechanisms. Among phytohormones, jasmonate and ethylene present a fascinating case of synergism and antagonism. They are commonly recognized as defense hormones that act synergistically. Plants impaired in jasmonate and/or ethylene signaling are susceptible to infections by necrotrophic fungi, suggesting that these two hormones are both required for defense. Moreover, jasmonate and ethylene also act antagonistically, such as in the regulation of apical hook development and wounding responses. Here, we highlight the recent breakthroughs in the understanding of jasmonate-ethylene co-actions and point out the potential power of studying protein-protein interactions for systematically exploring signal cross-talk. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Integrating role of ethylene and ABA in tomato plants adaptation to salt stress

    DEFF Research Database (Denmark)

    Amjad, Muhammad; Akhtar, Javaid; Anwar-ul-Haq, Muhammad

    2014-01-01

    concentrations of ABA and ethylene under saline conditions compared to control (0mM NaCl) and salt-sensitive genotype. The concentration of hormones was significantly higher in the treatment where no K was applied and it was lower in treatments where K was applied indicating that K application reduced...

  19. Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid

    NARCIS (Netherlands)

    Leon Reyes, H.A.; Du, Y.; Koornneef, A.; Proietti, S.; Körbes, A.P.; Memelink, J.; Pieterse, C.M.J.; Ritsema, T.

    2010-01-01

    Cross-talk between jasmonate (JA), ethylene (ET), and Salicylic acid (SA) signaling is thought to operate as a mechanism to fine-tune induced defenses that are activated in response to multiple attackers. Here, 43 Arabidopsis genotypes impaired in hormone signaling or defense-related processes were

  20. Threshold photoelectron--photonion coincidence mass spectrometric study of ethylene and ethylene-d4

    International Nuclear Information System (INIS)

    Stockbauer, R.; Inghram, M.G.

    1975-01-01

    Experimental curves have been obtained for the fragmentation of ethylene and ethylene-d 4 ions as a function of the internal energy of those ions using threshold photoelectron--photoion coincidence mass spectrometry. The results are compared with the previous results of photoionization mass spectrometry, He I photoelectron--photoion coicidence, charge exchange experiments, and with quasiequilibrium theory (QET) calculations. The discrepancies between results of these previous experiments and QET calculations do not appear in the present data. It is suggested that ion--molecule reactions competing with charge exchange has led to erroneous conclusions in the interpretation of the charge exchange data. It is concluded that QET does describe the fragmentation of ethylene and ethylene-d 4 within the limits of the data and calculations available. The secondary ion fragmentation C 2 H 4 + → C 2 H 3 + +H → C 2 H 2 + +2H is discussed in detail with regard to the C 2 H 3 + fragment ion internal energy distribution

  1. Hormone action. Part I. Peptide hormones

    International Nuclear Information System (INIS)

    Birnbaumer, L.; O'Malley, B.W.

    1985-01-01

    The major sections of this book on the hormonal action of peptide hormones cover receptor assays, identification of receptor proteins, methods for identification of internalized hormones and hormone receptors, preparation of hormonally responsive cells and cell hybrids, purification of membrane receptors and related techniques, assays of hormonal effects and related functions, and antibodies in hormone action

  2. Missed hormonal contraceptives: new recommendations.

    Science.gov (United States)

    Guilbert, Edith; Black, Amanda; Dunn, Sheila; Senikas, Vyta

    2008-11-01

    To provide evidence-based guidance for women and their health care providers on the management of missed or delayed hormonal contraceptive doses in order to prevent unintended pregnancy. Medline, PubMed, and the Cochrane Database were searched for articles published in English, from 1974 to 2007, about hormonal contraceptive methods that are available in Canada and that may be missed or delayed. Relevant publications and position papers from appropriate reproductive health and family planning organizations were also reviewed. The quality of evidence is rated using the criteria developed by the Canadian Task Force on Preventive Health Care. This committee opinion will help health care providers offer clear information to women who have not been adherent in using hormonal contraception with the purpose of preventing unintended pregnancy. The Society of Obstetricians and Gynaecologists of Canada. SUMMARY STATEMENTS: 1. Instructions for what women should do when they miss hormonal contraception have been complex and women do not understand them correctly. (I) 2. The highest risk of ovulation occurs when the hormone-free interval is prolonged for more than seven days, either by delaying the start of combined hormonal contraceptives or by missing active hormone doses during the first or third weeks of combined oral contraceptives. (II) Ovulation rarely occurs after seven consecutive days of combined oral contraceptive use. (II) RECOMMENDATIONS: 1. Health care providers should give clear, simple instructions, both written and oral, on missed hormonal contraceptive pills as part of contraceptive counselling. (III-A) 2. Health care providers should provide women with telephone/electronic resources for reference in the event of missed or delayed hormonal contraceptives. (III-A) 3. In order to avoid an increased risk of unintended pregnancy, the hormone-free interval should not exceed seven days in combined hormonal contraceptive users. (II-A) 4. Back-up contraception should

  3. Method to separate deuterium isotopes using ethylene and ethylene dichloride

    International Nuclear Information System (INIS)

    Benson, S.W.

    1979-01-01

    The separation of deuterium by the dissociation of ethylene vinyl chloride, 1,2-dichloro-ethanes or propylene with the help of intensive, matched infrared lasers enables a relatively good yield if operated on a large scale, e.g. in refineries with large through-put. The deuterium from the laser photolysis of ethylene and vinyl chloride is found in the acetylene formed, which has to be separated off and processed. When using dichloroehtane, the deuterium is found in the vinal chloride formed. The methods are briefly described. (UWI) [de

  4. Ethylene and jasmonic acid act as negative modulators during mutualistic symbiosis between Laccaria bicolor and Populus roots.

    Science.gov (United States)

    Plett, Jonathan M; Khachane, Amit; Ouassou, Malika; Sundberg, Björn; Kohler, Annegret; Martin, Francis

    2014-04-01

    The plant hormones ethylene, jasmonic acid and salicylic acid have interconnecting roles during the response of plant tissues to mutualistic and pathogenic symbionts. We used morphological studies of transgenic- or hormone-treated Populus roots as well as whole-genome oligoarrays to examine how these hormones affect root colonization by the mutualistic ectomycorrhizal fungus Laccaria bicolor S238N. We found that genes regulated by ethylene, jasmonic acid and salicylic acid were regulated in the late stages of the interaction between L. bicolor and poplar. Both ethylene and jasmonic acid treatments were found to impede fungal colonization of roots, and this effect was correlated to an increase in the expression of certain transcription factors (e.g. ETHYLENE RESPONSE FACTOR1) and a decrease in the expression of genes associated with microbial perception and cell wall modification. Further, we found that ethylene and jasmonic acid showed extensive transcriptional cross-talk, cross-talk that was opposed by salicylic acid signaling. We conclude that ethylene and jasmonic acid pathways are induced late in the colonization of root tissues in order to limit fungal growth within roots. This induction is probably an adaptive response by the plant such that its growth and vigor are not compromised by the fungus. © 2013 The Authors New Phytologist © 2013 New Phytologist Trust.

  5. A radioligand immunoassay for 1,25-dihydroxyvitamin D3 receptors using monoclonal antibody: detection of a phenotypic receptor variant in vitamin D-dependency rickets (type II) which does not bind hormone

    International Nuclear Information System (INIS)

    Pike, J.W.; Dokoh, Shigeharu; Liberman, U.A.; Eil, C.; Haussler, M.R.; Marx, S.J.

    1984-01-01

    Vitamin D-dependency rickets, type II (VDDRII), is a well recognized heritable disorder characterized by peripheral target organ resistance to 1,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ), the hormonally active form of the vitamin. Recently, cultured skin fibroblasts obtained from a number of patients with VDDRII have been utilized to characterize the underlying molecular defects associated with this malady. Recently monoclonal antibodies to the vitamin D receptor have been generated, and a radioligand immunoassay (RLIA) for the detection of this molecule has been developed which is independent of its hormone-binding capacity. This report describes the application of the immunoassay in the detection of receptor-like molecules in fibroblasts derived from patients with VDDRII. The results indicate that the molecule is generally present in all patients, and provides a mechanism for individual responsiveness to pharmacologic treatment with vitamin D 3 metabolites. 8 refs.; 3 figs.; 1 table

  6. Poly[(ethylene oxide)-co-(methylene ethylene oxide)]: A hydrolytically-degradable poly(ethylene oxide) platform

    OpenAIRE

    Lundberg, Pontus; Lee, Bongjae F.; van den Berg, Sebastiaan A.; Pressly, Eric D.; Lee, Annabelle; Hawker, Craig J.; Lynd, Nathaniel A.

    2012-01-01

    A facile method for imparting hydrolytic degradability to poly(ethylene oxide) (PEO), compatible with current PEGylation strategies, is presented. By incorporating methylene ethylene oxide (MEO) units into the parent PEO backbone, complete degradation was defined by the molar incorporation of MEO, and the structure of the degradation byproducts was consistent with an acid-catalyzed vinyl-ether hydrolysis mechanism. The hydrolytic degradation of poly[(ethylene oxide)-co-(methylene ethylene oxi...

  7. RESIDUAL RISK ASSESSMENT: ETHYLENE OXIDE ...

    Science.gov (United States)

    This document describes the residual risk assessment for the Ethylene Oxide Commercial Sterilization source category. For stationary sources, section 112 (f) of the Clean Air Act requires EPA to assess risks to human health and the environment following implementation of technology-based control standards. If these technology-based control standards do not provide an ample margin of safety, then EPA is required to promulgate addtional standards. This document describes the methodology and results of the residual risk assessment performed for the Ethylene Oxide Commercial Sterilization source category. The results of this analyiss will assist EPA in determining whether a residual risk rule for this source category is appropriate.

  8. Hormone-Balancing Effect of Pre-Gelatinized Organic Maca (Lepidium peruvianum Chacon): (II) Physiological and Symptomatic Responses of Early-Postmenopausal Women to Standardized doses of Maca in Double Blind, Randomized, Placebo-Controlled, Multi-Centre Clinical Study.

    Science.gov (United States)

    Meissner, H O; Mscisz, A; Reich-Bilinska, H; Kapczynski, W; Mrozikiewicz, P; Bobkiewicz-Kozlowska, T; Kedzia, B; Lowicka, A; Barchia, I

    2006-12-01

    This was a double-blind, randomized, placebo-corrected, outpatient, multi-centre (five sites) clinical study, in which a total of 168 Caucasian early-postmenopausal women volunteers (age>49 years) participated after fulfilling the criteria: follicle stimulating hormone (FSH) >30 IU/ml and estrogen (E2) Maca (Maca-GO) treatment, according to different monthly treatment sequences scheduled for each site. Two 500 mg vegetable hard gel capsules with Maca-GO or Placebo powder were self-administered twice daily with meals (total 2 g/day) during three (Trial I; n=102) or four (Trial II; n=66) months study periods. At the baseline and follow- up monthly intervals, blood levels of FSH, E2, progesterone (PRG) and lutinizing hormone (LH), as well as serum cholesterol (CHOL), triglycerides (TRG), high- and low density lipoproteins (HDL and LDL) were measured. Menopausal symptoms were assessed according to Greene's Score (GMS) and Kupperman's Index (KMI). Data were analyzed using multivariate technique on blocs of monthly results in one model and Maca versus Placebo contrast in another model. A total of 124 women concluded the study. Maca-GO significantly stimulated production of E2 (PMaca-GO significantly reduced both frequency and severity of individual menopausal symptoms (hot flushes and night sweating in particular) resulting in significant (P<0.001) alleviation of KMI (from 22 to 10), thus, offering an attractive non-hormonal addition to the choices available to early-postmenopausal women in the form of a natural plant alternative to Hormone Replacement Therapy (HRT) - hence, reducing dependence on hormone therapy programs.

  9. 49 CFR 173.323 - Ethylene oxide.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Ethylene oxide. 173.323 Section 173.323... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.323 Ethylene oxide. (a) For packaging ethylene oxide in non-bulk packagings, silver mercury or any of its alloys or copper may not be used in any...

  10. 21 CFR 573.440 - Ethylene dichloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethylene dichloride. 573.440 Section 573.440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.440 Ethylene dichloride. The food additive ethylene dichloride may be safely used in...

  11. 21 CFR 173.230 - Ethylene dichloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene dichloride. 173.230 Section 173.230 Food... Solvents, Lubricants, Release Agents and Related Substances § 173.230 Ethylene dichloride. A tolerance of 30 parts per million is established for ethylene dichloride in spice oleoresins when present therein...

  12. 29 CFR 1910.1047 - Ethylene oxide.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 6 2010-07-01 2010-07-01 false Ethylene oxide. 1910.1047 Section 1910.1047 Labor... Ethylene oxide. (a) Scope and application. (1) This section applies to all occupational exposures to ethylene oxide (EtO), Chemical Abstracts Service Registry No. 75-21-8, except as provided in paragraph (a...

  13. Hormone Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hormones quantified from marine mammal and sea turtle tissue provide information about the status of each animal sampled, including its sex, reproductive status and...

  14. Hormone Therapy

    Science.gov (United States)

    ... it also can be a sign of endometrial cancer. All bleeding after menopause should be evaluated. Other side effects reported by women who take hormone therapy include fluid retention and breast soreness. This soreness usually lasts for a short ...

  15. Foliar Abscisic Acid-To-Ethylene Accumulation and Response Regulate Shoot Growth Sensitivity to Mild Drought in Wheat

    Science.gov (United States)

    Valluru, Ravi; Davies, William J.; Reynolds, Matthew P.; Dodd, Ian C.

    2016-01-01

    Although, plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ABA and ethylene concentrations under mild drought compared to control. The DT and DS groups exhibited different SDW response trends, whereby the DS group decreased while the DT group increased SDW, to increased concentrations of ABA and ethylene under mild drought, although both groups decreased ABA/ethylene ratio under mild drought albeit at different levels. We concluded that SDW of the DT and DS groups might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of low concentrations (0.1 μM) of ABA increased shoot relative growth rate (RGR) in the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor) spray increased RGR in both groups compared to control. Furthermore, the DT group accumulated a significantly higher galactose while a significantly lower maltose in the shoot compared to the DS group. Taken all together, these results suggest an impact of ABA, ethylene, and ABA:ethylene ratio on SDW of wheat seedlings that may partly underlie a genotypic variability of different shoot growth sensitivities to drought among crop species under field conditions. We propose that phenotyping based on hormone accumulation, response and hormonal ratio would be a viable, rapid, and an early–stage selection tool aiding genotype selection for stress tolerance. PMID:27148292

  16. Stimulation of lettuce seed germination by ethylene.

    Science.gov (United States)

    Abeles, F B; Lonski, J

    1969-02-01

    Ethylene increased the germination of freshly imbibed lettuce (Lactuca sativa L. var. Grand Rapids) seeds. Seeds receiving either red or far-red light or darkness all showed a positive response to the gas. However, ethylene was apparently without effect on dormant seeds, those which failed to germinate after an initial red or far-red treatment. Carbon dioxide, which often acts as a competitive inhibitor of ethylene, failed to clearly reverse ethylene-enhanced seed germination. While light doubled ethylene production from the lettuce seeds, its effect was not mediated by the phytochrome system since both red and far-red light had a similar effect.

  17. Information theory and the ethylene genetic network.

    Science.gov (United States)

    González-García, José S; Díaz, José

    2011-10-01

    information content in the input message that the cell's genetic machinery is processing during a given time interval. Furthermore, combining Information Theory with the frequency response analysis of dynamical systems we can examine the cell's genetic response to input signals with varying frequencies, amplitude and form, in order to determine if the cell can distinguish between different regimes of information flow from the environment. In the particular case of the ethylene signaling pathway, the amount of information managed by the root cell of Arabidopsis can be correlated with the frequency of the input signal. The ethylene signaling pathway cuts off very low and very high frequencies, allowing a window of frequency response in which the nucleus reads the incoming message as a varying input. Outside of this window the nucleus reads the input message as an approximately non-varying one. This frequency response analysis is also useful to estimate the rate of information transfer during the transport of each new ERF1 molecule into the nucleus. Additionally, application of Information Theory to analysis of the flow of information in the ethylene signaling pathway provides a deeper insight in the form in which the transition between auxin and ethylene hormonal activity occurs during a circadian cycle. An ambitious goal for the future would be to use Information Theory as a theoretical foundation for a suitable model of the information flow that runs at each level and through all levels of biological organization.

  18. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs

    NARCIS (Netherlands)

    Denance, N.; Sanchez Vallet, A.; Goffner, D.; Molina, A.

    2013-01-01

    Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid, and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA),

  19. The radiation crosslinking of ethylene copolymers

    International Nuclear Information System (INIS)

    Burns, N.M.

    1979-01-01

    The enhanced radiation crosslinking tendency of ethylene-vinyl acetate and ethylene-ethyl acrylate copolymers over ethylene homopolymer is proportional to the comonomer content. This is caused by an increase in the amorphous polymer content and by structure-related factors. The copolymers crosslink by a random process that for ethylene-vinyl acetate copolymer involves some crosslinking through the acetoxy group of the comonomer. While knowledge of the process for the crosslinking of ethylene-ethyl acrylate copolymer is less certain, it is currently believed to occur primarily at the branch point on the polymer backbone. Data relating comonomer content and the molecular weight of the copolymers to the radiation crosslinking levels realized were developed to aid in resin selection by the formulator. Triallyl cyanurate cure accelerator was found to be less effective in ethylene-vinyl acetate copolymer than in homopolymer and to have no effect on gel development in ethylene-ethyl acrylate copolymer. (author)

  20. Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana.

    Science.gov (United States)

    Ivanchenko, Maria G; Muday, Gloria K; Dubrovsky, Joseph G

    2008-07-01

    Plant root systems display considerable plasticity in response to endogenous and environmental signals. Auxin stimulates pericycle cells within elongating primary roots to enter de novo organogenesis, leading to the establishment of new lateral root meristems. Crosstalk between auxin and ethylene in root elongation has been demonstrated, but interactions between these hormones in root branching are not well characterized. We find that enhanced ethylene synthesis, resulting from the application of low concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), promotes the initiation of lateral root primordia. Treatment with higher doses of ACC strongly inhibits the ability of pericycle cells to initiate new lateral root primordia, but promotes the emergence of existing lateral root primordia: behaviour that is also seen in the eto1 mutation. These effects are correlated with decreased pericycle cell length and increased lateral root primordia cell width. When auxin is applied simultaneously with ACC, ACC is unable to prevent the auxin stimulation of lateral root formation in the root tissues formed prior to ACC exposure. However, in root tissues formed after transfer to ACC, in which elongation is reduced, auxin does not rescue the ethylene inhibition of primordia initiation, but instead increases it by several fold. Mutations that block auxin responses, slr1 and arf7 arf19, render initiation of lateral root primordia insensitive to the promoting effect of low ethylene levels, and mutations that inhibit ethylene-stimulated auxin biosynthesis, wei2 and wei7, reduce the inhibitory effect of higher ethylene levels, consistent with ethylene regulating root branching through interactions with auxin.

  1. Ethylene Regulates Energy-Dependent Non-Photochemical Quenching in Arabidopsis through Repression of the Xanthophyll Cycle

    Science.gov (United States)

    Chen, Zhong; Gallie, Daniel R.

    2015-01-01

    Energy-dependent (qE) non-photochemical quenching (NPQ) thermally dissipates excess absorbed light energy as a protective mechanism to prevent the over reduction of photosystem II and the generation of reactive oxygen species (ROS). The xanthophyll cycle, induced when the level of absorbed light energy exceeds the capacity of photochemistry, contributes to qE. In this work, we show that ethylene regulates the xanthophyll cycle in Arabidopsis. Analysis of eto1-1, exhibiting increased ethylene production, and ctr1-3, exhibiting constitutive ethylene response, revealed defects in NPQ resulting from impaired de-epoxidation of violaxanthin by violaxanthin de-epoxidase (VDE) encoded by NPQ1. Elevated ethylene signaling reduced the level of active VDE through decreased NPQ1 promoter activity and impaired VDE activation resulting from a lower transthylakoid membrane pH gradient. Increasing the concentration of CO2 partially corrected the ethylene-mediated defects in NPQ and photosynthesis, indicating that changes in ethylene signaling affect stromal CO2 solubility. Increasing VDE expression in eto1-1 and ctr1-3 restored light-activated de-epoxidation and qE, reduced superoxide production and reduced photoinhibition. Restoring VDE activity significantly reversed the small growth phenotype of eto1-1 and ctr1-3 without altering ethylene production or ethylene responses. Our results demonstrate that ethylene increases ROS production and photosensitivity in response to high light and the associated reduced plant stature is partially reversed by increasing VDE activity. PMID:26630486

  2. Ethylene Regulates Energy-Dependent Non-Photochemical Quenching in Arabidopsis through Repression of the Xanthophyll Cycle.

    Directory of Open Access Journals (Sweden)

    Zhong Chen

    Full Text Available Energy-dependent (qE non-photochemical quenching (NPQ thermally dissipates excess absorbed light energy as a protective mechanism to prevent the over reduction of photosystem II and the generation of reactive oxygen species (ROS. The xanthophyll cycle, induced when the level of absorbed light energy exceeds the capacity of photochemistry, contributes to qE. In this work, we show that ethylene regulates the xanthophyll cycle in Arabidopsis. Analysis of eto1-1, exhibiting increased ethylene production, and ctr1-3, exhibiting constitutive ethylene response, revealed defects in NPQ resulting from impaired de-epoxidation of violaxanthin by violaxanthin de-epoxidase (VDE encoded by NPQ1. Elevated ethylene signaling reduced the level of active VDE through decreased NPQ1 promoter activity and impaired VDE activation resulting from a lower transthylakoid membrane pH gradient. Increasing the concentration of CO2 partially corrected the ethylene-mediated defects in NPQ and photosynthesis, indicating that changes in ethylene signaling affect stromal CO2 solubility. Increasing VDE expression in eto1-1 and ctr1-3 restored light-activated de-epoxidation and qE, reduced superoxide production and reduced photoinhibition. Restoring VDE activity significantly reversed the small growth phenotype of eto1-1 and ctr1-3 without altering ethylene production or ethylene responses. Our results demonstrate that ethylene increases ROS production and photosensitivity in response to high light and the associated reduced plant stature is partially reversed by increasing VDE activity.

  3. Ethylene Regulates Energy-Dependent Non-Photochemical Quenching in Arabidopsis through Repression of the Xanthophyll Cycle.

    Science.gov (United States)

    Chen, Zhong; Gallie, Daniel R

    2015-01-01

    Energy-dependent (qE) non-photochemical quenching (NPQ) thermally dissipates excess absorbed light energy as a protective mechanism to prevent the over reduction of photosystem II and the generation of reactive oxygen species (ROS). The xanthophyll cycle, induced when the level of absorbed light energy exceeds the capacity of photochemistry, contributes to qE. In this work, we show that ethylene regulates the xanthophyll cycle in Arabidopsis. Analysis of eto1-1, exhibiting increased ethylene production, and ctr1-3, exhibiting constitutive ethylene response, revealed defects in NPQ resulting from impaired de-epoxidation of violaxanthin by violaxanthin de-epoxidase (VDE) encoded by NPQ1. Elevated ethylene signaling reduced the level of active VDE through decreased NPQ1 promoter activity and impaired VDE activation resulting from a lower transthylakoid membrane pH gradient. Increasing the concentration of CO2 partially corrected the ethylene-mediated defects in NPQ and photosynthesis, indicating that changes in ethylene signaling affect stromal CO2 solubility. Increasing VDE expression in eto1-1 and ctr1-3 restored light-activated de-epoxidation and qE, reduced superoxide production and reduced photoinhibition. Restoring VDE activity significantly reversed the small growth phenotype of eto1-1 and ctr1-3 without altering ethylene production or ethylene responses. Our results demonstrate that ethylene increases ROS production and photosensitivity in response to high light and the associated reduced plant stature is partially reversed by increasing VDE activity.

  4. Inhibition of ethylene production by cobaltous ion

    International Nuclear Information System (INIS)

    Lau, O.L; Yang, S.F.

    1976-01-01

    The effect of Co 2+ on ethylene production by mung bean (Phaseolus aureus Roxb.) and by apple tissues was studied. Co 2+ , depending on concentrations applied, effectively inhibited ethylene production by both tissues. It also strongly inhibited the ethylene production induced by IAA, kinetin, IAA plus kinetin, Ca 2+ , kinetin plus Ca 2+ , or Cu 2+ treatments in mung bean hypocotyl segments. While Co 2+ greatly inhibited ethylene production, it had little effect on the respiration of apple tissue, indicating that Co 2+ does not exert its inhibitory effect as a general metabolic inhibitor. Ni 2+ , which belongs to the same group as Co 2+ in the periodic table, also markedly curtailed both the basal and the induced ethylene production by apple and mung bean hypocotyl tissues. In a system in which kinetin and Ca 2+ were applied together, kinetin greatly enhanced Ca 2+ uptake, thus enhancing ethylene production. Co 2+ , however, slightly inhibited the uptake of Ca 2+ but appreciably inhibited ethylene production, either in the presence or in the absence of kinetin. Tracer experiments using apple tissue indicated that Co 2+ strongly inhibited the in vivo conversion of L-[U-- 14 C]methionine to 14 C-ethylene. These data suggested that Co 2+ inhibited ethylene production by inhibiting the conversion of methionine to ethylene, a common step which is required for ethylene formation by higher plants. Co 2+ is known to promote elongation, leaf expansion, and hook opening in excised plant parts in response to applied auxins or cytokinins.Since ethylene is known to inhibit those growth phenomena, it is suggested that Co 2+ exerts its promotive effect, at least in part, by inhibiting ethylene formation

  5. Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum

    NARCIS (Netherlands)

    Di, X.; Gomila, J.; Takken, F.L.W.

    Phytohormones, such as salicylic acid (SA), ethylene (ET) and jasmonic acid (JA), play key roles in plant defence following pathogen attack. The involvement of these hormones in susceptibility following Fusarium oxysporum (Fo) infection has mostly been studied in Arabidopsis thaliana. However, Fo

  6. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening.

    Science.gov (United States)

    Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher

    2013-12-23

    Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated concentrations of ethylene prior to the

  7. Intensification of ethylene glycol production process

    DEFF Research Database (Denmark)

    Wisutwattanaa, Apiwit; Frauzem, Rebecca; Suriyapraphadilok, Uthaiporn

    2017-01-01

    This study aims to generate an alternative design for ethylene glycol production process focusing on a reduction of operating cost and emissions. To achieve this, the phenomena-based method for process intensification was applied. 3 stages of process intensification were performed. First, the base......-case design was obtained, resulting in the production of ethylene glycol via two steps: ethylene oxidation synthesis followed by ethylene oxide hydration to produce ethylene glycol. Feasibility of the design was verified and the process was rigorously designed using a computer process simulation program...... solutions. As the result of intensification method, membrane separation was suggested and applied to the design. With the operation of the new equipment, the ethylene glycol production process was improved for 54.51 percent in terms of energy consumption....

  8. Bioidentical Hormones and Menopause

    Science.gov (United States)

    ... Endocrinologist Search Featured Resource Menopause Map™ View Bioidentical Hormones January 2012 Download PDFs English Espanol Editors Howard ... take HT for symptom relief. What are bioidentical hormones? Bioidentical hormones are identical to the hormones that ...

  9. Method of deuterium isotope separation using ethylene and ethylene dichloride

    International Nuclear Information System (INIS)

    Benson, S.W.

    1982-01-01

    Compounds enriched in deuterium may be obtained from ethylene, vinyl chloride, 1,2-dichloroethane, or propylene by laser isotope separation. Normal molecules of these organic compounds are exposed to infrared laser radiation of a suitable wavelength. Substantially all of the deuterium-containing molecules exposed to the laser can be selectively dissociated and the deuterium-containing products separated from the starting material and other reaction products. The deuterium-containing molecules can be burned to form water with an enriched deuterium content, or pyrolized to form hydrogen gas enriched in deuterium

  10. Ovarian hormones and obesity.

    Science.gov (United States)

    Leeners, Brigitte; Geary, Nori; Tobler, Philippe N; Asarian, Lori

    2017-05-01

    Obesity is caused by an imbalance between energy intake, i.e. eating and energy expenditure (EE). Severe obesity is more prevalent in women than men worldwide, and obesity pathophysiology and the resultant obesity-related disease risks differ in women and men. The underlying mechanisms are largely unknown. Pre-clinical and clinical research indicate that ovarian hormones may play a major role. We systematically reviewed the clinical and pre-clinical literature on the effects of ovarian hormones on the physiology of adipose tissue (AT) and the regulation of AT mass by energy intake and EE. Articles in English indexed in PubMed through January 2016 were searched using keywords related to: (i) reproductive hormones, (ii) weight regulation and (iii) central nervous system. We sought to identify emerging research foci with clinical translational potential rather than to provide a comprehensive review. We find that estrogens play a leading role in the causes and consequences of female obesity. With respect to adiposity, estrogens synergize with AT genes to increase gluteofemoral subcutaneous AT mass and decrease central AT mass in reproductive-age women, which leads to protective cardiometabolic effects. Loss of estrogens after menopause, independent of aging, increases total AT mass and decreases lean body mass, so that there is little net effect on body weight. Menopause also partially reverses women's protective AT distribution. These effects can be counteracted by estrogen treatment. With respect to eating, increasing estrogen levels progressively decrease eating during the follicular and peri-ovulatory phases of the menstrual cycle. Progestin levels are associated with eating during the luteal phase, but there does not appear to be a causal relationship. Progestins may increase binge eating and eating stimulated by negative emotional states during the luteal phase. Pre-clinical research indicates that one mechanism for the pre-ovulatory decrease in eating is a

  11. Genetic introgression of ethylene-suppressed transgenic tomatoes with higher-polyamines trait overcomes many unintended effects due to reduced ethylene on the primary metabolome

    Directory of Open Access Journals (Sweden)

    Anatoly P Sobolev

    2014-12-01

    Full Text Available Ethylene regulates a myriad physiological and biochemical processes in ripening fruits and is accepted as the ripening hormone for the climacteric fruits. However, its effects on metabolome and resulting fruit quality are not yet fully understood, particularly when some of the ripening-associated biochemical changes are independent of ethylene action. We have generated a homozygous transgenic tomato genotype (2AS-AS that exhibits reduced ethylene production as a result of impaired expression of 1-aminocyclopropane-1-carboxylate synthase 2 gene by its antisense RNA and had a longer shelf life. Double transgenic hybrid (2AS-AS x 579HO developed through a genetic cross between 2AS-AS and 579HO (Mehta et al., 2002 lines resulted in significantly higher ethylene production than either the WT or 2AS-AS fruit. To determine the effects of reduced ethylene and introgression of higher polyamines’ trait, the metabolic profiles of ripening fruits from WT (556AZ, 2AS-AS, and 2AS-AS x 579HO lines were determined using 1H-NMR spectroscopy. The levels of Glu, Asp, AMP, Adenosine, Nucl1 and Nucl2 increased during ripening of the WT fruit. The increases in Glu, Asp, and AMP levels were attenuated in 2AS-AS fruit but recovered in the double hybrid with higher ethylene and polyamine levels. The ripening-associated decreases in Ala, Tyr, Val, Ile, Phe, malate and myo-inositol levels in the 2AS-AS line were not reversed in the double hybrid line suggesting a developmental/ripening regulated accumulation of these metabolites independent of ethylene. Significant increases in the levels of fumarate, formate, choline, Nucl1 and Nucl2 at most stages of ripening fruit were found in the double transgenic line due to introgression with higher-polyamines trait. Taken together these results show that the ripening-associated metabolic changes are both ethylene dependent and independent, and that the fruit metabolome is under the control of multiple regulators, including

  12. Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid

    OpenAIRE

    Leon Reyes, H.A.; Du, Y.; Koornneef, A.; Proietti, S.; Körbes, A.P.; Memelink, J.; Pieterse, C.M.J.; Ritsema, T.

    2010-01-01

    Cross-talk between jasmonate (JA), ethylene (ET), and Salicylic acid (SA) signaling is thought to operate as a mechanism to fine-tune induced defenses that are activated in response to multiple attackers. Here, 43 Arabidopsis genotypes impaired in hormone signaling or defense-related processes were screened for their ability to express SA-mediated suppression of JA-responsive gene expression. Mutant cev1, which displays constitutive expression of JA and ET responses, appeared to be insensitiv...

  13. Efficient separation of ethylene from acetylene/ethylene mixtures by a flexible-robust metalorganic framework

    NARCIS (Netherlands)

    Li, L.; Lin, R.-B.; Krishna, R.; Wang, X.; Li, B.; Wu, H.; Li, J.; Zhou, W.; Chen, B.

    2017-01-01

    During the production of polymer-grade ethylene, trace amounts of acetylene (about 1%) in the ethylene feed need to be reduced to 40 parts per million (ppm). We herein report a metal–organic framework (MOF) of flexible-robust nature for the efficient removal of acetylene from acetylene/ethylene

  14. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase.

    Science.gov (United States)

    Carlin, D A; Bertolani, S J; Siegel, J B

    2015-02-11

    Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.

  15. Ethylene and pollination decrease transcript abundance of an ethylene receptor gene in Dendrobium petals.

    Science.gov (United States)

    Thongkum, Monthathip; Burns, Parichart; Bhunchoth, Anjana; Warin, Nuchnard; Chatchawankanphanich, Orawan; van Doorn, Wouter G

    2015-03-15

    We studied the expression of a gene encoding an ethylene receptor, called Ethylene Response Sensor 1 (Den-ERS1), in the petals of Dendrobium orchid flowers. Transcripts accumulated during the young floral bud stage and declined by the time the flowers had been open for several days. Pollination or exposure to exogenous ethylene resulted in earlier flower senescence, an increase in ethylene production and a lower Den-ERS1 transcript abundance. Treatment with 1-methylcyclopropene (1-MCP), an inhibitor of the ethylene receptor, decreased ethylene production and resulted in high transcript abundance. The literature indicates two kinds of ethylene receptor genes with regard to the effects of ethylene. One group shows ethylene-induced down-regulated transcription, while the other has ethylene-induced up-regulation. The present gene is an example of the first group. The 5' flanking region showed binding sites for Myb and myb-like, homeodomain, MADS domain, NAC, TCP, bHLH and EIN3-like transcription factors. The binding site for the EIN3-like factor might explain the ethylene effect on transcription. A few other transcription factors (RAV1 and NAC) seem also related to ethylene effects. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Immunoassays for the measurement of IGF-II, IGFBP-2 and -3, and ICTP as indirect biomarkers of recombinant human growth hormone misuse in sport. Values in selected population of athletes.

    Science.gov (United States)

    Abellan, Rosario; Ventura, Rosa; Palmi, Ilaria; di Carlo, Simonetta; Bacosi, Antonella; Bellver, Montse; Olive, Ramon; Pascual, Jose Antonio; Pacifici, Roberta; Segura, Jordi; Zuccaro, Piergiorgio; Pichini, Simona

    2008-11-04

    Insulin-like growth factor-II (IGF-II), insulin-like growth factor binding proteins (IGFBPs) -2 and -3 and C-terminal telopeptide of type I collagen (ICTP) have been proposed, among others, as indirect biomarkers of the recombinant human growth hormone misuse in sport. An extended intra- and inter-laboratory validation of commercially available immunoassays for biomarkers detection was performed. ELISA assays for total IGF-II, IGFBP-2 and IGFBP-3 (IGF-II/ELISA1: DSLabs, IGFBP-2/ELISA2: Biosource, and IGFBP-3/ELISA3: BioSource) and an EIA assay for ICTP (ICTP/EIA: Orion Diagnostica) were evaluated. The inter- and intra-laboratory precision values were acceptable for all evaluated assays (maximum imprecision of 30% and 66% were found only for the lowest quality control samples of IGF-II and IGFBP-3). Correct accuracy was obtained for all inter-laboratory immunoassays and for IGFBP-2 intra-laboratory immunoassay. The range of concentrations found in serum samples under investigation was always covered by the calibration curves of the studied immunoassays. However, 11% and 15% of the samples felt below the estimated LOQ for IGF-II and ICTP, respectively, in the zone where lower precision was obtained. Although the majority of evaluated assays showed an overall reliability not always suitable for antidoping control analysis, relatively high concordances between laboratory results were obtained for all assays. Evaluated immunoassays were used to measure serum concentrations of IGF-II, IGFBP-2 and -3 and ICTP in elite athletes of various sport disciplines at different moments of the training season; in recreational athletes at baseline conditions and finally in sedentary individuals. Serum IGF-II was statistically higher both in recreational and elite athletes compared to sedentary individuals. Elite athletes showed lower IGFBP-2 and higher IGFBP-3 concentration with respect to recreational athletes and sedentary people. Among elite athletes, serum IGFBP-3 (synchronized

  17. Poly(ethylene oxide) functionalization

    Science.gov (United States)

    Pratt, Russell Clayton

    2014-04-08

    A simple procedure is provided by which the hydroxyl termini of poly(ethylene oxide) can be appended with functional groups to a useful extent by reaction and precipitation. The polymer is dissolved in warmed toluene, treated with an excess of organic base and somewhat less of an excess of a reactive acylating reagent, reacted for several hours, then precipitated in isopropanol so that the product can be isolated as a solid, and salt byproducts are washed away. This procedure enables functionalization of the polymer while not requiring laborious purification steps such as solvent-solvent extraction or dialysis to remove undesirable side products.

  18. Corticotropin-releasing hormone-mediated metamorphosis in the neotenic axolotl Ambystoma mexicanum: synergistic involvement of thyroxine and corticoids on brain type II deiodinase.

    Science.gov (United States)

    Kühn, Eduard R; De Groef, Bert; Van der Geyten, Serge; Darras, Veerle M

    2005-08-01

    In the present study, morphological changes leading to complete metamorphosis have been induced in the neotenic axolotl Ambystoma mexicanum using a submetamorphic dose of T(4) together with an injection of corticotropin-releasing hormone (CRH). An injection of CRH alone is ineffective in this regard presumably due to a lack of thyrotropic stimulation. Using this low hormone profile for induction of metamorphosis, the deiodinating enzymes D2 and D3 known to be present in amphibians were measured in liver and brain 24h following an intraperitoneal injection. An injection of T(4) alone did not influence liver nor brain D2 and D3, but dexamethasone (DEX) or CRH alone or in combination with T(4) decreased liver D2 and D3. Brain D2 activity was slightly increased with a higher dose of DEX, though CRH did not have this effect. A profound synergistic effect occurred when T(4) and DEX or CRH were injected together, in the dose range leading to metamorphosis, increasing brain D2 activity more than fivefold. This synergistic effect was not found in the liver. It is concluded that brain T(3) availability may play an important role for the onset of metamorphosis in the neotenic axolotl.

  19. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination

    Directory of Open Access Journals (Sweden)

    Erwann eArc

    2013-03-01

    Full Text Available Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8’-hydroxylation. The hormonal balance between ABA and gibberellins (GAs has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8’-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination.

  20. 29 CFR 1926.1147 - Ethylene oxide.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Ethylene oxide. 1926.1147 Section 1926.1147 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Ethylene oxide. Note: The requirements applicable to construction work under this section are identical to...

  1. 29 CFR 1915.1047 - Ethylene oxide.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Ethylene oxide. 1915.1047 Section 1915.1047 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1047 Ethylene oxide. Note: The requirements applicable to shipyard employment under this section...

  2. Health Assessment Document for Ethylene Oxide

    Science.gov (United States)

    The largest single use of ethylene oxide is as an intermediate in the synthesis of ethylene glycol. However, small amounts of this epoxide are used as a sterilant or pesticide in commodities, pharmaceuticals, medical devices, tobacco, and other items, representing a considerable ...

  3. Ethylene Glycol, Hazardous Substance in the Household

    Directory of Open Access Journals (Sweden)

    Jiří Patočka

    2010-01-01

    Full Text Available Ethylene glycol is a colorless, odorless, sweet-tasting but poisonous type of alcohol found in many household products. The major use of ethylene glycol is as an antifreeze in, for example, automobiles, in air conditioning systems, in de-icing fluid for windshields, and else. People sometimes drink ethylene glycol mistakenly or on purpose as a substitute for alcohol. Ethylene glycol is toxic, and its drinking should be considered a medical emergency. The major danger from ethylene glycol is following ingestion. Due to its sweet taste, peoples and occasionally animals will sometimes consume large quantities of it if given access to antifreeze. While ethylene glycol itself has a relatively low degree of toxicity, its metabolites are responsible for extensive cellular damage to various tissues, especially the kidneys. This injury is caused by the metabolites, glycolic and oxalic acid and their respective salts, through crystal formation and possibly other mechanisms. Toxic metabolites of ethylene glycol can damage the brain, liver, kidneys, and lungs. The poisoning causes disturbances in the metabolism pathways, including metabolic acidosis. The disturbances may be severe enough to cause profound shock, organ failure, and death. Ethylene glycol is a common poisoning requiring antidotal treatment.

  4. Health of tree swallows (Tachycineta bicolor) nesting in pesticide-sprayed apple orchards in Ontario, Canada. II. Sex and thyroid hormone concentrations and testes development.

    Science.gov (United States)

    Bishop, C A; Van Der Kraak, G J; Ng, P; Smits, J E; Hontela, A

    1998-12-25

    To investigate the effects of pesticides on wild birds, sex (17beta-estradiol; testosterone) and thyroid (triiodothyronine (T3) hormone concentrations, body mass, and testes mass were measured and the development of testes was evaluated in wild tree swallows (Tachycineta bicolor) nesting in four sprayed apple orchards and three nonsprayed sites in southern Ontario, Canada, in 1995-1996. In orchards, birds were exposed to asmany as 11 individual spray events and five sprays of mixtures of chemicals. Residues of organochlorine pesticides, PCBs, lead, and arsenic concentrations were low and not variable among sites except p,p'-DDE concentrations, which ranged from 0.36 to 2.23 microg/g wet weight in eggs. These persistent compounds were not correlated with any endocrine response measured in tree swallows. In 16-d-old male tree swallow chicks, body mass and concentrations of 17beta-estradiol (estradiol), testosterone, and T3 in plasma showed no significant differences between sprayed and nonsprayed groups and among sites within those groups. However, T3 concentrations were slightly elevated in the sprayed group compared to the nonsprayed group, and there was a significant and positive correlation between T3 and the number of mixtures of sprays applied during egg incubation through chick rearing. In 16-d-old female chicks, there were no significant differences among spray treatments or sites and no correlations with spray exposure for testosterone, estradiol, or T3 in plasma. Body mass was correlated positively with T3 and negatively with estradiol but showed no differences among spray exposure groups or sites. Histology of testes of 16-d-old male chicks indicated there were no significant differences among sprayed and nonsprayed birds in testes mass, area, or diameter, or the presence of Leydig cells in the interstitium, the distribution of the Sertoli cells, or the occurrence of heterophils in the testicular interstitium. For the percentage of spermatogonia present on

  5. [Quantitative analysis of urinary ethylene glycol in rats exposed to ethylene oxide].

    Science.gov (United States)

    Koga, M; Hori, H; Tanaka, I; Akiyama, T; Inoue, N

    1985-03-01

    A gas chromatographic method was used for determining ethylene glycol in urine. The analytical procedure is based on an azeotropic distillation and on esterification with n-butyl boronic acid. The linear calibration curve was obtained up to 500 micrograms/ml of ethylene glycol. The detection limit was estimated to be 10 micrograms/ml and relative standard deviation was 3.5% for 100 micrograms/ml of ethylene glycol. This method was applied to determine the urinary excretion of ethylene glycol in rats exposed to ethylene oxide at various concentrations (from 50 to 500 ppm). The excretion amounts of ethylene glycol were observed to be dependent on the concentration of ethylene oxide exposed.

  6. Simulation of soot size distribution in an ethylene counterflow flame

    KAUST Repository

    Zhou, Kun

    2014-01-06

    Soot, an aggregate of carbonaceous particles produced during the rich combustion of fossil fuels, is an undesirable pollutant and health hazard. Soot evolution involves various dynamic processes: nucleation soot formation from polycyclic aromatic hydrocarbons (PAHs) condensation PAHs condensing on soot particle surface surface processes hydrogen-abstraction-C2H2-addition, oxidation coagulation two soot particles coagulating to form a bigger particle This simulation work investigates soot size distribution and morphology in an ethylene counterflow flame, using i). Chemkin with a method of moments to deal with the coupling between vapor consumption and soot formation; ii). Monte Carlo simulation of soot dynamics.

  7. A new approach for the detection of ethylene using silica-supported palladium complexes.

    Science.gov (United States)

    Cabanillas-Galán, Patricia; Farmer, Linda; Hagan, Terence; Nieuwenhuyzen, Mark; James, Stuart L; Lagunas, M Cristina

    2008-10-06

    The coordination of olefins to square-planar Pd(II) and Pt(II) complexes containing 2,9-dimethylphenanthroline ( L1) often involves a change of color associated with a change of geometry at the metal center. In order to obtain suitable colorimetric detectors for ethylene gas, a series of new Pd(II) and Pt(II) compounds with a range of 2,9-disubstituted phenanthroline ligands [2,9-di- n-butyl-1,10-phenanthroline ( L2), 2,9-di- s-butyl-1,10-phenanthroline ( L3), 2,9-diphenyl-1,10-phenanthroline ( L4), and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (bathocuproine, L5)] have been prepared and their reactivity toward ethylene investigated both in solution and after depositing the detector compounds on a variety of solid supports. The Pd(II) complex [PdCl 2( L2)] supported on silica undergoes a clear color change upon exposure to ethylene, while remaining stable toward air and water, and forms the basis for new simple colorimetric detectors with potential applications in ethylene pipe-leak detection and the monitoring of fruit ripening. Encouragingly, the detector is able to discriminate between fruit at different stages of ripening. The response of the detector to other volatiles was also examined, and specific color changes were also observed upon exposure to aromatic acetylenes. The crystal structures of four new derivatives, including the ethylene-Pt(II) complex [PtCl 2(C 2H 4)( L2)], are also described.

  8. Expression of ethylene biosynthetic and receptor genes in rose floral tissues during ethylene-enhanced flower opening

    OpenAIRE

    Xue, Jingqi; Li, Yunhui; Tan, Hui; Yang, Feng; Ma, Nan; Gao, Junping

    2008-01-01

    Ethylene production, as well as the expression of ethylene biosynthetic (Rh-ACS1?4 and Rh-ACO1) and receptor (Rh-ETR1?5) genes, was determined in five different floral tissues (sepals, petals, stamens, gynoecia, and receptacles) of cut rose (Rosa hybrida cv. Samantha upon treatment with ethylene or the ethylene inhibitor 1-methylcyclopropene (1-MCP). Ethylene-enhanced ethylene production occurred only in gynoecia, petals, and receptacles, with gynoecia showing the greatest enhancement in the ...

  9. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2002-12-03

    The authors have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, they developed a molecular model that has facilitated the understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5 EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 and three HLS1-LIKE genes in the laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the award period, they have identified and begun preliminary characterization of two genes that genetically act upstream of the ethylene receptors. ETO1 and RAN1 encode negative regulators of ethylene biosynthesis and signaling respectively. Progress on the analysis of these genes along with HOOKLESS1 is described.

  10. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2005-09-15

    We have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, we have developed a molecular model that has facilitated our understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5, EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 (and three HLL genes) and ETO1 (and ETOL genes) in my laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the previous period, we have identified and characterized a gene that genetically acts upstream of the ethylene receptors. ETO1 encodes negative regulators of ethylene biosynthesis.

  11. Catalysts and conditions for the highly efficient, selective and stable heterogeneous oligomerisation of ethylene

    CSIR Research Space (South Africa)

    Heveling, J

    1998-10-11

    Full Text Available The oligomerisation of ethylene into products in the C-4-C-20 range over heterogeneous nickel catalysts in a fixed-bed reactor at low temperature and high pressure (LT-HP) is reported. The catalysts were obtained by Ni (II) exchange or impregnation...

  12. Active packaging using ethylene absorber to extend shelf-life

    Energy Technology Data Exchange (ETDEWEB)

    Ponce, Patricia; Carbonari, Guilherme L.R.; Lugao, Ademar B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: patponce@iq.usp.br, e-mail: guilacaz@uol.com.br, e-mail: ablugao@ipen.br

    2009-07-01

    Ethylene gas is a plant hormone which is produced by fruits and vegetables during ripening and it is also found in the environment. It plays an essential role in normal ripening, but excessive exposure can radically reduce the shelf-life of the product, in some cases inducing undesirable reactions such as development of bitter flavors and loss of chlorophyll (yellowing of greens). The objectives of our work were: to test an active packaging of polyvinyl alcohol (PVA) for apple stored; to test the effect of ethylene absorber agent, impregnated in plastic film, to reduce decay of fresh apple; to study the influence of radiation on the barrier properties, mechanical properties and biodegradability of PVA films. This study evaluated the effect of coating produced from PVA and polyol (glycerol and sorbitol) as plasticizer on apple conservation (75 deg F (24 deg C); 70%RH). The coated product was analyzed for mass loss, color alterations and fungi. The PVA films were produced by casting process (dehydration of a filmogenic solution on Petriplastic dishes) and were irradiated at low doses of 2, 5 and 10 kGy, commonly used in food irradiation. The resulting films were transparent and homogeneous. The active packaged fruits presented higher acceptance, lower microbiological growth, less alterations in acidity, lower weight loss rate during the storage time and an extended shelf-life as compared to the control fruits (without plastic films). (author)

  13. Active packaging using ethylene absorber to extend shelf-life

    International Nuclear Information System (INIS)

    Ponce, Patricia; Carbonari, Guilherme L.R.; Lugao, Ademar B.

    2009-01-01

    Ethylene gas is a plant hormone which is produced by fruits and vegetables during ripening and it is also found in the environment. It plays an essential role in normal ripening, but excessive exposure can radically reduce the shelf-life of the product, in some cases inducing undesirable reactions such as development of bitter flavors and loss of chlorophyll (yellowing of greens). The objectives of our work were: to test an active packaging of polyvinyl alcohol (PVA) for apple stored; to test the effect of ethylene absorber agent, impregnated in plastic film, to reduce decay of fresh apple; to study the influence of radiation on the barrier properties, mechanical properties and biodegradability of PVA films. This study evaluated the effect of coating produced from PVA and polyol (glycerol and sorbitol) as plasticizer on apple conservation (75 deg F (24 deg C); 70%RH). The coated product was analyzed for mass loss, color alterations and fungi. The PVA films were produced by casting process (dehydration of a filmogenic solution on Petriplastic dishes) and were irradiated at low doses of 2, 5 and 10 kGy, commonly used in food irradiation. The resulting films were transparent and homogeneous. The active packaged fruits presented higher acceptance, lower microbiological growth, less alterations in acidity, lower weight loss rate during the storage time and an extended shelf-life as compared to the control fruits (without plastic films). (author)

  14. Reducing ethylene levels along the food supply chain: a key to reducing food waste?

    Science.gov (United States)

    Blanke, Michael M

    2014-09-01

    Excessive waste along the food supply chain of 71 (UK, Netherlands) to 82 (Germany) kg per head per year sparked widespread criticism of the agricultural food business and provides a great challenge and task for all its players and stakeholders. Origins of this food waste include private households, restaurants and canteens, as well as supermarkets, and indicate that 59-65% of this food waste can be avoided. Since ∼50% of the food waste is fruit and vegetables, monitoring and control of their natural ripening gas - ethylene - is suggested here as one possible key to reducing food waste. Ethylene accelerates ripening of climacteric fruits, and accumulation of ethylene in the supply chain can lead to fruit decay and waste. While ethylene was determined using a stationary gas chromatograph with gas cylinders, the new generation of portable sensor-based instruments now enables continuous in situ determination of ethylene along the food chain, a prerequisite to managing and maintaining the quality and ripeness of fruits and identifying hot spots of ethylene accumulation along the supply chain. Ethylene levels were measured in a first trial, along the supply chain of apple fruit from harvest to the consumer, and ranged from 10 ppb in the CA fruit store with an ethylene scrubber, 70 ppb in the fruit bin, to 500 ppb on the sorting belt in the grading facility, to ppm levels in perforated plastic bags of apples. This paper also takes into account exogenous ethylene originating from sources other than the fruit itself. Countermeasures are discussed, such as the potential of breeding for low-ethylene fruit, applications of ethylene inhibitors (e.g. 1-MCP) and absorber strips (e.g. 'It's Fresh', Ryan'), packages (e.g. 'Peakfresh'), both at the wholesale and retail level, vents and cooling for the supply chain, sale of class II produce ('Wunderlinge'), collection (rather than waste) of produce on the 'sell by' date ('Die Tafel') and whole crop purchase (WCP) to aid reducing

  15. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence.

    Science.gov (United States)

    Lü, Peitao; Zhang, Changqing; Liu, Jitao; Liu, Xiaowei; Jiang, Guimei; Jiang, Xinqiang; Khan, Muhammad Ali; Wang, Liangsheng; Hong, Bo; Gao, Junping

    2014-05-01

    Rose (Rosa hybrida) is one of the most important ornamental plants worldwide; however, senescence of its petals terminates the ornamental value of the flower, resulting in major economic loss. It is known that the hormones abscisic acid (ABA) and ethylene promote petal senescence, while gibberellins (GAs) delay the process. However, the molecular mechanisms underlying the antagonistic effects amongst plant hormones during petal senescence are still unclear. Here we isolated RhHB1, a homeodomain-leucine zipper I transcription factor gene, from rose flowers. Quantitative RT-PCR and GUS reporter analyses showed that RhHB1 was strongly expressed in senescing petals, and its expression was induced by ABA or ethylene in petals. ABA or ethylene treatment clearly accelerated rose petal senescence, while application of the gibberellin GA3 delayed the process. However, silencing of RhHB1 delayed the ABA- or ethylene-mediated senescence, and resulted in higher petal anthocyanin levels and lower expression of RhSAG12. Moreover, treatment with paclobutrazol, an inhibitor of GA biosynthesis, repressed these delays. In addition, silencing of RhHB1 blocked the ABA- or ethylene-induced reduction in expression of the GA20 oxidase encoded by RhGA20ox1, a gene in the GA biosynthetic pathway. Furthermore, RhHB1 directly binds to the RhGA20ox1 promoter, and silencing of RhGA20ox1 promoted petal senescence. Eight senescence-related genes showed substantial differences in expression in petals after treatment with GA3 or paclobutrazol. These results suggest that RhHB1 mediates the antagonistic effect of GAs on ABA and ethylene during rose petal senescence, and that the promotion of petal senescence by ABA or ethylene operates through an RhHB1-RhGA20ox1 regulatory checkpoint. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  16. Production of hydrocarbons, especially ethylene

    Energy Technology Data Exchange (ETDEWEB)

    1952-01-17

    The invention has for its object a process for the production of gaseous nonsaturated hydrocarbons, particularly ethylene and aromatic hydrocarbons, by starting with hydrocarbon oils entirely of paraffinic nature or their fractions, which consists in putting the separated products in contact with solid inert material especially with porous nonmetallic inert material or of heavy metals or their alloys, maybe in a finely divided state or in the form, of pieces or chips, at a temperature above 500/sup 0/C, or better between 600 and 700/sup 0/C at a velocity per hour of 0.6 to 3.0, and preferably 0.75 to 1.5 parts per volume of products per each part of space volume of catalyst.

  17. Inhibiting ethylene perception with 1-methylcyclopropene triggers molecular responses aimed to cope with cell toxicity and increased respiration in citrus fruits.

    Science.gov (United States)

    Establés-Ortiz, Beatriz; Romero, Paco; Ballester, Ana-Rosa; González-Candelas, Luis; Lafuente, María T

    2016-06-01

    The ethylene perception inhibitor 1-methylcyclopropene (1-MCP) has been critical in understanding the hormone's mode of action. However, 1-MCP may trigger other processes that could vary the interpretation of results related until now to ethylene, which we aim to understand by using transcriptomic analysis. Transcriptomic changes in ethylene and 1-MCP-treated 'Navelate' (Citrus sinensis L. Osbeck) oranges were studied in parallel with changes in ethylene production, respiration and peel damage. The effects of compounds modifying the levels of the ethylene co-product cyanide and nitric oxide (NO) on fruit physiology were also studied. Results suggested that: 1) The ethylene treatment caused sub-lethal stress since it induced stress-related responses and reduced peel damage; 2) 1-MCP induced ethylene-dependent and ethylene-independent responsive networks; 3) 1-MCP triggered ethylene overproduction, stress-related responses and metabolic shifts aimed to cope with cell toxicity, which mostly affected to the inner part of the peel (albedo); 4) 1-MCP increased respiration and drove metabolism reconfiguration for favoring energy conservation but up-regulated genes related to lipid and protein degradation and triggered the over-expression of genes associated with the plasma membrane cellular component; 5) Xenobiotics and/or reactive oxygen species (ROS) might act as signals for defense responses in the ethylene-treated fruit, while their uncontrolled generation would induce processes mimicking cell death and damage in 1-MCP-treated fruit; 6) ROS, the ethylene co-product cyanide and NO may converge in the toxic effects of 1-MCP. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Absorption of Ethylene on Membranes Containing Potassium Permanganate Loaded into Alumina-Nanoparticle-Incorporated Alumina/Carbon Nanofibers.

    Science.gov (United States)

    Tirgar, Ashkan; Han, Daewoo; Steckl, Andrew J

    2018-06-06

    Ethylene is a natural aging hormone in plants, and controlling its concentration has long been a subject of research aimed at reducing wastage during packaging, transport, and storage. We report on packaging membranes, produced by electrospinning, that act as efficient carriers for potassium permanganate (PPM), a widely used ethylene oxidant. PPM salt loaded on membranes composed of alumina nanofibers incorporating alumina nanoparticles outperform other absorber systems and oxidize up to 73% of ethylene within 25 min. Membrane absorption of ethylene generated by avocados was totally quenched in 21 h, and a nearly zero ethylene concentration was observed for more than 5 days. By comparison, the control experiments exhibited a concentration of 53% of the initial value after 21 h and 31% on day 5. A high surface area of the alumina nanofiber membranes provides high capacity for ethylene absorption over a long period of time. In combination with other properties, such as planar form, flexibility, ease of handling, and lightweight, these membranes are a highly desirable component of packaging materials engineered to enhance product lifetime.

  19. Effects of hormonal priming on seed germination of pigeon pea under cadmium stress

    Directory of Open Access Journals (Sweden)

    LARISSA C. SNEIDERIS

    2015-09-01

    Full Text Available In this work we investigated whether priming with auxin, cytokinin, gibberellin, abscisic acid and ethylene, alters the physiological responses of seeds of pigeon pea germinated under water and cadmium stress. Seeds treated with water or non-treated seeds were used as control. Although compared to non-treated seeds we found that the hormone treatments improve the germination of pigeon pea under cadmium stress, however, these treatments did not differ from water. However, we also observed a trend of tolerance to the effects of cadmium in the presence of ethylene, suggesting that the use of this hormone may be an efficient method to overcome seed germination under metal stress.

  20. Poly[(ethylene oxide)-co-(methylene ethylene oxide)]: A hydrolytically-degradable poly(ethylene oxide) platform.

    Science.gov (United States)

    Lundberg, Pontus; Lee, Bongjae F; van den Berg, Sebastiaan A; Pressly, Eric D; Lee, Annabelle; Hawker, Craig J; Lynd, Nathaniel A

    2012-11-20

    A facile method for imparting hydrolytic degradability to poly(ethylene oxide) (PEO), compatible with current PEGylation strategies, is presented. By incorporating methylene ethylene oxide (MEO) units into the parent PEO backbone, complete degradation was defined by the molar incorporation of MEO, and the structure of the degradation byproducts was consistent with an acid-catalyzed vinyl-ether hydrolysis mechanism. The hydrolytic degradation of poly[(ethylene oxide)-co-(methylene ethylene oxide)] was pH-sensitive, with degradation at pH 5 being significantly faster than at pH 7.4 at 37 °C in PBS buffer while long-term stability could be obtained in either the solid-state or at pH 7.4 at 6 °C.

  1. Modulation of intracellular calcium and proliferative activity of invertebrate and vertebrate cells by ethylene

    Directory of Open Access Journals (Sweden)

    Müller Werner EG

    2001-05-01

    Full Text Available Abstract Background Ethylene is a widely distributed alkene product which is formed enzymatically (e.g., in plants or by photochemical reactions (e.g., in the upper oceanic layers from dissolved organic carbon. This gaseous compound was recently found to induce in cells from the marine sponge Suberites domuncula, an increase in intracellular Ca2+ level ([Ca2+]i and an upregulation of the expression of two genes, the potential ethylene-responsive gene, SDERR, and a Ca2+/calmodulin-dependent protein kinase. Results Here we describe for the first time, that besides sponge cells, mammalian cell lines (mouse NIH-3T3 and human HeLa and SaOS-2 cells respond to ethylene, generated by ethephon, with an immediate and strong, transient increase in [Ca2+]i level, as demonstrated using Fura-2 imaging method. A rise of [Ca2+]i level was also found following exposure to ethylene gas of cells kept under pressure (SaOS-2 cells. The upregulation of [Ca2+]i was associated with an increase in the level of the cell cycle-associated Ki-67 antigen. In addition, we show that the effect of ethephon addition to S. domuncula cells depends on the presence of calcium in the extracellular milieu. Conclusion The results presented in this paper indicate that ethylene, previously known to act as a mediator (hormone in plants only, deserves also attention as a potential signaling molecule in higher vertebrates. Further studies are necessary to clarify the specificity and physiological significance of the effects induced by ethylene in mammalian cells.

  2. 46 CFR 151.50-12 - Ethylene oxide.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ethylene oxide. 151.50-12 Section 151.50-12 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-12 Ethylene oxide. (a)(1) Ethylene... otherwise provided for in paragraph (a)(3) of this section. (2) Ethylene oxide shall be loaded at a...

  3. 21 CFR 880.6860 - Ethylene oxide gas sterilizer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas sterilizer is a nonportable device intended for use by a health care provider that uses ethylene oxide (ETO) to...

  4. 21 CFR 172.770 - Ethylene oxide polymer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a 1...

  5. Highly potent metallopeptide analogues of luteinizing hormone-releasing hormone

    International Nuclear Information System (INIS)

    Bajusz, S.; Janaky, T.; Csernus, V.J.; Bokser, L.; Fekete, M.; Srkalovic, G.; Redding, T.W.; Schally, A.V.

    1989-01-01

    Metal complexes related to the cytotoxic complexes cisplatin [cis-diamminedichloroplatinum(II)] and transbis(salicylaldoximato)copper(II) were incorporated into suitably modified luteinizing hormone-releasing hormone (LH-RH) analogues containing D-lysine at position 6. Some of the metallopeptides thus obtained proved to be highly active LH-RH agonists or antagonists. Most metallopeptide analogues of LH-RH showed high affinities for the membrane receptors of rat pituitary and human breast cancer cells. Some of these metallopeptides had cytotoxic activity against human breast cancer and prostate cancer and prostate cancer cell lines in vitro. Such cytostatic metallopeptides could be envisioned as targeted chemotherapeutic agents in cancers that contain receptors for LH-RH-like peptides

  6. Ethylene regulation of carotenoid accumulation and carotenogenic gene expression in colour-contrasted apricot varieties (Prunus armeniaca).

    Science.gov (United States)

    Marty, I; Bureau, S; Sarkissian, G; Gouble, B; Audergon, J M; Albagnac, G

    2005-07-01

    In order to elucidate the regulation mechanisms of carotenoid biosynthesis in apricot fruit (Prunus armeniaca), carotenoid content and carotenogenic gene expression were analysed as a function of ethylene production in two colour-contrasted apricot varieties. Fruits from Goldrich (GO) were orange, while Moniqui (MO) fruits were white. Biochemical analysis showed that GO accumulated precursors of the uncoloured carotenoids, phytoene and phytofluene, and the coloured carotenoid, beta-carotene, while Moniqui (MO) fruits only accumulated phytoene and phytofluene but no beta-carotene. Physiological analysis showed that ethylene production was clearly weaker in GO than in MO. Carotenogenic gene expression (Psy-1, Pds, and Zds) and carotenoid accumulation were measured with respect to ethylene production which is initiated in mature green fruits at the onset of the climacteric stage or following exo-ethylene or ethylene-receptor inhibitor (1-MCP) treatments. Results showed (i) systematically stronger expression of carotenogenic genes in white than in orange fruits, even for the Zds gene involved in beta-carotene synthesis that is undetectable in MO fruits, (ii) ethylene-induction of Psy-1 and Pds gene expression and the corresponding product accumulation, (iii) Zds gene expression and beta-carotene production independent of ethylene. The different results obtained at physiological, biochemical, and molecular levels revealed the complex regulation of carotenoid biosynthesis in apricots and led to suggestions regarding some possible ways to regulate it.

  7. High-performance carbon molecular sieve membranes for ethylene/ethane separation derived from an intrinsically microporous polyimide

    KAUST Repository

    Salinas, Octavio

    2015-11-18

    An intrinsically microporous polymer with hydroxyl functionalities, PIM-6FDA-OH, was used as a precursor for various types of carbon molecular sieve (CMS) membranes for ethylene/ethane separation. The pristine polyimide films were heated under controlled N2 atmosphere at different stages from 500 to 800 °C. All CMS samples carbonized above 600 °C surpassed the polymeric ethylene/ethane upper bound. Pure-gas selectivity reached 17.5 for the CMS carbonized at 800 °C with an ethylene permeability of about 10 Barrer at 2 bar and 35 °C, becoming the most selective CMS for ethylene/ethane separation reported to date. As expected, gravimetric sorption experiments showed that all CMS membranes had ethylene/ethane solubility selectivities close to one. The permselectivity increased with increasing pyrolysis temperature due to densification of the micropores in the CMS membranes, leading to enhanced diffusivity selectivity. Mixed-gas tests with a binary 50:50 v/v ethylene/ethane feed showed a decrease in selectivity from 14 to 8.3 as the total feed pressure was increased from 4 to 20 bar. The selectivity drop under mixed-gas conditions was attributed to non-ideal effects: (i) Competitive sorption that reduced the permeability of ethylene and (ii) dilation of the CMS that resulted in an increase in the ethane permeability.

  8. Inert Reassessment Document for Ethylene Glycol

    Science.gov (United States)

    Ethylene Glycol has many uses and are also used as antifreeze and deicers, as solvents, humectants, as chemical intermediates in the synthesis of other chemicals, and as components of many products such as brake fluids, lubricants, inks,and lacquers.

  9. Extending lactation in pasture-based dairy cows. II: Effect of genetic strain and diet on plasma hormone and metabolite concentrations.

    Science.gov (United States)

    Kay, J K; Phyn, C V C; Roche, J R; Kolver, E S

    2009-08-01

    Fifty-six genetically divergent New Zealand and North American Holstein-Friesian (HF) cows grazed pasture, and were offered 0, 3, or 6 kg of concentrate DM/cow per day for an extended lactation (605 +/- 8.3 d in milk; mean +/- standard error of the mean). Weekly blood samples collected from individual cows from wk 1 to 10 postpartum (early lactation), and from wk 47 to 63 postpartum (extended lactation) were analyzed for nonesterified fatty acids (NEFA), glucose, insulin, leptin, growth hormone (GH), insulin-like growth factor-I (IGF-I), calcium, and urea. During early lactation, NEFA and GH concentrations were greater and IGF-I concentrations were less, and increased at a slower rate in North American HF. During this 10-wk period, there were no strain effects on plasma glucose, leptin, insulin, or calcium. During the extended lactation period, North American HF had greater NEFA and GH concentrations; there were strain x diet interactions for insulin and leptin, and a tendency for a strain x diet interaction for glucose. These interactions were primarily due to greater plasma insulin, leptin, and glucose concentrations in the New Zealand HF fed 6 kg of concentrate DM/cow per day, a result of excessive body condition in this treatment. In this period, there was no strain effect on plasma IGF-I, calcium, or urea concentration. During early lactation, there was a linear increase in glucose and IGF-I, and a linear decrease in GH and urea with increasing concentrate in the diet. However, plasma calcium, NEFA, insulin, and leptin remained unchanged. During the extended lactation period, there was an effect of feed supplementation on GH and urea, which decreased linearly with increasing concentrate in the diet. There was, however, no supplementation effect on NEFA, calcium, or IGF-I. These data indicate potential strain differences in recoupling of the somatotropic axis, insulin resistance, and energy partitioning, and may help explain the physiology behind the previously

  10. Proteome changes in banana fruit peel tissue in response to ethylene and high-temperature treatments.

    Science.gov (United States)

    Du, Lina; Song, Jun; Forney, Charles; Palmer, Leslie Campbell; Fillmore, Sherry; Zhang, ZhaoQi

    2016-01-01

    protein and calmodulin) and repressed 43 proteins in 4 groups (groups 4-7), of which 6 were associated with photosynthesis II oxygen-evolving protein, the photosynthesis I reaction center, sugar metabolism, the redox-oxidative system and fatty acid metabolism. Differences in the response to ethylene and holding temperature at 30 °C were also revealed and have been discussed. The identities and quantities of the proteins found were linked with quality changes. This study demonstrates that ethylene and high temperature influence banana fruit ripening and senescence at the proteomic level and reveals the mechanisms by which high temperature accelerates banana fruit ripening.

  11. Effects of methionine deficiencies on plasma levels of thyroid hormones, insulin-like growth factors-I and -II, liver and body weights, and feed intake in growing chickens.

    Science.gov (United States)

    Carew, L B; McMurtry, J P; Alster, F A

    2003-12-01

    We showed previously that Met deficiency at 0.25% of the diet causes elevations in plasma triiodothyronine (T3) in broilers. In the present study, plasma levels of thyroid hormones as well as insulin-like growth factors (IGF)-I and -II were measured in chicks fed 3 deficient levels of total Met. Control (0.5%) and Met-deficient diets (0.4, 0.3, and 0.2%) were fed to male broilers from 8 to 22 d of age. Additional groups of control chicks were pair-fed with the Met-deficient ones. Chicks receiving 0.4% Met increased feed intake by 10% with no significant change in body weight. The more severe Met deficiencies of 0.3 and 0.2% caused graded reductions in feed intake and weight gain. However, corresponding pair-fed control chicks were significantly heavier. These changes suggest more marked alterations in metabolic processes with 0.3 and 0.2% Met than with 0.4% Met. Liver weights were heavier in chicks fed 0.3 and 0.2% Met but not 0.4%. Plasma T3 was higher in all deficient chicks compared with the free-fed control, which was significant only with 0.3% Met. However, with 0.3 and 0.2% Met, plasma T3 was significantly elevated compared to pair-fed controls. Plasma thyroxine (T4) was lower in all deficient groups, which was significant only with 0.2% Met, whereas no significant differences occurred between deficient chicks and their pair-fed controls. Plasma IGF-I levels were not significantly different, but they were consistently lower in deficient chicks and deserve further study. Plasma IGF-II was significantly less in chicks fed 0.2% Met compared to pair-fed controls suggesting that Met deficiency interferes with IGF-II metabolism. We concluded that a deficit of dietary Met altered plasma T3 and IGF-II levels, but the effect was dependent on the degree of deficiency.

  12. Complex Interplay of Hormonal Signals during Grape Berry Ripening

    Directory of Open Access Journals (Sweden)

    Ana Margarida Fortes

    2015-05-01

    Full Text Available Grape and wine production and quality is extremely dependent on the fruit ripening process. Sensory and nutritional characteristics are important aspects for consumers and their development during fruit ripening involves complex hormonal control. In this review, we explored data already published on grape ripening and compared it with the hormonal regulation of ripening of other climacteric and non-climacteric fruits. The roles of abscisic acid, ethylene, and brassinosteroids as promoters of ripening are discussed, as well as the role of auxins, cytokinins, gibberellins, jasmonates, and polyamines as inhibitors of ripening. In particular, the recently described role of polyamine catabolism in grape ripening is discussed, together with its putative interaction with other hormones. Furthermore, other recent examples of cross-talk among the different hormones are presented, revealing a complex interplay of signals during grape development and ripening.

  13. Arabidopsis ETR1 and ERS1 Differentially Repress the Ethylene Response in Combination with Other Ethylene Receptor Genes1[W

    Science.gov (United States)

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The ethylene response is negatively regulated by a family of five ethylene receptor genes in Arabidopsis (Arabidopsis thaliana). The five members of the ethylene receptor family can physically interact and form complexes, which implies that cooperativity for signaling may exist among the receptors. The ethylene receptor gene mutations etr1-1(C65Y)(for ethylene response1-1), ers1-1(I62P) (for ethylene response sensor1-1), and ers1C65Y are dominant, and each confers ethylene insensitivity. In this study, the repression of the ethylene response by these dominant mutant receptor genes was examined in receptor-defective mutants to investigate the functional significance of receptor cooperativity in ethylene signaling. We showed that etr1-1(C65Y), but not ers1-1(I62P), substantially repressed various ethylene responses independent of other receptor genes. In contrast, wild-type receptor genes differentially supported the repression of ethylene responses by ers1-1(I62P); ETR1 and ETHYLENE INSENSITIVE4 (EIN4) supported ers1-1(I62P) functions to a greater extent than did ERS2, ETR2, and ERS1. The lack of both ETR1 and EIN4 almost abolished the repression of ethylene responses by ers1C65Y, which implied that ETR1 and EIN4 have synergistic effects on ers1C65Y functions. Our data indicated that a dominant ethylene-insensitive receptor differentially repressed ethylene responses when coupled with a wild-type ethylene receptor, which supported the hypothesis that the formation of a variety of receptor complexes may facilitate differential receptor signal output, by which ethylene responses can be repressed to different extents. We hypothesize that plants can respond to a broad ethylene concentration range and exhibit tissue-specific ethylene responsiveness with differential cooperation of the multiple ethylene receptors. PMID:22227969

  14. Hormones and absence epilepsy

    NARCIS (Netherlands)

    Luijtelaar, E.L.J.M. van; Tolmacheva, E.A.; Budziszewska, B.; Stein, J.

    2017-01-01

    Hormones have an extremely large impact on seizures and epilepsy. Stress and stress hormones are known to reinforce seizure expression, and gonadal hormones affect the number of seizures and even the seizure type. Moreover, hormonal concentrations change drastically over an individual's lifetime,

  15. Mechanisms for type-II vitellogenesis-inhibiting hormone suppression of vitellogenin transcription in shrimp hepatopancreas: Crosstalk of GC/cGMP pathway with different MAPK-dependent cascades.

    Science.gov (United States)

    Chen, Ting; Ren, Chunhua; Jiang, Xiao; Zhang, Lvping; Li, Hongmei; Huang, Wen; Hu, Chaoqun

    2018-01-01

    Vitellogenesis is the process of yolk formation via accumulating vitellin (Vn) with nutrients in the oocytes. Expression of vitellogenin (Vg), the precursor of Vn, is one of the indicators for the start of vitellogenesis. In Pacific white shrimp (Litopenaeus vannamei), the type-II vitellogenesis-inhibiting hormone (VIH-2) effectively suppresses hepatopancreatic Vg mRNA expression. In this study, we demonstrate the increasing transcript levels of hepatopancreatic Vg during L. vannamei ovarian development, suggesting that the hepatopancreas-derived Vg/Vn may also contribute to vitellogenesis in this species. Using a combination of in vivo injections and in vitro primary cell cultures, we provide evidences that the inhibition of VIH-2 on hepatopancreatic Vg gene expression is mediated through a functional coupling of the GC/cGMP pathway with different MAPK-dependent cascades in female shrimp. In VIH-2 signaling, the NO-independent GC/cGMP/PKG cascades were upstream of the MAPKs. Activations of the MAPK signal by VIH-2 include the phosphorylation of JNK and the mRNA/protein expression of P38MAPK. Additionally, the cAMP/PKA pathway is another positive intracellular signal for hepatopancreatic Vg mRNA expression but is independent of its VIH-2 regulation. Our findings establish a model for the signal transduction mechanism of Vg regulation by VIH and shed light on the biological functions and signaling of the CHH family in crustaceans.

  16. Exposure to 3,3',5-triiodothyronine affects histone and RNA polymerase II modifications, but not DNA methylation status, in the regulatory region of the Xenopus laevis thyroid hormone receptor βΑ gene.

    Science.gov (United States)

    Kasai, Kentaro; Nishiyama, Norihito; Izumi, Yushi; Otsuka, Shunsuke; Ishihara, Akinori; Yamauchi, Kiyoshi

    2015-11-06

    Thyroid hormones (THs) play a critical role in amphibian metamorphosis, during which the TH receptor (TR) gene, thrb, is upregulated in a tissue-specific manner. The Xenopus laevis thrb gene has 3 TH response elements (TREs) in the 5' flanking regulatory region and 1 TRE in the exon b region, around which CpG sites are highly distributed. To clarify whether exposure to 3,3',5-triiodothyronine (T3) affects histone and RNA polymerase II (RNAPII) modifications and the level of DNA methylation in the 5' regulatory region, we conducted reverse transcription-quantitative polymerase chain reaction, bisulfite sequencing and chromatin immunoprecipitation assay using X. laevis cultured cells and premetamorphic tadpoles treated with or without 2 nM T3. Exposure to T3 increased the amount of the thrb transcript, in parallel with enhanced histone H4 acetylation and RNAPII recruitment, and probably phosphorylation of RNAPII at serine 5, in the 5' regulatory and exon b regions. However, the 5' regulatory region remained hypermethylated even with exposure to T3, and there was no significant difference in the methylation status between DNAs from T3-untreated and -treated cultured cells or tadpole tissues. Our results demonstrate that exposure to T3 induced euchromatin-associated epigenetic marks by enhancing histone acetylation and RNAPII recruitment, but not by decreasing the level of DNA methylation, in the 5' regulatory region of the X. laevis thrb gene. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Fast growing aspens in the development of a plant micropropagation system based on plant-produced ethylene action

    International Nuclear Information System (INIS)

    Žiauka, Jonas; Kuusienė, Sigutė; Šilininkas, Mindaugas

    2013-01-01

    Representatives of the genus Populus (poplars), such as Populus tremula L. (European aspen) and its fast-growing hybrids, are recognized as being among the most suitable tree species for short rotation coppicing in Northern Europe. Several technologies have been developed for fast propagation of selected aspen genotypes, including laboratory (in vitro) micropropagation, which is usually based on the action of exogenous plant hormones. Seeking to minimize the use of the latter, the present study was designed to test if the conditions suitable for increased accumulation of plant-produced gas, including the gaseous plant hormone ethylene, inside a culture vessel could contribute to commercially desirable changes in aspen development. Shoot cultures of several European and hybrid (Populus tremuloides Michx. × P. tremula) aspen genotypes were studied using two different types of culture vessels: tightly sealed Petri dishes (15 × 54 mm) designed to provide restricted gas exchange (RGE) conditions, and capped (but not sealed) test tubes (150 × 18 mm) providing control conditions. Under RGE conditions, not only the positive impact of the ethylene precursors 1-aminocyclopropane-1-carboxylic-acid (ACC) and ethephon on shoot proliferation was demonstrated but also a several-fold increase, compared to the control conditions, in the mean shoot number per explant was recorded even on the hormone-free nutrient medium. Moreover, the shoots developed under RGE conditions were distinguished by superior rooting ability in the subsequent culture. These results suggest that a plant micropropagation system based on the action of plant-produced ethylene rather than of exogenous hormones is possible. -- Highlights: ► Aspen in vitro cultures were grown in different vessels. ► Small-volume vessels were used for restriction of gas exchange. ► Aspen explants produced most shoots in small-volume vessels. ► Shoot proliferation was increased due to explant response to ethylene.

  18. Ethylene responses in three Hydrangea lines

    DEFF Research Database (Denmark)

    Lauridsen, Uffe Bjerre; Müller, Renate; Lütken, Henrik Vlk

    2015-01-01

    Abstract The ornamental scrub Hydrangea is generally not considered to be particularly sensitive to the phytohormone ethylene. The present study aimed at testing ethylene sensitivity in three different Hydrangea lines: 1, 2 and 3 taking into account the effect of temperature. Ethylene response...... was measured as leaf epinasty and leaf drop. Data indicated that higher temperature accelerates the effect of 2 μl L-1 ethylene over a 12-day period, and if the inhibitor 1-methylcyclopopene 1-MCP is able to attenuate this effect. Breeding line 1 and 3 dropped 3.8±0.6 and 5.0±0.4 leaves on average......, respectively, during the 12-day experimental period. Non-treated controls of line 1 and 3 dropped 1.8±0.6 and 1.8±0.4 leaves, respectively. In contrast, line 2 did not show a significant response to ethylene treatment with a leaf drop of 2.1±0.3 leaves, compared to a leaf drop of 0.8±0.3 in non...

  19. Catalytic dehydration of ethanol to ethylene

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ying; Jin, Zhaosheng; Shen, Wei [SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai (China)

    2011-07-01

    The different routes of ethylene production were briefly introduced and the advantage of ethanol to ethylene (ETE) route was explained. Followed by that, the upgraded catalyst applied in this route developed by SINOPEC Shanghai Research Institute of Petrochemical Technology (SRIPT) was introduced together with the development of the ethanol to ethylene process. The core technologies involved in this process development were discussed, such as isothermal fixed-bed reactor, water scrubber and alkaline wash column, two columns of low-temperature separation as well as process heat integration. Furthermore, the performance of one of ethanol industrial plants licensed by SRIPT was reviewed. It is as follows, conversion of ethanol reaches 99% while selectivity of ethylene is over 96% at the reaction temperature of 350{approx}450 C, the liquid hourly space velocity (LHSV)of 0.5{approx}1.0 h{sup -1} and atmosphere pressure. Meanwhile, the catalyst shows its life time of one year. This route is considered not only as an economical and practical process but also as an environmentfriendly path to ethylene production. (orig.)

  20. Integration of Environmental and Developmental (or Metabolic) Control of Seed Mass by Sugar and Ethylene Metabolisms in Arabidopsis.

    Science.gov (United States)

    Meng, Lai-Sheng; Xu, Meng-Ke; Wan, Wen; Wang, Jing-Yi

    2018-04-04

    In higher plants, seed mass is an important to evolutionary fitness. In this context, seedling establishment positively correlates with seed mass under conditions of environmental stress. Thus, seed mass constitutes an important agricultural trait. Here, we show loss-of-function of YODA (YDA), a MAPKK Kinase, and decreased seed mass, which leads to susceptibility to drought. Furthermore, we demonstrate that yda disrupts sugar metabolisms but not the gaseous plant hormone, ethylene. Our data suggest that the transcription factor EIN3 (ETHYLENE-INSENSITIVE3), integral to both sugar and ethylene metabolisms, physically interacts with YDA. Further, ein3-1 mutants exhibited increased seed mass. Genetic analysis indicated that YDA and EIN3 were integral to a sugar-mediated metabolism cascade which regulates seed mass by maternally controlling embryo size. It is well established that ethylene metabolism leads to the suppression of drought tolerance by the EIN3 mediated inhibition of CBF1, a transcription factor required for the expression genes of abiotic stress. Our findings help guide the synthesis of a model predicting how sugar/ethylene metabolisms and environmental stress are integrated at EIN3 to control both the establishment of drought tolerance and the production of seed mass. Collectively, these insights into the molecular mechanism underpinning the regulation of plant seed size may aid prospective breeding or design strategies to increase crop yield.

  1. Production of ethanol from excess ethylene

    DEFF Research Database (Denmark)

    Kadhim, Adam S.; Carlsen, Kim B.; Bisgaard, Thomas

    2012-01-01

    will focus on the synthetic method, which employs direct hydration of ethylene. A conceptual process design of an ethyl alcohol producing plant is performed in a MSc-level course on Process Design at the Department of Chemical and Biochemical Engineering at DTU. In the designed process, 190 proof ethyl...... alcohol (azeotropic mixture) is produced from excess ethylene containing propylene and methane as impurities. The design work is based on a systematic approach consisting of 12 tasks performed in a specified hierarchy. According to this 12-tasks design procedure, information about the product and process...... of the designed process. The resulting design utilizes 75 million kg/year ethylene feed in order to obtain an ethyl alcohol production of 90.5 million kg/year. The total capital investment has been estimated to 43 million USD and the total product cost without depreciation estimated to 58.5 million USD...

  2. APC implementation in Chandra Asri - ethylene plant

    Science.gov (United States)

    Sidiq, Mochamad; Mustofa, Ali

    2017-05-01

    Nowadays, the modern process plants are continuously improved for maximizing production, Optimization of the energy and raw material and reducing the risk. Due to many disturbances appearance between the process units, hence, the failure of one unit might have a bad effect on the overall productivity. Ethylene Plant have significant opportunities for using Advanced Process Control (APC) technologies to improve operation stability, push closer to quality or equipment limit, and improve the capability of process units to handle disturbances. APC implementation had considered a best answer for solving multivariable control problem. PT. Chandra Asri Petrochemical, Tbk (CAP) operates a large naphtha cracker complex at Cilegon, Indonesia. To optimize the plant operation and to enhance the benefit, Chandra Asri has been decided to implement Advance Process Control (APC) for ethylene plant. The APC implementation technology scopes at CAP are as follows: 1. Hot Section : Furnaces, Quench Tower 2. Cold Section : Demethanizer, Deethanizer, Acetylene Converter, Ethylene Fractionator, Depropanizer, Propylene Fractionator, Debutanizer

  3. Temporal aspects of copper homeostasis and its crosstalk with hormones

    Directory of Open Access Journals (Sweden)

    Lola ePeñarrubia

    2015-04-01

    Full Text Available To cope with the dual nature of copper as being essential and toxic for cells, plants temporarily adapt the expression of copper homeostasis components to assure its delivery to cuproproteins while avoiding the interference of potential oxidative damage derived from both copper uptake and photosynthetic reactions during light hours. The circadian clock participates in the temporal organization of coordination of plant nutrition adapting metabolic responses to the daily oscillations. This timely control improves plant fitness and reproduction and holds biotechnological potential to drive increased crop yields. Hormonal pathways, including those of abscisic acid, gibberellins, ethylene, auxins, and jasmonates are also under direct clock and light control, both in mono and dicotyledons. In this review, we focus on copper transport in Arabidopsis thaliana and Oryza sativa and the presumable role of hormones in metal homeostasis matching nutrient availability to growth requirements and preventing metal toxicity. The presence of putative hormone-dependent regulatory elements in the promoters of copper transporters genes suggests hormonal regulation to match special copper requirements during plant development. Spatial and temporal processes that can be affected by hormones include the regulation of copper uptake into roots, intracellular trafficking and compartmentalisation, and long-distance transport to developing vegetative and reproductive tissues. In turn, hormone biosynthesis and signalling are also influenced by copper availability, which suggests reciprocal regulation subjected to temporal control by the central oscillator of the circadian clock. This transcriptional regulatory network, coordinates environmental and hormonal signalling with developmental pathways to allow enhanced micronutrient acquisition efficiency.

  4. The proton dynamics of ethylene glycol

    CERN Document Server

    Novikov, A G; Sobolev, O V

    2002-01-01

    The results of inelastic neutron scattering experiments on ethylene glycol at T=300 K, T=348 K and T=393 K by using the 'direct-geometry' double time-of-flight neutron-scattering spectrometer DIN-2PI (Frank Laboratory of Neutron Physics, JINR, Dubna) are presented. The quasi-elastic and inelastic components of the neutron scattering have been considered. The diffusion characteristics and generalized frequency distributions for protons of ethylene glycol molecules were obtained from the neutron-scattering spectra. (orig.)

  5. Menopause and Hormones

    Science.gov (United States)

    ... Consumer Information by Audience For Women Menopause and Hormones: Common Questions Share Tweet Linkedin Pin it More ... reproduction and distribution. Learn More about Menopause and Hormones Menopause--Medicines to Help You Links to other ...

  6. Thyroid Hormone Treatment

    Science.gov (United States)

    ... THYROID HORMONES? Desiccated ( dried and powdered ) animal thyroid ( Armour ®), now mainly obtained from pigs, was the most ... hormone can increase the risk or heart rhythm problems and bone loss making the use of thyroxine ...

  7. Antidiuretic hormone blood test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003702.htm Antidiuretic hormone blood test To use the sharing features on this page, please enable JavaScript. Antidiuretic blood test measures the level of antidiuretic hormone (ADH) in ...

  8. Hormonal effects in newborns

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/001911.htm Hormonal effects in newborns To use the sharing features on this page, please enable JavaScript. Hormonal effects in newborns occur because in the womb, babies ...

  9. Growth hormone stimulation test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003377.htm Growth hormone stimulation test To use the sharing features on this page, please enable JavaScript. The growth hormone (GH) stimulation test measures the ability of ...

  10. 21 CFR 880.6100 - Ethylene oxide gas aerator cabinet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide gas aerator cabinet. 880.6100... Miscellaneous Devices § 880.6100 Ethylene oxide gas aerator cabinet. (a) Identification. An ethyene oxide gas... required to remove residual ethylene oxide (ETO) from wrapped medical devices that have undergone ETO...

  11. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be safely...

  12. 40 CFR 180.151 - Ethylene oxide; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ethylene oxide; tolerances for... § 180.151 Ethylene oxide; tolerances for residues. (a) General. (1) Tolerances are established for residues of the antimicrobial agent and insecticide ethylene oxide, when used as a postharvest fumigant in...

  13. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be safely...

  14. Carbon dioxide and ethylene interactions in tulip bulbs

    NARCIS (Netherlands)

    Wild, de H.P.J.; Gude, H.; Peppelenbos, H.W.

    2002-01-01

    The effect of CO, on ethylene-induced gummosis (secretion of polysaccharides), weight loss and respiration in tulip bulbs (Tulipa gesneriana L.) was investigated. A pretreatment with 1-MCP prevented these ethylene-induced effects, indicating that ethylene action must have been directed via the

  15. 21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene polymer, chloro-sulfonated. 177.2210... as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated. Ethylene polymer, chlorosulfonated as identified in this section may be safely used as an article or...

  16. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate copolymers. 177.1350 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of articles...

  17. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials, containers...

  18. 21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl chloride-ethylene copolymers. 177.1950... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1950 Vinyl chloride-ethylene copolymers. The vinyl chloride-ethylene copolymers identified in paragraph (a) of this section may be safely...

  19. Induction by ethylene of cyanide-resistant respiration

    Energy Technology Data Exchange (ETDEWEB)

    Solomos, T.; Laties, G.G.

    1976-05-17

    Ethylene and cyanide induce an increase in respiration in a variety of plant tissues, whereas ethylene has no effect on tissues whose respiration is strongly inhibited by cyanide. It is suggested that the existence of a cyanide-insensitive electron transport path is a prerequisite for stimulation of respiration by ethylene.

  20. Highly potent metallopeptide analogues of luteinizing hormone-releasing hormone.

    Science.gov (United States)

    Bajusz, S; Janaky, T; Csernus, V J; Bokser, L; Fekete, M; Srkalovic, G; Redding, T W; Schally, A V

    1989-08-01

    Metal complexes related to the cytotoxic complexes cisplatin [cis-diamminedichloroplatinum(II)] and transbis(salicylaldoximato)copper(II) were incorporated into suitably modified luteinizing hormone-releasing hormone (LH-RH) analogues containing D-lysine at position 6. Some of the metallopeptides thus obtained proved to be highly active LH-RH agonists or antagonists. For instance, SB-40, a PtCl2-containing metallopeptide in which platinum is coordinated to an N epsilon-(DL-2,3-diaminopropionyl)-D-lysine residue [D-Lys(DL-A2pr] at position 6, showed 50 times higher LH-releasing potency than the native hormone. SB-95, [Ac-D-Nal(2)1,D-Phe(pCl)2, D-Pal(3)2, Arg5,D-Lys[DL-A2pr(Sal2Cu)]6,D-Ala10]LH-RH, where Nal(2) is 3-(2-naphthyl)alanine, Pal(3) is 3-(3-pyridyl)alanine, and copper(II) is coordinated to the salicylideneimino moieties resulting from condensation of salicylaldehyde with D-Lys(DL-A2pr)6, caused 100% inhibition of ovulation at a dose of 3 micrograms in rats. Most metallopeptide analogues of LH-RH showed high affinities for the membrane receptors of rat pituitary and human breast cancer cells. Some of these metallopeptides had cytotoxic activity against human breast cancer and prostate cancer cell lines in vitro (this will be the subject of a separate paper on cytotoxicity evaluation). Such cytostatic metallopeptides could be envisioned as targeted chemotherapeutic agents in cancers that contain receptors for LH-RH-like peptides.

  1. Solubility of ethylene in methyl propionate

    NARCIS (Netherlands)

    Shariati - Sarabi, A.; Florusse, L.J.; Peters, C.J.

    2015-01-01

    In this work, the solubility of ethylene in methyl propionate was measured within a temperature range of 283.5–464.8 K and pressures up to 10.7 MPa. Experiments were carried out using the Cailletet apparatus, which uses a synthetic method for the experiments. The critical points of several isopleths

  2. Regulatory cross-talks and cascades in rice hormone biosynthesis pathways contribute to stress signaling

    Directory of Open Access Journals (Sweden)

    Arindam Deb

    2016-08-01

    Full Text Available Crosstalk among different hormone signaling pathways play an important role in modulating plant response to both biotic and abiotic stress. Hormone activity is controlled by its bio-availability, which is again influenced by its biosynthesis. Thus independent hormone biosynthesis pathways must be regulated and co-ordinated to mount an integrated response. One of the possibilities is to use cis-regulatory elements to orchestrate expression of hormone biosynthesis genes. Analysis of CREs, associated with differentially expressed hormone biosynthesis related genes in rice leaf under Magnaporthe oryzae attack and drought stress enabled us to obtain insights about cross-talk among hormone biosynthesis pathways at the transcriptional level. We identified some master transcription regulators that co-ordinate different hormone biosynthesis pathways under stress. We found that Abscisic acid and Brassinosteroid regulate Cytokinin conjugation; conversely Brassinosteroid biosynthesis is affected by both Abscisic acid and Cytokinin. Jasmonic acid and Ethylene biosynthesis may be modulated by Abscisic acid through DREB transcription factors. Jasmonic acid or Salicylic acid biosynthesis pathways are co-regulated but they are unlikely to influence each other’s production directly. Thus multiple hormones may modulate hormone biosynthesis pathways through a complex regulatory network, where biosynthesis of one hormone is affected by several other contributing hormones.

  3. Experimental simulations of ethylene evaporites on Titan

    Science.gov (United States)

    Czaplinski, E.; Farnsworth, K.; Singh, S.; Chevrier, V.

    2017-12-01

    Titan has an abundance of lakes and seas, as identified by the Cassini spacecraft. Major components of these liquid bodies include methane (CH4) and ethane (C2H6), however minor constituents are also thought to exist (e.g. ethylene (C2H4)). As the lakes and seas evaporate, 5-μm-bright deposits, resembling evaporite deposits on Earth, are left behind in a "bathtub ring" fashion. Previous studies include models of evaporites, and observations of the 5-μm-bright regions, but the community is still lacking a complete suite of experimental evaporite studies. In this study, we experimentally investigate evaporites in order to determine their composition and how they affect infrared spectra during the evaporation process. The University of Arkansas owns a specialized chamber that simulates the surface conditions of Titan ( 90 K and 1.5 bar). Gaseous hydrocarbons are condensed within the chamber and analyzed with Fourier Transform Infrared (FTIR) Spectroscopy and band depth calculations. In this study, three types of experiments were performed: ethane/ethylene, methane/ethylene, and methane/ethane/ethylene. For these experiments, methane was the only species that readily evaporated at Titan conditions (due to its high volatility), while ethane, being the more stable solvent, did not readily evaporate. Therefore, we will present spectral results of ethylene evaporite formation within these mixtures. Our results imply that evaporite formation is strongly dependent on the composition of the solvent. The north polar lakes of Titan are predicted to be methane-rich, indicating that they may be more likely to form evaporites. Alternatively, Ontario Lacus, a south polar lake, is predominately composed of ethane, which may make it more difficult to form evaporites. As we continue to study Titan's mysterious lakes and seas, we hope to draw insights on their exact composition, conditions for evaporite formation, habitability potential, and comparing Titan to prebiotic Earth.

  4. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes.

    Science.gov (United States)

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-05-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1-MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein-protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes.

  5. Preparation of ethylene/1-hexene copolymers from ethylene using a fully silica-supported tandem catalyst system

    NARCIS (Netherlands)

    Karbach, Fabian F.; Macko, Tibor; Duchateau, Robbert

    2016-01-01

    A silica-supported tandem catalyst system, capable of producing ethylene/1-hexene copolymers from ethylene being the single monomer, has been investigated. As tandem couple a phenoxyimine titanium catalyst for ethylene trimerization was combined with a metallocene catalyst for α-olefin

  6. Altered cultivar resistance of kimchi cabbage seedlings mediated by salicylic Acid, jasmonic Acid and ethylene.

    Science.gov (United States)

    Lee, Young Hee; Kim, Sang Hee; Yun, Byung-Wook; Hong, Jeum Kyu

    2014-09-01

    Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ) treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner.

  7. Ethylene Control Technologies in Extending Postharvest Shelf Life of Climacteric Fruit.

    Science.gov (United States)

    Zhang, Junhua; Cheng, Dong; Wang, Baobin; Khan, Iqbal; Ni, Yonghao

    2017-08-30

    Fresh fruit is important for a healthy diet. However, because of their seasonal production, regional specific cultivation, and perishable nature, it is essential to develop preservation technologies to extend the postharvest shelf life of fresh fruits. Climacteric fruit adopt spoilage because of ethylene, a key hormone associated with the ripening process. Therefore, controlling ethylene activity by following safe and effective approaches is a key to extend the postharvest shelf life of fruit. In this review, ethylene control technologies will be discussed aiming for the need of developing more innovative and effective approaches. The biosynthesis pathway will be given first. Then, the technologies determining the postharvest shelf life of climacteric fruit will be described with special attention to the latest and significant published works in this field. Special attention is given to 1-methylcyclopropene (1-MCP), which is effective in fruit preservation technologies. Finally, the encapsulation technology to improve the stability of 1-MCP will be proposed, using a potential encapsulation agent of 1-MCP, calixarene.

  8. Altered Cultivar Resistance of Kimchi Cabbage Seedlings Mediated by Salicylic Acid, Jasmonic Acid and Ethylene

    Directory of Open Access Journals (Sweden)

    Young Hee Lee

    2014-09-01

    Full Text Available Two cultivars Buram-3-ho (susceptible and CR-Hagwang (moderate resistant of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum, black spot (Alternaria brassicicola and black rot (Xanthomonas campestris pv. campestris, Xcc diseases in our previous study. Defense-related hormones salicylic acid (SA, jasmonic acid (JA and ethylene led to different transcriptional regulation of pathogenesis-related (PR gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner.

  9. Gene expression analyses in tomato near isogenic lines provide evidence for ethylene and abscisic acid biosynthesis fine-tuning during arbuscular mycorrhiza development.

    Science.gov (United States)

    Fracetto, Giselle Gomes Monteiro; Peres, Lázaro Eustáquio Pereira; Lambais, Marcio Rodrigues

    2017-07-01

    Plant responses to the environment and microorganisms, including arbuscular mycorrhizal fungi, involve complex hormonal interactions. It is known that abscisic acid (ABA) and ethylene may be involved in the regulation of arbuscular mycorrhiza (AM) and that part of the detrimental effects of ABA deficiency in plants is due to ethylene overproduction. In this study, we aimed to determine whether the low susceptibility to mycorrhizal colonization in ABA-deficient mutants is due to high levels of ethylene and whether AM development is associated with changes in the steady-state levels of transcripts of genes involved in the biosynthesis of ethylene and ABA. For that, tomato (Solanum lycopersicum) ethylene overproducer epinastic (epi) mutant and the ABA-deficient notabilis (not) and sitiens (sit) mutants, in the same Micro-Tom (MT) genetic background, were inoculated with Rhizophagus clarus, and treated with the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG). The development of AM, as well as the steady-state levels of transcripts involved in ethylene (LeACS2, LeACO1 and LeACO4) and ABA (LeNCED) biosynthesis, was determined. The intraradical colonization in epi, not and sit mutants was significantly reduced compared to MT. The epi mutant completely restored the mycorrhizal colonization to the levels of MT with the application of 10 µM of AVG, probably due to the inhibition of the ACC synthase gene expression. The steady-state levels of LeACS2 and LeACO4 transcripts were induced in mycorrhizal roots of MT, whereas the steady-state levels of LeACO1 and LeACO4 transcripts were significantly induced in sit, and the steady-state levels of LeNCED transcripts were significantly induced in all genotypes and in mycorrhizal roots of epi mutants treated with AVG. The reduced mycorrhizal colonization in sit mutants seems not to be limited by ethylene production via ACC oxidase regulation. Both ethylene overproduction and ABA deficiency impaired AM fungal

  10. Characterisation of ethylene pathway components in non-climacteric capsicum.

    Science.gov (United States)

    Aizat, Wan M; Able, Jason A; Stangoulis, James C R; Able, Amanda J

    2013-11-28

    Climacteric fruit exhibit high ethylene and respiration levels during ripening but these levels are limited in non-climacteric fruit. Even though capsicum is in the same family as the well-characterised climacteric tomato (Solanaceae), it is non-climacteric and does not ripen normally in response to ethylene or if harvested when mature green. However, ripening progresses normally in capsicum fruit when they are harvested during or after what is called the 'Breaker stage'. Whether ethylene, and components of the ethylene pathway such as 1-aminocyclopropane 1-carboxylate (ACC) oxidase (ACO), ACC synthase (ACS) and the ethylene receptor (ETR), contribute to non-climacteric ripening in capsicum has not been studied in detail. To elucidate the behaviour of ethylene pathway components in capsicum during ripening, further analysis is therefore needed. The effects of ethylene or inhibitors of ethylene perception, such as 1-methylcyclopropene, on capsicum fruit ripening and the ethylene pathway components may also shed some light on the role of ethylene in non-climacteric ripening. The expression of several isoforms of ACO, ACS and ETR were limited during capsicum ripening except one ACO isoform (CaACO4). ACS activity and ACC content were also low in capsicum despite the increase in ACO activity during the onset of ripening. Ethylene did not stimulate capsicum ripening but 1-methylcyclopropene treatment delayed the ripening of Breaker-harvested fruit. Some of the ACO, ACS and ETR isoforms were also differentially expressed upon treatment with ethylene or 1-methylcyclopropene. ACS activity may be the rate limiting step in the ethylene pathway of capsicum which restricts ACC content. The differential expression of several ethylene pathway components during ripening and upon ethylene or 1-methylclopropene treatment suggests that the ethylene pathway may be regulated differently in non-climacteric capsicum compared to the climacteric tomato. Ethylene independent pathways may

  11. Novel Protein-Protein Inhibitor Based Approach to Control Plant Ethylene Responses: Synthetic Peptides for Ripening Control

    Directory of Open Access Journals (Sweden)

    Mareike Kessenbrock

    2017-09-01

    Full Text Available Ethylene signaling is decisive for many plant developmental processes. Among these, control of senescence, abscission and fruit ripening are of fundamental relevance for global agriculture. Consequently, detailed knowledge of the signaling network along with the molecular processes of signal perception and transfer are expected to have high impact on future food production and agriculture. Recent advances in ethylene research have demonstrated that signaling of the plant hormone critically depends on the interaction of the ethylene receptor family with the NRAMP-like membrane protein ETHYLENE INSENSITIVE 2 (EIN2 at the ER membrane, phosphorylation-dependent proteolytic processing of ER-localized EIN2 and subsequent translocation of the cleaved EIN2 C-terminal polypeptide (EIN2-CEND to the nucleus. EIN2 nuclear transport, but also interaction with the receptors sensing the ethylene signal, both, depend on a nuclear localization signal (NLS located at the EIN2 C-terminus. Loss of the tight interaction between receptors and EIN2 affects ethylene signaling and impairs plant ethylene responses. Synthetic peptides derived from the NLS sequence interfere with the EIN2–receptor interaction and have utility in controlling plant ethylene responses such as ripening. Here, we report that a synthetic peptide (NOP-1 corresponding to the NLS motif of Arabidopsis EIN2 (aa 1262–1269 efficiently binds to tomato ethylene receptors LeETR4 and NR and delays ripening in the post-harvest phase when applied to the surface of sampled green fruits pre-harvest. In particular, degradation of chlorophylls was delayed by several days, as monitored by optical sensors and confirmed by analytical methods. Similarly, accumulation of β-carotene and lycopene in the fruit pulp after NOP-1 application was delayed, without having impact on the total pigment concentration in the completely ripe fruits. Likewise, the peptide had no negative effects on fruit quality. Our molecular

  12. gamma-Aminobutyric acid stimulates ethylene biosynthesis in sunflower

    International Nuclear Information System (INIS)

    Kathiresan, A.; Tung, P.; Chinnappa, C.C.; Reid, D.M.

    1997-01-01

    gamma-Aminobutyric acid (GABA), a nonprotein amino acid, is often accumulated in plants following environmental stimuli that can also cause ethylene production. We have investigated the relationship between GABA and ethylene production in excised sunflower (Helianthus annuus L.) tissues. Exogenous GABA causes up to a 14-fold increase in the ethylene production rate after about 12 h. Cotyledons fed with [14C]GABA did not release substantial amounts of radioactive ethylene despite its chemical similarity to 1-aminocyclopropane-1-carboxylic acid (ACC), indicating that GABA is not likely to be an alternative precursor for ethylene. GABA causes increases in ACC synthase mRNA accumulation, ACC levels, ACC oxidase mRNA levels, and in vitro ACC oxidase activity. In the presence of aminoethoxyvinylglycine or alpha-aminoisobutyric acid, GABA did not stimulate ethylene production. We therefore conclude that GABA stimulates ethylene biosynthesis mainly by promoting ACC synthase transcript abundance. Possible roles of GABA as a signal transducer are suggested

  13. SEPALLATA1/2-suppressed mature apples have low ethylene, high auxin and reduced transcription of ripening-related genes

    Science.gov (United States)

    Schaffer, Robert J.; Ireland, Hilary S.; Ross, John J.; Ling, Toby J.; David, Karine M.

    2012-01-01

    Background and aims Fruit ripening is an important developmental trait in fleshy fruits, making the fruit palatable for seed dispersers. In some fruit species, there is a strong association between auxin concentrations and fruit ripening. We investigated the relationship between auxin concentrations and the onset of ethylene-related ripening in Malus × domestica (apples) at both the hormone and transcriptome levels. Methodology Transgenic apples suppressed for the SEPALLATA1/2 (SEP1/2) class of gene (MADS8/9) that showed severely reduced ripening were compared with untransformed control apples. In each apple type, free indole-3-acetic acid (IAA) concentrations were measured during early ripening. The changes observed in auxin were assessed in light of global changes in gene expression. Principal results It was found that mature MADS8/9-suppressed apples had a higher concentration of free IAA. This was associated with increased expression of the auxin biosynthetic genes in the indole-3-acetamide pathway. Additionally, in the MADS8/9-suppressed apples, there was less expression of the GH3 auxin-conjugating enzymes. A number of genes involved in the auxin-regulated transcription (AUX/IAA and ARF classes of genes) were also observed to change in expression, suggesting a mechanism for signal transduction at the start of ripening. Conclusions The delay in ripening observed in MADS8/9-suppressed apples may be partly due to high auxin concentrations. We propose that, to achieve low auxin associated with fruit maturation, the auxin homeostasis is controlled in a two-pronged manner: (i) by the reduction in biosynthesis and (ii) by an increase in auxin conjugation. This is associated with the change in expression of auxin-signalling genes and the up-regulation of ripening-related genes. PMID:23346344

  14. Impact of liposomal doxorubicin-based adjuvant chemotherapy on autonomy in women over 70 with hormone-receptor-negative breast carcinoma: A French Geriatric Oncology Group (GERICO) phase II multicentre trial.

    Science.gov (United States)

    Brain, Etienne G C; Mertens, Cécile; Girre, Véronique; Rousseau, Frédérique; Blot, Emmanuel; Abadie, Sophie; Uwer, Lionel; Bourbouloux, Emmanuelle; Van Praagh-Doreau, Isabelle; Mourey, Loic; Kirscher, Sylvie; Laguerre, Brigitte; Fourme, Emmanuelle; Luneau, Sylvia; Genève, Jean; Debled, Marc

    2011-10-01

    Breast cancer is a disease of ageing. Functional independence in elderly patients, measured with the Katz activities of daily living (ADL) scale, predicts overall survival and the need for welfare support. Few prospective studies have examined the feasibility of adjuvant chemotherapy and its impact on autonomy in women over 70 years of age with high-risk breast cancer. This multicentre phase II trial was designed to assess the impact of adjuvant anthracycline-based chemotherapy on these patients' autonomy. In a two-stage Fleming design, women aged ≥70 years with histologically proven hormone-receptor-negative early breast cancer and a significant risk of recurrence (pN+ or "high risk" pN0) received 4 cycles of nonpegylated liposomal doxorubicin 60 mg/m(2) and cyclophosphamide 600 mg/m(2) every 3 weeks postoperatively, on an outpatient basis. The primary endpoint was the change in the ADL score during chemotherapy. Secondary endpoints include comprehensive geriatric, quality-of-life and acceptability assessments, tolerability, and long-term outcome. The results for the primary endpoint and other scales at completion of adjuvant chemotherapy are reported here, while long-term follow-up is not yet complete. Forty patients (median age 75 [70-82]) were enrolled between February 2006 and November 2007. Chemotherapy had no deleterious impact on ADL, cognition, mental status, or the frequency of comorbidities. In contrast, the number of patients at risk of malnutrition, based on the Mini Nutritional Assessment, more than doubled between baseline and the end of chemotherapy, rising from 15% to 38%. Quality-of-life deteriorated in terms of social and role functioning, likely owing to fatigue, loss of appetite, nausea and vomiting. Treatment acceptability was good. The main adverse effect was neutropenia, 15% of the patients experiencing febrile neutropenia. No cardiac toxicity or toxic deaths occurred. This study demonstrates the feasibility of an adjuvant chemotherapy

  15. Tissue-Specific Transcriptome and Hormonal Regulation of Pollinated and Parthenocarpic Fig (Ficus carica L. Fruit Suggest that Fruit Ripening is Coordinated by the Reproductive Part of the Syconium

    Directory of Open Access Journals (Sweden)

    Yogev Rosianski

    2016-11-01

    Full Text Available In the unconventional climacteric fig (Ficus carica fruit, pollinated and parthenocarpic fruit of the same genotype exhibit different ripening characteristics. Integrative comparative analyses of tissue-specific transcript and of hormone levels during fruit repining from pollinated vs. parthenocarpic fig fruit were employed to unravel the similarities and differences in their regulatory processes during fruit repining. Assembling tissue-specific transcripts into 147,000 transcripts with 53,000 annotated genes provided new insights into the spatial distribution of many classes of regulatory and structural genes, including those related to color, taste and aroma, storage, protein degradation, seeds and embryos, chlorophyll, and hormones. Comparison of the pollinated and parthenocarpic tissues during fruit ripening showed differential gene expression, especially in the fruit inflorescence. The distinct physiological green phase II and ripening phase III differed significantly in their gene-transcript patterns in both pulp and inflorescence tissues. Gas chromatographic analysis of whole fruits enabled the first determination of ripening-related hormone levels from pollinated and non-pollinated figs. Ethylene and auxin both increased during fruit ripening, irrespective of pollination, whereas no production of active gibberellins or cytokinins was found in parthenocarpic or pollinated ripening fruit. Tissue-specific transcriptome revealed apparent different metabolic gene patterns for ethylene, auxin and ABA in pollinated vs. parthenocarpic fruit, mostly in the fruit inflorescence. Our results demonstrate that the production of abscisic acid (ABA, non-active ABA–GE conjugate and non-active indoleacetic acid (IAA–Asp conjugate in pollinated fruits is much higher than in parthenocarpic fruits. We suggest that fruit ripening is coordinated by the reproductive part of the syconium and the differences in ABA production between pollinated and

  16. Ethylene Receptors Signal via a Noncanonical Pathway to Regulate Abscisic Acid Responses1[OPEN

    Science.gov (United States)

    Bakshi, Arkadipta; Fernandez, Jessica C.

    2018-01-01

    Ethylene is a gaseous plant hormone perceived by a family of receptors in Arabidopsis (Arabidopsis thaliana) including ETHYLENE RESPONSE1 (ETR1) and ETR2. Previously we showed that etr1-6 loss-of-function plants germinate better and etr2-3 loss-of-function plants germinate worse than wild-type under NaCl stress and in response to abscisic acid (ABA). In this study, we expanded these results by showing that ETR1 and ETR2 have contrasting roles in the control of germination under a variety of inhibitory conditions for seed germination such as treatment with KCl, CuSO4, ZnSO4, and ethanol. Pharmacological and molecular biology results support a model where ETR1 and ETR2 are indirectly affecting the expression of genes encoding ABA signaling proteins to affect ABA sensitivity. The receiver domain of ETR1 is involved in this function in germination under these conditions and controlling the expression of genes encoding ABA signaling proteins. Epistasis analysis demonstrated that these contrasting roles of ETR1 and ETR2 do not require the canonical ethylene signaling pathway. To explore the importance of receptor-protein interactions, we conducted yeast two-hybrid screens using the cytosolic domains of ETR1 and ETR2 as bait. Unique interacting partners with either ETR1 or ETR2 were identified. We focused on three of these proteins and confirmed the interactions with receptors. Loss of these proteins led to faster germination in response to ABA, showing that they are involved in ABA responses. Thus, ETR1 and ETR2 have both ethylene-dependent and -independent roles in plant cells that affect responses to ABA. PMID:29158332

  17. Effect of Valsartan on the hormones of Pituitary-gonadal axis Performance in mature female Wistar Rats

    Directory of Open Access Journals (Sweden)

    Ebrahim Hosseini

    2013-02-01

    Conclusion: Valsartan , as a receptor antagonist of Ang II inhibits the secretion of gonadotropin hormones and accelerates their effect on blocking the follicular cells of the female sex ,causing the reduction of female hormones.

  18. DFT studies on proton-ethylene collisions

    International Nuclear Information System (INIS)

    Wang Zhiping; Zhang Fengshou; Wang Jing

    2012-01-01

    In the framework of the time-dependent local-density approximation (TDLDA)which applied to valence electrons, coupled non-adiabatically to molecular dynamics of ions, the microscopic mechanisms of collisions between energetic protons and ethylene are studied. Not only the amount of energy lost of the projectile, but also the electron and vibration excitations of the target are identified. In addition, the influences of the collision orientation on the energy loss of the proton and excitation dynamics of ethylene are discussed. It is found that the ionization is enhanced and more electrons are captured by the proton when the proton with the impact energy less than 250 eV moves perpendicularly to the molecular plane. A strong relation between the proton energy lost and the impact orientation is obtained when the impact energy is larger than 250 eV. (authors)

  19. Poly(ethylene glycol) interactions with proteins

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich

    2006-01-01

    Roč. 2, č. 23 (2006), s. 613-618 ISSN 0044-2968. [European Powder Diffraction Conference /9./. Prague, 02.09.2004-05.09.2004] R&D Projects: GA ČR(CZ) GA204/02/0843 Institutional research plan: CEZ:AV0Z40500505 Keywords : poly(ethylene glycol) * PEO * protein-polymer interaction Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.897, year: 2006

  20. Poly(ethylene oxide) surfactant polymers

    OpenAIRE

    VACHEETHASANEE, KATANCHALEE; WANG, SHUWU; QIU, YONGXING; MARCHANT, ROGER E.

    2004-01-01

    We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly (ethyleneoxide) (PEO) were simultaneously att...

  1. Can Ethylene Induce Heterophyll in Marsilea quadrifolia?

    Directory of Open Access Journals (Sweden)

    Chia-Hong Lin

    2008-09-01

    Full Text Available Individuals of Marsilea quadrifolia, an amphibious fern, experiencing xtreme variations in environment develop heterophyll with different morphological haracteristics. The objective of this study is to investigate if ethylene can induce floating type of leaves in his fern. To achieve this goal, ratio of stomatal density on abaxial and adaxial leaf surfaces (stomatal atio and the mass per unit length of petiole (PML, on leaves of terrestrial shoots sprayed with an ethylene as releaser, Ethephon, were compared with those of leaves produced by submergence of terrestrial hoots. Leaves with different stomatal ratio and PML, corresponding to that of terrestrial type and loating type of leaves, were produced when terrestrial shoots of M. quadrifolia were submerged. The esult reveals that the plasticity of leaves to respond to submergence depends on leaf’s age. Application of thephon significantly altered the stomatal ratio of young leaves on terrestrial shoot but not their PML. eaves response to Ethephon treatment was also age dependent. These results indicate that ethylene ight be involved in the formation of floating leaves in M. quadrifolia.

  2. Atmospheric chemistry of ethane and ethylene

    International Nuclear Information System (INIS)

    Aikin, A.C.; Herman, J.R.; Maier, E.J.; McQuillian, C.J.

    1982-01-01

    A detailed study of ethane and ethylene photochemistry is presented for the troposphere and stratosphere. It is demonstrated that the loss of ethane is controlled by OH in the troposphere and Cl in the stratosphere. Observation of ethane show a stratospheric behavior indicative of a free chlorine concentration below 30 km that is only 10% of the predicted value given by both our photochemical model calculations and those done by others. The inferred lower amount of chlorine cannot be explained by heterogeneous processes for concentration of aerosols representing average background conditions, nor does current stratospheric photochemistry show agreement. Chemical destruction of ethane and ethylene within the atmosphere leads to the production of carbon monoxide, formaldehyde, and other products. Tropospheric concentrations of formaldehyde are enhanced by nearly a factor of 3 for an ethylene mixing ratio of 2 ppb. Simultaneous monitoring of formaldehyde and carbon monoxide, as well as other products, will greatly aid in determining the relative importance of different tropospheric CO sources. Peroxyacetyl nitrate (PAN) acts as a reservoir for odd-nitrogen at the expense of HNO 3 HO 2 NO 2 , NO, and NO 2

  3. Radiation resistance of ethylene-styrene copolymers

    International Nuclear Information System (INIS)

    Matsumoto, Kaoru; Ikeda, Masaaki; Ohki, Yoshimichi; Kusama, Yasuo; Harashige, Masahiro; Yazaki, Fumihiko.

    1988-01-01

    In this paper, the radiation resistance of ethylene-styrene copolymer, a polymeric resin developed newly by the authors, is reported. Resin examined were five kinds of ethylene-styrene copolymers: three random and two graft copolymers with different styrene contents. Low-density polyethylene was used as a reference. The samples were irradiated by 60 Co γ-rays to total absorbed doses up to 10 MGy. The mechanical properties of the smaples were examined. Infrared spectroscopy, differential scanning calorimetry and X-ray scattering techniques were used to examine the morphology of the samples. The random copolymers are soft and easy to extend, because benzene rings which exisist highly at random hinder the crystallization. As for the radiation resistance, they are highly resistant to γ-rays in the aspects of carbonyl group formation, gel formation, and elongation. Further, they show even better radiation resistance when proper additives were compounded in. The graft copolymers are hard to extend, because they consist of segregated polystyrene and polyethylene regions which are connected with each other. The tensile strength of irradiated graft copolymers does not decrease below that of unirradiated copolymers, up to a total dose of 10 MGy. As a consequence, it can be said that ethylene-styrene copolymers have good radiation resistance owing to the so-called 'sponge' effect of benzene rings. (author)

  4. Exogenous ethylene inhibits sprout growth in onion bulbs.

    Science.gov (United States)

    Bufler, Gebhard

    2009-01-01

    Exogenous ethylene has recently gained commercial interest as a sprouting inhibitor of onion bulbs. The role of ethylene in dormancy and sprouting of onions, however, is not known. A cultivar (Allium cepa 'Copra') with a true period of dormancy was used. Dormant and sprouting states of onion bulbs were treated with supposedly saturating doses of ethylene or with the ethylene-action inhibitor 1-methylcyclopropene (1-MCP). Initial sprouting was determined during storage at 18 degrees C by monitoring leaf blade elongation in a specific size class of leaf sheaths. Changes in ATP content and sucrose synthase activity in the sprout leaves, indicators of the sprouting state, were determined. CO(2) and ethylene production of onion bulbs during storage were recorded. Exogenous ethylene suppressed sprout growth of both dormant and already sprouting onion bulbs by inhibiting leaf blade elongation. In contrast to this growth-inhibiting effect, ethylene stimulated CO(2) production by the bulbs about 2-fold. The duration of dormancy was not significantly affected by exogenous ethylene. However, treatment of dormant bulbs with 1-MCP caused premature sprouting. Exogenous ethylene proved to be a powerful inhibitor of sprout growth in onion bulbs. The dormancy breaking effect of 1-MCP indicates a regulatory role of endogenous ethylene in onion bulb dormancy.

  5. A complex molecular interplay of auxin and ethylene signaling pathways is involved in Arabidopsis growth promotion by Burkholderia phytofirmans PsJN

    Directory of Open Access Journals (Sweden)

    María Josefina Poupin

    2016-04-01

    Full Text Available Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR. However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1 or auxin (axr1-5 signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2, indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control.

  6. Radioimmunoassay of thyroid hormones

    International Nuclear Information System (INIS)

    Bartalena, L.; Mariotti, S.; Pinchera, A.

    1987-01-01

    For many years, methods based on iodine content determination have represented the only techniques available for the estimation of total thyroid hormone concentrations in serum. Subsequently, simple, sensitive, and specific radioligand assays for thyroid hormones have replaced these chemical methods. For the purpose of this chapter, iodometric techniques are only briefly summarized for their historical importance, whereas attention is focused on radioligand assays

  7. Adult growth hormone deficiency

    Directory of Open Access Journals (Sweden)

    Vishal Gupta

    2011-01-01

    Full Text Available Adult growth hormone deficiency (AGHD is being recognized increasingly and has been thought to be associated with premature mortality. Pituitary tumors are the commonest cause for AGHD. Growth hormone deficiency (GHD has been associated with neuropsychiatric-cognitive, cardiovascular, neuromuscular, metabolic, and skeletal abnormalities. Most of these can be reversed with growth hormone therapy. The insulin tolerance test still remains the gold standard dynamic test to diagnose AGHD. Growth hormone is administered subcutaneously once a day, titrated to clinical symptoms, signs and IGF-1 (insulin like growth factor-1. It is generally well tolerated at the low-doses used in adults. Pegylated human growth hormone therapy is on the horizon, with a convenient once a week dosing.

  8. Heart, lipids and hormones

    Directory of Open Access Journals (Sweden)

    Peter Wolf

    2017-05-01

    Full Text Available Cardiovascular disease is the leading cause of death in general population. Besides well-known risk factors such as hypertension, impaired glucose tolerance and dyslipidemia, growing evidence suggests that hormonal changes in various endocrine diseases also impact the cardiac morphology and function. Recent studies highlight the importance of ectopic intracellular myocardial and pericardial lipid deposition, since even slight changes of these fat depots are associated with alterations in cardiac performance. In this review, we overview the effects of hormones, including insulin, thyroid hormones, growth hormone and cortisol, on heart function, focusing on their impact on myocardial lipid metabolism, cardiac substrate utilization and ectopic lipid deposition, in order to highlight the important role of even subtle hormonal changes for heart function in various endocrine and metabolic diseases.

  9. Aging changes in hormone production

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/004000.htm Aging changes in hormone production To use the sharing ... that produce hormones are controlled by other hormones. Aging also changes this process. For example, an endocrine ...

  10. Biochemical responses and ultrastructural changes in ethylene insensitive mutants of Arabidopsis thialiana subjected to bisphenol A exposure.

    Science.gov (United States)

    Ali, Imran; Jan, Mehmood; Wakeel, Abdul; Azizullah, Azizullah; Liu, Bohan; Islam, Faisal; Ali, Abid; Daud, M K; Liu, Yihua; Gan, Yinbo

    2017-10-01

    Bisphenol A (BPA), an important raw material in plastic industry, has become a serious environmental contaminant due to its wide spread use in different products and increasing release into the environment. BPA is known to cause adverse effects in living organisms including plants. Several studies reported that BPA affects growth and development in plants, mainly through oxidative stress. Plants are known to generally cope with stress mainly through hormonal regulation and adaptation, but little is known about the role of plant hormones in plants under BPA stress. The present study was conducted to investigate the role of ethylene in BPA induced oxidative stress in plants using Arabidopsis thaliana as a test plant. The response of ethylene insensitive mutants of Arabidopsis (ein2-1 and etr1-3) to BPA exposure was studied in comparison to the wild type Arabidopsis (WT). In all three genotypes, exposure to BPA adversely affected cellular structures, stomata and light-harvesting pigments. An increase in reactive oxygen species (ROS) lipid peroxidation and other oxidative stress markers indicated that BPA induced toxicity through oxidative stress. However, the overall results revealed that WT Arabidopsis had more pronounced BPA induced damages while ein2-1 and etr1-3 mutants withstood the BPA induced stress more efficiently. The activity of antioxidant enzymes and expression of antioxidants related genes revealed that the antioxidant defense system in both mutants was more efficiently activated than in WT against BPA induced oxidative stress, which further evidenced the involvement of ethylene in regulating BPA induced oxidative stress. It is concluded that ethylene perception and signaling may be involved in BPA induced oxidative stress responses in plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Nickel-catalyzed reactions of enone with ethylene

    International Nuclear Information System (INIS)

    Nishimura, A; Haba, T; Ohashi, M; Ogoshi, S

    2010-01-01

    The reaction of (E)-1-phenylbut-2-en-1-one with ethylene in the presence of a catalytic amount of Ni(cod) 2 and PCy 3 at room temperature gave two kinds of three-component addition products; one is 1,6-enone composed of an enone and two ethylene molecules, and the other is 1,5-diketone composed of two enones and an ethylene. The reactions might proceed via oxidative cyclization of an enone and an ethylene with nickel(0).

  12. Ethylene regulates the timing of anther dehiscence in tobacco.

    Science.gov (United States)

    Rieu, I; Wolters-Arts, M; Derksen, J; Mariani, C; Weterings, K

    2003-05-01

    We investigated the involvement of ethylene signaling in the development of the reproductive structures in tobacco ( Nicotiana tabacum L.) by studying flowers that were insensitive to ethylene. Ethylene-insensitivity was generated either by expression of the mutant etr1-1 ethylene-receptor allele from Arabidopsis thaliana or by treatment with the ethylene-perception inhibitor 1-methylcyclopropene (MCP). Development of ovaries and ovules was unaffected by ethylene-insensitivity. Anther development was also unaffected, but the final event of dehiscence was delayed and was no longer synchronous with flower opening. We showed that in these anthers degeneration of the stomium cells and dehydration were delayed. In addition, we found that MCP-treatment of detached flowers and isolated, almost mature anthers delayed dehiscence whereas ethylene-treatment accelerated dehiscence. This indicated that ethylene has a direct effect on a process that takes place in the anthers just before dehiscence. Because a similar function has been described for jasmonic acid in Arabidopsis, we suggest that ethylene acts similarly to or perhaps even in concurrence with jasmonic acid as a signaling molecule controlling the processes that lead to anther dehiscence in tobacco.

  13. Ethylene production in relation to nitrogen metabolism in Saccharomyces cerevisiae.

    Science.gov (United States)

    Johansson, Nina; Persson, Karl O; Quehl, Paul; Norbeck, Joakim; Larsson, Christer

    2014-11-01

    We have previously shown that ethylene production in Saccharomyces cerevisiae expressing the ethylene-forming enzyme (EFE) from Pseudomonas syringae is strongly influenced by variations in the mode of cultivation as well as the choice of nitrogen source. Here, we have studied the influence of nitrogen metabolism on the production of ethylene further. Using ammonium, glutamate, glutamate/arginine, and arginine as nitrogen sources, it was found that glutamate (with or without arginine) correlates with a high ethylene production, most likely linked to an observed increase in 2-oxoglutarate levels. Arginine as a sole nitrogen source caused a reduced ethylene production. A reduction of arginine levels, accomplished using an arginine auxotrophic ARG4-deletion strain in the presence of limiting amounts of arginine or through CAR1 overexpression, did however not correlate with an increased ethylene production. As expected, arginine was necessary for ethylene production as ethylene production in the ARG4-deletion strain ceased at the time when arginine was depleted. In conclusion, our data suggest that high levels of 2-oxoglutarate and a limited amount of arginine are required for successful ethylene production in yeast. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Controlled release of ethylene via polymeric films for food packaging

    Science.gov (United States)

    Pisano, Roberto; Bazzano, Marco; Capozzi, Luigi Carlo; Ferri, Ada; Sangermano, Marco

    2015-12-01

    In modern fruit supply chain a common method to trigger ripening is to keep fruits inside special chambers and initiate the ripening process through administration of ethylene. Ethylene is usually administered through cylinders with inadequate control of its final concentration in the chamber. The aim of this study is the development of a new technology to accurately regulate ethylene concentration in the atmosphere where fruits are preserved: a polymeric film, containing an inclusion complex of α-cyclodextrin with ethylene, was developed. The complex was prepared by molecular encapsulation which allows the entrapment of ethylene into the cavity of α-cyclodextrin. After encapsulation, ethylene can be gradually released from the inclusion complex and its release rate can be regulated by temperature and humidity. The inclusion complex was dispersed into a thin polymeric film produced by UV-curing. This method was used because is solvent-free and involves low operating temperature; both conditions are necessary to prevent rapid release of ethylene from the film. The polymeric films were characterized with respect to thermal behaviour, crystalline structure and kinetics of ethylene release, showing that can effectively control the release of ethylene within confined volume.

  15. Hormonal changes in secondary impotence

    International Nuclear Information System (INIS)

    Salama, F.M.; El-Shabrawy, N.O.; Nosseir, S.A.; Abo El-Azayem, Naglaa.

    1985-01-01

    Impotence is one of the problems which is still obscure both in its aetiology and treatment. The present study deals with the possible hormonal changes in cases of secondary infertility. The study involved 25 patients diagnosed as secondary impotence. Hormonal assay was performed for the following hormones: 1. Prolaction hormone. 2. Luteinising hormone (L.H.). 3. Testosterone. 4. Follicle stimulating hormone (F.S.H.). The assay was carried out by radioimmunoassay using double antibody technique. Results are discussed

  16. Parkinsonism secondary to ethylene oxide exposure

    Directory of Open Access Journals (Sweden)

    Egberto R. Barbosa

    1992-12-01

    Full Text Available Ethylene oxide is a gas widely used in the production of industrial chemicals. It is also used to sterilize heat-sensitive medical supplies. Previous reports of acute and chronic exposure have described neurotoxic effects like peripheral neuropathy and cognitive impairment. We describe a pure parkinsonian syndrome following acute ethylene oxide intoxication. A 39-years-old male was referred to our Movement Disorders Clinic tor evaluation of a parkinsonian syndrome. He was acutely exposed to ethylene oxide four years before and remained comatose for three days, and gradually regained consciousness.. At that time he showed a global parkinsonian syndrome including bradykinesia, rigidity and rest tremor, with a severe motor disability; no other neurological disorders were found. The symptomatology was partially controlled with biperidene and levodopa plus carbidopa. Two years later he developed L-dopa induced dyskinesias. Four years after the intoxication he was evaluated at our clinic. General examination showed no abnormalities. Neurologic examination revealed a normal menta1 status. Motor evaluation disclosed moderate bradykinesia, rigidity and rest tremor, shuffling gait, poor facial mimic, stooped posture, and his speech was low and monotonous; deep tendon reflexes were brisk. The Hoehn-Yahr disability score was degree IV. Routine laboratory and radiological exams showed results within normal limits. The CSF examination was normal. Brain computed tomography and magnetic ressonance were normal. A trial with bromocriptine and levodopa plus carbidopa did not improve dyskinesia, and he was put on a schedule including amantadine and biperidene with improvement to grade III in Hoehn-Yahr scale. In the present case there was a clear relation between the acute exogenous intoxication and irreversible parkinsonism. No other causes for the condition were identified.

  17. The effect of nitrate on ethylene biofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Hun, E-mail: lee323@alumni.purdue.edu [Department of Agricultural and Biological Engineering, Purdue University, 225 South University St., West Lafayette, 47907-2093 IN (United States); Li, Congna; Heber, Albert J. [Department of Agricultural and Biological Engineering, Purdue University, 225 South University St., West Lafayette, 47907-2093 IN (United States)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Ethylene biofiltration strongly depends on nitrate concentrations and media types. Black-Right-Pointing-Pointer We examine reduced N supply can increase ethylene removals in biofilters. Black-Right-Pointing-Pointer Perlite medium is better for ethylene biofiltration than activated carbon medium. - Abstract: This study investigated the effects of filter media types and nitrate (NO{sub 3}{sup -}) concentrations in nutrient solutions on C{sub 2}H{sub 4} biofiltration. A new nutrient solution with zero NO{sub 3}{sup -} concentration was supplied to two perlite-bed biotrickling filters, two perlite-bed biofilters, and two GAC (Granular Activated Carbon)-bed biofilters, while the other with 2 g L{sup -1} of NO{sub 3}{sup -} was used for the other two GAC biofilters. All reactors underwent a total test duration of over 175 days with an EBRT (Empty Bed Residence Time) of 30 s, inlet gas flow rate of 7 L min{sup -1}, and inlet C{sub 2}H{sub 4} concentrations of 20-30 mg m{sup -3}. NO{sub 3}{sup -} concentration and media type significantly affected the C{sub 2}H{sub 4} removal efficiencies in all types of biofiltration. The perlite media with no NO{sub 3}{sup -} achieved C{sub 2}H{sub 4} removal efficiencies 10-50% higher than the others. A NO{sub 3}{sup -} concentration as high as 2 g L{sup -1} in the original nutrient solution may act as an inhibitor that suppresses the growth or activity of C{sub 2}H{sub 4} degraders. In addition, the perlite media resulted in higher C{sub 2}H{sub 4} removal efficiencies than GAC media, because the hydrophilic surface of the perlite leads to a higher moisture content and thus to favorable microbial growth.

  18. The effect of nitrate on ethylene biofiltration

    International Nuclear Information System (INIS)

    Lee, Sang-Hun; Li, Congna; Heber, Albert J.

    2012-01-01

    Highlights: ► Ethylene biofiltration strongly depends on nitrate concentrations and media types. ► We examine reduced N supply can increase ethylene removals in biofilters. ► Perlite medium is better for ethylene biofiltration than activated carbon medium. - Abstract: This study investigated the effects of filter media types and nitrate (NO 3 − ) concentrations in nutrient solutions on C 2 H 4 biofiltration. A new nutrient solution with zero NO 3 − concentration was supplied to two perlite-bed biotrickling filters, two perlite-bed biofilters, and two GAC (Granular Activated Carbon)-bed biofilters, while the other with 2 g L −1 of NO 3 − was used for the other two GAC biofilters. All reactors underwent a total test duration of over 175 days with an EBRT (Empty Bed Residence Time) of 30 s, inlet gas flow rate of 7 L min −1 , and inlet C 2 H 4 concentrations of 20–30 mg m −3 . NO 3 − concentration and media type significantly affected the C 2 H 4 removal efficiencies in all types of biofiltration. The perlite media with no NO 3 − achieved C 2 H 4 removal efficiencies 10–50% higher than the others. A NO 3 − concentration as high as 2 g L −1 in the original nutrient solution may act as an inhibitor that suppresses the growth or activity of C 2 H 4 degraders. In addition, the perlite media resulted in higher C 2 H 4 removal efficiencies than GAC media, because the hydrophilic surface of the perlite leads to a higher moisture content and thus to favorable microbial growth.

  19. ADVANCED CONTROL FOR A ETHYLENE REACTOR

    Directory of Open Access Journals (Sweden)

    Dumitru POPESCU

    2017-06-01

    Full Text Available The main objective of this work is the design and implementation of control solutions for petrochemical processes, namely the control and optimization of a pyrolysis reactor, the key-installation in the petrochemical industry. We present the technological characteristics of this petrochemical process and some aspects about the proposed control system solution for the ethylene plant. Finally, an optimal operating point for the reactor is found, considering that the process has a nonlinear multi-variable structure. The results have been implemented on an assembly of pyrolysis reactors on a petrochemical platform from Romania.

  20. Bipallidal haemorrhage after ethylene glycol intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Caparros-Lefebvre, D.; Policard, J.; Rigal, M. [CHU Pointe a Pitre, Service de Neurologie, Lille (France); Sengler, C. [CHU Pointe a Pitre, Laboratoire de Pharmaco-Toxicologie, Guadeloupe (France); Benabdallah, E. [CHU Pointe a Pitre, Service de Radiologie, Guadeloupe (France); Colombani, S. [Centre d' Imagerie medicale, Martinique (France)

    2005-02-01

    Acute or subacute bipallidal lesion, an uncommon radiological feature produced by metabolic disorders or poisoning, has never been attributed to ethylene glycol (EG) intoxication. This 50-year-old Afro-Caribbean alcoholic man had unexplained loss of consciousness. Blood tests showed osmolar gap. Drug screening was positive for EG at 6.06 mmol/l. Brain CT revealed bilateral pallidal haemorrhage. Pallidal haematoma, which could be related to deposition of oxalate crystals issued from EG metabolism, should lead to toxicological screening. (orig.)

  1. Bipallidal haemorrhage after ethylene glycol intoxication

    International Nuclear Information System (INIS)

    Caparros-Lefebvre, D.; Policard, J.; Rigal, M.; Sengler, C.; Benabdallah, E.; Colombani, S.

    2005-01-01

    Acute or subacute bipallidal lesion, an uncommon radiological feature produced by metabolic disorders or poisoning, has never been attributed to ethylene glycol (EG) intoxication. This 50-year-old Afro-Caribbean alcoholic man had unexplained loss of consciousness. Blood tests showed osmolar gap. Drug screening was positive for EG at 6.06 mmol/l. Brain CT revealed bilateral pallidal haemorrhage. Pallidal haematoma, which could be related to deposition of oxalate crystals issued from EG metabolism, should lead to toxicological screening. (orig.)

  2. Photodegradation of ethylene by use of TiO2 sol-gel on polypropylene and on glass for application in the postharvest of papaya fruit.

    Science.gov (United States)

    Lourenço, Ruth Evelyn R S; Linhares, Amanda A N; de Oliveira, André Vicente; da Silva, Marcelo Gomes; de Oliveira, Jurandi Gonçalves; Canela, Maria Cristina

    2017-03-01

    The papaya is a commercially important fruit commodity worldwide. Being a climacteric fruit, it is highly perishable. Thus, for the transportation of papaya fruit for long distances without loss of quality, it is necessary to avoid the autocatalytic effect of ethylene in accelerating the ripening of the fruit. This work addresses the application of heterogeneous photocatalysis to the degradation of ethylene. A TiO 2 sol-gel supported on polypropylene (PP) and on glass was used as the catalytic material, and a UV-A lamp was employed as the radiation source. Initially, a concentration of 500 ppbv ethylene was exposed to the catalyst material irradiated by UV-A radiation. A sensitive photoacoustic spectrometer was used to monitor the photocatalytic activity. The TiO 2 sol-gel supported on the glass substrate was more efficient than on the PP in degrading the ethylene. Under direct UV-A exposure, the skin appearance of 'Golden' papaya was damaged, depreciating the fruit quality and thus preventing its commercialization. However, the feasibility of the heterogeneous photocatalysis to preserve the fruit quality was achieved when ethylene was removed from the storage ambient using fans, and then, this plant hormone was degraded by a reactor set apart in a ventilation closed system.

  3. Interactions between plant hormones and heavy metals responses.

    Science.gov (United States)

    Bücker-Neto, Lauro; Paiva, Ana Luiza Sobral; Machado, Ronei Dorneles; Arenhart, Rafael Augusto; Margis-Pinheiro, Marcia

    2017-01-01

    Heavy metals are natural non-biodegradable constituents of the Earth's crust that accumulate and persist indefinitely in the ecosystem as a result of human activities. Since the industrial revolution, the concentration of cadmium, arsenic, lead, mercury and zinc, amongst others, have increasingly contaminated soil and water resources, leading to significant yield losses in plants. These issues have become an important concern of scientific interest. Understanding the molecular and physiological responses of plants to heavy metal stress is critical in order to maximize their productivity. Recent research has extended our view of how plant hormones can regulate and integrate growth responses to various environmental cues in order to sustain life. In the present review we discuss current knowledge about the role of the plant growth hormones abscisic acid, auxin, brassinosteroid and ethylene in signaling pathways, defense mechanisms and alleviation of heavy metal toxicity.

  4. Interactions between plant hormones and heavy metals responses

    Directory of Open Access Journals (Sweden)

    Lauro Bücker-Neto

    2017-04-01

    Full Text Available Abstract Heavy metals are natural non-biodegradable constituents of the Earth's crust that accumulate and persist indefinitely in the ecosystem as a result of human activities. Since the industrial revolution, the concentration of cadmium, arsenic, lead, mercury and zinc, amongst others, have increasingly contaminated soil and water resources, leading to significant yield losses in plants. These issues have become an important concern of scientific interest. Understanding the molecular and physiological responses of plants to heavy metal stress is critical in order to maximize their productivity. Recent research has extended our view of how plant hormones can regulate and integrate growth responses to various environmental cues in order to sustain life. In the present review we discuss current knowledge about the role of the plant growth hormones abscisic acid, auxin, brassinosteroid and ethylene in signaling pathways, defense mechanisms and alleviation of heavy metal toxicity.

  5. Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation.

    Science.gov (United States)

    Aloni, Roni

    2013-11-01

    The vascular system in plants is induced and controlled by streams of inductive hormonal signals. Auxin produced in young leaves is the primary controlling signal in vascular differentiation. Its polar and non-polar transport pathways and major controlling mechanisms are clarified. Ethylene produced in differentiating protoxylem vessels is the signal that triggers lateral root initiation, while tumor-induced ethylene is a limiting and controlling factor of crown gall development and its vascular differentiation. Gibberellin produced in mature leaves moves non-polarly and promotes elongation, regulates cambium activity and induces long fibers. Cytokinin from the root cap moves upward to promote cambial activity and stimulate shoot growth and branching, while strigolactone from the root inhibits branching. Furthermore, the role of the hormonal signals in controlling the type of differentiating vascular elements and gradients of conduit size and density, and how they regulate plant adaptation and have shaped wood evolution are elucidated.

  6. HYPER RECOMBINATION1 of the THO/TREX complex plays a role in controlling transcription of the REVERSION-TO-ETHYLENE SENSITIVITY1 gene in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Congyao Xu

    2015-02-01

    Full Text Available Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1 represses ethylene hormone responses by promoting ethylene receptor ETHYLENE RESPONSE1 (ETR1 signaling, which negatively regulates ethylene responses. To investigate the regulation of RTE1, we performed a genetic screening for mutations that suppress ethylene insensitivity conferred by RTE1 overexpression in Arabidopsis. We isolated HYPER RECOMBINATION1 (HPR1, which is required for RTE1 overexpressor (RTE1ox ethylene insensitivity at the seedling but not adult stage. HPR1 is a component of the THO complex, which, with other proteins, forms the TRanscription EXport (TREX complex. In yeast, Drosophila, and humans, the THO/TREX complex is involved in transcription elongation and nucleocytoplasmic RNA export, but its role in plants is to be fully determined. We investigated how HPR1 is involved in RTE1ox ethylene insensitivity in Arabidopsis. The hpr1-5 mutation may affect nucleocytoplasmic mRNA export, as revealed by in vivo hybridization of fluorescein-labeled oligo(dT45 with unidentified mRNA in the nucleus. The hpr1-5 mutation reduced the total and nuclear RTE1 transcript levels to a similar extent, and RTE1 transcript reduction rate was not affected by hpr1-5 with cordycepin treatment, which prematurely terminates transcription. The defect in the THO-interacting TEX1 protein of TREX but not the mRNA export factor SAC3B also reduced the total and nuclear RTE1 levels. SERINE-ARGININE-RICH (SR proteins are involved mRNA splicing, and we found that SR protein SR33 co-localized with HPR1 in nuclear speckles, which agreed with the association of human TREX with the splicing machinery. We reveal a role for HPR1 in RTE1 expression during transcription elongation and less likely during export. Gene expression involved in ethylene signaling suppression was not reduced by the hpr1-5 mutation, which indicates selectivity of HPR1 for RTE1 expression affecting the consequent ethylene response. Thus

  7. Psychopathology and hormonal disturbances in eating disorders

    Directory of Open Access Journals (Sweden)

    Pierpaola D’Arista

    2008-09-01

    Full Text Available

    Background: Our aim was to study the relationship between hormonal disturbances and psychopathology in Eating Disorders (ED.

    Methods: Forty-nine women diagnosed as Eating Disorders according to DSM-IV were subjected to control plasma levels of TSH, FT3, FT4, LH, FSH, 17beta-estradiol, prolactin, cortisol, DHEAS, GH and IGF-1. They were also administered by SCL-90R, BAT, DES II questionnaires. We applied multivariate regression models.

    Results: Our results highlight a statistically significant relation between LH, FSH and prolactin decreased levels, mood and thought disturbances (subscales 3, 5, 7, 8 and 9 of SCL-90r which are associated to Body Attitude ( BAT total scale and Dissociative Experiences (DES II total scale.

    Conclusions: Decreased sexual hormones levels could have a role in ED psychological disturbances, not inquired yet

  8. Poly(ethylene oxide) surfactant polymers.

    Science.gov (United States)

    Vacheethasanee, Katanchalee; Wang, Shuwu; Qiu, Yongxing; Marchant, Roger E

    2004-01-01

    We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly(ethylene oxide) (PEO) were simultaneously attached to PVAm via reductive amination. Surfactant polymers with different PEO:hexanal ratios and hydrophilic/hydrophobic balances were prepared, and characterized by FT-IR, 1H-NMR and XPS spectroscopies. Surface active properties at the air/water interface were determined by surface tension measurements. Surface activity at a solid surface/water interface was demonstrated by atomic force microscopy, showing epitaxially molecular alignment for surfactant polymers adsorbed on highly oriented pyrolytic graphite. The surfactant polymers described in this report can be adapted for simple non-covalent surface modification of biomaterials and hydrophobic surfaces to provide highly hydrated interfaces.

  9. Flower opening and vase life of gladiolus cultivars: the sensitivity to ethylene and the carbohydrate content

    Directory of Open Access Journals (Sweden)

    Lucas Cavalcante da Costa

    2016-08-01

    Full Text Available Vase life is one of the most important characteristics in the quality of cut flowers. The carbohydrate content of petals from each cultivar can be a decisive factor to vase life of gladiolus flowers. Despite exposure to ethylene does not affect the life of open florets of gladiolus flowers, it may reduce the flower’s commercial life due the occurrence of flower buds abortion. This study thus aimed to evaluate the flower opening and the vase life of gladiolus flowers according to ethylene sensitivity and carbohydrate content of each cultivar. The gladiolus cultivars used in Experiment I were  ‘Amsterdam’, ‘Blue Frost’, ‘Gold Field’, ‘Green Star’, ‘Jester’, ‘Lavender’, ‘Red Beauty’, ‘Rose Supreme’, ‘Traderhorn’, and ‘Verônica’. Stems were stored in airtight chambers and exposed to the ethylene concentrations of 0, 0.1, 1.0, 10, 100, and 1000 μL L−1 for 24 h. Subsequently, flower stem were placed in a test tube with distilled water when were evaluated for percentage of flower opening and vase life. In Experiment II, three cultivars (‘Amsterdam’, ‘Red Beauty’, and ‘Verônica’ were chosen based on the lowest, medium, and highest vase life in Experiment I, respectively. Total soluble sugars, reducing sugars, and starch contents were evaluated in five flower developmental stages. No effect of ethylene on the flower opening or alterations in flower opening between cultivars. The vase life of gladiolus flowers differed between cultivars regardless of ethylene action. ‘Verônica’ and ‘Amsterdam’, which had the highest and lowest vase life, respectively, differed as to the total soluble sugar content. Ethylene does not influence the flower opening or vase life of the gladiolus cultivars studied. In these cultivars, the maintenance of flower opening is attributed to total soluble sugars content, which, in turn, is a major determinant of the vase life.

  10. Thyroid hormone metabolism in poultry

    Directory of Open Access Journals (Sweden)

    Darras V.M.

    2000-01-01

    Full Text Available Thyroid hormone (TH receptors preferentially bind 3.5,3'-triiodothyronine (T3. Therefore the metabolism of thyroxine (T4 secreted by the thyroid gland in peripheral tissues, resulting in the production and degradation of receptor-active T3, plays a major role in thyroid function. The most important metabolic pathway for THs is deiodination. Another important pathway is sulfation, which is a reversible pathway that has been shown to interact with TH deiodination efficiency. The enzymes catalysing TH deiodination consist of three types. Type 1 deiodinase (D1 catalyses both outer ring (ORD and inner ring deiodinalion (IRD. Type II deiodinase (D2 only catalyses ORD while type III (D3 only catalyses IRD. The three chicken deiodinase cDNAs have been cloned recently. These enzymes all belong to the family of selenoproteins. Ontogenetic studies show that the availability of deiodinases is regulated in a tissue specific and developmental stage dependent way. Characteristic for the chicken is the presence of very high levels off, inactivating D3 enzyme in the embryonic liver. Hepatic D3 is subject to acute regulation in a number of situations. Both growth hormone and glucocorticoid injection rapidly decrease hepatic D3 levels, hereby increasing plasma T3 without affecting hepatic D1 levels. The inhibition of D3 seems to be regulated mainly at the level of D3 gene transcription. The effect of growth hormone on D3 expression persists throughout life, while glucocorticoids start to inhibit hepatic D1 expression in posthatch chickens. Food restriction in growing chickens increases hepatic D3 levels. This contributes to the decrease in plasma T3 necessary to reduce energy loss. Refeeding restores hepatic D3 and plasma T3 to control levels within a few hours. It can be concluded that the tissue and time dependent regulation of the balance between TH activating and inactivating enzymes plays an essential role in the control of local T3 availability and hence in

  11. Effect of Compatibilization on Poly-ε-Caprolactone Grafting onto Poly(ethylene-co-vinyl alcohol

    Directory of Open Access Journals (Sweden)

    Mohamed Taha

    2011-10-01

    Full Text Available The non-miscibility of the reactants during solvent free poly-ε-caprolactone grafting onto poly(ethylene-co-vinyl alcohol (EVOH dramatically affects reaction kinetics. Different solutions were proposed to accelerate the exchange reactions between poly(ethylene-co-vinyl alcohol and poly-ε-caprolactone. Reactions were conducted in a batch reactor or a mini twin-screw extruder. The addition of a poly(ethylene-co-vinyl alcohol-g-poly-ε-caprolactone copolymer increased the compatibility of the reactants and led to a higher reaction rate. This copolymer was either prepared separately and added at the reaction beginning or prepared in situ grafting caprolactone from EVOH. The reactive system evolution was analyzed using molar mass evolution, microstructure characterization, thermal properties and the reactive blend morphology. The compatibilization effect combined with optimized reaction conditions, such as concentration and nature of catalyst and temperature, resulted in an important increase in reaction rates. Among the tested catalysts, 1,5,7-Triazabicyclo [4.4.0]dec-5-ene was a more efficient catalyst for grafting reactions than Tin (II 2-ethylhexanoate.

  12. Diels–Alder cycloaddition of 2-methylfuran and ethylene for renewable toluene

    Energy Technology Data Exchange (ETDEWEB)

    Green, Sara K.; Patet, Ryan E.; Nikbin, Nima; Williams, C. Luke; Chang, Chun-Chih; Yu, Jingye; Gorte, Raymond J.; Caratzoulas, Stavros; Fan, Wei; Vlachos, Dionisios G.; Dauenhauer, Paul J.

    2016-01-01

    Diels–Alder cycloaddition of biomass-derived 2-methylfuran and ethylene provides a thermochemical pathway to renewable toluene. In this work, the kinetics and reaction pathways of toluene formation have been evaluated with H-BEA and Sn-BEA catalysts. Kinetic analysis of the main reaction chemistries reveals the existence of two rate-controlling reactions: (i) Diels–Alder cycloaddition of 2-methylfuran and ethylene where the production rate is independent of the Brønsted acid site concentration, and (ii) dehydration of the Diels–Alder cycloadduct where the production rate is dependent on the Brønsted acid site concentration. Application of a reduced kinetic model supports the interplay of these two regimes with the highest concentration of toluene measured at a catalyst loading equal to the transition region between the two kinetic regimes. Selectivity to toluene never exceeded 46%, as 2-methylfuran was consumed by several newly identified reactions to side products, including dimerization of 2-methylfuran, the formation of a trimer following hydrolysis and ring-opening of 2-methylfuran, and the incomplete dehydration of the Diels–Alder cycloadduct of 2-methylfuran and ethylene.

  13. Organic chemistry. A rhodium catalyst for single-step styrene production from benzene and ethylene.

    Science.gov (United States)

    Vaughan, Benjamin A; Webster-Gardiner, Michael S; Cundari, Thomas R; Gunnoe, T Brent

    2015-04-24

    Rising global demand for fossil resources has prompted a renewed interest in catalyst technologies that increase the efficiency of conversion of hydrocarbons from petroleum and natural gas to higher-value materials. Styrene is currently produced from benzene and ethylene through the intermediacy of ethylbenzene, which must be dehydrogenated in a separate step. The direct oxidative conversion of benzene and ethylene to styrene could provide a more efficient route, but achieving high selectivity and yield for this reaction has been challenging. Here, we report that the Rh catalyst ((Fl)DAB)Rh(TFA)(η(2)-C2H4) [(Fl)DAB is N,N'-bis(pentafluorophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene; TFA is trifluoroacetate] converts benzene, ethylene, and Cu(II) acetate to styrene, Cu(I) acetate, and acetic acid with 100% selectivity and yields ≥95%. Turnover numbers >800 have been demonstrated, with catalyst stability up to 96 hours. Copyright © 2015, American Association for the Advancement of Science.

  14. Flame propagation and counterflow nonpremixed ignition of mixtures of methane and ethylene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.; Kelley, A.P.; Law, C.K. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2010-05-15

    The ignition temperature of nitrogen-diluted mixtures of methane and ethylene counterflowing against heated air was measured up to five atmospheres. In addition, the stretch-corrected laminar flame speeds of mixtures of air, methane and ethylene were determined from outwardly-propagating spherical flames up to 10 atmospheres, for extensive range of the lean-to-rich equivalence ratio. These experimental data, relevant to low- to moderately-high-temperature ignition chemistry and high-temperature flame chemistry, respectively, were subsequently compared with calculations using two detailed kinetic mechanisms. A chemical explosive mode analysis (CEMA) was then conducted to identify the dominant ignition chemistry and the role of ethylene addition in facilitating nonpremixed ignition. Furthermore, the hierarchical structure of the associated oxidation kinetics was examined by comparing the sizes and constituents of the skeletal mechanisms of the pure fuels and their mixtures, derived using the method of directed relation graph (DRG). The skeletal mechanism was further reduced by time-scale analysis, leading to a 24-species reduced mechanism from the detailed mechanism of USC Mech II, validated within the parameter space of the conducted experiments. (author)

  15. Production of Ethylene and Carbon Monoxide by Microorganisms

    Science.gov (United States)

    T. H. Filer; L. R. Brown; S. Brown-Sarobot; S. Martin

    1984-01-01

    Various quantities of ethylene and carbon monoxide were produced on PDA by Fusicladium effusum, Pestilotia nucicola, Alternaria tenuis, and Fusarium oxysporum subcultured from diseased pecan shucks. Repeated subculturing of these fungi on potato dextrose broth supplemented with iron powder produced ethylene. The production of...

  16. Price dynamics of crude oil and the regional ethylene markets

    International Nuclear Information System (INIS)

    Masih, Mansur; Algahtani, Ibrahim; De Mello, Lurion

    2010-01-01

    This paper is the first attempt to investigate: (1) is the crude oil (WTI) price significantly related to the regional ethylene prices in the Naphtha intensive ethylene markets of the Far East, North West Europe, and the Mediterranean? (2) What drives the regional ethylene prices? The paper is motivated by the recent and growing debate on the lead-lag relationship between crude oil and ethylene prices. Our findings, based on the long-run structural modelling approach of Pesaran and Shin, and subject to the limitations of the study, tend to suggest: (1) crude oil (WTI) price is cointegrated with the regional ethylene prices (2) our within-sample error-correction model results tend to indicate that although the ethylene prices in North West Europe and the Mediterranean were weakly endogenous, the Far East ethylene price was weakly exogenous both in the short and long term. These results are consistent, during most of the period under review (2000.1-2006.4) with the surge in demand for ethylene throughout the Far East, particularly in China and South Korea. However, during the post-sample forecast period as evidenced in our variance decompositions analysis, the emergence of WTI as a leading player as well, is consistent with the recent surge in WTI price (fuelled mainly, among others, by the strong hedging activities in the WTI futures/options and refining tightness) reflecting the growing importance of input cost in determining the dynamic interactions of input and product prices. (author)

  17. Defining sale ethylene for long term storage of tulip bulbs

    NARCIS (Netherlands)

    Wild, de H.P.J.; Peppelenbos, H.W.; Dijkstra, M.H.G.E.; Gude, H.

    2002-01-01

    The maximum ethylene level that can be permitted in storage rooms, without causing damage to tulip bulbs, is not exactly known. Therefore, a zero-tolerance for the presence of ethylene during storage of tulip bulbs is common practice. This results in excessive ventilation and coherent large energy

  18. Local and systemic hormonal responses in pepper leaves during compatible and incompatible pepper-tobamovirus interactions

    Czech Academy of Sciences Publication Activity Database

    Dziurka, M.; Janeczko, A.; Juhasz, C.; Gullner, G.; Oklešťková, Jana; Novák, Ondřej; Saja, D.; Skoczowski, A.; Tobias, I.; Barna, B.

    2016-01-01

    Roč. 109, DEC (2016), s. 355-364 ISSN 0981-9428 R&D Projects: GA ČR GA14-34792S Institutional support: RVO:61389030 Keywords : tobacco-mosaic-virus * pathogenesis-related proteins * salicylic-acid * abscisic-acid * acquired- resistance * disease resistance * nicotiana-benthamiana * arabidopsis-thaliana * defense response * immune-responses * Brassinosteroids * Ethylene * Hormone * Pepper * Phenylalanine ammonia lyase * Progesterone * Salicylic acid * Tobamovirus Subject RIV: EF - Botanics Impact factor: 2.724, year: 2016

  19. Hormones and Hypertension

    Science.gov (United States)

    ... role in the start and continuation of primary hypertension. Secondary hypertension is due to other diseases such as kidney ... the body can greatly improve or even cure secondary hypertension. Resources • Find-an-Endocrinologist: www.hormone.org or ...

  20. Growth hormone test

    Science.gov (United States)

    ... is called acromegaly . In children it is called gigantism . Too little growth hormone can cause a slow ... growth due to excess GH during childhood, called gigantism. (A special test is done to confirm this ...

  1. Hormonal mechanisms of cooperative behaviour

    Science.gov (United States)

    Soares, Marta C.; Bshary, Redouan; Fusani, Leonida; Goymann, Wolfgang; Hau, Michaela; Hirschenhauser, Katharina; Oliveira, Rui F.

    2010-01-01

    Research on the diversity, evolution and stability of cooperative behaviour has generated a considerable body of work. As concepts simplify the real world, theoretical solutions are typically also simple. Real behaviour, in contrast, is often much more diverse. Such diversity, which is increasingly acknowledged to help in stabilizing cooperative outcomes, warrants detailed research about the proximate mechanisms underlying decision-making. Our aim here is to focus on the potential role of neuroendocrine mechanisms on the regulation of the expression of cooperative behaviour in vertebrates. We first provide a brief introduction into the neuroendocrine basis of social behaviour. We then evaluate how hormones may influence known cognitive modules that are involved in decision-making processes that may lead to cooperative behaviour. Based on this evaluation, we will discuss specific examples of how hormones may contribute to the variability of cooperative behaviour at three different levels: (i) within an individual; (ii) between individuals and (iii) between species. We hope that these ideas spur increased research on the behavioural endocrinology of cooperation. PMID:20679116

  2. Growth Hormone-Releasing Hormone in Diabetes

    Directory of Open Access Journals (Sweden)

    Leonid Evsey Fridlyand

    2016-10-01

    Full Text Available Growth hormone-releasing hormone (GHRH is produced by the hypothalamus and stimulates growth hormone synthesis and release in the anterior pituitary gland. In addition GHRH is an important regulator of cellular functions in many cells and organs. Expression of GHRH G-Protein Coupled Receptor (GHRHR has been demonstrated in different peripheral tissues and cell types including pancreatic islets. Among the peripheral activities, recent studies demonstrate a novel ability of GHRH analogs to increase and preserve insulin secretion by beta-cells in isolated pancreatic islets, which makes them potentially useful for diabetes treatment. This review considers the role of GHRHR in the beta-cell and addresses the unique engineered GHRH agonists and antagonists for treatment of Type 2 diabetes mellitus. We discuss the similarity of signaling pathways activated by GHRHR in pituitary somatotrophs and in pancreatic beta-cells and possible ways as to how the GHRHR pathway can interact with glucose and other secretagogues to stimulate insulin secretion. We also consider the hypothesis that novel GHRHR agonists can improve glucose metabolism in Type 2 diabetes by preserving the function and survival of pancreatic beta-cells. Wound healing and cardioprotective action with new GHRH agonists suggesting that they may prove useful in ameliorating certain diabetic complications. These findings highlight the future potential therapeutic effectiveness of modulators of GHRHR activity for the development of new therapeutic approaches in diabetes and its complications.

  3. Thyroid Stimulating Hormone Receptor

    Directory of Open Access Journals (Sweden)

    Murat Tuncel

    2017-02-01

    Full Text Available Thyroid stimulating hormone receptor (TSHR plays a pivotal role in thyroid hormone metabolism. It is a major controller of thyroid cell function and growth. Mutations in TSHR may lead to several thyroid diseases, most commonly hyperthyroidism. Although its genetic and epigenetic alterations do not directly lead to carcinogenesis, it has a crucial role in tumor growth, which is initiated by several oncogenes. This article will provide a brief review of TSHR and related diseases.

  4. Combined gas-phase oxidation of methane and ethylene

    International Nuclear Information System (INIS)

    Pogosyan, N.M.; Pogosyan, M.D.

    2009-01-01

    It is established that depending on the reaction conditions combined oxidation of methane and ethylene may result in ethylene and propylene oxides with high selectivity with respect to the process, where in the initial reaction mixture methane is replaced by the same quantity of nitrogen. The formed additional methyl radicals increase the yield of all reaction products except CO. At low temperatures methyl radicals react with oxygen resulting in methyl peroxide radicals, which in turn, reacting with ethylene provide its epoxidation and formation of other oxygen-containing products. At high temperatures as a result of addition reaction between methyl radicals and ethylene, propyl radicals are formed that, in turn yield propylene. Alongside with positive influence on the yield of reaction products, methane exerts negative influence upon the conversion, that is it decreases the rate of ethylene and oxygen conversion, simultaneously decreasing significantly the yield of CO

  5. Thermal decomposition of cesium-ethylene-ternary graphite intercalation compounds

    International Nuclear Information System (INIS)

    Matsumoto, R.; Oishi, Y.; Arii, T.

    2010-01-01

    In this paper, the thermal decomposition of air-stable Cs-ethylene-ternary graphite intercalation compounds (GICs) is discussed. The air stability of Cs-GICs is improved remarkably after the absorption of ethylene into their interlayer nanospace, because the ethylene molecules oligomerize and block the movement of Cs atoms. In addition, the evaporation of Cs atoms from the Cs-ethylene-ternary GICs is observed above 400 o C under a N 2 atmosphere of 100 Pa by ion attachment mass spectrometry. Although the results indicate that Cs-ethylene-ternary GICs remain stable up to approximately 400 o C, their thermal stability is not very high as compared to that of Cs-GICs.

  6. Ethylene-Mediated Acclimations to Flooding Stress1

    Science.gov (United States)

    Sasidharan, Rashmi; Voesenek, Laurentius A.C.J.

    2015-01-01

    Flooding is detrimental for plants, primarily because of restricted gas exchange underwater, which leads to an energy and carbohydrate deficit. Impeded gas exchange also causes rapid accumulation of the volatile ethylene in all flooded plant cells. Although several internal changes in the plant can signal the flooded status, it is the pervasive and rapid accumulation of ethylene that makes it an early and reliable flooding signal. Not surprisingly, it is a major regulator of several flood-adaptive plant traits. Here, we discuss these major ethylene-mediated traits, their functional relevance, and the recent progress in identifying the molecular and signaling events underlying these traits downstream of ethylene. We also speculate on the role of ethylene in postsubmergence recovery and identify several questions for future investigations. PMID:25897003

  7. Understanding tantalum-catalyzed ethylene trimerization: When things go wrong

    KAUST Repository

    Chen, Yin

    2013-06-07

    Ethylene oligomerization to linear low-molecular-mass α-olefins is an open industrial challenge. Ta-based catalysts are promising systems, but the unclear understanding of their behavior prevents systematic advances in the field. We demonstrate here that a well-defined (î -SiO)3Ta III species is able to promote ethylene oligo-/polymerization without any cocatalyst, confirming that the active species in Ta systems corresponds to a TaIII species. DFT calculations on a series of Ta systems ranging from ethylene trimerization to ethylene polymerization catalysts highlight the key factors controlling their experimental behavior. Comparison of these Ta systems allows one to set general rules for the rational development of new ethylene Ta oligomerization catalysts. © 2013 American Chemical Society.

  8. Heterogeneity of protein hormones

    Energy Technology Data Exchange (ETDEWEB)

    Rosselin, G; Bataille, D; Laburthe, M; Duran-Garcia, S [Institut National de la Sante et de la Recherche Medicale (INSERM), Hopital Saint-Antoine, 75 - Paris (France)

    1975-12-01

    Radioimmunoassay measures antigenic determinants of hormonal molecules in the plasmas and tissues. These estimations carried out after fractionation in biological fluids, have revealed several immunological forms of the same hormone. The main problem is in the relationship of the various immunoreactive forms to the same hormonal sequence. The similar immunoreactive forms of high molecular weight usually have low biological activity and suggest the presence of prohormone; the suggestion of prohormonal nature depends on the chronology of the incorporation of labelled leucine and enzymatic transformation of prohormone with low biological into active hormone. The forms with high molecular weight and similar immunological activity may be of another nature. Thus, it has been shown that the biosynthetic nature of a compound such as big big insulin in the rat is doubtful owing to the absence of specific incorporation of labelled leucine into the immunoprecipitate of this fraction. The significance of low molecular weight form is still little known. An example of these forms is supplied by the existence of an alpha sub-unit of gonadotrophin present in the plasma of menopausal women. The interest of analytical methods by radio-receptor, simulation of cyclase activity in the identification of biological activity of immunoreactive forms, is discussed in relation to immunological forms ofenteroglucagon. An unusual aspect of the evolutive and adaptative character of hormonal heterogeneity is given by the gastro-intestinal hormones.

  9. Kinetics of thyroid hormones

    International Nuclear Information System (INIS)

    Inada, Mitsuo; Nishikawa, Mitsushige; Naito, Kimikazu; Ishii, Hitoshi; Tanaka, Kiyoshi

    1980-01-01

    Kinetics of thyroid hormones were outlined, and recent progress in metabolism of these hormones was also described. Recently, not only T 4 and T 3 but also rT 3 , 3,3'-T 2 , 3',5'-T 2 , and 3,5-T 2 can be measured by RIA. To clarify metabolic pathways of these hormones, metabolic clearance rate and production rate of these hormones were calculated. As single-compartment analysis was insufficient to clarify disappearance curves of thyroid hormones in blood such as T 3 and T 2 of which metabolic speed was so fast, multi-compartment analysis or non-compartment analysis were also performed. Thyroid hormones seemed to be measured more precisely by constant infusion method. At the first step of T 4 metabolism, T 3 was formed by 5'-monodeiodination of T 4 , and rT 3 was formed by 5-monodeiodination of T 4 . As metabolic pathways of T 3 and rT 3 , conversion of them to 3,3'-T 2 or to 3',5'-T 2 and 3,5-T 2 was supposed. This subject will be an interesting research theme in future. (Tsunoda, M.)

  10. Transcatheter Embolization of a Renal Artery Aneurysm Using Ethylene Vinyl Alcohol Copolymer

    International Nuclear Information System (INIS)

    Rautio, Riitta; Haapanen, Arto

    2007-01-01

    Our aim was to treat a clinically silent renal artery aneurysm. The patient was a 76-year-old man with elevated prostate-specific antigen and prostata biopsies with a gradus II-III adenocarcinoma who was incidentally found to have an aneurysm in his right renal artery. We performed a successful transcatheter embolization of the aneurysm using ethylene vinyl alcohol copolymer (Onyx). To avoid migration of the liquid material into the parent artery, a balloon was inflated in the orifice of the neck of the aneurysm while the liquid was injected. Five-month follow-up computed tomography (CT) imaging confirmed total occlusion of the aneurysm

  11. Ethylene sensitivity and relative air humidity regulate root hydraulic properties in tomato plants.

    Science.gov (United States)

    Calvo-Polanco, Monica; Ibort, Pablo; Molina, Sonia; Ruiz-Lozano, Juan Manuel; Zamarreño, Angel María; García-Mina, Jose María; Aroca, Ricardo

    2017-11-01

    The effect of ethylene and its precursor ACC on root hydraulic properties, including aquaporin expression and abundance, is modulated by relative air humidity and plant sensitivity to ethylene. Relative air humidity (RH) is a main factor contributing to water balance in plants. Ethylene (ET) is known to be involved in the regulation of root water uptake and stomatal opening although its role on plant water balance under different RH is not very well understood. We studied, at the physiological, hormonal and molecular levels (aquaporins expression, abundance and phosphorylation state), the plant responses to exogenous 1-aminocyclopropane-1-carboxylic acid (ACC; precursor of ET) and 2-aminoisobutyric acid (AIB; inhibitor of ET biosynthesis), after 24 h of application to the roots of tomato wild type (WT) plants and its ET-insensitive never ripe (nr) mutant, at two RH levels: regular (50%) and close to saturation RH. Highest RH induced an increase of root hydraulic conductivity (Lp o ) of non-treated WT plants, and the opposite effect in nr mutants. The treatment with ACC reduced Lp o in WT plants at low RH and in nr plants at high RH. The application of AIB increased Lp o only in nr plants at high RH. In untreated plants, the RH treatment changed the abundance and phosphorylation of aquaporins that affected differently both genotypes according to their ET sensitivity. We show that RH is critical in regulating root hydraulic properties, and that Lp o is affected by the plant sensitivity to ET, and possibly to ACC, by regulating aquaporins expression and their phosphorylation status. These results incorporate the relationship between RH and ET in the response of Lp o to environmental changes.

  12. Ethylene production throughout growth and development of plants

    Science.gov (United States)

    Wheeler, Raymond M.; Peterson, Barbara V.; Stutte, Gary W.

    2004-01-01

    Ethylene production by 10 or 20 m2 stands of wheat, soybean, lettuce, potato, and tomato was monitored throughout growth and development in an atmospherically closed plant chamber. Chamber ethylene levels varied among species and rose during periods of canopy expansion and rapid growth for all species. Following this, ethylene levels either declined during seed fill and maturation for wheat and soybean, or remained relatively constant for potato and tomato (during flowering and early fruit development). Lettuce plants were harvested during rapid growth and peak ethylene production. Chamber ethylene levels increased rapidly during tomato ripening, reaching concentrations about 10 times that measured during vegetative growth. The highest ethylene production rates during vegetative growth ranged from 1.6 to 2.5 nmol m-2 d-1 during rapid growth of lettuce and wheat stands, or about 0.3 to 0.5 nmol g-1 fresh weight per hour. Estimates of stand ethylene production during tomato ripening showed that rates reached 43 nmol m-2 d-1 in one study and 93 nmol m-2 d-1 in a second study with higher lighting, or about 50x that of the rate during vegetative growth of tomato. In a related test with potato, the photoperiod was extended from 12 to 24 hours (continuous light) at 58 days after planting (to increase tuber yield), but this change in the environment caused a sharp increase in ethylene production from the basal rate of 0.4 to 6.2 nmol m-2 d-1. Following this, the photoperiod was changed back to 12 h at 61 days and ethylene levels decreased. The results suggest three separate categories of ethylene production were observed with whole stands of plants: 1) production during rapid vegetative growth, 2) production during climacteric fruit ripening, and 3) production from environmental stress.

  13. Ethylene and rooting of mung bean cuttings. The role of auxin induced ethylene synthesis and phase-dependent effects

    NARCIS (Netherlands)

    Klerk, de G.J.M.; Hanecakova, J.

    2008-01-01

    We have re-examined the role of ethylene during rooting of mung bean cuttings. Cuttings were treated for 5 days with a low or a high concentration of NAA (naphthaleneacetic acid). During this 5 days period, we also applied STS (silverthiosulfate, an inhibitor of ethylene action) or ACC

  14. Ethylene glycol and propylene glycol ethers – Reproductive and developmental toxicity

    Directory of Open Access Journals (Sweden)

    Beata Starek-Świechowicz

    2015-10-01

    Full Text Available Both ethylene and propylene glycol alkyl ethers (EGAEs and PGAEs, respectively are widely used, mainly as solvents, in industrial and household products. Some EGAEs demonstrate gonadotoxic, embriotoxic, fetotoxic and teratogenic effects in both humans and experimental animals. Due to the noxious impact of these ethers on reproduction and development of organisms EGAEs are replaced for considerably less toxic PGAEs. The data on the mechanisms of testicular, embriotoxic, fetotoxic and teratogenic effects of EGAEs are presented in this paper. Our particular attention was focused on the metabolism of some EGAEs and their organ-specific toxicities, apoptosis of spermatocytes associated with changes in the expression of various genes that code for oxidative stress factors, protein kinases and nuclear hormone receptors. Med Pr 2015;66(5:725–737

  15. Biochemical and Structural Insights into the Mechanism of DNA Recognition by Arabidopsis ETHYLENE INSENSITIVE3.

    Directory of Open Access Journals (Sweden)

    Jinghui Song

    Full Text Available Gaseous hormone ethylene regulates numerous stress responses and developmental adaptations in plants by controlling gene expression via transcription factors ETHYLENE INSENSITIVE3 (EIN3 and EIN3-Like1 (EIL1. However, our knowledge regarding to the accurate definition of DNA-binding domains (DBDs within EIN3 and also the mechanism of specific DNA recognition by EIN3 is limited. Here, we identify EIN3 82-352 and 174-306 as the optimal and core DBDs, respectively. Results from systematic biochemical analyses reveal that both the number of EIN3-binding sites (EBSs and the spacing length between two EBSs affect the binding affinity of EIN3; accordingly, a new DNA probe which has higher affinity with EIN3 than ERF1 is also designed. Furthermore, we show that palindromic repeat sequences in ERF1 promoter are not necessary for EIN3 binding. Finally, we provide, to our knowledge, the first crystal structure of EIN3 core DBD, which contains amino acid residues essential for DNA binding and signaling. Collectively, these data suggest the detailed mechanism of DNA recognition by EIN3 and provide an in-depth view at molecular level for the transcriptional regulation mediated by EIN3.

  16. Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic Acid.

    Science.gov (United States)

    Leon-Reyes, Antonio; Du, Yujuan; Koornneef, Annemart; Proietti, Silvia; Körbes, Ana P; Memelink, Johan; Pieterse, Corné M J; Ritsema, Tita

    2010-02-01

    Cross-talk between jasmonate (JA), ethylene (ET), and Salicylic acid (SA) signaling is thought to operate as a mechanism to fine-tune induced defenses that are activated in response to multiple attackers. Here, 43 Arabidopsis genotypes impaired in hormone signaling or defense-related processes were screened for their ability to express SA-mediated suppression of JA-responsive gene expression. Mutant cev1, which displays constitutive expression of JA and ET responses, appeared to be insensitive to SA-mediated suppression of the JA-responsive marker genes PDF1.2 and VSP2. Accordingly, strong activation of JA and ET responses by the necrotrophic pathogens Botrytis cinerea and Alternaria brassicicola prior to SA treatment counteracted the ability of SA to suppress the JA response. Pharmacological assays, mutant analysis, and studies with the ET-signaling inhibitor 1-methylcyclopropene revealed that ET signaling renders the JA response insensitive to subsequent suppression by SA. The APETALA2/ETHYLENE RESPONSE FACTOR transcription factor ORA59, which regulates JA/ET-responsive genes such as PDF1.2, emerged as a potential mediator in this process. Collectively, our results point to a model in which simultaneous induction of the JA and ET pathway renders the plant insensitive to future SA-mediated suppression of JA-dependent defenses, which may prioritize the JA/ET pathway over the SA pathway during multi-attacker interactions.

  17. Shelf life of custard apple treated with 1-methylciclopropene: an antagonist to the ethylene action

    Directory of Open Access Journals (Sweden)

    Benassi Guilherme

    2003-01-01

    Full Text Available Custard apple (Annona squamosa L. presents very short storage life at room temperature, in part due to heavy losses in firmness. This process is associated with the production and action of the hormone ethylene. In order to retard the ripening evolution in custard apple, fruits were treated with the competitive ethylene antagonist 1-methycyclopropene (1-MCP at concentrations of 0, 30, 90, 270 or 810 nL L-1 for 12 h at 25ºC and then stored at 25ºC for four days. The soluble solids content (SSC, firmness and percentage of ripe fruits (firmness < 0.5kg were determined during the experimental period. There were no differences among treatments as to the SSC. Fruits treated with 810 nL L-1 of 1-MCP showed higher firmness than the control fruits. Both , non-treated or treated fruits with 30 or 90 nL L-1 ripened faster than fruits treated with 1-MCP at higher concentrations.

  18. Novel gaseous ethylene binding inhibitor prevents ethylene effects in potted flowering plants

    Energy Technology Data Exchange (ETDEWEB)

    Serek, M.; Reid, M.S. (Univ. of California, Davis, CA (United States). Dept. of Environmental Horticulture); Sisler, E.C. (North Carolina State Univ., Raleigh, NC (United States). Dept. of Biochemistry)

    1994-11-01

    A 6-hour fumigation of flowering Begonia xelatior hybrida Fotsch. Najada' and Rosa', B. xtuberhybrida Voss. Non-Stop', Kalanchoe blossfeldiana Poelln. Tropicana', and Rosa hybrida L. Victory Parade' plants with 1-MCP, (formerly designated as SIS-X), a gaseous nonreversible ethylene binding inhibitor, strongly inhibited exogenous ethylene effects such as bud and flower drop, leaf abscission, and accelerated flower senescence. The inhibitory effects of 1-MCP increased linearly with concentration, and at 20 nl-liter[sup [minus]1] this compound gave equal protection to that afforded by spraying the plants with a 0.5 STS mM solution. Chemical names used: 1-methylcyclopropene (1-MCP), silver thiosulfate (STS).

  19. Ethylene: Role in Fruit Abscission and Dehiscence Processes 12

    Science.gov (United States)

    Lipe, John A.; Morgan, Page W.

    1972-01-01

    Two peaks of ethylene production occur during the development of cotton fruitz (Gossypium hirsutum L.). These periods precede the occurrence of young fruit shedding and mature fruit dehiscence, both of which are abscission phenomena and the latter is generally assumed to be part of the total ripening process. Detailed study of the dehiscence process revealed that ethylene production of individual, attached cotton fruits goes through a rising, cyclic pattern which reaches a maximum prior to dehiscence. With detached pecan fruits (Carya illinoensis [Wang.] K. Koch), ethylene production measured on alternate days rose above 1 microliter per kilogram fresh weight per hour before dehiscence began and reached a peak several days prior to complete dehiscence. Ethylene production by cotton and pecan fruits was measured just prior to dehiscence and then the internal concentration of the gas near the center of the fruit was determined. From these data a ratio of production rate to internal concentration was determined which allowed calculation of the approximate ethylene concentration in the intact fruit prior to dehiscence and selection of appropriate levels to apply to fruits. Ethylene at 10 microliters per liter of air appears to saturate dehiscence of cotton, pecan, and okra (Hibiscus esculentus L.) fruits and the process is completed in 3 to 4 days. In all cases some hastening of dehiscence was observed with as little as 0.1 microliter of exogenous ethylene per liter of air. The time required for response to different levels of ethylene was determined and compared to the time course of ethylene production and dehiscence. We concluded that internal levels of ethylene rose to dehiscence-stimulating levels a sufficience time before dehiscence for the gas to have initiated the process. Since our data and calculations indicate that enough ethylene is made a sufficient time before dehiscence, to account for the process, we propose that ethylene is one of the regulators of

  20. Ethylene: role in fruit abscission and dehiscence processes.

    Science.gov (United States)

    Lipe, J A; Morgan, P W

    1972-12-01

    Two peaks of ethylene production occur during the development of cotton fruitz (Gossypium hirsutum L.). These periods precede the occurrence of young fruit shedding and mature fruit dehiscence, both of which are abscission phenomena and the latter is generally assumed to be part of the total ripening process. Detailed study of the dehiscence process revealed that ethylene production of individual, attached cotton fruits goes through a rising, cyclic pattern which reaches a maximum prior to dehiscence. With detached pecan fruits (Carya illinoensis [Wang.] K. Koch), ethylene production measured on alternate days rose above 1 microliter per kilogram fresh weight per hour before dehiscence began and reached a peak several days prior to complete dehiscence. Ethylene production by cotton and pecan fruits was measured just prior to dehiscence and then the internal concentration of the gas near the center of the fruit was determined. From these data a ratio of production rate to internal concentration was determined which allowed calculation of the approximate ethylene concentration in the intact fruit prior to dehiscence and selection of appropriate levels to apply to fruits. Ethylene at 10 microliters per liter of air appears to saturate dehiscence of cotton, pecan, and okra (Hibiscus esculentus L.) fruits and the process is completed in 3 to 4 days. In all cases some hastening of dehiscence was observed with as little as 0.1 microliter of exogenous ethylene per liter of air. The time required for response to different levels of ethylene was determined and compared to the time course of ethylene production and dehiscence. We concluded that internal levels of ethylene rose to dehiscence-stimulating levels a sufficience time before dehiscence for the gas to have initiated the process. Since our data and calculations indicate that enough ethylene is made a sufficient time before dehiscence, to account for the process, we propose that ethylene is one of the regulators of

  1. Radicidation as an alternative for ethylene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, J [Koezponti Elelmiszeripari Kutato Intezet, Budapest (Hungary)

    1985-01-01

    The application of ethylene oxide to sterilize dry foodstuff additions proved to be a source of danger both for the personnel of the food preservation industry and for the consumers due to the residue of some chemicals and toxic reaction products which can not be removed from the foodstuff. A more advantageous and less harmful alternative for the reduction of the number of germs is offered by using ionizing radiation. Based on a great number of references, the applicability and effectiveness of radicidation for the preservation of spices, dry vegetable powders, sugar, thickening materials, protein and enzyme products were confirmed. Regarding the economic aspects, this method can be compared with the traditional chemical treatment. Commercial licenses have been issued by the health organizations of 12 countries.

  2. Radicidation as an alternative for ethylene oxide

    International Nuclear Information System (INIS)

    Farkas, Jozsef

    1985-01-01

    The application of ethylene oxide to sterilize dry foodstuff additions proved to be a source of danger both for the personnel of the food preservation industry and for the consumers due to the residue of some chemicals and toxic reaction products which can not be removed from the foodstuff. A more advantageous and less harmful alternative for the reduction of the number of germs is offered by using ionizing radiation. Based on a great number of references, the applicability and effectiveness of radicidation for the preservation of spices, dry vegetable powders, sugar, thickening materials, protein and enzyme products were confirmed. Regarding the economic aspects, this method can be compared with the traditional chemical treatment. Commercial licenses have been issued by the health organizations of 12 countries. (V.N.)

  3. Plants having modified response to ethylene

    Science.gov (United States)

    Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

    1997-11-18

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 31 figs.

  4. Palladium/IzQO-Catalyzed Coordination-Insertion Copolymerization of Ethylene and 1,1-Disubstituted Ethylenes Bearing a Polar Functional Group.

    Science.gov (United States)

    Yasuda, Hina; Nakano, Ryo; Ito, Shingo; Nozaki, Kyoko

    2018-02-07

    Coordination-insertion copolymerization of ethylene with 1,1-disubstituted ethylenes bearing a polar functional group, such as methyl methacrylate (MMA), is a long-standing challenge in catalytic polymerization. The major obstacle for this process is the huge difference in reactivity of ethylene versus 1,1-disubstituted ethylenes toward both coordination and insertion. Herein we report the copolymerization of ethylene and 1,1-disubstituted ethylenes by using an imidazo[1,5-a]quinolin-9-olate-1-ylidene-supported palladium catalyst. Various types of 1,1-disubstituted ethylenes were successfully incorporated into the polyethylene chain. In-depth characterization of the obtained copolymers and mechanistic inferences drawn from stoichiometric reactions of alkylpalladium complexes with methyl methacrylate and ethylene indicate that the copolymerization proceeds by the same coordination-insertion mechanism that has been postulated for ethylene.

  5. In-Situ Immobilization of Ni Complex on Amine-Grafted SiO₂ for Ethylene Polymerization.

    Science.gov (United States)

    Lee, Sang Yun; Ko, Young Soo

    2018-02-01

    The results on the In-Situ synthesis of Ni complex on amine-grafted SiO2 and its ethylene polymerization were explained. SiO2/2NS/(DME)NiBr2 and SiO2/3NS/(DME)NiBr2(Ni(II) bromide ethylene glycol dimethyl ether) catalysts were active for ethylene polymerization. The highest activity was shown at the polymerization temperature of 25 °C, and SiO2/2NS/(DME)NiBr2 exhibited higher activity than SiO2/3NS/(DME)NiBr2. The PDI values of SiO2/2NS/(DME)NiBr2 were in the range of 8~18. The aminosilane compounds and Ni were evenly grafted and distributed in the silica. It was proposed that DME ligand was mostly removed during the supporting process, and only NiBr2 was complexed with the amine group of 2NS based on the results of FT-IR and ethylene polymerization.

  6. Root Formation in Ethylene-Insensitive Plants1

    Science.gov (United States)

    Clark, David G.; Gubrium, Erika K.; Barrett, James E.; Nell, Terril A.; Klee, Harry J.

    1999-01-01

    Experiments with ethylene-insensitive tomato (Lycopersicon esculentum) and petunia (Petunia × hybrida) plants were conducted to determine if normal or adventitious root formation is affected by ethylene insensitivity. Ethylene-insensitive Never ripe (NR) tomato plants produced more belowground root mass but fewer aboveground adventitious roots than wild-type Pearson plants. Applied auxin (indole-3-butyric acid) increased adventitious root formation on vegetative stem cuttings of wild-type plants but had little or no effect on rooting of NR plants. Reduced adventitious root formation was also observed in ethylene-insensitive transgenic petunia plants. Applied 1-aminocyclopropane-1-carboxylic acid increased adventitious root formation on vegetative stem cuttings from NR and wild-type plants, but NR cuttings produced fewer adventitious roots than wild-type cuttings. These data suggest that the promotive effect of auxin on adventitious rooting is influenced by ethylene responsiveness. Seedling root growth of tomato in response to mechanical impedance was also influenced by ethylene sensitivity. Ninety-six percent of wild-type seedlings germinated and grown on sand for 7 d grew normal roots into the medium, whereas 47% of NR seedlings displayed elongated taproots, shortened hypocotyls, and did not penetrate the medium. These data indicate that ethylene has a critical role in various responses of roots to environmental stimuli. PMID:10482660

  7. Ethylene and carbon dioxide exchange in leaves and whole plants

    Energy Technology Data Exchange (ETDEWEB)

    Woodrow, L

    1989-01-01

    This investigation addresses the interactions between CO{sub 2}, ethylene, and photosynthetic carbon metabolism in Lycopersicon esculentum Mill. and Xanthium strumarium L. Rates of ethylene release were examined at alternate leaf positions on vegetative tomato plants. The rates of endogenous and ACC-stimulated ethylene release per unit leaf area were highest in the young, rapidly expanding leaves. When plants were grown under CO{sub 2} enrichment rates of ethylene release from the leaf tissue were consistently higher than from tissue grown at ambient levels. Elevated CO{sub 2} concentrations during short-term incubations further enhanced the rates of ethylene release. Ethylene release from ethephon (2-chloroethylphosphonic acid) applied to intact tomato plants provided a model system in which to study the effects of ethylene on photosynthetic metabolism and carbon partitioning. The ethephon treated plants exhibited leaf epinasty, flower bud abscission, inhibition of leaf expansion, adventitious root development, and reduction of dry matter accumulation and growth over time. Rates of steady state photosynthesis, respiration, photorespiration, transpiration, and partitioning of recently fixed {sup 14}C into neutral, acidic, basic, and insoluble leaf fractions were unaltered 24 h after ethephon application.

  8. Aging tests of ethylene contaminated argon/ethane

    International Nuclear Information System (INIS)

    Atac, M.; Bauer, G.

    1994-01-01

    We report on aging tests of argon/ethane gas with a minor (1800 ppM) component of ethylene. The measurements were first conducted with the addition of alcohol to test the suppression of aging by this additive, with exposure up to ∼1.5 C/cm. Tests have included: a proportional tube with ethanol, another with isopropyl alcohol, and for comparison a tube has also been run with ethanol and argon/ethane from CDF's old (ethylene-free) ethane supply. The aging test with ethanol showed no difference between the ethylene-free and the ethylene tube. Furthermore, raw aging rates of argon/ethane and argon/ethane/ethylene were measured by exposing tubes without the addition of alcohol to about 0.1 C/cm. Again, no significant difference was observed. In conclusion, we see no evidence that ethylene contamination up to 1800 ppM has any adverse effect on wire aging. However, this level of ethylene does seem to significantly suppress the gas gain

  9. Effects of ethylene on gene expression in carrot roots

    International Nuclear Information System (INIS)

    Nichols, S.E.

    1984-01-01

    To investigate ethylene effects on expression of genetic information, cDNA clones corresponding to ethylene-induced carrot root mRNAs were constructed and isolated. RNA dot blot analysis showed that for the three clones studied peak cytosolic mRNA prevalence occurred at 21 hours of treatment followed thereafter by rapid messenger decay. DNA filter excess hybridization to in vitro synthesized nuclear RNA showed that the ethylene-induced mRNA increase is engendered by transcription of previously quiescent genes. The kinetics and magnitude of changes in mRNA prevalence parallel changes in transcriptional activity; therefore, the ethylene effect is primarily at the level of the transcription. In vivo pulse labelling with [ 35 S]-methionine showed that between 18 and 27 hours of ethylene treatment a 2.5 fold increase in translational efficiency occurred for one message studied. The resulting protein is the predominant protein synthesized in carrots treated with ethylene for 27 hours. Thus, ethylene exerts multiple regulatory controls on the expression of genetic information

  10. Methionine metabolism and ethylene formation in etiolated pea stem sections

    International Nuclear Information System (INIS)

    Schilling, N.; Kende, H.

    1979-01-01

    Stem sections of etiolated pea seedlings (Pisum sativum L. cv. Alaska) were incubated overnight on tracer amounts of L-[U- 14 C]methionine and, on the following morning, on 0.1 millimolar indoleacetic acid to induce ethylene formation. Following the overnight incubation, over 70% of the radioactivity in the soluble fraction was shown to be associated with S-methylmethionine (SMM). The specific radioactivity of the ethylene evolved closely paralleled that of carbon atoms 3 and 4 of methionine extracted from the tissue and was always higher than that determined for carbon atoms 3 and 4 of extracted SMM. Overnight incubation of pea stem sections on 1 millimolar methionine enhanced indoleacetic acid-induced ethylene formation by 5 to 10%. Under the same conditions, 1 millimolar homocysteine thiolactone increased ethylene synthesis by 20 to 25%, while SMM within a concentration range of 0.1 to 10 millimolar did not influence ethylene production. When unlabeled methionine or homocysteine thiolactone was applied to stem sections which had been incubated overnight in L-[U- 14 C]methionine, the specific radioactivity of the ethylene evolved was considerably lowered. Application of unlabeled SMM reduced the specific radioactivity of ethylene only slightly

  11. Infrared photodissociation of van der Waals molecules containing ethylene

    International Nuclear Information System (INIS)

    Casassa, M.P.; Bomse, D.S.; Janda, K.C.

    1981-01-01

    Vibrational predissociation line shapes in the n 7 region of the ethylene spectrum are measured for van der Waals molecules of ethylene bound to Ne, Ar, Kr, C 2 H 4 , C 2 F 4 , and larger ethylene clusters. The predissociative rate is very fast for this group of molecules. The vibrationally excited state lifetimes are 0.44, 0.59 and 0.89 x 10 -12 sec for (C 2 H 4 ) 2 , ArxC 2 H 4 , and C 2 H 4 xC 2 F 4 respectively. That the observed line shapes are homogeneous is demonstrated by the fact that a low-power, narrow frequency bandwidth laser can dissociate a large fraction of the initial ensemble of ethylene clusters. The observed transition probability is proportional to the number of ethylene subunits for clusters containing three or fewer ethylene subunits. These observations are interpreted in terms of intramolecular energy flow directly from ethylene n 7 to the weak van der Waals modes of motion

  12. Ethylene production by plants in a closed environment

    Science.gov (United States)

    Wheeler, R. M.; Peterson, B. V.; Sager, J. C.; Knott, W. M.

    Ethylene production by 20-m^2 stands of wheat, soybean, lettuce and potato was monitored throughout growth and development in NASA's Controlled Ecological Life Support System (CELSS) Biomass Production Chamber. Chamber ethylene concentrations rose during periods of rapid growth for all four species, reaching 120 parts per billion (ppb) for wheat, 60 ppb for soybean, and 40 to 50 ppb for lettuce and potato. Following this, ethylene concentrations declined during seed fill and maturation (wheat and soybean), or remained relatively constant (potato). Lettuce plants were harvested during rapid growth and peak ethylene production. The highest ethylene production rates (unadjusted for chamber leakage) ranged from 0.04 to 0.06 ml m^-2 day^-1 during rapid growth of lettuce and wheat stands, or approximately 0.8 to 1.1 nl g^-1 fresh weight h^-1 Results suggest that ethylene production by plants is a normal event coupled to periods of rapid metabolic activity, and that ethylene removal or control measures should be considered for growing crops in a tightly closed CELSS.

  13. Ethylene synthesis in lettuce seeds: its physiological significance.

    Science.gov (United States)

    Burdett, A N

    1972-12-01

    The germination and pregermination ethylene production of Grand Rapids lettuce seeds (Lactuca sativa L.) incubated at 20 C after a red light treatment are inhibited if the seeds are first imbibed at 30 C for 36 hours. In this study, low concentrations of ethylene were found to enhance the germination of seeds pretreated at 30 C more than that of untreated controls. In the presence of high concentrations of ethylene, pretreated seeds and controls germinated at a similar rate. These results are consistent with the view that a prolonged imbibition at 30 C inhibits germination at a lower temperature through its effect on the ethylene production of the seeds. As a further test of the hypothesis, estimates were made of the pregermination ethylene content of untreated seeds and pretreated seeds incubated in the presence of sufficient ethylene to make them germinate as rapidly as untreated seeds. The values obtained were 0.65 and 0.74 nanoliter of ethylene per gram (dry weight) of seeds, respectively.

  14. Ectopic Expression of CsCTR1, a Cucumber CTR-Like Gene, Attenuates Constitutive Ethylene Signaling in an Arabidopsis ctr1-1 Mutant and Expression Pattern Analysis of CsCTR1 in Cucumber (Cucumis sativus

    Directory of Open Access Journals (Sweden)

    Beibei Bie

    2014-09-01

    Full Text Available The gaseous plant hormone ethylene regulates many aspects of plant growth, development and responses to the environment. Constitutive triple response 1 (CTR1 is a central regulator involved in the ethylene signal transduction pathway. To obtain a better understanding of this particular pathway in cucumber, the cDNA-encoding CTR1 (designated CsCTR1 was isolated from cucumber. A sequence alignment and phylogenetic analyses revealed that CsCTR1 has a high degree of homology with other plant CTR1 proteins. The ectopic expression of CsCTR1 in the Arabidopsis ctr1-1 mutant attenuates constitutive ethylene signaling of this mutant, suggesting that CsCTR1 indeed performs its function as negative regulator of the ethylene signaling pathway. CsCTR1 is constitutively expressed in all of the examined cucumber organs, including roots, stems, leaves, shoot apices, mature male and female flowers, as well as young fruits. CsCTR1 expression gradually declined during male flower development and increased during female flower development. Additionally, our results indicate that CsCTR1 can be induced in the roots, leaves and shoot apices by external ethylene. In conclusion, this study provides a basis for further studies on the role of CTR1 in the biological processes of cucumber and on the molecular mechanism of the cucumber ethylene signaling pathway.

  15. Hormonal control of euryhalinity

    Science.gov (United States)

    Takei, Yoshio; McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.

    2013-01-01

    Hormones play a critical role in maintaining body fluid balance in euryhaline fishes during changes in environmental salinity. The neuroendocrine axis senses osmotic and ionic changes, then signals and coordinates tissue-specific responses to regulate water and ion fluxes. Rapid-acting hormones, e.g. angiotensins, cope with immediate challenges by controlling drinking rate and the activity of ion transporters in the gill, gut, and kidney. Slow-acting hormones, e.g. prolactin and growth hormone/insulin-like growth factor-1, reorganize the body for long-term acclimation by altering the abundance of ion transporters and through cell proliferation and differentiation of ionocytes and other osmoregulatory cells. Euryhaline species exist in all groups of fish, including cyclostomes, and cartilaginous and teleost fishes. The diverse strategies for responding to changes in salinity have led to differential regulation and tissue-specific effects of hormones. Combining traditional physiological approaches with genomic, transcriptomic, and proteomic analyses will elucidate the patterns and diversity of the endocrine control of euryhalinity.

  16. Headache And Hormones

    Directory of Open Access Journals (Sweden)

    Shukla Rakesh

    2002-01-01

    Full Text Available There are many reasons to suggest a link between headache and hormones. Migraine is three times common in women as compared to men after puberty, cyclic as well as non-cyclic fluctuations in sex hormone levels during the entire reproductive life span of a women are associated with changes in frequency or severity of migraine attack, abnormalities in the hypothalamus and pineal gland have been observed in cluster headache, oestrogens are useful in the treatment of menstrual migraine and the use of melatonin has been reported in various types of primary headaches. Headache associated with various endocrinological disorders may help us in a better understanding of the nociceptive mechanisms involved in headache disorders. Prospective studies using headache diaries to record the attacks of headache and menstrual cycle have clarified some of the myths associated with menstrual migraine. Although no change in the absolute levels of sex hormones have been reported, oestrogen withdrawal is the most likely trigger of the attacks. Prostaglandins, melatonin, opioid and serotonergic mechanisms may also have a role in the pathogenesis of menstrual migraine. Guidelines have been published by the IHS recently regarding the use of oral contraceptives by women with migraine and the risk of ischaemic strokes in migraineurs on hormone replacement therapy. The present review includes menstrual migraine, pregnancy and migraine, oral contraceptives and migraine, menopause and migraine as well as the hormonal changes in chronic migraine.

  17. [Hormones and hair growth].

    Science.gov (United States)

    Trüeb, R M

    2010-06-01

    With respect to the relationship between hormones and hair growth, the role of androgens for androgenetic alopecia (AGA) and hirsutism is best acknowledged. Accordingly, therapeutic strategies that intervene in androgen metabolism have been successfully developed for treatment of these conditions. Clinical observations of hair conditions involving hormones beyond the androgen horizon have determined their role in regulation of hair growth: estrogens, prolactin, thyroid hormone, cortisone, growth hormone (GH), and melatonin. Primary GH resistance is characterized by thin hair, while acromegaly may cause hypertrichosis. Hyperprolactinemia may cause hair loss and hirsutism. Partial synchronization of the hair cycle in anagen during late pregnancy points to an estrogen effect, while aromatase inhibitors cause hair loss. Hair loss in a causal relationship to thyroid disorders is well documented. In contrast to AGA, senescent alopecia affects the hair in a diffuse manner. The question arises, whether the hypothesis that a causal relationship exists between the age-related reduction of circulating hormones and organ function also applies to hair and the aging of hair.

  18. Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization.

    Science.gov (United States)

    Franden, Mary Ann; Jayakody, Lahiru N; Li, Wing-Jin; Wagner, Neil J; Cleveland, Nicholas S; Michener, William E; Hauer, Bernhard; Blank, Lars M; Wierckx, Nick; Klebensberger, Janosch; Beckham, Gregg T

    2018-06-07

    Ethylene glycol is used as a raw material in the production of polyethylene terephthalate, in antifreeze, as a gas hydrate inhibitor in pipelines, and for many other industrial applications. It is metabolized by aerobic microbial processes via the highly toxic intermediates glycolaldehyde and glycolate through C2 metabolic pathways. Pseudomonas putida KT2440, which has been engineered for environmental remediation applications given its high toxicity tolerance and broad substrate specificity, is not able to efficiently metabolize ethylene glycol, despite harboring putative genes for this purpose. To further expand the metabolic portfolio of P. putida, we elucidated the metabolic pathway to enable ethylene glycol via systematic overexpression of glyoxylate carboligase (gcl) in combination with other genes. Quantitative reverse transcription polymerase chain reaction demonstrated that all of the four genes in genomic proximity to gcl (hyi, glxR, ttuD, and pykF) are transcribed as an operon. Where the expression of only two genes (gcl and glxR) resulted in growth in ethylene glycol, improved growth and ethylene glycol utilization were observed when the entire gcl operon was expressed. Both glycolaldehyde and glyoxal inhibit growth in concentrations of ethylene glycol above 50 mM. To overcome this bottleneck, the additional overexpression of the glycolate oxidase (glcDEF) operon removes the glycolate bottleneck and minimizes the production of these toxic intermediates, permitting growth in up to 2 M (~124 g/L) and complete consumption of 0.5 M (31 g/L) ethylene glycol in shake flask experiments. In addition, the engineered strain enables conversion of ethylene glycol to medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Overall, this study provides a robust P. putida KT2440 strain for ethylene glycol consumption, which will serve as a foundational strain for further biocatalyst development for applications in the remediation of waste polyester plastics and

  19. Apple MdACS6 Regulates Ethylene Biosynthesis During Fruit Development Involving Ethylene-Responsive Factor.

    Science.gov (United States)

    Li, Tong; Tan, Dongmei; Liu, Zhi; Jiang, Zhongyu; Wei, Yun; Zhang, Lichao; Li, Xinyue; Yuan, Hui; Wang, Aide

    2015-10-01

    Ethylene biosynthesis in plants involves different 1-aminocyclopropane-1-carboxylic acid synthase (ACS) genes. The regulation of each ACS gene during fruit development is unclear. Here, we characterized another apple (Malus×domestica) ACS gene, MdACS6. The transcript of MdACS6 was observed not only in fruits but also in other tissues. During fruit development, MdACS6 was initiated at a much earlier stage, whereas MdACS3a and MdACS1 began to be expressed at 35 d before harvest and immediateley after harvest, respectively. Moreover, the enzyme activity of MdACS6 was significantly lower than that of MdACS3a and MdACS1, accounting for the low ethylene biosynthesis in young fruits. Overexpression of MdACS6 (MdACS6-OE) by transient assay in apple showed enhanced ethylene production, and MdACS3a was induced in MdACS6-OE fruits but not in control fruits. In MdACS6 apple fruits silenced by the virus-induced gene silencing (VIGS) system (MdACS6-AN), neither ethylene production nor MdACS3a transcript was detectable. In order to explore the mechanism through which MdACS3a was induced in MdACS6-OE fruits, we investigated the expression of apple ethylene-responsive factor (ERF) genes. The results showed that the expression of MdERF2 was induced in MdACS6-OE fruits and inhibited in MdACS6-AN fruits. Yeast one-hybrid assay showed that MdERF2 protein could bind to the promoter of MdACS3a. Moreover, down-regulation of MdERF2 in apple flesh callus led to a decrease of MdACS3a expression, demonstrating the regulation of MdERF2 on MdACS3a. The mechanism through which MdACS6 regulates the action of MdACS3a was discussed. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Reactions of organic zinc- and cadmium elementoxides with ethylene oxide

    International Nuclear Information System (INIS)

    Dodonov, V.A.; Krasnov, Yu.N.

    1980-01-01

    Studied are reactions of triphenylmethoxy, -triphenylsiloxyethylzinc and -cadmium with ethylene oxide in ratio of 1:1. Reactions have been carried out in tolyene solutions in ampules sealed in argon atmosphere. It is found that interaction of triphenylsiloxy-, triphenylmethoxyethylcadmium and triphenylsiloxyethylzinc with ethylene oxide occurs at the metal-carbon bond with formation of implantation products. Triphenylmethoxyethylzinc reacts with ethylene oxide both at the metal-carbon and metal-oxygen bonds. Alkoxytriphenylsiloxyderivatives of zinc and cadmium are thermally instable and decompose under the conditions of reaction (130 deg C) with migration of phenyl group from silicon to zinc or cadmium, giving alkoxyphenylderivative and with bensene splitting out

  1. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    Science.gov (United States)

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  2. Stress and hormones

    Directory of Open Access Journals (Sweden)

    Salam Ranabir

    2011-01-01

    Full Text Available In the modern environment one is exposed to various stressful conditions. Stress can lead to changes in the serum level of many hormones including glucocorticoids, catecholamines, growth hormone and prolactin. Some of these changes are necessary for the fight or flight response to protect oneself. Some of these stressful responses can lead to endocrine disorders like Graves′ disease, gonadal dysfunction, psychosexual dwarfism and obesity. Stress can also alter the clinical status of many preexisting endocrine disorders such as precipitation of adrenal crisis and thyroid storm.

  3. 21 CFR 177.1315 - Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-1, 4-cyclohexylene dimethylene... Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers. Ethylene-1, 4-cyclohexylene dimethylene... purposes of this section, ethylene-1,4-cyclohexylene dimethylene terephthalate copolymers (1,4-benzene...

  4. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Poly-1-butene resins and butene/ethylene copolymers... resins and butene/ethylene copolymers. The poly-1-butene resins and butene/ethylene copolymers identified... the catalytic polymerization of 1-butene liquid monomer. Butene/ethylene copolymers are produced by...

  5. 21 CFR 177.1345 - Ethylene/1,3-phenylene oxyethylene isophthalate/ terephthalate copolymer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene/1,3-phenylene oxyethylene isophthalate... Ethylene/1,3-phenylene oxyethylene isophthalate/ terephthalate copolymer. Ethylene/1, 3-phenylene... polymers complying with § 177.1630. (a) Identity. For the purpose of this section, ethylene/1,3-phenylene...

  6. In situ ring-opening polymerization of hydroxyapatite/poly (ethylene ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Hydroxyapatite/poly(ethylene adipate)--poly(ethylene terephthalate) biomaterials (HAp/PEA--PET) have been prepared by ring opening polymerization (ROP) of cyclic oligo(ethylene adipate)--oligo(ethylene terephthalate) (C-OEA--C-OET) in the porous hydroxyapatite (HAp) scaffolds at 250 ...

  7. The effect of ethylene on transgenic melon ripening and fruit quality ...

    African Journals Online (AJOL)

    In cell wall expression analysis, MPG1 increased when fruits of transgenic melons were exposed to ethylene; showing they are ethylene- dependent. MPG2 decreased ... Ethylene productions in transgenic fruits were reestablished when ethylene was applied, exhibiting the same behavior as transgenic fruits. Antioxidant ...

  8. In situ ring-opening polymerization of hydroxyapatite/poly (ethylene ...

    Indian Academy of Sciences (India)

    Hydroxyapatite/poly(ethylene adipate)--poly(ethylene terephthalate) biomaterials (HAp/PEA--PET) have been prepared by ring opening polymerization (ROP) of cyclic oligo(ethylene adipate)--oligo(ethylene terephthalate) (C-OEA--C-OET) in the porous hydroxyapatite (HAp) scaffolds at 250 °C for 24 h under ...

  9. Effects of glucose and ethylene on root hair initiation and elongation in lettuce (Lactuca sativa L.) seedlings.

    Science.gov (United States)

    Harigaya, Wakana; Takahashi, Hidenori

    2018-05-01

    Root hair formation occurs in lettuce seedlings after transfer to an acidic medium (pH 4.0). This process requires cortical microtubule (CMT) randomization in root epidermal cells and the plant hormone ethylene. We investigated the interaction between ethylene and glucose, a new signaling molecule in plants, in lettuce root development, with an emphasis on root hair formation. Dark-grown seedlings were used to exclude the effect of photosynthetically produced glucose. In the dark, neither root hair formation nor the CMT randomization preceding it occurred, even after transfer to the acidic medium (pH 4.0). Adding 1-aminocyclopropane-1-carboxylic-acid (ACC) to the medium rescued the induction, while adding glucose did not. Although CMT randomization occurred when glucose was applied together with ACC, it was somewhat suppressed compared to that in ACC-treated seedlings. This was not due to a decrease in the speed of randomization, but due to lowering of the maximum degree of randomization. Despite the negative effect of glucose on ACC-induced CMT randomization, the density and length of ACC-induced root hairs increased when glucose was also added. The hair-cell length of the ACC-treated seedlings was comparable to that in the combined-treatment seedlings, indicating that the increase in hair density caused by glucose results from an increase in the root hair number. Furthermore, quantitative RT-PCR revealed that glucose suppressed ethylene signaling. These results suggest that glucose has a negative and positive effect on the earlier and later stages of root hair formation, respectively, and that the promotion of the initiation and elongation of root hairs by glucose may be mediated in an ethylene-independent manner.

  10. Interactions between ethylene, abscisic acid and cytokinin during ...

    Indian Academy of Sciences (India)

    Interactions between ethylene, abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis. VEERAPUTHIRAN SUBBIAH and KARINGU JANARDHAN REDDY. J. Biosci. 35(3), September 2010, 451–459 © Indian Academy of Sciences. Supplementary figure. Supplementary figure 1.

  11. Effect of gamma radiation and ethylene oxide on neomycin sulphate

    International Nuclear Information System (INIS)

    Gopal, N.G.S.; Rajagopalan, S.

    1981-01-01

    Neomycin is affected by ethylene oxide but not by gamma radiation (2.75 Mrad). Differential refractometry is more advantageous in quantitating neomycin A, B and C than is the ninhydrin method. (Auth.)

  12. Ethylene Production Maximum Achievable Control Technology (MACT) Compliance Manual

    Science.gov (United States)

    This July 2006 document is intended to help owners and operators of ethylene processes understand and comply with EPA's maximum achievable control technology standards promulgated on July 12, 2002, as amended on April 13, 2005 and April 20, 2006.

  13. Diffusivities and Viscosities of Poly(ethylene oxide) Oligomers †

    KAUST Repository

    Hong, Bingbing; Escobedo, Fernando; Panagiotopoulos, Athanassios Z.

    2010-01-01

    Diffusivities and viscosities of poly(ethylene oxide) (PEO) oligomer melts with 1 to 12 repeat units have been obtained from equilibrium molecular dynamics simulations using the TraPPE-UA force field. The simulations generated diffusion coefficients

  14. Understanding tantalum-catalyzed ethylene trimerization: When things go wrong

    KAUST Repository

    Chen, Yin; Credendino, Raffaele; Callens, Emmanuel; Atiqullah, Muhammad; Al-Harthi, Mamdouh Ahmed; Cavallo, Luigi; Basset, Jean-Marie

    2013-01-01

    Ethylene oligomerization to linear low-molecular-mass α-olefins is an open industrial challenge. Ta-based catalysts are promising systems, but the unclear understanding of their behavior prevents systematic advances in the field. We demonstrate here

  15. effects of ethylene oxide resterilisation and in-vitro degradation

    African Journals Online (AJOL)

    2013-06-01

    Jun 1, 2013 ... Subjects: Two composite meshes were used in the study: One mesh is ... Ethylene oxide gas sterilisation was performed ... were completed for control and resterilisation specimens. .... lowers in-hospital care expenses.

  16. Radioimmunoassay of steroid hormone

    International Nuclear Information System (INIS)

    Murakami, Tadashi

    1975-01-01

    Low acid pepsin treated gamma-globulin was applied to ammonium sulfate salting out method, which was a method to separate bound fraction from free one in radioimmunoassay of steroid hormone, and the effect of the separation and the standard curve were examined. Pepsin treated gamma-globulin was prepared in pH 1.5 to 5.5 and then the pepsin was completely removed. It had an effect to accelerate the precipitation in radioimmunoassay of steroid hormone labelled with 3 H. The effect of pepsin treated gamma-globulin to adhere free steroid hormone and to slat out bound one was compared with that of human gamma-globulin. Pepsin treated gamma-globulin, which was water soluble, could easier reach its optimal concentration, and the separation effect was better than human gamma-globulin. The standard curve of it was steeper, particularly in a small dose, and the reproducibility was also better. It could be applied not only to aldosterone and DOC, but also to the steroid hormones, such as progesterone and DHEA, and it seemed suitable for routine measurement method. (Kanao, N.)

  17. Hormones and social preferences

    NARCIS (Netherlands)

    Buser, T.

    2011-01-01

    We examine whether social preferences are determined by hormones. We do this by investigating whether markers for the strength of prenatal testosterone exposure (finger length ratios) and current exposure to progesterone and oxytocin (the menstrual cycle) are correlated with choices in social

  18. Thyroid hormone replacement therapy

    NARCIS (Netherlands)

    Wiersinga, W. M.

    2001-01-01

    Thyroid hormone replacement has been used for more than 100 years in the treatment of hypothyroidism, and there is no doubt about its overall efficacy. Desiccated thyroid contains both thyroxine (T(4)) and triiodothyronine (T(3)); serum T(3) frequently rises to supranormal values in the absorption

  19. Hormones and postpartum cardiomyopathy.

    NARCIS (Netherlands)

    Clapp, C.; Thebault, S.C.; Martinez de la Escalera, G.M.

    2007-01-01

    Prolactin, a hormone fundamental for lactation, was recently shown to mediate postpartum cardiomyopathy, a life-threatening disease in late-term and lactating mothers. The detrimental effect of prolactin results from myocardial upregulation of cathepsin-D, which in turn cleaves prolactin to a 16 kDa

  20. Inappropriate Antidiuretic Hormone Secretion

    African Journals Online (AJOL)

    1974-06-08

    Jun 8, 1974 ... with Addison's disease, diarrhoea or salt-losing nephritis. (asymptomatic hyponatraemia).~ Schwartz et al.3 stud;ed two patients with anaplastic bronchus carcinoma and hyponatraemia in 1957, and they suggested that there was an inappropriate secretion of antidiuretic hormone (ADH). It is now well ...

  1. Radioimmunoassay of protein hormones

    International Nuclear Information System (INIS)

    Talas, M.; Fingerova, H.

    1976-01-01

    A survey is presented of the history of RIA methods for FSH, LH, HCG, HPL and prolactin determinations with special regard to the double antibody method in a kinetic system. Problems are shown in 125 I-labelling protein hormones in preparing own antisera. (L.O.)

  2. SHBG (Sex Hormone Binding Globulin)

    Science.gov (United States)

    ... Links Patient Resources For Health Professionals Subscribe Search Sex Hormone Binding Globulin (SHBG) Send Us Your Feedback ... As Testosterone-estrogen Binding Globulin TeBG Formal Name Sex Hormone Binding Globulin This article was last reviewed ...

  3. Gastrointestinal hormones and their targets

    DEFF Research Database (Denmark)

    Rehfeld, Jens F.

    2014-01-01

    Gastrointestinal hormones are peptides released from endocrine cells and neurons in the digestive tract. More than 30 hormone genes are currently known to be expressed in the gastrointestinal tract, which makes the gut the largest hormone producing organ in the body. Modern biology makes...... it feasible to conceive the hormones under five headings: The structural homology groups a majority of the hormones into nine families, each of which is assumed to originate from one ancestral gene. The individual hormone gene often has multiple phenotypes due to alternative splicing, tandem organization......, or differentiated maturation of the prohormone. By a combination of these mechanisms, more than 100 different hormonally active peptides are released from the gut. Gut hormone genes are also widely expressed in cells outside the gut, some only in extraintestinal endocrine cells and neurons but others also in other...

  4. Luteinizing hormone (LH) blood test

    Science.gov (United States)

    ICSH - blood test; Luteinizing hormone - blood test; Interstitial cell stimulating hormone - blood test ... to temporarily stop medicines that may affect the test results. Be sure to tell your provider about ...

  5. Hormone Therapy for Breast Cancer

    Science.gov (United States)

    ... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... sensitive breast cancer cells contain proteins called hormone receptors that become activated when hormones bind to them. ...

  6. Evaluating OSHA's ethylene oxide standard: exposure determinants in Massachusetts hospitals.

    Science.gov (United States)

    LaMontagne, A D; Kelsey, K T

    2001-03-01

    This study sought to identify determinants of workplace exposures to ethylene oxide to assess the effect of the Occupational Safety and Health Administration's (OSHA's) 1984 ethylene oxide standard. An in-depth survey of all hospitals in Massachusetts that used ethylene oxide from 1990 through 1992 (96% participation, N = 90) was conducted. Three types of exposure events were modeled with logistic regression: exceeding the 8-hour action level, exceeding the 15-minute excursion limit, and worker exposures during unmeasured accidental releases. Covariates were drawn from data representing an ecologic framework including direct and indirect potential exposure determinants. After adjustment for frequencies of ethylene oxide use and exposure monitoring, a significant inverse relation was observed between exceeding the action level and the use of combined sterilizer-aerators, an engineering control technology developed after the passage of the OSHA standard. Conversely, the use of positive-pressure sterilizers that employ ethylene oxide gas mixtures was strongly related to both exceeding the excursion limit and the occurrence of accidental releases. These findings provide evidence of a positive effect of OSHA's ethylene oxide standard and specific targets for future prevention and control efforts.

  7. Ethylene Formation by Catalytic Dehydration of Ethanol with Industrial Considerations

    Directory of Open Access Journals (Sweden)

    Ho-Shing Wu

    2012-12-01

    Full Text Available Ethylene is the primary component in most plastics, making it economically valuable. It is produced primarily by steam-cracking of hydrocarbons, but can alternatively be produced by the dehydration of ethanol, which can be produced from fermentation processes using renewable substrates such as glucose, starch and others. Due to rising oil prices, researchers now look at alternative reactions to produce green ethylene, but the process is far from being as economically competitive as using fossil fuels. Many studies have investigated catalysts and new reaction engineering technologies to increase ethylene yield and to lower reaction temperature, in an effort to make the reaction applicable in industry and most cost-efficient. This paper presents various lab synthesized catalysts, reaction conditions, and reactor technologies that achieved high ethylene yield at reasonable reaction temperatures, and evaluates their practicality in industrial application in comparison with steam-cracking plants. The most promising were found to be a nanoscale catalyst HZSM-5 with 99.7% ethylene selectivity at 240 °C and 630 h lifespan, using a microreactor technology with mechanical vapor recompression, and algae-produced ethanol to make ethylene.

  8. Interaction of atomic hydrogen with ethylene adsorbed on nickel films

    International Nuclear Information System (INIS)

    Korchak, V.N.; Tret'yakov, I.I.; Kislyuk, M.U.

    1976-01-01

    The reactivity of ethylene adsorbed on the pure films of nickel at various temperatures was studied with respect to hydrogen atoms generated in the gaseous phase. The experiments were conducted in a glass vacuum apparatus enabling one to obtain the highest vacuum up to 2x20 -10 torr. The catalyst, nickel films, was produced by their deposition onto the walls of the glass reactor at a pressure of the residual gas of 10 -9 torr and a temperature of the walls of 25 deg C. Gas purity was analyzed by the mass spectrometric method. The ethylene adsorbed at the temperatures below 173 deg K reacted readily with the hydrogen atoms to yield ethane. The process ran without practically any activation energy involved and was limited by the attachment of the first hydrogen atom to the ethylene molecule. The efficiency of this interaction was 0.02 of the number of the hydrogen atoms collisions against the surface occupied by the ethylene. The adsorption of the ethylene at room and higher temperatures was accompanied by its disproportioning with the release of the hydrogen into the gaseous phase and a serious destruction of the ethylene molecules adsorbed to produce hydrogen residues interacting with neither molecular nor atomic hydrogen [ru

  9. Ethylene Formation by Catalytic Dehydration of Ethanol with Industrial Considerations.

    Science.gov (United States)

    Fan, Denise; Dai, Der-Jong; Wu, Ho-Shing

    2012-12-28

    Ethylene is the primary component in most plastics, making it economically valuable. It is produced primarily by steam-cracking of hydrocarbons, but can alternatively be produced by the dehydration of ethanol, which can be produced from fermentation processes using renewable substrates such as glucose, starch and others. Due to rising oil prices, researchers now look at alternative reactions to produce green ethylene, but the process is far from being as economically competitive as using fossil fuels. Many studies have investigated catalysts and new reaction engineering technologies to increase ethylene yield and to lower reaction temperature, in an effort to make the reaction applicable in industry and most cost-efficient. This paper presents various lab synthesized catalysts, reaction conditions, and reactor technologies that achieved high ethylene yield at reasonable reaction temperatures, and evaluates their practicality in industrial application in comparison with steam-cracking plants. The most promising were found to be a nanoscale catalyst HZSM-5 with 99.7% ethylene selectivity at 240 °C and 630 h lifespan, using a microreactor technology with mechanical vapor recompression, and algae-produced ethanol to make ethylene.

  10. Microfluidic Separation of Ethylene and Ethane Using Frustrated Lewis Pairs.

    Science.gov (United States)

    Voicu, Dan; Stephan, Douglas W; Kumacheva, Eugenia

    2015-12-21

    Separation of gaseous olefins and paraffins is one of the most important separation processes in the industry. Development of new cost-effective technologies aims at reducing the high energy consumption during the separation process. Here, we took advantage of the reaction of frustrated Lewis pairs (FLPs) with ethylene to achieve reactive extraction of ethylene from ethylene-ethane mixtures. The extraction was studied using a microfluidic platform, which enabled a rapid, high-throughput assessment of reaction conditions to optimize gas separation efficiency. A separation factor of 7.3 was achieved for ethylene from a 1:1 volume ratio mixture of ethylene and ethane, which corresponded to an extracted ethylene purity of 88 %. The results obtained in the microfluidic studies were validated using infrared spectroscopy. This work paves the way for further development of the FLPs and optimization of reaction conditions, thereby maximizing the separation efficiency of olefins from their mixtures with paraffins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. cobalt (ii), nickel (ii)

    African Journals Online (AJOL)

    DR. AMINU

    Department of Chemistry Bayero University, P. M. B. 3011, Kano, Nigeria. E-mail: hnuhu2000@yahoo.com. ABSTRACT. The manganese (II), cobalt (II), nickel (II) and .... water and common organic solvents, but are readily soluble in acetone. The molar conductance measurement [Table 3] of the complex compounds in.

  12. Endogenous Ethylene Concentration Is Not a Major Determinant of Fruit Abscission in Heat-Stressed Cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Ullah Najeeb

    2017-09-01

    Full Text Available We investigated the role of ethylene in the response of cotton to high temperature using cotton genotypes with genetically interrupted ethylene metabolism. In the first experiment, Sicot 71BRF and 5B (a lintless variant with compromised ethylene metabolism were exposed to 45°C, either by instantaneous heat shock or by ramping temperatures by 3°C daily for 1 week. One day prior to the start of heat treatment, half the plants were sprayed with 0.8 mM of the ethylene synthesis inhibitor, aminoethoxyvinylglycine (AVG. In a subsequent experiment, Sicot 71BRF and a putatively heat-tolerant line, CIM 448, were exposed to 36 or 45°C for 1 week, and half the plants were sprayed with 20 μM of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid, (ACC. High temperature exposure of plants in both experiments was performed at the peak reproductive phase (65–68 days after sowing. Elevated temperature (heat shock or ramping to 45°C significantly reduced production and retention of fruits in all cotton lines used in this study. At the termination of heat treatment, cotton plants exposed to 45°C had at least 50% fewer fruits than plants under optimum temperature in all three genotypes, while plants at 36°C remained unaffected. Heat-stressed plants continued producing new squares (fruiting buds after termination of heat stress but these squares did not turn into cotton bolls due to pollen infertility. In vitro inhibition of pollen germination by high temperatures supported this observation. Leaf photosynthesis (Pn of heat-stressed plants (45°C measured at the end of heat treatments remained significantly inhibited, despite an increased leaf stomatal conductance (gs, suggesting that high temperature impairs Pn independently of stomatal behavior. Metabolic injury was supported by high relative cellular injury and low photosystem II yield of the heat-stressed plants, indicating that high temperature impaired photosynthetic electron transport. Both

  13. Radioimmunoassay of polypeptide hormones and enzymes

    International Nuclear Information System (INIS)

    Felber, J.P.

    1974-01-01

    General principles of radioimmunoassay are reviewed. Detailed procedures are reviewed for the following hormones: insulin, pituitary hormones, gonadotropins, parathyroid hormone, ACTH, glucagon, gastrin, and peptide hormones. Radioimmunoassay of enzymes is also discussed. (U.S.)

  14. Prophylactic effect of coconut water (Cocos nucifera L.) on ethylene glycol induced nephrocalcinosis in male wistar rat.

    Science.gov (United States)

    Gandhi, M; Aggarwal, M; Puri, S; Singla, S K

    2013-01-01

    Many medicinal plants have been employed during ages to treat urinary stones though the rationale behind their use is not well established. Thus, the present study was proposed to evaluate the effect of coconut water as a prophylactic agent in experimentally induced nephrolithiasis in a rat model. The male Wistar rats were divided randomly into three groups. Animals of group I (control) were fed standard rat diet. In group II, the animals were administrated 0.75% ethylene glycol in drinking water for the induction of nephrolithiasis. Group III animals were administrated coconut water in addition to ethylene glycol. All the treatments were continued for a total duration of seven weeks. Treatment with coconut water inhibited crystal deposition in renal tissue as well as reduced the number of crystals in urine. Furthermore, coconut water also protected against impaired renal function and development of oxidative stress in the kidneys. The results indicate that coconut water could be a potential candidate for phytotherapy against urolithiasis.

  15. Early histological, hormonal, and molecular changes during pineapple (Ananas comosus (L.) Merrill) artificial flowering induction.

    Science.gov (United States)

    Espinosa, Maita Eulalia Ávila; Moreira, Rafael Oliveira; Lima, André Almeida; Ságio, Solange Aparecida; Barreto, Horllys Gomes; Luiz, Sara Lazara Pérez; Abreu, Carlos Eduardo Aragón; Yanes-Paz, Ermis; Ruíz, Yanelis Capdesuñer; González-Olmedo, Justo Lorenzo; Chalfun-Júnior, Antonio

    2017-02-01

    Natural flowering can cause serious scheduling problems in the pineapple (Ananas comosus) industry and increase harvest costs. Pineapple flowering is thought to be triggered by increased ethylene levels and artificial forcing of pineapple flowering is a common practice to promote flowering synchronisation. However, little is known about the early hormonal and molecular changes of pineapple flowering induction and development. Here, we aimed to analyse the molecular, hormonal, and histological changes during artificial pineapple flowering by Ethrel ® 48 treatment. Histological analyses of the shoot apical meristem, leaf gibberellic acid (GA 3 ), and ethylene quantification were carried out during the first 72h after Ethrel ® 48 treatment. Expression profiles from ethylene biosynthesis (AcACS2 and AcACO1), gibberellin metabolism (AcGA2-ox1 and AcDELLA1), and flower development (FT-like gene (AcFT), LFY-like gene (AcLFY), and a PISTILLATA-like gene (AcPI)) genes were analysed during the first 24h after Ethrel ® 48 treatment. Differentiation processes of the shoot apical meristem into flower buds were already present in the first 72h after Ethrel ® 48 treatment. Ethrel ® 48 lead to a reduction in GA 3 levels, probably triggered by elevated ethylene levels and the positive regulation AcGA2-ox1. AcLFY activation upon Ethrel ® 48 may also have contributed to the reduction of GA 3 levels and, along with the up-regulation of AcPI, are probably associated with the flower induction activation. AcFT and AcDELLA1 do not seem to be regulated by GA 3 and ethylene. Decreased GA 3 and increased ethylene levels suggest an accumulation of AcDELLA1, which may display an important role in pineapple flowering induction. Thus, this study shows that molecular, hormonal, and histological changes are present right after Ethrel ® 48 treatment, providing new insights into how pineapple flowering occurs under natural conditions. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. The chloroindole auxins of pea, strong plant growth hormones or endogenous herbicides

    International Nuclear Information System (INIS)

    Engvild, K.C.

    1994-02-01

    In this work the three theses below are discussed: 1) Identification and quantitative determination of the very strong plant hormone, the auxin 4-chloroindole-3-acetic acid methyl ester, in immature seeds of Pisum, Vicia, Lathyrus, and Lens spp. by incorporation of radioactive 36 Cl, thin layer chromatography, autoradiography, colour reactions, and gas chromatography/mass spectrometry. 2) The strong biological activity of 4-chloroindole-3-acetic acid and its analogues and its ability to induce strong, almost irreversible, ethylene evolution. 3) The possible role of chloroindole auxin in plants, particularly if it might be the hypothetical death hormone, secreted from developing seeds, which induces senescence and kills the mother plant at maturity; if plants generally have several auxin types, growth promoters and endogenous herbicides; and if other chlorine-containing plant hormones occur in developing seeds of other crop species. (au) (7 tabs., 8 ills., 144 refs.)

  17. Seed priming with hormones does not alleviate induced oxidative stress in maize seedlings subjected to salt stress

    Directory of Open Access Journals (Sweden)

    Rogério Falleiros Carvalho

    2011-10-01

    Full Text Available Seed priming with hormones has been an efficient method for increasing seed vigor as well as seedling growth under stressful conditions. These responses have in the past been attributed to the activation of antioxidant systems in a range of crops. The results described in this work show that hormonal priming with methyl jasmonate, salicylic acid or CEPA (chloroethylphosphonic acid, an ethylene (ET releaser, does not induce the antioxidant activity of superoxide dismutase, catalase, ascorbate peroxidase or glutathione reductase in maize seedlings subjected to salt stress. The enhanced biomass of maize seedlings under salt stress that was observed only from ET priming indicates that the stress tolerance in maize from ethylene priming is a fundamental process for stress tolerance acquisition, which is explained, however, by other biochemical mechanisms but not by changes in the antioxidant system.

  18. Drinking water guideline for ethylene thiourea, a metabolite of ethylene bisdithiocarbamate fungicides

    International Nuclear Information System (INIS)

    Frakes, R.A.

    1988-01-01

    The ethylene bisdithiocarbamate fungicides are the most heavily used pesticides in Maine. Ethylene thiourea (ETU) is a metabolite and environmental decomposition product of these compounds, is highly water soluble, and has been detected in groundwater in the state. ETU is a recognized animal carcinogen and teratogen. When administered in the diet, ETU produced a significant increase in thyroid carcinomas in rats in two studies. Two strains of mice fed ETU in the diet developed an increased incidence of hepatomas and a slight increase in lymphomas. Application of the linearized multistage model resulted in virtually safe doses (10(-5) lifetime cancer risk) of 0.25 to 1.6 micrograms/kg/day. The major teratologic effect has been the development of hydrocephalus and other CNS defects postnatally, resulting in a high mortality rate among the offspring. The NOEL for this effect was 5 mg/kg in a single oral dose. Retarded parietal ossification was observed at 5 mg/kg/day. Serious nononcogenic thyroid effects, such as goiter, decreased 131I uptake, and reduced thyroxine production, have been observed. Thyroid hyperplasia was produced at doses as low as 0.3 mg/kg/day ETU ingested in the diet. Based on protection against thyroid and/or liver tumors and alteration in thyroid function, the recommended Drinking Water Guideline for ETU is determined to be 3 ppb. This will also provide protection against developmental effects, since these occur at doses that are one to two orders of magnitude higher. 37 references

  19. Sex Hormones and Tendon

    DEFF Research Database (Denmark)

    Hansen, Mette; Kjaer, Michael

    2016-01-01

    The risk of overuse and traumatic tendon and ligament injuries differ between women and men. Part of this gender difference in injury risk is probably explained by sex hormonal differences which are specifically distinct during the sexual maturation in the teenage years and during young adulthood....... The effects of the separate sex hormones are not fully elucidated. However, in women, the presence of estrogen in contrast to very low estrogen levels may be beneficial during regular loading of the tissue or during recovering after an injury, as estrogen can enhance tendon collagen synthesis rate. Yet...... has also been linked to a reduced responsiveness to relaxin. The present chapter will focus on sex difference in tendon injury risk, tendon morphology and tendon collagen turnover, but also on the specific effects of estrogen and androgens....

  20. The effect of anesthesia type on stress hormone response ...

    African Journals Online (AJOL)

    Aim: The aim of this study was to investigate the effect of different types of anesthesia on stress hormones. Materials and Methods: The study was included 60 ASAI-II cases scheduled for major lower extremity surgery. The cases were randomized into 2 groups: The EA group was administered epidural anesthesia and the ...

  1. Polymorphism of growth hormone gene and its association with ...

    African Journals Online (AJOL)

    sunny t

    2016-04-06

    Apr 6, 2016 ... recorded to be more frequent (83.3, 92.86 and 90%) than pattern II (16.7, 7.14 and 10%) in Barki,. Rahmani ... Key words: Sheep, wool, growth hormone (GH) gene, polymorphism, single strand conformation polymorphism. (SSCP). ... electrophoresis and chemical and ribonuclease cleavage,. SSCP has ...

  2. Gut hormones and gastric bypass

    DEFF Research Database (Denmark)

    Holst, Jens J.

    2016-01-01

    Gut hormone secretion in response to nutrient ingestion appears to depend on membrane proteins expressed by the enteroendocrine cells. These include transporters (glucose and amino acid transporters), and, in this case, hormone secretion depends on metabolic and electrophysiological events elicited...... that determines hormone responses. It follows that operations that change intestinal exposure to and absorption of nutrients, such as gastric bypass operations, also change hormone secretion. This results in exaggerated increases in the secretion of particularly the distal small intestinal hormones, GLP-1, GLP-2......, oxyntomodulin, neurotensin and peptide YY (PYY). However, some proximal hormones also show changes probably reflecting that the distribution of these hormones is not restricted to the bypassed segments of the gut. Thus, cholecystokinin responses are increased, whereas gastric inhibitory polypeptide responses...

  3. A natural frameshift mutation in Campanula EIL2 correlates with ethylene insensitivity in flowers

    DEFF Research Database (Denmark)

    Jensen, Line; Hegelund, Josefine Nymark; Olsen, Andreas

    2016-01-01

    BACKGROUND: The phytohormone ethylene plays a central role in development and senescence of climacteric flowers. In ornamental plant production, ethylene sensitive plants are usually protected against negative effects of ethylene by application of chemical inhibitors. In Campanula, flowers...... are sensitive to even minute concentrations of ethylene. RESULTS: Monitoring flower longevity in three Campanula species revealed C. portenschlagiana (Cp) as ethylene sensitive, C. formanekiana (Cf) with intermediate sensitivity and C. medium (Cm) as ethylene insensitive. We identified key elements in ethylene...... signal transduction, specifically in Ethylene Response Sensor 2 (ERS2), Constitutive Triple Response 1 (CTR1) and Ethylene Insensitive 3- Like 1 and 2 (EIL1 and EIL2) homologous. Transcripts of ERS2, CTR1 and EIL1 were constitutively expressed in all species both throughout flower development...

  4. [Hormonal homeostasis and intraocular pressure in chronic emotional stress caused by influences acting on the amygdala].

    Science.gov (United States)

    Isakova, L S; Danilov, G E; Egorkina, S B; Butolin, E G

    1989-01-01

    Changes in intraocular pressure, eye hydrodynamics and the amount of hypophyseal, thyroid, adrenal and pancreatic hormones were studied during continuous stimulation of amygdaloid complex or after administration of angiotensin II into the structure in rabbits. The effects involved changes in hormonal homeostasis and elevation of intraocular pressure due to a hypersecretion of intraocular fluid. The administration of angiotensin II during the amygdala stimulation enhanced the changes.

  5. Evaluation of erythropoietin hormone in chronic obstructive pulmonary disease patients during exacerbation and after remission

    Directory of Open Access Journals (Sweden)

    Ahmed G. El Gazzar

    2017-01-01

    Conclusion: EPO hormone level was significantly higher in grade (II, III than grade (I, IV COPD patients (p = 0.005, and also COPD with anemia was higher in stage (II, III than stage (I, IV, EPO hormone level significantly higher in anemic than non anemic COPD patients and was significantly higher (p = 0.005 during remission than during exacerbation.

  6. Thyroid hormone radioimmunoassay

    International Nuclear Information System (INIS)

    Rodriguez, S.; Richmond, M.; Quesada, S.; Lahaman, S.; Ramirez, A.; Herrera, J.F.

    1988-01-01

    The International Atomic Energy Agency (AIEA) is carrying out the ARCAL VIII Program 'Thiroid Hormone Readioimmunoassay'. The Immunoassay Laboratory of INCIENSA is in charge of this program, with the participation of four National Hospital System laboratories, which carried out Thyroxine (T4). Triodothyroxine (T3) and Thyroid Stimulating Hormone (TSH) assays with NETRIA Reagents (North East Thames Region Immunoassay Unit). The variability was shown to be between 9-20 per cent for T4, 12-22 per cent for TSH and 22-36 per cent for T3. The study also evaluated the quality of a tracer (T3-l125 and T4 l125) produced at INCIENSA. In this case the intrassay variability was 8,4 per cent for T3 and 6,8 per cent for T4 in 32 determinations evaluated during 6 months. It was concluded that the T4 and TSH tests but not the T3 test are valid and reproducible when NETRIA Ragents are used. The tracer made at INCIENSA can be used up to 6 weeks after the radioiodination with l125. A successful thyroid-related hormones quality control was defined in Costa Rica by taking advantage of the support of a prestigious international agency, the IAEA. (author). 13 refs, 4 figs

  7. Ethylene Receptor 1 (ETR1) Is Sufficient and Has the Predominant Role in Mediating Inhibition of Ethylene Responses by Silver in Arabidopsis thaliana*

    Science.gov (United States)

    McDaniel, Brittany K.; Binder, Brad M.

    2012-01-01

    Ethylene influences many processes in Arabidopsis thaliana through the action of five receptor isoforms. All five isoforms use copper as a cofactor for binding ethylene. Previous research showed that silver can substitute for copper as a cofactor for ethylene binding activity in the ETR1 ethylene receptor yet also inhibit ethylene responses in plants. End-point and rapid kinetic analyses of dark-grown seedling growth revealed that the effects of silver are mostly dependent upon ETR1, and ETR1 alone is sufficient for the effects of silver. Ethylene responses in etr1-6 etr2-3 ein4-4 triple mutants were not blocked by silver. Transformation of these triple mutants with cDNA for each receptor isoform under the promoter control of ETR1 revealed that the cETR1 transgene completely rescued responses to silver while the cETR2 transgene failed to rescue these responses. The other three isoforms partially rescued responses to silver. Ethylene binding assays on the binding domains of the five receptor isoforms expressed in yeast showed that silver supports ethylene binding to ETR1 and ERS1 but not the other isoforms. Thus, silver may have an effect on ethylene signaling outside of the ethylene binding pocket of the receptors. Ethylene binding to ETR1 with silver was ∼30% of binding with copper. However, alterations in the Kd for ethylene binding to ETR1 and the half-time of ethylene dissociation from ETR1 do not underlie this lower binding. Thus, it is likely that the lower ethylene binding activity of ETR1 with silver is due to fewer ethylene binding sites generated with silver versus copper. PMID:22692214

  8. Growth hormone insensitivity: Mexican case report

    Directory of Open Access Journals (Sweden)

    I Castilla-Cortazar

    2017-11-01

    Full Text Available Herein, we present a 14-year-old patient with short stature (134 cm referred from Paediatrics to our department for complementary evaluation since growth hormone (GH treatment failed to show any improvement. He was born premature and small for gestational age. Genital examination classified the patient as Tanner I–II with small penis and testicular size for his age. Biochemical analyses revealed normal GH levels with low serum insulin-like growth factor-1 (IGF-1. Molecular diagnosis confirmed several mutations in IGF1R and IGFALS, and so he was diagnosed with Laron Syndrome or GH insensibility and treated with IGF-1 substitutive therapy.

  9. Ethylene-Related Gene Expression Networks in Wood Formation

    Directory of Open Access Journals (Sweden)

    Carolin Seyfferth

    2018-03-01

    Full Text Available Thickening of tree stems is the result of secondary growth, accomplished by the meristematic activity of the vascular cambium. Secondary growth of the stem entails developmental cascades resulting in the formation of secondary phloem outwards and secondary xylem (i.e., wood inwards of the stem. Signaling and transcriptional reprogramming by the phytohormone ethylene modifies cambial growth and cell differentiation, but the molecular link between ethylene and secondary growth remains unknown. We addressed this shortcoming by analyzing expression profiles and co-expression networks of ethylene pathway genes using the AspWood transcriptome database which covers all stages of secondary growth in aspen (Populus tremula stems. ACC synthase expression suggests that the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC is synthesized during xylem expansion and xylem cell maturation. Ethylene-mediated transcriptional reprogramming occurs during all stages of secondary growth, as deduced from AspWood expression profiles of ethylene-responsive genes. A network centrality analysis of the AspWood dataset identified EIN3D and 11 ERFs as hubs. No overlap was found between the co-expressed genes of the EIN3 and ERF hubs, suggesting target diversification and hence independent roles for these transcription factor families during normal wood formation. The EIN3D hub was part of a large co-expression gene module, which contained 16 transcription factors, among them several new candidates that have not been earlier connected to wood formation and a VND-INTERACTING 2 (VNI2 homolog. We experimentally demonstrated Populus EIN3D function in ethylene signaling in Arabidopsis thaliana. The ERF hubs ERF118 and ERF119 were connected on the basis of their expression pattern and gene co-expression module composition to xylem cell expansion and secondary cell wall formation, respectively. We hereby establish data resources for ethylene-responsive genes and

  10. Theoretical investigation of the reaction of Mn+ with ethylene oxide.

    Science.gov (United States)

    Li, Yuanyuan; Guo, Wenyue; Zhao, Lianming; Liu, Zhaochun; Lu, Xiaoqing; Shan, Honghong

    2012-01-12

    The potential energy surfaces of Mn(+) reaction with ethylene oxide in both the septet and quintet states are investigated at the B3LYP/DZVP level of theory. The reaction paths leading to the products of MnO(+), MnO, MnCH(2)(+), MnCH(3), and MnH(+) are described in detail. Two types of encounter complexes of Mn(+) with ethylene oxide are formed because of attachments of the metal at different sites of ethylene oxide, i.e., the O atom and the CC bond. Mn(+) would insert into a C-O bond or the C-C bond of ethylene oxide to form two different intermediates prior to forming various products. MnO(+)/MnO and MnH(+) are formed in the C-O activation mechanism, while both C-O and C-C activations account for the MnCH(2)(+)/MnCH(3) formation. Products MnO(+), MnCH(2)(+), and MnH(+) could be formed adiabatically on the quintet surface, while formation of MnO and MnCH(3) is endothermic on the PESs with both spins. In agreement with the experimental observations, the excited state a(5)D is calculated to be more reactive than the ground state a(7)S. This theoretical work sheds new light on the experimental observations and provides fundamental understanding of the reaction mechanism of ethylene oxide with transition metal cations.

  11. Novel and existing data for a future physiological toxicokinetic model of ethylene and its metabolite ethylene oxide in mouse, rat, and human.

    Science.gov (United States)

    Filser, Johannes Georg; Artati, Anna; Li, Qiang; Pütz, Christian; Semder, Brigitte; Klein, Dominik; Kessler, Winfried

    2015-11-05

    The olefin ethylene is a ubiquitously found gas. It originates predominantly from plants, combustion processes and industrial sources. In mammals, inhaled ethylene is metabolized by cytochrome P450-dependent monooxygenases, particularly by cytochrome P450 2E1, to ethylene oxide, an epoxide that directly alkylates proteins and DNA. Ethylene oxide was mutagenic in vitro and in vivo in insects and mammals and carcinogenic in rats and mice. A physiological toxicokinetic model is a most useful tool for estimating the ethylene oxide burden in ethylene-exposed rodents and humans. The only published physiological toxicokinetic model for ethylene and metabolically produced ethylene oxide is discussed. Additionally, existing data required for the development of a future model and for testing its predictive accuracy are reviewed and extended by new gas uptake studies with ethylene and ethylene oxide in B6C3F1 mice and with ethylene in F344 rats. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  12. Hypoxia and bicarbonate could limit the expression of iron acquisition genes in Strategy I plants by affecting ethylene synthesis and signaling in different ways.

    Science.gov (United States)

    García, María J; García-Mateo, María J; Lucena, Carlos; Romera, Francisco J; Rojas, Carmen L; Alcántara, Esteban; Pérez-Vicente, Rafael

    2014-01-01

    In a previous work, it was shown that bicarbonate (one of the most important factors causing Fe chlorosis in Strategy I plants) can limit the expression of several genes involved in Fe acquisition. Hypoxia is considered another important factor causing Fe chlorosis, mainly on calcareous soils. However, to date it is not known whether hypoxia aggravates Fe chlorosis by affecting bicarbonate concentration or by specific negative effects on Fe acquisition. Results found in this work show that hypoxia, generated by eliminating the aeration of the nutrient solution, can limit the expression of several Fe acquisition genes in Fe-deficient Arabidopsis, cucumber and pea plants, like the genes for ferric reductases AtFRO2, PsFRO1 and CsFRO1; iron transporters AtIRT1, PsRIT1 and CsIRT1; H(+) -ATPase CsHA1; and transcription factors AtFIT, AtbHLH38, and AtbHLH39. Interestingly, the limitation of the expression of Fe-acquisition genes by hypoxia did not occur in the Arabidopsis ethylene constitutive mutant ctr1, which suggests that the negative effect of hypoxia is related to ethylene, an hormone involved in the upregulation of Fe acquisition genes. As for hypoxia, results obtained by applying bicarbonate to the nutrient solution suggests that ethylene is also involved in its negative effect, since ACC (1-aminocyclopropane-1-carboxylic acid; ethylene precursor) partially reversed the negative effect of bicarbonate on the expression of Fe acquisition genes. Taken together, the results obtained show that hypoxia and bicarbonate could induce Fe chlorosis by limiting the expression of Fe acquisition genes, probably because each factor negatively affects different steps of ethylene synthesis and/or signaling. © 2013 Scandinavian Plant Physiology Society.

  13. Ethylene biosynthesis by 1-aminocyclopropane-1-carboxylic acid oxidase: a DFT study.

    Science.gov (United States)

    Bassan, Arianna; Borowski, Tomasz; Schofield, Christopher J; Siegbahn, Per E M

    2006-11-24

    The reaction catalyzed by the plant enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) was investigated by using hybrid density functional theory. ACCO belongs to the non-heme iron(II) enzyme superfamily and carries out the bicarbonate-dependent two-electron oxidation of its substrate ACC (1-aminocyclopropane-1-carboxylic acid) concomitant with the reduction of dioxygen and oxidation of a reducing agent probably ascorbate. The reaction gives ethylene, CO(2), cyanide and two water molecules. A model including the mononuclear iron complex with ACC in the first coordination sphere was used to study the details of O-O bond cleavage and cyclopropane ring opening. Calculations imply that this unusual and complex reaction is triggered by a hydrogen atom abstraction step generating a radical on the amino nitrogen of ACC. Subsequently, cyclopropane ring opening followed by O-O bond heterolysis leads to a very reactive iron(IV)-oxo intermediate, which decomposes to ethylene and cyanoformate with very low energy barriers. The reaction is assisted by bicarbonate located in the second coordination sphere of the metal.

  14. Ethylene dibromide: toxicology and risk assessment.

    Science.gov (United States)

    Alexeeff, G V; Kilgore, W W; Li, M Y

    1990-01-01

    Since the 1920s ethylene dibromide's (EDB's) primary use has been as a scavenger of lead compounds in gasoline. Gasoline evaporation contributed to EDB emissions into the environment. In 1973, the United States Environmental Protection Agency (EPA) issued regulations to reduce the use of leaded gasoline and this has resulted in lower EDB usage and emissions. In addition, EDB has been used extensively as a fumigant since 1948. Its volatility and versatility, based on chemical and biocidal properties, led to its use as a soil sterilant, as a spot fumigant of grain milling machinery, and as a control agent in grain, fruit and vegetable infestations. In 1977 the EPA began a review of EDB's pesticidal uses which eventually led to its cancellation for most agricultural applications. Disposal of EDB and contamination of water supplies remain major environmental concerns. EDB can be absorbed via the dermal, oral and inhalation routes. It appears to be metabolized in vivo by an oxidative pathway (cytochrome P-450) and a conjugation pathway (glutathione S-transferase). The metabolites play an important role in exerting its toxicity. Few human poisonings have been reported from either acute or chronic exposure. However, EDB is irritating to the skin and eyes. Limited information indicates that EDB can damage the liver and kidneys following extensive or prolonged exposure. The genotoxicity of EDB has been clearly demonstrated. It binds to DNA in vivo and in vitro, and a DNA adduct has been identified. EDB has been shown to be mutagenic in numerous bacterial assays, in fungi, in plants, in insects, and in mammalian cell culture. Some evidence indicates that EDB can cause sister chromatid exchange and chromosomal aberrations. EDB is a reproductive toxin, but it does not appear to be teratogenic. It has been shown to affect spermatogenesis in rats, bulls and rams and to affect fertility in fowl. Human studies indicate that EDB exposure may harm sperm and decrease fertility. The

  15. A physiologically based toxicokinetic model for inhaled ethylene and ethylene oxide in mouse, rat, and human.

    Science.gov (United States)

    Filser, Johannes Georg; Klein, Dominik

    2018-04-01

    Ethylene (ET) is the largest volume organic chemical. Mammals metabolize the olefin to ethylene oxide (EO), another important industrial chemical. The epoxide alkylates macromolecules and has mutagenic and carcinogenic properties. In order to estimate the EO burden in mice, rats, and humans resulting from inhalation exposure to gaseous ET or EO, a physiological toxicokinetic model was developed. It consists of the compartments lung, richly perfused tissues, kidneys, muscle, fat, arterial blood, venous blood, and liver containing the sub-compartment endoplasmic reticulum. Modeled ET metabolism is mediated by hepatic cytochrome P450 2E1, EO metabolism by hepatic microsomal epoxide hydrolase or cytosolic glutathione S-transferase in various tissues. EO is also spontaneously hydrolyzed or conjugated with glutathione. The model was validated on experimental data collected in mice, rats, and humans. Modeled were uptake by inhalation, wash-in-wash-out effect in the upper respiratory airways, distribution into tissues and organs, elimination via exhalation and metabolism, and formation of 2-hydroxyethyl adducts with hemoglobin and DNA. Simulated concentration-time courses of ET or EO in inhaled (gas uptake studies) or exhaled air, and of EO in blood during exposures to ET or EO agreed excellently with measured data. Predicted levels of adducts with DNA and hemoglobin, induced by ET or EO, agreed with reported levels. Exposures to 10000 ppm ET were predicted to induce the same adduct levels as EO exposures to 3.95 (mice), 5.67 (rats), or 0.313 ppm (humans). The model is concluded to be applicable for assessing health risks from inhalation exposure to ET or EO. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. Involvement of ethylene in lesion development and systemic acquired resistance in tobacco during the hypersensitive reaction to tobacco mosaic virus

    NARCIS (Netherlands)

    Knoester, M.; Linthorst, H.J.M.; Bol, J.F.; Loon, L.C. van

    2001-01-01

    Different approaches were taken to investigate the significance of ethylene in lesion development and systemic acquired resistance (SAR) in tobacco (Nicotiana tabacum) reacting hypersensitively to tobacco mosaic virus (TMV). Gaseous ethylene, the ethylene precursor 1-aminocyclopropane-1-carboxylic

  17. The oxidation of copper catalysts during ethylene epoxidation.

    Science.gov (United States)

    Greiner, M T; Jones, T E; Johnson, B E; Rocha, T C R; Wang, Z J; Armbrüster, M; Willinger, M; Knop-Gericke, A; Schlögl, R

    2015-10-14

    The oxidation of copper catalysts during ethylene epoxidation was characterized using in situ photoemission spectroscopy and electron microscopy. Gas chromatography, proton-transfer reaction mass spectrometry and electron-ionization mass spectrometry were used to characterize the catalytic properties of the oxidized copper. We find that copper corrodes during epoxidation in a 1 : 1 mixture of oxygen and ethylene. The catalyst corrosion passes through several stages, beginning with the formation of an O-terminated surface, followed by the formation of Cu2O scale and eventually a CuO scale. The oxidized catalyst exhibits measurable activity for ethylene epoxidation, but with a low selectivity of 8/2500) Cu2O forms and eventually covers the surface.

  18. A nonpeptidyl growth hormone secretagogue.

    Science.gov (United States)

    Smith, R G; Cheng, K; Schoen, W R; Pong, S S; Hickey, G; Jacks, T; Butler, B; Chan, W W; Chaung, L Y; Judith, F

    1993-06-11

    A nonpeptidyl secretagogue for growth hormone of the structure 3-amino-3-methyl-N-(2,3,4,5-tetrahydro-2-oxo-1-([2'-(1H-tetrazol-5 -yl) (1,1'-biphenyl)-4-yl]methyl)-1H-1-benzazepin-3(R)-yl)-butanamid e (L-692,429) has been identified. L-692,429 synergizes with the natural growth hormone secretagogue growth hormone-releasing hormone and acts through an alternative signal transduction pathway. The mechanism of action of L-692,429 and studies with peptidyl and nonpeptidyl antagonists suggest that this molecule is a mimic of the growth hormone-releasing hexapeptide His-D-Trp-Ala-Trp-D-Phe-Lys-NH2 (GHRP-6). L-692,429 is an example of a nonpeptidyl specific secretagogue for growth hormone.

  19. Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis.

    Science.gov (United States)

    Ueda, Hiroaki; Kusaba, Makoto

    2015-09-01

    Leaf senescence is not a passive degenerative process; it represents a process of nutrient relocation, in which materials are salvaged for growth at a later stage or to produce the next generation. Leaf senescence is regulated by various factors, such as darkness, stress, aging, and phytohormones. Strigolactone is a recently identified phytohormone, and it has multiple functions in plant development, including repression of branching. Although strigolactone is implicated in the regulation of leaf senescence, little is known about its molecular mechanism of action. In this study, strigolactone biosynthesis mutant strains of Arabidopsis (Arabidopsis thaliana) showed a delayed senescence phenotype during dark incubation. The strigolactone biosynthesis genes MORE AXIALLY GROWTH3 (MAX3) and MAX4 were drastically induced during dark incubation and treatment with the senescence-promoting phytohormone ethylene, suggesting that strigolactone is synthesized in the leaf during leaf senescence. This hypothesis was confirmed by a grafting experiment using max4 as the stock and Columbia-0 as the scion, in which the leaves from the Columbia-0 scion senesced earlier than max4 stock leaves. Dark incubation induced the synthesis of ethylene independent of strigolactone. Strigolactone biosynthesis mutants showed a delayed senescence phenotype during ethylene treatment in the light. Furthermore, leaf senescence was strongly accelerated by the application of strigolactone in the presence of ethylene and not by strigolactone alone. These observations suggest that strigolactone promotes leaf senescence by enhancing the action of ethylene. Thus, dark-induced senescence is regulated by a two-step mechanism: induction of ethylene synthesis and consequent induction of strigolactone synthesis in the leaf. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. Investigations on the hormone-balance of healthy and damaged conifers in the northern Black Forest

    Energy Technology Data Exchange (ETDEWEB)

    Frenzel, B.; Christmann, A.; Horsch, F.; Filby, W.G.; Fund, N.; Gross, S.; Hanisch, B.; Kilz, E.; Seidel, A. (comps.)

    1987-04-01

    According to our working hypothesis a virus infection could be responsible for an important part of the forest decline, causing a premature, untypical senescence of the affected trees which is due to a disturbed hormone balance. The previous results show that virus-like particles (VLP) are very widely distributed in coniferous trees of southern Central Europe. Moreover, distinct disturbances occur in the balance of the so far examined hormones - ethylene and abscisic acid (AbA) - in the case of disease or a strong SO/sub 2/-impact on the site. They happen on the background of normal changes in the hormone contents which depend on season, age (age of tree, branch and needle) or exposition and which differ from each other on sites with a strong SO/sub 2/-impact and on those with a low or missing one. They show that SO/sub 2/-damage and forest decline in the examined area are two different things. The occurrence of VLP seems to disturb the ethylene balance considerably.

  1. Photooxidation of ethylene over Cu-modified and unmodified silica

    OpenAIRE

    Ichihashi, Yuichi; Matsumura, Yasuyuki

    2003-01-01

    Silica catalyzes photooxidation of ethylene to carbon dioxide and modification of copper on silica results in the lower reaction rate and partial production of ethylene oxide. The reaction does not proceed by the light irradiation through a color filter (λ>280 nm). ESR measurement indicates that radical oxygen species assignable T-shape Si − O3− can be produced on silica by UV irradiation at 77 K. The same species are also found on silica modified with copper by UV irradiation whi...

  2. Chemical etching of fission tracks in ethylene-tetrafluoroethylene copolymer

    International Nuclear Information System (INIS)

    Komaki, Y.; Tsujimura, S.; Seguchi, T.

    1979-01-01

    The chemical etching of fission tracks in ethylene-tetrafluoroethylene copolymer was studied. Etched holes 3000 to 4000 A in diameter were recognized by electron microscopy for a film bombarded by fission fragments in oxygen and etched in a 12N sodium hydroxide solution at 125 0 C. The radial etching rate at 125 0 C was 6 to 8 A/hr, which is less than 17 A/hr for polyvinylidene fluoride in the same sodium hydroxide concentration at 85 0 C. The smaller rate is a reflection of the larger chemical resistivity of ethylene-tetrafluoroethylene copolymer than polyvinylidene fluoride. (author)

  3. Heterogeneous phase gamma irradiation of ethylene-hydrogen mixtures

    International Nuclear Information System (INIS)

    Molinari, M.A.; Lires, O.A.; Videla, G.J.

    1975-11-01

    Experiments of radioinduced ethylene hydrogenation were performed. The G yield of volatile saturated hydrocarbons was 0,49 for silica-gel with simultaneous irradiation and 0,09-0,05 for the other solids (silica-alumina and molecular sieve 5A). The highest yield corresponds to 4,5% of saturated products in relation to initial ammount of ethylene (silica-gel). Polymerization was the most important reaction, with yields as high as 95%. Changes in color and appearance of silica-aluminia in contact with moisture was observed, after the irradiation process. (author) [es

  4. Gas-phase nitrosation of ethylene and related events in the C2H4NO+ landscape.

    Science.gov (United States)

    Gerbaux, Pascal; Dechamps, Noemie; Flammang, Robert; Nam, Pham Cam; Nguyen, Minh Tho; Djazi, Fayçal; Berruyer, Florence; Bouchoux, Guy

    2008-06-19

    The C2H4NO(+) system has been examined by means of quantum chemical calculations using the G2 and G3B3 approaches and tandem mass spectrometry experiments. Theoretical investigation of the C2H4NO(+) potential-energy surface includes 19 stable C2H4NO(+) structures and a large set of their possible interconnections. These computations provide insights for the understanding of the (i) addition of the nitrosonium cation NO(+) to the ethylene molecule, (ii) skeletal rearrangements evidenced in previous experimental studies on comparable systems, and (iii) experimental identification of new C2H4NO(+) structures. It is predicted from computation that gas-phase nitrosation of ethylene may produce C2H4(*)NO(+) adducts, the most stable structure of which is a pi-complex, 1, stabilized by ca. 65 kJ/mol with respect to its separated components. This complex was produced in the gas phase by a transnitrosation process involving as reactant a complex between water and NO(+) (H2O.NO(+)) and the ethylene molecule and fully characterized by collisional experiments. Among the other C 2H 4NO (+) structures predicted by theory to be protected against dissociation or isomerization by significant energy barriers, five were also experimentally identified. These finding include structures CH3CHNO(+) (5), CH 3CNOH (+) ( 8), CH3NHCO(+) (18), CH3NCOH(+) (19), and an ion/neutral complex CH2O...HCNH(+) (12).

  5. Thyroid Hormone, Cancer, and Apoptosis.

    Science.gov (United States)

    Lin, Hung-Yun; Chin, Yu-Tan; Yang, Yu-Chen S H; Lai, Husan-Yu; Wang-Peng, Jacqueline; Liu, Leory F; Tang, Heng-Yuan; Davis, Paul J

    2016-06-13

    Thyroid hormones play important roles in regulating normal metabolism, development, and growth. They also stimulate cancer cell proliferation. Their metabolic and developmental effects and growth effects in normal tissues are mediated primarily by nuclear hormone receptors. A cell surface receptor for the hormone on integrin [alpha]vβ3 is the initiation site for effects on tumor cells. Clinical hypothyroidism may retard cancer growth, and hyperthyroidism was recently linked to the prevalence of certain cancers. Local levels of thyroid hormones are controlled through activation and deactivation of iodothyronine deiodinases in different organs. The relative activities of different deiodinases that exist in tissues or organs also affect the progression and development of specific types of cancers. In this review, the effects of thyroid hormone on signaling pathways in breast, brain, liver, thyroid, and colon cancers are discussed. The importance of nuclear thyroid hormone receptor isoforms and of the hormone receptor on the extracellular domain of integrin [alpha]vβ3 as potential cancer risk factors and therapeutic targets are addressed. We analyze the intracellular signaling pathways activated by thyroid hormones in cancer progression in hyperthyroidism or at physiological concentrations in the euthyroid state. Determining how to utilize the deaminated thyroid hormone analog (tetrac), and its nanoparticulate derivative to reduce risks of cancer progression, enhance therapeutic outcomes, and prevent cancer recurrence is also deliberated. © 2016 American Physiological Society. Compr Physiol 6:1221-1237, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  6. Atomistic simulation of CO 2 solubility in poly(ethylene oxide) oligomers

    KAUST Repository

    Hong, Bingbing; Panagiotopoulos, Athanassios Z.

    2013-01-01

    We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide

  7. Membrane-based ethylene/ethane separation: The upper bound and beyond

    KAUST Repository

    Rungta, Meha; Zhang, Chen; Koros, William J.; Xu, Liren

    2013-01-01

    Ethylene/ethane separation via cryogenic distillation is extremely energy-intensive, and membrane separation may provide an attractive alternative. In this paper, ethylene/ethane separation performance using polymeric membranes is summarized

  8. Molecular Dynamics Simulations of Silica Nanoparticles Grafted with Poly(ethylene oxide) Oligomer Chains

    KAUST Repository

    Hong, Bingbing; Panagiotopoulos, Athanassios Z.

    2012-01-01

    A molecular model of silica nanoparticles grafted with poly(ethylene oxide) oligomers has been developed for predicting the transport properties of nanoparticle organic-hybrid materials (NOHMs). Ungrafted silica nanoparticles in a medium of poly(ethylene

  9. Crystallization analysis fractionation of poly(ethylene-co-styrene) produced by metallocene catalysts

    KAUST Repository

    Kamal, Muhammad Shahzad; Bahuleyan, Bijal Kottukkal; Sohail, Omer Bin; Emwas, Abdul-Hamid M.; Bercaw, John E.; Al-Harthi, Mamdouh Ahmed

    2013-01-01

    Ethylene homo polymer and ethylene-styrene copolymers were synthesized using Cp2ZrCl2 (1)/methyl aluminoxane (MAO) and rac-silylene-bis (indenyl) zirconium dichloride (2)/MAO catalyst systems by varying styrene concentration and reaction conditions

  10. Formation of carbonyl compounds in radiolysis of ethylene glycol in methanol

    International Nuclear Information System (INIS)

    Bezborodova, S.G.; Vetrov, V.S.; Kalyazin, E.P.; Korolev, V.M.; Salamatov, I.I.

    1977-01-01

    Radiolysis of diluted solutions of ethylene glycol has been investigated. It is shown that acetaldehyde, glycol aldehyde and formaldehyde are the main products of radiolysis of methanol solutions of ethylene glycol. Acetaldehyde and glycol aldehyde yields increase in radiolysis of methanol solutions of ethylene glycol with an increase of the original concentration of ethylene glycol and a temperature rise of radiolysis. Formaldehyde yields increase with the ethylene glycol concentration but decrease with a temperature rise (the formation of formaldehyde from methanol is taken into account). A mechanism of radiation-chemical transformations of ethylene glycol in methanol is explained. It is concluded that the main directions of ethylene glycol decomposition, detected in water solutions of ethylene glycol, are also realized in methanol solutions. However, a role of different directions of decomposition depends on the medium

  11. Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A.

    Science.gov (United States)

    Aguado, Sonia; Bergeret, Gérard; Daniel, Cecile; Farrusseng, David

    2012-09-12

    Absolute ethylene/ethane separation is achieved by ethane exclusion on silver-exchanged zeolite A adsorbent. This molecular sieving type separation is attributed to the pore size of the adsorbent, which falls between ethylene and ethane kinetic diameters.

  12. Degradation study of trichloroethylene and perchloric ethylene using high energy electron beam generated in industrial accelerator

    International Nuclear Information System (INIS)

    Silva, B.L.R.; Sampa, M.H.O.; Avolio, R.M.; Somessari, E.S.R.; Vieira, J.M.; Rela, P.R.

    1995-01-01

    The pollution of potable water with chlorinated hydrocarbons, mainly trichloroethylene (TCE) and perchloric ethylene (PCE), is seriously increasing the problem of contamination of water, specially in highly industrialized areas. Recent studies show that depuration by ionizing radiation has been considered a possible alternative to the control of water pollution, wherein the process by ionizing radiation converts TCE and PCE into approximately 100% carbon dioxide ions. Water samples containing TCE e PCE were submitted to radiation in the pilot plant installed in the industrial electron accelerator at IPEN from Radiation Dynamics, Dynamitron II, of 1,5 MeV - 25 m A, with doses varying from 2 kGy to 8 kGy, being its parameters analyzed before and after irradiation TCE and PCE concentrations were determined by the gas chromatography method by liquid-liquid extraction using a gas chromatograph, model CG 90, with an electron capture detector. (author). 5 refs, 4 figs

  13. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    Science.gov (United States)

    Schrodi, Yann [Agoura Hills, CA

    2011-11-29

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  14. Ethylene glycol intercalation in smectites. molecular dynamics simulation studies

    International Nuclear Information System (INIS)

    Szczerba, Marek; Klapyta, Zenon; Kalinichev, Andrey

    2012-01-01

    Document available in extended abstract form only. Intercalation of ethylene glycol in smectites (glycolation) is widely used to discriminate smectites and vermiculites from other clays and among themselves. During this process, ethylene glycol molecules enter into the interlayer spaces of the swelling clays, leading to the formation of two-layer structure (∼17 A) in the case of smectites, or one-layer structure (∼14 A) in the case of vermiculites. In spite of the relatively broad literature on the understanding/characterization of ethylene glycol/water-clays complexes, the simplified structure of this complex presented by Reynolds (1965) is still used in the contemporary X-ray diffraction computer programs, which simulate structures of smectite and illite-smectite. The monolayer structure is only approximated using the assumption of the interlayer cation and ethylene glycol molecules lying in the middle of interlayer spaces. This study was therefore undertaken to investigate the structure of ethylene glycol/water-clays complex in more detail using molecular dynamics simulation. The structural models of smectites were built on the basis of pyrophyllite crystal structure (Lee and Guggenheim, 1981), with substitution of particular atoms. In most of simulations, the structural model assumed the following composition, considered as the most common in the mixed layer illite-smectites: EXCH 0.4 (Si 3.96 Al 0.04 )(Al 1.46 Fe 0.17 Mg 0.37 )O 10 (OH) 2 Atoms of the smectites were described with CLAYFF force field (Cygan et al., 2004), while atoms of water and ethylene glycol with flexible SPC and OPLS force fields, respectively. Ewald summation was used to calculate long range Coulombic interactions and the cutoff was set at 8.5 A. Results of the simulations show that in the two-layer glycolate the content of water is relatively small: up to 0.8 H 2 O per half of the smectite unit cell. Clear thermodynamic preference of mono- or two-layer structure of the complex is

  15. Ethylene production and constitutive expression of ethylene receptors and ethylene signal transduction during grain filling in apical and basal spikelets of compact-and lax-panicle rice (Oryza sativa cultivars

    Directory of Open Access Journals (Sweden)

    Sudhanshu Sekhar

    2017-12-01

    Full Text Available Grain yields in modern super rice cultivars do not always meet the expectations because many spikelets are located on secondary branches in closely packed homogeneous distribution in these plants, and they do not fill properly. The factors limiting grain filling of such spikelets, especially in the lower panicle branches, are elusive. Two long-duration rice cultivars differing in panicle density, Mahalaxmi (compact and Upahar (lax were cultivated in an open field plot. Grain filling, ethylene production and constitutive expression of ethylene receptors and ethylene signal transducers in apical and basal spikelets of the panicle were compared during the early post-anthesis stage, which is the most critical period for grain development. In another experiment, a similar assessment was made for the medium-duration cultivars compact-panicle OR-1918 and lax-panicle Lalat. Grain weight of the apical spikelets was always higher than that of the basal spikelets. This gradient of grain weight was wide in the compact-panicle cultivars and narrow in the lax-panicle cultivars. Compared to apical spikelets, the basal spikelets produced more ethylene at anthesis and retained the capacity for post-anthesis expression of ethylene receptors and ethylene signal transducers longer. High ethylene production enhanced the expression of the RSR1 gene, but reduced expression of the GBSS1 gene. Ethylene inhibited the partitioning of assimilates of developing grains resulting in low starch biosynthesis and high accumulation of soluble carbohydrates. It is concluded that an increase in grain/spikelet density in rice panicles reduces apical dominance to the detriment of grain filling by production of ethylene and/or enhanced perception of the ethylene signal. Ethylene could be a second messenger for apical dominance in grain filling. The manipulation of the ethylene signal would possibly improve rice grain yield.

  16. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 Regulate Ethylene Response of Roots and Coleoptiles and Negatively Affect Salt Tolerance in Rice1[OPEN

    Science.gov (United States)

    Yang, Chao; Ma, Biao; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Yin, Cui-Cui; Chen, Hui; Lu, Xiang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene plays important roles in plant growth, development, and stress responses. The ethylene signaling pathway has been studied extensively, mainly in Arabidopsis (Arabidopsis thaliana). However, the molecular mechanism of ethylene signaling is largely unknown in rice (Oryza sativa). Previously, we have isolated a set of rice ethylene-response mutants. Here, we characterized the mutant maohuzi6 (mhz6). Through map-based cloning, we found that MHZ6 encodes ETHYLENE INSENSITIVE3-LIKE1 (OsEIL1), a rice homolog of ETHYLENE INSENSITIVE3 (EIN3), which is the master transcriptional regulator of ethylene signaling in Arabidopsis. Disruption of MHZ6/OsEIL1 caused ethylene insensitivity mainly in roots, whereas silencing of the closely related OsEIL2 led to ethylene insensitivity mainly in coleoptiles of etiolated seedlings. This organ-specific functional divergence is different from the functional features of EIN3 and EIL1, both of which mediate the incomplete ethylene responses of Arabidopsis etiolated seedlings. In Arabidopsis, EIN3 and EIL1 play positive roles in plant salt tolerance. In rice, however, lack of MHZ6/OsEIL1 or OsEIL2 functions improves salt tolerance, whereas the overexpressing lines exhibit salt hypersensitivity at the seedling stage, indicating that MHZ6/OsEIL1 and OsEIL2 negatively regulate salt tolerance in rice. Furthermore, this negative regulation by MHZ6/OsEIL1 and OsEIL2 in salt tolerance is likely attributable in part to the direct regulation of HIGH-AFFINITY K+ TRANSPORTER2;1 expression and Na+ uptake in roots. Additionally, MHZ6/OsEIL1 overexpression promotes grain size and thousand-grain weight. Together, our study provides insights for the functional diversification of MHZ6/OsEIL1 and OsEIL2 in ethylene response and finds a novel mode of ethylene-regulated salt stress response that could be helpful for engineering salt-tolerant crops. PMID:25995326

  17. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction[OPEN

    Science.gov (United States)

    Shi, Jinrui; Wang, Hongyu; Habben, Jeffrey E.

    2016-01-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. PMID:27268962

  18. Action of ethylene, 1-methylcyclopropene and silver thiosulfate in two developmental stages of potted ornamental pepper(

    OpenAIRE

    Paula Cristina Carvalho Lima; Milena Maria Tomaz Oliveira; Wellington Souto Ribeiro; Lucas Cavalcante Costa; Fernando Luiz Finger

    2017-01-01

    The species of Capsicum genus have great genetic variability with enormous potential for marketing as ornamental potted plants. The exposure at ethylene induces various deleterious responses during plants life cycle, but there are few studies on how the ethylene affects early developmental stages of these ornamental plants. Thus, this study aimed to evaluate the effects of the application of ethylene and ethylene inhibitors, 1-methylcyclopropene (1-MCP) and silver thiosulphate (STS) in two ea...

  19. Hormonal contraception and female pain, orgasm and sexual pleasure.

    Science.gov (United States)

    Smith, Nicole K; Jozkowski, Kristen N; Sanders, Stephanie A

    2014-02-01

    Almost half of all pregnancies in the United States are unintentional, unplanned, or mistimed. Most unplanned pregnancies result from inconsistent, incorrect, or nonuse of a contraceptive method. Diminished sexual function and pleasure may be a barrier to using hormonal contraception. This study explores sexual function and behaviors of women in relation to the use of hormonal vs. nonhormonal methods of contraception. Data were collected as part of an online health and sexuality study of women. Main outcomes variables assess frequencies in two domains: (i) sexual function (proportion of sexual events with experiences of pain or discomfort, arousal, contentment and satisfaction, pleasure and enjoyment, lubrication difficulty, and orgasm) and (ii) sexual behavior (number of times engaged in sexual activity, proportion of sexual events initiated by the woman, and proportion of sexual events for which a lubricant was used). Sociodemographic variables and contraceptive use were used as sample descriptors and correlates. The recall period was the past 4 weeks. The sample included 1,101 women with approximately half (n = 535) using a hormonal contraceptive method exclusively or a combination of a hormonal and nonhormonal method, and about half (n = 566) using a nonhormonal method of contraception exclusively. Hierarchical regression analyses were conducted to examine the relation of hormonal contraceptive use to each of the dependent variables. Women using a hormonal contraceptive method experienced less frequent sexual activity, arousal, pleasure, and orgasm and more difficulty with lubrication even when controlling for sociodemographic variables. This study adds to the literature on the potential negative sexual side effects experienced by many women using hormonal contraception. Prospective research with diverse women is needed to enhance the understanding of potential negative sexual side effects of hormonal contraceptives, their prevalence, and possible mechanisms

  20. Contrasting effects of ethylene biosynthesis on induced plant resistance against a chewing and a piercing-sucking herbivore in rice.

    Science.gov (United States)

    Lu, Jing; Li, Jiancai; Ju, Hongping; Liu, Xiaoli; Erb, Matthias; Wang, Xia; Lou, Yonggen

    2014-11-01

    Ethylene is a stress hormone with contrasting effects on herbivore resistance. However, it remains unknown whether these differences are plant- or herbivore-specific. We cloned a rice 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene, OsACS2, whose transcripts were rapidly up-regulated in response to mechanical wounding and infestation by two important pests: the striped stem borer (SSB) Chilo suppressalis and the brown planthopper (BPH) Nilaparvata lugens. Antisense expression of OsACS2 (as-acs) reduced elicited ethylene emission, SSB-elicited trypsin protease inhibitor (TrypPI) activity, SSB-induced volatile release, and SSB resistance. Exogenous application of ACC restored TrypPI activity and SSB resistance. In contrast to SSB, BPH infestation increased volatile emission in as-acs lines. Accordingly, BPH preferred to feed and oviposit on wild-type (WT) plants--an effect that could be attributed to two repellent volatiles, 2-heptanone and 2-heptanol, that were emitted in higher amounts by as-acs plants. BPH honeydew excretion was reduced and natural enemy attraction was enhanced in as-acs lines, resulting in higher overall resistance to BPH. These results demonstrate that ethylene signaling has contrasting, herbivore-specific effects on rice defense responses and resistance against a chewing and a piercing-sucking insect, and may mediate resistance trade-offs between herbivores of different feeding guilds in rice. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  1. The thermal analysis of poly(ethylene terephthalate) by FTIR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ziyu [The School of Metallurgy and Materials, The College of Physical Sciences and Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Hay, J.N., E-mail: j.n.hay@bham.ac.uk [The School of Metallurgy and Materials, The College of Physical Sciences and Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Jenkins, M.J. [The School of Metallurgy and Materials, The College of Physical Sciences and Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2013-01-20

    Graphical abstract: Changes to infra-red spectra of poly(ethylene terephthalate) on heating and cooling. Highlights: Black-Right-Pointing-Pointer Microgram samples have been analysed to determine glass transition, crystallization and melting behaviour of PET. Black-Right-Pointing-Pointer The absorbance of cis/trans bands have been followed with temperature on heating and cooling. Black-Right-Pointing-Pointer Fractional crystallinity was determined directly without calibration. Black-Right-Pointing-Pointer The IR absorption bands are characterized as type I or type II according to their behaviour with temperature. - Abstract: Thermal analysis-FTIR spectroscopy, TA-FTIR, has been used to characterize the phase transitions in thin films of poly(ethylene terephthalate) and it has been shown to have distinct advantages over other TA techniques in particular it was not so limited in sensitivity. Since the technique measured property, such as amorphous content or fractional crystallinity directly rather than the rate of change of the properties with time or temperature, it was not so restricted in the time scale over which measurements were made. It also had the advantage of measuring the change in concentration of different functional groups with temperature and determining the temperature range over which chain mobility set in and defining the type of molecular groups involved in the configurational changes. The change in absorbance and shift in peak position with temperature are discussed in terms of the separation of crystalline and amorphous bands as well as defining the cis/trans ratio as a function of temperature. Depending on the change in absorbance or peak position with temperature of the IR bands, they have been characterized as type I or type II behaviour. Measurements on both have been used to characterize the glass transition, crystallization and melting behaviour of PET.

  2. The thermal analysis of poly(ethylene terephthalate) by FTIR spectroscopy

    International Nuclear Information System (INIS)

    Chen, Ziyu; Hay, J.N.; Jenkins, M.J.

    2013-01-01

    Graphical abstract: Changes to infra-red spectra of poly(ethylene terephthalate) on heating and cooling. Highlights: ► Microgram samples have been analysed to determine glass transition, crystallization and melting behaviour of PET. ► The absorbance of cis/trans bands have been followed with temperature on heating and cooling. ► Fractional crystallinity was determined directly without calibration. ► The IR absorption bands are characterized as type I or type II according to their behaviour with temperature. - Abstract: Thermal analysis-FTIR spectroscopy, TA-FTIR, has been used to characterize the phase transitions in thin films of poly(ethylene terephthalate) and it has been shown to have distinct advantages over other TA techniques in particular it was not so limited in sensitivity. Since the technique measured property, such as amorphous content or fractional crystallinity directly rather than the rate of change of the properties with time or temperature, it was not so restricted in the time scale over which measurements were made. It also had the advantage of measuring the change in concentration of different functional groups with temperature and determining the temperature range over which chain mobility set in and defining the type of molecular groups involved in the configurational changes. The change in absorbance and shift in peak position with temperature are discussed in terms of the separation of crystalline and amorphous bands as well as defining the cis/trans ratio as a function of temperature. Depending on the change in absorbance or peak position with temperature of the IR bands, they have been characterized as type I or type II behaviour. Measurements on both have been used to characterize the glass transition, crystallization and melting behaviour of PET.

  3. 78 FR 24738 - Ethylene Oxide; Receipt of Application for Emergency Exemption, Solicitation of Public Comment

    Science.gov (United States)

    2013-04-26

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2013-0276; FRL-9385-2] Ethylene Oxide; Receipt of... ethylene oxide (CAS No. 75-21-8) to sterilize the interior surfaces of enclosed animal isolator units to... APHIS has requested the EPA Administrator to issue a quarantine exemption for the use of ethylene oxide...

  4. 21 CFR 872.3450 - Ethylene oxide homopolymer and/or karaya denture adhesive.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide homopolymer and/or karaya denture... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3450 Ethylene oxide homopolymer and/or karaya denture adhesive. (a) Identification. Ethylene oxide homopolymer and/or karaya...

  5. 40 CFR 180.1040 - Ethylene glycol; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ethylene glycol; exemption from the... Exemptions From Tolerances § 180.1040 Ethylene glycol; exemption from the requirement of a tolerance. Ethylene glycol as a component of pesticide formulations is exempt from the requirement of a tolerance when...

  6. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...

  7. 78 FR 20032 - Styrene-Ethylene-Propylene Block Copolymer; Tolerance Exemption

    Science.gov (United States)

    2013-04-03

    ...-Ethylene-Propylene Block Copolymer; Tolerance Exemption AGENCY: Environmental Protection Agency (EPA... for residues of styrene-ethylene-propylene block copolymer (CAS Reg. No. 108388-87-0) when used as an...-ethylene-propylene block copolymer on food or feed commodities. DATES: This regulation is effective April 3...

  8. 46 CFR 154.1730 - Ethylene oxide: Loading and off loading.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ethylene oxide: Loading and off loading. 154.1730... Operating Requirements § 154.1730 Ethylene oxide: Loading and off loading. (a) The master shall ensure that before ethylene oxide is loaded into a cargo tank: (1) The tank is thoroughly clean, dry, and free of...

  9. 21 CFR 872.3410 - Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide homopolymer and/or....3410 Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive. (a) Identification. An ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive is a device...

  10. Role of ethylene receptors during senescence and ripening in horticultural crops

    Science.gov (United States)

    Agarwal, Gaurav; Choudhary, Divya; Singh, Virendra P.; Arora, Ajay

    2012-01-01

    The past two decades have been rewarding in terms of deciphering the ethylene signal transduction and functional validation of the ethylene receptor and downstream genes involved in the cascade. Our knowledge of ethylene receptors and its signal transduction pathway provides us a robust platform where we can think of manipulating and regulating ethylene sensitivity by the use of genetic engineering and making transgenic. This review focuses on ethylene perception, receptor mediated regulation of ethylene biosynthesis, role of ethylene receptors in flower senescence, fruit ripening and other effects induced by ethylene. The expression behavior of the receptor and downstream molecules in climacteric and non climacteric crops is also elaborated upon. Possible strategies and recent advances in altering the ethylene sensitivity of plants using ethylene receptor genes in an attempt to modulate the regulation and sensitivity to ethylene have also been discussed. Not only will these transgenic plants be a boon to post-harvest physiology and crop improvement but, it will also help us in discovering the mechanism of regulation of ethylene sensitivity. PMID:22751331

  11. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Science.gov (United States)

    2010-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

  12. A noble additive cum compatibilizer for dispersion of nanoclay into ethylene octene elastomer

    CSIR Research Space (South Africa)

    Mondal, S

    2016-06-01

    Full Text Available This paper introduces a poly(ethylene-co-octene)-poly(ethylene-co-vinyl acetate) double network hybrid as a noble additive cum compatibilizer for poly(ethylene-co-octene) (POE). The addition of only 0.5 mass% of the hybrid into POE has raised...

  13. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Science.gov (United States)

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene oxide...

  14. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate-vinyl alcohol copolymers... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1360 Ethylene-vinyl acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No. 26221-27-2...

  15. 40 CFR 180.1016 - Ethylene; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ethylene; exemption from the requirement of a tolerance. 180.1016 Section 180.1016 Protection of Environment ENVIRONMENTAL PROTECTION... Exemptions From Tolerances § 180.1016 Ethylene; exemption from the requirement of a tolerance. Ethylene is...

  16. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-methyl acrylate copolymer resins. 177.1340... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used as articles or components of...

  17. Ethylene decomposition on Rh(100): theory and experiment

    NARCIS (Netherlands)

    Nieskens, D.L.S.; Bavel, van A.P.; Curulla Ferre, D.; Niemantsverdriet, J.W.

    2004-01-01

    The decompn. of ethylene on a Rh(100) single crystal has been studied by a combination of exptl. techniques: static secondary ion mass spectrometry (SSIMS), temp.-programmed desorption (TPD), LEED, and high-resoln. electron energy loss spectroscopy (HREELS), to gain insight into the nature of the

  18. Anaphylaxis to ethylene oxide - a rare and overlooked phenomenon?

    DEFF Research Database (Denmark)

    Bache, Søren; Petersen, J T; Garvey, L H

    2011-01-01

    Spina bifida patients have been reported to be at increased risk of anaphylactic reactions during general anaesthesia. Following a reaction, latex is often incriminated as spina bifida patients are known to have an increased incidence of latex allergy. Ethylene oxide (EO) has recently been...

  19. Oxidation of Ethylene Carbonate on Li Metal Oxide Surfaces

    DEFF Research Database (Denmark)

    Østergaard, Thomas M.; Giordano, Livia; Castelli, Ivano Eligio

    2018-01-01

    Understanding the reactivity of the cathode surface is of key importance to the development of batteries. Here, density functional theory is applied to investigate the oxidative decomposition of the electrolyte component, ethylene carbonate (EC), on layered LixMO(2) oxide surfaces. We compare...

  20. Development of new photocatalysts for efficient removal of ethylene

    DEFF Research Database (Denmark)

    Nielsen, Morten Godtfred

    The aim of this thesis has been to remove ethylene/ethene (from here on called ethene because it is shortest) photocatalytically with the primary purpose of preventing fruit ripening during shipping. This has been achieved based on TiO2. The topic has been approached from different angles. The most...

  1. The role of stamens in ethylene production in Ipomoea nil

    International Nuclear Information System (INIS)

    Kiss, H.G.

    1989-01-01

    Ethylene production inhibits filament and corolla growth during young stages in flower development, and it promotes corolla unfolding and senescence in Ipomoea nil. Initial studies with the in vitro application of gibberellic acid (GA 3 ), demonstrated that decreased filament growth occurred when the anthers remained attached to the filaments during the young stages in development. The removal of the anthers from intact plants did not enhance filament growth until the synthesis of wound ethylene was inhibited by applied aminoethoxyvinylglycine (AVG) or cobalt chloride. It was hypothesized that the anthers were source tissues and that the filaments were transport vectors for the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and indole-3-acetic acid (IAA) to regulate growth events in the various floral organs. To test this hypothesis, endogenous IAA and ACC and ethylene production were measured by enzyme linked immunosorbent assay (ELISA) or gas chromatography. The transport of 14 C-IAA and 14 C-ACC through filament segments and filaments within intact flower buds also was examined during flower development

  2. Ethylene and Carbon Monoxide Production by Septoria musiva

    Science.gov (United States)

    S. Brown-Skrobot; L. R. Brown; T. H. Filer

    1984-01-01

    An investigation into the mechanism by which Septoria musiva causes the premature defoliation of cottonwood trees was undertaken. Gas-chromatograpic analysis of the atmosphere overlying the original culture indicated that this fungus produced significant quantities of ethylene and carbon monoxide. Subcultures failed to produce either gas on a variety...

  3. Optical properties, ethylene production and softening in mango fruits

    NARCIS (Netherlands)

    Eccher Zerbini, P.C.; Vanoli, M.; Rizzolo, A.; Grassi, M.; Meirelles de Azevedo Pementel, A.; Spinelli, L.; Torricelli, A.

    2015-01-01

    Firmness decay, chlorophyll breakdown and carotenoid accumulation, controlled by ethylene, are major ripening events in mango fruit. Pigment content and tissue structure affect the optical properties of the mesocarp, which can be measured nondestructively in the intact fruit by time-resolved

  4. Polyketones and polysulfones for conservation in the ethylene polymer market

    International Nuclear Information System (INIS)

    Steinberg, M.

    1976-04-01

    Because of the increase in cost of foreign oil, ethylene costs have increased markedly within the last several years. There is a sizable incentive to reduce raw material cost for basic polymer manufacture. Polyketones, synthesized from ethylene and CO, and polysulfones, synthesized from ethylene and SO 2 , utilizing high energy radiation, offers one such possibility. CO and SO 2 , usually considered as wastes and pollutants from fossil fuel burning power plants, are converted to useful materials. The polyketones and polysulfones formed from the gas phase below 100 0 C have found to be high molecular weight polymers which, depending on composition, either melt with difficulty, or decompose at temperatures of 250 0 C or higher. The higher temperature (greater than 100 0 C) catalyzed reaction produces low molecular weight waxes. Design calculations indicate that for a G value of 10,000 and 50 percent energy deposition efficiency, it would take 331 MCi of 60 Co to conserve 2 billion pounds of ethylene or 25 percent of the overall U. S. consumption in the PE market by substituting CO and SO 2 . This savings amounts to as much as $280 million at today's market price. Electron machine radiation with a 25 percent energy deposition efficiency requires a total beam power of 9800 kW

  5. Enhanced Ionic Conductivity of Poly(Ethylene Imine) Phosphate

    DEFF Research Database (Denmark)

    Senadeera, G.K.R.; Careem, M.A.; Skaarup, Steen

    1996-01-01

    The conductivity of mixtures of phosphoric acid with poly(ethylene imine) has been studied, and it was found that the conductivity of such mixtures with high acid content can be enhanced by the addition of highly dispersed silica (fumed silica). At the same time, silica addition increases the sti...

  6. Pollination induces autophagy in petunia petals via ethylene.

    Science.gov (United States)

    Shibuya, Kenichi; Niki, Tomoko; Ichimura, Kazuo

    2013-02-01

    Autophagy is one of the main mechanisms of degradation and remobilization of macromolecules, and it appears to play an important role in petal senescence. However, little is known about the regulatory mechanisms of autophagy in petal senescence. Autophagic processes were observed by electron microscopy and monodansylcadaverine staining of senescing petals of petunia (Petunia hybrida); autophagy-related gene 8 (ATG8) homologues were isolated from petunia and the regulation of expression was analysed. Nutrient remobilization was also examined during pollination-induced petal senescence. Active autophagic processes were observed in the mesophyll cells of senescing petunia petals. Pollination induced the expression of PhATG8 homologues and was accompanied by an increase in ethylene production. Ethylene inhibitor treatment in pollinated flowers delayed the induction of PhATG8 homologues, and ethylene treatment rapidly upregulated PhATG8 homologues in petunia petals. Dry weight and nitrogen content were decreased in the petals and increased in the ovaries after pollination in detached flowers. These results indicated that pollination induces autophagy and that ethylene is a key regulator of autophagy in petal senescence of petunia. The data also demonstrated the translocation of nutrients from the petals to the ovaries during pollination-induced petal senescence.

  7. Unusual calcium oxalate crystals in ethylene glycol poisoning.

    Science.gov (United States)

    Godolphin, W; Meagher, E P; Sanders, H D; Frohlich, J

    1980-06-01

    A patient poisoned with ethylene glycol exhibited the symptoms of (1) hysteria, (2) metabolic acidosis with both a large anion gap and osmolal gap, and (3) crystalluria. However, the shape of the urinary crystals was prismatic and resembled hippurate rather than the expected dipyramidal calcium oxalate dihydrate. X-ray crystallography positively identified them as calcium oxalate monohydrate.

  8. Hormones and β-Agonists

    NARCIS (Netherlands)

    Ginkel, van L.A.; Bovee, T.F.H.; Blokland, M.H.; Sterk, S.S.; Smits, N.G.E.; Pleadin, Jelka; Vulić, Ana

    2016-01-01

    This chapter provides some updated information on contemporary methods for hormone and β-agonist analyses. It deals with the classical approaches for the effective detection and identification of exogenous hormones. The chapter examines specific problems related to control strategies for natural

  9. Changes of plant hormone levels in conifers subjected to immissions. Hormongehaltsaenderungen in Nadelbaeumen unter Immissionsbelastung

    Energy Technology Data Exchange (ETDEWEB)

    Frenzel, B.; Christmann, A. (Hohenheim Univ., Stuttgart (Germany, F.R.). Inst. fuer Botanik)

    1989-04-01

    The effect of reduced immissions on the phytohormone balance in conifers (ethylene, abscisic acid) is investigated on two sites: 1. The first site was under strong SO{sub 2}-impact until autumn 1987. 2. On the second site, spruce trees in open top chambers receiving charcoal-filtered air are compared with trees outside the chambers and trees in chambers receiving ambient air. Until now there are no systematic and significant differences seen in the hormone contents of the differently treated groups of trees. (orig./KG).

  10. ORA59 and EIN3 interaction couples jasmonate-ethylene synergistic action to antagonistic salicylic acid regulation of PDF expression.

    Science.gov (United States)

    He, Xiang; Jiang, Jishan; Wang, Chang-Quan; Dehesh, Katayoon

    2017-04-01

    Hormonal crosstalk is central for tailoring plant responses to the nature of challenges encountered. The role of antagonism between the two major defense hormones, salicylic acid (SA) and jasmonic acid (JA), and modulation of this interplay by ethylene (ET) in favor of JA signaling pathway in plant stress responses is well recognized, but the underlying mechanism is not fully understood. Here, we show the opposing function of two transcription factors, ethylene insensitive3 (EIN3) and EIN3-Like1 (EIL1), in SA-mediated suppression and JA-mediated activation of PLANT DEFENSIN1.2 (PDF1.2). This functional duality is mediated via their effect on protein, not transcript levels of the PDF1.2 transcriptional activator octadecanoid-responsive Arabidopsis59 (ORA59). Specifically, JA induces ORA59 protein levels independently of EIN3/EIL1, whereas SA reduces the protein levels dependently of EIN3/EIL1. Co-infiltration assays revealed nuclear co-localization of ORA59 and EIN3, and split-luciferase together with yeast-two-hybrid assays established their physical interaction. The functional ramification of the physical interaction is EIN3-dependent degradation of ORA59 by the 26S proteasome. These findings allude to SA-responsive reduction of ORA59 levels mediated by EIN3 binding to and targeting of ORA59 for degradation, thus nominating ORA59 pool as a coordination node for the antagonistic function of ET/JA and SA. © 2017 Institute of Botany, Chinese Academy of Sciences.

  11. The interaction between strigolactones and other plant hormones in the regulation of plant development

    Directory of Open Access Journals (Sweden)

    Xi eCheng

    2013-06-01

    Full Text Available Plant hormones are small molecules derived from various metabolic pathways and are important regulators of plant development. The most recently discovered phytohormone class comprises the carotenoid-derived strigolactones (SLs. For a long time these compounds were only known to be secreted into the rhizosphere where they act as signalling compounds, but now we know they are also active as endogenous plant hormones and they have been in the spotlight ever since. The initial discovery that SLs are involved in the inhibition of axillary bud outgrowth, initiated a multitude of other studies showing that SLs also play a role in defining root architecture, secondary growth, hypocotyl elongation and seed germination, mostly in interaction with other hormones. Their coordinated action enables the plant to respond in an appropriate manner to environmental factors such as temperature, shading, day length and nutrient availability. Here, we will review the current knowledge on the crosstalk between SLs and other plant hormones – such as auxin, cytokinin, abscisic acid, ethylene and gibberellins - during different physiological processes. We will furthermore take a bird’s eye view of how this hormonal crosstalk enables plants to respond to their ever changing environments.

  12. Hormone Replacement Therapy and Your Heart

    Science.gov (United States)

    Hormone replacement therapy and your heart Are you taking — or considering — hormone therapy to treat bothersome menopausal symptoms? Understand ... you. By Mayo Clinic Staff Long-term hormone replacement therapy used to be routinely prescribed for postmenopausal ...

  13. Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk.

    Science.gov (United States)

    Zhu, Hong; Dardick, Chris D; Beers, Eric P; Callanhan, Ann M; Xia, Rui; Yuan, Rongcai

    2011-10-17

    Naphthaleneacetic acid (NAA), a synthetic auxin analogue, is widely used as an effective thinner in apple orchards. When applied shortly after fruit set, some fruit abscise leading to improved fruit size and quality. However, the thinning results of NAA are inconsistent and difficult to predict, sometimes leading to excess fruit drop or insufficient thinning which are costly to growers. This unpredictability reflects our incomplete understanding of the mode of action of NAA in promoting fruit abscission. Here we compared NAA-induced fruit drop with that caused by shading via gene expression profiling performed on the fruit abscission zone (FAZ), sampled 1, 3, and 5 d after treatment. More than 700 genes with significant changes in transcript abundance were identified from NAA-treated FAZ. Combining results from both treatments, we found that genes associated with photosynthesis, cell cycle and membrane/cellular trafficking were downregulated. On the other hand, there was up-regulation of genes related to ABA, ethylene biosynthesis and signaling, cell wall degradation and programmed cell death. While the differentially expressed gene sets for NAA and shading treatments shared only 25% identity, NAA and shading showed substantial similarity with respect to the classes of genes identified. Specifically, photosynthesis, carbon utilization, ABA and ethylene pathways were affected in both NAA- and shading-induced young fruit abscission. Moreover, we found that NAA, similar to shading, directly interfered with leaf photosynthesis by repressing photosystem II (PSII) efficiency within 10 minutes of treatment, suggesting that NAA and shading induced some of the same early responses due to reduced photosynthesis, which concurred with changes in hormone signaling pathways and triggered fruit abscission. This study provides an extensive transcriptome study and a good platform for further investigation of possible regulatory genes involved in the induction of young fruit

  14. Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development

    Science.gov (United States)

    Zhang, Wei; Zhou, Xin; Wen, Chi-Kuang

    2012-01-01

    Overexpression of Arabidopsis Reversion-To-ethylene Sensitivity1 (RTE1) results in whole-plant ethylene insensitivity dependent on the ethylene receptor gene Ethylene Response1 (ETR1). However, overexpression of the tomato RTE1 homologue Green Ripe (GR) delays fruit ripening but does not confer whole-plant ethylene insensitivity. It was decided to investigate whether aspects of ethylene-induced growth and development of the monocotyledonous model plant rice could be modulated by rice RTE1 homologues (OsRTH genes). Results from a cross-species complementation test in Arabidopsis showed that OsRTH1 overexpression complemented the rte1-2 loss-of-function mutation and conferred whole-plant ethylene insensitivity in an ETR1-dependent manner. In contrast, OsRTH2 and OsRTH3 overexpression did not complement rte1-2 or confer ethylene insensitivity. In rice, OsRTH1 overexpression substantially prevented ethylene-induced alterations in growth and development, including leaf senescence, seedling leaf elongation and development, coleoptile elongation or curvature, and adventitious root development. Results of subcellular localizations of OsRTHs, each fused with the green fluorescent protein, in onion epidermal cells suggested that the three OsRTHs were predominantly localized to the Golgi. OsRTH1 may be an RTE1 orthologue of rice and modulate rice ethylene responses. The possible roles of auxins and gibberellins in the ethylene-induced alterations in growth were evaluated and the biological significance of ethylene in the early stage of rice seedling growth is discussed. PMID:22451723

  15. Hormone-metabolic status in moderately smoking breast cancer patients.

    Science.gov (United States)

    Berstein, L M; Tsyrlina, E V; Semiglazov, V F; Kovalenko, I G; Gamayunova, V B; Evtushenko, T P; Ivanova, O A

    1997-01-01

    One hundred and eighteen primary breast cancer (BC) patients, 35 of whom were smokers, in clinical stages I-II of the disease were examined. In order to investigate whether smoking changes endocrine function in BC patients, some indices of the hormone-metabolic status of smoking and non-smoking patients of reproductive and menopausal age were compared. It was found that in smokers with BC there was a decline in body weight and body fat content, a lack of lean body mass accumulation along with body mass increase, a tendency to hypotriglyceridemia and hypoinsulinemia, accelerated development of the upper type of body fat distribution with ageing, intensified gonadotropin secretion, shifts in steroidogenesis and SHBG level and elevated catecholamine execretion. It is suggested that a possible relation between hormone-mediated effects inherent to smoking and the mechanisms promoting genotoxic type of hormonal carcinogenesis and the factors of breast cancer prognosis cannot be excluded.

  16. Changes in Plasma Sex Hormone Levels in Women with Severe Concomitant Injury

    Directory of Open Access Journals (Sweden)

    K. N Yezhova

    2010-01-01

    Full Text Available Objective: to perform a complex study of the plasma levels of 11 sex hormones and their functional values in women with severe concomitant injury (SCI. Subjects and methods. The study enrolled 16 women aged 18—45 years who had SCI. Admission APACHE II scores were 18.9±1.3. According to the outcome of a posttraumatic period, all the patients were divided into 2 groups: A survivors; B deceased subjects. The normal values were used to comparatively analyze the concentrations of reproductive hormones. The time course of changes in hormone concentration was studied on postoperative days 1, 3, and 7. The hormone profile was examined by BSL test kits (USA on a STAT Fax 2100 enzyme immunoanalyzer (Awareness Technology Inc., USA. The content of prolactin, luteinizing hormone, follicle-stimulating hormone, progesterone, 17-hydroxyprogesterone, dehydroepiandrosterone sulfate (DHEA-S, androstendione (A, testosterone (T, dihydrotestosterone, estrone, and estradiol (E were measured. Results. The complex study of changes in the profile of 11 plasma sex hormones was first conducted in women in the posttraumat-ic period. Moreover, the typical plasma hormonal changes were elevated prolactin levels, a decrease in the concentrations of gonadotropins, and increases in some androgens, A, T, and E. The deceased women showed lower concentrations of DHEA-S and T. Analysis revealed an inverse correlation between the plasma concentration of DHEA-S and the injury severity. This change seems to suggest that an adrenal adaptation reaction is exhausted. The changes revealed in hormonal levels are of significance in understanding the pathogenesis of SCT. This may serve as a basis for the development of new therapy modalities using reproductive hormones in the postresuscitative period. Key words: severe concomitant injury, sex hormones, prolactin, luteinizing hormone, follicle-stimulating hormone, progesterone, 17-hydroxyprogesterone, androgens, estrogens.

  17. Antiurolithic effect of olive oil in a mouse model of ethylene glycol-induced urolithiasis

    Directory of Open Access Journals (Sweden)

    Mohammed Alenzi

    2017-05-01

    Full Text Available Purpose: At present, commercially available antiurolithic drugs have more adverse effects than potential therapeutic or preventive effects with chronic use. With this in mind, the present study was designed to assess the antiurolithic effect of olive oil in a mouse model of ethylene glycol (EG-induced urolithiasis. Materials and Methods: Adult albino mice were divided into 6 groups. Group I was fed the vehicle only. Group II was supplemented with 0.75% EG alone in drinking water during the experimental period to initiate deposition of calcium oxalate in kidneys, which leads to urolithiasis in animals. Groups III (olive oil control group through V were fed olive oil orally at various doses during the experimental period. Group VI received cystone (750 mg/kg. Groups IV–VI additionally received 0.75% EG in drinking water ad libitum. SPSS ver.17.0 was used for statistical analysis. Results: The study results showed significantly higher levels of serum urea, uric acid, and creatinine (p<0.05 in group II than in groups III–VI and I. Administration of olive oil at different doses restored the elevated serum parameters in groups IV and V compared with group II. Urine and kidney calcium, oxalate, and phosphate levels in groups IV–VI were significantly lower (p<0.05 than in animals with EG-induced urolithiasis (group II. Group V mice showed a significant restoration effect on serum as well as urine and kidney parameters compared with group II. Conclusions: Supplementation with olive oil (1.7 mL/kg body weight reduced and prevented the growth of urinary stones, possibly by inhibiting renal tubular membrane damage due to peroxidative stress induced by hyperoxaluria.

  18. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem1[OPEN

    Science.gov (United States)

    Street, Ian H.; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N.; Kieber, Joseph J.; Schaller, G. Eric

    2015-01-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem. PMID:26149574

  19. Interactions between hormones and epilepsy.

    Science.gov (United States)

    Taubøll, Erik; Sveberg, Line; Svalheim, Sigrid

    2015-05-01

    There is a complex, bidirectional interdependence between sex steroid hormones and epilepsy; hormones affect seizures, while seizures affect hormones thereby disturbing reproductive endocrine function. Both female and male sex steroid hormones influence brain excitability. For the female sex steroid hormones, progesterone and its metabolites are anticonvulsant, while estrogens are mainly proconvulsant. The monthly fluctuations in hormone levels of estrogen and progesterone are the basis for catamenial epilepsy described elsewhere in this issue. Androgens are mainly anticonvulsant, but the effects are more varied, probably because of its metabolism to, among others, estradiol. The mechanisms for the effects of sex steroid hormones on brain excitability are related to both classical, intracellularly mediated effects, and non-classical membrane effects due to binding to membrane receptors. The latter are considered the most important in relation to epilepsy. The different sex steroids can also be further metabolized within the brain to different neurosteroids, which are even more potent with regard to their effect on excitability. Estrogens potentiate glutamate responses, primarily by potentiating NMDA receptor activity, but also by affecting GABA-ergic mechanisms and altering brain morphology by increasing dendritic spine density. Progesterone and its main metabolite 5α-pregnan-3α-ol-20-one (3α-5α-THP) act mainly to enhance postsynaptic GABA-ergic activity, while androgens enhance GABA-activated currents. Seizures and epileptic discharges also affect sex steroid hormones. There are close anatomical connections between the temporolimbic system and the hypothalamus controlling the endocrine system. Several studies have shown that epileptic activity, especially mediated through the amygdala, alters reproductive function, including reduced ovarian cyclicity in females and altered sex steroid hormone levels in both genders. Furthermore, there is an asymmetric

  20. contribution of growth hormone-releasing hormone and

    African Journals Online (AJOL)

    The strategy used was to stimulate GH secretion in 8 young ... treatment with two oral doses of 50 mg atenolol (to inhibit .... had normal baseline thyroid-stimulating hormone (TSH) ..... production rate of 14% per decade has been documented.'".

  1. Sex Hormones and Ischemic Stroke

    DEFF Research Database (Denmark)

    Holmegard, Haya N; Nordestgaard, Børge G; Jensen, Gorm B

    2016-01-01

    CONTEXT AND OBJECTIVE: Whether endogenous sex hormones are associated with ischemic stroke (IS) is unclear. We tested the hypothesis that extreme concentrations of endogenous sex hormones are associated with risk of IS in the general population. DESIGN, SETTING, AND PARTICIPANTS: Adult men (n...... = 4615) and women (n = 4724) with measurements of endogenous sex hormones during the 1981-1983 examination of the Copenhagen City Heart Study, Denmark, were followed for up to 29 years for incident IS, with no loss to follow-up. Mediation analyses assessed whether risk of IS was mediated through...

  2. Heat stress differentially modifies ethylene biosynthesis and signaling in pea floral and fruit tissues.

    Science.gov (United States)

    Savada, Raghavendra P; Ozga, Jocelyn A; Jayasinghege, Charitha P A; Waduthanthri, Kosala D; Reinecke, Dennis M

    2017-10-01

    Ethylene biosynthesis is regulated in reproductive tissues in response to heat stress in a manner to optimize resource allocation to pollinated fruits with developing seeds. High temperatures during reproductive development are particularly detrimental to crop fruit/seed production. Ethylene plays vital roles in plant development and abiotic stress responses; however, little is known about ethylene's role in reproductive tissues during development under heat stress. We assessed ethylene biosynthesis and signaling regulation within the reproductive and associated tissues of pea during the developmental phase that sets the stage for fruit-set and seed development under normal and heat-stress conditions. The transcript abundance profiles of PsACS [encode enzymes that convert S-adenosyl-L-methionine to 1-aminocyclopropane-1-carboxylic acid (ACC)] and PsACO (encode enzymes that convert ACC to ethylene), and ethylene evolution were developmentally, environmentally, and tissue-specifically regulated in the floral/fruit/pedicel tissues of pea. Higher transcript abundance of PsACS and PsACO in the ovaries, and PsACO in the pedicels was correlated with higher ethylene evolution and ovary senescence and pedicel abscission in fruits that were not pollinated under control temperature conditions. Under heat-stress conditions, up-regulation of ethylene biosynthesis gene expression in pre-pollinated ovaries was also associated with higher ethylene evolution and lower retention of these fruits. Following successful pollination and ovule fertilization, heat-stress modified PsACS and PsACO transcript profiles in a manner that suppressed ovary ethylene evolution. The normal ethylene burst in the stigma/style and petals following pollination was also suppressed by heat-stress. Transcript abundance profiles of ethylene receptor and signaling-related genes acted as qualitative markers of tissue ethylene signaling events. These data support the hypothesis that ethylene biosynthesis is

  3. HORMONAL TREATMENT IN UROGYNECOLOGY

    Directory of Open Access Journals (Sweden)

    Adolf Lukanović

    2018-02-01

    Full Text Available Background. Hormonal treatment in urogynecology is based on the knowledge, that urinary and reproductive tracts have common embriologic origin and are also linked anatomically and functionally. Both systems are functioning and changing due to sex steroids influence. Decreased estrogen concentrations are connected to metabolic and trophic changes in all organs with estrogen receptors, i.e. also in urogenital tract. Atrophy of urogenital system in postmenopause is a common causative factor for stress urinary incontinence (SUI and urge incontinence (UUI. In both estrogen replacement treatment have been introduced, but meta-analyses of the available literature indicate that estrogen therapy is effective only if given vaginaly. Recurrent urinary tract infections (RUTI occur in postmenopause often as a consequence of structural changes in urinary and reproductive tract to lowered immune protection and colonization with eneterobacteria. In RUTI too, estrogen replacement treatment have been used with the results similar to those with SUI and UUI. Effectiveness of estrogen treatment was evident only in topically applied vaginaly, while oral administration has the same effectiveness as placebo. Conclusions. Structural changes in urogenital tract in postmenopause are the results of estrogen depletion. Estrogen replacement is effective in cases of SUI, UUI and RUTI if it is applied topicaly, the efffect being influenced by the type of estrogen used and duration of treatment.

  4. Role of Ethylene and Its Cross Talk with Other Signaling Molecules in Plant Responses to Heavy Metal Stress1

    Science.gov (United States)

    Thao, Nguyen Phuong; Khan, M. Iqbal R.; Thu, Nguyen Binh Anh; Hoang, Xuan Lan Thi; Asgher, Mohd; Khan, Nafees A.; Tran, Lam-Son Phan

    2015-01-01

    Excessive heavy metals (HMs) in agricultural lands cause toxicities to plants, resulting in declines in crop productivity. Recent advances in ethylene biology research have established that ethylene is not only responsible for many important physiological activities in plants but also plays a pivotal role in HM stress tolerance. The manipulation of ethylene in plants to cope with HM stress through various approaches targeting either ethylene biosynthesis or the ethylene signaling pathway has brought promising outcomes. This review covers ethylene production and signal transduction in plant responses to HM stress, cross talk between ethylene and other signaling molecules under adverse HM stress conditions, and approaches to modify ethylene action to improve HM tolerance. From our current understanding about ethylene and its regulatory activities, it is believed that the optimization of endogenous ethylene levels in plants under HM stress would pave the way for developing transgenic crops with improved HM tolerance. PMID:26246451

  5. Measurement of ethylene emission from Japanese red pine (Pinus densiflora) under field conditions in NOx-polluted areas

    International Nuclear Information System (INIS)

    Kume, A.; Nakatani, N.; Tsuboi, N.; Nakane, K.; Sakurai, N.; Nakagawa, N.; Sakugawa, H.

    2001-01-01

    Emission of ethylene from the needles of Japanese red pine, Pinus densiflora, was measured in air-polluted areas in Hiroshima, Japan. We applied a suitable protocol to determine the rate of ethylene emission from the excised needles. The influence of excision of needles on ethylene emission was not detected during the first 4 h of incubation at 20degC. Ethylene emissions were low in the unpolluted (Clean) areas regardless of the altitude or season. The emission of stress ethylene increased with the atmospheric NO 2 concentration, suggesting that atmospheric NO x or related substances induced the higher ethylene emission in the polluted areas (near urban and industrial areas). In all cases, 1-year-old needles emitted significantly larger amounts of ethylene than the current needles. Ethylene emission did not increase evenly in the polluted areas, but the frequency of trees emitting high ethylene increased. Therefore, threshold rates for the baseline ethylene emission were proposed. (Author)

  6. Measurement of the incretin hormones

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Wewer Albrechtsen, Nicolai Jacob; Hartmann, Bolette

    2015-01-01

    The two incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), are secreted from the gastrointestinal tract in response to meals and contribute to the regulation of glucose homeostasis by increasing insulin secretion. Assessment of plasma concentrat......The two incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), are secreted from the gastrointestinal tract in response to meals and contribute to the regulation of glucose homeostasis by increasing insulin secretion. Assessment of plasma...... concentrations of GLP-1 and GIP is often an important endpoint in both clinical and preclinical studies and, therefore, accurate measurement of these hormones is important. Here, we provide an overview of current approaches for the measurement of the incretin hormones, with particular focus on immunological...

  7. Controversies in hormone replacement therapy

    Directory of Open Access Journals (Sweden)

    A. Baziad

    2001-09-01

    Full Text Available Deficiency of estrogen hormone will result in either long-term or short-term health problems which may reduce the quality of life. There are numerous methods by which the quality of female life can be achieved. Since the problems occuring are due to the deficiency of estrogen hormone, the appropriate method to tackle the problem is by administration of estrogen hormone. The administration of hormone replacement therapy (HRT with estrogen may eliminate climacteric complaints, prevent osteoporosis, coronary heart disease, dementia, and colon cancer. Although HRT has a great deal of advantage, its use is still low and may result in controversies. These controversies are due to fact that both doctor and patient still hold on to the old, outmoded views which are not supported by numerous studies. Currently, the use of HRT is not only based on experience, or temporary observation, but more on evidence based medicine. (Med J Indones 2001; 10: 182-6Keywords: controversies, HRT

  8. Network identification of hormonal regulation.

    Directory of Open Access Journals (Sweden)

    Daniel J Vis

    Full Text Available Relations among hormone serum concentrations are complex and depend on various factors, including gender, age, body mass index, diurnal rhythms and secretion stochastics. Therefore, endocrine deviations from healthy homeostasis are not easily detected or understood. A generic method is presented for detecting regulatory relations between hormones. This is demonstrated with a cohort of obese women, who underwent blood sampling at 10 minute intervals for 24-hours. The cohort was treated with bromocriptine in an attempt to clarify how hormone relations change by treatment. The detected regulatory relations are summarized in a network graph and treatment-induced changes in the relations are determined. The proposed method identifies many relations, including well-known ones. Ultimately, the method provides ways to improve the description and understanding of normal hormonal relations and deviations caused by disease or treatment.

  9. Growth Hormone Deficiency in Children

    Science.gov (United States)

    ... your child if you see signs of poor self-esteem or sadness that could be related to being ... December 2011 The Hormone Health Network offers free, online resources based on the most advanced clinical and ...

  10. Gonadotropin-releasing hormone agonist trigger in oocyte donors co-treated with a gonadotropin-releasing hormone antagonist

    DEFF Research Database (Denmark)

    Vuong, T. N. L.; Ho, M. T.; Ha, T. D.

    2016-01-01

    -35 years, body mass index [BMI] hormone level >1.25 ng/mL, and antral follicle count >= 6). Intervention(s): Ovulation trigger with 0.2, 0.3, or 0.4 mg triptorelin in a GnRH antagonist cycle. Main Outcome Measure(s): The primary end point was number of metaphase II oocytes...... to number of metaphase II oocytes (16.0 +/- 8.5, 15.9 +/- 7.8, and 14.7 +/- 8.4, respectively), embryos (13.2 +/- 7.8, 11.7 +/- 6.9, 11.8 +/- 7.0), and number of top-quality embryos (3.8 +/- 2.9, 3.6 +/- 3.0, 4.1 +/- 3.0). Luteinizing hormone levels at 24 hours and 36 hours after trigger was significantly...

  11. A kinetic study of the electrochemical hydrogenation of ethylene

    International Nuclear Information System (INIS)

    Sedighi, S.; Gardner, C.L.

    2010-01-01

    In this study, we have examined the kinetics of the electrochemical hydrogenation of ethylene in a PEM reactor. While in itself this reaction is of little industrial interest, this reaction can be looked upon as a model reaction for many of the important hydrogenation processes including the refining of heavy oils and the hydrogenation of vegetable oils. To study the electrochemical hydrogenation of ethylene, several experimental techniques have been used including polarization measurements, measurement of the composition of the exit gases and potential step, transient measurements. The results show that the hydrogenation reaction proceeds rapidly and essentially to completion. By fitting the experimental transient data to the results from a zero-dimensional mathematical model of the process, a set of kinetic parameters for the reactions has been obtained that give generally good agreement with the experimental results. It seems probable that similar experimental techniques could be used to study the electrochemical hydrogenation of other unsaturated organic molecules of more industrial significance.

  12. Ethylene, nitric oxide and haemoglobins in plant tolerance to flooding

    DEFF Research Database (Denmark)

    Mur, Luis A J; Gupta, Kapuganti J; Chakraborty, U

    2015-01-01

    -tolerant species Rumex palustris and the model plant Arabidopsis thaliana have been extensively exploited to reveal some key molecular events. Our groups have recently demonstrated that nitric oxide (NO) triggers the biosynthesis of ethylene during stress and that NO plays key roles in PCD and the hyponastic......As much as 12% of the world's soils may suffer excess water so that flooding is a major limiting factor on crop production in many areas. Plants attempt to deal with submergence by forming root aerenchyma to facilitate oxygen diffusion from the shoot to the root, initiating a hyponastic response....... This chapter will detail our understanding of the roles of ethylene, NO and haemoglobin in flooding stress....

  13. Kinetic modelling of radiochemical ageing of ethylene-propylene copolymers

    International Nuclear Information System (INIS)

    Colin, Xavier; Richaud, Emmanuel; Verdu, Jacques; Monchy-Leroy, Carole

    2010-01-01

    A non-empirical kinetic model has been built for describing the general trends of radiooxidation kinetics of ethylene-propylene copolymers (EPR) at low γ dose rate and low temperature. It is derived from a radical chain oxidation mechanism composed of 30 elementary reactions: 19 relative to oxidation of methylene and methyne units plus 11 relative to their eventual cooxidation. The validity of this model has been already checked successfully elsewhere for one homopolymer: polyethylene (PE) (; ). In the present study, it is now checked for polypropylene (PP) and a series of three EPR differing essentially by their mole fraction of ethylene (37%, 73% and 86%) and their crystallinity degree (0%, 5% and 26%). Predicted values of radiation-chemical yields are in good agreement with experimental ones published in the last half past century.

  14. Deformation of confined poly(ethylene oxide) in multilayer films.

    Science.gov (United States)

    Lai, Chuan-Yar; Hiltner, Anne; Baer, Eric; Korley, LaShanda T J

    2012-04-01

    The effect of confinement on the deformation behavior of poly(ethylene oxide) (PEO) was studied using melt processed coextruded poly(ethylene-co-acrylic acid) (EAA) and PEO multilayer films with varying PEO layer thicknesses from 3600 to 25 nm. The deformation mechanism was found to shift as layer thickness was decreased between 510 and 125 nm, from typical axial alignment of the crystalline fraction, as seen in bulk materials, to nonuniform micronecking mechanisms found in solution-grown single crystals. This change was evaluated via tensile testing, wide-angle X-ray diffraction (WAXD), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). With the commercially relevant method of melt coextrusion, we were able to overcome the limitations to the testing of solution-grown single crystals, and the artifacts that occur from their handling, and bridged the gap in knowledge between thick bulk materials and thin single crystals.

  15. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. Copyright © 2016, American Association for the Advancement of Science.

  16. Alkylation of isobutane by ethylene: A thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Goupil, J.M.; Poirier, J.L.; Cornet, D. (Univ. of Caen (France). Lab. Catalyse et Spectrochimie)

    1994-03-01

    Alkylation of isobutane by ethylene produces mainly hexanes, but a variety of other compounds, alkanes or alkenes, may be formed by secondary reactions such as successive alkylations, isomerization, and ethylene polymerization. The equilibrium distribution of products is evaluated in the temperature range 280--680 K and at various initial compositions and pressures. Isomer groups are treated using Alberty's formulation. Calculations show that alkenes are thermodynamically unstable under usual reaction conditions. The equilibrium amounts of alkanes are such that C[sub 6] [much gt] C[sub 8] [much gt] C[sub 10] and heavy alkanes also appear unstable. The selective formation of particular isomers (dimethylbutanes, trimethylpentanes) is also integrated in the equilibrium equations. The calculated compositions (C[sub 6]:C[sub 8]:C[sub 10]) are compared with experimental data.

  17. Hormones in the immune system and their possible role. A critical review.

    Science.gov (United States)

    Csaba, György

    2014-09-01

    Immune cells synthesize, store and secrete hormones, which are identical with the hormones of the endocrine glands. These are: the POMC hormones (ACTH, endorphin), the thyroid system hormones (TRH, TSH, T3), growth hormone (GH), prolactin, melatonin, histamine, serotonin, catecholamines, GnRH, LHRH, hCG, renin, VIP, ANG II. This means that the immune cells contain all of the hormones, which were searched at all and they also have receptors for these hormones. From this point of view the immune cells are similar to the unicells (Tetrahymena), so it can be supposed that these cells retained the properties characteristic at a low level of phylogeny while other cells during the evolution accumulated to form endocrine glands. In contrast to the glandular endocrine cells, immune cells are polyproducers and polyreceivers. As they are mobile cells, they are able to transport the stored hormone to different places (packed transport) or attracted by local factors, accumulate in the neighborhood of the target, synthesizing and secreting hormones locally. This is taking place, e.g. in the case of endorphin, where the accumulating immune cells calms pain caused by the inflammation. The targeted packed transport is more economical than the hormone-pouring to the blood circulation of glandular endocrines and the targeting also cares the other receptor-bearing cells timely not needed the effect. Mostly the immune-effects of immune-cell derived hormones were studied (except endorphin), however, it is not exactly cleared, while the system could have scarcely studied important roles in other cases. The evolutionary aspects and the known as well, as possible roles of immune-endocrine system and their hormones are listed and discussed.

  18. Removal of ethylene oxide from waste gases by absorption

    Directory of Open Access Journals (Sweden)

    Arsenijević Zorana Lj.

    2011-01-01

    Full Text Available Ethylene oxide (EtO is an organic compound, which is used as starting material in the production of polymers and as sterilizing agent for thermolabile materials. Although ethylene oxide is not common as an organic pollutant, its removal from numerous emission sources (e.g. ethylene oxide production plants or food and pharmaceutical sterilizing units is of the crucial importance because of its mutagenic, teratogenic and cancerogenic effect on human health. The objective of this paper is the experimental investigation of ethylene oxide (EtO absorption in diluted aqueous solution of sulfuric acid in order to evaluate the applicability of this procedure as well as to obtain project parameters for industrial plant realization. It was found that absorption is suitable as the fist step in the purification treatment of high EtO concentrations in the emission gases. According to the literature data, the basic parameter that defines the scrubber efficiency is the contact time, i.e. the ratio of packing height in scrubber and velocity of gas mixture. To investigate the characteristics of wet treatment in a broad range of contact time, part of experimental studies were conducted in the system with two and with three scrubbers in series. The obtained experimental results show that the high degree of EtO removal can be achieved (>98% when the contact time is sufficiently long (about 25 s. The process is effective until the concentration of formed glycol in the solution reaches value of about 20%. The process is safe and there is no danger of ignition and explosion of air and EtO mixture, although at the entrance to the scrubber EtO concentrations are significantly above the lower explosive limit.

  19. Ring current models for acetylene and ethylene molecules

    International Nuclear Information System (INIS)

    Pelloni, Stefano; Lazzeretti, Paolo

    2009-01-01

    Spatial models of the current density vector field, induced in the electronic cloud of the acetylene and ethylene molecules by a uniform, time-independent magnetic field, are discussed in terms of topological stagnation graphs and three-dimensional streamline plots. The models are validated by documenting their ability to explain magnetic susceptibility and nuclear magnetic shieldings of carbon and hydrogen via related shielding density maps

  20. Excitation and ionization of ethylene by charged projectiles

    International Nuclear Information System (INIS)

    Wang Zhiping; Wang Jing; Zhang Fengshou

    2010-01-01

    Using the time dependent local density approximation, applied to valence electrons, coupled non-adiabatically to molecular dynamics of ions, the collision process between ethylene and fast charged projectiles is studied in the microscopic way. The impact of ionic motion on the ionization is explored to show the importance of treating electronic and ionic degrees of freedom simultaneously. The number of escaped electrons, ionization probabilities are obtained. Furthermore, it is found that the ionic extensions in different directions show the different patterns. (authors)

  1. Performance limitations of polymer electrolytes based on ethylene oxide polymers

    International Nuclear Information System (INIS)

    Buriez, Olivier; Han, Yong Bong; Hou, Jun; Kerr, John B.; Qiao, Jun; Sloop, Steven E.; Tian, Minmin; Wang, Shanger

    1999-01-01

    Studies of polymer electrolyte solutions for lithium-polymer batteries are described. Two different salts, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium trifluoromethanesulfonate (LiTf), were dissolved in a variety of polymers. The structures were all based upon the ethylene oxide unit for lithium ion solvation and both linear and comb-branch polymer architectures have been examined. Conductivity, salt diffusion coefficient and transference number measurements demonstrate the superior transport properties of the LiTFSI salt over LiTf. Data obtained on all of these polymers combined with LiTFSI salts suggest that there is a limit to the conductivity achievable at room temperature, at least for hosts containing ethylene oxide units. The apparent conductivity limit is 5 x 10-5 S/cm at 25 C. Providing that the polymer chain segment containing the ethylene oxide units is at least 5-6 units long there appears to be little influence of the polymer framework to which the solvating groups are attached. To provide adequate separator function, the mechanical properties may be disconnected from the transport properties by selection of an appropriate architecture combined with an adequately long ethylene oxide chain. For both bulk and interfacial transport of the lithium ions, conductivity data alone is insufficient to understand the processes that occur. Lithium ion transference numbers and salt diffusion coefficients also play a major role in the observed behavior and the transport properties of these polymer electrolyte solutions appear to be quite inadequate for ambient temperature performance. At present, this restricts the use of such systems to high temperature applications. Several suggestions are given to overcome these obstacles

  2. Solid acid zeolite catalysts for benzene/ ethylene alkylation reactions

    OpenAIRE

    2011-01-01

    Alkylation of benzene with ethylene to ethylbenzene is widely used in the petrochemical industry. Ethylbenzene is an important raw material in the petrochemical industry. It is used as feedstock for the production of styrene, an important material for plastic and rubber production.The conventional catalyst for this alkylation process is AlCl₃, which accounted for 24% of the worldwide ethylbenzene production in 2009.As utilization of this catalyst involves problems with separation, handling, s...

  3. Ethylene vinylacetate copolymer and nanographite composite as chemical vapour sensor

    International Nuclear Information System (INIS)

    Stepina, Santa; Sakale, Gita; Knite, Maris

    2013-01-01

    Polymer-nanostructured carbon composite as chemical vapour sensor is described, made by the dissolution method of a non-conductive polymer, ethylene vinylacetate copolymer, mixed with conductive nanographite particles (carbon black). Sensor exhibits relative electrical resistance change in chemical vapours, like ethanol and toluene. Since the sensor is relatively cheap, easy to fabricate, it can be used in air quality monitoring and at industries to control hazardous substance concentration in the air, for example, to protect workers from exposure to chemical spills

  4. Multimeric, Multifunctional Derivatives of Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    Gian Maria Bonora

    2011-07-01

    Full Text Available This article reviews the use of multifunctional polymers founded on high-molecular weight poly(ethylene glycol (PEG. The design of new PEG derivatives assembled in a dendrimer-like multimeric fashion or bearing different functionalities on the same molecule is described. Their use as new drug delivery systems based on the conjugation of multiple copies or diversely active drugs on the same biocompatible support is illustrated.

  5. Ghrelin: much more than a hunger hormone

    Science.gov (United States)

    Ghrelin is a multifaceted gut hormone that activates its receptor, growth hormone secretagogue receptor (GHS-R). Ghrelin's hallmark functions are its stimulatory effects on growth hormone release, food intake and fat deposition. Ghrelin is famously known as the 'hunger hormone'. However, ample recen...

  6. Hormone therapy and ovarian borderline tumors

    DEFF Research Database (Denmark)

    Mørch, Lina Steinrud; Løkkegaard, Ellen; Andreasen, Anne Helms

    2012-01-01

    Little is known about the influence of postmenopausal hormone therapy on the risk of ovarian borderline tumors. We aimed at assessing the influence of different hormone therapies on this risk.......Little is known about the influence of postmenopausal hormone therapy on the risk of ovarian borderline tumors. We aimed at assessing the influence of different hormone therapies on this risk....

  7. Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis

    Science.gov (United States)

    Kammerhofer, Nina; Radakovic, Zoran; Regis, Jully M A; Dobrev, Petre; Vankova, Radomira; Grundler, Florian M W; Siddique, Shahid; Hofmann, Julia; Wieczorek, Krzysztof

    2015-01-01

    Heterodera schachtii, a plant-parasitic cyst nematode, invades host roots and induces a specific syncytial feeding structure, from which it withdraws all required nutrients, causing severe yield losses. The system H. schachtii–Arabidopsis is an excellent research model for investigating plant defence mechanisms. Such responses are suppressed in well-established syncytia, whereas they are induced during early parasitism. However, the mechanisms by which the defence responses are modulated and the role of phytohormones are largely unknown. The aim of this study was to elucidate the role of hormone-based defence responses at the onset of nematode infection. First, concentrations of main phytohormones were quantified and the expression of several hormone-related genes was analysed using quantitative real-time (qRT)-PCR or GeneChip. Further, the effects of individual hormones were evaluated via nematode attraction and infection assays using plants with altered endogenous hormone concentrations. Our results suggest a pivotal and positive role for ethylene during nematode attraction, whereas jasmonic acid triggers early defence responses against H. schachtii. Salicylic acid seems to be a negative regulator during later syncytium and female development. We conclude that nematodes are able to impose specific changes in hormone pools, thus modulating hormone-based defence and signal transduction in strict dependence on their parasitism stage. PMID:25825039

  8. Assessment of the Mutagenic Potential of Carbon Disulfide, Carbon Tetrachloride, Dichloromethane, Ethylene Dichloride, and Methyl Bromide: A Comparative Analysis in Relation to Ethylene Dibromide

    Science.gov (United States)

    The document provides an evaluation of the mutagenic potential of five alternative fumigants to ethylene dibromide(EDB). These include carbon disulfide(CS2), carbon tetrachloride(CCl4), dichloromethane(DCM), ethylene dichloride(EDC), and methyl bromide (MB). Of the five proposed ...

  9. Large Eddy Simulation of High-Speed, Premixed Ethylene Combustion

    Science.gov (United States)

    Ramesh, Kiran; Edwards, Jack R.; Chelliah, Harsha; Goyne, Christopher; McDaniel, James; Rockwell, Robert; Kirik, Justin; Cutler, Andrew; Danehy, Paul

    2015-01-01

    A large-eddy simulation / Reynolds-averaged Navier-Stokes (LES/RANS) methodology is used to simulate premixed ethylene-air combustion in a model scramjet designed for dual mode operation and equipped with a cavity for flameholding. A 22-species reduced mechanism for ethylene-air combustion is employed, and the calculations are performed on a mesh containing 93 million cells. Fuel plumes injected at the isolator entrance are processed by the isolator shock train, yielding a premixed fuel-air mixture at an equivalence ratio of 0.42 at the cavity entrance plane. A premixed flame is anchored within the cavity and propagates toward the opposite wall. Near complete combustion of ethylene is obtained. The combustor is highly dynamic, exhibiting a large-scale oscillation in global heat release and mass flow rate with a period of about 2.8 ms. Maximum heat release occurs when the flame front reaches its most downstream extent, as the flame surface area is larger. Minimum heat release is associated with flame propagation toward the cavity and occurs through a reduction in core flow velocity that is correlated with an upstream movement of the shock train. Reasonable agreement between simulation results and available wall pressure, particle image velocimetry, and OH-PLIF data is obtained, but it is not yet clear whether the system-level oscillations seen in the calculations are actually present in the experiment.

  10. Intermolecular potential energy surface and thermophysical properties of ethylene oxide.

    Science.gov (United States)

    Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C2H4O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  11. Growth Hormone and Endocrinopathies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K W; Choe, K O; Park, C Y; Lee, H; Son, H Y; Huh, K B; Ryu, K J [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1979-03-15

    This is an analysis of 39 patients studied at the Yonsei Medical Center from January, 1976 to March 1979. Of these 35 patient were suspected of having hypothalamic insufficiency and subjected to the L-Dopa stimulation test to observe growth hormone secretary function while four acromegaly patient received the glucose loading test and L-Dopa stimulation test. The results are as follows: 1) The basal level of GH in the various disease was as follows: a) The basal level was lower than the control level but was not statistically significant b) In diabetes the mean value tended to higher than the control level but was not significant statistically c) In all four acromegaly patients the GH level was significantly higher than the control level 2) Of 13 patients with diabetes, nine had diabetic retinopathy, and of those nine, six showed increased L-Dopa response. However, of the four non retinopathic DM patients, only one showed increased response to L-Dopa. 3) Two patients out of ten with Sheehan's syndrome responded to L-Dopa stimulation. 4) One Patient of eight with pituitary chromophobe adenoma responded to L-Dopa stimulation. 5) Four acromegaly patients revealed 3 acidophilic adenoma and one chromophobe adenoma histologically. Of patients receiving the L-Dopa stimulation test. Two showed a paradoxical response. Two patients who received the glucose loading test showed suppressed response. 6) Of two craniopharyngioma patients, one showed increased GH response after L-Dopa stimulation. Increased response of GH after L-Dopa stimulation was seen in one two craniopharyngioma patients and also in one of two patients with short structure.

  12. Growth Hormone and Endocrinopathies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. W.; Choe, K. O.; Park, C. Y.; Lee, H.; Son, H. Y.; Huh, K. B.; Ryu, K. J. [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1979-03-15

    This is an analysis of 39 patients studied at the Yonsei Medical Center from January, 1976 to March 1979. Of these 35 patient were suspected of having hypothalamic insufficiency and subjected to the L-Dopa stimulation test to observe growth hormone secretary function while four acromegaly patient received the glucose loading test and L-Dopa stimulation test. The results are as follows: 1) The basal level of GH in the various disease was as follows: a) The basal level was lower than the control level but was not statistically significant b) In diabetes the mean value tended to higher than the control level but was not significant statistically c) In all four acromegaly patients the GH level was significantly higher than the control level 2) Of 13 patients with diabetes, nine had diabetic retinopathy, and of those nine, six showed increased L-Dopa response. However, of the four non retinopathic DM patients, only one showed increased response to L-Dopa. 3) Two patients out of ten with Sheehan's syndrome responded to L-Dopa stimulation. 4) One Patient of eight with pituitary chromophobe adenoma responded to L-Dopa stimulation. 5) Four acromegaly patients revealed 3 acidophilic adenoma and one chromophobe adenoma histologically. Of patients receiving the L-Dopa stimulation test. Two showed a paradoxical response. Two patients who received the glucose loading test showed suppressed response. 6) Of two craniopharyngioma patients, one showed increased GH response after L-Dopa stimulation. Increased response of GH after L-Dopa stimulation was seen in one two craniopharyngioma patients and also in one of two patients with short structure.

  13. Growth Hormone and Endocrinopathies

    International Nuclear Information System (INIS)

    Kim, K. W.; Choe, K. O.; Park, C. Y.; Lee, H.; Son, H. Y.; Huh, K. B.; Ryu, K. J.

    1979-01-01

    This is an analysis of 39 patients studied at the Yonsei Medical Center from January, 1976 to March 1979. Of these 35 patient were suspected of having hypothalamic insufficiency and subjected to the L-Dopa stimulation test to observe growth hormone secretary function while four acromegaly patient received the glucose loading test and L-Dopa stimulation test. The results are as follows: 1) The basal level of GH in the various disease was as follows: a) The basal level was lower than the control level but was not statistically significant b) In diabetes the mean value tended to higher than the control level but was not significant statistically c) In all four acromegaly patients the GH level was significantly higher than the control level 2) Of 13 patients with diabetes, nine had diabetic retinopathy, and of those nine, six showed increased L-Dopa response. However, of the four non retinopathic DM patients, only one showed increased response to L-Dopa. 3) Two patients out of ten with Sheehan's syndrome responded to L-Dopa stimulation. 4) One Patient of eight with pituitary chromophobe adenoma responded to L-Dopa stimulation. 5) Four acromegaly patients revealed 3 acidophilic adenoma and one chromophobe adenoma histologically. Of patients receiving the L-Dopa stimulation test. Two showed a paradoxical response. Two patients who received the glucose loading test showed suppressed response. 6) Of two craniopharyngioma patients, one showed increased GH response after L-Dopa stimulation. Increased response of GH after L-Dopa stimulation was seen in one two craniopharyngioma patients and also in one of two patients with short structure.

  14. GDSL LIPASE1 Modulates Plant Immunity through Feedback Regulation of Ethylene Signaling1[W

    Science.gov (United States)

    Kim, Hye Gi; Kwon, Sun Jae; Jang, Young Jin; Nam, Myung Hee; Chung, Joo Hee; Na, Yun-Cheol; Guo, Hongwei; Park, Ohkmae K.

    2013-01-01

    Ethylene is a key signal in the regulation of plant defense responses. It is required for the expression and function of GDSL LIPASE1 (GLIP1) in Arabidopsis (Arabidopsis thaliana), which plays an important role in plant immunity. Here, we explore molecular mechanisms underlying the relationship between GLIP1 and ethylene signaling by an epistatic analysis of ethylene response mutants and GLIP1-overexpressing (35S:GLIP1) plants. We show that GLIP1 expression is regulated by ethylene signaling components and, further, that GLIP1 expression or application of petiole exudates from 35S:GLIP1 plants affects ethylene signaling both positively and negatively, leading to ETHYLENE RESPONSE FACTOR1 activation and ETHYLENE INSENSITIVE3 (EIN3) down-regulation, respectively. Additionally, 35S:GLIP1 plants or their exudates increase the expression of the salicylic acid biosynthesis gene SALICYLIC ACID INDUCTION-DEFICIENT2, known to be inhibited by EIN3 and EIN3-LIKE1. These results suggest that GLIP1 regulates plant immunity through positive and negative feedback regulation of ethylene signaling, and this is mediated by its activity to accumulate a systemic signal(s) in the phloem. We propose a model explaining how GLIP1 regulates the fine-tuning of ethylene signaling and ethylene-salicylic acid cross talk. PMID:24170202

  15. Ion-molecule reactions in the binary mixture of ethylene oxide and trioxane, 1

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Sugiura, Toshio.

    1977-01-01

    The formation mechanism of protonated molecular ions by cross-reactions in ethylene oxide-trioxane mixtures has been studied with use of a modified time-of-flight mass spectrometer. The precursors of the product ions were determined by analysis of the fine structure of their ionization efficiency curves using deuterated ethylene oxide. Protonated ethylene oxide is formed by the hydrogen atom transfer reaction of ethylene oxide molecular ion with trioxane, and protonated trioxane by the proton transfer reaction of CHO + (from ethylene oxide) with trioxane. In the ion-molecule reactions of ethylene-d 4 oxide-trioxane mixtures, appreciable isotope effect was observed. The CHO + from ethylene oxide is an important reactant ion as compared with that from trioxane in the proton transfer reaction, and CHO + from ethylene oxide was suggested as a thermal reactive ion. The order of proton affinity could be estimated from the proton transfer reactions involving CHO + . It was found that the proton affinity of trioxane is smaller than that of ethylene oxide. (auth.)

  16. Gastrointestinal hormone research - with a Scandinavian annotation

    DEFF Research Database (Denmark)

    Rehfeld, Jens F

    2015-01-01

    Gastrointestinal hormones are peptides released from neuroendocrine cells in the digestive tract. More than 30 hormone genes are currently known to be expressed in the gut, which makes it the largest hormone-producing organ in the body. Modern biology makes it feasible to conceive the hormones...... as a blood-borne hormone, a neurotransmitter, a local growth factor or a fertility factor. The targets of gastrointestinal hormones are specific G-protein-coupled receptors that are expressed in the cell membranes also outside the digestive tract. Thus, gut hormones not only regulate digestive functions...

  17. Copper (II)

    African Journals Online (AJOL)

    CLEMENT O BEWAJI

    Valine (2 - amino - 3 – methylbutanoic acid), is a chemical compound containing .... Stability constant (Kf). Gibb's free energy. ) (. 1. −. ∆. Mol. JG. [CuL2(H2O)2] ... synthesis and characterization of Co(ii), Ni(ii), Cu (II), and Zn(ii) complexes with ...

  18. Electronic structure of Ni-- and Ni2--ethylene cluster complexes

    International Nuclear Information System (INIS)

    Basch, H.; Newton, M.D.; Moskowitz, J.W.

    1978-01-01

    The electronic structure of metal cluster--ethylene complexes has been investigated by carrying out ab initio bonding pair-correlated, self-consistent field, and configuration interaction (CI) calculations on the NiC 2 H 4 and Ni 2 C 2 H 4 species. The π-NiC 2 H 4 and π-Ni 2 C 2 H 4 cluster complexes are found to be bound, the former only with CI, while disigma-Ni 2 C 2 H 4 has only a repulsive Ni 2 --C 2 H 4 ground state potential curve. The bonding in the π-type cluster complexes can be described as follows: The metal atom configuration is 3d 9 4s 1 with the 4s hybridized (by the metal 4p) away from the ethylene molecule, thereby allowing the π orbital to form a dative sigma bond with the metal atom. The bonding interaction is promoted by the presence of a second nickel atom behind the first one, leading to a 4s orbital electron deficiency of the bonded nickel atom and thus making this nickel atom a better electron acceptor. Back donation from the occupied metal 3d into the ethylene π* molecular orbital also takes place to some extent, and thus both features of the classical Dewar--Chatt--Duncanson model are observed. The π-Ni 2 C 2 H 4 species is analyzed in terms of the addition of a bare nickel atom to a π-NiC 2 H 4 cluster complex, with concomitant stabilization of the orbitals of the bonded nickel atom. A study of the excited electronic states of π-NiC 2 H 4 shows that low-lying 4s→π* and 3d→π* (M→L) charge transfer transitions are predicted. The former is not observed experimentally, probably due to the diffuse nature of the 4s orbital. The relationship between small cluster--ethylene complex systems and ethylene chemisorption on a nickel metal surface is discussed

  19. Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene.

    Directory of Open Access Journals (Sweden)

    Yun Ge

    Full Text Available Accumulating evidence shows that hydrogen sulfide (H2S acts as a multifunctional signaling molecule in plants, whereas the interaction between H2S and ethylene is still unclear. In the present study we investigated the role of H2S in ethylene-promoted banana ripening and senescence by the application of ethylene released from 1.0 g·L-1 ethephon solution or H2S with 1 mM sodium hydrosulfide (NaHS as the donor or in combination. Fumigation with ethylene was found to accelerate banana ripening and H2S treatment effectively alleviated ethylene-induced banana peel yellowing and fruit softening in parallel with decreased activity of polygalacturonase (PG. Ethylene+H2S treatment also delayed the decreases in chlorophyll and total phenolics, and increased the accumulation of flavonoid, whereas decreased the contents of carotenoid, soluble protein in banana peel and reducing sugar in pulp compared with ethylene treatment alone. Besides, ethylene+H2S treatment suppressed the accumulation of superoxide radicals (·O2-, hydrogen peroxide (H2O2 and malondialdehyde (MDA which accumulated highly in ethylene-treated banana peels. Furthermore H2S enhanced total antioxidant capacity in ethylene-treated banana peels with the 2,2'-azobis(3-ethylbenz-thiazoline-6-sulfonic acid (ABTS assay. The result of quantitative real-time PCR showed that the combined treatment of ethylene with H2S down-regulated the expression of ethylene synthesis genes MaACS1, MaACS2 and MaACO1 and pectate lyase MaPL compared with ethylene treatment, while the expression of ethylene receptor genes MaETR, MaERS1 and MaERS2 was enhanced in combination treatment compared with ethylene alone. In all, it can be concluded that H2S alleviates banana fruit ripening and senescence by antagonizing the effect of ethylene through reduction of oxidative stress and inhibition of ethylene signaling pathway.

  20. Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene.

    Science.gov (United States)

    Ge, Yun; Hu, Kang-Di; Wang, Sha-Sha; Hu, Lan-Ying; Chen, Xiao-Yan; Li, Yan-Hong; Yang, Ying; Yang, Feng; Zhang, Hua

    2017-01-01

    Accumulating evidence shows that hydrogen sulfide (H2S) acts as a multifunctional signaling molecule in plants, whereas the interaction between H2S and ethylene is still unclear. In the present study we investigated the role of H2S in ethylene-promoted banana ripening and senescence by the application of ethylene released from 1.0 g·L-1 ethephon solution or H2S with 1 mM sodium hydrosulfide (NaHS) as the donor or in combination. Fumigation with ethylene was found to accelerate banana ripening and H2S treatment effectively alleviated ethylene-induced banana peel yellowing and fruit softening in parallel with decreased activity of polygalacturonase (PG). Ethylene+H2S treatment also delayed the decreases in chlorophyll and total phenolics, and increased the accumulation of flavonoid, whereas decreased the contents of carotenoid, soluble protein in banana peel and reducing sugar in pulp compared with ethylene treatment alone. Besides, ethylene+H2S treatment suppressed the accumulation of superoxide radicals (·O2-), hydrogen peroxide (H2O2) and malondialdehyde (MDA) which accumulated highly in ethylene-treated banana peels. Furthermore H2S enhanced total antioxidant capacity in ethylene-treated banana peels with the 2,2'-azobis(3-ethylbenz-thiazoline-6-sulfonic acid (ABTS) assay. The result of quantitative real-time PCR showed that the combined treatment of ethylene with H2S down-regulated the expression of ethylene synthesis genes MaACS1, MaACS2 and MaACO1 and pectate lyase MaPL compared with ethylene treatment, while the expression of ethylene receptor genes MaETR, MaERS1 and MaERS2 was enhanced in combination treatment compared with ethylene alone. In all, it can be concluded that H2S alleviates banana fruit ripening and senescence by antagonizing the effect of ethylene through reduction of oxidative stress and inhibition of ethylene signaling pathway.

  1. Operation Everest II. Plasma Lipid and Hormonal Responses

    Science.gov (United States)

    1988-01-01

    ingestion of a hypocaloric diet , weight loss, and a decrement in maximal oxygen uptake. Also, fasting plasma TG accumulation was increased with a...in the hypobaric chamber, the subjects consumed an ad libitum diet . The menus, food preparation, and dietary data collection were supervised by a...approximately 3000 kcal/day distributed to provide 60% carbohydrate, 15% protein, and 25% fat in the diet . A variety of foods and non-alcoholic beverages were

  2. [Carcinogenic activity of ethylene oxide and its reaction products 2-chloroethanol, 2-bromoethanol, ethylene glycol and diethylene glycol. III. Research on ethylene glycol and diethylene glycol for carcinogenic effects].

    Science.gov (United States)

    Dunkelberg, H

    1987-03-01

    Ethylene glycol and diethylene glycol were each administered once weekly subcutaneously to groups of 100 female NMRI mice at 3 dosages (30; 10 und 3 mg single dose per mouse). Tricaprylin was used as solvent. The mean total dosage per mouse was 2110.5; 707.0 and 196.2 mg for ethylene glycol and 2029.8; 671.7 and 213.3 mg for diethylene glycol. Neither ethylene glycol nor diethylene glycol induced tumors at the injection site or away from the point of administration.

  3. The effect of ethylene on root growth of Zea mays seedlings

    Science.gov (United States)

    Whalen, M. C.; Feldman, L. J.

    1988-01-01

    The control of primary root growth in Zea mays cv. Merit by ethylene was examined. At applied concentrations of ethylene equal to or greater than 0.1 microliter L-1, root elongation during 24 h was inhibited. The half-maximal response occurred at 0.6 microliter L-1 and the response saturated at 6 microliters L-1. Inhibition of elongation took place within 20 min. However, after ethylene was removed, elongation recovered to control values within 15 min. Root elongation was also inhibited by green light. The inhibition caused by a 24-h exposure to ethylene was restricted to the elongating region just behind the apex, with inhibition of cortical cell elongation being the primary contributor to the effect. Based on use of 2,5-norbornadiene, a gaseous competitive inhibitor of ethylene, it was concluded that endogenous ethylene normally inhibits root elongation.

  4. Hormonal Approaches to Male contraception

    Science.gov (United States)

    Wang, Christina; Swerdloff, Ronald S.

    2010-01-01

    Purpose of review Condoms and vasectomy are male controlled family planning methods but suffer from limitations in compliance (condoms) and limited reversibility (vasectomy); thus many couples desire other options. Hormonal male contraceptive methods have undergone extensive clinical trials in healthy men and shown to be efficacious, reversible and appear to be safe. Recent Findings The success rate of male hormonal contraception using injectable testosterone alone is high and comparable to methods for women. Addition of progestins to androgens improved the rate of suppression of spermatogenesis. Supported by government or non-government organizations, current studies aim to find the best combination of testosterone and progestins for effective spermatogenesis suppression and to explore other delivery methods for these hormones. Translation of these advances to widespread use in the developed world will need the manufacturing and marketing skills of the pharmaceutical industry. Availability of male contraceptives to the developing world may require commitments of governmental and non-governmental agencies. In a time when imbalance of basic resources and population needs are obvious, this may prove to be a very wise investment. Summary Male hormonal contraception is efficacious, reversible and safe for the target population of younger men in stable relationships. Suppression of spermatogenesis is achieved with a combination of an androgen and a progestin. Partnership with industry will accelerate the marketing of a male hormonal contraceptive. Research is ongoing on selective androgen and progesterone receptor modulators that suppress spermatogenesis, minimize potential adverse events while retaining the androgenic actions. PMID:20808223

  5. Hormone therapy and ovarian cancer

    DEFF Research Database (Denmark)

    Mørch, Lina Steinrud; Løkkegaard, Ellen; Andreasen, Anne Helms

    2009-01-01

    CONTEXT: Studies have suggested an increased risk of ovarian cancer among women taking postmenopausal hormone therapy. Data are sparse on the differential effects of formulations, regimens, and routes of administration. OBJECTIVE: To assess risk of ovarian cancer in perimenopausal and postmenopau......CONTEXT: Studies have suggested an increased risk of ovarian cancer among women taking postmenopausal hormone therapy. Data are sparse on the differential effects of formulations, regimens, and routes of administration. OBJECTIVE: To assess risk of ovarian cancer in perimenopausal...... and postmenopausal women receiving different hormone therapies. DESIGN AND SETTING: Nationwide prospective cohort study including all Danish women aged 50 through 79 years from 1995 through 2005 through individual linkage to Danish national registers. Redeemed prescription data from the National Register...... bands included hormone exposures as time-dependent covariates. PARTICIPANTS: A total of 909,946 women without hormone-sensitive cancer or bilateral oophorectomy. MAIN OUTCOME MEASURE: Ovarian cancer. RESULTS: In an average of 8.0 years of follow-up (7.3 million women-years), 3068 incident ovarian...

  6. Radioimmunological and clinical studies with luteinizing hormone releasing hormone (LRH)

    International Nuclear Information System (INIS)

    Dahlen, H.G.

    1986-01-01

    Radioimmunoassay for Luteinizing Hormone Releasing Hormone (LRH) has been established, tested and applied. Optimal conditions for the performance with regards to incubation time, incubation temperature, concentration of antiserum and radiolabelled LRH have been established. The specificity of the LRH immunoassay was investigated. Problems with direct measurement of LRH in plasmas of radioimmunoassay are encountered. The LRH distribution in various tissues of the rat are investigated. By means of a system for continuous monitoring of LH and FSH in women the lowest effective dose of LRH causing a significant release of LH and FSH could be established. (Auth.)

  7. PENGARUH PEMBERIAN MONOSODIUM GLUTAMAT TERHADAP KADAR HORMON ESTRADIOL DAN KADAR HORMON PROGESTERON PADA TIKUS PUTIH BETINA (Rattus norvegicus

    Directory of Open Access Journals (Sweden)

    andri ani

    2018-03-01

    Full Text Available Perubahan pola demografi di negara maju dan negara berkembang, angka kejadian infertilitas di negara maju dilaporkan sekitar 5%-8% dan di negara berkembang sekitar 30%.WHO memperkirakan sekitar 8%-10% atau sekitar 50-80 juta pasangan suami istri di seluruh dunia mengalami masalah infertilitas, sehingga membuat infertilitas menjadi masalah mendesak. Untuk itu diperlukan pengendalian infertilitas, salah satunya adalah kewaspadaan perubahan gaya hidup, perubahan ini juga mempengaruhi pola konsumsi makanan dengan lebih banyak mengkonsumsi jenis makanan cepat saji yang banyak mengandung zat aditif (penyedap rasa. Penelitian ini bertujuan untuk mengetahui pengaruh pemberian monosodium glutamate terhadap kadar hormon estradiol dan kadar hormon progesteron pada tikus putih betina ( Rattus norvegicus .Penelitian ini menggunakan metode pendekatan post test only control group design, terhadap tikus putih betina dengan berat 200 – 250 gr. Sampel terdiri dari 24 ekor tikus yang dibagi 4 kelompok yaitu kelompok kontrol ( K , perlakuan I, II dan III . Kelompok perlakuan diberikan monosodium glutamat dengan dosis masing-masing : 45 mg, 54 mg dan 63 mg setiap hari diberikan peroral yang dilarutkan dengan aquabides 2 ml selama 20 hari yang dimulai pada awal fase proestrus. Setelah 20 hari perlakuan tikus di korbankan dan diambil darahnya. Pemeriksaan kadar hormone estradiol dan progesteron menggunakan Elisa Spectrophotometer.  Kemudian hasilnya dianalisa dengan menggunakan One Way ANOVA dan dilanjutkan dengan uji Multiple Comparison jenis Bonferroni.Hasil penelitian pemberian  monosodium glutamat dengan dosis 45 mg/ ekor/ hari, 54 mg/ekor/ hari dan 63 mg/ ekor /hari dapat menurunkan kadar hormon estradiol tikus putih betina (Rattus norvegicus secara signifikan. Dan pemberian monosodium glutamate dengan dosis 45 mg/ ekor/ hari dapat menurunkan kadar hormon progesteron tikus putih betina (Rattus norvegicus walaupun tidak berpengaruh secara signifikan , dan pada

  8. Novel Routes to Ethylene Glycol Synthesis via Acid-Catalyzed Carbonylation of Formaldehyde and Dimethoxymethane

    OpenAIRE

    Celik, Fuat Emin

    2010-01-01

    Carbon-carbon bond forming carbonylation reactions were investigated as candidates to replace ethene epoxidation as the major source of ethylene glycol production. This work was motivated by the potentially lower cost of carbon derived from synthesis gas as compared to ethylene. Synthesis gas can be produced from relatively abundant and cheap natural gas, coal, and biomass resources whereas ethylene is derived from increasingly scarce and expensive crude oil. From synthesis gas, a range of...

  9. Production of volatiles by the red seaweed Gelidium arbuscula (Rhodophyta): emission of ethylene and dimethyl sulfide.

    Science.gov (United States)

    Garcia-Jimenez, Pilar; Brito-Romano, Olegario; Robaina, Rafael R

    2013-08-01

    The effects of different light conditions and exogenous ethylene on the emission of volatile compounds from the alga Gelidium arbuscula Bory de Saint-Vincent were studied. Special emphasis was placed on the possibility that the emission of ethylene and dimethyl sulfide (DMS) are related through the action of dimethylsulfoniopropionate (DMSP) lyase. The conversion of DMSP to DMS and acrylate, which is catalyzed by DMSP lyase, can indirectly support the synthesis of ethylene through the transformation of acrylate to ethylene. After mimicking the desiccation of G. arbuscula thalli experienced during low tides, the volatile compounds emitted were trapped in the headspace of 2 mL glass vials for 1 h. Two methods based on gas chromatography/mass spectrometry revealed that the range of organic volatile compounds released was affected by abiotic factors, such as the availability and spectral quality of light, salinity, and exogenous ethylene. Amines and methyl alkyl compounds were produced after exposure to white light and darkness but not after exposure to exogenous ethylene or red light. Volatiles potentially associated with the oxidation of fatty acids, such as alkenes and low-molecular-weight oxygenated compounds, accumu-lated after exposure to exogenous ethylene and red light. Ethylene was produced in all treatments, especially after exposure to exogenous ethylene. Levels of DMS, the most abundant sulfur-compound that was emitted in all of the conditions tested, did not increase after incubation with ethylene. Thus, although DMSP lyase is active in G. arbuscula, it is unlikely to contribute to ethylene synthesis. The generation of ethylene and DMS do not appear to be coordinated in G. arbuscula. © 2013 Phycological Society of America.

  10. Outcome of patients in acute poisoning with ethylene glycol - factors which may have influence on evolution

    OpenAIRE

    Tanasescu, A; Macovei, RA; Tudosie, MS

    2014-01-01

    Introduction. Intoxication with ethylene glycol occurs as a result of intentional ingestion in suicide attempts or accidentally. Clinical ethylene glycol poisoning is not specific and occurs in many poisoning cases therefore the diagnosis is difficult. Early diagnostic and establishment of therapy are very important for a favorable evolution. The mortality rate of ethylene glycol intoxication ranges between 1 and 22% depending on the amount of alcohol ingestion and the time period between alc...

  11. Ethylene Removal in Strong Electric Field Formed by Floating Multi-Electrode

    Science.gov (United States)

    Nagasawa, Takeshi

    Ethylene gas that contains the acetic acid ester element can be removed by applying the pulse voltage to the floating multi-electrode device. This phenomenon is caused in the weak discharge by the strong electric field between the narrow electrodes. This device is possible in very small electric power (apples, and 3.5ppm/30min for 2 melons. However, ethylene gas that doesn't contain the acetic acid ester cannot be removed (ex. ethylene pure gas and Japanese apricot).

  12. Differential feedback regulation of ethylene biosynthesis in pulp and peel tissues of banana fruit.

    Science.gov (United States)

    Inaba, Akitsugu; Liu, Xuejun; Yokotani, Naoki; Yamane, Miki; Lu, Wang-Jin; Nakano, Ryohei; Kubo, Yasutaka

    2007-01-01

    The feedback regulation of ethylene biosynthesis in banana [Musa sp. (AAA group, Cavendish subgroup) cv. Grand Nain] fruit was investigated in an attempt to clarify the opposite effect of 1-methylcyclopropene (1-MCP), an ethylene action inhibitor, before and after the onset of ripening. 1-MCP pre-treatment completely prevented the ripening-induced effect of propylene in pre-climacteric banana fruit, whereas treatment after the onset of ripening stimulated ethylene production. In pre-climacteric fruit, higher concentrations of propylene suppressed ethylene production more strongly, despite their earlier ethylene-inducing effect. Exposure of the fruit ripened by propylene to 1-MCP increased ethylene production concomitantly with an increase in 1-aminocyclopropane-1-carboxylate (ACC) synthase activity and ACC content, and prevented a transient decrease in MA-ACS1 transcripts in the pulp tissues. In contrast, in the peel of ripening fruit, 1-MCP prevented the increase in ethylene production and subsequently the ripening process by reduction of the increase in MA-ACS1 and MA-ACO1 transcripts and of ACC synthase and ACC oxidase activities. These results suggest that ethylene biosynthesis in ripening banana fruit may be controlled negatively in the pulp tissue and positively in the peel tissue. This differential regulation by ethylene in pulp and peel tissues was also observed for MA-PL, MA-Exp, and MA-MADS genes.

  13. Gas-phase ion-molecular reactions of free ethylsilylic ions with ethylene

    International Nuclear Information System (INIS)

    Shchukin, E.V.; Kochina, T.A.; Sinotova, E.N.; Ignat'ev, I.S.

    2001-01-01

    Interaction of ethylsilylic ions, resulting from β-decay of tritium compounds, with ethylene in gaseous phase was studied by radiochemical method. The interaction occurs via formation of excited adduct C 4 H 11 Si + , its structure presenting a complex of ethylsilylic cation and ethylene. In the course of the complex lifetime isotopic exchange between the cation tritium atoms and proton of ethylene takes place along with isomerization of ethylsilylic cation into dimethylsilylic one. Decomposition of the complex gives rise largely to labeled ethylene formation [ru

  14. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants.

    Science.gov (United States)

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Zhou, Weiwei; Lu, Lingli; Lin, Xianyong

    2016-01-08

    Inhibition of root elongation is one of the most distinct symptoms of aluminium (Al) toxicity. Although putrescine (Put) has been identified as an important signaling molecule involved in Al tolerance, it is yet unknown how Put mitigates Al-induced root inhibition. Here, the possible mechanism was investigated by using two wheat genotypes differing in Al resistance: Al-tolerant Xi Aimai-1 and Al-sensitive Yangmai-5. Aluminium caused more root inhibition in Yangmai-5 and increased ethylene production at the root apices compared to Xi Aimai-1, whereas the effects were significantly reversed by ethylene biosynthesis inhibitors. The simultaneous exposure of wheat seedlings to Al and ethylene donor, ethephon, or ethylene biosynthesis precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), increased ethylene production and aggravated root inhibition, which was more pronounced in Xi Aimai-1. In contrast, Put treatment decreased ethylene production and alleviated Al-induced root inhibition in both genotypes, and the effects were more conspicuous in Yangmai-5. Furthermore, our results indicated that Al-induced ethylene production was mediated by ACC synthase (ACS) and ACC oxidase, and that Put decreased ethylene production by inhibiting ACS. Altogether, these findings indicate that ethylene is involved in Al-induced root inhibition and this process could be alleviated by Put through inhibiting ACS activity.

  15. Inhalation exposure to ethylene induces eosinophilic rhinitis and nasal epithelial remodeling in Fischer 344 rats.

    Science.gov (United States)

    Brandenberger, Christina; Hotchkiss, Jon A; Krieger, Shannon M; Pottenger, Lynn H; Harkema, Jack R

    2015-11-05

    This study investigated the time- and concentration-dependent effects of inhaled ethylene on eosinophilic rhinitis and nasal epithelial remodeling in Fisher 344 rats exposed to 0, 10, 50, 300, or 10,000 ppm ethylene, 6 h/day, 5 days/week for up to 4 weeks. Morphometric quantitation of eosinophilic inflammation and mucous cell metaplasia/hyperplasia (MCM) and nasal mucosal gene expression were evaluated at anatomic sites previously shown to undergo ethylene-induced epithelial remodeling. Serum levels of total IgE, IgG1 and IgG2a were measured to determine if ethylene exposure increased the expression of Th2-associated (IgE and IgG1) relative to Th1-associated (IgG2a) antibody isotypes. Rats exposed to 0 or 10,000 ppm for 1, 3, 5, 10, or 20 days were analyzed to assess the temporal pattern of ethylene-induced alterations in nasal epithelial cell proliferation, morphology and gene expression. Rats exposed to 0, 10, 50, 300, and 10,000 ppm ethylene for 20 days were analyzed to assess concentration-dependent effects on lesion development. Additional rats exposed 4 weeks to 0, 300, or 10,000 ppm ethylene were held for 13 weeks post-exposure to examine the persistence of ethylene-induced mucosal alterations. The data indicate that cell death and reparative cell proliferation were not a part of the pathogenesis of ethylene-induced nasal lesions. Enhanced gene expression of Th2 cytokines (e.g., IL-5, IL-13) and chitinase (YM1/2) in the nasal mucosa was much greater than that of Th1 cytokines (e.g., IFNγ) after ethylene exposure. A significant increase in MCM was measured after 5 days of exposure to 10,000 ppm ethylene and after 20 days of exposure 10 ppm ethylene. Ethylene-induced MCM was reversible after cessation of exposure. No increase in total serum IgE, IgG1 or IgG2a was measured in any ethylene-exposed group. These data do not support involvement of an immune-mediated allergic mechanism in the pathogenesis of ethylene-induced nasal lesions in rats. Repeated

  16. Ethylene Gas Sensing Properties of Tin Oxide Nanowires Synthesized via CVD Method

    Science.gov (United States)

    Akhir, Maisara A. M.; Mohamed, Khairudin; Rezan, Sheikh A.; Arafat, M. M.; Haseeb, A. S. M. A.; Uda, M. N. A.; Nuradibah, M. A.

    2018-03-01

    This paper studies ethylene gas sensing performance of tin oxide (SnO2) nanowires (NWs) as sensing material synthesized using chemical vapor deposition (CVD) technique. The effect of NWs diameter on ethylene gas sensing characteristics were investigated. SnO2 NWs with diameter of ∼40 and ∼240 nm were deposited onto the alumina substrate with printed gold electrodes and tested for sensing characteristic toward ethylene gas. From the finding, the smallest diameter of NWs (42 nm) exhibit fast response and recovery time and higher sensitivity compared to largest diameter of NWs (∼240 nm). Both sensor show good reversibility features for ethylene gas sensor.

  17. Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea).

    Science.gov (United States)

    Iqbal, Noushina; Umar, Shahid; Khan, Nafees A

    2015-04-15

    Proline content and ethylene production have been shown to be involved in salt tolerance mechanisms in plants. To assess the role of nitrogen (N) in the protection of photosynthesis under salt stress, the effect of N (0, 5, 10, 20 mM) on proline and ethylene was studied in mustard (Brassica juncea). Sufficient N (10 mM) optimized proline production under non-saline conditions through an increase in proline-metabolizing enzymes, leading to osmotic balance and protection of photosynthesis through optimal ethylene production. Excess N (20 mM), in the absence of salt stress, inhibited photosynthesis and caused higher ethylene evolution but lower proline production compared to sufficient N. In contrast, under salt stress with an increased demand for N, excess N optimized ethylene production, which regulates the proline content resulting in recovered photosynthesis. The effect of excess N on photosynthesis under salt stress was further substantiated by the application of the ethylene biosynthesis inhibitor, 1-aminoethoxy vinylglycine (AVG), which inhibited proline production and photosynthesis. Without salt stress, AVG promoted photosynthesis in plants receiving excess N by inhibiting stress ethylene production. The results suggest that a regulatory interaction exists between ethylene, proline and N for salt tolerance. Nitrogen differentially regulates proline production and ethylene formation to alleviate the adverse effect of salinity on photosynthesis in mustard. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Electrochemical biosensors for hormone analyses.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Genetic Variation for Thermotolerance in Lettuce Seed Germination Is Associated with Temperature-Sensitive Regulation of ETHYLENE RESPONSE FACTOR1 (ERF1)1[OPEN

    Science.gov (United States)

    O’Brien, Laurel K.; Truco, Maria Jose; Huo, Heqiang; Sideman, Rebecca; Hayes, Ryan; Michelmore, Richard W.

    2016-01-01

    Seeds of most lettuce (Lactuca sativa) cultivars are susceptible to thermoinhibition, or failure to germinate at temperatures above approximately 28°C, creating problems for crop establishment in the field. Identifying genes controlling thermoinhibition would enable the development of cultivars lacking this trait and, therefore, being less sensitive to high temperatures during planting. Seeds of a primitive accession (PI251246) of lettuce exhibited high-temperature germination capacity up to 33°C. Screening a recombinant inbred line population developed from PI215246 and cv Salinas identified a major quantitative trait locus (Htg9.1) from PI251246 associated with the high-temperature germination phenotype. Further genetic analyses discovered a tight linkage of the Htg9.1 phenotype with a specific DNA marker (NM4182) located on a single genomic sequence scaffold. Expression analyses of the 44 genes encoded in this genomic region revealed that only a homolog of Arabidopsis (Arabidopsis thaliana) ETHYLENE RESPONSE FACTOR1 (termed LsERF1) was differentially expressed between PI251246 and cv Salinas seeds imbibed at high temperature (30°C). LsERF1 belongs to a large family of transcription factors associated with the ethylene-signaling pathway. Physiological assays of ethylene synthesis, response, and action in parental and near-isogenic Htg9.1 genotypes strongly implicate LsERF1 as the gene responsible for the Htg9.1 phenotype, consistent with the established role for ethylene in germination thermotolerance of Compositae seeds. Expression analyses of genes associated with the abscisic acid and gibberellin biosynthetic pathways and results of biosynthetic inhibitor and hormone response experiments also support the hypothesis that differential regulation of LsERF1 expression in PI251246 seeds elevates their upper temperature limit for germination through interactions among pathways regulated by these hormones. Our results support a model in which LsERF1 acts through

  20. Synthesis by ATRP of poly(ethylene-co-butylene)-block-polystyrene, poly(ethylene-co-butylene)-block-poly(4-acetoxystyrene) and its hydrolysis product poly(ethylene-co-butylene)-block-poly(hydroxystyrene)

    DEFF Research Database (Denmark)

    Jankova, Katja; Kops, Jørgen; Chen, Xianyi

    1999-01-01

    Diblock copolymers of poly(ethylene-co-butylene) and polystyrene or poly(4-acetoxystyrene) are synthesized by atom transfer radical polymerization (ATRP) using a 2-bromopropionic ester macroinitiator prepared from commercial monohydroxyl functional narrow dispersity hydrogenated polybutadiene...

  1. Some theoretical aspects of hormone receptor determination

    International Nuclear Information System (INIS)

    Sluiter, W.J.

    1981-01-01

    Suitable antisera for determination of hormone receptors are not available for the majority of hormone receptors. Therefore, the determination of hormone receptors is mostly performed in terms of binding capacity for the appropriate hormone, using radioactive hormone labels. Some theoretical aspects of such a receptor determination are discussed including the length of incubation (total or unoccupied receptor concentration), single point or multiple point (Scatchard) analysis (regarding the influence of other specific binders), the correction procedure for non-specific binding and the influence of the circulating hormone level. (Auth.)

  2. Advances in male hormonal contraception.

    Science.gov (United States)

    Costantino, Antonietta; Gava, Giulia; Berra, Marta; Meriggiola Maria, Cristina

    2014-11-01

    Contraception is a basic human right for its role on health, quality of life and wellbeing of the woman and of the society as a whole. Since the introduction of female hormonal contraception the responsibility of family planning has always been with women. Currently there are only a few contraceptive methods available for men, but recently, men have become more interested in supporting their partners actively. Over the last few decades different trials have been performed providing important advances in the development of a safe and effective hormonal contraceptive for men. This paper summarizes some of the most recent trials.

  3. Advances in male hormonal contraception

    Directory of Open Access Journals (Sweden)

    Costantino Antonietta

    2014-01-01

    Full Text Available Contraception is a basic human right for its role on health, quality of life and wellbeing of the woman and of the society as a whole. Since the introduction of female hormonal contraception the responsibility of family planning has always been with women. Currently there are only a few contraceptive methods available for men, but recently, men have become more interested in supporting their partners actively. Over the last few decades different trials have been performed providing important advances in the development of a safe and effective hormonal contraceptive for men. This paper summarizes some of the most recent trials.

  4. Hormonal interaction in diabetic pregnancy

    International Nuclear Information System (INIS)

    Hafiez, A.R.A.; Abdel-Hafez, M.A.; Osman, E.A.; Ibrahim, M.S.

    1984-01-01

    Serum glucose, human placental lactogen (HPL), prolactin (PRL), estradiol (E 2 ), progesterone (P), cortisol and human growth hormone (HGH) were determined in nondiabetic (19 cases) and diabetic (19 cases) pregnant women during the 32nd and 36th week of gestation. Significant elevation of HPL, PRL, HGH and cortisol was found in the diabetic pregnant women during the 32nd week while E 2 and P were not significantly changed from the corresponding levels in the nondiabetic group. One can conclude that the changes in the hormonal pattern during gestation may induce carbohydrate intolerance observed in diabetic pregnancies. (author)

  5. Hormonal contraception, thrombosis and age

    DEFF Research Database (Denmark)

    Lidegaard, Øjvind

    2014-01-01

    : First choice in women below 35 years should be a combined low-risk pill, that is, with a second-generation progestin, with the lowest compliable dose of estrogen. Young women with risk factors of thrombosis such as age above 35 years, genetic predispositions, adiposity, polycystic ovary syndrome......INTRODUCTION: This paper reviews the risk of thrombosis with use of different types of hormonal contraception in women of different ages. AREAS COVERED: Combined hormonal contraceptives with desogestrel, gestodene, drospirenone or cyproterone acetate (high-risk products) confer a sixfold increased...

  6. Hormonal Changes and Sexual Dysfunction.

    Science.gov (United States)

    Zhou, Eric S; Frederick, Natasha N; Bober, Sharon L

    2017-11-01

    Sexual dysfunction is a common concern for many patients with cancer after treatment. Hormonal changes as a result of cancer-directed therapy can affect both male and female sexual health. This has the potential to significantly impact patients' quality of life, but is underreported and undertreated in the oncology setting. This review discusses commonly reported sexual issues and the role that hormonal changes play in this dysfunction. Although medical and psychosocial intervention strategies exist, there is a clear need for further research to formally develop programming that can assist people whose sexual health has been impacted by cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Luteinizing hormone in testicular descent

    DEFF Research Database (Denmark)

    Toppari, Jorma; Kaleva, Marko M; Virtanen, Helena E

    2007-01-01

    alone is not sufficient for normal testicular descent. The regulation of androgen production is influenced both by placental human chorionic gonadotropin (hCG) and pituitary luteinizing hormone (LH). There is evidence that the longer pregnancy continues, the more important role pituitary LH may have....... Insulin-like hormone-3 (INSL3) is suggested to be the main regulator of gubernacular development and therefore an apparent regulator of testicular descent. INSL3 production is also related to LH, and reduced INSL3 action is a possible cause for cryptorchidism. Cryptorchid boys have normal testosterone...

  8. Grape berry ripening delay induced by a pre-véraison NAA treatment is paralleled by a shift in the expression pattern of auxin- and ethylene-related genes.

    Science.gov (United States)

    Ziliotto, Fiorenza; Corso, Massimiliano; Rizzini, Fabio Massimo; Rasori, Angela; Botton, Alessandro; Bonghi, Claudio

    2012-10-09

    Auxins act as repressors of ripening inception in grape (véraison), while ethylene and abscisic acid (ABA) play a positive role as inducers of the syndrome. Despite the increasing amount of information made available on this topic, the complex network of interactions among these hormones remains elusive. In order to shed light on these aspects, a holistic approach was adopted to evaluate, at the transcriptomic level, the crosstalk between hormones in grape berries, whose ripening progression was delayed by applying naphtalenacetic acid (NAA) one week before véraison. The NAA treatment caused significant changes in the transcription rate of about 1,500 genes, indicating that auxin delayed grape berry ripening also at the transcriptional level, along with the recovery of a steady state of its intracellular concentration. Hormone indices analysis carried out with the HORMONOMETER tool suggests that biologically active concentrations of auxins were achieved throughout a homeostatic recovery. This occurred within 7 days after the treatment, during which the physiological response was mainly unspecific and due to a likely pharmacological effect of NAA. This hypothesis is strongly supported by the up-regulation of genes involved in auxin conjugation (GH3-like) and action (IAA4- and IAA31-like). A strong antagonistic effect between auxin and ethylene was also observed, along with a substantial 'synergism' between auxins and ABA, although to a lesser extent. This study suggests that, in presence of altered levels of auxins, the crosstalk between hormones involves diverse mechanisms, acting at both the hormone response and biosynthesis levels, creating a complex response network.

  9. Mammographic changes in postmenopausal women : comparative effects between continuous combined hormone and single estrogen replacement therapy

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sug; Choi, Jong Tae; Jung, Kyoon Soon; Jung, Seung Hye [Jeil Women' s Hospital, Seoul (Korea, Republic of)

    1997-06-01

    As the use of hormone replacement therapy for the menopausal women increases, some caution is advised, since there is an increased risk of breast cancer. Accordingly, the importance of regular mammography has been addressed. This cross-setional study analyzed the effects of different hormone therapies on mammographic density. Sixty-seven postemenopausal women who had completed one year of hormone therapy and had undergone follow-up mammography, were divided into two groups : Group I : continuous conjugated equine estrogen, 0.625mg, plus continuous medroxyprogesterone acetate, 2.5mg (n=48), Group II : continuous conjugated equine estrogen 0.625mg (n=19). The mammograms were read by two radiologists. With regard to the radiologists involved, interobserver reliabillity (kappa) was 0.70 and intraobserver reliability (kappa) was 0.51 and 0.67. Before hormone therapy, factors related to decreased mammographic density were age and number of full term pregnancies (p<0.05). After one year of hormone therapy, body fat showed a significant increase (p<0.05), but in spite of this, increased mammographic density induced by hormone therapy remained significantly high (p<0.05). Compared with Group II, Group I showed a significant increase in mammographic density (p<0.05). In Group I, mammographic density increased from P2 to DY pattern in two cases, but there was no such change in Group II. The increase of mammographic density seen in Group II was much more significant statistically than that seen in Group I. The mammograms of women who have undergone continuous combined hormone therapy should therefore be interpreted very cautiously.

  10. Mammographic changes in postmenopausal women : comparative effects between continuous combined hormone and single estrogen replacement therapy

    International Nuclear Information System (INIS)

    Oh, Sug; Choi, Jong Tae; Jung, Kyoon Soon; Jung, Seung Hye

    1997-01-01

    As the use of hormone replacement therapy for the menopausal women increases, some caution is advised, since there is an increased risk of breast cancer. Accordingly, the importance of regular mammography has been addressed. This cross-setional study analyzed the effects of different hormone therapies on mammographic density. Sixty-seven postemenopausal women who had completed one year of hormone therapy and had undergone follow-up mammography, were divided into two groups : Group I : continuous conjugated equine estrogen, 0.625mg, plus continuous medroxyprogesterone acetate, 2.5mg (n=48), Group II : continuous conjugated equine estrogen 0.625mg (n=19). The mammograms were read by two radiologists. With regard to the radiologists involved, interobserver reliabillity (kappa) was 0.70 and intraobserver reliability (kappa) was 0.51 and 0.67. Before hormone therapy, factors related to decreased mammographic density were age and number of full term pregnancies (p<0.05). After one year of hormone therapy, body fat showed a significant increase (p<0.05), but in spite of this, increased mammographic density induced by hormone therapy remained significantly high (p<0.05). Compared with Group II, Group I showed a significant increase in mammographic density (p<0.05). In Group I, mammographic density increased from P2 to DY pattern in two cases, but there was no such change in Group II. The increase of mammographic density seen in Group II was much more significant statistically than that seen in Group I. The mammograms of women who have undergone continuous combined hormone therapy should therefore be interpreted very cautiously

  11. Modelling graphene quantum dot functionalization via ethylene-dinitrobenzoyl

    International Nuclear Information System (INIS)

    Noori, Keian; Giustino, Feliciano; Hübener, Hannes; Kymakis, Emmanuel

    2016-01-01

    Ethylene-dinitrobenzoyl (EDNB) linked to graphene oxide has been shown to improve the performance of graphene/polymer organic photovoltaics. Its binding conformation on graphene, however, is not yet clear, nor have its effects on work function and optical absorption been explored more generally for graphene quantum dots. In this report, we clarify the linkage of EDNB to GQDs from first principles and show that the binding of the molecule increases the work function of graphene, while simultaneously modifying its absorption in the ultraviolet region.

  12. Modelling graphene quantum dot functionalization via ethylene-dinitrobenzoyl

    Energy Technology Data Exchange (ETDEWEB)

    Noori, Keian; Giustino, Feliciano [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Hübener, Hannes [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Universidad del País Vasco CFM CSIC-UPV/EHU-MPC & DIPC, Av. Tolosa 72, 20018 San Sebastián (Spain); Kymakis, Emmanuel [Center of Materials Technology and Photonics & Electrical Engineering Department, Technological Educational Institute (TEI) of Crete, Heraklion, 71004 Crete (Greece)

    2016-03-21

    Ethylene-dinitrobenzoyl (EDNB) linked to graphene oxide has been shown to improve the performance of graphene/polymer organic photovoltaics. Its binding conformation on graphene, however, is not yet clear, nor have its effects on work function and optical absorption been explored more generally for graphene quantum dots. In this report, we clarify the linkage of EDNB to GQDs from first principles and show that the binding of the molecule increases the work function of graphene, while simultaneously modifying its absorption in the ultraviolet region.

  13. Excitation and Ionization of Ethylene by Charged Projectiles

    International Nuclear Information System (INIS)

    Zhi-Ping, Wang; Jing, Wang; Feng-Shou, Zhang

    2010-01-01

    Using the time dependent local density approximation, applied to valence electrons, coupled non-adiabatically to molecular dynamics of ions, the collision process between ethylene and fast charged projectiles is studied in the microscopic way. The impact of ionic motion on the ionization is explored to show the importance of treating electronic and ionic degrees of freedom simultaneously. The number of escaped electrons, ionization probabilities are obtained. Furthermore, it is found that the ionic extensions in different directions show the different patterns. (atomic and molecular physics)

  14. Cerium-containing catalysts for obtaining ethylene from ethanol

    Directory of Open Access Journals (Sweden)

    Kusman Dossumov

    2014-10-01

    Full Text Available The catalysts Се/γ-Al2O3 и Се-La/γ-Al2O3 were studied by methods of electron microscopy (EM and temperature-programmed desorption (TPD of ammonia. Their activity was studied in reaction of ethanol dehydration with formation of ethylene. Modification of Се/γ-Al2O3 catalyst by Lanthanum promotes dispersion of the catalyst and increases the amount of acidic sites. This modification positively affects the catalyst activity.

  15. Radiation vulcanization of ethylene-propylene rubber with polyfunctional monomers

    Energy Technology Data Exchange (ETDEWEB)

    Jinhua, Wang; Yoshii, Fumio; Makuuchi, Keizo

    2001-01-01

    This paper reports on the sensitizing efficiency of several polyfunctional monomers to radiation vulcanization of ethylene-propylene rubber. And the results show that triethyleneglycol dimethacrylate (TEGDMA) gave the best results. TEGDMA not only lowers the vulcanization dose (D{sub v}), but also increases the tensile strength greatly. The content of TEGDMA does not affect the D{sub v} of TEGDMA-EPM, but affects the tensile strength at the D{sub v}. At best content (0.04 mol/100 g EPM), the tensile strength is increased from 6.0 to 12 MPa, and the elongation is 790% at the D{sub v}. (author)

  16. IRIS Toxicological Review of Ethylene Glycol Mono-Butyl ...

    Science.gov (United States)

    EPA released the draft report, Toxicological Review for Ethylene Glycol Mono-Butyl Ether , that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from other Federal agencies and White House Offices are provided below with external peer review panel comments. EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessment of EGBE that will appear on the Integrated Risk Information System (IRIS) database.

  17. Acetylene Resembling Effect of Ethylene on Seed Germination: Evaluating the Effect of Acetylene Released from Calcium Carbide

    Directory of Open Access Journals (Sweden)

    Kambiz MASHAYEKHI

    2015-09-01

    Full Text Available Some vegetable seeds need a very long time to germinate. In these kinds of seeds the second phase of germination is very long. As acetylene’s chemical structure is almost similar to the gaseous hormone ethylene, its’ physiological effect on seed germination should be very similar as well. Therefore, an experiment was established in order to enhance seed germination, by treating seeds with acetylene released from interaction of calcium carbide (CaC2 with water (H2O. A simple system was designed for efficient and proper use of gaseous acetylene resulted from the two substrates interaction, which conducted the produced gas obtained inside the interaction chamber into a sealed container wherein seeds were floating in water. This experiment aimed to evaluate the effect of one concentration of acetylene with different exposure periods (between 1 to 8 hours on parsley, celery and Swees chard seeds’ germination (chosen as late germinating vegetables. The effect of acetylene on seed germination speed and percent was investigated. There were significant differences in both percent and speed of germination within the various treatments. By floating for 3, 5 and 3 hours for parsley, celery and Swiss chard respectively, the highest germination rates were observed. The highest germination speed was achieved by 5, 5 and 3 hours floating respectively for parsley, celery and Swiss chard. Based on the results obtained, the current experiment suggests that acetylene has positive effect on enhancing seed germination of named vegetables, and played the role of ethylene, its effects resembling in regard to seed germination process.

  18. (II) complexes

    African Journals Online (AJOL)

    activities of Schiff base tin (II) complexes. Neelofar1 ... Conclusion: All synthesized Schiff bases and their Tin (II) complexes showed high antimicrobial and ...... Singh HL. Synthesis and characterization of tin (II) complexes of fluorinated Schiff bases derived from amino acids. Spectrochim Acta Part A: Molec Biomolec.

  19. Prophylactic effect of coconut water (Cocos nucifera L. on ethylene glycol induced nephrocalcinosis in male wistar rat

    Directory of Open Access Journals (Sweden)

    M. Gandhi

    2013-01-01

    Full Text Available Purpose Many medicinal plants have been employed during ages to treat urinary stones though the rationale behind their use is not well established. Thus, the present study was proposed to evaluate the effect of coconut water as a prophylactic agent in experimentally induced nephrolithiasis in a rat model. Materials and Methods The male Wistar rats were divided randomly into three groups. Animals of group I (control were fed standard rat diet. In group II, the animals were administrated 0.75% ethylene glycol in drinking water for the induction of nephrolithiasis. Group III animals were administrated coconut water in addition to ethylene glycol. All the treatments were continued for a total duration of seven weeks. Results and Conclusion Treatment with coconut water inhibited crystal deposition in renal tissue as well as reduced the number of crystals in urine. Furthermore, coconut water also protected against impaired renal function and development of oxidative stress in the kidneys. The results indicate that coconut water could be a potential candidate for phytotherapy against urolithiasis.

  20. Interactions between the thyroid hormones and the hormones of the growth hormone axis.

    Science.gov (United States)

    Laron, Zvi

    2003-12-01

    The normal secretion and action of the thyroid hormones and the hormones of the GH/IGF-I (growth hormone/ insulin-like growth factor I) axis are interdependent. Their interactions often differ in man from animal studies in rodents and sheep. Thus neonates with congenital hypothyroidism are of normal length in humans but IUGR (intrauterine growth retardation) in sheep. Postnatally normal GH/IGF-I secretion and action depends on an euthyroid state. Present knowledge on the interactions between the two axes is reviewed in states of hypo- and hyperthyroidism, states of GH/IGF-I deprivation and hypersecretion, as well as the relationship between IGF-I and thyroid cancer. Emphasis is given to data in children and aspects of linear growth and skeletal maturation.