WorldWideScience

Sample records for hormonal counter regulation

  1. Hormonal Regulation of Adipogenesis.

    Science.gov (United States)

    Lee, Mi-Jeong

    2017-09-12

    Adipose tissue includes multiple anatomical depots that serve as an energy reserve that can expand or contract to maintain metabolic homeostasis. During normal growth and in response to overnutrition, adipose tissue expands by increasing the volume of preexisting adipocytes (hypertrophy) and/or by generating new adipocytes (hyperplasia) via recruitment and differentiation of adipose progenitors. This so-called healthy expansion through hyperplasia is thought to be beneficial in that it protects against obesity associated metabolic disorders by allowing for the "safe" storage of excess energy. Remodeling adipose tissue to replace dysfunctional adipocytes that accumulate with obesity and age also requires new fat cell formation and is necessary to maintain metabolic health. Adipogenesis is the process by which adipose progenitors become committed to an adipogenic lineage and differentiate into mature adipocytes. This transition is regulated by complex array of transcriptional factors and numerous autocrine, paracrine, and endocrine signals. We will focus on hormonal factors that regulate adipocyte differentiation and their molecular mechanisms of actions on adipogenesis as studied in vitro and in vivo. Accumulating evidence indicates that adipose progenitors isolated from different adipose tissues exhibit intrinsic differences in adipogenic potential that may contribute to the depot and sex differences in adipose expansion and remodeling capacity. We will put special emphasis on the hormonal factors that are known to depot-dependently affect body fat accumulation and adipocyte development. © 2017 American Physiological Society. Compr Physiol 7:1151-1195, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  2. Thyroid Hormone Regulation of Metabolism

    Science.gov (United States)

    Mullur, Rashmi; Liu, Yan-Yun

    2014-01-01

    Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5′-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH). In addition to TRH/TSH regulation by TH feedback, there is central modulation by nutritional signals, such as leptin, as well as peptides regulating appetite. The nutrient status of the cell provides feedback on TH signaling pathways through epigentic modification of histones. Integration of TH signaling with the adrenergic nervous system occurs peripherally, in liver, white fat, and BAT, but also centrally, in the hypothalamus. TR regulates cholesterol and carbohydrate metabolism through direct actions on gene expression as well as cross-talk with other nuclear receptors, including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), and bile acid signaling pathways. TH modulates hepatic insulin sensitivity, especially important for the suppression of hepatic gluconeogenesis. The role of TH in regulating metabolic pathways has led to several new therapeutic targets for metabolic disorders. Understanding the mechanisms and interactions of the various TH signaling pathways in metabolism will improve our likelihood of identifying effective and selective targets. PMID:24692351

  3. [Plant hormones, plant growth regulators].

    Science.gov (United States)

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life.

  4. Network identification of hormonal regulation

    NARCIS (Netherlands)

    Vis, D.J.; Westerhuis, J.A.; Hoefsloot, H.C.J.; Roelfsema, F.; Greef, J. van der; Hendriks, M.M.W.B.; Smilde, A.K.

    2014-01-01

    Relations among hormone serum concentrations are complex and depend on various factors, including gender, age, body mass index, diurnal rhythms and secretion stochastics. Therefore, endocrine deviations from healthy homeostasis are not easily detected or understood. A generic method is presented for

  5. Hormonal regulation of the hypothalamic melanocortin system.

    Science.gov (United States)

    Kim, Jung D; Leyva, Stephanie; Diano, Sabrina

    2014-01-01

    Regulation of energy homeostasis is fundamental for life. In animal species and humans, the Central Nervous System (CNS) plays a critical role in such regulation by integrating peripheral signals and modulating behavior and the activity of peripheral organs. A precise interplay between CNS and peripheral signals is necessary for the regulation of food intake and energy expenditure in the maintenance of energy balance. Within the CNS, the hypothalamus is a critical center for monitoring, processing and responding to peripheral signals, including hormones such as ghrelin, leptin, and insulin. Once in the brain, peripheral signals regulate neuronal systems involved in the modulation of energy homeostasis. The main hypothalamic neuronal circuit in the regulation of energy metabolism is the melanocortin system. This review will give a summary of the most recent discoveries on the hormonal regulation of the hypothalamic melanocortin system in the control of energy homeostasis.

  6. Hormonal regulation of the hypothalamic melanocortin system

    Directory of Open Access Journals (Sweden)

    Jung Dae eKim

    2014-12-01

    Full Text Available Regulation of energy homeostasis is fundamental for life. In animal species and humans, the Central Nervous System (CNS plays a critical role in such regulation by integrating peripheral signals and modulating behavior and the activity of peripheral organs. A precise interplay between CNS and peripheral signals is necessary for the regulation of food intake and energy expenditure in the maintenance of energy balance. Within the CNS, the hypothalamus is a critical center for monitoring, processing and responding to peripheral signals, including hormones such as ghrelin, leptin and insulin. Once in the brain, peripheral signals regulate neuronal systems involved in the modulation of energy homeostasis. The main hypothalamic neuronal circuit in the regulation of energy metabolism is the melanocortin system. This review will give a summary of the most recent discoveries on the hormonal regulation of the hypothalamic melanocortin system in the control of energy homeostasis.

  7. Hormonal regulation of energy partitioning.

    Science.gov (United States)

    Rohner-Jeanrenaud, F

    2000-06-01

    A loop system exists between hypothalamic neuropeptide Y (NPY) and peripheral adipose tissue leptin to maintain normal body homeostasis. When hypothalamic NPY levels are increased by fasting or by intracerebroventricular (i.c.v.) infusion, food intake and body weight increase. NPY has genuine hormono-metabolic effects. It increases insulin and corticosterone secretion relative to controls. These hormonal changes, acting singly or combined, favor adipose tissue lipogenic activity, while producing muscle insulin resistance. They also promote leptin release from adipose tissue. When infused i.c.v. to normal rats to mimic its central effects, leptin decreases NPY levels, thus food intake and body weight. Leptin i.c.v. has also genuine hormono-metabolic effects. It decreases insulinemia and adipose tissue storage ability, enhancing glucose disposal. Leptin increases the expression of uncoupling proteins (UCP-1, -2, -3) and thus energy dissipation. Leptin-induced changes favor oxidation at the expense of storage. Circadian fluctuations of NPY and leptin levels maintain normal body homeostasis. In animal obesity, defective hypothalamic leptin receptor activation prevent leptin from acting, with resulting obesity, insulin and leptin resistance.

  8. The Gut Hormones in Appetite Regulation

    Directory of Open Access Journals (Sweden)

    Keisuke Suzuki

    2011-01-01

    Full Text Available Obesity has received much attention worldwide in association with an increased risk of cardiovascular diseases, diabetes, and cancer. At present, bariatric surgery is the only effective treatment for obesity in which long-term weight loss is achieved in patients. By contrast, pharmacological interventions for obesity are usually followed by weight regain. Although the exact mechanisms of long-term weight loss following bariatric surgery are yet to be fully elucidated, several gut hormones have been implicated. Gut hormones play a critical role in relaying signals of nutritional and energy status from the gut to the central nervous system, in order to regulate food intake. Cholecystokinin, peptide YY, pancreatic polypeptide, glucagon-like peptide-1, and oxyntomodulin act through distinct yet synergistic mechanisms to suppress appetite, whereas ghrelin stimulates food intake. Here, we discuss the role of gut hormones in the regulation of food intake and body weight.

  9. Regulation of Thyroid Hormone Bioactivity in Health and Disease

    NARCIS (Netherlands)

    R.P. Peeters (Robin)

    2005-01-01

    textabstractTThyroid hormone plays an essential role in a variety of metabolic processes in the human body. Examples are the effects of thyroid hormone on metabolism and on the heart. The production of thyroid hormone by the thyroid is regulated by thyroid stimulating hormone (TSH) via the TSH

  10. Thyroid hormone and seasonal regulation of reproduction.

    Science.gov (United States)

    Yoshimura, Takashi

    2013-08-01

    Organisms living outside the tropics use changes in photoperiod to adapt to seasonal changes in the environment. Several models have contributed to an understanding of this mechanism at the molecular and endocrine levels. Subtropical birds are excellent models for the study of these mechanisms because of their rapid and dramatic response to changes in photoperiod. Studies of birds have demonstrated that light is perceived by a deep brain photoreceptor and long day-induced thyrotropin (TSH) from the pars tuberalis (PT) of the pituitary gland causes local thyroid hormone activation within the mediobasal hypothalamus (MBH). The locally generated bioactive thyroid hormone, T₃, regulates seasonal gonadotropin-releasing hormone (GnRH) secretion, and hence gonadotropin secretion. In mammals, the eyes are the only photoreceptor involved in photoperiodic time perception and nocturnal melatonin secretion provides an endocrine signal of photoperiod to the PT to regulate TSH. Here, I review the current understanding of the hypothalamic mechanisms controlling seasonal reproduction in mammals and birds. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Hormonal Regulation of Mammary Gland Development and Breast Cancer

    National Research Council Canada - National Science Library

    Xian, Wa; Rosen, Jeffrey M

    2004-01-01

    Our laboratory is interested in studying the mechanisms by which lactogenic hormones regulate Beta-casein gene expression and how alterations in the levels of these hormones may function in the growth...

  12. Thermogenic mechanisms and their hormonal regulation.

    Science.gov (United States)

    Silva, J Enrique

    2006-04-01

    Increased heat generation from biological processes is inherent to homeothermy. Homeothermic species produce more heat from sustaining a more active metabolism as well as from reducing fuel efficiency. This article reviews the mechanisms used by homeothermic species to generate more heat and their regulation largely by thyroid hormone (TH) and the sympathetic nervous system (SNS). Thermogenic mechanisms antecede homeothermy, but in homeothermic species they are activated and regulated. Some of these mechanisms increase ATP utilization (same amount of heat per ATP), whereas others increase the heat resulting from aerobic ATP synthesis (more heat per ATP). Among the former, ATP utilization in the maintenance of ionic gradient through membranes seems quantitatively more important, particularly in birds. Regulated reduction of the proton-motive force to produce heat, originally believed specific to brown adipose tissue, is indeed an ancient thermogenic mechanism. A regulated proton leak has been described in the mitochondria of several tissues, but its precise mechanism remains undefined. This leak is more active in homeothermic species and is regulated by TH, explaining a significant fraction of its thermogenic effect. Homeothermic species generate additional heat, in a facultative manner, when obligatory thermogenesis and heat-saving mechanisms become limiting. Facultative thermogenesis is activated by the SNS but is modulated by TH. The type II iodothyronine deiodinase plays a critical role in modulating the amount of the active TH, T(3), in BAT, thereby modulating the responses to SNS. Other hormones affect thermogenesis in an indirect or permissive manner, providing fuel and modulating thermogenesis depending on food availability, but they do not seem to have a primary role in temperature homeostasis. Thermogenesis has a very high energy cost. Cold adaptation and food availability may have been conflicting selection pressures accounting for the variability of

  13. Hormonal Regulation of Mammary Gland Development and Breast Cancer

    National Research Council Canada - National Science Library

    Xian, Wa

    2003-01-01

    ... become altered in breast cancer. Specific emphasis has been placed upon studying the mechanisms by which the lactogenic hormones, prolactin, hydrocortisone and insulin, regulate milk protein gene expression...

  14. Impact on contraceptive practice of making emergency hormonal contraception available over the counter in Great Britain: repeated cross sectional surveys

    OpenAIRE

    Marston, C; Meltzer, H.; Majeed, A.

    2005-01-01

    OBJECTIVE: To examine the impact on contraceptive practice of making emergency hormonal contraception available over the counter. DESIGN: Analysis of data on contraceptive practice for women aged 16-49 years in the period 2000-2 from the Omnibus Survey, a multipurpose survey in which around 7600 adults living in private households are interviewed each year. SETTING: Private households in Great Britain. MAIN OUTCOME MEASURES: Use of different types of contraception and rates of unprotected sex...

  15. Environmental effects on hormonal regulation of testicular descent

    DEFF Research Database (Denmark)

    Toppari, J; Virtanen, H E; Skakkebaek, N E

    2006-01-01

    Regulation of testicular descent is hormonally regulated, but the reasons for maldescent remain unknown in most cases. The main regulatory hormones are Leydig cell-derived testosterone and insulin-like factor 3 (INSL3). Luteinizing hormone (LH) stimulates the secretion of these hormones...... hormone secretion without increased gonadotropin drive. This may be either the cause or consequence of cryptorchidism. Some phthalates act as anti-androgens and cause cryptorchidism in rodents. In our human material we found an association of a high phthalate exposure with a high LH/testosterone ratio. We...

  16. MULTIPLE STABLE PERIODIC SOLUTIONS IN A MODEL FOR THE HORMONAL REGULATION OF THE MENSTRUAL CYCLE

    Science.gov (United States)

    ABSTRACTThe pituitary hormones, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), and the ovarian hormones, estradiol (E2), progesterone (P4), and inhibin (Ih), are five hormones important for the regulation and maintenance of the human menstrual cycle. The...

  17. Hormonal regulation of spermatogenesis in zebrafish

    NARCIS (Netherlands)

    de Waal, P.P.|info:eu-repo/dai/nl/304835595

    2009-01-01

    Across vertebrates, spermatogenesis is under the endocrine control of two hormones, follicle-stimulating hormone (FSH) and androgens; the testicular production and secretion of the latter are controlled by luteinizing hormone. In fish, also the strong steroidogenic potency of Fsh should be taken

  18. The reciprocal regulation of stress hormones and GABAA receptors

    Directory of Open Access Journals (Sweden)

    Istvan eMody

    2012-01-01

    Full Text Available Stress-derived steroid hormones regulate the expression and function of GABAA receptors (GABAARs. Changes in GABAAR subunit expression have been demonstrated under conditions of altered steroid hormone levels, such as stress, as well as following exogenous steroid hormone administration. In addition to the effects of stress-derived steroid hormones on GABAAR subunit expression, stress hormones can also be metabolized to neuroactive derivatives which can alter the function of GABAARs. Neurosteroids allosterically modulate GABAARs at concentrations comparable to those during stress. In addition to the actions of stress-derived steroid hormones on GABAARs, GABAARs reciprocally regulate the production of stress hormones. The stress response is mediated by the hypothalamic-pituitary-adrenal (HPA axis, the activity of which is governed by corticotropin releasing hormone (CRH neurons. The activity of CRH neurons is largely controlled by robust GABAergic inhibition. Recently, it has been demonstrated that CRH neurons are regulated by neurosteroid-sensitive, GABAAR δ subunit-containing receptors representing a novel feedback mechanism onto the HPA axis. Further, it has been demonstrated that neurosteroidogenesis and neurosteroid actions on GABAAR δ subunit-containing receptors on CRH neurons are necessary to mount the physiological response to stress. Here we review the literature describing the effects of steroid hormones on GABAARs as well as the importance of GABAARs in regulating the production of steroid hormones. This review incorporates what we currently know about changes in GABAARs following stress and the role in HPA axis regulation.

  19. Regulation of gut hormone secretion. Studies using isolated perfused intestines

    DEFF Research Database (Denmark)

    Svendsen, Berit; Holst, Jens Juul.

    2016-01-01

    hormones is highly increased after gastric bypass operations, which have turned out to be an effective therapy of not only obesity but also type 2 diabetes. These effects are likely to be due, at least in part, to increases in the secretion of these gut hormones (except GIP). Therefore, stimulation...... of the endogenous hormone represents an appealing therapeutic strategy, which has spurred an interest in understanding the regulation of gut hormone secretion and a search for particularly GLP-1 and PYY secretagogues. The secretion of the gut hormones is stimulated by oral intake of nutrients often including...

  20. Regulation of abiotic and biotic stress responses by plant hormones

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2016-01-01

    Plant hormones (phytohormones) are signal molecules produced within the plant, and occur in very low concentrations. In the present chapter, the current knowledge on the regulation of biotic and biotic stress responses by plant hormones is summarized with special focus on the novel insights...... into the complex hormonal crosstalk of classical growth stimulating plant hormones within the naturally occurring biotic and abiotic multistress environment of higher plants. The MAPK- and phytohormone-cascades which comprise a multitude of single molecules on different signalling levels, as well as interactions...

  1. Epinephrine deficiency results in intact glucose counter-regulation, severe hepatic steatosis and possible defective autophagy in fasting mice.

    Science.gov (United States)

    Sharara-Chami, Rana I; Zhou, Yingjiang; Ebert, Steven; Pacak, Karel; Ozcan, Umut; Majzoub, Joseph A

    2012-06-01

    Epinephrine is one of the major hormones involved in glucose counter-regulation and gluconeogenesis. However, little is known about its importance in energy homeostasis during fasting. Our objective is to study the specific role of epinephrine in glucose and lipid metabolism during starvation. In our experiment, we subject regular mice and epinephrine-deficient mice to a 48-h fast then we evaluate the different metabolic responses to fasting. Our results show that epinephrine is not required for glucose counter-regulation: epinephrine-deficient mice maintain their blood glucose at normal fasting levels via glycogenolysis and gluconeogenesis, with normal fasting-induced changes in the peroxisomal activators: peroxisome proliferator activated receptor γ coactivator α (PGC-1α), fibroblast growth factor 21 (FGF-21), peroxisome proliferator activated receptor α (PPAR-α), and sterol regulatory element binding protein (SREBP-1c). However, fasted epinephrine-deficient mice develop severe ketosis and hepatic steatosis, with evidence for inhibition of hepatic autophagy, a process that normally provides essential energy via degradation of hepatic triglycerides during starvation. We conclude that, during fasting, epinephrine is not required for glucose homeostasis, lipolysis or ketogenesis. Epinephrine may have an essential role in lipid handling, possibly via an autophagy-dependent mechanism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Modelling synergistic effects of appetite regulating hormones

    DEFF Research Database (Denmark)

    Schmidt, Julie Berg; Ritz, Christian

    2016-01-01

    We briefly reviewed one definition of dose addition, which is applicable within the framework of generalized linear models. We established how this definition of dose addition corresponds to effect addition in case only two doses per compound are considered for evaluating synergistic effects. The....... The link between definitions was exemplified for an appetite study where two appetite hormones were studied....

  3. Breast Milk Hormones and Regulation of Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Francesco Savino

    2011-01-01

    Full Text Available Growing evidence suggests that a complex relationship exists between the central nervous system and peripheral organs involved in energy homeostasis. It consists in the balance between food intake and energy expenditure and includes the regulation of nutrient levels in storage organs, as well as in blood, in particular blood glucose. Therefore, food intake, energy expenditure, and glucose homeostasis are strictly connected to each other. Several hormones, such as leptin, adiponectin, resistin, and ghrelin, are involved in this complex regulation. These hormones play a role in the regulation of glucose metabolism and are involved in the development of obesity, diabetes, and metabolic syndrome. Recently, their presence in breast milk has been detected, suggesting that they may be involved in the regulation of growth in early infancy and could influence the programming of energy balance later in life. This paper focuses on hormones present in breast milk and their role in glucose homeostasis.

  4. Negative regulation of parathyroid hormone-related protein expression by steroid hormones

    Energy Technology Data Exchange (ETDEWEB)

    Kajitani, Takashi; Tamamori-Adachi, Mimi [Department of Biochemistry, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 (Japan); Okinaga, Hiroko [Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 (Japan); Chikamori, Minoru; Iizuka, Masayoshi [Department of Biochemistry, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 (Japan); Okazaki, Tomoki, E-mail: okbgeni@med.teikyo-u.ac.jp [Department of Biochemistry, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 (Japan)

    2011-04-15

    Highlights: {yields} Steroid hormones repress expression of PTHrP in the cell lines where the corresponding nuclear receptors are expressed. {yields} Nuclear receptors are required for suppression of PTHrP expression by steroid hormones, except for androgen receptor. {yields} Androgen-induced suppression of PTHrP expression appears to be mediated by estrogen receptor. -- Abstract: Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor {alpha}, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.

  5. Counter-regulatory hormone responses to spontaneous hypoglycaemia during treatment with insulin Aspart or human soluble insulin. A double-blinded randomised cross-over study

    DEFF Research Database (Denmark)

    Brock-Jacobsen, Iben; Vind, B F; Korsholm, L

    2011-01-01

    by hospitalization where episodes of spontaneous hypoglycaemia and counter-regulatory hormone responses were evaluated from frequently obtained blood samples. Results: No difference between soluble insulin and insulin Aspart was found regarding HbA1c (7.0 0.2 vs. 7.0 0.2%, ns), hypoglycaemic frequency (1.1 0.2 vs. 0...

  6. Light-Mediated Hormonal Regulation of Plant Growth and Development.

    Science.gov (United States)

    de Wit, Mieke; Galvão, Vinicius Costa; Fankhauser, Christian

    2016-04-29

    Light is crucial for plant life, and perception of the light environment dictates plant growth, morphology, and developmental changes. Such adjustments in growth and development in response to light conditions are often established through changes in hormone levels and signaling. This review discusses examples of light-regulated processes throughout a plant's life cycle for which it is known how light signals lead to hormonal regulation. Light acts as an important developmental switch in germination, photomorphogenesis, and transition to flowering, and light cues are essential to ensure light capture through architectural changes during phototropism and the shade avoidance response. In describing well-established links between light perception and hormonal changes, we aim to give insight into the mechanisms that enable plants to thrive in variable light environments.

  7. The Growth Hormone Secretagogue Receptor: Its Intracellular Signaling and Regulation

    Science.gov (United States)

    Yin, Yue; Li, Yin; Zhang, Weizhen

    2014-01-01

    The growth hormone secretagogue receptor (GHSR), also known as the ghrelin receptor, is involved in mediating a wide variety of biological effects of ghrelin, including: stimulation of growth hormone release, increase of food intake and body weight, modulation of glucose and lipid metabolism, regulation of gastrointestinal motility and secretion, protection of neuronal and cardiovascular cells, and regulation of immune function. Dependent on the tissues and cells, activation of GHSR may trigger a diversity of signaling mechanisms and subsequent distinct physiological responses. Distinct regulation of GHSR occurs at levels of transcription, receptor interaction and internalization. Here we review the current understanding on the intracellular signaling pathways of GHSR and its modulation. An overview of the molecular structure of GHSR is presented first, followed by the discussion on its signaling mechanisms. Finally, potential mechanisms regulating GHSR are reviewed. PMID:24651458

  8. Hormones regulating lipid metabolism and plasma lipids in childhood obesity.

    Science.gov (United States)

    Gil-Campos, M; Cañete, R; Gil, A

    2004-11-01

    To review the mechanisms by which leptin, insulin and adiponectin influence lipid metabolism and plasma lipids in obesity, as well as to describe the associations between these hormones in prepubertal children. Revision of relevant papers published in the last 5 y related to the interactions of leptin, insulin and adiponectin, with special emphasis on those reporting potential mechanisms by which these hormones regulate lipid metabolism and plasma lipids. We also provide original results concerning the relationships found between plasma lipids and leptin, and insulin and adiponectin in prepubertal obese children. Recent data in the literature shed new light to explain the effects of both leptin and adiponectin in the regulation of lipid metabolism in peripheral tissues. Activation of the AMP-dependent kinase pathway and subsequent increased fatty acid oxidation seems to be the main mechanism of action of these hormones in the regulation of lipid metabolism. In addition, we have found that insulin plasma levels are positively associated to leptin but negatively correlated with adiponectin in obese children. Adiponectin is negatively associated to plasma lipid markers of metabolic syndrome but positively related to HDL-cholesterol, whereas insulin and leptin show opposite patterns. These results support the effect of adiponectin in increasing insulin sensitivity and decreasing plasma triglycerides. Leptin, insulin and adiponectin are associated hormones that regulate lipid metabolism in childhood. Adiponectin appears to be the missing link to explain the alterations in lipid metabolism and plasma lipids seen in obesity.

  9. Hormonal regulation of gluconeogenic gene transcription in the liver

    Indian Academy of Sciences (India)

    Glucose homeostasis in mammals is achieved by the actions of counterregulatory hormones, namely insulin, glucagon and glucocorticoids. Glucose levels in the circulation are regulated by the liver, the metabolic centre which produces glucose when it is scarce in the blood. This process is catalysed by two rate-limiting ...

  10. Hormones, ionic regulation and kidney function in fishes.

    Science.gov (United States)

    Henderson, I W; Hazon, N; Hughes, K

    1985-01-01

    Renal osmoregulatory mechanisms in the context of hormones is considered in three types of fish: the Agnatha, the Chondrichthyes and the Osteichthyes. Particular reference is made to endocrine status and hormonal interplay in renal homeostatic mechanisms. Among Agnatha, hagfishes display atypical osmoregulatory characteristics and their endocrine repertoire is poorly understood. Hormonal actions are unclear although the kidney appears to act as a regulator of extracellular fluid volume. Lampreys show many similarities with teleost fish with respect to osmoregulation, but again their endocrine system requires further definition. Chondricthyean fishes have a number of unique hormones, among them 1-alpha-hydroxycorticosterone from the adrenocortical homologue (interrenal gland). Their complex kidneys have not been extensively studied with respect to hormonal regulation, but a key role is certainly the maintenance of high plasma levels of urea and trimethylamine oxide. The importance of the ratio of these two compounds with respect to urea tolerance is discussed. Evidence is presented and discussed that points to 1-alpha-hydroxycorticosterone playing a role in osmoregulation, although its sites and mechanisms of action are not known. The presence of a non-hypophysial control of interrenal function (a renin-angiotensin system) is indicated. The largest group of fishes, the Teleostei, are considered with respect to renal mechanisms involved in euryhalinity. Highly selective reference is made to the renin-angiotensin system and arginine vasotocin. In fresh water eels a clear negative feedback relationship exists between angiotensin II and arginine vasotocin, while in seawater-adapted animals the interplay is less clear. It is suggested that the observed increases in both arginine vasotocin and angiotensin II in eels adapted to environments hyperosmotic to their extracellular fluid in some way affects the "setting" of the feedback between the two. The possible interactions

  11. Effects of over-the-counter analgesic use on reproductive hormones and ovulation in healthy, premenopausal women.

    Science.gov (United States)

    Matyas, R A; Mumford, S L; Schliep, K C; Ahrens, K A; Sjaarda, L A; Perkins, N J; Filiberto, A C; Mattison, D; Zarek, S M; Wactawski-Wende, J; Schisterman, E F

    2015-07-01

    Does use of commonly used over-the-counter (OTC) pain medication affect reproductive hormones and ovulatory function in premenopausal women? Few associations were found between analgesic medication use and reproductive hormones, but use during the follicular phase was associated with decreased odds of sporadic anovulation after adjusting for potential confounders. Analgesic medications are the most commonly used OTC drugs among women, but their potential effects on reproductive function are unclear. The BioCycle Study was a prospective, observational cohort study (2005-2007) which followed 259 women for one (n = 9) or two (n = 250) menstrual cycles. Two hundred and fifty-nine healthy, premenopausal women not using hormonal contraception and living in western New York state. Study visits took place at the University at Buffalo. During study participation, 68% (n = 175) of women indicated OTC analgesic use. Among users, 45% used ibuprofen, 33% acetaminophen, 10% aspirin and 10% naproxen. Analgesic use during the follicular phase was associated with decreased odds of sporadic anovulation after adjusting for age, race, body mass index, perceived stress level and alcohol consumption (OR 0.36 [0.17, 0.75]). Results remained unchanged after controlling for potential confounding by indication by adjusting for 'healthy' cycle indicators such as amount of blood loss and menstrual pain during the preceding menstruation. Moreover, luteal progesterone was higher (% difference = 14.0, -1.6-32.1, P = 0.08 adjusted) in cycles with follicular phase analgesic use, but no associations were observed with estradiol, LH or FSH. Self-report daily diaries are not validated measures of medication usage, which could lead to some classification error of medication use. We were also limited in our evaluation of aspirin and naproxen which were used by few women. The observed associations between follicular phase analgesic use and higher progesterone and a lower probability of sporadic

  12. Current insights into hormonal regulation of microspore embryogenesis

    Directory of Open Access Journals (Sweden)

    Iwona eŻur

    2015-06-01

    Full Text Available Plant growth regulator (PGR crosstalk and interaction with the plant’s genotype and environmental factors play a crucial role in microspore embryogenesis (ME, controlling microspore-derived embryo differentiation and development as well as haploid/doubled haploid plant regeneration. The complexity of the PGR network which could exist at the level of biosynthesis, distribution, gene expression or signaling pathways, renders the creation of an integrated model of ME-control crosstalk impossible at present. However, the analysis of the published data together with the results received recently with the use of modern analytical techniques brings new insights into hormonal regulation of this process. This review presents a short historical overview of the most important milestones in the recognition of hormonal requirements for effective ME in the most important crop plant species and complements it with new concepts that evolved over the last decade of ME studies.

  13. Current insights into hormonal regulation of microspore embryogenesis

    Science.gov (United States)

    Żur, Iwona; Dubas, Ewa; Krzewska, Monika; Janowiak, Franciszek

    2015-01-01

    Plant growth regulator (PGR) crosstalk and interaction with the plant’s genotype and environmental factors play a crucial role in microspore embryogenesis (ME), controlling microspore-derived embryo differentiation and development as well as haploid/doubled haploid plant regeneration. The complexity of the PGR network which could exist at the level of biosynthesis, distribution, gene expression or signaling pathways, renders the creation of an integrated model of ME-control crosstalk impossible at present. However, the analysis of the published data together with the results received recently with the use of modern analytical techniques brings new insights into hormonal regulation of this process. This review presents a short historical overview of the most important milestones in the recognition of hormonal requirements for effective ME in the most important crop plant species and complements it with new concepts that evolved over the last decade of ME studies. PMID:26113852

  14. Breast Milk Hormones and Regulation of Glucose Homeostasis

    OpenAIRE

    Francesco Savino; Stefania Alfonsina Liguori; Miriam Sorrenti; Maria Francesca Fissore; Roberto Oggero

    2011-01-01

    Growing evidence suggests that a complex relationship exists between the central nervous system and peripheral organs involved in energy homeostasis. It consists in the balance between food intake and energy expenditure and includes the regulation of nutrient levels in storage organs, as well as in blood, in particular blood glucose. Therefore, food intake, energy expenditure, and glucose homeostasis are strictly connected to each other. Several hormones, such as leptin, adiponectin, resistin...

  15. Tissue specific regulation of lipogenesis by thyroid hormone

    Energy Technology Data Exchange (ETDEWEB)

    Blennemann, B.; Freake, H. (Univ. of Connecticut, Storrs (United States))

    1990-02-26

    Thyroid hormone stimulates long chain fatty acid synthesis in rat liver by increasing the amounts of key lipogenic enzymes. Sparse and conflicting data exist concerning its action on this pathway in other tissues. The authors recently showed that, in contrast to liver, hypothyroidism stimulates lipogenesis in brown adipose tissue and have now systematically examined the effects of thyroid state on fatty acid synthesis in other rat tissues. Lipogenesis was assessed by tritiated water incorporation. Euthyroid hepatic fatty acid synthesis (16.6um H/g/h) was reduced to 30% in hypothyroid rats and increased 3 fold in hyperthyroidism. Lipogenesis was detected in euthyroid kidney and heart and these levels were also stimulated by thyroid hormone treatment. Brown adipose tissue was unique in showing increased lipogenesis in the hypothyroid state. Hyperthyroid levels were not different from euthyroid. Effects in white adipose tissue were small and inconsistent. Brain, skin and lung were all lipogenically active, but did not respond to changes in thyroid state. Low but detectable levels of fatty acid synthesis were measured in muscle, which also were non-responsive. A wide spectrum of responses to thyroid hormone are seen in different rat tissues and thus the pathway of long chain fatty acid synthesis would appear to be an excellent model for examining the tissue specific regulation of gene expression by thyroid hormone.

  16. Incongruency effects in affective processing: automatic motivational counter-regulation or mismatch-induced salience?

    Science.gov (United States)

    Rothermund, Klaus; Gast, Anne; Wentura, Dirk

    2011-04-01

    Attention is automatically allocated to stimuli that are opposite in valence to the current motivational focus (Rothermund, 2003; Rothermund, Voss, & Wentura, 2008). We tested whether this incongruency effect is due to affective-motivational counter-regulation or to an increased salience of stimuli that mismatch with cognitively activated information. Affective processing biases were assessed with a search task in which participants had to detect the spatial position at which a positive or negative stimulus was presented. In the motivational condition, positive or negative affective-motivational states were induced by performance feedback after each trial. In the cognitive activation condition, participants memorised the word "good" or "bad" during the search task. The affective incongruency effect was replicated in the motivational condition, whereas an affective congruency effect obtained in the cognitive activation condition. These findings support an explanation of affective incongruency effects in terms of automatic counter-regulation that is motivational in nature. © 2011 Psychology Press, an imprint of the Taylor & Francis Group, an Informa business

  17. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Minqian Shen

    2015-01-01

    Full Text Available The liver is one of the most essential organs involved in the regulation of energy homeostasis. Hepatic steatosis, a major manifestation of metabolic syndrome, is associated with imbalance between lipid formation and breakdown, glucose production and catabolism, and cholesterol synthesis and secretion. Epidemiological studies show sex difference in the prevalence in fatty liver disease and suggest that sex hormones may play vital roles in regulating hepatic steatosis. In this review, we summarize current literature and discuss the role of estrogens and androgens and the mechanisms through which estrogen receptors and androgen receptors regulate lipid and glucose metabolism in the liver. In females, estradiol regulates liver metabolism via estrogen receptors by decreasing lipogenesis, gluconeogenesis, and fatty acid uptake, while enhancing lipolysis, cholesterol secretion, and glucose catabolism. In males, testosterone works via androgen receptors to increase insulin receptor expression and glycogen synthesis, decrease glucose uptake and lipogenesis, and promote cholesterol storage in the liver. These recent integrated concepts suggest that sex hormone receptors could be potential promising targets for the prevention of hepatic steatosis.

  18. Estrogens regulate the hepatic effects of growth hormone, a hormonal interplay with multiple fates

    DEFF Research Database (Denmark)

    Fernández-Pérez, Leandro; Guerra, Borja; Díaz-Chico, Juan C

    2013-01-01

    The liver responds to estrogens and growth hormone (GH) which are critical regulators of body growth, gender-related hepatic functions, and intermediate metabolism. The effects of estrogens on liver can be direct, through the direct actions of hepatic ER, or indirect, which include the crosstalk...... with endocrine, metabolic, and sex-differentiated functions of GH. Most previous studies have been focused on the influence of estrogens on pituitary GH secretion, which has a great impact on hepatic transcriptional regulation. However, there is strong evidence that estrogens can influence the GH......-regulated endocrine and metabolic functions in the human liver by acting at the level of GHR-STAT5 signaling pathway. This crosstalk is relevant because the widespread exposition of estrogen or estrogen-related compounds in human. Therefore, GH or estrogen signaling deficiency as well as the influence of estrogens...

  19. Thyroid hormones regulate levels of thyrotropin-releasing-hormone mRNA in the paraventricular nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Koller, K.J.; Wolff, R.S.; Warden, M.K.; Zoeller, R.T.

    1987-10-01

    Cellular levels of messenger RNA encoding thyrotropin-releasing hormone (TRH) were measured in the paraventricular nucleus of the hypothalamus and the reticular nucleus of the thalamus in male rats after chemical thyroidectomy and thyroid hormone, replacement. TRH mRNA levels were measured by quantitative in situ hybridization histochemistry using a /sup 35/S-labeled synthetic 48-base oligodeoxynucleotide probe and quantitative autoradiography. Chemical thyroidectomy, produced by the administration of 6-(n-propyl)-2-thiouracil (PrSur), reduced plasma thyroxine below detection limits and significantly increased TRH mRNA in the paraventricular nucleus. Treatments with exogenous L-triiodothyronine (T/sub 3/) reduced TRH mRNA to the same level in both hypothyroid and euthyroid animals. Neither PrSur treatment nor T/sub 3/ replacement influenced TRH mRNA levels in the reticular nucleus of the thalamus. Blot hybridization analysis of electrophoretically fractionated total RNA from pituitaries of these animals indicated that thyrotropin-..beta.. mRNA levels were elevated after thyroidectomy and reduced by T/sub 3/ treatment, showing that the pituitary-thyroid axis was indeed stimulated by PrSur treatment. These results suggest that thyroid hormones are involved, either directly or indirectly, in regulating the biosynthesis of TRH in the thyrotropic center of the hypothalamus.

  20. Hormone and seed-specific regulation of pea fruit growth.

    Science.gov (United States)

    Ozga, Jocelyn A; van Huizen, Rika; Reinecke, Dennis M

    2002-04-01

    Growth of young pea (Pisum sativum) fruit (pericarp) requires developing seeds or, in the absence of seeds, treatment with gibberellin (GA) or auxin (4-chloroindole-3-acetic acid). This study examined the role of seeds and hormones in the regulation of cell division and elongation in early pea fruit development. Profiling histone H2A and gamma-tonoplast intrinsic protein (TIP) gene expression during early fruit development identified the relative contributions of cell division and elongation to fruit growth, whereas histological studies identified specific zones of cell division and elongation in exocarp, mesocarp, and endocarp tissues. Molecular and histological studies showed that maximal cell division was from -2 to 2 d after anthesis (DAA) and elongation from 2 to 5 DAA in pea pericarp. Maximal increase in pericarp gamma-TIP message level preceded the maximal rate of fruit growth and, in general, gamma-TIP mRNA level was useful as a qualitative marker for expanding tissue, but not as a quantitative marker for cell expansion. Seed removal resulted in rapid decreases in pericarp growth and in gamma-TIP and histone H2A message levels. In general, GA and 4-chloroindole-3-acetic acid maintained these processes in deseeded pericarp similarly to pericarps with seeds, and both hormones were required to obtain mesocarp cell sizes equivalent to intact fruit. However, GA treatment to deseeded pericarps resulted in elevated levels of gamma-TIP mRNA (6 and 7 DAA) when pericarp growth and cell enlargement were minimal. Our data support the theory that cell division and elongation are developmentally regulated during early pea fruit growth and are maintained by the hormonal interaction of GA and auxin.

  1. Neurohypophysial Hormones Regulate Amphibious Behaviour in the Mudskipper Goby.

    Directory of Open Access Journals (Sweden)

    Tatsuya Sakamoto

    Full Text Available The neurohypophysial hormones, arginine vasotocin and isotocin, regulate both hydromineral balance and social behaviors in fish. In the amphibious mudskipper, Periophthalmus modestus, we previously found arginine-vasotocin-specific regulation of aggressive behavior, including migration of the submissive subordinate into water. This migration also implies the need for adaptation to dehydration. Here, we examined the effects of arginine vasotocin and isotocin administration on the amphibious behavior of individual mudskippers in vivo. The mudskippers remained in the water for an increased period of time after 1-8 h of intracerebroventricular (ICV injection with 500 pg/g arginine vasotocin or isotocin. The 'frequency of migration' was decreased after ICV injection of arginine vasotocin or isotocin, reflecting a tendency to remain in the water. ICV injections of isotocin receptor antagonist with arginine vasotocin or isotocin inhibited all of these hormonal effects. In animals kept out of water, mRNA expression of brain arginine vasotocin and isotocin precursors increased 3- and 1.5-fold, respectively. Given the relatively wide distribution of arginine vasotocin fibres throughout the mudskipper brain, induction of arginine vasotocin and isotocin under terrestrial conditions may be involved also in the preference for an aquatic habitat as ligands for brain isotocin receptors.

  2. Neurohypophysial Hormones Regulate Amphibious Behaviour in the Mudskipper Goby.

    Science.gov (United States)

    Sakamoto, Tatsuya; Nishiyama, Yudai; Ikeda, Aoi; Takahashi, Hideya; Hyodo, Susumu; Kagawa, Nao; Sakamoto, Hirotaka

    2015-01-01

    The neurohypophysial hormones, arginine vasotocin and isotocin, regulate both hydromineral balance and social behaviors in fish. In the amphibious mudskipper, Periophthalmus modestus, we previously found arginine-vasotocin-specific regulation of aggressive behavior, including migration of the submissive subordinate into water. This migration also implies the need for adaptation to dehydration. Here, we examined the effects of arginine vasotocin and isotocin administration on the amphibious behavior of individual mudskippers in vivo. The mudskippers remained in the water for an increased period of time after 1-8 h of intracerebroventricular (ICV) injection with 500 pg/g arginine vasotocin or isotocin. The 'frequency of migration' was decreased after ICV injection of arginine vasotocin or isotocin, reflecting a tendency to remain in the water. ICV injections of isotocin receptor antagonist with arginine vasotocin or isotocin inhibited all of these hormonal effects. In animals kept out of water, mRNA expression of brain arginine vasotocin and isotocin precursors increased 3- and 1.5-fold, respectively. Given the relatively wide distribution of arginine vasotocin fibres throughout the mudskipper brain, induction of arginine vasotocin and isotocin under terrestrial conditions may be involved also in the preference for an aquatic habitat as ligands for brain isotocin receptors.

  3. Thyroid Hormone and Estrogen Regulate Exercise-Induced Growth Hormone Release

    Science.gov (United States)

    Ignacio, Daniele Leão; da S. Silvestre, Diego H.; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Louzada, Ruy Andrade

    2015-01-01

    Growth hormone (GH) regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1) activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues were harvested immediately or 30 min after exercise. Non-exercised animals were used as controls. A significant increase in D1 activity occurred immediately after exercise (~60%) in sham-operated animals and GH was higher (~6-fold) 30 min after exercise. Estrogen deficient rats exhibited basal levels of GH and D1 activity comparable to those found in control rats. However, after exercise both D1 activity and serum GH levels were blunted compared to sedentary rats. To understand the potential cause-effect of D1 activation in exercise-induced GH release, we pharmacologically blocked D1 activity by propylthiouracil (PTU) injection into intact rats and submitted them to the acute exercise session. D1 inhibition blocked exercise-induced GH secretion, although basal levels were unaltered. In conclusion, estrogen deficiency impairs the induction of thyroid hormone activating enzyme D1 in the pituitary, and GH release by acute exercise. Also, acute D1 activation is essential for exercise-induced GH response. PMID:25874614

  4. Minocycline counter-regulates pro-inflammatory microglia responses in the retina and protects from degeneration.

    Science.gov (United States)

    Scholz, Rebecca; Sobotka, Markus; Caramoy, Albert; Stempfl, Thomas; Moehle, Christoph; Langmann, Thomas

    2015-11-17

    retina and down-regulated the expression of the microglial activation marker translocator protein (18 kDa) (TSPO), CD68, and activated microglia/macrophage whey acidic protein (AMWAP) already 1 day after light exposure. Furthermore, RNA-seq analyses revealed the potential of minocycline to globally counter-regulate pro-inflammatory gene transcription in the light-damaged retina. The severe thinning of the outer retina and the strong induction of photoreceptor apoptosis induced by light challenge were nearly completely prevented by minocycline treatment as indicated by a preserved retinal structure and a low number of apoptotic cells. Minocycline potently counter-regulates microgliosis and light-induced retinal damage, indicating a promising concept for the treatment of retinal pathologies.

  5. Transcriptional regulation by nonclassical action of thyroid hormone

    Directory of Open Access Journals (Sweden)

    Moeller Lars C

    2011-08-01

    Full Text Available Abstract Thyroid hormone (TH is essential for normal development, growth and metabolism. Its effects were thought to be principally mediated through triiodothyronine (T3, acting as a ligand for the nuclear TH receptors (TRs α and β residing on thyroid hormone response elements (TREs in the promoter of TH target genes. In this classical model of TH action, T3 binding to TRs leads to recruitment of basal transcription factors and increased transcription of TH responsive genes. Recently, the concept of TH action on gene expression has become more diverse and now includes nonclassical actions of T3 and T4: T3 has been shown to activate PI3K via the TRs, which ultimately increases transcription of certain genes, e.g. HIF-1α. Additionally, both T3 and thyroxine (T4 can bind to a membrane integrin, αvβ3, which leads to activation of the PI3K and MAPK signal transduction pathways and finally also increases gene transcription, e.g. of the FGF2 gene. Therefore, these initially nongenomic, nonclassical actions seem to serve as additional interfaces for transcriptional regulation by TH. Aim of this perspective is to summarize the genes that are currently known to be induced by nonclassical TH action and the mechanisms involved.

  6. Counter-regulation in affective attentional biases: Evidence in the additional singleton paradigm.

    Science.gov (United States)

    Wentura, Dirk; Müller, Philipp; Rothermund, Klaus; Voss, Andreas

    2017-04-05

    We investigated motivational influences on affective processing biases; specifically, we were interested in whether anticipating positive vs. negative future outcomes during goal pursuit affects attentional biases towards positive or negative stimuli. Attentional valence biases were assessed with the additional singleton task, with the task-irrelevant singleton colors being either positive, negative, or neutral. The motivational relevance of colors was established in a preceding task: in a balanced design, one color acquired positive valence by indicating the chance to win money, and a different color acquired negative valence by indicating the danger to lose money. Blocks of the additional singleton task were associated with either the chance of winning money (positive outcome focus) or the danger of losing money (negative outcome focus). We found an interaction of outcome focus and singleton valence in the accuracy rates, indicating an incongruency effect: Attentional capture was stronger for positive (negative) singletons in the negative (positive) outcome focus conditions. This result further corroborates the counter-regulation hypothesis, extending previous findings on the motivational top-down regulation of affective processing to the domain of early attentional processes.

  7. Transcriptional and Hormonal Regulation of Weeping Trait in Salix matsudana

    Directory of Open Access Journals (Sweden)

    Juanjuan Liu

    2017-11-01

    Full Text Available Salix matsudana is a large and rapidly-growing tree, with erect or spreading branchlets (upright willow. However, S. matsudana var. pseudomatsudana is one of the varietas, with pendulous branchlets (weeping willow. It has high ornamental value for its graceful pendulous branches. In order to study the molecular basis for this weeping trait, leaves and stems collected at different developmental stages were analyzed using RNA-seq coupled with digital gene expression. Although weeping trees are used worldwide as landscape plants, little is known about the genes that control weeping. Our growth results indicated that branches in weeping willow developed and elongated throughout all developmental stages, but branches in upright willow grew rapidly in the initial stages and then grew slowly and began shoot branching in the middle stages. A total of 613 hormone-related genes were differentially expressed in willow development. Among these, genes associated with auxin and gibberellin (GA were highly likely to be responsible for the weeping trait, and genes associated with auxin and ethylene probably play crucial roles in shoot elongation. The genes with differential expression patterns were used to construct a network that regulated stem development, and auxin-related genes were identified as hub genes in the network in the weeping willow. Our results suggest an important role of gibberellin and auxin in regulating the weeping trait in Salix matsudana. This is the first report on the molecular aspects of hormonal effects on weeping trait in willow using transcriptomics and helps in dissecting the molecular mechanisms by which the weeping trait is controlled.

  8. Thyroid hormones regulate selenoprotein expression and selenium status in mice.

    Directory of Open Access Journals (Sweden)

    Jens Mittag

    Full Text Available Impaired expression of selenium-containing proteins leads to perturbed thyroid hormone (TH levels, indicating the central importance of selenium for TH homeostasis. Moreover, critically ill patients with declining serum selenium develop a syndrome of low circulating TH and a central downregulation of the hypothalamus-pituitary-thyroid axis. This prompted us to test the reciprocal effect, i.e., if TH status would also regulate selenoprotein expression and selenium levels. To investigate the TH dependency of selenium metabolism, we analyzed mice expressing a mutant TH receptor α1 (TRα1+m that confers a receptor-mediated hypothyroidism. Serum selenium was reduced in these animals, which was a direct consequence of the mutant TRα1 and not related to their metabolic alterations. Accordingly, hyperthyroidism, genetically caused by the inactivation of TRβ or by oral TH treatment of adult mice, increased serum selenium levels in TRα1+m and controls, thus demonstrating a novel and specific role for TRα1 in selenium metabolism. Furthermore, TH affected the mRNA levels for several enzymes involved in selenoprotein biosynthesis as well as serum selenoprotein P concentrations and the expression of other antioxidative selenoproteins. Taken together, our results show that TH positively affects the serum selenium status and regulates the expression of several selenoproteins. This demonstrates that selenium and TH metabolism are interconnected through a feed-forward regulation, which can in part explain the rapid parallel downregulation of both systems in critical illness.

  9. Hypothalamic regulation of metabolism : Role of thyroid hormone and estrogen

    NARCIS (Netherlands)

    Zhang, Z.

    2017-01-01

    Thyroid hormone and estrogen both play an essential role in energy metabolism. The current thesis investigated the possible central effects of these hormones in the control of energy metabolism by administrating triiodothyronine (T3), estradiol (E2) and thyrotropin-releasing hormone (TRH) in

  10. Counter-regulation triggered by emotions: positive/negative affective states elicit opposite valence biases in affective processing.

    Science.gov (United States)

    Schwager, Susanne; Rothermund, Klaus

    2013-01-01

    The present study investigated whether counter-regulation in affective processing is triggered by emotions. Automatic attention allocation to valent stimuli was measured in the context of positive and negative affective states. Valence biases were assessed by comparing the detection of positive versus negative words in a visual search task (Experiment 1) or by comparing interference effects of positive and negative distractor words in an emotional Stroop task (Experiment 2). Imagining a hypothetical emotional situation (Experiment 1) or watching romantic versus depressing movie clips (Experiment 2) increased attention allocation to stimuli that were opposite in valence to the current emotional state. Counter-regulation is assumed to reflect a basic mechanism underlying implicit emotion regulation.

  11. Growth hormone regulates the expression of UCP2 in myocytes.

    Science.gov (United States)

    Futawaka, Kumi; Tagami, Tetsuya; Fukuda, Yuki; Koyama, Rie; Nushida, Ayaka; Nezu, Syoko; Imamoto, Miyuki; Kasahara, Masato; Moriyama, Kenji

    2016-08-01

    To determine if and how growth hormone (GH) signaling is involved in energy metabolism. We used human embryonic kidney TSA201 cells, human H-EMC-SS chondrosarcoma cells, rat L6 skeletal muscle cells, and murine C2C12 skeletal muscle myoblasts to investigate GH-induced expression of uncoupling protein2 (UCP2) to the GHR/JAK/STAT5 pathway by a combination of a reporter assay, electrophoretic mobility shift assay (EMSA), real-time quantitative PCR, Western blotting. We demonstrated that the regulation energy metabolism, which was hypothesized to be directly acted on by GH, involves UCP2 via activated STAT5B, a signal transducer downstream of GH. We also showed that the sequence at the -586 'TTCnGA' may function as a novel putative consensus sequence of STAT5s. The results suggest that GH regulates energy metabolism directly in myocytes and that UCP2 participates in the signal transduction pathway that functions downstream of the GHR/JAK/STAT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Hormonal regulation of lipoprotein lipase in adipose tissue (studies in the rat and in humans)

    NARCIS (Netherlands)

    M.G.A. Baggen (Marinus)

    1988-01-01

    textabstractCurrent data strongly suggest the most important role for insulin in the hormonal regulation of adipose tissue LPL activity. It is not clear from the literature what the role is of glucocorticoids in the regulation of the enzyme. Stress hormones as ACTH and adrenalin for example seem

  13. Physiological role of somatostatin on growth hormone regulation in humans.

    Science.gov (United States)

    Thorner, M O; Vance, M L; Hartman, M L; Holl, R W; Evans, W S; Veldhuis, J D; Van Cauter, E; Copinschi, G; Bowers, C Y

    1990-09-01

    Growth hormone (GH) secretion in man is pulsatile and this pattern is regulated by both GH-releasing hormone (GHRH) and somatostatin. A large body of experimental evidence in both man and animals supports the model that bursts of GH secretion are mediated by a reduction of tonic hypothalamic somatostatin secretion. Our studies have been performed in normal subjects with frequent blood sampling for GH measurements (from 20-minute to 30-second intervals); the data have been analyzed by computer algorithms to objectively determine pulse characteristics and, in some studies, to estimate both pituitary secretion and clearance rates using deconvolution analysis. The studies include profiles of GH secretion in normal men and women in fed and fasted states; analysis of GH secretion during sleep; and administration of GHRH during different stages of sleep and after sleep deprivation. The variable GH response to exogenous GHRH and the attenuated response after 6 hours of GHRH infusion to GHRH, while not to hypoglycemia, as well as the pulsatile profile of GH secretion in response to continuous GHRH infusions (24 hours to 14 days), all support the thesis that it is hypothalamic somatostatin that determines the timing of bursts of GH secretion. This is further confirmed by the profile of GH secretion in a patient with ectopic GHRH secretion. Recently, we have initiated studies with the novel synthetic GH releasing hexapeptide, HisDTrpAlaTrpDPheLysNH2 (GHRP). Our studies show that it acts synergistically with GHRH. Several lines of evidence suggest that GHRP stimulates GH secretion independently of GHRH receptors and acts at both the hypothalamic and pituitary levels. It may act to functionally antagonize somatostatin.

  14. Regulation of glucose transport by thyroid hormone in rat ovary.

    Science.gov (United States)

    Ding, Yu; Tian, Ye; Guo, Meng; Liu, Juan; Heng, Dai; Zhu, Baochang; Yang, Yanzhou; Zhang, Cheng

    2016-11-01

    Thyroid hormone (TH) plays an important role in regulating ovarian development. However, the mechanism involved remains unclear. Evidence suggests that glucose is essential for ovarian development, and its uptake is mediated by several glucose transporter proteins (Glut). We have investigated the effects of TH on Glut in rat ovary. Immature rats were treated with 6-propyl-2-thiouracil or L-thyroxine to induce hypothyroidism (hypo) or hyperthyroidism (hyper), respectively. Ovarian weights significantly decreased in both treated groups compared with the control group, although the body weights were not markedly altered. Glut1 expression significantly decreased without further changes being detected in the other Glut isforms in the hypo group and was accompanied by minimal change in mRNA content. The expression of Glut1 decreased in the hyper group. In contrast, L-thyroxine significantly increased Glut4 mRNA level and protein content but had little effect on Glut2 and Glut3 expression. Serum glucose concentrations in the hyper group were dramatically reduced compared with those in the control group. However, the serum glucose levels in the hypo group were not significantly changed. In addition, equine chorionic gonadotropin (eCG) increased ovarian weights in both the hypo and hyper groups compared with those in the rats without eCG injection. Glut2-4 protein content was significantly increased by eCG in hyper rats. Only the Glut4 mRNA content was significantly increased by eCG in the hyper group. Although the mRNA levels were not significantly changed by eCG in the hypo group, the protein level of Glut4 was markedly up-regulated. Serum glucose levels were not significantly altered by eCG in the two groups. Thus, dysfunction of the thyroid gland changes Glut expression in rat ovary and ovarian growth, both of which are also regulated by gonadotropin.

  15. Hormones

    Science.gov (United States)

    Hormones are your body's chemical messengers. They travel in your bloodstream to tissues or organs. They work ... glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, ...

  16. Hypothalamic regulation of metabolism: Role of thyroid hormone and estrogen

    OpenAIRE

    Zhang, Z.

    2017-01-01

    Thyroid hormone and estrogen both play an essential role in energy metabolism. The current thesis investigated the possible central effects of these hormones in the control of energy metabolism by administrating triiodothyronine (T3), estradiol (E2) and thyrotropin-releasing hormone (TRH) in distinct hypothalamic nuclei. We evaluated various aspects of metabolic alterations including glucose and lipid metabolism, food intake, body weight, body temperature, locomotor activity, energy expenditu...

  17. Promoter polymorphisms regulating corticotrophin-releasing hormone transcription in vitro.

    Science.gov (United States)

    Wagner, U; Wahle, M; Moritz, F; Wagner, U; Häntzschel, H; Baerwald, C G O

    2006-02-01

    To investigate whether polymorphisms in the corticotrophin-releasing hormone (CRH) promoter are associated with altered CRH gene regulation, we studied the reactivity of three recently described promoter variants in vitro. The 3625 bp variants A1B1, A2B1 and A2B2 of the human CRH promoter were cloned in the 5' region to a luciferase reporter gene and transiently transfected into both mouse anterior pituitary cells AtT-20D16vF2 and pheochromocytoma cells PC12. Incubation with 8-Br-cAMP alone or in combination with cytokines significantly enhanced the promoter activity in both cell lines studied by up to 22-fold. However, dexamethasone antagonised cAMP effects on CRH expression in AtT-20 cells while showing no effect on PC12 cells, indicating that tissue-specific factors play a crucial role. Among the haplotypes studied, A1B1 exhibited the greatest reactivity on various stimuli. Electric mobility shift assay (EMSA) was performed to study whether the described polymorphic nucleotide sequences in the 5' region of the hCRH gene interfere with binding of nuclear proteins. A specific DNA protein complex was detected at position -2353 bp for the wild type sequence only, possibly interfering with a binding site for the activating transcription factor 6 (ATF6). Taken together, this is the first study to demonstrate that CRH promoter reactivity varies between the compound promoter alleles.

  18. Dosage dependent hormonal counter regulation to combination therapy in patients with left ventricular dysfunction

    DEFF Research Database (Denmark)

    Galløe, A.M.; Skagen, K.; Christensen, Niels Juel

    2006-01-01

    The present study attempts to assess the efficacy combination therapy for heart failure. Genuine dose-response studies on combination therapy are not available and published studies involved adding one drug on top of 'usual treatment'. Sixteen different dosage combinations of trandolapril...... with the maximal effect at 0.5 mg daily. Both drugs significantly increased renin concentration with a significant potentiating interaction. It was not possible to detect beneficial effects of combination therapies. The optimal dosage of Bumetanide appeared to be 0.5 mg twice daily based on its effect on quality...... of life and weight loss. Estimated by the reduction in systolic blood pressure the optimal dosage of Trandolapril appeared to be 0.5 mg once daily. CONCLUSIONS: It appears that patients should be given less than the usually recommended dosages. Patients may be treated with a low dose loop diuretic...

  19. 21 CFR 310.530 - Topically applied hormone-containing drug products for over-the-counter (OTC) human use.

    Science.gov (United States)

    2010-04-01

    ... substance formed in some organ of the body, such as the adrenal glands or the pituitary, and carried to... marketed for topical use as hormone creams. However, there is a lack of adequate data to establish... is that the product will have a therapeutic or some other physiological effect on the body. Therefore...

  20. Roles of plant hormones in the regulation of host-virus interactions.

    Science.gov (United States)

    Alazem, Mazen; Lin, Na-Sheng

    2015-06-01

    Hormones are tuners of plant responses to biotic and abiotic stresses. They are involved in various complicated networks, through which they modulate responses to different stimuli. Four hormones primarily regulate plant defence to pathogens: salicylic acid (SA), jasmonic acid (JA), ethylene (Et) and abscisic acid (ABA). In susceptible plants, viral infections result in hormonal disruption, which manifests as the simultaneous induction of several antagonistic hormones. However, these antagonistic hormones may exhibit some sequential accumulation in resistant lines. Virus propagation is usually restricted by the activation of the small interfering RNA (siRNA) antiviral machinery and/or SA signalling pathway. Several studies have investigated these two systems, using different model viruses. However, the roles of hormones other than SA, especially those with antagonistic properties, such as ABA, have been neglected. Increasing evidence indicates that hormones control components of the small RNA system, which regulates many processes (including the siRNA antiviral machinery and the microRNA system) at the transcriptional or post-transcriptional level. Consequently, cross-talk between the antagonistic SA and ABA pathways modulates plant responses at multiple levels. In this review, we summarize recent findings on the different roles of hormones in the regulation of plant-virus interactions, which are helping us to elucidate the fine tuning of viral and plant systems by hormones. © 2014 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY JOHN WILEY & SONS LTD AND BSPP.

  1. Counter-regulation in affective attentional biases: a basic mechanism that warrants flexibility in emotion and motivation.

    Science.gov (United States)

    Rothermund, Klaus; Voss, Andreas; Wentura, Dirk

    2008-02-01

    We investigated whether anticipating positive or negative future outcomes during goal pursuit has a modulatory effect on attentional biases for affectively congruent and incongruent distractor stimuli. In two experiments using a flanker task, we found that distractor interference of stimuli signaling opportunities or dangers was stronger after inducing an outcome focus of the opposite valence. The second experiment provided additional evidence that the incongruency effect reflects a global shift in affective attentional biases and is not mediated by changes in strategies or in the perceived valence of the stimuli. It is argued that counter-regulation in affective attentional biases serves an important function for the regulation of emotion and action.

  2. Music increase altruism through regulating the secretion of steroid hormones and peptides.

    Science.gov (United States)

    Fukui, Hajime; Toyoshima, Kumiko

    2014-12-01

    Music is well known for its effect on human behavior especially of their bonding and empathy towards others. Music provokes one's emotion and activates mirror neurons and reward system. It also regulates social hormones such as steroid hormones or peptides, and increases empathy, pro-sociality and altruism. As a result, it improves one's reproductive success. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The SOCS2 Ubiquitin Ligase Complex Regulates Growth Hormone Receptor Levels

    DEFF Research Database (Denmark)

    Vesterlund, Mattias; Zadjali, Fahad; Persson, Torbjörn

    2011-01-01

    Growth Hormone is essential for the regulation of growth and the homeostatic control of intermediary metabolism. GH actions are mediated by the Growth Hormone Receptor; a member of the cytokine receptor super family that signals chiefly through the JAK2/STAT5 pathway. Target tissue responsiveness...

  4. Effect of one week of CPAP treatment of obstructive sleep apnoea on 24-hour profiles of glucose, insulin and counter-regulatory hormones in type 2 diabetes.

    Science.gov (United States)

    Mokhlesi, Babak; Grimaldi, Daniela; Beccuti, Guglielmo; Van Cauter, Eve

    2017-03-01

    Studies examining the impact of CPAP treatment on glycaemic control have yielded conflicting results, partly because of insufficient nightly CPAP use. We examined the 24-hour profiles of glucose, insulin and counter-regulatory hormones in 12 subjects with type 2 diabetes and OSA before and after 1 week of effective in-laboratory CPAP therapy over an entire 8-hour night thus ensuring optimal CPAP compliance. Blood samples were collected every 15 to 30 minutes for 24 hours under controlled conditions. The 24-hour mean glucose decreased from 153.2 ± 33.0 to 139.7 ± 24.2 mg/dL with CPAP (-13.5 ± 13.5 mg/dL; P = .005) without change in insulin levels. Morning fasting glucose levels decreased by 14.6 ± 3 mg/dL (P = .001) and the dawn phenomenon decreased by 7.8 ± 9.8 mg/dL (P = .019). CPAP treatment decreased norepinephrine levels while the 24-hour profiles of growth hormone and cortisol remained unchanged. In conclusion, 1 week of effective treatment of OSA over an entire 8-hour night results in a clinically significant improvement in glycaemic control via an amelioration of evening fasting glucose metabolism and a reduction in the dawn phenomenon, a late-night glucose increase that is not adequately treated by oral medications. Clinical Trials Information: ClinicalTrials.gov Identifier: NCT01136785. © 2016 John Wiley & Sons Ltd.

  5. Interrelationships between Hormones, Behavior, and Affect during Adolescence: Complex Relationships Exist between Reproductive Hormones, Stress‐Related Hormones, and the Activity of Neural Systems That Regulate Behavioral Affect. Comments on Part III

    National Research Council Canada - National Science Library

    CAMERON, JUDY L

    2004-01-01

    ..., and changes in behavioral affect regulation. The interactions between activity in the reproductive axis, the neural systems that regulate stress, hormones produced in response to stress, and neural systems governing behavioral affect regulation...

  6. A regulator of G Protein signaling, RGS3, inhibits gonadotropin-releasing hormone (GnRH-stimulated luteinizing hormone (LH secretion

    Directory of Open Access Journals (Sweden)

    Musgrove Lois C

    2001-11-01

    Full Text Available Abstract Background Luteinizing hormone secreted by the anterior pituitary gland regulates gonadal function. Luteinizing hormone secretion is regulated both by alterations in gonadotrope responsiveness to hypothalamic gonadotropin releasing hormone and by alterations in gonadotropin releasing hormone secretion. The mechanisms that determine gonadotrope responsiveness are unknown but may involve regulators of G protein signaling (RGSs. These proteins act by antagonizing or abbreviating interaction of Gα proteins with effectors such as phospholipase Cβ. Previously, we reported that gonadotropin releasing hormone-stimulated second messenger inositol trisphosphate production was inhibited when RGS3 and gonadotropin releasing hormone receptor cDNAs were co-transfected into the COS cell line. Here, we present evidence for RGS3 inhibition of gonadotropin releasing hormone-induced luteinizing hormone secretion from cultured rat pituitary cells. Results A truncated version of RGS3 (RGS3T = RGS3 314–519 inhibited gonadotropin releasing hormone-stimulated inositol trisphosphate production more potently than did RSG3 in gonadotropin releasing hormone receptor-bearing COS cells. An RSG3/glutathione-S-transferase fusion protein bound more 35S-Gqα than any other member of the G protein family tested. Adenoviral-mediated RGS3 gene transfer in pituitary gonadotropes inhibited gonadotropin releasing hormone-stimulated luteinizing hormone secretion in a dose-related fashion. Adeno-RGS3 also inhibited gonadotropin releasing hormone stimulated 3H-inositol phosphate accumulation, consistent with a molecular site of action at the Gqα protein. Conclusions RGS3 inhibits gonadotropin releasing hormone-stimulated second messenger production (inositol trisphosphate as well as luteinizing hormone secretion from rat pituitary gonadotropes apparently by binding and suppressing the transduction properties of Gqα protein function. A version of RGS3 that is amino

  7. Hormonal regulation of AMPA receptor trafficking and memory formation

    Directory of Open Access Journals (Sweden)

    Harmen J Krugers

    2009-10-01

    Full Text Available Humans and rodents retain memories for stressful events very well. The facilitated retention of these memories is normally very useful. However, in susceptible individuals a variety of pathological conditions may develop in which memories related to stressful events remain inappropriately present, such as in post-traumatic stress disorder. The memory enhancing effects of stress are mediated by hormones, such as norepinephrine and glucocorticoids which are released during stressful experiences. Here we review recently identified molecular mechanisms that underlie the effects of stress hormones on synaptic efficacy and learning and memory. We discuss AMPA receptors as major target for stress hormones and describe a model in which norepinephrine and glucocorticoids are able to strengthen and prolong different phases of stressful memories.

  8. Hormones & growth regulators can be useful to foresters

    Science.gov (United States)

    Albert G., Jr. Snow

    1959-01-01

    Trees, like other plants, contain many natural chemicals of the sort that we call hormones. Research is gradually revealing that, in the behavior of a tree, these chemicals may be almost as important as the basic influences of heredity and environment.

  9. Up-regulation of corticotropin releasing hormone is associated with ...

    African Journals Online (AJOL)

    Purpose: To determine the expression of corticotropin-releasing hormone (CRH) in psoriasis and normal skin biopsy samples, and to correlate the expression of CRH with the expression of CRHBP and inflammatory cytokines IL-8 and IL-33. Methods: Psoriasis and normal skin biopsy samples were obtained from three ...

  10. Dependence of calcium on thyroid hormone for the regulation of ...

    African Journals Online (AJOL)

    concentration by mobilizing intracellular Ca2+. The mobilization of intracellular Ca2+in the absence of transmembrane Ca2+influx has been accepted as evidence for a cell-surface Ca2+ - receptor. The possible role of thyroid hormone in the ...

  11. Up-regulation of corticotropin releasing hormone is associated with ...

    African Journals Online (AJOL)

    Sent for review: 28 July 2017. Revised accepted: 27 October 2017. Abstract. Purpose: To determine the expression of corticotropin releasing hormone (CRH) in psoriasis and normal skin biopsy samples, and to correlate the expression of CRH with the expression of CRHBP and inflammatory cytokines IL-8 and IL-33.

  12. Up-regulation of corticotropin releasing hormone is associated with ...

    African Journals Online (AJOL)

    Purpose: To determine the expression of corticotropin releasing hormone (CRH) in psoriasis and normal skin biopsy samples, and to correlate the expression of CRH with the expression of CRHBP and inflammatory cytokines IL-8 and IL-33. Methods: Psoriasis and normal skin biopsy samples were obtained from three ...

  13. Gene expression profiling of hormonal regulation related to the residual feed intake of Holstein cattle.

    Science.gov (United States)

    Xi, Y M; Yang, Z; Wu, F; Han, Z Y; Wang, G L

    2015-09-11

    An accumulation of over a decade of research in cattle has shown that genetic selection for decreased residual feed intake (RFI), defined as the difference between an animal's actual feed intake and its expected feed intake, is a viable option for improving feed efficiency and reducing the feed requirements of herds, thereby improving the profitability of cattle producers. Hormonal regulation is one of the most important factors in feed intake. To determine the relationship between hormones and feed efficiency, we performed gene expression profiling of jugular vein serum on hormonal regulation of Chinese Holstein cattle with low and high RFI coefficients. 857 differential expression genes (from 24683 genes) were found. Among these, 415 genes were up-regulated and 442 genes were down-regulated in the low RFI group. The gene ontology (GO) search revealed 6 significant terms and 64 genes associated with hormonal regulation, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) selected the adipocytokine signaling pathway, insulin signaling pathway. In conclusion, the study indicated that the molecular expression of genes associated with hormonal regulation differs in dairy cows, depending on their RFI coefficients, and that these differences may be related to the molecular regulation of the leptin-NPY and insulin signaling pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Hormone-sensing mammary epithelial progenitors: emerging identity and hormonal regulation.

    Science.gov (United States)

    Tarulli, Gerard A; Laven-Law, Geraldine; Shakya, Reshma; Tilley, Wayne D; Hickey, Theresa E

    2015-06-01

    The hormone-sensing mammary epithelial cell (HS-MEC-expressing oestrogen receptor-alpha (ERα) and progesterone receptor (PGR)) is often represented as being terminally differentiated and lacking significant progenitor activity after puberty. Therefore while able to profoundly influence the proliferation and function of other MEC populations, HS-MECs are purported not to respond to sex hormone signals by engaging in significant cell proliferation during adulthood. This is a convenient and practical simplification that overshadows the sublime, and potentially critical, phenotypic plasticity found within the adult HS-MEC population. This concept is exemplified by the large proportion (~80 %) of human breast cancers expressing PGR and/or ERα, demonstrating that HS-MECs clearly proliferate in the context of breast cancer. Understanding how HS-MEC proliferation and differentiation is driven could be key to unraveling the mechanisms behind uncontrolled HS-MEC proliferation associated with ERα- and/or PGR-positive breast cancers. Herein we review evidence for the existence of a HS-MEC progenitor and the emerging plasticity of the HS-MEC population in general. This is followed by an analysis of hormones other than oestrogen and progesterone that are able to influence HS-MEC proliferation and differentiation: androgens, prolactin and transforming growth factor-beta1.

  15. Acute bout of exercise induced prolonged muscle glucose transporter-4 translocation and delayed counter-regulatory hormone response in type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Koji Sato

    Full Text Available Previous studies have demonstrated that an acute bout of aerobic exercise induces a subsequent delayed onset of hypoglycemia among patients with type 1 diabetes. However, the mechanisms of exercise-induced hypoglycemia in type 1 diabetes are still unclear. Streptozotocin (STZ was injected to 6-week-old male Wistar rats, and three days after STZ injection, animals were randomly assigned into 2 groups: STZ with insulin only (STZ and STZ with insulin and exercise (STZ+EX. Normal Wistar rats with exercise were used as control (CON+EX. Insulin was intraperitoneally injected (0.5 U/kg to both STZ groups (-0.5 h, and a bout of aerobic exercise (15 m/min for 30 min was conducted at euglycemic conditions (0 h. Blood was collected at 0, 1, 3, and 5 h after exercise from the carotid artery. While the blood glucose level was stable during the post-exercise period (0-5 h in the STZ and CON+EX groups, it decreased significantly only in the STZ+EX group at 3 h. Plasma glucagon, adrenalin, and noradrenalin levels significantly increased at 1 h in the STZ group, whereas significant hormonal responses were observed at 5 h in the STZ+EX group. In skeletal muscle glucose metabolism-related pathway, the level of glucose transporter-4 (GLUT-4 translocation was significantly higher at 1 h in the CON and STZ groups. However, in the STZ+EX group, these activations were maintained by 5 h, indicating a sustained glucose metabolism in the STZ+EX group. A single bout of aerobic exercise induced a delayed onset of hypoglycemia in STZ-treated rats. A prolonged enhancement of GLUT-4 translocation and delayed counter-regulatory hormone responses may have contributed to the induction of hypoglycemia.

  16. Hormonal regulation of wheat growth during hydroponic culture

    Science.gov (United States)

    Wetherell, Donald

    1988-01-01

    Hormonal control of root growth has been explored as one means to alleviate the crowding of plant root systems experienced in prototype hydroponic biomass production chambers being developed by the CELSS Breadboard Project. Four plant hormones, or their chemical analogs, which have been reported to selectively inhibit root growth, were tested by adding them to the nutrient solutions on day 10 of a 25 day growth test using spring wheat in hydroponic cultures. Growth and morphological changes is both shoot and root systems were evaluated. In no case was it possible to inhibit root growth without a comparable inhibition of shoot growth. It was concluded that this approach is unlikely to prove useful for wheat.

  17. Stress Hormones and their Regulation in a Captive Dolphin Population

    Science.gov (United States)

    2015-09-30

    Dolphin Population Cory D Champagne & Dorian S. Houser National Marine Mammal Foundation 2240 Shelter Island Dr, Suite 200 San Diego, CA 92106 phone...understanding of how the stress response operates in marine mammals by evaluating markers of stress in a captive dolphin population. It determines...baseline levels of putative stress hormones and evaluates the functional consequences of increased stress in the bottlenose dolphin (Tursiops

  18. Neurohypophysial Hormones Regulate Amphibious Behaviour in the Mudskipper Goby

    National Research Council Canada - National Science Library

    Sakamoto, Tatsuya; Nishiyama, Yudai; Ikeda, Aoi; Takahashi, Hideya; Hyodo, Susumu; Kagawa, Nao; Sakamoto, Hirotaka

    2015-01-01

    .... In the amphibious mudskipper, Periophthalmus modestus, we previously found arginine-vasotocin-specific regulation of aggressive behavior, including migration of the submissive subordinate into water...

  19. The Insect Prothoracic Gland as a Model for Steroid Hormone Biosynthesis and Regulation

    Directory of Open Access Journals (Sweden)

    Qiuxiang Ou

    2016-06-01

    Full Text Available Steroid hormones are ancient signaling molecules found in vertebrates and insects alike. Both taxa show intriguing parallels with respect to how steroids function and how their synthesis is regulated. As such, insects are excellent models for studying universal aspects of steroid physiology. Here, we present a comprehensive genomic and genetic analysis of the principal steroid hormone-producing organs in two popular insect models, Drosophila and Bombyx. We identified 173 genes with previously unknown specific expression in steroid-producing cells, 15 of which had critical roles in development. The insect neuropeptide PTTH and its vertebrate counterpart ACTH both regulate steroid production, but molecular targets of these pathways remain poorly characterized. Identification of PTTH-dependent gene sets identified the nuclear receptor HR4 as a highly conserved target in both Drosophila and Bombyx. We consider this study to be a critical step toward understanding how steroid hormone production and release are regulated in all animal models.

  20. DYNAMIC BEHAVIOR OF A DELAY-DIFFERENTIAL EQUATION MODEL FOR THE HORMONAL REGULATION OF THE MENSTRUAL CYCLE

    Science.gov (United States)

    During the menstrual cycle, pituitary hormones stimulate the growth and development of ovarian follicles and the release of an ovum to be fertilized. The ovarian follicles secrete hormones during the cycle that regulate the production of the pituitary hormones creating positi...

  1. Human mammospheres secrete hormone-regulated active extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Esperanza Gonzalez

    Full Text Available Breast cancer is a leading cause of cancer-associated death worldwide. One of the most important prognostic factors for survival is the early detection of the disease. Recent studies indicate that extracellular vesicles may provide diagnostic information for cancer management. We demonstrate the secretion of extracellular vesicles by primary breast epithelial cells enriched for stem/progenitor cells cultured as mammospheres, in non-adherent conditions. Using a proteomic approach we identified proteins contained in these vesicles whose expression is affected by hormonal changes in the cellular environment. In addition, we showed that these vesicles are capable of promoting changes in expression levels of genes involved in epithelial-mesenchymal transition and stem cell markers. Our findings suggest that secreted extracellular vesicles could represent potential diagnostic and/or prognostic markers for breast cancer and support a role for extracellular vesicles in cancer progression.

  2. Mini-review: regulation of the renal NaCl cotransporter by hormones.

    Science.gov (United States)

    Rojas-Vega, Lorena; Gamba, Gerardo

    2016-01-01

    The renal thiazide-sensitive NaCl cotransporter, NCC, is the major pathway for salt reabsorption in the distal convoluted tubule. The activity of this cotransporter is critical for regulation of several physiological variables such as blood pressure, serum potassium, acid base metabolism, and urinary calcium excretion. Therefore, it is not surprising that numerous hormone-signaling pathways regulate NCC activity to maintain homeostasis. In this review, we will provide an overview of the most recent evidence on NCC modulation by aldosterone, angiotensin II, vasopressin, glucocorticoids, insulin, norepinephrine, estradiol, progesterone, prolactin, and parathyroid hormone. Copyright © 2016 the American Physiological Society.

  3. Hormonal regulation for callogenesis and organgenesis of Artemisia ...

    African Journals Online (AJOL)

    , at different auxin and cytokinin concentrations. Moderate concentrations of growth regulators either in combination or in single in MS medium produced friable, light green and non-embryogenic callus from both explants. These totipotent cells ...

  4. Hormonal regulation for callogenesis and organgenesis of Artemisia ...

    African Journals Online (AJOL)

    SERVER

    2007-08-20

    Aug 20, 2007 ... The seeds were germinated on plane agar medium containing 3% sucrose. After two weeks of germination, leaves and stems were excised at average size 2 – 3 cm and placed on pre-autoclaved. Murashige and Skoog (MS, 1962) basal medium supplemented with different growth regulators. The cultures ...

  5. Estrogens regulate the hepatic effects of Growth Hormone, a hormonal interplay with multiple fates

    Directory of Open Access Journals (Sweden)

    Leandro eFernandez-Perez

    2013-06-01

    Full Text Available The liver responds to estrogens and GH which are critical regulators of body growth, gender-related hepatic functions, and intermediate metabolism. The effects of estrogens on liver can be direct, through the direct actions of hepatic ER, or indirect, which include the crosstalk with endocrine, metabolic, and sex-differentiated functions of GH. Most previous studies have been focused on the influence of estrogens on pituitary GH secretion, which has a great impact on hepatic transcriptional regulation. However, there is strong evidence that estrogens can influence the GH-regulated endocrine and metabolic functions in the human liver by acting at the level of GHR-STAT5 signaling pathway. This cross-talk is relevant because the widespread exposition of estrogen or estrogen-related compounds in human. Therefore, GH or estrogen signaling deficiency as well as the influence of estrogens on GH biology can cause a dramatic impact in liver physiology during mammalian development and in adulthood. In this review, we will summarize the current status of the influence of estrogen on GH actions in liver. A better understanding of estrogen-GH interplay in liver will lead to improved therapy of children with growth disorders and of adults with GH deficiency.

  6. Effects of exercise intensity on plasma concentrations of appetite-regulating hormones: Potential mechanisms.

    Science.gov (United States)

    Hazell, Tom J; Islam, Hashim; Townsend, Logan K; Schmale, Matt S; Copeland, Jennifer L

    2016-03-01

    The physiological control of appetite regulation involves circulating hormones with orexigenic (appetite-stimulating) and anorexigenic (appetite-inhibiting) properties that induce alterations in energy intake via perceptions of hunger and satiety. As the effectiveness of exercise to induce weight loss is a controversial topic, there is considerable interest in the effect of exercise on the appetite-regulating hormones such as acylated ghrelin, peptide YY (PYY), glucagon-like peptide-1 (GLP-1), and pancreatic polypeptide (PP). Research to date suggests short-term appetite regulation following a single exercise session is likely affected by decreases in acylated ghrelin and increases in PYY, GLP-1, and PP. Further, this exercise-induced response may be intensity-dependent. In an effort to guide future research, it is important to consider how exercise alters the circulating concentrations of these appetite-regulating hormones. Potential mechanisms include blood redistribution, sympathetic nervous system activity, gastrointestinal motility, cytokine release, free fatty acid concentrations, lactate production, and changes in plasma glucose and insulin concentrations. This review of relevant research suggests blood redistribution during exercise may be important for suppressing ghrelin, while other mechanisms involving cytokine release, changes in plasma glucose and insulin concentrations, SNS activity, and muscle metabolism likely mediate changes in the anorexigenic signals PYY and GLP-1. Overall, changes in appetite-regulating hormones following acute exercise appear to be intensity-dependent, with increasing intensity leading to a greater suppression of orexigenic signals and greater stimulation of anorexigenic signals. However, there is less research on how exercise-induced responses in appetite-regulating hormones differ between sexes or different age groups. A better understanding of how exercise intensity and workload affect appetite across the sexes and life

  7. Broad relays hormone signals to regulate stem cell differentiation in Drosophila midgut during metamorphosis.

    Science.gov (United States)

    Zeng, Xiankun; Hou, Steven X

    2012-11-01

    Like the mammalian intestine, the Drosophila adult midgut is constantly replenished by multipotent intestinal stem cells (ISCs). Although it is well known that adult ISCs arise from adult midgut progenitors (AMPs), relatively little is known about the mechanisms that regulate AMP specification. Here, we demonstrate that Broad (Br)-mediated hormone signaling regulates AMP specification. Br is highly expressed in AMPs temporally during the larva-pupa transition stage, and br loss of function blocks AMP differentiation. Furthermore, Br is required for AMPs to develop into functional ISCs. Conversely, br overexpression drives AMPs toward premature differentiation. In addition, we found that Br and Notch (N) signaling function in parallel pathways to regulate AMP differentiation. Our results reveal a molecular mechanism whereby Br-mediated hormone signaling directly regulates stem cells to generate adult cells during metamorphosis.

  8. The interaction between strigolactones and other plant hormones in the regulation of plant development : Review

    NARCIS (Netherlands)

    Cheng, X.; Ruyter-Spira, C.P.; Bouwmeester, H.J.

    2013-01-01

    Plant hormones are small molecules derived from various metabolic pathways and are important regulators of plant development. The most recently discovered phytohormone class comprises the carotenoid-derived strigolactones (SLs). For a long time these compounds were only known to be secreted into the

  9. APPLICATIONS OF A MODEL FOR THE HORMONAL REGULATION OF THE MENSTRUAL CYCLE

    Science.gov (United States)

    APPLICATIONS OF A MODEL FOR THE HORMONAL REGULATION OF THE MENSTRUAL CYCLE. Leona H. Clark1, Paul M. Schlosser2, and James F. Selgrade3. 1US Environmental Protection Agency, ORD, NHEERL, ETD, Research Triangle Park, NC; 2CIIT, Research Triangle Park, NC; 3North Carolina State Un...

  10. Growth Hormone Receptor Signaling Pathways and its Negative Regulation by SOCS2

    DEFF Research Database (Denmark)

    Fernández Pérez, Leandro; Flores-Morales, Amilcar; Guerra, Borja

    2016-01-01

    Growth hormone (GH) is a critical regulator of linear body growth during childhood but continues to have important metabolic actions throughout life. The GH receptor (GHR) is ubiquitously expressed, and deficiency of GHR signaling causes a dramatic impact on normal physiology during somatic devel...

  11. Melatonin Regulates the Synthesis of Steroid Hormones on Male Reproduction: A Review

    Directory of Open Access Journals (Sweden)

    Kun Yu

    2018-02-01

    Full Text Available Melatonin is a ubiquitous molecule and exhibits different effects in long-day and short-day breeding animals. Testosterone, the main resource of androgens in the testis, is produced by Leydig cells but regulated mainly by cytokine secreted by Sertoli cells. Melatonin acts as a local modulator of the endocrine activity in Leydig cells. In Sertoli cells, melatonin influences cellular proliferation and energy metabolism and, consequently, can regulate steroidogenesis. These suggest melatonin as a key player in the regulation of steroidogenesis. However, the melatonin-induced regulation of steroid hormones may differ among species, and the literature data indicate that melatonin has important effects on steroidogenesis and male reproduction.

  12. Current trends in targeting the hormonal regulation of appetite and energy balance to treat obesity

    OpenAIRE

    Valentino, Michael A; Colon-Gonzalez, Francheska; Lin, Jieru E.; Waldman, Scott A.

    2010-01-01

    With the eruption of the obesity pandemic over the past few decades, much research has been devoted to understanding the molecular mechanisms by which the human body regulates energy balance. These studies have revealed several mediators, including gut/pancreatic/adipose hormones and neuropeptides that control both short- and long-term energy balance by regulating appetite and/or metabolism. These endogenous mediators of energy balance have been the focus of many anti-obesity drug-development...

  13. Hormonal regulation of platypus Beta-lactoglobulin and monotreme lactation protein genes.

    Science.gov (United States)

    Enjapoori, Ashwantha Kumar; Lefèvre, Christophe M; Nicholas, Kevin R; Sharp, Julie A

    2017-02-01

    Endocrine regulation of milk protein gene expression in marsupials and eutherians is well studied. However, the evolution of this complex regulation that began with monotremes is unknown. Monotremes represent the oldest lineage of extant mammals and the endocrine regulation of lactation in these mammals has not been investigated. Here we characterised the proximal promoter and hormonal regulation of two platypus milk protein genes, Beta-lactoglobulin (BLG), a whey protein and monotreme lactation protein (MLP), a monotreme specific milk protein, using in vitro reporter assays and a bovine mammary epithelial cell line (BME-UV1). Insulin and dexamethasone alone provided partial induction of MLP, while the combination of insulin, dexamethasone and prolactin was required for maximal induction. Partial induction of BLG was achieved by insulin, dexamethasone and prolactin alone, with maximal induction using all three hormones. Platypus MLP and BLG core promoter regions comprised transcription factor binding sites (e.g. STAT5, NF-1 and C/EBPα) that were conserved in marsupial and eutherian lineages that regulate caseins and whey protein gene expression. Our analysis suggests that insulin, dexamethasone and/or prolactin alone can regulate the platypus MLP and BLG gene expression, unlike those of therian lineage. The induction of platypus milk protein genes by lactogenic hormones suggests they originated before the divergence of marsupial and eutherians. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. 2,4,6-Tribromophenol Interferes with the Thyroid Hormone System by Regulating Thyroid Hormones and the Responsible Genes in Mice.

    Science.gov (United States)

    Lee, Dongoh; Ahn, Changhwan; Hong, Eui-Ju; An, Beum-Soo; Hyun, Sang-Hwan; Choi, Kyung-Chul; Jeung, Eui-Bae

    2016-07-12

    2,4,6-Tribromophenol (TBP) is a brominated flame retardant (BFR). Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1) and thyroid hormone receptor β isoform 2 (Thrβ2) decreased in the pituitary gland. The levels of deiodinase 2 (Dio2) and growth hormone (Gh) mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ) increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems.

  15. 2,4,6-Tribromophenol Interferes with the Thyroid Hormone System by Regulating Thyroid Hormones and the Responsible Genes in Mice

    Directory of Open Access Journals (Sweden)

    Dongoh Lee

    2016-07-01

    Full Text Available 2,4,6-Tribromophenol (TBP is a brominated flame retardant (BFR. Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1 and thyroid hormone receptor β isoform 2 (Thrβ2 decreased in the pituitary gland. The levels of deiodinase 2 (Dio2 and growth hormone (Gh mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems

  16. Hormonal regulation of alveolarization: structure-function correlation

    Directory of Open Access Journals (Sweden)

    Godinez Marye H

    2006-03-01

    Full Text Available Abstract Background Dexamethasone (Dex limits and all-trans-retinoic acid (RA promotes alveolarization. While structural changes resulting from such hormonal exposures are known, their functional consequences are unclear. Methods Neonatal rats were treated with Dex and/or RA during the first two weeks of life or were given RA after previous exposure to Dex. Morphology was assessed by light microscopy and radial alveolar counts. Function was evaluated by plethysmography at d13, pressure volume curves at d30, and exercise swim testing and arterial blood gases at both d15 and d30. Results Dex-treated animals had simplified lung architecture without secondary septation. Animals given RA alone had smaller, more numerous alveoli. Concomitant treatment with Dex + RA prevented the Dex-induced changes in septation. While the results of exposure to Dex + RA were sustained, the effects of RA alone were reversed two weeks after treatment was stopped. At d13, Dex-treated animals had increased lung volume, respiratory rate, tidal volume, and minute ventilation. On d15, both RA- and Dex-treated animals had hypercarbia and low arterial pH. By d30, the RA-treated animals resolved this respiratory acidosis, but Dex-treated animals continued to demonstrate blood gas and lung volume abnormalities. Concomitant RA treatment improved respiratory acidosis, but failed to normalize Dex-induced changes in pulmonary function and lung volumes. No differences in exercise tolerance were noted at either d15 or d30. RA treatment after the period of alveolarization also corrected the effects of earlier Dex exposure, but the structural changes due to RA alone were again lost two weeks after treatment. Conclusion We conclude that both RA- and corticosteroid-treatments are associated with respiratory acidosis at d15. While RA alone-induced changes in structure andrespiratory function are reversed, Dex-treated animals continue to demonstrate increased respiratory rate, minute

  17. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis.

    Science.gov (United States)

    Stark, Romana; Reichenbach, Alex; Andrews, Zane B

    2015-12-15

    The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin

  18. Thyroid hormone signalling genes are regulated by photoperiod in the hypothalamus of F344 rats.

    Directory of Open Access Journals (Sweden)

    Alexander W Ross

    Full Text Available Seasonal animals adapt their physiology and behaviour in anticipation of climate change to optimise survival of their offspring. Intra-hypothalamic thyroid hormone signalling plays an important role in seasonal responses in mammals and birds. In the F344 rat, photoperiod stimulates profound changes in food intake, body weight and reproductive status. Previous investigations of the F344 rat have suggested a role for thyroid hormone metabolism, but have only considered Dio2 expression, which was elevated in long day photoperiods. Microarray analysis was used to identify time-dependent changes in photoperiod responsive genes, which may underlie the photoperiod-dependent phenotypes of the juvenile F344 rat. The most significant changes are those related to thyroid hormone metabolism and transport. Using photoperiod manipulations and melatonin injections into long day photoperiod (LD rats to mimic short day (SD, we show photoinduction and photosuppression gene expression profiles and melatonin responsiveness of genes by in situ hybridization; TSHβ, CGA, Dio2 and Oatp1c1 genes were all elevated in LD whilst in SD, Dio3 and MCT-8 mRNA were increased. NPY was elevated in SD whilst GALP increased in LD. The photoinduction and photosuppression profiles for GALP were compared to that of GHRH with GALP expression following GHRH temporally. We also reveal gene sets involved in photoperiodic responses, including retinoic acid and Wnt/ß-catenin signalling. This study extends our knowledge of hypothalamic regulation by photoperiod, by revealing large temporal changes in expression of thyroid hormone signalling genes following photoperiod switch. Surprisingly, large changes in hypothalamic thyroid hormone levels or TRH expression were not detected. Expression of NPY and GALP, two genes known to regulate GHRH, were also changed by photoperiod. Whether these genes could provide links between thyroid hormone signalling and the regulation of the growth axis

  19. LPS counter regulates RNA expression of extracellular proteases and their inhibitors in murine macrophages

    DEFF Research Database (Denmark)

    Hald, Andreas; Rønø, Birgitte; Lund, Leif R

    2012-01-01

    Besides their evident importance in host defense, macrophages have been shown to play a detrimental role in different pathological conditions, including chronic inflammation, atherosclerosis, and cancer. Regardless of the exact situation, macrophage activation and migration are intimately connected...... in extracellular matrix metabolism in the mouse derived-macrophage cell line RAW 264.7 following stimulation with LPS. Our results revealed that LPS induces the expression of matrix metalloproteinases while at the same time decreased the expression of matrix metalloproteinase inhibitors. The opposite scenario...... expression regulation implicated in macrophage-dependent matrix degradation and furthermore emphasize the value of qPCR array techniques for the investigation of the complex regulation of the matrix degradome....

  20. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India); Godbole, Madan M., E-mail: madangodbole@yahoo.co.in [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India)

    2010-07-02

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1{alpha}, NRF-1{alpha} and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  1. Steroid Hormone Signaling Is Essential to Regulate Innate Immune Cells and Fight Bacterial Infection in Drosophila

    Science.gov (United States)

    Regan, Jennifer C.; Brandão, Ana S.; Leitão, Alexandre B.; Mantas Dias, Ângela Raquel; Sucena, Élio; Jacinto, António; Zaidman-Rémy, Anna

    2013-01-01

    Coupling immunity and development is essential to ensure survival despite changing internal conditions in the organism. Drosophila metamorphosis represents a striking example of drastic and systemic physiological changes that need to be integrated with the innate immune system. However, nothing is known about the mechanisms that coordinate development and immune cell activity in the transition from larva to adult. Here, we reveal that regulation of macrophage-like cells (hemocytes) by the steroid hormone ecdysone is essential for an effective innate immune response over metamorphosis. Although it is generally accepted that steroid hormones impact immunity in mammals, their action on monocytes (e.g. macrophages and neutrophils) is still not well understood. Here in a simpler model system, we used an approach that allows in vivo, cell autonomous analysis of hormonal regulation of innate immune cells, by combining genetic manipulation with flow cytometry, high-resolution time-lapse imaging and tissue-specific transcriptomic analysis. We show that in response to ecdysone, hemocytes rapidly upregulate actin dynamics, motility and phagocytosis of apoptotic corpses, and acquire the ability to chemotax to damaged epithelia. Most importantly, individuals lacking ecdysone-activated hemocytes are defective in bacterial phagocytosis and are fatally susceptible to infection by bacteria ingested at larval stages, despite the normal systemic and local production of antimicrobial peptides. This decrease in survival is comparable to the one observed in pupae lacking immune cells altogether, indicating that ecdysone-regulation is essential for hemocyte immune functions and survival after infection. Microarray analysis of hemocytes revealed a large set of genes regulated at metamorphosis by EcR signaling, among which many are known to function in cell motility, cell shape or phagocytosis. This study demonstrates an important role for steroid hormone regulation of immunity in vivo in

  2. Steroid hormone signaling is essential to regulate innate immune cells and fight bacterial infection in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jennifer C Regan

    2013-10-01

    Full Text Available Coupling immunity and development is essential to ensure survival despite changing internal conditions in the organism. Drosophila metamorphosis represents a striking example of drastic and systemic physiological changes that need to be integrated with the innate immune system. However, nothing is known about the mechanisms that coordinate development and immune cell activity in the transition from larva to adult. Here, we reveal that regulation of macrophage-like cells (hemocytes by the steroid hormone ecdysone is essential for an effective innate immune response over metamorphosis. Although it is generally accepted that steroid hormones impact immunity in mammals, their action on monocytes (e.g. macrophages and neutrophils is still not well understood. Here in a simpler model system, we used an approach that allows in vivo, cell autonomous analysis of hormonal regulation of innate immune cells, by combining genetic manipulation with flow cytometry, high-resolution time-lapse imaging and tissue-specific transcriptomic analysis. We show that in response to ecdysone, hemocytes rapidly upregulate actin dynamics, motility and phagocytosis of apoptotic corpses, and acquire the ability to chemotax to damaged epithelia. Most importantly, individuals lacking ecdysone-activated hemocytes are defective in bacterial phagocytosis and are fatally susceptible to infection by bacteria ingested at larval stages, despite the normal systemic and local production of antimicrobial peptides. This decrease in survival is comparable to the one observed in pupae lacking immune cells altogether, indicating that ecdysone-regulation is essential for hemocyte immune functions and survival after infection. Microarray analysis of hemocytes revealed a large set of genes regulated at metamorphosis by EcR signaling, among which many are known to function in cell motility, cell shape or phagocytosis. This study demonstrates an important role for steroid hormone regulation of

  3. Hormonal regulation of hepatic glycogenolysis in the carp, Cyprinus carpio

    Energy Technology Data Exchange (ETDEWEB)

    Janssens, P.A.; Lowrey, P.

    1987-04-01

    Carp (Cyprinus carpio) liver maintained normal glycogen content and enzyme complement for several days in organ culture. Epinephrine-stimulated glycogenolysis, phosphorylase activation, and cyclic AMP (cAMP) accumulation in a concentration-dependent manner with EC/sub 50/s of 100, 100, and 500 nM, respectively. These actions were blocked by the ..beta..-adrenergic antagonist, propranolol, but not by the ..cap alpha..-adrenergic antagonist phentolamine. Glycogenolysis and tissue cAMP were uninfluenced by 10/sup -6/ M arginine vasotocin, arginine vasopressin, lysine vasotocin, lysine vasopressin, mesotocin, or oxytocin, but were slightly increased by 10/sup -5/ M isotocin and slightly decreased by 10/sup -6/ M angiotensin II. (/sup 125/I)-iodocyanopindolol (ICP), a ..beta..-adrenergic ligand, bound to isolated carp liver membranes with a K/sub D/ of 83 pM. Maximum binding of 45 fmol/mg protein was at 600 pM. Propranolol, isoprenaline, epinephrine, phenylephrine, norepinephrine, and phenoxybenzamine displaced ICP with K/sub D/s of 100 nM, 2, 20, 20, 60, and 200 ..mu..M, respectively. The ..cap alpha..-adrenergic antagonists, yohimbine and prazosin, showed no specific binding. These data provide evidence that catecholamines act via ..beta..-adrenergic receptors in carp liver and that ..cap alpha..-adrenergic receptors are not present. Vasoactive peptides play no significant role in regulation of carp liver glycogenolysis.

  4. Metabolic regulation of the plant hormone indole-3-acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  5. The microRNA biogenesis machinery: regulation by steroid hormones and alterations in cancer.

    Science.gov (United States)

    González-Duarte, Ramiro José; Cázares-Ordoñez, Verna; Ávila-Chávez, Euclides

    2014-01-01

    MicroRNAs are a class of non-coding RNAs that regulate gene expression at the post-transcriptional level. The major proteins of the canonical microRNA biogenesis pathway in human are: Drosha, DGCR8, DDX5, DDX17, Exportin 5, Dicer and Argonaute 2. Recent studies suggest that gene expression of some canonical microRNA biogenesis components could be regulated by steroid hormones. Furthermore, various alterations in microRNA biogenesis have been associated with diseases like cancer. Due to the importance of microRNAs in cell physiology, the study of the factors that regulate or affect their biogenesis is critical.

  6. Signal transduction pathways mediating parathyroid hormone regulation of osteoblastic gene expression

    Science.gov (United States)

    Partridge, N. C.; Bloch, S. R.; Pearman, A. T.

    1994-01-01

    Parathyroid hormone (PTH) plays a central role in regulation of calcium metabolism. For example, excessive or inappropriate production of PTH or the related hormone, parathyroid hormone related protein (PTHrP), accounts for the majority of the causes of hypercalcemia. Both hormones act through the same receptor on the osteoblast to elicit enhanced bone resorption by the osteoclast. Thus, the osteoblast mediates the effect of PTH in the resorption process. In this process, PTH causes a change in the function and phenotype of the osteoblast from a cell involved in bone formation to one directing the process of bone resorption. In response to PTH, the osteoblast decreases collagen, alkaline phosphatase, and osteopontin expression and increases production of osteocalcin, cytokines, and neutral proteases. Many of these changes have been shown to be due to effects on mRNA abundance through either transcriptional or post-transcriptional mechanisms. However, the signal transduction pathway for the hormone to cause these changes is not completely elucidated in any case. Binding of PTH and PTHrP to their common receptor has been shown to result in activation of protein kinases A and C and increases in intracellular calcium. The latter has not been implicated in any changes in mRNA of osteoblastic genes. On the other hand activation of PKA can mimic all the effects of PTH; protein kinase C may be involved in some responses. We will discuss possible mechanisms linking PKA and PKC activation to changes in gene expression, particularly at the nuclear level.

  7. The Counter-Regulation of Atherogenesis: a Role for Interleukin-33

    Directory of Open Access Journals (Sweden)

    Pavel Kuneš

    2010-01-01

    Full Text Available The recently recognized cytokine interleukin-33 and its receptor ST2 play a favorable role during atherogenesis by inducing a Th1→Th2 shift of the immune response. IL-33 also protects the failing human heart from harmful biomechanical forces which lead to cardiomyocyte hypertrophy and exaggerated interstitial fibrosis. IL-33 inevitably displays side effects common to other Th2 cytokines, the most grave of which is a predisposition to allergic reactions. IL-33 is a nuclear transcription factor of endothelial cells. As such, it is abundant in nonproliferating vessels. Its down-regulation is required for angiogenesis, which may be profitable in wound healing or deleterious in tumor growth.

  8. Post-translational modifications of hormone-responsive transcription factors: the next level of regulation.

    Science.gov (United States)

    Hill, Kristine

    2015-08-01

    Plants exhibit a high level of developmental plasticity and growth is responsive to multiple developmental and environmental cues. Hormones are small endogenous signalling molecules which are fundamental to this phenotypic plasticity. Post-translational modifications of proteins are a central feature of the signal transduction pathways that regulate gene transcription in response to hormones. Modifications that affect the function of transcriptional regulators may also serve as a mechanism to incorporate multiple signals, mediate cross-talk, and modulate specific responses. This review discusses recent research that suggests hormone-responsive transcription factors are subject to multiple modifications which imply an additional level of regulation conferred by enzymes that mediate specific modifications, such as phosphorylation, ubiquitination, SUMOylation, and S-nitrosylation. These modifications can affect protein stability, sub-cellular localization, interactions with co-repressors and activators, and DNA binding. The focus here is on direct cross-talk involving transcription factors downstream of auxin, brassinosteroid, and gibberellin signalling. However, many of the concepts discussed are more broadly relevant to questions of how plants can modify their growth by regulating subsets of genes in response to multiple cues. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Regucalcin expression in bovine tissues and its regulation by sex steroid hormones in accessory sex glands.

    Directory of Open Access Journals (Sweden)

    Laura Starvaggi Cucuzza

    Full Text Available Regucalcin (RGN is a mammalian Ca2+-binding protein that plays an important role in intracellular Ca2+ homeostasis. Recently, RGN has been identified as a target gene for sex steroid hormones in the prostate glands and testis of rats and humans, but no studies have focused on RGN expression in bovine tissues. Thus, in the present study, we examined RGN mRNA and protein expression in the different tissues and organs of veal calves and beef cattle. Moreover, we investigated whether RGN expression is controlled through sex steroid hormones in bovine target tissues, namely the bulbo-urethral and prostate glands and the testis. Sex steroid hormones are still illegally used in bovine husbandry to increase muscle mass. The screening of the regulation and function of anabolic sex steroids via modified gene expression levels in various tissues represents a new approach for the detection of illicit drug treatments. Herein, we used quantitative PCR, western blot and immunohistochemistry analyses to demonstrate RGN mRNA and protein expression in bovine tissues. In addition, estrogen administration down-regulated RGN gene expression in the accessory sex glands of veal calves and beef cattle, while androgen treatment reduced RGN gene expression only in the testis. The confirmation of the regulation of RGN gene expression through sex steroid hormones might facilitate the potential detection of hormone abuse in bovine husbandry. Particularly, the specific response in the testis suggests that this tissue is ideal for the detection of illicit androgen administration in veal calves and beef cattle.

  10. Hormone-mediated gene regulation and bioinformatics: learning one from the other.

    Directory of Open Access Journals (Sweden)

    João Carlos Sousa

    Full Text Available The ability to manage the constantly growing clinically relevant information in genetics available on the internet is becoming crucial in medical practice. Therefore, training students in teaching environments that develop bioinformatics skills is a particular challenge to medical schools. We present here an instructional approach that potentiates learning of hormone/vitamin mechanisms of action in gene regulation with the acquisition and practice of bioinformatics skills. The activity is integrated within the study of the Endocrine System module. Given a nucleotide sequence of a hormone or vitamin-response element, students use internet databases and tools to find the gene to which it belongs. Subsequently, students search how the corresponding hormone/vitamin influences the expression of that particular gene and how a dysfunctional interaction might cause disease. This activity was presented for four consecutive years to cohorts of 50-60 students/year enrolled in the 2(nd year of the medical degree. 90% of the students developed a better understanding of the usefulness of bioinformatics and 98% intend to use web-based resources in the future. Since hormones and vitamins regulate genes of all body organ systems, this activity successfully integrates the whole body physiology of the medical curriculum.

  11. Dancing with Hormones: A Current Perspective of Nitrate Signaling and Regulation in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Peizhu Guan

    2017-09-01

    Full Text Available In nature and agriculture, nitrate availability is a main environmental cue for plant growth, development and stress responses. Nitrate signaling and regulation are hence at the center of communications between plant intrinsic programs and the environment. It is also well known that endogenous phytohormones play numerous critical roles in integrating extrinsic cues and intrinsic responses, regulating and refining almost all aspects of plant growth, development and stress responses. Therefore, interaction between nitrate and phytohormones, such as auxins, cytokinins, abscisic acid, gibberellins, and ethylene, is prevalent. The growing evidence indicates that biosynthesis, de-conjugation, transport, and signaling of hormones are partly controlled by nitrate signaling. Recent advances with nitrate signaling and transcriptional regulation in Arabidopsis give rise to new paradigms. Given the comprehensive nitrate transport, sensing, signaling and regulations at the level of the cell and organism, nitrate itself is a local and long-distance signal molecule, conveying N status at the whole-plant level. A direct molecular link between nitrate signaling and cell cycle progression was revealed with TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1-20 (TCP20 – NIN-LIKE PROTEIN 6/7 (NLP6/7 regulatory nexus. NLPs are key regulators of nitrogen responses in plants. TCPs function as the main regulators of plant morphology and architecture, with the emerging role as integrators of plant developmental responses to the environment. By analogy with auxin being proposed as a plant morphogen, nitrate may be an environmental morphogen. The morphogen-gradient-dependent and cell-autonomous mechanisms of nitrate signaling and regulation are an integral part of cell growth and cell identification. This is especially true in root meristem growth that is regulated by intertwined nitrate, phytohormones, and glucose-TOR signaling pathways. Furthermore, the nitrate

  12. Dancing with Hormones: A Current Perspective of Nitrate Signaling and Regulation in Arabidopsis.

    Science.gov (United States)

    Guan, Peizhu

    2017-01-01

    In nature and agriculture, nitrate availability is a main environmental cue for plant growth, development and stress responses. Nitrate signaling and regulation are hence at the center of communications between plant intrinsic programs and the environment. It is also well known that endogenous phytohormones play numerous critical roles in integrating extrinsic cues and intrinsic responses, regulating and refining almost all aspects of plant growth, development and stress responses. Therefore, interaction between nitrate and phytohormones, such as auxins, cytokinins, abscisic acid, gibberellins, and ethylene, is prevalent. The growing evidence indicates that biosynthesis, de-conjugation, transport, and signaling of hormones are partly controlled by nitrate signaling. Recent advances with nitrate signaling and transcriptional regulation in Arabidopsis give rise to new paradigms. Given the comprehensive nitrate transport, sensing, signaling and regulations at the level of the cell and organism, nitrate itself is a local and long-distance signal molecule, conveying N status at the whole-plant level. A direct molecular link between nitrate signaling and cell cycle progression was revealed with TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1-20 (TCP20) - NIN-LIKE PROTEIN 6/7 (NLP6/7) regulatory nexus. NLPs are key regulators of nitrogen responses in plants. TCPs function as the main regulators of plant morphology and architecture, with the emerging role as integrators of plant developmental responses to the environment. By analogy with auxin being proposed as a plant morphogen, nitrate may be an environmental morphogen. The morphogen-gradient-dependent and cell-autonomous mechanisms of nitrate signaling and regulation are an integral part of cell growth and cell identification. This is especially true in root meristem growth that is regulated by intertwined nitrate, phytohormones, and glucose-TOR signaling pathways. Furthermore, the nitrate transcriptional

  13. Hormone-sensitive lipase (HSL) expression and regulation in skeletal muscle

    DEFF Research Database (Denmark)

    Langfort, J; Ploug, T; Ihlemann, J

    1998-01-01

    Because the enzymatic regulation of muscle triglyceride metabolism is poorly understood we explored the character and activation of neutral lipase in muscle. Western blotting of isolated rat muscle fibers demonstrated expression of hormone-sensitive lipase (HSL). In incubated soleus muscle epinep...... studies have shown that HSL is present in skeletal muscle cells and is stimulated in parallel with glycogen phosphorylase by both epinephrine and contractions. HSL adapts differently to training in muscle compared with adipose tissue.......Because the enzymatic regulation of muscle triglyceride metabolism is poorly understood we explored the character and activation of neutral lipase in muscle. Western blotting of isolated rat muscle fibers demonstrated expression of hormone-sensitive lipase (HSL). In incubated soleus muscle...... in activity of both neutral lipase and glycogen phosphorylase. The increase in lipase activity during contractions was not influenced by sympathectomy or propranolol. Training diminished the epinephrine induced lipase activation in muscle but enhanced the activation as well as the overall concentration...

  14. Circadian and sleep-dependent regulation of hormone release in humans

    Science.gov (United States)

    Czeisler, C. A.; Klerman, E. B.

    1999-01-01

    rhythm sleep disorders, including the dyssomnia of shift work and visual impairment. Yet to be fully investigated are the interactions of these factors with age and gender. Characterization of the factors governing hormone secretion is critical to understanding the temporal regulation of endocrine systems and presents many exciting areas for future research.

  15. Arabidopsis and Tobacco superman regulate hormone signalling and mediate cell proliferation and differentiation.

    Science.gov (United States)

    Nibau, Candida; Di Stilio, Verónica S; Wu, Hen-Ming; Cheung, Alice Y

    2011-01-01

    Arabidopsis thaliana superman (SUP) plays an important role during flower development by maintaining the boundary between stamens and carpels in the inner two whorls. It was proposed that SUP maintains this boundary by regulating cell proliferation in both whorls, as loss-of-function superman mutants produce more stamens at the expense of carpels. However, the cellular mechanism that underlies SUP function remains unknown. Here Arabidopsis or tobacco (Nicotiana tabacum) SUP was overexpressed in tobacco plants to substantiate SUP's role as a regulator of cell proliferation and boundary definition and provide evidence that its biological role may be mediated via hormonal changes. It was found that moderate levels of SUP stimulated cell growth and proliferation, whereas high levels were inhibitory. SUP stimulated auxin- and cytokinin-regulated processes, and cells overexpressing SUP displayed reduced hormone dependency for proliferation and regeneration into plants. SUP also induced proliferation of female traits in the second and third flower whorls and promoted differentiation of petaloid properties in sepals, further supporting a role for SUP as a boundary regulator. Moreover, cytokinin suppressed stamen development and promoted differentiation of carpeloid tissues, suggesting that SUP may regulate male and female development via its effect on cytokinin signalling. Taken together, these observations suggest a model whereby the effect of SUP on cell growth and proliferation involves the modulation of auxin- and cytokinin-regulated processes. Furthermore, differential SUP expression or different sensitivities of different cell types to SUP may determine whether SUP stimulates or suppresses their proliferation.

  16. Epigenetic regulation of the expression of genes involved in steroid hormone biosynthesis and action

    Science.gov (United States)

    Martinez-Arguelles, Daniel B.; Papadopoulos, Vassilios

    2010-01-01

    Steroid hormones participate in organ development, reproduction, body homeostasis, and stress responses. The steroid machinery is expressed in a development- and tissue-specific manner, with the expression of these factors being tightly regulated by an array of transcription factors (TFs). Epigenetics provides an additional layer of gene regulation through DNA methylation and histone tail modifications. Evidence of epigenetic regulation of key steroidogenic enzymes is increasing, though this does not seem to be a predominant regulatory pathway. Steroid hormones exert their action in target tissues through steroid nuclear receptors belonging to the NR3A and NR3C families. Nuclear receptor expression levels and post-translational modifications regulate their function and dictate their sensitivity to steroid ligands. Nuclear receptors and TFs are more likely to be epigenetically regulated than proteins involved in steroidogenesis and have secondary impact on the expression of these steroidogenic enzymes. Here we review evidence for epigenetic regulation of enzymes, transcription factors, and nuclear receptors related to steroid biogenesis and action. PMID:20156469

  17. The relationship between polyamines and hormones in the regulation of wheat grain filling.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available The grain weight of wheat is strongly influenced by filling. Polyamines (PA are involved in regulating plant growth. However, the effects of PA on wheat grain filling and its mechanism of action are unclear. The objective of the present study was to investigate the relationship between PAs and hormones in the regulation of wheat grain filling. Three PAs, spermidine (Spd, spermine (Spm, and putrescine (Put, were exogenously applied, and the grain filling characteristics and changes in endogenous PA and hormones, i.e., indole-3-acetic acid (IAA, zeatin (Z + zeatin riboside (ZR, abscisic acid (ABA, ethylene (ETH and gibberellin 1+4 (GAs, were quantified during wheat grain filling. Exogenous applications of Spd and Spm significantly increased the grain filling rate and weight, but exogenous Put had no significant effects on these measures. Exogenous Spd and Spm significantly increased the endogenous Spd, Spm, Z+ZR, ABA, and IAA contents and significantly decreased ETH evolution in grains. The endogenous Spd, Spm and Z+ZR contents were positively and significantly correlated with the grain filling rate and weight of wheat, and the endogenous ETH evolution was negatively and significantly correlated with the wheat grain filling rate and weight. Based upon these results, we concluded that PAs were involved in the balance of hormones that regulated the grain filling of wheat.

  18. Hormonal Regulation of Nitric Oxide (NO) in Cardio-metabolic Diseases.

    Science.gov (United States)

    Sudar-Milovanovic, Emina; Zafirovic, Sonja; Jovanovic, Aleksandra; Trebaljevac, Jovana; Obradovic, Milan; Cenic-Milosevic, Desanka; Isenovic, Esma R

    2017-01-01

    Nitric oxide (NO) is a potential biochemical, cardio-metabolic risk marker. The production of NO is catalyzed by different isoforms of enzymes, NO synthases (NOS). An altered NO level is associated with obesity, insulin resistance (IR), diabetes and cardiovascular diseases (CVD). Activity of NOS and NO production are regulated by various hormones under physiological and pathophysiological condition. Data used for this review were obtained by searching the electronic database [PUBMED/MEDLINE 1984 - May 2016]. Additionally, abstracts from national and international diabetes and cardiovascular related meetings were searched. The main data search terms were: nitric oxide, nitric oxide synthase, cardio-metabolic risk, obesity, diabetes, cardiovascular disease, estradiol and insulin-like growth factor-1. In this review, we summarize the recent literature data related to the regulation of endothelial NOS (eNOS), inducible (iNOS) activity/expression, and thereby NO production by the hormones: estradiol (E2), and insulin-like growth factor-1 (IGF-1). Understanding the regulation of NO production by different hormones such as E2, and IGF-1 may provide novel and useful knowledge regarding how endothelial dysfunction (ED) is linked with cardio-metabolic alterations and diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Barhl1 is directly regulated by thyroid hormone in the developing cerebellum of mice

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hongyan, E-mail: hongyan_dong@hc-sc.gc.ca [Hazard Identification Division, Environmental Health Science and Research Bureau, Health Canada, 50 Columbine Driveway, Ottawa, Ontario, Canada K1A 0K9 (Canada); Yauk, Carole L. [Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, 50 Columbine Driveway, Ottawa, Ontario, Canada K1A 0K9 (Canada); Wade, Michael G. [Hazard Identification Division, Environmental Health Science and Research Bureau, Health Canada, 50 Columbine Driveway, Ottawa, Ontario, Canada K1A 0K9 (Canada)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Thyroid hormone receptor binds to the promoter region of Barhl1. Black-Right-Pointing-Pointer Barhl1 expression in cerebellum is negatively regulated by thyroid hormone. Black-Right-Pointing-Pointer Negative regulation of Barhl1 by thyroid hormone was confirmed in vitro. Black-Right-Pointing-Pointer Thyroid hormone may play a role in normal brain development through transcriptional control of Barhl1. -- Abstract: Thyroid hormones (THs) are essential for the brain development. Despite considerable effort, few genes directly regulated by THs have been identified. In this study, we investigate the effects of THs on the regulation of Barhl1, a transcription factor that regulates sensorineural development. Using DNA microarray combined with chromatin immunoprecipitation (ChIP-chip), we identified a TR{beta} binding site in the promoter of Barhl1. The binding was further confirmed by ChIP-PCR. The site is located approximately 755 bp upstream of the transcription start site. Reporter vectors containing the binding site or mutated fragments were transfected into GH3 cells. T3 treatment decreased the transcriptional activity of the wild fragment but not the mutant. Two 28 bp oligonucleotides containing sequences that resemble known TH response elements (TREs) were derived from this binding site and DNA-protein interaction was performed using electrophoretic mobility shift assays (EMSA). Binding analysis in a nuclear extract containing TR{beta} revealed that one of these fragments bound TR{beta}. This complex was shifted with the addition of anti-TR{beta} antibody. We investigated Barhl1 expression in animal models and TH-treated cultured cells. Both long term treatment with 6-propyl-2-thiouracil and short-term treatment with 0.05% methimazole/1% sodium perchlorate (both treatments render mice hypothyroid) resulted in up-regulation of Barhl1. TH supplementation of hypothyroid mice caused a decrease in the expression of Barhl1

  20. The heterochronic gene Lin28 regulates amphibian metamorphosis through disturbance of thyroid hormone function.

    Science.gov (United States)

    Faunes, Fernando; Gundermann, Daniel G; Muñoz, Rosana; Bruno, Renzo; Larraín, Juan

    2017-05-15

    Metamorphosis is a classic example of developmental transition, which involves important morphological and physiological changes that prepare the organism for the adult life. It has been very well established that amphibian metamorphosis is mainly controlled by Thyroid Hormone (TH). Here, we show that the heterochronic gene Lin28 is downregulated during Xenopus laevis metamorphosis. Lin28 overexpression before activation of TH signaling delays metamorphosis and inhibits the expression of TH target genes. The delay in metamorphosis is rescued by incubation with exogenous TH, indicating that Lin28 works upstream or parallel to TH. High-throughput analyses performed before any delay on metamorphosis or change in TH signaling showed that overexpression of Lin28 reduces transcript levels of several hormones secreted by the pituitary, including the Thyroid-Stimulating Hormone (TSH), and regulates the expression of proteins involved in TH transport, metabolism and signaling, showing that Lin28 disrupts TH function at different levels. Our data demonstrates that the role of Lin28 in controlling developmental transitions is evolutionary conserved and establishes a functional interaction between Lin28 and thyroid hormone function introducing a new regulatory step in perinatal development with implications for our understanding of endocrine disorders. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. On the dynamics of implicit emotion regulation: counter-regulation after remembering events of high but not of low emotional intensity.

    Science.gov (United States)

    Schwager, Susanne; Rothermund, Klaus

    2014-01-01

    Valence biases in attention allocation were assessed after remembering positive or negative personal events that were either still emotionally hot or to which the person had already adapted psychologically. Differences regarding the current state of psychological adjustment were manipulated experimentally by instructing participants to recall distant vs. recent events (Experiment 1) or affectively hot events vs. events to which the person had accommodated already (Experiment 2). Valence biases in affective processing were measured with a valence search task. Processes of emotional counter-regulation (i.e., attention allocation to stimuli of opposite valence to the emotional event) were elicited by remembering affectively hot events, whereas congruency effects (i.e., attention allocation to stimuli of the same valence as the emotional event) were obtained for events for which a final appraisal had already been established. The results of our study help to resolve conflicting findings from the literature regarding congruent vs. incongruent effects of remembering emotional events on affective processing. We discuss implications of our findings for the conception of emotions and for the dynamics of emotion regulation processes.

  2. Silencing Mediator of Retinoid and Thyroid Hormone Receptors (SMRT) regulates glucocorticoid action in adipocytes.

    Science.gov (United States)

    Emont, Margo P; Mantis, Stelios; Kahn, Jonathan H; Landeche, Michael; Han, Xuan; Sargis, Robert M; Cohen, Ronald N

    2015-05-15

    Local modulation of glucocorticoid action in adipocytes regulates adiposity and systemic insulin sensitivity. However, the specific cofactors that mediate glucocorticoid receptor (GR) action in adipocytes remain unclear. Here we show that the silencing mediator of retinoid and thyroid hormone receptors (SMRT) is recruited to GR in adipocytes and regulates ligand-dependent GR function. Decreased SMRT expression in adipocytes in vivo increases expression of glucocorticoid-responsive genes. Moreover, adipocytes with decreased SMRT expression exhibit altered glucocorticoid regulation of lipolysis. We conclude that SMRT regulates the metabolic functions of GR in adipocytes in vivo. Modulation of GR-SMRT interactions in adipocytes represents a novel approach to control the local degree of glucocorticoid action and thus influence adipocyte metabolic function. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2002-12-03

    The authors have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, they developed a molecular model that has facilitated the understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5 EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 and three HLS1-LIKE genes in the laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the award period, they have identified and begun preliminary characterization of two genes that genetically act upstream of the ethylene receptors. ETO1 and RAN1 encode negative regulators of ethylene biosynthesis and signaling respectively. Progress on the analysis of these genes along with HOOKLESS1 is described.

  4. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2005-09-15

    We have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, we have developed a molecular model that has facilitated our understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5, EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 (and three HLL genes) and ETO1 (and ETOL genes) in my laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the previous period, we have identified and characterized a gene that genetically acts upstream of the ethylene receptors. ETO1 encodes negative regulators of ethylene biosynthesis.

  5. Molecular mechanisms of regulation of growth hormone gene expression in cultured rat pituitary cells by thyroid and glucocorticoid hormones

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, B.M.

    1989-01-01

    In cultured GC cells, a rat pituitary tumor cell line, growth hormone (GH) is induced in a synergistic fashion by physiologic concentrations of thyroid and glucocorticoid hormones. Abundant evidence indicates that these hormones mediate this response via their specific receptors. The purpose of this thesis is to explore the mechanisms by which these hormones affect GH production. When poly (A){sup +} RNA was isolated from cells grown both with and without hormones and translated in a cell-free wheat germ system, the preGH translation products were shown to be proportional to immunoassayable GH production under all combinations of hormonal milieux, indicating that changes in GH production is modulated at a pretranslational level. A cDNA library was constructed from poly (A){sup +}RNA and one clone containing GH cDNA sequences was isolated. This was used to confirm the above results by Northern dot blot analysis. This probe was also used to assess hormonal effects on GH mRNA half-life and synthetic rates as well as GH gene transcription rates in isolated nuclei. Using a pulse-chase protocol in which cellular RNA was labeled in vivo with ({sup 3}H)uridine, and quantitating ({sup 3}H)GHmRNA directly by hybridization to GH cDNA bound to nitrocellulose filters, GHmRNA was found to have a half-life of approximately 50 hours, and was not significantly altered by the presence of inducing hormones.

  6. Do the interactions between glucocorticoids and sex hormones regulate the development of the Metabolic Syndrome?

    Directory of Open Access Journals (Sweden)

    Marià eAlemany

    2012-02-01

    Full Text Available The metabolic syndrome is basically a maturity-onset disease. Typically, its manifestations begin to flourish years after the initial dietary or environmental aggression began. Since most hormonal, metabolic or defense responses are practically immediate, the procrastinated response don't seem justified. Only in childhood, the damages of the metabolic syndrome appear with minimal delay. Sex affects the incidence of the metabolic syndrome, but this is more an effect of timing than absolute gender differences, females holding better than males up to menopause, when the differences between sexes tend to disappear. The metabolic syndrome is related to an immune response, countered by a permanent increase in glucocorticoids, which keep the immune system at bay but also induce insulin resistance, alter the lipid metabolism, favor fat deposition, mobilize protein and decrease androgen synthesis. Androgens limit the operation of glucocorticoids, which is also partly blocked by estrogens, since they decrease inflammation (which enhances glucocorticoid release. These facts suggest that the appearance of the metabolic syndrome symptoms depends on the strength (i.e. levels of androgens and estrogens. The predominance of glucocorticoids and the full manifestation of the syndrome in men are favored by decreased androgen activity. Low androgens can be found in infancy, maturity, advanced age, or because of their inhibition by glucocorticoids (inflammation, stress, medical treatment. Estrogens decrease inflammation and reduce the glucocorticoid response. Low estrogen (infancy, menopause again allow the predominance of glucocorticoids and the manifestation of the metabolic syndrome. It is postulated that the equilibrium between sex hormones and glucocorticoids may be a critical element in the timing of the manifestation of metabolic syndrome-related pathologies.

  7. Sleep regulation and sex hormones exposure in men and women across adulthood.

    Science.gov (United States)

    Lord, C; Sekerovic, Z; Carrier, J

    2014-10-01

    This review aims to discuss how endogenous and exogenous testosterone exposures in men and estrogens/progesterone exposures in women interact with sleep regulation. In young men, testosterone secretion peaks during sleep and is linked to sleep architecture. Animal and human studies support the notion that sleep loss suppresses testosterone secretion. Testosterone levels decline slowly throughout the aging process, but relatively few studies investigate its impact on age-related sleep modifications. Results suggest that poorer sleep quality is associated with lower testosterone concentrations and that sleep loss may have a more prominent effect on testosterone levels in older individuals. In women, sex steroid levels are characterized by a marked monthly cycle and reproductive milestones such as pregnancy and menopause. Animal models indicate that estrogens and progesterone influence sleep. Most studies do not show any clear effects of the menstrual cycle on sleep, but sample sizes are too low, and research designs often inhibit definitive conclusions. The effects of hormonal contraceptives on sleep are currently unknown. Pregnancy and the postpartum period are associated with increased sleep disturbances, but their relation to the hormonal milieu still needs to be determined. Finally, studies suggest that menopausal transition and the hormonal changes associated with it are linked to lower subjective sleep quality, but results concerning objective sleep measures are less conclusive. More research is necessary to unravel the effects of vasomotor symptoms on sleep. Hormone therapy seems to induce positive effects on sleep, but key concerns are still unresolved, including the long-term effects and efficacy of different hormonal regimens. Copyright © 2014. Published by Elsevier SAS.

  8. Role of Hormones in the Regulation of RACK1 Expression as a Signaling Checkpoint in Immunosenescence

    Directory of Open Access Journals (Sweden)

    Marco Racchi

    2017-07-01

    Full Text Available Immunosenescence defines the decline in immune function that occurs with aging. This has been associated, at least in part, with defective cellular signaling via protein kinase C (PKC signal transduction pathways. Our data suggest reduced PKC activation and consequently reduced response to lipopolysaccharide (LPS stimulation and cytokine release. The lack of PKC activation seems to be dependent on the reduced expression of the receptor for activated C kinase 1 (RACK1, a scaffolding protein involved in multiple signal transduction cascades. The defective expression of RACK1 may be dependent on age-related alteration of the balance between the adrenal hormones cortisol and dehydroepiandrosterone (DHEA. DHEA levels reduce with aging, while cortisol levels remain substantially unchanged, resulting in an overall increase in the cortisol:DHEA ratio. These hormonal changes are significant in the context of RACK1 expression and signaling function because DHEA administration in vivo and in vitro can restore the levels of RACK1 and the function of the PKC signaling cascade in aged animals and in human cells. In contrast, there is evidence that cortisol can act as a negative transcriptional regulator of RACK1 expression. The rack1 gene promoter contains a glucocorticoid responsive element that is also involved in androgen signaling. Furthermore DHEA may have an indirect influence on the post-transcriptional regulation of the functions of the glucocorticoid receptor. In this review, we will examine the role of the hormonal regulation of rack1 gene transcriptional regulation and the consequences on signaling and function in immune cells and immunosenescence.

  9. Grass Carp Follisatin: Molecular Cloning, Functional Characterization, Dopamine D1 Regulation at Pituitary Level, and Implication in Growth Hormone Regulation

    Directory of Open Access Journals (Sweden)

    Roger S. K. Fung

    2017-08-01

    Full Text Available Activin is involved in pituitary hormone regulation and its pituitary actions can be nullified by local production of its binding protein follistatin. In our recent study with grass carp, local release of growth hormone (GH was shown to induce activin expression at pituitary level, which in turn could exert an intrapituitary feedback to inhibit GH synthesis and secretion. To further examine the activin/follistatin system in the carp pituitary, grass carp follistatin was cloned and confirmed to be single-copy gene widely expressed at tissue level. At the pituitary level, follistatin signals could be located in carp somatotrophs, gonadotrophs, and lactotrophs. Functional expression also revealed that carp follistatin was effective in neutralizing activin’s action in stimulating target promoter with activin-responsive elements. In grass carp pituitary cells, follistatin co-treatment was found to revert activin inhibition on GH mRNA expression. Meanwhile, follistatin mRNA levels could be up-regulated by local production of activin but the opposite was true for dopaminergic activation with dopamine (DA or its agonist apomorphine. Since GH stimulation by DA via pituitary D1 receptor is well-documented in fish models, the receptor specificity for follistatin regulation by DA was also investigated. Using a pharmacological approach, the inhibitory effect of DA on follistatin gene expression was confirmed to be mediated by pituitary D1 but not D2 receptor. Furthermore, activation of D1 receptor by the D1-specific agonist SKF77434 was also effective in blocking follistatin mRNA expression induced by activin and GH treatment both in carp pituitary cells as well as in carp somatotrophs enriched by density gradient centrifugation. These results, as a whole, suggest that activin can interact with dopaminergic input from the hypothalamus to regulate follistatin expression in carp pituitary, which may contribute to GH regulation by activin/follistatin system

  10. Source-Sink Communication: Regulated by Hormone, Nutrient, and Stress Cross-Signaling.

    Science.gov (United States)

    Yu, Su-May; Lo, Shuen-Fang; Ho, Tuan-Hua David

    2015-12-01

    Communication between source organs (exporters of photoassimilates) and sink organs (importers of fixed carbon) has a pivotal role in carbohydrate assimilation and partitioning during plant growth and development. Plant productivity is enhanced by sink strength and source activity, which are regulated by a complex signaling network encompassing sugars, hormones, and environmental factors. However, key components underlying the signaling pathways that regulate source-sink communication are only now beginning to be discovered. Here, we discuss recent advances in our understanding of the molecular mechanisms regulating sugar mobilization during seed development and seedling establishment in cereals, which provide the majority of nutrition for humans. Insights into these mechanisms may provide strategies for improving crop productivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The love hormone Oxytocin regulates the loss and gain of the Fat-Bone relationship.

    Directory of Open Access Journals (Sweden)

    Graziana eColaianni

    2015-05-01

    Full Text Available The involvement of Oxytocin (OT in bone metabolism is an interesting area of research that recently achieved remarkable results. Moreover, several lines of evidence have largely demonstrated that OT also participates in the regulation of energy metabolism. Hence, it has recently been determined that the posterior pituitary hormone OT directly regulates bone mass: mice lacking OT or OT receptor (OTR display severe osteopenia, caused by impaired bone formation. OT administration normalizes ovariectomy-induced osteopenia, bone marrow adiposity, body weight and intra-abdominal fat depots in mice. This effect is mediated through inhibition of adipocyte precursor differentiation and reduction of adipocyte size. The exquisite role of OT in regulating the bone-fat connection adds another milestone to the biological evidence supporting the existence of a tight relationship between the adipose tissue and the skeleton.

  12. EFFECT OF EXERCISE ON APPETITE-REGULATING HORMONES IN OVERWEIGHT WOMEN

    Directory of Open Access Journals (Sweden)

    Brad Schoenfeld

    2013-04-01

    Full Text Available Over the past decade, our knowledge of how homeostatic systems regulate food intake and body weight has increased with the discovery of circulating peptides such as leptin, acyl ghrelin, des-acyl ghrelin and obestatin. These hormones regulate the appetite and food intake by sending signals to the brain regarding the body’s nutritional status. The purpose of this study was to investigate the response of appetite-regulating hormones to exercise. Nine overweight women undertook two 2 h trials in a randomized crossover design. In the exercise trial, subjects ran for 60 min at 50% of maximal oxygen uptake followed by a 60 min rest period. In the control trial, subjects rested for 2 h. Obestatin, acyl ghrelin, des-acyl ghrelin and leptin concentrations were measured at baseline and at 20, 40, 60, 90 and 120 min after baseline. A two-way ANOVA revealed a significant (P0.05. The data indicated that although acute treadmill exercise resulted in a significant change in acyl ghrelin and leptin levels, it had no effect on plasma obestatin and des-acyl ghrelin levels.

  13. UTX promotes hormonally responsive breast carcinogenesis through feed-forward transcription regulation with estrogen receptor.

    Science.gov (United States)

    Xie, G; Liu, X; Zhang, Y; Li, W; Liu, S; Chen, Z; Xu, B; Yang, J; He, L; Zhang, Z; Jin, T; Yi, X; Sun, L; Shang, Y; Liang, J

    2017-09-28

    UTX is implicated in embryonic development and lineage specification. However, how this X-linked histone demethylase contributes to the occurrence and progression of breast cancer remains to be clarified. Here we report that UTX is physically associated with estrogen receptor (ER) and functions in ER-regulated transcription. We showed that UTX coordinates with JHDM1D and CBP to direct H3K27 methylation-acetylation transition and to create a permissive chromatin state on ER targets. Genome-wide analysis of the transcriptional targets of UTX by ChIP-seq identified a set of genes such as chemokine receptor CXCR4 that are intimately involved in breast cancer tumorigenesis and metastasis. We demonstrated that UTX promotes the proliferation and migration of ER(+) breast cancer cells. Interestingly, UTX itself is transactivated by ER, forming a feed-forward loop in the regulation of hormone response. Indeed, UTX is upregulated during ER(+) breast cancer progression, and the expression level of UTX is positively correlated with that of CXCR4 and negatively correlated with the overall survival of ER(+) breast cancer patients. Our study identified a feed-forward loop between UTX and ER in the regulation of hormonally responsive breast carcinogenesis, supporting the pursuit of UTX as an emerging therapeutic target for the intervention of certain ER(+) breast cancer with specific epigenetic vulnerability.

  14. Specific regulation of thermosensitive lipid droplet fusion by a nuclear hormone receptor pathway.

    Science.gov (United States)

    Li, Shiwei; Li, Qi; Kong, Yuanyuan; Wu, Shuang; Cui, Qingpo; Zhang, Mingming; Zhang, Shaobing O

    2017-08-15

    Nuclear receptors play important roles in regulating fat metabolism and energy production in humans. The regulatory functions and endogenous ligands of many nuclear receptors are still unidentified, however. Here, we report that CYP-37A1 (ortholog of human cytochrome P450 CYP4V2), EMB-8 (ortholog of human P450 oxidoreductase POR), and DAF-12 (homolog of human nuclear receptors VDR/LXR) constitute a hormone synthesis and nuclear receptor pathway in Caenorhabditis elegans This pathway specifically regulates the thermosensitive fusion of fat-storing lipid droplets. CYP-37A1, together with EMB-8, synthesizes a lipophilic hormone not identical to Δ7-dafachronic acid, which represses the fusion-promoting function of DAF-12. CYP-37A1 also negatively regulates thermotolerance and lifespan at high temperature in a DAF-12-dependent manner. Human CYP4V2 can substitute for CYP-37A1 in C. elegans This finding suggests the existence of a conserved CYP4V2-POR-nuclear receptor pathway that functions in converting multilocular lipid droplets to unilocular ones in human cells; misregulation of this pathway may lead to pathogenic fat storage.

  15. Hypothalamic STAT proteins: regulation of somatostatin neurones by growth hormone via STAT5b.

    Science.gov (United States)

    Bennett, E; McGuinness, L; Gevers, E F; Thomas, G B; Robinson, I C A F; Davey, H W; Luckman, S M

    2005-03-01

    Signal transducers and activators of transcription (STATs) are a family of transcription factors linked to class I cytokine receptors. In the present study, we investigated whether their distribution in the hypothalamus reflects the feedback regulation by growth hormone and what role they might play in the functioning of target neurones. We demonstrate that each of the seven known STATs has a distinct distribution in the hypothalamus. Notably, the STAT5 proteins, that are important in growth hormone (GH) and prolactin signalling in peripheral tissues, were expressed in somatostatin neurones of the periventricular nucleus and dopamine neurones of the arcuate nucleus. Because somatostatin neurones are regulated by feedback from circulating GH, we investigated the importance of STAT5 in these neurones. We demonstrate that STAT5b protein expression, similar to somatostatin mRNA, is sexually dimorphic in the periventricular nucleus of rats and mice. Furthermore, chronic infusion of male dwarf rats with GH increased the expression of STAT5b, while a single injection of GH into similar rats induced the phosphorylation of STAT5 proteins. The cellular abundance of somatostatin mRNA in STAT5b-deficient mice was significantly reduced in the periventricular nucleus, effectively reducing the sexually dimorphic expression. These results are consistent with the hypothesis that STAT5 proteins are involved in the feedback regulation of somatostatin neurones by GH, and that these neurones may respond to patterned GH secretion to reinforce sexual dimorphism in the GH axis.

  16. Effect of exercise on appetite-regulating hormones in overweight women.

    Science.gov (United States)

    Tiryaki-Sonmez, G; Ozen, S; Bugdayci, G; Karli, U; Ozen, G; Cogalgil, S; Schoenfeld, B; Sozbir, K; Aydin, K

    2013-06-01

    Over the past decade, our knowledge of how homeostatic systems regulate food intake and body weight has increased with the discovery of circulating peptides such as leptin, acyl ghrelin, des-acyl ghrelin and obestatin. These hormones regulate the appetite and food intake by sending signals to the brain regarding the body's nutritional status. The purpose of this study was to investigate the response of appetite-regulating hormones to exercise. Nine overweight women undertook two 2 h trials in a randomized crossover design. In the exercise trial, subjects ran for 60 min at 50% of maximal oxygen uptake followed by a 60 min rest period. In the control trial, subjects rested for 2 h. Obestatin, acyl ghrelin, des-acyl ghrelin and leptin concentrations were measured at baseline and at 20, 40, 60, 90 and 120 min after baseline. A two-way ANOVA revealed a significant (P 0.05). The data indicated that although acute treadmill exercise resulted in a significant change in acyl ghrelin and leptin levels, it had no effect on plasma obestatin and des-acyl ghrelin levels.

  17. Regulation of Appetite, Body Composition, and Metabolic Hormones by Vasoactive Intestinal Polypeptide (VIP).

    Science.gov (United States)

    Vu, John P; Larauche, Muriel; Flores, Martin; Luong, Leon; Norris, Joshua; Oh, Suwan; Liang, Li-Jung; Waschek, James; Pisegna, Joseph R; Germano, Patrizia M

    2015-06-01

    Vasoactive intestinal peptide (VIP) is a 28-amino acid neuropeptide that belongs to the secretin-glucagon superfamily of peptides and has 68 % homology with PACAP. VIP is abundantly expressed in the central and peripheral nervous system and in the gastrointestinal tract, where it exercises several physiological functions. Previously, it has been reported that VIP regulates feeding behavior centrally in different species of vertebrates such as goldfishes, chicken and rodents. Additional studies are necessary to analyze the role of endogenous VIP on the regulation of appetite/satiety, feeding behavior, metabolic hormones, body mass composition and energy balance. The aim of the study was to elucidate the physiological pathways by which VIP regulates appetite/satiety, feeding behavior, metabolic hormones, and body mass composition. VIP deficient (VIP -/-) and age-matched wild-type (WT) littermates were weekly monitored from 5 to 22 weeks of age using a whole body composition EchoMRI analyzer. Food intake and feeding behavior were analyzed using the BioDAQ automated monitoring system. Plasma levels of metabolic hormones including active-ghrelin, GLP-1, leptin, PYY, pancreatic polypeptide (PP), adiponectin, and insulin were measured in fasting as well as in postprandial conditions. The genetic lack of VIP led to a significant reduction of body weight and fat mass and to an increase of lean mass as the mice aged. Additionally, VIP-/- mice had a disrupted pattern of circadian feeding behavior resulting in an abolished regular nocturnal/diurnal feeding. These changes were associated with an altered secretion of adiponectin, GLP-1, leptin, PYY and insulin in VIP-/- mice. Our data demonstrates that endogenous VIP is involved in the control of appetite/satiety, feeding behavior, body mass composition and in the secretion of six different key regulatory metabolic hormones. VIP plays a key role in the regulation of body phenotype by significantly enhancing body weight and fat

  18. Steroid hormone regulation of EMP2 expression and localization in the endometrium

    Directory of Open Access Journals (Sweden)

    Williams Carmen J

    2008-04-01

    Full Text Available Abstract Background The tetraspan protein epithelial membrane protein-2 (EMP2, which mediates surface display of diverse proteins, is required for endometrial competence in blastocyst implantation, and is uniquely correlated with poor survival from endometrial adenocarcinoma tumors. Because EMP2 is differentially expressed in the various stages of the murine and human estrous cycle, we tested the hypothesis that the steroid hormones progesterone and estrogen influence EMP2 expression and localization. Methods Frozen human proliferative and secretory endometrium were collected and analyzed for EMP2 expression using SDS-PAGE/Western blot analysis. The response of EMP2 to progesterone and estradiol was determined using a combination of real-time PCR, SDS-PAGE/Western blot analysis, and confocal immunofluorescence in the human endometrial carcinoma cell line RL95-2. To confirm the in vitro results, ovariectomized mice were treated with progesterone or estradiol, and EMP2 expression was analyzed using immunohistochemistry. Results Within normal human endometrium, EMP2 expression is upregulated in the secretory phase relative to the proliferative phase. To understand the role of steroid hormones on EMP2 expression, we utilized RL95-2 cells, which express both estrogen and progesterone receptors. In RL95-2 cells, both estradiol and progesterone induced EMP2 mRNA expression, but only progesterone induced EMP2 protein expression. To compare steroid hormone regulation of EMP2 between humans and mice, we analyzed EMP2 expression in ovarectomized mice. Similar to results observed in humans, progesterone upregulated endometrial EMP2 expression and induced EMP2 translocation to the plasma membrane. Estradiol did not promote translocation to the cell surface, but moderately induced EMP2 expression in cytoplasmic compartments in vivo. Conclusion These findings suggest that targeting of EMP2 to specific locations under the influence of these steroid hormones may

  19. Thyroid hormone receptor regulates most genes independently of fibroblast growth factor 21 in liver.

    Science.gov (United States)

    Zhang, Aijun; Sieglaff, Douglas H; York, Jean Philippe; Suh, Ji Ho; Ayers, Stephen D; Winnier, Glenn E; Kharitonenkov, Alexei; Pin, Christopher; Zhang, Pumin; Webb, Paul; Xia, Xuefeng

    2015-03-01

    Thyroid hormone (TH) acts through specific receptors (TRs), which are conditional transcription factors, to induce fibroblast growth factor 21 (FGF21), a peptide hormone that is usually induced by fasting and that influences lipid and carbohydrate metabolism via local hepatic and systemic endocrine effects. While TH and FGF21 display overlapping actions when administered, including reductions in serum lipids, according to the current models these hormones act independently in vivo. In this study, we examined mechanisms of regulation of FGF21 expression by TH and tested the possibility that FGF21 is required for induction of hepatic TH-responsive genes. We confirm that active TH (triiodothyronine (T3)) and the TRβ-selective thyromimetic GC1 increase FGF21 transcript and peptide levels in mouse liver and that this effect requires TRβ. T3 also induces FGF21 in cultured hepatocytes and this effect involves direct actions of TRβ1, which binds a TRE within intron 2 of FGF21. Gene expression profiles of WT and Fgf21-knockout mice are very similar, indicating that FGF21 is dispensable for the majority of hepatic T3 gene responses. A small subset of genes displays diminished T3 response in the absence of FGF21. However, most of these are not obviously directly involved in T3-dependent hepatic metabolic processes. Consistent with these results, T3-dependent effects on serum cholesterol are maintained in the Fgf21(-/-) background and we observe no effect of the Fgf21-knockout background on serum triglycerides and glucose. Our findings indicate that T3 regulates the genes involved in classical hepatic metabolic responses independently of FGF21. © 2015 Society for Endocrinology.

  20. Hormone and Seed-Specific Regulation of Pea Fruit Growth1

    Science.gov (United States)

    Ozga, Jocelyn A.; van Huizen, Rika; Reinecke, Dennis M.

    2002-01-01

    Growth of young pea (Pisum sativum) fruit (pericarp) requires developing seeds or, in the absence of seeds, treatment with gibberellin (GA) or auxin (4-chloroindole-3-acetic acid). This study examined the role of seeds and hormones in the regulation of cell division and elongation in early pea fruit development. Profiling histone H2A and γ-tonoplast intrinsic protein (TIP) gene expression during early fruit development identified the relative contributions of cell division and elongation to fruit growth, whereas histological studies identified specific zones of cell division and elongation in exocarp, mesocarp, and endocarp tissues. Molecular and histological studies showed that maximal cell division was from −2 to 2 d after anthesis (DAA) and elongation from 2 to 5 DAA in pea pericarp. Maximal increase in pericarp γ-TIP message level preceded the maximal rate of fruit growth and, in general, γ-TIP mRNA level was useful as a qualitative marker for expanding tissue, but not as a quantitative marker for cell expansion. Seed removal resulted in rapid decreases in pericarp growth and in γ-TIP and histone H2A message levels. In general, GA and 4-chloroindole-3-acetic acid maintained these processes in deseeded pericarp similarly to pericarps with seeds, and both hormones were required to obtain mesocarp cell sizes equivalent to intact fruit. However, GA treatment to deseeded pericarps resulted in elevated levels of γ-TIP mRNA (6 and 7 DAA) when pericarp growth and cell enlargement were minimal. Our data support the theory that cell division and elongation are developmentally regulated during early pea fruit growth and are maintained by the hormonal interaction of GA and auxin. PMID:11950986

  1. Effects of Exogenous Melatonin on Body Mass Regulation and Hormone Concentrations in Eothenomys miletus

    Directory of Open Access Journals (Sweden)

    Zhu, Wan-Long

    2013-04-01

    Full Text Available By regulating the pineal hormone, photoperiods affect many physiological characteristics in small mammals. Thus, melatonin might take part in the thermoregulation of seasonal variations in small mammals. This study determined the influence of melatonin treatment on thermogenic pattern, we measured body mass, thermogenic activities and hormone concentrations of Eothenomys miletus were given exogenous melatonin (MLT for 28 days. The results shown that body mass was reduced significantly, whereas resting metabolic rate (RMR and nonshivering thermogenesis (NST increased at 28 days in MLT group compared to control group as well as the oxidative capacities of mitochondria in liver and brown adipose tissue (BAT were enhanced; the contents of total and mitochodrial protein increased markedly. Melatonin treatment significantly increased the State 3, State 4 respiration of liver mitochondria, and the activity of cytochrome C oxidase (COX in liver; but the α-glerocephasphate oxidase (α-PGO capacity showed no differences during the acclimation in liver. Furthermore, the State 4 respiration, the activities of COX and α-PGO in BAT increased, respectively. The activity of thyroxin 5’-deiodinase ( T45’-DII in BAT increased remarkably. The serum content of thyroxine (T 4 decreased, and that of tri-iodothyronine (T 3 increased. Moreover, serum leptin levels showed no significant differences in MLT group compared to control group. Together, these data indicate that melatonin enhances thermogenic capacity in E. miletus. Our results suggested that melatonin is potentially involved in the regulation of body mass, adaptive thermogenic capacity and hormone concentrations in E. miletus.

  2. Hypothalamic roles of mTOR complex I: Integration of nutrient and hormone signals to regulate energy homeostasis

    Science.gov (United States)

    Mammalian or mechanistic target of rapamycin (mTOR) senses nutrient, energy, and hormone signals to regulate metabolism and energy homeostasis. mTOR activity in the hypothalamus, which is associated with changes in energy status, plays a critical role in the regulation of food intake and body weight...

  3. Current trends in targeting the hormonal regulation of appetite and energy balance to treat obesity

    Science.gov (United States)

    Valentino, Michael A; Colon-Gonzalez, Francheska; Lin, Jieru E; Waldman, Scott A

    2011-01-01

    With the eruption of the obesity pandemic over the past few decades, much research has been devoted to understanding the molecular mechanisms by which the human body regulates energy balance. These studies have revealed several mediators, including gut/pancreatic/adipose hormones and neuropeptides that control both short- and long-term energy balance by regulating appetite and/or metabolism. These endogenous mediators of energy balance have been the focus of many anti-obesity drug-development programs aimed at either amplifying endogenous anorexigenic/lipolytic signaling or blocking endogenous orexigenic/lipogenic signaling. Here, we discuss the efficacy and safety of targeting these pathways for the pharmacologic treatment of obesity. PMID:21297878

  4. Regulation of the Hypothalamic Thyrotropin Releasing Hormone (TRH) Neuron by Neuronal and Peripheral Inputs

    Science.gov (United States)

    Nillni, Eduardo A.

    2010-01-01

    The hypothalamic pituitary thyroid (HPT) axis plays a critical role in mediating changes in metabolism and thermogenesis. Thus, the central regulation of the thyroid axis by Thyrotropin Releasing Hormone (TRH) neurons in the paraventricular nucleus of the hypothalamus (PVN) is of key importance for the normal function of the axis under different physiological conditions including cold stress and changes in nutritional status. Before the TRH peptide becomes biologically active, a series of tightly regulated processes occur including the proper folding of the prohormone for targeting to the secretory pathway, its post-translational processing, and targeting of the processed peptides to the secretory granules near the plasma membrane of the cell ready for secretion. Multiple inputs coming from the periphery or from neurons present in different areas of the brain including the hypothalamus are responsible for the activation or inhibition of the TRH neuron and in turn affect the output of TRH and the set point of the axis. PMID:20074584

  5. Growth hormone regulation of rat liver gene expression assessed by SSH and microarray.

    Science.gov (United States)

    Gardmo, Cissi; Swerdlow, Harold; Mode, Agneta

    2002-04-25

    The sexually dimorphic secretion of growth hormone (GH) that prevails in the rat leads to a sex-differentiated expression of GH target genes, particularly in the liver. We have used subtractive suppressive hybridization (SSH) to search for new target genes induced by the female-characteristic, near continuous, pattern of GH secretion. Microarrays and dot-blot hybridizations were used in an attempt to confirm differential ratios of expression of obtained SSH clones. Out of 173 unique SSH clones, 41 could be verified as differentially expressed. Among these, we identified 17 known genes not previously recognized as differentially regulated by the sex-specific GH pattern. Additional SSH clones may also represent genes subjected to sex-specific GH regulation since only transcripts abundantly expressed could be verified. Optimized analyses, specific for each gene, are required to fully characterize the degree of differential expression.

  6. Hormonal regulation of gummosis and composition of gums from bulbs of hyacinth (Hyacinthus orientalis).

    Science.gov (United States)

    Miyamoto, Kensuke; Kotake, Toshihisa; Boncela, Anna Jarecka; Saniewski, Marian; Ueda, Junichi

    2015-02-01

    Hyacinth (Hyacinthus orientalis) bulbs infected by Fusarium oxysporum showed the symptoms of gummosis. The purpose of this study was to clarify the hormonal regulation of gummosis and composition of gums from hyacinth bulbs. The application of ethephon (2-chloroethylphosphonic acid), an ethylene-releasing compound, at 2% (w/w, in lanolin) induced gummosis in hyacinth bulbs. Methyl jasmonate (JA-Me) at 1.5% (w/w, in lanolin) induced gummosis as well. Simultaneous application of JA-Me and ethephon further enhanced gummosis. Molecular mass distribution of hyacinth gums analyzed by gel permeation chromatography indicated that the gums were mainly homogenous polysaccharides with an average molecular weight of ca. 30kDa. Analysis of the sugar composition of the gums after hydrolysis revealed that the majority were arabinose (ca. 35%) and galactose (ca. 40%) together with small amounts of fucose, rhamnose and uronic acids (ca. 5%, respectively), suggesting that the gums are pectic arabinogalactans. These results indicate that jasmonates (JAs) interact with ethylene to stimulate sugar metabolism, producing pectic arabinogalactans, and vice versa, leading to gummosis. These findings, together with those from our previous studies in tulips (Tulipa gesneriana) and grape hyacinth (Muscari armeniacum), revealed that sugar metabolism and hormonal regulation relating to gummosis are different among species of bulbous plants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. BIOCHEMICAL MARKERS OF BONE RESORPTION AND HORMONAL REGULATION OF BONE METABOLISM FOLLOWING LIVER TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    V. P. Buzulina

    2013-01-01

    Full Text Available Aim. Comparative evaluation of two biochemical markers of bone resorption and hormonal regulation of bone metabolism in liver recipients. Methods and results. Bоne densitometry of L2–L4 and neck of femur, serum level of some hormones (PTH, vitamin D3, estradiol, testosterone regulating osteoclastogenesis as well as com- parative analyses of two bone resorption markers β-crosslaps and tartrate-resistant acid phosphatase type 5b (TRAP-5b were fulfilled in patients after orthotopic liver transplantation (OLT. In 1 month after OLT bone density reduction of L2–L4 and neck of femur; decrease of vitamin D3, estradiol in women, testosterone in men and increase levels of bone resorption markers were observed. In 1 and 2 years after OLT the rise of bone density, increased levels of PTH, estradiol, testosterone and decreased β-crosslaps levels were revealed, while vitamin D3 and TRAP-5b levels remained stable. Conclusion. TRAP-5b was found to be a more speciffic marker of bone resorption, independent from collagen metabolism in liver. Osteoporosis defined in long-term period after OLT was associated with higher TRAP-5b and revialed in women with low estradiol level. 

  8. Ghrelin, a novel peptide hormone in the regulation of energy balance and cardiovascular function.

    Science.gov (United States)

    Ledderose, Carola; Kreth, Simone; Beiras-Fernandez, Andres

    2011-01-01

    Ghrelin, a peptide hormone predominantly produced by the stomach, is a potent stimulator of growth hormone release, food intake and weight gain. Besides its functions in regulating energy homeostasis, ghrelin has pronounced cardioprotective effects and was shown to improve cardiac performance in chronic heart failure (CHF). The multifunctional nature of ghrelin makes it an interesting pharmacological target for various diseases. Inhibition of ghrelin could be a promising approach in obesity-related disorders, while an enhancement of the ghrelin response is considered beneficial in several pathologic conditions marked by malnutrition, wasting and cachexia, including CHF, cancer, chronic pulmonary disease or chronic infections. In particular, patients suffering from CHF could possibly benefit from ghrelin based compounds that do not only help to reverse cardiac cachexia - by inducing a positive energy balance - but also enhance the direct cardioprotective effects of ghrelin. This review highlights the role of ghrelin in the regulation of energy balance and cardiovascular function and summarizes the most recent patents, developments and strategies in ghrelin-based pharmacotherapy for the treatment of pathologic conditions associated with obesity, cachexia or cardiovascular dysfunction.

  9. Regulation and role of hormone-sensitive lipase in rat skeletal muscle

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2004-01-01

    Intramyocellular triacylglycerol (TG) is an important energy store, and the energy content of this depot is higher than the energy content of the muscle glycogen depot. It has recently been shown that the mobilization of fatty acids from this TG pool may be regulated by the neutral lipase hormone...... in skeletal muscle and can be activated by phosphorylation in response to both adrenaline and muscle contractions. Training increases contraction-mediated HSL activation, but decreases adrenaline-mediated HSL activation in muscle.......Intramyocellular triacylglycerol (TG) is an important energy store, and the energy content of this depot is higher than the energy content of the muscle glycogen depot. It has recently been shown that the mobilization of fatty acids from this TG pool may be regulated by the neutral lipase hormone......-sensitive lipase (HSL). This enzyme is known to be rate limiting for intracellular TG hydrolysis in adipose tissue. The presence of HSL has been demonstrated in all muscle fibre types by Western blotting of muscle fibres isolated by collagenase treatment or after freeze-drying. The content of HSL varies between...

  10. Regulation of pituitary hormones and cell proliferation by components of the extracellular matrix

    Directory of Open Access Journals (Sweden)

    M. Paez-Pereda

    2005-10-01

    Full Text Available The extracellular matrix is a three-dimensional network of proteins, glycosaminoglycans and other macromolecules. It has a structural support function as well as a role in cell adhesion, migration, proliferation, differentiation, and survival. The extracellular matrix conveys signals through membrane receptors called integrins and plays an important role in pituitary physiology and tumorigenesis. There is a differential expression of extracellular matrix components and integrins during the pituitary development in the embryo and during tumorigenesis in the adult. Different extracellular matrix components regulate adrenocorticotropin at the level of the proopiomelanocortin gene transcription. The extracellular matrix also controls the proliferation of adrenocorticotropin-secreting tumor cells. On the other hand, laminin regulates the production of prolactin. Laminin has a dynamic pattern of expression during prolactinoma development with lower levels in the early pituitary hyperplasia and a strong reduction in fully grown prolactinomas. Therefore, the expression of extracellular matrix components plays a role in pituitary tumorigenesis. On the other hand, the remodeling of the extracellular matrix affects pituitary cell proliferation. Matrix metalloproteinase activity is very high in all types of human pituitary adenomas. Matrix metalloproteinase secreted by pituitary cells can release growth factors from the extracellular matrix that, in turn, control pituitary cell proliferation and hormone secretion. In summary, the differential expression of extracellular matrix components, integrins and matrix metalloproteinase contributes to the control of pituitary hormone production and cell proliferation during tumorigenesis.

  11. Skeletal muscle afferent regulation of bioassayable growth hormone in the rat pituitary

    Science.gov (United States)

    Gosselink, K. L.; Grindeland, R. E.; Roy, R. R.; Zhong, H.; Bigbee, A. J.; Grossman, E. J.; Edgerton, V. R.

    1998-01-01

    There are forms of growth hormone (GH) in the plasma and pituitary of the rat and in the plasma of humans that are undetected by presently available immunoassays (iGH) but can be measured by bioassay (bGH). Although the regulation of iGH release is well documented, the mechanism(s) of bGH release is unclear. On the basis of changes in bGH and iGH secretion in rats that had been exposed to microgravity conditions, we hypothesized that neural afferents play a role in regulating the release of these hormones. To examine whether bGH secretion can be modulated by afferent input from skeletal muscle, the proximal or distal ends of severed hindlimb fast muscle nerves were stimulated ( approximately 2 times threshold) in anesthetized rats. Plasma bGH increased approximately 250%, and pituitary bGH decreased approximately 60% after proximal nerve trunk stimulation. The bGH response was independent of muscle mass or whether the muscles were flexors or extensors. Distal nerve stimulation had little or no effect on plasma or pituitary bGH. Plasma iGH concentrations were unchanged after proximal nerve stimulation. Although there may be multiple regulatory mechanisms of bGH, the present results demonstrate that the activation of low-threshold afferents from fast skeletal muscles can play a regulatory role in the release of bGH, but not iGH, from the pituitary in anesthetized rats.

  12. The aging suppressor klotho: a potential regulator of growth hormone secretion.

    Science.gov (United States)

    Shahmoon, Shiri; Rubinfeld, Hadara; Wolf, Ido; Cohen, Zvi R; Hadani, Moshe; Shimon, Ilan; Rubinek, Tami

    2014-08-01

    Klotho is a transmembranal protein highly expressed in the kidneys, choroid plexus, and anterior pituitary. Klotho can also be cleaved and shed and acts as a circulating hormone. Klotho-deficient mice (kl/kl mice) develop a phenotype resembling early aging. Several lines of evidence suggest a role for klotho in the regulation of growth hormone (GH) secretion. The kl/kl mice are smaller compared with their wild-type counterparts, and their somatotropes show reduced numbers of secretory granules. Moreover, klotho is a potent inhibitor of the IGF-I pathway, a negative regulator of GH secretion. Therefore, we hypothesized that klotho may enhance GH secretion. The effect of klotho on GH secretion was examined in GH3 rat somatotrophs, cultured rat pituitaries, and cultured human GH-secreting adenomas. In all three models, klotho treatment increased GH secretion. Prolonged treatment of mice with intraperitoneal klotho injections increased mRNA levels of IGF-I and IGF-I-binding protein-3 mRNA in the liver, reflecting increased serum GH levels. In accord with its ability to inhibit the IGF-I pathway, klotho partially restored the inhibitory effect of IGF-I on GH secretion. Klotho is known to be a positive regulator of basic bFGF signaling. We studied rat pituitaries and human adenoma cultures and noted that bFGF increased GH secretion and stimulated ERK1/2 phosphorylation. Both effects were augmented following treatment with klotho. Taken together, our data indicate for the first time that klotho is a positive regulator of GH secretion and suggest the IGF-I and bFGF pathways as potential mediators of this effect. Copyright © 2014 the American Physiological Society.

  13. Sex-different and growth hormone-regulated expression of microRNA in rat liver

    Directory of Open Access Journals (Sweden)

    Tollet-Egnell Petra

    2009-02-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are short non-coding RNAs playing an important role in post-transcriptional regulation of gene expression. We have previously shown that hepatic transcript profiles are different between males and females; that some of these differences are under the regulation of growth hormone (GH; and that mild starvation diminishes some of the differences. In this study, we tested if hepatic miRNAs are regulated in a similar manner. Results Using microarrays, miRNA screening was performed to identify sex-dependent miRNAs in rat liver. Out of 324 unique probes on the array, 254 were expressed in the liver and eight (3% of 254 of those were found to be different between the sexes. Among the eight putative sex-different miRNAs, only one female-predominant miRNA (miR-29b was confirmed using quantitative real-time PCR. Furthermore, 1 week of continuous GH-treatment in male rats reduced the levels of miR-451 and miR-29b, whereas mild starvation (12 hours raised the levels of miR-451, miR-122a and miR-29b in both sexes. The biggest effects were obtained on miR-29b with GH-treatment. Conclusion We conclude that hepatic miRNA levels depend on the hormonal and nutritional status of the animal and show that miR-29b is a female-predominant and GH-regulated miRNA in rat liver.

  14. TGF-β signaling in insects regulates metamorphosis via juvenile hormone biosynthesis.

    Science.gov (United States)

    Ishimaru, Yoshiyasu; Tomonari, Sayuri; Matsuoka, Yuji; Watanabe, Takahito; Miyawaki, Katsuyuki; Bando, Tetsuya; Tomioka, Kenji; Ohuchi, Hideyo; Noji, Sumihare; Mito, Taro

    2016-05-17

    Although butterflies undergo a dramatic morphological transformation from larva to adult via a pupal stage (holometamorphosis), crickets undergo a metamorphosis from nymph to adult without formation of a pupa (hemimetamorphosis). Despite these differences, both processes are regulated by common mechanisms that involve 20-hydroxyecdysone (20E) and juvenile hormone (JH). JH regulates many aspects of insect physiology, such as development, reproduction, diapause, and metamorphosis. Consequently, strict regulation of JH levels is crucial throughout an insect's life cycle. However, it remains unclear how JH synthesis is regulated. Here, we report that in the corpora allata of the cricket, Gryllus bimaculatus, Myoglianin (Gb'Myo), a homolog of Drosophila Myoglianin/vertebrate GDF8/11, is involved in the down-regulation of JH production by suppressing the expression of a gene encoding JH acid O-methyltransferase, Gb'jhamt In contrast, JH production is up-regulated by Decapentaplegic (Gb'Dpp) and Glass-bottom boat/60A (Gb'Gbb) signaling that occurs as part of the transcriptional activation of Gb'jhamt Gb'Myo defines the nature of each developmental transition by regulating JH titer and the interactions between JH and 20E. When Gb'myo expression is suppressed, the activation of Gb'jhamt expression and secretion of 20E induce molting, thereby leading to the next instar before the last nymphal instar. Conversely, high Gb'myo expression induces metamorphosis during the last nymphal instar through the cessation of JH synthesis. Gb'myo also regulates final insect size. Because Myo/GDF8/11 and Dpp/bone morphogenetic protein (BMP)2/4-Gbb/BMP5-8 are conserved in both invertebrates and vertebrates, the present findings provide common regulatory mechanisms for endocrine control of animal development.

  15. Changes of hormones regulating electrolyte metabolism after space flight and hypokinesia

    Science.gov (United States)

    Macho, L.; Fickova, M.; Lichardus, B.; Kvetnansky, R.; Carrey, R. M.; Grigoriev, A.; Popova, I. A.; Tigranian, R. A.; Noskov, V. B.

    The changes of hormones in plasma involved in the body fluid regulation were studied in human subjects during and after space flights in relation to redistribution of body fluids in the state of weightlessness. Since hypokinesia was used as a model for simulation of some effects of the stay in microgravity the plasma hormone levels in rats exposed to hypokinesia were also investigated. Plasma aldosterone values showed great individual variations during the first inflight days, the increased levels were observed with prolongation of space flights. The important elevation was found in the recovery period, however it was interesting to note, that in some cosmonauts with repeated exposure to space flight, the postflight plasma aldosterone levels were not elevated. The urine excretion of aldosterone was increased inflight, however in postflight period the decrease or increase were found in the first 1-5 days. The increase of plasma renin activity was observed in flight and postflight period. The rats were exposed to hypokinesia (forced restriction of motor activity) for 1, 7 and 60 days and urine was collected during last 24 hours. The animals were sacrificed and the concentration of electrolytes and of levels of corticosterone aldosteron (A), ANF and plasma-renin activity (PRA) were determined in plasma. In urine excretion of sodium and potassium were estimated. An important increase of plasma renin activity and aldosterone concentration was found after short-term hypokinesia (1 day). These hormonal values appear to decrease with time (7 days) and are not significantly different from controls after long-term hypokinesia (60 days). A decrease of values ANF in plasma was observed after 1 and 7 days hypokinesia. After prolonged hypokinesia a decrease of sodium plasma concentration was observed. The excretion of sodium in urine was higher in long-term hypokinetic animals. There were no significant changes of plasma potassium levels in rats exposed to hypokinesia, however

  16. TBLR1 regulates the expression of nuclear hormone receptor co-repressors

    Directory of Open Access Journals (Sweden)

    Brown Stuart

    2006-08-01

    Full Text Available Abstract Background Transcription is regulated by a complex interaction of activators and repressors. The effectors of repression are large multimeric complexes which contain both the repressor proteins that bind to transcription factors and a number of co-repressors that actually mediate transcriptional silencing either by inhibiting the basal transcription machinery or by recruiting chromatin-modifying enzymes. Results TBLR1 [GenBank: NM024665] is a co-repressor of nuclear hormone transcription factors. A single highly conserved gene encodes a small family of protein molecules. Different isoforms are produced by differential exon utilization. Although the ORF of the predominant form contains only 1545 bp, the human gene occupies ~200 kb of genomic DNA on chromosome 3q and contains 16 exons. The genomic sequence overlaps with the putative DC42 [GenBank: NM030921] locus. The murine homologue is structurally similar and is also located on Chromosome 3. TBLR1 is closely related (79% homology at the mRNA level to TBL1X and TBL1Y, which are located on Chromosomes X and Y. The expression of TBLR1 overlaps but is distinct from that of TBL1. An alternatively spliced form of TBLR1 has been demonstrated in human material and it too has an unique pattern of expression. TBLR1 and the homologous genes interact with proteins that regulate the nuclear hormone receptor family of transcription factors. In resting cells TBLR1 is primarily cytoplasmic but after perturbation the protein translocates to the nucleus. TBLR1 co-precipitates with SMRT, a co-repressor of nuclear hormone receptors, and co-precipitates in complexes immunoprecipitated by antiserum to HDAC3. Cells engineered to over express either TBLR1 or N- and C-terminal deletion variants, have elevated levels of endogenous N-CoR. Co-transfection of TBLR1 and SMRT results in increased expression of SMRT. This co-repressor undergoes ubiquitin-mediated degradation and we suggest that the stabilization of

  17. Regulation of gene expression with thyroid hormone in rats with myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Yue-Feng Chen

    Full Text Available INTRODUCTION: The expression of hundreds of genes is altered in response to left ventricular (LV remodeling following large transmural myocardial infarction (MI. Thyroid hormone (TH improves LV remodeling and cardiac performance after MI. However, the molecular basis is unknown. METHODS: MI was produced by ligation of the left anterior descending coronary artery in female SD rats. Rats were divided into the following groups: (1 Sham MI, (2 MI, and (3 MI+T4 treatment (T4 pellet 3.3 mg, 60 days release, implanted subcutaneously immediately following MI. Four weeks after surgery, total RNA was isolated from LV non-infarcted areas for microarray analysis using the Illumina RatRef-12 Expression BeadChip Platform. RESULTS: Signals were detected in 13,188 genes (out of 22,523, of which the expression of 154 genes were decreased and the expression of 200 genes were increased in MI rats compared with Sham MI rats (false discovery rate (FDR <0.05. Compared to MI rats, T4 treatment decreased expression of 27 genes and increased expression of 28 genes. In particular, 6 genes down-regulated by MI and 12 genes up-regulated by MI were reversed by T4. Most of the 55 genes altered by T4 treatment are in the category of molecular function under binding (24 and biological processes which includes immune system process (9, multi-organism process (5 and biological regulation (19 nonexclusively. CONCLUSIONS: These results suggest that altered expression of genes for molecular function and biological process may be involved in the beneficial effects of thyroid hormone treatment following MI in rats.

  18. Dolomite supplementation improves bone metabolism through modulation of calcium-regulating hormone secretion in ovariectomized rats.

    Science.gov (United States)

    Mizoguchi, Toshihide; Nagasawa, Sakae; Takahashi, Naoyuki; Yagasaki, Hiroshi; Ito, Michio

    2005-01-01

    Dolomite, a mineral composed of calcium magnesium carbonate (CaMg (CO3)2), is used as a food supplement that supplies calcium and magnesium. However, the effect of magnesium supplementation on bone metabolism in patients with osteoporosis is a matter of controversy. We examined the effects of daily supplementation with dolomite on calcium metabolism in ovariectomized (OVX) rats. Dolomite was administered daily to OVX rats for 9 weeks. The same amount of magnesium chloride as that supplied by the dolomite was given to OVX rats as a positive control. Histological examination revealed that ovariectomy decreased trabecular bone and increased adipose tissues in the femoral metaphysis. Dolomite or magnesium supplementation failed to improve these bone histological features. Calcium content in the femora was decreased in OVX rats. Neither calcium nor magnesium content in the femora in OVX rats was significantly increased by dolomite or magnesium administration. Urinary deoxypyridinoline excretion was significantly increased in OVX rats, and was not affected by the magnesium supplementation. Serum concentrations of magnesium were increased, and those of calcium were decreased, in OVX rats supplemented with dolomite or magnesium. However, there was a tendency toward decreased parathyroid hormone secretion and increased calcitonin secretion in OVX rats supplemented with dolomite or magnesium. Serum 1,25-dihydroxyvitamin D(3) and osteocalcin levels were significantly increased in the supplemented OVX rats. These results suggest that increased magnesium intake improves calcium metabolism in favor of increasing bone formation, through the modulation of calcium-regulating hormone secretion.

  19. The role of thyroid hormones in regulating of fatty acid spectrum of brain lipids: ontogenetic aspect

    Directory of Open Access Journals (Sweden)

    Rodynskiy A.G.

    2016-05-01

    Full Text Available In experiments on rats of three age groups the role of thyroid hormones in the regulation of fatty acid spectrum of cortical and hippocampus lipids was studied. It was found that on the background of decreased thyroid status content of polyunsaturated fractions of free fatty acids, significantly changed depending on the age of the animals. In particular, in juvenile rats hypothyroidism was accompanied by a decrease almost twice the number of pentacodan acid decreased lipids viscosity in neurocortex. In old rats reduce of pentacodan acid in the cortex (38% was supplemented by significant (77% decrease in linoleic and linolenic acids. Unlike the two age groups deficiency of thyroid hormones in young animals caused accumulation of free polyunsatarated fatty acids (C18: 2.3 in the cerebral cortex by 74%, which may be associated with a decrease of this fraction in fatty acid spectrum of lipids and increase of viscosity properties of the membranes. These restruc­turing may be associated with modulation of synaptic transmission of specific neurotransmitter systems in the brain.

  20. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus.

    Science.gov (United States)

    Minokoshi, Yasuhiko; Alquier, Thierry; Furukawa, Noboru; Kim, Yong-Bum; Lee, Anna; Xue, Bingzhong; Mu, James; Foufelle, Fabienne; Ferré, Pascal; Birnbaum, Morris J; Stuck, Bettina J; Kahn, Barbara B

    2004-04-01

    Obesity is an epidemic in Western society, and causes rapidly accelerating rates of type 2 diabetes and cardiovascular disease. The evolutionarily conserved serine/threonine kinase, AMP-activated protein kinase (AMPK), functions as a 'fuel gauge' to monitor cellular energy status. We investigated the potential role of AMPK in the hypothalamus in the regulation of food intake. Here we report that AMPK activity is inhibited in arcuate and paraventricular hypothalamus (PVH) by the anorexigenic hormone leptin, and in multiple hypothalamic regions by insulin, high glucose and refeeding. A melanocortin receptor agonist, a potent anorexigen, decreases AMPK activity in PVH, whereas agouti-related protein, an orexigen, increases AMPK activity. Melanocortin receptor signalling is required for leptin and refeeding effects on AMPK in PVH. Dominant negative AMPK expression in the hypothalamus is sufficient to reduce food intake and body weight, whereas constitutively active AMPK increases both. Alterations of hypothalamic AMPK activity augment changes in arcuate neuropeptide expression induced by fasting and feeding. Furthermore, inhibition of hypothalamic AMPK is necessary for leptin's effects on food intake and body weight, as constitutively active AMPK blocks these effects. Thus, hypothalamic AMPK plays a critical role in hormonal and nutrient-derived anorexigenic and orexigenic signals and in energy balance.

  1. Testosterone and cortisol jointly regulate dominance: evidence for a dual-hormone hypothesis.

    Science.gov (United States)

    Mehta, Pranjal H; Josephs, Robert A

    2010-11-01

    Traditional theories propose that testosterone should increase dominance and other status-seeking behaviors, but empirical support has been inconsistent. The present research tested the hypothesis that testosterone's effect on dominance depends on cortisol, a glucocorticoid hormone implicated in psychological stress and social avoidance. In the domains of leadership (Study 1, mixed-sex sample) and competition (Study 2, male-only sample), testosterone was positively related to dominance, but only in individuals with low cortisol. In individuals with high cortisol, the relation between testosterone and dominance was blocked (Study 1) or reversed (Study 2). Study 2 further showed that these hormonal effects on dominance were especially likely to occur after social threat (social defeat). The present studies provide the first empirical support for the claim that the neuroendocrine reproductive (HPG) and stress (HPA) axes interact to regulate dominance. Because dominance is related to gaining and maintaining high status positions in social hierarchies, the findings suggest that only when cortisol is low should higher testosterone encourage higher status. When cortisol is high, higher testosterone may actually decrease dominance and in turn motivate lower status. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Bone Marrow-Derived Stem Cell Populations Are Differentially Regulated by Thyroid or/and Ovarian Hormone Loss

    Directory of Open Access Journals (Sweden)

    Bassam F. Mogharbel

    2017-10-01

    Full Text Available Bone marrow-derived stem cells (BMDSCs play an essential role in organ repair and regeneration. The molecular mechanisms by which hormones control BMDSCs proliferation and differentiation are unclear. Our aim in this study was to investigate how a lack of ovarian or/and thyroid hormones affects stem cell number in bone marrow lineage. To examine the effect of thyroid or/and ovarian hormones on the proliferative activity of BMDSCs, we removed the thyroid or/and the ovaries of adult female rats. An absence of ovarian and thyroid hormones was confirmed by Pap staining and Thyroid Stimulating Hormone (TSH measurement, respectively. To obtain the stem cells from the bone marrow, we punctured the iliac crest, and aspirated and isolated cells by using a density gradient. Specific markers were used by cytometry to identify the different BMDSCs types: endothelial progenitor cells (EPCs, precursor B cells/pro-B cells, and mesenchymal stem cells (MSCs. Interestingly, our results showed that hypothyroidism caused a significant increase in the percentage of EPCs, whereas a lack of ovarian hormones significantly increased the precursor B cells/pro-B cells. Moreover, the removal of both glands led to increased MSCs. In conclusion, both ovarian and thyroid hormones appear to have key and diverse roles in regulating the proliferation of cells populations of the bone marrow.

  3. Comparative analysis reveals loss of the appetite-regulating peptide hormone ghrelin in falcons.

    Science.gov (United States)

    Seim, Inge; Jeffery, Penny L; Herington, Adrian C; Chopin, Lisa K

    2015-05-15

    Ghrelin and leptin are key peripherally secreted appetite-regulating hormones in vertebrates. Here we consider the ghrelin gene (GHRL) of birds (class Aves), where it has been reported that ghrelin inhibits rather than augments feeding. Thirty-one bird species were compared, revealing that most species harbour a functional copy of GHRL and the coding region for its derived peptides ghrelin and obestatin. We provide evidence for loss of GHRL in saker and peregrine falcons, and this is likely to result from the insertion of an ERVK retrotransposon in intron 0. We hypothesise that the loss of anorexigenic ghrelin is a predatory adaptation that results in increased food-seeking behaviour and feeding in falcons. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. RADIATION COUNTER

    Science.gov (United States)

    Goldsworthy, W.W.

    1958-02-01

    This patent relates to a radiation counter, and more particularly, to a scintillation counter having high uniform sensitivity over a wide area and capable of measuring alpha, beta, and gamma contamination over wide energy ranges, for use in quickly checking the contami-nation of personnel. Several photomultiplier tubes are disposed in parallel relationship with a light tight housing behind a wall of scintillation material. Mounted within the housing with the photomultipliers are circuit means for producing an audible sound for each pulse detected, and a range selector developing a voltage proportional to the repetition rate of the detected pulses and automatically altering its time constant when the voltage reaches a predetermined value, so that manual range adjustment of associated metering means is not required.

  5. Hypothalamic Effects of Tamoxifen on Oestrogen Regulation of Luteinising Hormone and Prolactin Secretion in Female Rats.

    Science.gov (United States)

    Aquino, N S S; Araujo-Lopes, R; Batista, I A R; Henriques, P C; Poletini, M O; Franci, C R; Reis, A M; Szawka, R E

    2016-01-01

    Oestradiol (E2) acts in the hypothalamus to regulate luteinising hormone (LH) and prolactin (PRL) secretion. Tamoxifen (TX) has been extensively used as a selective oestrogen receptor modulator, although its neuroendocrine effects remain poorly understood. In the present study, we investigated the hypothalamic effects of TX in rats under low or high circulating E2 levels. Ovariectomised (OVX) rats treated with oil, E2 or TX, or E2 plus TX, were evaluated for hormonal secretion and immunohistochemical analyses in hypothalamic areas. Both E2 and TX reduced LH levels, whereas TX blocked the E2 -induced surges of LH and PRL. TX prevented the E2 -induced expression of progesterone receptor (PR) in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC), although it did not alter PR expression in OVX rats. TX blocked the E2 induction of c-Fos in AVPV neurones, consistent with the suppression of LH surge. However, TX failed to prevent E2 inhibition of kisspeptin expression in the ARC. In association with the blockade of PRL surge, TX increased the phosphorylation of tyrosine hydroxylase (TH) in the median eminence of OVX, E2 -treated rats. TX also precluded the E2 -induced increase in TH expression in the ARC. In all immunohistochemical analyses, TX treatment in OVX rats caused no measurable effect on the hypothalamus. Thus, TX is able to prevent the positive- but not negative-feedback effect of E2 on the hypothalamus. TX also blocks the effects of E2 on tuberoinfundibular dopaminergic neurones and PRL secretion. These findings further characterise the anti-oestrogenic actions of TX in the hypothalamus and provide new information on the oestrogenic regulation of LH and PRL. © 2015 British Society for Neuroendocrinology.

  6. Thyroid Hormones Regulate Zebrafish Melanogenesis in a Gender-Specific Manner

    Science.gov (United States)

    Guillot, Raúl; Muriach, Borja; Rocha, Ana; Rotllant, Josep; Kelsh, Robert N.

    2016-01-01

    Zebrafish embryos are treated with anti-thyroidal compounds, such as phenylthiourea, to inhibit melanogenesis. However, the mechanism whereby the thyroidal system controls melanin synthesis has not been assessed in detail. In this work, we tested the effect of the administration of diets supplemented with T3 (500μg/g food) on the pigment pattern of adult zebrafish. Oral T3 induced a pronounced skin paling in both adult female and male zebrafish that was reversible upon cessation of treatment. The number of visible melanophores was significantly reduced in treated fish. Accordingly, treatment down-regulated expression of tyrosinase-related protein 1 in both sexes. We also found sexually dimorphic regulation of some melanogenic genes, such as Dct/Tyrp2 that was dramatically up-regulated in females after T3 treatment. Thus, we demonstrated that melanogenesis is reversibly inhibited by thyroid hormones in adult zebrafish and make the discovery of gender-specific differences in the response of melanogenic gene expression. Thus, fish gender is now shown to be an important variable that should be controlled in future studies of fish melanogenesis. PMID:27832141

  7. The Effect of Growth Hormone Administration on the Regulation of Mitochondrial Apoptosis in-Vivo

    Directory of Open Access Journals (Sweden)

    James Keane

    2015-06-01

    Full Text Available The purpose of this study was to determine whether recombinant human growth hormone (rhGH would show any significant effects on the expression of apoptosis regulating proteins in peripheral blood mononuclear cells (PBMCs. Additionally, the potential for post-transcriptional regulation of gene expression by miRNA was assessed in two cellular compartments, the cytosol and the mitochondria. Ten male subjects were subcutaneously injected with either rhGH (1 mg or saline (0.9% for seven consecutive days in a double-blinded fashion. Blood sampling was undertaken prior to treatment administration and over a period of three weeks following treatment cessation. Bcl-2 and Bak gene and protein expression levels were measured in PBMCs, while attention was also directed to the expression of miR-181a and miR-125b, known translational inhibitors of Bcl-2 and Bak respectively. Results showed that rhGH significantly decreased Bak protein concentrations compared to placebo samples for up to 8 days post treatment. While cytosolic miRNA expression was not found to be significantly affected by rhGH, measurement of the expression of miR-125b in mitochondrial fractions showed a significant down-regulation eight days post-rhGH administration. These findings suggest that rhGH induces short-term anti-apoptotic effects which may be partially mediated through a novel pathway that alters the concentration of mitochondrially-associated miRNAs.

  8. Thyroid Hormones Regulate Zebrafish Melanogenesis in a Gender-Specific Manner.

    Directory of Open Access Journals (Sweden)

    Raúl Guillot

    Full Text Available Zebrafish embryos are treated with anti-thyroidal compounds, such as phenylthiourea, to inhibit melanogenesis. However, the mechanism whereby the thyroidal system controls melanin synthesis has not been assessed in detail. In this work, we tested the effect of the administration of diets supplemented with T3 (500μg/g food on the pigment pattern of adult zebrafish. Oral T3 induced a pronounced skin paling in both adult female and male zebrafish that was reversible upon cessation of treatment. The number of visible melanophores was significantly reduced in treated fish. Accordingly, treatment down-regulated expression of tyrosinase-related protein 1 in both sexes. We also found sexually dimorphic regulation of some melanogenic genes, such as Dct/Tyrp2 that was dramatically up-regulated in females after T3 treatment. Thus, we demonstrated that melanogenesis is reversibly inhibited by thyroid hormones in adult zebrafish and make the discovery of gender-specific differences in the response of melanogenic gene expression. Thus, fish gender is now shown to be an important variable that should be controlled in future studies of fish melanogenesis.

  9. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep

    Directory of Open Access Journals (Sweden)

    Salin Paul

    2003-09-01

    Full Text Available Abstract Background Peptidergic neurons containing the melanin-concentrating hormone (MCH and the hypocretins (or orexins are intermingled in the zona incerta, perifornical nucleus and lateral hypothalamic area. Both types of neurons have been implicated in the integrated regulation of energy homeostasis and body weight. Hypocretin neurons have also been involved in sleep-wake regulation and narcolepsy. We therefore sought to determine whether hypocretin and MCH neurons express Fos in association with enhanced paradoxical sleep (PS or REM sleep during the rebound following PS deprivation. Next, we compared the effect of MCH and NaCl intracerebroventricular (ICV administrations on sleep stage quantities to further determine whether MCH neurons play an active role in PS regulation. Results Here we show that the MCH but not the hypocretin neurons are strongly active during PS, evidenced through combined hypocretin, MCH, and Fos immunostainings in three groups of rats (PS Control, PS Deprived and PS Recovery rats. Further, we show that ICV administration of MCH induces a dose-dependant increase in PS (up to 200% and slow wave sleep (up to 70% quantities. Conclusion These results indicate that MCH is a powerful hypnogenic factor. MCH neurons might play a key role in the state of PS via their widespread projections in the central nervous system.

  10. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep.

    Science.gov (United States)

    Verret, Laure; Goutagny, Romain; Fort, Patrice; Cagnon, Laurène; Salvert, Denise; Léger, Lucienne; Boissard, Romuald; Salin, Paul; Peyron, Christelle; Luppi, Pierre-Hervé

    2003-09-09

    Peptidergic neurons containing the melanin-concentrating hormone (MCH) and the hypocretins (or orexins) are intermingled in the zona incerta, perifornical nucleus and lateral hypothalamic area. Both types of neurons have been implicated in the integrated regulation of energy homeostasis and body weight. Hypocretin neurons have also been involved in sleep-wake regulation and narcolepsy. We therefore sought to determine whether hypocretin and MCH neurons express Fos in association with enhanced paradoxical sleep (PS or REM sleep) during the rebound following PS deprivation. Next, we compared the effect of MCH and NaCl intracerebroventricular (ICV) administrations on sleep stage quantities to further determine whether MCH neurons play an active role in PS regulation. Here we show that the MCH but not the hypocretin neurons are strongly active during PS, evidenced through combined hypocretin, MCH, and Fos immunostainings in three groups of rats (PS Control, PS Deprived and PS Recovery rats). Further, we show that ICV administration of MCH induces a dose-dependent increase in PS (up to 200%) and slow wave sleep (up to 70%) quantities. These results indicate that MCH is a powerful hypnogenic factor. MCH neurons might play a key role in the state of PS via their widespread projections in the central nervous system.

  11. Water deficit affected flavonoid accumulation by regulating hormone metabolism in Scutellaria baicalensis Georgi roots.

    Directory of Open Access Journals (Sweden)

    Yuan Yuan

    Full Text Available The content of flavonoids especially baicalin and baicalein determined the medical quality of Scutellaria baicalensis which is a Chinese traditional medicinal plant. Here, we investigated the mechanism responsible for the content and composition of flavonoids in S. baicalensis under water deficit condition. The transcription levels of several genes which are involved in flavonoid biosynthesis were stimulated by water deficit. Under water deficit condition, fifteen up-regulated proteins, three down-regulated proteins and other six proteins were detected by proteomic analysis. The identified proteins include three gibberellin (GA- or indoleacetic acid (IAA-related proteins. Decreased endogenous GAs level and increased IAA level were observed in leaves of S. baicalensis which was treated with water deficit. Exogenous application of GA or α-naphthalene acelic acid (NAA to plants grown under water deficit conditions led to the increase of endogenous GAs and the decrease of IAA and flavonoids, respectively. When the synthesis pathway of GA or IAA in plants was inhibited by application with the inhibitors, flavonoid levels were recovered. These results indicate that water deficit affected flavonoid accumulation might through regulating hormone metabolism in S. baicalensis Georgi.

  12. Exercise training during normobaric hypoxic confinement does not alter hormonal appetite regulation.

    Science.gov (United States)

    Debevec, Tadej; Simpson, Elizabeth J; Macdonald, Ian A; Eiken, Ola; Mekjavic, Igor B

    2014-01-01

    Both exposure to hypoxia and exercise training have the potential to modulate appetite and induce beneficial metabolic adaptations. The purpose of this study was to determine whether daily moderate exercise training performed during a 10-day exposure to normobaric hypoxia alters hormonal appetite regulation and augments metabolic health. Fourteen healthy, male participants underwent a 10-day hypoxic confinement at ∼ 4000 m simulated altitude (FIO2 = 0.139 ± 0.003%) either combined with daily moderate intensity exercise (Exercise group; N = 8, Age = 25.8 ± 2.4 yrs, BMI = 22.9 ± 1.2 kg · m(-2)) or without any exercise (Sedentary group; N = 6 Age = 24.8 ± 3.1 yrs, BMI = 22.3 ± 2.5 kg · m(-2)). A meal tolerance test was performed before (Pre) and after the confinement (Post) to quantify fasting and postp randial concentrations of selected appetite-related hormones and metabolic risk markers. 13C-Glucose was dissolved in the test meal and 13CO2 determined in breath samples. Perceived appetite ratings were obtained throughout the meal tolerance tests. While body mass decreased in both groups (-1.4 kg; p = 0.01) following the confinement, whole body fat mass was only reduced in the Exercise group (-1.5 kg; p = 0.01). At Post, postprandial serum insulin was reduced in the Sedentary group (-49%; p = 0.01) and postprandial plasma glucose in the Exercise group (-19%; p = 0.03). Fasting serum total cholesterol levels were reduced (-12%; p = 0.01) at Post in the Exercise group only, secondary to low-density lipoprotein cholesterol reduction (-16%; p = 0.01). No differences between groups or testing periods were noted in fasting and/or postprandial concentrations of total ghrelin, peptide YY, and glucagon-like peptide-1, leptin, adiponectin, expired 13CO2 as well as perceived appetite ratings (p>0.05). These findings suggest that performing daily moderate intensity exercise training during continuous hypoxic exposure does not alter hormonal appetite regulation but can

  13. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity.

    Science.gov (United States)

    Albacete, Alfonso; Cantero-Navarro, Elena; Balibrea, María E; Großkinsky, Dominik K; de la Cruz González, María; Martínez-Andújar, Cristina; Smigocki, Ann C; Roitsch, Thomas; Pérez-Alfocea, Francisco

    2014-11-01

    Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors on tomato fruit sink activity, growth, and yield: (i) exogenous hormones were applied to plants, and (ii) transgenic plants overexpressing the cell wall invertase (cwInv) gene CIN1 in the fruits and de novo cytokinin (CK) biosynthesis gene IPT in the roots were constructed. Although salinity reduces fruit growth, sink activity, and trans-zeatin (tZ) concentrations, it increases the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) during the actively growing period (25 days after anthesis). Indeed, exogenous application of the CK analogue kinetin to salinized actively growing fruits recovered sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT in the root (up to 30%), owing to an increase in the fruit number (lower flower abortion) and in fruit weight. This is possibly related to a recovery of sink activity in reproductive tissues due to both (i) increase in sucrolytic activities (cwInv, sucrose synthase, and vacuolar and cytoplasmic invertases) and tZ concentration, and (ii) a decrease in the ACC levels and the activity of the invertase inhibitor. This study provides new functional evidences about the role of

  14. Regulation of Mammary Gland Sensitivity to Thyroid Hormones during the Transition from Pregnancy to Lactation

    Science.gov (United States)

    Thyroid hormones are galactopoietic and appear to assist in establishing the mammary gland’s metabolic priority during lactation. Expression patterns for genes that can alter tissue sensitivity to thyroid hormones and thyroid hormone activity were evaluated in the mammary gland and liver of Holstei...

  15. Barhl1 is directly regulated by thyroid hormone in the developing cerebellum of mice.

    Science.gov (United States)

    Dong, Hongyan; Yauk, Carole L; Wade, Michael G

    2011-11-11

    Thyroid hormones (THs) are essential for the brain development. Despite considerable effort, few genes directly regulated by THs have been identified. In this study, we investigate the effects of THs on the regulation of Barhl1, a transcription factor that regulates sensorineural development. Using DNA microarray combined with chromatin immunoprecipitation (ChIP-chip), we identified a TRβ binding site in the promoter of Barhl1. The binding was further confirmed by ChIP-PCR. The site is located approximately 755 bp upstream of the transcription start site. Reporter vectors containing the binding site or mutated fragments were transfected into GH3 cells. T3 treatment decreased the transcriptional activity of the wild fragment but not the mutant. Two 28 bp oligonucleotides containing sequences that resemble known TH response elements (TREs) were derived from this binding site and DNA-protein interaction was performed using electrophoretic mobility shift assays (EMSA). Binding analysis in a nuclear extract containing TRβ revealed that one of these fragments bound TRβ. This complex was shifted with the addition of anti-TRβ antibody. We investigated Barhl1 expression in animal models and TH-treated cultured cells. Both long term treatment with 6-propyl-2-thiouracil and short-term treatment with 0.05% methimazole/1% sodium perchlorate (both treatments render mice hypothyroid) resulted in up-regulation of Barhl1. TH supplementation of hypothyroid mice caused a decrease in the expression of Barhl1 compared to control animals. Similarly, the expression of Barhl1 in cultured GH3 decreased with the addition of T3. Given the important role of Barhl1 in brain development, we propose that perturbations of TH-mediated transcriptional control of Barhl1 may play a role in the impaired neurodevelopment induced by hypothyroidism. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  16. Differential regulation of kiss1 expression by melatonin and gonadal hormones in male and female Syrian hamsters

    DEFF Research Database (Denmark)

    Ansel, L; Bolborea, M; Bentsen, A H

    2010-01-01

    In seasonal breeders, reproduction is synchronized to seasons by day length via the pineal hormone melatonin. Recently, we have demonstrated that Kiss1, a key activator of the reproductive function, is down-regulated in sexually inactive hamsters maintained in inhibitory short days (SDs). In rode...

  17. Transcriptional regulation of insect steroid hormone biosynthesis and its role in controlling timing of molting and metamorphosis.

    Science.gov (United States)

    Niwa, Yuko S; Niwa, Ryusuke

    2016-01-01

    The developmental transition from juvenile to adult is often accompanied by many systemic changes in morphology, metabolism, and reproduction. Curiously, both mammalian puberty and insect metamorphosis are triggered by a pulse of steroid hormones, which can harmonize gene expression profiles in the body and thus orchestrate drastic biological changes. However, understanding of how the timing of steroid hormone biosynthesis is regulated at the molecular level is poor. The principal insect steroid hormone, ecdysteroid, is biosynthesized from dietary cholesterol in the specialized endocrine organ called the prothoracic gland. The periodic pulses of ecdysteroid titers determine the timing of molting and metamorphosis. To date, at least nine families of ecdysteroidogenic enzyme genes have been identified. Expression levels of these genes correlate well with ecdysteroid titers, indicating that the transcriptional regulatory network plays a critical role in regulating the ecdysteroid biosynthesis pathway. In this article, we summarize the transcriptional regulation of ecdysteroid biosynthesis. We first describe the development of prothoracic gland cells during Drosophila embryogenesis, and then provide an overview of the transcription factors that act in ecdysteroid biosynthesis and signaling. We also discuss the external signaling pathways that target these transcriptional regulators. Furthermore, we describe conserved and/or diverse aspects of steroid hormone biosynthesis in insect species as well as vertebrates. © 2015 The Authors Development, Growth & Differentiation published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Developmental Biologists.

  18. C/EBPbeta regulates body composition, energy balance-related hormones and tumor growth.

    Science.gov (United States)

    Staiger, Jennifer; Lueben, Mary J; Berrigan, David; Malik, Radek; Perkins, Susan N; Hursting, Stephen D; Johnson, Peter F

    2009-05-01

    The prevalence of obesity, an established epidemiologic risk factor for many chronic diseases including cancer, has been steadily increasing in the US over several decades. The mechanisms used to regulate energy balance and adiposity and the relationship of these factors to cancer are not completely understood. Here we have used knockout mice to examine the roles of the transcription factors CCAAT/enhancer-binding protein (C/EBP) beta and C/EBPdelta in regulating body composition and systemic levels of hormones such as insulin-like growth factor-1 (IGF-1), leptin and insulin that mediate energy balance. Dual-energy X-ray absorptiometry showed that C/EBPbeta, either directly or indirectly, modulated body weight, fat content and bone density in both males and females, while the effect of C/EBPdelta was minor and only affected adiposity and body weight in female animals. Levels of IGF-1, leptin and insulin in the serum were decreased in both male and female C/EBPbeta(-/-) mice, and C/EBPbeta was associated with their promoters in vivo. Moreover, colon adenocarcinoma cells displayed reduced tumorigenic potential when transplanted into C/EBPbeta-deficient animals, especially males. Thus, C/EBPbeta contributes to endocrine expression of IGF-1, leptin and insulin, which modulate energy balance and can contribute to cancer progression by creating a favorable environment for tumor cell proliferation and survival.

  19. Thyroid hormone receptor beta and NCOA4 regulate terminal erythrocyte differentiation.

    Science.gov (United States)

    Gao, Xiaofei; Lee, Hsiang-Ying; Li, Wenbo; Platt, Randall Jeffrey; Barrasa, M Inmaculada; Ma, Qi; Elmes, Russell R; Rosenfeld, Michael G; Lodish, Harvey F

    2017-09-19

    An effect of thyroid hormone (TH) on erythropoiesis has been known for more than a century but the molecular mechanism(s) by which TH affects red cell formation is still elusive. Here we demonstrate an essential role of TH during terminal human erythroid cell differentiation; specific depletion of TH from the culture medium completely blocked terminal erythroid differentiation and enucleation. Treatment with TRβ agonists stimulated premature erythroblast differentiation in vivo and alleviated anemic symptoms in a chronic anemia mouse model by regulating erythroid gene expression. To identify factors that cooperate with TRβ during human erythroid terminal differentiation, we conducted RNA-seq in human reticulocytes and identified nuclear receptor coactivator 4 (NCOA4) as a critical regulator of terminal differentiation. Furthermore, Ncoa4(-/-) mice are anemic in perinatal periods and fail to respond to TH by enhanced erythropoiesis. Genome-wide analysis suggests that TH promotes NCOA4 recruitment to chromatin regions that are in proximity to Pol II and are highly associated with transcripts abundant during terminal differentiation. Collectively, our results reveal the molecular mechanism by which TH functions during red blood cell formation, results that are potentially useful to treat certain anemias.

  20. Seed and Hormonal Regulation of Gibberellin 20-Oxidase Expression in Pea Pericarp.

    Science.gov (United States)

    Van Huizen, R.; Ozga, J. A.; Reinecke, D. M.

    1997-09-01

    To understand further how seeds, auxin (4-chloroindole-3-acetic acid [4-Cl-IAA]), and gibberellins (GAs) regulate GA biosynthesis in pea (Pisum sativum L.) pericarp at the molecular level, we studied the expression of GA 20-oxidase in this tissue using northern-blot analysis. Pericarp GA 20-oxidase mRNA levels were highest from prepollination (-2 d after anthesis [DAA]) through anthesis (0 DAA), then decreased 3-fold by 2 DAA, and remained at these levels through 6 DAA. The effects of seeds and hormones (4-Cl-IAA and GA3) on the expression of GA 20-oxidase in pea pericarp were investigated over a 36-h treatment period. GA 20-oxidase mRNA levels in 2 DAA pericarp with seeds remained relatively stable throughout the treatment period; however, when the seeds were removed the pericarp transcript levels declined. When 2 DAA deseeded pericarps were treated with 4-Cl-IAA, a significant increase in GA 20-oxidase mRNA levels was detected within 2 h and transcript levels remained elevated for up to 12 h after 4-Cl-IAA application. GA3 significantly decreased GA 20-oxidase mRNA levels in deseeded pericarp within 2 h of application. These data suggest that the previously reported conversion of GA19 to GA20 in pea pericarp is controlled by seeds, 4-Cl-IAA, and GA3 at least in part by regulating GA 20-oxidase mRNA levels in this tissue.

  1. Silicon: a duo synergy for regulating crop growth and hormonal signaling under abiotic stress conditions.

    Science.gov (United States)

    Kim, Yoon-Ha; Khan, Abdul Latif; Lee, In-Jung

    2016-12-01

    Abiotic stresses, such as salinity, heavy metals and drought, are some of the most devastating factors hindering sustainable crop production today. Plants use their own defensive strategies to cope with the adverse effects of these stresses, via the regulation of the expression of essential phytohormones, such as gibberellins (GA), salicylic acid (SA), jasmonates (JA), abscisic acid (ABA) and ethylene (ET). However, the efficacy of the endogenous defensive arsenals of plants often falls short if the stress persists over an extended period. Various strategies are developed to improve stress tolerance in plants. For example, silicon (Si) is widely considered to possess significant potential as a substance which ameliorate the negative effects of abiotic stresses, and improves plant growth and biomass accumulation. This review aims to explain how Si application influences the signaling of the endogenous hormones GA, SA, ABA, JA and ET during salinity, wounding, drought and metal stresses in crop plants. Phytohormonal cross talk plays an important role in the regulation of induced defences against stress. However, detailed molecular and proteomic research into these interactions is needed in order to identify the underlying mechanisms of stress tolerance that is imparted by Si application and uptake.

  2. Analyzing the Role of Receptor Internalization in the Regulation of Melanin-Concentrating Hormone Signaling

    Directory of Open Access Journals (Sweden)

    Jay I. Moden

    2013-01-01

    Full Text Available The regulation of appetite is complex, though our understanding of the process is improving. The potential role for the melanin-concentrating hormone (MCH signaling pathway in the treatment of obesity is being explored by many. It was hypothesized that internalization of MCH receptors would act to potently desensitize cells to MCH. Despite potent desensitization of ERK signaling by MCH in BHK-570 cells, we were unable to observe MCH-mediated internalization of MCH receptor 1 (MCHR1 by fluorescence microscopy. A more quantitative approach using a cell-based ELISA indicated only 15% of receptors internalized, which is much lower than that reported in the literature. When -arrestins were overexpressed in our system, removal of receptors from the cell surface was facilitated and signaling to a leptin promoter was diminished, suggesting that internalization of MCHR1 is sensitive to cellular -arrestin levels. A dominant-negative GRK construct completely inhibited loss of receptors from the cell surface in response to MCH, suggesting that the internalization observed is phosphorylation-dependent. Since desensitization of MCH-mediated ERK signaling did not correlate with significant loss of MCHR1 from the cell surface, we hypothesize that in this model system regulation of MCH signaling may be the result of segregation of receptors from signaling components at the plasma membrane.

  3. Neurons Containing Orexin or Melanin Concentrating Hormone Reciprocally Regulate Wake and Sleep

    Directory of Open Access Journals (Sweden)

    Roda Rani eKonadhode

    2015-01-01

    Full Text Available There is considerable amount of data on arousal neurons whereas there is a paucity of knowledge regarding neurons that make us fall asleep. Indeed, current network models of sleep-wake regulation list many arousal neuronal populations compared to only one sleep group located in the preoptic area. There are neurons outside the preoptic area that are active during sleep, but they have never been selectively manipulated. Indeed, none of the sleep-active neurons have been selectively stimulated. To close this knowledge gap we used optogenetics to selectively manipulate neurons containing melanin concentrating hormone (MCH. The MCH neurons are located in the posterior hypothalamus intermingled with the orexin arousal neurons. Our data indicated that optogenetic stimulation of MCH neurons in wildtype mice (J Neuroscience, 2013 robustly increased both non-REM and REM sleep. MCH neuron stimulation increased sleep during the animal’s normal active period, which is compelling evidence that stimulation of MCH neurons has a powerful effect in counteracting the strong arousal signal from all of the arousal neurons. The MCH neurons represent the only group of sleep-active neurons that when selectively stimulated induce sleep. From a translational perspective this is potentially useful in sleep disorders, such as insomnia, where sleep needs to be triggered against a strong arousal drive. Our studies indicate that the MCH neurons belong within an overall model of sleep-wake regulation.

  4. A novel pathway regulates thyroid hormone availability in rat and human hypothalamic neurosecretory neurons.

    Directory of Open Access Journals (Sweden)

    Imre Kalló

    Full Text Available Hypothalamic neurosecretory systems are fundamental regulatory circuits influenced by thyroid hormone. Monocarboxylate-transporter-8 (MCT8-mediated uptake of thyroid hormone followed by type 3 deiodinase (D3-catalyzed inactivation represent limiting regulatory factors of neuronal T3 availability. In the present study we addressed the localization and subcellular distribution of D3 and MCT8 in neurosecretory neurons and addressed D3 function in their axons. Intense D3-immunoreactivity was observed in axon varicosities in the external zone of the rat median eminence and the neurohaemal zone of the human infundibulum containing axon terminals of hypophysiotropic parvocellular neurons. Immuno-electronmicroscopy localized D3 to dense-core vesicles in hypophysiotropic axon varicosities. N-STORM-superresolution-microscopy detected the active center containing C-terminus of D3 at the outer surface of these organelles. Double-labeling immunofluorescent confocal microscopy revealed that D3 is present in the majority of GnRH, CRH and GHRH axons but only in a minority of TRH axons, while absent from somatostatin-containing neurons. Bimolecular-Fluorescence-Complementation identified D3 homodimers, a prerequisite for D3 activity, in processes of GT1-7 cells. Furthermore, T3-inducible D3 catalytic activity was detected in the rat median eminence. Triple-labeling immunofluorescence and immuno-electronmicroscopy revealed the presence of MCT8 on the surface of the vast majority of all types of hypophysiotropic terminals. The presence of MCT8 was also demonstrated on the axon terminals in the neurohaemal zone of the human infundibulum. The unexpected role of hypophysiotropic axons in fine-tuned regulation of T3 availability in these cells via MCT8-mediated transport and D3-catalyzed inactivation may represent a novel regulatory core mechanism for metabolism, growth, stress and reproduction in rodents and humans.

  5. Differential regulation of thyrotropin subunit apoprotein and carbohydrate biosynthesis by thyroid hormone

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, T.; Weintraub, B.D.

    1985-04-01

    The regulation of TSH apoprotein and carbohydrate biosynthesis by thyroid hormone was studied by incubating pituitaries from normal and hypothyroid (3 weeks post-thyroidectomy) rats in medium containing (/sup 14/C)alanine and (/sup 3/H) glucosamine. After 6 h, samples were sequentially treated with anti-TSH beta to precipitate TSH and free TSH beta, anti-LH beta to clear the sample of LH and free LH beta, then anti-LH alpha to precipitate free alpha-subunit. Total proteins were acid precipitated. All precipitates were subjected to electrophoresis on sodium dodecyl sulfate-polyacrylamide gels, which were then sliced and assayed by scintillation spectrometry. In hypothyroid pituitaries plus medium, (/sup 14/C)alanine incorporation in combined and free beta-subunits was 26 times normal and considerably greater than the 3.4-fold increase seen in total protein; combined and free alpha-subunits showed no specific increase in apoprotein synthesis. (/sup 3/H)Glucosamine incorporation in combined alpha- and beta-subunits in hypothyroid samples was 13 and 21 times normal, respectively, and was greater than the 1.9-fold increase in total protein; free alpha-subunit showed no specific increase in carbohydrate synthesis. The glucosamine to alanine ratio, reflecting relative glycosylation of newly synthesized molecules, was increased in hypothyroidism for combined alpha-subunits, but not for combined beta-subunits, free alpha-subunits, or total proteins. In summary, short term hypothyroidism selectively stimulated TSH beta apoprotein synthesis and carbohydrate synthesis of combined alpha- and beta-subunits. Hypothyroidism also increased the relative glycosylation of combined alpha-subunit. Thus, thyroid hormone deficiency appears to alter the rate-limiting step in TSH assembly (i.e. beta-subunit synthesis) as well as the carbohydrate structure of TSH, which may play important roles in its biological function.

  6. Insights into Enzyme Catalysis and Thyroid Hormone Regulation of Cerebral Ketimine Reductase/μ-Crystallin Under Physiological Conditions.

    Science.gov (United States)

    Hallen, André; Cooper, Arthur J L; Jamie, Joanne F; Karuso, Peter

    2015-06-01

    Mammalian ketimine reductase is identical to μ-crystallin (CRYM)-a protein that is also an important thyroid hormone binding protein. This dual functionality implies a role for thyroid hormones in ketimine reductase regulation and also a reciprocal role for enzyme catalysis in thyroid hormone bioavailability. In this research we demonstrate potent sub-nanomolar inhibition of enzyme catalysis at neutral pH by the thyroid hormones L-thyroxine and 3,5,3'-triiodothyronine, whereas other thyroid hormone analogues were shown to be far weaker inhibitors. We also investigated (a) enzyme inhibition by the substrate analogues pyrrole-2-carboxylate, 4,5-dibromopyrrole-2-carboxylate and picolinate, and (b) enzyme catalysis at neutral pH of the cyclic ketimines S-(2-aminoethyl)-L-cysteine ketimine (owing to the complex nomenclature trivial names are used for the sulfur-containing cyclic ketimines as per the original authors' descriptions) (AECK), Δ(1)-piperideine-2-carboxylate (P2C), Δ(1)-pyrroline-2-carboxylate (Pyr2C) and Δ(2)-thiazoline-2-carboxylate. Kinetic data obtained at neutral pH suggests that ketimine reductase/CRYM plays a major role as a P2C/Pyr2C reductase and that AECK is not a major substrate at this pH. Thus, ketimine reductase is a key enzyme in the pipecolate pathway, which is the main lysine degradation pathway in the brain. In silico docking of various ligands into the active site of the X-ray structure of the enzyme suggests an unusual catalytic mechanism involving an arginine residue as a proton donor. Given the critical importance of thyroid hormones in brain function this research further expands on our knowledge of the connection between amino acid metabolism and regulation of thyroid hormone levels.

  7. Adipokine zinc-α2-glycoprotein regulated by growth hormone and linked to insulin sensitivity.

    Science.gov (United States)

    Balaz, Miroslav; Ukropcova, Barbara; Kurdiova, Timea; Gajdosechova, Lucia; Vlcek, Miroslav; Janakova, Zuzana; Fedeles, Jozef; Pura, Mikulas; Gasperikova, Daniela; Smith, Steven R; Tkacova, Ruzena; Klimes, Iwar; Payer, Juraj; Wolfrum, Christian; Ukropec, Jozef

    2015-02-01

    Hypertrophic obesity is associated with impaired insulin sensitivity and lipid-mobilizing activity of zinc-α2-glycoprotein. Adipose tissue (AT) of growth hormone (GH) -deficient patients is characterized by extreme adipocyte hypertrophy due to defects in AT lipid metabolism. It was hypothesized that zinc-α2-glycoprotein is regulated by GH and mediates some of its beneficial effects in AT. AT from patients with GH deficiency and individuals with obesity-related GH deficit was obtained before and after 5-year and 24-month GH supplementation therapy. GH action was tested in primary human adipocytes. Relationships of GH and zinc-α2-glycoprotein with adipocyte size and insulin sensitivity were evaluated in nondiabetic patients with noncancerous cachexia and hypertrophic obesity. AT in GH-deficient adults displayed a substantial reduction of zinc-α2-glycoprotein. GH therapy normalized AT zinc-α2-glycoprotein. Obesity-related relative GH deficit was associated with almost 80% reduction of zinc-α2-glycoprotein mRNA in AT. GH increased zinc-α2-glycoprotein mRNA in both AT of obese men and primary human adipocytes. Interdependence of GH and zinc-α2-glycoprotein in regulating AT morphology and metabolic phenotype was evident from their relationship with adipocyte size and AT-specific and whole-body insulin sensitivity. The results demonstrate that GH is involved in regulation of AT zinc-α2-glycoprotein; however, the molecular mechanism linking GH and zinc-α2-glycoprotein in AT is yet unknown. © 2014 The Obesity Society.

  8. Regulation of hypothalamic corticotropin-releasing hormone neurone excitability by oxytocin.

    Science.gov (United States)

    Jamieson, B B; Nair, B B; Iremonger, K J

    2017-11-01

    Oxytocin (OT) is a neuropeptide that exerts multiple actions throughout the brain and periphery. Within the brain, OT regulates diverse neural populations, including neural networks controlling responses to stress. Local release of OT within the paraventricular nucleus (PVN) of the hypothalamus has been suggested to regulate stress responses by modulating the excitability of neighbouring corticotropin-releasing hormone (CRH) neurones. However, the mechanisms by which OT regulates CRH neurone excitability are unclear. In the present study, we investigated the morphological relationship between OT and CRH neurones and determined the effects of OT on CRH neurone excitability. Morphological analysis revealed that the processes of OT and CRH neurones were highly intermingled within the PVN, possibly allowing for local cell-to-cell cross-talk. Whole-cell patch-clamp recordings from CRH neurones were used to study the impact of OT on postsynaptic excitability and synaptic innervation. Bath-applied OT did not alter CRH neurone holding current, spiking output or any action potential parameters. Recordings of evoked excitatory and inhibitory postsynaptic currents (EPSCs/IPSCs) revealed no net effect of OT on current amplitude; however, subgroups of CRH neurones appeared to respond differentially to OT. Analysis of spontaneous EPSC events uncovered a significant reduction in spontaneous EPSC frequency but no change in spontaneous EPSC amplitude in response to OT. Together, these data demonstrate that OT exerts a subtle modulation of synaptic transmission onto CRH neurones providing one potential mechanism by which OT could suppress CRH neurone excitability and stress axis activity. © 2017 British Society for Neuroendocrinology.

  9. Cytoskeleton-related regulation of primary cilia shortening mediated by melanin-concentrating hormone receptor 1.

    Science.gov (United States)

    Tomoshige, Sakura; Kobayashi, Yuki; Hosoba, Kosuke; Hamamoto, Akie; Miyamoto, Tatsuo; Saito, Yumiko

    2017-11-01

    Primary cilia are specialized microtubule-based organelles. Their importance is highlighted by the gamut of ciliary diseases associated with various syndromes including diabetes and obesity. Primary cilia serve as signaling hubs through selective interactions with ion channels and conventional G-protein-coupled receptors (GPCRs). Melanin-concentrating hormone (MCH) receptor 1 (MCHR1), a key regulator of feeding, is selectively expressed in neuronal primary cilia in distinct regions of the mouse brain. We previously found that MCH acts on ciliary MCHR1 and induces cilia shortening through a Gi/o-dependent Akt pathway with no cell cycle progression. Many factors can participate in cilia length control. However, the mechanisms for how these molecules are relocated and coordinated to activate cilia shortening are poorly understood. In the present study, we investigated the role of cytoskeletal dynamics in regulating MCH-induced cilia shortening using clonal MCHR1-expressing hTERT-RPE1 cells. Pharmacological and biochemical approaches showed that cilia shortening mediated by MCH was associated with increased soluble cytosolic tubulin without changing the total tubulin amount. Enhanced F-actin fiber intensity was also observed in MCH-treated cells. The actions of various pharmacological agents revealed that coordinated actin machinery, especially actin polymerization, was required for MCHR1-mediated cilia shortening. A recent report indicated the existence of actin-regulated machinery for cilia shortening through GPCR agonist-dependent ectosome release. However, our live-cell imaging experiments showed that MCH progressively elicited cilia shortening without exclusion of fluorescence-positive material from the tip. Short cilia phenotypes have been associated with various metabolic disorders. Thus, the present findings may contribute toward better understanding of how the cytoskeleton is involved in the GPCR ligand-triggered cilia shortening with cell mechanical

  10. Enhancing crop yield with the use of N-based fertilizers co-applied with plant hormones or growth regulators.

    Science.gov (United States)

    Zaman, Mohammad; Kurepin, Leonid V; Catto, Warwick; Pharis, Richard P

    2015-07-01

    Crop yield, vegetative or reproductive, depends on access to an adequate supply of essential mineral nutrients. At the same time, a crop plant's growth and development, and thus yield, also depend on in situ production of plant hormones. Thus optimizing mineral nutrition and providing supplemental hormones are two mechanisms for gaining appreciable yield increases. Optimizing the mineral nutrient supply is a common and accepted agricultural practice, but the co-application of nitrogen-based fertilizers with plant hormones or plant growth regulators is relatively uncommon. Our review discusses possible uses of plant hormones (gibberellins, auxins, cytokinins, abscisic acid and ethylene) and specific growth regulators (glycine betaine and polyamines) to enhance and optimize crop yield when co-applied with nitrogen-based fertilizers. We conclude that use of growth-active gibberellins, together with a nitrogen-based fertilizer, can result in appreciable and significant additive increases in shoot dry biomass of crops, including forage crops growing under low-temperature conditions. There may also be a potential for use of an auxin or cytokinin, together with a nitrogen-based fertilizer, for obtaining additive increases in dry shoot biomass and/or reproductive yield. Further research, though, is needed to determine the potential of co-application of nitrogen-based fertilizers with abscisic acid, ethylene and other growth regulators. © 2014 Society of Chemical Industry.

  11. Role of Reactive Oxygen Species in the Neural and Hormonal Regulation of the PNMT Gene in PC12 Cells

    Directory of Open Access Journals (Sweden)

    James A. G. Crispo

    2011-01-01

    Full Text Available The stress hormone, epinephrine, is produced predominantly by adrenal chromaffin cells and its biosynthesis is regulated by the enzyme phenylethanolamine N-methyltransferase (PNMT. Studies have demonstrated that PNMT may be regulated hormonally via the hypothalamic-pituitary-adrenal axis and neurally via the stimulation of the splanchnic nerve. Additionally, hypoxia has been shown to play a key role in the regulation of PNMT. The purpose of this study was to examine the impact of reactive oxygen species (ROS produced by the hypoxia mimetic agent CoCl2, on the hormonal and neural stimulation of PNMT in an in vitro cell culture model, utilizing the rat pheochromocytoma (PC12 cell line. RT-PCR analyses show inductions of the PNMT intron-retaining and intronless mRNA splice variants by CoCl2 (3.0- and 1.76-fold, respectively. Transient transfection assays of cells treated simultaneously with CoCl2 and the synthetic glucocorticoid, dexamethasone, show increased promoter activity (18.5-fold, while mRNA levels of both splice variants do not demonstrate synergistic effects. Similar results were observed when investigating the effects of CoCl2-induced ROS on the neural stimulation of PNMT via forskolin. Our findings demonstrate that CoCl2-induced ROS have synergistic effects on hormonal and neural activation of the PNMT promoter.

  12. Central and direct regulation of testicular activity by gonadotropin-inhibitory hormone and its receptor

    Directory of Open Access Journals (Sweden)

    Takayoshi eUbuka

    2014-01-01

    Full Text Available Gonadotropin-inhibitory hormone (GnIH was first identified in Japanese quail to be an inhibitor of gonadotropin synthesis and release. GnIH peptides have since been identified in all vertebrates, and all share an LPXRFamide (X = L or Q motif at their C-termini. The receptor for GnIH is the G protein-coupled receptor 147 (GPR147, which inhibits cAMP signaling. Cell bodies of GnIH neurons are located in the paraventricular nucleus (PVN in birds and the dorsomedial hypothalamic area (DMH in most mammals. GnIH neurons in the PVN or DMH project to the median eminence to control anterior pituitary function via GPR147 expressed in gonadotropes. Further, GnIH inhibits gonadotropin-releasing hormone (GnRH -induced gonadotropin subunit gene transcription by inhibiting the adenylate cyclase/cAMP/PKA -dependent ERK pathway in an immortalized mouse gonadotrope cell line (LT2 cells. GnIH neurons also project to GnRH neurons that express GPR147 in the preoptic area (POA in birds and mammals. Accordingly, GnIH can inhibit gonadotropin synthesis and release by decreasing the activity of GnRH neurons as well as by directly inhibiting pituitary gonadotrope activity. GnIH and GPR147 can thus centrally suppress testosterone secretion and spermatogenesis by acting in the hypothalamic-pituitary-gonadal axis. GnIH and GPR147 are also expressed in the testis of birds and mammals, possibly acting in an autocrine/paracrine manner to suppress testosterone secretion and spermatogenesis. GnIH expression is also regulated by melatonin, stress and social environment in birds and mammals. Accordingly, the GnIH-GPR147 system may play a role in transducing physical and social environmental information to regulate optimal testicular activity in birds and mammals. This review discusses central and direct inhibitory effects of GnIH and GPR147 on testosterone secretion and spermatogenesis in birds and mammals.

  13. Melatonin in the thyroid gland: regulation by thyroid-stimulating hormone and role in thyroglobulin gene expression.

    Science.gov (United States)

    Garcia-Marin, R; Fernandez-Santos, J M; Morillo-Bernal, J; Gordillo-Martinez, F; Vazquez-Roman, V; Utrilla, J C; Carrillo-Vico, A; Guerrero, J M; Martin-Lacave, I

    2015-10-01

    Melatonin is an indoleamine with multiple functions in both plant and animal species. In addition to data in literature describing many other important roles for melatonin, such as antioxidant, circadian rhythm controlling, anti-aging, antiproliferative or immunomodulatory activities, our group recently reported that thyroid C-cells synthesize melatonin and suggested a paracrine role for this molecule in the regulation of thyroid activity. To discern the role played by melatonin at thyroid level and its involvement in the hypothalamic-pituitary-thyroid axis, in the present study we have analyzed the effect of thyrotropin in the regulation of the enzymatic machinery for melatonin biosynthesis in C cells as well as the effect of melatonin in the regulation of thyroid hormone biosynthesis in thyrocytes. Our results show that the key enzymes for melatonin biosynthesis (AANAT and ASMT) are regulated by thyroid-stimulating hormone. Furthermore, exogenous melatonin increases thyroglobulin expression at mRNA and protein levels on cultured thyrocytes and this effect is not strictly mediated by the upregulation of TTF1 or, noteworthy, PAX8 transcription factors. The present data show that thyroid C-cells synthesize melatonin under thyroid-stimulating hormone control and, consistently with previous data, support the hypothesis of a paracrine role for C-cell-synthesised melatonin within the thyroid gland. Additionally, in the present study we show evidence for the involvement of melatonin in thyroid function by directly-regulating thyroglobulin gene expression in follicular cells.

  14. IL1B promoter polymorphism regulates the expression of gastric acid stimulating hormone gastrin.

    Science.gov (United States)

    Chakravorty, Meenakshi; Datta De, Dipanjana; Choudhury, Abhijit; Roychoudhury, Susanta

    2009-07-01

    It is important to dissect the effect of the alternative alleles of a functional SNP on the entire biochemical pathway for the complete understanding of the mechanism of the manifestation of complex diseases. IL1B-511C>T and -31C>T promoter polymorphisms have been suggested as potential susceptibility loci for Helicobacter pylori associated gastroduodenal diseases. We report that altered expression of IL1B due to a specific polymorphism in its promoter modulates the expression of gastrin, an acid regulating hormone. Treatment of gastric carcinoma cells, AGS, with IL1B resulted in a 20-fold reduction in gastrin expression. Gastrin promoter assay showed that IL1B inhibits gastrin expression at the transcriptional level and part of this inhibitory process is mediated via activation of NFkappaB and involvement of HDACs. An almost 3-fold increase in IL1B expression was observed when AGS cells were transfected with -31TIL1B expression plasmid in comparison to -31CIL1B. The -31TIL1B induced a 2-fold greater repression of the gastrin luciferase activity compared to -31CIL1B. This signaling of the -31TIL1B variant allele driven IL1B revealed an almost 1.5-fold greater expression of NFkappaB. Thus, this study showed that a single base substitution at the -31 position of the IL1B promoter brought about differential expression of IL1B which differentially altered both NFkappaB activation and gastrin expression.

  15. Gummosis in grape hyacinth (Muscari armeniacum) bulbs: hormonal regulation and chemical composition of gums.

    Science.gov (United States)

    Miyamoto, Kensuke; Kotake, Toshihisa; Sasamoto, Makiko; Saniewski, Marian; Ueda, Junichi

    2010-05-01

    The purpose of this study was to investigate the hormonal regulation of gummosis in grape hyacinth (Muscari armeniacum) bulbs, focusing especially on the chemical composition of the gums. The application of ethephon (2-chloroethylphosphonic acid), an ethylene-releasing compound, at 1% and 2% (w/w) in lanolin as well as ethylene induced gummosis in the bulbs within several days. Methyl jasmonate (JA-Me, 0.1-2% in lanolin) alone had no effect on gummosis. However, simultaneous application of JA-Me and ethephon led to extreme stimulation of ethephon-induced gummosis. Ethephon-induced gummosis in the bulbs depended on the maturation stage of the bulbs, increasing from April to July, but decreasing from August to September. Regardless of the presence of JA-Me, the application of ethephon to the inflorescence axis of grape hyacinths did not induce gummosis. Gel permeation chromatography analysis revealed that gums were homogenous polysaccharides with an average molecular mass of ca. 8.3 kDa. Analysis of the sugar composition of the gums after hydrolysis revealed that the molar ratio of Rha:Ara:Gal:GalA:GlcA was 25:10:40:7:15. These results suggest that principal factors of gummosis as well as the chemical composition of gums differ between species of bulbous plants.

  16. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo [Kobe Univ. School of Medicine, Kobe (Japan)

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  17. Influence of Running and Walking on Hormonal Regulators of Appetite in Women

    Directory of Open Access Journals (Sweden)

    D. Enette Larson-Meyer

    2012-01-01

    Full Text Available Nine female runners and ten walkers completed a 60 min moderate-intensity (70% VO2max run or walk, or 60 min rest in counterbalanced order. Plasma concentrations of the orexogenic peptide ghrelin, anorexogenic peptides peptide YY (PYY, glucagon-like peptide-1 (GLP-1, and appetite ratings were measured at 30 min interval for 120 min, followed by a free-choice meal. Both orexogenic and anorexogenic peptides were elevated after running, but no changes were observed after walking. Relative energy intake (adjusted for cost of exercise/rest was negative in the meal following running (−194±206 kcal versus walking (41±196 kcal (P=0.015, although both were suppressed (P<0.05 compared to rest (299±308 and 284±121 kcal, resp.. The average rate of change in PYY and GLP-1 over time predicted appetite in runners, but only the change in GLP-1 predicted hunger (P=0.05 in walkers. Results provide evidence that exercise-induced alterations in appetite are likely driven by complex changes in appetite-regulating hormones rather than change in a single gut peptide.

  18. The heterodimeric glycoprotein hormone, GPA2/GPB5, regulates ion transport across the hindgut of the adult mosquito, Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Jean-Paul Paluzzi

    Full Text Available A family of evolutionarily old hormones is the glycoprotein cysteine knot-forming heterodimers consisting of alpha- (GPA and beta-subunits (GPB, which assemble by noncovalent bonds. In mammals, a common glycoprotein hormone alpha-subunit (GPA1 pairs with unique beta-subunits that establish receptor specificity, forming thyroid stimulating hormone (GPA1/TSHβ and the gonadotropins luteinizing hormone (GPA1/LHβ, follicle stimulating hormone (GPA1/FSHβ, choriogonadotropin (GPA1/CGβ. A novel glycoprotein heterodimer was identified in vertebrates by genome analysis, called thyrostimulin, composed of two novel subunits, GPA2 and GPB5, and homologs occur in arthropods, nematodes and cnidarians, implying that this neurohormone system existed prior to the emergence of bilateral metazoans. In order to discern possible physiological roles of this hormonal signaling system in mosquitoes, we have isolated the glycoprotein hormone genes producing the alpha- and beta-subunits (AedaeGPA2 and AedaeGPB5 and assessed their temporal expression profiles in the yellow and dengue-fever vector, Aedes aegypti. We have also isolated a putative receptor for this novel mosquito hormone, AedaeLGR1, which contains features conserved with other glycoprotein leucine-rich repeating containing G protein-coupled receptors. AedaeLGR1 is expressed in tissues of the alimentary canal such as the midgut, Malpighian tubules and hindgut, suggesting that this novel mosquito glycoprotein hormone may regulate ionic and osmotic balance. Focusing on the hindgut in adult stage A. aegypti, where AedaeLGR1 was highly enriched, we utilized the Scanning Ion-selective Electrode Technique (SIET to determine if AedaeGPA2/GPB5 modulated cation transport across this epithelial tissue. Our results suggest that AedaeGPA2/GPB5 does indeed participate in ionic and osmotic balance, since it appears to inhibit natriuresis and promote kaliuresis. Taken together, our findings imply this hormone may play an

  19. Expression profiles and hormonal regulation of tobacco expansin genes and their involvement in abiotic stress response.

    Science.gov (United States)

    Kuluev, Bulat; Avalbaev, Azamat; Mikhaylova, Elena; Nikonorov, Yuriy; Berezhneva, Zoya; Chemeris, Alexey

    2016-11-01

    hormones whereas NtEXPA1, NtEXPA4, and NtEXPA5 expansins may be involved in the regulation of stress tolerance in tobacco plants. Copyright © 2016. Published by Elsevier GmbH.

  20. Hormonal regulation of the growth of leaves and inflorescence stalk in Muscari armeniacum Leichtl.

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2016-04-01

    Full Text Available It is known that chilling of Muscari bulbs is necessary for the growth of the inflorescence stalk and flowering, but not for the growth of leaves. Gibberellic acid (GA accelerated stem growth and flowering in chilled Muscari bulbs. In the present experiment it was shown that in unchilled derooted Muscari bulbs the growth of leaves, but not the growth of the inflorescence stalk, was observed when bulbs were stored in water, GA at a concentration of 50 and 100 mg/L, benzyladenine (BA at a concentration of 25 and 50 mg/L, or a mixture of GA+BA (50+25 mg/L, but abscisic acid (ABA at a concentration of 10 mg/L greatly inhibited the growth of leaves. In chilled derooted Muscari bulbs the growth of leaves and inflorescence stalk was observed when bulbs were stored in water or GA, but BA and GA+BA treatments totally inhibited the growth of the inflorescence stalk without an effect on the growth of leaves. These results clearly showed that the growth of leaves and inflorescence stalk in Muscari bulbs are controlled by plant growth regulators in different ways. ABA totally inhibited the growth of leaves and inflorescence stalk in chilled derooted Muscari bulbs. It was shown that after the excision of the inflorescence bud in cultivated chilled Muscari bulbs, the inflorescence stalk died, but application of indole-3-acetic acid (IAA 0.5% in the place of the removed inflorescence bud induced the growth of the inflorescence stalk. IAA applied under the inflorescence bud inhibited the development of flowers (flower-bud blasting and induced the growth of the inflorescence stalk below the treatment site. These results are discussed with reference to hormonal regulation of stem (stalk growth in tulip, narcissus, hyacinth, and Hippeastrum.

  1. Proteoglycan 4: a dynamic regulator of skeletogenesis and parathyroid hormone skeletal anabolism.

    Science.gov (United States)

    Novince, Chad M; Michalski, Megan N; Koh, Amy J; Sinder, Benjamin P; Entezami, Payam; Eber, Matthew R; Pettway, Glenda J; Rosol, Thomas J; Wronski, Thomas J; Kozloff, Ken M; McCauley, Laurie K

    2012-01-01

    Proteoglycan 4 (Prg4), known for its lubricating and protective actions in joints, is a strong candidate regulator of skeletal homeostasis and parathyroid hormone (PTH) anabolism. Prg4 is a PTH-responsive gene in bone and liver. Prg4 null mutant mice were used to investigate the impact of proteoglycan 4 on skeletal development, remodeling, and PTH anabolic actions. Young Prg4 mutant and wild-type mice were administered intermittent PTH(1-34) or vehicle daily from 4 to 21 days. Young Prg4 mutant mice had decreased growth plate hypertrophic zones, trabecular bone, and serum bone formation markers versus wild-type mice, but responded with a similar anabolic response to PTH. Adult Prg4 mutant and wild-type mice were administered intermittent PTH(1-34) or vehicle daily from 16 to 22 weeks. Adult Prg4 mutant mice had decreased trabecular and cortical bone, and blunted PTH-mediated increases in bone mass. Joint range of motion and animal mobility were lower in adult Prg4 mutant versus wild-type mice. Adult Prg4 mutant mice had decreased marrow and liver fibroblast growth factor 2 (FGF-2) mRNA and reduced serum FGF-2, which were normalized by PTH. A single dose of PTH decreased the PTH/PTHrP receptor (PPR), and increased Prg4 and FGF-2 to a similar extent in liver and bone. Proteoglycan 4 supports endochondral bone formation and the attainment of peak trabecular bone mass, and appears to support skeletal homeostasis indirectly by protecting joint function. Bone- and liver-derived FGF-2 likely regulate proteoglycan 4 actions supporting trabeculae formation. Blunted PTH anabolic responses in adult Prg4 mutant mice are associated with altered biomechanical impact secondary to joint failure. Copyright © 2012 American Society for Bone and Mineral Research.

  2. Growth hormone receptors in cultured adipocytes: a model to study receptor regulation.

    Science.gov (United States)

    Roupas, P; Herington, A C

    1986-09-01

    Acutely isolated rat adipocytes have been maintained in primary culture for several days and the effects of culture on the kinetics of 125I-human growth hormone (hGH) binding to adipocytes have been determined. A marked increase (500-1000%) in specific binding of 125I-hGH was observed over the first 3 days of culture--acutely isolated adipocytes (5.5 +/- 1.4%, mean +/- SE, n = 47) compared to 3-day cultured adipocytes (48 +/- 7%, mean +/- SE, n = 8). Specific binding of 125I-hGH to both acutely isolated and cultured adipocytes was dependent on incubation time and temperature (equilibrium being reached in 1 h at 37 degrees C and 2 h at 22 degrees C). Binding was reversible (t1/2 approximately 1.5 h). Scatchard analysis revealed linear plots and showed that the increase in binding during culture was due to an increase in the number of receptors per cell (approximately 20 000 to approximately 170 000) with little or no change in binding affinity (Ka approximately 1 X 10(9) M-1). Cycloheximide inhibited the increase in binding sites during culture suggesting a requirement for de novo protein synthesis. Addition of unlabelled hGH to the culture medium resulted in a marked down-regulation of the GH receptor by 2 days. The GH-induced decrease in receptor number was to due to receptor occupancy by exogenously added GH. The studies to date indicate that the cultured rat adipocyte should provide a useful model for a comprehensive study of the cellular mechanisms and dynamics of GH receptor regulation.

  3. dLKR/SDH regulates hormone-mediated histone arginine methylation and transcription of cell death genes.

    Science.gov (United States)

    Cakouros, Dimitrios; Mills, Kathryn; Denton, Donna; Paterson, Alicia; Daish, Tasman; Kumar, Sharad

    2008-08-11

    The sequential modifications of histones form the basis of the histone code that translates into either gene activation or repression. Nuclear receptors recruit a cohort of histone-modifying enzymes in response to ligand binding and regulate proliferation, differentiation, and cell death. In Drosophila melanogaster, the steroid hormone ecdysone binds its heterodimeric receptor ecdysone receptor/ultraspiracle to spatiotemporally regulate the transcription of several genes. In this study, we identify a novel cofactor, Drosophila lysine ketoglutarate reductase (dLKR)/saccharopine dehydrogenase (SDH), that is involved in ecdysone-mediated transcription. dLKR/SDH binds histones H3 and H4 and suppresses ecdysone-mediated transcription of cell death genes by inhibiting histone H3R17me2 mediated by the Drosophila arginine methyl transferase CARMER. Our data suggest that the dynamic recruitment of dLKR/SDH to ecdysone-regulated gene promoters controls the timing of hormone-induced gene expression. In the absence of dLKR/SDH, histone methylation occurs prematurely, resulting in enhanced gene activation. Consistent with these observations, the loss of dLKR/SDH in Drosophila enhances hormone-regulated gene expression, affecting the developmental timing of gene activation.

  4. Iodothyronine Deiodinases: structure-function analysis and their role in the regulation of thyroid hormone levels

    NARCIS (Netherlands)

    F.W.J.S. Wassen (Frank)

    2005-01-01

    textabstractThyroid hormone is important for energy metabolism, the metabolism of nutrients, inorganic ion fluxes and thermogenesis. Thyroid hormone is also essential for stimulation of growth and development of various tissues at critical periods including the central nervous system. Whereas in

  5. Sex Hormones Regulate Hepatic Fetuin Expression in Male and Female Rats

    Directory of Open Access Journals (Sweden)

    Sang Woo Kim

    2014-08-01

    Full Text Available Background: To date, there are limited studies on the sex-specific relationship between fetuins (Ft-A and Ft-B and metabolic diseases. Our recent proteomic study has shown that fetuins may play sex-dependent roles in obesity and diabetes. In the present study, we investigated the expression of hepatic fetuins with respect to the effects of sex hormones both in vivo and in vitro. Methods & Results: A sex hormone-treated rat model was established in order to study the effects of sex hormones on hepatic fetuin expression. Animal experiments revealed that 17β-estradiol (E2- and dihydrotestosterone (DHT-treated rats showed opposite effects in terms of body weight gain in both genders. Interestingly, Ft-A and Ft-B were sex-dependently expressed in the livers of rats, responding to different regulatory modes of sex hormone receptors (ERα, ERβ, and AR. To validate in vivo data, rat normal liver cells were treated with E2 or DHT at different concentrations, and similar expression patterns as those in the animal-based experiments were confirmed. We found that these changes were mediated via sex hormone receptors using antagonist experiments. Conclusion: The results of the present study indicate that sex hormones induce gender-dimorphic expression of hepatic fetuins directly via sex hormone receptors. To the best of our knowledge, this is the first approach to address the effects of sex hormones on hepatic fetuin expression.

  6. Gibberellin hormone signal perception: down-regulating DELLA repressors of plant growth and development

    Science.gov (United States)

    The gibberellin (GA) hormone signal is perceived by a receptor with homology to hormone sensitive lipases, GID1 (GA-INSENSITIVE DWARF1). This leads to GA-stimulated responses including stem elongation, seed germination, and the transition to flowering. GA-binding enables GID1 to interact with and ...

  7. The role of kisspeptin-GPR54 signaling in the tonic regulation and surge release of gonadotropin-releasing hormone/luteinizing hormone.

    Science.gov (United States)

    Dungan, Heather M; Gottsch, Michelle L; Zeng, Hongkui; Gragerov, Alexander; Bergmann, John E; Vassilatis, Demetrios K; Clifton, Donald K; Steiner, Robert A

    2007-10-31

    The Kiss1 gene codes for kisspeptin, which binds to GPR54, a G-protein-coupled receptor. Kisspeptin and GPR54 are expressed in discrete regions of the forebrain, and they have been implicated in the neuroendocrine regulation of reproduction. Kiss1-expressing neurons are thought to regulate the secretion of gonadotropin-releasing hormone (GnRH) and thus coordinate the estrous cycle in rodents; however, the precise role of kisspeptin-GPR54 signaling in the regulation of gonadotropin secretion is unknown. In this study, we used female mice with deletions in the GPR54 gene [GPR54 knock-outs (KOs)] to test the hypothesis that kisspeptin-GPR54 signaling provides the drive necessary for tonic GnRH/luteinizing hormone (LH) release. We predicted that tonic GnRH/LH secretion would be disrupted in GPR54 KOs and that such animals would be incapable of showing a compensatory rise in LH secretion after ovariectomy. As predicted, we found that GPR54 KO mice do not exhibit a postovariectomy rise in LH, suggesting that tonic GnRH secretion is disrupted in the absence of kisspeptin-GPR54 signaling. We also postulated that kisspeptin-GPR54 signaling is critical for the generation of the estradiol (E)-induced GnRH/LH surge and thus E should be incapable of inducing an LH surge in the absence of GPR54. However, we found that E induced Fos expression in GnRH neurons and produced a GnRH-dependent LH surge in GPR54 KOs. Thus, in mice, kisspeptin-GPR54 signaling is required for the tonic stimulation of GnRH/LH secretion but is not required for generating the E-induced GnRH/LH surge.

  8. Juvenile hormone regulates the differential expression of putative juvenile hormone esterases via methoprene-tolerant in non-diapause-destined and diapause-destined adult female beetle.

    Science.gov (United States)

    Zhu, Li; Yin, Tian-Yan; Sun, Dan; Liu, Wen; Zhu, Fen; Lei, Chao-Liang; Wang, Xiao-Ping

    2017-09-05

    Juvenile hormone (JH) plays an essential role in regulating molting, metamorphosis, reproduction, and diapause (dormancy), in many insects and crustaceans. JH esterases (JHEs) can control JH titer by regulating JH degradation. Although the biochemistry and structure of JHEs have been well studied, regulation of their expression remains unclear. We identified three putative JHEs (JHE1, JHE2, JHE3) in the cabbage beetle Colaphellus bowringi, and investigated the regulation of their expression by JH signaling in non-diapause-destined (NDD, reproductive) and diapause-destined (DD) female adults. Sequence and phylogenetic tree analyses indicate that the three putative JHEs shared conserved motifs with the JHEs of other insects and one crustacean, and were similar to Coleopteran, Dipteran, Orthopteran, Hymenopteran, and Decapodan JHEs. They were, however, less closely related to Hemipteran and Lepidopteran JHEs. JHEs were more highly expressed in NDD female adults than in DD female adults. JH analog induction in DD female adults significantly upregulated the expression of JHE1 and JHE2, but had no effect on the expression of JHE3. Knockdown of the JH candidate receptor methoprene-tolerant (Met) in NDD female adults downregulated the expression of all three JHEs. These results suggest that JHE expression is positively correlated with JH signaling, and that Met may be involved in the JH-mediated differential expression of JHE in DD and NDD adult female C. bowringi. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Acute Changes in Sleep Duration on Eating Behaviors and Appetite-Regulating Hormones in Overweight/Obese Adults.

    Science.gov (United States)

    Hart, Chantelle N; Carskadon, Mary A; Demos, Kathryn E; Van Reen, Eliza; Sharkey, Katherine M; Raynor, Hollie A; Considine, Robert V; Jones, Richard N; Wing, Rena R

    2015-01-01

    There is considerable interest in the role of sleep in weight regulation, yet few studies have examined this relationship in overweight/obese (OW/OB) adults. Using a within-subject, counterbalanced design, 12 OW/OB women were studied in lab with two nights of short (5 hr time in bed [TIB]) and two nights of long (9 hr TIB) sleep. Hunger, consumption at a buffet, and fasting hormone levels were obtained. Significant polysomnographic differences occurred between conditions in total sleep time and sleep architecture (ps < .001). Percent energy from protein at the buffet increased following short sleep. No differences were observed for total energy intake or measured hormones. Further research is needed to determine how lengthening sleep impacts weight regulation in OW/OB adults.

  10. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Beildeck, Marcy E. [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States); Gelmann, Edward P. [Columbia University, Department of Medicine, New York, NY (United States); Byers, Stephen W., E-mail: byerss@georgetown.edu [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States)

    2010-07-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  11. Effect of exogenously administered glucagon versus spontaneous endogenous counter-regulation on glycaemic recovery from insulin-induced hypoglycaemia in patients with type 2 diabetes treated with a novel glucokinase activator, AZD1656, and metformin.

    Science.gov (United States)

    Krentz, A J; Morrow, L; Petersson, M; Norjavaara, E; Hompesch, M

    2014-11-01

    To study the effect of exogenous i.m. glucagon on recovery from controlled insulin-induced hypoglycaemia in patients with type 2 diabetes treated with the novel glucokinase activator AZD1656, in combination with metformin. This was a single-centre randomized, open, two-way crossover phase I, automated glucose clamp (Biostator(®); Life Science Instruments, Elkhart, MD, USA) study (NCT00817271) in eight patients (seven men and one woman, mean age 58.6 years, body mass index 28.1 kg/m(2)). All patients received a stable dose of metformin twice daily, ranging from 1000 to 2250 mg. A 2-day titration phase commenced with 40 mg AZD1656 twice daily, escalating to 80 mg twice daily if tolerated. This was followed by a single dose of 80 or 160 mg AZD1656, administered on days 5 and 8 when metabolic studies were performed. After an overnight fast on days 5 and 8, controlled hypoglycaemia was induced using an exogenous i.v. infusion of insulin. Plasma glucose was lowered in a stepwise fashion over 3 h to attain a target nadir of 2.7 mmol/l. This was sustained for 30 min, at the end of which the hypoglycaemic clamp was released. In random sequence, patients either received an i.m. injection of 1 mg glucagon or were allowed to recover from hypoglycaemia by endogenous counter-regulation. To avoid prolonged hypoglycaemia, a reverse glucose clamp was applied from 4 to 6 h post-dose. Three patients received 40 mg AZD1656 twice daily and five patients 80 mg twice daily. Mean plasma glucose at 20 min after release of the hypoglycaemic clamp was significantly lower (3.1 ± 0.3 mmol/l) for AZD1656 alone than for AZD1656 + glucagon (4.9 ± 0.8 mmol/l; p < 0.001 between the groups). Catecholamine and cortisol responses were similar on the AZD1656 + glucagon and AZD alone study days. Growth hormone response was 18% lower for AZD1656 alone (p = 0.01), consistent with the effect of a pharmacological dose of glucagon on growth hormone secretion. No safety or tolerability concerns were

  12. Gender-specific regulation of response to thyroid hormone in aging

    Directory of Open Access Journals (Sweden)

    Suzuki Satoru

    2012-01-01

    Full Text Available Abstract Background Similar to other systems, the endocrine system is affected by aging. Thyroid hormone, the action of which is affected by many factors, has been shown to be associated with longevity. The most useful marker for the assessment of thyroid hormone action is TSH level. Although age and gender are believed to modify the pituitary set point or response to free thyroid hormone concentration, the precise age- and gender-dependent responses to thyroid hormone have yet to be reported. Methods We analyzed the results of 3564 thyroid function tests obtained from patients who received medication at both out- and inpatient clinics of Shinshu University Hospital. Subjects were from among those with thyroid function test results in the normal or mildly abnormal range. Based on a log-linear relationship between the concentrations of FHs and TSH, we established the putative resistance index to assess the relation between serum FH and TSH levels. Results Free thyroid hormone and TSH concentration showed an inverse log-linear relation. In males, there was a negative relationship between the free T3 resistance index and age. In females, although there were no relationships between age and FHs, the indices were positively related to age. Conclusions These findings indicated that there is a gender-specific response to thyroid hormone with aging. Although the TSH level is a useful marker for the assessment of peripheral thyroid hormone action, the values should be interpreted carefully, especially with regard to age- and gender-related differences.

  13. Hormonal regulation of reproductive growth under normal and heat-stress conditions in legume and other model crop species.

    Science.gov (United States)

    Ozga, Jocelyn A; Kaur, Harleen; Savada, Raghavendra P; Reinecke, Dennis M

    2017-04-01

    Legume crops are grown throughout the world and provide an excellent food source of digestible protein and starch, as well as dietary fibre, vitamins, minerals, and flavonoids. Fruit and seeds from legumes are also an important source of vegetables for a well-balanced diet. A trend in elevated temperature as a result of climate change increases the risk of a heat stress-induced reduction in legume crop yield. High temperatures during the crop reproductive development phase are particularly detrimental to fruit/seed production because the growth and development of the reproductive tissues are sensitive to small changes in temperature. Hormones are signalling molecules that play important roles in a plant's ability to integrate different environmental inputs and modify their developmental processes to optimize growth, survival, and reproduction. This review focuses on the hormonal regulation of reproductive development and heat stress-induced alteration of this regulation during (i) pollination, (ii) early fruit set, and (iii) seed development that affects fruit/seed yield in legume and other model crops. Further understanding of hormone-regulated reproductive growth under non-stress and heat-stress conditions can aid in trait selection and the development of gene modification strategies and cultural practices to improve heat tolerance in legume crops contributing to improved food security. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. A system biology approach highlights a hormonal enhancer effect on regulation of genes in a nitrate responsive "biomodule"

    Directory of Open Access Journals (Sweden)

    Nero Damion

    2009-06-01

    Full Text Available Abstract Background Nitrate-induced reprogramming of the transcriptome has recently been shown to be highly context dependent. Herein, a systems biology approach was developed to identify the components and role of cross-talk between nitrate and hormone signals, likely to be involved in the conditional response of NO3- signaling. Results Biclustering was used to identify a set of genes that are N-responsive across a range of Nitrogen (N-treatment backgrounds (i.e. nitrogen treatments under different growth conditions using a meta-dataset of 76 Affymetrix ATH1 chips from 5 different laboratories. Twenty-one biclusters were found to be N-responsive across subsets of this meta-dataset. N-bicluster 9 (126 genes was selected for further analysis, as it was shown to be reproducibly responsive to NO3- as a signal, across a wide-variety of background conditions and datasets. N-bicluster 9 genes were then used as "seed" to identify putative cross-talk mechanisms between nitrate and hormone signaling. For this, the 126 nitrate-regulated genes in N-bicluster 9 were biclustered over a meta-dataset of 278 ATH1 chips spanning a variety of hormone treatments. This analysis divided the bicluster 9 genes into two classes: i genes controlled by NO3- only vs. ii genes controlled by both NO3- and hormones. The genes in the latter group showed a NO3- response that is significantly enhanced, compared to the former. In silico analysis identified two Cis-Regulatory Elements candidates (CRE (E2F, HSE potentially involved the interplay between NO3- and hormonal signals. Conclusion This systems analysis enabled us to derive a hypothesis in which hormone signals are proposed to enhance the nitrate response, providing a potential mechanistic explanation for the link between nitrate signaling and the control of plant development.

  15. Hepatic Long Intergenic Noncoding RNAs: High Promoter Conservation and Dynamic, Sex-Dependent Transcriptional Regulation by Growth Hormone.

    Science.gov (United States)

    Melia, Tisha; Hao, Pengying; Yilmaz, Feyza; Waxman, David J

    2016-01-01

    Long intergenic noncoding RNAs (lincRNAs) are increasingly recognized as key chromatin regulators, yet few studies have characterized lincRNAs in a single tissue under diverse conditions. Here, we analyzed 45 mouse liver RNA sequencing (RNA-Seq) data sets collected under diverse conditions to systematically characterize 4,961 liver lincRNAs, 59% of them novel, with regard to gene structures, species conservation, chromatin accessibility, transcription factor binding, and epigenetic states. To investigate the potential for functionality, we focused on the responses of the liver lincRNAs to growth hormone stimulation, which imparts clinically relevant sex differences to hepatic metabolism and liver disease susceptibility. Sex-biased expression characterized 247 liver lincRNAs, with many being nuclear RNA enriched and regulated by growth hormone. The sex-biased lincRNA genes are enriched for nearby and correspondingly sex-biased accessible chromatin regions, as well as sex-biased binding sites for growth hormone-regulated transcriptional activators (STAT5, hepatocyte nuclear factor 6 [HNF6], FOXA1, and FOXA2) and transcriptional repressors (CUX2 and BCL6). Repression of female-specific lincRNAs in male liver, but not that of male-specific lincRNAs in female liver, was associated with enrichment of H3K27me3-associated inactive states and poised (bivalent) enhancer states. Strikingly, we found that liver-specific lincRNA gene promoters are more highly species conserved and have a significantly higher frequency of proximal binding by liver transcription factors than liver-specific protein-coding gene promoters. Orthologs for many liver lincRNAs were identified in one or more supraprimates, including two rat lincRNAs showing the same growth hormone-regulated, sex-biased expression as their mouse counterparts. This integrative analysis of liver lincRNA chromatin states, transcription factor occupancy, and growth hormone regulation provides novel insights into the

  16. Hormonally up-regulated neu-associated kinase: A novel target for breast cancer progression.

    Science.gov (United States)

    Zambrano, Joelle N; Neely, Benjamin A; Yeh, Elizabeth S

    2017-05-01

    Hormonally up-regulated neu-associated Kinase (Hunk) is a protein kinase that was originally identified in the murine mammary gland and has been shown to be highly expressed in Human Epidermal Growth Factor Receptor 2 positive (HER2 + /ErbB2 + ) breast cancer cell lines as well as MMTV-neu derived mammary tumor cell lines. However, the physiological role of Hunk has been largely elusive since its identification. Though Hunk is predicted to be a Serine/Threonine (Ser/Thr) protein kinase with homology to the SNF1/AMPK family of protein kinases, there are no known Hunk substrates that have been identified to date. Recent work demonstrates a role for Hunk in HER2 + /ErbB2 + breast cancer progression, including drug resistance to HER2/ErbB2 inhibitors, with Hunk potentially acting downstream of HER2/ErbB2 and the PI3K/Akt pathway. These studies have collectively shown that Hunk plays a vital role in promoting mammary tumorigenesis, as Hunk knockdown via shRNA in xenograft tumor models or crossing MMTV-neu or Pten-deficient genetically engineered mouse models into a Hunk knockout (Hunk-/-) background impairs mammary tumor growth in vivo. Because the majority of HER2 + /ErbB2 + breast cancer patients acquire drug resistance to HER2/ErbB2 inhibitors, the characterization of novel drug targets like Hunk that have the potential to simultaneously suppress tumorigenesis and potentially enhance efficacy of current therapeutics is an important facet of drug development. Therefore, work aimed at uncovering specific regulatory functions for Hunk that could contribute to this protein kinase's role in both tumorigenesis and drug resistance will be informative. This review focuses on what is currently known about this under-studied protein kinase, and how targeting Hunk may prove to be a potential therapeutic target for the treatment of breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Computational Modeling of Thyroid Hormone Regulated Neurodevelopment for Chemical Prioritization (SOT)

    Science.gov (United States)

    Thyroid hormones (TH) are critical for normal brain development. Environmental chemicals may disrupt TH homeostasis through a variety of physiological systems including membrane transporters, serum transporters, synthesis and catabolic enzymes, and nuclear receptors. Current comp...

  18. Gamma rays induce a p53-independent mitochondrial biogenesis that is counter-regulated by HIF1α

    Science.gov (United States)

    Bartoletti-Stella, A; Mariani, E; Kurelac, I; Maresca, A; Caratozzolo, M F; Iommarini, L; Carelli, V; Eusebi, L H; Guido, A; Cenacchi, G; Fuccio, L; Rugolo, M; Tullo, A; Porcelli, A M; Gasparre, G

    2013-01-01

    Mitochondrial biogenesis is an orchestrated process that presides to the regulation of the organelles homeostasis within a cell. We show that γ-rays, at doses commonly used in the radiation therapy for cancer treatment, induce an increase in mitochondrial mass and function, in response to a genotoxic stress that pushes cells into senescence, in the presence of a functional p53. Although the main effector of the response to γ-rays is the p53-p21 axis, we demonstrated that mitochondrial biogenesis is only indirectly regulated by p53, whose activation triggers a murine double minute 2 (MDM2)-mediated hypoxia-inducible factor 1α (HIF1α) degradation, leading to the release of peroxisome-proliferator activated receptor gamma co-activator 1β inhibition by HIF1α, thus promoting mitochondrial biogenesis. Mimicking hypoxia by HIF1α stabilization, in fact, blunts the mitochondrial response to γ-rays as well as the induction of p21-mediated cell senescence, indicating prevalence of the hypoxic over the genotoxic response. Finally, we also show in vivo that post-radiotherapy mitochondrial DNA copy number increase well correlates with lack of HIF1α increase in the tissue, concluding this may be a useful molecular tool to infer the trigger of a hypoxic response during radiotherapy, which may lead to failure of activation of cell senescence. PMID:23764844

  19. Counter regulation of ECRG4 gene expression by hypermethylation-dependent inhibition and the Sp1 transcription factor-dependent stimulation of the c2orf40 promoter.

    Science.gov (United States)

    Dang, Xitong; Zeng, Xiaorong; Coimbra, Raul; Eliceiri, Brian P; Baird, Andrew

    2017-12-15

    The human cytokine precursor ECRG4 has been associated with multiple physiological, developmental and pathophysiological processes involving cell proliferation, cell migration, innate immunity, inflammation, cancer progression and metastases. Although down-regulation of ECRG4 gene expression has been largely attributed to hypermethylation of CpG islands in the 5'untranslated region of the ECRG4 promoter, the mechanisms that underlie the dynamics of its regulation have never been systematically described. Here we show that the ECRG4 gene is widely expressed in human tissues and report that its core promoter lies between the -780 to +420 base pairs relative to the ATG start codon of the ECRG4 open reading frame. This sequence, which contains several CpG islands, also includes multiple overlapping Sp1 consensus binding sequences and a putative binding site for NF-kB activation. 5'RACE of mRNA derived from human leukocytes shows that ECRG4 transcription initiates from the guanidine at -11 from the initiation ATG of the ECRG4 open reading frame. While there is no canonical TATA- or CAAT-boxes proximal to this translational initiation site, there is a distal TATA-sequence in the 5'UTR. This region was identified as the sequence targeted by hypermethylation because in vitro methylation of plasmids encoding the ECRG4 promoter abolish promoter activity and the treatment of Jurkat cells (which naturally express ECRG4) with the methylation inhibitor 5-AzaC, increases endogenous ECRG4 expression. Because ChIP assays show that Sp1 binds the ECRG4 promoter, that forced Sp1 expression trans-activates the ECRG4 promoter and Sp1 inhibition with mithramycin inhibits ECRG4 expression, we conclude that the dynamic positive and negative regulatory elements controlling ECRG4 expression include a counter regulation between promoter methylation and Sp1 activation. Copyright © 2017. Published by Elsevier B.V.

  20. Plant growth regulator (4-chlorophenoxy acetic acid) increases apoptosis in gonads of rats without changing hormonal levels.

    Science.gov (United States)

    Yeşilkaya, Ediz; Bideci, Aysun; Ozer, Ciğdem; Elmas, Ciğdem; Camurdan, Orhun; Giray, Seren Gulsen; Boyraz, Mehmet; Vurucu, Sebahattin; Cinaz, Peyami

    2009-01-01

    Plant growth regulators are considered to leave minimal amounts of remnants and therefore cause no significant side effects in humans. In this study, we aimed to investigate the hormonal and histopathological effects of 4-chlorophenoxy acetic acid (4-CPA), a commonly used plant growth regulator, on the gonadal functions of rats. The study was implemented on 64 Wistar albino rats (20 days old). Forty-eight rats received 4-CPA every day until 50 days of age. The rats were randomized into 4 groups (a control group and three 4-CPA groups with doses of 25, 50 and 100 mg/kg/day); each group was further divided into males and females, making a total of 8 groups. The levels of FSH, LH, testosterone, estradiol, leptin, inhibin-B and neuropeptide-Y were measured. Histopathological examination of the testes and ductus deferens in male rats, and ovaries and uterus of female rats (caspase-3 and -9 immunoreactivity) was performed. Although hormone levels were similar between the groups, rats that received 4-CPA showed significantly higher degrees of apoptosis compared to the control group (p < 0.001) and increased doses of 4-CPA were directly correlated with the amount of apoptosis (p < 0.001). 4-CPA induced apoptosis in the gonads of rats without concurrent changes in plasma hormone levels.

  1. Distributed performance counters

    Science.gov (United States)

    Davis, Kristan D; Evans, Kahn C; Gara, Alan; Satterfield, David L

    2013-11-26

    A plurality of first performance counter modules is coupled to a plurality of processing cores. The plurality of first performance counter modules is operable to collect performance data associated with the plurality of processing cores respectively. A plurality of second performance counter modules are coupled to a plurality of L2 cache units, and the plurality of second performance counter modules are operable to collect performance data associated with the plurality of L2 cache units respectively. A central performance counter module may be operable to coordinate counter data from the plurality of first performance counter modules and the plurality of second performance modules, the a central performance counter module, the plurality of first performance counter modules, and the plurality of second performance counter modules connected by a daisy chain connection.

  2. Plasma thyroid hormones in cyclostomes: do they have a role in regulation of glycemic levels?

    Science.gov (United States)

    Plisetskaya, E; Dickhoff, W W; Gorbman, A

    1983-01-01

    Plasma levels of thyroxine (T4) and triiodothyronine (T3) were measured by radioimmunoassay in intact Pacific lamprey (Entosphenus tridentatus) undergoing the period of natural fasting and in Pacific hagfish (Eptatretus stouti) maintained unfed in the laboratory. Plasma T3 levels in both lamprey and hagfish were always severalfold lower than T4 levels. The influence of thyroid hormones on glycemic level was studied following intraperitoneal injection of T4 or T3 (13-20 micrograms/100 g body wt), as well as after implantation of sealed Silastic capsules containing the goitrogen, 6-propylthiouracil (6-PTU), or after intraperitoneal injections of an antithyroglobulin serum (ATgS) exhibiting both anti-T4 and anti-T3 activities. Measured plasma T4 and T3 levels after hormonal injection were extremely high and could be considered pharmacological. The 6-PTU treatment decreased plasma levels of both T4 and T3 within several weeks. The glycemic levels in lampreys and hagfish after thyroid hormone treatment were lower than in control animals, whereas in animals treated with either 6-PTU or ATgS, hyperglycemic levels prevailed. It is concluded that thyroid hormones, possibly acting with other hormones, may participate in the maintenance of glycemic levels in cyclostomes and that their action is to reduce glycemic levels.

  3. Altered drug metabolism during pregnancy: hormonal regulation of drug-metabolizing enzymes.

    Science.gov (United States)

    Jeong, Hyunyoung

    2010-06-01

    Medication use during pregnancy is prevalent, but pharmacokinetic information of most drugs used during pregnancy is lacking in spite of known effects of pregnancy on drug disposition. Accurate pharmacokinetic information is essential for optimal drug therapy in mother and fetus. Thus, understanding how pregnancy influences drug disposition is important for better prediction of pharmacokinetic changes of drugs in pregnant women. Pregnancy is known to affect hepatic drug metabolism, but the underlying mechanisms remain unknown. Physiological changes accompanying pregnancy are probably responsible for the reported alteration in drug metabolism during pregnancy. These include elevated concentrations of various hormones such as estrogen, progesterone, placental growth hormones and prolactin. This review covers how these hormones influence expression of drug-metabolizing enzymes (DMEs), thus potentially responsible for altered drug metabolism during pregnancy. The reader will gain a greater understanding of the altered drug metabolism in pregnant women and the regulatory effects of pregnancy hormones on expression of DMEs. In-depth studies in hormonal regulatory mechanisms as well as confirmatory studies in pregnant women are warranted for systematic understanding and prediction of the changes in hepatic drug metabolism during pregnancy.

  4. The FOXO transcription factor controls insect growth and development by regulating juvenile hormone degradation in the silkworm, Bombyx mori.

    Science.gov (United States)

    Zeng, Baosheng; Huang, Yuping; Xu, Jun; Shiotsuki, Takahiro; Bai, Hua; Palli, Subba Reddy; Huang, Yongping; Tan, Anjiang

    2017-07-14

    Forkhead box O (FOXO) functions as the terminal transcription factor of the insulin signaling pathway and regulates multiple physiological processes in many organisms, including lifespan in insects. However, how FOXO interacts with hormone signaling to modulate insect growth and development is largely unknown. Here, using the transgene-based CRISPR/Cas9 system, we generated and characterized mutants of the silkworm Bombyx mori FOXO (BmFOXO) to elucidate its physiological functions during development of this lepidopteran insect. The BmFOXO mutant (FOXO-M) exhibited growth delays from the first larval stage and showed precocious metamorphosis, pupating at the end of the fourth instar (trimolter) rather than at the end of the fifth instar as in the wild-type (WT) animals. However, different from previous reports on precocious metamorphosis caused by juvenile hormone (JH) deficiency in silkworm mutants, the total developmental time of the larval period in the FOXO-M was comparable with that of the WT. Exogenous application of 20-hydroxyecdysone (20E) or of the JH analog rescued the trimolter phenotype. RNA-seq and gene expression analyses indicated that genes involved in JH degradation but not in JH biosynthesis were up-regulated in the FOXO-M compared with the WT animals. Moreover, we identified several FOXO-binding sites in the promoter of genes coding for JH-degradation enzymes. These results suggest that FOXO regulates JH degradation rather than its biosynthesis, which further modulates hormone homeostasis to control growth and development in B. mori In conclusion, we have uncovered a pivotal role for FOXO in regulating JH signaling to control insect development. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Using the canary genome to decipher the evolution of hormone-sensitive gene regulation in seasonal singing birds.

    Science.gov (United States)

    Frankl-Vilches, Carolina; Kuhl, Heiner; Werber, Martin; Klages, Sven; Kerick, Martin; Bakker, Antje; de Oliveira, Edivaldo Hc; Reusch, Christina; Capuano, Floriana; Vowinckel, Jakob; Leitner, Stefan; Ralser, Markus; Timmermann, Bernd; Gahr, Manfred

    2015-01-29

    While the song of all songbirds is controlled by the same neural circuit, the hormone dependence of singing behavior varies greatly between species. For this reason, songbirds are ideal organisms to study ultimate and proximate mechanisms of hormone-dependent behavior and neuronal plasticity. We present the high quality assembly and annotation of a female 1.2-Gbp canary genome. Whole genome alignments between the canary and 13 genomes throughout the bird taxa show a much-conserved synteny, whereas at the single-base resolution there are considerable species differences. These differences impact small sequence motifs like transcription factor binding sites such as estrogen response elements and androgen response elements. To relate these species-specific response elements to the hormone-sensitivity of the canary singing behavior, we identify seasonal testosterone-sensitive transcriptomes of major song-related brain regions, HVC and RA, and find the seasonal gene networks related to neuronal differentiation only in the HVC. Testosterone-sensitive up-regulated gene networks of HVC of singing males concerned neuronal differentiation. Among the testosterone-regulated genes of canary HVC, 20% lack estrogen response elements and 4 to 8% lack androgen response elements in orthologous promoters in the zebra finch. The canary genome sequence and complementary expression analysis reveal intra-regional evolutionary changes in a multi-regional neural circuit controlling seasonal singing behavior and identify gene evolution related to the hormone-sensitivity of this seasonal singing behavior. Such genes that are testosterone- and estrogen-sensitive specifically in the canary and that are involved in rewiring of neurons might be crucial for seasonal re-differentiation of HVC underlying seasonal song patterning.

  6. Ecdysteroids regulate the levels of Molt-Inhibiting Hormone (MIH expression in the blue crab, Callinectes sapidus.

    Directory of Open Access Journals (Sweden)

    Sirinart Techa

    Full Text Available Arthropod molt is coordinated through the interplay between ecdysteroids and neuropeptide hormones. In crustaceans, changes in the activity of Y-organs during the molt cycle have been regulated by molt-inhibiting hormone (MIH and crustacean hyperglycemic hormone (CHH. Little has been known of the mode of direct effects of ecdysteroids on the levels of MIH and CHH in the eyestalk ganglia during the molt cycle. This study focused on a putative feedback of ecdysteroids on the expression levels of MIH transcripts using in vitro incubation study with ecdysteroids and in vivo RNAi in the blue crab, Callinectes sapidus. Our results show a specific expression of ecdysone receptor (EcR in which EcR1 is the major isoform in eyestalk ganglia. The initial elevation of MIH expression at the early premolt stages is replicated by in vitro incubations of eyestalk ganglia with ecdysteroids that mimic the intrinsic conditions of D0 stage: the concentration (75 ng/ml and composition (ponasterone A and 20-hydroxyecdysone at a 3:1 (w:w ratio. Additionally, multiple injections of EcR1-dsRNA reduce MIH expression by 67%, compared to the controls. Our data provide evidence on a putative feedback mechanism of hormonal regulation during molting cycle, specifically how the molt cycle is repeated during the life cycle of crustaceans. The elevated concentrations of ecdysteroids at early premolt stage may act positively on the levels of MIH expression in the eyestalk ganglia. Subsequently, the increased MIH titers in the hemolymph at postmolt would inhibit the synthesis and release of ecdysteroids by Y-organs, resulting in re-setting the subsequent molt cycle.

  7. Ecdysteroids regulate the levels of Molt-Inhibiting Hormone (MIH) expression in the blue crab, Callinectes sapidus.

    Science.gov (United States)

    Techa, Sirinart; Chung, J Sook

    2015-01-01

    Arthropod molt is coordinated through the interplay between ecdysteroids and neuropeptide hormones. In crustaceans, changes in the activity of Y-organs during the molt cycle have been regulated by molt-inhibiting hormone (MIH) and crustacean hyperglycemic hormone (CHH). Little has been known of the mode of direct effects of ecdysteroids on the levels of MIH and CHH in the eyestalk ganglia during the molt cycle. This study focused on a putative feedback of ecdysteroids on the expression levels of MIH transcripts using in vitro incubation study with ecdysteroids and in vivo RNAi in the blue crab, Callinectes sapidus. Our results show a specific expression of ecdysone receptor (EcR) in which EcR1 is the major isoform in eyestalk ganglia. The initial elevation of MIH expression at the early premolt stages is replicated by in vitro incubations of eyestalk ganglia with ecdysteroids that mimic the intrinsic conditions of D0 stage: the concentration (75 ng/ml) and composition (ponasterone A and 20-hydroxyecdysone at a 3:1 (w:w) ratio). Additionally, multiple injections of EcR1-dsRNA reduce MIH expression by 67%, compared to the controls. Our data provide evidence on a putative feedback mechanism of hormonal regulation during molting cycle, specifically how the molt cycle is repeated during the life cycle of crustaceans. The elevated concentrations of ecdysteroids at early premolt stage may act positively on the levels of MIH expression in the eyestalk ganglia. Subsequently, the increased MIH titers in the hemolymph at postmolt would inhibit the synthesis and release of ecdysteroids by Y-organs, resulting in re-setting the subsequent molt cycle.

  8. Alcohol intake and its effect on some appetite-regulating hormones in man

    DEFF Research Database (Denmark)

    Calissendorff, Jan; Gustafsson, Thomas; Holst, Jens Juul

    2012-01-01

    Background. Alcohol stimulates appetite. Ghrelin, obestatin, glucagon-like peptide 1 and leptin are putative mediators. Objective. We studied whether alcohol ingestion affects serum levels of these peripheral hormones, and if gastroprotective sucralfate prevents such an effect. Materials and meth......Background. Alcohol stimulates appetite. Ghrelin, obestatin, glucagon-like peptide 1 and leptin are putative mediators. Objective. We studied whether alcohol ingestion affects serum levels of these peripheral hormones, and if gastroprotective sucralfate prevents such an effect. Materials....... Results. The ghrelin and leptin levels fell after ingestion of alcohol, whereas the obestatin and GLP-1 levels remained unchanged. Sucralfate did not affect any of the basal four hormone levels, nor the ghrelin or leptin responses to alcohol. Conclusions. An appetite-stimulating effect of alcohol...

  9. Hormonal regulators of food intake and weight gain in Parkinson's disease after subthalamic nucleus stimulation.

    Science.gov (United States)

    Novakova, Lucie; Haluzik, Martin; Jech, Robert; Urgosik, Dusan; Ruzicka, Filip; Ruzicka, Evzen

    2011-01-01

    Weight gain has been reported in patients with Parkinson's disease (PD) treated with deep brain stimulation of the subthalamic nucleus (STN-DBS). To evaluate the influence of STN-DBS on weight changes, we studied food-related hormones. Anthropometric parameters and food-related hormones (leptin, adiponectin, resistin, ghrelin, cortisol, insulin, and thyroid stimulating hormone) were measured in 27 patients with STN-DBS during a 12 month period following electrode implantation. Besides marked motor improvements on STN-DBS, PD patients significantly gained weight. The mean weight gain at 12 months was 5.2±(SD)5.8 kg. A significant decrease in cortisol levels compared to baseline appeared at month 2 and persisted at 12 months (pweight gain in PD patients. Direct effects of STN-DBS on hypothalamic catabolic/anabolic peptide balance remain hypothetical and necessitate further elucidation.

  10. Improving agronomic water use efficiency in tomato by rootstock-mediated hormonal regulation of leaf biomass.

    Science.gov (United States)

    Cantero-Navarro, Elena; Romero-Aranda, Remedios; Fernández-Muñoz, Rafael; Martínez-Andújar, Cristina; Pérez-Alfocea, Francisco; Albacete, Alfonso

    2016-10-01

    Water availability is the most important factor limiting food production, thus developing new scientific strategies to allow crops to more efficiently use water could be crucial in a world with a growing population. Tomato is a highly water consuming crop and improving its water use efficiency (WUE) implies positive economic and environmental effects. This work aimed to study and exploit root-derived hormonal traits to improve WUE in tomato by grafting on selected rootstocks. Firstly, root-related hormonal parameters associated to WUE were identified in a population of recombinant inbred lines (RILs) derived from the wild tomato species Solanum pimpinellifolium. A principal component analysis (PCA) revealed that some hormonal traits were associated with productivity (plant biomass and photosynthesis) and WUE in the RIL population. Leaf ABA concentration was associated to the first component (PC1) of the PCA, which explained a 60% of the variance in WUE, while the ethylene precursor ACC and the ratio ACC/ABA were also associated to PC1 but in the opposite direction. Secondly, we selected RILs according to their extreme biomass (high, B, low, b) and water use (high, W, low, w), and studied the differential effect of shoot and root on WUE by reciprocal grafting. In absence of any imposed stress, there were no rootstock effects on vegetative shoot growth and water relations. Finally, we exploited the previously identified root-related hormonal traits by grafting a commercial tomato variety onto the selected RILs to improve WUE. Interestingly, rootstocks that induced low biomass and water use, 'bw', improved fruit yield and WUE (defined as fruit yield/water use) by up to 40% compared to self-grafted plants. Although other hormonal factors appear implicated in this response, xylem ACC concentration seems an important root-derived trait that inhibits leaf growth but does not limit fruit yield. Thus tomato WUE can be improved exploiting rootstock-derived hormonal signals

  11. S1-S3 counter charges in the voltage sensor module of a mammalian sodium channel regulate fast inactivation.

    Science.gov (United States)

    Groome, James R; Winston, Vern

    2013-05-01

    The movement of positively charged S4 segments through the electric field drives the voltage-dependent gating of ion channels. Studies of prokaryotic sodium channels provide a mechanistic view of activation facilitated by electrostatic interactions of negatively charged residues in S1 and S2 segments, with positive counterparts in the S4 segment. In mammalian sodium channels, S4 segments promote domain-specific functions that include activation and several forms of inactivation. We tested the idea that S1-S3 countercharges regulate eukaryotic sodium channel functions, including fast inactivation. Using structural data provided by bacterial channels, we constructed homology models of the S1-S4 voltage sensor module (VSM) for each domain of the mammalian skeletal muscle sodium channel hNaV1.4. These show that side chains of putative countercharges in hNaV1.4 are oriented toward the positive charge complement of S4. We used mutagenesis to define the roles of conserved residues in the extracellular negative charge cluster (ENC), hydrophobic charge region (HCR), and intracellular negative charge cluster (INC). Activation was inhibited with charge-reversing VSM mutations in domains I-III. Charge reversal of ENC residues in domains III (E1051R, D1069K) and IV (E1373K, N1389K) destabilized fast inactivation by decreasing its probability, slowing entry, and accelerating recovery. Several INC mutations increased inactivation from closed states and slowed recovery. Our results extend the functional characterization of VSM countercharges to fast inactivation, and support the premise that these residues play a critical role in domain-specific gating transitions for a mammalian sodium channel.

  12. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1.

    Directory of Open Access Journals (Sweden)

    Xiao-Su Zhao

    Full Text Available Cyclin-dependent kinase 5 (Cdk5 is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC-interacting factor 1 (NIF-1, is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  13. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1).

    Science.gov (United States)

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W Y; Li, Zhen; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  14. A Drosophila Genome-Wide Screen Identifies Regulators of Steroid Hormone Production and Developmental Timing

    DEFF Research Database (Denmark)

    Thomas Danielsen, E.; E. Møller, Morten; Yamanaka, Naoki

    2016-01-01

    Steroid hormones control important developmental processes and are linked to many diseases. To systematically identify genes and pathways required for steroid production, we performed a Drosophila genome-wide in vivo RNAi screen and identified 1,906 genes with potential roles in steroidogenesis...

  15. NAC genes: Time-specific regulators of hormonal signaling in Arabidopsis

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Kjærsgaard, Trine; Petersen, Klaus

    2010-01-01

    Environmental stresses on both animals and plants impose massive transcriptional perturbations. Successful adaptations to such stresses are being orchestrated by both activating and repressing effects of transcription factors on specific target genes. We have recently published a systematic...... genes upon stimuli with seven phytohormones. Our analysis could be a first indication of NAC-centered transcriptional networks, which coordinate timely hormonal signaling in plants....

  16. Differential regulation of kiss1 expression by melatonin and gonadal hormones in male and female Syrian hamsters

    DEFF Research Database (Denmark)

    Ansel, L; Bolborea, M; Bentsen, A H

    2010-01-01

    In seasonal breeders, reproduction is synchronized to seasons by day length via the pineal hormone melatonin. Recently, we have demonstrated that Kiss1, a key activator of the reproductive function, is down-regulated in sexually inactive hamsters maintained in inhibitory short days (SDs). In rode......In seasonal breeders, reproduction is synchronized to seasons by day length via the pineal hormone melatonin. Recently, we have demonstrated that Kiss1, a key activator of the reproductive function, is down-regulated in sexually inactive hamsters maintained in inhibitory short days (SDs...... differentially regulate Kiss1 expression in the ARC and the AVPV. Kiss1 expression was examined by in situ hybridization in both male and female hamsters kept in various experimental conditions, and we observed that 1) SD exposure markedly reduced Kiss1 expression in the ARC and AVPV of male and female hamsters...... as compared to LD animals, 2) sex steroid treatment in SD-adapted male and female hamsters increased the number of Kiss1 neurons in the AVPV but decreased it in the ARC, 3) melatonin administration to LD-adapted hamsters decreased Kiss1 mRNA level in both the AVPV and the ARC in intact animals, whereas...

  17. Effect of exercise on photoperiod-regulated hypothalamic gene expression and peripheral hormones in the seasonal Dwarf Hamster Phodopus sungorus.

    Directory of Open Access Journals (Sweden)

    Ines Petri

    Full Text Available The Siberian hamster (Phodopus sungorus is a seasonal mammal responding to the annual cycle in photoperiod with anticipatory physiological adaptations. This includes a reduction in food intake and body weight during the autumn in anticipation of seasonally reduced food availability. In the laboratory, short-day induction of body weight loss can be reversed or prevented by voluntary exercise undertaken when a running wheel is introduced into the home cage. The mechanism by which exercise prevents or reverses body weight reduction is unknown, but one hypothesis is a reversal of short-day photoperiod induced gene expression changes in the hypothalamus that underpin body weight regulation. Alternatively, we postulate an exercise-related anabolic effect involving the growth hormone axis. To test these hypotheses we established photoperiod-running wheel experiments of 8 to 16 weeks duration assessing body weight, food intake, organ mass, lean and fat mass by magnetic resonance, circulating hormones FGF21 and insulin and hypothalamic gene expression. In response to running wheel activity, short-day housed hamsters increased body weight. Compared to short-day housed sedentary hamsters the body weight increase was accompanied by higher food intake, maintenance of tissue mass of key organs such as the liver, maintenance of lean and fat mass and hormonal profiles indicative of long day housed hamsters but there was no overall reversal of hypothalamic gene expression regulated by photoperiod. Therefore the mechanism by which activity induces body weight gain is likely to act largely independently of photoperiod regulated gene expression in the hypothalamus.

  18. Nitric Oxide-Mediated Regulation of GLUT by T3 and Follicle-Stimulating Hormone in Rat Granulosa Cells.

    Science.gov (United States)

    Tian, Ye; Ding, Yu; Liu, Juan; Heng, Dai; Xu, Kaili; Liu, Wenbo; Zhang, Cheng

    2017-06-01

    Thyroid hormones are important for normal reproductive function. Although 3,5,3'-triiodothyronine (T3) enhances follicle-stimulating hormone (FSH)-induced preantral follicle growth and granulosa cells development in vitro, little is known about the molecular mechanisms regulating ovarian development via glucose. In this study, we investigated whether and how T3 combines with FSH to regulate glucose transporter protein (GLUT) expression and glucose uptake in granulosa cells. In this study, we present evidence that T3 and FSH cotreatment significantly increased GLUT-1/GLUT-4 expression, and translocation in cells, as well as glucose uptake. These changes were accompanied by upregulation of nitric oxide (NO) synthase (NOS)3 expression, total NOS and NOS3 activity, and NO content in granulosa cells. Furthermore, we found that activation of the mammalian target of rapamycin (mTOR) and phosphoinositide 3-kinase (PI3K)/Akt pathway is required for the regulation of GLUT expression, translocation, and glucose uptake by hormones. We also found that l-arginine upregulated GLUT-1/GLUT-4 expression and translocation, which were related to increased glucose uptake; however, these responses were significantly blocked by N(G)-nitro-l-arginine methylester. In addition, inhibiting NO production attenuated T3- and FSH-induced GLUT expression, translocation, and glucose uptake in granulosa cells. Our data demonstrate that T3 and FSH cotreatment potentiates cellular glucose uptake via GLUT upregulation and translocation, which are mediated through the activation of the mTOR/PI3K/Akt pathway. Meanwhile, NOS3/NO are also involved in this regulatory system. These findings suggest that GLUT is a mediator of T3- and FSH-induced follicular development. Copyright © 2017 Endocrine Society.

  19. Liver X receptor regulation of thyrotropin-releasing hormone transcription in mouse hypothalamus is dependent on thyroid status.

    Directory of Open Access Journals (Sweden)

    Rym Ghaddab-Zroud

    Full Text Available Reversing the escalating rate of obesity requires increased knowledge of the molecular mechanisms controlling energy balance. Liver X receptors (LXRs and thyroid hormone receptors (TRs are key physiological regulators of energetic metabolism. Analysing interactions between these receptors in the periphery has led to a better understanding of the mechanisms involved in metabolic diseases. However, no data is available on such interactions in the brain. We tested the hypothesis that hypothalamic LXR/TR interactions could co-regulate signalling pathways involved in the central regulation of metabolism. Using in vivo gene transfer we show that LXR activation by its synthetic agonist GW3965 represses the transcriptional activity of two key metabolic genes, Thyrotropin-releasing hormone (Trh and Melanocortin receptor type 4 (Mc4r in the hypothalamus of euthyroid mice. Interestingly, this repression did not occur in hypothyroid mice but was restored in the case of Trh by thyroid hormone (TH treatment, highlighting the role of the triiodothyronine (T3 and TRs in this dialogue. Using shLXR to knock-down LXRs in vivo in euthyroid newborn mice, not only abrogated Trh repression but actually increased Trh transcription, revealing a potential inhibitory effect of LXR on the Hypothalamic-Pituitary-Thyroid axis. In vivo chromatin immunoprecipitation (ChIP revealed LXR to be present on the Trh promoter region in the presence of T3 and that Retinoid X Receptor (RXR, a heterodimerization partner for both TR and LXR, was never recruited simultaneously with LXR. Interactions between the TR and LXR pathways were confirmed by qPCR experiments. T3 treatment of newborn mice induced hypothalamic expression of certain key LXR target genes implicated in metabolism and inflammation. Taken together the results indicate that the crosstalk between LXR and TR signalling in the hypothalamus centres on metabolic and inflammatory pathways.

  20. Gastrointestinal hormones: the regulation of appetite and the anorexia of ageing.

    Science.gov (United States)

    Moss, C; Dhillo, W S; Frost, G; Hickson, M

    2012-02-01

    Loss of appetite is frequently observed during ageing, termed the 'anorexia of ageing'. Ageing is associated with the inability to appropriately increase food intake after under-eating in the short- and long-term. Older people also report lower feelings of hunger and increased feelings of satiety and fullness. Gastrointestinal peptide hormones are a major part of the appetite regulatory system and are released in response to nutritional stimuli. They can be classified as: anorexigenic (satiety) [e.g. peptide tyrosine tyrosine (PYY), glucagon-like peptide-1, pancreatic polypeptide, oxyntomodulin and cholecystokinin (CCK)] or orexigenic (hunger) (e.g. ghrelin). Although the control of appetite is not fully understood, it is clear that these hormones play an important role, and may influence the development and treatment of obesity and under-nutrition. The literature shows a consistent finding that there is a loss of appetite in those aged over 65 years, although how this loss is mediated is not yet clear. Some evidence suggests that with advancing age there is an increase in satiety hormones, such as CCK and PYY, and a decrease in the hunger hormone, ghrelin. However, not all studies agree, emphasising the need for more in-depth research to clarify age-related changes. This knowledge will enable us to develop therapies to help prevent under-nutrition during ageing. This review explores how age influences gastrointestinal appetite hormones in humans, as well as how this may contribute to the development of age-related malnutrition. © 2011 The Authors. Journal of Human Nutrition and Dietetics © 2011 The British Dietetic Association Ltd.

  1. Differential regulation of cystic fibrosis transmembrane conductance regulator and Na+,K+ -ATPase in gills of striped bass, Morone saxatilis: effect of salinity and hormones

    DEFF Research Database (Denmark)

    Madsen, Steffen; Jensen, Lars Nørholm; Tipsmark, Christian Kølbaek

    2007-01-01

    Effects of salinity and hormones on cystic fibrosis transmembrane conductance regulator (CFTR) and alpha-subunit Na(+),K(+) -ATPase (alpha-NKA) mRNA (analysed by semi-quantitative PCR) and protein expression (analysed by western blotting and immunocytochemistry) were investigated in gills...... filaments at equal intensity. Cortisol decreased serum [Na(+)] in FW fish, but had no effect on gill Na(+),K(+) -ATPase activity, alpha-NKA and CFTR mRNA levels. Incubation of gill tissue with cortisol (24 h, >0.01 micro g/ml) and epidermal growth factor (EGF 10 micro g/ml) decreased CFTR mRNA levels......-regulated kinase (ERK) 1/2 was stimulated by EGF but not affected by IGF-I. This study is the first to report a branchial EGF response and to demonstrate a functional ERK 1/2 pathway in the teleost gill. In conclusion, CFTR and Na(+),K(+) -ATPase are differentially regulated by salinity and hormones in gills...

  2. Sulforaphane induced adipolysis via hormone sensitive lipase activation, regulated by AMPK signaling pathway.

    Science.gov (United States)

    Lee, Ju-Hee; Moon, Myung-Hee; Jeong, Jae-Kyo; Park, Yang-Gyu; Lee, You-Jin; Seol, Jae-Won; Park, Sang-Youel

    2012-10-05

    Sulforaphane, an aliphatic isothiocyanate derived from cruciferous vegetables, is known for its antidiabetic properties. The effects of sulforaphane on lipid metabolism in adipocytes are not clearly understood. Here, we investigated whether sulforaphane stimulates lipolysis. Mature adipocytes were incubated with sulforaphane for 24h and analyzed using a lipolysis assay which quantified glycerol released into the medium. We investigated gene expression of hormone-sensitive lipase (HSL), and levels of HSL phosphorylation and AMP-activated protein kinase on sulforaphane-mediated lipolysis in adipocytes. Sulforaphane promoted lipolysis and increased both HSL gene expression and HSL activation. Sulforaphane suppressed AMPK phosphorylation at Thr-172 in a dose-dependent manner, which was associated with a decrease in HSL phosphorylation at Ser-565, enhancing the phosphorylation of HSL Ser-563. Taken together, these results suggest that sulforaphane promotes lipolysis via hormone sensitive lipase activation mediated by decreasing AMPK signal activation in adipocytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Hormonal contraception and regulation of menstruation: a study of young women's attitudes towards 'having a period'.

    Science.gov (United States)

    Newton, Victoria Louise; Hoggart, Lesley

    2015-07-01

    Irregular bleeding is one of the most common side effects of hormonal contraception and a key reason for the discontinuation of hormonal methods. A qualitative study in which 12 young women volunteered to be interviewed in depth, along with six focus group discussions (23 participants). The study had two main research objectives: to document and investigate what young women think and feel about menstruation and contraception, and to explore young women's preferences regarding the intersection of contraceptives and bleeding patterns. Although participants held a broad view that menstruation can be an inconvenience, they did ascribe positive values to having a regular bleed. Bleeding was seen as a signifier of non-pregnancy and also an innate part of being a woman. A preference for a 'natural' menstruating body was a strong theme, and the idea of selecting a hormonal contraceptive that might stop the bleeding was not overly popular, unless the young woman suffered with painful natural menstruation. Contraceptives that mimicked the menstrual cycle were acceptable to most, suggesting that cyclic bleeding still holds a symbolic function for women. When counselling young women about the effect of different contraceptive modalities on their bleeding, practitioners should explore how the women feel about their bleeding, including how they might feel if their bleeding stopped or if they experienced erratic bleeding patterns. Practitioners also need to recognise the subjective understanding of the 'natural body' as held by some women, and in these cases to support them in their seeking out of non-hormonal methods of contraception. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Salt tolerance and regulation of gas exchange and hormonal homeostasis by auxin-priming in wheat

    Directory of Open Access Journals (Sweden)

    Muhammad Iqbal

    2013-09-01

    Full Text Available The objective of this work was to assess the regulatory effects of auxin-priming on gas exchange and hormonal homeostasis in spring wheat subjected to saline conditions. Seeds of MH-97 (salt-intolerant and Inqlab-91 (salt-tolerant cultivars were subjected to 11 priming treatments (three hormones x three concentrations + two controls and evaluated under saline (15 dS m-1 and nonsaline (2.84 dS m-1 conditions. The priming treatments consisted of: 5.71, 8.56, and 11.42 × 10-4 mol L-1 indoleacetic acid; 4.92, 7.38, and 9.84 × 10-4 mol L-1 indolebutyric acid; 4.89, 7.34, and 9.79 × 10-4 mol L-1 tryptophan; and a control with hydroprimed seeds. A negative control with nonprimed seeds was also evaluated. All priming agents diminished the effects of salinity on endogenous abscisic acid concentration in the salt-intolerant cultivar. Grain yield was positively correlated with net CO2 assimilation rate and endogenous indoleacetic acid concentration, and it was negatively correlated with abscisic acid and free polyamine concentrations. In general, the priming treatment with tryptophan at 4.89 × 10-4 mol L-1 was the most effective in minimizing yield losses and reductions in net CO2 assimilation rate, under salt stress conditions. Hormonal homeostasis increases net CO2 assimilation rate and confers tolerance to salinity on spring wheat.

  5. CEDAR counter (internal part)

    CERN Document Server

    CERN PhotoLab

    1976-01-01

    Here on the mounting bench. The counter is a differential Cerenkov, corrected for chromaticity, able to differentiate pions from kaons up to 350 GeV. Counters of this type were used in all SPS hadron beams.

  6. Whole Body Counters (rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Woodburn, John H. [Walter Johnson High School, Rockville, MD; Lengemann, Frederick W. [Cornell University

    1967-01-01

    Whole body counters are radiation detecting and measuring instruments that provide information about the human body. This booklet describes different whole body counters, scientific principles that are applied to their design, and ways they are used.

  7. The gonadal hormone regulates the plasma lactate levels in type 2 diabetes treated with and without metformin.

    Science.gov (United States)

    Shen, Ying; Liu, Fang; Li, Qing; Tang, Junling; Zheng, Taishan; Lu, Fengdi; Lu, Huijuan; Jia, Weiping

    2012-06-01

    Our previous study showed there was a gender difference in plasma lactate concentrations in subjects with type 2 diabetes. This study investigated the effect of sex hormone levels on plasma lactic acid (LA) levels in type 2 diabetes with and without metformin therapy. Fasting whole blood specimens of 392 type 2 diabetes patients treated with metformin (n=199) or not (n=193) were collected. LA was measured with an enzyme-electrode assay. Levels of sex hormones, including testosterone (T) and estradiol (E(2)), were measured with a chemiluminescence microparticle immunoassay. Spearman's or Pearson's correlation and logistic regression analysis were performed for the factors associated with LA. The LA level in the metformin group was significantly higher than that in the non-metformin group (1.26±0.43 vs. 1.14±0.49 mmol/L, PLA levels of females were significantly higher than those of males (PLA concentrations were positively correlated with E(2) level but negatively correlated with metformin and T levels (Pmetformin, and T were independent factors influencing lactate levels. Analysis of subgroups demonstrated that the LA concentrations increased with the elevation of E(2) level (Pmetformin. E(2) up-regulates but T tend to down-regulate lactate levels.

  8. Nutritional and Hormonal Regulation of Citrate and Carnitine/Acylcarnitine Transporters: Two Mitochondrial Carriers Involved in Fatty Acid Metabolism

    Directory of Open Access Journals (Sweden)

    Anna M. Giudetti

    2016-05-01

    Full Text Available The transport of solutes across the inner mitochondrial membrane is catalyzed by a family of nuclear-encoded membrane-embedded proteins called mitochondrial carriers (MCs. The citrate carrier (CiC and the carnitine/acylcarnitine transporter (CACT are two members of the MCs family involved in fatty acid metabolism. By conveying acetyl-coenzyme A, in the form of citrate, from the mitochondria to the cytosol, CiC contributes to fatty acid and cholesterol synthesis; CACT allows fatty acid oxidation, transporting cytosolic fatty acids, in the form of acylcarnitines, into the mitochondrial matrix. Fatty acid synthesis and oxidation are inversely regulated so that when fatty acid synthesis is activated, the catabolism of fatty acids is turned-off. Malonyl-CoA, produced by acetyl-coenzyme A carboxylase, a key enzyme of cytosolic fatty acid synthesis, represents a regulator of both metabolic pathways. CiC and CACT activity and expression are regulated by different nutritional and hormonal conditions. Defects in the corresponding genes have been directly linked to various human diseases. This review will assess the current understanding of CiC and CACT regulation; underlining their roles in physio-pathological conditions. Emphasis will be placed on the molecular basis of the regulation of CiC and CACT associated with fatty acid metabolism.

  9. Down-regulation of ABCG2, a urate exporter, by parathyroid hormone enhances urate accumulation in secondary hyperparathyroidism.

    Science.gov (United States)

    Sugimoto, Ryusei; Watanabe, Hiroshi; Ikegami, Komei; Enoki, Yuki; Imafuku, Tadashi; Sakaguchi, Yoshiaki; Murata, Michiya; Nishida, Kento; Miyamura, Shigeyuki; Ishima, Yu; Tanaka, Motoko; Matsushita, Kazutaka; Komaba, Hirotaka; Fukagawa, Masafumi; Otagiri, Masaki; Maruyama, Toru

    2017-03-01

    Hyperuricemia occurs with increasing frequency among patients with hyperparathyroidism. However, the molecular mechanism by which the serum parathyroid hormone (PTH) affects serum urate levels remains unknown. This was studied in uremic rats with secondary hyperparathyroidism where serum urate levels were found to be increased and urate excretion in the intestine and kidney decreased, presumably due to down-regulation of the expression of the urate exporter ABCG2 in intestinal and renal epithelial membranes. These effects were prevented by administration of the calcimimetic cinacalcet, a PTH suppressor, suggesting that PTH may down-regulate ABCG2 expression. This was directly tested in intestinal Caco-2 cells where the expression of ABCG2 on the plasma membrane was down-regulated by PTH (1-34) while its mRNA level remained unchanged. Interestingly, an inactive PTH derivative (13-34) had no effect, suggesting that a posttranscriptional regulatory system acts through the PTH receptor to regulate ABCG2 plasma membrane expression. As found in an animal study, additional clinical investigations showed that treatment with cinacalcet resulted in significant reductions in serum urate levels together with decreases in PTH levels in patients with secondary hyperparathyroidism undergoing dialysis. Thus, PTH down-regulates ABCG2 expression on the plasma membrane to suppress intestinal and renal urate excretion, and the effects of PTH can be prevented by cinacalcet treatment. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  10. A Drosophila Genome-Wide Screen Identifies Regulators of Steroid Hormone Production and Developmental Timing

    DEFF Research Database (Denmark)

    Thomas Danielsen, E.; E. Møller, Morten; Yamanaka, Naoki

    2016-01-01

    Steroid hormones control important developmental processes and are linked to many diseases. To systematically identify genes and pathways required for steroid production, we performed a Drosophila genome-wide in vivo RNAi screen and identified 1,906 genes with potential roles in steroidogenesis...... and developmental programs. In addition, we demonstrate the existence of an autophagosomal cholesterol mobilization mechanism and show that activation of this system rescues Niemann-Pick type C1 deficiency that causes a disorder characterized by cholesterol accumulation. These cholesterol-trafficking mechanisms...

  11. Neurohypophysial Hormones Regulate Amphibious Behaviour in the Mudskipper Goby: e0134605

    National Research Council Canada - National Science Library

    Tatsuya Sakamoto; Yudai Nishiyama; Aoi Ikeda; Hideya Takahashi; Susumu Hyodo; Nao Kagawa; Hirotaka Sakamoto

    2015-01-01

    .... In the amphibious mudskipper, Periophthalmus modestus, we previously found arginine-vasotocin-specific regulation of aggressive behavior, including migration of the submissive subordinate into water...

  12. Insulin, a key regulator of hormone responsive milk protein synthesis during lactogenesis in murine mammary explants.

    Science.gov (United States)

    Menzies, Karensa K; Lee, Heather J; Lefèvre, Christophe; Ormandy, Christopher J; Macmillan, Keith L; Nicholas, Kevin R

    2010-03-01

    Murine milk protein gene expression requires insulin, hydrocortisone, and prolactin; however, the role of insulin is not well understood. This study, therefore, examined the requirement of insulin for milk protein synthesis. Mammary explants were cultured in various combinations of the lactogenic hormones and global changes in gene expression analysed using Affymetrix microarray. The expression of 164 genes was responsive to insulin, and 18 were involved in protein synthesis at the level of transcription and posttranscription, as well as amino acid uptake and metabolism. The folate receptor gene was increased by fivefold, highlighting a potentially important role for the hormone in folate metabolism, a process that is emerging to be central for protein synthesis. Interestingly, gene expression of two milk protein transcription factors, Stat5a and Elf5, previously identified as key components of prolactin signalling, both showed an essential requirement for insulin. Subsequent experiments in HCll cells confirmed that Stat5a and Elf5 gene expression could be induced in the absence of prolactin but in the presence of insulin. Whereas prolactin plays an essential role in phosphorylating and activating Stat5a, gene expression is only induced when insulin is present. This indicates insulin plays a crucial role in the transcription of the milk protein genes.

  13. Nutritional and hormonal regulation of malic enzyme synthesis in rat mammary gland.

    Science.gov (United States)

    Lobato, M F; Ros, M; Moreno, F J; García-Ruíz, J P

    1986-06-01

    Cytosolic malic enzyme was purified from rat mammary gland by L-malate affinity chromatography. The pure enzyme obtained was used to produce a specific antiserum in a rabbit. Relative synthesis of malic enzyme in the mammary gland of mid-lactating rats was 0.097%, measured by labelling the enzyme in isolated acini. When food was removed, malic enzyme synthesis decreased to 35% and 20% of the control value at 4 and 6 h respectively. Incorporation of [3H]leucine into soluble proteins was constant during the first 6 h of starvation. When lactating rats (maintained with their pups) were starved for 24 h and then re-fed, the relative rate of enzyme synthesis increased 2.5-, 4-, and 4.5-fold at 3 h, 6 h and 18 h respectively after initiation of re-feeding. The relative rate of malic enzyme synthesis was about 50% of normal at 15 h after weaning, whereas the rate of synthesis of soluble proteins did not change. Administration of bromocriptine or adrenalectomy of lactating rats decreased the relative rate of synthesis of malic enzyme by 40% or 30% respectively; these effects were counteracted by hormone supplementation. Hormone therapy also caused an increase in the rate of incorporation of [3H]leucine into soluble proteins and in malic enzyme activity.

  14. Direct regulation of microRNA biogenesis and expression by estrogen receptor beta in hormone-responsive breast cancer.

    Science.gov (United States)

    Paris, O; Ferraro, L; Grober, O M V; Ravo, M; De Filippo, M R; Giurato, G; Nassa, G; Tarallo, R; Cantarella, C; Rizzo, F; Di Benedetto, A; Mottolese, M; Benes, V; Ambrosino, C; Nola, E; Weisz, A

    2012-09-20

    Estrogen effects on mammary epithelial and breast cancer (BC) cells are mediated by the nuclear receptors ERα and ERβ, transcription factors that display functional antagonism with each other, with ERβ acting as oncosuppressor and interfering with the effects of ERα on cell proliferation, tumor promotion and progression. Indeed, hormone-responsive, ERα+ BC cells often lack ERβ, which when present associates with a less aggressive clinical phenotype of the disease. Recent evidences point to a significant role of microRNAs (miRNAs) in BC, where specific miRNA expression profiles associate with distinct clinical and biological phenotypes of the lesion. Considering the possibility that ERβ might influence BC cell behavior via miRNAs, we compared miRNome expression in ERβ+ vs ERβ- hormone-responsive BC cells and found a widespread effect of this ER subtype on the expression pattern of these non-coding RNAs. More importantly, the expression pattern of 67 miRNAs, including 10 regulated by ERβ in BC cells, clearly distinguishes ERβ+, node-negative, from ERβ-, metastatic, mammary tumors. Molecular dissection of miRNA biogenesis revealed multiple mechanisms for direct regulation of this process by ERβ+ in BC cell nuclei. In particular, ERβ downregulates miR-30a by binding to two specific sites proximal to the gene and thereby inhibiting pri-miR synthesis. On the other hand, the receptor promotes miR-23b, -27b and 24-1 accumulation in the cell by binding in close proximity of the corresponding gene cluster and preventing in situ the inhibitory effects of ERα on pri-miR maturation by the p68/DDX5-Drosha microprocessor complex. These results indicate that cell autonomous regulation of miRNA expression is part of the mechanism of action of ERβ in BC cells and could contribute to establishment or maintenance of a less aggressive tumor phenotype mediated by this nuclear receptor.

  15. Altered regulation of luteinizing hormone secretion in 2,3,7,8-tetrachlorodibenzo-p-dioxin-treated male rats

    Energy Technology Data Exchange (ETDEWEB)

    Bookstaff, R.C.

    1989-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) severely decreases plasma androgen concentrations, yet plasma luteinizing hormone (LH) concentrations remain unchanged. The mechanism by which TCDD prevents the expected compensatory increase in plasma LH was investigated. No effect on the plasma disappearance rate of LH or on pituitary capacity to synthesize or secrete LH was detected. Rather, TCDD altered the regulation of LH secretion by substantially increasing the potency of both androgens and estrogens as feedback inhibitors of LH secretion. The mechanism by which TCDD alters androgen-regulated LH secretion was further investigated. Seven days after dosing, TCDD decreased plasma testosterone concentrations but prevented the expected compensatory increases in pituitary gonadotropin-releasing hormone (GnRH) receptor number, pituitary responsiveness to GnRH, and plasma LH concentrations as seen in similarly hypoandrogenic vehicle dosed rats. Furthermore, the TCDD dose-response relationships for preventing the compensatory increases in pituitary GnRH receptor number and plasma LH concentration were similar. However, in the absence of gonadal steroids (7 days after castration) TCDD did not affect the compensatory increases in pituitary GnRH receptor number, pituitary responsiveness to GnRH, or plasma LH concentration. All of these parameters increased substantially relative to intact TCDD treated rats, and to levels virtually identical to those seen in castrated control rats. Treatment of castrated rats with testosterone restored the ability of TCDD to prevent these compensatory increases. Taken together, these results demonstrate that the presence of androgens is required for TCDD to alter the regulation of pituitary GnRH receptors.

  16. The silencing mediator of retinoid and thyroid hormone receptors (SMRT) regulates adipose tissue accumulation and adipocyte insulin sensitivity in vivo.

    Science.gov (United States)

    Sutanto, Maria M; Ferguson, Kelly K; Sakuma, Hiroya; Ye, Honggang; Brady, Matthew J; Cohen, Ronald N

    2010-06-11

    The silencing mediator of retinoid and thyroid hormone receptors (SMRT) serves as a corepressor for nuclear receptors and other factors. Recent evidence suggests that SMRT is an important regulator of metabolism, but its role in adipocyte function in vivo remains unclear. We generated heterozygous SMRT knock-out (SMRT(+/-)) mice to investigate the function of SMRT in the adipocyte and the regulation of adipocyte insulin sensitivity. We show that SMRT(+/-) mice are normal weight on a regular diet, but develop increased adiposity on a high-fat diet (HFD). The mechanisms underlying this phenotype are complex, but appear to be due to a combination of an increased number of smaller subcutaneous adipocytes as well as decreased leptin expression, resulting in greater caloric intake. In addition, adipogenesis of mouse embryonic fibroblasts (MEFs) derived from these mice was increased. However, adipocyte insulin sensitivity, measured by insulin-induced Akt phosphorylation and insulin-mediated suppression of lipolysis, was enhanced in SMRT(+/-) adipocytes. These finding suggest that SMRT regulates leptin expression and limits the ability of fat mass to expand with increased caloric intake, but that SMRT also negatively regulates adipocyte insulin sensitivity.

  17. The Silencing Mediator of Retinoid and Thyroid Hormone Receptors (SMRT) Regulates Adipose Tissue Accumulation and Adipocyte Insulin Sensitivity in Vivo*

    Science.gov (United States)

    Sutanto, Maria M.; Ferguson, Kelly K.; Sakuma, Hiroya; Ye, Honggang; Brady, Matthew J.; Cohen, Ronald N.

    2010-01-01

    The silencing mediator of retinoid and thyroid hormone receptors (SMRT) serves as a corepressor for nuclear receptors and other factors. Recent evidence suggests that SMRT is an important regulator of metabolism, but its role in adipocyte function in vivo remains unclear. We generated heterozygous SMRT knock-out (SMRT+/−) mice to investigate the function of SMRT in the adipocyte and the regulation of adipocyte insulin sensitivity. We show that SMRT+/− mice are normal weight on a regular diet, but develop increased adiposity on a high-fat diet (HFD). The mechanisms underlying this phenotype are complex, but appear to be due to a combination of an increased number of smaller subcutaneous adipocytes as well as decreased leptin expression, resulting in greater caloric intake. In addition, adipogenesis of mouse embryonic fibroblasts (MEFs) derived from these mice was increased. However, adipocyte insulin sensitivity, measured by insulin-induced Akt phosphorylation and insulin-mediated suppression of lipolysis, was enhanced in SMRT+/− adipocytes. These finding suggest that SMRT regulates leptin expression and limits the ability of fat mass to expand with increased caloric intake, but that SMRT also negatively regulates adipocyte insulin sensitivity. PMID:20371609

  18. The stem cell factor (SCF)/c-KIT system in carcinogenesis of reproductive tissues: What does the hormonal regulation tell us?

    Science.gov (United States)

    Figueira, Marília I; Cardoso, Henrique J; Correia, Sara; Maia, Cláudio J; Socorro, Sílvia

    2017-10-01

    The tyrosine kinase receptor c-KIT and its ligand, the stem cell factor (SCF) are expressed in several tissues of male and female reproductive tract, playing an important role in the regulation of basic biological processes. The activation of c-KIT by SCF controls, cell survival and death, cell differentiation and migration. Also, the SCF/c-KIT system has been implicated in carcinogenesis of reproductive tissues due to its altered expression pattern or overactivation in consequence of gain-of-functions mutations. Over the years, it has also been shown that hormones, the primary regulators of reproductive function and causative agents in the case of hormone-dependent cancers, are also able to control the SCF/c-KIT tissue levels. Therefore, it is liable to suppose that disturbed SCF/c-KIT expression driven by (de)regulated hormone actions can be a relevant step towards carcinogenesis. The present review describes the SCF and c-KIT expression in cancers of reproductive tissues, discussing the implications of the hormonal regulation of the SCF/c-KIT system in cancer development. Understanding the relationship between hormonal imbalance and the SCF/c-KIT expression and activity would be relevant in the context of novel therapeutic approaches in reproductive cancers. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Regulation of feed intake in sheep : the role of hormones and metabolites

    NARCIS (Netherlands)

    Leuvenink, H.

    1998-01-01

    In the search for factors involved in the regulation of feed intake, many experiments have been performed in various species. In ruminants, very little is known about the physiological background of the mechanisms involved in feed intake regulation. In earlier experiments, much attention

  20. Regulation of feeding behavior and food intake by appetite-regulating peptides in wild-type and growth hormone-transgenic coho salmon.

    Science.gov (United States)

    White, Samantha L; Volkoff, Helene; Devlin, Robert H

    2016-08-01

    Survival, competition, growth and reproductive success in fishes are highly dependent on food intake, food availability and feeding behavior and are all influenced by a complex set of metabolic and neuroendocrine mechanisms. Overexpression of growth hormone (GH) in transgenic fish can result in greatly enhanced growth rates, feed conversion, feeding motivation and food intake. The objectives of this study were to compare seasonal feeding behavior of non-transgenic wild-type (NT) and GH-transgenic (T) coho salmon (Oncorhynchus kisutch), and to examine the effects of intraperitoneal injections of the appetite-regulating peptides cholecystokinin (CCK-8), bombesin (BBS), glucagon-like peptide-1 (GLP-1), and alpha-melanocyte-stimulating hormone (α-MSH) on feeding behavior. T salmon fed consistently across all seasons, whereas NT dramatically reduced their food intake in winter, indicating the seasonal regulation of appetite can be altered by overexpression of GH in T fish. Intraperitoneal injections of CCK-8 and BBS caused a significant and rapid decrease in food intake for both genotypes. Treatment with either GLP-1 or α-MSH resulted in a significant suppression of food intake for NT but had no effect in T coho salmon. The differential response of T and NT fish to α-MSH is consistent with the melanocortin-4 receptor system being a significant pathway by which GH acts to stimulate appetite. Taken together, these results suggest that chronically increased levels of GH alter feeding regulatory pathways to different extents for individual peptides, and that altered feeding behavior in transgenic coho salmon may arise, in part, from changes in sensitivity to peripheral appetite-regulating signals. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The effect of eight weeks endurance training and high-fat diet on appetite-regulating hormones in rat plasma

    Directory of Open Access Journals (Sweden)

    Rouhollah Haghshenas

    2014-04-01

    Full Text Available Objective(s:Consumption of high-fat foods is one of the major causes of obesity. Physical exercise is a strategy used to counteract obesity. The aim of this study was to investigate the effect of eight weeks endurance training and high-fat diet (HFD on appetite-regulating hormones in rat plasma. Materials and Methods:Twenty eight male Wistar rats were randomly divided into four groups: Control group with standard diet (CSD, endurance training with a standard diet (ESD, control group with high-fat diet (CHFD and endurance training with high-fat diet (EHFD. Twenty-four hr after the last training session, the blood samples were obtained and analyzed for hormones levels. Results: The significant increased weight gain and food intake and decreased plasma nesfatin-1 and PYY3-36 levels were observed in CHFD group, while exercise under the HFD antagonized these effects. There were no significant changes in ghrelin, insulin and leptin levels in different groups. Conclusion: These results suggest that exercise can prevent fattening effect of HFD. Probably, performing exercise makes a reduction of food intake and weight gain in rat via the increase in nesfatin-1 and PYY levels. However, further studies are necessary to understand the exact mechanisms involved in this field.

  2. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity

    DEFF Research Database (Denmark)

    Albacete, Alfonso; Cantero-Navarro, Elena; Balibrea, María E.

    2014-01-01

    sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT...... on tomato fruit sink activity, growth, and yield: (i) exogenous hormones were applied to plants, and (ii) transgenic plants overexpressing the cell wall invertase (cwInv) gene CIN1 in the fruits and de novo cytokinin (CK) biosynthesis gene IPT in the roots were constructed. Although salinity reduces fruit...... growth, sink activity, and trans-zeatin (tZ) concentrations, it increases the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) during the actively growing period (25 days after anthesis). Indeed, exogenous application of the CK analogue kinetin to salinized actively growing fruits recovered...

  3. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Gromada, Jesper

    2004-01-01

    1 (GLP-1). In patients with type 2 diabetes, however, the incretin effect is lost or greatly impaired. It is hypothesized that this loss explains an important part of the impaired insulin secretion in patients. Further analysis of the incretin effects in patients has revealed that the secretion...... of GIP is near normal, whereas the secretion of GLP-1 is decreased. On the other hand, the insulintropic effect of GLP-1 is preserved, whereas the effect of GIP is greatly reduced, mainly because of a complete loss of the normal GIP-induced potentiation of second-phase insulin secretion. These two......The available evidence suggests that about two-thirds of the insulin response to an oral glucose load is due to the potentiating effect of gut-derived incretin hormones. The strongest candidates for the incretin effect are glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide...

  4. A Review of Weight Control Strategies and Their Effects on the Regulation of Hormonal Balance

    Directory of Open Access Journals (Sweden)

    Neil A. Schwarz

    2011-01-01

    Full Text Available The estimated prevalence of obesity in the USA is 72.5 million adults with costs attributed to obesity more than 147 billion dollars per year. Though caloric restriction has been used extensively in weight control studies, short-term success has been difficult to achieve, with long-term success of weight control being even more elusive. Therefore, novel approaches are needed to control the rates of obesity that are occurring globally. The purpose of this paper is to provide a synopsis of how exercise, sleep, psychological stress, and meal frequency and composition affect levels of ghrelin, cortisol, insulin GLP-1, and leptin and weight control. We will provide information regarding how hormones respond to various lifestyle factors which may affect appetite control, hunger, satiety, and weight control.

  5. Sex hormones regulate cerebral drug metabolism via brain miRNAs: down-regulation of brain CYP2D by androgens reduces the analgesic effects of tramadol

    Science.gov (United States)

    Li, Jie; Xie, Mengmeng; Wang, Xiaoshuang; Ouyang, Xiufang; Wan, Yu; Dong, Guicheng; Yang, Zheqiong; Yang, Jing; Yue, Jiang

    2015-01-01

    Background and Purpose Brain cytochrome P450 2D (CYP2D) metabolises exogenous neurotoxins, endogenous substances and neurotransmitters. Brain CYP2D can be regulated in an organ-specific manner, but the possible regulatory mechanisms are poorly understood. We investigated the involvement of miRNAs in the selective regulation of brain CYP2D by testosterone and the corresponding alteration of the pharmacological profiles of tramadol by testosterone. Experimental Approach The regulation of CYP2D and brain-enriched miRNAs by testosterone was investigated using SH-SY5Y cells, U251 cells, and HepG2 cells as well as orchiectomized growth hormone receptor knockout (GHR-KO) mice and rats. Concentration–time curves of tramadol in rat brain were determined using a microdialysis technique. The analgesic action of tramadol was assessed by the tail-flick test in rats. Key Results miR-101 and miR-128-2 bound the 3′-untranslated region of the CYP2D6 mRNA and decreased its level. Testosterone decreased CYP2D6 catalytic function via the up-regulation of miR-101 and miR-128-2 in SH-SY5Y and U251 cells, but not in HepG2 cells. Orchiectomy decreased the levels of miR-101 and miR-128-2 in the hippocampus of male GHR-KO mice, indicating that androgens regulate miRNAs directly, not via the alteration of growth hormone secretion patterns. Changes in the pharmacokinetic and pharmacodynamic profiles of tramadol by orchiectomy was attenuated by either testosterone supplementation or a specific brain CYP2D inhibitor. Conclusions and Implications The selective regulation of brain CYP2D via brain-enriched miRNAs, following changes in androgen levels, such as in testosterone therapy, androgen deprivation therapy and/or ageing may alter the response to centrally active substances. PMID:26031356

  6. Growth hormone regulates the sensitization of developing peripheral nociceptors during cutaneous inflammation.

    Science.gov (United States)

    Liu, Xiaohua; Green, Kathryn J; Ford, Zachary K; Queme, Luis F; Lu, Peilin; Ross, Jessica L; Lee, Frank B; Shank, Aaron T; Hudgins, Renita C; Jankowski, Michael P

    2017-02-01

    Cutaneous inflammation alters the function of primary afferents and gene expression in the affected dorsal root ganglia (DRG). However, specific mechanisms of injury-induced peripheral afferent sensitization and behavioral hypersensitivity during development are not fully understood. Recent studies in children suggest a potential role for growth hormone (GH) in pain modulation. Growth hormone modulates homeostasis and tissue repair after injury, but how GH affects nociception in neonates is not known. To determine whether GH played a role in modulating sensory neuron function and hyperresponsiveness during skin inflammation in young mice, we examined behavioral hypersensitivity and the response properties of cutaneous afferents using an ex vivo hairy skin-saphenous nerve-DRG-spinal cord preparation. Results show that inflammation of the hairy hind paw skin initiated at either postnatal day 7 (P7) or P14 reduced GH levels specifically in the affected skin. Furthermore, pretreatment of inflamed mice with exogenous GH reversed mechanical and thermal hypersensitivity in addition to altering nociceptor function. These effects may be mediated through an upregulation of insulin-like growth factor 1 receptor (IGFr1) as GH modulated the transcriptional output of IGFr1 in DRG neurons in vitro and in vivo. Afferent-selective knockdown of IGFr1 during inflammation also prevented the observed injury-induced alterations in cutaneous afferents and behavioral hypersensitivity similar to that after GH pretreatment. These results suggest that GH can block inflammation-induced nociceptor sensitization during postnatal development leading to reduced pain-like behaviors, possibly by suppressing the upregulation of IGFr1 within DRG.

  7. An APC:WNT counter-current-like mechanism regulates cell division along the colonic crypt axis: a mechanism that explains how APC mutations induce proliferative abnormalities that drive colon cancer development.

    Directory of Open Access Journals (Sweden)

    Bruce M Boman

    2013-11-01

    Full Text Available APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside. WNT signaling, in contrast, is high at the bottom (where SCs reside and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g. survivin are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric. APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly-proliferating cells during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes.

  8. Regulated mRNA Decay in Arabidopsis: A global analysis of differential control by hormones and the circadian clock

    Energy Technology Data Exchange (ETDEWEB)

    Green, Pamela J. [Univ. of Delaware, Newark, DE (United States)

    2010-03-18

    The long-term goal of this research was to better understand the influence of mRNA stability on gene regulation, particularly in response to hormones and the circadian clock. The primary aim of this project was to examine this using DNA microarrays, small RNA analysis and other approaches. We accomplished these objectives, although we were only able to detect small changes in mRNA stability in response to these stimuli. However, the work also contributed to a major breakthrough allowing the identification of small RNAs on a genomic scale in eukaryotes. Moreover, the project prompted us to develop a new way to analyze mRNA decay genome wide. Thus, the research was hugely successful beyond our objectives.

  9. Dietary thylakoids suppress blood glucose and modulate appetite-regulating hormones in pigs exposed to oral glucose tolerance test

    DEFF Research Database (Denmark)

    Montelius, Caroline; Szwiec, Katarzyna; Kardas, Marek

    2014-01-01

    BACKGROUND & AIMS: Dietary chloroplast thylakoids have previously been found to reduce food intake and body weight in animal models, and to change metabolic profiles in humans in mixed-food meal studies. The aim of this study was to investigate the modulatory effects of thylakoids on glucose...... metabolism and appetite-regulating hormones during an oral glucose tolerance test in pigs fed a high fat diet. METHODS: Six pigs were fed a high fat diet (36 energy% fat) for one month before oral glucose tolerance test (1 g/kg d-glucose) was performed. The experiment was designed as a cross-over study......, either with or without addition of 0.5 g/kg body weight of thylakoid powder. RESULTS: The supplementation of thylakoids to the oral glucose tolerance test resulted in decreased blood glucose concentrations during the first hour, increased plasma cholecystokinin concentrations during the first two hours...

  10. Regulation of corticotropin releasing hormone receptor type 1 messenger RNA level in Y-79 retinoblastoma cells: potential implications for human stress response and immune/inflammatory reaction

    Directory of Open Access Journals (Sweden)

    N. C. Vamvakopoulos

    1996-01-01

    Full Text Available We report the regulation of type 1 receptor mRNA in Y-79 human retinoblastoma cells, grown in the absence or presence of pharmacological levels of phorbol esters, forskolin, glucocorticoids and their combinations. To control for inducibility and for assessing the sensitivity of the Y-79 system to glucocorticoids, corticotropin releasing hormone mRNA levels were measured in parallel. All treatments stimulated corticotropin releasing hormone receptor type 1 gene expression relative to baseline. A weak suppression of corticotropin releasing hormone mRNA level was observed during dexamethasone treatment. The cell line expressed ten-fold excess of receptor to ligand mRNA under basal conditions. The findings predict the presence of functional phorbol ester, cyclic AMP and glucocorticoid response elements in the promoter region of corticotropin releasing hormone receptor type 1 gene and support a potential role for its product during chronic stress and immune/inflammatory reaction.

  11. Mechanism of thyroid-hormone regulated expression of the SERCA genes in skeletal muscle: implications for thermogenesis.

    Science.gov (United States)

    Simonides, W S; Thelen, M H; van der Linden, C G; Muller, A; van Hardeveld, C

    2001-04-01

    Thyroid hormone increases the Ca2+-ATPase activity of the sarcoplasmic reticulum (SR) in skeletal muscle, thereby increasing the energy-turnover associated with Ca2+-cycling during contraction and rest. The fast-muscle isoform of the Ca2+-ATPase (SERCA1) and the slow-muscle isoform (SERCA2a), are encoded by two genes that are transcriptionally regulated by T3. The SERCA1 isoform can be expressed to considerably higher levels than the SERCA2a isoform. The stimulation of transcription of the SERCA1 gene by T3 is mediated by two thyroid hormone response elements, located in the promoter of this gene. The intracellular [Ca2+] can modulate the effect of T3. The increase in SR Ca2+-ATPase activity seen when T3-levels rise above normal, results from the induction of SERCA1 expression in slow muscle fibers. Concomitant high levels of Ca2+-ATPase activity are associated with down-regulation of SERCA2a expression in these fibers. The observed T3-dependent increase in SERCAI expression and associated Ca2+ATPase activity will increase the overall metabolic rate of the organism significantly under normal conditions, because of the high average level of contractile activity of slow fibers. Given the rise in serum T3-levels during prolonged cold exposure, these data suggest that fiber-specific stimulation of SERCA1 expression contributes to the thermogenic response in non-shivering thermogenesis. This mechanism may be particularly relevant in larger mammals, which have a relatively high percentage of slow fibers in skeletal muscle, and which need to rely on tissues other than brown fat for the generation of extra heat.

  12. Regulation and binding of pregnane X receptor by nuclear receptor corepressor silencing mediator of retinoid and thyroid hormone receptors (SMRT).

    Science.gov (United States)

    Johnson, David R; Li, Chia-Wei; Chen, Liuh-Yow; Ghosh, Jagadish C; Chen, J Don

    2006-01-01

    The pregnane X receptor (PXR) is an orphan nuclear receptor predominantly expressed in liver and intestine. PXR coordinates hepatic responses to prevent liver injury induced by environmental toxins. PXR activates cytochrome P450 3A4 gene expression upon binding to rifampicin (Rif) and clotrimazole (CTZ) by recruiting transcriptional coactivators. It remains unclear whether and how PXR regulates gene expression in the absence of ligand. In this study, we analyzed interactions between PXR and the silencing mediator of retinoid and thyroid hormone receptors (SMRT) and determined the role of SMRT in regulating PXR activity. We show that SMRT interacts with PXR in glutathione S-transferase pull-down, yeast two-hybrid, and mammalian two-hybrid assays. The interaction is mediated through the ligand-binding domain of PXR and the SMRTs' nuclear receptor-interacting domain 2. The PXR-SMRT interaction is sensitive to species-specific ligands, and Rif causes an exchange of the corepressor SMRT with the p160 coactivator known as receptor-associated coactivator 3 (RAC3). Deletion of the PXR's activation function 2 helix enhances SMRT binding and abolishes ligand-dependent dissociation of SMRT. Coexpression of PXR with SMRT results in colocalization at discrete nuclear foci. Finally, transient transfection assays show that overexpression of SMRT inhibits PXR's transactivation of the Cyp3A4 promoter, whereas silencing of SMRT enhances the reporter expression. Taken together, our results suggest that the corepressor SMRT may bind to and regulate the transcriptional activity of PXR.

  13. Thyroid hormone negatively regulates CDX2 and SOAT2 mRNA expression via induction of miRNA-181d in hepatic cells

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Chui Sun; Sinha, Rohit Anthony [Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, 8, College Road, Singapore 169857 (Singapore); Ota, Sho; Katsuki, Masahito [Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Yen, Paul Michael, E-mail: paul.yen@duke-nus.edu.sg [Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, 8, College Road, Singapore 169857 (Singapore)

    2013-11-01

    Highlights: •Thyroid hormone induces miR-181d expression in human hepatic cells and mouse livers. •Thyroid hormone downregulates CDX2 and SOAT2 (or ACAT2) via miR-181d. •miR-181d reduces cholesterol output from human hepatic cells. -- Abstract: Thyroid hormones (THs) regulate transcription of many metabolic genes in the liver through its nuclear receptors (TRs). Although the molecular mechanisms for positive regulation of hepatic genes by TH are well understood, much less is known about TH-mediated negative regulation. Recently, several nuclear hormone receptors were shown to downregulate gene expression via miRNAs. To further examine the potential role of miRNAs in TH-mediated negative regulation, we used a miRNA microarray to identify miRNAs that were directly regulated by TH in a human hepatic cell line. In our screen, we discovered that miRNA-181d is a novel hepatic miRNA that was regulated by TH in hepatic cell culture and in vivo. Furthermore, we identified and characterized two novel TH-regulated target genes that were downstream of miR-181d signaling: caudal type homeobox 2 (CDX2) and sterol O-acyltransferase 2 (SOAT2 or ACAT2). CDX2, a known positive regulator of hepatocyte differentiation, was regulated by miR-181d and directly activated SOAT2 gene expression. Since SOAT2 is an enzyme that generates cholesteryl esters that are packaged into lipoproteins, our results suggest miR-181d plays a significant role in the negative regulation of key metabolic genes by TH in the liver.

  14. Blood borne hormones in a cross-talk between peripheral and brain mechanisms regulating blood pressure, the role of circumventricular organs.

    Science.gov (United States)

    Ufnal, Marcin; Skrzypecki, Janusz

    2014-04-01

    Accumulating evidence suggests that blood borne hormones modulate brain mechanisms regulating blood pressure. This appears to be mediated by the circumventricular organs which are located in the walls of the brain ventricular system and lack the blood-brain barrier. Recent evidence shows that neurons of the circumventricular organs express receptors for the majority of cardiovascular hormones. Intracerebroventricular infusions of hormones and their antagonists is one approach to evaluate the influence of blood borne hormones on the neural mechanisms regulating arterial blood pressure. Interestingly, there is no clear correlation between peripheral and central effects of cardiovascular hormones. For example, angiotensin II increases blood pressure acting peripherally and centrally, whereas peripherally acting pressor catecholamines decrease blood pressure when infused intracerebroventricularly. The physiological role of such dual hemodynamic responses has not yet been clarified. In the paper we review studies on hemodynamic effects of catecholamines, neuropeptide Y, angiotensin II, aldosterone, natriuretic peptides, endothelins, histamine and bradykinin in the context of their role in a cross-talk between peripheral and brain mechanisms involved in the regulation of arterial blood pressure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. MiR-15a Decreases Bovine Mammary Epithelial Cell Viability and Lactation and Regulates Growth Hormone Receptor Expression

    Directory of Open Access Journals (Sweden)

    Xue-Jun Gao

    2012-10-01

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs that regulate the expression of target genes at the post-transcriptional level by transcript degradation or translational inhibition. The role of bta-miR-15a in bovine mammary gland hasn’t been reported. Using miRNAs prediction software, GHR gene was predicted to be a potential target of bta-miR-15a. In this study, bovine mammary epithelial cell line was used as an in vitro cell model to address the function of bta-miR-15a on bovine mammary epithelial cells. The expression changes of bta-miR-15a and Ghr after bta-miR-15a transfection were detected by qRT-PCR; the expression of GHR protein and casein was detected by western blotting. To determine whether bta-miR-15a can affect cell viability, cells were examined using an electronic Coulter counter (CASY-TT. In conclusion, bta-miR-15a inhibited the expression of casein of bovine mammary epithelial cells, and cell number and viability were reduced by bta-miR-15a expression. Bta-miR-15a inhibited the viability of mammary epithelial cells as well as the expression of GHR mRNA and protein level, therefore suggesting that bta-miR-15a may play an important role in mammary gland physiology.

  16. Gonadotrope-specific expression and regulation of ovine follicle stimulating hormone Beta: transgenic and adenoviral approaches using primary murine gonadotropes.

    Directory of Open Access Journals (Sweden)

    Jingjing Jia

    Full Text Available The beta subunit of follicle stimulating hormone (FSHB is expressed specifically in pituitary gonadotropes in vertebrates. Transgenic mouse studies have shown that enhancers in the proximal promoter between -172/-1 bp of the ovine FSHB gene are required for gonadotrope expression of ovine FSHB. These enhancers are associated with regulation by activins and gonadotropin releasing hormone (GnRH. Additional distal promoter sequence between -4741/-750 bp is also required for expression. New transgenic studies presented here focus on this distal region and narrow it to 1116 bp between -1866/-750 bp. In addition, adenoviral constructs were produced to identify these critical distal sequences using purified primary mouse gonadotropes as an in vitro model system. The adenoviral constructs contained -2871 bp, -750 bp or -232 bp of the ovine FSHB promoter. They all showed gonadotrope-specific regulation since they were induced only in purified primary gonadotropes by activin A (50 ng/ml and inhibited by GnRH (100 nM in the presence of activin (except -232FSHBLuc. However, basal expression of all three viral constructs (in the presence of follistatin to block cellular induction by activin was relatively high in pituitary non-gonadotropes as well as gonadotropes. Thus, gonadotrope-specific regulation associated with the proximal promoter was observed as expected, but the model was blind to distal promoter elements between -2871/-750 necessary for gonadotrope-specific expression of ovine FSHB in vivo. The new adenoviral-based in vitro technique did detect, however, a novel GnRH response element between -750 bp and -232 bp of the ovine FSHB promoter. We conclude that adenoviral-based studies in primary gonadotropes can adequately recognize regulatory elements on the ovine FSHB promoter associated with gonadotrope-specific regulation/expression, but that more physiologically based techniques, such as transgenic studies, will be needed to identify sequences

  17. From stem cell to erythroblast: regulation of red cell production at multiple levels by multiple hormones.

    Science.gov (United States)

    Lodish, Harvey; Flygare, Johan; Chou, Song

    2010-07-01

    This article reviews the regulation of production of red blood cells at several levels: (1) the ability of erythropoietin and adhesion to a fibronectin matrix to stimulate the rapid production of red cells by inducing terminal proliferation and differentiation of committed erythroid CFU-E progenitors; (2) the regulated expansion of the pool of earlier BFU-E erythroid progenitors by glucocorticoids and other factors that occurs during chronic anemia or inflammation; and (3) the expansion of thehematopoietic cell pool to produce more progenitors of all hematopoietic lineages. (c) 2010 IUBMB IUBMB Life.

  18. Use of hormonal regulators in the germination and development of orchid seedlings in vitro

    OpenAIRE

    Santos, Gessé Almeida; Cesumar; Saito, Belisa Cristina; CESUMAR; Monteiro, Diógenes de Paiva; CESUMAR; Gutierre, Maria Auxiliadora Milaneze; UEM; Zonetti, Patricia da Costa; Cesumar

    2007-01-01

    This work had the objective to assess the germination rate and development of seedlings of Cattleya bicolor (Orchidacea) using the regulators α-naphthaleneacetic acid and gibeleric acid in the seeds pre-imbibition treatment. Knudson’s medium was employed for the inoculum. The seeds were previously treated with the regulators in the concentrations of 0.0; 1.0; 2.0 and 5.0 mg/L for 24 hours. The treatment with giberelic acid was shown to be more effective in relation to the number of seedlings ...

  19. Casein kinase II activity in the brain of an insect, Acheta domesticus: characterization and hormonal regulation.

    Science.gov (United States)

    Degrelle, F; Renucci, M; Charpin, P; Tirard, A

    1997-01-01

    This study documented casein kinase II (CK II) activity in Acheta domesticus brain using specific antibodies and its regulation by polyamines. In control animals a transient decrease in CK II activity at day 3 after imaginal moult was observed in the brain but not in the fat body. If deprived of ecdysone by ovariectomy a different pattern was observed, with CK II activity being significantly higher on days 3 and 4 after emergence. After ecdysone injection in ovariectomized females, CK II activity decreased to levels similar to those in controls. The implications of ecdysone regulation of brain CK II activity are discussed.

  20. Elongation growth of the leaf sheath base of Avena sativa seedlings: regulation by hormones and sucrose

    Science.gov (United States)

    Brock, T. G.; Kaufman, P. B.

    1991-01-01

    The leaf sheath base of the seedling of Avena sativa was characterized for growth response to hormones and sucrose. Six day old plants, raised under a 10:14 hr light:dark cycle, were excised at the coleoptilar node and 1 cm above the node for treatment. The growth of the leaf sheath base was promoted by gibberellic acid (GA3) and this response was dose dependent. The lag to response initiation was approximately 4 hr. Growth with or without GA3 (10 micromoles) was transient, diminishing appreciably after 48 hr. The addition of 10 mM sucrose greatly prolonged growth; the effect of GA3 and sucrose was additive. Neither indole-3-acetic acid (IAA) nor the cytokinin N6-benzyladenine (BA), alone or in combination, promoted the growth of leaf sheath bases. However, both significantly inhibited the action of GA3. The inhibitory effect of IAA was dose dependent and was not affected by the addition of BA or sucrose. These results indicate that the growth of leaf sheath bases of Avena sativa is promoted specifically by gibberellin, that this action depends on the availability of carbohydrates from outside of the leaf sheath base, and that the promotional effect of GA3 can be modified by either auxins or cytokinins.

  1. Mice deficient in MCT8 reveal a mechanism regulating thyroid hormone secretion

    Science.gov (United States)

    Di Cosmo, Caterina; Liao, Xiao-Hui; Dumitrescu, Alexandra M.; Philp, Nancy J.; Weiss, Roy E.; Refetoff, Samuel

    2010-01-01

    The mechanism of thyroid hormone (TH) secretion from the thyroid gland into blood is unknown. Humans and mice deficient in monocarboxylate transporter 8 (MCT8) have low serum thyroxine (T4) levels that cannot be fully explained by increased deiodination. Here, we have shown that Mct8 is localized at the basolateral membrane of thyrocytes and that the serum TH concentration is reduced in Mct8-KO mice early after being taken off a treatment that almost completely depleted the thyroid gland of TH. Thyroid glands in Mct8-KO mice contained more non-thyroglobulin-associated T4 and triiodothyronine than did those in wild-type mice, independent of deiodination. In addition, depletion of thyroidal TH content was slower during iodine deficiency. After administration of 125I, the rate of both its secretion from the thyroid gland and its appearance in the serum as trichloroacetic acid–precipitable radioactivity was greatly reduced in Mct8-KO mice. Similarly, the secretion of T4 induced by injection of thyrotropin was reduced in Mct8-KO in which endogenous TSH and T4 were suppressed by administration of triiodothyronine. To our knowledge, this study is the first to demonstrate that Mct8 is involved in the secretion of TH from the thyroid gland and contributes, in part, to the low serum T4 level observed in MCT8-deficient patients. PMID:20679730

  2. Effect of aerobic exercise on hunger feelings and satiety regulating hormones in obese teenage girls.

    Science.gov (United States)

    Prado, Wagner L; Balagopal, P Babu; Lofrano-Prado, Mara C; Oyama, Lila M; Tenório, Thiago Ricardo; Botero, João Paulo; Hill, James O

    2014-11-01

    Exercise is implicated in modifying subsequent energy intake (EI) through alterations in hunger and/or satiety hormones. Our aim was to examine the effects of aerobic exercise on hunger, satiety regulatory peptides, and EI in obese adolescents. Nine obese girls (age: 13-18 years old, BMI: 33.74 ± 4.04 kg/m2) participated in this randomized controlled crossover study. Each participant randomly underwent 2 experimental protocols: control (seated for 150 min) and exercise (exercised for 30 min on a treadmill performed at ventilatory threshold [VT] intensity and then remained seated for 120 min). Leptin, peptide YY(3-36) (PYY(3-36)), and subjective hunger were measured at baseline as well as 30 min and 150 min, followed by 24-hr EI measurement. Exercise session resulted in an acute increase in PYY(3-36) (p hunger scores. The control session increased hunger scores (p < .01) and decreased circulating leptin levels (p = .03). There was a strong effect size for carbohydrate intake (d = 2.14) and a modest effect size for protein intake (d = 0.61) after the exercise compared with the control session. Exercise performed at VT intensity in this study appears to provoke a state of transient anorexia in obese girls. These changes may be linked to an increase in circulating PYY3-36 and maintenance of leptin levels.

  3. Regulation of malic enzyme synthesis by thyroid hormone and glucagon: inhibitor and kinetic experiments.

    Science.gov (United States)

    Goodridge, A G

    1978-06-01

    Synthesis of malic enzyme was rapidly and markedly stimulated by the addition of triiodothyronine to chick embryo liver cells in culture. Alpha-Amanitin, an inhibitor of DNA-dependent RNA polymerase II, blocked induction. The kinetics of induction and de-induction of malic enzyme synthesis suggested that the most stable event in triiodothyronine induction had a half-life of 18 to 20 h. However, malic enzyme synthesis decayed with a half-life of 2,4 h when transcription was inhibited with alpha-amanitin. Thus a long-lived event in thyroid hormone stimulation of malic enzyme synthesis occurred prior to transcription of a specific messenger RNA (mRNA), presumably malic enzyme mRNA. Malic enzyme synthesis decayed with a half-life of about 2 h when glucagon was added to pre-induced liver cells. The similarity of decay rates after inhibition of transcription with alpha-amanitin or inhibition of malic enzyme synthesis by glucagon suggests that glucagon may inhibit the transcription or processing of a specific mRNA required for malic enzyme synthesis.

  4. Plant enzyme synthesis: Hormonal regulation of invertase and peroxidase synthesis in sugar cane.

    Science.gov (United States)

    Gayler, K R; Glasziou, K T

    1968-06-01

    Using sugar-cane internodal tissue in which RNA synthesis was ratelimiting for invertase of peroxidase synthesis, measurements were made of enzymeforming-capacity after blocking further RNA synthesis with actinomycin D or 6-methylpurine. In this way it was possible to determine whether added auxin (naphthaleneacetic acid) or gibberellic acid (GA3) affected steps prior or subsequent to synthesis of the RNA fractions specifically required for synthesis of either enzyme. Both auxin and GA3 increased the enzyme-forming-capacity for invertase but not for peroxidase. The effects of the two hormones are interpreted as causing stabilization of mRNA for invertase.Abscisic acid (ABA) increased the rate of synthesis of invertase but not peroxidase. ABA did not change the rate of loss of invertase when peptide-bond formation was blocked with cycloheximide, but stimulated its synthesis when RNA synthesis was blocked with 6-methyl purine. Hence, the site of action of ABA is subsequent to invertase-mRNA formation and prior to invertase destruction.Kinetin had no short-term effects when RNA synthesis was limiting for invertase production, and does not appear to directly modulate mRNA synthesis or stabilization, or amino-acid-polymerization steps. In treatments longer than 5 hours, kinetin inhibited synthesis of all three enzymes studied, so that its effect on enzyme synthesis in this tissue appears to be unspecific.

  5. Aberrant expression and hormonal regulation of Galectin-3 in endometriosis women with infertility.

    Science.gov (United States)

    Yang, H; Yin, J; Ficarrotta, K; Hsu, S H; Zhang, W; Cheng, C

    2016-07-01

    To investigate the role and potential molecular mechanism of Galectin-3 (Gal-3) in the etiology of endometriosis-associated infertility. We detected Gal-3 expression in eutopic endometrium from women with endometriosis-associated infertility and healthy women without endometriosis or infertility. We then evaluated Gal-3 expression in endometrial glandular epithelial cells (EECs) and endometrial stromal cells (ESCs) and investigated its response to hormone stimulation in EECs and ESCs from both groups of women. Results of real-time PCR and western blot analysis showed Gal-3 expression in both proliferative and secretory stages of the menstrual cycle decreased significantly in women with endometriosis-associated infertility compared to healthy women. The changes in expression of Gal-3 were more dramatic in EECs than ESCs. Moreover, estrogen (E2) and progesterone (P4) induced Gal-3 expression in EECs of healthy groups, and P4 was more significant than E2 and combined E2 and P4 (E2P4). However, in the endometriosis group, P4 failed to induce a similar increase in Gal-3 expression. Our results suggest that aberrant expression of Gal-3 might contribute to infertility in patients with endometriosis due to progesterone resistance.

  6. Hormone-regulated defense and stress response networks contribute to heterosis in Arabidopsis F1 hybrids.

    Science.gov (United States)

    Groszmann, Michael; Gonzalez-Bayon, Rebeca; Lyons, Rebecca L; Greaves, Ian K; Kazan, Kemal; Peacock, W James; Dennis, Elizabeth S

    2015-11-17

    Plant hybrids are extensively used in agriculture to deliver increases in yields, yet the molecular basis of their superior performance (heterosis) is not well understood. Our transcriptome analysis of a number of Arabidopsis F1 hybrids identified changes to defense and stress response gene expression consistent with a reduction in basal defense levels. Given the reported antagonism between plant immunity and growth, we suggest that these altered patterns of expression contribute to the greater growth of the hybrids. The altered patterns of expression in the hybrids indicate decreases to the salicylic acid (SA) biosynthesis pathway and increases in the auxin [indole-3-acetic acid (IAA)] biosynthesis pathway. SA and IAA are hormones known to control stress and defense responses as well as plant growth. We found that IAA-targeted gene activity is frequently increased in hybrids, correlating with a common heterotic phenotype of greater leaf cell numbers. Reduced SA concentration and target gene responses occur in the larger hybrids and promote increased leaf cell size. We demonstrated the importance of SA action to the hybrid phenotype by manipulating endogenous SA concentrations. Increasing SA diminished heterosis in SA-reduced hybrids, whereas decreasing SA promoted growth in some hybrids and phenocopied aspects of hybrid vigor in parental lines. Pseudomonas syringae infection of hybrids demonstrated that the reductions in basal defense gene activity in these hybrids does not necessarily compromise their ability to mount a defense response comparable to the parents.

  7. Ovaries and regulation of juvenile hormone titer in Acheta domesticus L. (Orthoptera).

    Science.gov (United States)

    Renucci, M; Strambi, C; Strambi, A; Augier, R; Charpin, P

    1990-04-01

    A study was performed on females Acheta domesticus to examine the effects of various experimental conditions on the ovarian physiology. Using a radioimmunoassay to determine juvenile hormone (JH) titers as well as in vitro JH biosynthesis, we observed that retention of mature follicles in egg-retaining females, i.e., virgins or mated females not provided an egg-laying substrate, inhibits JH production and consequently oocyte development. Mating in intact as well as ovariectomized females does not affect corpora allata activity. It is only when mating is associated with egg laying that JH biosynthesis and hemolymph titers increased and oocyte development and fecundity are stimulated. Despite lower JH biosynthesis, ovariectomized females present enlarged corpora allata and the levels of JH observed in their hemolymph were intermediate between those of intact egg-laying and virgin females. In intact females, the hemolymph JH titers as well as the JH esterase activities were related to ovarian development. JH esterase activity was very high in ovariectomized animals. Several factors involved in ovarian development of A. domesticus are discussed.

  8. Hormone therapy in acne

    Directory of Open Access Journals (Sweden)

    Chembolli Lakshmi

    2013-01-01

    Full Text Available Underlying hormone imbalances may render acne unresponsive to conventional therapy. Relevant investigations followed by initiation of hormonal therapy in combination with regular anti-acne therapy may be necessary if signs of hyperandrogenism are present. In addition to other factors, androgen-stimulated sebum production plays an important role in the pathophysiology of acne in women. Sebum production is also regulated by other hormones, including estrogens, growth hormone, insulin, insulin-like growth factor-1, glucocorticoids, adrenocorticotropic hormone, and melanocortins. Hormonal therapy may also be beneficial in female acne patients with normal serum androgen levels. An understanding of the sebaceous gland and the hormonal influences in the pathogenesis of acne would be essential for optimizing hormonal therapy. Sebocytes form the sebaceous gland. Human sebocytes express a multitude of receptors, including receptors for peptide hormones, neurotransmitters and the receptors for steroid and thyroid hormones. Various hormones and mediators acting through the sebocyte receptors play a role in the orchestration of pathogenetic lesions of acne. Thus, the goal of hormonal treatment is a reduction in sebum production. This review shall focus on hormonal influences in the elicitation of acne via the sebocyte receptors, pathways of cutaneous androgen metabolism, various clinical scenarios and syndromes associated with acne, and the available therapeutic armamentarium of hormones and drugs having hormone-like actions in the treatment of acne.

  9. Molecular cloning, genomic organization, and developmental regulation of a novel receptor from Drosophila melanogaster structurally related to members of the thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone/choriogonadotropin receptor family from mammals

    DEFF Research Database (Denmark)

    Hauser, F; Nothacker, H P; Grimmelikhuijzen, C J

    1997-01-01

    ); follicle-stimulating hormone (FSH); luteinizing hormone/choriogonadotropin (LH/CG)) receptor family from mammals. This homology includes a very large, extracellular N terminus (20% sequence identity with rat TSH, 19% with rat FSH, and 20% with the rat LH/CG receptor) and a seven-transmembrane region (53...

  10. Pituitary gonadotropins, prolactin and growth hormone differentially regulate AQP1 expression in the porcine ovarian follicular cells

    DEFF Research Database (Denmark)

    Skowronski, Mariusz T.; Mlotkowska, Patrycja; Tanski, Damian

    2018-01-01

    -stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL) and growth hormone (GH) for 24 h in separated cells and co-cultures of these cells. Real-time PCR, Western blotting, immunofluorescence and volumetric analysis were then performed. Gonadotropins, PRL and GH had a stimulatory impact on AQP1 m...

  11. The chicken pituitary-specific transcription factor Pit-1 is involved in the hypothalamic regulation of pituitary hormones

    NARCIS (Netherlands)

    As, van P.; Janssens, K.; Pals, K.; Groef, De B.; Onagbesan, O.M.; Bruggeman, V.; Darras, V.M.; Denef, C.; Decuypere, E.

    2006-01-01

    Pit-1 is a pituitary-specific POU-domain DNA binding factor, which binds to and trans-activates promoters of growth hormone- (GH), prolactin- (PRL) and thyroid stimulating hormone-beta- (TSHbeta) encoding genes. Thyrotropin-releasing hormone (TRH) is located in the hypothalamus and stimulates TSH,

  12. Tumor necrosis factor α inhibits expression of the iron regulating hormone hepcidin in murine models of innate colitis.

    Directory of Open Access Journals (Sweden)

    Nanda Kumar N Shanmugam

    Full Text Available Abnormal expression of the liver peptide hormone hepcidin, a key regulator of iron homeostasis, contributes to the pathogenesis of anemia in conditions such as inflammatory bowel disease (IBD. Since little is known about the mechanisms that control hepcidin expression during states of intestinal inflammation, we sought to shed light on this issue using mouse models.Hepcidin expression was evaluated in two types of intestinal inflammation caused by innate immune activation-dextran sulfate sodium (DSS-induced colitis in wild-type mice and the spontaneous colitis occurring in T-bet/Rag2-deficient (TRUC mice. The role of tumor necrosis factor (TNF α was investigated by in vivo neutralization, and by treatment of a hepatocyte cell line, as well as mice, with the recombinant cytokine. Expression and activation of Smad1, a positive regulator of hepcidin transcription, were assessed during colitis and following administration or neutralization of TNFα. Hepcidin expression progressively decreased with time during DSS colitis, correlating with changes in systemic iron distribution. TNFα inhibited hepcidin expression in cultured hepatocytes and non-colitic mice, while TNFα neutralization during DSS colitis increased it. Similar results were obtained in TRUC mice. These effects involved a TNFα-dependent decrease in Smad1 protein but not mRNA.TNFα inhibits hepcidin expression in two distinct types of innate colitis, with down-regulation of Smad1 protein playing an important role in this process. This inhibitory effect of TNFα may be superseded by other factors in the context of T cell-mediated colitis given that in the latter form of intestinal inflammation hepcidin is usually up-regulated.

  13. Crosstalk between thyroid hormone receptor and liver X receptor in the regulation of selective Alzheimer's disease indicator-1 gene expression.

    Directory of Open Access Journals (Sweden)

    Emi Ishida

    Full Text Available Selective Alzheimer's disease (AD indicator 1 (Seladin-1 has been identified as a gene down-regulated in the degenerated lesions of AD brain. Up-regulation of Seladin-1 reduces the accumulation of β-amyloid and neuronal death. Thyroid hormone (TH exerts an important effect on the development and maintenance of central nervous systems. In the current study, we demonstrated that Seladin-1 gene and protein expression in the forebrain was increased in thyrotoxic mice compared with that of euthyroid mice. However, unexpectedly, no significant decrease in the gene and protein expression was observed in hypothyroid mice. Interestingly, an agonist of liver X receptor (LXR, TO901317 (TO administration in vivo increased Seladin-1 gene and protein expression in the mouse forebrain only in a hypothyroid state and in the presence of mutant TR-β, suggesting that LXR-α would compensate for TR-β function to maintain Seladin-1 gene expression in hypothyroidism and resistance to TH. TH activated the mouse Seladin-1 gene promoter (-1936/+21 bp and site 2 including canonical TH response element (TRE half-site in the region between -159 and -154 bp is responsible for the positive regulation. RXR-α/TR-β heterodimerization was identified on site 2 by gel-shift assay, and chromatin immunoprecipitation assay revealed the recruitment of TR-β to site 2 and the recruitment was increased upon TH administration. On the other hand, LXR-α utilizes a distinct region from site 2 (-120 to -102 bp to activate the mouse Seladin-1 gene promoter. Taking these findings together, we concluded that TH up-regulates Seladin-1 gene expression at the transcriptional level and LXR-α maintains the gene expression.

  14. Oligoadenylate synthetase 1 (OAS1 expression in human breast and prostate cancer cases, and its regulation by sex steroid hormones

    Directory of Open Access Journals (Sweden)

    Cláudio Jorge Maia

    2016-06-01

    Full Text Available Oligoadenylate synthetase 1 (OAS1 is an interferon-induced protein characterised by its capacity to catalyse the synthesis of 2ʹ-5ʹ-linked oligomers of adenosine from adenosine triphosphate (2-5A. The 2-5A binds to a latent Ribonuclease L (RNase L, which subsequently dimerises into its active form and may play an important role in the control of cell growth, differentiation and apoptosis. Previously, our research group identified OAS1 as a differentially-expressed gene in breast and prostate cancer cell lines when compared to normal cells. This study evaluates: i the expression of OAS1 in human breast and prostate cancer specimens; and ii the effect of sex steroid hormones in regulating the expression of OAS1 in breast (MCF-7 and prostate (LNCaP cancer cell lines. The obtained results showed that OAS1 expression was down-regulated in human infiltrative ductal carcinoma of breast, adenocarcinoma of prostate, and benign prostate hyperplasia, both at mRNA and protein level. In addition, OAS1 expression was negatively correlated with the progression of breast and prostate cancer. With regards to the regulation of OAS1 gene, it was demonstrated that 17β-estradiol (E2 down-regulates OAS1 gene in MCF-7 cell lines, an effect that seems to be dependent on the activation of oestrogen receptor (ER. On the other hand, 5α-dihydrotestosterone (DHT treatment showed no effect on the expression of OAS1 in LNCaP cell lines. The lower levels of OAS1 in breast and prostate cancer cases indicated that the OAS1/RNaseL apoptotic pathway may be compromised in breast and prostate tumours. Moreover, the present findings suggested that this effect may be enhanced by oestrogen in ER-positive breast cancers.

  15. Involvement of phospholipase C and intracellular calcium signaling in the gonadotropin-releasing hormone regulation of prolactin release from lactotrophs of tilapia (Oreochromis mossambicus)

    DEFF Research Database (Denmark)

    Tipsmark, Christian Kølbæk; Weber, G M; Strom, C N

    2005-01-01

    Gonadotropin-releasing hormone (GnRH) is a potent stimulator of prolactin (PRL) secretion in various vertebrates including the tilapia, Oreochromis mossambicus. The mechanism by which GnRH regulates lactotroph cell function is poorly understood. Using the advantageous characteristics of the teleost...

  16. Regulation of Id2 expression in EL4 T lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Weigent, Douglas A

    2009-01-01

    In previous studies, we have shown that overexpression of growth hormone (GH) in cells of the immune system upregulates proteins involved in cell growth and protects from apoptosis. Here, we report that overexpression of GH in EL4 T lymphoma cells (GHo) also significantly increased levels of the inhibitor of differentiation-2 (Id2). The increase in Id2 was suggested in both Id2 promoter luciferase assays and by Western analysis for Id2 protein. To identify the regulatory elements that mediate transcriptional activation by GH in the Id2 promoter, promoter deletion analysis was performed. Deletion analysis revealed that transactivation involved a 301-132bp region upstream to the Id2 transcriptional start site. The pattern in the human GHo Jurkat T lymphoma cell line paralleled that found in the mouse GHo EL4 T lymphoma cell line. Significantly less Id2 was detected in the nucleus of GHo EL4 T lymphoma cells compared to vector alone controls. Although serum increased the levels of Id2 in control vector alone cells, no difference was found in the total levels of Id2 in GHo EL4 T lymphoma cells treated with or without serum. The increase in Id2 expression in GHo EL4 T lymphoma cells measured by Id2 promoter luciferase expression and Western blot analysis was blocked by the overexpression of a dominant-negative mutant of STAT5. The results suggest that in EL4 T lymphoma cells overexpressing GH, there is an upregulation of Id2 protein that appears to involve STAT protein activity.

  17. Short sleep duration, glucose dysregulation and hormonal regulation of appetite in men and women.

    Science.gov (United States)

    St-Onge, Marie-Pierre; O'Keeffe, Majella; Roberts, Amy L; RoyChoudhury, Arindam; Laferrère, Blandine

    2012-11-01

    To determine the hormonal effects of reducing sleep duration under controlled feeding conditions. Randomized, crossover study. Inpatient. Twenty-seven normal weight, 30- to 45-yr-old men and women habitually sleeping 7-9 hr/night. PARTICIPANTS WERE STUDIED UNDER TWO SLEEP CONDITIONS: short (4 hr in bed) or habitual (9 hr in bed) sleep. A controlled diet was provided for each 4-day study period. Fasting blood samples were obtained daily and frequent blood samples were obtained throughout day 4. The main outcomes measures included glucose, insulin, leptin, ghrelin, adiponectin, total glucagon-like peptide 1 (GLP-1) and peptide YY(3-36) (PYY(3-36)) concentrations. Body weights were reduced by 2.2 ± 0.4 lb and 1.7 ± 0.4 lb during the habitual and short sleep phases, respectively (both P sleep duration on glucose, insulin, and leptin profiles (all P > 0.05). Ghrelin and GLP-1 responses differed by sex. Short sleep increased fasting (P = 0.054) and morning (08:00-12:00) (P = 0.042) total ghrelin in men but not women. The reverse was observed for GLP-1: afternoon levels (12:30-19:00) were lower (P = 0.016) after short sleep compared with habitual sleep in women but not men. These data suggest that, in the context of negative energy balance, short sleep does not lead to a state of increased insulin resistance, but may predispose to overeating via separate mechanisms in men and women. Trial registration on http://www.clinicaltrials.gov. #NCT00935402.

  18. Growth hormone regulates the sensitization of developing peripheral nociceptors during cutaneous inflammation

    Science.gov (United States)

    Liu, Xiaohua; Green, Kathryn J.; Ford, Zachary K.; Queme, Luis F.; Lu, Peilin; Ross, Jessica L.; Lee, Frank B.; Shank, Aaron T.; Hudgins, Renita C.; Jankowski, Michael P.

    2016-01-01

    Cutaneous inflammation alters the function of primary afferents and gene expression in the affected dorsal root ganglia (DRGs). However specific mechanisms of injury-induced peripheral afferent sensitization and behavioral hypersensitivity during development are not fully understood. Recent studies in children suggest a potential role for growth hormone (GH) in pain modulation. GH modulates homeostasis and tissue repair after injury, but how GH effects nociception in neonates is not known. To determine if GH played a role in modulating sensory neuron function and hyper-responsiveness during skin inflammation in young mice, we examined behavioral hypersensitivity and the response properties of cutaneous afferents using an ex vivo hairy skin-saphenous nerve-dorsal root ganglion (DRG)-spinal cord preparation. Results show that inflammation of the hairy hindpaw skin initiated at either postnatal day 7 (P7) or P14 reduced GH levels specifically in the affected skin. Furthermore, pretreatment of inflamed mice with exogenous GH reversed mechanical and thermal hypersensitivity in addition to altering nociceptor function. These effects may be mediated via an upregulation of insulin-like growth factor 1 receptor (IGFr1) as GH modulated the transcriptional output of IGFr1 in DRG neurons in vitro and in vivo. Afferent-selective knockdown of IGFr1 during inflammation also prevented the observed injury-induced alterations in cutaneous afferents and behavioral hypersensitivity similar to that following GH pretreatment. These results suggest that GH can block inflammation-induced nociceptor sensitization during postnatal development leading to reduced pain-like behaviors, possibly by suppressing the upregulation of IGFr1 within DRGs. PMID:27898492

  19. Intermittent Administration of Parathyroid Hormone 1–34 Enhances Osteogenesis of Human Mesenchymal Stem Cells by Regulating Protein Kinase Cδ

    Directory of Open Access Journals (Sweden)

    Shu-Wen Kuo

    2017-10-01

    Full Text Available Human mesenchymal stem cells (hMSCs can differentiate into osteoblasts and are regulated by chemical cues. The recombinant N-terminal (1–34 amino acids fragment of the parathyroid hormone (PTH (1–34 is identified to promote osteogenesis. The osteoanabolic effects of intermittent PTH (1–34 treatment are linked to a complex consisting of signaling pathways; additionally, protein kinase C (PKC act as mediators of multifunctional signaling transduction pathways, but the role of PKC δ (PKCδ, a downstream target in regulating osteoblast differentiation during intermittent administration of PTH (1–34 is less studied and still remains elusive. The purpose of this study is to examine the role of PKCδ during intermittent and continuous PTH (1–34 administration using osteoblast-lineage-committed hMSCs. Relative gene expression of osteoblast-specific genes demonstrated significant upregulation of RUNX2, type I Collagen, ALP, and Osterix and increased alkaline phosphatase activity in the presence of PTH (1–34. Intermittent PTH (1–34 administration increased PKC activity at day 7 of osteogenic differentiation, whereas inhibition of PKC activity attenuated these effects. In addition, the specific isoform PKCδ was activated upon treatment. These findings demonstrate that intermittent PTH (1–34 treatment enhances the osteogenesis of hMSCs by upregulating osteoblast-specific genes via PKCδ activation.

  20. Regulation of Appetite, Body Composition, and Metabolic Hormones by Vasoactive Intestinal Polypeptide (VIP)

    OpenAIRE

    Vu, JP; LARAUCHE, M.; Flores, M; Luong, L.; Norris, J.; Oh, S.(Department of Physics, Duke University, Durham, NC, United States of America); Liang, LJ; Waschek, J; Pisegna, JR; Germano, PM

    2015-01-01

    © 2015, Springer Science+Business Media New York (outside the USA). Vasoactive intestinal peptide (VIP) is a 28-amino acid neuropeptide that belongs to the secretin-glucagon superfamily of peptides and has 68 % homology with PACAP. VIP is abundantly expressed in the central and peripheral nervous system and in the gastrointestinal tract, where it exercises several physiological functions. Previously, it has been reported that VIP regulates feeding behavior centrally in different species of ve...

  1. Lactation and appetite-regulating hormones: increased maternal plasma peptide YY concentrations 3-6 months postpartum.

    Science.gov (United States)

    Vila, Greisa; Hopfgartner, Judith; Grimm, Gabriele; Baumgartner-Parzer, Sabina M; Kautzky-Willer, Alexandra; Clodi, Martin; Luger, Anton

    2015-10-28

    Breast-feeding is associated with maternal hormonal and metabolic changes ensuring adequate milk production. In this study, we investigate the impact of breast-feeding on the profile of changes in maternal appetite-regulating hormones 3-6 months postpartum. Study participants were age- and BMI-matched lactating mothers (n 10), non-lactating mothers (n 9) and women without any history of pregnancy or breast-feeding in the previous 12 months (control group, n 10). During study sessions, young mothers breast-fed or bottle-fed their babies, and maternal blood samples were collected at five time points during 90 min: before, during and after feeding the babies. Outcome parameters were plasma concentrations of ghrelin, peptide YY (PYY), leptin, adiponectin, prolactin, cortisol, insulin, glucose and lipid values. At baseline, circulating PYY concentrations were significantly increased in lactating mothers (100·3 (se 6·7) pg/ml) v. non-lactating mothers (73·6 (se 4·9) pg/ml, P=0·008) and v. the control group (70·2 (se 9) pg/ml, P=0·021). We found no differences in ghrelin, leptin and adiponectin values. Baseline prolactin concentrations were over 4-fold higher in lactating mothers (PLactating women had reduced TAG levels and LDL-cholesterol:HDL-cholesterol ratio, but increased waist circumference, when compared with non-lactating women. Breast-feeding sessions further elevated circulating prolactin (Plactation. PYY might play a role in the coordination of energy balance during lactation, increasing fat mobilisation from maternal depots and ensuring adequate milk production for the demands of the growing infant.

  2. Isolation and characterization of a rice glutathione S-transferase gene promoter regulated by herbicides and hormones.

    Science.gov (United States)

    Hu, Tingzhang; He, Shuai; Yang, Guojun; Zeng, Hua; Wang, Guixue; Chen, Zaigang; Huang, Xiaoyun

    2011-04-01

    OsGSTL2, encoding glutathione S-transferase, is a lambda class gene on chromosome 3 of rice (Oryza sativa L.). RNA blot analysis and semi-quantitative RT-PCR assays demonstrated that the transcription of OsGSTL2 in rice roots treated with chlorsulfuron increased significantly. To further understand OsGSTL2 promoter activity, a DNA fragment (GST2171) of 2,171 bp upstream of the OsGSTL2 coding region was isolated. In silico sequence analysis revealed that this fragment contains stress-regulated regulatory elements, hormone-responsive elements and three transposable elements. To define the core promoter sequence, a series of 5' truncation derivatives of GST2171 were fused to uidA gene. The chimeric genes were introduced into rice plants via Agrobacterium-mediated transformation. The expression of the GST2171::GUS transgene varied considerably. GUS staining indicated that the uidA gene is expressed in young seedlings, older leaves, flowering glumes and seeds, but not in older roots. Quantitative fluorescence assays revealed that the expression of the uidA gene is strong in young seedlings and decreases gradually over a period of 25 days. To our surprise, among the 5' truncation derivatives, the shortest promoter GST525 showed the highest GUS expression, and the second shortest promoter GST962 showed the lowest GUS expression. The uidA gene expression in the roots of transgenic rice seedlings is upregulated by chlorsulfuron, glyphosate, salicylic acid (SA) and naphthalene acetic acid (NAA). The possible roles of the repetitive elements on the OsGSTL2 promoter were discussed in terms of transcription repression and promoter induction by herbicides and hormones.

  3. Putative molecular mechanism underlying sperm chromatin remodelling is regulated by reproductive hormones

    Directory of Open Access Journals (Sweden)

    Gill-Sharma Manjeet Kaur

    2012-12-01

    Full Text Available Abstract Background The putative regulatory role of the male reproductive hormones in the molecular mechanism underlying chromatin condensation remains poorly understood. In the past decade, we developed two adult male rat models wherein functional deficits of testosterone or FSH, produced after treatments with 20 mg/Kg/d of cyproterone acetate (CPA per os, for a period of 15 days or 3 mg/Kg/d of fluphenazine decanoate (FD subcutaneously, for a period of 60 days, respectively, affected the rate of sperm chromatin decondensation in vitro. These rat models have been used in the current study in order to delineate the putative roles of testosterone and FSH in the molecular mechanism underlying remodelling of sperm chromatin. Results We report that deficits of both testosterone and FSH affected the turnover of polyubiquitylated histones and led to their accumulation in the testis. Functional deficits of testosterone reduced expression of MIWI, the 5-methyl cap binding RNA-binding protein (PIWIlike murine homologue of the Drosophila protein PIWI/P-element induced wimpy testis containing a PAZ/Piwi-Argonaut-Zwille domain and levels of histone deacetylase1 (HDAC1, ubiquitin ligating enzyme (URE-B1/E3, 20S proteasome α1 concomitant with reduced expression of ubiquitin activating enzyme (ube1, conjugating enzyme (ube2d2, chromodomain Y like protein (cdyl, bromodomain testis specific protein (brdt, hdac6 (histone deacetylase6, androgen-dependent homeobox placentae embryonic protein (pem/RhoX5, histones h2b and th3 (testis-specific h3. Functional deficits of FSH reduced the expression of cdyl and brdt genes in the testis, affected turnover of ubiquitylated histones, stalled the physiological DNA repair mechanism and culminated in spermiation of DNA damaged sperm. Conclusions We aver that deficits of both testosterone and FSH differentially affected the process of sperm chromatin remodelling through subtle changes in the ‘chromatin condensation

  4. Gender differences in autonomic cardiovascular regulation: spectral, hormonal, and hemodynamic indexes

    Science.gov (United States)

    Evans, J. M.; Ziegler, M. G.; Patwardhan, A. R.; Ott, J. B.; Kim, C. S.; Leonelli, F. M.; Knapp, C. F.

    2001-01-01

    The autonomic nervous system drives variability in heart rate, vascular tone, cardiac ejection, and arterial pressure, but gender differences in autonomic regulation of the latter three parameters are not well documented. In addition to mean values, we used spectral analysis to calculate variability in arterial pressure, heart rate (R-R interval, RRI), stroke volume, and total peripheral resistance (TPR) and measured circulating levels of catecholamines and pancreatic polypeptide in two groups of 25 +/- 1.2-yr-old, healthy men and healthy follicular-phase women (40 total subjects, 10 men and 10 women per group). Group 1 subjects were studied supine, before and after beta- and muscarinic autonomic blockades, administered singly and together on separate days of study. Group 2 subjects were studied supine and drug free with the additional measurement of skin perfusion. In the unblocked state, we found that circulating levels of epinephrine and total spectral power of stroke volume, TPR, and skin perfusion ranged from two to six times greater in men than in women. The difference (men > women) in spectral power of TPR was maintained after beta- and muscarinic blockades, suggesting that the greater oscillations of vascular resistance in men may be alpha-adrenergically mediated. Men exhibited muscarinic buffering of mean TPR whereas women exhibited beta-adrenergic buffering of mean TPR as well as TPR and heart rate oscillations. Women had a greater distribution of RRI power in the breathing frequency range and a less negative slope of ln RRI power vs. ln frequency, both indicators that parasympathetic stimuli were the dominant influence on women's heart rate variability. The results of our study suggest a predominance of sympathetic vascular regulation in men compared with a dominant parasympathetic influence on heart rate regulation in women.

  5. Developmental and hormonal regulation of gibberellin biosynthesis and catabolism in pea fruit.

    Science.gov (United States)

    Ozga, Jocelyn A; Reinecke, Dennis M; Ayele, Belay T; Ngo, Phuong; Nadeau, Courtney; Wickramarathna, Aruna D

    2009-05-01

    In pea (Pisum sativum), normal fruit growth requires the presence of the seeds. The coordination of growth between the seed and ovary tissues involves phytohormones; however, the specific mechanisms remain speculative. This study further explores the roles of the gibberellin (GA) biosynthesis and catabolism genes during pollination and fruit development and in seed and auxin regulation of pericarp growth. Pollination and fertilization events not only increase pericarp PsGA3ox1 message levels (codes for GA 3-oxidase that converts GA(20) to bioactive GA(1)) but also reduce pericarp PsGA2ox1 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA(20) to GA(29)), suggesting a concerted regulation to increase levels of bioactive GA(1) following these events. 4-Chloroindole-3-acetic acid (4-Cl-IAA) was found to mimic the seeds in the stimulation of PsGA3ox1 and the repression of PsGA2ox1 mRNA levels as well as the stimulation of PsGA2ox2 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA(1) to GA(8)) in pericarp at 2 to 3 d after anthesis, while the other endogenous pea auxin, IAA, did not. This GA gene expression profile suggests that both seeds and 4-Cl-IAA can stimulate the production, as well as modulate the half-life, of bioactive GA(1), leading to initial fruit set and subsequent growth and development of the ovary. Consistent with these gene expression profiles, deseeded pericarps converted [(14)C]GA(12) to [(14)C]GA(1) only if treated with 4-Cl-IAA. These data further support the hypothesis that 4-Cl-IAA produced in the seeds is transported to the pericarp, where it differentially regulates the expression of pericarp GA biosynthesis and catabolism genes to modulate the level of bioactive GA(1) required for initial fruit set and growth.

  6. C/EBPβ Mediates Growth Hormone-Regulated Expression of Multiple Target Genes

    Science.gov (United States)

    Cui, Tracy X.; Lin, Grace; LaPensee, Christopher R.; Calinescu, Anda-Alexandra; Rathore, Maanjot; Streeter, Cale; Piwien-Pilipuk, Graciela; Lanning, Nathan; Jin, Hui; Carter-Su, Christin; Qin, Zhaohui S.

    2011-01-01

    Regulation of c-Fos transcription by GH is mediated by CCAAT/enhancer binding protein β (C/EBPβ). This study examines the role of C/EBPβ in mediating GH activation of other early response genes, including Cyr61, Btg2, Socs3, Zfp36, and Socs1. C/EBPβ depletion using short hairpin RNA impaired responsiveness of these genes to GH, as seen for c-Fos. Rescue with wild-type C/EBPβ led to GH-dependent recruitment of the coactivator p300 to the c-Fos promoter. In contrast, rescue with C/EBPβ mutated at the ERK phosphorylation site at T188 failed to induce GH-dependent recruitment of p300, indicating that ERK-mediated phosphorylation of C/EBPβ at T188 is required for GH-induced recruitment of p300 to c-Fos. GH also induced the occupancy of phosphorylated C/EBPβ and p300 on Cyr61, Btg2, and Socs3 at predicted C/EBP-cAMP response element-binding protein motifs in their promoters. Consistent with a role for ERKs in GH-induced expression of these genes, treatment with U0126 to block ERK phosphorylation inhibited their GH-induced expression. In contrast, GH-dependent expression of Zfp36 and Socs1 was not inhibited by U0126. Thus, induction of multiple early response genes by GH in 3T3-F442A cells is mediated by C/EBPβ. A subset of these genes is regulated similarly to c-Fos, through a mechanism involving GH-stimulated ERK 1/2 activation, phosphorylation of C/EBPβ, and recruitment of p300. Overall, these studies suggest that C/EBPβ, like the signal transducer and activator of transcription proteins, regulates multiple genes in response to GH. PMID:21292824

  7. Hormonal regulation of the gravity s negative control of morphogenesis in cucumber seedlings

    Science.gov (United States)

    Takahashi, H.; Kamada, M.; Saito, Y.; Fujii, N.

    Just after germination, seedlings of most cucurbitaceous plants develop a peg to pull the cotyledons and plumule out from the seed coat. The peg usually develops on the concave side of the gravitropically bending transition zone between the hypocotyl and the root. Because cucumber seedlings grown in microgravity developed a peg on each side of the transition zone, it was suggested that peg formation was negatively regulated by gravity on Earth. It has also been suggested that auxin is an essential factor responsible for peg formation. To verify this hypothesis and to understand the molecular mechanism of the gravity-regulated peg formation, we measured the distribution of endogenous auxin in the transition zone, examined the expression patterns of an auxininducible genes (CS-IAAs), auxin response factor and auxin carrier genes (CS-ARFs, CS-AUX1, CS-PIN1). Because ethylene modifies peg development, we examined the expression of ACC synthase genes (CS-ACSs) and its relation to the auxin-mediated development of peg. Furthermore, we examined some other factors that might interact with auxin for peg formation. Based on the results of these studies, we propose a model for the mechanism of peg formation in cucumber seedlings.

  8. Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley.

    Science.gov (United States)

    Bahin, Emilie; Bailly, Christophe; Sotta, Bruno; Kranner, Ilse; Corbineau, Françoise; Leymarie, Juliette

    2011-06-01

    Seed dormancy, defined as the inability to germinate under favourable conditions, is controlled by abscisic acid (ABA) and gibberellins (GAs). Phytohormone signalling interacts with reactive oxygen species (ROS) signalling regarding diverse aspects of plant physiology and is assumed to be important in dormancy alleviation. Using dormant barley grains that do not germinate at 30 °C in darkness, we analysed ROS content and ROS-processing systems, ABA content and metabolism, GA-responsive genes and genes involved in GA metabolism in response to hydrogen peroxide (H₂O₂) treatment. During after-ripening, the ROS content in the embryo was not affected, while the antioxidant glutathione (GSH) was gradually converted to glutathione disulphide (GSSG). ABA treatment up-regulated catalase activity through transcriptional activation of HvCAT2. Exogenous H₂O₂ partially alleviated dormancy although it was associated with a small increase in embryonic ABA content related to a slight induction of HvNCED transcripts. H₂O₂ treatment did not affect ABA sensitivity but up-regulated the expression of HvExpA11 (GA-induced gene), inhibited the expression of HvGA2ox3 involved in GA catabolism and enhanced the expression of HvGA20ox1 implicated in GA synthesis. In barley, H₂O₂ could be implicated in dormancy alleviation through activation of GA signalling and synthesis rather than repression of ABA signalling. © 2011 Blackwell Publishing Ltd.

  9. Iodothyronine deiodinase gene analysis of the Pacific oyster Crassostrea gigas reveals possible conservation of thyroid hormone feedback regulation mechanism in mollusks

    Science.gov (United States)

    Huang, Wen; Xu, Fei; Qu, Tao; Li, Li; Que, Huayong; Zhang, Guofan

    2015-07-01

    Iodothyronine deiodinase catalyzes the initiation and termination of thyroid hormones (THs) effects, and plays a central role in the regulation of thyroid hormone level in vertebrates. In non-chordate invertebrates, only one deiodinase has been identified in the scallop Chlamys farreri. Here, two deiodinases were cloned in the Pacific oyster Crassostrea gigas ( CgDx and CgDy). The characteristic in-frame TGA codons and selenocysteine insertion sequence elements in the oyster deiodinase cDNAs supported the activity of them. Furthermore, seven orthologs of deiodinases were found by a tblastn search in the mollusk Lottia gigantea and the annelid Capitella teleta. A phylogenetic analysis revealed that the deiodinase gene originated from an common ancestor and a clade-specific gene duplication occurred independently during the differentiation of the mollusk, annelid, and vertebrate lineages. The distinct spatiotemporal expression patterns implied functional divergence of the two deiodinases. The expression of CgDx and CgDy was influenced by L-thyroxine T4, and putative thyroid hormone responsive elements were found in their promoters, which suggested that the oyster deiodinases were feedback regulated by TH. Epinephrine stimulated the expression level of CgDx and CgDy, suggesting an interaction effect between different hormones. This study provides the first evidence for the existence of a conserved TH feedback regulation mechanism in mollusks, providing insights into TH evolution.

  10. The Luteinizing Hormone-Testosterone Pathway Regulates Mouse Spermatogonial Stem Cell Self-Renewal by Suppressing WNT5A Expression in Sertoli Cells.

    Science.gov (United States)

    Tanaka, Takashi; Kanatsu-Shinohara, Mito; Lei, Zhenmin; Rao, C V; Shinohara, Takashi

    2016-08-09

    Spermatogenesis originates from self-renewal of spermatogonial stem cells (SSCs). Previous studies have reported conflicting roles of gonadotropic pituitary hormones in SSC self-renewal. Here, we explored the role of hormonal regulation of SSCs using Fshb and Lhcgr knockout (KO) mice. Although follicle-stimulating hormone (FSH) is thought to promote self-renewal by glial cell line-derived neurotrophic factor (GDNF), no abnormalities were found in SSCs and their microenvironment. In contrast, SSCs were enriched in Lhcgr-deficient mice. Moreover, wild-type SSCs transplanted into Lhcgr-deficient mice showed enhanced self-renewal. Microarray analysis revealed that Lhcgr-deficient testes have enhanced WNT5A expression in Sertoli cells, which showed an immature phenotype. Since WNT5A was upregulated by anti-androgen treatment, testosterone produced by luteinizing hormone (LH) is required for Sertoli cell maturation. WNT5A promoted SSC activity both in vitro and in vivo. Therefore, FSH is not responsible for GDNF regulation, while LH negatively regulates SSC self-renewal by suppressing WNT5A via testosterone. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. The Luteinizing Hormone-Testosterone Pathway Regulates Mouse Spermatogonial Stem Cell Self-Renewal by Suppressing WNT5A Expression in Sertoli Cells

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2016-08-01

    Full Text Available Spermatogenesis originates from self-renewal of spermatogonial stem cells (SSCs. Previous studies have reported conflicting roles of gonadotropic pituitary hormones in SSC self-renewal. Here, we explored the role of hormonal regulation of SSCs using Fshb and Lhcgr knockout (KO mice. Although follicle-stimulating hormone (FSH is thought to promote self-renewal by glial cell line-derived neurotrophic factor (GDNF, no abnormalities were found in SSCs and their microenvironment. In contrast, SSCs were enriched in Lhcgr-deficient mice. Moreover, wild-type SSCs transplanted into Lhcgr-deficient mice showed enhanced self-renewal. Microarray analysis revealed that Lhcgr-deficient testes have enhanced WNT5A expression in Sertoli cells, which showed an immature phenotype. Since WNT5A was upregulated by anti-androgen treatment, testosterone produced by luteinizing hormone (LH is required for Sertoli cell maturation. WNT5A promoted SSC activity both in vitro and in vivo. Therefore, FSH is not responsible for GDNF regulation, while LH negatively regulates SSC self-renewal by suppressing WNT5A via testosterone.

  12. Developmental and Hormonal Regulation of Gibberellin Biosynthesis and Catabolism in Pea Fruit1[OA

    Science.gov (United States)

    Ozga, Jocelyn A.; Reinecke, Dennis M.; Ayele, Belay T.; Ngo, Phuong; Nadeau, Courtney; Wickramarathna, Aruna D.

    2009-01-01

    In pea (Pisum sativum), normal fruit growth requires the presence of the seeds. The coordination of growth between the seed and ovary tissues involves phytohormones; however, the specific mechanisms remain speculative. This study further explores the roles of the gibberellin (GA) biosynthesis and catabolism genes during pollination and fruit development and in seed and auxin regulation of pericarp growth. Pollination and fertilization events not only increase pericarp PsGA3ox1 message levels (codes for GA 3-oxidase that converts GA20 to bioactive GA1) but also reduce pericarp PsGA2ox1 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA20 to GA29), suggesting a concerted regulation to increase levels of bioactive GA1 following these events. 4-Chloroindole-3-acetic acid (4-Cl-IAA) was found to mimic the seeds in the stimulation of PsGA3ox1 and the repression of PsGA2ox1 mRNA levels as well as the stimulation of PsGA2ox2 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA1 to GA8) in pericarp at 2 to 3 d after anthesis, while the other endogenous pea auxin, IAA, did not. This GA gene expression profile suggests that both seeds and 4-Cl-IAA can stimulate the production, as well as modulate the half-life, of bioactive GA1, leading to initial fruit set and subsequent growth and development of the ovary. Consistent with these gene expression profiles, deseeded pericarps converted [14C]GA12 to [14C]GA1 only if treated with 4-Cl-IAA. These data further support the hypothesis that 4-Cl-IAA produced in the seeds is transported to the pericarp, where it differentially regulates the expression of pericarp GA biosynthesis and catabolism genes to modulate the level of bioactive GA1 required for initial fruit set and growth. PMID:19297588

  13. Endogenous hypothalamic somatostatins differentially regulate growth hormone secretion from goldfish pituitary somatotropes in vitro.

    Science.gov (United States)

    Yunker, Warren K; Smith, Sean; Graves, Chad; Davis, Philip J; Unniappan, Surajlal; Rivier, Jean E; Peter, Richard E; Chang, John P

    2003-09-01

    Using Southern blot analysis of RT-PCR products, mRNA for three different somatostatin (SS) precursors (PSS-I, -II, and -III), which encode for SS(14), goldfish brain (gb)SS(28), and [Pro(2)]SS(14), respectively, were detected in goldfish hypothalamus. PSS-I and -II mRNA, but not PSS-III mRNA, were also detected in cultured pituitary cells. We subsequently examined the effects of the mature peptides, SS(14), gbSS(28), and [Pro(2)]SS(14), on somatotrope signaling and GH secretion. The gbSS(28) was more potent than either SS(14) or [Pro(2)]SS(14) in reducing basal GH release but was the least effective in reducing basal cellular cAMP. The ability of SS(14), [Pro(2)]SS(14), and gbSS(28) to attenuate GH responses to GnRH were comparable. However, gbSS(28) was less effective than SS(14) and [Pro(2)]SS(14) in diminishing dopamine- and pituitary adenylate cyclase-activating polypeptide-stimulated GH release, as well as GH release resulting from the activation of their underlying signaling cascades. In contrast, the actions of a different 28-amino-acid SS, mammalian SS(28), were more similar to those of SS(14) and [Pro(2)]SS(14). We conclude that, in goldfish, SSs differentially couple to the intracellular cascades regulating GH secretion from pituitary somatotropes. This raises the possibility that such differences may allow for the selective regulation of various aspects of somatotrope function by different SS peptides.

  14. Insulin-like growth factor-I feedback regulation of growth hormone and luteinizing hormone secretion in the pig: evidence for a pituitary site of action.

    Science.gov (United States)

    Barb, C R; Hausman, G J

    2009-06-01

    Three experiments (EXP) were conducted to determine the role of insulin-like growth factor-I (IGF-I) in the control of growth hormone (GH) and LH secretion. In EXP I, prepuberal gilts, 65 ± 6 kg body weight and 140 days of age received intracerebroventricular (ICV) injections of saline (n = 4), 25 μg (n = 4) or 75 μg (n = 4) IGF-I and jugular blood samples were collected. In EXP II, anterior pituitary cells in culture collected from 150-day-old prepuberal gilts (n = 6) were challenged with 0.1, 10 or 1000 nM [Ala15]-h growth hormone-releasing hormone-(1-29)NH2 (GHRH), or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 1000 nM GHRH. Secreted GH was measured at 4 and 24 h after treatment. In EXP III, anterior pituitary cells in culture collected from 150-day-old barrows (n = 5) were challenged with 10, 100 or 1000 nM gonadotropin-releasing hormone (GnRH) or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 100 nM GnRH. Secreted LH was measured at 4 h after treatment. In EXP I, serum GH and LH concentrations were unaffected by ICV IGF-I treatment. In EXP II, relative to control all doses of GHRH increased (P 0.1). In conclusion, under these experimental conditions the results suggest that the pituitary is the putative site for IGF-I modulation of GH and LH secretion. Further examination of the role of IGF-I on GH and LH secretion is needed to understand the inhibitory and stimulatory action of IGF-I on GH and LH secretion.

  15. Systems approaches to genomic and epigenetic inter-regulation of peptide hormones in stress and reproduction.

    Science.gov (United States)

    Lovejoy, David A; Barsyte-Lovejoy, Dalia

    2013-12-01

    The evolution of the organismal stress response and fertility are two of the most important aspects that drive the fitness of a species. However, the integrated regulation of the hypothalamic pituitary adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes has been traditionally thwarted by the complexity of these systems. Pepidergic signalling systems have emerged as critical integrating systems for stress and reproduction. Current high throughput systems approaches are now providing a detailed understanding of peptide signalling in stress and reproduction. These approaches were dependent upon a long history of discovery aimed at the structural characterization of the associated molecular components. The combination of comparative genomics, microarray and epigenetic studies has led not only to a much greater understanding of the integration of stress and reproduction but also to the discovery of novel physiological systems. Recent epigenomic approaches have similarly yielded a new level of complexity in the interaction of these physiological systems. Together, such studies have provided a greater understanding of the effects of stress and reproduction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Altered regulation of energy homeostasis in older rats in response to thyroid hormone administration.

    Science.gov (United States)

    Walrand, Stephane; Short, Kevin R; Heemstra, Lydia A; Novak, Colleen M; Levine, James A; Coenen-Schimke, Jill M; Nair, K Sreekumaran

    2014-03-01

    Hyperthyroidism causes increased energy intake and expenditure, although anorexia and higher weight loss have been reported in elderly individuals with hyperthyroidism. To determine the effect of age on energy homeostasis in response to experimental hyperthyroidism, we administered 200 μg tri-iodothyronine (T3) in 7- and 27-mo-old rats for 14 d. T3 increased energy expenditure (EE) in both the young and the old rats, although the old rats lost more weight (147 g) than the young rats (58 g) because of the discordant effect of T3 on food intake, with a 40% increase in the young rats, but a 40% decrease in the old ones. The increased food intake in the young rats corresponded with a T3-mediated increase in the appetite-regulating proteins agouti-related peptide, neuropeptide Y, and uncoupling protein 2 in the hypothalamus, but no increase occurred in the old rats. Evidence of mitochondrial biogenesis in response to T3 was similar in the soleus muscle and heart of the young and old animals, but less consistent in old plantaris muscle and liver. Despite the comparable increase in EE, T3's effect on mitochondrial function was modulated by age in a tissue-specific manner. We conclude that older rats lack compensatory mechanisms to increase caloric intake in response to a T3-induced increase in EE, demonstrating a detrimental effect of age on energy homeostasis.

  17. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos

    Directory of Open Access Journals (Sweden)

    Galina Smolikova

    2017-09-01

    Full Text Available The embryos of some angiosperms (usually referred to as chloroembryos contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN (SGR genes are the principle ones. On the biochemical level, abscisic acid (ABA is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds.

  18. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos.

    Science.gov (United States)

    Smolikova, Galina; Dolgikh, Elena; Vikhnina, Maria; Frolov, Andrej; Medvedev, Sergei

    2017-09-16

    The embryos of some angiosperms (usually referred to as chloroembryos) contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN (SGR) genes are the principle ones. On the biochemical level, abscisic acid (ABA) is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds.

  19. Photoperiod-dependent regulation of gonadotropin-releasing hormone 1 messenger ribonucleic acid levels in the songbird brain.

    Science.gov (United States)

    Stevenson, Tyler J; Bernard, Daniel J; McCarthy, Margaret M; Ball, Gregory F

    2013-09-01

    Annual changes in day length induce marked changes in reproductive function in temperate zone vertebrates. In many avian species, in contrast to other seasonally breeding animals, plasticity in hypothalamic gonadotropin-releasing hormone - 1 (GnRH1) expression rather than (or in addition to) release governs changes in pituitary-gonadal activity. Investigations of the cellular and molecular mechanisms that govern GnRH1 plasticity were previously hindered by a collective inability of scientists in the field to characterize the gnrh1 cDNA in songbirds. We finally overcame this roadblock after data from the zebra finch (Taeniopygia guttata) genome project enabled us to rapidly clone the gnrh1 cDNA from hypothalamic RNA of zebra finches and European starlings (Sturnus vulgaris). Here, we review the original data that identified GnRH1 protein plasticity in the songbird brain and discuss earlier failed attempts to clone gnrh1 in these animals. Then, we present recent efforts, including our own, that successfully characterized gnrh1 in zebra finch and starling, and demonstrated dynamic regulation of gnrh1 mRNA expression, particularly in sub-populations of preoptic area neurons, in the latter. Overall, this paper highlights GnRH1 plasticity in the avian brain, and weaves into the narrative the previously untold story of the challenges to sequencing gnrh1 in songbirds. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito Anopheles gambiae.

    Science.gov (United States)

    Baldini, Francesco; Gabrieli, Paolo; South, Adam; Valim, Clarissa; Mancini, Francesca; Catteruccia, Flaminia

    2013-10-01

    Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E) transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO) protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male-female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria.

  1. Developmental link between sex and nutrition; doublesex regulates sex-specific mandible growth via juvenile hormone signaling in stag beetles.

    Directory of Open Access Journals (Sweden)

    Hiroki Gotoh

    2014-01-01

    Full Text Available Sexual dimorphisms in trait expression are widespread among animals and are especially pronounced in ornaments and weapons of sexual selection, which can attain exaggerated sizes. Expression of exaggerated traits is usually male-specific and nutrition sensitive. Consequently, the developmental mechanisms generating sexually dimorphic growth and nutrition-dependent phenotypic plasticity are each likely to regulate the expression of extreme structures. Yet we know little about how either of these mechanisms work, much less how they might interact with each other. We investigated the developmental mechanisms of sex-specific mandible growth in the stag beetle Cyclommatus metallifer, focusing on doublesex gene function and its interaction with juvenile hormone (JH signaling. doublesex genes encode transcription factors that orchestrate male and female specific trait development, and JH acts as a mediator between nutrition and mandible growth. We found that the Cmdsx gene regulates sex differentiation in the stag beetle. Knockdown of Cmdsx by RNA-interference in both males and females produced intersex phenotypes, indicating a role for Cmdsx in sex-specific trait growth. By combining knockdown of Cmdsx with JH treatment, we showed that female-specific splice variants of Cmdsx contribute to the insensitivity of female mandibles to JH: knockdown of Cmdsx reversed this pattern, so that mandibles in knockdown females were stimulated to grow by JH treatment. In contrast, mandibles in knockdown males retained some sensitivity to JH, though mandibles in these individuals did not attain the full sizes of wild type males. We suggest that moderate JH sensitivity of mandibular cells may be the default developmental state for both sexes, with sex-specific Dsx protein decreasing sensitivity in females, and increasing it in males. This study is the first to demonstrate a causal link between the sex determination and JH signaling pathways, which clearly interact to

  2. Nkx2.2 and Arx genetically interact to regulate pancreatic endocrine cell development and endocrine hormone expression.

    Science.gov (United States)

    Mastracci, Teresa L; Wilcox, Crystal L; Arnes, Luis; Panea, Casandra; Golden, Jeffrey A; May, Catherine Lee; Sussel, Lori

    2011-11-01

    Nkx2.2 and Arx are essential pancreatic transcription factors. Nkx2.2 is necessary for the appropriate specification of the islet alpha, beta, PP and epsilon cell lineages, whereas Arx is required to form the correct ratio of alpha, beta, delta and PP cells. To begin to understand the cooperative functions of Nkx2.2 and Arx in the development of endocrine cell lineages, we generated progenitor cell-specific deletions of Arx on the Nkx2.2 null background. The analysis of these mutants demonstrates that expansion of the ghrelin cell population in the Nkx2.2 null pancreas is not dependent on Arx; however, Arx is necessary for the upregulation of ghrelin mRNA levels in Nkx2.2 mutant epsilon cells. Alternatively, in the absence of Arx, delta cell numbers are increased and Nkx2.2 becomes essential for the repression of somatostatin gene expression. Interestingly, the dysregulation of ghrelin and somatostatin expression in the Nkx2.2/Arx compound mutant (Nkx2.2(null);Arx(Δpanc)) results in the appearance of ghrelin+/somatostatin+ co-expressing cells. These compound mutants also revealed a genetic interaction between Nkx2.2 and Arx in the regulation of the PP cell lineage; the PP cell population is reduced when Nkx2.2 is deleted but is restored back to wildtype numbers in the Nkx2.2(null);Arx(Δpanc) mutant. Moreover, conditional deletion of Arx in specific pancreatic cell populations established that the functions of Arx are necessary in the Neurog3+ endocrine progenitors. Together, these experiments identify novel genetic interactions between Nkx2.2 and Arx within the endocrine progenitor cells that ensure the correct specification and regulation of endocrine hormone-producing cells. 2011 Elsevier Inc. All rights reserved.

  3. Arabidopsis JASMONATE-INDUCED OXYGENASES down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid.

    Science.gov (United States)

    Caarls, Lotte; Elberse, Joyce; Awwanah, Mo; Ludwig, Nora R; de Vries, Michel; Zeilmaker, Tieme; Van Wees, Saskia C M; Schuurink, Robert C; Van den Ackerveken, Guido

    2017-06-13

    The phytohormone jasmonic acid (JA) is vital in plant defense and development. Although biosynthesis of JA and activation of JA-responsive gene expression by the bioactive form JA-isoleucine have been well-studied, knowledge on JA metabolism is incomplete. In particular, the enzyme that hydroxylates JA to 12-OH-JA, an inactive form of JA that accumulates after wounding and pathogen attack, is unknown. Here, we report the identification of four paralogous 2-oxoglutarate/Fe(II)-dependent oxygenases in Arabidopsis thaliana as JA hydroxylases and show that they down-regulate JA-dependent responses. Because they are induced by JA we named them JASMONATE-INDUCED OXYGENASES (JOXs). Concurrent mutation of the four genes in a quadruple Arabidopsis mutant resulted in increased defense gene expression and increased resistance to the necrotrophic fungus Botrytis cinerea and the caterpillar Mamestra brassicae In addition, root and shoot growth of the plants was inhibited. Metabolite analysis of leaves showed that loss of function of the four JOX enzymes resulted in overaccumulation of JA and in reduced turnover of JA into 12-OH-JA. Transformation of the quadruple mutant with each JOX gene strongly reduced JA levels, demonstrating that all four JOXs inactivate JA in plants. The in vitro catalysis of 12-OH-JA from JA by recombinant enzyme could be confirmed for three JOXs. The identification of the enzymes responsible for hydroxylation of JA reveals a missing step in JA metabolism, which is important for the inactivation of the hormone and subsequent down-regulation of JA-dependent defenses.

  4. Islamisasi Prinsip Counter Accounting

    Directory of Open Access Journals (Sweden)

    Dayno Utama

    2017-03-01

    Full Text Available The purpose of this study is to explore the idea of Islamization of counter accounting principles. Such an Islamization is necessary because counter accounting princip-les are formulated by using the philosophy of punk from the western society which has different beliefs. In addition, the idea of Islamization in this study shows that Islamic knowledge can indeed be developed continuously. Therefore, the claim that there is no development inside this knowledge, and that it cannot be categorized as science, willl no longer exist. This study reveals the findings that the wisdom from argumentation which constructs the principles of counter accounting is parallel with the wisdom from Islamic values as interpreted by experts of Islamic accounting. The Islamiza-tion of counter accounting principles confirms the truth of belief in the existence of Allah and His revelation.

  5. A large Cerenkov counter

    CERN Multimedia

    1981-01-01

    The photo shows the vertex Cerenkov counter C0 back side (with 12 mirrors) of the NA9 experiment. On foreground are members of the team (CERN and Wuppertal Uni), Salvo .., Manfred Poetsch, ..., Jocelyn Thadome, Helmut Braun, Heiner Brueck.

  6. Counter-cryptanalysis

    NARCIS (Netherlands)

    M.M.J. Stevens (Marc); R. Canetti; J.A. Garay

    2013-01-01

    textabstractWe introduce \\emph{counter-cryptanalysis} as a new paradigm for strengthening weak cryptographic primitives against cryptanalytic attacks. Redesigning a weak primitive to more strongly resist cryptanalytic techniques will unavoidably break backwards compatibility. Instead,

  7. Extracellular Signal-Regulated Kinase (ERK Activation and Mitogen-Activated Protein Kinase Phosphatase 1 Induction by Pulsatile Gonadotropin-Releasing Hormone in Pituitary Gonadotrophs

    Directory of Open Access Journals (Sweden)

    Haruhiko Kanasaki

    2012-01-01

    Full Text Available The frequency of gonadotropin-releasing hormone (GnRH pulse secreted from the hypothalamus differently regulates the expressions of gonadotropin subunit genes, luteinizing hormone β (LHβ and follicle-stimulating hormone β (FSHβ, in the pituitary gonadotrophs. FSHβ is preferentially stimulated at slower GnRH pulse frequencies, whereas LHβ is preferentially stimulated at more rapid pulse frequencies. Several signaling pathways are activated, including mitogen-activated protein kinase (MAPK, protein kinase C, calcium influx, and calcium-calmodulin kinases, and these may be preferentially regulated under certain conditions. Previous studies demonstrated that MAPK pathways, especially the extracellular signal-regulated kinase (ERK, play an essential role for induction of gonadotropin subunit gene expression by GnRH, whereas, MAPK phosphatases (MKPs inactivate MAPKs through dephosphorylation of threonine and/or tyrosine residues. MKPs are also induced by GnRH, and potential feedback regulation between MAPK signaling and MKPs within the GnRH signaling pathway is evident in gonadotrophs. In this paper, we reviewed and mainly focused on our observations of the pattern of ERK activation and the induction of MKP by different frequencies of GnRH stimulation.

  8. Sex Steroid Hormones Matter for Learning and Memory: Estrogenic Regulation of Hippocampal Function Inmale and Female Rodents

    Science.gov (United States)

    Frick, Karyn M.; Kim, Jaekyoon; Tuscher, Jennifer J.; Fortress, Ashley M.

    2015-01-01

    Ample evidence has demonstrated that sex steroid hormones, such as the potent estrogen 17ß-estradiol (E[subscript 2]), affect hippocampal morphology, plasticity, and memory in male and female rodents. Yet relatively few investigators who work with male subjects consider the effects of these hormones on learning and memory. This review describes…

  9. Comparison of a designed virtual counter with a real counter

    Science.gov (United States)

    Tektas, G.; Celiktas, C.

    2017-02-01

    A counter is a device which counts the incident pulses within a fixed time. In this work, a virtual counter was designed by developing a code by LabVIEW software. Generator signals were sent to the virtual counter via a National Instruments multifunction data acquisition device. Analog and PFI (Programmable Function Interface) inputs of the device was used for the process. A real counter was also used for comparison. Counts acquired from both counters in different time intervals were compared with each other. It was concluded from the obtained results that the developed virtual counter could be used as a real counter.

  10. Growth hormone-releasing hormone antagonist inhibits the invasiveness of human endometrial cancer cells by down-regulating twist and N-cadherin expression.

    Science.gov (United States)

    Wu, Hsien-Ming; Huang, Hong-Yuan; Schally, Andrew V; Chao, Angel; Chou, Hung-Hsueh; Leung, Peter C K; Wang, Hsin-Shih

    2017-01-17

    More than 25% of patients diagnosed with endometrial carcinoma have invasive primary cancer accompanied by metastases. Growth hormone-releasing hormone (GHRH) plays an important role in reproduction. Here, we examined the effect of a GHRH antagonist on the motility of endometrial cancer cells and the mechanisms of action of the antagonist in endometrial cancer. Western blotting and immunohistochemistry (IHC) were used to determine the expression of the GHRH receptor protein. The activity of Twist and N-cadherin was determined by Western blotting. Cell motility was assessed by an invasion and migration assay. GHRH receptor siRNA was applied to knockdown the GHRH receptor in endometrial cancer cells. The GHRH antagonist inhibited cell motility in a dose-dependent manner. The GHRH antagonist inhibited cell motility and suppressed the expression of Twist and N-cadherin, and the suppression was abolished by GHRH receptor siRNA pretreatment. Moreover, the inhibition of Twist and N-cadherin with Twist siRNA and N-cadherin siRNA, respectively, suppressed cell motility. Our study indicates that the GHRH antagonist inhibited the cell motility of endometrial cancer cells through the GHRH receptor via the suppression of Twist and N-cadherin. Our findings represent a new concept in the mechanism of GHRH antagonist-suppressed cell motility in endometrial cancer cells and suggest the possibility of exploring GHRH antagonists as potential therapeutics for the treatment of human endometrial cancer.

  11. A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple Loci implicated in sex steroid hormone regulation.

    Directory of Open Access Journals (Sweden)

    Andrea D Coviello

    Full Text Available Sex hormone-binding globulin (SHBG is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p = 1.8 × 10(-106, PRMT6 (rs17496332, 1p13.3, p = 1.4 × 10(-11, GCKR (rs780093, 2p23.3, p = 2.2 × 10(-16, ZBTB10 (rs440837, 8q21.13, p = 3.4 × 10(-09, JMJD1C (rs7910927, 10q21.3, p = 6.1 × 10(-35, SLCO1B1 (rs4149056, 12p12.1, p = 1.9 × 10(-08, NR2F2 (rs8023580, 15q26.2, p = 8.3 × 10(-12, ZNF652 (rs2411984, 17q21.32, p = 3.5 × 10(-14, TDGF3 (rs1573036, Xq22.3, p = 4.1 × 10(-14, LHCGR (rs10454142, 2p16.3, p = 1.3 × 10(-07, BAIAP2L1 (rs3779195, 7q21.3, p = 2.7 × 10(-08, and UGT2B15 (rs293428, 4q13.2, p = 5.5 × 10(-06. These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p = 2.5 × 10(-08, women p = 0.66, heterogeneity p = 0.003. Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion

  12. A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple Loci implicated in sex steroid hormone regulation.

    Science.gov (United States)

    Coviello, Andrea D; Haring, Robin; Wellons, Melissa; Vaidya, Dhananjay; Lehtimäki, Terho; Keildson, Sarah; Lunetta, Kathryn L; He, Chunyan; Fornage, Myriam; Lagou, Vasiliki; Mangino, Massimo; Onland-Moret, N Charlotte; Chen, Brian; Eriksson, Joel; Garcia, Melissa; Liu, Yong Mei; Koster, Annemarie; Lohman, Kurt; Lyytikäinen, Leo-Pekka; Petersen, Ann-Kristin; Prescott, Jennifer; Stolk, Lisette; Vandenput, Liesbeth; Wood, Andrew R; Zhuang, Wei Vivian; Ruokonen, Aimo; Hartikainen, Anna-Liisa; Pouta, Anneli; Bandinelli, Stefania; Biffar, Reiner; Brabant, Georg; Cox, David G; Chen, Yuhui; Cummings, Steven; Ferrucci, Luigi; Gunter, Marc J; Hankinson, Susan E; Martikainen, Hannu; Hofman, Albert; Homuth, Georg; Illig, Thomas; Jansson, John-Olov; Johnson, Andrew D; Karasik, David; Karlsson, Magnus; Kettunen, Johannes; Kiel, Douglas P; Kraft, Peter; Liu, Jingmin; Ljunggren, Östen; Lorentzon, Mattias; Maggio, Marcello; Markus, Marcello R P; Mellström, Dan; Miljkovic, Iva; Mirel, Daniel; Nelson, Sarah; Morin Papunen, Laure; Peeters, Petra H M; Prokopenko, Inga; Raffel, Leslie; Reincke, Martin; Reiner, Alex P; Rexrode, Kathryn; Rivadeneira, Fernando; Schwartz, Stephen M; Siscovick, David; Soranzo, Nicole; Stöckl, Doris; Tworoger, Shelley; Uitterlinden, André G; van Gils, Carla H; Vasan, Ramachandran S; Wichmann, H-Erich; Zhai, Guangju; Bhasin, Shalender; Bidlingmaier, Martin; Chanock, Stephen J; De Vivo, Immaculata; Harris, Tamara B; Hunter, David J; Kähönen, Mika; Liu, Simin; Ouyang, Pamela; Spector, Tim D; van der Schouw, Yvonne T; Viikari, Jorma; Wallaschofski, Henri; McCarthy, Mark I; Frayling, Timothy M; Murray, Anna; Franks, Steve; Järvelin, Marjo-Riitta; de Jong, Frank H; Raitakari, Olli; Teumer, Alexander; Ohlsson, Claes; Murabito, Joanne M; Perry, John R B

    2012-01-01

    Sex hormone-binding globulin (SHBG) is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D) and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS) meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs) associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p = 1.8 × 10(-106)), PRMT6 (rs17496332, 1p13.3, p = 1.4 × 10(-11)), GCKR (rs780093, 2p23.3, p = 2.2 × 10(-16)), ZBTB10 (rs440837, 8q21.13, p = 3.4 × 10(-09)), JMJD1C (rs7910927, 10q21.3, p = 6.1 × 10(-35)), SLCO1B1 (rs4149056, 12p12.1, p = 1.9 × 10(-08)), NR2F2 (rs8023580, 15q26.2, p = 8.3 × 10(-12)), ZNF652 (rs2411984, 17q21.32, p = 3.5 × 10(-14)), TDGF3 (rs1573036, Xq22.3, p = 4.1 × 10(-14)), LHCGR (rs10454142, 2p16.3, p = 1.3 × 10(-07)), BAIAP2L1 (rs3779195, 7q21.3, p = 2.7 × 10(-08)), and UGT2B15 (rs293428, 4q13.2, p = 5.5 × 10(-06)). These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p = 2.5 × 10(-08), women p = 0.66, heterogeneity p = 0.003). Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the

  13. High-fructose corn syrup and sucrose have equivalent effects on energy-regulating hormones at normal human consumption levels.

    Science.gov (United States)

    Yu, Zhiping; Lowndes, Joshua; Rippe, James

    2013-12-01

    Intake of high-fructose corn syrup (HFCS) has been suggested to contribute to the increased prevalence of obesity, whereas a number of studies and organizations have reported metabolic equivalence between HFCS and sucrose. We hypothesized that HFCS and sucrose would have similar effects on energy-regulating hormones and metabolic substrates at normal levels of human consumption and that these values would not change over a 10-week, free-living period at these consumption levels. This was a randomized, prospective, double-blind, parallel group study in which 138 adult men and women consumed 10 weeks of low-fat milk sweetened with either HFCS or sucrose at levels of the 25th, 50th, and 90th percentile population consumption of fructose (the equivalent of 40, 90, or 150 g of sugar per day in a 2000-kcal diet). Before and after the 10-week intervention, 24-hour blood samples were collected. The area under the curve (AUC) for glucose, insulin, leptin, active ghrelin, triglyceride, and uric acid was measured. There were no group differences at baseline or posttesting for all outcomes (interaction, P > .05). The AUC response of glucose, active ghrelin, and uric acid did not change between baseline and posttesting (P > .05), whereas the AUC response of insulin (P < .05), leptin (P < .001), and triglyceride (P < .01) increased over the course of the intervention when the 6 groups were averaged. We conclude that there are no differences in the metabolic effects of HFCS and sucrose when compared at low, medium, and high levels of consumption. © 2013 Elsevier Inc. All rights reserved.

  14. [Ghrelin down-regulates ACAT-1 in THP-1 derived foam cells via growth hormone secretagogue receptor-dependent pathway].

    Science.gov (United States)

    Wan, Jing-Jing; Cheng, Bei; Wang, Yan-Fu; Mei, Chun-Li; Liu, Wei; Ke, Li; He, Ping

    2009-11-01

    To investigate the effects of Ghrelin on the expression of acyl coenzyme A:cholesterol acyltransferases-1 (ACAT-1) in THP-1 derived foam cells. The human monocytic leukemia cell line (THP-1) was chosen in our study. The differentiation of THP-1 cells into macrophages was induced by phorbol 12-myristate 13-acetate. Macrophages were then incubated with oxidized LDL (ox-LDL) to generate foam cells. Ghrelin and [D-Lys3]-GHRP-6, the special antagonist of growth hormone secretagogue receptor (GHS-R), were treated during foam cells formation. The ACAT-1 protein and mRNA levels were detected by Western blot and RT-PCR. The effect of variance of cholesterol content was measured by zymochemistry via-fluorospectrophotometer. Ghrelin reduced the content of cholesterol ester in foam cells obviously. ACAT-1 protein and mRNA levels were also decreased. The antagonist of GHS-R inhibited the effects of Ghrelin on ACAT-1 expression in dose-dependent manner. The ACAT-1 mRNA levels of the GHS-R specific antagonist groups (10(-5), 5 x 10(-5), 10(-4) mol/L) were 1.14 +/- 0.04, 1.58 +/- 0.03, 2.40 +/- 0.16, significantly higher than that of the Ghrelin group (0.89 +/- 0.05). And the protein expressions were 1.25 +/- 0.09, 1.77 +/- 0.11, 2.30 +/- 0.09, also higher than that of the Ghrelin group (0.86 +/- 0.08). Ghrelin might interfere atherosclerosis by down-regulating the expression of ACAT-1 via GHS-R pathway.

  15. H1N1 influenza virus infection results in adverse pregnancy outcomes by disrupting tissue-specific hormonal regulation.

    Science.gov (United States)

    Littauer, Elizabeth Q; Esser, E Stein; Antao, Olivia Q; Vassilieva, Elena V; Compans, Richard W; Skountzou, Ioanna

    2017-11-01

    Increased susceptibility to influenza virus infection during pregnancy has been attributed to immunological changes occurring before and during gestation in order to "tolerate" the developing fetus. These systemic changes are most often characterized by a suppression of cell-mediated immunity and elevation of humoral immune responses referred to as the Th1-Th2 shift. However, the underlying mechanisms which increase pregnant mothers' risk following influenza virus infection have not been fully elucidated. We used pregnant BALB/c mice during mid- to late gestation to determine the impact of a sub-lethal infection with A/Brisbane/59/07 H1N1 seasonal influenza virus on completion of gestation. Maternal and fetal health status was closely monitored and compared to infected non-pregnant mice. Severity of infection during pregnancy was correlated with premature rupture of amniotic membranes (PROM), fetal survival and body weight at birth, lung viral load and degree of systemic and tissue inflammation mediated by innate and adaptive immune responses. Here we report that influenza virus infection resulted in dysregulation of inflammatory responses that led to pre-term labor, impairment of fetal growth, increased fetal mortality and maternal morbidity. We observed significant compartment-specific immune responses correlated with changes in hormonal synthesis and regulation. Dysregulation of progesterone, COX-2, PGE2 and PGF2α expression in infected pregnant mice was accompanied by significant remodeling of placental architecture and upregulation of MMP-9 early after infection. Collectively these findings demonstrate the potential of a seasonal influenza virus to initiate a powerful pro-abortive mechanism with adverse outcomes in fetal health.

  16. H1N1 influenza virus infection results in adverse pregnancy outcomes by disrupting tissue-specific hormonal regulation.

    Directory of Open Access Journals (Sweden)

    Elizabeth Q Littauer

    2017-11-01

    Full Text Available Increased susceptibility to influenza virus infection during pregnancy has been attributed to immunological changes occurring before and during gestation in order to "tolerate" the developing fetus. These systemic changes are most often characterized by a suppression of cell-mediated immunity and elevation of humoral immune responses referred to as the Th1-Th2 shift. However, the underlying mechanisms which increase pregnant mothers' risk following influenza virus infection have not been fully elucidated. We used pregnant BALB/c mice during mid- to late gestation to determine the impact of a sub-lethal infection with A/Brisbane/59/07 H1N1 seasonal influenza virus on completion of gestation. Maternal and fetal health status was closely monitored and compared to infected non-pregnant mice. Severity of infection during pregnancy was correlated with premature rupture of amniotic membranes (PROM, fetal survival and body weight at birth, lung viral load and degree of systemic and tissue inflammation mediated by innate and adaptive immune responses. Here we report that influenza virus infection resulted in dysregulation of inflammatory responses that led to pre-term labor, impairment of fetal growth, increased fetal mortality and maternal morbidity. We observed significant compartment-specific immune responses correlated with changes in hormonal synthesis and regulation. Dysregulation of progesterone, COX-2, PGE2 and PGF2α expression in infected pregnant mice was accompanied by significant remodeling of placental architecture and upregulation of MMP-9 early after infection. Collectively these findings demonstrate the potential of a seasonal influenza virus to initiate a powerful pro-abortive mechanism with adverse outcomes in fetal health.

  17. Experiment K-6-22. Growth hormone regulation, synthesis and secretion in microgravity. Part 1: Somatotroph physiology. Part 2: Immunohistochemical analysis of hypothalamic hormones. Part 3: Plasma analysis

    Science.gov (United States)

    Grindeland, R.; Vale, W.; Hymer, W.; Sawchenko, P.; Vasques, M.; Krasnov, I.; Kaplanski, A.; Victorov, I.

    1990-01-01

    The objectives of the 1887 mission were: (1) to determine if the results of the SL-3 pituitary gland experiment (1) were repeatable; and (2) to determine what effect a longer mission would have on the rat pituitary gland growth hormone (GH) system. In the 1887 experiment two issues were considered especially important. First, it was recognized that cells prepared from individual rat pituitary glands should be considered separately so that the data from the 5 glands could be analyzed in a statistically meaningful way. Second, results of the SL-3 flight involving the hollow fiber implant and HPLC GH-variant experiments suggested that the biological activity of the hormone had been negatively affected by flight. The results of the 1887 experiment documented the wisdom of addressing both issues in the protocol. Thus, the reduction in secretory capacity of flight cells during subsequent extended cell culture on Earth was documented statistically, and thereby established the validity of the SL-3 result. The results of both flight experiments thus support the contention that there is a secretory lesion in pituitary GH cells of flight animals. The primary objective of both missions was a clear definition of the effect of spaceflight on the GH cell system. There can no longer be any reasonable doubt that this system is affected in microgravity. One explanation for the reason(s) underlying the better known effects of spaceflight on organisms, viz. changes in bone, muscle and immune systems may very well rest with such changes in bGH. In spite of the fact that rats in the Cosmos 1887 flight were on Earth for two days after flight, the data show that the GH system had still not recovered from the effects of flight. Many questions remain. One of the more important concerns the GRF responsiveness of somatotrophs after flight. This will be tested in an upcoming experiment.

  18. Regulation of the phosphoinositide pathway in cultured Sertoli cells from immature rats: effects of follicle-stimulating hormone and fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, S.M.; Reichert, L.E. Jr.

    1988-07-01

    Many hormones elicit effects on target cells by stimulating the enzyme phospholipase-C, which catalyzes the hydrolysis of phosphoinositides to the intracellular second messengers diacylglycerol and inositol phosphates. The present study examined the roles of FSH and guanine nucleotide-binding proteins (G-proteins) in regulating the hydrolysis of phosphoinositides in Sertoli cells. Sertoli cell cultures prepared from 16- to 18-day-old rats were incubated for 24 h with myo-(2-3H) inositol to label endogenous phospholipids. Treatment of cells from 0.5-20 min with preparations of ovine FSH ranging in potency from 1-60 times that of NIH FSH S1 did not affect accumulation of inositol phosphates. Levels of total (3H)inositol phosphates ((3H)inositol mono-, di-, and triphosphates (IP, IP2, and IP3)) in FSH-treated cultures was 75-120% the levels in control cultures over the various time intervals studied. Addition of testosterone and the combination of testosterone plus retinoic acid, agents that have been shown to potentiate effects of FSH in other systems, did not affect accumulation of inositol phosphates in response to FSH. In contrast to the lack of effect on accumulation of inositol phosphates, FSH stimulated 4- to 11-fold increases in estradiol secretion over 24 h of culture, indicating that Sertoli cells were viable and responsive to FSH. AIF4- has been shown to activate G-proteins involved in regulation of adenylate cyclase activity. In the present study, AIF4- induced 4- to 5-fold increases in IP, IP2, and IP3 in experiments wherein FSH had no effect. Pretreatment of Sertoli cells with pertussis toxin (100 and 1000 ng/ml) for 24 h inhibited fluoride-induced generation of IP, IP2, and IP3 by 24-51%. Similar treatment with cholera toxin had no effect on basal or fluoride-induced generation of IP2 or IP3, but increased fluoride-induced generation of IP by 20-34%.

  19. Obesity: hormonal regulation

    OpenAIRE

    Veiga, Luísa, 1961-

    2016-01-01

    A obesidade é considerada um problema de saúde pública pela OMS, existindo mundialmente cerca de 1,9 mil milhões de pessoas com excesso de peso e, destas, 600 milhões são obesas1. Esta patologia representa um risco elevado para doenças cardiovasculares, diabetes, hipertensão e cancro2. Na sua génese está um desequilíbrio entre a energia ingerida e a energia despendida. Este desequilíbrio pode resultar de fatores psicológicos, ambientais, genéticos e metabólicos, indutores de perturbações do c...

  20. No up-regulation of the phosphatidylethanolamine N-methyltransferase pathway and choline production by sex hormones in cats

    National Research Council Canada - National Science Library

    Valtolina, Chiara; Vaanager, Arie B; Favier, Robert P; Robben, Joris H; Tuohetahuntila, Maidina; Kummeling, Anne; Jeusette, Isabelle; Rothuizen, Jan

    2015-01-01

    .... The aim of the present study was to evaluate the influence of sex hormones on choline synthesis via the PEMT pathway in healthy male and female cats before and after spaying/neutering, when fed...

  1. Hormonal regulation of energy-protein homeostasis in hemodialysis patients: an anorexigenic profile that may predispose to adverse cardiovascular outcomes.

    Science.gov (United States)

    Suneja, Manish; Murry, Daryl J; Stokes, John B; Lim, Victoria S

    2011-01-01

    To assess whether endocrine dysfunction may cause derangement in energy homeostasis in patients undergoing hemodialysis (HD), we profiled hormones, during a 3-day period, from the adipose tissue and the gut and the nervous system around the circadian clock in 10 otherwise healthy HD patients and 8 normal controls. The protocol included a 40-h fast. We also measured energy-protein intake and output and assessed appetite and body composition. We found many hormonal abnormalities in HD patients: 1) leptin levels were elevated, due, in part, to increased production, and nocturnal surge in response to daytime feeding, exaggerated. 2) Peptide YY (PYY), an anorexigenic gut hormone, was markedly elevated and displayed an augmented response to feeding. 3) Acylated ghrelin, an orexigenic gut hormone, was lower and did not exhibit the premeal spike as observed in the controls. 4) neuropeptide Y (NPY), a potent orexigenic peptide, was markedly elevated and did not display any circadian variation. 5) Norepinephrine, marginally elevated, did not exhibit the normal nocturnal dip. By contrast, α-melanocyte-stimulating hormone and glucagon-like peptide-1 were not different between the two groups. Despite these hormonal abnormalities, HD patients maintained a good appetite and had normal body lean and fat mass, and there was no evidence of increased energy expenditure or protein catabolism. We explain the hormonal abnormalities as well as the absence of anorexia on suppression of parasympathetic activity (vagus nerve dysfunction), a phenomenon well documented in dialysis patients. Unexpectedly, we noted that the combination of high leptin, PYY, and NPY with suppressed ghrelin may increase arterial blood pressure, impair vasodilatation, and induce cardiac hypertrophy, and thus could predispose to adverse cardiovascular events that are the major causes of morbidity and mortality in the HD population. This is the first report attempting to link hormonal abnormalities associated with

  2. Hepatic FOXO1 Target Genes Are Co-regulated by Thyroid Hormone via RICTOR Protein Deacetylation and MTORC2-AKT Protein Inhibition.

    Science.gov (United States)

    Singh, Brijesh K; Sinha, Rohit A; Zhou, Jin; Tripathi, Madhulika; Ohba, Kenji; Wang, Mu-En; Astapova, Inna; Ghosh, Sujoy; Hollenberg, Anthony N; Gauthier, Karine; Yen, Paul M

    2016-01-01

    MTORC2-AKT is a key regulator of carbohydrate metabolism and insulin signaling due to its effects on FOXO1 phosphorylation. Interestingly, both FOXO1 and thyroid hormone (TH) have similar effects on carbohydrate and energy metabolism as well as overlapping transcriptional regulation of many target genes. Currently, little is known about the regulation of MTORC2-AKT or FOXO1 by TH. Accordingly, we performed hepatic transcriptome profiling in mice after FOXO1 knockdown in the absence or presence of TH, and we compared these results with hepatic FOXO1 and THRB1 (TRβ1) ChIP-Seq data. We identified a subset of TH-stimulated FOXO1 target genes that required co-regulation by FOXO1 and TH. TH activation of FOXO1 was directly linked to an increase in SIRT1-MTORC2 interaction and RICTOR deacetylation. This, in turn, led to decreased AKT and FOXO1 phosphorylation. Moreover, TH increased FOXO1 nuclear localization, DNA binding, and target gene transcription by reducing AKT-dependent FOXO1 phosphorylation in a THRB1-dependent manner. These events were associated with TH-mediated oxidative phosphorylation and NAD(+) production and suggested that downstream metabolic effects by TH can post-translationally activate other transcription factors. Our results showed that RICTOR/MTORC2-AKT can integrate convergent hormonal and metabolic signals to provide coordinated and sensitive regulation of hepatic FOXO1-target gene expression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. SIRT1 Regulates Thyroid-Stimulating Hormone Release by Enhancing PIP5Kgamma Activity through Deacetylation of Specific Lysine Residues in Mammals.

    Directory of Open Access Journals (Sweden)

    Sayaka Akieda-Asai

    Full Text Available BACKGROUND: SIRT1, a NAD-dependent deacetylase, has diverse roles in a variety of organs such as regulation of endocrine function and metabolism. However, it remains to be addressed how it regulates hormone release there. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that SIRT1 is abundantly expressed in pituitary thyrotropes and regulates thyroid hormone secretion. Manipulation of SIRT1 level revealed that SIRT1 positively regulated the exocytosis of TSH-containing granules. Using LC/MS-based interactomics, phosphatidylinositol-4-phosphate 5-kinase (PIP5Kgamma was identified as a SIRT1 binding partner and deacetylation substrate. SIRT1 deacetylated two specific lysine residues (K265/K268 in PIP5Kgamma and enhanced PIP5Kgamma enzyme activity. SIRT1-mediated TSH secretion was abolished by PIP5Kgamma knockdown. SIRT1 knockdown decreased the levels of deacetylated PIP5Kgamma, PI(4,5P(2, and reduced the secretion of TSH from pituitary cells. These results were also observed in SIRT1-knockout mice. CONCLUSIONS/SIGNIFICANCE: Our findings indicated that the control of TSH release by the SIRT1-PIP5Kgamma pathway is important for regulating the metabolism of the whole body.

  4. Differential regulation of hepatopancreatic vitellogenin (VTG) gene expression by two putative molt-inhibiting hormones (MIH1/2) in Pacific white shrimp (Litopenaeus vannamei).

    Science.gov (United States)

    Luo, Xing; Chen, Ting; Zhong, Ming; Jiang, Xiao; Zhang, Lvping; Ren, Chunhua; Hu, Chaoqun

    2015-06-01

    Molt-inhibiting hormone (MIH), a peptide member of the crustacean hyperglycemic hormone (CHH) family, is commonly considered as a negative regulator during the molt cycle in crustaceans. Phylogenetic analysis of CHH family peptides in penaeidae shrimps suggested that there is no significant differentiation between MIH and vitellogenesis-inhibiting hormone (VIH, another peptide member of CHH family), by far the most potent negative regulator of crustacean vitellogenesis known. Thus, MIH may also play a role in regulating vitellogenesis. In this study, two previously reported putative MIHs (LivMIH1 and LivMIH2) in the Pacific white shrimp (Litopenaeus vannamei) were expressed in Escherichia coli, purified by immobilized metal ion affinity chromatography (IMAC) and further confirmed by western blot. Regulation of vitellogenin (VTG) mRNA expression by recombinant LivMIH1 and LivMIH2 challenge was performed by both in vitro hepatopancreatic primary cells culture and in vivo injection approaches. In in vitro primary culture of shrimp hepatopancreatic cells, only LivMIH2 but not LivMIH1 administration could improve the mRNA expression of VTG. In in vivo injection experiments, similarly, only LivMIH2 but not LivMIH1 could stimulate hepatopancreatic VTG gene expression and induce ovary maturation. Our study may provide evidence for one isoform of MIH (MIH2 in L. vannamei) may serve as one of the mediators of the physiological progress of molting and vitellogenesis. Our study may also give new insight in CHH family peptides regulating reproduction in crustaceans, in particular penaeidae shrimps. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. An efficient anticoincidence counter

    CERN Multimedia

    1977-01-01

    This scintillation counter (about 25 cm diameter) was prepared at CERN for an experiment at the Saclay 600 MeV electron linac studying molecular processes originated in liquid hydrogen by muons. The counter is meant to surround the target and detect charged particles emerging from the hydrogen. The experiment was a CERN-Saclay collaboration which used the linac so as to take advantage of the time structure of the electron beam(see CERN Courier Sep 1977 and J. Bardin et al. Phys. Lett. B104 (1981) 320)

  6. Counter-Knowledge

    OpenAIRE

    Schneider, Ulrich Johannes

    2015-01-01

    In our time, it has become easy to contribute to the general pool of knowledge: Tell somebody about events that have just happened and think yourself useful, publish a video of a crime and make history, put up a rumour and ruin someone’s career. My question is: Can we talk about counter-knowledge when it comes to news-contributors who are not journalists but have mobile phones from which they can send messages and photos? I will first outline why the idea of counter-knowledge is attr...

  7. The role of leptin and other hormones related to bone metabolism and appetite-regulation as determinants of gain in body fat and fat-free mass in 8-11 year old children

    DEFF Research Database (Denmark)

    Dalskov, Stine-Mathilde; Ritz, Christian; Larnkjær, Anni

    2015-01-01

    Background: Regulation of body composition during childhood is complex. Numerous hormones are potentially involved. Leptin has been proposed to restrain weight gain, but results are inconsistent. Objectives: We examined if baseline fasting levels of ghrelin, adiponectin, leptin, insulin, insulin-...

  8. Principal component analysis of hormone profiling data suggests an important role for cytokinins in regulating leaf growth and senescence of salinized tomato.

    Science.gov (United States)

    Albacete, Alfonso; Ghanem, Michel Edmond; Dodd, Ian C; Pérez-Alfocea, Francisco

    2010-01-01

    High throughput analytical methods allow phytohormonal profiling, but the magnitude of the data generated makes it difficult to draw firm conclusions about the physiological roles of different compounds. Principal component analysis (PCA) was used as a mathematical tool to evaluate relationships between physiological and hormonal variables in two experiments with salinised tomato. When tomato plants (cv Boludo F1) were grafted onto a recombinant inbred line (RIL) population derived from a Solanum lycopersicum x S. cheesmaniae cross and grown under moderate salinity (75 mM NaCl) for 100 days under greenhouse conditions, PCA revealed an important role for leaf xylem cytokinins (CKs) in controlling leaf growth and photosystem II efficiency (Fv/Fm) and thus crop productivity under salinity. PCA analysis from a similar experiment, with ungrafted tomato grown under highly saline (100 mM NaCl) conditions, that evaluated the temporal sequence of leaf growth (as relative growth rate, LRGR) and senescence and hormone concentrations, revealed a similar influence of CKs on both processes, since Fv/Fm and LRGR were strongly loaded along the two principal components and placed in the same cluster as leaf trans-zeatin and/or related to other CK-related parameters. The conservative behaviour of the eigen vectors for Fv/Fm and the analyzed phytohormones in different compartments (xylem, leaf and root) between different experiments suggests an important role for CKs in regulating leaf senescence, while CKs and other hormones seem to regulate leaf growth under salinity.

  9. [The importance of selected intestinal hormones in the regulation of food intake and perspectives of their use in the treatment of obesity].

    Science.gov (United States)

    Cinkajzlová, A; Haluzík, M

    2015-01-01

    Obesity currently represents one of the most important global health problems. According to the World health organization's prediction the number of obese patients in the adult population will increase to 700 million by 2015. The reasons of constantly increasing prevalence of obesity include a combination of genetic predisposition, the predominance of energy intake over energy expenditure due to easy availability of calorie-rich meals and permanently decreasing energy expenditure from physical activity. Understanding the precise mechanisms of food intake regulation is essential for development of body weight-reducing drugs with long-term effects. The central nervous system plays the main role in the regulation of food intake. This system is influenced by a number of long-acting and short-acting peripheral signals informing about the degree of saturation, the amount of energy reserves and the overall state of energy homeostasis. Hormones produced in the gastrointestinal tract play an important role in the regulation of food intake. The aim of this article is to summarize the significance of selected gut hormones in the regulation of food intake and to discuss their possible use in the treatment of obesity and its associated comorbidities.

  10. Electromagnetically Operated Counter

    Science.gov (United States)

    Goldberg, H D; Goldberg, M I

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.

  11. Identification of a Hormone-regulated Dynamic Nuclear Actin Network Associated with Estrogen Receptor α in Human Breast Cancer Cell Nuclei*

    Science.gov (United States)

    Ambrosino, Concetta; Tarallo, Roberta; Bamundo, Angela; Cuomo, Danila; Franci, Gianluigi; Nassa, Giovanni; Paris, Ornella; Ravo, Maria; Giovane, Alfonso; Zambrano, Nicola; Lepikhova, Tatiana; Jänne, Olli A.; Baumann, Marc; Nyman, Tuula A.; Cicatiello, Luigi; Weisz, Alessandro

    2010-01-01

    Estrogen receptor α (ERα) is a modular protein of the steroid/nuclear receptor family of transcriptional regulators that upon binding to the hormone undergoes structural changes, resulting in its nuclear translocation and docking to specific chromatin sites. In the nucleus, ERα assembles in multiprotein complexes that act as final effectors of estrogen signaling to the genome through chromatin remodeling and epigenetic modifications, leading to dynamic and coordinated regulation of hormone-responsive genes. Identification of the molecular partners of ERα and understanding their combinatory interactions within functional complexes is a prerequisite to define the molecular basis of estrogen control of cell functions. To this end, affinity purification was applied to map and characterize the ERα interactome in hormone-responsive human breast cancer cell nuclei. MCF-7 cell clones expressing human ERα fused to a tandem affinity purification tag were generated and used to purify native nuclear ER-containing complexes by IgG-Sepharose affinity chromatography and glycerol gradient centrifugation. Purified complexes were analyzed by two-dimensional DIGE and mass spectrometry, leading to the identification of a ligand-dependent multiprotein complex comprising β-actin, myosins, and several proteins involved in actin filament organization and dynamics and/or known to participate in actin-mediated regulation of gene transcription, chromatin dynamics, and ribosome biogenesis. Time course analyses indicated that complexes containing ERα and actin are assembled in the nucleus early after receptor activation by ligands, and gene knockdown experiments showed that gelsolin and the nuclear isoform of myosin 1c are key determinants for assembly and/or stability of these complexes. Based on these results, we propose that the actin network plays a role in nuclear ERα actions in breast cancer cells, including coordinated regulation of target gene activity, spatial and functional

  12. Identification of a hormone-regulated dynamic nuclear actin network associated with estrogen receptor alpha in human breast cancer cell nuclei.

    Science.gov (United States)

    Ambrosino, Concetta; Tarallo, Roberta; Bamundo, Angela; Cuomo, Danila; Franci, Gianluigi; Nassa, Giovanni; Paris, Ornella; Ravo, Maria; Giovane, Alfonso; Zambrano, Nicola; Lepikhova, Tatiana; Jänne, Olli A; Baumann, Marc; Nyman, Tuula A; Cicatiello, Luigi; Weisz, Alessandro

    2010-06-01

    Estrogen receptor alpha (ERalpha) is a modular protein of the steroid/nuclear receptor family of transcriptional regulators that upon binding to the hormone undergoes structural changes, resulting in its nuclear translocation and docking to specific chromatin sites. In the nucleus, ERalpha assembles in multiprotein complexes that act as final effectors of estrogen signaling to the genome through chromatin remodeling and epigenetic modifications, leading to dynamic and coordinated regulation of hormone-responsive genes. Identification of the molecular partners of ERalpha and understanding their combinatory interactions within functional complexes is a prerequisite to define the molecular basis of estrogen control of cell functions. To this end, affinity purification was applied to map and characterize the ERalpha interactome in hormone-responsive human breast cancer cell nuclei. MCF-7 cell clones expressing human ERalpha fused to a tandem affinity purification tag were generated and used to purify native nuclear ER-containing complexes by IgG-Sepharose affinity chromatography and glycerol gradient centrifugation. Purified complexes were analyzed by two-dimensional DIGE and mass spectrometry, leading to the identification of a ligand-dependent multiprotein complex comprising beta-actin, myosins, and several proteins involved in actin filament organization and dynamics and/or known to participate in actin-mediated regulation of gene transcription, chromatin dynamics, and ribosome biogenesis. Time course analyses indicated that complexes containing ERalpha and actin are assembled in the nucleus early after receptor activation by ligands, and gene knockdown experiments showed that gelsolin and the nuclear isoform of myosin 1c are key determinants for assembly and/or stability of these complexes. Based on these results, we propose that the actin network plays a role in nuclear ERalpha actions in breast cancer cells, including coordinated regulation of target gene

  13. Homologous and heterologous in vitro regulation of pituitary receptors for somatostatin, growth hormone (GH)-releasing hormone, and ghrelin in a nonhuman primate (Papio anubis).

    Science.gov (United States)

    Córdoba-Chacón, Jose; Gahete, Manuel D; Castaño, Justo P; Kineman, Rhonda D; Luque, Raul M

    2012-01-01

    Secretion of GH by pituitary somatotrophs is primarily stimulated by GHRH and ghrelin and inhibited by somatostatin through the activation of specific receptors [GHRH receptor (GHRH-R), GH secretagogue receptor (GHS-R) and somatostatin receptors (sst1-5), respectively]. However, we have shown that somatostatin, at low doses, can also stimulate GH release, directly and specifically, in primary pituitary cultures from a nonhuman primate (baboons, Papio anubis) and pigs. To determine whether somatostatin, GHRH, and ghrelin can also regulate the expression of their receptors in primates, pituitary cultures from baboons were treated for 4 h with GHRH or ghrelin (10(-8) m) or with high (10(-7) m) and low (10(-15) m) doses of somatostatin, and GH release and expression levels of all receptors were measured. GHRH/ghrelin decreased the expression of their respective receptors (GHRH-R and GHS-R). Both peptides increased sst1, only GHRH decreased sst5 expression, whereas sst2 expression remained unchanged. The effects of GHRH/ghrelin were completely mimicked by forskolin (adenylate cyclase activator) and phorbol 12-myristate 13-acetate (protein kinase C activator), respectively, indicating the regulation of receptor subtype levels by GHRH and ghrelin involved distinct signaling pathways. In contrast, high-dose somatostatin did not alter GH release but increased sst1, sst2, and sst5 expression, whereas GHRH-R and GHS-R expression were unaffected. Interestingly, low-dose somatostatin increased GH release and sst1 mRNA but decreased sst5 and GHRH-R expression, similar to that observed for GHRH. Altogether, our data show for the first time in a primate model that the primary regulators of somatotroph function (GHRH/ghrelin/somatostatin) exert both homologous and heterologous regulation of receptor synthesis which is dose and subtype dependent and involves distinct signaling pathways.

  14. A Thyroid Hormone Challenge in Hypothyroid Rats Identifies T3 Regulated Genes in the Hypothalamus and in Models with Altered Energy Balance and Glucose Homeostasis

    Science.gov (United States)

    Herwig, Annika; Campbell, Gill; Mayer, Claus-Dieter; Boelen, Anita; Anderson, Richard A.; Ross, Alexander W.; Mercer, Julian G.

    2014-01-01

    Background: The thyroid hormone triiodothyronine (T3) is known to affect energy balance. Recent evidence points to an action of T3 in the hypothalamus, a key area of the brain involved in energy homeostasis, but the components and mechanisms are far from understood. The aim of this study was to identify components in the hypothalamus that may be involved in the action of T3 on energy balance regulatory mechanisms. Methods: Sprague Dawley rats were made hypothyroid by giving 0.025% methimazole (MMI) in their drinking water for 22 days. On day 21, half the MMI-treated rats received a saline injection, whereas the others were injected with T3. Food intake and body weight measurements were taken daily. Body composition was determined by magnetic resonance imaging, gene expression was analyzed by in situ hybridization, and T3-induced gene expression was determined by microarray analysis of MMI-treated compared to MMI-T3-injected hypothalamic RNA. Results: Post mortem serum thyroid hormone levels showed that MMI treatment decreased circulating thyroid hormones and increased thyrotropin (TSH). MMI treatment decreased food intake and body weight. Body composition analysis revealed reduced lean and fat mass in thyroidectomized rats from day 14 of the experiment. MMI treatment caused a decrease in circulating triglyceride concentrations, an increase in nonesterified fatty acids, and decreased insulin levels. A glucose tolerance test showed impaired glucose clearance in the thyroidectomized animals. In the brain, in situ hybridization revealed marked changes in gene expression, including genes such as Mct8, a thyroid hormone transporter, and Agrp, a key component in energy balance regulation. Microarray analysis revealed 110 genes to be up- or downregulated with T3 treatment (±1.3-fold change, phypothalamus, a key area of the brain involved in homeostasis and neuroendocrine functions. These include genes hitherto not known to be regulated by thyroid status. PMID:25087834

  15. Regulation of Wheat Seed Dormancy by After-Ripening Is Mediated by Specific Transcriptional Switches That Induce Changes in Seed Hormone Metabolism and Signaling

    Science.gov (United States)

    Kanno, Yuri; Jordan, Mark C.; Kamiya, Yuji; Seo, Mitsunori; Ayele, Belay T.

    2013-01-01

    Treatments that promote dormancy release are often correlated with changes in seed hormone content and/or sensitivity. To understand the molecular mechanisms underlying the role of after-ripening (seed dry storage) in triggering hormone related changes and dormancy decay in wheat (Triticum aestivum), temporal expression patterns of genes related to abscisic acid (ABA), gibberellin (GA), jasmonate and indole acetic acid (IAA) metabolism and signaling, and levels of the respective hormones were examined in dormant and after-ripened seeds in both dry and imbibed states. After-ripening mediated developmental switch from dormancy to germination appears to be associated with declines in seed sensitivity to ABA and IAA, which are mediated by transcriptional repressions of PROTEIN PHOSPHATASE 2C, SNF1-RELATED PROTEIN KINASE2, ABA INSENSITIVE5 and LIPID PHOSPHATE PHOSPHTASE2, and AUXIN RESPONSE FACTOR and RELATED TO UBIQUITIN1 genes. Transcriptomic analysis of wheat seed responsiveness to ABA suggests that ABA inhibits the germination of wheat seeds partly by repressing the transcription of genes related to chromatin assembly and cell wall modification, and activating that of GA catabolic genes. After-ripening induced seed dormancy decay in wheat is also associated with the modulation of seed IAA and jasmonate contents. Transcriptional control of members of the ALLENE OXIDE SYNTHASE, 3-KETOACYL COENZYME A THIOLASE, LIPOXYGENASE and 12-OXOPHYTODIENOATE REDUCTASE gene families appears to regulate seed jasmonate levels. Changes in the expression of GA biosynthesis genes, GA 20-OXIDASE and GA 3-OXIDASE, in response to after-ripening implicate this hormone in enhancing dormancy release and germination. These findings have important implications in the dissection of molecular mechanisms underlying regulation of seed dormancy in cereals. PMID:23437172

  16. Hormone Profiling in Plant Tissues.

    Science.gov (United States)

    Müller, Maren; Munné-Bosch, Sergi

    2017-01-01

    Plant hormones are for a long time known to act as chemical messengers in the regulation of physiological processes during a plant's life cycle, from germination to senescence. Furthermore, plant hormones simultaneously coordinate physiological responses to biotic and abiotic stresses. To study the hormonal regulation of physiological processes, three main approaches have been used (1) exogenous application of hormones, (2) correlative studies through measurements of endogenous hormone levels, and (3) use of transgenic and/or mutant plants altered in hormone metabolism or signaling. A plant hormone profiling method is useful to unravel cross talk between hormones and help unravel the hormonal regulation of physiological processes in studies using any of the aforementioned approaches. However, hormone profiling is still particularly challenging due to their very low abundance in plant tissues. In this chapter, a sensitive, rapid, and accurate method to quantify all the five "classic" classes of plant hormones plus other plant growth regulators, such as jasmonates, salicylic acid, melatonin, and brassinosteroids is described. The method includes a fast and simple extraction procedure without time consuming steps as purification or derivatization, followed by optimized ultrahigh-performance liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (UHPLC-MS/MS) analysis. This protocol facilitates the high-throughput analysis of hormone profiling and is applicable to different plant tissues.

  17. Prolactin receptor, growth hormone receptor, and putative somatolactin receptor in Mozambique tilapia: tissue specific expression and differential regulation by salinity and fasting.

    Science.gov (United States)

    Pierce, A L; Fox, B K; Davis, L K; Visitacion, N; Kitahashi, T; Hirano, T; Grau, E G

    2007-01-01

    In fish, pituitary growth hormone family peptide hormones (growth hormone, GH; prolactin, PRL; somatolactin, SL) regulate essential physiological functions including osmoregulation, growth, and metabolism. Teleost GH family hormones have both differential and overlapping effects, which are mediated by plasma membrane receptors. A PRL receptor (PRLR) and two putative GH receptors (GHR1 and GHR2) have been identified in several teleost species. Recent phylogenetic analyses and binding studies suggest that GHR1 is a receptor for SL. However, no studies have compared the tissue distribution and physiological regulation of all three receptors. We sequenced GHR2 from the liver of the Mozambique tilapia (Oreochromis mossambicus), developed quantitative real-time PCR assays for the three receptors, and assessed their tissue distribution and regulation by salinity and fasting. PRLR was highly expressed in the gill, kidney, and intestine, consistent with the osmoregulatory functions of PRL. PRLR expression was very low in the liver. GHR2 was most highly expressed in the muscle, followed by heart, testis, and liver, consistent with this being a GH receptor with functions in growth and metabolism. GHR1 was most highly expressed in fat, liver, and muscle, suggesting a metabolic function. GHR1 expression was also high in skin, consistent with a function of SL in chromatophore regulation. These findings support the hypothesis that GHR1 is a receptor for SL. In a comparison of freshwater (FW)- and seawater (SW)-adapted tilapia, plasma PRL was strongly elevated in FW, whereas plasma GH was slightly elevated in SW. PRLR expression was reduced in the gill in SW, consistent with PRL's function in freshwater adaptation. GHR2 was elevated in the kidney in FW, and correlated negatively with plasma GH, whereas GHR1 was elevated in the gill in SW. Plasma IGF-I, but not GH, was reduced by 4 weeks of fasting. Transcript levels of GHR1 and GHR2 were elevated by fasting in the muscle. However

  18. Soy protein diet alters expression of hepatic genes regulating fatty acid and thyroid hormone metabolism in the male rat

    Science.gov (United States)

    We determined effects of soy protein (SPI) and the isoflavone genistein (GEN) on mRNA expression of key lipid metabolism and thyroid hormone system genes in young adult, male Sprague-Dawley rats. SPI-fed rats had less retroperitoneal fat and less hepato-steatosis than casein (CAS, control protein)-...

  19. The dopaminergic regulation of gonadotropin-releasing hormone receptor binding in the pituitary of the African catfish, Clarias gariepinus

    NARCIS (Netherlands)

    de Leeuw, R.; van 't Veer, C.; Goos, H. J.; van Oordt, P. G.

    1988-01-01

    In several teleost species, including the African catfish, dopamine acts as an endogenous inhibitor of gonadotropin-releasing hormone (GnRH)-stimulated gonadotropin (GTH) release. The present in vivo study was carried out to investigate whether this inhibitory action of dopamine can be explained by

  20. Parathyroid hormone-related protein and calcium regulation in vitamin D-deficient sea bream (Sparus auratus).

    NARCIS (Netherlands)

    Abbink, W.; Hang, X.M.; Guerreiro, P.M.; Spanings, F.A.T.; Ross, H.A.; Canario, A.V.; Flik, G.

    2007-01-01

    Gilthead sea bream (Sparus auratus L.) were fed a vitamin D-deficient diet for 22 weeks. Growth rate, whole body mineral pools and calcium balance were determined. Plasma parathyroid hormone-related protein (PTHrP) and calcitriol levels were assessed. Expression of mRNA for pthrp and pth1r was

  1. Mechanism of thyroid-hormone regulated expression of the SERCA genes in skeletal muscle: Implications for thermogenesis

    NARCIS (Netherlands)

    Simonides, W.S.; Thelen, M.H.M.; Linden, van der C.G.; Muller, A.; Hardeveld, C.

    2001-01-01

    Thyroid hormone increases the Ca2+-ATPase activity of the sarcoplasmic reticulum (SR) in skeletal muscle, thereby increasing the energy-turnover associated with Ca2+-cycling during contraction and rest. The fast-muscle isoform of the Ca2+-ATPase (SERCA1) and the slow-muscle isoform (SERCA2a), are

  2. v-erbA oncogene activation entails the loss of hormone-dependent regulator activity of c-erbA

    DEFF Research Database (Denmark)

    Zenke, M; Muñoz, A; Sap, J

    1990-01-01

    The v-erbA oncogene, one of the two oncogenes of the avian erythroblastosis virus, efficiently blocks erythroid differentiation and suppresses erythrocyte-specific gene transcription. Here we show that the overexpressed thyroid hormone receptor c-erbA effectively modulates erythroid differentiation...

  3. Effect of a 12-Week Low vs. High Intensity Aerobic Exercise Training on Appetite-Regulating Hormones in Obese Adolescents: A Randomized Exercise Intervention Study.

    Science.gov (United States)

    Prado, Wagner Luiz; Lofrano-Prado, Mara Cristina; Oyama, Lila Missae; Cardel, Michelle; Gomes, Priscyla Praxedes; Andrade, Maria Laura S S; Freitas, Camila R M; Balagopal, Prabhakaran; Hill, James O

    2015-11-01

    Little is known about how the intensity of aerobic training influences appetite-regulating hormones in obese adolescents. Our goal was to assess the effect of low and high intensity aerobic trainings on food intake and appetite-regulating hormones in obese adolescents. Forty three obese adolescents (age: 13-18y, BMI: 34.48 ± 3.94 kg/m2) were randomized into high intensity training (HIT; n = 20) or low intensity training (LIT; n = 23) groups for 12 weeks. All participants also received the same nutritional, psychological and clinical counseling. Pre- and postintervention energy intake (EI) and circulating levels of insulin, leptin, peptide YY3-36 (PYY3-36) and ghrelin were measured. Adolescents in the HIT showed a reduction in total EI and an increase in PYY3-36 (p exercise training performed at ventilatory threshold 1 intensity, reduced EI and augmented PYY3-36 in obese adolescents, compared with LIT. The data suggest that HIT and LIT have differential effects in the regulation of appetite signals and subsequent EI in obese adolescents.

  4. Regulation of myo-inositol transport during the growth and differentiation of thyrocytes: a link with thyroid-stimulating hormone-induced phospholipase A2 activity.

    OpenAIRE

    Grafton, G; Baxter, M. A.; Sheppard, M C; Eggo, M C

    1995-01-01

    The Vmax of myo-inositol transport increased 3-fold during epidermal growth factor (EGF)-induced growth and thyroid-stimulating hormone. (TSH)-induced differentiation in primary cultures of sheep and human thyrocytes. The Km remained unaltered. This up-regulation required the presence of insulin. The TSH-induced rise in myo-inositol transport commenced 8 to 16 h after the initial stimulus and achieved a plateau at 24 h. In human thyrocytes the change in Vmax was accompanied by an increase in ...

  5. Effects of a brown beans evening meal on metabolic risk markers and appetite regulating hormones at a subsequent standardized breakfast: a randomized cross-over study.

    Science.gov (United States)

    Nilsson, Anne; Johansson, Elin; Ekström, Linda; Björck, Inger

    2013-01-01

    Dietary prevention strategies are increasingly recognized as essential to combat the current epidemic of obesity and related metabolic disorders. The purpose of the present study was to evaluate the potential prebiotic effects of indigestible carbohydrates in Swedish brown beans (Phaseolus vulgaris var. nanus) in relation to cardiometabolic risk markers and appetite regulating hormones. Brown beans, or white wheat bread (WWB, reference product) were provided as evening meals to 16 healthy young adults in a randomised crossover design. Glucose, insulin, appetite regulatory hormones, GLP-1, GLP-2, appetite sensations, and markers of inflammation were measured at a following standardised breakfast, that is at 11 to 14 h post the evening meals. Additionally, colonic fermentation activity was estimated from measurement of plasma short chain fatty acids (SCFA, including also branched chain fatty acids) and breath hydrogen (H2) excretion. An evening meal of brown beans, in comparison with WWB, lowered blood glucose (-15%, pbreakfast. Breath H2 (141%, pimportant measures of cardiometabolic risk and appetite regulatory hormones, within a time frame of 11-14 h, in comparison to a WWB evening meal. Concentrations of plasma SCFA and H2 were increased, indicating involvement of colonic fermentation. Indigestible colonic substrates from brown beans may provide a preventive tool in relation to obesity and the metabolic syndrome. ClinicalTrials.gov NCT01706042.

  6. Genetic and genome-wide transcriptomic analyses identify co-regulation of oxidative response and hormone transcript abundance with vitamin C content in tomato fruit

    Science.gov (United States)

    2012-01-01

    Background L-ascorbic acid (AsA; vitamin C) is essential for all living plants where it functions as the main hydrosoluble antioxidant. It has diverse roles in the regulation of plant cell growth and expansion, photosynthesis, and hormone-regulated processes. AsA is also an essential component of the human diet, being tomato fruit one of the main sources of this vitamin. To identify genes responsible for AsA content in tomato fruit, transcriptomic studies followed by clustering analysis were applied to two groups of fruits with contrasting AsA content. These fruits were identified after AsA profiling of an F8 Recombinant Inbred Line (RIL) population generated from a cross between the domesticated species Solanum lycopersicum and the wild relative Solanum pimpinellifollium. Results We found large variability in AsA content within the RIL population with individual RILs with up to 4-fold difference in AsA content. Transcriptomic analysis identified genes whose expression correlated either positively (PVC genes) or negatively (NVC genes) with the AsA content of the fruits. Cluster analysis using SOTA allowed the identification of subsets of co-regulated genes mainly involved in hormones signaling, such as ethylene, ABA, gibberellin and auxin, rather than any of the known AsA biosynthetic genes. Data mining of the corresponding PVC and NVC orthologs in Arabidopis databases identified flagellin and other ROS-producing processes as cues resulting in differential regulation of a high percentage of the genes from both groups of co-regulated genes; more specifically, 26.6% of the orthologous PVC genes, and 15.5% of the orthologous NVC genes were induced and repressed, respectively, under flagellin22 treatment in Arabidopsis thaliana. Conclusion Results here reported indicate that the content of AsA in red tomato fruit from our selected RILs are not correlated with the expression of genes involved in its biosynthesis. On the contrary, the data presented here supports that As

  7. Genetic and genome-wide transcriptomic analyses identify co-regulation of oxidative response and hormone transcript abundance with vitamin C content in tomato fruit

    Directory of Open Access Journals (Sweden)

    Lima-Silva Viviana

    2012-05-01

    Full Text Available Abstract Background L-ascorbic acid (AsA; vitamin C is essential for all living plants where it functions as the main hydrosoluble antioxidant. It has diverse roles in the regulation of plant cell growth and expansion, photosynthesis, and hormone-regulated processes. AsA is also an essential component of the human diet, being tomato fruit one of the main sources of this vitamin. To identify genes responsible for AsA content in tomato fruit, transcriptomic studies followed by clustering analysis were applied to two groups of fruits with contrasting AsA content. These fruits were identified after AsA profiling of an F8 Recombinant Inbred Line (RIL population generated from a cross between the domesticated species Solanum lycopersicum and the wild relative Solanum pimpinellifollium. Results We found large variability in AsA content within the RIL population with individual RILs with up to 4-fold difference in AsA content. Transcriptomic analysis identified genes whose expression correlated either positively (PVC genes or negatively (NVC genes with the AsA content of the fruits. Cluster analysis using SOTA allowed the identification of subsets of co-regulated genes mainly involved in hormones signaling, such as ethylene, ABA, gibberellin and auxin, rather than any of the known AsA biosynthetic genes. Data mining of the corresponding PVC and NVC orthologs in Arabidopis databases identified flagellin and other ROS-producing processes as cues resulting in differential regulation of a high percentage of the genes from both groups of co-regulated genes; more specifically, 26.6% of the orthologous PVC genes, and 15.5% of the orthologous NVC genes were induced and repressed, respectively, under flagellin22 treatment in Arabidopsis thaliana. Conclusion Results here reported indicate that the content of AsA in red tomato fruit from our selected RILs are not correlated with the expression of genes involved in its biosynthesis. On the contrary, the data

  8. Down-regulation of protein kinase C by parathyroid hormone and mezerein differentially modulates cAMP production and phosphate transport in opossum kidney cells.

    Science.gov (United States)

    Cole, J A

    1997-08-01

    We examined the effects of prolonged exposure to parathyroid hormone (PTH) and the protein kinase C (PKC) activator mezerein (MEZ) on cyclic adenosine monophosphate (cAMP) production, PKC activity, and Na(+)-dependent phosphate (Na/Pi) transport in an opossum kidney cell line (OK/E). A 5 minute exposure to PTH stimulated, while a 6 h incubation reduced, cAMP production, Na/Pi transport was maximally inhibited under desensitizing conditions and was not affected by reintroduction of the hormone. MEZ pretreatment (6 h) enhanced PTH-, cholera toxin (CTX)-, and forskolin (FSK)-stimulated cAMP production, suggesting enhanced Gs alpha coupling and increased adenylyl cyclase activity. However, PKA- and PKC-dependent regulation of Na/Pi were blocked in MEZ-treated cells. The PTH-induced decrease in cAMP production was associated with a reduction in membrane-associated PKC activity while MEZ-induced increases in cAMP production were accompanied by decreases in membrane and cytosolic PKC activity. Enhanced cAMP production was not accompanied by significant changes in PTH/PTH related peptide (PTHrP) receptor affinity or number, nor was the loss of Na/Pi transport regulation associated with changes in PKA activity. The results indicate that down-regulation of PKC by PTH or MEZ differentially modulates cAMP production and regulation of Na/Pi transport. The distinct effects of PTH and MEZ on PKC activity suggest that agonist-specific activation and/or down-regulation of PKC isozyme(s) may be involved in the observed changes in cAMP production and Na/Pi transport.

  9. Photoperiod-dependent regulation of gonadotropin-releasing hormone 1 messenger ribonucleic acid levels in the songbird brain

    OpenAIRE

    Stevenson, Authors: Tyler J; Bernard, Daniel J; McCarthy, Margaret M; Ball, Gregory F

    2013-01-01

    Annual changes in day length induce marked changes in reproductive function in temperate zone vertebrates. In many avian species, in contrast to other seasonally breeding animals, plasticity in hypothalamic gonadotropin-releasing hormone – 1 (GnRH1) expression rather than (or in addition to) release governs changes in pituitary-gonadal activity. Investigations of the cellular and molecular mechanisms that govern GnRH1 plasticity were previously hindered by a collective inability of scientists...

  10. Conifer Diterpene Resin Acids Disrupt Juvenile Hormone-Mediated Endocrine Regulation in the Indian Meal Moth Plodia interpunctella.

    Science.gov (United States)

    Oh, Hyun-Woo; Yun, Chan-Seok; Jeon, Jun Hyoung; Kim, Ji-Ae; Park, Doo-Sang; Ryu, Hyung Won; Oh, Sei-Ryang; Song, Hyuk-Hwan; Shin, Yunhee; Jung, Chan Sik; Shin, Sang Woon

    2017-07-03

    Diterpene resin acids (DRAs) are important components of oleoresin and greatly contribute to the defense strategies of conifers against herbivorous insects. In the present study, we determined that DRAs function as insect juvenile hormone (JH) antagonists that interfere with the juvenile hormone-mediated binding of the JH receptor Methoprene-tolerant (Met) and steroid receptor coactivator (SRC). Using a yeast two-hybrid system transformed with Met and SRC from the Indian meal moth Plodia interpunctella, we tested the interfering activity of 3704 plant extracts against JH III-mediated Met-SRC binding. Plant extracts from conifers, especially members of the Pinaceae, exhibited strong interfering activity, and four active interfering DRAs (7α-dehydroabietic acid, 7-oxodehydroabietic acid, dehydroabietic acid, and sandaracopimaric acid) were isolated from roots of the Japanese pine Pinus densiflora. The four isolated DRAs, along with abietic acid, disrupted the juvenile hormone-mediated binding of P. interpunctella Met and SRC, although only 7-oxodehydroabietic acid disrupted larval development. These results demonstrate that DRAs may play a defensive role against herbivorous insects via insect endocrine-disrupting activity.

  11. Pacific white shrimp (Litopenaeus vannamei) vitellogenesis-inhibiting hormone (VIH) is predominantly expressed in the brain and negatively regulates hepatopancreatic vitellogenin (VTG) gene expression.

    Science.gov (United States)

    Chen, Ting; Zhang, Lv-Ping; Wong, Nai-Kei; Zhong, Ming; Ren, Chun-Hua; Hu, Chao-Qun

    2014-03-01

    Ovarian maturation in crustaceans is temporally orchestrated by two processes: oogenesis and vitellogenesis. The peptide hormone vitellogenesis-inhibiting hormone (VIH), by far the most potent negative regulator of crustacean reproduction known, critically modulates crustacean ovarian maturation by suppressing vitellogenin (VTG) synthesis. In this study, cDNA encoding VIH was cloned from the eyestalk of Pacific white shrimp, Litopenaeus vannamei, a highly significant commercial culture species. Phylogenetic analysis suggests that L. vannamei VIH (lvVIH) can be classified as a member of the type II crustacean hyperglycemic hormone family. Northern blot and RT-PCR results reveal that both the brain and eyestalk were the major sources for lvVIH mRNA expression. In in vitro experiments on primary culture of shrimp hepatopancreatic cells, it was confirmed that some endogenous inhibitory factors existed in L. vannamei hemolymph, brain, and eyestalk that suppressed hepatopancreatic VTG gene expression. Purified recombinant lvVIH protein was effective in inhibiting VTG mRNA expression in both in vitro primary hepatopancreatic cell culture and in vivo injection experiments. Injection of recombinant VIH could also reverse ovarian growth induced by eyestalk ablation. Furthermore, unilateral eyestalk ablation reduced the mRNA level of lvVIH in the brain but not in the remaining contralateral eyestalk. Our study, as a whole, provides new insights on VIH regulation of shrimp reproduction: 1) the brain and eyestalk are both important sites of VIH expression and therefore possible coregulators of hepatopancreatic VTG mRNA expression and 2) eyestalk ablation could increase hepatopancreatic VTG expression by transcriptionally abolishing eyestalk-derived VIH and diminishing brain-derived VIH.

  12. Fibroblast Growth Factor (FGF) 23 Regulates the Plasma Levels of Parathyroid Hormone In Vivo Through the FGF Receptor in Normocalcemia, But Not in Hypocalcemia

    DEFF Research Database (Denmark)

    Mace, Maria L; Gravesen, Eva; Nordholm, Anders

    2018-01-01

    of this regulation is however not well understood. Surprisingly, in uremia, concomitantly elevated FGF23 and PTH levels are observed. The parathyroid gland rapidly loses its responsiveness to extracellular calcium in vitro and a functional parathyroid cell line has currently not been established. Therefore, the aim......The calcium and phosphate homeostasis is regulated by a complex interplay between parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and calcitriol. Experimental studies have demonstrated an inhibitory effect of FG23 on PTH production and secretion; the physiological role...... hypocalcemia. We demonstrated that FGF23 rapidly inhibited PTH secretion and that this effect was completely blocked by inhibition of the FGF receptor. Furthermore, inhibition of the FGF receptor by itself significantly increased PTH levels, indicating that FGF23 has a suppressive tonus on the parathyroid...

  13. Prostaglandin D2 production in FM55 melanoma cells is regulated by α-melanocyte-stimulating hormone and is not related to melanin production

    Science.gov (United States)

    Masoodi, Mojgan; Nicolaou, Anna; Gledhill, Karl; Rhodes, Lesley E; Tobin, Desmond J; Thody, Anthony J

    2010-01-01

    This study shows that prostaglandins in human FM55 melanoma cells and epidermal melanocytes are produced by COX-1. Prostaglandin production in FM55 melanoma cells was unrelated to that of melanin suggesting that the two processes can occur independently. α-Melanocyte-stimulating hormone, which had no effect on melanin production in FM55 cells, stimulated PGD2 production in these cells without affecting PGE2. While cAMP pathways may be involved in regulating PGD2 production, our results suggest that α-MSH acts independently of cAMP, possibly by regulating the activity of lipocalin-type PGD synthase. This α-MSH-mediated effect may be associated with its role as an immune modulator. PMID:20482620

  14. Absence of juvenile hormone signalling regulates the dynamic expression profiles of nutritional metabolism genes during diapause preparation in the cabbage beetle Colaphellus bowringi.

    Science.gov (United States)

    Liu, W; Tan, Q-Q; Zhu, L; Li, Y; Zhu, F; Lei, C-L; Wang, X-P

    2017-10-01

    Temperate insects have evolved diapause, a period of programmed developmental arrest during specific life stages, to survive unfavourable conditions. During the diapause preparation phase (DPP), diapause-destined individuals generally store large amounts of fat by regulating nutrition distribution for the energy requirement during diapause maintenance and postdiapause development. Although nutritional patterns during the DPP have been investigated at physiological and biochemical levels in many insects, it remains largely unknown how nutritional metabolism is regulated during the DPP at molecular levels. We used RNA sequencing to compare gene expression profiles of adult female cabbage beetles Colaphellus bowringi during the preoviposition phase (POP) and the DPP. Most differentially expressed genes were involved in specific metabolic pathways during the DPP. Genes related to lipid and carbohydrate metabolic pathways were clearly highly expressed during the DPP, whereas genes related to protein metabolic pathways were highly expressed during the POP. Hormone challenge and RNA interference experiments revealed that juvenile hormone via its nuclear receptor methoprene-tolerant mediated the expression of genes associated with nutritional metabolism during the DPP. This work not only sheds light on the mechanisms of diapause preparation, but also provides new insights into the molecular basis of environmental plasticity in insects. © 2017 The Royal Entomological Society.

  15. Action of the schistosomotic spleen in male mices on the regulation of thyroid hormones; Possivel influencia do baco esquistossomotico em camundongos machos na modulacao dos hormonios tireotroficos

    Energy Technology Data Exchange (ETDEWEB)

    Neves, S.R.S.; Silva, I.M.S.; Pereira, S.S.L.; Lima Filho, G.L.; Catanho, M.T.J.A. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia; Neves, E.S.; Silveira, M.F.G. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Anatomia

    1997-12-01

    For the purpose to study the action of the schistosomotic spleen on the regulation of TSH, T4 and albumin levels in serum, spleens from adults mice infected by Schistosoma mansoni were homogeneized, centrifuged and cromatographed in a column of Sephadex G-100, resulting in two proteans fractions (I and II). The biologic activity was determinated through the administration of the fractions by intraperitoneal way (IP), in male mice aged 27-30 days, in a period of three following days. Five days after the last administration, the animals were sacrified and their blood was collected for obtainment of serum and determination of TSH, T4 and albumin levels. Obtained results showed that the albumin levels no change when compared to control and that fraction I infected change the TSH and T4 levels, but the fraction II infected no change this levels. These results suggest that spleens from mice infected by S. mansoni have a factor that modifies the hormonal regulation in level hypophysial and the synthesis of thyroid hormones (T4), changing the basal metabolism. The seric levels of TSH and T4 were determined by radioimmunoassay using I-125. (author). 12 refs., 1 tab.

  16. Hormonal modulation of plant immunity

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Does, D. van der; Zamioudis, C.; Leon-Reyes, A.; Wees, A.C.M. van

    2012-01-01

    Plant hormones have pivotal roles in the regulation of plant growth, development, and reproduction. Additionally, they emerged as cellular signal molecules with key functions in the regulation of immune responses to microbial pathogens, insect herbivores, and beneficial microbes. Their signaling

  17. Comparison of Appetite-regulating Hormones and Body Composition in Pediatric Patients in Predialysis Stage of Chronic Kidney Disease and Healthy Control Group

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Eftekhari

    2015-01-01

    Full Text Available Background: Protein-energy malnutrition (PEM is a common complication in pediatric patients with chronic kidney disease (CKD. Components incorporated in the regulation of appetite and body composition appear to be of the focus in renal insufficiency and may influence the CKD-associated PEM. The purpose of this study was to investigate plasma levels of appetite-regulating hormones and their correlation with the body composition variables in a pediatric in predialysis stage of CKD. Methods: Thirty children with CKD in predialysis stage were selected and compared with 30 healthy sex- and age-matched controls. Blood samples were collected in fasting. Serum total ghrelin, leptin, and obestatin levels were measured using enzyme immunometric assay methods. Anthropometric parameters measurement and body composition analysis were done using the bioelectric impedance analysis (BIA method. Results: Patients showed insignificant elevated total ghrelin (105.40±30.83 ng/l, leptin (5.32±1.17 ng/ml and obestatin (5.07±1.09 ng/ml levels in comparison with healthy participants. By using BIA, patients had significantly different Dry Lean Weight (P=0.048, Extra Cellular Water (P=0.045, Body Cell Mass (BCM (P=0.021, Basal Metabolic Rate (P=0.033 and Body Mass Index (P=0.029 compared with controls. Furthermore, the total body water was slightly and the ECW was significantly higher in CKD participants. There were significant negative correlation between obestatin and BCM (r=-0.40, P=0.03 and fat free mass index (FFMI (r=-0.40, P=0.029 in patients. Conclusion: It seems that our results are insufficient to clarify the role of appetite-regulating hormones in PEM in CKD patients. It is apparent that there are still many unknown parameters related to both appetite regulating and CKD-associated PEM.

  18. Thyroid hormone receptors in health and disease

    NARCIS (Netherlands)

    Boelen, A.; Kwakkel, J.; Fliers, E.

    2012-01-01

    Thyroid hormones (TH) play a key role in energy homeostasis throughout life. Thyroid hormone production and secretion by the thyroid gland is regulated via the hypothalamus-pituitary-thyroid (HPT)-axis. Thyroid hormone has to be transported into the cell, where it can bind to the thyroid hormone

  19. Mechanisms involved in the homologous down-regulation of transcription of the follicle-stimulating hormone receptor gene in Sertoli cells.

    Science.gov (United States)

    Griswold, M D; Kim, J S; Tribley, W A

    2001-02-28

    The action of follicle-stimulating hormone (FSH) in spermatogenesis is regulated at a fundamental level by controlling the number of competent receptors present at the surface of Sertoli cells. By controlling the number of receptors, the cell is able to modulate the timing and magnitude of subsequent signal transduction in response to FSH. One mechanism of control is the down-regulation of the steady state levels of the FSH receptor gene after exposure to FSH or agents that stimulate or prolong the cAMP signal transduction cascade (homologous down-regulation) in Sertoli cells. The goals of this study were to examine possible mechanisms involved in the down-regulation of mRNA levels of this gene. Analysis of transcription and processing by a PCR-based assay showed that treatment of Sertoli cells with FSH caused at least a 50% reduction of hnRNA for the FSH receptor gene. Reporter genes controlled by 5' flanking sequences of the FSH receptor gene that were transiently transfected into Sertoli cells were not down-regulated. In electrophoretic mobility shift assays (EMSA), cAMP-inducible nuclear protein complex containing c-Fos formed on the activator protein-1/cAMP responsive element-like site located at -216 to -210 in the promoter of the rat FSH receptor gene. We concluded from this study that there was no evidence for the putative role of ICER in the down-regulation of the FSH receptor promoter. In addition, the FSH-induced down-regulation of the transcription of the FSH receptor gene in Sertoli cells was prevented by the treatment of Sertoli cells with trichostatin A prior to the addition of FSH. This experiment coupled with other observations suggested that the down-regulation may be mediated by changes in chromatin structure.

  20. Geiger Counter Technique

    Science.gov (United States)

    1942-01-01

    the wire. The ionizations that occur in the avalanche process are accompanied by the emission of light , and the photons in turn are capable of...condenser C•caa receive a positive pule onl when tube 3 become non-contacting, which ma&" that C4 transmits a positive pulse to the vaacum tube triode C...1937) ’A Scale-of-Eight Countia (96) W. G). ihupkurd end -R.. 0. Baby, 1.5.1. 7, 425 (1936) *A Scale Of light Iktflee Counter’ (26) S. C. Stevenson

  1. Electromagnetic shower counter

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    The octogonal block of lead glass is observed by eight photomultiplier tubes. Four or five such counters, arranged in succession, are used on each arm of the bispectrometer in order to detect heavy particles of the same family as those recently observed at Brookhaven and SLAC. They provide a means of identifying electrons. The arrangement of eight lateral photomultiplier tubes offers an efficient means of collecting the photons produced in the showers and determining, with a high resolution, the energy of the incident electrons. The total width at half-height is less than 6.9% for electrons having an energy of 1 GeV.

  2. Microchip Coulter particle counter

    DEFF Research Database (Denmark)

    Larsen, Ulrik Darling; Blankenstein, Gert; Branebjerg, J.

    1997-01-01

    and short contact time of liquids in microchannels. As a result, the width of the liquids can be controlled without knowing the actual flow rates. The μCPC has been fabricated by standard microfabrication techniques, including RIE, wet silicon etching, metalization and anodic bonding......This paper presents a micro device employing the Coulter principle for counting and sizing of living cells and particles in liquid suspension. The microchip Coulter particle counter (μCPC) has been employed in a planar silicon structure covered with glass, which enables detailed observation during...

  3. Effects of a brown beans evening meal on metabolic risk markers and appetite regulating hormones at a subsequent standardized breakfast: a randomized cross-over study.

    Directory of Open Access Journals (Sweden)

    Anne Nilsson

    Full Text Available BACKGROUND: Dietary prevention strategies are increasingly recognized as essential to combat the current epidemic of obesity and related metabolic disorders. The purpose of the present study was to evaluate the potential prebiotic effects of indigestible carbohydrates in Swedish brown beans (Phaseolus vulgaris var. nanus in relation to cardiometabolic risk markers and appetite regulating hormones. METHODS: Brown beans, or white wheat bread (WWB, reference product were provided as evening meals to 16 healthy young adults in a randomised crossover design. Glucose, insulin, appetite regulatory hormones, GLP-1, GLP-2, appetite sensations, and markers of inflammation were measured at a following standardised breakfast, that is at 11 to 14 h post the evening meals. Additionally, colonic fermentation activity was estimated from measurement of plasma short chain fatty acids (SCFA, including also branched chain fatty acids and breath hydrogen (H2 excretion. RESULTS: An evening meal of brown beans, in comparison with WWB, lowered blood glucose (-15%, p<0.01- and insulin (-16%, p<0.05 responses, increased satiety hormones (PYY 51%, p<0.001, suppressed hunger hormones (ghrelin -14%, p<0.05, and hunger sensations (-15%, p = 0.05, increased GLP-2 concentrations (8.4%, p<0.05 and suppressed inflammatory markers (IL-6 -35%, and IL-18 -8.3%, p<0.05 at a subsequent standardised breakfast. Breath H2 (141%, p<0.01, propionate (16%, p<0.05, and isobutyrate (18%, P<0.001 were significantly increased after brown beans compared to after WWB, indicating a higher colonic fermentative activity after brown beans. CONCLUSIONS: An evening meal with brown beans beneficially affected important measures of cardiometabolic risk and appetite regulatory hormones, within a time frame of 11-14 h, in comparison to a WWB evening meal. Concentrations of plasma SCFA and H2 were increased, indicating involvement of colonic fermentation. Indigestible colonic substrates from brown

  4. The Nutrient-Responsive Hormone CCHamide-2 Controls Growth by Regulating Insulin-like Peptides in the Brain of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Hiroko Sano

    2015-05-01

    Full Text Available The coordination of growth with nutritional status is essential for proper development and physiology. Nutritional information is mostly perceived by peripheral organs before being relayed to the brain, which modulates physiological responses. Hormonal signaling ensures this organ-to-organ communication, and the failure of endocrine regulation in humans can cause diseases including obesity and diabetes. In Drosophila melanogaster, the fat body (adipose tissue has been suggested to play an important role in coupling growth with nutritional status. Here, we show that the peripheral tissue-derived peptide hormone CCHamide-2 (CCHa2 acts as a nutrient-dependent regulator of Drosophila insulin-like peptides (Dilps. A BAC-based transgenic reporter revealed strong expression of CCHa2 receptor (CCHa2-R in insulin-producing cells (IPCs in the brain. Calcium imaging of brain explants and IPC-specific CCHa2-R knockdown demonstrated that peripheral-tissue derived CCHa2 directly activates IPCs. Interestingly, genetic disruption of either CCHa2 or CCHa2-R caused almost identical defects in larval growth and developmental timing. Consistent with these phenotypes, the expression of dilp5, and the release of both Dilp2 and Dilp5, were severely reduced. Furthermore, transcription of CCHa2 is altered in response to nutritional levels, particularly of glucose. These findings demonstrate that CCHa2 and CCHa2-R form a direct link between peripheral tissues and the brain, and that this pathway is essential for the coordination of systemic growth with nutritional availability. A mammalian homologue of CCHa2-R, Bombesin receptor subtype-3 (Brs3, is an orphan receptor that is expressed in the islet β-cells; however, the role of Brs3 in insulin regulation remains elusive. Our genetic approach in Drosophila melanogaster provides the first evidence, to our knowledge, that bombesin receptor signaling with its endogenous ligand promotes insulin production.

  5. A dynamic, sex-specific expression pattern of genes regulating thyroid hormone action in the developing zebra finch song control system.

    Science.gov (United States)

    Raymaekers, Sander R; Verbeure, Wout; Ter Haar, Sita M; Cornil, Charlotte A; Balthazart, Jacques; Darras, Veerle M

    2017-01-01

    The zebra finch (Taeniopygia guttata) song control system consists of several series of interconnected brain nuclei that undergo marked changes during ontogeny and sexual development, making it an excellent model to study developmental neuroplasticity. Despite the demonstrated influence of hormones such as sex steroids on this phenomenon, thyroid hormones (THs) - an important factor in neural development and maturation - have not been studied in this regard. We used in situ hybridization to compare the expression of TH transporters, deiodinases and receptors between both sexes during all phases of song development in male zebra finch. Comparisons were made in four song control nuclei: Area X, the lateral magnocellular nucleus of the anterior nidopallium (LMAN), HVC (used as proper name) and the robust nucleus of the arcopallium (RA). Most genes regulating TH action are expressed in these four nuclei at early stages of development. However, while general expression levels decrease with age, the activating enzyme deiodinase type 2 remains highly expressed in Area X, HVC and RA in males, but not in females, until 90days post-hatch (dph), which marks the end of sensorimotor learning. Furthermore, the L-type amino acid transporter 1 and TH receptor beta show elevated expression in male HVC and RA respectively compared to surrounding tissue until adulthood. Differences compared to surrounding tissue and between sexes for the other TH regulators were minor. These developmental changes are accompanied by a strong local increase in vascularization in the male RA between 20 and 30dph but not in Area X or HVC. Our results suggest that local regulation of TH signaling is an important factor in the development of the song control nuclei during the song learning phase and that TH activation by DIO2 is a key player in this process. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. How porphyrinogenic drugs modeling acute porphyria impair the hormonal status that regulates glucose metabolism. Their relevance in the onset of this disease.

    Science.gov (United States)

    Matkovic, Laura B; D'Andrea, Florencia; Fornes, Daiana; San Martín de Viale, Leonor C; Mazzetti, Marta B

    2011-11-28

    This work deals with the study of how porphyrinogenic drugs modeling acute porphyrias interfere with the status of carbohydrate-regulating hormones in relation to key glucose enzymes and to porphyria, considering that glucose modulates the development of the disease. Female Wistar rats were treated with 2-allyl-2-isopropylacetamide (AIA) and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) using different doses of AIA (100, 250 and 500mg/kg body weight) and a single dose of DDC (50mg DDC/kg body weight). Rats were sacrificed 16h after AIA/DDC administration. In the group treated with the highest dose of AIA (group H), hepatic 5-aminolevulinic acid synthase (ALA-S) increased more than 300%, phosphoenolpyruvate carboxykinase (PEPCK) and glycogen phosphorylase (GP) activities were 43% and 46% lower than the controls, respectively, plasmatic insulin levels exceeded normal values by 617%, and plasmatic glucocorticoids (GC) decreased 20%. GC results are related to a decrease in corticosterone (CORT) adrenal production (33%) and a significant reduction in its metabolization by UDP-glucuronosyltransferase (UGT) (62%). Adrenocorticotropic hormone (ACTH) stimulated adrenal production 3-fold and drugs did not alter this process. Thus, porphyria-inducing drugs AIA and DDC dramatically altered the status of hormones that regulate carbohydrate metabolism increasing insulin levels and reducing GC production, metabolization and plasmatic levels. In this acute porphyria model, gluconeogenic and glycogenolytic blockages caused by PEPCK and GP depressed activities, respectively, would be mainly a consequence of the negative regulatory action of insulin on these enzymes. GC could also contribute to PEPCK blockage both because they were depressed by the treatment and because they are positive effectors on PEPCK. These disturbances in carbohydrates and their regulation, through ALA-S de-repression, would enhance the porphyria state promoted by the drugs on heme synthesis and destruction

  7. Addition of crude glycerin to pig diets: sow and litter performance, and metabolic and feed intake regulating hormones.

    Science.gov (United States)

    Hernández, F; Orengo, J; Villodre, C; Martínez, S; López, M J; Madrid, J

    2016-06-01

    The continued growth in biofuel production has led to a search for alternative value-added applications of its main by-product, crude glycerin. The surplus glycerin production and a higher cost of feedstuffs have increased the emphasis on evaluating its nutritive value for animal feeding. The aim of this research was to evaluate the effect of the dietary addition of crude glycerin on sow and litter performance, and to determine the serum concentrations of hormones related to energy metabolism and feed intake in sows during gestation and lactation. A total of 63 sows were assigned randomly to one of three dietary treatments, containing 0, 3 or 6% crude glycerin (G0, G3 and G6, respectively) added to a barley-soybean meal-based diet. During gestation, none of the dietary treatments had an effect on performance, while during lactation, glycerin-fed sows consumed less feed than those fed the control diet (3.8 v. 4.2kg DM/day; P=0.007). Although lactating sows fed the G3 diet had a higher BW loss than those fed the control diet (���20.6 v. ���8.7 kg; P=0.002), this difference was not reflected in litter performance. In gestation, the inclusion of glycerin did not affect blood concentrations of insulin or cortisol. However, pregnant sows fed diets supplemented with glycerin showed lower concentrations of acyl-ghrelin and higher concentrations of leptin (���55 and +68%, respectively; Pglycerin did not affect the performance of sows during the gestation period; however it had a negative effect on the feed intake and weight loss of lactating sows. Moreover, further research is needed to elucidate the potential relationship between glycerin inclusion levels in the diet and the serum concentrations of hormones related to feed intake and energy balance control.

  8. Space and power efficient hybrid counters array

    Science.gov (United States)

    Gara, Alan G [Mount Kisco, NY; Salapura, Valentina [Chappaqua, NY

    2009-05-12

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  9. KiSS-1 and GPR54 genes are co-expressed in rat gonadotrophs and differentially regulated in vivo by oestradiol and gonadotrophin-releasing hormone.

    Science.gov (United States)

    Richard, N; Galmiche, G; Corvaisier, S; Caraty, A; Kottler, M-L

    2008-03-01

    Kisspeptin, the product derived from KiSS-1, and its cognate receptor, GPR54, both exert a role in the neuroendocrine control of reproduction by regulating gonadotrophin-releasing hormone (GnRH) secretion. In the present study, we demonstrate, using dual immunofluorescence with specific antibodies, that the KiSS-1 and GPR54 genes are both expressed in rat gonadotrophs. All luteinising hormone beta-immunoreactive (LH beta-ir) cells were stained by the KiSS-1 antibody but some kisspeptin-ir cells were not LH beta positive; thus, we cannot exclude the possibility that kisspeptins are expressed in other pituitary cells. All GPR54-ir are co-localised with LH beta cells, but only a subset of LH beta cells are stained with the GPR54 antibody. Using the real-time reverse transcription-polymerase chain reaction (RT-PCR), we found that the expression of KiSS-1 and GPR54 is differentially regulated by steroids. In the female, KiSS-1 mRNA levels dramatically decreased following ovariectomy (OVX), and this decrease was prevented by administration of 17beta-oestradiol (E(2)), but not by administration of GnRH antagonist or agonist. Administration of E(2) in OVX rats receiving either GnRH antagonist or agonist clearly shows that E(2) acts directly on the pituitary to positively control KiSS-1 expression. In OVX rats, administration of the selective oestrogen receptor (ER)alpha ligand propylpyrazoletriol, but not the selective ER beta ligand diarylpropionitrile, mimics this effect. By contrast, our study shows that GPR54 expression is positively regulated by GnRH and negatively controlled by chronic exposure to E(2). In summary, our data document for the first time that, in the female rat pituitary, KiSS-1 expression is up-regulated by oestradiol, similarly to that seen in the anteroventral periventricular nucleus of the hypothalamus. Conversely, GPR54 is up-regulated by GnRH, which exclusively targets gonadotrophs.

  10. RNAseq analysis of fast skeletal muscle in restriction-fed transgenic coho salmon (Oncorhynchus kisutch): an experimental model uncoupling the growth hormone and nutritional signals regulating growth.

    Science.gov (United States)

    Garcia de la Serrana, Daniel; Devlin, Robert H; Johnston, Ian A

    2015-07-31

    Coho salmon (Oncorhynchus kisutch) transgenic for growth hormone (Gh) express Gh in multiple tissues which results in increased appetite and continuous high growth with satiation feeding. Restricting Gh-transgenics to the same lower ration (TR) as wild-type fish (WT) results in similar growth, but with the recruitment of fewer, larger diameter, muscle skeletal fibres to reach a given body size. In order to better understand the genetic mechanisms behind these different patterns of muscle growth and to investigate how the decoupling of Gh and nutritional signals affects gene regulation we used RNA-seq to compare the fast skeletal muscle transcriptome in TR and WT coho salmon. Illumina sequencing of individually barcoded libraries from 6 WT and 6 TR coho salmon yielded 704,550,985 paired end reads which were used to construct 323,115 contigs containing 19,093 unique genes of which >10,000 contained >90 % of the coding sequence. Transcripts coding for 31 genes required for myoblast fusion were identified with 22 significantly downregulated in TR relative to WT fish, including 10 (vaspa, cdh15, graf1, crk, crkl, dock1, trio, plekho1a, cdc42a and dock5) associated with signaling through the cell surface protein cadherin. Nineteen out of 44 (43 %) translation initiation factors and 14 of 47 (30 %) protein chaperones were upregulated in TR relative to WT fish. TR coho salmon showed increased growth hormone transcripts and gene expression associated with protein synthesis and folding than WT fish even though net rates of protein accretion were similar. The uncoupling of Gh and amino acid signals likely results in additional costs of transcription associated with protein turnover in TR fish. The predicted reduction in the ionic costs of homeostasis in TR fish associated with increased fibre size were shown to involve multiple pathways regulating myotube fusion, particularly cadherin signaling.

  11. The role of SOCS2 in recombinant human growth hormone (rhGH) regulating lipid metabolism in high-fat-diet-induced obesity mice.

    Science.gov (United States)

    Yang, Hai Li; Feng, Min; Tan, Xiao; Yan, Guo Yong; Sun, Chao

    2013-03-01

    In addition to regulate body growth and development process, growth hormone (GH) also involved in lipid metabolism, decreasing fat mass and improving lipolysis. To normal mice, GH could reduce their fat content, but events turned uncertain coming to the pattern of feeding high-fat-diet. In order to investigate the role of GH in adipogenesis of mice with high-fat-diet, the high-fat-diet feeding mice were randomly assigned into three groups and treated with recombinant human growth hormone (rhGH) and the somatostatin analogue octreotide respectively. Results demonstrated that both rhGH and octreotide could reduce the body weight but the trends diminished in the end. HDL-C level was increased in octreotide treated groups but the activity of lipase was increased significantly in both two groups. RhGH remarkable increased the expression of SOCS2, FAS (P < 0.01) and SREBP-1c (P < 0.05), decreased the expression of SOCS1, SOCS3 (P < 0.05) and HSL (P < 0.01) in subcutaneous fat mass. In visceral fat tissue, all genes were increased except SOCS2 (P < 0.01), at the same time the visceral fat mass was decreased. The protein phosphorylation of JAK2 and STAT5 which were treated with octreotide were increased in subcutaneous fat, visceral fat and liver (P < 0.01) and were increased significant in visceral fat by rhGH treated (P < 0.01). In liver, only JAK2 protein phosphorylation was raised (P < 0.01). In conclusion, rhGH and octreotide could decrease the whole body mass before 6 days; the trend was weaken in later period with high-fat-diet. RhGH could increase the subcutaneous fat mass and reduce the visceral fat mass, and SOCS2 might be involved in regulation of the mechanism through JAK2/STAT5 signaling pathway.

  12. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?

    Science.gov (United States)

    Fusconi, Anna

    2014-01-01

    Arbuscular mycorrhizae (AMs) form a widespread root-fungus symbiosis that improves plant phosphate (Pi) acquisition and modifies the physiology and development of host plants. Increased branching is recognized as a general feature of AM roots, and has been interpreted as a means of increasing suitable sites for colonization. Fungal exudates, which are involved in the dialogue between AM fungi and their host during the pre-colonization phase, play a well-documented role in lateral root (LR) formation. In addition, the increased Pi content of AM plants, in relation to Pi-starved controls, as well as changes in the delivery of carbohydrates to the roots and modulation of phytohormone concentration, transport and sensitivity, are probably involved in increasing root system branching. This review discusses the possible causes of increased branching in AM plants. The differential root responses to Pi, sugars and hormones of potential AM host species are also highlighted and discussed in comparison with those of the non-host Arabidopsis thaliana. Fungal exudates are probably the main compounds regulating AM root morphogenesis during the first colonization steps, while a complex network of interactions governs root development in established AMs. Colonization and high Pi act synergistically to increase root branching, and sugar transport towards the arbusculated cells may contribute to LR formation. In addition, AM colonization and high Pi generally increase auxin and cytokinin and decrease ethylene and strigolactone levels. With the exception of cytokinins, which seem to regulate mainly the root:shoot biomass ratio, these hormones play a leading role in governing root morphogenesis, with strigolactones and ethylene blocking LR formation in the non-colonized, Pi-starved plants, and auxin inducing them in colonized plants, or in plants grown under high Pi conditions.

  13. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?

    Science.gov (United States)

    Fusconi, Anna

    2014-01-01

    Background Arbuscular mycorrhizae (AMs) form a widespread root–fungus symbiosis that improves plant phosphate (Pi) acquisition and modifies the physiology and development of host plants. Increased branching is recognized as a general feature of AM roots, and has been interpreted as a means of increasing suitable sites for colonization. Fungal exudates, which are involved in the dialogue between AM fungi and their host during the pre-colonization phase, play a well-documented role in lateral root (LR) formation. In addition, the increased Pi content of AM plants, in relation to Pi-starved controls, as well as changes in the delivery of carbohydrates to the roots and modulation of phytohormone concentration, transport and sensitivity, are probably involved in increasing root system branching. Scope This review discusses the possible causes of increased branching in AM plants. The differential root responses to Pi, sugars and hormones of potential AM host species are also highlighted and discussed in comparison with those of the non-host Arabidopsis thaliana. Conclusions Fungal exudates are probably the main compounds regulating AM root morphogenesis during the first colonization steps, while a complex network of interactions governs root development in established AMs. Colonization and high Pi act synergistically to increase root branching, and sugar transport towards the arbusculated cells may contribute to LR formation. In addition, AM colonization and high Pi generally increase auxin and cytokinin and decrease ethylene and strigolactone levels. With the exception of cytokinins, which seem to regulate mainly the root:shoot biomass ratio, these hormones play a leading role in governing root morphogenesis, with strigolactones and ethylene blocking LR formation in the non-colonized, Pi-starved plants, and auxin inducing them in colonized plants, or in plants grown under high Pi conditions. PMID:24227446

  14. FOXL2 Is an Essential Activator of SF-1-Induced Transcriptional Regulation of Anti-Mullerian Hormone in Human Granulosa Cells.

    Directory of Open Access Journals (Sweden)

    Hanyong Jin

    Full Text Available Anti-Müllerian hormone (AMH is required for proper sexual differentiation by regulating the regression of the Müllerian ducts in males. Recent studies indicate that AMH could be an important factor for maintaining the ovarian reserve. However, the mechanisms of AMH regulation in the ovary are largely unknown. Here, we provide evidence that AMH is an ovarian target gene of steroidogenic factor-1 (SF-1, an orphan nuclear receptor required for proper follicle development. FOXL2 is an evolutionally conserved transcription factor, and its mutations cause blepharophimosis, ptosis, and epicanthus inversus syndrome (BPES, wherein affected females display eyelid defects and premature ovarian failure (POF. Notably, we found that functional FOXL2 is essential for SF-1-induced AMH regulation, via protein-protein interactions between FOXL2 and SF-1. A BPES-inducing mutant of FOXL2 (290-291delCA was unable to interact with SF-1 and failed to mediate the association between SF-1 and the AMH promoter. Therefore, this study identified a novel regulatory circuit for ovarian AMH production; specifically, through the coordinated interplay between FOXL2 and SF-1 that could control ovarian follicle development.

  15. Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide.

    Science.gov (United States)

    Navarro, V M; Castellano, J M; Fernández-Fernández, R; Barreiro, M L; Roa, J; Sanchez-Criado, J E; Aguilar, E; Dieguez, C; Pinilla, L; Tena-Sempere, M

    2004-10-01

    The gonadotropic axis is centrally controlled by a complex regulatory network of excitatory and inhibitory signals that is activated at puberty. Recently, loss of function mutations of the gene encoding G protein-coupled receptor 54 (GPR54), the putative receptor for the KiSS-1-derived peptide metastin, have been associated with lack of puberty onset and hypogonadotropic hypogonadism. Yet the pattern of expression and functional role of the KiSS-1/GPR54 system in the rat hypothalamus remain unexplored to date. In the present work, expression analyses of KiSS-1 and GPR54 genes were conducted in different physiological and experimental settings, and the effects of central administration of KiSS-1 peptide on LH release were assessed in vivo. Persistent expression of KiSS-1 and GPR54 mRNAs was detected in rat hypothalamus throughout postnatal development, with maximum expression levels at puberty in both male and female rats. Hypothalamic expression of KiSS-1 and GPR54 genes changed throughout the estrous cycle and was significantly increased after gonadectomy, a rise that was prevented by sex steroid replacement both in males and females. Moreover, hypothalamic expression of the KiSS-1 gene was sensitive to neonatal imprinting by estrogen. From a functional standpoint, intracerebroventricular administration of KiSS-1 peptide induced a dramatic increase in serum LH levels in prepubertal male and female rats as well as in adult animals. In conclusion, we provide novel evidence of the developmental and hormonally regulated expression of KiSS-1 and GPR54 mRNAs in rat hypothalamus and the ability of KiSS-1 peptide to potently stimulate LH secretion in vivo. Our current data support the contention that the hypothalamic KiSS-1/GPR54 system is a pivotal factor in central regulation of the gonadotropic axis at puberty and in adulthood.

  16. Green tea proanthocyanidins cause impairment of hormone-regulated larval development and reproductive fitness via repression of juvenile hormone acid methyltransferase, insulin-like peptide and cytochrome P450 genes in Anopheles gambiae sensu stricto.

    Directory of Open Access Journals (Sweden)

    Jackson M Muema

    Full Text Available Successful optimization of plant-derived compounds into control of nuisance insects would benefit from scientifically validated targets. However, the close association between the genotypic responses and physiological toxicity effects mediated by these compounds remains underexplored. In this study, we evaluated the sublethal dose effects of proanthocyanidins (PAs sourced from green tea (Camellia sinensis on life history traits of Anopheles gambiae (sensu stricto mosquitoes with an aim to unravel the probable molecular targets. Based on the induced phenotypic effects, genes selected for study targeted juvenile hormone (JH biosynthesis, signal transduction, oxidative stress response and xenobiotic detoxification in addition to vitellogenesis in females. Our findings suggest that chronic exposure of larval stages (L3/L4 to sublethal dose of 5 ppm dramatically extended larval developmental period for up to 12 days, slowed down pupation rates, induced abnormal larval-pupal intermediates and caused 100% inhibition of adult emergence. Further, females exhibited significant interference of fecundity and egg hatchability relative to controls (p < 0.001. Using reverse transcription quantitative polymerase chain reaction (RT-qPCR, our findings show that PA-treated larvae exhibited significant repression of AgamJHAMT (p < 0.001, AgamILP1 (p < 0.001 and AgamCYP6M2 (p < 0.001 with up-regulation of Hsp70 (p < 0.001. Females exposed as larvae demonstrated down-regulation of AgamVg (p = 0.03, AgamILP1 (p = 0.009, AgamCYP6M2 (p = 0.05 and AgamJHAMT (p = 0.02. Our findings support that C. sinensis proanthocyanidins affect important vectorial capacity components such as mosquito survival rates and reproductive fitness thus could be potentially used for controlling populations of malaria vectors.

  17. Distinct hormonal regulation of Na+,K+-ATPase genes in the salmonid gill

    DEFF Research Database (Denmark)

    Tipsmark, Christian Kølbæk; Madsen, Steffen

    2009-01-01

    Igf1 stimulated only a1b. The data elaborate our understanding of Prl and Gh as being antagonists in the control of gill ion regulation, and support a dual role for Gh involving endocrine and  paracrine Igf1 action. Gh and Prl may be the decisive stimuli that direct cortisol-aided mitochondrion...

  18. Protein Hormones and Immunity‡

    Science.gov (United States)

    Kelley, Keith W.; Weigent, Douglas A.; Kooijman, Ron

    2007-01-01

    A number of observations and discoveries over the past 20 years support the concept of important physiological interactions between the endocrine and immune systems. The best known pathway for transmission of information from the immune system to the neuroendocrine system is humoral in the form of cytokines, although neural transmission via the afferent vagus is well documented also. In the other direction, efferent signals from the nervous system to the immune system are conveyed by both the neuroendocrine and autonomic nervous systems. Communication is possible because the nervous and immune systems share a common biochemical language involving shared ligands and receptors, including neurotransmitters, neuropeptides, growth factors, neuroendocrine hormones and cytokines. This means that the brain functions as an immune-regulating organ participating in immune responses. A great deal of evidence has accumulated and confirmed that hormones secreted by the neuroendocrine system play an important role in communication and regulation of the cells of the immune system. Among protein hormones, this has been most clearly documented for prolactin (PRL), growth hormone (GH), and insulin-like growth factor-1 (IGF-I), but significant influences on immunity by thyroid stimulating hormone (TSH) have also been demonstrated. Here we review evidence obtained during the past 20 years to clearly demonstrate that neuroendocrine protein hormones influence immunity and that immune processes affect the neuroendocrine system. New findings highlight a previously undiscovered route of communication between the immune and endocrine systems that is now known to occur at the cellular level. This communication system is activated when inflammatory processes induced by proinflammatory cytokines antagonize the function of a variety of hormones, which then causes endocrine resistance in both the periphery and brain. Homeostasis during inflammation is achieved by a balance between cytokines and

  19. Essential role of TEA domain transcription factors in the negative regulation of the MYH 7 gene by thyroid hormone and its receptors.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Iwaki

    Full Text Available MYH7 (also referred to as cardiac myosin heavy chain β gene expression is known to be repressed by thyroid hormone (T3. However, the molecular mechanism by which T3 inhibits the transcription of its target genes (negative regulation remains to be clarified, whereas those of transcriptional activation by T3 (positive regulation have been elucidated in detail. Two MCAT (muscle C, A, and T sites and an A/T-rich region in the MYH7 gene have been shown to play a critical role in the expression of this gene and are known to be recognized by the TEAD/TEF family of transcription factors (TEADs. Using a reconstitution system with CV-1 cells, which has been utilized in the analysis of positive as well as negative regulation, we demonstrate that both T3 receptor (TR β1 and α1 inhibit TEAD-dependent activation of the MYH7 promoter in a T3 dose-dependent manner. TRβ1 bound with GC-1, a TRβ-selective T3 analog, also repressed TEAD-induced activity. Although T3-dependent inhibition required the DNA-binding domain (DBD of TRβ1, it remained after the putative negative T3-responsive elements were mutated. A co-immunoprecipitation study demonstrated the in vivo association of TRβ1 with TEAD-1, and the interaction surfaces were mapped to the DBD of the TRβ1 and TEA domains of TEAD-1, both of which are highly conserved among TRs and TEADs, respectively. The importance of TEADs in MYH7 expression was also validated with RNA interference using rat embryonic cardiomyocyte H9c2 cells. These results indicate that T3-bound TRs interfere with transactivation by TEADs via protein-protein interactions, resulting in the negative regulation of MYH7 promoter activity.

  20. Essential role of TEA domain transcription factors in the negative regulation of the MYH 7 gene by thyroid hormone and its receptors.

    Science.gov (United States)

    Iwaki, Hiroyuki; Sasaki, Shigekazu; Matsushita, Akio; Ohba, Kenji; Matsunaga, Hideyuki; Misawa, Hiroko; Oki, Yutaka; Ishizuka, Keiko; Nakamura, Hirotoshi; Suda, Takafumi

    2014-01-01

    MYH7 (also referred to as cardiac myosin heavy chain β) gene expression is known to be repressed by thyroid hormone (T3). However, the molecular mechanism by which T3 inhibits the transcription of its target genes (negative regulation) remains to be clarified, whereas those of transcriptional activation by T3 (positive regulation) have been elucidated in detail. Two MCAT (muscle C, A, and T) sites and an A/T-rich region in the MYH7 gene have been shown to play a critical role in the expression of this gene and are known to be recognized by the TEAD/TEF family of transcription factors (TEADs). Using a reconstitution system with CV-1 cells, which has been utilized in the analysis of positive as well as negative regulation, we demonstrate that both T3 receptor (TR) β1 and α1 inhibit TEAD-dependent activation of the MYH7 promoter in a T3 dose-dependent manner. TRβ1 bound with GC-1, a TRβ-selective T3 analog, also repressed TEAD-induced activity. Although T3-dependent inhibition required the DNA-binding domain (DBD) of TRβ1, it remained after the putative negative T3-responsive elements were mutated. A co-immunoprecipitation study demonstrated the in vivo association of TRβ1 with TEAD-1, and the interaction surfaces were mapped to the DBD of the TRβ1 and TEA domains of TEAD-1, both of which are highly conserved among TRs and TEADs, respectively. The importance of TEADs in MYH7 expression was also validated with RNA interference using rat embryonic cardiomyocyte H9c2 cells. These results indicate that T3-bound TRs interfere with transactivation by TEADs via protein-protein interactions, resulting in the negative regulation of MYH7 promoter activity.

  1. Dietary Iodine Affected the GSH-Px to Regulate the Thyroid Hormones in Thyroid Gland of Rex Rabbits.

    Science.gov (United States)

    Qin, Feng; Pan, Xiaoqing; Yang, Jie; Li, Sheng; Shao, Le; Zhang, Xia; Liu, Beiyi; Li, Jian

    2018-02-01

    Iodine (I) is an essential trace element that can influence animal health and productivity. In this study, we investigated the effects of dietary iodine on the antioxidant indices of organ (liver and thyroid gland) and messenger RNA (mRNA) expression of glutathione peroxidase (GSH-Px) in Rex rabbits. A total of 120 4-month-old Rex rabbits (2235.4 ± 13.04 g BW) were divided into four equal groups, and their diets were supplemented with iodine (0, 0.2, 2, or 4 mg/kg dry matter (DM)). The iodine concentration in basal diet (control group) was 0.36 mg/kg DM. In most of measured parameters, supplemental iodine exerted no significant effect. Growth and slaughter performance and organ weight were not influenced significantly by iodine supplementation. Serum T 3 was significantly lower in 2-mg I group than in 0.2 and 4-mg I groups (P  0.05). Conversely, serum catalase (CAT) was significantly reduced (P thyroid, GSH-Px was higher in the 2-mg I group than in the 0.2- and 4-mg I groups (P  0.05). In the thyroid gland, the mRNA expression level of GSH-Px was higher in the 2-mg I group than in the 4-mg I group (P thyroid gland. Thus, on the basis of serum T 3 and GSH-Px levels in the thyroid gland, we hypothesized that GSH-Px secretion was increased by adding dietary iodine in the thyroid, which may inhibit the H 2 O 2 generation and further influence the thyroid hormone synthesis.

  2. The steroid hormone-regulated gene Broad Complex is required for dendritic growth of motoneurons during metamorphosis of Drosophila.

    Science.gov (United States)

    Consoulas, Christos; Levine, Richard B; Restifo, Linda L

    2005-05-16

    Dendrites are subject to subtle modifications as well as extensive remodeling during the assembly and maturation of neural circuits in a wide variety of organisms. During metamorphosis, Drosophila flight motoneurons MN1-MN4 undergo dendritic regression, followed by regrowth, whereas MN5 differentiates de novo (Consoulas et al. [2002] J. Neurosci. 22:4906-4917). Many cellular changes during metamorphosis are triggered and orchestrated by the steroid hormone 20-hydroxyecdysone, which initiates a cascade of coordinated gene expression. Broad Complex (BRC), a primary response gene in the ecdysone cascade, encodes a family of transcription factors (BRC-Z1-Z4) that are essential for metamorphic reorganization of the central nervous system (CNS). Using neuron-filling techniques that reveal cellular morphology with very high resolution, we tested the hypothesis that BRC is required for metamorphic development of MN1-MN5. Through a combination of loss-of-function mutant analyses, genetic mapping, and transgenic rescue experiments, we found that 2Bc function, mediated by BRC-Z3, is required selectively for motoneuron dendritic regrowth (MN1-MN4) and de novo outgrowth (MN5), as well as for soma expansion of MN5. In contrast, larval development and dendritic regression of MN1-MN4 are BRC-independent. Surprisingly, BRC proteins are not expressed in the motoneurons, suggesting that BRC-Z3 exerts its effect in a non-cell-autonomous manner. The 2Bc mutants display no gross defects in overall thoracic CNS structure, or in peripheral structures such as target muscles or sensory neurons. Candidates for mediating the effect of BRC-Z3 on dendritic growth of MN1-MN5 include their synaptic inputs and non-neuronal CNS cells that interact with them through direct contact or diffusible factors. (c) 2005 Wiley-Liss, Inc.

  3. Synergistic Signaling of KRAS and Thyroid Hormone Receptor β Mutants Promotes Undifferentiated Thyroid Cancer through MYC Up-Regulation

    Directory of Open Access Journals (Sweden)

    Xuguang Zhu

    2014-09-01

    Full Text Available Undifferentiated thyroid carcinoma is one of the most aggressive human cancers with frequent RAS mutations. How mutations of the RAS gene contribute to undifferentiated thyroid cancer remains largely unknown. Mice harboring a potent dominant negative mutant thyroid hormone receptor β, TRβPV (ThrbPV/PV, spontaneously develop well-differentiated follicular thyroid cancer similar to human cancer. We genetically targeted the KrasG12D mutation to thyroid epithelial cells of ThrbPV/PV mice to understand how KrasG12D mutation could induce undifferentiated thyroid cancer in ThrbPV/PVKrasG12D mice. ThrbPV/PVKrasG12D mice exhibited poorer survival due to more aggressive thyroid tumors with capsular invasion, vascular invasion, and distant metastases to the lung occurring at an earlier age and at a higher frequency than ThrbPV/PV mice did. Importantly, ThrbPV/PVKrasG12D mice developed frequent anaplastic foci with complete loss of normal thyroid follicular morphology. Within the anaplastic foci, the thyroid-specific transcription factor paired box gene 8 (PAX8 expression was virtually lost and the loss of PAX8 expression was inversely correlated with elevated MYC expression. Consistently, co-expression of KRASG12D with TRβPV upregulated MYC levels in rat thyroid pccl3 cells, and MYC acted to enhance the TRβPV-mediated repression of the Pax8 promoter activity of a distant upstream enhancer, critical for thyroid-specific Pax8 expression. Our findings indicated that synergistic signaling of KRASG12D and TRβPV led to increased MYC expression. Upregulated MYC contributes to the initiation of undifferentiated thyroid cancer, in part, through enhancing TRβPV-mediated repression of the Pax8 expression. Thus, MYC might serve as a potential target for therapeutic intervention.

  4. Oxygen-sensitive regulation and neuroprotective effects of growth hormone-dependent growth factors during early postnatal development.

    Science.gov (United States)

    Jung, Susan; Boie, Gudrun; Doerr, Helmuth-Guenther; Trollmann, Regina

    2017-04-01

    Perinatal hypoxia severely disrupts metabolic and somatotrophic development, as well as cerebral maturational programs. Hypoxia-inducible transcription factors (HIFs) represent the most important endogenous adaptive mechanisms to hypoxia, activating a broad spectrum of growth factors that contribute to cell survival and energy homeostasis. To analyze effects of systemic hypoxia and growth hormone (GH) therapy (rhGH) on HIF-dependent growth factors during early postnatal development, we compared protein (using ELISA) and mRNA (using quantitative RT PCR) levels of growth factors in plasma and brain between normoxic and hypoxic mice (8% O2, 6 h; postnatal day 7, P7) at P14. Exposure to hypoxia led to reduced body weight (P < 0.001) and length (P < 0.04) compared with controls and was associated with significantly reduced plasma levels of mouse GH (P < 0.01) and IGF-1 (P < 0.01). RhGH abrogated these hypoxia-induced changes of the GH/IGF-1 axis associated with normalization of weight and length gain until P14 compared with controls. In addition, rhGH treatment increased cerebral IGF-1, IGF-2, IGFBP-2, and erythropoietin mRNA levels, resulting in significantly reduced apoptotic cell death in the hypoxic, developing mouse brain. These data indicate that rhGH may functionally restore hypoxia-induced systemic dysregulation of the GH/IGF-1 axis and induce upregulation of neuroprotective, HIF-dependent growth factors in the hypoxic developing brain. Copyright © 2017 the American Physiological Society.

  5. Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability.

    Science.gov (United States)

    Albacete, Alfonso A; Martínez-Andújar, Cristina; Pérez-Alfocea, Francisco

    2014-01-01

    Securing food production for the growing population will require closing the gap between potential crop productivity under optimal conditions and the yield captured by farmers under a changing environment, which is termed agronomical stability. Drought and salinity are major environmental factors contributing to the yield gap ultimately by inducing premature senescence in the photosynthetic source tissues of the plant and by reducing the number and growth of the harvestable sink organs by affecting the transport and use of assimilates between and within them. However, the changes in source-sink relations induced by stress also include adaptive changes in the reallocation of photoassimilates that influence crop productivity, ranging from plant survival to yield stability. While the massive utilization of -omic technologies in model plants is discovering hundreds of genes with potential impacts in alleviating short-term applied drought and salinity stress (usually measured as plant survival), only in relatively few cases has an effect on crop yield stability been proven. However, achieving the former does not necessarily imply the latter. Plant survival only requires water status conservation and delayed leaf senescence (thus maintaining source activity) that is usually accompanied by growth inhibition. However, yield stability will additionally require the maintenance or increase in sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves and to delayed stress-induced leaf senescence. This review emphasizes the role of several metabolic and hormonal factors influencing not only the source strength, but especially the sink activity and their inter-relations, and their potential to improve yield stability under drought and salinity stresses. © 2013.

  6. Regulation of C. elegans fat uptake and storage by acyl-CoA synthase-3 is dependent on NR5A family nuclear hormone receptor nhr-25.

    Science.gov (United States)

    Mullaney, Brendan C; Blind, Raymond D; Lemieux, George A; Perez, Carissa L; Elle, Ida C; Faergeman, Nils J; Van Gilst, Marc R; Ingraham, Holly A; Ashrafi, Kaveh

    2010-10-06

    Acyl-CoA synthases are important for lipid synthesis and breakdown, generation of signaling molecules, and lipid modification of proteins, highlighting the challenge of understanding metabolic pathways within intact organisms. From a C. elegans mutagenesis screen, we found that loss of ACS-3, a long-chain acyl-CoA synthase, causes enhanced intestinal lipid uptake, de novo fat synthesis, and accumulation of enlarged, neutral lipid-rich intestinal depots. Here, we show that ACS-3 functions in seam cells, epidermal cells anatomically distinct from sites of fat uptake and storage, and that acs-3 mutant phenotypes require the nuclear hormone receptor NHR-25, a key regulator of C. elegans molting. Our findings suggest that ACS-3-derived long-chain fatty acyl-CoAs, perhaps incorporated into complex ligands such as phosphoinositides, modulate NHR-25 function, which in turn regulates an endocrine program of lipid uptake and synthesis. These results reveal a link between acyl-CoA synthase function and an NR5A family nuclear receptor in C. elegans. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Kisspeptin-gpr54 signaling at the GnRH neuron is necessary for negative feedback regulation of luteinizing hormone secretion in female mice.

    Science.gov (United States)

    Yeo, Shel-Hwa; Clarkson, Jenny; Herbison, Allan E

    2014-01-01

    Kisspeptin-Gpr54 signaling is critical for regulating the activity of gonadotropin-releasing hormone (GnRH) neurons in mammals. Previous studies have shown that the negative feedback mechanism is disrupted in global Gpr54-null mutants. The present investigation aimed to determine (1) if a lack of cyclical estrogen exposure of the GnRH neuronal network in the life-long hypogonadotropic Gpr54-null mice contributed to their failed negative feedback mechanism and (2) the cellular location of disrupted kisspeptin-Gpr54 signaling. Plasma luteinizing hormone (LH) concentrations were determined in individual adult female mice when intact, following ovariectomy (OVX) and in response to an acute injection of 17β-estradiol (E2). Control mice exhibited a characteristic rise in LH after OVX that was suppressed by acute E2. Global Gpr54-null mice failed to exhibit any post-OVX increase in LH or response to E2. Adult female global Gpr54-null mice given a cyclical regimen of estradiol for three cycles prior to OVX also failed to exhibit any post-OVX increase in LH or response to E2. To address whether Gpr54 signaling at the GnRH neuron itself was necessary for the failed response to OVX in global Gpr54-null animals, adult female mice with a GnRH neuron-selective deletion of Gpr54 were examined. These mice also failed to exhibit any post-OVX increase in LH or response to E2. These experiments demonstrate defective negative feedback in global Gpr54-null mice that cannot be attributed to a lack of prior exposure of the GnRH neuronal network to cyclical estradiol. The absence of negative feedback in GnRH neuron-selective Gpr54-null mice demonstrates the necessity of direct kisspeptin signaling at the GnRH neuron for this mechanism to occur. © 2014 S. Karger AG, Basel.

  8. Phospholipase C-related catalytically inactive protein (PRIP regulates lipolysis in adipose tissue by modulating the phosphorylation of hormone-sensitive lipase.

    Directory of Open Access Journals (Sweden)

    Toshiya Okumura

    Full Text Available Phosphorylation of hormone-sensitive lipase (HSL and perilipin by protein kinase A (PKA promotes the hydrolysis of lipids in adipocytes. Although activation of lipolysis by PKA has been well studied, inactivation via protein phosphatases is poorly understood. Here, we investigated whether phospholipase C-related catalytically inactive protein (PRIP, a binding partner for protein phosphatase 1 and protein phosphatase 2A (PP2A, is involved in lipolysis by regulating phosphatase activity. PRIP knockout (PRIP-KO mice displayed reduced body-fat mass as compared with wild-type mice fed with standard chow ad libitum. Most other organs appeared normal, suggesting that mutant mice had aberrant fat metabolism in adipocytes. HSL in PRIP-KO adipose tissue was highly phosphorylated compared to that in wild-type mice. Starvation of wild-type mice or stimulation of adipose tissue explants with the catabolic hormone, adrenaline, translocated both PRIP and PP2A from the cytosol to lipid droplets, but the translocation of PP2A was significantly reduced in PRIP-KO adipocytes. Consistently, the phosphatase activity associated with lipid droplet fraction in PRIP-KO adipocytes was significantly reduced and was independent of adrenaline stimulation. Lipolysis activity, as assessed by measurement of non-esterified fatty acids and glycerol, was higher in PRIP-KO adipocytes. When wild-type adipocytes were treated with a phosphatase inhibitor, they showed a high lipolysis activity at the similar level to PRIP-KO adipocytes. Collectively, these results suggest that PRIP promotes the translocation of phosphatases to lipid droplets to trigger the dephosphorylation of HSL and perilipin A, thus reducing PKA-mediated lipolysis.

  9. Over-the-Counter Medicines

    Science.gov (United States)

    Over-the-counter (OTC) medicines are drugs you can buy without a prescription. Some OTC medicines relieve aches, pains ... Others help manage recurring problems, like migraines. In the United States, the Food and Drug Administration decides ...

  10. [The effect of hypervolemia on electrolyte level and and level of volume regulating hormones in patients with autosomal dominant polycystic kidney disease].

    Science.gov (United States)

    Michalski, A; Grzeszczak, W

    1996-10-01

    Autosomal dominant polycystic kidney disease (ADPKD) is one of the most frequent autosomal dominant diseases. Apart from kidneys it also includes alimentary system, nervous system, cardiovascular system. ADPKD is associated with endocrinal disorders of the hormones regulating volume, arterial blood pressure and water and electrolyte balance such as: ARO, AVP, Aldo. 24 patients with ADPKD (12 with normal renal function-gr. III, 12 with advanced renal insufficiency-gr. IV) and 15 healthy subjects to compare with-gr. I and 16 patients with advanced renal insufficiency of other origin than ADPKD-gr. II were examined. In all groups the levels of Aldo, AVP and ARO in blood and Na+, K+ and creatinine concentrations in blood serum were examined Also an excretion of Na, K, creatinine with urine and clearances: CNa, CK, CKrea and filtration fractions: FENa and FEK were determined. Arterial blood pressure was measured in all groups. The above described parameters were studied in standard conditions in patients in supine position and fasting-survey I; directly after intravenous infusion of 1000 ml 0.16 M NaCl at 16.7 ml/min for 1 h-survey II and two hours after intravenous infusion-survey III. Isotonic intravenous infusion of natrium chloride increased central blood volume in the examined patients (induced hypervolemia). The received results were compared among groups in standard conditions (before infusion) as well as reaction of all groups to increased central volemia was compared. On the basis of the received results it was observed that the patients with ADPKD with normal renal function (gr III) show a significant increase of ARO, AVP, arterial blood pressure what differs them from healthy individuals (gr. I). The increased values of the above mentioned parameters were typical for the patients with chronic renal insufficiency regardless to a cause of the failure (gr. II). Consequently, patients with ADPKD showed some hormonal disorders typical for patients with advanced

  11. Arabidopsis WRKY33 Is a Key Transcriptional Regulator of Hormonal and Metabolic Responses toward Botrytis cinerea Infection1[W

    Science.gov (United States)

    Birkenbihl, Rainer P.; Diezel, Celia; Somssich, Imre E.

    2012-01-01

    The Arabidopsis (Arabidopsis thaliana) transcription factor WRKY33 is essential for defense toward the necrotrophic fungus Botrytis cinerea. Here, we aimed at identifying early transcriptional responses mediated by WRKY33. Global expression profiling on susceptible wrky33 and resistant wild-type plants uncovered massive differential transcriptional reprogramming upon B. cinerea infection. Subsequent detailed kinetic analyses revealed that loss of WRKY33 function results in inappropriate activation of the salicylic acid (SA)-related host response and elevated SA levels post infection and in the down-regulation of jasmonic acid (JA)-associated responses at later stages. This down-regulation appears to involve direct activation of several jasmonate ZIM-domain genes, encoding repressors of the JA-response pathway, by loss of WRKY33 function and by additional SA-dependent WRKY factors. Moreover, genes involved in redox homeostasis, SA signaling, ethylene-JA-mediated cross-communication, and camalexin biosynthesis were identified as direct targets of WRKY33. Genetic studies indicate that although SA-mediated repression of the JA pathway may contribute to the susceptibility of wrky33 plants to B. cinerea, it is insufficient for WRKY33-mediated resistance. Thus, WRKY33 apparently directly targets other still unidentified components that are also critical for establishing full resistance toward this necrotroph. PMID:22392279

  12. Qualidade negociada: avaliação e contra-regulação na escola pública Negotiated quality: assessment and counter-regulation in public schools

    Directory of Open Access Journals (Sweden)

    Luiz Carlos de Freitas

    2005-10-01

    Full Text Available A "qualidade negociada" é proposta como alternativa de contra-regulação e apoio a processos de mudança complexos nas escolas. Por este conceito, a qualidade é produto de um processo de avaliação institucional construído coletivamente, tendo como referência o projeto político-pedagógico da escola. Defende-se a inadequação de estratégias de "difusão" de mudanças a partir de um centro irradiador destas, sem ter como referência os problemas reais da escola. Analisa-se o conceito de "serviço público" procurando entender suas características particulares. Dado que o servidor público tem estabilidade e atua no interior de relações específicas com o poder, com o dinheiro e com o tempo, procura-se mostrar que, a exemplo das políticas públicas neoliberais (PSDB-PFL, as políticas públicas participativas (pt e aliados também terão problemas se não reconhecerem tais especificidades e se não instalarem processos de avaliação negociados que criem compromissos pactuados e incentivem novas formas de organização nas relações internas das escolas.Negotiated quality is proposed as a counter-regulation alternative favoring complex change processes at school. This concept sees quality as produced through an institutional assessment process, collectively built, whose reference is the political-pedagogical project of school. The text substantiates the unsuitability of strategies that "spread" changes from a center, without any reference to the actual problems of school. It analyzes the concept of public services so as to understand its peculiar characteristics. Since civil servants have job security and work within specific relationships to power, money and time, it attempts to show that, as was the case with the neoliberal public policies (PSDB-PFL, the participative public policies (pt and allies will also be faced with problems if they do not acknowledge such specificities and implement negotiated assessment processes that

  13. Plasma Cytokine Concentrations Indicate In-vivo Hormonal Regulation of Immunity is Altered During Long-Duration Spaceflight

    Science.gov (United States)

    Crician, Brian E.; Zwart, Sara R.; Mehta, Satish; Uchakin, Peter; Quiriarte, Heather A.; Pierson, Duane; Sams, Clarence F.; Smith, Scott M.

    2013-01-01

    Background: Aspects of immune system dysregulation associated with long-duration spaceflight have yet to be fully characterized, and may represent a clinical risk to crewmembers during deep space missions. Plasma cytokine concentration may serve as an indicator of in vivo physiological changes or immune system mobilization. Methods: The plasma concentrations of 22 cytokines were monitored in 28 astronauts during long-duration spaceflight onboard the International Space Station. Blood samples were collected three times before flight, 3-5 times during flight (depending on mission duration), at landing and 30 days post-landing. Analysis was performed by bead array immunoassay. Results: With few exceptions, minimal detectable mean plasma levels (inflammation, leukocyte recruitment, angiogenesis and thrombocyte regulation.

  14. Up-regulation of hepatic receptor for growth hormone in the flounder ( Paralichthys olivaceus) after oral administration with exogenous GH

    Science.gov (United States)

    Liu, Zong-Zhu; Wang, Jin-Bao; Xu, Yong-Li; Wang, Yong; Zhang, Pei-Jun

    2001-06-01

    The iodination efficiency of salmon GH(sGH) was 38.82%, using a modification of the chloramine-T method. The specific activity of the125I-sGH was about 40 μCi/μg protein. The results of binding assay showed a single class of high affinity and low-capacity binding site in flounder liver. Long-term administration with exogenous GH can induce the up-regulation of hepatic GH receptor in total binding capacity though there was no significant difference in capacity of free binding sites of livers from control and experimental fish, this result also indicated that the liver from experimental fish, compared to that from control fish, had more occupied binding sites.

  15. Combined herbicide and saline stress differentially modulates hormonal regulation and antioxidant defense system in Oryza sativa cultivars.

    Science.gov (United States)

    Islam, Faisal; Ali, Basharat; Wang, Jian; Farooq, Muhammad A; Gill, Rafaqat A; Ali, Shafaqat; Wang, Danying; Zhou, Weijun

    2016-10-01

    Plants are simultaneously exposed to a combination of biotic and abiotic stresses in field conditions. Crops respond to the combined stress in a unique way which cannot be understood by extrapolating the results of individual stress. In the present study, effects of individual and combined stress of herbicide (2,4-dichlorophenoxyacetic acid) and salinity (NaCl) on two Oryza sativa cultivars (ZJ 88 and XS 134) were investigated. Both herbicide and saline stress affected the plant growth differentially and produced oxidative stress in rice cultivars. Interestingly, the combination of herbicide and salinity showed a significant protection to both rice cultivars by reducing ROS (H2O2, O2(-)) and lipid peroxidation through modulation of enzymatic (SOD, POD, CAT and APX) and non-enzymatic (TSP, sugars, phenolic and proline) antioxidants. In addition, active regulation of transcript levels of genes encoding Na(+) and K(+) (OsHKT1;5, OsLti6a,b, OsHKT2;1, OsSOS1, OsCNGC1, OsNHX1 and OsAKT1) transporter proteins reduced sodium and enhanced potassium accumulation under combined stress, resulted a better growth and ionic homeostasis in both rice cultivars. The production of ABA and IAA was significantly higher in cultivar XS 134 compared to cultivar ZJ 88 under control conditions. However, combined herbicide and saline stress enhanced the accumulation of phytohormones (IAA and ABA) and transcription of ethylene in cultivar ZJ 88, which might be one of the factors responsible for poor salt tolerance in sensitive cultivar. These findings indicated that herbicide application under saline stress confers tolerance to salinity in rice cultivars, likely by reducing oxidative damage, modulating mineral absorption, upgradation of antioxidant defense and by dynamic regulation of key genes involved in Na(+) and K(+) homeostasis in plants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. The modulatory role of alpha-melanocyte stimulating hormone administered spinally in the regulation of blood glucose level in d-glucose-fed and restraint stress mouse models.

    Science.gov (United States)

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-08-01

    Alpha-melanocyte stimulating hormone (α-MSH) is known as a regulator of the blood glucose homeostasis and food intake. In the present study, the possible roles of α-MSH located in the spinal cord in the regulation of the blood glucose level were investigated in d-glucose-fed and immobilization stress (IMO) mouse models. We found in the present study that intrathecal (i.t.) injection with α-MSH alone did not affect the blood glucose level. However, i.t. administration with α-MSH reduced the blood glucose level in d-glucose-fed model. The plasma insulin level was increased in d-glucose-fed model and was further increased by α-MSH, whereas α-MSH did not affect plasma corticosterone level in d-glucose-fed model. In addition, i.t. administration with glucagon alone enhanced blood glucose level and, i.t. injection with glucagon also increased the blood glucose level in d-glucose-fed model. In contrasted to results observed in d-glucose-fed model, i.t. treatment with α-MSH caused enhancement of the blood glucose level in IMO model. The plasma insulin level was increased in IMO model. The increased plasma insulin level by IMO was reduced by i.t. treatment with α-MSH, whereas i.t. pretreatment with α-MSH did not affect plasma corticosterone level in IMO model. Taken together, although spinally located α-MSH itself does not alter the blood glucose level, our results suggest that the activation of α-MSH system located in the spinal cord play important modulatory roles for the reduction of the blood glucose level in d-glucose fed model whereas α-MSH is responsible for the up-regulation of the blood glucose level in IMO model. The enhancement of insulin release may be responsible for modulatory action of α-MSH in down-regulation of the blood glucose in d-glucose fed model whereas reduction of insulin release may be responsible for modulatory action of α-MSH in up-regulation of the blood glucose in IMO model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Tamoxifen-induced epigenetic silencing of oestrogen-regulated genes in anti-hormone resistant breast cancer.

    Directory of Open Access Journals (Sweden)

    Andrew Stone

    Full Text Available In the present study, we have taken the novel approach of using an in vitro model representative of tamoxifen-withdrawal subsequent to clinical relapse to achieve a greater understanding of the mechanisms that serve to maintain the resistant-cell phenotype, independent of any agonistic impact of tamoxifen, to identify potential novel therapeutic approaches for this disease state. Following tamoxifen withdrawal, tamoxifen-resistant MCF-7 cells conserved both drug resistance and an increased basal rate of proliferation in an oestrogen deprived environment, despite reduced epidermal growth-factor receptor expression and reduced sensitivity to gefitinib challenge. Although tamoxifen-withdrawn cells retained ER expression, a sub-set of ER-responsive genes, including pS2 and progesterone receptor (PgR, were down-regulated by promoter DNA methylation, as confirmed by clonal bisulphite sequencing experiments. Following promoter demethylation with 5-Azacytidine (5-Aza, the co-addition of oestradiol (E2 restored gene expression in these cells. In addition, 5-Aza/E2 co-treatment induced a significant anti-proliferative effect in the tamoxifen-withdrawn cells, in-contrast to either agent used alone. Microarray analysis was undertaken to identify genes specifically up regulated by this co-treatment. Several anti-proliferative gene candidates were identified and their promoters were confirmed as more heavily methylated in the tamoxifen resistant vs sensitive cells. One such gene candidate, growth differentiation factor 15 (GDF15, was carried forward for functional analysis. The addition of 5-Aza/E2 was sufficient to de-methylate and activate GDF15 expression in the tamoxifen resistant cell-lines, whilst in parallel, treatment with recombinant GDF15 protein decreased cell survival. These data provide evidence to support a novel concept that long-term tamoxifen exposure induces epigenetic silencing of a cohort of oestrogen-responsive genes whose function is

  18. Hypothalamic effects of progesterone on regulation of the pulsatile and surge release of luteinising hormone in female rats.

    Science.gov (United States)

    He, Wen; Li, Xiaofeng; Adekunbi, Daniel; Liu, Yali; Long, Hui; Wang, Li; Lyu, Qifeng; Kuang, Yanping; O'Byrne, Kevin T

    2017-08-14

    Progesterone can block the oestradiol-induced GnRH/LH surge and inhibit LH pulse frequency. Recent studies reported that progesterone prevented premature LH surges during ovarian hyperstimulation in women. As the most potent stimulator of GnRH/LH release, kisspeptin is believed to mediate the positive and negative feedback effects of oestradiol in the hypothalamic anteroventral periventricular (AVPV) and arcuate (ARC) nuclei, while the region-specific role of progesterone receptors in these nuclei remains unknown. This study examined the hypothesis that progesterone inhibits LH surge and pulsatile secretion via its receptor in the ARC and/or AVPV nuclei. Adult female rats received a single injection of pregnant mare serum gonadotropin followed by progesterone or vehicle. Progesterone administration resulted in a significant prolongation of the oestrous cycle and blockade of LH surge. However, microinjection of the progesterone receptor antagonist, RU486, into the AVPV reversed the prolonged cycle length and rescued the progesterone blockade LH surge, while RU486 into the ARC shortened LH pulse interval in the progesterone treated rats. These results demonstrated that progesterone's inhibitory effect on the GnRH/LH surge and pulsatile secretion is mediated by its receptor in the kisspeptin enriched hypothalamic AVPV and ARC respectively, which are essential for progesterone regulation of oestrous cyclicity in rats.

  19. Expression of E-cadherin and N-cadherin in perinatal hamster ovary: possible involvement in primordial follicle formation and regulation by follicle-stimulating hormone.

    Science.gov (United States)

    Wang, Cheng; Roy, Shyamal K

    2010-05-01

    We examined the expression and hormonal regulation of E-cadherin (CDH1) and N-cadherin (CDH2) with respect to primordial follicle formation. Hamster Cdh1 and Cdh2 cDNA and amino acid sequences were more than 90% similar to those of the mouse, rat, and human. Although CDH1 expression remained exclusively in the oocytes during neonatal ovary development, CDH2 expression shifted from the oocytes to granulosa cells of primordial follicles on postnatal day (P)8. Subsequently, strong CDH2 expression was restricted to granulosa cells of growing follicles. Cdh2 mRNA levels in the ovary decreased from embryonic d 13 through P10 with a transient increase on P7, which was the day before the appearance of primordial follicles. Cdh1 mRNA levels decreased from embryonic d 13 through P3 and then showed a transient increase on P8, coinciding with the formation of primordial follicles. CDH1 and CDH2 expression were consistent with that of mRNA. Neutralization of FSH in utero impaired primordial follicle formation with an associated decrease in Cdh2 mRNA and CDH2, but an increase in Cdh1 mRNA and CDH1 expression. The altered expression was reversed by equine chorionic gonadotropin treatment on P1. Whereas a CDH2 antibody significantly reduced the formation of primordial and primary follicles in vitro, a CDH1 antibody had the opposite effect. This is the first evidence to suggest that primordial follicle formation requires a differential spatiotemporal expression and action of CDH1 and CDH2. Further, FSH regulation of primordial follicle formation may involve the action of CDH1 and CDH2.

  20. Circulating insulin-like growth factor binding protein-4 (IGFBP-4) is not regulated by parathyroid hormone and vitamin D in vivo: evidence from children with rickets.

    Science.gov (United States)

    Bereket, Abdullah; Cesur, Yaşar; Özkan, Behzat; Adal, Erdal; Turan, Serap; Onan, Sertaç Hanedan; Döneray, Hakan; Akçay, Teoman; Haklar, Goncagül

    2010-01-01

    Insulin-like growth factor binding protein-4 (IGFBP-4), inhibits IGF actions under a variety of experimental conditions. Parathyroid hormone (PTH), 1.25-hydroxy(OH)vitamin D, IGF-I, IGF-II and transforming growth factor (TGF)-b are the major regulators of IGFBP-4 production in vitro. However, little is known about the in vivo regulation of circulating IGFBP-4 in humans. We measured serum concentrations of calcium (Ca), phosphorus (P), alkaline phosphatase (ALP), PTH, vitamin D, IGF-I, IGFBP-3, and IGFBP-4 in infants (n=22) with nutritional rickets before and after treatment of rickets with vitamin D (300 000 U single dose po). The mean±SD age of the patients was 1.3±1.6 years (range 0.2-3). Serum Ca and P increased, whereas ALP and PTH decreased after treatment (Ca from 6.6±1.4 to 9.5±1.6 mg/dL, P from 3.9±1.4 to 5.4±0.8 mg/dL, ALP from 2590±2630 to 1072±776 IU/mL and PTH from 407±248 to 27.4±20.8 ng/dL, respectively). Vitamin D levels were low (7.8±2.5 ng/mL) and increased after treatment (18.1±4.0 ng/mL, prickets since IGFBP-4 levels did not change after normalization of PTH with vitamin D treatment.

  1. Hormonal regulation of suppressors of cytokine signaling (SOCS) messenger ribonucleic acid in the arcuate nucleus during late pregnancy.

    Science.gov (United States)

    Steyn, Frederik J; Anderson, Greg M; Grattan, David R

    2008-06-01

    Prolactin stimulates tuberoinfundibular dopamine neurons in the arcuate nucleus of the hypothalamus, mediated by signal transducer and activator of transcription 5b (STAT5b). During late pregnancy, these neurons become unresponsive to prolactin, with a loss of prolactin-induced activation of STAT5b and decreased dopamine secretion. Suppressors of cytokine signaling (SOCS) proteins inhibit STAT-mediated signaling, and SOCS mRNAs are specifically elevated in the arcuate nucleus during late pregnancy. We hypothesized that changes in circulating ovarian steroids during late pregnancy might induce expression of SOCS mRNAs, thus disrupting STAT5b-mediated prolactin signaling. Rats were ovariectomized on d 18 of pregnancy and treated with ovarian steroids to simulate an advanced, normal, or delayed decline in progesterone. Early progesterone withdrawal caused an early increase in prolactin secretion, and increased SOCS-1 and -3 and cytokine-inducible SH2-containing protein (CIS) mRNA levels in the arcuate nucleus. Prolonged progesterone treatment prevented these changes. To determine whether ovarian steroids directly alter SOCS mRNA levels, estrogen- and/or progesterone-treated ovariectomized nonpregnant rats were acutely injected with prolactin (300 microg sc) or vehicle. SOCS-1 and -3 and CIS mRNA levels in the arcuate nucleus were significantly increased by estrogen or prolactin, whereas progesterone treatment reversed the effect of estrogen. Results demonstrate that estrogen and prolactin can independently induce SOCS mRNA in the arcuate nucleus and that this effect is negatively regulated by progesterone. This is consistent with the hypothesis that declining progesterone and high levels of estrogen during late pregnancy induce SOCS in the tuberoinfundibular dopamine neurons, thus contributing to their insensitivity to prolactin at this time.

  2. Hormone Therapy

    Science.gov (United States)

    ... vaginal lining gets thinner, dryer, and less elas- tic. Vaginal dryness may cause pain during sexual intercourse . ... when a woman starts taking hormone therapy. Some research suggests that for women who start combined therapy ...

  3. Growth Hormone

    Science.gov (United States)

    ... of GHD and/or hypopituitarism , such as: Decreased bone density Fatigue Adverse lipid changes, such as high cholesterol Reduced exercise tolerance Other hormone testing, such as thyroid testing , ...

  4. Growth Hormone

    Science.gov (United States)

    ... High-sensitivity C-reactive Protein (hs-CRP) Histamine Histone Antibody HIV Antibody and HIV Antigen (p24) HIV ... 003706.htm . Accessed October 2010. (© 1995-2010). Unit Code 8688: Growth Hormone, Serum. Mayo Clinic, Mayo Medical ...

  5. Hormone Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hormones quantified from marine mammal and sea turtle tissue provide information about the status of each animal sampled, including its sex, reproductive status and...

  6. Stochastic Event Counter for Discrete-Event Systems Under Unreliable Observations

    Energy Technology Data Exchange (ETDEWEB)

    Tae-Sic Yoo; Humberto E. Garcia

    2008-06-01

    This paper addresses the issues of counting the occurrence of special events in the framework of partiallyobserved discrete-event dynamical systems (DEDS). First, we develop a noble recursive procedure that updates active counter information state sequentially with available observations. In general, the cardinality of active counter information state is unbounded, which makes the exact recursion infeasible computationally. To overcome this difficulty, we develop an approximated recursive procedure that regulates and bounds the size of active counter information state. Using the approximated active counting information state, we give an approximated minimum mean square error (MMSE) counter. The developed algorithms are then applied to count special routing events in a material flow system.

  7. Fast mixing condensation nucleus counter

    OpenAIRE

    Flagan, Richard C.; Wang, Jian

    2003-01-01

    A fast mixing condensation nucleus counter useful for detecting particles entrained in a sample gas stream is provided. The fast mixing condensation nucleus counter comprises a detector and a mixing condensation device having a mixing chamber adapted to allow gas to flow from an inlet to an outlet, wherein the outlet directs the gas flow to the detector. The mixing chamber has an inlet for introducing vapor-laden gas into the chamber and at least one nozzle for introducing a sample gas having...

  8. Disruption of thyroid hormone (TH) levels and TH-regulated gene expression by polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and hydroxylated PCBs in e-waste recycling workers.

    Science.gov (United States)

    Zheng, Jing; He, Chun-Tao; Chen, She-Jun; Yan, Xiao; Guo, Mi-Na; Wang, Mei-Huan; Yu, Yun-Jiang; Yang, Zhong-Yi; Mai, Bi-Xian

    2017-05-01

    Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are the primary toxicants released by electronic waste (e-waste) recycling, but their adverse effects on people working in e-waste recycling or living near e-waste sites have not been studied well. In the present study, the serum concentrations of PBDEs, PCBs, and hydroxylated PCBs, the circulating levels of thyroid hormones (THs), and the mRNA levels of seven TH-regulated genes in peripheral blood leukocytes of e-waste recycling workers were analyzed. The associations of the hormone levels and gene expression with the exposure to these contaminants were examined using multiple linear regression models. There were nearly no associations of the TH levels with PCBs and hydroxylated PCBs, whereas elevated hormone (T 4 and T 3 ) levels were associated with certain lower-brominated BDEs. While not statistically significant, we did observe a negative association between highly brominated PBDE congeners and thyroid-stimulating hormone (TSH) levels in the e-waste workers. The TH-regulated gene expression was more significantly associated with the organohalogen compounds (OHCs) than the TH levels in these workers. The TH-regulated gene expression was significantly associated with certain PCB and hydroxylated PCB congeners. However, the expression of most target genes was suppressed by PBDEs (mostly highly brominated congeners). This is the first evidence of alterations in TH-regulated gene expression in humans exposed to OHCs. Our findings indicated that OHCs may interfere with TH signaling and/or exert TH-like effects, leading to alterations in related gene expression in humans. Further research is needed to investigate the mechanisms of action and associated biological consequences of the gene expression disruption by OHCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. In vivo and in vitro studies on sex steroid binding protein (SBP) regulation in rainbow trout (Oncorhynchus mykiss) : influence of sex steroid hormones and factors linked to growth and metabolism

    OpenAIRE

    Foucher, Jean-Luc; Niu, Ping; MOUROT, Brigitte; Vaillant, Colette; Le Gac, Florence

    1991-01-01

    The respective roles of sex steroids and hormones related to growth and metabolism, on SBP regulation have been studied in rainbow trout. In vivo, oestradiol (E2) supplementation induces a slow but significant increase of plasma SBP concentration. Testosterone or cortisol injections have no effect. In vitro, the steroid binding protein that accumulates in incubation medium of hepatic cell primary cultures has been characterized and found to be similar to blood SBP. Its production is increased...

  10. A regulação do lobo anterior da hypophyse por um hormonio testicular, especialmente sob o ponto de vista morphologico The regulation of the anterior hypophysis by a testicular hormone, principally under morphological consideration

    Directory of Open Access Journals (Sweden)

    Thales Martins

    1931-02-01

    Full Text Available The authors summarize the results of former works, based on the technics of parabiosis. After parabiotic union of two infantile rats, normal + castrate, the normal fellow enters into precocious puberty in about 7 days (Kallas. In the case of pairs: castrated male + normal female, the implants of testicles, or injection of maceration or aqueous extracts of testis in the castrated fellow, prevents the induction of early puberty in the normal female. In the case: castrated female + normal female, no inhibiting effect is provoked by that treatment. There is therefore a testicular hormone that regulates the hypophysis. After castration, this gland manifests a hyper-function and shows histological alterations, the chief character of these being the appearing in the anterior lobe, of the so-called castration cells, probably originated from basophile cells. Implants or injections of testis material prevent those alterations. This is a useful test; the effect is controlled by estimating the castration cells in the microscopic field. The testicular hormone that regulates the anterior lobe is probably another one, quite different from that which regulates the accessory genitalia. On account of the facts and experiments, it may be assumed that this new hormone is elaborated by the germinal epithelium of the testicles.

  11. Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 Regulates Xylem Development and Growth by a Conserved Mechanism That Modulates Hormone Signaling1[W][OPEN

    Science.gov (United States)

    Grienenberger, Etienne; Douglas, Carl J.

    2014-01-01

    Despite a strict conservation of the vascular tissues in vascular plants (tracheophytes), our understanding of the genetic basis underlying the differentiation of secondary cell wall-containing cells in the xylem of tracheophytes is still far from complete. Using coexpression analysis and phylogenetic conservation across sequenced tracheophyte genomes, we identified a number of Arabidopsis (Arabidopsis thaliana) genes of unknown function whose expression is correlated with secondary cell wall deposition. Among these, the Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 (VUP1) gene encodes a predicted protein of 24 kD with no annotated functional domains but containing domains that are highly conserved in tracheophytes. Here, we show that the VUP1 expression pattern, determined by promoter-β-glucuronidase reporter gene expression, is associated with vascular tissues, while vup1 loss-of-function mutants exhibit collapsed morphology of xylem vessel cells. Constitutive overexpression of VUP1 caused dramatic and pleiotropic developmental defects, including severe dwarfism, dark green leaves, reduced apical dominance, and altered photomorphogenesis, resembling brassinosteroid-deficient mutants. Constitutive overexpression of VUP homologs from multiple tracheophyte species induced similar defects. Whole-genome transcriptome analysis revealed that overexpression of VUP1 represses the expression of many brassinosteroid- and auxin-responsive genes. Additionally, deletion constructs and site-directed mutagenesis were used to identify critical domains and amino acids required for VUP1 function. Altogether, our data suggest a conserved role for VUP1 in regulating secondary wall formation during vascular development by tissue- or cell-specific modulation of hormone signaling pathways. PMID:24567189

  12. Immunohistochemical expression of sex steroid hormone receptors, cell cycle regulators and angiogenesis factors in intraductal papillary mucinous neoplasms: an explorative study.

    Science.gov (United States)

    Georgiadou, Despoina; Sergentanis, Theodoros N; Sakellariou, Stratigoula; Filippakis, George M; Zagouri, Flora; Psaltopoulou, Theodora; Lazaris, Andreas C; Patsouris, Efstratios; Gounaris, Antonia; Zografos, George C

    2015-02-01

    The objectives of our explorative study were to (i) evaluate the immunohistochemical expression of sex steroid hormone receptors (estrogen receptor a [ERα], estrogen receptor β [ERβ], progesterone receptor [PR] and androgen receptor [AR]), angiogenesis factors (vascular endothelial growth factor [VEGF] and inhibitor of differentiation/DNA synthesis 1 [Id-1]) and cell-cycle regulators (cyclin D1, p16 and p27) in intraductal papillary mucinous neoplasms (IPMNs) in comparison to normal adjacent pancreatic tissues and (ii) assess their correlation with the grade and histological sub-type of those lesions. Paraffin-embedded specimens from 12 consecutive patients with IPMNs were immunostained for the studied markers and staining quantification was assessed by an image analysis system. AR H-score and cyclin D1 H-score were significantly higher in the IPMN lesions (0.86±0.33 vs. 0.57±0.12 in the normal tissue, p=0.010 and 0.47±0.23 vs. 0.21±0.20 in the normal tissue, p=0.019, respectively). No significant differences were noted regarding the expression of ERα, ERβ, PR, p16, p27, VEGF, Id-1 or MVD. Moreover, no significant associations were found between the expression of studied markers and grade or histological subtype. Our study showed higher expression of AR and cyclin D1 in IPMNs compared to normal pancreatic ducts without any association between AR and cyclin D1 expression and IPMNs' grade or subtype. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. PI3K/Akt/mTOR pathway involvement in regulating growth hormone secretion in a rat pituitary adenoma cell line.

    Science.gov (United States)

    Di Pasquale, Carmelina; Gentilin, Erica; Falletta, Simona; Bellio, Mariaenrica; Buratto, Mattia; Degli Uberti, Ettore; Chiara Zatelli, Maria

    2017-10-27

    Insulin-like growth factor 1 (IGF1) controls growth hormone (GH) secretion via a negative feed-back loop that may disclose novel mechanisms possibly useful to control GH hyper-secretion. Our aim was to understand whether PI3K/Akt/mTOR pathway is involved in IGF1 negative feedback on GH secretion. Cell viability, GH secretion, Akt, and Erk 1/2 phosphorylation levels in the rat GH3 cell line were assessed under treatment with IGF1 and/or everolimus, an mTOR inhitior. We found that IGF1 improves rat GH3 somatotroph cell viability via the PI3K/Akt/mTOR pathway and confirmed that IGF1 exerts a negative feedback on GH secretion by a transcriptional mechanism. We demonstrated that the negative IGF1 loop on GH secretion requires Akt activation that seems to play a pivotal role in the control of GH secretion. Furthermore, Akt activation is independent of PI3K and probably mediated by mTORC2. In addition, we found that Erk 1/2 is not involved in GH3 cell viability regulation, but may have a role in controlling GH secretion, independently of IGF1. Our data confirm that mTOR inhibitors may be useful to reduce pituitary adenoma cell viability, while Erk 1/2 pathway may be considered as a useful therapeutic target to control GH secretion. Our results open the field for further studies searching for effective drugs to control GH hyper-secretion.

  14. Effects of the Electromagnetic field, 60 Hz, 3 µT, on the hormonal and metabolic regulation of undernourished pregnant rats

    Directory of Open Access Journals (Sweden)

    CWSF. Anselmo

    Full Text Available Epidemiological studies have implicated maternal protein-calorie deficiency as an important public health problem in developing countries. Over the last decades, a remarkable diffusion of electricity and an increased level of the electromagnetic field (EMF in the environment have characterized modern societies. Therefore, researchers are concerned with the biological effects of 50-60 Hz, EMF. The aim of this paper is to show the effects of EMF of 60 Hz, 3 μT, exposure for two hours per day in the regulation of the hormonal and metabolic concentrations in pregnant rats, which were fed by Regional Basic Diet (RBD during their pregnancy as compared with pregnant rats fed a standard diet. Pregnant rats exposed to EMF of 60 Hz, 3 μT, over the pregnancy and fed with RBD presented an increase in glucose release when compared with the Group subjected only to the RBD ration. Rats fed RBD presented a decrease in their insulin and cortisol serum levels when compared with the Group fed with casein. The T3 and T4 concentrations presented the greatest variation among the Groups. The relation T4:T3 was much exaggerated in the Group subjected to RDB and exposed to EMF when compared to the others. In conclusion, the group subjected to the association of EMF and undernutrition suffered a decrease in its serum concentration of T4 and T3 when compared to the well-nourished group and the relationship T4:T3 in the former group was almost eighteen-fold the later one.

  15. Dimensions of Counter-Narratives

    DEFF Research Database (Denmark)

    2019-01-01

    The book welcomes proposals for chapter contributions on a wide array of topics related to the narratological notion of counter-narratives. By way of example, the topic has hitherto been treated by disciplines and subjects such as literature studies, organization studies, corporate communication ...

  16. The Eros of Counter Education

    Science.gov (United States)

    Luzon, Pinhas

    2016-01-01

    Erotic Counter Education (ECE) is the educational position of the late Ilan Gur-Ze'ev. In ECE Gur-Ze'ev combines two opposing positions in the philosophy of education, one teleological and anti-utopian, the other teleological and utopian. In light of this unique combination, I ask what mediates between these two poles and suggest that the answer…

  17. Lack of cyclical fluctuations of endometrial GLUT4 expression in women with polycystic ovary syndrome: Evidence for direct regulation of GLUT4 by steroid hormones

    Directory of Open Access Journals (Sweden)

    Peng Cui

    2015-12-01

    We conclude that P4 can induce changes in endometrial GLUT4 expression during the menstrual cycle and that abnormal hormonal conditions such as PCOS disrupt normal patterns of GLUT4 expression in endometrial cells.

  18. Over-the-counter self-medication leading to intracranial hypertension in a young lady

    National Research Council Canada - National Science Library

    Ramana Reddy, A M; Prashanth, L K; Sharat Kumar, G G; Chandana, G; Jadav, Rakesh

    2014-01-01

    .... In India, self-medication by obtaining drugs over the counter due to lack of adequate drug regulation and ignorance of the public is a very common practice with a potential for severe adverse effects...

  19. Basic Research Needs for Countering Terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, W.; Michalske, T.; Trewhella, J.; Makowski, L.; Swanson, B.; Colson, S.; Hazen, T.; Roberto, F.; Franz, D.; Resnick, G.; Jacobson, S.; Valdez, J.; Gourley, P.; Tadros, M.; Sigman, M.; Sailor, M.; Ramsey, M.; Smith, B.; Shea, K.; Hrbek, J.; Rodacy, P.; Tevault, D.; Edelstein, N.; Beitz, J.; Burns, C.; Choppin, G.; Clark, S.; Dietz, M.; Rogers, R.; Traina, S.; Baldwin, D.; Thurnauer, M.; Hall, G.; Newman, L.; Miller, D.; Kung, H.; Parkin, D.; Shuh, D.; Shaw, H.; Terminello, L.; Meisel, D.; Blake, D.; Buchanan, M.; Roberto, J.; Colson, S.; Carling, R.; Samara, G.; Sasaki, D.; Pianetta, P.; Faison, B.; Thomassen, D.; Fryberger, T.; Kiernan, G.; Kreisler, M.; Morgan, L.; Hicks, J.; Dehmer, J.; Kerr, L.; Smith, B.; Mays, J.; Clark, S.

    2002-03-01

    To identify connections between technology needs for countering terrorism and underlying science issues and to recommend investment strategies to increase the impact of basic research on efforts to counter terrorism.

  20. Hormone impostors

    Energy Technology Data Exchange (ETDEWEB)

    Colborn, T.; Dumanoski, D.; Myers, J.P.

    1997-01-01

    This article discusses the accumulating evidence that some synthetic chemicals disrupt hormones in one way or another. Some mimic estrogen and others interfere with other parts of the body`s control or endocrine system such as testosterone and thyroid metabolism. Included are PCBs, dioxins, furans, atrazine, DDT. Several short sidebars highlight areas where there are or have been particular problems.

  1. Incretin hormone secretion over the day

    DEFF Research Database (Denmark)

    Ahren, B; Carr, RD; Deacon, Carolyn F.

    2010-01-01

    . Regulation of incretin hormone secretion is less well characterized. The main stimulus for incretin hormone secretion is presence of nutrients in the intestinal lumen, and carbohydrate, fat as well as protein all have the capacity to stimulate GIP and GLP-1 secretion. More recently, it has been established...... that a diurnal regulation exists with incretin hormone secretion to an identical meal being greater when the meal is served in the morning compared to in the afternoon. Finally, whether incretin hormone secretion is altered in disease states is an area with, so far, controversial results in different studies......, although some studies have demonstrated reduced incretin hormone secretion in type 2 diabetes. This review summarizes our knowledge on regulation of incretin hormone secretion and its potential changes in disease states....

  2. Counter-discourse in Zimbabwean literature

    NARCIS (Netherlands)

    Mangena, Tendai

    2015-01-01

    Counter-Discourse in Zimbabwean Literature is a study of specific aspects of counter-discursive Zimbabwean narratives in English. In discussing the selected texts, my thesis is based on Terdiman’s (1989) the postcolonial concept of counter-discourse. In Zimbabwean literature challenges to a dominant

  3. Types of hormone therapy

    Science.gov (United States)

    ... your doctor for regular checkups when taking HT. Alternative Names HRT- types; Estrogen replacement therapy - types; ERT- types of hormone therapy; Hormone replacement therapy - types; Menopause - types of hormone therapy; HT - types; Menopausal hormone ...

  4. Bioidentical Hormones and Menopause

    Science.gov (United States)

    ... Endocrinologist Search Featured Resource Menopause Map™ View Bioidentical Hormones January 2012 Download PDFs English Espanol Editors Howard ... take HT for symptom relief. What are bioidentical hormones? Bioidentical hormones are identical to the hormones that ...

  5. Ovarian hormones and obesity.

    Science.gov (United States)

    Leeners, Brigitte; Geary, Nori; Tobler, Philippe N; Asarian, Lori

    2017-05-01

    Obesity is caused by an imbalance between energy intake, i.e. eating and energy expenditure (EE). Severe obesity is more prevalent in women than men worldwide, and obesity pathophysiology and the resultant obesity-related disease risks differ in women and men. The underlying mechanisms are largely unknown. Pre-clinical and clinical research indicate that ovarian hormones may play a major role. We systematically reviewed the clinical and pre-clinical literature on the effects of ovarian hormones on the physiology of adipose tissue (AT) and the regulation of AT mass by energy intake and EE. Articles in English indexed in PubMed through January 2016 were searched using keywords related to: (i) reproductive hormones, (ii) weight regulation and (iii) central nervous system. We sought to identify emerging research foci with clinical translational potential rather than to provide a comprehensive review. We find that estrogens play a leading role in the causes and consequences of female obesity. With respect to adiposity, estrogens synergize with AT genes to increase gluteofemoral subcutaneous AT mass and decrease central AT mass in reproductive-age women, which leads to protective cardiometabolic effects. Loss of estrogens after menopause, independent of aging, increases total AT mass and decreases lean body mass, so that there is little net effect on body weight. Menopause also partially reverses women's protective AT distribution. These effects can be counteracted by estrogen treatment. With respect to eating, increasing estrogen levels progressively decrease eating during the follicular and peri-ovulatory phases of the menstrual cycle. Progestin levels are associated with eating during the luteal phase, but there does not appear to be a causal relationship. Progestins may increase binge eating and eating stimulated by negative emotional states during the luteal phase. Pre-clinical research indicates that one mechanism for the pre-ovulatory decrease in eating is a

  6. Counter support for WA35

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    This assembly was equipped with 78 counters, each consisting of a lucite cone, to produce Cerenkov light, and a CsI scintillator plate of 3 mm thickness glued on the face of the cone. The experiment WA35 was set-up in the s1 beam (West Hall) by the Darmstadt-Heidelberg-Virginia-Warsaw Collaboration to measure angular distributions and multiplicities of pions and recoil protons produced by hadrons interacting in nuclei. (See Annual Report 1976 p. 39)

  7. Successful induction of sclerostin in human-derived fibroblasts by 4 transcription factors and its regulation by parathyroid hormone, hypoxia, and prostaglandin E2.

    Science.gov (United States)

    Fujiwara, Makoto; Kubota, Takuo; Wang, Wei; Ohata, Yasuhisa; Miura, Kohji; Kitaoka, Taichi; Okuzaki, Daisuke; Namba, Noriyuki; Michigami, Toshimi; Kitabatake, Yasuji; Ozono, Keiichi

    2016-04-01

    Sclerostin, coded by SOST, is a secretory protein that is specifically expressed in osteocytes and suppresses osteogenesis by inhibiting WNT signaling. The regulatory mechanism underlying SOST expression remains unclear mainly due to the absence of an adequate human cell model. Thus, we herein attempted to establish a cell model of human dermal fibroblasts in order to investigate the functions of sclerostin. We selected 20 candidate transcription factors (TFs) that induce SOST expression by analyzing gene expression patterns in the human sarcoma cell line, SaOS-2, between differentiation and maintenance cultures using microarrays. An effective set of TFs to induce SOST expression was sought by their viral transduction into fibroblasts, and a combination of four TFs: ATF3, KLF4, PAX4, and SP7, was identified as the most effective inducer of SOST expression. Quantitative PCR demonstrated that the expression levels of SOST in fibroblasts treated with the 4 TFs were 199- and 1439-fold higher than those of the control after 1-week and 4-week cultures, respectively. The level of sclerostin in the conditioned medium, as determined by ELISA, was 21.2pmol/l 4weeks after the transduction of the 4 TFs. Interestingly, the production of Dickkopf1 (DKK1), another secreted inhibitor of WNT signaling, was also increased by transduction of these 4 TFs. Parathyroid hormone (PTH) significantly suppressed the induced SOST by 38% and sclerostin by 82% that of the vehicle. Hypoxia increased the induced SOST by 62% that of normoxia. Furthermore, prostaglandin E2 (PGE2) increased SOST expression levels to 16-fold those of the vehicle. In conclusion, the efficient induction of SOST expression and sclerostin production was achieved in human dermal fibroblasts by the transduction of ATF3, KLF4, PAX4, and SP7, and the induced SOST and sclerostin were regulated by PTH, hypoxia, and PGE2. This model may contribute to elucidating the regulatory mechanisms underlying SOST expression and advancing

  8. In silico and bio assay of juvenile hormone analogs as an insect growth regulator against Galleria mellonella (wax moth) - Part I.

    Science.gov (United States)

    Sharma, Priyanka; Thakur, Sunil; Awasthi, Pamita

    2016-05-01

    Juvenile hormone (JH) analogs are nowadays in use to control harmful pests. In order to develop new bioactive molecules as potential pesticides, we have incorporated different active structural features like sulfonamide, aromatic rings, amide group, and amino acid moiety to the base structure. We have screened a series of designed novel JH analogs against JH receptor protein (jhbpGm-2RCK) of Galleria mellonella in comparison to commercial insect growth regulators (IGRs) - Pyriproxyfen (T1) and Fenoxycarb (T2). All analogs exhibit the binding energy profile comparable to commercial IGRs. Based upon these results, a series of sulfonamide-based JHAs (T3-T8) as IGRs have been synthesized and characterized. Further, the efficacy of synthesized analogs (T3-T8) and commercial IGRs (Pyriproxyfen and Fenoxycarb) has been assessed against fourth instars larvae of G. mellonella under the laboratory conditions. LC50 values of all the analogs (T1-T8) against the fourth instars larvae were 9.99, 10.12, 24.76, 30.73, 38.45, 34.15, 34.14, 19.48 ppm and the LC90 153.27, 131.69, 112.15, 191.46, 427.02, 167.13, 217.10, 172.00 ppm, respectively. Among these analogs, N-(1-isopropyl-2-oxo-3-aza-3-N-ethyl-pentanyl)-p-toluene sulfonamide (T8) and N-(1-isopropyl-2-oxo-3-aza-3-N-ethyl-pentanyl) benzene sulfonamide (T7) exhibited the good pest larval mortality at different exposure periods (in hours) and different concentrations (in ppm) in comparison to in use IGRs- T1 and T2. Bio assay results are supported by docking at higher concentration. The present investigation clearly exhibits that analog T8 could serve as a potential IGR in comparison to in use IGRs (T1 and T2). The results are promising and provide new array of synthetic chemicals that may be utilized as IGRs.

  9. Melatonin – apleiotropic hormone

    Directory of Open Access Journals (Sweden)

    Maciej Brzęczek

    2016-06-01

    Full Text Available Melatonin, a tryptophan derivative, is synthesised in mammals mainly in the pineal gland. It coordinates the biological clock by regulating the circadian rhythm. Its production is dependent on light and its concentrations change with age. Thanks to its specific chemical structure, melatonin is capable of crossing all biological barriers in the organism and affecting other tissues and cells, both in indirect and direct ways. Its mechanism of action involves binding with membrane receptors, nuclear receptors and intracellular proteins. Melatonin shows antioxidant activity. Moreover, its immunomodulatory and antilipid effects as well as its role in secreting other hormones, such as prolactin, luteinizing hormone, follicle-stimulating hormone, somatotropin, thyroliberin, adrenocorticotropin hormone or corticosteroids, are essential. In the recent years, research studies have been mainly focussed on the potential influence of melatonin on the aetiology and development of various disease entities, such as sleep disorders, gastrointestinal diseases, cancers, psychiatric and neurological conditions, cardiovascular diseases or conditions with bone turnover disorders. Indications for melatonin use in paediatrics are being discussed more and more frequently. Among others, authors debate on its use in dyssomnias in children with neurodevelopmental disorders, such as attention deficit hyperactivity disorder, supportive treatment in febrile seizures and epilepsy as well as potential use in paediatric anaesthesia. The molecular mechanism and broad-spectrum action of melatonin have not been sufficiently researched and its clinical relevance is often underestimated. This hormone is a promising link in achieving alternative therapeutic solutions.

  10. Measurement of the incretin hormones

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Wewer Albrechtsen, Nicolai Jacob; Hartmann, Bolette

    2015-01-01

    The two incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), are secreted from the gastrointestinal tract in response to meals and contribute to the regulation of glucose homeostasis by increasing insulin secretion. Assessment of plasma concentrat......The two incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), are secreted from the gastrointestinal tract in response to meals and contribute to the regulation of glucose homeostasis by increasing insulin secretion. Assessment of plasma...

  11. A thyroid hormone challenge in hypothyroid rats identifies t3 regulated genes in the hypothalamus and in models with altered energy balance and glucose homeostasis

    NARCIS (Netherlands)

    Herwig, Annika; Campbell, Gill; Mayer, Claus-Dieter; Boelen, Anita; Anderson, Richard A.; Ross, Alexander W.; Mercer, Julian G.; Barrett, Perry

    2014-01-01

    The thyroid hormone triiodothyronine (T3) is known to affect energy balance. Recent evidence points to an action of T3 in the hypothalamus, a key area of the brain involved in energy homeostasis, but the components and mechanisms are far from understood. The aim of this study was to identify

  12. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis).

    Science.gov (United States)

    Zak, Megan A; Regish, Amy M; McCormick, Stephen D; Manzon, Richard G

    2017-06-01

    Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19°C) or below (8°C) the thermal optimum (13°C) and exposure to exogenous thyroid hormone (60µg T4/g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis)

    Science.gov (United States)

    Zak, Megan A.; Regish, Amy M.; McCormick, Stephen; Manzon, Richard G.

    2017-01-01

    Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19 °C) or below (8 °C) the thermal optimum (13 °C) and exposure to exogenous thyroid hormone (60 µg T4/g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation.

  14. Anorexigenic and Orexigenic Hormone Modulation of Mammalian Target of Rapamycin Complex 1 Activity and the Regulation of Hypothalamic Agouti-Related Protein mRNA Expression

    Directory of Open Access Journals (Sweden)

    Kenneth R. Watterson

    2012-03-01

    Full Text Available Activation of mammalian target of rapamycin 1 (mTORC1 by nutrients, insulin and leptin leads to appetite suppression (anorexia. Contrastingly, increased AMP-activated protein kinase (AMPK activity by ghrelin promotes appetite (orexia. However, the interplay between these mechanisms remains poorly defined. The relationship between the anorexigenic hormones, insulin and leptin, and the orexigenic hormone, ghrelin, on mTORC1 signalling was examined using S6 kinase phosphorylation as a marker for changes in mTORC1 activity in mouse hypothalamic GT1-7 cells. Additionally, the contribution of AMPK and mTORC1 signalling in relation to insulin-, leptin- and ghrelin-driven alterations to mouse hypothalamic agouti-related protein (AgRP mRNA levels was examined. Insulin and leptin increase mTORC1 activity in a phosphoinositide-3-kinase (PI3K- and protein kinase B (PKB-dependent manner, compared to vehicle controls, whereas increasing AMPK activity inhibits mTORC1 activity and blocks the actions of the anorexigenic hormones. Ghrelin mediates an AMPK-dependent decrease in mTORC1 activity and increases hypothalamic AgRP mRNA levels, the latter effect being prevented by insulin in an mTORC1-dependent manner. In conclusion, mTORC1 acts as an integration node in hypothalamic neurons for hormone-derived PI3K and AMPK signalling and mediates at least part of the assimilated output of anorexigenic and orexigenic hormone actions in the hypothalamus.

  15. Condensation Particle Counter Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-01

    The Model 3772 CPC is a compact, rugged, and full-featured instrument that detects airborne particles down to 10 nm in diameter, at an aerosol flow rate of 1.0 lpm, over a concentration range from 0 to 1x104 #/cc. This CPC is ideally suited for applications without high concentration measurements, such as basic aerosol research, filter and air-cleaner testing, particle counter calibrations, environmental monitoring, mobile aerosol studies, particle shedding and component testing, and atmospheric and climate studies.

  16. (HIF-1α) on proliferation and apoptosis of adrenocorticotropic hormone

    African Journals Online (AJOL)

    Jane

    2011-07-25

    Jul 25, 2011 ... hypoxia induced apoptosis, we investigated the effects of HIF-1α on proliferation and apoptosis of adrenocorticotropic hormone ... The effect of CoCl2 on the proliferation of AtT-20 cells was in a concentration and time dependent manner. When the ..... arrest by functionally counter-acting. Myc. Embo.

  17. Plants altering hormonal milieu: A review

    Directory of Open Access Journals (Sweden)

    Prashant Tiwari

    2017-02-01

    Full Text Available The aim of the present review article is to investigate the herbs which can alter the levels of hormones like Follicle stimulating hormone, Prolactin, Growth hormone, Insulin, Thyroxine, Estrogen, Progesterone, Testosterone, and Relaxin etc. Hormones are chemical signal agents produced by different endocrine glands for regulating our biological functions. The glands like pituitary, thyroid, adrenal, ovaries in women and testes in men all secrete a number of hormones with different actions. However, when these hormones are perfectly balanced then people become healthy and fit. But several factors like pathophysiological as well as biochemical changes, disease conditions, changes in the atmosphere, changes in the body, diet changes etc. may result in imbalance of various hormones that produce undesirable symptoms and disorders. As medicinal plants have their importance since ancient time, people have been using it in various ways as a source of medicine for regulation of hormonal imbalance. Moreover, it is observed that certain herbs have a balancing effect on hormones and have great impact on well-being of the people. So, considering these facts we expect that the article provides an overview on medicinal plants with potential of altering hormone level.

  18. Genotoxic potential of nonsteroidal hormones

    Directory of Open Access Journals (Sweden)

    Topalović Dijana

    2015-01-01

    Full Text Available Hormones are cellular products involved in the regulation of a large number of processes in living systems, and which by their actions affect the growth, function and metabolism of cells. Considering that hormones are compounds normally present in the organism, it is important to determine if they can, under certain circumstances, lead to genetic changes in the hereditary material. Numerous experimental studies in vitro and in vivo in different systems, from bacteria to mammals, dealt with the mutagenic and genotoxic effects of hormones. This work presents an overview of the research on genotoxic effects of non­steroidal hormones, although possible changes of genetic material under their influence have not still been known enough, and moreover, investigations on their genotoxic influence have given conflicting results. The study results show that mechanisms of genotoxic effect of nonsteroidal hormones are manifested through the increase of oxidative stress by arising reactive oxygen species. A common mechanism of ROS occurence in thyroid hormones and catecholamines is through metabolic oxidation of their phenolic groups. Manifestation of insulin genotoxic effect is based on production of ROS by activation of NADPH isophorms, while testing oxytocin showed absence of genotoxic effect. Considering that the investigations on genotoxicity of nonsteroidal hormones demonstrated both positive and negative results, the explanation of this discordance involve limitations of test systems themselves, different cell types or biological species used in the experiments, different level of reactivity in vitro and in vivo, as well as possible variations in a tissue-specific expression. Integrated, the provided data contribute to better understanding of genotoxic effect of nonsteroidal hormones and point out to the role and mode of action of these hormones in the process of occurring of effects caused by oxidative stress. [Projekat Ministarstva nauke Republike

  19. Receptors for thyrotropin-releasing hormone, thyroid-stimulating hormone, and thyroid hormones in the macaque uterus: effects of long-term sex hormone treatment.

    Science.gov (United States)

    Hulchiy, Mariana; Zhang, Hua; Cline, J Mark; Hirschberg, Angelica Lindén; Sahlin, Lena

    2012-11-01

    Thyroid gland dysfunction is associated with menstrual cycle disturbances, infertility, and increased risk of miscarriage, but the mechanisms are poorly understood. However, little is known about the regulation of these receptors in the uterus. The aim of this study was to determine the effects of long-term treatment with steroid hormones on the expression, distribution, and regulation of the receptors for thyrotropin-releasing hormone (TRHR) and thyroid-stimulating hormone (TSHR), thyroid hormone receptor α1/α2 (THRα1/α2), and THRβ1 in the uterus of surgically menopausal monkeys. Eighty-eight cynomolgus macaques were ovariectomized and treated orally with conjugated equine estrogens (CEE; n = 20), a combination of CEE and medroxyprogesterone acetate (MPA; n = 20), or tibolone (n = 28) for 2 years. The control group (OvxC; n = 20) received no treatment. Immunohistochemistry was used to evaluate the protein expression and distribution of the receptors in luminal epithelium, glands, stroma, and myometrium of the uterus. Immunostaining of TRHR, TSHR, and THRs was detected in all uterine compartments. Epithelial immunostaining of TRHR was down-regulated in the CEE + MPA group, whereas in stroma, both TRHR and TSHR were increased by CEE + MPA treatment as compared with OvxC. TRHR immunoreactivity was up-regulated, but THRα and THRβ were down-regulated, in the myometrium of the CEE and CEE + MPA groups. The thyroid-stimulating hormone level was higher in the CEE and tibolone groups as compared with OvxC, but the level of free thyroxin did not differ between groups. All receptors involved in thyroid hormone function are expressed in monkey uterus, and they are all regulated by long-term steroid hormone treatment. These findings suggest that there is a possibility of direct actions of thyroid hormones, thyroid-stimulating hormone and thyrotropin-releasing hormone on uterine function.

  20. Bureaucracy versus Bioterrorism: Countering a Globalized Threat

    Science.gov (United States)

    2012-10-01

    AIR UNIVERSITY AIR WAR COLLEGE Bureaucracy versus Bioterrorism Countering a Globalized Threat STEPHEN G. HOFFMAN...DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Bureaucracy versus Bioterrorism: Countering a Globalized Threat 5a. CONTRACT...Bioterrorism: Countering a Globalized Threat Lt Col Stephen G. Hoffman, USAF Two things are certain—death and taxes! Or maybe just taxes. Scientists are

  1. Therapy for obesity based on gastrointestinal hormones

    DEFF Research Database (Denmark)

    Bagger, Jonatan I; Christensen, Mikkel; Knop, Filip K

    2011-01-01

    It has long been known that peptide hormones from the gastrointestinal tract have significant impact on the regulation of nutrient metabolism. Among these hormones, incretins have been found to increase insulin secretion, and thus incretin-based therapies have emerged as new modalities...

  2. Age-dependent regulation of obesity and Alzheimer-related outcomes by hormone therapy in female 3xTg-AD mice.

    Science.gov (United States)

    Christensen, Amy; Pike, Christian J

    2017-01-01

    Depletion of ovarian hormones at menopause is associated with increased Alzheimer's disease (AD) risk. Hormone loss also increases central adiposity, which promotes AD development. One strategy to improve health outcomes in postmenopausal women is estrogen-based hormone therapy (HT), though its efficacy is controversial. The window of opportunity hypothesis posits that HT is beneficial only if initiated near the onset of menopause. Here, we tested this hypothesis by assessing the efficacy of HT against diet-induced obesity and AD-related pathology in female 3xTg-AD mice at early versus late middle-age. HT protected against obesity and reduced β-amyloid burden only at early middle-age. One mechanism that contributes to AD pathogenesis is microglial activation, which is increased by obesity and reduced by estrogens. In parallel to its effects on β-amyloid accumulation, we observed that HT reduced morphological evidence of microglial activation in early but not late middle-age. These findings suggest that HT may be effective during human perimenopause in reducing indices of obesity and AD-related pathology, a conclusion consistent with the window of opportunity hypothesis.

  3. Galanin-like peptide (GALP) neurone-specific phosphoinositide 3-kinase signalling regulates GALP mRNA levels in the hypothalamus of males and luteinising hormone levels in both sexes.

    Science.gov (United States)

    Aziz, R; Beymer, M; Negrón, A L; Newshan, A; Yu, G; Rosati, B; McKinnon, D; Fukuda, M; Lin, R Z; Mayer, C; Boehm, U; Acosta-Martínez, M

    2014-07-01

    Galanin-like peptide (GALP) neurones participate in the metabolic control of reproduction and are targets of insulin and leptin regulation. Phosphoinositide 3-kinase (PI3K) is common to the signalling pathways utilised by both insulin and leptin. Therefore, we investigated whether PI3K signalling in neurones expressing GALP plays a role in the transcriptional regulation of the GALP gene and in the metabolic control of luteinising hormone (LH) release. Accordingly, we deleted PI3K catalytic subunits p110α and p110β via conditional gene targeting (cKO) in mice (GALP-p110α/β cKO). To monitor PI3K signalling in GALP neurones, these animals were also crossed with Cre-dependent FoxO1GFP reporter mice. Compared to insulin-infused control animals, the PI3K-Akt-dependent FoxO1GFP nuclear exclusion in GALP neurones was abolished in GALP-p110α/β cKO mice. We next used food deprivation to investigate whether the GALP-neurone specific ablation of PI3K activity affected the susceptibility of the gonadotrophic axis to negative energy balance. Treatment did not affect LH levels in either sex. However, a significant genotype effect on LH levels was observed in females. By contrast, no genotype effect on LH levels was observed in males. A sex-specific genotype effect on hypothalamic GALP mRNA was observed, with fed and fasted GALP-p110α/β cKO males having lower GALP mRNA expression compared to wild-type fed males. Finally, the effects of gonadectomy and steroid hormone replacement on GALP mRNA levels were investigated. Compared to vehicle-treated mice, steroid hormone replacement reduced mediobasal hypothalamus GALP expression in wild-type and GALP-p110α/β cKO animals. In addition, within the castrated and vehicle-treated group and compared to wild-type mice, LH levels were lower in GALP-p110α/β cKO males. Double immunofluorescence using GALP-Cre/R26-YFP mice showed androgen and oestrogen receptor co-localisation within GALP neurones. Our data demonstrate that GALP

  4. Hormonal crosstalk in plant immunity

    NARCIS (Netherlands)

    van der Does, A.

    2012-01-01

    The plant hormones salicylic acid (SA), also known as plant aspirin, and jasmonic acid (JA) play major roles in the regulation of the plant immune system. In general, SA is important for defense against pathogens with a biotrophic lifestyle, whereas JA is essential for defense against insect

  5. Luteinizing hormone in testicular descent

    DEFF Research Database (Denmark)

    Toppari, Jorma; Kaleva, Marko M; Virtanen, Helena E

    2007-01-01

    alone is not sufficient for normal testicular descent. The regulation of androgen production is influenced both by placental human chorionic gonadotropin (hCG) and pituitary luteinizing hormone (LH). There is evidence that the longer pregnancy continues, the more important role pituitary LH may have...

  6. Hormonal determinants of pubertal growth.

    NARCIS (Netherlands)

    Delamarre-van Waal, H.A.; Coeverden, S.C. van; Rotteveel, J.J.

    2001-01-01

    Pubertal growth results from increased sex steroid and growth hormone (GH) secretion. Estrogens appear to play an important role in the regulation of pubertal growth in both girls and boys. In girls, however, estrogens cannot be the only sex steroids responsible for pubertal growth, as exogenous

  7. Compact fission counter for DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed

  8. Growth hormone test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003706.htm Growth hormone test To use the sharing features on this page, please enable JavaScript. The growth hormone test measures the amount of growth hormone in ...

  9. Growth hormone suppression test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003376.htm Growth hormone suppression test To use the sharing features on this page, please enable JavaScript. The growth hormone suppression test determines whether growth hormone production is ...

  10. Pathology of sleep, hormones and depression

    NARCIS (Netherlands)

    Steiger, A.; Dresler, M.; Kluge, M.; Schussler, P.

    2013-01-01

    In patients with depression, characteristic changes of sleep electroencephalogram and nocturnal hormone secretion occur including rapid eye movement (REM) sleep disinhibition, reduced non-REM sleep and impaired sleep continuity. Neuropeptides are common regulators of the sleep electroencephalogram

  11. Countering 21st Century Threats

    DEFF Research Database (Denmark)

    Scharling Pedersen, Peter; Pillai, Chad M.; Hun, Lee Jae

    2015-01-01

    .S. and its Allies need to develop a Joint, Interagency, Intergovernmental and Multinational (JIIM) approach to Irregular Warfare (IW). This is crucial because according to Department of Defense (DOD) Instruction on Irregular Warfare, DOD considers IW “as strategically important as traditional warfare and DOD...... (UW). Other obstacles such as resolving tensions in U.S. statutory law between traditional military and intelligence activities, bridging the gap with non-security Departments and Agencies, and developing the necessary trust with bilateral and multilateral partners are components that need...... to be addressed in order to successfully conduct IW. As result of researching the issues associated with developing a JIIM approach to IW, the paper makes the following recommendations: • Establishing universally accepted concepts and doctrines for IW, UW, Foreign Internal Defense (FID), Counter Insurgency (COIN...

  12. Numerical model of thyroid counter

    Directory of Open Access Journals (Sweden)

    Szuchta Maciej

    2016-03-01

    Full Text Available The aim of this study was to develop a numerical model of spectrometric thyroid counter, which is used for the measurements of internal contamination by in vivo method. The modeled detector is used for a routine internal exposure monitoring procedure in the Radiation Protection Measurements Laboratory of National Centre for Nuclear Research (NCBJ. This procedure may also be used for monitoring of occupationally exposed nuclear medicine personnel. The developed model was prepared using Monte Carlo code FLUKA 2011 ver. 2b.6 Apr-14 and FLAIR ver. 1.2-5 interface. It contains a scintillation NaI(Tl detector, the collimator and the thyroid water phantom with a reference source of iodine 131I. The geometry of the model was designed and a gamma energy spectrum of iodine 131I deposited in the detector was calculated.

  13. Gastrointestinal Hormones Induced the Birth of Endocrinology.

    Science.gov (United States)

    Wabitsch, Martin

    2017-01-01

    The physiological studies by British physiologists William Maddock Bayliss and Ernest Henry Starling, at the beginning of the last century, demonstrated the existence of specific messenger molecules (hormones) circulating in the blood that regulate the organ function and physiological mechanisms. These findings led to the concept of endocrinology. The first 2 hormones were secretin, discovered in 1902, and gastrin, discovered in 1905. Both hormones that have been described are produced in the gut. This chapter summarizes the history around the discovery of these 2 hormones, which is perceived as the birth of endocrinology. It is noteworthy that after the discovery of these 2 gastrointestinal hormones, many other hormones were detected outside the gut, and thereafter gut hormones faded from both the clinical and scientific spotlight. Only recently, the clinical importance of the gut as the body's largest endocrine organ producing a large variety of hormones has been realized. Gastrointestinal hormones are essential regulators of metabolism, growth, development and behavior and are therefore the focus of a modern pediatric endocrinologist. © 2017 S. Karger AG, Basel.

  14. The role of leptin and other hormones related to bone metabolism and appetite regulation as determinants of gain in body fat and fat-free mass in 8-11-year-old children.

    Science.gov (United States)

    Dalskov, Stine-Mathilde; Ritz, Christian; Larnkjær, Anni; Damsgaard, Camilla T; Petersen, Rikke A; Sørensen, Louise B; Ong, Ken K; Astrup, Arne; Mølgaard, Christian; Michaelsen, Kim F

    2015-03-01

    Regulation of body composition during childhood is complex. Numerous hormones are potentially involved. Leptin has been proposed to restrain weight gain, but results are inconsistent. We examined whether baseline fasting levels of ghrelin, adiponectin, leptin, insulin, IGF-I, osteocalcin, and intact parathyroid hormone (iPTH) were associated with body composition cross sectionally and longitudinally in 633 8-11-year-olds. Data on hormones and body composition by dual-energy x-ray absorptiometry from the OPUS School Meal Study were used. We looked at baseline hormones as predictors of baseline fat mass index (FMI) or fat-free mass index (FFMI), and also subsequent changes (3 and 6 months) in FMI or FFMI using models with hormones individually or combined. Cross-sectionally, baseline leptin was positively associated with FMI in girls (0.211 kg/m(2) pr. μg/mL; 97.5% confidence interval [CI],0.186-0.236; P < .001) and boys (0.231 kg/m(2) pr. μg/mL; 97.5% CI, 0.200-0.261; P < .001). IGF-I in both sexes and iPTH in boys were positively associated with FMI. An inverse association between adiponectin and FFMI in boys and a positive association between IGF-I and FFMI were found in girls. In longitudinal models, baseline leptin was inversely associated with subsequent changes in FMI (-0.018 kg/m(2) pr. μg/mL; 97.5% CI, -0.034 - -0.002; P = .028) and FFMI (-0.014 kg/m(2) pr. μg/mL; 97.5% CI, -0.024 - -0.003; P = .006) in girls. Cross-sectional findings support that leptin is produced in proportion to body fat mass, but the longitudinal observations support that leptin inhibits gains in FMI and FFMI in girls, a finding that may reflect preserved leptin sensitivity in this predominantly normal weight population.

  15. On generating counter-rotating streamwise vortices

    KAUST Repository

    Winoto, S H

    2015-09-23

    Counter-rotating streamwise vortices are known to enhance the heat transfer rate from a surface and also to improve the aerodynamic performance of an aerofoil. In this paper, some methods to generate such counter-rotating vortices using different methods or physical conditions will be briefly considered and discussed.

  16. GH3 expression and IAA-amide synthetase activity in pea (Pisum sativum L.) seedlings are regulated by light, plant hormones and auxinic herbicides.

    Science.gov (United States)

    Ostrowski, Maciej; Jakubowska, Anna

    2013-03-01

    The formation of auxin conjugates is one of the important regulatory mechanisms for modulating IAA action. Several auxin-responsive GH3 genes encode IAA-amide synthetases that are involved in the maintenance of hormonal homeostasis by conjugating excess IAA to amino acids. Recently, the data have revealed novel regulatory functions of several GH3 proteins in plant growth, organ development, fruit ripening, light signaling, abiotic stress tolerance and plant defense responses. Indole-3-acetyl-aspartate (IAA-Asp) synthetase catalyzing IAA conjugation to aspartic acid in immature seeds of pea (Pisum sativum L.) was purified and characterized during our previous investigations. In this study, we examined the effect of auxin and other plant hormones (ABA, GA, kinetin, JA, MeJA, SA), different light conditions (red, far-red, blue, white light), and auxinic herbicides (2,4-D, Dicamba, Picloram) on the expression of a putative GH3 gene and IAA-amide synthesizing activity in 10-d-old pea seedlings. Quantitative RT-PCR analysis indicated that the PsGH3-5 gene, weakly expressed in control sample, was visibly induced in response to all plant hormones, different light wavelengths and the auxinic herbicides tested. Protein A immunoprecipitation/gel blot analysis using anti-AtGH3.5 antibodies revealed a similar pattern of changes on the protein levels in response to all treatments. IAA-amide synthetase activity determined with aspartate as a substrate, not detectable in control seedlings, was positively affected by a majority of treatments. Based on these results, we suggest that PsGH3-5 may control the growth and development of pea plants in a way similar to the known GH3 genes from other plant species. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. Cortisol and testosterone in Filipino young adult men: evidence for co-regulation of both hormones by fatherhood and relationship status.

    Science.gov (United States)

    Gettler, Lee T; McDade, Thomas W; Kuzawa, Christopher W

    2011-01-01

    Although cortisol (CORT) may suppress testosterone (T) production under stress, in many species males' T and CORT are co-elevated during mate acquisition or conspecific competition. It is presently unknown how CORT co-varies with T in relation to fatherhood/relationship status in men. Here we evaluate associations between waking (AM) and pre-bed (PM) salivary CORT and T, and with plasma total T and luteinizing hormone. We also test whether co-elevationor co-downregulation of CORT and T are present in men who are mating-oriented (non-pairbonded, non-fathers) and parenting-oriented (pairbonded and/or fathers), respectively. Data come from 630 of young adult Filipino males (21-23 years) enrolled in the Cebu Longitudinal Health and Nutrition Survey, a population-based birth cohort study in Cebu City, Philippines. T and CORT were positively related in AM (r = 0.37) and PM (r = 0.30) saliva samples (both P < 0.001). The positive relationship between AM measures was strengthened as caloric intake improved (interaction P < 0.05). Mating-oriented men were more likely to have co-elevated PM CORT and T (P < 0.05), defined as being in the highest tertile for both hormones, while parenting-oriented men were more likely to have co-downregulated (lowest tertile for both hormones) AM (P < 0.05) and PM (P < 0.001) CORT and T. CORT and T are positively related upon waking and before bed and are more likely to be co-elevated in mating-oriented men and co-downregulated in parenting-oriented men. Our findings support the interpretation that CORT and T serve complementary roles in facilitating men's mating effort. Copyright © 2011 Wiley-Liss, Inc.

  18. The importance of thyroid hormone sulfation during fetal development

    NARCIS (Netherlands)

    M.H.A. Kester (Monique)

    2001-01-01

    textabstractNormal fetal development requires the presence of thyroid hormone. Disruption of any of the processes regulating the bioavailability of thyroid hormone may contribute to congenital anomalies. This thesis is focussed a) on the importance of thyroid hormone sulfation during

  19. Aerogel Cherenkov Counters of the KEDR Detector

    CERN Document Server

    Ovtin, I V; Barnyakov, M Y; Bobrovnikov, V S; Buzykaev, A R; Danilyuk, A F; Katcin, A A; Kononov, S A; Kravchenko, E A; Kuyanov, I A; Onuchin, A P; Rodiakin, V A

    2017-01-01

    The particle identification system of the KEDR detector is based on aerogel threshold Cherenkov counters called ASHIPH counters. The system consists of 160 counters arranged in two layers. An event reconstruction program for the ASHIPH system was developed. The position of each counter relative to the tracking system was determined using cosmic muons and Bhabha events. The geometric efficiency of the ASHIPH system was verified with Bhabha events. The efficiency of relativistic particle detection was measured with cosmic muons. A π/K separation of 4δ in the momentum range 0.95 −1.45 GeV/c was confirmed. A simulation program for the ASHIPH counters has been developed.

  20. The Long Intron 1 of Growth Hormone Gene from Reeves’ Turtle (Chinemys reevesii Correlates with Negatively Regulated GH Expression in Four Cell Lines

    Directory of Open Access Journals (Sweden)

    Wen-Sheng Liu

    2016-04-01

    Full Text Available Turtles grow slowly and have a long lifespan. Ultrastructural studies of the pituitary gland in Reeves’ turtle (Chinemys reevesii have revealed that the species possesses a higher nucleoplasmic ratio and fewer secretory granules in growth hormone (GH cells than other animal species in summer and winter. C. reevesii GH gene was cloned and species-specific similarities and differences were investigated. The full GH gene sequence in C. reevesii contains 8517 base pairs (bp, comprising five exons and four introns. Intron 1 was found to be much longer in C. reevesii than in other species. The coding sequence (CDS of the turtle’s GH gene, with and without the inclusion of intron 1, was transfected into four cell lines, including DF-1 chicken embryo fibroblasts, Chinese hamster ovary (CHO cells, human embryonic kidney 293FT cells, and GH4C1 rat pituitary cells; the turtle growth hormone (tGH gene mRNA and protein expression levels decreased significantly in the intron-containing CDS in these cell lines, compared with that of the corresponding intronless CDS. Thus, the long intron 1 of GH gene in Reeves’ turtle might correlate with downregulated gene expression.

  1. Neuronal Activity Controls the Antagonistic Balance Between Peroxisome Proliferator-Activated Receptor-γ Coactivator-1α and Silencing Mediator of Retinoic Acid and Thyroid Hormone Receptors in Regulating Antioxidant Defenses

    Science.gov (United States)

    Soriano, Francesc X.; Léveillé, Frédéric; Papadia, Sofia; Bell, Karen F.S.; Puddifoot, Clare

    2011-01-01

    Abstract Transcriptional coactivators and corepressors often have multiple targets and can have opposing actions on transcription and downstream physiological events. The coactivator peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α is under-expressed in Huntington's disease and is a regulator of antioxidant defenses and mitochondrial biogenesis. We show that in primary cortical neurons, expression of PGC-1α strongly promotes resistance to excitotoxic and oxidative stress in a cell autonomous manner, whereas knockdown increases sensitivity. In contrast, the transcriptional corepressor silencing mediator of retinoic acid and thyroid hormone receptors (SMRT) specifically antagonizes PGC-1α-mediated antioxidant effects. The antagonistic balance between PGC-1α and SMRT is upset in favor of PGC-1α by synaptic activity. Synaptic activity triggers nuclear export of SMRT reliant on multiple regions of the protein. Concommitantly, synaptic activity post-translationally enhances the transactivating potential of PGC-1α in a p38-dependent manner, as well as upregulating cyclic-AMP response element binding protein-dependent PGC-1α transcription. Activity-dependent targeting of PGC-1α results in enhanced gene expression mediated by the thyroid hormone receptor, a prototypical transcription factor coactivated by PGC-1α and repressed by SMRT. As a consequence of these events, SMRT is unable to antagonize PGC-1α-mediated resistance to oxidative stress in synaptically active neurons. Thus, PGC-1α and SMRT are antagonistic regulators of neuronal vulnerability to oxidative stress. Further, this coactivator–corepressor antagonism is regulated by the activity status of the cell, with implications for neuronal viability. Antioxid. Redox Signal. 14, 1425–1436. PMID:20849372

  2. Structure-activity relationship of crustacean peptide hormones.

    Science.gov (United States)

    Katayama, Hidekazu

    2016-01-01

    In crustaceans, various physiological events, such as molting, vitellogenesis, and sex differentiation, are regulated by peptide hormones. To understanding the functional sites of these hormones, many structure-activity relationship (SAR) studies have been published. In this review, the author focuses the SAR of crustacean hyperglycemic hormone-family peptides and androgenic gland hormone and describes the detailed results of our and other research groups. The future perspectives will be also discussed.

  3. SnapShot: Hormones of the gastrointestinal tract.

    Science.gov (United States)

    Coate, Katie C; Kliewer, Steven A; Mangelsdorf, David J

    2014-12-04

    Specialized endocrine cells secrete a variety of peptide hormones all along the gastrointestinal (GI) tract, making it one of the largest endocrine organs in the body. Nutrients and developmental and neural cues trigger the secretion of gastrointestinal (GI) hormones from specialized endocrine cells along the GI tract. These hormones act in target tissues to facilitate digestion and regulate energy homeostasis. This SnapShot summarizes the production and functions of GI hormones. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Hormones and absence epilepsy

    NARCIS (Netherlands)

    Luijtelaar, E.L.J.M. van; Tolmacheva, E.A.; Budziszewska, B.

    2017-01-01

    Hormones have an extremely large impact on seizures and epilepsy. Stress and stress hormones are known to reinforce seizure expression, and gonadal hormones affect the number of seizures and even the seizure type. Moreover, hormonal concentrations change drastically over an individual's lifetime,

  5. Hormones and absence epilepsy

    NARCIS (Netherlands)

    Luijtelaar, E.L.J.M. van; Budziszewska, B.; Tolmacheva, E.A.

    2009-01-01

    Hormones have an extremely large impact on seizures and epilepsy. Stress and stress hormones are known to reinforce seizure expression, and gonadal hormones affect the number of seizures and even the seizure type. Moreover, hormonal concentrations change drastically over an individual's lifetime,

  6. Orphan Nuclear Receptor Small Heterodimer Partner Negatively Regulates Growth Hormone-mediated Induction of Hepatic Gluconeogenesis through Inhibition of Signal Transducer and Activator of Transcription 5 (STAT5) Transactivation*

    Science.gov (United States)

    Kim, Yong Deuk; Li, Tiangang; Ahn, Seung-Won; Kim, Don-Kyu; Lee, Ji-Min; Hwang, Seung-Lark; Kim, Yong-Hoon; Lee, Chul-Ho; Lee, In-Kyu; Chiang, John Y. L.; Choi, Hueng-Sik

    2012-01-01

    Growth hormone (GH) is a key metabolic regulator mediating glucose and lipid metabolism. Ataxia telangiectasia mutated (ATM) is a member of the phosphatidylinositol 3-kinase superfamily and regulates cell cycle progression. The orphan nuclear receptor small heterodimer partner (SHP: NR0B2) plays a pivotal role in regulating metabolic processes. Here, we studied the role of ATM on GH-dependent regulation of hepatic gluconeogenesis in the liver. GH induced phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase gene expression in primary hepatocytes. GH treatment and adenovirus-mediated STAT5 overexpression in hepatocy