WorldWideScience

Sample records for horizontal-typed mocvd chamber

  1. Growth and characterization of germanium epitaxial film on silicon (001 with germane precursor in metal organic chemical vapour deposition (MOCVD chamber

    Directory of Open Access Journals (Sweden)

    Kwang Hong Lee

    2013-09-01

    Full Text Available The quality of germanium (Ge epitaxial film grown directly on a silicon (Si (001 substrate with 6° off-cut using conventional germane precursor in a metal organic chemical vapour deposition (MOCVD system is studied. The growth sequence consists of several steps at low temperature (LT at 400 °C, intermediate temperature ramp (LT-HT of ∼10 °C/min and high temperature (HT at 600 °C. This is followed by post-growth annealing in hydrogen at temperature ranging from 650 to 825 °C. The Ge epitaxial film of thickness ∼ 1 μm experiences thermally induced tensile strain of 0.11 % with a treading dislocation density (TDD of ∼107/cm2 and the root-mean-square (RMS roughness of ∼ 0.75 nm. The benefit of growing Ge epitaxial film using MOCVD is that the subsequent III-V materials can be grown in-situ without the need of breaking the vacuum hence it is manufacturing worthy.

  2. MOCVD waste gas treatment

    International Nuclear Information System (INIS)

    Geelen, A. van; Bink, P.H.M.; Giling, L.J.

    1993-01-01

    A large scale production of GaAs based solar cells with MOCVD will give rise to a considerable use of arsine. Therefore a gas treatment system is needed to convert the waste gases into less toxic compounds. In this study seven different gas treatment systems for MOCVD are compared by quantifying the environmental aspects. The systems are divided in wet systems, adsorption systems and thermal systems. The smallest amount of waste is produced by adsorption and thermal systems. Adsorption systems use the smallest amount of energy. The amount of primary materials used for the equipment varies per system. All systems are safe, but adsorption systems are simplest. At the moment, adsorption systems are probably the best choice from an environmental point of view. Nevertheless thermal systems have some potential advantages which make them interesting for the future

  3. Surface Science in an MOCVD Environment: Arsenic on Vicinal Ge(100)

    International Nuclear Information System (INIS)

    Olson, J.M.; McMahon, W.E.

    1998-01-01

    Scanning tunneling microscope (STM) images of arsine-exposed vicinal Ge(100) surfaces show that most As/Ge steps are reconstructed, and that a variety of different step structures exist. The entire family of reconstructed As/Ge steps can be divided into two types, which we have chosen to call ''single-row'' steps and ''double-row'' steps. In this paper we propose a model for a double-row step created by annealing a vicinal Ge(100) substrate under an arsine flux in a metal-organic chemical vapor deposition (MOCVD) chamber

  4. Epitaxial growth of InP on SI by MOCVD

    International Nuclear Information System (INIS)

    Konushi, F.; Seki, A.; Kudo, J.; Sato, H.; Kakimoto, S.; Fukushima, T.; Kubota, Y.; Koba, M.

    1988-01-01

    The authors have studied the heteroepitaxial growth of InP on large diameter Si substrates using MOCVD. A new MOCVD system with four inch wafer size capability was utilized in the growth. Single domain InP films have been successfully grown on four inch Si substrates by using a new heterostructure with a thin GaAs intermediate layer. In this paper, the authors describe the crystalline quality and residual stress of InP epilayers, estimated by etch pit density and x-ray diffraction, respectively. The authors also reports on the reduction of EPD by post-growth annealing

  5. Thermodynamic investigation of the MOCVD of copper films from bis ...

    Indian Academy of Sciences (India)

    Equilibrium concentrations of various condensed and gaseous phases have been thermodynamically calculated, using the free energy minimization criterion, for the metalorganic chemical vapour deposition (MOCVD) of copper films using bis(2,2,6,6-tetramethyl-3,5-heptadionato)copper(II) as the precursor material.

  6. Thermodynamic analysis of growth of iron oxide films by MOCVD ...

    Indian Academy of Sciences (India)

    Abstract. Thermodynamic calculations, using the criterion of minimization of total Gibbs free energy of the system, have been carried out for the metalorganic chemical vapour deposition (MOCVD) process involving the -ketoesterate complex of iron [tris(-butyl-3-oxo-butanoato)iron(III) or Fe(tbob)3] and molecular oxygen.

  7. Synthesis and properties of barium diketonates as precursors for MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Drozdov, A.A. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Troyanov, S.I. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Kuzmina, N.P. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Martynenko, L.I. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Alikhanyan, A.S. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Malkerova, I.P. (Dept. of Chemistry, Moscow State Univ. (Russian Federation))

    1993-08-01

    The structures of barium diketonates depend on the way in which they are synthesized. It is shown that there is a correlation between the volatility of these compounds and their crystal structures. A new volatile mononuclear adduct of barium dipivaloylmethanate suitable for MOCVD is suggested. (orig.).

  8. Synthesis and properties of barium diketonates as precursors for MOCVD

    International Nuclear Information System (INIS)

    Drozdov, A.A.; Troyanov, S.I.; Kuzmina, N.P.; Martynenko, L.I.; Alikhanyan, A.S.; Malkerova, I.P.

    1993-01-01

    The structures of barium diketonates depend on the way in which they are synthesized. It is shown that there is a correlation between the volatility of these compounds and their crystal structures. A new volatile mononuclear adduct of barium dipivaloylmethanate suitable for MOCVD is suggested. (orig.)

  9. In-situ deposition of YBCO high-Tc superconducting thin films by MOCVD and PE-MOCVD

    International Nuclear Information System (INIS)

    Zhao, J.; Noh, D.W.; Chern, C.; Li, Y.Q.; Norris, P.E.; Kear, B.; Gallois, B.

    1991-01-01

    Metal-Organic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T(sub c) greater than 90 K and J(sub c) of approximately 10(exp 4) A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metal-organic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology

  10. New principle of feeding for flash evaporation MOCVD devices

    International Nuclear Information System (INIS)

    Kaul, A.R.; Seleznev, B.V.

    1993-01-01

    A novel scheme of flash evaporation feeding for MOCVD processes of multi-component oxide films deposition is proposed. The scheme comprises 1) microdozage of organic solution of solid volatile precursors on the glass fiber belt, 2) evaporation of the solvent and 3) flash evaporation of MOC microdoses from the belt. The functioning of the designed feeder is described and the features of proposed scheme in comparison to existing feeding principles are discussed. (orig.)

  11. Effects of Mg pre-flow, memory, and diffusion on the growth of p-GaN with MOCVD (Conference Presentation)

    Science.gov (United States)

    Tu, Charng-Gan; Chen, Hao-Tsung; Chen, Sheng-Hung; Chao, Chen-Yao; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    In MOCVD growth, two key factors for growing a p-type structure, when the modulation growth or delta-doping technique is used, include Mg memory and diffusion. With high-temperature growth (>900 degree C), doped Mg can diffuse into the under-layer. Also, due to the high-pressure growth and growth chamber coating in MOCVD, plenty Mg atoms exist in the growth chamber for a duration after Mg supply is ended. In this situation, Mg doping continues in the following designated un-doped layers. In this paper, we demonstrate the study results of Mg preflow, memory, and diffusion. The results show that pre-flow of Mg into the growth chamber can lead to a significantly higher Mg doping concentration in growing a p-GaN layer. In other words, a duration for Mg buildup is required for high Mg incorporation. Based on SIMS study, we find that with the pre-flow growth, a high- and a low-doping p-GaN layer are formed. The doping concentration difference between the two layers is about 10 times. The thickness of the high- (low-) doping layer is about 40 (65) nm. The growth of the high-doping layer starts 10-15 min after Mg supply starts (Mg buildup time). The diffusion length of Mg into the AlGaN layer beneath (Mg content reduced to doping concentration is reduced to <1%.

  12. Ionization chamber

    International Nuclear Information System (INIS)

    Jilbert, P.H.

    1975-01-01

    The invention concerns ionization chambers with particular reference to air-equivalent ionization chambers. In order to ensure that similar chambers have similar sensitivities and responses the surface of the chamber bounding the active volume carries a conducting material, which may be a colloidal graphite, arranged in the form of lines so that the area of the conducting material occupies only a small proportion of the area of said surface. (U.S.)

  13. Test chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2009-01-01

    A test chamber for measuring electromagnetic radiation emitted by an apparatus to be tested or for exposing an apparatus to be tested to an electromagnetic radiation field. The test chamber includes a reverberation chamber made of a conductive tent fabric. To create a statistically uniform field in

  14. Modelling of MOCVD reactor: new 3D approach

    International Nuclear Information System (INIS)

    Raj, E; Lisik, Z; Niedzielski, P; Ruta, L; Turczynski, M; Wang, X; Waag, A

    2014-01-01

    The paper presents comparison of two different 3D models of vertical, rotating disc MOCVD reactor used for 3D GaN structure growth. The first one is based on the reactor symmetry, while the second, novel one incorporates only single line of showerhead nozzles. It is shown that both of them can be applied interchangeably regarding the phenomena taking place within the processing area. Moreover, the importance of boundary conditions regarding proper modelling of showerhead cooling and the significance of thermal radiation on temperature field within the modelled structure are presented and analysed. The last phenomenon is erroneously neglected in most of the hitherto studies.

  15. Modelling of MOCVD Reactor: New 3D Approach

    Science.gov (United States)

    Raj, E.; Lisik, Z.; Niedzielski, P.; Ruta, L.; Turczynski, M.; Wang, X.; Waag, A.

    2014-04-01

    The paper presents comparison of two different 3D models of vertical, rotating disc MOCVD reactor used for 3D GaN structure growth. The first one is based on the reactor symmetry, while the second, novel one incorporates only single line of showerhead nozzles. It is shown that both of them can be applied interchangeably regarding the phenomena taking place within the processing area. Moreover, the importance of boundary conditions regarding proper modelling of showerhead cooling and the significance of thermal radiation on temperature field within the modelled structure are presented and analysed. The last phenomenon is erroneously neglected in most of the hitherto studies.

  16. Induction-heating MOCVD reactor with significantly improved heating efficiency and reduced harmful magnetic coupling

    KAUST Repository

    Li, Kuang-Hui; Alotaibi, Hamad S.; Sun, Haiding; Lin, Ronghui; Guo, Wenzhe; Torres-Castanedo, Carlos G.; Liu, Kaikai; Galan, Sergio V.; Li, Xiaohang

    2018-01-01

    In a conventional induction-heating III-nitride metalorganic chemical vapor deposition (MOCVD) reactor, the induction coil is outside the chamber. Therefore, the magnetic field does not couple with the susceptor well, leading to compromised heating efficiency and harmful coupling with the gas inlet and thus possible overheating. Hence, the gas inlet has to be at a minimum distance away from the susceptor. Because of the elongated flow path, premature reactions can be more severe, particularly between Al- and B-containing precursors and NH3. Here, we propose a structure that can significantly improve the heating efficiency and allow the gas inlet to be closer to the susceptor. Specifically, the induction coil is designed to surround the vertical cylinder of a T-shaped susceptor comprising the cylinder and a top horizontal plate holding the wafer substrate within the reactor. Therefore, the cylinder coupled most magnetic field to serve as the thermal source for the plate. Furthermore, the plate can block and thus significantly reduce the uncoupled magnetic field above the susceptor, thereby allowing the gas inlet to be closer. The results show approximately 140% and 2.6 times increase in the heating and susceptor coupling efficiencies, respectively, as well as a 90% reduction in the harmful magnetic flux on the gas inlet.

  17. Induction-heating MOCVD reactor with significantly improved heating efficiency and reduced harmful magnetic coupling

    KAUST Repository

    Li, Kuang-Hui

    2018-02-23

    In a conventional induction-heating III-nitride metalorganic chemical vapor deposition (MOCVD) reactor, the induction coil is outside the chamber. Therefore, the magnetic field does not couple with the susceptor well, leading to compromised heating efficiency and harmful coupling with the gas inlet and thus possible overheating. Hence, the gas inlet has to be at a minimum distance away from the susceptor. Because of the elongated flow path, premature reactions can be more severe, particularly between Al- and B-containing precursors and NH3. Here, we propose a structure that can significantly improve the heating efficiency and allow the gas inlet to be closer to the susceptor. Specifically, the induction coil is designed to surround the vertical cylinder of a T-shaped susceptor comprising the cylinder and a top horizontal plate holding the wafer substrate within the reactor. Therefore, the cylinder coupled most magnetic field to serve as the thermal source for the plate. Furthermore, the plate can block and thus significantly reduce the uncoupled magnetic field above the susceptor, thereby allowing the gas inlet to be closer. The results show approximately 140% and 2.6 times increase in the heating and susceptor coupling efficiencies, respectively, as well as a 90% reduction in the harmful magnetic flux on the gas inlet.

  18. Suppression of Mg propagation into subsequent layers grown by MOCVD

    Science.gov (United States)

    Agarwal, Anchal; Tahhan, Maher; Mates, Tom; Keller, Stacia; Mishra, Umesh

    2017-01-01

    Low temperature (LT) flow modulation epitaxy (FME) or "pulsed" growth was successfully used to prevent magnesium from Metalorganic Chemical Vapor Deposition (MOCVD) grown p-GaN:Mg layers riding into subsequently deposited n-type layers. Mg concentration in the subsequent layers was lowered from ˜1 × 1018 cm-3 for a medium temperature growth at 950 °C to ˜1 × 1016 cm-3 for a low temperature growth at 700 °C via FME. The slope of the Mg concentration drop in the 700 °C FME sample was 20 nm/dec—the lowest ever demonstrated by MOCVD. For growth on Mg implanted GaN layers, the drop for a medium temperature regrowth at 950 °C was ˜10 nm/dec compared to >120 nm/dec for a high temperature regrowth at 1150 °C. This drop-rate obtained at 950 °C or lower was maintained even when the growth temperature in the following layers was raised to 1150 °C. A controlled silicon doping series using LT FME was also demonstrated with the lowest and highest achieved doping levels being 5 × 1016 cm-3 and 6 × 1019 cm-3, respectively.

  19. Ussing Chamber

    NARCIS (Netherlands)

    Westerhout, J.; Wortelboer, H.; Verhoeckx, K.

    2015-01-01

    The Ussing chamber system is named after the Danish zoologist Hans Ussing, who invented the device in the 1950s to measure the short-circuit current as an indicator of net ion transport taking place across frog skin (Ussing and Zerahn, Acta Physiol Scand 23:110-127, 1951). Ussing chambers are

  20. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  1. Drift chamber

    International Nuclear Information System (INIS)

    Inagaki, Yosuke

    1977-01-01

    Drift chamber is becoming an important detector in high energy physics as a precision and fast position detector because of its high spatial resolution and count-rate. The basic principle is that it utilizes the drift at constant speed of electrons ionized along the tracks of charged particles towards the anode wire in the nearly uniform electric field. The method of measuring drift time includes the analog and digital ones. This report describes about the construction of and the application of electric field to the drift chamber, mathematical analysis on the electric field and equipotential curve, derivation of spatial resolution and the factor for its determination, and selection of gas to be used. The performance test of the chamber was carried out using a small test chamber, the collimated β source of Sr-90, and 500 MeV/C electron beam from the 1.3 GeV electron synchrotron in the Institute of Nuclear Study, University of Tokyo. Most chambers to date adopted one dimensional read-out, but it is very advantageous if the two dimensional read-out is feasible with one chamber when the resolution in that direction is low. The typical methods of delay line and charge division for two dimensional read-out are described. The development of digital read-out system is underway, which can process the signal of a large scale drift chamber at high speed. (Wakatsuki, Y.)

  2. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  3. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  4. Thermoelectric properties of ZnSb films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Venkatasubramanian, R; Watko, E; Colpitts, T

    1997-07-01

    The thermoelectric properties of ZnSb films grown by metallorganic chemical vapor deposition (MOCVD) are reported. The growth conditions necessary to obtain stoichiometric ZnSb films and the effects of various growth parameters on the electrical conductivity and Seebeck coefficients of the films are described. The as-grown ZnSb films are p-type. It was observed that the thicker ZnSb films offer improved carrier mobilities and lower free-carrier concentration levels. The Seebeck coefficient of ZnSb films was found to rise rapidly at approximately 160 C. The thicker films, due to the lower doping levels, indicate higher Seebeck coefficients between 25 to 200 C. A short annealing of the ZnSb film at temperatures of {approximately}200 C results in reduced free-carrier level. Thermal conductivity measurements of ZnSb films using the 3-{omega} method are also presented.

  5. Alkaline-doped manganese perovskite thin films grown by MOCVD

    International Nuclear Information System (INIS)

    Bibes, M.; Gorbenko, O.; Martinez, B.; Kaul, A.; Fontcuberta, J.

    2000-01-01

    We report on the preparation and characterization of La 1-x Na x MnO 3 thin films grown by MOCVD on various single-crystalline substrates. Under appropriate conditions epitaxial thin films have been obtained. The Curie temperatures of the films, which are very similar to those of bulk samples of similar composition, reflect the residual strain caused by the substrate. The anisotropic magnetoresistance AMR of the films has been analyzed in some detail, and it has been found that it has a two-fold symmetry at any temperature. Its temperature dependence mimics that of the electrical resistivity and magnetoresistance measured at similar fields, thus suggesting that the real structure of the material contributes to the measured AMR besides the intrinsic component

  6. Ionization chamber

    International Nuclear Information System (INIS)

    1977-01-01

    An improved ionization chamber type X-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is placed next to the anode and is maintained at a voltage intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting towards the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  7. Ionization chambers

    International Nuclear Information System (INIS)

    Boag, J.W.

    1987-01-01

    Although a variety of solid-state and chemical methods for measuring radiation dose have been developed in recent decades and calorimetry can now provide an absolute standard of reference, ionization dosimetry retains its position as the most widely used, most convenient, and, in most situations, most accurate method of measuring either exposure or absorbed dose. The ionization chamber itself is the central element in this system of dosimetry. In this chapter the principles governing the construction and operation of ionization chambers of various types are examined. Since the ionization chambers now in general use are nearly all of commercial manufacture, the emphasis is on operating characteristics and interpretation of measurements rather than on details of construction, although some knowledge of the latter is often required when applying necessary corrections to the measured quantities. Examples are given of the construction of typical chambers designed for particular purposes, and the methods of calibrating them are discussed

  8. Cloud Chamber

    DEFF Research Database (Denmark)

    Gfader, Verina

    Cloud Chamber takes its roots in a performance project, titled The Guests 做东, devised by Verina Gfader for the 11th Shanghai Biennale, ‘Why Not Ask Again: Arguments, Counter-arguments, and Stories’. Departing from the inclusion of the biennale audience to write a future folk tale, Cloud Chamber......: fiction and translation and translation through time; post literacy; world picturing-world typing; and cartographic entanglements and expressions of subjectivity; through the lens a social imaginary of worlding or cosmological quest. Art at its core? Contributions by Nikos Papastergiadis, Rebecca Carson...

  9. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  10. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  11. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  12. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  13. All-MOCVD-grown BH laser on P-InP substrates

    Science.gov (United States)

    Nishimura, Tadashi; Ishimura, E.; Nakajima, Yasuo; Tada, Hitoshi; Kimura, T.; Ohkura, Y.; Goto, Katsuhiko; Omura, Etsuji; Aiga, Masao

    1993-07-01

    A very low cw threshold current of 2.5 mA ( 25 degree(s)C) and 8.0 mA ( 80 degree(s)C) with high reliability has been realized in the all-MOCVD grown BH lasers on p-InP substrates. A strained MQW active layer of 1.3 micrometers wavelength and the precise carrier confinement buried structure by MOCVD is employed for the BH lasers. The excellent potential of long lifetime of the all-MOCVD grown laser has also been confirmed. After the high temperature and the high current (100 degree(s)C, 200 mA) aging test, no significant degradation is observed which is comparable with the well-established LPE grown lasers. The BH laser is also operating stably over 3700 hrs under the APC condition of 50 degree(s)C, 10 mW. Finally, an extremely uniform 10-element all-MOCVD grown LD array is demonstrated, which has the threshold current uniformity of 2.4 +/- 0.1 mA ( 25 degree(s)C) and 9.2 +/- 0.2 mA ( 80 degree(s)C). The growth mechanism in the MOCVD is also described.

  14. Preparation of molybdenum oxide thin films by MOCVD

    International Nuclear Information System (INIS)

    Guerrero, R. Martinez; Garcia, J.R. Vargas; Santes, V.; Gomez, E.

    2007-01-01

    In this study, molybdenum oxide films were prepared in a horizontal hot-wall MOCVD apparatus using molybdenum dioxide acetylacetonate as precursor. The molybdenum precursor was synthesized from acetylacetone and molybdenum oxide powder. Thermal gravimetric (TG) and differential thermal analyses (DTA) of the precursor suggested the formation of molybdenum oxides around 430 o C (703 K). Thus, a range of deposition temperatures varying from 350 to 630 o C (623-903 K) was explored to investigate the effects on the nature of the molybdenum oxide films. X-ray diffraction (XRD) results showed that the films consisted of α-MoO 3 phase at deposition temperatures ranging from 400 to 560 o C (673-833 K). Crystalline α-MoO 3 films can be obtained from molybdenum dioxide acetylacetonate precursor, without need of a post-annealing treatment. The best crystalline quality was found in films having needle-like crystallites grown at deposition temperature of about 560 o C (833 K), which exhibit a strong (0 1 0) preferred orientation and a transparent visual appearance

  15. Preparation of molybdenum oxide thin films by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, R. Martinez [Depto. de Ingenieria Metalurgica, ESIQIE-IPN, Mexico 07300, D.F. (Mexico); Garcia, J.R. Vargas [Depto. de Ingenieria Metalurgica, ESIQIE-IPN, Mexico 07300, D.F. (Mexico)]. E-mail: rvargasga@ipn.mx; Santes, V. [CIIEMAD-IPN, Miguel Othon de Mendizabal 485, Mexico 07700, D.F. (Mexico); Gomez, E. [Instituto de Quimica-UNAM, Circuito Exterior-Ciudad Universitaria, Mexico 04510, D.F. (Mexico)

    2007-05-31

    In this study, molybdenum oxide films were prepared in a horizontal hot-wall MOCVD apparatus using molybdenum dioxide acetylacetonate as precursor. The molybdenum precursor was synthesized from acetylacetone and molybdenum oxide powder. Thermal gravimetric (TG) and differential thermal analyses (DTA) of the precursor suggested the formation of molybdenum oxides around 430 {sup o}C (703 K). Thus, a range of deposition temperatures varying from 350 to 630 {sup o}C (623-903 K) was explored to investigate the effects on the nature of the molybdenum oxide films. X-ray diffraction (XRD) results showed that the films consisted of {alpha}-MoO{sub 3} phase at deposition temperatures ranging from 400 to 560 {sup o}C (673-833 K). Crystalline {alpha}-MoO{sub 3} films can be obtained from molybdenum dioxide acetylacetonate precursor, without need of a post-annealing treatment. The best crystalline quality was found in films having needle-like crystallites grown at deposition temperature of about 560 {sup o}C (833 K), which exhibit a strong (0 1 0) preferred orientation and a transparent visual appearance.

  16. Thermoelectric properties of ZnSb films grown by MOCVD

    International Nuclear Information System (INIS)

    Venkatasubramanian, R.; Watko, E.; Colpitts, T.

    1997-04-01

    The thermoelectric properties of metallorganic chemical vapor deposited (MOCVD) ZnSb films are reported. The growth conditions necessary to obtain stoichiometric ZnSb films and the effects of various growth parameters on the electrical conductivity and Seebeck coefficients of the films are described. The as-grown ZnSb films are p-type. It was observed that the growth of thicker ZnSb films lead to improved carrier mobilities and lower free-carrier concentrations. The Seebeck coefficient of ZnSb films was found to rise rapidly at approximately 160 to 170 C, with peak Seebeck coefficients as high as 470 microV/K at 220 C. The various growth conditions, including the use of intentional dopants, to improve the Seebeck coefficients at room temperature and above, are discussed. A short annealing of the ZnSb films at temperatures of ∼ 200 C resulted in reduced free-carrier levels and higher Seebeck coefficients at 300 K. Finally, ZT values based on preliminary thermal conductivity measurements using the 3-ω method are reported

  17. Thermogravimetric evaluation of the suitability of precursors for MOCVD

    International Nuclear Information System (INIS)

    Kunte, G V; Shivashankar, S A; Umarji, A M

    2008-01-01

    A method based on the Langmuir equation for the estimation of vapour pressure and enthalpy of sublimation of subliming compounds is described. The variable temperature thermogravimetric/differential thermogravimetric (TG/DTG) curve of benzoic acid is used to arrive at the instrument parameters. Employing these parameters, the vapour pressure–temperature curves are derived for salicylic acid and camphor from their TG/DTG curves. The values match well with vapour pressure data in the literature, obtained by effusion methods. By employing the Clausius–Clapeyron equation, the enthalpy of sublimation could be calculated. Extending the method further, two precursors for metal-organic chemical vapour deposition (MOCVD) of titanium oxide bis-isopropyl bis tert-butyl 2-oxobutanoato titanium, Ti(O i Pr) 2 (tbob) 2 , and bis-oxo-bis-tertbutyl 2-oxobutanoato titanium, [TiO(tbob) 2 ] 2 , have been evaluated. The complex Ti(O i Pr) 2 (tbob) 2 is found to be a more suitable precursor. This approach can be helpful in quickly screening for the suitability of a compound as a CVD precursor

  18. Deposition studies and coordinated characterization of MOCVD YBCO films on IBAD-MgO templates

    International Nuclear Information System (INIS)

    Aytug, T; Paranthaman, M; Heatherly, L; Zuev, Y; Zhang, Y; Kim, K; Goyal, A; Maroni, V A; Chen, Y; Selvamanickam, V

    2009-01-01

    A recently installed research-scale metal-organic chemical vapor deposition (MOCVD) system at Oak Ridge National Laboratory, provided by SuperPower, Inc., has been used to investigate processing variables for MOCVD YBCO precursors and trends in the resulting properties. Systematic studies of YBCO film growth on LaMnO 3 /IBAD-MgO templates were carried out by optimizing deposition temperature and oxygen flow rate. Microstructural and superconducting properties of the YBCO films were analyzed by x-ray diffraction, scanning electron microscopy and transport measurements. The identification of intermediate phases formed during the YBCO precursor transformation was investigated by coordinated reel-to-reel Raman microprobe analysis. With this combination of various characterization techniques, an improved understanding of the growth characteristics of MOCVD YBCO films was established. Finally, critical current densities greater than 2 MA cm -2 for film thicknesses of 0.8 μm were demonstrated.

  19. Deposition studies and coordinated characterization of MOCVD YBCO films on IBAD-MgO templates

    Energy Technology Data Exchange (ETDEWEB)

    Aytug, T; Paranthaman, M [Oak Ridge National Laboratory, Chemical Sciences Division, Oak Ridge, TN 37831 (United States); Heatherly, L; Zuev, Y; Zhang, Y; Kim, K; Goyal, A [Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831 (United States); Maroni, V A [Argonne National Laboratory, Chemical Sciences and Engineering Division, Argonne, IL 60439 (United States); Chen, Y; Selvamanickam, V [SuperPower, Incorporated, 450 Duane Avenue, Schenectady, NY 12304 (United States)], E-mail: aytugt@ornl.gov

    2009-01-15

    A recently installed research-scale metal-organic chemical vapor deposition (MOCVD) system at Oak Ridge National Laboratory, provided by SuperPower, Inc., has been used to investigate processing variables for MOCVD YBCO precursors and trends in the resulting properties. Systematic studies of YBCO film growth on LaMnO{sub 3}/IBAD-MgO templates were carried out by optimizing deposition temperature and oxygen flow rate. Microstructural and superconducting properties of the YBCO films were analyzed by x-ray diffraction, scanning electron microscopy and transport measurements. The identification of intermediate phases formed during the YBCO precursor transformation was investigated by coordinated reel-to-reel Raman microprobe analysis. With this combination of various characterization techniques, an improved understanding of the growth characteristics of MOCVD YBCO films was established. Finally, critical current densities greater than 2 MA cm{sup -2} for film thicknesses of 0.8 {mu}m were demonstrated.

  20. MOCVD process technology for affordable, high-yield, high-performance MESFET structures. Phase 3: MIMIC

    Science.gov (United States)

    1993-01-01

    Under the MIMIC Program, Spire has pursued improvements in the manufacturing of low cost, high quality gallium arsenide MOCVD wafers for advanced MIMIC FET applications. As a demonstration of such improvements, Spire was tasked to supply MOCVD wafers for comparison to MBE wafers in the fabrication of millimeter and microwave integrated circuits. In this, the final technical report for Spire's two-year MIMIC contract, we report the results of our work. The main objectives of Spire's MIMIC Phase 3 Program, as outlined in the Statement of Work, were as follows: Optimize the MOCVD growth conditions for the best possible electrical and morphological gallium arsenide. Optimization should include substrate and source qualification as well as determination of the optimum reactor growth conditions; Perform all work on 75 millimeter diameter wafers, using a reactor capable of at least three wafers per run; and Evaluate epitaxial layers using electrical, optical, and morphological tests to obtain thickness, carrier concentration, and mobility data across wafers.

  1. Recent developments in the MOCVD and ALD of rare earth oxides and silicates

    International Nuclear Information System (INIS)

    Jones, Anthony C.; Aspinall, Helen C.; Chalker, Paul R.; Potter, Richard J.; Kukli, Kaupo; Rahtu, Antti; Ritala, Mikko; Leskelae, Markku

    2005-01-01

    Lanthanide, or rare-earth oxides are currently being investigated as alternatives to SiO 2 as the dielectric insulating layer in sub-0.1 μm CMOS technology. Metalorganic chemical vapour deposition (MOCVD) and atomic layer deposition (ALD) are promising techniques for the deposition of these high-κ dielectric oxides and in this paper some of our recent research into the MOCVD and ALD of PrO x , La 2 O 3 , Gd 2 O 3 , Nd 2 O 3 and their related silicates are reviewed

  2. Characterization of long-length, MOCVD-derived REBCO coated conductors.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. J.; Maroni, V. A.; Hiller, J. M.; Koritala, R. E.; Chen, Y.; Reeves Black, J. L.; Selvamanickam, V.; SuperPower, Inc.; Development Dimensions International, Inc.

    2009-06-01

    A leading approach to the fabrication of long-length, high-performance REBa{sub 2}Cu{sub 3}O{sub 7} (REBCO) coated conductor is by metal-organic chemical vapor deposition (MOCVD) of REBCO on buffered templates. Templates are produced by ion beam assisted deposition of textured MgO onto polished metal substrates. The overall performance of MOCVD coated conductors achieved to date is impressive, but further improvement is desired. We have used a coordinated set of characterization techniques to identify the underlying causes for critical current (Ic) performance variations in long-length MOCVD conductors. Using electron microscopy and Raman spectroscopy, we studied tape specimens from specially designed experiments performed in SuperPower's MOCVD manufacturing equipment with its six-track ldquohelixrdquo tape path. We find that in multi-pass depositions used to produce thicker REBCO films, the REBCO phase uniformity and texture quality in the first pass play key roles in pass-to-pass microstructure evolution, with nucleation of second phase particles in the first layer promoting misoriented grains that propagate through subsequent layers. These misoriented grains, many growing in close proximity with second phase particles, present current-blocking obstacles that limit Ic performance. Our results show that achieving more uniform deposition in the very first deposited layer plays a critical role that in turn leads to reduced misoriented grain content and REBCO lattice disorder in the second and subsequent layers of the REBCO film.

  3. YBa2Cu3O7 films prepared by aerosol MOCVD

    International Nuclear Information System (INIS)

    Weiss, F.; Froehlich, K.; Haase, R.; Labeau, M.; Selbmann, D.; Senateur, J.P.; Thomas, O.

    1993-01-01

    In the present study we report on properties of YBa 2 Cu 3 O 7 films prepared by aerosol MOCVD. We give a short description of the process and we focus on the superconducting and related properties of the films deposited on SrTiO 3 , LaAlO 3 and NdGaO 3 single crystalline substrates. (orig.)

  4. Chamber transport

    International Nuclear Information System (INIS)

    Olson, Craig L.

    2001-01-01

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system

  5. Doriot Climatic Chambers

    Data.gov (United States)

    Federal Laboratory Consortium — The Doriot Climatic Chambers are two, 60-feet long, 11-feet high, 15-feet wide chambers that are owned and operated by NSRDEC. The Doriot Climatic Chambers are among...

  6. Directed Energy Anechoic Chamber

    Data.gov (United States)

    Federal Laboratory Consortium — The Directed Energy Anechoic Chamber comprises a power anechoic chamber and one transverse electromagnetic cell for characterizing radiofrequency (RF) responses of...

  7. Multiple chamber ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1980-01-01

    A multi-chambered ionisation detector enables the amount of radiation entering each chamber from a single radioactive, eg β, source to be varied by altering the proportion of the source protruding into each chamber. Electrodes define chambers and an extended radioactive source is movable to alter the source length in each chamber. Alternatively, the source is fixed relative to outer electrodes but the central electrode may be adjusted by an attached support altering the chamber dimensions and hence the length of source in each. Also disclosed are a centrally mounted source tiltable towards one or other chamber and a central electrode tiltable to alter chamber dimensions. (U.K.)

  8. Structural characterization of one-dimensional ZnO-based nanostructures grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Sallet, Vincent; Falyouni, Farid; Marzouki, Ali; Haneche, Nadia; Sartel, Corinne; Lusson, Alain; Galtier, Pierre [Groupe d' Etude de la Matiere Condensee (GEMAC), CNRS-Universite de Versailles St-Quentin, Meudon (France); Agouram, Said [SCSIE, Universitat de Valencia, Burjassot (Spain); Enouz-Vedrenne, Shaima [Thales Research and Technology France, Palaiseau (France); Munoz-Sanjose, Vicente [Departamento de Fisica Aplicada y Electromagnetismo, Universitat de Valencia, Burjassot (Spain)

    2010-07-15

    Various one-dimensional (1D) ZnO-based nanostructures, including ZnO nano-wires (NWs) grown using vapour-liquid-solid (VLS) process, ZnO/ZnSe core/shell, nitrogen-doped ZnO and ZnMgO NWs were grown by metalorganic chemical vapour deposition (MOCVD). Transmission electron microscopy (TEM) analysis is presented. For all the samples, a high crystalline quality is observed. Some features are emphasized such as the gold contamination of ZnO wires grown under the metal droplets in the VLS process. It is concluded that MOCVD is a suitable technique for the realization of original ZnO nanodevices. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. Epitaxial Ge Solar Cells Directly Grown on Si (001) by MOCVD Using Isobutylgermane

    Science.gov (United States)

    Kim, Youngjo; Kim, Kangho; Lee, Jaejin; Kim, Chang Zoo; Kang, Ho Kwan; Park, Won-Kyu

    2018-03-01

    Epitaxial Ge layers have been grown on Si (001) substrates by metalorganic chemical vapor deposition (MOCVD) using an isobutylgermane (IBuGe) metalorganic source. Low and high temperature two-step growth and post annealing techniques are employed to overcome the lattice mismatch problem between Ge and Si. It is demonstrated that high quality Ge epitaxial layers can be grown on Si (001) by using IBuGe with surface RMS roughness of 2 nm and an estimated threading dislocation density of 4.9 × 107 cm -2. Furthermore, single-junction Ge solar cells have been directly grown on Si substrates with an in situ MOCVD growth. The epitaxial Ge p- n junction structures are investigated with transmission electron microscopy and electrochemical C- V measurements. As a result, a power conversion efficiency of 1.69% was achieved for the Ge solar cell directly grown on Si substrate under AM1.5G condition.

  10. Multilayer porous structures of HVPE and MOCVD grown GaN for photonic applications

    Science.gov (United States)

    Braniste, T.; Ciers, Joachim; Monaico, Ed.; Martin, D.; Carlin, J.-F.; Ursaki, V. V.; Sergentu, V. V.; Tiginyanu, I. M.; Grandjean, N.

    2017-02-01

    In this paper we report on a comparative study of electrochemical processes for the preparation of multilayer porous structures in hydride vapor phase epitaxy (HVPE) and metal organic chemical vapor phase deposition (MOCVD) grown GaN. It was found that in HVPE-grown GaN, multilayer porous structures are obtained due to self-organization processes leading to a fine modulation of doping during the crystal growth. However, these processes are not totally under control. Multilayer porous structures with a controlled design have been produced by optimizing the technological process of electrochemical etching in MOCVD-grown samples, consisting of five pairs of thin layers with alternating-doping profiles. The samples have been characterized by SEM imaging, photoluminescence spectroscopy, and micro-reflectivity measurements, accompanied by transfer matrix analysis and simulations by a method developed for the calculation of optical reflection spectra. We demonstrate the applicability of the produced structures for the design of Bragg reflectors.

  11. Final report on LDRD project : outstanding challenges for AlGaInN MOCVD.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Christine Charlotte; Follstaedt, David Martin; Russell, Michael J.; Cross, Karen Charlene; Wang, George T.; Creighton, James Randall; Allerman, Andrew Alan; Koleske, Daniel David; Lee, Stephen Roger; Coltrin, Michael Elliott

    2005-03-01

    The AlGaInN material system is used for virtually all advanced solid state lighting and short wavelength optoelectronic devices. Although metal-organic chemical vapor deposition (MOCVD) has proven to be the workhorse deposition technique, several outstanding scientific and technical challenges remain, which hinder progress and keep RD&A costs high. The three most significant MOCVD challenges are: (1) Accurate temperature measurement; (2) Reliable and reproducible p-doping (Mg); and (3) Low dislocation density GaN material. To address challenge (1) we designed and tested (on reactor mockup) a multiwafer, dual wavelength, emissivity-correcting pyrometer (ECP) for AlGaInN MOCVD. This system simultaneously measures the reflectance (at 405 and 550 nm) and emissivity-corrected temperature for each individual wafer, with the platen signal entirely rejected. To address challenge (2) we measured the MgCp{sub 2} + NH{sub 3} adduct condensation phase diagram from 65-115 C, at typical MOCVD concentrations. Results indicate that it requires temperatures of 80-100 C in order to prevent MgCp{sub 2} + NH{sub 3} adduct condensation. Modification and testing of our research reactor will not be complete until FY2005. A new commercial Veeco reactor was installed in early FY2004, and after qualification growth experiments were conducted to improve the GaN quality using a delayed recovery technique, which addresses challenge (3). Using a delayed recovery technique, the dislocation densities determined from x-ray diffraction were reduced from 2 x 10{sup 9} cm{sup -2} to 4 x 10{sup 8} cm{sup -2}. We have also developed a model to simulate reflectance waveforms for GaN growth on sapphire.

  12. Development of high-temperature superconducting coated conductor by MOCVD method

    International Nuclear Information System (INIS)

    Kim, Chan Joong; Jun, Byung Hyuk; Jung, Choung Hwan

    2004-07-01

    To fabricate the second generation superconductor wire, coated conductor, we selected MOCVD (Metal organic chemical vapor deposition) method which is commercially available and whose growth rate is very high. The first buffer layer CeO 2 was successfully deposited on the Ni tape. The thick Y-stabilized ZrO 2 layer was thus inserted between two CeO 2 layers by MOCVD method. The c-axis growth of the first CeO 2 , the inserted YSZ and top CeO 2 layer was achieved by optimized the deposition condition for the three buffers. It was found that the YBCO deposition was fairly dependant on the depostion temperature, time, oxygen partial pressure, amount of the source supplied. Especially the thickness of the YBCO films was linearly dedendant on the deposition temperature and time, but current properties was not linearly dependant on the film thickness. The critical current (Ic) of the YBCO film grown on SrTiO 3 and IBAD template were over 100 A/cm-width and 50 A/cm-width at 77 K and 0 field. To establish the MOCVD process, collaboration work with several organizations was made

  13. Study of TiO{sub 2} nanomembranes obtained by an induction heated MOCVD reactor

    Energy Technology Data Exchange (ETDEWEB)

    Crisbasan, A., E-mail: andreea.crisbasan@yahoo.com [NANOFORM Group, ICB, Université de Bourgogne, BP 47 870, 21078 Dijon (France); Chaumont, D. [NANOFORM Group, ICB, Université de Bourgogne, BP 47 870, 21078 Dijon (France); Sacilotti, M. [NANOFORM Group, ICB, Université de Bourgogne, BP 47 870, 21078 Dijon (France); Departamento de Fisica – Universidade Federal de Pernambuco, Recife (Brazil); Crisan, A.; Lazar, A.M.; Ciobanu, I. [Science and Materials Engineering Faculty, University of Transilvania, Brasov (Romania); Lacroute, Y.; Chassagnon, R. [Université de Bourgogne, BP 47 870, 21078 Dijon (France)

    2015-12-15

    Highlights: • The TiO{sub 2} structures have been obtained by the MOCVD technique using ferrocene, cobalt layer (annealed at 350 °C) and Ti(OC{sub 3}H{sub 7}){sub 4}. • The TiO{sub 2} growth at 550 °C, during 20 min on the cobalt layer (obtained by electron beam evaporation method) on soda-lime glass has as result TiO{sub 2} nanomembranes. • The TiO{sub 2} nanomembranes grow on the cobalt nuclei. • The TiO{sub 2} nanomembranes are polycrystalline, built from TiO{sub 2} anatase and rutile crystals. - Abstract: Nanostructures of TiO{sub 2} were grown using the metal oxide chemical vapor deposition (MOCVD) technique. The procedure used induction heating on a graphite susceptor. This specific feature and the use of cobalt and ferrocene catalysts resulted in nanomembranes never obtained by common MOCVD reactors. The present study discusses the preparation of TiO{sub 2} nanomembranes and the dependence of nanomembrane structure and morphology on growth parameters.

  14. Transparent conductive Ga-doped ZnO films fabricated by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Behrends, Arne; Wagner, Alexander; Al-Suleiman, Mohamed Aid Mansur; Waag, Andreas; Bakin, Andrey [Institute of Semiconductor Technology, University of Technology Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig (Germany); Lugauer, Hans-Juergen; Strassburg, Martin; Walter, Robert; Weimar, Andreas [OSRAM Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany)

    2012-04-15

    Transparent conductive oxides (TCOs) are used for a variety of different applications, e.g., in solar cells and light emitting diodes (LEDs). Mostly, sputtering is used, which often results in a degradation of the underlying semiconductor material. In this work we report on a ''soft'' method for the fabrication of ZnO films as TCO layers by using metal organic chemical vapor deposition (MOCVD) at particularly low temperatures. The MOCVD approach has been studied focusing on the TCO key issues: fabrication temperature, morphology, optical, and electrical properties. Very smooth ZnO films with rms values down to 0.8 nm were fabricated at a substrate temperature of only 300 C. Ga-doping is well controllable even for high carrier concentrations up to 2 x 10{sup 20} cm{sup -3}, which is above the Mott-density leading to metallic-like behavior of the films. Furthermore all films show excellent optical transparency in the visible spectral range. As a consequence, our MOCVD approach is well suited for the soft fabrication of ZnO-based TCO layers. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Fast growth rate of epitaxial β-Ga2O3 by close coupled showerhead MOCVD

    Science.gov (United States)

    Alema, Fikadu; Hertog, Brian; Osinsky, Andrei; Mukhopadhyay, Partha; Toporkov, Mykyta; Schoenfeld, Winston V.

    2017-10-01

    We report on the growth of epitaxial β-Ga2O3 thin films on c-plane sapphire substrates using a close coupled showerhead MOCVD reactor. Ga(DPM)3 (DPM = dipivaloylmethanate), triethylgallium (TEGa) and trimethylgallium (TMGa) metal organic (MO) precursors were used as Ga sources and molecular oxygen was used for oxidation. Films grown from each of the Ga sources had high growth rates, with up to 10 μm/hr achieved using a TMGa precursor at a substrate temperature of 900 °C. As confirmed by X-ray diffraction, the films grown from each of the Ga sources were the monoclinic (2 bar 0 1) oriented β-Ga2O3 phase. The optical bandgap of the films was also estimated to be ∼4.9 eV. The fast growth rate of β-Ga2O3 thin films obtained using various Ga-precursors has been achieved due to the close couple showerhead design of the MOCVD reactor as well as the separate injection of oxygen and MO precursors, preventing the premature oxidation of the MO sources. These results suggest a pathway to overcoming the long-standing challenge of realizing fast growth rates for Ga2O3 using the MOCVD method.

  16. MOCVD ZnO/Screen Printed Ag Back Reflector for Flexible Thin Film Silicon Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Amornrat Limmanee

    2014-01-01

    Full Text Available We have prepared Ag back electrode by screen printing technique and developed MOCVD ZnO/screen printed Ag back reflector for flexible thin film silicon solar cell application. A discontinuity and poor contact interface between the MOCVD ZnO and screen printed Ag layers caused poor open circuit voltage (Voc and low fill factor (FF; however, an insertion of a thin sputtered ZnO layer at the interface could solve this problem. The n type hydrogenated amorphous silicon (a-Si:H film is preferable for the deposition on the surface of MOCVD ZnO film rather than the microcrystalline film due to its less sensitivity to textured surface, and this allowed an improvement in the FF. The n-i-p flexible amorphous silicon solar cell using the MOCVD ZnO/screen printed Ag back reflector showed an initial efficiency of 6.2% with Voc=0.86 V, Jsc=12.4 mA/cm2, and FF = 0.58 (1 cm2. The identical quantum efficiency and comparable performance to the cells using conventional sputtered Ag back electrode have verified the potential of the MOCVD ZnO/screen printed Ag back reflector and possible opportunity to use the screen printed Ag thick film for flexible thin film silicon solar cells.

  17. Glove box chamber

    International Nuclear Information System (INIS)

    Cox, M.E.; Cox, M.E.

    1975-01-01

    An environmental chamber is described which enables an operator's hands to have direct access within the chamber without compromising a special atmosphere within such chamber. A pair of sleeves of a flexible material are sealed to the chamber around associated access apertures and project outwardly from such chamber. Each aperture is closed by a door which is openable from within the sleeve associated therewith so that upon an operator inserting his hand and arm through the sleeve, the operator can open the door to have access to the interior of the chamber. A container which is selectively separable from the remainder of the chamber is also provided to allow objects to be transferred from the chamber without such objects having to pass through the ambient atmosphere. An antechamber permitting objects to be passed directly into the chamber from the ambient atmosphere is included. (auth)

  18. MOCVD and ALD of rare earth containing multifunctional materials. From precursor chemistry to thin film deposition and applications

    International Nuclear Information System (INIS)

    Milanov, Andrian Petrov

    2010-01-01

    The present thesis deals with the development of metal-organic complexes of rare elements. They should be used as novel precursors for the production of rare earth thin films by metal-organic chemical vapor deposition (MOCVD) and Atomic Layer Deposition (ALD). Within the work two precursor classes were examined, the tris-Malonato-complexes as well as the tris-Guanidinato-complexes of a series of rare earth metals. The latter showed excellent properties regarding to their volatility, their thermal stability, the defined decomposition and high reactivity towards water. They have been successfully used as precursors for the MOCVD of rare earth oxide layers. By using of a gadolinium guanidinate it could also be shown that the rare earth guanidinates are promising precursors for ALD of rare earth oxide and MOCVD of rare earth nitride layers. [de

  19. Characterisation of titanium nitride films obtained by metalorganic chemical vapor deposition (MOCVD); Caracterizacao de filmes de nitreto de titanio obtidos por MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Pillis, M.F., E-mail: mfpillis@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais; Franco, A.C. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Araujo, E.G. de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Sacilotti, M. [Universidade Federal de Pernambuco (IF/UFPE), Recife, PE (Brazil). Inst. de Fisica; Fundacao de Amparo a Ciencia e Tecnologia de Pernambuco (FACEPE), Recife, PE (Brazil)

    2009-07-01

    Ceramic coatings have been widely used as protective coating to improve the life of cutting tools, for corrosion protection and in microelectronics, optical and medical areas. Transition metals nitrides are of special interest due to its high hardness and thermal stability. In this work thin films of titanium nitride were obtained by MOCVD (metalorganic chemical vapor deposition) process. The tests were carried out for 1h at 700 deg C under 80 and 100 mbar of pressure. The characterization was made by using scanning electron microscopy coupled with dispersive energy analysis, and X-ray diffraction. Preliminary results suggested that Ti{sub 2}N phase was formed and that the growth rate varied between 4 and 13 nm/min according to the process parameter considered. (author)

  20. Development and construction of a novel MOCVD facility for the growth of ferroelectric thin layers

    International Nuclear Information System (INIS)

    Schaefer, P.R.

    2002-02-01

    This thesis deals with the production of ferroelectric thin films using the MOCVD technology. The main focus is put on the design and construction of a complete MOCVD research system that is equipped with a novel non-contact vaporizer system. The precursors are nebulized in an ultrasonic atomizer and injected into a hot gas stream, so they can vaporize without getting into contact with a hot surface. Hence, one of the biggest disadvantages of conventional vaporizer concepts, the contamination of the vaporizing element with decomposing chemicals, could be avoided completely, resulting in a nearly maintenance-free system. In a direct comparison with the well-established Direct Liquid Injection Subsystem DLI-25C from MKS Instruments, the advantages of non-contact evaporation were clearly demonstrated. Additionally, the scope of this work included the development of standard deposition processes for the ternary oxides SrTiO 3 , BaTiO 3 und PbTiO 3 and growth studies were performed. Electrical measurements performed on MIM structures with Pt electrodes and SrTiO 3 as dielectric indicate a high film quality comparable with results presented in the literature. Furthermore, for the first time the solid solution (Pb x Ba 1-x )TiO 3 has been deposited by MOCVD. This material system is widely unknown in thin film form and it is well suited as a model system to investigate the influence of mechanical stresses on the film properties, because it represents a transition between the (as a thin film) superparaelectric barium titanate and the ferroelectric lead titanate. Through variation of the lead/barium ratio the tetragonal distortion of the lattice cell could be adjusted in a wide range. (orig.)

  1. Electrical properties of ZnO thin films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Pagni, O. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Somhlahlo, N.N. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Weichsel, C. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Leitch, A.W.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)]. E-mail: andrew.leitch@nmmu.ac.za

    2006-04-01

    We report on the electrical characterization of ZnO films grown by MOCVD on glass and sapphire substrates. After correcting our temperature variable Hall measurements by applying the standard two-layer model, which takes into account an interfacial layer, scattering mechanisms in the ZnO films were studied as well as donor activation energies determined. ZnO films grown at different oxygen partial pressures indicated the importance of growth conditions on the defect structure by means of their conductivities and conductivity activation energies.

  2. Electrical properties of ZnO thin films grown by MOCVD

    International Nuclear Information System (INIS)

    Pagni, O.; Somhlahlo, N.N.; Weichsel, C.; Leitch, A.W.R.

    2006-01-01

    We report on the electrical characterization of ZnO films grown by MOCVD on glass and sapphire substrates. After correcting our temperature variable Hall measurements by applying the standard two-layer model, which takes into account an interfacial layer, scattering mechanisms in the ZnO films were studied as well as donor activation energies determined. ZnO films grown at different oxygen partial pressures indicated the importance of growth conditions on the defect structure by means of their conductivities and conductivity activation energies

  3. MOCVD growth of transparent conducting Cd2SnO4 thin films

    International Nuclear Information System (INIS)

    Metz, A.W.; Poeppelmeier, K.R.; Marks, T.J.; Lane, M.A.; Kannewurt, C.R.

    2004-01-01

    The first preparation of transparent conducting Cd 2 SnO 4 thin films by a simple MOCVD process is described. As-deposited films using Cd(hfa) 2 (TMEDA) (Figure), at 365 C are found to be highly crystalline with a relatively wide range of grain size of 100-300 nm. XRD indicates a cubic spinel Cd 2 SnO 4 crystal structure and the possible presence of a small amount of CdO. The films exhibit conductivities of 2170 S/cm and a bandgap of 3.3 eV, rivaling those of commercial tin-doped indium oxide. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  4. Photodegradative properties of TiO{sub 2} films prepared by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Justicia, I.; Ayllon, J.A.; Figueras, A. [Consejo Superior de Investigaciones Cientificas, Barcelona (Spain). Inst. de Ciencia de Materiales; Battiston, G.A.; Gerbasi, R. [Consejo Superior de Investigaciones Cientificas, Barcelona (Spain). Inst. de Ciencia de Materiales; Ist. di Chimica e Tecnologie Inorganiche e dei Materiali Avanzati del CNR, Padova (Italy)

    2001-08-01

    TiO{sub 2} is a well-known photocatalyst for the air-oxydation of organic compounds. This paper deals with the preparation of TiO{sub 2} layers by MOCVD. The photodegradation rate has been studied in the presence of aqueous suspensions (methylene blue) as a function of the film thickness, roughness and crystallite preferred orientation. These results are compared with aqueous suspensions of Degussa P-25 powders. Deposits obtained on fused quartz showed a higher photodegradation rate than those prepared on glass, while Degussa powders exhibited an intermediate value. (orig.)

  5. Dual ionization chamber

    International Nuclear Information System (INIS)

    Mallory, J.; Turlej, Z.

    1981-01-01

    Dual ionization chambers are provided for use with an electronic smoke detector. The chambers are separated by electrically-conductive partition. A single radiation source extends through the partition into both chambers, ionizing the air in each. The mid-point current of the device may be balanced by adjusting the position of the source

  6. Double chamber ion source

    International Nuclear Information System (INIS)

    Uman, M.F.; Winnard, J.R.; Winters, H.F.

    1978-01-01

    The ion source is comprised of two discharge chambers one of which is provided with a filament and an aperture leading into the other chamber which in turn has an extraction orifice. A low voltage arc discharge is operated in an inert gas atmosphere in the filament chamber while an arc of higher voltage is operated in the second ionization chamber which contains a vapor which will give the desired dopant ion species. The entire source is immersed in an axial magnetic field parallel to a line connecting the filament, the aperture between the two chambers and the extraction orifice. (author)

  7. Deuterium permeation of amorphous alumina coating on 316L prepared by MOCVD

    International Nuclear Information System (INIS)

    Li Shuai; He Di; Liu Xiaopeng; Wang Shumao; Jiang Lijun

    2012-01-01

    Highlights: ► Deuterium permeation behavior of alumina coating by MOCVD is investigated. ► The as-prepared alumina is amorphous. ► The alumina coating is dense and well adherent to substrate. ► Deuterium permeation rate of alumina coating is 2–3 orders of magnitude lower than martensitic steels. - Abstract: The deuterium permeation behavior of the alumina coating on 316L stainless steel prepared by metal organic chemical vapor deposition (MOCVD) was investigated. The alumina coating was also characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). It was found that the as-prepared coating consisted of amorphous alumina. This alumina coating had a dense, crack-free and homogeneous morphology. Although the alumina coating was amorphous, effective suppression of deuterium permeation was demonstrated. The deuterium permeability of the alumina coating was 51–60 times less than that of the 316L stainless steel and 153–335 times less than that of the referred low activation martensitic steels at 860–960 K.

  8. Study of electrical properties of single GaN nanowires grown by MOCVD with a Ti mask

    International Nuclear Information System (INIS)

    Vasiliev, A A; Mozharov, A M; Mukhin, I S; Rozhavskaya, M M; Lundin, V V

    2016-01-01

    We researched electrical characteristics of GaN nanowires (NWs) grown by MOCVD through solid titanium film. The technology of creating the ohmic contacts and MESFET structure on single NWs has been developed. The optimal annealing temperature of contacts has been found and conductivity structure, the free carrier concentration and mobility has been evaluated. (paper)

  9. Streamer chamber: pion decay

    CERN Multimedia

    1992-01-01

    The real particles produced in the decay of a positive pion can be seen in this image from a streamer chamber. Streamer chambers consist of a gas chamber through which a strong pulsed electric field is passed, creating sparks as a charged particle passes through it. A magnetic field is added to cause the decay products to follow curved paths so that their charge and momentum can be measured.

  10. Prototype multiwire proportional chamber

    CERN Multimedia

    1975-01-01

    Chambers of this type were initially developed within the Alpha project (finally not approved). They were designed such to minimize the radiation length with a view to a mass spectrometer of high resolution meant to replace the Omega detector. The chambers were clearly forerunners for the (drift) chambers later built for R606 with the novel technique of crimping the wires. See also photo 7510039X.

  11. Electromagnetic reverberation chambers

    CERN Document Server

    Besnier, Philippe

    2013-01-01

    Dedicated to a complete presentation on all aspects of reverberation chambers, this book provides the physical principles behind these test systems in a very progressive manner. The detailed panorama of parameters governing the operation of electromagnetic reverberation chambers details various applications such as radiated immunity, emissivity, and shielding efficiency experiments.In addition, the reader is provided with the elements of electromagnetic theory and statistics required to take full advantage of the basic operational rules of reverberation chambers, including calibration proc

  12. DORIOT CLIMATIC CHAMBERS

    Data.gov (United States)

    Federal Laboratory Consortium — The Doriot Climatic Chambers reproduce environmental conditions occurring anywhere around the world. They provide an invaluable service by significantly reducing the...

  13. Gas microstrip chambers

    International Nuclear Information System (INIS)

    McIntyre, P.M.; Barasch, E.F.; Bowcock, T.J.V.; Demroff, H.P.; Elliott, S.M.; Howe, M.R.; Lee, B.; Mazumdar, T.K.; Pang, Y.; Smith, D.D.; Wahl, J.; Wu, Y.; Yue, W.K.; Gaedke, R.M.; Vanstraelen, G.

    1992-01-01

    The gas microstrip chamber has been developed from concept to experimental system during the past three years. A pattern of anode and grid lines are microfabricated onto a dielectric substrate and configured as a high-resolution MWPC. Four recent developments are described: Suitable plastic substrates and lithography techniques for large-area chambers; non-planar silicon-based chambers for 20 μm resolution; integrated on-board synchronous front-end electronics and data buffering; and a porous silicon active cathode for enhanced efficiency and time response. The microstrip chamber appears to be a promising technology for applications in microvertex, tracking spectrometer, muon spectrometer, and transition radiation detection. (orig.)

  14. An electrodeless drift chamber

    International Nuclear Information System (INIS)

    Allison, J.; Barlow, R.J.; Bowdery, C.K.; Duerdoth, I.; Rowe, P.G.

    1982-01-01

    We describe a chamber in which the drift field is controlled by the deposition of electrostatic charge on an insulating surface. The chamber operates with good efficiency and precision for observed drift distances of up to 45 cm, promises to be extremely robust and adaptable and offers a very cheap way of making particle detectors. (orig.)

  15. High resolution drift chambers

    International Nuclear Information System (INIS)

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 μm resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs

  16. Plastic flashtube chambers

    International Nuclear Information System (INIS)

    Frisken, W.R.

    1977-01-01

    A brief discussion is given of the use and operation of plastic flashtube chambers. Gas leaks, electric pulsing, the glow discharge, and readout methods are considered. Three distinct problems with high rate applications deal with resolving time, dead time, and polarization/neutralization of the chamber

  17. Climatic chamber ergometer

    CSIR Research Space (South Africa)

    Atkins, AR

    1968-01-01

    Full Text Available The design and calibration of an ergometer for exercising subjects during calorimetric studies in the climate chamber, are described. The ergometer is built into the climatic chamber and forms an integral part of the whole instrumentation system foe...

  18. BEBC bubble chamber

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    Looking up into the interior of BEBC bubble chamber from the expansion cylinder. At the top of the chamber two fish-eye lenses are installed and three other fish-eye ports are blanked off. In the centre is a heat exchanger.

  19. The Mobile Chamber

    Science.gov (United States)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  20. DELPHI time projection chamber

    CERN Multimedia

    1989-01-01

    The time projection chamber is inserted inside the central detector of the DELPHI experiment. Gas is ionised in the chamber as a charged particle passes through, producing an electric signal from which the path of the particle can be found. DELPHI, which ran from 1989 to 2000 on the LEP accelerator, was primarily concerned with particle identification.

  1. Enhanced flux pinning in MOCVD-YBCO films through Zr additions : systematic feasibility studies.

    Energy Technology Data Exchange (ETDEWEB)

    Aytug, T.; Paranthaman, M.; Specht, E. D.; Zhang, Y.; Kim, K.; Zuev, Y. L.; Cantoni, C.; Goyal, A.; Christen, D. K.; Maroni, V. A.; Chen, Y.; Selvamanickam, V.; ORNL; SuperPower, Inc.

    2010-01-01

    Systematic effects of Zr additions on the structural and flux pinning properties of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) films deposited by metal-organic chemical vapor deposition (MOCVD) have been investigated. Detailed characterization, conducted by coordinated transport, x-ray diffraction, scanning and transmission electron microscopy analyses, and imaging Raman microscopy have revealed trends in the resulting property/performance correlations of these films with respect to varying mole percentages (mol%) of added Zr. For compositions {le} 7.5 mol%, Zr additions lead to improved in-field critical current density, as well as extra correlated pinning along the c-axis direction of the YBCO films via the formation of columnar, self-assembled stacks of BaZrO{sub 3} nanodots.

  2. Enhanced flux pinning in MOCVD-YBCO films through Zr additions: systematic feasibility studies

    International Nuclear Information System (INIS)

    Aytug, T; Paranthaman, M; Specht, E D; Zhang, Y; Kim, K; Zuev, Y L; Cantoni, C; Goyal, A; Christen, D K; Maroni, V A; Chen, Y; Selvamanickam, V

    2010-01-01

    Systematic effects of Zr additions on the structural and flux pinning properties of YBa 2 Cu 3 O 7-δ (YBCO) films deposited by metal-organic chemical vapor deposition (MOCVD) have been investigated. Detailed characterization, conducted by coordinated transport, x-ray diffraction, scanning and transmission electron microscopy analyses, and imaging Raman microscopy have revealed trends in the resulting property/performance correlations of these films with respect to varying mole percentages (mol%) of added Zr. For compositions ≤7.5 mol%, Zr additions lead to improved in-field critical current density, as well as extra correlated pinning along the c-axis direction of the YBCO films via the formation of columnar, self-assembled stacks of BaZrO 3 nanodots.

  3. Adhesion strength study of IBAD-MOCVD-based 2G HTS wire using a peel test

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: yzhang@superpower-inc.com [SuperPower Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States); Hazelton, D.W.; Knoll, A.R.; Duval, J.M.; Brownsey, P.; Repnoy, S.; Soloveichik, S.; Sundaram, A.; McClure, R.B. [SuperPower Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States); Majkic, G.; Selvamanickam, V. [University of Houston, 4800 Calhoun Road, Houston, TX 77204 (United States)

    2012-02-15

    A peel test was used to study the adhesion strength of a commercial grade 2G HTS wire which features a characteristic multilayer structure with the rare earth-based MOCVD superconducting film deposited on an IBAD-MgO template. The peel test could be carried out at various peeling angles (from 90 Degree-Sign to 180 Degree-Sign) and the peel strength of a wire was defined as the steady-state peeling load determined from a load-displacement curve. The test results had good reproducibility and accuracy, making the test a reliable and useful method for studying the adhesion strength of the wire. By characterizing the peeled surfaces the weakest interface in a wire could be identified. The peel strength data of the wire was analyzed together with the performance of the experimental magnet coils fabricated using the wire. The effect of the silver contact layer annealing on the peel strength is discussed.

  4. Enhanced flux pinning in MOCVD-YBCO films through Zr additions: systematic feasibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Aytug, T; Paranthaman, M; Specht, E D; Zhang, Y; Kim, K; Zuev, Y L; Cantoni, C; Goyal, A; Christen, D K [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Maroni, V A [Argonne National Laboratory, Argonne, IL 60439 (United States); Chen, Y; Selvamanickam, V, E-mail: aytugt@ornl.go [SuperPower, Incorporated, 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2010-01-15

    Systematic effects of Zr additions on the structural and flux pinning properties of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) films deposited by metal-organic chemical vapor deposition (MOCVD) have been investigated. Detailed characterization, conducted by coordinated transport, x-ray diffraction, scanning and transmission electron microscopy analyses, and imaging Raman microscopy have revealed trends in the resulting property/performance correlations of these films with respect to varying mole percentages (mol%) of added Zr. For compositions {<=}7.5 mol%, Zr additions lead to improved in-field critical current density, as well as extra correlated pinning along the c-axis direction of the YBCO films via the formation of columnar, self-assembled stacks of BaZrO{sub 3} nanodots.

  5. Growth and characterization of InP/GaAs on SOI by MOCVD

    International Nuclear Information System (INIS)

    Karam, N.H.; Haven, V.; Vernon, S.M.; Namavar, F.; El-Masry, N.; Haegel, N.; Al-Jassin, M.M.

    1990-01-01

    This paper reports that epitaxial InP films have been successfully deposited on GaAs coated silicon wafers with a buried oxide for the first time by MOCVD. The SOI wafers were prepared using the Separation by Implantation of Oxygen (SIMOX) process. The quality of InP on SIMOX is comparable to the best of InP on Si deposited in the same reactor. Preliminary results on defect reduction techniques such as Thermal Cycle Growth (TCG) show an order of magnitude increase in the photoluminescence intensity and a factor of five reduction in the defect density. TCG has been found more effective than Thermal Cycle Annealing (TCA) in improving the crystalline perfection and optical properties of the deposited films

  6. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor

    International Nuclear Information System (INIS)

    Li Zhi-Ming; Jiang Hai-Ying; Han Yan-Bin; Li Jin-Ping; Yin Jian-Qin; Zhang Jin-Cheng

    2012-01-01

    The effect of coil location on wafer temperature is analyzed in a vertical MOCVD reactor by induction heating. It is observed that the temperature distribution in the wafer with the coils under the graphite susceptor is more uniform than that with the coils around the outside wall of the reactor. For the case of coils under the susceptor, we find that the thickness of the susceptor, the distance from the coils to the susceptor bottom and the coil turns significantly affect the temperature uniformity of the wafer. An optimization process is executed for a 3-inch susceptor with this kind of structure, resulting in a large improvement in the temperature uniformity. A further optimization demonstrates that the new susceptor structure is also suitable for either multiple wafers or large-sized wafers approaching 6 and 8 inches

  7. Deuterium permeation of amorphous alumina coating on 316L prepared by MOCVD

    Science.gov (United States)

    Li, Shuai; He, Di; Liu, Xiaopeng; Wang, Shumao; Jiang, Lijun

    2012-01-01

    The deuterium permeation behavior of the alumina coating on 316L stainless steel prepared by metal organic chemical vapor deposition (MOCVD) was investigated. The alumina coating was also characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). It was found that the as-prepared coating consisted of amorphous alumina. This alumina coating had a dense, crack-free and homogeneous morphology. Although the alumina coating was amorphous, effective suppression of deuterium permeation was demonstrated. The deuterium permeability of the alumina coating was 51-60 times less than that of the 316L stainless steel and 153-335 times less than that of the referred low activation martensitic steels at 860-960 K.

  8. Crystalline, Optical and Electrical Properties of NiZnO Thin Films Fabricated by MOCVD

    International Nuclear Information System (INIS)

    Wang Jin; Wang Hui; Zhao Wang; Ma Yan; Li Wan-Cheng; Shi Zhi-Feng; Zhao Long; Zhang Bao-Lin; Dong Xin; Du Guo-Tong; Xia Xiao-Chuan

    2011-01-01

    NiZnO thin films are grown on c-plane sapphire substrates by using a photo-assisted metal organic chemical vapor deposition (MOCVD) system. The effect of the Ni content on the crystalline, optical and electrical properties of the films are researched in detail. The NiZnO films could retain a basic wurtzite structure when the Ni content is less than 0.18. As Ni content increases, crystal quality degradation could be observed in the x-ray diffraction patterns and a clear red shift of the absorption edge can be observed in the transmittance spectrum. Furthermore, the donor defects in the NiZnO film can be compensated for effectively by increasing the Ni content. The change of Ni content has an important effect on the properties of NiZnO films. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. TiO2 thin film growth using the MOCVD method

    Directory of Open Access Journals (Sweden)

    Bernardi M.I.B.

    2001-01-01

    Full Text Available Titanium oxide (TiO2 thin films were obtained using the MOCVD method. In this report we discuss the properties of a film, produced using a ordinary deposition apparatus, as a function of the deposition time, with constant deposition temperature (90 °C, oxygen flow (7,0 L/min and substrate temperature (400 °C. The films were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, atomic force microscopy (AFM and visible and ultra-violet region spectroscopy (UV-Vis. The films deposited on Si (100 substrates showed the anatase polycrystalline phase, while the films grown on glass substrates showed no crystallinity. Film thickness increased with deposition time as expected, while the transmittance varied from 72 to 91% and the refractive index remained close to 2.6.

  10. Photocatalysis in the visible range of sub-stoichiometric anatase films prepared by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Justicia, I. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain); Garcia, G. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain)]. E-mail: gemma@icmab.es; Battiston, G.A. [ICIS/CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Gerbasi, R. [ICIS/CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Ager, F. [CNA/CSIC Parque Tecnologico Cartuja 93, Avda Thomas A, Edison, 41092 Sevilla (Spain); Guerra, M. [IIQAB/CSIC Jordi Girona, 18 08034 Barcelona (Spain); Caixach, J. [IIQAB/CSIC Jordi Girona, 18 08034 Barcelona (Spain); Pardo, J.A. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain); Rivera, J. [IIQAB/CSIC Jordi Girona, 18 08034 Barcelona (Spain); Figueras, A. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain); Instituto de Fisica, UNAM, Campus UNAM Juriquilla, 76230 Queretaro (Mexico)

    2005-08-25

    Anatase phase of titanium oxide is the most promising photocatalyst material for organic pollutant degradation. However, due to its large band gap energy (3.2 eV) it is not viable to use sunlight as an energy source for the photocatalysis activation, and so, ultraviolet (UV) radiation below the wavelength of 380 nm is required. This paper focuses on the experimental demonstration of the reduction of this large band gap energy by inducing defects in the anatase structure under the form of oxygen sub-stoichiometry. TiO{sub 2} thin films were prepared in a metal organic chemical vapour deposition (MOCVD) reactor. The samples stoichiometry was measured by the Rutherford backscattering spectrometry (RBS) technique. Optical characterisation was also performed and the photodegradation activity in the visible range was tested using nonylphenol, which is one of the most harmful pollutants present in waste waters.

  11. GaN epitaxial layers grown on multilayer graphene by MOCVD

    Science.gov (United States)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe

    2018-04-01

    In this study, GaN epitaxial layers were successfully deposited on a multilayer graphene (MLG) by using metal-organic chemical vapor deposition (MOCVD). Highly crystalline orientations of the GaN films were confirmed through electron backscatter diffraction (EBSD). An epitaxial relationship between GaN films and MLG is unambiguously established by transmission electron microscope (TEM) analysis. The Raman spectra was used to analyze the internal stress of GaN films, and the spectrum shows residual tensile stress in the GaN films. Moreover, the results of the TEM analysis and Raman spectra indicate that the high quality of the MLG substrate is maintained even after the growth of the GaN film. This high-quality MLG makes it possible to easily remove epitaxial layers from the supporting substrate by micro-mechanical exfoliation technology. This work can aid in the development of transferable devices using GaN films.

  12. Optical properties of hybrid quantum-well–dots nanostructures grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Mintairov, S. A., E-mail: mintairov@scell.ioffe.ru; Kalyuzhnyy, N. A.; Nadtochiy, A. M.; Maximov, M. V. [St. Petersburg Academic University (Russian Federation); Rouvimov, S. S. [University of Notre Dame (United States); Zhukov, A. E. [St. Petersburg Academic University (Russian Federation)

    2017-03-15

    The deposition of In{sub x}Ga{sub 1–x}As with an indium content of 0.3–0.5 and an average thickness of 3–27 single layers on a GaAs wafer by metalorganic chemical vapor deposition (MOCVD) at low temperatures results in the appearance of thickness and composition modulations in the layers being formed. Such structures can be considered to be intermediate nanostructures between ideal quantum wells and quantum dots. Depending on the average thickness and composition of the layers, the wavelength of the photoluminescence peak for the hybrid InGaAs quantum well–dots nanostructures varies from 950 to 1100 nm. The optimal average In{sub x}Ga{sub 1–x}As thicknesses and compositions at which the emission wavelength is the longest with a high quantum efficiency retained are determined.

  13. Adhesion strength study of IBAD-MOCVD-based 2G HTS wire using a peel test

    International Nuclear Information System (INIS)

    Zhang, Y.; Hazelton, D.W.; Knoll, A.R.; Duval, J.M.; Brownsey, P.; Repnoy, S.; Soloveichik, S.; Sundaram, A.; McClure, R.B.; Majkic, G.; Selvamanickam, V.

    2012-01-01

    A peel test was used to study the adhesion strength of a commercial grade 2G HTS wire which features a characteristic multilayer structure with the rare earth-based MOCVD superconducting film deposited on an IBAD-MgO template. The peel test could be carried out at various peeling angles (from 90° to 180°) and the peel strength of a wire was defined as the steady-state peeling load determined from a load-displacement curve. The test results had good reproducibility and accuracy, making the test a reliable and useful method for studying the adhesion strength of the wire. By characterizing the peeled surfaces the weakest interface in a wire could be identified. The peel strength data of the wire was analyzed together with the performance of the experimental magnet coils fabricated using the wire. The effect of the silver contact layer annealing on the peel strength is discussed.

  14. Composition and microstructure of beryllium carbide films prepared by thermal MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    He, Yu-dan; Luo, Jiang-shan; Li, Jia; Meng, Ling-biao; Luo, Bing-chi; Zhang, Ji-qiang; Zeng, Yong; Wu, Wei-dong, E-mail: wuweidongding@163.com

    2016-02-15

    Highlights: • Non-columnar-crystal Be{sub 2}C films were firstly prepared by thermal MOCVD. • Beryllium carbide was always the dominant phase in the films. • α-Be and carbon existed in films deposited below and beyond 400 °C, respectively. • Morphology evolved with temperatures and no columnar grains were characterized. • The preferred substrate temperature for depositing high quality Be{sub 2}C films was 400 °C. - Abstract: Beryllium carbide films without columnar-crystal microstructures were prepared on the Si (1 0 0) substrate by thermal metal organic chemical vapor deposition using diethylberyllium as precursor. The influence of the substrate temperature on composition and microstructure of beryllium carbide films was systematically studied. Crystalline beryllium carbide is always the dominant phase according to XRD analysis. Meanwhile, a small amount of α-Be phase exists in films when the substrate temperature is below 400 °C, and hydrocarbon or amorphous carbon exists when the temperature is beyond 400 °C. Surfaces morphology shows transition from domes to cylinders, to humps, and to tetraquetrous crystalline needles with the increase of substrate temperature. No columnar grains are characterized throughout the thickness as revealed from the cross-section views. The average densities of these films are determined to be 2.04–2.17 g/cm{sup 3}. The findings indicate the substrate temperature has great influences on the composition and microstructure of the Be{sub 2}C films grown by thermal MOCVD.

  15. P-type Ge epitaxy on GaAs (100) substrate grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y.J.; Chia, C.K.; Liu, H.F.; Wong, L.M.; Chai, J.W.; Chi, D.Z.; Wang, S.J., E-mail: sj-wang@imre.a-star.edu.sg

    2016-07-15

    Highlights: • The heterogeneous integration of p-Ge/GaAs by MOCVD indicates significance for the application in optoelectronic devices such as p-MOSFET, dual band photodetector, etc. • Many undesired pillar-structures were observed on the p-Ge epilayers and we found that the cause of the pillar-like structures was related to the Ge-Ga dimers formed during the growth. • We found that a GaAs substrate with fewer Ga or Ge danglings was helpful in suppressing the formation of the unwanted pillar-like structures and thus obtaining high quality p-Ge epilayers. - Abstract: In this work, Ga-doped Geranium (Ge) films have been grown on GaAs (100) substrates by metal-organic chemical vapor deposition (MOCVD). Undesired pillar structures have been observed on the epilayers prepared at relatively lower temperatures. Energy dispersive X-ray spectroscopy (EDX) indicated that the pillars are mainly consisted of Ga atoms, which is totally different from that of the Ge film. It was demonstrated that the pillar structures could be reduced by simply raising the growth temperature while keeping the other growth conditions unchanged. In this regard, the growth mechanism of the pillars was related to the Ge-Ga dimers formed during the growth of p-Ge films. By further studying the influence of a GaAs or Ge buffer layer on the growth of p-Ge layers, we found that the GaAs substrate with lower density of Ga or Ge dangling bonds was helpful in suppressing the formation of the undesired pillar structures.

  16. OPAL Jet Chamber Prototype

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. OPAL's central tracking system consists of (in order of increasing radius) a silicon microvertex detector, a vertex detector, a jet chamber, and z-chambers. All the tracking detectors work by observing the ionization of atoms by charged particles passing by: when the atoms are ionized, electrons are knocked out of their atomic orbitals, and are then able to move freely in the detector. These ionization electrons are detected in the dirfferent parts of the tracking system. This piece is a prototype of the jet chambers

  17. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  18. Interface studies on the tunneling contact of a MOCVD-prepared tandem solar cell; Grenzflaechenuntersuchungen am Tunnelkontakt einer MOCVD-praeparierten Tandemsolarzelle

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, U.

    2007-07-10

    In this thesis a tandem solar cell with a novel tunneling contact was developed. For the development of the monolithic preparation especailly critical hetero-interfaces were studied in the region of the tunneling contact with surface-sensitive measuring method. The tandem solar cell consisted of single solar cells with absorber layers of In{sub 0.53}Ga{sub 0.47}As (E{sub g}=0.73 eV) and In{sub 0.78}Ga{sub 0.22}As{sub 0.491}P{sub 0.51} (E{sub g}=1.03 eV), the serial switching of which was pursued with a tunneling contact (ESAKI diode, which consisted of a very thin n-doped InGaAs and a p-doped GaAsSb layer. The III-V semiconductor layers were prepared by metalorganic gas phase epitaxy (MOCVD) monocrystallinely on an InP(100) substrate lattice-matchedly. Especially the influence of the preparation of InGaAs surfaces on the sharpness of the InGaAs/GaAsSb interface was in-situ studied by reflection-anisotropy spectroscopy and after a contamination-free transfer into the ultrahigh vacuum with photoelectron spectroscopy and with low-energetic electron diffraction (LEED). Thereby for the first time three different reconstructions of the MOCVD-prepared InGaAs surfaces could be observed, which were dependent on the heating temperature under pure hydrogen. The arsenic-rich InGaAs surface was observed for temperatures less than 300 C and showed in the LEED picture a (4 x 3) reconstruction. In the temperature range from 300 C until about 500 C a (2 x 4) reconstruction was observed, above 500 C the InGaAs surface 94 x 2)/c(8 x 2) was reconstructed. Subsequently the study of the growth of thin GaAsSb layers on these three InGaAs surface reconstructions followed. XPS measurements showed that the Sb/As ratio in GaAsSb at the growth on the As-rich (4 x 3) reconstructed surface in the first monolayers was too low. The preparation of the GaAsSb on the two other InGaAs surfaces yielded however in both cases a distinctly higher Sb/As ratio. Finally tandem solar cells with differently

  19. Surface characterization of III-V MOCVD films from heterocyclic single-source precursors; Oberflaechencharakterisierung von III-V MOCVD-Filmen aus heterozyklischen Single Source Precursoren

    Energy Technology Data Exchange (ETDEWEB)

    Seemayer, Andreas

    2009-07-13

    In the present thesis the sublimation and evaporation properties of heterocyclic gallium and antimony containing single-source precursors as well as the chemical composition and morphology of the films fabricated from this were studied. The single-source precursors available by a new synthesis route were characterized concerning their evaporation properties and the obtained films studied surface-physically. By this way the process parameters were optimized and the applicability of the single-source precursors in HV-MOCVD processes studied. By evaporation experiments in the UHV it could be shown that thereby lighter ligands like ethyl- and methyl-groups lead to a lower contamination of the reaction space with carbon containing molecules. Furthermore it was expected that the 6-rings synthetized with short ligands exhibit a high stability. This however could not be confirmed. By unwanted parasitary reactions in the gaseous phase respectively dissociative sublimation in the gaseous phase a deposition of GaSb with these precursors was not possible. The 4-ring stabilized with tertiary-butyl and ethyl-groups caused in the evaporation the largest contamination of the gaseous phase, becauselonger-chain hydrocarbons exhibil only a bad pump cross section. By parasitary reactions originating elementary antimony is detectable in the gaseous phase. The films were studied concerning their chemical composition and their transport- respectively storage-conditioned surface contamination. Furthermore it has become clear that not only a purely synthetized precursor substance but also the reactor design is deciding for a successful deposition and a high film quality. First by successive optimization of the evaporation geometry it was possible to reduce the roughness of the produced GaSb films down to about 10 nm-30 nm.

  20. Epitaxial growth and processing of InP films in a ``novel`` remote plasma-MOCVD apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, G. [Bari Univ. (Italy). Centro di Studio per la Chimica; Losurdo, M. [Bari Univ. (Italy). Centro di Studio per la Chimica; Capezzuto, P. [Bari Univ. (Italy). Centro di Studio per la Chimica; Capozzi, V. [Bari Univ. (Italy). Ist. di Fisica; Lorusso, F.G. [Bari Univ. (Italy). Ist. di Fisica; Minafra, A. [Bari Univ. (Italy). Ist. di Fisica

    1996-06-01

    A new remote plasma MOCVD apparatus for the treatment and deposition of III-V materials and, specifically, of indium phosphide, has been developed. The plasma source is used to produce hydrogen atoms and to predissociate phosphine for, respectively, the reduction of native oxide on InP substrate surface and the InP deposition. In situ diagnostics by optical emission spectroscopy, mass spectrometry, and spectroscopic ellipsometry are used to fingerprint the gas phase and the growth surface. The plasma cleaning process effectively reduce the InP oxide layer without surface damage. Indium phosphide epilayers deposited from trimethylindium and plasma activated PH{sub 3} show singular photoluminescence spectra with signal intensity higher than that of the best InP film deposited under conventional MOCVD condition (without PH{sub 3} plasma preactivation). (orig.)

  1. Acoustic-Levitation Chamber

    Science.gov (United States)

    Barmatz, M. B.; Granett, D.; Lee, M. C.

    1984-01-01

    Uncontaminated environments for highly-pure material processing provided within completely sealed levitation chamber that suspends particles by acoustic excitation. Technique ideally suited for material processing in low gravity environment of space.

  2. Optical spark chamber

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    An optical spark chamber developed for use in the Omega spectrometer. On the left the supporting frame is exceptionally thin to allow low momentum particles to escape and be detected outside the magnetic field.

  3. Vacuum chamber 'bicone'

    CERN Multimedia

    1977-01-01

    This chamber is now in the National Museum of History and Technology, Smithsonian Institution, Washington, DC, USA, where it was exposed in an exhibit on the History of High Energy Accelerators (1977).

  4. Miniature ionization chamber

    International Nuclear Information System (INIS)

    Alexeev, V.I.; Emelyanov, I.Y.; Ivanov, V.M.; Konstantinov, L.V.; Lysikov, B.V.; Postnikov, V.V.; Rybakov, J.V.

    1976-01-01

    A miniature ionization chamber having a gas-filled housing which accommodates a guard electrode made in the form of a hollow perforated cylinder is described. The cylinder is electrically associated with the intermediate coaxial conductor of a triaxial cable used as the lead-in of the ionization chamber. The gas-filled housing of the ionization chamber also accommodates a collecting electrode shaped as a rod electrically connected to the center conductor of the cable and to tubular members. The rod is disposed internally of the guard electrode and is electrically connected, by means of jumpers passing through the holes in the guard electrode, to the tubular members. The tubular members embrace the guard electrode and are spaced a certain distance apart along its entire length. Arranged intermediate of these tubular members are spacers secured to the guard electrode and fixing the collecting electrode throughout its length with respect to the housing of the ionization chamber

  5. Reference ionization chamber

    International Nuclear Information System (INIS)

    Golnik, N.; Zielczynski, M.

    1999-01-01

    The paper presents the design of ionization chamber devoted for the determination of the absolute value of the absorbed dose in tissue-equivalent material. The special attention was paid to ensure that the volume of the active gas cavity was constant and well known. A specific property of the chamber design is that the voltage insulators are 'invisible' from any point of the active volume. Such configuration ensures a very good time stability of the electrical field and defines the active volume. The active volume of the chamber was determined with accuracy of 0.3%. This resulted in accuracy of 0.8% in determination of the absorbed dose in the layer of material adherent to the gas cavity. The chamber was applied for calibration purposes at radiotherapy facility in Joint Institute for Nuclear Research in Dubna (Russia) and in the calibration laboratory of the Institute of Atomic Energy in Swierk. (author)

  6. Gridded ionization chamber

    International Nuclear Information System (INIS)

    Houston, J.M.

    1977-01-01

    An improved ionization chamber type x-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is disposed adjacent the anode and is maintained at a voltsge intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting toward the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  7. ALICE Time Projection Chamber

    CERN Multimedia

    Lippmann, C

    2013-01-01

    The Time Projection Chamber (TPC) is the main device in the ALICE 'central barrel' for the tracking and identification (PID) of charged particles. It has to cope with unprecedented densities of charges particles.

  8. Gridded Ionization Chamber

    International Nuclear Information System (INIS)

    Manero Amoros, F.

    1962-01-01

    In the present paper the working principles of a gridded ionization chamber are given, and all the different factors that determine its resolution power are analyzed in detail. One of these devices, built in the Physics Division of the JEN and designed specially for use in measurements of alpha spectroscopy, is described. finally the main applications, in which the chamber can be used, are shown. (Author) 17 refs

  9. Bubble chamber: antiproton annihilation

    CERN Multimedia

    1971-01-01

    These images show real particle tracks from the annihilation of an antiproton in the 80 cm Saclay liquid hydrogen bubble chamber. A negative kaon and a neutral kaon are produced in this process, as well as a positive pion. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  10. Electrically conducting oxide buffer layers on biaxially textured nickel alloy tapes by reel-to-reel MOCVD process

    International Nuclear Information System (INIS)

    Stadel, O; Samoilenkov, S V; Muydinov, R Yu; Schmidt, J; Keune, H; Wahl, G; Gorbenko, O Yu; Korsakov, I E; Melnikov, O V; Kaul, A R

    2006-01-01

    Reel-to-reel MOCVD process for continuous growth of electrically conducting buffer layers on biaxially textured Ni5W tapes has been developed. The new buffer layer architechture is presented: 200 nm (La, Ba) 2 CuO 4 /40 nm (La, Ba)MnO 3 /Ni5W. Constituting layers with high structural quality have been grown on moving tapes (in plane FWHM ≤ 6 0 and out of plane FWHM ≤ 3 0 )

  11. Sleeve reaction chamber system

    Science.gov (United States)

    Northrup, M Allen [Berkeley, CA; Beeman, Barton V [San Mateo, CA; Benett, William J [Livermore, CA; Hadley, Dean R [Manteca, CA; Landre, Phoebe [Livermore, CA; Lehew, Stacy L [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  12. Effects of LP-MOCVD prepared TiO2 thin films on the in vitro behavior of gingival fibroblasts

    International Nuclear Information System (INIS)

    Cimpean, Anisoara; Popescu, Simona; Ciofrangeanu, Cristina M.; Gleizes, Alain N.

    2011-01-01

    We report on the in vitro response of human gingival fibroblasts (HGF-1 cell line) to various thin films of titanium dioxide (TiO 2 ) deposited on titanium (Ti) substrates by low pressure metal-organic chemical vapor deposition (LP-MOCVD). The aim was to study the influence of film structural parameters on the cell behavior comparatively with a native-oxide covered titanium specimen, this objective being topical and interesting for materials applications in implantology. HGF-1 cells were cultured on three LP-MOCVD prepared thin films of TiO 2 differentiated by their thickness, roughness, transversal morphology, allotropic composition and wettability, and on a native-oxide covered Ti substrate. Besides traditional tests of cell viability and morphology, the biocompatibility of these materials was evaluated by fibronectin immunostaining, assessment of cell proliferation status and the zymographic evaluation of gelatinolytic activities specific to matrix metalloproteinases secreted by cells grown in contact with studied specimens. The analyzed surfaces proved to influence fibronectin fibril assembly, cell proliferation and capacity to degrade extracellular matrix without considerably affecting cell viability and morphology. The MOCVD of TiO 2 proved effective in positively modifying titanium surface for medical applications. Surface properties playing a crucial role for cell behavior were the wettability and, secondarily, the roughness, HGF-1 cells preferring a moderately rough and wettable TiO 2 coating.

  13. Wire chambers: Trends and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Regler, Meinhard

    1992-05-15

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!.

  14. DELPHI Barrel Muon Chamber Module

    CERN Multimedia

    1989-01-01

    The module was used as part of the muon identification system on the barrel of the DELPHI detector at LEP, and was in active use from 1989 to 2000. The module consists of 7 individual muons chambers arranged in 2 layers. Chambers in the upper layer are staggered by half a chamber width with respect to the lower layer. Each individual chamber is a drift chamber consisting of an anode wire, 47 microns in diameter, and a wrapped copper delay line. Each chamber provided 3 signal for each muon passing through the chamber, from which a 3D space-point could be reconstructed.

  15. Radon diffusion chamber

    International Nuclear Information System (INIS)

    Pretzsch, G.; Boerner, E.; Lehmann, R.; Sarenio, O.

    1986-01-01

    The invention relates to the detection of radioactive gases emitting alpha particles like radon, thoron and their alpha-decaying daughters by means of a diffusion chamber with a passive detector, preferably with a solid state track detector. In the chamber above and towards the detector there is a single metallized electret with negative polarity. The distance between electret and detector corresponds to the range of the alpha particles of radon daughters in air at the most. The electret collects the positively charged daughters and functions as surface source. The electret increases the sensitivity by the factor 4

  16. The Honeycomb Strip Chamber

    International Nuclear Information System (INIS)

    Graaf, Harry van der; Buskens, Joop; Rewiersma, Paul; Koenig, Adriaan; Wijnen, Thei

    1991-06-01

    The Honeycomb Strip Chamber (HSC) is a new position sensitive detector. It consists of a stack of folded foils, forming a rigid honeycomb structure. In the centre of each hexagonal cell a wire is strung. Conducting strips on the foils, perpendicular to the wires, pick up the induced avalanche charge. Test results of a prototype show that processing the signals form three adjacent strips nearest to the track gives a spatial resolution better than 64 μm for perpendicular incident tracks. The chamber performance is only slightly affected by a magnetic field. (author). 25 refs.; 21 figs

  17. Multiple chamber ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1982-01-01

    An ionization smoke detector employs a single radiation source in a construction comprising at least two chambers with a center or node electrode. The radioactive source is associated with this central electrode, and its positioning may be adjusted relative to the electrode to alter the proportion of the source that protrudes into each chamber. The source may also be mounted in the plane of the central electrode, and positioned relative to the center of the electrode. The central electrode or source may be made tiltable relative to the body of the detector

  18. Charpak hemispherical wire chamber

    CERN Multimedia

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  19. micro strip gas chamber

    CERN Multimedia

    1998-01-01

    About 16 000 Micro Strip Gas Chambers like this one will be used in the CMS tracking detector. They will measure the tracks of charged particles to a hundredth of a millimetre precision in the region near the collision point where the density of particles is very high. Each chamber is filled with a gas mixture of argon and dimethyl ether. Charged particles passing through ionise the gas, knocking out electrons which are collected on the aluminium strips visible under the microscope. Such detectors are being used in radiography. They give higher resolution imaging and reduce the required dose of radiation.

  20. Microstructure Characteristics of High Lift Factor MOCVD REBCO Coated Conductors With High Zr Content

    Energy Technology Data Exchange (ETDEWEB)

    Galstyan, E; Gharahcheshmeh, MH; Delgado, L; Xu, AX; Majkic, G; Selvamanickam, V

    2015-06-01

    We report the microstructural characteristics of high levels of Zr-added REBa2Cu3O7-x (RE = Gd, Y rare earth) coated conductors fabricated by Metal Organic Chemical Vapor Deposition (MOCVD). The enhancements of the lift factor defined as a ratio of the in-field (3 T, B parallel to c-axis) critical current density (J(c)) at 30 K and self-field J(c) at 77 K have been achieved for Zr addition levels of 20 and 25 mol% via optimization of deposition parameters. The presence of strong flux pinning is attributed to the aligned nanocolumns of BaZrO3 and nanoprecipitates embedded in REBa2Cu3O7-x matrix with good crystal quality. A high density of BZO nanorods with a typical size 6-8 nm and spacing of 20 nm has been observed. Moreover, the high Zr content was found to induce a high density of intrinsic defects, including stacking faults and dislocations. The correlation between in-field performance along the c-axis and microstructure of (Gd, Y) BCO film with a high level of Zr addition is discussed.

  1. Experimental study of structural and optical properties of integrated MOCVD GaAs/Si(001) heterostructures

    Science.gov (United States)

    Seredin, P. V.; Lenshin, A. S.; Zolotukhin, D. S.; Arsentyev, I. N.; Nikolaev, D. N.; Zhabotinskiy, A. V.

    2018-02-01

    This is the first report of the control of the structural and optical functional characteristics of integrated GaAs/Si(001) heterostructures due to the use of misoriented Si(001) substrates with protoporous sublayer. The growth of the epitaxial GaAs layer on silicon substrates without formation of the antiphase domains can be performed on substrates deviating less than 4°-6° from the singular (001) plane or without the use of a transition layer of GaAs nano-columns. Preliminary etching of the silicon substrate with protoporous Si sublayer formation facilitated the acquisition of an epitaxial GaAs film in a single-crystalline state with a considerably less residual strain factor using MOCVD, which has a positive effect on the structural quality of the film. These data are in a good agreement with the results of IR reflection spectroscopy as well as PL and UV spectroscopy. The optical properties of the integrated GaAs/Si (001) heterostructures in the IR and UV spectral regions were also determined by the residual strain value.

  2. Carbon analysis in MOCVD grown HgCdMnTe by charged particle activation

    International Nuclear Information System (INIS)

    Stannard, W.B.; Walker, S.R.; Johnston, P.N.; Bubb, I.F.

    1994-01-01

    Charged Particle Activation Analysis (CPAA) has been used for the determination of the concentration of carbon in HgCdMnTe grown by Metal Organic Chemical Vapour Deposition (MOCVD). The samples were irradiated with a beam of 3.0 MeV 3 He ions. 11 C is produced by the reaction 12 C( 3 He, α) 11 C and is a positron (β + ) emitting radionuclide with a half-life of 20.38 min. At the same time the reaction 16 O( 3 He, p) 18 F produces 18 F which is also a β + emitter and has a half-life of 109.72 min. A post-irradiation etching technique has been developed to enable removal of surface contaminants. The radioactivity is determined by a β + spectrometer consisting of two NaI γ-ray detectors (3x3 in.) oriented at 180 . The two coincident 511 keV γ-rays emitted at 180 during the positron annihilation are detected. The initial 11 C and 18 F activities, and hence the oxygen and carbon contributions, can be separated by analysis of the count rate versus time. Analysis shows significant carbon levels in the HgCdMnTe samples. ((orig.))

  3. Wurtzite InP nanowire arrays grown by selective area MOCVD

    International Nuclear Information System (INIS)

    Chu, Hyung-Joon; Stewart, Lawrence; Yeh, Ting-Wei; Dapkus, P.D.

    2010-01-01

    InP nanowires are a unique material phase because this normally zincblende material forms in the wurtzite crystal structure below a critical diameter owing to the contribution of sidewalls to the total formation energy. This may allow control of the carrier transport and optical properties of InP nanowires for applications such as nano scale transistors, lasers and detectors. In this work, we describe the fabrication of InP nanowire arrays by selective area growth using MOCVD in the diameter range where the wurtzite structure is formed. The spatial growth rate in selective area growth is modeled by a diffusion model for the precursors. The proposed model achieves an average error of 9%. Electron microscopy shows that the grown InP nanowires are in the wurtzite crystal phase with many stacking faults. The threshold diameter of the crystal phase transition of InP nanowires is larger than the thermodynamic estimation. In order to explain this tendency, we propose a surface kinetics model based on a 2 x 2 reconstruction. This model can explain the increased tendency for wurtzite nanowire formation on InP (111)A substrates and the preferred growth direction of binary III-V compound semiconductor nanowires. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Thin RuO2 conducting films grown by MOCVD for microelectronic applications

    International Nuclear Information System (INIS)

    Froehlich, K.; Cambel, V.; Machajdik, D.; Pignard, S.; Baumann, P. K.; Lindner, J.; Schumacher, M.

    2002-01-01

    We have prepared thin RuO 2 films by MOCVD using thermal evaporation of Ru(thd) 2 (cod) solid precursor. The films were prepared at deposition temperatures between 250 and 500 grad C on silicon and sapphire substrates. Different structure was observed for the RuO 2 films on these substrates; the films on Si substrate were polycrystalline, while X-ray diffraction analysis revealed epitaxial growth of RuO 2 on sapphire substrates. Polycrystalline RuO 2 films prepared at temperatures below 300 grad C on Si substrate exhibit smooth surface and excellent step coverage. Highly conformal growth of the RuO 2 films at low temperature and low pressure results in nearly 100% step coverage for sub-mm features with 1:1 aspect ratio. Resistivity of the polycrystalline RuO 2 at room temperature ranged between 100 and 200 μ x Ω x cm. These films are suitable for CMOS and RAM applications. (Authors)

  5. Model Research On Deposition Of Pure Aluminium Oxide Layers By MOCVD Method

    Directory of Open Access Journals (Sweden)

    Sawka A.

    2015-06-01

    Full Text Available The purpose of this research is to develop an optimal method for synthesizing of nanocrystalline Al2O3 monolayers at high growth rates on cemented carbides coated with an intermediate layer of pre-Al2O3-C (composite layers Al2O3-C/Al2O3. The use of quartz glass substrate allows for obtaining information about the quality of the layers such the thickness and density, because of its high transparency. The Al2O3 layers that do not containing carbon were synthesized on quartz glass by MOCVD using aluminum acetylacetonate and air as the reactants at temperatures of 700-1000°C. Argon was also a carrier gas. The resulting layers were transparent, as homogeneous nucleation did not occur during the synthesis process. The layers synthesized at lower temperatures were subjected to a crystallization process at temperatures above 900°C. The crystallization process was studied as a function of time and temperature. The obtained layers were characterized by their nanocrystalline microstructure.

  6. Integrated MSM-FET photoreceiver fabricated on MOCVD grown Hg2-xCdxTe

    International Nuclear Information System (INIS)

    Leech, P.W.; Gwynn, P.J.; Pain, G.N.; Petkovic, N.R.; Thompson, J.; Jamieson, D.N.

    1991-01-01

    This paper reports on progress in the monolithic integration of a metal-semiconductor-metal (MSM) detector and transimpedance amplifier and of a photoconductive detector (PCD) with a metal-semiconductor field effect transistor (MESFET) in Hg 1-x Cd x Te. The layers of CdTe/n-type Hg 1-x Cd x Te were grown by MOCVD on semi-insulating GaAs substrates (2 0 misoriented 100). Fabrication of the devices was by an FET planar process; with a standard lift-off used to form Schottky metallization on both the interdigitated electrodes of the MSM detector (2 μm width, 2 μm spacing) and the gate of the MESFETs (5μm length, 100μm width). The MSM photodetectors exhibited breakdown voltages in the range 60 to 80V, a dark current of 10na at 5V bias, and responsivities of >1.0 A/W measured at 40V using CW 1.3 μm illumination

  7. An RBS study of thin PLD and MOCVD strontium copper oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Kantor, Z. [Institute of Physics, University of Pannonia, H-8200 Veszprem (Hungary); Papadopoulou, E.L.; Aperathitis, E. [Inst. Electronic Struture and Laser, Foundation for Research and Technology - Hellas, P.O. Box 1527, Heraklion 71110 (Greece); Deschanvres, J.-L. [LMPG INP Grenoble-Minatec, BP 257, 38016 Grenoble Cedex 1 (France); Somogyi, K. [MicroVacuum Ltd., Kerekgyarto u.: 10, H-1147 Budapest (Hungary)], E-mail: karoly.somogyi@microvacuum.com; Szendro, I. [MicroVacuum Ltd., Kerekgyarto u.: 10, H-1147 Budapest (Hungary)

    2008-09-30

    Strontium copper oxide (SCO) has been studied as p-type transparent (VIS) conductive oxide material. Also theoretical studies suggested p-type conductivity of the SrCu{sub 2}O{sub 2} composition. SCO thin layers, with thicknesses of 30-2000 nm, were deposited on glass and silicon substrates both by pulsed laser deposition (PLD) and by MOCVD method. The as-grown layers showed high electrical resistance. Due to an annealing process, the resistivity significantly decreased and the layers showed p-type conductivity. Optical transparency measured on samples grown on glass substrates was found about or above 80%, including also thickness dependence. RBS measurements were applied for the determination of the chemical composition profile of the layers. A comparison revealed some specific differences between as-grown and annealed PLD samples. Due to the annealing, the ratio of oxide phases was changed and a vertical inhomogeneity in chemical composition was observed. Our measurements revealed also the influence of the deposition technique and of the substrate.

  8. The controlled growth of GaN microrods on Si(111) substrates by MOCVD

    Science.gov (United States)

    Foltynski, Bartosz; Garro, Nuria; Vallo, Martin; Finken, Matthias; Giesen, Christoph; Kalisch, Holger; Vescan, Andrei; Cantarero, Andrés; Heuken, Michael

    2015-03-01

    In this paper, a selective area growth (SAG) approach for growing GaN microrods on patterned SiNx/Si(111) substrates by metal-organic chemical vapor deposition (MOCVD) is studied. The surface morphology, optical and structural properties of vertical GaN microrods terminated by pyramidal shaped facets (six { 10 1 bar 1} planes) were characterized using scanning electron microscopy (SEM), room temperature photoluminescence (PL) and Raman spectroscopy, respectively. Measurements revealed high-quality GaN microcolumns grown with silane support. Characterized structures were grown nearly strain-free (central frequency of Raman peak of 567±1 cm-1) with crystal quality comparable to bulk crystals (FWHM=4.2±1 cm-1). Such GaN microrods might be used as a next-generation device concept for solid-state lighting (SSL) applications by realizing core-shell InGaN/GaN multi-quantum wells (MQWs) on the n-GaN rod base.

  9. LEP vacuum chamber, prototype

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Final prototype for the LEP vacuum chamber, see 8305170 for more details. Here we see the strips of the NEG pump, providing "distributed pumping". The strips are made from a Zr-Ti-Fe alloy. By passing an electrical current, they were heated to 700 deg C.

  10. Heavy liquid bubble chamber

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    The CERN Heavy liquid bubble chamber being installed in the north experimental hall at the PS. On the left, the 1180 litre body; in the centre the magnet, which can produce a field of 26 800 gauss; on the right the expansion mechanism.

  11. The KLOE drift chamber

    International Nuclear Information System (INIS)

    Ferrari, A.

    2002-01-01

    The design and construction of the large drift chamber of the KLOE experiment is presented. The track reconstruction is described, together with the calibration method and the monitoring systems. The stability of operation and the performance are studied with samples of e + e - , K S K L and K + K - events

  12. Drift chamber detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez Laso, L.

    1989-01-01

    A review of High Energy Physics detectors based on drift chambers is presented. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysied, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author)

  13. Drift Chambers detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez laso, L.

    1989-01-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs

  14. OPAL Muon Chamber

    CERN Multimedia

    OPAL was one of the 4 experiments installed at the LEP particle accelerator from 1989 to 2000. This is a slice of the outermost layer of OPAL : the muon chambers. This outside layer detects particles which are not stopped by the previous layers. These are mostly muons.

  15. Improvements in ionization chambers

    International Nuclear Information System (INIS)

    Whetten, N.R.; Zubal, C.

    1980-01-01

    A method of reducing mechanical vibrations transmitted to the parallel plate electrodes of ionization chamber x-ray detectors, commonly used in computerized x-ray axial tomography systems, is described. The metal plate cathodes and anodes are mounted in the ionizable gas on dielectric sheet insulators consisting of a composite of silicone resin and glass fibres. (UK)

  16. LEP Vacuum Chamber

    CERN Multimedia

    1983-01-01

    This is a cut-out of a LEP vacuum chamber for dipole magnets showing the beam channel and the pumping channel with the getter (NEG) strip and its insulating supports. A water pipe connected to the cooling channel can also be seen at the back.The lead radiation shield lining is also shown. See also 8305563X.

  17. MISSING: BUBBLE CHAMBER LENS

    CERN Multimedia

    2001-01-01

    Would the person who borrowed the large bubble chamber lens from the Microcosm workshops on the ISR please return it. This is a much used piece from our object archives. If anybody has any information about the whereabouts of this object, please contact Emma.Sanders@cern.ch Thank you

  18. Ion chamber instrument

    International Nuclear Information System (INIS)

    Stephan, D.H.

    1975-01-01

    An electrical ionization chamber is described having a self-supporting wall of cellular material which is of uniform areal density and formed of material, such as foamed polystyrene, having an average effective atomic number between about 4 and about 9, and easily replaceable when on the instrument. (auth)

  19. Review of straw chambers

    International Nuclear Information System (INIS)

    Toki, W.H.

    1990-03-01

    This is a review of straw chambers used in the HRS, MAC, Mark III, CLEO, AMY, and TPC e + e - experiments. The straws are 6--8 mm in diameter, operate at 1--4 atmospheres and obtain resolutions of 45--100 microns. The designs and constructions are summarized and possible improvements discussed

  20. Liquid Wall Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  1. Wire chamber conference

    International Nuclear Information System (INIS)

    Bartl, W.; Neuhofer, G.; Regler, M.

    1986-02-01

    This booklet contains program and the abstracts of the papers presented at the conference, most of them dealing with performance testing of various types of wire chambers. The publication of proceedings is planned as a special issue of 'Nuclear instruments and methods' later on. All abstracts are in English. An author index for the book of abstracts is given. (A.N.)

  2. Plasmas for the low-temperature growth of high-quality GaN films by molecular beam epitaxy and remote plasma MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M.; Capezzuto, P.; Bruno, G. [Plasmachemistry Research Center, CNR, Bari (Italy); Namkoong, G.; Doolittle, W.A.; Brown, A.S. [Georgia Inst. of Tech., Atlanta (United States). School of Electrical and Computer Engineering, Microelectronic Research Center

    2002-03-16

    GaN heteroepitaxial growth on sapphire (0001) substrates was carried out by both radio-frequency (rf) remote plasma metalorganic chemical vapor deposition (RP-MOCVD) and molecular beam epitaxy (MBE). A multistep growth process including substrate plasma cleaning and nitridation, buffer growth, its subsequent annealing and epilayer growth was used. In order to achieve a better understanding of the GaN growth, in-situ real time investigation of the surface chemistry is performed for all the steps using the conventional reflection high-energy electron spectroscopy (RHEED) during the MBE process, while laser reflectance interferometry (LRI) and spectroscopic ellipsometry (SE), which do not require UHV conditions, are used for the monitoring of the RP-MOCVD process. The chemistry of the rf N{sub 2} plasma sapphire nitridation and its effect on the epilayer growth and quality are discussed in both MBE and RP-MOCVD. (orig.)

  3. Preparation of YBCO on YSZ layers deposited on silicon and sapphire by MOCVD: influence of the intermediate layer on the quality of the superconducting film

    International Nuclear Information System (INIS)

    Garcia, G.; Casado, J.; Llibre, J.; Doudkowski, M.; Santiso, J.; Figueras, A.; Schamm, S.; Dorignac, D.; Grigis, C.; Aguilo, M.

    1995-01-01

    YSZ buffer layers were deposited on silicon and sapphire by MOCVD. The layers deposited on silicon were highly oriented along [100] direction without in-plane orientation, probably because the existence of the SiO 2 amorphous interlayer. In contrast, epitaxial YSZ was obtained on (1-102) sapphire showing an in-plane texture defined by the following relationships: (100) YSZ // (1-102) sapphire and (110) YSZ // (01-12) sapphire. Subsequently, YBCO films were deposited on YSZ by MOCVD. Structural, morphological and electrical characterization of the superconducting layers were correlated with the in-plane texture of the buffer layers. (orig.)

  4. Multiwire proportional chamber development

    Science.gov (United States)

    Doolittle, R. F.; Pollvogt, U.; Eskovitz, A. J.

    1973-01-01

    The development of large area multiwire proportional chambers, to be used as high resolution spatial detectors in cosmic ray experiments is described. A readout system was developed which uses a directly coupled, lumped element delay-line whose characteristics are independent of the MWPC design. A complete analysis of the delay-line and the readout electronic system shows that a spatial resolution of about 0.1 mm can be reached with the MWPC operating in the strictly proportional region. This was confirmed by measurements with a small MWPC and Fe-55 X-rays. A simplified analysis was carried out to estimate the theoretical limit of spatial resolution due to delta-rays, spread of the discharge along the anode wire, and inclined trajectories. To calculate the gas gain of MWPC's of different geometrical configurations a method was developed which is based on the knowledge of the first Townsend coefficient of the chamber gas.

  5. Radial semiconductor drift chambers

    International Nuclear Information System (INIS)

    Rawlings, K.J.

    1987-01-01

    The conditions under which the energy resolution of a radial semiconductor drift chamber based detector system becomes dominated by the step noise from the detector dark current have been investigated. To minimise the drift chamber dark current attention should be paid to carrier generation at Si/SiO 2 interfaces. This consideration conflicts with the desire to reduce the signal risetime: a higher drift field for shorter signal pulses requires a larger area of SiO 2 . Calculations for the single shaping and pseudo Gaussian passive filters indicate that for the same degree of signal risetime sensitivity in a system dominated by the step noise from the detector dark current, the pseudo Gaussian filter gives only a 3% improvement in signal/noise and 12% improvement in rate capability compared with the single shaper performance. (orig.)

  6. Influence of the growth parameters on TiO2 thin films deposited using the MOCVD method

    Directory of Open Access Journals (Sweden)

    Bernardi M. I. B.

    2002-01-01

    Full Text Available In this work we report the synthesis of TiO2 thin films by the Organometallic Chemical Vapor Deposition (MOCVD method. The influence of deposition parameters used during the growth in the obtained structural characteristics was studied. Different temperatures of the organometallic bath, deposition time, temperature and type of the substrate were combined. Using Scanning Electron Microscopy associated to Electron Dispersive X-Ray Spectroscopy, Atomic Force Microscopy and X-ray Diffraction, the strong influence of these parameters in the thin films final microstructure was verified.

  7. Properties of recent IBAD-MOCVD Coated Conductors relevant to their high field, low temperature magnet use

    OpenAIRE

    Braccini, V; Xu, A; Jaroszynski, J; Xin, Y; Larbalestier, D C; Chen, Y; Carota, G; Dackow, J; Kesgin, I; Yao, Y; Guevara, A; Shi, T; Selvamanickam, V

    2010-01-01

    BaZrO3 (BZO) nanorods are now incorporated into production IBAD-MOCVD coated conductors. Here we compare several examples of both BZO-free and BZO-containing coated conductors using critical current (Ic) characterizations at 4.2 K over their full angular range up to fields of 31 T. We find that BZO nanorods do not produce any c-axis distortion of the critical current density Jc(theta) curve at 4.2 K at any field, but also that pinning is nevertheless strongly enhanced compared to the non-BZO ...

  8. Photoluminescence of Mg-doped m-plane GaN grown by MOCVD on bulk GaN substrates

    OpenAIRE

    Monemar, Bo; Paskov, Plamen; Pozina, Galia; Hemmingsson, Carl; Bergman, Peder; Lindgren, David; Samuelson, Lars; Ni, Xianfeng; Morkoç, Hadis; Paskova, Tanya; Bi, Zhaoxia; Ohlsson, Jonas

    2011-01-01

    Photoluminescence (PL) properties are reported for a set of m-plane GaN films with Mg doping varied from mid 1018cm-3 to well above 1019 cm-3. The samples were grown with MOCVD at reduced pressure on low defect density m-plane bulk GaN templates. The sharp line near bandgap bound exciton (BE) spectra observed below 50 K, as well as the broader donor-acceptor pair (DAP) PL bands at 2.9 eV to 3.3 eV give evidence of several Mg related acceptors, similar to the case of c-plane GaN. The dependenc...

  9. Various types of GaN/InGaN nanostructures grown by MOCVD on Si(111) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Rozhavskaya, Mariya M.; Lundin, Wsevolod V.; Zavarin, Evgeniy E.; Lundina, Elena Yu.; Troshkov, Sergey I.; Davydov, Valery Yu.; Yagovkina, Mariya A.; Brunkov, Pavel N.; Tsatsulnikov, Andrey F. [Ioffe Physico-Technical Institute of the RAS, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation)

    2013-03-15

    In this paper we obtained GaN and InGaN nanowires on AlN/Si (111) templates via pulsed Metal Organic Chemical Vapour Deposition (MOCVD). The growth modes were investigated, in which selective growth is possible. The impact of NH{sub 3} flow and TMG flow and exposure time were investigated. Also the possibility of using indium catalyst was studied. It was shown that In can be used in Au-In melt and as self-sufficient catalyst. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Vienna Wire Chamber Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    After those of 1978 and 1980, a third Wire Chamber Conference was held from 15-18 February in the Technical University of Vienna. Eight invited speakers covered the field from sophisticated applications in biology and medicine, via software, to the state of the art of gaseous detectors. In some forty other talks the speakers tackled in more detail the topics of gaseous detectors, calorimetry and associated electronics and software

  11. Wire chamber gases

    International Nuclear Information System (INIS)

    Va'vra, J.

    1992-04-01

    In this paper, we describe new developments in gas mixtures which have occurred during the last 3--4 years. In particular, we discuss new results on the measurement and modeling of electron drift parameters, the modeling of drift chamber resolution, measurements of primary ionization and the choice of gas for applications such as tracking, single electron detection, X-ray detection and visual imaging. In addition, new results are presented on photon feedback, breakdown and wire aging

  12. Double chambered right ventricle

    International Nuclear Information System (INIS)

    Cho, Chul Koo; Yu, Yun Jeong; Yeon, Kyung Mo; Han, Man Chung

    1983-01-01

    Fourteen cases of double chambered right ventricle were diagnosed angiographically and of these nine cases were confirmed after operation and autopsy at Seoul National University Hospital in recent four years since 1979. The clinical and radiological findings with the emphasis on the cinecardiographic findings were analysed. The summaries of the analysis are as follows: 1. Among 14 cases, 6 cases were male and 8 cases were female. Age distribution was from 4 years to 36 years. 2. In chest x-ray findings, pulmonary vascularity was increased in 8 cases, decreased in 4 cases, and normal in 2 cases. Cardiomegaly was observed in 8 cases and other showed normal heart size. 3. In cinecardiography, 11 cases had interventricular septal defect. Among these 11 cases, VSD located in proximal high pressure chamber was in 2 cases and located in distal low pressure chamber was in 9 cases. 4. The location of aberrant muscle bundle in sinus portion of right ventricle was in 8 cases. In the rest 6 cases, the aberrant muscle bundle was located below the infundibulum of right ventricle. 5. For accurate diagnosis and differential diagnosis with other congenital cardiac anomalies such as Tetralogy of Fallot or isolated pulmonic stenosis, biplane cineangiography and catheterization is an essential procedure

  13. Double chambered right ventricle

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chul Koo; Yu, Yun Jeong; Yeon, Kyung Mo; Han, Man Chung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1983-12-15

    Fourteen cases of double chambered right ventricle were diagnosed angiographically and of these nine cases were confirmed after operation and autopsy at Seoul National University Hospital in recent four years since 1979. The clinical and radiological findings with the emphasis on the cinecardiographic findings were analysed. The summaries of the analysis are as follows: 1. Among 14 cases, 6 cases were male and 8 cases were female. Age distribution was from 4 years to 36 years. 2. In chest x-ray findings, pulmonary vascularity was increased in 8 cases, decreased in 4 cases, and normal in 2 cases. Cardiomegaly was observed in 8 cases and other showed normal heart size. 3. In cinecardiography, 11 cases had interventricular septal defect. Among these 11 cases, VSD located in proximal high pressure chamber was in 2 cases and located in distal low pressure chamber was in 9 cases. 4. The location of aberrant muscle bundle in sinus portion of right ventricle was in 8 cases. In the rest 6 cases, the aberrant muscle bundle was located below the infundibulum of right ventricle. 5. For accurate diagnosis and differential diagnosis with other congenital cardiac anomalies such as Tetralogy of Fallot or isolated pulmonic stenosis, biplane cineangiography and catheterization is an essential procedure.

  14. Argus drift chamber

    Energy Technology Data Exchange (ETDEWEB)

    Danilov, M; Nagovizin, V; Hasemann, H; Michel, E; Schmidt-Parzefall, W; Wurth, R; Kim, P

    1983-11-15

    The ARGUS detector came into operation at the DORIS-II e/sup +/s/sup -/ storage ring at the end of 1982. Its two meter long drift chamber contains 5940 sense and 24588 field wires organized in uniform 18x18.8 mm/sup 2/ drift cells filling the whole volume. These cells form 36 layers, 18 of which provide stereo views. Each sense wire is equipped with a single hit TDC and ADC for coordinate and dE/dx measurements. The chamber is operated with propane to improve momentum and dE/dx resolution. The drift chamber design and initial performance are presented. With a very crude space-time relation approximation and without all the necessary corrections applied a spatial resolution of about 200 ..mu..m was obtained for half of the drift cell volume. Further corrections should improve this result. An intrinsic dE/dx resolution of 4.2% and an actual resolution of 5% were obtained for cosmic muons and also for Bhabha scattered electrons. An actual dE/dx resolution of 5.6% was obtained for pions from e/sup +/e/sup -/ annihilation data with almost no track selection. A relativistic rise of 30% was observed in good agreement with theory. The long-term stability is still to be investigated.

  15. Argus target chamber

    International Nuclear Information System (INIS)

    Rienecker, F. Jr.; Glaros, S.S.; Kobierecki, M.

    1975-01-01

    A target chamber for application in the laser fusion program must satisfy some very basic requirements. (1) Provide a vacuum on the order of 10 -6 torr. (2) Support a microscopically small target in a fixed point in space and verify its location within 5 micrometers. (3) Contain an adjustable beam focusing system capable of delivering a number of laser beams onto the target simultaneously, both in time and space. (4) Provide access for diagnostics to evaluate the results of target irradiation. (5) Have flexibility to allow changes in targets, focusing optics and number of beams. The ARGUS laser which is now under construction at LLL will have a target chamber which meets these requirements in a simple economic manner. The chamber and auxiliary equipment are described, with reference to two double beam focusing systems; namely, lenses and ellipsoidal mirrors. Provision is made for future operation with four beams, using ellipsoidal mirrors for two-sided illumination and lens systems for tetragonal and tetrahedral irradiation

  16. Wire chambers: Trends and alternatives

    International Nuclear Information System (INIS)

    Regler, Meinhard

    1992-01-01

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!

  17. Criteria for controlled atmosphere chambers

    International Nuclear Information System (INIS)

    Robinson, J.N.

    1980-03-01

    The criteria for design, construction, and operation of controlled atmosphere chambers intended for service at ORNL are presented. Classification of chambers, materials for construction, design criteria, design, controlled atmosphere chamber systems, and operating procedures are presented. ORNL Safety Manual Procedure 2.1; ORNL Health Physics Procedure Manual Appendix A-7; and Design of Viewing Windows are included in 3 appendices

  18. Vacuum Chambers for LEP sections

    CERN Multimedia

    1983-01-01

    The picture shows sections of the LEP vacuum chambers to be installed in the dipole magnets (left) and in the quadrupoles (right). The dipole chamber has three channels: the beam chamber, the pumping duct where the NEG (non-evaporabe getter) is installed and the water channel for cooling (on top in the picture). The pumping duct is connected to the beam chamber through holes in the separating wall. The thick lead lining to shield radiation can also be seen. These chambers were manufactured as extruded aluminium alloy profiles.

  19. Photoluminescence of Mg-doped m-plane GaN grown by MOCVD on bulk GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Monemar, Bo [Department of Physics, Chemistry and Biology, Linkoeping University, 581 83 Linkoeping (Sweden); Solid State Physics-The Nanometer Structure Consortium, Lund University, Box 118, 221 00 Lund (Sweden); Paskov, Plamen; Pozina, Galia; Hemmingsson, Carl; Bergman, Peder [Department of Physics, Chemistry and Biology, Linkoeping University, 581 83 Linkoeping (Sweden); Lindgren, David; Samuelson, Lars [Solid State Physics-The Nanometer Structure Consortium, Lund University, Box 118, 221 00 Lund (Sweden); Ni, Xianfeng; Morkoc, Hadis [Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284-3072 (United States); Paskova, Tanya [Kyma Technologies Inc., Raleigh, North Carolina 27617 (United States); Bi, Zhaoxia; Ohlsson, Jonas [Glo AB, Ideon Science Park, Scheelevaegen 17, 223 70 Lund (Sweden)

    2011-07-15

    Photoluminescence (PL) properties are reported for a set of m-plane GaN films with Mg doping varied from mid 10{sup 18} cm{sup -3} to above 10{sup 20} cm{sup -3}. The samples were grown with MOCVD at reduced pressure on low defect density bulk GaN templates. The sharp line near bandgap bound exciton (BE) spectra observed below 50 K, as well as the broader donor-acceptor pair (DAP) PL bands at 2.9-3.3 eV give evidence of several Mg related acceptors, similar to the case of c-plane GaN. The dependence of the BE spectra on excitation intensity as well as the transient decay behaviour demonstrate acoustic phonon assisted transfer between the acceptor BE states. The lower energy donor-acceptor pair spectra suggest the presence of deep acceptors, in addition to the two main shallower ones at about 0.23 eV. Similar spectra from Mg-doped GaN nanowires (NWs) grown by MOCVD are also briefly discussed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. The effect of thermal history on microstructure of Er_2O_3 coating layer prepared by MOCVD process

    International Nuclear Information System (INIS)

    Tanaka, Masaki; Takezawa, Makoto; Hishinuma, Yoshimitsu; Tanaka, Teruya; Muroga, Takeo; Ikeno, Susumu; Lee, Seungwon; Matsuda, Kenji

    2016-01-01

    Er_2O_3 is a high potential candidate material for tritium permeation barrier and electrical insulator coating for advanced breeding blanket systems with liquid metal or molten-salt types. Recently, Hishinuma et al. reported to form homogeneous Er_2O_3 coating layer on the inner surface of metal pipe using Metal Organic Chemical Vapor Deposition (MOCVD) process. In this study, the influence of thermal history on microstructure of Er_2O_3 coating layer on stainless steel 316 (SUS 316) substrate by MOCVD process was investigated using SEM, TEM and XRD. The ring and net shape selected-area electron diffraction (SAED) patterns of Er_2O_3 coating were obtained each SUS substrates, revealed that homogeneous Er_2O_3 coating had been formed on SUS substrate diffraction patterns. Close inspection of SEM images of the surface on the Er_2O_3 coating before and after thermal cycling up to 700degC in argon atmosphere, it is confirmed that the Er_2O_3 particles were refined by thermal history. The column-like Er_2O_3 grains were promoted to change to granular structure by thermal history. >From the cross-sectional plane of TEM observations, the formation of interlayer between Er_2O_3 coating and SUS substrate was also confirmed. (author)

  1. Status of HgCdTe Barrier Infrared Detectors Grown by MOCVD in Military University of Technology

    Science.gov (United States)

    Kopytko, M.; Jóźwikowski, K.; Martyniuk, P.; Gawron, W.; Madejczyk, P.; Kowalewski, A.; Markowska, O.; Rogalski, A.; Rutkowski, J.

    2016-09-01

    In this paper we present the status of HgCdTe barrier detectors with an emphasis on technological progress in metalorganic chemical vapor deposition (MOCVD) growth achieved recently at the Institute of Applied Physics, Military University of Technology. It is shown that MOCVD technology is an excellent tool for HgCdTe barrier architecture growth with a wide range of composition, donor /acceptor doping, and without post-grown annealing. The device concept of a specific barrier bandgap architecture integrated with Auger-suppression is as a good solution for high-operating temperature infrared detectors. Analyzed devices show a high performance comparable with the state-of-the-art of HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07" and detectivities of non-immersed detectors are close to the value marked for HgCdTe photodiodes. Experimental data of long-wavelength infrared detector structures were confirmed by numerical simulations obtained by a commercially available software APSYS platform. A detailed analysis applied to explain dark current plots was made, taking into account Shockley-Read-Hall, Auger, and tunneling currents.

  2. InGaN quantum well epilayers morphological evolution under a wide range of MOCVD growth parameter sets

    Energy Technology Data Exchange (ETDEWEB)

    Florescu, D.I.; Ting, S.M.; Merai, V.N.; Parekh, A.; Lee, D.S.; Armour, E.A.; Quinn, W.E. [Veeco TurboDisc Operations, 394 Elizabeth Avenue, Somerset, NJ 08873 (United States)

    2006-06-15

    This study exemplifies the use of TappingMode trademark atomic force microscopy (AFM) surface morphology imaging to investigate and optimise the metalorganic chemical vapour deposition (MOCVD) growth conditions and post-growth stability of thin (<40 Aa) InGaN layers with direct implications to the structural and optical properties of blue (460 nm) and green (520 nm) LEDs. InGaN epilayers less than 40 Aa thick of {proportional_to}20% solid phase indium were produced on thick (3-4 {mu}m) 2{sup ''} GaN templates grown on (0001) c-plane sapphire substrates. The morphological evolution of the InGaN material was studied utilising a DI3100 AFM tool. Surface morphology and its correlation with photoluminescence and X-ray diffraction results are discussed for every set of conditions employed. More specifically, the post-growth ambient exposure and thermal stability of the uncapped InGaN epilayers were investigated. In addition, the initial stage of subsequent GaN growth, which is an essential step towards the manufacture of LED active regions, was examined. Based on the above findings, a flexible MOCVD growth parameter space and improved LED constituent layer sequencing techniques have been established leading to more efficient and stable LED devices. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Photoluminescence and photoluminescence excitation studies in 80 MeV Ni ion irradiated MOCVD grown GaN

    Energy Technology Data Exchange (ETDEWEB)

    Devaraju, G. [School of Physics, University of Hyderabad, Central University P.O., Hyderabad 500 046 (India); Pathak, A.P., E-mail: appsp@uohyd.ernet.in [School of Physics, University of Hyderabad, Central University P.O., Hyderabad 500 046 (India); Srinivasa Rao, N.; Saikiran, V. [School of Physics, University of Hyderabad, Central University P.O., Hyderabad 500 046 (India); Enrichi, Francesco [Coordinamento Interuniversitario Veneto per le Nanotecnologie (CIVEN), via delle Industrie 5, Marghera, I-30175Venice (Italy); Trave, Enrico [Dipartimento di Chimica Fisica, Universita Ca' Foscari Venezia, Dorsoduro 2137, I-30123 Venice (Italy)

    2011-09-01

    Highlights: {yields} MOCVD grown GaN samples are irradiated with 80 MeV Ni ions at room temperature. {yields} PL and PLE studies have been carried out for band to band, BL and YL emissions. {yields} Ni ions irradiated GaN shows BL band at 450 nm besides YL band. {yields} Radiation annealed Ga vacancies have quenching effect on YL intensity. {yields} We speculated that BL and YL are associated with N and Ga vacancies, respectively. - Abstract: We report damage creation and annihilation under energetic ion bombardment at a fixed fluence. MOCVD grown GaN thin films were irradiated with 80 MeV Ni ions at a fluence of 1 x 10{sup 13} ions/cm{sup 2}. Irradiated GaN thin films were subjected to rapid thermal annealing for 60 s in nitrogen atmosphere to anneal out the defects. The effects of defects on luminescence were explored with photoluminescence measurements. Room temperature photoluminescence spectra from pristine sample revealed presence of band to band transition besides unwanted yellow luminescence. Irradiated GaN does not show any band to band transition but there is a strong peak at 450 nm which is attributed to ion induced defect blue luminescence. However, irradiated and subsequently annealed samples show improved band to band transitions and a significant decrease in yellow luminescence intensity due to annihilation of defects which were created during irradiation. Irradiation induced effects on yellow and blue emissions are discussed.

  4. InGaN quantum well epilayers morphological evolution under a wide range of MOCVD growth parameter sets

    International Nuclear Information System (INIS)

    Florescu, D.I.; Ting, S.M.; Merai, V.N.; Parekh, A.; Lee, D.S.; Armour, E.A.; Quinn, W.E.

    2006-01-01

    This study exemplifies the use of TappingMode trademark atomic force microscopy (AFM) surface morphology imaging to investigate and optimise the metalorganic chemical vapour deposition (MOCVD) growth conditions and post-growth stability of thin ( '' GaN templates grown on (0001) c-plane sapphire substrates. The morphological evolution of the InGaN material was studied utilising a DI3100 AFM tool. Surface morphology and its correlation with photoluminescence and X-ray diffraction results are discussed for every set of conditions employed. More specifically, the post-growth ambient exposure and thermal stability of the uncapped InGaN epilayers were investigated. In addition, the initial stage of subsequent GaN growth, which is an essential step towards the manufacture of LED active regions, was examined. Based on the above findings, a flexible MOCVD growth parameter space and improved LED constituent layer sequencing techniques have been established leading to more efficient and stable LED devices. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Review of wire chamber aging

    International Nuclear Information System (INIS)

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs

  6. Space plasma simulation chamber

    International Nuclear Information System (INIS)

    1986-01-01

    Scientific results of experiments and tests of instruments performed with the Space Plasma Simulation Chamber and its facility are reviewed in the following six categories. 1. Tests of instruments on board rockets, satellites and balloons. 2. Plasma wave experiments. 3. Measurements of plasma particles. 4. Optical measurements. 5. Plasma production. 6. Space plasms simulations. This facility has been managed under Laboratory Space Plasma Comittee since 1969 and used by scientists in cooperative programs with universities and institutes all over country. A list of publications is attached. (author)

  7. Stability of Streamer Chamber

    Science.gov (United States)

    Wada, Toshiaki; Ogawa, Masato; Takahashi, Kaoru; Sugiyama, Tsunetoshi; Kobayashi, Shigeharu; Kohno, Hirobumi

    1982-08-01

    The quality of tracks obtained from a streamer chamber is studied through the measurement of the streamer brightness. The stability of streamer tracks depends on the value of the high voltage applied and its shape. By using a single conical-type spark gap as the pulse shaper, stable brightness of the streamer tracks is attained. The data on the streamer brightness are compared with the result by Bulos et al. and it is found that the brightness is more strongly affected by field parameters than in their result.

  8. Stability of streamer chamber

    International Nuclear Information System (INIS)

    Wada, Toshiaki; Ogawa, Masato; Takahashi, Kaoru; Sugiyama, Tsunetoshi; Kobayashi, Shigeharu; Kohno, Hirobumi.

    1982-01-01

    The quality of tracks obtained from a streamer chamber is studied through the measurement of the streamer brightness. The stability of streamer tracks depends on the value of the high voltage applied and its shape. By using a single conical-type spark gap as the pulse shaper, stable brightness of the streamer tracks is attained. The data on the streamer brightness are compared with the result by Bulos et al. and it is found that the brightness is more strongly affected by field parameters than in their result. (author)

  9. MOCVD of zirconium oxide from the zirconium guanidinate complex |ZrCp′{2-(iPrN)2CNMe2}2Cl

    NARCIS (Netherlands)

    Blackman, C.S.; Carmalt, C.J.; Moniz, S.J.A.; Potts, S.E.; Davies, H.O.; Pugh, D.C.

    2009-01-01

    Parallel to successful studies into use of [ZrCp'{¿ 2-(iPrN)2CNMe2} 2Cl] as a precursor to the deposition of zirconium carbonitride via CVD the same precursor was utilised for the MOCVD of thin films of ZrO 2 using borosilicate glass substrates. The deposited films were of mixed phase; films

  10. Characterization of Al{sub x}Ga{sub 1-x}As/GaAs heterostructures for single quantum wells grown by a solid arsenic MOCVD system

    Energy Technology Data Exchange (ETDEWEB)

    Castillo-Ojeda, R. [Universidad Politecnica de Pachuca, Km. 20, Rancho Luna, Ex-Hacienda de Santa Barbara, Municipio de Zempoala, Hidalgo 43830 (Mexico); Diaz-Reyes, J., E-mail: jdiazr2001@yahoo.co [Instituto Politecnico Nacional, Centro de Investigacion en Biotecnologia Aplicada, CIBA-IPN, Ex Hacienda de San Juan Molino, Km. 1.5. Tepetitla, Tlaxcala 90700 (Mexico); Galvan-Arellano, M.; Pena-Sierra, R. [CINVESTAV-IPN, Depto. de Ing. Electrica, SEES. Apdo. 14-740, Mexico, D.F. 07000 (Mexico)

    2011-06-15

    This work presents the results of the growth and characterization of Al{sub x}Ga{sub 1-x}As/GaAs multilayer structures obtained in a metallic-arsenic-based-MOCVD system. The main goal is to explore the ability of the growth system to grow high quality multilayer structures like quantum wells. The use of metallic arsenic could introduce important differences in the growth process due to the absence of the hydride group V precursor (AsH{sub 3}), which manifests in the electrical and optical characteristics of both GaAs and Al{sub x}Ga{sub 1-x}As layers. The characterization of these epilayers and structures was performed using low-temperature photoluminescence, Hall effect measurements, X-ray diffraction, Raman spectroscopy, secondary ion mass spectroscopy (SIMS) and Atomic Force Microscopy (AFM). - Research highlights: {yields} This work is reported the growth of AlxGa1-xAs/GaAs/AlxGa1-xAs heterostructures by a solid arsenic based MOCVD system. {yields} The results obtained with this system are comparable with those obtained with the traditional arsine based growth system. {yields} The main limitation of the alternative MOCVD system is related to the lack of monoatomic hydrogen on the growth surface that acts modifying the surface kinetics and enhancing the carbon incorporation. {yields} The experimental results indicate that it can be grown AlxGa1-xAs using elemental arsenic by MOCVD, which can be used to optoelectronic devices.

  11. Hardware Modifications to the US Army Research Laboratory’s Metalorganic Chemical Vapor Deposition (MOCVD) System for Optimization of Complex Oxide Thin Film Fabrication

    Science.gov (United States)

    2015-04-01

    the total absorbance, or the fraction of radiation absorbed at the measured wavelength; is the calculated molar extinction coefficient for the...of PZT thin films by liquid delivery MOCVD. Integrated Ferroelectrics. 2002;46:125–131. 14. Hiskes R, Dicarolis SA, Jacowitz RD, Lu Z, Feigelson RS

  12. Council Chamber exhibition

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    To complete the revamp of CERN’s Council Chamber, a new exhibition is being installed just in time for the June Council meetings.   Panels will showcase highlights of CERN’s history, using some of the content prepared for the exhibitions marking 50 years of the PS, which were displayed in the main building last November. The previous photo exhibition in the Council Chamber stopped at the 1970s. To avoid the new panels becoming quickly out of date, photos are grouped together around specific infrastructures, rather than following a classic time-line. “We have put the focus on the accelerators – the world-class facilities that CERN has been offering researchers over the years, from the well-known large colliders to the lesser-known smaller facilities,” says Emma Sanders, who worked on the content. The new exhibition will be featured in a future issue of the Bulletin with photos and an interview with Fabienne Marcastel, designer of the exhibit...

  13. Cardiac chamber scintiscanning

    International Nuclear Information System (INIS)

    Goretzki, G.

    1981-01-01

    The two methods of cardiac chamber scintiscanning, i.e. 'first pass' and 'ECG-triggered' examinations, are explained and compared. Two tables indicate the most significant radiation doses of the applied radio tracers, i.e. 99m-Tc-pertechnetate and 99m-Tc-HSA, to which a patient is exposed. These averaged values are calculated from various data given in specialised literature. On the basis of data given in literature, an effective half-life of approximately 5 hours in the intravascular space was calculated for the erythrocytes labelled with technetium 99m. On this basis, the radiation doses for the patients due to 99m-Tc-labelled erythrocytes are estimated. The advantages and disadvantages of the two methods applied for cardiac chamber scintiscanning are put into contrast and compared with the advantages and disadvantages of the quantitative X-ray cardiography of the left heart. The still existing problems connected with the assessment of ECG-triggered images are discussed in detail. The author performed investigations of his own, which concerned the above-mentioned problems. (orig./MG) [de

  14. Influence of different carrier gases on the properties of ZnO films grown by MOCVD

    Directory of Open Access Journals (Sweden)

    Wang, Jinzhong

    2008-08-01

    Full Text Available ZnO films were grown on sapphire (001 substrate by atmospheric MOCVD using diethyl zinc and tertiary butanol precursors. The influence of different carrier gases (H2 and He on the properties was analyzed by their structural (XRD, microstructural (SEM and compositional (SIMS characterization. The intensity of the strongest diffraction peak from ZnO (002 plane was increased by about 2 orders of magnitude when He is used as carrier gas, indicating the significant enhancement in crystallinity. The surface of the samples grown using H2 and He carrier gases was composed of leaf-like and spherical grains respectively. Hydrogen [H] content in the film grown using H2 is higher than that using He, indicating that the [H] was influenced by the H2 carrier gas. Ultraviolet emission dominates the low temperature PL spectra. The emission from ZnO films grown using He show higher optical quality and more emission centers.

    Se depositaron películas de ZnO sobre sustratos de zafiro (001 utilizando dietil zinc y butanol terciario como precursores. La influencia de los diferentes gases portadores (H2 y He sobre las propiedades se estudió mediante la caracterización estructural (XRD, microestructural (SEM y composicional (SIMS. La intensidad del pico de difracción más importante del plano (002 del ZnO aumentó en dos órdenes de magnitud cuando se utiliza He como gas portador indicando un incremento significativo de la cristalinidad. La superficie de las muestras crecidas utilizando H2 y He está formada por granos en forma de hoja y de forma esférica respectivamente. El contenido en hidrógeno (H en la película es mayor cuando se utiliza H2 que cuando se utiliza He, indicando que la cantidad de hidrógeno está influenciada por el H2 del gas portador. La emisión ultravioleta domina el espectro PL de baja temperatura. La emisión de las películas de ZnO utilizando

  15. Diogene pictorial drift chamber

    International Nuclear Information System (INIS)

    Gosset, J.

    1984-01-01

    A pictorial drift chamber, called DIOGENE, has been installed at Saturne in order to study central collisions of high energy heavy ions. It has been adapted from the JADE internal detector, with two major differences to be taken into account. First, the center-of-mass of these collisions is not identical to the laboratory reference frame. Second, the energy loss and the momentum ranges of the particles to be detected are different from the ones in JADE. It was also tried to keep the cost as small as possible, hence the choice of minimum size and minimum number of sensitive wires. Moreover the wire planes are shifted from the beam axis: this trick helps very much to quickly reject the bad tracks caused by the ambiguity of measuring drift distances (positive or negative) through times (always positive)

  16. Mush Column Magma Chambers

    Science.gov (United States)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  17. Simulation of chamber experiments

    International Nuclear Information System (INIS)

    Ivanov, V.G.

    1981-01-01

    The description of the system of computer simulation of experiments conducted by means of track detectors with film data output is given. Considered is the principle of organization of computer model of the chamber experiment comprising the following stages: generation of events, generation of measurements, ge-- neration of scanning results, generation of distorbions, generated data calibration, filtration, events reconstruction, kinematic identification, total results tape formation, analysis of the results. Generation programs are formed as special RAM-files, where the RAM-file is the text of the program written in FORTRAN and divided into structural elements. All the programs are a ''part of the ''Hydra'' system. The system possibilities are considered on the base of the CDSC-6500 computer. The five-beam event generation, creation data structure for identification and calculation by the kinematic program take about 1s of CDC-6500 computer time [ru

  18. Nucleation in bubble chambers

    International Nuclear Information System (INIS)

    Harigel, G.G.

    1988-01-01

    Various sources and mechanisms for bubble formation in superheated liquids are discussed. Bubble chambers can be filled with a great variety of liquids, such as e.g. the cryogenic liquids hydrogen, deuterium, neon, neon/hydrogen mixtures, argon, nitrogen, argon/nitrogen mixtures, or the warm liquids propane and various Freon like Freon-13B1. The superheated state is normally achieved by a rapid movement of an expansion piston or membrane, but can also be produced by standing ultrasonic waves, shock waves, or putting liquids under tension. Bubble formation can be initiated by ionizing particles, by intense (laser) light, or on rough surfaces. The creation of embryonic bubbles is not completely understood, but the macroscopic growth and condensation can be calculated, allowing to estimate the dynamic heat load [fr

  19. HCl Flow-Induced Phase Change of α-, β-, and ε-Ga2O3 Films Grown by MOCVD

    KAUST Repository

    Sun, Haiding

    2018-03-06

    Precise control of the heteroepitaxy on a low-cost foreign substrate is often the key to drive the success of fabricating semiconductor devices in scale when a large low-cost native substrate is not available. Here, we successfully synthesized three different phases of Ga2O3 (α, β, and ε) films on c-plane sapphire by only tuning the flow rate of HCl along with other precursors in an MOCVD reactor. A 3-fold increase in the growth rate of pure β-Ga2O3 was achieved by introducing only 5 sccm of HCl flow. With continuously increased HCl flow, a mixture of β- and ε-Ga2O3 was observed, until the Ga2O3 film transformed completely to a pure ε-Ga2O3 with a smooth surface and the highest growth rate (∼1 μm/h) at a flow rate of 30 sccm. At 60 sccm, we found that the film tended to have a mixture of α- and ε-Ga2O3 with a dominant α-Ga2O3, while the growth rate dropped significantly (∼0.4 μm/h). The film became rough as a result of the mixture phases since the growth rate of ε-Ga2O3 is much higher than that of α-Ga2O3. In this HCl-enhanced MOCVD mode, the Cl impurity concentration was almost identical among the investigated samples. On the basis of our density functional theory calculation, we found that the relative energy between β-, ε-, and α-Ga2O3 became smaller, thus inducing the phase change by increasing the HCl flow in the reactor. Thus, it is plausible that the HCl acted as a catalyst during the phase transformation process. Furthermore, we revealed the microstructure and the epitaxial relationship between Ga2O3 with different phases and the c-plane sapphire substrates. Our HCl-enhanced MOCVD approach paves the way to achieving highly controllable heteroepitaxy of Ga2O3 films with different phases for device applications.

  20. Peltier-based cloud chamber

    Science.gov (United States)

    Nar, Sevda Yeliz; Cakir, Altan

    2018-02-01

    Particles produced by nuclear decay, cosmic radiation and reactions can be identified through various methods. One of these methods that has been effective in the last century is the cloud chamber. The chamber makes visible cosmic particles that we are exposed to radiation per second. Diffusion cloud chamber is a kind of cloud chamber that is cooled by dry ice. This traditional model has some application difficulties. In this work, Peltier-based cloud chamber cooled by thermoelectric modules is studied. The new model provided uniformly cooled base of the chamber, moreover, it has longer lifetime than the traditional chamber in terms of observation time. This gain has reduced the costs which spent each time for cosmic particle observation. The chamber is an easy-to-use system according to traditional diffusion cloud chamber. The new model is portable, easier to make, and can be used in the nuclear physics experiments. In addition, it would be very useful to observe Muons which are the direct evidence for Lorentz contraction and time expansion predicted by Einsteins special relativity principle.

  1. Effect of deposition conditions on the growth rate and electrical properties of ZnO thin films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Roro, K.T.; Botha, J.R.; Leitch, A.W.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2008-07-01

    ZnO thin films have been grown on glass substrates by MOCVD. The effect of deposition conditions such as VI/II molar ratio, DEZn flow rate and total reactor pressure on the growth rate and electrical properties of the films was studied. It is found that the growth rate decreases with an increase in the VI/II molar ratio. This behaviour is ascribed to the competitive adsorption of reactant species on the growth surface. The growth rate increases with an increase in DEZn flow rate, as expected. It is shown that the carrier concentration is independent of the DEZn flow rate. An increase in the total reactor pressure yields a decrease in growth rate. This phenomenon is attributed to the depletion of the gas phase due to parasitic prereactions between zinc and oxygen species at high pressure. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Structural and morphological characterizations of ZnO films grown on GaAs substrates by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Agouram, S.; Zuniga Perez, J.; Munoz-Sanjose, V. [Universitat de Valencia, Departamento de Fisica Aplicada y Electromagnetismo, Burjassot (Spain)

    2007-07-15

    ZnO films were grown on GaAs(100), GaAs(111)A and GaAs(111)B substrates by metal organic chemical vapour deposition (MOCVD). Diethylzinc (DEZn) and tertiarybutanol (t-butanol) were used as Zn and O precursors, respectively. The influence of the growth temperature and GaAs substrate orientation on the crystalline orientation and morphology of the ZnO grown films has been analysed. Crystallinity of grown films was studied by X-ray diffraction (XRD); thickness and morphology of ZnO films were investigated by scanning electron microscopy (SEM). SEM results reveal significant differences between morphologies depending on growth temperature but not significant differences were detected on the texture of grown films. (orig.)

  3. The effects of H sub 2 addition on the enhanced deposition rate and high quality Cu films by MOCVD

    CERN Document Server

    Lee, J H; Park, S J; Choi, S Y

    1998-01-01

    High-quality Cu thin films were deposited on the TiN/Si substrate from the hexafluoroacetylacetonate Copper thrmethylvinylsilane [Cu (hfac) (tmvs)] source using a metal organic chemical vapor deposition (MOCVD) technique. The optimum deposition condition is with a substrate temperature of 200 .deg. C and the hydrogen flow rate of 80 sccm. The deposition rate, electrical resistivity, surface morphology, grain size, and optical properties of the deposited Cu films were investigated by the AES, four-point probe, SEM, XRD, and the visible spectrophotometer as a function of hydrogen gas flow rate, The results indicated that additional hydrogen gas affects the CVD hydrogen reduction reaction improving the purity, deposition rate, and electrical resistivity of Cu thin films. A prospective idea will be discussed for the preparation of Cu thin films showing a more enhanced electromigration resistance applicable to the next-generation interconnection.

  4. Friction and wear behavior of nitrogen-doped ZnO thin films deposited via MOCVD under dry contact

    Directory of Open Access Journals (Sweden)

    U.S. Mbamara

    2016-06-01

    Full Text Available Most researches on doped ZnO thin films are tilted toward their applications in optoelectronics and semiconductor devices. Research on their tribological properties is still unfolding. In this work, nitrogen-doped ZnO thin films were deposited on 304 L stainless steel substrate from a combination of zinc acetate and ammonium acetate precursor by MOCVD technique. Compositional and structural studies of the films were done using Rutherford Backscattering Spectroscopy (RBS and X-ray Diffraction (XRD. The frictional behavior of the thin film coatings was evaluated using a ball-on-flat configuration in reciprocating sliding under dry contact condition. After friction test, the flat and ball counter-face surfaces were examined to assess the wear dimension and failure mechanism. Both friction behavior and wear (in the ball counter-face were observed to be dependent on the crystallinity and thickness of the thin film coatings.

  5. MOCVD coating deposition of yttrium stabilized zirconia as backing for high-temperature superconductors on flexible substrates

    International Nuclear Information System (INIS)

    Jakschik, F.; Berger, W.; Seifert, L.; Nowick, W.; Leonhardt, G.

    1993-01-01

    The coating of carbon fibers with YSZ by means of the presented MOCVD process showed that in the bundle at temperatures between 500 - 600 C the coating thickness drops toward the center of the bundle. Sufficient homogeneity can be achieved only when the precipitation rate is selected slow enough to prevent the bundle edge from closing, or when the bundle is spread sufficiently open. The layers are on one hand ZrO 2 with incorporated carbon and on the other hand yttrium stabilized ZrO 2 with incorporated carbon. In both cases exclusively the cubic phase of the oxide was detected. The morphology of layers revealed only slight roughness with incorporation of relatively large nodules consisting of YSZ, caused by homogeneous gas phase reactions which are to be prevented. (orig.) [de

  6. Driving Down HB-LED Costs. Implementation of Process Simulation Tools and Temperature Control Methods of High Yield MOCVD Growth

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, William [Veeco Process Equipment, Inc., Plainview, NY (United States)

    2012-04-30

    The overall objective of this multi-faceted program is to develop epitaxial growth systems that meet a goal of 75% (4X) cost reduction in the epitaxy phase of HB-LED manufacture. A 75% reduction in yielded epitaxy cost is necessary in order to achieve the cost goals for widespread penetration of HB-LED's into back-lighting units (BLU) for LCD panels and ultimately for solid-state lighting (SSL). To do this, the program will address significant improvements in overall equipment Cost of Ownership, or CoO. CoO is a model that includes all costs associated with the epitaxy portion of production. These aspects include cost of yield, capital cost, operational costs, and maintenance costs. We divide the program into three phases where later phases will incorporate the gains of prior phases. Phase one activities are enabling technologies. In collaboration with Sandia National Laboratories we develop a Fluent-compatible chemistry predictive model and a set of mid-infrared and near-ultraviolet pyrometer monitoring tools. Where previously the modeling of the reactor dynamics were studied within FLUENT alone, here, FLUENT and Chemkin are integrated into a comprehensive model of fluid dynamics and the most advanced transport equations developed for Chemkin. Specifically, the Chemkin model offered the key reaction terms for gas-phase nucleation, a key consideration in the optimization of the MOCVD process. This new predictive model is used to design new MOCVD reactors with optimized growth conditions and the newly developed pyrometers are used monitor and control the MOCVD process temperature to within 0.5°C run-to-run and within each wafer. This portion of the grant is in collaboration with partners at Sandia National Laboratories. Phase two activities are continuous improvement projects which extend the current reactor platform along the lines of improved operational efficiency, improved systems control for throughput, and carrier modifications for increased yield

  7. Fabrication of InP-pentacene inorganic-organic hybrid heterojunction using MOCVD grown InP for photodetector application

    Science.gov (United States)

    Sarkar, Kalyan Jyoti; Pal, B.; Banerji, P.

    2018-04-01

    We fabricated inorganic-organic hybrid heterojunction between indium phosphide (InP) and pentacene for photodetector application. InP layer was grown on n-Si substrate by atmospheric pressure metal organic chemical vapour deposition (MOCVD) technique. Morphological properties of InP and pentacene thin film were characterized by atomic force microscopy (AFM). Current-voltage characteristics were investigated in dark and under illumination condition at room temperature. During illumination, different wavelengths of visible and infrared light source were employed to perform the electrical measurement. Enhancement of photocurrent was observed with decreasing in wavelength of incident photo radiation. Ideality factor was found to be 1.92. High rectification ratio of 225 was found at ± 3 V in presence of infrared light source. This study provides new insights of inorganic-organic hybrid heterojunction for broadband photoresponse in visible to near infrared (IR) region under low reverse bias condition.

  8. Advanced characterization techniques of nonuniform indium distribution within InGaN/GaN heterostructures grown by MOCVD

    International Nuclear Information System (INIS)

    Lu, D.; Florescu, D.I.; Lee, D.S.; Ramer, J.C.; Parekh, A.; Merai, V.; Li, S.; Begarney, M.J.; Armour, E.A.; Gardner, J.J.

    2005-01-01

    Nonuniform indium distribution within InGaN/GaN single quantum well (SQW) structures with nanoscale islands grown by metalorganic chemical vapor deposition (MOCVD) have been characterized by advanced characterization techniques. Robinson backscattered electron (BSE) measurements show cluster-like BSE contrast of high brightness regions, which are not centered at small dark pits in a SQW structure of spiral growth mode. By comparing with the secondary electron (SE) images, the bright cluster areas from the BSE images were found to have higher indium content compared to the surrounding dark areas. Temperature dependant photoluminescence (PL) measurement shows typical ''S-shape'' curve, which shows good correlation with nonuniform indium distribution from BSE measurement. Optical evaluation of the samples show increased PL slope efficiency of the spiral mode SQW, which can be attributed to the presence of Indium inhomogeneities. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Nucleation and growth of copper oxide films in MOCVD processes using the β-ketoiminate precursor 4,4'-(1,2-ethanediyldinitrilo)bis(2-pentanonate) copper(II)

    International Nuclear Information System (INIS)

    Condorelli, G.G.; Malandrino, G.; Fragala, I.L.

    1999-01-01

    The MOCVD of CuO has attracted much attention because of its application in high-T c superconducting films and gas sensors. This work focuses on the potential of a β-ketoiminate copper complex as an alternative MOCVD source to β-diketonate complexes. Particular attention has been given to factors such as texturing, roughness, and grain size of the deposit. (orig.)

  10. MOCVD Growth and Characterization of n-type Zinc Oxide Thin Films

    Science.gov (United States)

    Ben-Yaacov, Tammy

    , and we investigate the n-ZnO/p-GaN interface. We show that ZnO has potential as an effective p-contact for these devices, and determine properties that still need improvement in order for ZnO to compete with other contact materials. We also compare the device performance to metal-contacted devices. In summary, this thesis describes the growth of ZnO(0001) films by MOCVD, the progress in developing ZnO material with excellent surface morphology, high crystal quality, and controllable n-type doping, as well as its application to GaN-based optoelectronic devices as a p-contact material.

  11. The little holographic bubble chambers

    International Nuclear Information System (INIS)

    Herve, A.

    1983-01-01

    The lifetime study of the charmed particles has readvanced the idea to use holography for the little fast-cycle bubble chambers. A pilot experiment has been realised in 1982 with a little bubble chamber filled up with freon-115. 40000 holograms have been recorded [fr

  12. National Ignition Facility Target Chamber

    International Nuclear Information System (INIS)

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-01-01

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  13. The CLEO III drift chamber

    CERN Document Server

    Peterson, D; Briere, R A; Chen, G; Cronin-Hennessy, D; Csorna, S; Dickson, M; Dombrowski, S V; Ecklund, K M; Lyon, A; Marka, S; Meyer, T O; Patterson, J R; Sadoff, A; Thies, P; Thorndike, E H; Urner, D

    2002-01-01

    The CLEO group at the Cornell Electron Storage Ring has constructed and commissioned a new central drift chamber. With 9796 cells arranged in 47 layers ranging in radius from 13.2 to 79 cm, the new drift chamber has a smaller outer radius and fewer wires than the drift chamber it replaces, but allows the CLEO tracking system to have improved momentum resolution. Reduced scattering material in the chamber gas and in the inner skin separating the drift chamber from the silicon vertex detector provides a reduction of the multiple scattering component of the momentum resolution and an extension of the usable measurement length into the silicon. Momentum resolution is further improved through quality control in wire positioning and symmetry of the electric fields in the drift cells which have provided a reduction in the spatial resolution to 88 mu m (averaged over the full drift range).

  14. Monolithic Integration of Sampled Grating DBR with Electroabsorption Modulator by Combining Selective-Area-Growth MOCVD and Quantum-Well Intermixing

    International Nuclear Information System (INIS)

    Hong-Bo, Liu; Ling-Juan, Zhao; Jiao-Qing, Pan; Hong-Liang, Zhu; Fan, Zhou; Bao-Jun, Wang; Wei, Wang

    2008-01-01

    We present the monolithic integration of a sampled-grating distributed Bragg reflector (SG-DBR) laser with a quantum-well electroabsorption modulator (QW-EAM) by combining ultra-low-pressure (55mbar) selective-area-growth (SAG) metal-organic chemical vapour deposition (MOCVD) and quantum-well intermixing (QWI) for the first time. The QW-EAM and the gain section can be grown simultaneously by using SAG MOCVD technology. Meanwhile, the QWI technology offers an abrupt band-gap change between two functional sections, which reduces internal absorption loss. The experimental results show that the threshold current Ith = 62 mA, and output power reaches 3.6mW. The wavelength tuning range covers 30nm, and all the corresponding side mode suppression ratios are over 30 dB. The extinction ratios at available wavelength channels can reach more than 14 dB with bias of -5 V

  15. Synthesis of In0.1Ga0.9N/GaN structures grown by MOCVD and MBE for high speed optoelectronics

    KAUST Repository

    Alshehri, Bandar

    2016-06-07

    In this work, we report a comparative investigation of InxGa1-xN (SL) and InxGa1-xN/GaN (MQW) structures with an indium content equivalent to x=10%. Both structures are grown on (0001) sapphire substrates using MOCVD and MBE growth techniques. Optical properties are evaluated for samples using PL characteristics. Critical differences between the resulting epitaxy are observed. Microstructures have been assessed in terms of crystalline quality, density of dislocations and surface morphology. We have focused our study towards the fabrication of vertical PIN photodiodes. The technological process has been optimized as a function of the material structure. From the optical and electrical characteristics, this study demonstrates the benefit of InGaN/GaN MQW grown by MOCVD in comparison with MBE for high speed optoelectronic applications.

  16. Synthesis of In0.1Ga0.9N/GaN structures grown by MOCVD and MBE for high speed optoelectronics

    KAUST Repository

    Alshehri, Bandar; Dogheche, Karim; Belahsene, Sofiane; Janjua, Bilal; Ramdane, Abderrahim; Patriarche, Gilles; Ng, Tien Khee; S-Ooi, Boon; Decoster, Didier; Dogheche, Elhadj

    2016-01-01

    In this work, we report a comparative investigation of InxGa1-xN (SL) and InxGa1-xN/GaN (MQW) structures with an indium content equivalent to x=10%. Both structures are grown on (0001) sapphire substrates using MOCVD and MBE growth techniques. Optical properties are evaluated for samples using PL characteristics. Critical differences between the resulting epitaxy are observed. Microstructures have been assessed in terms of crystalline quality, density of dislocations and surface morphology. We have focused our study towards the fabrication of vertical PIN photodiodes. The technological process has been optimized as a function of the material structure. From the optical and electrical characteristics, this study demonstrates the benefit of InGaN/GaN MQW grown by MOCVD in comparison with MBE for high speed optoelectronic applications.

  17. 10 GHz surface impedance measurements of (Y9Er)BaCuO films produced by MOCVD, laser ablation, and sputtering

    International Nuclear Information System (INIS)

    Luine, J.; Daly, K.; Hu, R.; Kain, A.; Lee, A.; Manasevit, H.; Pettiette-Hall, C.; Simon, R.; St John, D.; Wagner, M.

    1991-01-01

    This paper reports on a parallel-plate resonator technique previously used to measure microwave surface resistance R s (T) extended to also measure absolute penetration depth λ(T). Measurements of both quantities near 10 GHz from 4.2 K to Tc are reported for ErBaCuO thin films produced by metal-organic chemical vapor deposition (MOCVD) and YBaCuO think films produced by laser ablation and single-target off-axis sputtering. All the films were made at TRW. Each production method gives rise to films whose surface resistance is below 1 milliohm at temperatures below 40K. The low temperature penetration depths range from 250 nm for the laser ablation and sputtered films to 800 nm for the MOCVD films. The penetration depths in all cases increase with temperature according to the Gorter-Casimir temperature dependence

  18. Micro plate fission chamber development

    International Nuclear Information System (INIS)

    Wang Mei; Wen Zhongwei; Lin Jufang; Jiang Li; Liu Rong; Wang Dalun

    2014-01-01

    To conduct the measurement of neutron flux and the fission rate distribution at several position in assemblies, the micro plate fission chamber was designed and fabricated. Since the requirement of smaller volume and less structure material was taken into consideration, it is convinient, commercial and practical to use fission chamber to measure neutron flux in specific condition. In this paper, the structure of fission chamber and process of fabrication were introduced and performance test result was presented. The detection efficiency is 91.7%. (authors)

  19. Pelletron general purpose scattering chamber

    International Nuclear Information System (INIS)

    Chatterjee, A.; Kailas, S.; Kerekette, S.S.; Navin, A.; Kumar, Suresh

    1993-01-01

    A medium sized stainless steel scattering chamber has been constructed for nuclear scattering and reaction experiments at the 14UD pelletron accelerator facility. It has been so designed that several types of detectors, varying from small sized silicon surface barrier detectors to medium sized gas detectors and NaI detectors can be conveniently positioned inside the chamber for detection of charged particles. The chamber has been planned to perform the following types of experiments : angular distributions of elastically scattered particles, fission fragments and other charged particles, angular correlations for charged particles e.g. protons, alphas and fission fragments. (author). 2 figs

  20. The MOCVD challenge a survey of GaInAsp-InP and GaInAsp-GaAs for photonic and electronic device applications

    CERN Document Server

    Razeghi, Manijeh

    2010-01-01

    Introduction to Semiconductor Compounds III-V semiconductor alloys III-V semiconductor devices Technology of multilayer growth Growth Technology Metalorganic chemical vapor deposition New non-equilibrium growth techniques In situ Characterization during MOCVD Reflectance anisotropy and ellipsometry Optimization of the growth of III-V binaries by RDS RDS investigation of III-V lattice-matched heterojunctions RDS investigation of III-V lattice-mismatched structures Insights on the growt

  1. Microstructural and compositional analysis of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} films grown by MOCVD before and after GCIB smoothing

    Energy Technology Data Exchange (ETDEWEB)

    Hatzistergos, M.S.; Efstathiadis, H.; Reeves, J.L.; Selvamanickam, V.; Allen, L.P.; Lifshin, E.; Haldar, P

    2004-06-15

    The microstructural and compositional evolution of thick (>1 {mu}m) high temperature superconducting YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) films grown on single crystal SrTiO{sub 3} substrates by the metal organic chemical vapor deposition (MOCVD) process was investigated by focused ion beam microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and atomic force microscopy. This study showed that as the MOCVD YBCO film thickness increased above 0.5 {mu}m, defects such as second phase particles, pores, and misaligned grains preferentially nucleated and grew at the YBCO surface. A portion of this defective top layer was eliminated from all the samples using a gas cluster ion beam (GCIB) process that first removed material with a focused argon cluster beam. Next, an oxygen cluster beam was used to smooth the surface and re-oxygenate the YBCO. Comparing the critical current (I{sub c}) measured before and after GCIB processing showed that the I{sub c} remained the same, and even improved, when part of the defective top layer was removed. This microstructural and electromagnetic 'dead layer' is believed to be responsible for the overall I{sub c} decrease of MOCVD YBCO films thicker than 0.5 {mu}m.

  2. Microstructural and compositional analysis of YBa2Cu3O7-δ films grown by MOCVD before and after GCIB smoothing

    International Nuclear Information System (INIS)

    Hatzistergos, M.S.; Efstathiadis, H.; Reeves, J.L.; Selvamanickam, V.; Allen, L.P.; Lifshin, E.; Haldar, P.

    2004-01-01

    The microstructural and compositional evolution of thick (>1 μm) high temperature superconducting YBa 2 Cu 3 O 7-x (YBCO) films grown on single crystal SrTiO 3 substrates by the metal organic chemical vapor deposition (MOCVD) process was investigated by focused ion beam microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and atomic force microscopy. This study showed that as the MOCVD YBCO film thickness increased above 0.5 μm, defects such as second phase particles, pores, and misaligned grains preferentially nucleated and grew at the YBCO surface. A portion of this defective top layer was eliminated from all the samples using a gas cluster ion beam (GCIB) process that first removed material with a focused argon cluster beam. Next, an oxygen cluster beam was used to smooth the surface and re-oxygenate the YBCO. Comparing the critical current (I c ) measured before and after GCIB processing showed that the I c remained the same, and even improved, when part of the defective top layer was removed. This microstructural and electromagnetic 'dead layer' is believed to be responsible for the overall I c decrease of MOCVD YBCO films thicker than 0.5 μm

  3. Proton beam monitor chamber calibration

    International Nuclear Information System (INIS)

    Gomà, C; Meer, D; Safai, S; Lorentini, S

    2014-01-01

    The first goal of this paper is to clarify the reference conditions for the reference dosimetry of clinical proton beams. A clear distinction is made between proton beam delivery systems which should be calibrated with a spread-out Bragg peak field and those that should be calibrated with a (pseudo-)monoenergetic proton beam. For the latter, this paper also compares two independent dosimetry techniques to calibrate the beam monitor chambers: absolute dosimetry (of the number of protons exiting the nozzle) with a Faraday cup and reference dosimetry (i.e. determination of the absorbed dose to water under IAEA TRS-398 reference conditions) with an ionization chamber. To compare the two techniques, Monte Carlo simulations were performed to convert dose-to-water to proton fluence. A good agreement was found between the Faraday cup technique and the reference dosimetry with a plane-parallel ionization chamber. The differences—of the order of 3%—were found to be within the uncertainty of the comparison. For cylindrical ionization chambers, however, the agreement was only possible when positioning the effective point of measurement of the chamber at the reference measurement depth—i.e. not complying with IAEA TRS-398 recommendations. In conclusion, for cylindrical ionization chambers, IAEA TRS-398 reference conditions for monoenergetic proton beams led to a systematic error in the determination of the absorbed dose to water, especially relevant for low-energy proton beams. To overcome this problem, the effective point of measurement of cylindrical ionization chambers should be taken into account when positioning the reference point of the chamber. Within the current IAEA TRS-398 recommendations, it seems advisable to use plane-parallel ionization chambers—rather than cylindrical chambers—for the reference dosimetry of pseudo-monoenergetic proton beams. (paper)

  4. A small flat fission chamber

    International Nuclear Information System (INIS)

    Li Yijun; Wang Dalun; Chen Suhe

    1999-01-01

    With fission materials of depleted uranium, natural uranium, enriched uranium, 239 Pu, and 237 Np, the authors have designed and made a series of small flat fission chamber. The authors narrated the construction of the fission chamber and its technological process of manufacture, and furthermore, the authors have measured and discussed the follow correct factor, self-absorption, boundary effect, threshold loss factor, bottom scatter and or so

  5. Advances on fission chamber modelling

    International Nuclear Information System (INIS)

    Filliatre, Philippe; Jammes, Christian; Geslot, Benoit; Veenhof, Rob

    2013-06-01

    In-vessel, online neutron flux measurements are routinely performed in mock-up and material testing reactors by fission chambers. Those measurements have a wide range of applications, including characterization of experimental conditions, reactor monitoring and safety. Depending on the application, detectors may experience a wide range of constraints, of several magnitudes, in term of neutron flux, gamma-ray flux, temperature. Hence, designing a specific fission chamber and measuring chain for a given application is a demanding task. It can be achieved by a combination of experimental feedback and simulating tools, the latter being based on a comprehensive understanding of the underlying physics. A computation route that simulates fission chambers, named CHESTER, is presented. The retrieved quantities of interest are the neutron-induced charge spectrum, the electronic and ionic pulses, the mean current and variance, the power spectrum. It relies on the GARFIELD suite, originally developed for drift chambers, and makes use of the MAGBOLTZ code to assess the drift parameters of electrons within the filling gas, and the SRIM code to evaluate the stopping range of fission products. The effect of the gamma flux is also estimated. Computations made with several fission chambers exemplify the possibilities of the route. A good qualitative agreement is obtained when comparing the results with the experimental data available to date. In a near future, a comprehensive experimental programme will be undertaken to qualify the route using the known neutron sources, mock-up reactors and wide choice of fission chambers, with a stress on the predictiveness of the Campbelling mode. Depending on the results, a refinement of the modelling and an effort on the accuracy of input data are also to be considered. CHESTER will then make it possible to predict the overall sensitivity of a chamber, and to optimize the design for a given application. Another benefit will be to increase the

  6. BEBC Big European Bubble Chamber

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    A view of the dismantling of the magnet of BEBC, the 3.7 m European Bubble Chamber : iron magnetic shielding ; lower and upper parts of the vacuum enclosure of the magnet; turbo-molecular vacuum pumps for the "fish-eye" windows; the two superconducting coils; a handling platform; the two cryostats suspended from the bar of the travelling crane which has a 170 ton carrying capacity. The chamber proper, not dismantled, is inside the shielding.

  7. The OPAL vertex drift chamber

    International Nuclear Information System (INIS)

    Carter, J.R.; Elcombe, P.A.; Hill, J.C.; Roach, C.M.; Armitage, J.C.; Carnegie, R.K.; Estabrooks, P.; Hemingway, R.; Karlen, D.; McPherson, A.; Pinfold, J.; Roney, J.M.; Routenburg, P.; Waterhouse, J.; Hargrove, C.K.; Klem, D.; Oakham, F.G.; Carter, A.A.; Jones, R.W.L.; Lasota, M.M.B.; Lloyd, S.L.; Pritchard, T.W.; Wyatt, T.R.

    1990-01-01

    A high precision vertex drift chamber has been installed in the OPAL experiment at LEP. The design of the chamber and the associated readout electronics is described. The performance of the system has been studied using cosmic ray muons and the results of these studies are presented. A space resolution of 50 μm in the drift direction is obtained using the OPAL central detector gas mixture at 4 bar. (orig.)

  8. PEP quark search proportional chambers

    Energy Technology Data Exchange (ETDEWEB)

    Parker, S I; Harris, F; Karliner, I; Yount, D [Hawaii Univ., Honolulu (USA); Ely, R; Hamilton, R; Pun, T [California Univ., Berkeley (USA). Lawrence Berkeley Lab.; Guryn, W; Miller, D; Fries, R [Northwestern Univ., Evanston, IL (USA)

    1981-04-01

    Proportional chambers are used in the PEP Free Quark Search to identify and remove possible background sources such as particles traversing the edges of counters, to permit geometric corrections to the dE/dx and TOF information from the scintillator and Cerenkov counters, and to look for possible high cross section quarks. The present beam pipe has a thickness of 0.007 interaction lengths (lambdasub(i)) and is followed in both arms each with 45/sup 0/ <= theta <= 135/sup 0/, ..delta..phi=90/sup 0/ by 5 proportional chambers, each 0.0008 lambdasub(i) thick with 32 channels of pulse height readout, and by 3 thin scintillator planes, each 0.003 lambdasub(i) thick. Following this thin front end, each arm of the detector has 8 layers of scintillator (one with scintillating light pipes) interspersed with 4 proportional chambers and a layer of lucite Cerenkov counters. Both the calculated ion statistics and measurements using He-CH/sub 4/ gas in a test chamber indicate that the chamber efficiencies should be >98% for q=1/3. The Landau spread measured in the test was equal to that observed for normal q=1 traversals. One scintillator plane and thin chamber in each arm will have an extra set of ADC's with a wide gate bracketing the normal one so timing errors and tails of earlier pulses should not produce fake quarks.

  9. Directional muon jet chamber for a muon collider (Groovy Chamber)

    International Nuclear Information System (INIS)

    Atac, M.

    1996-10-01

    A directional jet drift chamber with PAD readout is proposed here which can select vertex originated muons within a given time window and eliminate those muons which primarily originate upstream, using only a PAD readout. Drift time provides the Z-coordinate, and the center of gravity of charge distribution provides the r-ψ coordinates. Directionality at the trigger level is obtained by the timing measurement from the PAD hits within a given time window. Because of the long drift time between the bunch crossings, a muon collider enables one to choose a drift distance in the drift chamber as long as 50 cm. This is an important factor in reducing cost of drift chambers which have to cover relatively large areas

  10. Plasma chemistry in wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an 55 Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed

  11. YBa2Cu3O7-δ thin films deposited by MOCVD vertical reactor with a flow guide

    International Nuclear Information System (INIS)

    Sujiono, E.H.; Negeri Makassar; Sani, R.A.; Saragi, T.; Arifin, P.; Barmawi, M.

    2001-01-01

    The effect of a flow guide in a vertical MOCVD reactor on the deposition uniformity and growth rate of thin YBCO films has been studied. Without the flow guide the growth rates are low, have a poor uniformity and the film composition is not stoichiometric. The growth rate of the films grown using a reactor with the flow guide was approximately twice that without the flow guide. Using this flow guide the growth rates were 0.4-0.7 μm/h for growth temperatures varying between 600 and 750 C, and the crystalline quality as well as the surface morphology of YBCO films on MgO substrates is improved. For films grown at temperatures above 650 C the composition of Y:Ba:Cu is 1:2:3, as confirmed by EDAX spectra. Films deposited without and with the flow guide at 700 C have critical temperatures around 85 and 88 K, respectively. The reduction in ΔT c (T c,zero -T c,onset ) also shows an improvement of the superconducting properties of YBCO thin films deposited with a flow guide. (orig.)

  12. Two different mechanisms of fatigue damage due to cyclic stress loading at 77 K for MOCVD-YBCO-coated conductors

    International Nuclear Information System (INIS)

    Sugano, M; Yoshida, Y; Hojo, M; Shikimachi, K; Hirano, N; Nagaya, S

    2008-01-01

    Tensile fatigue tests were carried out at 77 K for YBCO-coated conductors fabricated by metal-organic chemical vapor deposition (MOCVD). The S-N relationship, variation of critical current (I c ) during cyclic loading and microscopic fatigue damage were investigated. Fatigue strength at 10 6 cycles was evaluated to be σ max = 1300 MPa and 890 MPa under the stress ratios of 0.5 and 0.1. Two different mechanisms of fatigue damage, depending on the number of stress cycles to failure, were observed. In one of the fracture mechanisms, fatigue behavior is characterized by overall fracture which occurs at 10 4 -10 5 cycles. For these specimens, I c after unloading does not degrade before overall fracture. Although only shallow slip bands were found at the Ag surface, fatigue cracks were found on the Hastelloy C-276 surface of the fractured specimen. These results suggest that overall fracture due to cyclic stress was caused by fatigue of the Hastelloy substrate. In the other fracture mechanism, even though overall fracture did not occur at 10 6 cycles, a slight decrease of I c was detected after 10 5 cycles. No fatigue crack was found on the Hastelloy surface, while deep slip bands corresponding to the initial stage of fatigue crack were observed on the Ag surface. From these results, we concluded that I c degradation at a high cycle number is attributed to the fatigue of the Ag stabilizing layer

  13. A high critical current density MOCVD coated conductor with strong vortex pinning centers suitable for very high field use

    International Nuclear Information System (INIS)

    Chen, Z; Kametani, F; Larbalestier, D C; Chen, Y; Xie, Y; Selvamanickam, V

    2009-01-01

    We have made extensive low temperature and high field evaluations of a recent 2.1 μm thick coated conductor (CC) grown by metal-organic chemical vapor deposition (MOCVD) with a view to its use for high field magnet applications, for which its very strong Hastelloy substrate makes it very suitable. This conductor contains dense three-dimensional (Y,Sm) 2 O 3 nanoprecipitates, which are self-aligned in planes tilted ∼7 deg. from the tape plane. Very strong vortex pinning is evidenced by high critical current density J c values of ∼3.1 MA cm -2 at 77 K and ∼43 MA cm -2 at 4.2 K, and by a strongly enhanced irreversibility field H irr , which reaches that of Nb 3 Sn (∼28 T at 1.5 K) at 60 K, even in the inferior direction of H parallel c axis. At 4.2 K, J c values are ∼15% of the depairing current density J d , much the highest of any superconductor suitable for magnet construction.

  14. A high critical current density MOCVD coated conductor with strong vortex pinning centers suitable for very high field use

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z; Kametani, F; Larbalestier, D C [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Chen, Y; Xie, Y; Selvamanickam, V [SuperPower Incorporated, Schenectady, NY 12304 (United States)], E-mail: zhijun@asc.magnet.fsu.edu

    2009-05-15

    We have made extensive low temperature and high field evaluations of a recent 2.1 {mu}m thick coated conductor (CC) grown by metal-organic chemical vapor deposition (MOCVD) with a view to its use for high field magnet applications, for which its very strong Hastelloy substrate makes it very suitable. This conductor contains dense three-dimensional (Y,Sm){sub 2}O{sub 3} nanoprecipitates, which are self-aligned in planes tilted {approx}7 deg. from the tape plane. Very strong vortex pinning is evidenced by high critical current density J{sub c} values of {approx}3.1 MA cm{sup -2} at 77 K and {approx}43 MA cm{sup -2} at 4.2 K, and by a strongly enhanced irreversibility field H{sub irr}, which reaches that of Nb{sub 3}Sn ({approx}28 T at 1.5 K) at 60 K, even in the inferior direction of H parallel c axis. At 4.2 K, J{sub c} values are {approx}15% of the depairing current density J{sub d}, much the highest of any superconductor suitable for magnet construction.

  15. Broad Temperature Pinning Study of 15 mol.% Zr-Added (Gd, Y)-Ba-Cu-O MOCVD Coated Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, AX; Khatri, N; Liu, YH; Majkic, G; Galstyan, E; Selvamanickam, V; Chen, YM; Lei, CH; Abraimov, D; Hu, XB; Jaroszynski, J; Larbalestier, D

    2015-06-01

    BaZrO3 (BZO) nanocolumns have long been shown to be very effective for raising the pinning force F-p of REBa2Cu3Ox (REBCO, where RE = rare earth) films at high temperatures and recently at low temperatures too. We have successfully incorporated a high density of BZO nanorods into metal organic chemical vapor deposited (MOCVD) REBCO coated conductors via Zr addition. We found that, compared to the 7.5% Zr-added coated conductor, dense BZO nanorod arrays in the 15% Zr-added conductor are effective over the whole temperature range from 77 K down to 4.2 K. We attribute the substantially enhanced J(c) at 30 K to the weak uncorrelated pinning as well as the strong correlated pinning. Meanwhile, by tripling the REBCO layer thickness to similar to 2.8 mu m, the engineering critical current density J(e) at 30 K exceeds J(e) of optimized Nb-Ti wires at 4.2 K.

  16. Vertically p-n-junctioned GaN nano-wire array diode fabricated on Si(111) using MOCVD.

    Science.gov (United States)

    Park, Ji-Hyeon; Kim, Min-Hee; Kissinger, Suthan; Lee, Cheul-Ro

    2013-04-07

    We demonstrate the fabrication of n-GaN:Si/p-GaN:Mg nanowire arrays on (111) silicon substrate by metal organic chemical vapor deposition (MOCVD) method .The nanowires were grown by a newly developed two-step growth process. The diameter of as-grown nanowires ranges from 300-400 nm with a density of 6-7 × 10(7) cm(-2). The p- and n-type doping of the nanowires is achieved with Mg and Si dopant species. Structural characterization by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) indicates that the nanowires are relatively defect-free. The room-temperature photoluminescence emission with a strong peak at 370 nm indicates that the n-GaN:Si/p-GaN:Mg nanowire arrays have potential application in light-emitting nanodevices. The cathodoluminscence (CL) spectrum clearly shows a distinct optical transition of GaN nanodiodes. The nano-n-GaN:Si/p-GaN:Mg diodes were further completed using a sputter coating approach to deposit Au/Ni metal contacts. The polysilazane filler has been etched by a wet chemical etching process. The n-GaN:Si/p-GaN:Mg nanowire diode was fabricated for different Mg source flow rates. The current-voltage (I-V) measurements reveal excellent rectifying properties with an obvious turn-on voltage at 1.6 V for a Mg flow rate of 5 sccm (standard cubic centimeters per minute).

  17. Preparation of YBa2Cu3O7 films by low pressure MOCVD using liquid solution sources

    International Nuclear Information System (INIS)

    Weiss, F.; Froehlich, K.; Haase, R.; Labeau, M.; Selbmann, D.; Senateur, J.P.; Thomas, O.

    1993-01-01

    A hybrid low pressure MOCVD process is described for reproducible preparation of superconducting thin films of YBa 2 Cu 3 O 7 . The process uses a single solution source of Y, Ba, and Cu β-diketonates dissolved in suitable organic solvents. This liquid precursor is atomized using an ultrasonic aerosol generator and transported as small droplets (∼1μm) into a CVD reactor where solvent and precursor are first evaporated before deposition takes place at low pressure on heated substrates in a cold wall geometry. This process allows, with stable evaporation rates for all three precursors, to grow in-situ superconducting films with constant composition from film to film. Thin and thick films with high critical temperatures and critical currents have been obtained (Tc>80K, Jc>10 4 A/cm 2 at 77K in self field) which are highly c-axis oriented. Experimental details of this new process are described and the effects of different process parameters are studied in order to improve the quality of the deposited layers. (orig.)

  18. Optimization of structural and growth parameters of metamorphic InGaAs photovoltaic converters grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Rybalchenko, D. V.; Mintairov, S. A.; Salii, R. A.; Shvarts, M. Z.; Timoshina, N. Kh.; Kalyuzhnyy, N. A., E-mail: nickk@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    Metamorphic Ga{sub 0.76}In{sub 0.24}As heterostructures for photovoltaic converters are grown by the MOCVD (metal–organic chemical vapor deposition) technique. It is found that, due to the valence-band offset at the p-In{sub 0.24}Al{sub 0.76}As/p-In{sub 0.24}Ga{sub 0.76}As (wide-gap window/emitter) heterointerface, a potential barrier for holes arises as a result of a low carrier concentration in the wide-gap material. The use of an InAlGaAs solid solution with an Al content lower than 40% makes it possible to raise the hole concentration in the widegap window up ~9 × 10{sup 18} cm{sup –3} and completely remove the potential barrier, thereby reducing the series resistance of the device. The parameters of an GaInAs metamorphic buffer layer with a stepwise In content profile are calculated and its epitaxial growth conditions are optimized, which improves carrier collection from the n-GaInAs base region and provides a quantum efficiency of 83% at a wavelength of 1064 nm. Optimization of the metamorphic heterostructure of the photovoltaic converter results in that its conversion efficiency for laser light with a wavelength of 1064 nm is 38.5%.

  19. Enhanced Light Scattering by Preferred Orientation Control of Ga Doped ZnO Films Prepared through MOCVD

    Directory of Open Access Journals (Sweden)

    Long Giang Bach

    2016-01-01

    Full Text Available We have explored the effective approach to fabricate GZO/ZnO films that can make the pyramidal surface structures of GZO films for effective light scattering by employing a low temperature ZnO buffer layer prior to high temperature GZO film growth. The GZO thin films exhibit the typical preferred growth orientations along the (002 crystallographic direction at deposition temperature of 400°C and SEM showed that column-like granule structure with planar surface was formed. In contrast, GZO films with a pyramidal texture surface were successfully developed by the control of (110 preferred orientation. We found that the light diffuse transmittance of the film with a GZO (800 nm/ZnO (766 nm exhibited 13% increase at 420 nm wavelength due to the formed large grain size of the pyramidal texture surface. Thus, the obtained GZO films deposited over ZnO buffer layer have high potential for use as front TCO layers in Si-based thin film solar cells. These results could develop the potential way to fabricate TCO based ZnO thin film using MOCVD or sputtering techniques by depositing a low temperature ZnO layer to serve as a template for high temperature GZO film growth. The GZO films exhibited satisfactory optoelectric properties.

  20. Stoichiometry-, phase- and orientation-controlled growth of polycrystalline pyrite (FeS 2) thin films by MOCVD

    Science.gov (United States)

    Höpfner, C.; Ellmer, K.; Ennaoui, A.; Pettenkofer, C.; Fiechter, S.; Tributsch, H.

    1995-06-01

    The growth process of polycrystalline pyrite thin films employing low pressure metalorganic chemical vapor deposition (LP-MOCVD) in a vertical cold wall reactor has been investigated. Iron pentacarbonyl (IPC) and t-butyldisulfide (TBDS) were utilized as precursors. Study of the growth rate as a function of temperature reveals a kinetically controlled growth process with an activation energy of 73 kJ / mol over the temperature range from 250 to 400°C. From 500 to 630°C, the growth rate is mainly mass transport limited. Decomposition of the films into pyrrhotite (Fe 1 - xS) occurs at higher growth temperatures. The {S}/{Fe} ratio in the films has been controlled from 1.23 up to 2.03 by changing the TBDS partial pressure. With increasing deposition temperature, the crystallites in the films show the tendency to grow [100]-oriented on amorphous substrates at a growth rate of 2.5 Å / s. The grains show a preferential orientation in the [111] direction upon lowering the growth rate down to 0.3 Å / s. Temperatures above 550°C are beneficial in enhancing the grain size in the columnar structured films up to 1.0 μm.

  1. Stoichiometry-, phase- and orientation-controlled growth of polycrystalline pyrite (FeS{sub 2}) thin films by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Hoepfner, C.; Ellmer, K.; Ennaoui, A.; Pettenkofer, C.; Fiechter, S.; Tributsch, H. [Hahn-Meitner-Institut Berlin, Abteilung Solare Energetik, Berlin (Germany)

    1995-06-01

    The growth process of polycrystalline pyrite thin films employing low pressure metalorganic chemical vapor deposition (LP-MOCVD) in a vertical cold wall reactor has been investigated. Iron pentacarbonyl (IPC) and t-butyldisulfide (TBDS) were utilized as precursors. Study of the growth rate as a function of temperature reveals a kinetically controlled growth process with an activation energy of 73 kJ/mol over the temperature range from 250 to 400C. From 500 to 630C, the growth rate is mainly mass transport limited. Decomposition of the films into pyrrhotite (Fe{sub 1-x}S) occurs at higher growth temperatures. The S/Fe ratio in the films has been controlled from 1.23 up to 2.03 by changing the TBDS partial pressure. With increasing deposition temperature, the crystallites in the films show the tendency to grow [100]-oriented on amorphous substrates at a growth rate of 2.5 A/s. The grains show a preferential orientation in the [111] direction upon lowering the growth rate down to 0.3 A/s. Temperatures above 550C are beneficial in enhancing the grain size in the columnar structured films up to 1.0 {mu}m

  2. Deposition of Y-Sm Oxide on Metallic Substrates for the YBCO Coated Conductor by MOCVD Method

    International Nuclear Information System (INIS)

    Choi, Jun Kyu; Kim, Min Woo; Jun, Byung Hyuk; Kim, Chan Joong; Lee, Hee Gyoun; Hong, Gye Won

    2005-01-01

    Complex single buffer composed of yttrium and samarium oxide was deposited on the metallic substrates by MOCVD (metal organic chemical vapor deposition) method using single liquid source. Two different types of the substrates with in-plane textures of about 8 - 10 degree of Ni and 3at.%W-Ni alloy were used. Y(tmhd: 2,2,6,6-tetramethyl-3,5-heptane dionate) 3 :Sm(tmhd) 3 of liquid source was adjusted to 0.4:0.6 to minimize the lattice mismatch between the complex single buffer and the YBCO. The epitaxial growth of (Y x Sm 1-x ) 2 O 3 was achieved at the temperature higher than 500 degree C in O 2 atmosphere. However, it was found that the formation of NiO accelerated with increasing deposition temperature. By supplying H 2 O vapor, this oxidation of the substrate could be suppressed throughout the deposition temperatures. We could get the epitaxial growth on pure Ni substrate without the formation of NiO. The competitive (222) and (400) growths were observed at the deposition temperatures of 650 - 750 degree C, but the (400) growth became dominant above 800 degree. The (Y x Sm 1-x ) 2 O 3 -buffered metallic substrates can be used as the buffer for YBCO coated conductor.

  3. MOCVD growth of GaN layer on InN interlayer and relaxation of residual strain

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keon-Hun; Park, Sung Hyun; Kim, Jong Hack; Kim, Nam Hyuk; Kim, Min Hwa [Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Na, Hyunseok [Department of Advanced Materials Science and Engineering, Daejin University, Pocheon, 487-711 (Korea, Republic of); Yoon, Euijoon, E-mail: eyoon@snu.ac.k [Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 433-270 (Korea, Republic of)

    2010-09-01

    100 nm InN layer was grown on sapphire c-plane using a metal-organic chemical vapor deposition (MOCVD) system. Low temperature (LT) GaN layer was grown on InN layer to protect InN layer from direct exposure to hydrogen flow during high temperature (HT) GaN growth and/or abrupt decomposition. Subsequently, thick HT GaN layer (2.5 {mu}m thick) was grown at 1000 {sup o}C on LT GaN/InN/sapphire template. Microstructure of epilayer-substrate interface was investigated by transmission electron microscopy (TEM). From the high angle annular dark field TEM image, the growth of columnar structured LT GaN and HT GaN with good crystallinity was observed. Though thickness of InN interlayer is assumed to be about 100 nm based on growth rate, it was not clearly shown in TEM image due to the InN decomposition. The lattice parameters of GaN layers were measured by XRD measurement, which shows that InN interlayer reduces the compressive strain in GaN layer. The relaxation of compressive strain in GaN layer was also confirmed by photoluminescence (PL) measurement. As shown in the PL spectra, red shift of GaN band edge peak was observed, which indicates the reduction of compressive strain in GaN epilayer.

  4. Cauliflower hillock formation through crystallite migration of SnO2 thin films prepared on alumina substrates by using MOCVD

    International Nuclear Information System (INIS)

    Choi, Gwangpyo; Ryu, Hyunwook; Lee, Woosun; Hong, Kwangjun; Shin, Dongcharn; Park, Jinseong; Seo, Yongjin; Akbar, Sheikh A.

    2003-01-01

    Tin-oxide thin films were deposited at 375 .deg. C on α-alumina substrates by using metalorganic chemical vapor deposition (MOCVD) process. A number of hillocks were formed on the film after annealing in air at 500 .deg. C for 30 min, but fewer hillocks were formed for annealing in N 2 . The hillocks on the film and the grains on the alumina substrate were composed of crystallites. The oxygen content and the binding energy after annealing in air came to close to values for the stoichiometric SnO 2 . There was no relationship between the film thickness and the binding energy shift, but the binding energy did change with the annealing atmosphere and the oxygen content. The cauliflower hillocks on the film seem to be formed by the continuous migration of crystallites from cauliflower grains on the substrate to release the stress due to the increased oxygen content and volume. A cauliflower hillock can be grown by continuous migration of crystallites from nearby grains to the hillock.

  5. "Flat-Fish" Vacuum Chamber

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The picture shows a "Flat-Fish" vacuum chamber being prepared in the ISR workshop for testing prior to installation in the Split Field Magnet (SFM) at intersection I4. The two shells of each part were hydroformed from 0.15 mm thick inconel 718 sheet (with end parts in inconel 600 for easier manual welding to the arms) and welded toghether with two strips which were attached by means of thin stainless steel sheets to the Split Field Magnet poles in order to take the vertical component of the atmospheric pressure force. This was the thinnest vacuum chamber ever made for the ISR. Inconel material was chosen for its high elastic modulus and strenght at chamber bake-out temperature. In this picture the thin sheets transferring the vertical component of the atmosferic pressure force are attached to a support frame for testing. See also 7712182, 7712179.

  6. An experimental propane bubble chamber

    International Nuclear Information System (INIS)

    Rogozinski, A.

    1957-01-01

    Describes a propane bubble chamber 10 cm in diameter and 5 cm deep. The body of the chamber is in stainless steel, and it has two windows of polished hardened glass. The compression and decompression of the propane are performed either through a piston in direct contact with the liquid, or by the action on the liquid, through a triple-mylar-Perbunan membrane, of a compressed gas. The general and also optimum working conditions of the chamber are described, and a few results are given concerning, in particular, the tests of the breakage-resistance of the windows and the measurements of the thermal expansion of the compressibility isotherm for the propane employed. (author) [fr

  7. Equipment for handling ionization chamber

    International Nuclear Information System (INIS)

    Altmann, J.

    1988-01-01

    The device consists of an ionization channel with an ionization chamber, of a support ring, axial and radial bearings, a sleeve, a screw gear and an electric motor. The ionization chamber is freely placed on the bottom of the ionization channel. The bottom part of the channel deviates from the vertical axis. The support ring propped against the axial bearing in the sleeve is firmly fixed to the top part of the ionization channel. The sleeve is fixed to the reactor lid. Its bottom part is provided with a recess for the radial bearing which is propped against a screw wheel firmly connected to the ionization channel. In measuring neutron flux, the screw wheel is rotated by the motor, thus rotating the whole ionization channel such that the ionization chamber is displaced into the reactor core.(J.B.). 1 fig

  8. General purpose nuclear irradiation chamber

    International Nuclear Information System (INIS)

    Nurul Fadzlin Hasbullah; Nuurul Iffah Che Omar; Nahrul Khair Alang Md Rashid; Jaafar Abdullah

    2013-01-01

    Nuclear technology has found a great need for use in medicine, industry, and research. Smoke detectors in our homes, medical treatments and new varieties of plants by irradiating its seeds are just a few examples of the benefits of nuclear technology. Portable neutron source such as Californium-252, available at Industrial Technology Division (BTI/ PAT), Malaysian Nuclear Agency, has a 2.645 year half-life. However, 252 Cf is known to emit gamma radiation from the source. Thus, this chamber aims to provide a proper gamma shielding for samples to distinguish the use of mixed neutron with gamma-rays or pure neutron radiation. The chamber is compatible to be used with other portable neutron sources such as 241 Am-Be as well as the reactor TRIGA PUSPATI for higher neutron dose. This chamber was designed through a collaborative effort of Kulliyyah Engineering, IIUM with the Industrial Technology Division (BTI) team, Malaysian Nuclear Agency. (Author)

  9. Holography in small bubble chambers

    International Nuclear Information System (INIS)

    Lecoq, P.

    1984-01-01

    This chapter reports on an experiment to determine the total charm cross section at different incident momenta using the small, heavy liquid bubble chamber HOBC. Holography in liquid hydrogen is also tested using the holographic lexan bubble chamber HOLEBC with the aim of preparing a future holographic experiment in hydrogen. The high intensity tests show that more than 100 incident tracks per hologram do not cause a dramatic effect on the picture quality. Hydrogen is more favorable than freon as the bubble growth is much slower in hydrogen. An advantage of holography is to have the maximum resolution in the full volume of the bubble chamber, which allows a gain in sensitivity by a factor of 10 compared to classical optics as 100 tracks per hologram look reasonable. Holograms are not more difficult to analyze than classical optics high-resolution pictures. The results show that holography is a very powerful technique which can be used in very high resolution particle physics experiments

  10. Test chamber for alpha spectrometry

    Science.gov (United States)

    Larsen, Robert P.

    1977-01-01

    Alpha emitters for low-level radiochemical analysis by measurement of alpha spectra are positioned precisely with respect to the location of a surface-barrier detector by means of a chamber having a removable threaded planchet holder. A pedestal on the planchet holder holds a specimen in fixed engagement close to the detector. Insertion of the planchet holder establishes an O-ring seal that permits the chamber to be pumped to a desired vacuum. The detector is protected against accidental contact and resulting damage.

  11. Laboratory Course on Drift Chambers

    International Nuclear Information System (INIS)

    Garcia-Ferreira, Ix-B.; Garcia-Herrera, J.; Villasenor, L.

    2006-01-01

    Drift chambers play an important role in particle physics experiments as tracking detectors. We started this laboratory course with a brief review of the theoretical background and then moved on to the the experimental setup which consisted of a single-sided, single-cell drift chamber. We also used a plastic scintillator paddle, standard P-10 gas mixture (90% Ar, 10% CH4) and a collimated 90Sr source. During the laboratory session the students performend measurements of the following quantities: a) drift velocities and their variations as function of the drift field; b) gas gains and c) diffusion of electrons as they drifted in the gas

  12. The knife-edge chamber

    International Nuclear Information System (INIS)

    Barasch, E.F.; Bowcock, T.J.V.; Drew, M.M.; Elliott, S.M.; Lee, B.; McIntyre, P.M.; Pang, Y.; Popovic, M.; Smith, D.D.

    1990-01-01

    In this paper the design for a new technology for particle track detectors is described. Using standard IC fabrication techniques, a pattern of microscopic knife edges and field-shaping electrodes can be fabricated on a silicon substrate. The knife-edge chamber uniquely offers attractive performance for the track chambers required for SSC detectors, for which no present technology is yet satisfactory. Its features include: excellent radiation hardness (10 Mrad), excellent spatial resolution (∼20 μm), short drift time (20 ns), and large pulse height (1 mV)

  13. Ionization chambers for LET determination

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    2010-01-01

    resolution and high sensitivity are necessary. For exact dosimetry which is done using ionization chambers (ICs), the recombination taking place in the IC has to be known. Up to now, recombination is corrected phenomenologically and more practical approaches are currently used. Nevertheless, Jaff´e's theory...... of columnar recombination was designed to model the detector efficiency of an ionization chamber. Here, we have shown that despite the approximations and simplification made, the theory is correct for the LETs typically found in clinical radiotherapy employing particles from protons to carbon ions...

  14. The Mark III vertex chamber

    International Nuclear Information System (INIS)

    Adler, J.; Bolton, T.; Bunnell, K.

    1987-07-01

    The design and construction of the new Mark III vertex chamber is described. Initial tests with cosmic rays prove the ability of track reconstruction and yield triplet resolutions below 50 μm at 3 atm using argon/ethane (50:50). Also performed are studies using a prototype of a pressurized wire vertex chamber with 8 mm diameter straw geometry. Spatial resolution of 35mm was obtained using dimethyl ether (DME) at 1 atm and 30 μm using argon/ethane (50/50 mixture) at 4 atm. Preliminary studies indicate the DME to adversely affect such materials as aluminized Mylar and Delrin

  15. Testing an hydrogen streamer chamber

    CERN Multimedia

    1975-01-01

    A 2x10 cm gap streamer chamber, 35x55 cm2 in surface, was built and tested at CERN. Good tracks of cosmic rays were obtained up to atmospheric pressure, see F. Rohrbach et al, CERN-LAL (Orsay) Collaboration, Nucl. Instr. Methods 141 (1977) 229. Michel Cathenoz stand on the center.

  16. Bubble chamber: colour enhanced tracks

    CERN Multimedia

    1998-01-01

    This artistically-enhanced image of real particle tracks was produced in the Big European Bubble Chamber (BEBC). Liquid hydrogen is used to create bubbles along the paths of the particles as a piston expands the medium. A magnetic field is produced in the detector causing the particles to travel in spirals, allowing charge and momentum to be measured.

  17. Hydrostatic Hyperbaric Chamber Ventilation System

    Science.gov (United States)

    Sarguisingh, Miriam J.

    2012-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy (HBOT) available in the developing world for the treatment of a variety of medical conditions. Specifically, HBOT is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. HBOT is simply too expensive and too dangerous to implement in the developing world using standard equipment. The HHC technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system to provide controlled pressurization and adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the patient and operating personnel, and physiological considerations. The simple schematic, comprised of easily acquired commercial hardware

  18. Investigation of (Y,Gd)Ba2Cu3O7-x grown by MOCVD on a simplified IBAD MgO template

    International Nuclear Information System (INIS)

    Stan, L; Holesinger, T G; Maiorov, B; Civale, L; DePaula, R F; Jia, Q X; Chen, Y; Xiong, X; Selvamanickam, V

    2010-01-01

    We have used an ion beam sputtered Y 2 O 3 -Al 2 O 3 (YALO) composite to simplify the architecture of high temperature superconducting (HTS) coated conductors (CCs) based on a IBAD MgO template. By implementing YALO, we have reduced the total non-superconducting layers between the polycrystalline metal substrate and the superconducting film from five (the standard architecture) to four. Well textured (Y,Gd)Ba 2 Cu 3 O 7-x ((Y, Gd)BCO) films have been successfully grown by MOCVD on this simplified template. The microstructural characterization revealed that all layers are continuous and uniform with sharp and clean interfaces. Additionally, the YALO maintained its amorphous nature after the deposition of the superconductive layer, which is a plus in terms of its efficiency as a diffusion barrier. The achievement of a self-field critical current of 230 A cm -1 at 75.5 K is another proof of the effectiveness of YALO as a diffusion barrier and nucleation seed for the MgO. The transport properties under an applied magnetic field of MOCVD grown (Y, Gd)BCO on LMO buffered MgO/YALO/Ni-alloy are comparable with those of (Y, Gd)BCO on a standard architecture, thus demonstrating good compatibility between the simplified template with the MOCVD grown (Y, Gd)BCO. The use of a single composite YALO layer instead of individual layers of Y 2 O 3 and Al 2 O 3 for the large scale fabrication of HTS CCs based on IBAD MgO provides advantages such as potentially reduced cost due to the reduced number of fabrication steps.

  19. Investigation of (Y,Gd)Ba{sub 2}Cu{sub 3}O{sub 7-x} grown by MOCVD on a simplified IBAD MgO template

    Energy Technology Data Exchange (ETDEWEB)

    Stan, L; Holesinger, T G; Maiorov, B; Civale, L; DePaula, R F; Jia, Q X [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States); Chen, Y [SuperPower, Incorporated, 450 Duane Avenue, Schenectady, NY 12304 (United States); Xiong, X; Selvamanickam, V [Mechanical Engineering Department, University of Houston, Houston, TX 77204-4006 (United States)

    2010-01-15

    We have used an ion beam sputtered Y{sub 2}O{sub 3}-Al{sub 2}O{sub 3} (YALO) composite to simplify the architecture of high temperature superconducting (HTS) coated conductors (CCs) based on a IBAD MgO template. By implementing YALO, we have reduced the total non-superconducting layers between the polycrystalline metal substrate and the superconducting film from five (the standard architecture) to four. Well textured (Y,Gd)Ba{sub 2}Cu{sub 3}O{sub 7-x} ((Y, Gd)BCO) films have been successfully grown by MOCVD on this simplified template. The microstructural characterization revealed that all layers are continuous and uniform with sharp and clean interfaces. Additionally, the YALO maintained its amorphous nature after the deposition of the superconductive layer, which is a plus in terms of its efficiency as a diffusion barrier. The achievement of a self-field critical current of 230 A cm{sup -1} at 75.5 K is another proof of the effectiveness of YALO as a diffusion barrier and nucleation seed for the MgO. The transport properties under an applied magnetic field of MOCVD grown (Y, Gd)BCO on LMO buffered MgO/YALO/Ni-alloy are comparable with those of (Y, Gd)BCO on a standard architecture, thus demonstrating good compatibility between the simplified template with the MOCVD grown (Y, Gd)BCO. The use of a single composite YALO layer instead of individual layers of Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} for the large scale fabrication of HTS CCs based on IBAD MgO provides advantages such as potentially reduced cost due to the reduced number of fabrication steps.

  20. Synthesis, characterization, and thermal properties of homoleptic rare-earth guanidinates: promising precursors for MOCVD and ALD of rare-earth oxide thin films.

    Science.gov (United States)

    Milanov, Andrian P; Fischer, Roland A; Devi, Anjana

    2008-12-01

    Eight novel homoleptic tris-guanidinato complexes M[(N(i)Pr)(2)CNR(2)](3) [M = Y (a), Gd (b), Dy (c) and R = Me (1), Et (2), (i)Pr (3)] have been synthesized and characterized by NMR, CHN-analysis, mass spectrometry and infrared spectroscopy. Single crystal structure analysis revealed that all the compounds are monomers with the rare-earth metal center coordinated to six nitrogen atoms of the three chelating guanidinato ligands in a distorted trigonal prism geometry. With the use of TGA/DTA and isothermal TGA analysis, the thermal characteristics of all the complexes were studied in detail to evaluate their suitability as precursors for thin film deposition by MOCVD and ALD. The (i)Pr-Me(2)N-guanidinates of Y, Gd and Dy (1a-c) showed excellent thermal characteristics in terms of thermal stability and volatility. Additionally, the thermal stability of the (i)Pr-Me(2)N-guanidinates of Y and Dy (1a, c) in solution was investigated by carrying out NMR decomposition experiments and both the compounds were found to be remarkably stable. All these studies indicate that (i)Pr-Me(2)N-guanidinates of Y, Gd and Dy (1a-c) have the prerequisites for MOCVD and ALD applications which were confirmed by the successful deposition of Gd(2)O(3) and Dy(2)O(3) thin films on Si(100) substrates. The MOCVD grown films of Gd(2)O(3) and Dy(2)O(3) were highly oriented in the cubic phase, while the ALD grown films were amorphous.

  1. Establishment of a radon test chamber

    International Nuclear Information System (INIS)

    Chen Chingjiang; Liu Chichang; Lin Yuming

    1993-01-01

    A walk-in type radon test chamber of 23 m 3 has been built for testing and calibration of radon measurement instruments. The environmental conditions of the test chamber can be varied within a wide range of values. The design objectives specification, monitoring instruments and testing results of this chamber are discussed. This test chamber is available for domestic radon researchers and its accuracy can be traced to the international standard. A routine intercomparison study will be held annually by using this chamber. Other tests like radon progeny and thoron standard may also be performed in this chamber. (1 fig.)

  2. Pencil-shaped radiation detection ionization chamber

    International Nuclear Information System (INIS)

    Suzuki, A.

    1979-01-01

    A radiation detection ionization chamber is described. It consists of an elongated cylindrical pencil-shaped tubing forming an outer wall of the chamber and a center electrode disposed along the major axis of the tubing. The length of the chamber is substantially greater than the diameter. A cable connecting portion at one end of the chamber is provided for connecting the chamber to a triaxial cable. An end support portion is connected at the other end of the chamber for supporting and tensioning the center electrode. 17 claims

  3. Structural and optical properties of GaN thin films grown on Al2O3 substrates by MOCVD at different reactor pressures

    International Nuclear Information System (INIS)

    Guillén-Cervantes, A.; Rivera-Álvarez, Z.; López-López, M.; Ponce-Pedraza, A.; Guarneros, C.; Sánchez-Reséndiz, V.M.

    2011-01-01

    GaN thin films grown by MOCVD on (0 0 0 1) Al 2 O 3 substrates at different growth pressures were characterized by field-emission scanning electron microscopy, atomic force microscopy, micro-Raman, and photoluminescence at room temperature. It was found that there is an optimum pressure of 76 Torr at which the structural and optical properties of the GaN samples are superior. On the other hand samples grown at higher pressure exhibited hexagonal surface pits and surface spirals. The results showed that the growth pressure strongly influences the morphology, and significantly affects the structural and optical properties of the GaN epilayers.

  4. Optimization of Strontium Titanate (SrTiO3) Thin Films Fabricated by Metal Organic Chemical Vapor Deposition (MOCVD) for Microwave-Tunable Devices

    Science.gov (United States)

    2015-12-01

    characteristics . Our work demonstrated a significant increase in the quality of the optimized STO thin films with respect to STO films grown prior to the MOCVD...deposition, the reactor and precursor supply lines were baked at 250 °C for at least 4 h with a total Ar carrier gas flow of 5,000 sccm to remove...S. Thermal leakage characteristics of Pt/SrTiO3/Pt structures. Journal of Vacuum Science & Technology A. 2008;26:555–557. 31. Ryen L, Olsson E

  5. Buffer free MOCVD growth of GaN on 4H-SiC: Effect of substrate treatments and UV-photoirradiation

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria; Giangregorio, Maria M.; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Kim, Tong-Ho; Choi, Soojeong; Brown, April [Department of Electrical and Computer Engineering, Duke University, Durham, NC 27709 (United States)

    2006-05-15

    GaN has been grown directly on the Si-face 4H-SiC(0001) substrates using remote plasma-assisted metalorganic chemical vapour deposition (RP-MOCVD) with UV-light irradiation. The effects of substrate pre-treatments and UV-photoirradiation of the growth surface on GaN nucleation and film morphology are investigated. Optical data from spectroscopic ellipsometry measurements and morphological data show an improvement in nucleation and material quality with UV-light irradiation. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Contribution towards ALD and MOCVD of rare earth oxides and hafnium oxide. From precursor evaluation to process development and thin film characterization

    International Nuclear Information System (INIS)

    Xu, Ke

    2013-01-01

    This PhD thesis is consisted of two major parts: precursor development for ALD and MOCVD applications as well as thin film deposition using ALD and MOCVD with self developed precursors. The first part of this work presents the synthesis, characterization and detailed thermal property investigations of different novel group IV and rare earth precursor classes (guandinate, guanidine and ketoiminate). The second part of this work presents the ALD and MOCVD depositions using various guanidinate precursors for forming corresponding metal oxide thin films. The overall motivation of this work is to fulfill the lack of precursors of rare earth and group IV elements for ALD and MOCVD applications that satisfy the stringent requirements for the modern microelectronic and optoelectronic technologies. The aspect of the precursor engineering part is focusing on influence of ligand sphere on precursors' chemical and thermal properties. In this way, we successfully introduced guanidine and ketoiminate as potential ligands for the precursor design. The thin film deposition part of this work is ALD of rare earth oxides and group IV oxides employing literature known compounds which were previously developed in our research group. The main focus was dedicated to the process optimization, the characterization of the structural, morphological, compositional and functional properties of the deposited thin films. Certain film properties were discussed comparatively with the corresponding thin films deposited with literature known precursors. It was already shortly demonstrated in Chapter 6 that the guanidine ligand showed potential interest as suitable ligand for precursor engineering. This titan guanidine precursor [Ti(NC(NMe 2 ) 2 ) 4 ] (GD1) possesses higher thermal stability compared to its parent amide, [Ti(NMe 2 ) 4 ], while reactivity against water is not significantly affected. It could be very interesting to transfer this ligand for the precursor development of rare earth

  7. Properties of recent IBAD-MOCVD coated conductors relevant to their high field, low temperature magnet use

    International Nuclear Information System (INIS)

    Braccini, V; Xu, A; Jaroszynski, J; Xin, Y; Larbalestier, D C; Chen, Y; Carota, G; Dackow, J; Kesgin, I; Yao, Y; Guevara, A; Shi, T; Selvamanickam, V

    2011-01-01

    BaZrO 3 (BZO) nanorods are now incorporated into production IBAD-MOCVD coated conductors. Here we compare several examples of both BZO-free and BZO-containing coated conductors using critical current (I c ) characterizations at 4.2 K over their full angular range up to fields of 31 T. We find that BZO nanorods do not produce any c-axis distortion of the critical current density J c (θ) curve at 4.2 K at any field, but also that pinning is nevertheless strongly enhanced compared to the non-BZO conductors. We also find that the tendency of the ab-plane J c (θ) peak to become cusp-like is moderated by BZO and we define a new figure of merit that may be helpful for magnet design-the OADI (off-axis double I c ), which clearly shows that BZO broadens the ab-plane peak and thus raises J c 5 0 -30 0 away from the tape plane, where the most critical approach to I c occurs in many coil designs. We describe some experimental procedures that may make critical current I c tests of these very high current tapes more tractable at 4.2 K, where I c exceeds 1000 A even for 4 mm wide tape with only 1 μm thickness of superconductor. A positive conclusion is that BZO is very beneficial for the J c characteristics at 4.2 K, just as it is at higher temperatures, where the correlated c-axis pinning effects of the nanorods are much more obvious.

  8. Properties of recent IBAD-MOCVD coated conductors relevant to their high field, low temperature magnet use

    Energy Technology Data Exchange (ETDEWEB)

    Braccini, V; Xu, A; Jaroszynski, J; Xin, Y; Larbalestier, D C [Applied Superconductivity Center, National High Magnetic Field Laboratory, 2031 E Paul Dirac Drive, Tallahassee, FL 32310 (United States); Chen, Y; Carota, G; Dackow, J [SuperPower Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States); Kesgin, I; Yao, Y; Guevara, A; Shi, T; Selvamanickam, V, E-mail: braccini@asc.magnet.fsu.edu [Department of Mechanical Engineering and the Texas Center for Superconductivity at the University of Houston, 4800 Calhoun Road, Houston, TX 77204 (United States)

    2011-03-15

    BaZrO{sub 3} (BZO) nanorods are now incorporated into production IBAD-MOCVD coated conductors. Here we compare several examples of both BZO-free and BZO-containing coated conductors using critical current (I{sub c}) characterizations at 4.2 K over their full angular range up to fields of 31 T. We find that BZO nanorods do not produce any c-axis distortion of the critical current density J{sub c}({theta}) curve at 4.2 K at any field, but also that pinning is nevertheless strongly enhanced compared to the non-BZO conductors. We also find that the tendency of the ab-plane J{sub c}({theta}) peak to become cusp-like is moderated by BZO and we define a new figure of merit that may be helpful for magnet design-the OADI (off-axis double I{sub c}), which clearly shows that BZO broadens the ab-plane peak and thus raises J{sub c} 5{sup 0}-30{sup 0} away from the tape plane, where the most critical approach to I{sub c} occurs in many coil designs. We describe some experimental procedures that may make critical current I{sub c} tests of these very high current tapes more tractable at 4.2 K, where I{sub c} exceeds 1000 A even for 4 mm wide tape with only 1 {mu}m thickness of superconductor. A positive conclusion is that BZO is very beneficial for the J{sub c} characteristics at 4.2 K, just as it is at higher temperatures, where the correlated c-axis pinning effects of the nanorods are much more obvious.

  9. X-ray diffraction study of A- plane non-polar InN epilayer grown by MOCVD

    Science.gov (United States)

    Moret, Matthieu; Briot, Olivier; Gil, Bernard

    2015-03-01

    Strong polarisation-induced electric fields in C-plane oriented nitrides semiconductor layers reduce the performance of devices. Eliminating the polarization fields can be achieved by growing nitrides along non polar direction. We have grown non polar A-plane oriented InN on R-plane (1‾102) nitridated sapphire substrate by MOCVD. We have studied the structural anisotropy observed in these layers by analyzing High Resolution XRay Diffraction rocking curve (RC) experiments as a function of the in-plane beam orientation. A-plane InN epilayer have a unique epitaxial relationship on R-Plane sapphire and show a strong structural anisotropy. Full width at half maximum (FWHM) of the InN(11‾20) XRD RC values are contained between 44 and 81 Arcmin. FWHM is smaller when the diffraction occurs along the [0001] and the largest FWHM values, of the (11‾20) RC, are obtained when the diffraction occurs along the [1‾100] in-plane direction. Atomic Force Microscopy imaging revealed morphologies with well organized crystallites. The grains are structured along a unique crystallographic orientation of InN, leading to larger domains in this direction. This structural anisotropy can be, in first approximation, attributed to the difference in the domain sizes observed. XRD reciprocal space mappings (RSM) were performed in asymmetrical configuration on (13‾40) and (2‾202) diffraction plane. RSM are measured with a beam orientation corresponding to a maximal and a minimal width of the (11‾20) Rocking curves, respectively. A simple theoretical model is exposed to interpret the RSM. We concluded that the dominant contribution to the anisotropy is due to the scattering coherence length anisotropy present in our samples.

  10. Mocvd Growth of Group-III Nitrides on Silicon Carbide: From Thin Films to Atomically Thin Layers

    Science.gov (United States)

    Al Balushi, Zakaria Y.

    Group-III nitride semiconductors (AlN, GaN, InN and their alloys) are considered one of the most important class of materials for electronic and optoelectronic devices. This is not limited to the blue light-emitting diode (LED) used for efficient solid-state lighting, but other applications as well, such as solar cells, radar and a variety of high frequency power electronics, which are all prime examples of the technological importance of nitride based wide bandgap semiconductors in our daily lives. The goal of this dissertation work was to explore and establish new growth schemes to improve the structural and optical properties of thick to atomically thin films of group-III nitrides grown by metalorganic chemical vapor deposition (MOCVD) on SiC substrates for future novel devices. The first research focus of this dissertation was on the growth of indium gallium nitride (InGaN). This wide bandgap semiconductor has attracted much research attention as an active layer in LEDs and recently as an absorber material for solar cells. InGaN has superior material properties for solar cells due to its wavelength absorption tunability that nearly covers the entire solar spectrum. This can be achieved by controlling the indium content in thick grown material. Thick InGaN films are also of interest as strain reducing based layers for deep-green and red light emitters. The growth of thick films of InGaN is, however, hindered by several combined problems. This includes poor incorporation of indium in alloys, high density of structural and morphological defects, as well as challenges associated with the segregation of indium in thick films. Overcoming some of these material challenges is essential in order integrate thick InGaN films into future optoelectronics. Therefore, this dissertation research investigated the growth mechanism of InGaN layers grown in the N-polar direction by MOCVD as a route to improve the structural and optical properties of thick InGaN films. The growth

  11. Development of multiwire proportional chambers

    CERN Multimedia

    Charpak, G

    1969-01-01

    It has happened quite often in the history of science that theoreticians, confronted with some major difficulty, have successfully gone back thirty years to look at ideas that had then been thrown overboard. But it is rare that experimentalists go back thirty years to look again at equipment which had become out-dated. This is what Charpak and his colleagues did to emerge with the 'multiwire proportional chamber' which has several new features making it a very useful addition to the armoury of particle detectors. In the 1930s, ion-chambers, Geiger- Muller counters and proportional counters, were vital pieces of equipment in nuclear physics research. Other types of detectors have since largely replaced them but now the proportional counter, in new array, is making a comeback.

  12. LEP vacuum chamber, early prototype

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The structure of LEP, with long bending magnets and little access to the vacuum chamber between them, required distributed pumping. This is an early prototype for the LEP vacuum chamber, made from extruded aluminium. The main opening is for the beam. The small channel to the right is for cooling water, to carry away the heat deposited by the synchroton radiation from the beam. The 4 slots in the channel to the left house the strip-shaped ion-getter pumps (see 7810255). The ion-getter pumps depended on the magnetic field of the bending magnets, too low at injection energy for the pumps to function well. Also, a different design was required outside the bending magnets. This design was therefore abandoned, in favour of a thermal getter pump (see 8301153 and 8305170).

  13. Single wire drift chamber design

    International Nuclear Information System (INIS)

    Krider, J.

    1987-01-01

    This report summarizes the design and prototype tests of single wire drift chambers to be used in Fermilab test beam lines. The goal is to build simple, reliable detectors which require a minimum of electronics. Spatial resolution should match the 300 μm rms resolution of the 1 mm proportional chambers that they will replace. The detectors will be used in beams with particle rates up to 20 KHz. Single track efficiency should be at least 99%. The first application will be in the MT beamline, which has been designed for calibration of CDF detectors. A set of four x-y modules will be used to track and measure the momentum of beam particles

  14. MPS II drift chamber system

    International Nuclear Information System (INIS)

    Platner, E.D.

    1982-01-01

    The MPS II detectors are narrow drift space chambers designed for high position resolution in a magnetic field and in a very high particle flux environment. Central to this implementation was the development of 3 multi-channel custom IC's and one multi-channel hybrid. The system is deadtimeless and requires no corrections on an anode-to-anode basis. Operational experience and relevance to ISABELLE detectors is discussed

  15. GBO RF Anechoic Chamber & Antenna Test Range

    Data.gov (United States)

    Federal Laboratory Consortium — A shielded anechoic chamber measuring 15 by 15 by 37 feet is located in the Jansky Laboratory at Green Bank. This chamber has been outfitted as a far-field antenna...

  16. The KEK 1 m hydrogen bubble chamber

    International Nuclear Information System (INIS)

    Doi, Yoshikuni; Araoka, Osamu; Hayashi, Kohei; Hayashi, Yoshio; Hirabayashi, Hiromi.

    1978-03-01

    A medium size hydrogen bubble chamber has been constructed at the National Laboratory for High Energy Physics, KEK. The bubble chamber has been designed to be operated with a maximum rate of three times per half a second in every two second repetition time of the accelerator, by utilizing a hydraulic expansion system. The bubble chamber has a one meter diameter and a visible volume of about 280 l. A three-view stereo camera system is used for taking photographic pictures of the chamber. A 2 MW bubble chamber magnet is constructed. The main part of the bubble chamber vessel is supported by the magnet yoke. The magnet gives a maximum field of 18.4 kG at the centre of the fiducial volume of the chamber. The overall system of the KEK 1 m hydrogen bubble chamber facility is described in some detail. Some operational characteristics of the facility are also reported. (auth.)

  17. Dorsal skinfold chamber models in mice

    Directory of Open Access Journals (Sweden)

    Schreiter, Jeannine

    2017-07-01

    Full Text Available Background/purpose: The use of dorsal skinfold chamber models has substantially improved the understanding of micro-vascularisation in pathophysiology over the last eight decades. It allows pathophysiological studies of vascularisation over a continuous period of time. The dorsal skinfold chamber is an attractive technique for monitoring the vascularisation of autologous or allogenic transplants, wound healing, tumorigenesis and compatibility of biomaterial implants. To further reduce the animals’ discomfort while carrying the dorsal skinfold chamber, we developed a smaller chamber (the Leipzig Dorsal Skinfold Chamber and summarized the commercial available chamber models. In addition we compared our model to the common chamber. Methods: The Leipzig Dorsal Skinfold Chamber was applied to female mice with a mean weight of 22 g. Angiogenesis within the dorsal skinfold chamber was evaluated after injection of fluorescein isothiocyanate dextran with an Axio Scope microscope. The mean vessel density within the dorsal skinfold chamber was assessed over a period of 21 days at five different time points. The gained data were compared to previous results using a bigger and heavier dorsal skinfold model in mice. A PubMed and a patent search were performed and all papers related to “dorsal skinfold chamber” from 1 of January 2006 to 31 of December 2015 were evaluated regarding the dorsal skinfold chamber models and their technical improvements. The main models are described and compared to our titanium Leipzig Dorsal Skinfold Chamber model.Results: The Leipzig Dorsal Skinfold Chamber fulfils all requirements of continuous models known from previous chamber models while reducing irritation to the mice. Five different chamber models have been identified showing substantial regional diversity. The newly elaborated titanium dorsal skinfold chamber may replace the pre-existing titanium chamber model used in Germany so far, as it is smaller and lighter

  18. Growing and analyzing biofilms in flow chambers

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2011-01-01

    This unit describes the setup of flow chamber systems for the study of microbial biofilms, and methods for the analysis of structural biofilm formation. Use of flow chambers allows direct microscopic investigation of biofilm formation. The biofilms in flow chambers develop under hydrodynamic......, and disassembly and cleaning of the system. In addition, embedding and fluorescent in situ hybridization of flow chamber-grown biofilms are addressed....

  19. Impedances in lossy elliptical vacuum chambers

    International Nuclear Information System (INIS)

    Piwinski, A.

    1994-04-01

    The wake fields of a bunched beam caused by the resistivity of the chamber walls are investigated for a vacuum chamber with elliptical cross section. The longitudinal and transverse impedances are calculated for arbitrary energies and for an arbitrary position of the beam in the chamber. (orig.)

  20. Wire chamber degradation at the Argonne ZGS

    International Nuclear Information System (INIS)

    Haberichter, W.; Spinka, H.

    1986-01-01

    Experience with multiwire proportional chambers at high rates at the Argonne Zero Gradient Synchrotron is described. A buildup of silicon on the sense wires was observed where the beam passed through the chamber. Analysis of the chamber gas indicated that the density of silicon was probably less than 10 ppM

  1. Simple Cloud Chambers Using Gel Ice Packs

    Science.gov (United States)

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  2. Sensitivity of gaseous xenon ionisation chambers (1961)

    International Nuclear Information System (INIS)

    Schuhl, C.

    1960-01-01

    It seems advantageous to fill an ionization chamber with xenon gas when this chamber is used for measuring a low intensity and high energy electron or positron beam, or monitoring a gamma beam. In the study of 5 to 50 MeV electrons, xenon allows for the ionization chamber yield, an improvement of a factor 4,5. (author) [fr

  3. Proportional chambers and multiwire drift chambers at high rates

    International Nuclear Information System (INIS)

    Walenta, A.H.

    1977-01-01

    The high event and particle rates expected for ISABELLE intersecting storage rings raise the question whether PWC's and drift chambers, now widely in use in experiments, still can operate under such conditions. Various effects depend on the number of avalanches produced per length of wire N and the size of the avalanche Q, i.e., on the number of positive ions created in an avalanche. Therefore the important parameter for the following discussion is the product QN. The minimum Q is determined by the type and noise level of preamplifiers used. Examples are given for a typical low noise amplifier as well as for a typical integrated ''cheap'' amplifier. The rate/wire length N depends on the chamber arrangement, wire spacing, etc. In multiwire drift chambers, a single wire shows space-charge effects reducing the pulse height by 1% at a rate of N = 7 x 10 3 mm -1 sec -1 . At a rate of N approximately equal to 10 5 mm -1 sec -1 an efficiency loss of the order of 1% was noticed. The aging effect due to deposits on the anode wire can be reduced using low noise amplifiers and low gas gain to such an extent that a lifetime of about half a year at ISABELLE can be expected. The use of conventional cheap preamplifiers will result in a typical lifetime of about 30 days. Improvements are probable. The time resolution of Δt/sub r/ = 4 nsec fwhm seems adequate for event rates of 10 7 sec -1 . The memory time Δt/sub m/ greater than or equal to 100 nsec may cause serious problems for pattern recognition depending on layout and readout. The use of induced signals on cathode pads, thus reading out shorter parts of the wire, can solve the problem

  4. Structural and superconducting properties of (Y,Gd)Ba2Cu3O7-δ grown by MOCVD on samarium zirconate buffered IBAD-MgO

    International Nuclear Information System (INIS)

    Stan, L; Holesinger, T G; Maiorov, B; Feldmann, D M; Usov, I O; DePaula, R F; Civale, L; Foltyn, S R; Jia, Q X; Chen, Y; Selvamanickam, V

    2008-01-01

    Textured samarium zirconate (SZO) films have been grown by reactive cosputtering directly on an ion beam assisted deposited (IBAD) MgO template, without an intermediate homoepitaxial MgO layer. The subsequent growth of 0.9 μm thick (Y,Gd)Ba 2 Cu 3 O 7-δ ((Y, Gd)BCO) films by metal organic chemical vapor deposition (MOCVD) yielded well textured films with a full width at half maximum of 1.9 0 and 3.4 0 for the out-of-plane and in-plane texture, respectively. Microstructural characterizations of the SZO buffered samples revealed clean interfaces. This indicates that the SZO not only provides a diffusion barrier, but also functions as a buffer for (Y, Gd)BCO grown by MOCVD. The achievement of self-field critical current densities (J c ) of over 2 MA cm -2 at 75.5 K is another proof of the effectiveness of SZO as a buffer on the IBAD-MgO template. The in-field measurements revealed an asymmetric angular dependence of J c and a shift of the ab-plane maxima due to the tilted nature of the template and (Y,Gd) 2 O 3 particles existing in the (Y, Gd)BCO matrix. The present results are especially important because they demonstrate that high temperature superconducting coated conductors with simpler architecture can be fabricated using commercially viable processes

  5. MOCVD with gas phase composition control for the growth of high quality YBa2Cu3O7-x thin films for microwave applications

    International Nuclear Information System (INIS)

    Musolf, J.

    1997-01-01

    The MOCVD growth technique has demonstrated YBa 2 Cu 3 O 7-x thin films with adequate transport properties (T c >90 K, J c > x 10 6 A cm -2 , R s p /C v ) and the species concentrations. After determining the correlation between gas phase and solid phase composition this technique enables the reproducible growth of YBa 2 Cu 3 O 7-x thin films by MOCVD with composition very close to 123. Further refinement of growth temperature, total pressure, oxygen partial pressure and total flow rates has produced films with excellent properties. Smooth surface morphology with a low density of outgrowths ( 4 cm -2 ), narrow XRD rocking curve peaks FWHM c =92 K), low surface resistance (device R s <350 μΩ at 77 K, 10 GHz) have been demonstrated using this growth concept. Special focus was placed on optimization of the performance of a microwave test device which serves as a process control monitor of the suitability of these films for passive microwave applications. (orig.)

  6. Preparation of Anatase TiO2 Thin Films with (OiPr)2Ti(CH3COCHCONEt2)2 Precursor by MOCVD

    International Nuclear Information System (INIS)

    Bae, Byoung Jae; Seo, Won Seok; Miah, Arzu; Park, Joon T.; Lee, Kwang Yeol; Kim, Keun Chong

    2004-01-01

    The reaction of titanium tetraisopropoxide with 2 equiv of N,N-diethyl acetoacetamide affords Ti(O i Pr) 2 (CH 3 COCHCONEt 2 ) 2 (1) as colorless crystals in 80% yield. Compound 1 is characterized by spectroscopic (Mass and 1 H/ 13 C NMR) and microanalytical data. Molecular structure of 1 has been determined by a single crystal X-ray diffraction study, which reveals that it is a monomeric, cis-diisopropoxide and contains a six coordinate Ti(IV) atom with a cis(CONEt 2 ), trans(COCH 3 ) configuration (1a) in a distorted octahedral environment. Variable-temperature 1 H NMR spectra of 1 indicate that it exists as an equilibrium mixture of cis, trans (1a) and cis, cis (1b) isomers in a 0.57 : 0.43 ratio at -20 .deg. C in toluene-d 8 solution. Thermal properties of 1 as a MOCVD precursor for titanium dioxide films have been evaluated by thermal gravimetric analysis and vapor pressure measurement. Thin films of pure anatase titanium dioxide (after annealing above 500 .deg. C under oxygen) have been grown on Si(100) with precursor 1 in the substrate temperature range of 350- 500 .deg. C using a bubbler-based MOCVD method

  7. Preparation of SmBCO layer for the surface optimization of GdYBCO film by MOCVD process based on a simple self-heating technology

    Science.gov (United States)

    Zhao, Ruipeng; Zhang, Fei; Liu, Qing; Xia, Yudong; Lu, Yuming; Cai, Chuanbing; Tao, Bowan; Li, Yanrong

    2018-07-01

    The MOCVD process was adopted to grow the REBa2Cu3O7-δ ((REBCO), RE = rare earth elements) films on the LaMnO3 (LMO) templates. Meanwhile, the LMO-template tapes are heated by the joule effect after applying a heating current through the Hastelloy metal substrates. The surface of GdYBCO films prepared by MOCVD method is prone to form outgrowths. So the surface morphology of GdYBCO film is optimized by depositing the SmBCO layer, which is an important process method for the preparation of high-quality multilayer REBCO films. At last, the GdYBCO/SmBCO/GdYBCO multilayer films were successfully prepared on the LMO templates based on the simple self-heating method. It is demonstrated that the GdYBCO surface was well improved by the characterization analysis of scanning electron microscope. And the Δω of REBCO (005) and Δφ of REBCO (103), which were performed by an X-ray diffraction system, are respectively 1.3° and 3.3° What's more, the critical current density (Jc) has been more than 3 MA/cm2 (77 K, 0 T) and the critical current (Ic) basically shows a trend of good linear increase with the increase of the number of REBCO layers.

  8. Study on the optimization of the deposition rate of planetary GaN-MOCVD films based on CFD simulation and the corresponding surface model

    Science.gov (United States)

    Li, Jian; Fei, Ze-yuan; Xu, Yi-feng; Wang, Jie; Fan, Bing-feng; Ma, Xue-jin; Wang, Gang

    2018-02-01

    Metal-organic chemical vapour deposition (MOCVD) is a key technique for fabricating GaN thin film structures for light-emitting and semiconductor laser diodes. Film uniformity is an important index to measure equipment performance and chip processes. This paper introduces a method to improve the quality of thin films by optimizing the rotation speed of different substrates of a model consisting of a planetary with seven 6-inch wafers for the planetary GaN-MOCVD. A numerical solution to the transient state at low pressure is obtained using computational fluid dynamics. To evaluate the role of the different zone speeds on the growth uniformity, single factor analysis is introduced. The results show that the growth rate and uniformity are strongly related to the rotational speed. Next, a response surface model was constructed by using the variables and the corresponding simulation results. The optimized combination of the matching of different speeds is also proposed as a useful reference for applications in industry, obtained by a response surface model and genetic algorithm with a balance between the growth rate and the growth uniformity. This method can save time, and the optimization can obtain the most uniform and highest thin film quality.

  9. Impact of oxygen precursor flow on the forward bias behavior of MOCVD-Al2O3 dielectrics grown on GaN

    Science.gov (United States)

    Chan, Silvia H.; Bisi, Davide; Liu, Xiang; Yeluri, Ramya; Tahhan, Maher; Keller, Stacia; DenBaars, Steven P.; Meneghini, Matteo; Mishra, Umesh K.

    2017-11-01

    This paper investigates the effects of the oxygen precursor flow supplied during metalorganic chemical vapor deposition (MOCVD) of Al2O3 films on the forward bias behavior of Al2O3/GaN metal-oxide-semiconductor capacitors. The low oxygen flow (100 sccm) delivered during the in situ growth of Al2O3 on GaN resulted in films that exhibited a stable capacitance under forward stress, a lower density of stress-generated negative fixed charges, and a higher dielectric breakdown strength compared to Al2O3 films grown under high oxygen flow (480 sccm). The low oxygen grown Al2O3 dielectrics exhibited lower gate current transients in stress/recovery measurements, providing evidence of a reduced density of trap states near the GaN conduction band and an enhanced robustness under accumulated gate stress. This work reveals oxygen flow variance in MOCVD to be a strategy for controlling the dielectric properties and performance.

  10. A mathematical model of aerosol holding chambers

    DEFF Research Database (Denmark)

    Zak, M; Madsen, J; Berg, E

    1999-01-01

    A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol...... in the chamber with time. Four different spacers were connected via filters to a mechanical lung model, and aerosol delivery during "breathing" was determined from drug recovery from the filters. The formula correctly predicted the delivery of budesonide aerosol from the AeroChamber (Trudell Medical, London...

  11. Proceedings of workshop on streamer chamber

    International Nuclear Information System (INIS)

    Itoh, Hidihiko; Takahashi, Kaoru; Hirose, Tachishige; Masaike, Akira

    1978-08-01

    For high accuracy observation of multiple-body reactions, a vertex detector of high efficiency is essential. A bubble chamber, though excellent for tracks detection, is problematic in statistics accuracy. The vertex detector with a wire chamber, while better in this respect, difficult in multiple-particle detection etc. The workshop has had several meetings on a streamer chamber as a detector combining features of both bubble chamber and counter, with emphasis on tracks observation in avalanche mode and recordings not using films. Contents are on streamer chamber gas, analytical photography, data processing, simulation program, etc. (Mori, K.)

  12. Chamber propagation physics for heavy ion fusion

    International Nuclear Information System (INIS)

    Callahan, D.A.

    1995-01-01

    Chamber transport is an important area of study for heavy ion fusion. Final focus and chamber-transport are high leverage areas providing opportunities to significantly decrease the cost of electricity from a heavy ion fusion power plant. Chamber transport in two basic regimes is under consideration. In the low chamber density regime (approx-lt 0.003 torr), ballistic or nearly-ballistic transport is used. Partial beam neutralization has been studied to offset the effects of beam stripping. In the high chamber density regime (approx-gt.1 torr), two transport modes (pinched transport and channel transport) are under investigation. Both involve focusing the beam outside the chamber then transporting it at small radius (∼ 2 mm). Both high chamber density modes relax the constraints on the beam quality needed from the accelerator which will reduce the driver cost and the cost of electricity

  13. Chamber propagation physics for heavy ion fusion

    International Nuclear Information System (INIS)

    Callahan, D.A.

    1996-01-01

    Chamber transport is a key area of study for heavy ion fusion. Final focus and chamber transport are high leverage areas providing opportunities to decrease significantly the cost of electricity from a heavy ion fusion power plant. Chamber transport in two basic regimes is under consideration. In the low chamber density regime (below about 0.003 Torr), ballistic or nearly ballistic transport is used. Partial beam neutralization has been studied to offset the effects of beam stripping. In the high chamber density regime (above about 0.1 Torr), two transport modes (pinched transport and channel transport) are under investigation. Both involve focusing the beam outside the chamber and then transporting it at small radius (about 2 mm). Both high chamber density modes relax the constraints on the beam quality needed from the accelerator which will reduce the driver cost and the cost of electricity. (orig.)

  14. Loss of ions in cavity ionization chambers

    International Nuclear Information System (INIS)

    Takata, N.; Tran, N.T.; Kim, E.; Marsoem, P.; Kurosawa, T.; Koyama, Y.

    2005-01-01

    Ion losses due to initial recombination, volume recombination, and back diffusion were each determined by measurements and calculations for different size cylindrical ionization chambers and spherical ionization chambers. By measuring signal currents from these ionization chambers irradiated with 60 Co gamma rays, two groups of ion losses were obtained. (Group 1) Ion loss due to initial recombination and diffusion, which changes proportionally to the inverse of the voltage applied to the ionization chambers; (and group 2) ion loss due to volume recombination, which changes proportionally to the inverse of the square of the applied voltage. The diffusion loss was obtained separately by computing electric field distributions in the ionization chambers. It was found that diffusion loss is larger than initial recombination loss for the cylindrical ionization chambers and vise versa for the spherical ionization chambers

  15. TRU waste characterization chamber gloveboxes

    International Nuclear Information System (INIS)

    Duncan, D. S.

    1998-01-01

    Argonne National Laboratory-West (ANL-W) is participating in the Department of Energy's (DOE) National Transuranic Waste Program in support of the Waste Isolation Pilot Plant (WIPP). The Laboratory's support currently consists of intrusive characterization of a selected population of drums containing transuranic waste. This characterization is performed in a complex of alpha containment gloveboxes termed the Waste Characterization Gloveboxes. Made up of the Waste Characterization Chamber, Sample Preparation Glovebox, and the Equipment Repair Glovebox, they were designed as a small production characterization facility for support of the Idaho National Engineering and Environmental Laboratory (INEEL). This paper presents salient features of these gloveboxes

  16. Experimental work on drift chambers

    International Nuclear Information System (INIS)

    Alcaraz, J.; Duran, I.; Gonzalez, E.; Martinez-Laso, L.; Olmos, P.

    1989-01-01

    An experimental work made on drift chambers is described in two chapters. In the firt chapter we present the description of the experimental installation used, as well as some details on the data adquisition systems and the characteristics on three ways used for calibration proposes (cosmic muons, β radiation and test beam using SPS at CERN facilities). The second chapter describes the defferent prototypes studied. The experimental set up and the analysis are given. Some results are discussed. The magnetic field effect is also studied. (Author)

  17. Nova target chamber decontamination study

    International Nuclear Information System (INIS)

    1979-05-01

    An engineering study was performed to determine the most effective method for decontamination of the Nova target chamber. Manual and remote decontamination methods currently being used were surveyed. In addition, a concept that may not require in-situ decontamination was investigated. Based on the presently available information concerning material and system compatibility and particle penetration, it is recommended that a system of removable aluminum shields be considered. It is also recommended that a series of tests be performed to more precisely determine the vacuum compatibility and penetrability of other materials discussed in this report

  18. Gnathostomiasis of the anterior chamber

    Directory of Open Access Journals (Sweden)

    Barua P

    2007-01-01

    Full Text Available Ocular involvement with Gnathostoma spinigerum occurs years after the initial infection that is acquired by ingestion of poorly cooked, pickled seafood or water contaminated with third stage larvae. Here we report a case of gnathostomiasis of the left eye of a 32-year-old lady hailing from Meghalaya, India. Her vision had deteriorated to hand movement. Slit lamp examination revealed a live, actively motile worm in the anterior chamber, which was extracted by supra temporal limbal incision and visual acuity was restored.

  19. High and Low Energy Proton Radiation Damage in p/n InP MOCVD Solar Cells

    Science.gov (United States)

    Rybicki, George; Weinberg, Irv; Scheiman, Dave; Vargas-Aburto, Carlos; Uribe, Roberto

    1995-01-01

    InP p(+)/n/n(+) solar cells, fabricated by metal organic chemical vapor deposition, (MOCVD) were irradiated with 0.2 MeV and 10 MeV protons to a fluence of 10(exp 13)/sq cm. The power output degradation, IV behavior, carrier concentration and defect concentration were observed at intermediate points throughout the irradiations. The 0.2 MeV proton-irradiated solar cells suffered much greater and more rapid degradation in power output than those irradiated with 10 MeV protons. The efficiency losses were accompanied by larger increases in the recombination currents in the 0.2 MeV proton-irradiated solar cells. The low energy proton irradiations also had a larger impact on the series resistance of the solar cells. Despite the radiation induced damage, the carrier concentration in the base of the solar cells showed no reduction after 10 MeV or 0.2 MeV proton irradiations and even increased during irradiation with 0.2 MeV protons. In a deep level transient spectroscopy (DLTS) study of the irradiated samples, the minority carrier defects H4 and H5 at E(sub v) + 0.33 and E(sub v) + 0.52 eV and the majority carrier defects E7 and El0 at E(sub c) - 0.39 and E(sub c) - 0.74 eV, were observed. The defect introduction rates for the 0.2 MeV proton irradiations were about 20 times higher than for the 10 MeV proton irradiations. The defect El0, observed here after irradiation, has been shown to act as a donor in irradiated n-type InP and may be responsible for obscuring carrier removal. The results of this study are consistent with the much greater damage produced by low energy protons whose limited range causes them to stop in the active region of the solar cell.

  20. Preparation and microstructural properties of erbium doped alumina–yttria oxide thin films deposited by aerosol MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Salhi, Rached, E-mail: salhi_rached@yahoo.fr [Laboratoire de Science et Ingénierie des MAtériaux et Procédés 1130 rue de la PiscineBP 75-F-38402 Saint Martin D’Hères Cedex 1 (France); Laboratoire des Matériaux et du Génie Physique, CNRS UMR 5628, INP Grenoble-Minatec, 3 parvis Louis Néel BP 257, 38 016 Grenoble Cedex 1 (France); Jimenez, Carmen; Deschanvres, Jean-Luc [Laboratoire des Matériaux et du Génie Physique, CNRS UMR 5628, INP Grenoble-Minatec, 3 parvis Louis Néel BP 257, 38 016 Grenoble Cedex 1 (France); Guyot, Yannick [LPCML-UMR 5620 CNRS/UCBL Universite´ Claude Bernard Lyon 110 Rue Ada Byron 69622 Villeurbanne Cedex (France); Chaix-Pluchery, Odette; Rapenne, Laetitia [Laboratoire des Matériaux et du Génie Physique, CNRS UMR 5628, INP Grenoble-Minatec, 3 parvis Louis Néel BP 257, 38 016 Grenoble Cedex 1 (France); Maâlej, Ramzi [LPCML-UMR 5620 CNRS/UCBL Universite´ Claude Bernard Lyon 110 Rue Ada Byron 69622 Villeurbanne Cedex (France); Fourati, Mohieddine [Laboratoire de Chimie Industrielle, Ecole Nationale d’Ingénieur de Sfax, University of Sfax BP W 3038 Sfax (Tunisia); Laboratoire de Physique Appliquée, Groupe de Physique Théorique, Département de Physique, Faculté des Sciences de Sfax, University of Sfax 3018 Sfax (Tunisia)

    2013-10-15

    Erbium-doped aluminum–yttrium oxide films (Er: Al{sub 2}O{sub 3}–Y{sub 2}O{sub 3}) were prepared by aerosol-UV assisted Metalorganic Chemical Vapor Deposition (MOCVD) at 410 °C and annealed at 1000 °C. The effects of humidity of carrier gas and UV-assistance on their structure and optical properties were investigated using scanning electron microscope, X-ray diffraction and Transmission electron microscopy. It was found that under low air humidity and without UV-assistance the films present a low mol% Al{sub 2}O{sub 3} (10 mol%) two different structural phases are observed corresponding to the cubic and the monoclinic structures of Y{sub 2}O{sub 3}. When the deposition takes place under high air humidity and with UV assistance the Er:Al{sub 2}O{sub 3}–Y{sub 2}O{sub 3} films present a very high mol% Al{sub 2}O{sub 3} (88 mol%) and crystallize in the Y{sub 3}Al{sub 5}O{sub 12} (YAG) compound mixed with an amorphous phase. The Er{sup 3+} luminescence analyzed in the visible and IR regions, shows the classical green transitions. The best optical properties were obtained with the Er:Al{sub 2}O{sub 3}–Y{sub 2}O{sub 3} films grown under high air humidity with UV-assistance. Under such deposition conditions, {sup 4}I{sub 13/2} lifetimes was found to be 1.1 ms. This indicates that the deposition conditions, in particular air humidity, play an important role in the luminescent properties even after annealing. -- Highlights: • We investigate the effects of humidity and UV on the properties of Er:Al{sub 2}O{sub 3}–Y{sub 2}O{sub 3}. • Under low air humidity and without UV-assistance the films present a low mol% Al{sub 2}O{sub 3}. • Under high air humidity and with UV the Er:Al{sub 2}O{sub 3}–Y{sub 2}O{sub 3} present high mol% Al{sub 2}O{sub 3}. • The film crystallize in the YAG phase mixed with an amorphous phase. • The best optical properties were obtained under high air humidity with UV-assistance.

  1. Buffer optimization for crack-free GaN epitaxial layers grown on Si(1 1 1) substrate by MOCVD

    International Nuclear Information System (INIS)

    Arslan, Engin; Ozbay, Ekmel; Ozturk, Mustafa K; Ozcelik, Suleyman; Teke, Ali

    2008-01-01

    We report the growth of GaN films on the Si(1 1 1) substrate by metalorganic chemical vapour phase deposition (MOCVD). Different buffer layers were used to investigate their effects on the structural and optical properties of GaN layers. A series of GaN layers were grown on Si(1 1 1) with different buffer layers and buffer thicknesses and were characterized by Nomarski microscopy, atomic force microscopy, high-resolution x-ray diffraction (XRD) and photoluminescence (PL) measurements. We first discuss the optimization of the LT-AlN/HT-AlN/Si(1 1 1) templates and then the optimization of the graded AlGaN intermediate layers. In order to prevent stress relaxation, step-graded AlGaN layers were introduced along with a crack-free GaN layer of thickness exceeding 2.6 μm. The XRD and PL measurements results confirmed that a wurtzite GaN was successfully grown. The resulting GaN film surfaces were flat, mirror-like and crack-free. The mosaic structure in the GaN layers was investigated. With a combination of Williamson-Hall measurements and the fitting of twist angles, it was found that the buffer thickness determines the lateral coherence length, vertical coherence length, as well as the tilt and twist of the mosaic blocks in GaN films. The PL spectra at 8 K show that a strong band edge photoluminescence of GaN on Si (1 1 1) emits light at an energy of 3.449 eV with a full width at half maximum (FWHM) of approximately 16 meV. At room temperature, the peak position and FWHM of this emission become 3.390 eV and 58 meV, respectively. The origin of this peak was attributed to the neutral donor bound exciton. It was found that the optimized total thickness of the AlN and graded AlGaN layers played a very important role in the improvement of quality and in turn reduced the cracks during the growth of GaN/Si(1 1 1) epitaxial layers

  2. Physicist makes muon chamber sing

    CERN Multimedia

    2007-01-01

    This Monitored Drift Tube detector, consisting of argon-CO2-filled aluminium tubes with a wire down the centre of each, will track muons in ATLAS; Tiecke used a single tube from one of these detectors to create the pipes in his organ. Particle physicists can make good musicians; but did you know particle detectors can make good music? That's what NIKHEF physicist Henk Tiecke learned when he used pipes cut from the ATLAS Monitored Drift Tube detector (MDT) to build his own working Dutch-style barrel organ in the autumn of 2005. 'I like to work with my hands,' said Tiecke, who worked as a senior physicist at NIKHEF, Amsterdam, on ZEUS until his retirement last summer. Tiecke had already constructed his barrel organ when he visited some colleagues in the ATLAS muon chambers production area at Nikhef in 2005. He noticed that the aluminium tubes they were using to build the chambers were about three centimetres in diameter-just the right size for a pipe in a barrel organ. 'The sound is not as nice as from wooden...

  3. Venturi vacuum systems for hypobaric chamber operations.

    Science.gov (United States)

    Robinson, R; Swaby, G; Sutton, T; Fife, C; Powell, M; Butler, B D

    1997-11-01

    Physiological studies of the effects of high altitude on man often require the use of a hypobaric chamber to simulate the reduced ambient pressures. Typical "altitude" chambers in use today require complex mechanical vacuum systems to evacuate the chamber air, either directly or via reservoir system. Use of these pumps adds to the cost of both chamber procurement and maintenance, and service of these pumps requires trained support personnel and regular upkeep. In this report we describe use of venturi vacuum pumps to perform the function of mechanical vacuum pumps for human and experimental altitude chamber operations. Advantages of the venturi pumps include their relatively low procurement cost, small size and light weight, ease of installation and plumbing, lack of moving parts, and independence from electrical power sources, fossil fuels and lubricants. Conversion of three hyperbaric chambers to combined hyper/hypobaric use is described.

  4. Proportional chamber with data analog output

    International Nuclear Information System (INIS)

    Popov, V.E.; Prokof'ev, A.N.

    1977-01-01

    A proportional multiwier chamber is described. The chamber makes it possible to determine angles at wich a pion strikes a polarized target. A delay line, made of 60-core flat cable is used for removing signals from the chamber. From the delay line, signals are amplified and successively injected into shapers and a time-to-amplitude converter. An amplitude of the time-to amplitude converter output signal unambiguously determines the coordinate of a point at which a particle strikes the chamber plane. There are also given circuits of amplifiers, which consist of a preamplifier with gain 30 and a main amplifier with adjustable gain. Data on testing the chamber with the 450 MeV pion beam is demonstrated. The chamber features an efficiency of about 98 per cent under load of 2x10 5 s -1

  5. Legacies of the bubble chamber

    International Nuclear Information System (INIS)

    Mulvey, J.H.

    1994-01-01

    Legacies are what we pass on to those who follow us, the foundations on which the next advances in our science are being made; the things by which we shall be remembered, recorded in learned journals, written in the text books -food for the historians of science. This is not a summary, and it will draw no conclusions. It is a personal view which will look a little wider than the main physics results to include a mention of one or two of the technologies and methods handed on to both particle physics and other branches of sciences, a brief reference to bubble chamber pictures as aids in teaching, and a comment on the challenge now increasingly applied in the UK - and perhaps elsewhere -as a criterion for funding research: will it contribute to ''wealth creation''? (orig.)

  6. Picture chamber for radiographic system

    International Nuclear Information System (INIS)

    1977-01-01

    The picture chamber for a radiographic system is characterised by a base, a first electrode carried in the base, an X-ray irradiation window provided with an outer plate and an inner plate and a conducting surface which serves as a second electrode, which has a plate gripping it at each adjacent edge and which has at the sides a space which is occupied by a filling material, maintained at a steady pressure, by means of the mounting against the base and wherein the inner plate lies against the first electrode and which is provided with a split, and with means for the separation of the split in the area of the inner plate so that a fluid may be retained in the split. (G.C.)

  7. Drift chamber data readout system

    International Nuclear Information System (INIS)

    Basiladze, S.G.; Lokhonyai, L.

    1980-01-01

    An electronic system for processing drift chamber signals is described. The system consists of 4-channel fast amplifier-discriminators of low threshold, 16-channel time-expanders transforming 0.5 μs time intervals to 10 μs and a 9-bit time-to-digital converter (TDC) recording up to 16 expanded time intervals. If the average track multiplicity is small, TDC is capable to process signals from 4 time-expanders (i.e., 64 drift gaps). In order to record multiple tracks per drift gap discriminator outputs can be connected to a number of time-expander channels. The fast clear input enables the system to be cleared within 0.5 μs. Efficient readout from TDC is facilated by reading only those channels which contain non-zero data (9 bits - drift time; 6 bits - wire number)

  8. The CAST Time Projection Chamber

    CERN Document Server

    Autiero, D.; Carmona, J.M.; Cebrian, S.; Chesi, E.; Davenport, M.; Delattre, M.; Di Lella, L.; Formenti, F.; Irastorza, I.G.; Gomez, H.; Hasinoff, M.; Lakic, B.; Luzon, G.; Morales, J.; Musa, L.; Ortiz, A.; Placci, A.; Rodriguez, A.; Ruz, J.; Villar, J.A.; Zioutas, K.

    2007-01-01

    One of the three X-ray detectors of the CAST experiment searching for solar axions is a Time Projection Chamber (TPC) with a multi-wire proportional counter (MWPC) as a readout structure. Its design has been optimized to provide high sensitivity to the detection of the low intensity X-ray signal expected in the CAST experiment. A low hardware threshold of 0.8 keV is safely set during normal data taking periods, and the overall efficiency for the detection of photons coming from conversion of solar axions is 62 %. Shielding has been installed around the detector, lowering the background level to 4.10 x 10^-5 counts/cm^2/s/keV between 1 and 10 keV. During phase I of the CAST experiment the TPC has provided robust and stable operation, thus contributing with a competitive result to the overall CAST limit on axion-photon coupling and mass.

  9. Construction and performance of large flash chambers

    International Nuclear Information System (INIS)

    Taylor, F.E.; Bogert, D.; Fisk, R.; Stutte, L.; Walker, J.K.; Wolfson, J.; Abolins, M.; Ernwein, J.; Owen, D.; Lyons, T.

    1979-01-01

    The construction and performance of 12' x 12' flash chambers used in a 340 ton neutrino detector under construction at Fermilab is described. The flash chambers supply digital information with a spatial resolution of 0.2'', and are used to finely sample the shower development of the reaction products of neutrino interactions. The flash chambers are easy and inexpensive to build and are electronically read out

  10. Track photographing in 8-m streamer chamber

    International Nuclear Information System (INIS)

    Anisimova, N.Z.; Davidenko, V.A.; Kantserov, V.A.; Rybakov, V.G.; Somov, S.V.

    1981-01-01

    A system for obtaining data from a streamer chamber intended for measuring muon polarization is described. An optical scheme for photographing of tracks in the chamber is given. The photographing process is complicated at the expense of large dimensions and module structure of the chamber as well as due to insufficient for direct photographing brightness of streamers. The system described was tested during a long time in a physical experiment. More than 100 thousand photos have been taken by its means [ru

  11. Drift chamber tracking with neural networks

    International Nuclear Information System (INIS)

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed

  12. Vacuum Chamber for the Booster Bending Magnets

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    To minimize eddy currents, induced by the rising magnetic field, the chamber was made from thin stainless steel of high specific electric resistance. For mechanical stength, it was corrugated in a hydro-forming process. The chamber is curved, to follow the beam's orbital path. Under vacuum, the chamber tends to staighten, the ceramic spacer along half of its length keeps it in place (see also 7402458).

  13. Device for gamma-chamber transducer alignment

    International Nuclear Information System (INIS)

    Mirkhodzhaev, A.Kh.; Kuznetsov, N.K.; Ostryj, Yu.E.

    1987-01-01

    The device consists of the upper part of the gamma chamber pilar to which a rod is rigidly fastened with a disk of acrylic plastic moving freely on the opposite end. The disk is placed coaxially and is equal to the gamma chamber detector crystal. The device makes it possible to use ordinary medical couches covered with a porolone mattress when the gamma chamber detector is placed below

  14. Bubble chamber: Omega production and decay

    CERN Document Server

    1973-01-01

    This image is taken from one of CERN's bubble chambers and shows the decay of a positive kaon in flight. The decay products of this kaon can be seen spiraling in the magnetic field of the chamber. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that has been heated to boiling point.

  15. Bicone vacuum chamber for ISR intersection

    CERN Multimedia

    1975-01-01

    This is one of the bicone chambers made of titanium for experiment R 702. The central corrugated part had a very thin titanium wall (0.28 mm). The first of these chambers collapsed in its central part when baked at 300 C (August 1975). After an intensive effort to develop better quality and reproducible welds for this special material, the ISR workshop was able to build two new chambers of this type. One of them was installed at I 7 for R 702 in 1976 and worked perfectly. It was at that time the most "transparent" intersection vacuum chamber. See also 7609219, 7609221.

  16. The Mark II Vertex Drift Chamber

    International Nuclear Information System (INIS)

    Alexander, J.P.; Baggs, R.; Fujino, D.

    1989-03-01

    We have completed constructing and begun operating the Mark II Drift Chamber Vertex Detector. The chamber, based on a modified jet cell design, achieves 30 μm spatial resolution and 2 gas mixtures. Special emphasis has been placed on controlling systematic errors including the use of novel construction techniques which permit accurate wire placement. Chamber performance has been studied with cosmic ray tracks collected with the chamber located both inside and outside the Mark II. Results on spatial resolution, average pulse shape, and some properties of CO 2 mixtures are presented. 10 refs., 12 figs., 1 tab

  17. Investigation of very long jet chambers

    Energy Technology Data Exchange (ETDEWEB)

    Burckhart, H J; Va' vra, J; Zankel, K; Dudziak, U; Schaile, D; Schaile, O; Igo-Kemenes, P; Lennert, P

    1986-04-01

    The electrostatic properties and the performances of very long jet chambers have been investigated. Using 100 MHz FADC wave form digitisers, the tracking accuracy, the charge division and the dE/dx performance of two chambers, one with 4.5 m long tungsten wires and one with 4 m long highly resistive ''NiCoTi'' wires have been studied. The geometry of the chambers was chosen to define some of the design parameters of the jet chamber for the OPAL detector for LEP. (orig.).

  18. Investigation of very long jet chambers

    Energy Technology Data Exchange (ETDEWEB)

    Burckhart, H J; Va' vra, J; Zankel, K; Dudziak, U; Schaile, D; Schaile, O; Igo-Kemenes, P; Lennert, P

    1986-04-01

    The electrostatic properties and the performances of very long jet chambers have been investigated. Using 100 MHz FADC wave form digitisers, the tracking accuracy, the charge division and the dE/dx performance of two chambers, one with 4.5 m long tungsten wires and one with 4 m long highly resistive ''NiCoTi'' wires have been studied. The geometry of the chambers was chosen to define some of the design parameters of the jet chamber for the OPAL detector for LEP.

  19. Cylindrical ionization chamber with compressed krypton

    International Nuclear Information System (INIS)

    Kuz'minov, V.V.; Novikov, V.M.; Pomanskii, A.A.; Pritychenko, B.V.; Viyar, J.; Garcia, E.; Morales, A.; Morales, J.; Nunes-Lagos, R.; Puimedon, J.; Saens, K.; Salinas, A.; Sarsa, M.

    1993-01-01

    A cylindrical ionization chamber with a grid is used to search for double positron decay and atomic electron conversion to a positron in 78 Kr. Krypton is the working gas material of the chamber. The spectrometric characteristics of the chamber filled with krypton and xenon are presented. The energy resolution is 2.1% for an energy of 1.84 MeV (the source of γ-quanta is 88 Y) when the chamber is filled with a mixture of Kr+0.2% H 2 under a pressure of 25 atm

  20. D0 central tracking chamber performance studies

    International Nuclear Information System (INIS)

    Pizzuto, D.

    1991-12-01

    The performance of the completed DO central tracking chamber was studied using cosmic rays at the State University of New York at Stony Brook. Also studied was a prototype tracking chamber identical in design to the completed DO tracking chamber. The prototype chamber was exposed to a collimated beam of 150 GeV pions at the Fermilab NWA test facility. Results indicate an RΦ tracking resolution compatible with the limitations imposed by physical considerations, excellent 2 track resolution, and a high track reconstruction efficiency along with a good rejection power against γ → e + e - events

  1. Precision Radio Frequency Anechoic Chamber Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs measurements and calibration of antennas for satellites and aircraft or groundbased systems. The chamber is primarily used for optimizing antenna...

  2. Determination of the Mg occupation site in MOCVD- and MBE-grown Mg-doped InN using X-ray absorption fine-structure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, Takao; Uemura, Shigeaki; Kudo, Yoshihiro [Materials Laboratories, Sony Corporation, Atsugi, Kanagawa (Japan); Kitajima, Yoshinori [Photon Factory, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Yamamoto, Akio [Graduate School of Engineering, University of Fukui, Fukui (Japan); Muto, Daisuke; Nanishi, Yasushi [Department of Photonics, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577 (Japan)

    2008-07-01

    We analyzed the atomic structure around Mg atoms in MOCVD- and MBE-grown Mg-doped InN using Mg K-edge X-ray absorption fine-structure (XAFS) measurements. Our experimental data closely fit to the simulated data in which Mg atoms occupy the substitutional sites of In atoms. From this result, we conclude that Mg atoms essentially occupy not N atoms sites but In atoms sites, meaning that Mg atoms can act as acceptors in InN. We believe that observations of p-type conductivity are prevented by problems such as carrier compensation and electron accumulation at the surface. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. MOCVD growth of CdTe and HgTe on GaAs in a vertical, high-speed, rotating-disc reactor

    International Nuclear Information System (INIS)

    Tompa, G.S.; Nelson, C.R.; Reinert, P.D.; Saracino, M.A.; Terrill, L.A.; Colter, P.C.

    1989-01-01

    The metalorganic chemical vapor deposition (MOCVD) growth of CdTe and HgTe on GaAs (111) and (100) substrates in a vertical, high-speed, rotating-disc reactor was investigated. A range of total reactor pressure, carrier gas flow rate, chemical concentrations, deposition temperature, and rotation rate have been investigated in an attempt to optimize growth conditions. Diisopropyltelluride (DIPTe) and Dimethylcadmium (DMCd) were used as growth precursors. Thickness uniformity varies less than +/- 1.5% over 50 mm diameter wafers. Films having FWHM X-ray rocking curves less than 90 arcsec were obtained on GaAs (111) substrates. The films have excellent surface morphology, exhibiting less than 5 x 10 4 cm - 2 orange peel dents which are much-lt 1 μm in size. An elemental mercury source was added to the growth system. Initial results for the growth of HgTe and HgCdTe are discussed

  4. Growth of a New Ternary BON Crystal on Si(100) by Plasma-Assisted MOCVD and Study on the Effects of Fed Gas and Growth Temperature

    Science.gov (United States)

    Chen, G. C.; Lee, S.-B.; Boo, J.-H.

    A new ternary BOxNy crystal was grown on Si(100) substrate at 500°C by low-frequency (100 kHz) radio-frequency (rf) derived plasma-assisted MOCVD with an organoborate precursor. The as-grown deposits were characterized by SEM, TED, XPS, XRD, AFM and FT-IR. The experimental results showed that BOxNy crystal was apt to be formed at N-rich atmosphere and high temperature. The decrease of hydrogen flux in fed gases was of benefit to form BON crystal structure. The crystal structure of BOxNy was as similar to that of H3BO3 in this study.

  5. Investigation of InN layers grown by MOCVD using analytical and high resolution TEM: The structure, band gap, role of the buffer layers

    International Nuclear Information System (INIS)

    Ruterana, P.; Abouzaid, M.; Gloux, F.; Maciej, W.; Doualan, J.L.; Drago, M.; Schmidtling, T.; Pohl, U.W.; Richter, W.

    2006-01-01

    In this work we investigate the microstructure of InN layers grown by MOCVD on different buffer layers using TEM (InN, GaN). The large mismatch between the various lattices (InN, sapphire or GaN) leads to particular interface structures. Our local analysis allows to show that at atomic scale, the material has the InN lattice parameters and that no metallic In precipitates are present, meaning that the PL emission below 0.8 eV is a genuine property of the InN semiconductor. It is also shown that the N polar layers, which exhibit a 2D growth, have poorer PL emission than In polar layers. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. The effect of a slight mis-orientation angle of c-plane sapphire substrate on surface and crystal quality of MOCVD grown GaN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong-Woo; Suzuki, Toshimasa [Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro, Saitama, 345-8501 (Japan); Aida, Hideo [NAMIKI Precision Jewel Co. Ltd., 3-8-22 Shinden, Adachi-ku, Tokyo, 123-8511 (Japan)

    2004-09-01

    The effect of a slight mis-orientation of c-plane sapphire substrate on the surface morphology and crystal quality of GaN thin films grown by MOCVD has been investigated. The mis-orientation angle of vicinal c-plane sapphire substrate was changed within the range of 0.00(zero)-1.00(one) degree, and the experimental results were compared with those on just angle (zero degree) c-plane sapphire substrate. The surface morphology and crystal quality were found to be very sensitive to mis-orientation angle. Consequently, the mis-orientation angle was optimized to be 0.15 . (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Alloying, co-doping, and annealing effects on the magnetic and optical properties of MOCVD-grown Ga1-xMn xN

    International Nuclear Information System (INIS)

    Kane, Matthew H.; Strassburg, Martin; Asghar, Ali; Fenwick, William E.; Senawiratne, Jayantha; Song, Qing; Summers, Christopher J.; Zhang, Z. John; Dietz, Nikolaus; Ferguson, Ian T.

    2006-01-01

    Recent theoretical work for Ga 1-x Mn x N predicts ferromagnetism in this materials system with Curie temperatures above room temperature. Ferromagnetic behavior observed in Ga 1-x Mn x N is still controversial, as there are conflicting experimental reports owing to the disparity in crystalline quality and phase purity of Ga 1-x Mn x N produced by different methods. In this work, metal-organic chemical vapor deposition (MOCVD) has been used to grow high-quality epitaxial films of Ga 1-x Mn x N of varying thickness and manganese doping levels using Cp 2 Mn as the Mn source. Crystalline quality and phase purity were determined by high-resolution X-ray diffraction, indicating that no macroscopic second phases are formed. Atomic force microscopy revealed MOCVD-like step flow growth patterns and a mean surface roughness of 0.378 nm in optimally grown films, which is close to that from the as-grown template layer of 0.330 nm. No change in the growth mechanism and morphology with Mn incorporation is observed. A uniform Mn concentration in the epitaxial layers is confirmed by secondary ion mass spectroscopy. SQUID measurements showed an apparent room temperature ferromagnetic hysteresis with saturation magnetizations of over 2 μ B /Mn at x = 0.008, which decreases with increasing Mn incorporation. Upon high-temperature annealing, numerous changes are observed in these properties, including an increase in surface roughness due to surface decomposition and a large decrease in the magnetic signature. A similar decrease in the magnetic signature is observed upon co-doping with the shallow donor silicon during the growth process. These results demonstrate the critical importance of controlling the Fermi level relative to the Mn 2+/3+ acceptor level in Ga 1-x Mn x N in order to achieve strong ferromagnetism

  8. Raymond J. Chambers--A Personal Reflection

    Science.gov (United States)

    Gaffikin, Michael

    2012-01-01

    This paper is presented as a tribute to Raymond J. Chambers. As its title suggests, it is a personal reflection through the eyes of someone who worked closely with him over a period of 10 years during a latter part of his career, and who completed a doctoral thesis with aspects of the work of Chambers as its subject. During this time, author…

  9. Investigation of a multiwire proportional chamber

    International Nuclear Information System (INIS)

    Konijn, J.

    1976-01-01

    The article discusses some aspects of a prototype multiwire proportional chamber for electron detection located at IKO in Amsterdam, i.e. voltage, counting rates, noise and gas mixture (argon, ethylene bromide). The efficiency and performance of the chamber have been investigated and an error analysis is given

  10. Results from the MAC Vertex chamber

    International Nuclear Information System (INIS)

    Nelson, H.N.

    1987-05-01

    The design, construction, and performance characteristics of a high precision gaseous drift chamber made of thin walled proportional tubes are described. The device achieved an average spatial resolution of 45 μm in use for physics analysis with the MAC detector. The B-lifetime result obtained with this chamber is discussed

  11. Dual-chamber inflatable oil boom

    International Nuclear Information System (INIS)

    Blair, R.M.; Tedeschi, E.T.

    1993-01-01

    An elongated floating material containment boom section is described having a normally vertical ballasted skirt depending from flotation means, and convertible from a flattened collapsed condition to a deployable condition wherein buoyancy chamber means extending along the upper edge of said skirt are inflated to expanded buoyant configuration, including: a gas-impervious sleeve extending along the upper edge of said normally vertical skirt forming a first outer collapsible and inflatable flotation chamber, a first inflation valve connecting the interior of said sleeve with the ambient atmosphere, through which gas under pressure may be introduced into said sleeve to inflate said first buoyant outer flotation chamber, elongated gas-impervious tube means positioned inside said outer flotation chamber and forming second collapsible and inflatable internal flotation bladder chamber means, second inflation valve means connecting the interior of said bladder means through said outer flotation chamber to the ambient atmosphere through which gas under pressure may be introduced into said bladder means to inflate it forming said second flotation chamber means inside said outer flotation chamber

  12. An ionization chamber with magnetic levitated electrodes

    CERN Document Server

    Kawaguchi, T

    1999-01-01

    A new type of ionization chamber which has magnetically levitated electrodes has been developed. The electrodes are supplied voltages for the repelling of ions by a battery which is also levitated with the electrodes. The characteristics of this ionization chamber are investigated in this paper.

  13. HVAC&R Equipment Environmental Chambers

    Data.gov (United States)

    Federal Laboratory Consortium — Description:Large "Truck" ChamberThe large "truck" chamber provides controlled air conditions from -7 °C (20 °F) to 65 °C (150 °F).Air-Conditioner and Heat Pump Test...

  14. USE OF GROWTH CHAMBERS FOR CABBAGE BREEDING

    Directory of Open Access Journals (Sweden)

    L. L. Bondareva

    2014-01-01

    Full Text Available Use of the growth chambers for cabbage breeding allows the reducing of certain stages of the breeding process and the growing biennial varieties of cabbage in a one-year cycle. In these growth chambers, the nutritional conditions, temperature, and lighting of plants are under control; the open pollination is eliminated.

  15. OPAL jet chamber full-scale prototype

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H M; Hauschild, M; Hartmann, H; Hegerath, A; Boerner, H; Burckhart, H J; Dittmar, M; Hammarstroem, R; Heuer, R D; Mazzone, L

    1986-12-01

    The concept of a jet chamber for the central detector of OPAL was tested with a full scale prototype. The design of this prototype, its mechanical and electrical structure and its support system for high voltage, gas, laser calibration, and readout are described. Operating experience was gathered since summer 1984. The chamber performance in terms of spatial resolution and particle identification capability is given.

  16. 21 CFR 866.2120 - Anaerobic chamber.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a) Identification. An anaerobic chamber is a device intended for medical purposes to maintain an anaerobic (oxygen...

  17. Triangular tube proportional wire chamber system

    Energy Technology Data Exchange (ETDEWEB)

    Badtke, D H; Bakken, J A; Barnett, B A; Blumenfeld, B J; Chien, C Y; Madansky, L; Matthews, J A.J.; Pevsner, A; Spangler, W J [Johns Hopkins Univ., Baltimore, MD (USA); Lee, K L [California Univ., Berkeley (USA). Lawrence Berkeley Lab.

    1981-10-15

    We report on the characteristics of the proportional tube chamber system which has been constructed for muon identification in the PEP-4 experiment at SLAC. The mechanical and electrical properties of the extruded aluminum triangular tubes allow these detectors to be used as crude drift chambers.

  18. Neutron induced current pulses in fission chambers

    International Nuclear Information System (INIS)

    Taboas, A.L.; Buck, W.L.

    1978-01-01

    The mechanism of neutron induced current pulse generation in fission chambers is discussed. By application of the calculated detector transfer function to proposed detector current pulse shapes, and by comparison with actually observed detector output voltage pulses, a credible, semi-empirical, trapezoidal pulse shape of chamber current is obtained

  19. Shielding Effectiveness Measurements using a Reverberation Chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes; Bergsma, J.G.; Bergsma, Hans; van Etten, Wim

    2006-01-01

    Shielding effectiveness measurements have been performed using a reverberation chamber. The reverberation chamber methodology as we1l as the measurement setup is described and some results are given. Samples include glass reinforced plastic panels, aluminum panels with many holes, wire mesh, among

  20. The CAST time projection chamber

    International Nuclear Information System (INIS)

    Autiero, D; Beltran, B; Carmona, J M; Cebrian, S; Chesi, E; Davenport, M; Delattre, M; Di Lella, L; Formenti, F; Irastorza, I G; Gomez, H; Hasinoff, M; Lakic, B; Luzon, G; Morales, J; Musa, L; Ortiz, A; Placci, A; Rodrigurez, A; Ruz, J; Villar, J A; Zioutas, K

    2007-01-01

    One of the three x-ray detectors of the CERN Axion Solar Telescope (CAST) experiment searching for solar axions is a time projection chamber (TPC) with a multi-wire proportional counter (MWPC) as a readout structure. Its design has been optimized to provide high sensitivity to the detection of the low intensity x-ray signal expected in the CAST experiment. A low hardware threshold of 0.8 keV is set to a safe level during normal data taking periods, and the overall efficiency for the detection of photons coming from conversion of solar axions is 62%. Shielding has been installed around the detector, lowering the background level to 4.10 x 10 -5 counts cm -2 s -1 keV -1 between 1 and 10 keV. During phase I of the CAST experiment the TPC has provided robust and stable operation, thus contributing with a competitive result to the overall CAST limit on axion-photon coupling and mass

  1. Neutron-sensitive ionization chamber

    International Nuclear Information System (INIS)

    Mayer, W.

    1978-01-01

    The neutron-sensitive ionization chamber which is to be applied for BWRs consists of a cylindrical outer electrode, closed at the ends, and a concentrically arranged inner electrode. It is designed as a hollow tube and coated with uranium on the outside. The reaction space lies between the two electrodes. The electrical connection is obtained through a coaxial cable whose nickel helix is properly intorduced into the inner electrode made of titanium or nickel. The sheathing respectively external conductor of the cable has got the same diameter as the outer electrode and is butt-welded to it. Between the cable helix and the sheathing there is filled Al 2 O 3 powder. The reaction space is sealed against the cable by means of a little tube pushed over the internal conductor resp. the helix. It consists of Ni resp. Al 2 O 3 which is coated on the outside at first by a layer of Al 2 O 3 and a layer of Ni resp. by a metal layer on the inside and on the outside. (DG) [de

  2. Multispecimen dual-beam irradiation damage chamber

    International Nuclear Information System (INIS)

    Packan, N.H.; Buhl, R.A.

    1980-06-01

    An irradiation damage chamber that can be used to rapidly simulate fast neutron damage in fission or fusion materials has been designed and constructed. The chamber operates in conjunction with dual Van de Graaff accelerators at ORNL to simulate a wide range of irradiation conditions, including pulsed irradiation. Up to six experiments, each with up to nine 3-mm disk specimens, can be loaded into the ultrahigh vacuum chamber. Specimen holders are heated with individual electron guns, and the temperature of each specimen can be monitored during bombardment by an infrared pyrometer. Three different dose levels may be obtained during any single bombardment, and the heavy-ion flux on each of the nine specimens can be measured independently with only a brief interruption of the beam. The chamber has been in service for nearly three years, during which time approximately 250 bombardments have been successfully carried out. An appendix contains detailed procedures for operating the chamber

  3. Wet drift chambers for precise luminosity

    International Nuclear Information System (INIS)

    Anderson, B.E.; Kennedy, B.W.; Ahmet, K.; Attree, D.J.; Barraclough, G.A.; Cresswell, M.J.; Hayes, D.A.; Miller, D.J.; Selby, C.; Sherwood, P.

    1994-01-01

    A set of high-precision compact drift chambers has been a vital component of the OPAL luminosity monitor since the start of data-taking at LEP. They were augmented in 1992 by the addition of Small Angle Reference Chambers with a very similar design to the original chamber. The performance of the chambers is reviewed, highlighting both the importance of using polyalkylene glycol (Breox) to maintain a uniform and parallel electric field and the construction techniques used to sustain the required field strength. We describe some of the operating problems, with their solutions, and show how the chambers have been used in achieving a systematic error of 0.41% on the luminosity measurement. ((orig.))

  4. Structural Analysis of Extended Plasma Focus Chamber

    International Nuclear Information System (INIS)

    Mohd Azhar Ahmad; Abdul Halim Baijan; Siti Aiasah Hashim

    2016-01-01

    Accelerator Development Centre (ADC) of Nuclear Malaysia intends to upgrade the plasma focus device. It involves the extension part placed on top of the existing plasma focus vacuum chamber. This extended vacuum chamber purposely to give an extra space in conducting experiments on the existing plasma focus chamber. The aim of upgrading the plasma focus device is to solve the limitation in research and analysis of sample due to its done in an open system that cause analysis of samples is limited and less optimal. This extended chamber was design in considering the ease of fabrication as well as durability of its structural. Thus, this paper discusses the structural analysis in term of pressure loading effect in extended chamber. (author)

  5. How to build a cloud chamber?

    International Nuclear Information System (INIS)

    Mariaud, C.

    2012-01-01

    The cloud chamber had its heyday in the first half of last century and allowed the discovery of new particles such as the anti-electron, the muon and the neutral and the charged kaon. The bubble chamber replaced it in the mid fifties. This article recalls the principle of the cloud chamber and shows, in a detailed way, how to proceed to build one with on-the-shelf materials. This design is based on the use of isopropanol whose liquefaction through the form of droplets materializes the track of the particle and on the use of combined Peltier cells (instead of CO 2 snow) to cool the chamber. This cloud chamber has been successfully used in schools to observe particles mainly electrons, alphas and muons generated by cosmic rays. (A.C.)

  6. Note: Small anaerobic chamber for optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chauvet, Adrien A. P., E-mail: adrien.chauvet@gmail.com; Chergui, Majed [Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide, ISIC, Faculté des Sciences de Base, Station 6, 1015 Lausanne (Switzerland); Agarwal, Rachna; Cramer, William A. [Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-10-15

    The study of oxygen-sensitive biological samples requires an effective control of the atmosphere in which they are housed. In this aim however, no commercial anaerobic chamber is adequate to solely enclose the sample and small enough to fit in a compact spectroscopic system with which analysis can be performed. Furthermore, spectroscopic analysis requires the probe beam to pass through the whole chamber, introducing a requirement for adequate windows. In response to these challenges, we present a 1 l anaerobic chamber that is suitable for broad-band spectroscopic analysis. This chamber has the advantage of (1) providing access, via a septum, to the sample and (2) allows the sample position to be adjusted while keeping the chamber fixed and hermetic during the experiment.

  7. The Boycott effect in magma chambers

    Science.gov (United States)

    Blanchette, F.; Peacock, T.; Bush, J. W. M.

    2004-03-01

    We investigate the plausibility of the stratified Boycott effect as a source of layering in magma chambers. Crystal settling within the magma chamber will generate buoyant fluid near the sloping sidewalls whose vertical ascent may be limited by the ambient stratification associated with vertical gradients in SiO2. The resulting flow may be marked by a layered structure, each layer taking the form of a convection cell spanning the lateral extent of the magma chamber. Using parameters relevant to magma chambers, we estimate that such convection cells would be established over a timescale of a month and have a depth on the order of 4m, which is roughly consistent with field observations of strata within solidified chambers.

  8. Comparison among different CT ionization chambers

    International Nuclear Information System (INIS)

    Castro, Maysa C. de; Xavier, Marcos; Caldas, Linda V.E.

    2015-01-01

    The dosimetry in computed tomography (CT) is carried out by the use of a pencil type ionization-chamber, because it has a uniform response at all angles relative to the incident beam of radiation, which is essential for CT equipment since the X-ray tube executes a circular movement around the table during irradiation. The commercial ionization chamber used to perform quality control procedures of this kind of equipment has a length of the sensitive volume of 10 cm. In the Calibration Laboratory of Instruments (LCI) of the IPEN there were already developed some prototypes with small differences in construction, when compared to commercially available ionization chambers. They have been used in previous studies and showed results within internationally acceptable limits. The ionization chambers tested in this study present the sensitive volume lengths of 1 cm, 3 cm and 10 cm. The objective of this study was to present results on the stability test of the three homemade ionization chambers and a commercial chamber, as well to obtain the calibration coefficients for each of them in CT standard X radiation beams. The obtained results for both characterization tests are within the recommended limits, except for the homemade ionization chambers with sensitive volume lengths of 3 cm and 1 cm in the case of the stability test. (author)

  9. Monitored Drift Chambers in the ATLAS Detector

    CERN Multimedia

    Herten, G

    Monitored Drift Chambers (MDT) are used in the ATLAS Detector to measure the momentum of high energy muons. They consist of drift tubes, which are filled with an Ar-CO2 gas mixture at 3 bar gas pressure. About 1200 drift chambers are required for ATLAS. They are up to 6 m long. Nevertheless the position of every wire needs to be known with a precision of 20 µm within a chamber. In addition, optical alignment sensors are required to measure the relative position of adjacent chambers with a precision of 30µm. This gigantic task seems impossible at first instance. Indeed it took many years of R&D to invent the right tools and methods before the first chamber could be built according to specifications. Today, at the time when 50% of the chambers have been produced, we are confident that the goal for ATLAS can be reached. The mechanical precision of the chambers could be verified with the x-ray tomograph at CERN. This ingenious device, developed for the MDT system, is able to measure the wire position insid...

  10. Making MUSIC: A multiple sampling ionization chamber

    International Nuclear Information System (INIS)

    Shumard, B.; Henderson, D.J.; Rehm, K.E.; Tang, X.D.

    2007-01-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction

  11. Making MUSIC: A multiple sampling ionization chamber

    Science.gov (United States)

    Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.

    2007-08-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.

  12. Making MUSIC: A multiple sampling ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Shumard, B. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)]. E-mail: shumard@phy.anl.gov; Henderson, D.J. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Rehm, K.E. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Tang, X.D. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)

    2007-08-15

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the ({alpha}, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for ({alpha}, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only ({alpha}, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the ({alpha}, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the ({alpha}, p) reaction to reach the anode segment below the reaction.

  13. HEAT ENGINEERING TESTING OF AIR COOLING UNIT OF HORIZONTAL TYPE

    OpenAIRE

    Rohachov, Valerii Andriiovych; Semeniako, Oleksandr Volodymyrovych; Лазоренко, Р. О.; Середа, Р. М.; Parafeinyk, Volodymyr Petrovych

    2018-01-01

    The results of the thermal tests of the section of air cooler, the heat-exchange surface of which is made up of chess package of bimetal finned tubes are presented. The methods of research are presented, the experimental stand is described, the measurement errors are given. The efficiency of the experimental stand and the accuracy of the experimental data on it are confirmed. Proposed to use the stand for researches of air cooling units with other types and sections of finned tubes.

  14. Cloud chamber photographs of the cosmic radiation

    CERN Document Server

    Rochester, George Dixon

    1952-01-01

    Cloud Chamber Photographs of the Cosmic Radiation focuses on cloud chamber and photographic emulsion wherein the tracks of individual subatomic particles of high energy are studied. The publication first offers information on the technical features of operation and electrons and cascade showers. Discussions focus on the relationship in time and space of counter-controlled tracks; techniques of internal control of the cloud chamber; cascade processes with artificially-produced electrons and photons; and nuclear interaction associated with an extensive shower. The manuscript then elaborates on

  15. LEP vacuum chamber, cross-section

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Cross-section of the final prototype for the LEP vacuum chamber. The elliptic main-opening is for the beam. The small channel to the left is for the cooling water, to carry away the heat deposited by the synchrotron radiation. The square channel to the right houses the Non-Evaporable Getter (NEG) pump. The chamber is made from extruded aluminium. Its outside is clad with lead, to stop the synchrotron radiation emitted by the beam. For good adherence between Pb and Al, the Al chamber was coated with a thin layer of Ni. Ni being slightly magnetic, some resulting problems had to be overcome. See also 8301153.

  16. Bubble chamber: Omega production and decay

    CERN Multimedia

    1973-01-01

    This image is of real particle tracks taken from the CERN 2 m liquid hydrogen bubble chamber and shows the production and decay of a negative omega particle. A negative kaon enters the chamber which decays into many particles, including a negative omega that travels a short distance before decaying into more particles. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  17. Growing and Analyzing Biofilms in Flow Chambers

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2011-01-01

    This unit describes the setup of flow chamber systems for the study of microbial biofilms, and methods for the analysis of structural biofilm formation. Use of flow chambers allows direct microscopic investigation of biofilm formation. The biofilms in flow chambers develop under hydrodynamic......, and disassembly and cleaning of the system. In addition, embedding and fluorescent in situ hybridization of flow chamber–grown biofilms are addressed. Curr. Protoc. Microbiol. 21:1B.2.1-1B.2.17. © 2011 by John Wiley & Sons, Inc....

  18. Dilution refrigeration with multiple mixing chambers

    International Nuclear Information System (INIS)

    Coops, G.M.

    1981-01-01

    A dilution refrigerator is an instrument to reach temperatures in the mK region in a continuous way. The temperature range can be extended and the cooling power can be enlarged by adding an extra mixing chamber. In this way we obtain a double mixing chamber system. In this thesis the theory of the multiple mixing chamber is presented and tested on its validity by comparison with the measurements. Measurements on a dilution refrigerator with a circulation rate up to 2.5 mmol/s are also reported. (Auth.)

  19. Weld Development for Aluminum Fission Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Cross, Carl Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Jesse Norris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-16

    The Sigma welding team was approached to help fabricate a small fission chamber (roughly ½ inch dia. x ½ inch tall cylinder). These chambers are used as radiation sensors that contain small traces of radionuclides (Cf 252, U 235, and U 238) that serve to ionize gas atoms in addition to external radiation. When a voltage is applied within the chamber, the resulting ion flow can be calibrated and monitored. Aluminum has the advantage of not forming radioactive compounds when exposed to high external radiation (except from minor Na alloy content). Since aluminum has not been used before in this application, this presented an unexplored challenge.

  20. Simulated Field Trials Using an Indoor Aerosol Test Chamber

    National Research Council Canada - National Science Library

    Semler, D. D; Roth, A. P; Semler, K. A; Nolan, P. M

    2004-01-01

    .... In this method, the aerosol chamber control software manipulates circulation fan speeds, chamber vacuum and agent spray times to produce a simulated dynamic cloud within the aerosol test chamber...

  1. Simulated Field Trials Using An Indoor Aerosol Test Chamber

    National Research Council Canada - National Science Library

    Semler, D. D; Roth, A. P; Semler, K. A; Nolan, P. M

    2004-01-01

    .... In this method, the aerosol chamber control software manipulates circulation fan speeds, chamber vacuum and agent spray times to produce a simulated dynamic cloud within the aerosol test chamber...

  2. Irradiation chamber for photoactivation patient treatment system

    International Nuclear Information System (INIS)

    Lee, K.H.; Troutner, V.H.; Goss, J.; King, M.J.

    1988-01-01

    A flat plate irradiation chamber is described for use in a patient treatment system for altering cells, including treating the cells with a photoactivatable agent and passing the cells and the agent through a field of photoactivating radiation whereby the agent is caused to be activated and to affect the cells. The agent and the cells are contained in the irradiation chamber during irradiation. The flat plate irradiation chamber comprises: a rigid top sheet matably joined with a rigid bottom sheet, forming therebetween a rigid serpentine pathway for conducting the cells through the field of radiation; and pump block means for holding tubing means in fluid communication with the serpentine pathway and adapted for engaging a peristaltic pump whereby rotation of the pump causes the cells to flow through the serpentine pathway, and wherein the chamber is removable from the system and disposable

  3. A liquid ionization chamber using tetramethylsilane

    International Nuclear Information System (INIS)

    Engler, J.; Keim, H.

    1983-12-01

    First results with a liquid ionization chamber using tetramethylsilane (TMS) are presented. A stack of iron plates was tested with cosmic ray muons and the charge output for minimum ionizing particles was measured. (orig.) [de

  4. Developing Cloud Chambers with High School Students

    Science.gov (United States)

    Ishizuka, Ryo; Tan, Nobuaki; Sato, Shoma; Zeze, Syoji

    The result and outcome of the cloud chamber project, which aims to develop a cloud chamber useful for science education is reported in detail. A project includes both three high school students and a teacher as a part of Super Science High School (SSH) program in our school. We develop a dry-ice-free cloud chamber using salt and ice (or snow). Technical details of the chamber are described. We also argue how the project have affected student's cognition, motivation, academic skills and behavior. The research project has taken steps of professional researchers, i.e., in planning research, applying fund, writing a paper and giving a talk in conferences. From interviews with students, we have learnt that such style of scientific activity is very effective in promoting student's motivation for learning science.

  5. Uranium deposits obtention for fission chambers

    International Nuclear Information System (INIS)

    Artacho Saviron, E.

    1972-01-01

    The obtention of uranium deposits of the required quality for small cylindrical fission chambers presents some difficulties. With the method of electroplating here described the uniformity, reproducibility and adherence of the obtained deposits were satisfactory. (Author) 6 refs

  6. RADAR Anechoic Chamber/RCS Measurements Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The RF Anechoic Chamber is 56 feet long by 12 feet high by 13.5 feet wide, with an adjoining electronic computer control room. A double door entrance at one end of...

  7. MAN-IN-SIMULANT TEST (MIST) CHAMBER

    Data.gov (United States)

    Federal Laboratory Consortium — The MIST chamber uses methyl salicylate (oil of wintergreen) vapor as a simulant for HD agent to conduct system level evaluations of chemical protective ensembles....

  8. HYLIFE-II reactor chamber design refinements

    International Nuclear Information System (INIS)

    House, P.A.

    1994-06-01

    Mechanical design features of the reactor chamber for the HYLIFE-II inertial confinement fusion power plant are presented. A combination of oscillating and steady, molten salt streams (Li 2 BeF 4 ) are used for shielding and blast protection of the chamber walls. The system is designed for a 6 Hz repetition rate. Beam path clearing, between shots, is accomplished with the oscillating flow. The mechanism for generating the oscillating streams is described. A design configuration of the vessel wall allows adequate cooling and provides extra shielding to reduce thermal stresses to tolerable levels. The bottom portion of the reactor chamber is designed to minimize splash back of the high velocity (>12 m/s) salt streams and also recover up to half of the dynamic head. Cost estimates for a 1 GWe and 2 GWe reactor chamber are presented

  9. Cloud chamber development for didactic use

    International Nuclear Information System (INIS)

    Straube, B; Carrillo, M; Mangussi J

    2012-01-01

    The goal of this project was the design and construction of an Expansion Cloud Chamber from daily use material in order to make visible during a lesson, the trajectories of particles emitted by a radioactive material (author)

  10. Equipment upgrade - Accurate positioning of ion chambers

    International Nuclear Information System (INIS)

    Doane, Harry J.; Nelson, George W.

    1990-01-01

    Five adjustable clamps were made to firmly support and accurately position the ion Chambers, that provide signals to the power channels for the University of Arizona TRIGA reactor. The design requirements, fabrication procedure and installation are described

  11. Chamber Core Structures for Fairing Acoustic Mitigation

    National Research Council Canada - National Science Library

    Lane, Steven A; Henderson, Kyle; Williams, Andrew; Ardelean, Emil

    2007-01-01

    .... A composite chamber core fairing consists of many axial tubes sandwiched between face sheets, tubes that can be used as acoustic dampers to reduce low-frequency interior noise with virtually no added mass...

  12. Accelerated Solar-UV Test Chamber

    Science.gov (United States)

    Gupta, A.; Laue, E. G.

    1984-01-01

    Medium-pressure mercury-vapor lamps provide high ratio of ultraviolet to total power. Chamber for evaluating solar-ultraviolet (UV) radiation damage permits accelerated testing without overheating test specimens.

  13. Very high intensity reaction chamber design

    International Nuclear Information System (INIS)

    Devaney, J.J.

    1975-09-01

    The problem of achieving very high intensity irradiation by light in minimal regions was studied. Three types of irradiation chamber are suggested: the common laser-reaction chamber, the folded concentric or near-concentric resonator, and the asymmetric confocal resonator. In all designs the ratio of high-intensity illuminated volume to other volume is highly dependent (to the 3 / 2 power) on the power and fluence tolerances of optical elements, primarily mirrors. Optimization of energy coupling is discussed for the common cavity. For the concentric cavities, optimization for both coherent and incoherent beams is treated. Formulae and numerical examples give the size of chambers, aspect ratios, maximum pass number, image sizes, fluences, and the like. Similarly for the asymmetric confocal chamber, formulae and numerical examples for fluences, dimensions, losses, and totally contained pass numbers are given

  14. Liquid ionization chambers for LET determination

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    Liquid ionization chambers [1] (LICs) have have been used in the last decades as background dosemeters. Since a few years LICs are also commercially available for dosimetry and are used for measurements of dose distributions where a high spatial distribution is necessary. Also in the last decades...... a differential equation applying several simplifications and approximations leading to discrepancies between theory and experiments [3]. The theory predicts the collection efficiency as a function of the electrical field and was applied for both air filled ionization chambers and liquid filled ionization...... chambers. For liquids the LET can be roughly deduced from the collection efficiency dependency on the electrical field inside a liquid ionization chambers [4] using an extrapolation method. We solved the fundamental differential equation again presented by Jaffe numerically, but now taking into account...

  15. Ultrasonic cleaning of electrodes of wire chambers

    International Nuclear Information System (INIS)

    Krasnov, V.A.; Kurepin, A.B.; Razin, V.I.

    1980-01-01

    A technological process of cleaning electrodes and working volume surfaces of wire chambers from contaminations by the simultaneous mechanical action of the energy of ultrasonic oscillations and the chemical action of detergents is discussed. A device for cleaning wire electrodes of proportional chambers of 0.3x0.4 m is described. The device uses two ultrasonic generators with a total power of 0.5 kW. As a detergent use is made of a mixture of ethyl alcohol, gasoline and freon. In the process of cleaning production defects can be detected in the wire chambers which makes it possible to timely remove the defects. Measurements of the surface resistance of fiberglass laminate of printed drift chamber electrodes at a voltage of 2 kV showed that after completing the cleaning process the resistance increases 15-20%

  16. Radon progeny distribution in cylindrical diffusion chambers

    International Nuclear Information System (INIS)

    Pressyanov, Dobromir S.

    2008-01-01

    An algorithm to model the diffusion of radioactive decay chain atoms is presented. Exact mathematical solutions in cylindrical geometry are given. They are used to obtain expressions for the concentrations of 222 Rn progeny atoms in the volume and deposited on the wall surface in cylindrical diffusion chambers. The dependence of volume fractions of 222 Rn progeny and chamber sensitivity on the coefficient of diffusion of 222 Rn progeny atoms in air is modeled.

  17. The large cylindrical drift chamber of TASSO

    International Nuclear Information System (INIS)

    Boerner, H.; Fischer, H.M.; Hartmann, H.; Loehr, B.; Wollstadt, M.; Fohrmann, R.; Schmueser, P.; Cassel, D.G.; Koetz, U.; Kowalski, H.

    1980-03-01

    We have built and operated a large cylindrical drift chamber for the TASSO experiment at the DESY storage ring, PETRA. The chamber has a length of 3.5 m, a diameter of 2.5 m, and a total of 2340 drift cells. The cells are arranged in 15 concentric layers such that tracks can be reconstructed in three dimensions. A spatial resolution of 220 μm has been achieved for tracks of normal incidence on the drift cells. (orig.)

  18. Cylindrical geometry for proportional and drift chambers

    International Nuclear Information System (INIS)

    Sadoulet, B.

    1975-06-01

    For experiments performed around storage rings such as e + e - rings or the ISR pp rings, cylindrical wire chambers are very attractive. They surround the beam pipe completely without any dead region in the azimuth, and fit well with the geometry of events where particles are more or less spherically produced. Unfortunately, cylindrical proportional or drift chambers are difficult to make. Problems are discussed and two approaches to fabricating the cathodes are discussed. (WHK)

  19. Tracking with wire chambers at the SSC

    International Nuclear Information System (INIS)

    Hanson, G.G.; Gundy, M.C.; Palounek, A.P.T.

    1989-07-01

    Limitations placed on wire chambers by radiation damage and rate requirements in the SSC environment are reviewed. Possible conceptual designs for wire chamber tacking systems that meet these requirements are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. 13 refs., 11 fig., 1 tab

  20. Characteristic parameters of drift chambers calculation

    International Nuclear Information System (INIS)

    Duran, I.; Martinez-Laso, L.

    1989-01-01

    We present here the methods we used to analyse the characteristic parameters of drift chambers. The algorithms to calculate the electric potential in any point for any drift chamber geometry are presented. We include the description of the programs used to calculate the electric field, the drift paths, the drift velocity and the drift time. The results and the errors are discussed. (Author) 7 refs

  1. OPAL jet chamber full scale prototype

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H M; Hauschild, M; Hartmann, H; Hegerath, A; Boerner, H; Burckhart, H J; Dittmar, M; Hammarstroem, R; Heuer, R D; Mazzone, L

    1986-12-01

    The concept of a jet chamber for the central detector of OPAL has been tested with a full scale prototype. The design of this prototype, its mechanical and electrical structure and its support system for high voltage, gas, laser calibration and readout are described. Operating experience has been gathered since summer 1984. The chamber performance in terms of spatial resolution and particle identification capability is given.

  2. OPAL jet chamber full scale prototype

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H M; Hauschild, M; Hartmann, H; Hegerath, A; Boerner, H; Burckhart, H J; Dittmar, M; Hammarstreom, R; Heuer, R D; Mazzone, L

    1986-05-22

    The concept of a jet chamber for the central detector of OPAL has been tested with a full scale prototype. The design of this prototype, its mechanical and electrical structure and its support system for high voltage, gas, laser calibration and readout are described. The operating experience gathered since the summer of 1984 and the chamber performance as measured by its spatial resolution and ability to identify particles are also given.

  3. Georges Charpak and his multiwire chamber

    CERN Multimedia

    1970-01-01

    In 1968, Georges Charpak developed the 'multiwire proportional chamber', a gas-filled box with a large number of parallel detector wires, each connected to individual amplifiers. Linked to a computer, it could achieve a counting rate a thousand times better than existing techniques - without a camera in sight. From left to right, Georges Charpak, Fabio Sauli and Jean-Claude Santiard working on a multiwire chamber in 1970.

  4. Holographic processing of track chamber data

    Energy Technology Data Exchange (ETDEWEB)

    Bykovsky, Y A; Larkin, A I; Markilov, A A; Starikov, S N [Moskovskij Fiziko-Tekhnicheskij Inst. (USSR)

    1975-12-01

    The holographic pattern recognition method was applied for processing of track chamber photographs. Experiments on detection of such events as a definitely directed track, an angle formed by two tracks, a three-pronged star, a definitely curved track were performed by using models. It is proposed to recognize these events in a filmshot by the shape of correlation signals. The experiment to recognize the event in a real bubble chamber filmshot was realized; requirements to the processing films were determined.

  5. A very large multigap resistive plate chamber

    CERN Document Server

    Cerron-Zeballos, E; Hatzifotiadou, D; Kim, D W; Lamas-Valverde, J; Lee, S C; Platner, E D; Roberts, J; Williams, M C S; Zichichi, A

    1999-01-01

    We have built and tested a very large multigap resistive plate chamber (MRPC). We discuss the suitability of the multigap RPC for the construction of large area modules. We give details of the construction technique and results from a scan across the surface of the chamber. We also report on the implementation of `half-strip resolution', where we improve the spatial resolution by a factor 2 without increasing the number of read-out channels. (9 refs).

  6. Vertex chamber for the KEDR detector

    International Nuclear Information System (INIS)

    Aulchenko, V.M.; Chilingarov, A.G.; Kolachev, G.M.; Lazarenko, O.B.; Nagaslaev, V.P.; Romanov, L.V.

    1989-01-01

    The project and design of the vertex chamber for the KEDR detector is described. The chamber consists of 6 cylindrical layers of tubes with 10 mm diameter and 800 mm length. The tubes are made of 20 μm thick aluminized mylar. The prototype tests show that it is possible to achieve a resolution of 20-30 μm using the cool gas mixtures. (orig.)

  7. Tracking with wire chambers at high luminosities

    International Nuclear Information System (INIS)

    Hanson, G.G.

    1989-12-01

    Radiation damage and rate limitations impose severe constraints on wire chambers at the SSC. Possible conceptual designs for wire chamber tracking systems that satisfy these constraints are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. 11 refs., 10 figs

  8. Quality control of ATLAS muon chambers

    CERN Document Server

    Fabich, Adrian

    ATLAS is a general-purpose experiment for the future Large Hadron Collider (LHC) at CERN. Its Muon Spectrometer will require ∼ 5500m2 of precision tracking chambers to measure the muon tracks along a spectrometer arm of 5m to 15m length, embedded in a magnetic field of ∼ 0.5T. The precision tracking devices in the Muon System will be high pressure drift tubes (MDTs). Approximately 370,000 MDTs will be assembled into ∼ 1200 drift chambers. The performance of the MDT chambers is very much dependent on the mechanical quality of the chambers. The uniformity and stability of the performance can only be assured providing very high quality control during production. Gas tightness, high-voltage behaviour and dark currents are global parameters which are common to gas detectors. For all chambers, they will be tested immediately after the chamber assembly at every production site. Functional tests, for example radioactive source scans and cosmic-ray runs, will be performed in order to establish detailed performan...

  9. Liquid-filled ionization chamber temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Franco, L. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)]. E-mail: luciaff@usc.es; Gomez, F. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Iglesias, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pardo, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pazos, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pena, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Zapata, M. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)

    2006-05-10

    Temperature and pressure corrections of the read-out signal of ionization chambers have a crucial importance in order to perform high-precision absolute dose measurements. In the present work the temperature and pressure dependences of a sealed liquid isooctane filled ionization chamber (previously developed by the authors) for radiotherapy applications have been studied. We have analyzed the thermal response of the liquid ionization chamber in a {approx}20 deg. C interval around room temperature. The temperature dependence of the signal can be considered linear, with a slope that depends on the chamber collection electric field. For example, a relative signal slope of 0.27x10{sup -2}K{sup -1} for an operation electric field of 1.67x10{sup 6}Vm{sup -1} has been measured in our detector. On the other hand, ambient pressure dependence has been found negligible, as expected for liquid-filled chambers. The thermal dependence of the liquid ionization chamber signal can be parametrized within the Onsager theory on initial recombination. Considering that changes with temperature of the detector response are due to variations in the free ion yield, a parametrization of this dependence has been obtained. There is a good agreement between the experimental data and the theoretical model from the Onsager framework.

  10. Temperature Studies for ATLAS MDT BOS Chambers

    CERN Document Server

    Engl, A.; Biebel, O.; Mameghani, R.; Merkl, D.; Rauscher, F.; Schaile, D.; Ströhmer, R.

    Data sets with high statistics taken at the cosmic ray facility, equipped with 3 ATLAS BOS MDT chambers, in Garching (Munich) have been used to study temperature and pressure effects on gas gain and drifttime. The deformation of a thermally expanded chamber was reconstructed using the internal RasNik alignment monitoring system and the tracks from cosmic data. For these studies a heating system was designed to increase the temperature of the middle chamber by up to 20 Kelvins over room temperature. For comparison the temperature effects on gas properties have been simulated with Garfield. The maximum drifttime decreased under temperature raise by -2.21 +- 0.08 ns/K, in agreement with the results of pressure variations and the Garfield simulation. The increased temperatures led to a linear increase of the gas gain of about 2.1% 1/K. The chamber deformation has been analyzed with the help of reconstructed tracks. By the comparison of the tracks through the reference chambers with these through the test chamber ...

  11. Absorbed dose measurement by using tissue equivalent ionization chamber (pair ionization chamber) in the Yayoi reactor

    International Nuclear Information System (INIS)

    Sasuga, N.; Okamura, K.; Terakado, T.; Mabuchi, Y.; Nakagawa, T.; Sukegawa, Toshio; Aizawa, C.; Saito, I.; Oka, Yoshiaki

    1998-01-01

    Each dose rate of neutron and gamma ray in the thermal column of the Yayoi reactor, in which an epithermal neutron field will be used for the boron neutron capture therapy, was measured by using a tissue equivalent ionization chamber and a graphite chamber. The tissue equivalent ionization chamber has some response to both neutron and gamma ray, but the graphite chamber has a few response to the neutron, so called pair ionization chamber method. The epithermal neutron fluxes of the thermal column were calculated by ANISN (one dimensional neutron-gamma transport code). A measured value for gamma dose rate by the pair ionization chamber agrees relevantly with a calculated result. For neutron dose rate, however, the measured value was too much small in comparison with the calculated result. The discrepancy between the measured value and the calculated result for neutron dose rate is discussed in detail in the report. (M. Suetake)

  12. In vitro penetration of bleaching agents into the pulp chamber

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Valera, M C; Mancini, M N G

    2004-01-01

    To investigate pulp chamber penetration of bleaching agents in teeth following restorative procedures.......To investigate pulp chamber penetration of bleaching agents in teeth following restorative procedures....

  13. A Customizable Chamber for Measuring Cell Migration.

    Science.gov (United States)

    Chowdhury, Aniqa N; Vo, Huu Tri; Olang, Sharon; Mappus, Elliott; Peterson, Brian; Hlavac, Nora; Harvey, Tyler; Dean, Delphine

    2017-03-12

    Cell migration is a vital part of immune responses, growth, and wound healing. Cell migration is a complex process that involves interactions between cells, the extracellular matrix, and soluble and non-soluble chemical factors (e.g., chemoattractants). Standard methods for measuring the migration of cells, such as the Boyden chamber assay, work by counting cells on either side of a divider. These techniques are easy to use; however, they offer little geometric modification for different applications. In contrast, microfluidic devices can be used to observe cell migration with customizable concentration gradients of soluble factors 1 , 2 . However, methods for making microfluidics based assays can be difficult to learn. Here, we describe an easy method for creating cell culture chambers to measure cell migration in response to chemical concentration gradients. Our cell migration chamber method can create different linear concentration gradients in order to study cell migration for a variety of applications. This method is relatively easy to use and is typically performed by undergraduate students. The microchannel chamber was created by placing an acrylic insert in the shape of the final microchannel chamber well into a Petri dish. After this, poly(dimethylsiloxane) (PDMS) was poured on top of the insert. The PDMS was allowed to harden and then the insert was removed. This allowed for the creation of wells in any desired shape or size. Cells may be subsequently added to the microchannel chamber, and soluble agents can be added to one of the wells by soaking an agarose block in the desired agent. The agarose block is added to one of the wells, and time-lapse images can be taken of the microchannel chamber in order to quantify cell migration. Variations to this method can be made for a given application, making this method highly customizable.

  14. Final report for NIF chamber dynamics studies

    International Nuclear Information System (INIS)

    Burnham, A; Peterson, P F; Scott, J M

    1998-01-01

    The National Ignition Facility (NIF), a 1.8 MJ, 192 laser beam facility, will have anticipated fusion yields of up to 20 MJ from D-T pellets encased in a gold hohlraum target. The energy emitted from the target in the form of x rays, neutrons, target debris kinetic energy, and target shrapnel will be contained in a 5 m. radius spherical target chamber. various diagnostics will be stationed around the target at varying distances from the target. During each shot, the target will emit x rays that will vaporize nearby target facing surfaces including those of the diagnostics, the target positioner, and other chamber structures. This ablated vapor will be transported throughout the chamber, and will eventually condense and deposit on surfaces in the chamber, including the final optics debris shields. The research at the University of California at Berkeley relates primarily to the NIF chamber dynamics. The key design issues are the ablation of the chamber structures, transport of the vapor through the chamber and the condensation or deposition processes of those vaporized materials. An understanding of these processes is essential in developing a concept for protecting the fina optics debris shields from an excessive coating (> 10 A) of target debris and ablated material, thereby prolonging their lifetime between change-outs. At Berkeley, we have studied the physical issues of the ablation process and the effects of varying materials, the condensation process of the vaporized material, and design schemes that can lower the threat posed to the debris shields by these processes. The work or portions of the work completed this year have been published in several papers and a dissertation [l-5

  15. Optical properties of m-plane GaN grown on patterned Si(112) substrates by MOCVD using a two-step approach

    Science.gov (United States)

    Izyumskaya, N.; Okur, S.; Zhang, F.; Monavarian, M.; Avrutin, V.; Özgür, Ü.; Metzner, S.; Karbaum, C.; Bertram, F.; Christen, J.; Morkoç, H.

    2014-03-01

    Nonpolar m-plane GaN layers were grown on patterned Si (112) substrates by metal-organic chemical vapor deposition (MOCVD). A two-step growth procedure involving a low-pressure (30 Torr) first step to ensure formation of the m-plane facet and a high-pressure step (200 Torr) for improvement of optical quality was employed. The layers grown in two steps show improvement of the optical quality: the near-bandedge photoluminescence (PL) intensity is about 3 times higher than that for the layers grown at low pressure, and deep emission is considerably weaker. However, emission intensity from m-GaN is still lower than that of polar and semipolar (1 100 ) reference samples grown under the same conditions. To shed light on this problem, spatial distribution of optical emission over the c+ and c- wings of the nonpolar GaN/Si was studied by spatially resolved cathodoluminescence and near-field scanning optical microscopy.

  16. Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures

    Science.gov (United States)

    Ievtushenko, A.; Karpyna, V.; Eriksson, J.; Tsiaoussis, I.; Shtepliuk, I.; Lashkarev, G.; Yakimova, R.; Khranovskyy, V.

    2018-05-01

    ZnO films and nanostructures were deposited on Si substrates by MOCVD using single source solid state zinc acetylacetonate (Zn(AA)) precursor. Doping by silver was realized in-situ via adding 1 and 10 wt. % of Ag acetylacetonate (Ag(AA)) to zinc precursor. Influence of Ag on the microstructure, electrical and optical properties of ZnO at temperature range 220-550 °C was studied by scanning, transmission electron and Kelvin probe force microscopy, photoluminescence and four-point probe electrical measurements. Ag doping affects the ZnO microstructure via changing the nucleation mode into heterogeneous and thus transforming the polycrystalline films into a matrix of highly c-axis textured hexagonally faceted nanorods. Increase of the work function value from 4.45 to 4.75 eV was observed with Ag content increase, which is attributed to Ag behaviour as a donor impurity. It was observed, that near-band edge emission of ZnO NS was enhanced with Ag doping as a result of quenching deep-level emission. Upon high doping of ZnO by Ag it tends to promote the formation of basal plane stacking faults defect, as it was observed by HR TEM and PL study in the case of 10 wt.% of Ag. Based on the results obtained, it is suggested that NS deposition at lower temperatures (220-300 °C) is more favorable for p-type doping of ZnO.

  17. Impact of the substrate misorientation and its preliminary etching on the structural and optical properties of integrated GaAs/Si MOCVD heterostructures

    Science.gov (United States)

    Seredin, P. V.; Lenshin, A. S.; Zolotukhin, D. S.; Arsentyev, I. N.; Zhabotinskiy, A. V.; Nikolaev, D. N.

    2018-03-01

    This is the first attempt to make a report regarding the control of the structural and optical functional characteristics of integrated GaAs/Si heterostructures owing to the employment of preliminary etched misoriented Si substrates. The epitaxial GaAs layer on silicon substrates with no formation of the antiphase domains can be grown using substrates deviating less than 4°-6° from the singular (100) plane or without the use of a transition layer of GaAs nano-stakes. Preliminary etching of the Si substrate made it easier to acquire an epitaxial GaAs film in a single-crystalline state with a significantly less relaxation factor MOCVD, which positively influences on the structural performance of the film. These data agree with the results of Infrared reflection spectroscopy as well as Photoluminescence and UV-Vis spectroscopy. The optical properties of the integrated GaAs/Si (100) heterostructures in the IR and UV spectral regions were also identified by means of the relaxation coefficients.

  18. Temperature effect on the growth of Au-free InAs and InAs/GaSb heterostructure nanowires on Si substrate by MOCVD

    Science.gov (United States)

    Kakkerla, Ramesh Kumar; Anandan, Deepak; Hsiao, Chih-Jen; Yu, Hung Wei; Singh, Sankalp Kumar; Chang, Edward Yi

    2018-05-01

    We demonstrate the growth of vertically aligned Au-free InAs and InAs/GaSb heterostructure nanowires on Si (1 1 1) substrate by Metal Organic Chemical Vapor Deposition (MOCVD). The effect of growth temperature on the morphology and growth rate of the InAs and InAs/GaSb heterostructure nanowires (NWs) is investigated. Control over diameter and length of the InAs NWs and the GaSb shell thickness was achieved by using growth temperature. As the GaSb growth temperature increase, GaSb radial growth rate increases due to the increase in alkyl decomposition at the substrate surface. Diffusivity of the adatoms increases as the GaSb growth temperature increase which results in tapered GaSb shell growth. Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) measurements revealed that the morphology and shell thickness can be tuned by the growth temperature. Electron microscopy also shows the formation of GaSb both in radial and axial directions outside the InAs NW core can be controlled by the growth temperature. This study demonstrates the control over InAs NWs growth and the GaSb shell thickness can be achieved through proper growth temperature control, such technique is essential for the growth of nanowire for future nano electronic devices, such as Tunnel FET.

  19. Wafer-level MOCVD growth of AlGaN/GaN-on-Si HEMT structures with ultra-high room temperature 2DEG mobility

    Directory of Open Access Journals (Sweden)

    Xiaoqing Xu

    2016-11-01

    Full Text Available In this work, we investigate the influence of growth temperature, impurity concentration, and metal contact structure on the uniformity and two-dimensional electron gas (2DEG properties of AlGaN/GaN high electron mobility transistor (HEMT structure grown by metal-organic chemical vapor deposition (MOCVD on 4-inch Si substrate. High uniformity of 2DEG mobility (standard deviation down to 0.72% across the radius of the 4-inch wafer has been achieved, and 2DEG mobility up to 1740.3 cm2/V⋅s at room temperature has been realized at low C and O impurity concentrations due to reduced ionized impurity scattering. The 2DEG mobility is further enhanced to 2161.4 cm2/V⋅s which is comparable to the highest value reported to date when the contact structure is switched from a square to a cross pattern due to reduced piezoelectric scattering at lower residual strain. This work provides constructive insights and promising results to the field of wafer-scale fabrication of AlGaN/GaN HEMT on Si.

  20. Different defect levels configurations between double layers of nanorods and film in ZnO grown on c-Al2O3 by MOCVD

    International Nuclear Information System (INIS)

    Wu, Bin; Zhang, Yuantao; Shi, Zhifeng; Li, Xiang; Cui, Xijun; Zhuang, Shiwei; Zhang, Baolin; Du, Guotong

    2014-01-01

    Epitaxial ZnO structures with inherent two layers of nanorods layer on film layer were fabricated on c-Al 2 O 3 by metal-organic chemical vapor deposition (MOCVD) and studied by photoluminescence. Specially, photoluminescence spectra for the film layer were obtained by rendering the excitation from the substrate side. Different defect levels configurations between nanorods and film were revealed. Zinc vacancies tend to form in top nanorods layer, whereas abundant zinc–oxygen divacancies accumulate in bottom film layer. An acceptor state with activation energy of ∼200 meV is exclusive to the film layer. The stacking fault related acceptor and Al introduced donor are present in both layers. Besides, two other defect related donors contained in the nanorods layer perhaps also exist within the film layer. - Highlights: • Inherent double layer ZnO of nanorods on film layer were studied by PL. • V Zn tend to form in the nanorods layer, and V ZnO accumulate in the film layer. • An acceptor with activation energy of ∼200 meV is exclusive to the film layer. • Pure NBE emission without DLE in RT PL spectrum does not mean good crystallinity

  1. Study and analysis of drift chamber parameters

    International Nuclear Information System (INIS)

    Martinez Laso, L.

    1988-01-01

    The present work deals mainly with drift chambers. In the first chapter a summary of drift chamber properties is presented. The information has been collected from the extensive bibliography available in this field. A very simple calculation procedure of drift chamber parameters has been developed and is presented in detail in the second chapter. Some prototypes have been made following two geometries (multidrift chamber and Z-chambers). Several installations have been used for test and calibration of these prototypes. A complete description of these installations is given in the third chapter. Cosmic rays, beta particles from a Ru106 radiactive source and a test beam in the WA (West Area) of SPS at CERN have been used for experimental purposes. The analysis and the results are described for the different setups. The experimental measurements have been used to produce a complete cell parametrization (position as function of drift time) and to obtain spatial resolution values (in the range of 200-250 um). Experimental results are in good agreement with numerical calculations. (Author)

  2. Tuned Chamber Core Panel Acoustic Test Results

    Science.gov (United States)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  3. The wide gap resistive plate chamber

    International Nuclear Information System (INIS)

    Crotty, I.; Lamas Valverde, J.; Hatzifotiadou, D.; Williams, M.C.S.; Zichichi, A.

    1995-01-01

    The resistive plate chamber (RPC) has good time and position resolution; these factors (coupled to its simple construction) make it an attractive candidate for muon trigger systems at future colliders. However, operated in spark mode, the RPC has severe rate problems that make it unusable above 10 Hz/cm 2 . We have previously published our results concerning the operation of the RPC in spark and in avalanche mode; we have shown that the rate limit can be increased to 150 Hz/cm 2 if the RPC is operated in avalanche mode. Here, we discuss the performance of chambers with 6 and 8 mm gas gaps (compared to the more usual 2 mm gap). We outline the reasons for this choice, and also discuss anode versus cathode strip readout. We have measured the efficiency versus flux, and also show that an enhanced rate limit can be obtained if only a small region of the chamber is exposed to the beam (spot illumination). Finally we have tested the performance of chambers constructed with other materials for the resistiv e plate and compare it to chambers constructed with our preferred plastic, melamine laminate. (orig.)

  4. PWCs and drift chambers at ISABELLE

    International Nuclear Information System (INIS)

    Okuno, H.; Teramoto, Y.; Wheeler, C.D.

    1978-01-01

    Rate effects in proportional chambers and drift chambers are addressed first. The widely used high-gas-gain chambers would have impaired performance at ISABELLE data rates. Improvement can be expected with lower gas gain, and this possibility is investigated with respect to position and time resolution. Results on chamber lifetime are summarized; space-charge effects, gain saturation, and radiation hardness of electronics are considered. The resolution of drift chambers is discussed in some detail; time resolution, double pulse resolution, and momentum resolution and multiple scattering are included. The expected high multiplicity of tracks from a single event, the high event rates, and the requirement for low gas gain necessitate revision of the methods for measuring the second coordinate. Known methods of two-dimensional point localization are summarized according to spatial accuracy, electronics requirements, and multihit capability. Delay lines, charge division, and cathode strips are considered. Particle identification by means of measurement of the relativistic rise of energy loss by conventional and unconventional means was investigated. 32 references, 3 figures, 4 tables

  5. Improved climatic chamber for desiccation simulation

    Directory of Open Access Journals (Sweden)

    Lozada Catalina

    2016-01-01

    Full Text Available The climatic chamber at the Universidad de Los Andes was improved for modeling desiccation in soil layers. This chamber allows the measurement of different environmental variables. In this research, evaporation tests were conducted in water imposing boundary conditions for drying, and then these tests were performed in a soil layer. The soil was prepared from a slurry state and was drying controlling the temperature, the infrared radiation, the wind velocity, and the relative humidity. In the first part of this paper, a description of the climatic chamber, operation ranges and theoretical work principles of the climatic chamber are presented. Then, the second part shows the results for desiccation in water and soil. The desiccation tests performed with the climatic chamber allow simulating all environmental conditions accurately during drying coupling the effect of all environmental variables. As a result, the evaporation rate increases with infrared radiation in soil and water. The rate at the beginning of the desiccation tests in clays is the same as in water. However, this evaporation rate decreases as the soil becomes desiccated.

  6. Improvement of Swirl Chamber Structure of Swirl-Chamber Diesel Engine Based on Flow Field Characteristics

    Directory of Open Access Journals (Sweden)

    Wenhua Yuan

    2014-10-01

    Full Text Available In order to improve combustion characteristic of swirl chamber diesel engine, a simulation model about a traditional cylindrical flat-bottom swirl chamber turbulent combustion diesel engine was established within the timeframe of the piston motion from the bottom dead centre (BDC to the top dead centre (TDC with the fluent dynamic mesh technique and flow field vector of gas in swirl chamber and cylinder; the pressure variation and temperature variation were obtained and a new type of swirl chamber structure was proposed. The results reveal that the piston will move from BDC; air in the cylinder is compressed into the swirl chamber by the piston to develop a swirl inside the chamber, with the ongoing of compression; the pressure and temperature are also rising gradually. Under this condition, the demand of diesel oil mixing and combusting will be better satisfied. Moreover, the new structure will no longer forma small fluid retention zone at the lower end outside the chamber and will be more beneficial to the mixing of fuel oil and air, which has presented a new idea and theoretical foundation for the design and optimization of swirl chamber structure and is thus of good significance of guiding in this regard.

  7. Repair of isolated double-chambered right ventricle | El Kouache ...

    African Journals Online (AJOL)

    The finding of a double-chambered right ventricle (DCRV) is exceptionally rare as an isolated anomaly. It is a congenital cardiac anomaly in which the right ventricle is separated into two chambers, a proximal highpressure chamber and a distal low-pressure chamber, by anomalous muscles or fibrous tissues in the right ...

  8. The Mark III vertex chamber and prototype test results

    International Nuclear Information System (INIS)

    Grab, C.

    1987-07-01

    A vertex chamber has been constructed for use in the Mark III experiment. The chamber is positioned inside the current main drift chamber and will be used to trigger data collection, to aid in vertex reconstruction, and to improve the momentum resolution. This paper discusses the chamber's construction and performance and tests of the prototype

  9. Change of Pressing Chamber Conicalness at Briquetting Process in Briquetting Machine Pressing Chamber

    Directory of Open Access Journals (Sweden)

    Peter Križan

    2012-01-01

    Full Text Available In this paper, we will present the impact of the conical shape of a pressing chamber, an important structural parameter. Besides the known impact of the technological parameters of pressing chambers, it is also very important to pay attention to their structural parameters. In the introduction, we present a theoretical analysis of pressing chamber conicalness. An experiment aimed at detecting this impact was performed at our institute, and it showed that increasing the conicalness of a pressing chamber improves the quality of the final briquettes. The conicalness of the pressing chamber has a significanteffect on the final briquette quality and on the construction of briquetting machines. The experimental findings presented here show the importance of this parameter in the briquetting process.

  10. ON THE ANALYSIS OF BUBBLE CHAMBER TRACKS

    International Nuclear Information System (INIS)

    Bradner, H.; Solmitz, F.

    1958-01-01

    Since its invention by Glaser in 1953, the bubble chamber has become a most valuable tool in high-energy physics. It combines a number of advantages of various older methods of particle detection: it offers high spatial resolution, rapid accumulation of data, some time resolution, and some choice of the nucleus whose interaction one wants to study (bubble chambers have been made to operate with a large number of different liquids, including H 2 , D 2 , He, Xe, and several hydrocarbons). In order to exploit the advantages of spatial resolution and rapid data accumulation, high-speed high-precision analysis procedures must be developed. In this article they discuss some of the problems posed by such analysis. The discussion is based largely on experience gained in performing hydrogen bubble chamber experiments with the University of California's Bevatron (6-Bev proton synchrotron)

  11. PWCs and drift chambers at ISABELLE

    International Nuclear Information System (INIS)

    Okuno, H.; Teramoto, Y.; Wheeler, C.D.

    1979-01-01

    At the 1977 Workshop, attempts were made to predict the behavior of proportional wire chambers at the high particle flux expected at ISABELLE. It was found that chambers running at the now widely used high gas gain would have impaired performance with regard to lifetime, efficiency, stability of gas gain, and position resolution. More information has since become available, and therefore the predictions about these properties are revised in the present study. Improvement can also be expected with much lower gas gain, a possibility that is investigated here in more detail with regard to its effect on position resolution and time resolution. The expected high multiplicity of tracks from a single event, the high event rates, and the requirement for low gas gain necessitate revision of the methods for measuring the second coordinate. Particle identification via measurement of the relativistic rise of energy loss in the chambers has been investigated in more detail than previously, with new data and calculations

  12. Design of the CLIC Quadrupole Vacuum Chambers

    CERN Document Server

    Garion, C

    2010-01-01

    The Compact Linear Collider, under study, requires vacuum chambers with a very small aperture, of the order of 8 mm in diameter, and with a length up to around 2 m for the main beam quadrupoles. To keep the very tight geometrical tolerances on the quadrupoles, no bake out is allowed. The main issue is to reach UHV conditions (typically 10-9 mbar static pressure) in a system where the vacuum performance is driven by water outgassing. For this application, a thinwalled stainless steel vacuum chamber with two ante chambers equipped with NEG strips, is proposed. The mechanical design, especially the stability analysis, is shown. The key technologies of the prototype fabrication are given. Vacuum tests are carried out on the prototypes. The test set-up as well as the pumping system conditions are presented.

  13. Rapid-Cycling Bubble-Chamber, details

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Parts of the hydraulic expansion system of the Rapid-Cycling Bubble-Chamber (RCBC). RCBC was the largest of 3 rapid-cycling bubble-chambers (the others were LEBC and HOLEBC), used as target- and vertex-detectors within the European Hybrid Spectrometer (EHS) in the SPS North Area (EHN1). RCBC contained 250 l of liquid hydrogen and was located inside a 3 T superconducting magnet. It was designed for 30 expansions/s (100 times faster than BEBC), the system shown here allowed 50 expansions/s. RCBC operated from 1981 to 1983 for experiments NA21, NA22 and NA23 at a rate of 15 expansions/s, clocking up a total of over 4 million. In the rear, at left, is bearded Lucien Veillet; Augustin Didona is at the right. See also 8001009. The installation of the piston assembly in the RCBC chamber body is shown in the Annual Report 1980, p.65.

  14. Alberta Chamber of Resources: 1998 in review

    International Nuclear Information System (INIS)

    Simpson, R.

    1999-01-01

    Several key initiatives taken by the Alberta Chamber of Resources during 1998 are described. Among these initiatives special mention is made of strengthening the relations between the Chamber and the University of Calgary and the University of Alberta through regular contributions to business plan reviews, scholarships, and advisory committees. Working with the Department of Energy on a range of issues involving the environment, taxation, and mineral rights tenure is an area the ACR is involved. Hosting a workshop on the economic and social values and trade-offs in the green areas of Alberta and working with the University Alberta regarding the development of an advisory committee on forest resource valuation is another area. Strategizing the Oil Sands Task Force to strengthen it in the areas of industrial coordination, by-product utilization, the creation niche markets and product quality and investigating, through the Black Oil Pipeline Steering Committee, transportation, technological and marketing issues related to the oil sands are other interests. In the Mineral Sector, the Chamber facilitated discussions towards a Non-Energy Minerals and Mines Act, which among other long-range beneficial effects, prompted the provincial government to provide an additional $ 1.5 million to the Alberta Geological Survey. In the Utilities Sector, the Chamber continued to bring together various parties to work on common challenges and opportunities. Much interest has been generated also on upgraders and research facilitated by the Chamber either with members of the Alberta Research Council, or the National Centre for Upgrading Technology or similar organizations. This kind of facilitation helps the Chamber's member companies to realize cost reductions in development and application of new technologies

  15. Lifetime tests for MAC vertex chamber

    International Nuclear Information System (INIS)

    Nelson, H.

    1986-01-01

    A vertex chamber for MAC was proposed in fall 1983 to increase precision in the measurement of the B hadron and tau lepton lifetimes. The chamber had to be placed within the existing central drift chamber, making access for repairs difficult and costly. Therefore for detector elements thin-walled aluminized mylar drift tubes (straws) were used because of their simplicity and robustness. The diameter of the drift tubes was 6.9 mm. The radial extent of the proposed chamber was from 3 cm to 10 cm, the inner wall of the central drift. It was clear that radiation levels, from synchrotron x-rays and overfocussed electrons, were potentially high. Since the drift distance is short in the straws, it was desirable to operate them at the highest possible gas gain, to achieve the best spatial resolution. There was a likelihood of drawing large currents in the chamber and thus causing radiation damage. Therefore a study of radiation hardness under the conditions of their proposed design was undertaken. In tests, argon-hydrocarbon mixtures consistently became unusable at ∼0.05 C/cm collected charge, due to anode buildup. Argon-CO 2 mixtures, while underquenched, were operational to 0.25 C/cm, at which point loss of cathode material became intolerable. Argon-xenon-CO 2 proved to be quenched as well as argon-hydrocarbons, but was limited by cathode damage. The MAC vertex chamber has operated at a distance of 4.6 cm from the e + e - interaction point at PEP for two years and has shown no aging effects

  16. Accurate computer simulation of a drift chamber

    International Nuclear Information System (INIS)

    Killian, T.J.

    1980-01-01

    A general purpose program for drift chamber studies is described. First the capacitance matrix is calculated using a Green's function technique. The matrix is used in a linear-least-squares fit to choose optimal operating voltages. Next the electric field is computed, and given knowledge of gas parameters and magnetic field environment, a family of electron trajectories is determined. These are finally used to make drift distance vs time curves which may be used directly by a track reconstruction program. Results are compared with data obtained from the cylindrical chamber in the Axial Field Magnet experiment at the CERN ISR

  17. Ultra-low mass drift chambers

    International Nuclear Information System (INIS)

    Assiro, R.; Cappelli, L.; Cascella, M.; De Lorenzis, L.; Grancagnolo, F.; Ignatov, F.; L'Erario, A.; Maffezzoli, A.; Miccoli, A.; Onorato, G.; Perillo, M.; Piacentino, G.; Rella, S.; Rossetti, F.; Spedicato, M.; Tassielli, G.

    2013-01-01

    We present a novel low mass drift chamber concept, developed in order to fulfill the stringent requirements imposed by the experiments for extremely rare processes, which require high resolutions (order of 100–200 keV/c) for particle momenta in a range (50–100 MeV/c) totally dominated by the multiple scattering contribution. We describe a geometry optimization procedure and a new wiring strategy with a feed-through-less wire anchoring system developed and tested on a drift chamber prototype under completion at INFN-Lecce

  18. Ultra-low mass drift chambers

    Science.gov (United States)

    Assiro, R.; Cappelli, L.; Cascella, M.; De Lorenzis, L.; Grancagnolo, F.; Ignatov, F.; L'Erario, A.; Maffezzoli, A.; Miccoli, A.; Onorato, G.; Perillo, M.; Piacentino, G.; Rella, S.; Rossetti, F.; Spedicato, M.; Tassielli, G.; Zavarise, G.

    2013-08-01

    We present a novel low mass drift chamber concept, developed in order to fulfill the stringent requirements imposed by the experiments for extremely rare processes, which require high resolutions (order of 100-200 keV/c) for particle momenta in a range (50-100 MeV/c) totally dominated by the multiple scattering contribution. We describe a geometry optimization procedure and a new wiring strategy with a feed-through-less wire anchoring system developed and tested on a drift chamber prototype under completion at INFN-Lecce .

  19. Radon chamber for soil gas detectors

    International Nuclear Information System (INIS)

    Andersson, P.

    1987-01-01

    Swedish Geological Co (SGAB) has designed and constructed a chamber for the calibration of detectors and instruments intended for the measurement of radon-222 in soil gas. In the chamber radon detectors may be exposed in a model environment which simulates ground conditions with respect to radon concentration, temperature and humidity. Also included in the research project is the development of methods for calibration procedures, together with test measurements. In general, these measurements indicate that the radon detectors tested are sufficiently accurate and reliable for radon measurements in Swedish soils if they are calibrated in an environment which simulates ground conditions. (orig./HP)

  20. Properties of low-pressure drift chambers

    International Nuclear Information System (INIS)

    Breskin, A.; Trautner, N.

    1976-01-01

    Drift chambers operated with methylal vapour or ethylene at pressures in the range of 10-110 torr are described. A systematic study of position resolution, pulse height and rise time shows that especially for ethylene they are strongly influenced by electron diffusion. Intrinsic position resolution was found to be at least as good as found at atmospheric pressure. A relative pulse height resolution of 10% was obtained with 5.5 MeV alpha-particles. A simple mathematical model which can describe the processes in the drift chamber is presented. (Auth.)

  1. Accurate computer simulation of a drift chamber

    CERN Document Server

    Killian, T J

    1980-01-01

    The author describes a general purpose program for drift chamber studies. First the capacitance matrix is calculated using a Green's function technique. The matrix is used in a linear-least-squares fit to choose optimal operating voltages. Next the electric field is computed, and given knowledge of gas parameters and magnetic field environment, a family of electron trajectories is determined. These are finally used to make drift distance vs time curves which may be used directly by a track reconstruction program. The results are compared with data obtained from the cylindrical chamber in the Axial Field Magnet experiment at the CERN ISR. (1 refs).

  2. Evacuation of the NET vacuum chamber

    International Nuclear Information System (INIS)

    Muller, R.A.

    1987-01-01

    Parametric calculations of the evacuation process were carried out for the NET-vacuum chamber involving two blanket designs. The results show that with an acceptable vacuum pumping capacity the required start vacuum conditions can be realized within reasonable time. The two blanket concepts do not differ remarkably in their evacuation behaviour. The remaining large pressure differences between the different locations of the vacuum chamber can be reduced if approximately 30% of the total gas flow is extracted from the heads of the blanket replacement ports

  3. Evacuation of the NET vacuum chamber

    International Nuclear Information System (INIS)

    Mueller, R.

    1986-01-01

    Parametric calculations of the evacuation process were carried out for the NET-vacuum chamber involving two blanket designs. The results show that with an acceptable vacuum pumping capacity the required start vacuum conditions can be realized within reasonable time. The two blanket concepts do not differ remarkably in their evacuation behaviour. The remaining large pressure differences between the different locations of the vacuum chamber can be reduced if approximately 30% of the total gas flow is extracted from the heads of the blanket replacement ports. (author)

  4. Construction of the Cleo III drift chamber

    International Nuclear Information System (INIS)

    Csorna, S.; Marka, S.; Dickson, M.; Dombrowski, S. von; Peterson, D.; Thies, P.; Glenn, S.; Thorndike, E.H.; Kravchenko, I.

    1998-01-01

    The CLEO III group is constructing a new chamber to be installed as part of the staged luminosity upgrade program at the Cornell electron storage ring and compatible with the interaction region optics. Although having less radial extent than the current CLEO II tracking system, CLEO III will have equivalent momentum resolution because of material reduction in the drift chamber inner skin and gas. The thin inner skin requires special attention to the end-plate motion due to wire creep. During stringing, use of a robot will fully automate the wire handling on the upper end. (author)

  5. A view inside the Gargamelle bubble chamber

    CERN Multimedia

    1970-01-01

    Gargamelle was the name given to a big bubble chamber built at the Saclay Laboratory in France during the late 1960s. It was designed principally for the detection at CERN of the elusive particles called neutrinos. A bubble chamber contains a liquid under pressure, which reveals the tracks of electrically charged particles as trails of tiny bubbles when the pressure is reduced. Neutrinos have no charge, and so leave no tracks, but the aim with Gargamelle was "see neutrinos" by making visible any charged particles set in motion by the interaction of neutrinos in the liquid

  6. Apparatus for reading and recharging condenser ionization chambers

    International Nuclear Information System (INIS)

    McCall, R.C.

    1977-01-01

    A metering circuit for a condenser ionization chamber is disclosed for simultaneously recharging the ionization chamber and reading out the amount of charge required to recharge the chamber. During the recharging process, the amount of charge necessary to recharge the ionization chamber capacitor is placed on an integrating capacitor in the metering apparatus. The resultant voltage across the integrating capacitor is a measure of the radiation to which the ionization chamber was exposed. 9 claims, 1 figure

  7. Brookhaven National Laboratory's multiparticle spectrometer drift chamber system

    International Nuclear Information System (INIS)

    Etkin, A.; Kramer, M.A.

    1979-01-01

    A system of drift chambers is being built to replace the present spark chambers in the Brookhaven National Laboratory's Multiparticle Spectrometer. This system will handle a beam of approx. 3 million particles per second and have a resolution of 200 μm. A summary of the status of the chambers and the custom integrated circuits is presented. The data acquisition system is described. Prototype chambers have been built and tested with results that are consistent with the expected chamber properties

  8. Five reasons to join local Chamber of Commerce and Industry

    OpenAIRE

    Verbovskii, Vladislav; Kosov, Vladimir; Chaika (Chayka), Yuliya Aleksandrovna

    2016-01-01

    The article describes five useful things that Chamber of Commerce and Industry membership may give to business owners after joining it. These things are the reasons to become a part of business community formed by Chambers of Commerce that may be considered by those business owner who are deciding whether to join Chamber of Commerce or not. Mentioned reasons are given with examples related to Tomsk Chamber of Commerce and Industry and are relevant to any Chamber of Commerce located in Russian...

  9. Chamber transport for heavy ion fusion

    International Nuclear Information System (INIS)

    Olson, Craig L.

    2014-01-01

    A brief review is given of research on chamber transport for HIF (heavy ion fusion) dating from the first HIF Workshop in 1976 to the present. Chamber transport modes are categorized into ballistic transport modes and channel-like modes. Four major HIF reactor studies are summarized (HIBALL-II, HYLIFE-II, Prometheus-H, OSIRIS), with emphasis on the chamber transport environment. In general, many beams are used to provide the required symmetry and to permit focusing to the required small spots. Target parameters are then discussed, with a summary of the individual heavy ion beam parameters required for HIF. The beam parameters are then classified as to their line charge density and perveance, with special emphasis on the perveance limits for radial space charge spreading, for the space charge limiting current, and for the magnetic (Alfven) limiting current. The major experiments on ballistic transport (SFFE, Sabre beamlets, GAMBLE II, NTX, NDCX) are summarized, with specific reference to the axial electron trapping limit for charge neutralization. The major experiments on channel-like transport (GAMBLE II channel, GAMBLE II self-pinch, LBNL channels, GSI channels) are discussed. The status of current research on HIF chamber transport is summarized, and the value of future NDCX-II transport experiments for the future of HIF is noted

  10. Amplifier Design for Proportional Ionization Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Baker, W. H.

    1950-08-24

    This paper presents the requirements of a nuclear amplifier of short resolving time, designed to accept pulses of widely varying amplitudes. Data are given which show that a proportional ionization chamber loaded with a 1,000-ohm resistor develops pulses of 0.5 microsecond duration and several volts amplitude. Results indicate that seven basic requirements are imposed on the amplifier when counting soft beta and gamma radiation in the presence of alpha particles, without absorbers. It should, (1) have a fast recovery time, (2) have a relatively good low frequency response, (3) accept pulses of widely varying heights without developing spurious pulsed, (4) have a limiting output stage, (5) preserve the inherently short rise time of the chamber, (6) minimize pulse integration, and (7) have sufficient gain to detect the weak pulses well below the chamber voltage at which continuous discharge takes place. The results obtained with an amplifier which meets these requirements is described. A formula is derived which indicates that redesign of the proportional ionization chamber might eliminate the need for an amplifier. This may be possible if the radioactive particles are collimated parallel to the collecting electrode.

  11. A digital reader for condenser ionization chambers

    International Nuclear Information System (INIS)

    Stuermer, K.

    1978-01-01

    A reader for condenser chambers is described which has a completely automatic reading/charging operation, a modern digital readout presentation, and two full decades of exposure readout for each dosimeter type. The calibration and operation of the instrument are given

  12. Internal current generation in respiration chambers

    Science.gov (United States)

    Saborowski, R.; Buchholz, F.

    1998-06-01

    A technical device generating a constant and directed current within a sealed respiration chamber is described. It does not involve any external pumps or tubing. This system is easy to handle, and improved the maintenance of rheotactic pelagic species like the Northern krill ( Meganyctiphanes norvegica, Crustacea) or small fishes ( Gasterosteus aculeatus) under experimental conditions.

  13. Reflectivity level of radio anechoic chambers

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1973-01-01

    A comparison between the antenna-pattern comparison technique and the free-space voltage standing-wave ratio technique for evaluating the reflectivity level of radio anechoic chambers is presented. Based on an analysis of the two techniques, it is pointed out which parameters influence the measured...

  14. A mathematical model of aerosol holding chambers

    DEFF Research Database (Denmark)

    Zak, M; Madsen, J; Berg, E

    1999-01-01

    , Ontario, Canada), NebuChamber (Astra, Södirtälje, Sweden) and Nebuhaler (Astra) adapted for babies. The dose of fluticasone proportionate delivered by the Babyhaler (Glaxco Wellcome, Oxbridge, Middlesex, UK) was 80% of that predicted, probably because of incomplete priming of this spacer. Of the above...

  15. Organization of bubble chamber image processing

    International Nuclear Information System (INIS)

    Gritsaenko, I.A.; Petrovykh, L.P.; Petrovykh, Yu.L.; Fenyuk, A.B.

    1985-01-01

    A programme of bubble chamber image processing is described. The programme is written in FORTRAN, it is developed for the DEC-10 computer and is designed for operation of semi-automation processing-measurement projects PUOS-2 and PUOS-4. Fornalization of the image processing permits to use it for different physical experiments

  16. The use of microholography in bubble chambers

    CERN Document Server

    Royer, H

    1981-01-01

    In-line holography has been used for the first time in a bubble chamber for the account of the CERN (Geneva, CH). The holograms were recorded with the help of a single-mode pulse laser. Bubble tracks of 25 microns in diameter have been reconstructed with a resolution of 2 microns. (12 refs).

  17. Image digitizer system for bubble chamber laser

    International Nuclear Information System (INIS)

    Haggerty, H.

    1986-01-01

    An IBM PC-based image digitizer system has been assembled to monitor the laser flash used for holography at the 15 foot bubble chamber. The hardware and the operating software are outlined. For an operational test of the system, an array of LEDs was flashed with a 10 microsecond pulse and the image was grabbed by one of the operating programs and processed

  18. Is Climate Simulation in Growth Chambers Necessary?

    Science.gov (United States)

    Z.M. Wang; K.H. Johnsen; M.J. Lechowicz

    1999-01-01

    In the expression of their genetic potential as phenotypes, trees respond to environmental cues such as photoperiod, temperature and soil and atmospheric water. However, growth chamber experiments often utilize simple and standard environmental conditions that might not provide these important environmental signals. We conducted a study to compare seedling growth in...

  19. Performance of a time-projection chamber

    Energy Technology Data Exchange (ETDEWEB)

    Fancher, D; Hilke, H J; Loken, S; Martin, P; Marx, J N; Nygren, D R; Robrish, P; Shapiro, G; Urban, M; Wenzel, W [California Univ., Berkeley (USA). Lawrence Berkeley Lab.

    1979-05-15

    The design and operation of a position sensitive three-dimensional drift chamber with the capability of ionization sampling is reported. This detector allows simultaneous measurements of the momentum and the mass of charged particles. The device is a prototype for a large detector system to be built at the PEP storage ring facility.

  20. Calibration of well-type ionization chambers

    International Nuclear Information System (INIS)

    Alves, C.F.E.; Leite, S.P.; Pires, E.J.; Magalhaes, L.A.G.; David, M.G.; Almeida, C.E. de

    2015-01-01

    This paper presents the methodology developed by the Laboratorio de Ciencias Radiologicas and presently in use for determining of the calibration coefficient for well-type chambers used in the dosimetry of 192 Ir high dose rate sources. Uncertainty analysis involving the calibration procedure are discussed. (author)

  1. Acoustical-Levitation Chamber for Metallurgy

    Science.gov (United States)

    Barmatz, M. B.; Trinh, E.; Wang, T. G.; Elleman, D. D.; Jacobi, N.

    1983-01-01

    Sample moved to different positions for heating and quenching. Acoustical levitation chamber selectively excited in fundamental and second-harmonic longitudinal modes to hold sample at one of three stable postions: A, B, or C. Levitated object quickly moved from one of these positions to another by changing modes. Object rapidly quenched at A or C after heating in furnace region at B.

  2. Chamber of Commerce reception for Dr. Lucas

    Science.gov (United States)

    1986-01-01

    Dr. William R. Lucas, Marshall's fourth Center Director (1974-1986), delivers a speech in front of a picture of the lunar landscape with Earth looming in the background while attending a Huntsville Chamber of Commerce reception honoring his achievements as Director of Marshall Space Flight Center (MSFC).

  3. Lifetime tests for MAC vertex chamber

    International Nuclear Information System (INIS)

    Nelson, H.N.

    1986-07-01

    A vertex chamber for MAC was proposed to increase precision in the measurement of the B hadron and tau lepton lifetimes. Thin-walled aluminized mylar drift tubes were used for detector elements. A study of radiation hardness was conducted under the conditions of the proposed design using different gases and different operating conditions

  4. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I; Martinez laso, L

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  5. Circuit for current measures from ionization chambers

    International Nuclear Information System (INIS)

    Mello, F.L.V. de; Oliveira, A.H. de; Rezende, R.S.

    1992-01-01

    The design and the specifications of an ammeters of low cost for small current, IOE-14 Ampere, from ionization chambers or others transducers used in nuclear instrumentation are described. Special attention is given to the integrated electronic components, available in the brazilian market. (C.G.C.)

  6. Chamber for Aerosol Deposition of Bioparticles

    Science.gov (United States)

    Kern, Roger; Kirschner, Larry

    2008-01-01

    Laboratory apparatus is depicted that is a chamber for aerosol deposition of bioparticles on surfaces of test coupons. It is designed for primary use in inoculating both flat and three-dimensional objects with approximately reproducible, uniform dispersions of bacterial spores of the genus Bacillus so that the objects could be used as standards for removal of the spores by quantitative surface sampling and/or cleaning processes. The apparatus is also designed for deposition of particles other than bacterial spores, including fungal spores, viruses, bacteriophages, and standard micron-sized beads. The novelty of the apparatus lies in the combination of a controllable nebulization system with a settling chamber large enough to contain a significant number of test coupons. Several companies market other nebulizer systems, but none are known to include chambers for deposition of bioparticles to mimic the natural fallout of bioparticles. The nebulization system is an expanded and improved version of commercially available aerosol generators that include nebulizers and drying columns. In comparison with a typical commercial aerosol generator, this system includes additional, higher-resolution flowmeters and an additional pressure regulator. Also, unlike a typical commercial aerosol generator, it includes stopcocks for separately controlling flows of gases to the nebulizer and drying column. To maximize the degree of uniformity of dispersion of bioaerosol, the chamber is shaped as an axisymmetrical cylinder and the aerosol generator is positioned centrally within the chamber and aimed upward like a fountain. In order to minimize electric charge associated with the aerosol particles, the drying column is made of aluminum, the drying column is in direct contact with an aluminum base plate, and three equally spaced Po-210 antistatic strips are located at the exit end of the drying column. The sides and top of the chamber are made of an acrylic polymer; to prevent

  7. Track reconstruction in liquid hydrogen ionization chamber

    International Nuclear Information System (INIS)

    Balbekov, V.I.; Baranov, A.M.; Krasnokutski, R.N.; Perelygin, V.P.; Rasuvaev, E.A.; Shuvalov, R.S.; Zhigunov, V.P.; Lebedenko, V.N.; Stern, B.E.

    1979-01-01

    It is shown that particle track parameters can be reconstructed by the currents in the anode cells of the ionization chamber. The calculations are carried out for the chamber with 10 cm anode-cathode gap width. For simplicity a two-dimensional chamber model is used. To make the calculations simpler the charge density along the track is considered to be constant and equal to 10 4 electrons/mm. The drift velocity of electrons is assumed to be 5x10 6 cm/s. The anode is devided into cells 2 cm in width. The events in the chamber is defined with the coordinates X and Z of the event vertex, polar angles THETA of each track and track length l. The coordinates x, y and track angle THETA are reconstructed by currents with errors of up to millimetre and milliradian. The reconstruction errors are proportional to noise levels of electronics and also depend on the track geometry and argon purification. The energy resolution of the chamber is calculated for high energy electrons by means of computer program based on a Monter-Carlo method. The conclusion is made that the energy resolution depends on the gap width as a square root. Two ways to solve the track reconstruction problem are considered: 1. the initial charge density is determined by measuring the charges induced in anode strips at some discrete moments of time; 2. the evaluation of the parameters ia made by traditional minimization technique. The second method is applicable only for a not very large number of hypothesis, but it is less time consuming

  8. Hyperbaric and hypobaric chamber fires: a 73-year analysis.

    Science.gov (United States)

    Sheffield, P J; Desautels, D A

    1997-09-01

    Fire can be catastrophic in the confined space of a hyperbaric chamber. From 1923 to 1996, 77 human fatalities occurred in 35 hyperbaric chamber fires, three human fatalities in a pressurized Apollo Command Module, and two human fatalities in three hypobaric chamber fires reported in Asia, Europe, and North America. Two fires occurred in diving bells, eight occurred in recompression (or decompression) chambers, and 25 occurred in clinical hyperbaric chambers. No fire fatalities were reported in the clinical hyperbaric chambers of North America. Chamber fires before 1980 were principally caused by electrical ignition. Since 1980, chamber fires have been primarily caused by prohibited sources of ignition that an occupant carried inside the chamber. Each fatal chamber fire has occurred in an enriched oxygen atmosphere (> 28% oxygen) and in the presence of abundant burnable material. Chambers pressurized with air (Hyperbaric Medical Society's Chamber Experience and Mishap Database. This epidemiologic review focuses on information learned from critical analyses of chamber fires and how it can be applied to safe operation of hypobaric and hyperbaric chambers.

  9. Defect attributed variations of the photoconductivity and photoluminescence in the HVPE and MOCVD as-grown and irradiated GaN structures

    International Nuclear Information System (INIS)

    Gaubas, E.; Pobedinskas, P.; Vaitkus, J.; Uleckas, A.; Zukauskas, A.; Blue, A.; Rahman, M.; Smith, K.M.; Aujol, E.; Beaumont, B.; Faurie, J.-P.; Gibart, P.

    2005-01-01

    The effect of native and radiation induced defects on the photoconductivity transients and photoluminescence spectra have been examined in GaN epitaxial layers of 2.5 and 12μm thickness grown on bulk n-GaN/sapphire substrates by metal-organic chemical vapor deposition (MOCVD). For comparison, free-standing GaN as-grown samples of 500μm thickness, fabricated by hydride vapor phase epitaxy (HVPE), were investigated. Manifestation of defects induced by 10-keV X-ray irradiation with the dose of 600Mrad and 100-keV neutrons with the fluences of 5x10 14 and 10 16 cm -2 as well as of 24GeV/c protons with fluence 10 16 cm -2 have been revealed through contact photoconductivity and microwave absorption transients. The amplitude of the initial photoconductivity decay is significantly reduced by the native and radiation defects density. Synchronous decrease of the steady-state PL intensity of yellow, blue and ultraviolet bands peaked at 2.18, 2.85, and 3.42eV, respectively, with density of radiation-induced defects is observed. The decrease of the PL intensity is accompanied by an increase of asymptotic decay lifetime in the photoconductivity transients, which is due to excess-carrier multi-trapping. The decay fits the stretched exponent approximation exp[-(t/τ) α ] with the different factors α in as-grown material (α∼0.7) and irradiated samples (α∼0.3). The fracton dimension d s of disordered structure changes from 4.7 to 0.86 for as-grown and irradiated material, respectively, and it implies the percolative carrier motion on an infinite cluster of dislocations net in the as-grown material and cluster fragmentation into finite fractons after irradiations

  10. Pressure vessel rupture within a chamber: the pressure history on the chamber wall

    International Nuclear Information System (INIS)

    Baum, M.R.

    1989-04-01

    Generally there is a large number of pressure vessels containing high pressure gas on power stations and chemical plant. In many instances, particularly on power plant, these vessels are within the main building. If a pressure vessel were to fail, the surrounding structures would be exposed to blast loads and the forces resulting from jets of fluid issuing from the breached vessel. In the case where the vessel is in a relatively closed chamber there would also be a general overpressurisation of the chamber. At the design stage it is therefore essential to demonstrate that the plant could be safely shut down in the event of a pressure vessel failure, that is, it must be shown that the chamber will not collapse thus putting the building at risk or hazarding equipment essential for a safe shut down. Such an assessment requires the loads applied to the chamber walls, roof, etc. to be known. (author)

  11. Multiwire proportional chamber and multistage avalanche chamber with low concentration photoionization gas

    International Nuclear Information System (INIS)

    Zhao Pingde; Xu Zhiqing; Tang Xiaowei

    1986-01-01

    The characteristics of multiwire proportional chamber and multistage avalanche chamber filled with argon and photoionization gas (C 2 H 5 ) 3 N were measured. The spatial resolution curves and output pulse height spectra were measured as well. Low concentration (C 2 H 5 ) 3 N can play an effective part in quenching. At very low concentration, the phenomena of avalanche transverse expansion was observed obviously

  12. Industrial development of neutron detectors, fission chambers, self powered detectors, ionization chambers

    International Nuclear Information System (INIS)

    Constans, H.; Coville, P.; Guerre, J.

    1975-01-01

    Reactor control requires the determination of neutron flux at all times. The needed characteristics lead to use of several types of detectors: boron lined counters, boron lined ionization chambers, fission ionization chambers and self powered detectors. The principle of the reaction involved the fabrication requirements, the different modes of utilization and the characteristics obtained are examined for each detector. The problem of electric connections in the active area has been solved by developing ''integrated cables'' [fr

  13. A new plant chamber facility PLUS coupled to the atmospheric simulation chamber SAPHIR

    Science.gov (United States)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2015-11-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been build and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees are mixed with synthetic air and are transferred to the SAPHIR chamber where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOC) can be studied in detail. In PLUS all important enviromental parameters (e.g. temperature, PAR, soil RH etc.) are well-controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leafes of the plants is constructed such that gases are exposed to FEP Teflon film and other Teflon surfaces only to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 LED panels which have an emission strength up to 800 μmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOC) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light and temperature dependent BVOC emissions are studied using six Quercus Ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus Ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental set up and the utility of the newly added plant chamber.

  14. A new plant chamber facility, PLUS, coupled to the atmosphere simulation chamber SAPHIR

    Science.gov (United States)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2016-03-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been built and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow-through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees is mixed with synthetic air and transferred to the SAPHIR chamber, where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOCs) can be studied in detail. In PLUS all important environmental parameters (e.g., temperature, photosynthetically active radiation (PAR), soil relative humidity (RH)) are well controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leaves of the plants is constructed such that gases are exposed to only fluorinated ethylene propylene (FEP) Teflon film and other Teflon surfaces to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 light-emitting diode (LED) panels, which have an emission strength up to 800 µmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOCs) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light- and temperature- dependent BVOC emissions are studied using six Quercus ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental setup and the utility of the newly added plant chamber.

  15. Temperature uniformity in the CERN CLOUD chamber

    Directory of Open Access Journals (Sweden)

    A. Dias

    2017-12-01

    Full Text Available The CLOUD (Cosmics Leaving OUtdoor Droplets experiment at CERN (European Council for Nuclear Research investigates the nucleation and growth of aerosol particles under atmospheric conditions and their activation into cloud droplets. A key feature of the CLOUD experiment is precise control of the experimental parameters. Temperature uniformity and stability in the chamber are important since many of the processes under study are sensitive to temperature and also to contaminants that can be released from the stainless steel walls by upward temperature fluctuations. The air enclosed within the 26 m3 CLOUD chamber is equipped with several arrays (strings of high precision, fast-response thermometers to measure its temperature. Here we present a study of the air temperature uniformity inside the CLOUD chamber under various experimental conditions. Measurements were performed under calibration conditions and run conditions, which are distinguished by the flow rate of fresh air and trace gases entering the chamber at 20 and up to 210 L min−1, respectively. During steady-state calibration runs between −70 and +20 °C, the air temperature uniformity is better than ±0.06 °C in the radial direction and ±0.1 °C in the vertical direction. Larger non-uniformities are present during experimental runs, depending on the temperature control of the make-up air and trace gases (since some trace gases require elevated temperatures until injection into the chamber. The temperature stability is ±0.04 °C over periods of several hours during either calibration or steady-state run conditions. During rapid adiabatic expansions to activate cloud droplets and ice particles, the chamber walls are up to 10 °C warmer than the enclosed air. This results in temperature differences of ±1.5 °C in the vertical direction and ±1 °C in the horizontal direction, while the air returns to its equilibrium temperature with a time constant of about 200 s.

  16. Performance characteristics of selected integrating ion chambers

    International Nuclear Information System (INIS)

    Lubenau, J.O.; Liberace, R.

    1977-01-01

    Certain types of integrating ion chambers have been identified as acceptable equipment for a nationwide medical X-ray exposure survey program. In this study, Victoreen 2.5, 5 and 10 R condenser R-chambers, the Victoreen 666 Diagnostic Probe (used in the integrating mode) and the Bendix 200 mR and 5 R low energy dosimeters were evaluated for recombination losses and for energy dependence. Recombination losses were determined for exposure rates ranging from 0.3 to 80 R/sec. Energy dependence was determined for X-ray beam qualities ranging from 45 kVp and 0.83 mm Al first half value layer to 125 kVp and 4.8 mm Al first half value layer. The data enable selection of instruments so that errors from recombination losses and energy dependence can be minimized. (author)

  17. Conditioning of vacuum chamber by RF plasma

    International Nuclear Information System (INIS)

    Elizondo, J.I.; Nascimento, I.C. do

    1985-01-01

    A new conditioning vaccum chamber system is presented. It consists in hydrogen plasm generation by microwaves with low electronic temperature (Te approx. 5eV) and low ionization degree. The ions and neutral atoms generated in the reaction: e + H 2 -> H+ H+ e, bomb the chamber walls combinig themselves to impurities of surface and generating several compounds: H 2 O, CO, CH 4 , CO 2 etc. The vacuum system operates continuosly and remove these compounds. A microwave system using magnetron valve (f=2,45 GHz, P=800W) was constructed for TBR (Brazilian tokamak). The gas partial pressures were monitored before, during and after conditioning showing the efficiency of the process. (M.C.K.) [pt

  18. The physics of Resistive Plate Chambers

    CERN Document Server

    Riegler, Werner

    2004-01-01

    Over the last 3 years we investigated theoretical aspects of Resistive Plate Chambers (RPC) in order to clarify some of the outstanding questions on space charge effects, high efficiency of small gap RPCs, charge spectra, signal shape and time resolution. In a series of reports we analyzed RPC performance including all detector aspects covering primary ionization, avalanche multiplication, space charge effects, signal induction in presence of resistive materials, crosstalk along detectors with long strips and front-end electronics. Using detector gas parameters entirely based on theoretical predictions and physical models for avalanche development and space charge effects we are able to reproduce measurements for 2 and 0.3 mm RPCs to very high accuracy without any additional assumptions. This fact gives a profound insight into the workings of RPCs and also underlines the striking difference in operation regime when compared to wire chambers. A summary of this work as well as recent results on three-dimensiona...

  19. Reproducibility of the chamber scarification test

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner

    1996-01-01

    The chamber scarification test is a predictive human skin irritation test developed to rank the irritation potential of products and ingredients meant for repeated use on normal and diseased skin. 12 products or ingredients can be tested simultaneously on the forearm skin of each volunteer....... The test combines with the procedure scratching of the skin at each test site and subsequent closed patch tests with the products, repeated daily for 3 days. The test is performed on groups of human volunteers: a skin irritant substance or products is included in each test as a positive control...... high reproducibility of the test. Further, intra-individual variation in skin reaction to the 2 control products in 26 volunteers, who participated 2x, is shown, which supports the conclusion that the chamber scarification test is a useful short-term human skin irritation test with high reproducibility....

  20. Tailored vacuum chambers for ac magnets

    International Nuclear Information System (INIS)

    Harvey, A.

    1985-01-01

    The proposed LAMPF-II accelerator has a 60-Hz booster synchrotron and a 3-Hz main ring. To provide a vacuum enclosure inside the magnets with low eddy-current losses and minimal field distortion, yet capable of carrying rf image currents and providing beam stabilization, we propose an innovative combination pipe. Structurally, the enclosure is high-purity alumina ceramic, which is strong, radiation resistant, and has good vacuum properties. Applied to the chamber are thin, spaced, silver conductors using adapted thick-film technology. The conductor design can be tailored to the stabilization requirements, for example, longitudinal conductors for image currents, circumferential for transverse stabilization. The inside of the chamber has a thin, resistive coating to avoid charge build-up. The overall 60-Hz power loss is less than 100 W/m

  1. Plasma Chamber Design and Fabrication Activities

    Science.gov (United States)

    Parodi, B.; Bianchi, A.; Cucchiaro, A.; Coletti, A.; Frosi, P.; Mazzone, G.; Pizzuto, A.; Ramogida, G.; Coppi, B.

    2006-10-01

    A fabrication procedure for a typical Plasma Chamber (PC) sector has been developed to cover all the manufacturing phases, from the raw materials specification (including metallurgical processes) to the machining operations, acceptance procedures and vacuum tests. Basically, the sector is made of shaped elements (forged or rolled) welded together using special fixtures and then machined to achieve the final dimensional accuracy. An upgraded design of the plasma chamber's vertical support that can withstand the estimated electromagnetic loads (Eddy and Halo current plus horizontal net force resulting from the worst plasma disruption scenario VDE, Vertical Displacement Event) has been completed. The maintenance of the radial support can take place hands-on with a direct access from outside the cryostat. With the present design, vacuum tightness is achieved by welding conducted with automatic welding heads. On the outer surface of the PC a dedicated duct system, filled by helium gas, is included to cool down the PC to room temperature when needed.

  2. HYLIFE-II reactor chamber mechanical design

    International Nuclear Information System (INIS)

    House, P.A.

    1992-01-01

    Mechanical design features of the reactor chamber for the HYLIFE-11 inertial confinement fusion power plant are presented. A combination of oscillating and steady, molten salt streams are used for shielding and blast protection. The system is designed for an 8 Hz repetition rate. Beam path clearing, between shots, is accomplished with the oscillating flow. The mechanism for generating the oscillating streams is described. A design configuration of the vessel wall allows adequate cooling and provides extra shielding to reduce thermal stresses to tolerable levels. The bottom portion of the reactor chamber is designed to minimize splash back of the high velocity (20 m/s) salt streams and also recover up to half of the dynamic head

  3. Wire chambers with their magnetostrictive readout

    CERN Multimedia

    1974-01-01

    This set of wire chamber planes shaped as a cylinder sector was installed inside the magnet of a polarized spin target modified to allow as well momentum analysis of the produced particles. The experiment (S126) was set up by the CERN-Trieste Collaboration in the PS beam m9 to measure spin effects in the associated production of of a positive kaon and a positive Sigma by interaction of a positive pion with polarized protons.

  4. Performance of a Microgap Chamber Prototype

    International Nuclear Information System (INIS)

    Adeva, B.; Gomez, F.; Nunez, T.; Pazos, A.; Plo, M.; Santamaria, C.; Vazquez, P.; Navarro, Z.

    1998-01-01

    We describe the construction and performance of a novel type of detector concept for ionizing particles, the Microgap Gas Chamber (MGC). A prototype was a built on a SiO 2 substrate with Aluminium electrodes by a collaboration between the C.N.M. (Centro nacional de Microelectronica) in Barcelona and the Grupo de Altas Energias of the University of Santiago de Compostela. Some of the operation characteristics are discussed. (Author) 8 refs

  5. The Bern Infinitesimal Bubble Chamber (BIBC)

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The chamber body was machined from a block of aluminium. The visible volume was cylindrical with 65 mm diameter and 35 mm depth. It was filled with propane or freon. It was meant as vertex detector in the search of short-lived particles. It was also used with in-line holography resulting in 8 µm bubble size and 9 cm depth of the field. See E. Ramseyer, B. Hahn and E. Hugentobler, Nucl. Instrum. Methods 201 (1982) 335.

  6. Vacuum Chamber for the Booster Bending Magnets

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    To minimise eddy currents, induced by the rising magnetic field, the chamber was made from thin stainless steel of high specific electric resistance. For mechanical strength, it was corrugated in a hydro-forming process. The cross-section was designed for maximum strength and maximum aperture. To accept particles with simultaneous large amplitudes in both planes, the cross-section approaches a rectangular shape (see also 7402463).

  7. Bubble chamber: D meson production and decay

    CERN Multimedia

    1978-01-01

    This event shows real particle tracks from the Big European Bubble Chamber (BEBC), which was used to observe neutrino and hadron beams between 1973 and 1984 from the PS and SPS accelerators. In this event a neutrino interacts with a proton producing an excited D meson. A labeled diagram is seen on the right as the particles spiral in the magnetic field of the detector.

  8. Design of an ionization diffusion chamber detector

    International Nuclear Information System (INIS)

    Sugiarto, S.

    1976-01-01

    Prototype of an Ionization Diffusion Chamber detector has been made. It is a silindrical glass, 20 cm in diameter, 13,5 cm in height, air gas filled, operated at room pressure and room temperature at the top of this instrument while for the box temperature dry ice (CO 2 solid) temperature is used. This detector is ready for seeing alpha and beta particle tracks. (author)

  9. Performance of a proton irradiation chamber

    International Nuclear Information System (INIS)

    Agosteo, S.; Borsato, E.; Dal Corso, F.; Fazzi, A.; Gonella, F.; Introini, M.V.; Lippi, I.; Lorenzoli, M.; Modenese, L.; Montecassiano, F.; Pegoraro, M.; Pola, A.; Varoli, V.; Zotto, P.

    2012-01-01

    A Proton Irradiation Chamber aiming to perform radiation tests of electronic components was developed. The precision on the measurement of the ion currents was pushed beyond the resolution of the picoammeter by means of a series of collimators on the beam showing a linear correlation among the currents measured on them and the smaller, not measurable, current on the target. As an example of the obtained results the tests done on a Si microdosimeter and a power p-MOS are reported.

  10. Performance of a proton irradiation chamber

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Politecnico di Milano, Dipartimento di Energia, Sezione di Ingegneria Nucleare-CeSNEF, via Ponzio 34/3 20133 Milano (Italy); Borsato, E. [INFN, Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Universita di Padova, Dipartimento di Fisica, via Marzolo 8, 35131 Padova (Italy); Dal Corso, F. [INFN, Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Fazzi, A. [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Politecnico di Milano, Dipartimento di Energia, Sezione di Ingegneria Nucleare-CeSNEF, via Ponzio 34/3 20133 Milano (Italy); Gonella, F. [INFN, Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Introini, M.V. [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Politecnico di Milano, Dipartimento di Energia, Sezione di Ingegneria Nucleare-CeSNEF, via Ponzio 34/3 20133 Milano (Italy); Lippi, I. [INFN, Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Lorenzoli, M. [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Politecnico di Milano, Dipartimento di Energia, Sezione di Ingegneria Nucleare-CeSNEF, via Ponzio 34/3 20133 Milano (Italy); Modenese, L.; Montecassiano, F.; Pegoraro, M. [INFN, Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Pola, A.; Varoli, V. [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Politecnico di Milano, Dipartimento di Energia, Sezione di Ingegneria Nucleare-CeSNEF, via Ponzio 34/3 20133 Milano (Italy); Zotto, P., E-mail: pierluigi.zotto@pd.infn.it [INFN, Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Universita di Padova, Dipartimento di Fisica, via Marzolo 8, 35131 Padova (Italy)

    2012-02-01

    A Proton Irradiation Chamber aiming to perform radiation tests of electronic components was developed. The precision on the measurement of the ion currents was pushed beyond the resolution of the picoammeter by means of a series of collimators on the beam showing a linear correlation among the currents measured on them and the smaller, not measurable, current on the target. As an example of the obtained results the tests done on a Si microdosimeter and a power p-MOS are reported.

  11. The micro-gap resistive plate chamber

    CERN Document Server

    Cerron-Zeballos, E; Lamas-Valverde, J; Platner, E D; Roberts, J; Williams, M C S; Zichichi, A

    1999-01-01

    Previously we have found that the freon C/sub 2/F/sub 5/H has very good properties when used in a resistive plate chamber (RPC) with a single gap of 2 mm. In this paper we report on the performance of a multigap RPC consisting of 4 gaps of 0.8 mm filled with a gas mixture containing this freon. (7 refs).

  12. Calibration of ionization chamber survey meter

    International Nuclear Information System (INIS)

    Kadhim, A.K.; Kadni, T.B.

    2016-01-01

    Radiation measuring devices need to process calibration which lose their sensitivity and the extent of the response and the amount of stability under a changing conditions from time to time and this period depends on the nature and use of field in which used devices. A comparison study was done toa (45 I P) ( ionization chamber survey meter) and this showed the variation factor in five different years. This study also displayed the concept of radiation instrument calibration and necessity of every year calibration of them.In this project we used the five years calibration data for ionization chamber survey meter model Inspector (1/C F). the value deviation (∆ %) of Cfs for four years of calibration in comparison of C F for the year 2007 are very high and the device under research is not good to use in field and reliable because the ionization chamber is very sensitive to humidity and must calibrate a year or less, or due ing every two years and must maintain carefully to reduce the discarded effects the measurements.

  13. High counting rate resistive-plate chamber

    International Nuclear Information System (INIS)

    Peskov, V.; Anderson, D.F.; Kwan, S.

    1993-05-01

    Parallel-plate avalanche chambers (PPAC) are widely used in physics experiments because they are fast ( 5 counts/mm 2 . A resistive-plate chamber (RPC) is similar to the PPAC in construction except that one or both of the electrodes are made from high resistivity (≥10 10 Ω·cm) materials. In practice RPCs are usually used in the spark mode. Resistive electrodes are charged by sparks, locally reducing the actual electric field in the gap. The size of the charged surface is about 10 mm 2 , leaving the rest of the detector unaffected. Therefore, the rate capability of such detectors in the spark mode is considerably higher than conventional spark counters. Among the different glasses tested the best results were obtained with electron type conductive glasses, which obey Ohm's law. Most of the work with such glasses was done with high pressure parallel-plate chambers (10 atm) for time-of-flight measurements. Resistive glasses have been expensive and produced only in small quantities. Now resistive glasses are commercially available, although they are still expensive in small scale production. From the positive experience of different groups working with the resistive glasses, it was decided to review the old idea to use this glass for the RPC. This work has investigated the possibility of using the RPC at 1 atm and in the avalanche mode. This has several advantages: simplicity of construction, high rate capability, low voltage operation, and the ability to work with non-flammable gases

  14. Testing fireproof materials in a combustion chamber

    Directory of Open Access Journals (Sweden)

    Kulhavy Petr

    2017-01-01

    Full Text Available This article deals with a prototype concept, real experiment and numerical simulation of a combustion chamber, designed for testing fire resistance some new insulating composite materials. This concept of a device used for testing various materials, providing possibility of monitoring temperatures during controlled gas combustion. As a fuel for the combustion process propane butane mixture has been used and also several kinds of burners with various conditions of inlet air (forced, free and fuel flows were tested. The tested samples were layered sandwich materials based on various materials or foams, used as fillers in fire shutters. The temperature distribution was measured by using thermocouples. A simulation of whole concept of experimental chamber has been carried out as the non-premixed combustion process in the commercial final volume sw Pyrosim. The result was to design chamber with a construction suitable, according to the international standards, achieve the required values (temperature in time. Model of the combustion based on a stoichiometric defined mixture of gas and the tested layered samples showed good conformity with experimental results – i.e. thermal distribution inside and heat release rate that has gone through the sample.

  15. RF Anechoic Chambers, Tri-Service Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — In collaboration with the Navy, there are 12 RF Anechoic and static free exposure chambers located at TSRL. These chambers cover the majority of the RF spectrum and...

  16. Hot Firing of a Full Scale Copper Tubular Combustion Chamber

    National Research Council Canada - National Science Library

    Cooley, C

    2002-01-01

    This paper describes the chamber design and hot firing test results for a full-scale copper tubular combustion chamber that has future application in a high-thrust, upper-stage expander cycle engine...

  17. Superconductor shields test chamber from ambient magnetic fields

    Science.gov (United States)

    Hildebrandt, A. F.

    1965-01-01

    Shielding a test chamber for magnetic components enables it to maintain a constant, low magnetic field. The chamber is shielded from ambient magnetic fields by a lead foil cylinder maintained in a superconducting state by liquid helium.

  18. Utilizing Chamber Data for Developing and Validating Climate Change Models

    Science.gov (United States)

    Monje, Oscar

    2012-01-01

    Controlled environment chambers (e.g. growth chambers, SPAR chambers, or open-top chambers) are useful for measuring plant ecosystem responses to climatic variables and CO2 that affect plant water relations. However, data from chambers was found to overestimate responses of C fluxes to CO2 enrichment. Chamber data may be confounded by numerous artifacts (e.g. sidelighting, edge effects, increased temperature and VPD, etc) and this limits what can be measured accurately. Chambers can be used to measure canopy level energy balance under controlled conditions and plant transpiration responses to CO2 concentration can be elucidated. However, these measurements cannot be used directly in model development or validation. The response of stomatal conductance to CO2 will be the same as in the field, but the measured response must be recalculated in such a manner to account for differences in aerodynamic conductance, temperature and VPD between the chamber and the field.

  19. Safety shield for vacuum/pressure-chamber windows

    Science.gov (United States)

    Shimansky, R. A.; Spencer, R.

    1980-01-01

    Optically-clear shatter-resistant safety shield protects workers from implosion and explosion of vacuum and pressure windows. Plastic shield is inexpensive and may be added to vacuum chambers, pressure chambers, and gas-filling systems.

  20. Preparation of Anatase TiO{sub 2} Thin Films with (O{sup i}Pr){sub 2}Ti(CH{sub 3}COCHCONEt{sub 2}){sub 2} Precursor by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byoung Jae; Seo, Won Seok; Miah, Arzu; Park, Joon T. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Kwang Yeol [Korea University, Seoul (Korea, Republic of); Kim, Keun Chong [Hong-Ik University, Chochiwon (Korea, Republic of)

    2004-11-15

    The reaction of titanium tetraisopropoxide with 2 equiv of N,N-diethyl acetoacetamide affords Ti(O{sup i}Pr){sub 2}(CH{sub 3}COCHCONEt{sub 2}){sub 2} (1) as colorless crystals in 80% yield. Compound 1 is characterized by spectroscopic (Mass and {sup 1}H/{sup 13}C NMR) and microanalytical data. Molecular structure of 1 has been determined by a single crystal X-ray diffraction study, which reveals that it is a monomeric, cis-diisopropoxide and contains a six coordinate Ti(IV) atom with a cis(CONEt{sub 2}), trans(COCH{sub 3}) configuration (1a) in a distorted octahedral environment. Variable-temperature {sup 1}H NMR spectra of 1 indicate that it exists as an equilibrium mixture of cis, trans (1a) and cis, cis (1b) isomers in a 0.57 : 0.43 ratio at -20 .deg. C in toluene-d{sub 8} solution. Thermal properties of 1 as a MOCVD precursor for titanium dioxide films have been evaluated by thermal gravimetric analysis and vapor pressure measurement. Thin films of pure anatase titanium dioxide (after annealing above 500 .deg. C under oxygen) have been grown on Si(100) with precursor 1 in the substrate temperature range of 350- 500 .deg. C using a bubbler-based MOCVD method.

  1. Drift chambers on the basis of Mylar tube blocks

    Science.gov (United States)

    Budagov, Yu.; Chirikov-Zorin, I.; Golovanov, L.; Khazins, D.; Kuritsin, A.; Pukhov, O.; Zhukov, V.

    1993-06-01

    Prototypes of drift chambers constructed of Mylar tube blocks were tested. The purpose of developing tube blocks technology was to create long chambers (up to 3-4 m). Counting and drift characteristics of the chambers for different values of the gas pressure and different diameters of sense wires are presented. The lifetime of the chambers is determined. A photoeffect in the visible spectrum on the surface of the thin film aluminium cathode, which covers the Mylar tubes was observed.

  2. Drift chambers on the basis of Mylar tube blocks

    International Nuclear Information System (INIS)

    Budagov, Yu.; Chirikov-Zorin, I.; Golovanov, L.; Khazins, D.; Kuritsin, A.; Pukhov, U.; Zhukov, V.

    1993-01-01

    Prototypes of drift chambers constructed of Mylar tube blocks were tested. The purpose of developing tube blocks technology was to create chambers (up to 3-4 m). Counting and drift chracteristics of the chambers for different values of the gas pressure and different diameters of sense wires are presented. The lifetime of the chambers is determined. A photoeffect in the visible spectrum on the surface of the thin film aluminium cathode, which covers the Mylar tubes was observed. (orig.)

  3. Herds of methane chambers grazing bubbles

    Science.gov (United States)

    Grinham, Alistair; Dunbabin, Matthew

    2014-05-01

    Water to air methane emissions from freshwater reservoirs can be dominated by sediment bubbling (ebullitive) events. Previous work to quantify methane bubbling from a number of Australian sub-tropical reservoirs has shown that this can contribute as much as 95% of total emissions. These bubbling events are controlled by a variety of different factors including water depth, surface and internal waves, wind seiching, atmospheric pressure changes and water levels changes. Key to quantifying the magnitude of this emission pathway is estimating both the bubbling rate as well as the areal extent of bubbling. Both bubbling rate and areal extent are seldom constant and require persistent monitoring over extended time periods before true estimates can be generated. In this paper we present a novel system for persistent monitoring of both bubbling rate and areal extent using multiple robotic surface chambers and adaptive sampling (grazing) algorithms to automate the quantification process. Individual chambers are self-propelled and guided and communicate between each other without the need for supervised control. They can maintain station at a sampling site for a desired incubation period and continuously monitor, record and report fluxes during the incubation. To exploit the methane sensor detection capabilities, the chamber can be automatically lowered to decrease the head-space and increase concentration. The grazing algorithms assign a hierarchical order to chambers within a preselected zone. Chambers then converge on the individual recording the highest 15 minute bubbling rate. Individuals maintain a specified distance apart from each other during each sampling period before all individuals are then required to move to different locations based on a sampling algorithm (systematic or adaptive) exploiting prior measurements. This system has been field tested on a large-scale subtropical reservoir, Little Nerang Dam, and over monthly timescales. Using this technique

  4. Ionization chamber for high dose measurements

    International Nuclear Information System (INIS)

    Rodrigues Junior, Ary de Araujo

    2005-01-01

    Industrial gamma irradiators facilities are designed for processing large amounts of products, which are exposed to large doses of gamma radiation. The irradiation, in industrial scale, is usually carried out in a dynamic form, where the products go through a 60 Co gamma source with activity of TBq to P Bq (k Ci to MCi). The dose is estimated as being directly proportional to the time that the products spend to go through the source. However, in some situations, mainly for research purposes or for validation of customer process following the ISO 11137 requirements, it is required to irradiate small samples in a static position with fractional deliver doses. The samples are put inside the irradiation room at a fixed distance from the source and the dose is usually determined using dosimeters. The dose is only known after the irradiation, by reading the dosimeter. Nevertheless, in the industrial irradiators, usually different kinds of products with different densities go through between the source and the static position samples. So, the dose rate varies in function of the product density. A suitable methodology would be to monitor the samples dose in real time, measuring the dose on line with a radiation detector, which would improve the dose accuracy and avoid the overdose. A cylindrical ionization chamber of 0.9 cm 3 has been developed for high-doses real-time monitoring, during the sample irradiation at a static position in a 60 Co gamma industrial plant. Nitrogen and argon gas at pressure of 10 exp 5 Pa (1 bar) was utilized to fill the ionization chamber, for which an appropriate configuration was determined to be used as a detector for high-dose measurements. To transmit the signal generated in the ionization chamber to the associated electronic and processing unit, a 20 m mineral insulated cable was welded to the ionization chamber. The signal to noise ratio produced by the detector was about 100. The dosimeter system was tested at a category I gamma

  5. Ion chamber repairs in Bruce A

    International Nuclear Information System (INIS)

    Millard, J.; Edwards, T.; Kerker, J.; Pletch, R.; Edwards, T.

    2012-01-01

    This paper discusses identification and successful remediation of leakage of shield tank water on vertical and horizontal Ion Chambers in Bruce A. In doing so, it discusses real events moving from the initial investigation to understand the problem, through looking at options for solutions, and moving to site work and actual resolution.. In multiunit 900 MW class CANDU® reactors, the calandria vessel is suspended within a larger shield tank. Due to temperature changes or changes in moderator fluid levels in the calandria, the calandria can move relative to the shield tank and its reactivity deck. Thimbles which contain the reactivity sensors and controls connect the two vessels and allow the reactivity drives and controls connections to be placed on the deck structure on the top of the reactor assembly for RRS and SDS1 and horizontally for SDS2. These thimbles have expansion joints with metal bellows where they meet the deck structure or shield tank walls. The deck structure lies on a vault containment boundary. The horizontal ion chambers are not in the containment boundary as they connect the outside of the calandria and shield tank around mid plane in the reactor vault, but due to geometry difference provides a more challenging work environment. Bruce had a beetle alarm (1-63851-MIA2-ME30 in alarm state (vertical IC housing)) at the start of April 2012 on Unit 1 channel F vertical Ion chamber expansion joint at the deck connection. This occurred after the moderator levels had been raised after the several years long refurbishment outage and the expansion joint had a significant travel. The investigation showed shield tank water in the collection chamber at the beetle. In addition, Channel J of the horizontal ion chamber had a seized instrument, which on removal was found to relate to oxide build up as a result of minor water leakage into the site. Repairs in both cases were performed as part of the long Bruce 1 & 2 refurbishment outage to completely stop the

  6. Radon-daughter chamber instrumentation system reference manual

    International Nuclear Information System (INIS)

    Showalter, R.; Johnson, L.

    1985-01-01

    The radon-daughter chamber instrumentation system collects environmental data from the radon-daughter chamber. These data are then recorded on a Tandberg system tape cartridge and transmitted to the HP-1000 computer for processing. Generators which inject radon and condensation nuclei into the chamber are also included with the instrumentation system

  7. Test of an undulated vacuum chamber for the ISR

    CERN Multimedia

    1975-01-01

    This picture shows mechanical tests of an undulated vacuum chamber for downstream arms of ISR intersections. This chamber, made of 0.3 mm thick inconel, had inner dimensions of 150 mm by 50 mm. The deflection under vacuum is measured by dial gauges. On the left one sees the large vessel where vacuum chambers were tested at pressures above atmospheric pressure.

  8. Pressurized air ionization chamber with aluminium walls for radiometric dosimetry

    International Nuclear Information System (INIS)

    Rodrigues, R.G.S.; Pela, C.A.; Netto, T.G.

    1996-01-01

    A pressurized air ionization chamber with 23 cm 3 and aluminium walls is evaluated concerning its sensitiveness in low exposure rate. Considering conventional ionization chambers, this chamber shows a better performance since the air pressure of 2500 kPa minimizes the energy dependence to less than 5% between 40 and 1.250 keV

  9. Design and characteristics of a scattering chamber for PIXE analysis

    International Nuclear Information System (INIS)

    Oliver, A.; Miranda, J.; Lopez, K.; Mercado, F.; Flores, A.H.

    1989-01-01

    A scattering chamber for Particle Induced x-ray Emission (PIXE) analysis is described. This chamber was designed and constructed for thin film thickness measurements and depth profiling. The chamber operation characteristics and versatility in materials analysis are shown. (Author). 18 refs, 6 figs

  10. Drift chamber vertex detectors for SLC/LEP

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, K G

    1988-03-01

    Factors influencing the design of drift chamber vertex detectors for SLC and LEP are discussed including global strategy, chamber gas, cell design, and signal processing. The designs of the vertex chambers for the L3 and OPAL experiments at LEP and the Mark II experiment at the SLC are described.

  11. Bi-cone vacuum chamber in the ISR

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The "bi-cone" vacuum chamber in ISR intersection I-7, for experiment R702. Made from 0.28 mm thick titanium, it was at its time the most transparent chamber ever built. Ian Wilson is standing next to the chamber. See also 7609219.

  12. 30 CFR 57.7807 - Flushing the combustion chamber.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flushing the combustion chamber. 57.7807... and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall be...

  13. 30 CFR 56.7807 - Flushing the combustion chamber.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flushing the combustion chamber. 56.7807 Section 56.7807 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Rotary Jet Piercing Rotary Jet Piercing § 56.7807 Flushing the combustion chamber. The combustion chamber...

  14. Flexible geometry hodoscope using proportional chamber cathode read-out

    International Nuclear Information System (INIS)

    Aubret, C.; Bellefon, A. de; Benoit, P.; Brunet, J.M.; Tristram, G.

    1978-01-01

    The construction of a cathode read-out proportional chamber, used as a low mass hodoscope is described. Results on efficiency, time resolution and space resolution are shown. The associative logic, which permits the use of the chamber as a coplanarity chamber is briefly presented

  15. Tokamak Fusion Test Reactor neutral beam injection system vacuum chamber

    International Nuclear Information System (INIS)

    Pedrotti, L.R.

    1977-01-01

    Most of the components of the Neutral Beam Lines of the Tokamak Fusion Test Reactor (TFTR) will be enclosed in a 50 cubic meter box-shaped vacuum chamber. The chamber will have a number of unorthodox features to accomodate both neutral beam and TFTR requirements. The design constraints, and the resulting chamber design, are presented

  16. Evaluation of carbon dioxide dissipation within a euthanasia chamber.

    Science.gov (United States)

    Djoufack-Momo, Shelly M; Amparan, Ashlee A; Grunden, Beverly; Boivin, Gregory P-

    2014-07-01

    CO₂ euthanasia is used widely for small laboratory animals, such as rodents. A common necessity in many animal research facilities is to euthanize mice in sequential batches. We assessed the effects of several variables on the time it took for CO₂ to dissipate within a chamber. Using standard euthanasia time, changes in flow rate were compared between a slow 15% fill rate for 7 min, and a slow 15% followed by a rapid 50% filling for a total of 5 min. Additional variables assessed included the effects of opening the lid after the completion of chamber filling, turning the chamber over after completion of filling, and the use and removal of a cage from within the chamber. For all trials, CO₂ levels in the chambers peaked between 50% and 80%. After the gas was turned off, the concentration of CO₂ dropped to below 10% COv within 2 min, except when the lid was left on the chamber, where concentration levels remained above 10% after 20 min. CO₂ dissipation was significantly faster when the chamber was turned upside down after filling. Significant interaction effects occurred among the factors of cage presence within the chamber, flow rate, and chamber position. Only leaving the lid on the chamber had any practical implication for delaying CO₂ dissipation. We recommend that users allow 2 min for CO₂ to clear from the chamber before subsequent euthanasia procedures, unless the chamber is manipulated to increase the dissipation rate.

  17. 78 FR 76750 - Drawbridge Operation Regulation; Chambers Creek, Steilacoom, WA

    Science.gov (United States)

    2013-12-19

    ... operating schedule that governs the Burlington Northern Santa Fe (BNSF) Chambers Creek Railway Bridge across... performing lift bridge maintenance and upgrades for the BNSF Chambers Creek Railway Bridge across Chambers... maintenance and upgrade items to this vertical lift bridge in support of Positive Train Control requirements...

  18. Installation and Commissioning of the new GLM Implantation Chamber

    CERN Document Server

    Pohl, Christoph

    2016-01-01

    Summer student report about the work with the new implantation chamber for the GLM branch of ISOLDE. In the context of this project an API for the vacuum system of the new chamber was developed and implemented in web application that will be used to control the new implantation chamber at some point.

  19. Anechoic chamber in industrial plants. [construction materials and structural design

    Science.gov (United States)

    Halpert, E.; Juncu, O.; Lorian, R.; Marfievici, D.; Mararu, I.

    1974-01-01

    A light anechoic chamber for routine acoustical measurements in the machine building industry is reported. The outer housing of the chamber consists of modules cast in glass fiber reinforced polyester resin; the inner housing consists of pyramidal modules cut out of sound absorbing slates. The parameters of this anechoic chamber facilitate acoustical measurements according to ISO and CAEM recommendations.

  20. A combination drift chamber/pad chamber for very high readout rates

    International Nuclear Information System (INIS)

    Spiegel, L.; Cataldi, G.; Elia, V.; Mazur, P.; Murphy, C.T.; Smith, R.P.; Yang, W.; Alexopoulos, T.; Durandet, C.; Erwin, A.; Jennings, J.; Antoniazzi, L.; Introzzi, G.; Lanza, A.; Liguori, G.; Torre, P.; Arenton, M.; Conetti, S.; Cox, B.; Dukes, E.; Golovatyuk, V.; Hanlet, P.; McManus, A.; Nelson, K.; Recagni, M.; Segal, J.; Sun, J.; Ballagh, C.; Bingham, H.; Kaeding, T.; Lys, J.; Misawa, S.; Blankman, A.; Borodin, S.; Kononenko, W.; Newcomer, M.; Selove, W.; Trojak, T.; VanBerg, R.; Zhang, S.N.; Block, M.; Corti, G.; LeCompte, T.; Rosen, J.; Yao, T.; Boden, A.; Cline, D.; Ramachandran, S.; Rhoades, J.; Tokar, S.; Budagov, J.; Tsyganov, E.; Cao, Z.L.; He, M.; Wang, C.; Wei, C.; Zhang, N.; Chen, T.Y.; Yao, N.; Clark, K.; Jenkins, M.; Cooper, M.; Creti, P.; Gorini, E.; Grancagnolo, F.; Panareo, M.; Fortney, L.; Kowald, W.; Haire, M.; Judd, D.; Turnbull, L.; Wagoner, D.; Lau, K.; Mo, G.; Trischuk, J.

    1991-11-01

    Six medium-sized (∼1 x 2 m 2 ) drift chambers with pad and stripe readout have been constructed for and are presently operating in Fermi National Accelerator Laboratory experiment E-771. Each chamber module actually represents a pair of identical planes: two sets of anode wires, two sets of stripes, and two sets of pads. The wire planes are read out separately and represent X measurements in the coordinate system of the experiment. The twin stripe and pad planes are internally paired within the chamber modules; stripe signals represent Y measurements and pad signals combination X and Y measurements. Signals which develop on the stripes and pads are mirror (but inverted) images of what is seen on the wires. In addition to being used in the off-line pattern recognition, pad signals are also used as inputs to an on-line high transverse momentum (pt) trigger processor. While the techniques involved in the design and construction of the chambers are not novel, they may be of interest to experiments contemplating very large area, high rate chambers for future spectrometers

  1. A combination drift chamber/pad chamber for very high readout rates

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, L.; Cataldi, G.; Elia, V.; Mazur, P.; Murphy, C.T.; Smith, R.P.; Yang, W. (Fermi National Accelerator Lab., Batavia, IL (United States)); Alexopoulos, T.; Durandet, C.; Erwin, A.; Jennings, J. (Wisconsin Univ., Madison, WI (United States)); Antoniazzi, L.; Introzzi, G.; Lanza, A.; Liguori, G.; Torre, P. (Pavia Univ. (Italy) Istituto Nazionale di Fisica Nucleare, Rome (Italy)); Arenton, M.; Conetti, S.

    1991-11-01

    Six medium-sized ({approx}1 {times} 2 m{sup 2}) drift chambers with pad and stripe readout have been constructed for and are presently operating in Fermi National Accelerator Laboratory experiment E-771. Each chamber module actually represents a pair of identical planes: two sets of anode wires, two sets of stripes, and two sets of pads. The wire planes are read out separately and represent X measurements in the coordinate system of the experiment. The twin stripe and pad planes are internally paired within the chamber modules; stripe signals represent Y measurements and pad signals combination X and Y measurements. Signals which develop on the stripes and pads are mirror (but inverted) images of what is seen on the wires. In addition to being used in the off-line pattern recognition, pad signals are also used as inputs to an on-line high transverse momentum (pt) trigger processor. While the techniques involved in the design and construction of the chambers are not novel, they may be of interest to experiments contemplating very large area, high rate chambers for future spectrometers.

  2. Improved AlGaN/GaN HEMTs Grown on Si Substrates Using Stacked AlGaN/AlN Interlayer by MOCVD

    International Nuclear Information System (INIS)

    Wang Yong; Yu Nai-Sen; Li Ming; Lau Kei-May

    2011-01-01

    AlGaN/GaN high electron mobility transistors (HEMTs) are grown on 2-inch Si (111) substrates by MOCVD. The stacked AlGaN/AlN interlayer with different AlGaN thickness and indium surfactant doped is designed and optimized to relieve the tensile stress during GaN epitaxial growth. The top 1.0μm GaN buffer layer grown on the optimized AlGaN/AlN interlayer shows a crack-free and shining surface. The XRD results show that GaN(002) FWHM is 480 arcsec and GaN(102) FWHM is 900 arcsec. The AGaN/GaN HEMTs with optimized and non-optimized AlGaN/AlN interlayer are grown and processed for comparison and the dc and rf characteristics are characterized. For the dc characteristics of the device with optimized AlGaN/AlN interlayer, maximum drain current density I dss of 737mA/mm, peak transconductance G m of 185mS/mm, drain leakage current density I ds of 1.7μA/mm, gate leakage current density I gs of 24.8 μA/mm and off-state breakdown voltage V BR of 67 V are achieved with L g /W g /L gs /L gd = 1/10/1/1 μm. For the small signal rf characteristics of the device with optimized AlGaN/AlN interlayer, current gain cutoff frequency f T of 8.3 GHz and power gain cutoff frequency f max of 19.9 GHz are achieved with L g /W g /L gs /L gd = 1/100/1/1 μm. Furthermore, the best rf performance with f T of 14.5 GHz and f max of 37.3 GHz is achieved with a reduced gate length of 0.7μm. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Measuring the sensitivity of a boron-lined ion chamber

    International Nuclear Information System (INIS)

    Barton, D.M.

    1992-03-01

    Boron-lined ion chambers are used to monitor external neutron flux from fissionable materials assembled at the Los Alamos Critical Assembly Experiment Facility. The sensitivity of these chambers must be measured periodically in order to detect changes in filling gas and to evaluate other factors that may affect chamber performance. We delineate a procedure to measure ion chamber response using a particular neutron source ( 239 PuBe) in a particular moderating geometry of polyethylene. We also discuss use of the amplifier, high-voltage power supply, recorders, and scram circuits that comprise the complete ion chamber monitoring system

  4. Advanced Modified High Performance Synthetic Jet Actuator with Curved Chamber

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Su, Ji (Inventor); Jiang, Xiaoning (Inventor)

    2014-01-01

    The advanced modified high performance synthetic jet actuator with optimized curvature shape chamber (ASJA-M) is a synthetic jet actuator (SJA) with a lower volume reservoir or chamber. A curved chamber is used, instead of the conventional cylinder chamber, to reduce the dead volume of the jet chamber and increase the efficiency of the synthetic jet actuator. The shape of the curvature corresponds to the maximum displacement (deformation) profile of the electroactive diaphragm. The jet velocity and mass flow rate for the ASJA-M will be several times higher than conventional piezoelectric actuators.

  5. IFE chamber technology testing program in NIF and chamber development test plan

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1995-01-01

    Issues concerning chamber technology testing program in NIF involving: criteria for evaluation/prioritization of experiments, engineering scaling requirements for test article design and material selection and R and D plan prior to NIF testing were addressed in this paper. In order to maximize the benefits of testing program in NIF, the testing in NIF should provide the experimental data relevant to DEMO design choice or to DEMO design predictive capability by utilizing engineering scaling test article designs. Test plans were developed for 2 promising chamber design concepts. Early testing in non-fusion/non-ignition prior to testing in ignition facility serves a critical role in chamber R and D test plans in order to reduce the risks and costs of the more complex experiments in NIF

  6. Microstrip gas chamber on thin-film Pestov glass and micro gap chamber

    International Nuclear Information System (INIS)

    Gong, W.G.; Harris, J.W.; Wieman, H.

    1994-07-01

    The authors report developments of the Microstrip Gas Chamber on thin-film Pestov glass and the Micro Gap Chamber. By coating a thin-layer of low-resistive, electronically-conductive glass on various substrates (including quartz and ceramics), they built MSGCs of high gain stability and low leakage current. They were tested in Ar-CH 4 (10%) and He-C 2 H 6 (50%) gas mixtures. Energy resolutions of 17-20% were measured for 6keV x-rays. This design can make the choice of substrate less important, save the cost of ion-implantation, and use less glass material. Micro Gap Chamber was successfully tested in He-C 2 H 6 (50%) and Ar-C 2 H 6 (50%) gas mixtures. Energy resolutions of about 20% were obtained. Both detectors are expected to have high rate capability

  7. Dynamic consideration of smog chamber experiments

    Directory of Open Access Journals (Sweden)

    W. K. Chuang

    2017-08-01

    Full Text Available Recent studies of the α-pinene + ozone reaction that address particle nucleation show relatively high molar yields of highly oxidized multifunctional organic molecules with very low saturation concentrations that can form and grow new particles on their own. However, numerous smog-chamber experiments addressing secondary organic aerosol (SOA mass yields, interpreted via equilibrium partitioning theory, suggest that the vast majority of SOA from α-pinene is semivolatile. We explore this paradox by employing a dynamic volatility basis set (VBS model that reproduces the new-particle growth rates observed in the CLOUD experiment at CERN and then modeling SOA mass yield experiments conducted at Carnegie Mellon University (CMU. We find that the base-case simulations do overpredict observed SOA mass but by much less than an equilibrium analysis would suggest; this is because delayed condensation of vapors suppresses the apparent mass yields early in the chamber experiments. We further find that a second VBS model featuring substantial oligomerization of semivolatile monomers can match the CLOUD growth rates with substantially lower SOA mass yields; this is because the lighter monomers have a higher velocity and thus a higher condensation rate for a given mass concentration. The oligomerization simulations are a closer match to the CMU experiments than the base-case simulations, though they overpredict the observations somewhat. However, we also find that if the chemical conditions in CLOUD and the CMU chamber were identical, substantial nucleation would have occurred in the CMU experiments when in fact none occurred. This suggests that the chemical mechanisms differed in the two experiments, perhaps because the high oxidation rates in the SOA formation experiments led to rapid termination of peroxy radical chemistry.

  8. Dynamic consideration of smog chamber experiments

    Science.gov (United States)

    Chuang, Wayne K.; Donahue, Neil M.

    2017-08-01

    Recent studies of the α-pinene + ozone reaction that address particle nucleation show relatively high molar yields of highly oxidized multifunctional organic molecules with very low saturation concentrations that can form and grow new particles on their own. However, numerous smog-chamber experiments addressing secondary organic aerosol (SOA) mass yields, interpreted via equilibrium partitioning theory, suggest that the vast majority of SOA from α-pinene is semivolatile. We explore this paradox by employing a dynamic volatility basis set (VBS) model that reproduces the new-particle growth rates observed in the CLOUD experiment at CERN and then modeling SOA mass yield experiments conducted at Carnegie Mellon University (CMU). We find that the base-case simulations do overpredict observed SOA mass but by much less than an equilibrium analysis would suggest; this is because delayed condensation of vapors suppresses the apparent mass yields early in the chamber experiments. We further find that a second VBS model featuring substantial oligomerization of semivolatile monomers can match the CLOUD growth rates with substantially lower SOA mass yields; this is because the lighter monomers have a higher velocity and thus a higher condensation rate for a given mass concentration. The oligomerization simulations are a closer match to the CMU experiments than the base-case simulations, though they overpredict the observations somewhat. However, we also find that if the chemical conditions in CLOUD and the CMU chamber were identical, substantial nucleation would have occurred in the CMU experiments when in fact none occurred. This suggests that the chemical mechanisms differed in the two experiments, perhaps because the high oxidation rates in the SOA formation experiments led to rapid termination of peroxy radical chemistry.

  9. Surgical management of anterior chamber epithelial cysts.

    Science.gov (United States)

    Haller, Julia A; Stark, Walter J; Azab, Amr; Thomsen, Robert W; Gottsch, John D

    2003-03-01

    To review management strategies for treatment of anterior chamber epithelial cysts. Retrospective review of consecutive interventional case series. Charts of patients treated for epithelial ingrowth over a 10-year period by a single surgeon were reviewed. Cases of anterior chamber epithelial cysts were identified and recorded, including details of ocular history, preoperative and postoperative acuity, intraocular pressure (IOP), and ocular examination, type of surgical intervention, and details of further procedures performed. Seven eyes with epithelial cysts were identified. Patient age ranged from 1.5 to 53 years at presentation. Four patients were children. In four eyes, cysts were secondary to trauma, one case was presumably congenital, one case developed after corneal perforation in an eye with Terrien's marginal degeneration, and one case developed after penetrating keratoplasty (PK). Three eyes were treated with vitrectomy, en bloc resection of the cyst and associated tissue, fluid-air exchange and cryotherapy. The last four eyes were treated with a new conservative strategy of cyst aspiration (three cases) or local excision (one keratin "pearl" cyst), and endolaser photocoagulation of the collapsed cyst wall/base. All epithelial tissue was successfully eradicated by clinical criteria; one case required repeat excision (follow-up, 9 to 78 months, mean 45). Two eyes required later surgery for elevated IOP, two for cataract extraction and one for repeat PK. Final visual acuity ranged from 20/20 to hand motions, depending on associated ocular damage. Best-corrected visual results were obtained in the more conservatively managed eyes. Anterior chamber epithelial cysts can be managed conservatively in selected cases with good results. This strategy may be particularly useful in children's eyes, where preservation of the lens, iris, and other structures may facilitate amblyopia management. Copyright 2003 by Elsevier Science Inc.

  10. Study on target interactions in emulsion chamber - Brasil-Japan emulsion chamber collaboration

    Science.gov (United States)

    Ballester, M.; Santos, C.; Bellandi Filho, J.; Chinellato, J. A.; Dobrigkeit, C.; Lattes, C. M. G.; Marques, A.; Menon, M. J.; Navia, C. E.; Sawayanagi, K.

    Experimental results are presented from observations of 80 target nuclear interactions where the total gamma-ray energy is greater than or equal to 20 TeV. Evidence is presented for the existence of two types of interactions; the interpretation is given on the basis of a fire-ball model. Two-story emulsion chambers exposed at Mount Chacaltaya, in Bolivia (5,220 m above sea level), are used. Gamma rays from nuclear interactions in the target layer of petroleum pitch (1/3 of the nuclear mean free path in thickness) are detected through observations of the electron showers generated by them in the lower chamber

  11. Bubble Chamber Research Group Microcomputer Unit

    International Nuclear Information System (INIS)

    Bairstow, R.; Barlow, J.; Mace, P.R.; Seller, P.; Waters, M.; Watson, J.G.

    1982-05-01

    A distributed data acquisition system has been developed by the Bubble Chamber Research Group at the Rutherford Appleton laboratory for use with their film measuring machines. The system is based upon a set of microcomputers linked together with a VAX 11/780 computer, in a local area computer network. This network is of the star type and uses a packet switching technique. Each film measuring machine is equipped with a microcomputer which controls the function of the table, buffers data and enhances the interface between operators and machines. This paper provides a detailed description of each microcomputer and can be used as a reference manual for these computers. (author)

  12. Individual dosemeter with ionization chamber for intervention

    International Nuclear Information System (INIS)

    Prigent, M.

    1982-01-01

    The altogether intervention ratemeter-dosemeter is a device for work condition control and for dosimetry of intervention gang in hostile medium. A portable irradiation marker with ionization chamber either carried by staff, either put at the work post, delivers an information function of the surrounding irradiation field in which moves the intervention staff. The information is processed so as the absorbed dose rate and the absorbed dose are given simultaneously. The connection between the marker and the process device is made by a cable (up to 100m) or by radio link [fr

  13. Fabrication of resistive plate chamber using bakelite

    International Nuclear Information System (INIS)

    Neog, Himangshu; Bhuyan, M.R.; Biswas, S.; Mohanty, B.; Mohanty, Rudranarayan; Rudra, Sharmili; Sahu, P.K.; Sahu, S.

    2014-01-01

    Now a days Resistive Plate Chamber (RPC) is one of the most important detectors in the High Energy Physics (HEP) experiments. RPC is a gas filled detector utilizing a constant and uniform electric field produced between two parallel electrode plates made of a material with high bulk resistivity e.g. glass or bakelite. RPC has good time resolution (1-2 ns) and spatial resolution (∼ cm). The high resistance of RPC plate limits the spark size produced after the ionization of gas due to the passing charged particle. This contribution discusses building of a RPC using bakelite (local sources) and the measurement of the surface resistivity of the detector

  14. Simulation of the CMS Resistive Plate Chambers

    CERN Document Server

    Hadjiiska, R; Pavlov, B; Petkov, P; Dimitrov, A; Beernaert, K; Cimmino, A; Costantini, S; Garcia, G; Lellouch, J; Marinov, A; Ocampo, A; Strobbe, N; Thyssen, F; Tytgat, M; Verwilligen, P; Yazgan, E; Zaganidis, N; Aleksandrov, A; Genchev, V; Iaydjiev, P; Rodozov, M; Shopova, M; Sultanov, G; Ban, Y; Cai, J; Xue, Z; Ge, Y; Li, Q; Qian, S; Avila, C; Chaparro, L F; Gomez, J P; Moreno, B Gomez; Oliveros, A F Osorio; Sanabria, J C; Assran, Y; Sharma, A; Abbrescia, M; Colaleo, A; Pugliese, G; Loddo, F; Calabria, C; Maggi, M; Benussi, L; Bianco, S; Colafranceschi, S; Piccolo, D; Carrillo, C; Iorio, O; Buontempo, S; Paolucci, P; Vitulo, P; Berzano, U; Gabusi, M; Kang, M; Lee, K S; Park, S K; Shin, S; Kim, M S; Seo, H; Goh, J; Choi, Y; Shoaib, M

    2013-01-01

    The Resistive Plate Chamber (RPC) muon subsystem contributes significantly to the formation of the trigger decision and reconstruction of the muon trajectory parameters. Simulation of the RPC response is a crucial part of the entire CMS Monte Carlo software and directly influences the final physical results. An algorithm based on the parametrization of RPC efficiency, noise, cluster size and timing for every strip has been developed. Experimental data obtained from cosmic and proton-proton collisions at $\\sqrt{s}=7$ TeV have been used for determination of the parameters. A dedicated validation procedure has been developed. A good agreement between the simulated and experimental data has been achieved.

  15. Track resolution in the RPC chamber

    International Nuclear Information System (INIS)

    Cardarelli, R.; Aielli, G.; Camarri, P.; Di Ciaccio, A.; Liberti, B.; Santonico, R.

    2007-01-01

    A new very promising read out, in addition to the well-known charge centroid method, is proposed for improving the space resolution in the Resistive Plate Chamber (RPC) in the sub-millimeter range. The method is based on the read out of the signal propagating in the graphite electrode which was simulated using a distributed resistance-capacitance model in SPICE. The results show that a good space-time correlation in the diffusion process is only possible by suitable signal processing. Three RPC detectors with the new layout and dedicated electronics were tested. The measured space resolution was in the order of a few 100μm

  16. Data register and processor for multiwire chambers

    International Nuclear Information System (INIS)

    Karpukhin, V.V.

    1985-01-01

    A data register and a processor for data receiving and processing from drift chambers of a device for investigating relativistic positroniums are described. The data are delivered to the register input in the form of the Grey 8 bit code, memorized and transformed to a position code. The register information is delivered to the KAMAK trunk and to the front panel plug. The processor selects particle tracks in a horizontal plane of the facility. ΔY maximum coordinate divergence and minimum point quantity on the track are set from the processor front panel. Processor solution time is 16 μs maximum quantity of simultaneously analyzed coordinates is 16

  17. Chamber service module (CSM1) for MDT

    CERN Document Server

    Binchi, P

    2002-01-01

    CSM-1 is the second and latest version of the high speed electronic unit whose primary task is to multiplex serial data from up to 18 ASD /TDC cards located at the ends of the Monitored Drift Tubes. Each CSM will capture data from all 24 channel TDC (AMT-2 units) of a given chamber and transfer it along a single optic fiber to the MROD, the event builder and readout driver. The core of the board is a Xilinx VirtexII FPGA which will use JTAG protocol (IEEE Std. 1149.1) for logic configuration parameter loading.

  18. COLDDIAG: A Cold Vacuum Chamber for Diagnostics

    CERN Document Server

    Casalbuoni, S; Gerstl, S; Grau, A W; Hagelstein, M; Saez de Jauregui, D; Boffo, C; Sikler, G; Baglin, V; Cox, M P; Schouten, J C; Cimino, R; Commisso, M; Spataro, B; Mostacci, A; Wallen, E J; Weigel, R; Clarke, J; Scott, D; Bradshaw, T; Jones, R; Shinton, I

    2011-01-01

    One of the still open issues for the development of superconducting insertion devices is the understanding of the beam heat load. With the aim of measuring the beam heat load to a cold bore and the hope to gain a deeper understanding in the beam heat load mechanisms, a cold vacuum chamber for diagnostics is under construction. The following diagnostics will be implemented: i) retarding field analyzers to measure the electron energy and flux, ii) temperature sensors to measure the total heat load, iii) pressure gauges, iv) and mass spectrometers to measure the gas content. The inner vacuum chamber will be removable in order to test different geometries and materials. This will allow the installation of the cryostat in different synchrotron light sources. COLDDIAG will be built to fit in a short straight section at ANKA. A first installation at the synchrotron light source Diamond is foreseen in June 2011. Here we describe the technical design report of this device and the planned measurements with beam.

  19. Prototype for the ALEPH Time Projection Chamber

    CERN Multimedia

    1980-01-01

    This is a prototype endplate piece constructed during R&D for the ALEPH Time Projection Chamber (TPC). ALEPH was one of 4 experiments at CERN's 27km Large Electron Positron collider (LEP) that ran from 1989 to 2000. ALEPH's TPC was a large-volume tracking chamber, 4.4 metres long and 3.6 metres in diameter - the largest TPC in existance at the time. This object is one of the endplates of a “Kind” sector, the smallest of the three types of sectors. The patterns etched into the copper form the cathode pads that measured particle track coordinates in the r-phi direction. It included a laser calibration system, a gating system to prevent space charge buildup, and a new radial pad geometry to improve resolution. the ALEPH TPC allowed for precise momentum measurements of the high-momentum particles from W and Z decays. The following institutes participated: CERN, Athens, Glasgow, Mainz, MPI Munich, INFN-Pisa, INFN-Trieste, Wisconsin.

  20. Wire chamber radiation detector with discharge control

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Mulera, T.A.

    1984-01-01

    A wire chamber radiation detector has spaced apart parallel electrodes and grids defining an ignition region in which charged particles or other ionizing radiations initiate brief localized avalanche discharges and defining an adjacent memory region in which sustained glow discharges are initiated by the primary discharges. Conductors of the grids at each side of the memory section extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles were detected by sequentially transmitting pulses to the conductors of one grid while detecting transmissions of the pulses to the orthogonal conductors of the other grid through glow discharges. One of the grids bounding the memory region is defined by an array of conductive elements each of which is connected to the associated readout conductor through a separate resistance. The wire chamber avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or near simultaneous charged particles have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced