Study of gas-water flow in horizontal rectangular channels
Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.
2015-09-01
The two-phase flow in the narrow short horizontal rectangular channels 1 millimeter in height was studied experimentally. The features of formation of the two-phase flow were studied in detail. It is shown that with an increase in the channel width, the region of the churn and bubble regimes increases, compressing the area of the jet flow. The areas of the annular and stratified flow patterns vary insignificantly.
International Nuclear Information System (INIS)
Zhang Chunwei; Qiu Suizheng; Yan Mingyu; Wang Bulei; Nie Changhua
2005-01-01
The flow regime transition criteria for the boiling water two-phase flow in horizontal rectangular narrow channels (1 x 20 mm, 2 x 20 mm) were theoretically explored. The discernible flow patterns were bubble, intermittent slug, churn, annular and steam-water separation flow. By using two-fluid model, equations of conservation of momentum were established for the two-phase flow. New flow-regime criteria were obtained and agreed well with the experiment data. (authors)
International Nuclear Information System (INIS)
Bakkas, M.; Amahmid, A.; Hasnaoui, M.
2006-01-01
In this paper, we perform a numerical investigation of laminar steady natural convection flows in a two-dimensional horizontal channel containing heating rectangular blocks, periodically mounted on its lower wall. The blocks are heated at a constant temperature, T H ' and connected with adiabatic surfaces. The upper wall of the channel is maintained at a cold temperature T C ' . The parameters governing the problem are the Rayleigh number (10 2 = 6 ), the geometric parameter C (0.25=< C=l'/H'=<0.75) and the relative height of the blocks (1/8=< B=h'/H'=<1/2). The effect of the computational domain choice on the multiplicity of solutions is also investigated. The results obtained using air (Pr=0.72) as the working fluid show that the parameters B and C have a significant effect on the fluid flow and temperature fields. The symmetry of the flow is not always maintained although the boundary conditions for this problem are symmetrical, and the difference between two multiple solutions in terms of heat transfer may reach 34% for a given set of the governing parameters
Lai, Anison K. R.; Chang, Chien-Cheng; Wang, Chang-Yi
2018-04-01
This paper presents a continued study to our previous work on electroosmotic (EO) flow in a channel with vertical baffle plates by further investigating EO flow through an array of baffle plates arranged in parallel to the channel walls. The flow may be driven either in the direction along or in the direction transverse to the plates, thus distinguishing the longitudinal EO pumping (LEOP) and the transverse EO pumping (TEOP). In both types of EO pumping, it is more interesting to examine the cases when the baffle plates develop a higher zeta potential (denoted by α) than that on the channel walls (β). This semi-analytical study enables us to compare between LEOP and TEOP in the pumping efficiency under similar conditions. The TEOP case is more difficult to solve due to the higher order governing partial differential equations caused by the induced non-uniform pressure gradient distribution. In particular, we examine how the EO pumping rates deviate from those predicted by the Helmholtz-Smoluchowski velocity and illustrate the general trend of optimizing the EO pumping rates with respect to the physical and geometric parameters involved.
Two-phase flow patterns in horizontal rectangular minichannel
Directory of Open Access Journals (Sweden)
Ron’shin Fedor
2016-01-01
Full Text Available The two-phase flow in a short horizontal channel of rectangular cross-section of 1 × 19 mm2 has been studied experimentally. Five conventional two-phase flow patterns have been detected (bubble, churn, stratified, annular and jet and transitions between them have been determined. It is shown that a change in the width of the horizontal channels has a substantial effect on the boundaries between the flow regimes.
International Nuclear Information System (INIS)
Bakkas, M.; Amahmid, A.; Hasnaoui, M.
2008-01-01
Two-dimensional laminar steady natural convection in a horizontal channel with the upper wall maintained cold at a constant temperature and the lower one provided with rectangular heating blocks, periodically distributed, has been studied numerically. The blocks are connected with adiabatic segments and their surfaces are assumed to release a uniform heat flux. The study is performed using air as the working fluid (Pr = 0.72). The spacing between the blocks is maintained constant (C = l'/H' = 0.5) while the Rayleigh number and the relative height of the blocks are respectively varied in the ranges 10 2 ≤ Ra ≤ 2 x 10 6 and 1/8 ≤ B = h'/H' ≤ 1/2. The effect of the computational domain length on the multiplicity of solutions is investigated. Flow and temperature fields are also produced for various combinations of the governing parameters. It is demonstrated that, depending on the length of the computational domain and the governing parameters, different flow structures can be obtained
Steady turbulent flow in curved rectangular channels
De Vriend, H.J.
1979-01-01
After the study of fully developed and developing steady laminar flow in curved channels of shallow rectangular wet cross-section (see earlier reports in this series), steady turbulent flow in such channels is investigated as a next step towards a mathematical model of the flow in shallow river
Regimes of Two-Phase Flow in Short Rectangular Channel
Chinnov, Evgeny A.; Guzanov, Vladimir V.; Cheverda, Vyacheslav; Markovich, Dmitry M.; Kabov, Oleg A.
2009-08-01
Experimental study of two-phase flow in the short rectangular horizontal channel with height 440 μm has been performed. Characteristics of liquid motion inside the channel have been registered and measured by the Laser Induced Fluorescence technique. New information has allowed determining more precisely the characteristics of churn regime and boundaries between different regimes of two-phase flow. It was shown that formation of some two-phase flow regimes and transitions between them are determined by instability of the flow in the lateral parts of the channel.
Design of open rectangular and trapezoidal channels
González, C. P.; Vera, P. E.; Carrillo, G.; García, S.
2018-04-01
In this work, the results of designing open channels in rectangular and trapezoidal form are presented. For the development of the same important aspects were taken as determination of flows by means of formula of the rational method, area of the surface for its implementation, optimal form of the flow to meet the needs of that environment. In the design the parameter of the hydraulic radius expressed in terms of the hydraulic area and wet perimeter was determined, considering that the surface on which the fluid flows is the product of the perimeter of the section and the length of the channel and where shear is generated by the condition of no slippage.
Critical heat flux correlation for thin rectangular channels
International Nuclear Information System (INIS)
Tanaka, Futoshi; Mishima, Kaichiro; Hibiki, Takashi
2007-01-01
The effect of heated length on Critical heat flux (CHF) in thin rectangular channels was studied based on CHF data obtained under atmospheric pressure. CHF in small channels has been widely studied in the past decades but most of the studies are related to CHF in round tubes. Although basic mechanisms of burnout in thin rectangular channels are similar to tubes, applicability of CHF correlations for tubes to rectangular channels are questionable since CHF in rectangular channels are affected by the existence of non-heated walls and the non-circular geometry of channel circumference. Several studies of CHF in thin rectangular channels have been reported in relation to thermal hydraulic design of research reactors and neutron source targets and CHF correlations have been proposed, but the studies mostly focus on CHFs under geometrical conditions of the application of interest. In his study, existing CHF data obtained in thin rectangular channels were collected and the effect of heated length on CHF was examined. Existing CHF correlations were verified with positive quality flow CHF data but none of the correlations successfully reproduced the CHF for a wide range of heated length. A new CHF correlation for qualify region applicable to a wide range of heated length was developed based on the collected data. (author)
Features of two-phase flow patterns in horizontal rectangular microchannels of height 50 μm
Directory of Open Access Journals (Sweden)
Ron’shin Fedor
2016-01-01
Full Text Available The horizontal microchannel with the height of 50 micrometres and width of 40 mm of a rectangular cross-section has been used to study two-phase flow. The classical patterns of two-phase flow in the channel (bubble, stratified, churn, jet, and annular have been detected. Experimental information allows us to define the characteristics of the regimes and to determine precisely the boundaries between the patterns of the two-phase flows.
Two-phase flow in short horizontal rectangular microchannels with a height of 300 μm
Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.
2015-09-01
The two-phase flow in a narrow short horizontal channel with a rectangular cross section is studied experimentally. The channel has a width of 10, 20, or 30 mm and a height of 300 μm. The specifics of formation of such two-phase flows are investigated. It is demonstrated that the regions of bubble and churn flow regimes grow and constrain the region of jet flow as the channel gets wider. The boundaries of the regions of annular and stratified flow regimes remain almost unaltered.
Computational Investigations in Rectangular Convergent and Divergent Ribbed Channels
Sivakumar, Karthikeyan; Kulasekharan, N.; Natarajan, E.
2018-05-01
Computational investigations on the rib turbulated flow inside a convergent and divergent rectangular channel with square ribs of different rib heights and different Reynolds numbers (Re=20,000, 40,000 and 60,000). The ribs were arranged in a staggered fashion between the upper and lower surfaces of the test section. Computational investigations are carried out using computational fluid dynamic software ANSYS Fluent 14.0. Suitable solver settings like turbulence models were identified from the literature and the boundary conditions for the simulations on a solution of independent grid. Computations were carried out for both convergent and divergent channels with 0 (smooth duct), 1.5, 3, 6, 9 and 12 mm rib heights, to identify the ribbed channel with optimal performance, assessed using a thermo hydraulic performance parameter. The convergent and divergent rectangular channels show higher Nu values than the standard correlation values.
Performance analysis of SOI MOSFET with rectangular recessed channel
Singh, M.; Mishra, S.; Mohanty, S. S.; Mishra, G. P.
2016-03-01
In this paper a two dimensional (2D) rectangular recessed channel-silicon on insulator metal oxide semiconductor field effect transistor (RRC-SOI MOSFET), using the concept of groove between source and drain regions, which is one of the channel engineering technique to suppress the short channel effect (SCE). This suppression is mainly due to corner potential barrier of the groove and the simulation is carried out by using ATLAS 2D device simulator. To have further improvement of SCE in RRC-SOI MOSFET, three more devices are designed by using dual material gate (DMG) and gate dielectric technique, which results in formation of devices i.e. DMRRC-SOI,MLSMRRC-SOI, MLDMRRC-SOI MOSFET. The effect of different structures of RRC-SOI on AC and RF parameters are investigated and the importance of these devices over RRC MOSFET regarding short channel effect is analyzed.
Experimental study of natural circulation flow instability in rectangular channels
Energy Technology Data Exchange (ETDEWEB)
Zhou, Tao; Qi, Shi; Song, Mingqiang [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Passive Nuclear Safety Technology, Beijing (China). Beijing Key Lab.; Xiao, Zejun [Nuclear, Reactor Thermal Hydraulics Technology, Chengdu (China). CNNC Key Lab.
2017-05-15
Experiments of natural circulation flow instability were conducted in rectangular channels with 5 mm and 10 mm wide gaps. Results for different heating powers were obtained. The results showed that the flow will tend to be instable with the growing of heating power. The oscillation period of pressure D-value and volume flow are the same, but their phase positions are opposite. They both can be described by trigonometric functions. The existence of edge position and secondary flow will strengthen the disturbance of fluid flow in rectangle channels, which contributes to heat transfer. The disturbance of bubble and fluid will be strengthened, especially in the saturated boiling section, which make it possible for the mixing flow. The results also showed that the resistance in 5 mm channel is bigger than that in 10 mm channel, it is less likely to form stable natural circulation in the subcooled region.
Azimuthal critical heat flux in narrow rectangular channels
Energy Technology Data Exchange (ETDEWEB)
Kim, Yong Hoon; Noh, Sang Woo; Kim, Sung Joong; Suh, Kune Y. [Seoul National University, Seoul (Korea, Republic of)
2003-07-01
Tests were conducted to examine the critical heat flux (CHF) on the one-dimensional downward heating rectangular channel having a narrow gap by changing the orientation of the copper test heater assembly in a pool of saturated water under the atmospheric pressure. The test parameters include both the gap sizes of 1, 2, 5 and 10mm, and the surface orientation angles from the downward-facing position (180{sup o}) to the vertical position (90{sup o}), respectively. Also, the CHF experiments were performed for pool boiling with varying heater surface orientations in the unconfined space at the atmospheric pressure using the rectangular test section. It was observed that the CHF generally decreases as the surface inclination angle increases and as the gap size decreases. In consistency with several studies reported in the literature, it was found that there exists a transition angle above which the CHF changes with a rapid slope. An engineering correlation is developed for the CHF during natural convective boiling in the inclined, confined rectangular channels with the aid of dimensional analysis.
Mass transfer in horizontal flow channels with thermal gradients
International Nuclear Information System (INIS)
Bendrich, G.; Shemilt, L.W.
1997-01-01
Mass transfer to a wall of a horizontal rectangular channel reactor was investigated by the limiting current technique for Reynolds numbers ranging from 200 to 32000. Overall mass transfer coefficients at various mass transfer surface angles were obtained while the reactor was operated under isothermal and non-isothermal conditions. Dimensionless correlations were developed for isothermal flows from 25 to 55 o C and for non-isothermal flows with applied temperature differences up to 30 o C. In the laminar flow range natural convection dominated, but under turbulent conditions combined natural and forced convection prevailed. Mass transfer was approximately doubled under optimum selection of channel surface rotation, temperature gradient and flow rate. (author)
Flow field induced particle accumulation inside droplets in rectangular channels.
Hein, Michael; Moskopp, Michael; Seemann, Ralf
2015-07-07
Particle concentration is a basic operation needed to perform washing steps or to improve subsequent analysis in many (bio)-chemical assays. In this article we present field free, hydrodynamic accumulation of particles and cells in droplets flowing within rectangular micro-channels. Depending on droplet velocity, particles either accumulate at the rear of the droplet or are dispersed over the entire droplet cross-section. We show that the observed particle accumulation behavior can be understood by a coupling of particle sedimentation to the internal flow field of the droplet. The changing accumulation patterns are explained by a qualitative change of the internal flow field. The topological change of the internal flow field, however, is explained by the evolution of the droplet shape with increasing droplet velocity altering the friction with the channel walls. In addition, we demonstrate that accumulated particles can be concentrated, removing excess dispersed phase by splitting the droplet at a simple channel junction.
Performance analysis of SOI MOSFET with rectangular recessed channel
International Nuclear Information System (INIS)
Singh, M; Mishra, G P; Mishra, S; Mohanty, S S
2016-01-01
In this paper a two dimensional (2D) rectangular recessed channel–silicon on insulator metal oxide semiconductor field effect transistor (RRC-SOI MOSFET), using the concept of groove between source and drain regions, which is one of the channel engineering technique to suppress the short channel effect (SCE). This suppression is mainly due to corner potential barrier of the groove and the simulation is carried out by using ATLAS 2D device simulator. To have further improvement of SCE in RRC-SOI MOSFET, three more devices are designed by using dual material gate (DMG) and gate dielectric technique, which results in formation of devices i.e. DMRRC-SOI,MLSMRRC-SOI, MLDMRRC-SOI MOSFET. The effect of different structures of RRC-SOI on AC and RF parameters are investigated and the importance of these devices over RRC MOSFET regarding short channel effect is analyzed. (paper)
Bubble departure diameter in narrow rectangular channel under rolling condition
Energy Technology Data Exchange (ETDEWEB)
Xie, T.; Chen, B.; Yan, X.; Xu, J.; Huang, Y.; Xiao, Z. [Nuclear Power Inst. of China, Chengdu, Sichuan (China)
2014-07-01
Forced convective subcooled boiling flow experiments were conducted in a vertical upward narrow rectangular channel under rolling motion. A high-speed digital video camera was used to capture the dynamics of the bubble nucleation process. Bubble departure diameters were obtained from the images. A bubble departure model based on force balance analysis was proposed to predict the bubble departure size under rolling condition by considering the additional centrifugal, tangential and Coriolis force. The proposed model agreed well with the experimental data within the averaged relative deviation of 5%. (author)
Counter-current flow limited CHF in thin rectangular channels
International Nuclear Information System (INIS)
Cheng, L.Y.
1990-01-01
An analytical expression for counter-current-flow-limitation (CCFL) was used to predict critical heat flux (CHF) for downward flow in thin vertical rectangular channels which are prototypes of coolant channels in test and research nuclear reactors. Top flooding is the mechanism for counter-current flow limited CHF. The CCFL correlation also was used to determine the circulation and flooding-limited CHF. Good agreements were observed between the period the model predictions and data on the CHF for downflow. The minimum CHF for downflow is lower than the flooding-limited CHF and it is predicted to occur at a liquid flow rate higher than that at the flooding limit. 17 refs., 7 figs
Inertial manipulation of bubbles in rectangular microfluidic channels.
Hadikhani, Pooria; Hashemi, S Mohammad H; Balestra, Gioele; Zhu, Lailai; Modestino, Miguel A; Gallaire, François; Psaltis, Demetri
2018-03-27
Inertial microfluidics is an active field of research that deals with crossflow positioning of the suspended entities in microflows. Until now, the majority of the studies have focused on the behavior of rigid particles in order to provide guidelines for microfluidic applications such as sorting and filtering. Deformable entities such as bubbles and droplets are considered in fewer studies despite their importance in multiphase microflows. In this paper, we show that the trajectory of bubbles flowing in rectangular and square microchannels can be controlled by tuning the balance of forces acting on them. A T-junction geometry is employed to introduce bubbles into a microchannel and analyze their lateral equilibrium position in a range of Reynolds (1 < Re < 40) and capillary numbers (0.1 < Ca < 1). We find that the Reynolds number (Re), the capillary number (Ca), the diameter of the bubble (D[combining macron]), and the aspect ratio of the channel are the influential parameters in this phenomenon. For instance, at high Re, the flow pushes the bubble towards the wall while large Ca or D[combining macron] moves the bubble towards the center. Moreover, in the shallow channels, having aspect ratios higher than one, the bubble moves towards the narrower sidewalls. One important outcome of this study is that the equilibrium position of bubbles in rectangular channels is different from that of solid particles. The experimental observations are in good agreement with the performed numerical simulations and provide insights into the dynamics of bubbles in laminar flows which can be utilized in the design of flow based multiphase flow reactors.
Helium-air counter flow in rectangular channels
International Nuclear Information System (INIS)
Fumizawa, Motoo; Tanaka, Gaku; Zhao, Hong; Hishida, Makoto; Shiina, Yasuaki
2004-01-01
This paper deals with numerical analysis of helium-air counter flow in a rectangular channel with an aspect ratio of 10. The channel has a cross sectional area of 5-50 mm and a length of 200 mm. The inclination angle was varied from 0 to 90 degree. The velocity profiles and concentration profiles were analyzed with a computer program [FLUENT]. Following main features of the counter flow are discussed based on the calculated results. (1) Time required for establishing a quasi-steady state counter flow. (2) The relationship between the inclination angle and the flow patterns of the counter flow. (3) The developing process of velocity profiles and concentration profiles. (4) The relationship between the inclination angle of the channel and the velocity profiles of upward flow and the downward flow. (5) The relationship between the concentration profile and the inclination angle. (6) The relationship between the net in-flow rate and the inclination angle. We compared the computed velocity profile and the net in-flow rate with experimental data. A good agreement was obtained between the calculation results and the experimental results. (author)
International Nuclear Information System (INIS)
Usui, Tohru; Kaminaga, Masanori; Sudo, Yukio.
1988-07-01
Quantitative understanding of critical heat flux (CHF) in the narrow vertical rectangular channel is required for the thermo-hydroulic design and the safety analysis of research reactors in which flat-plate-type fuel is adopted. Especially, critical heat flux under low downward velocity has a close relation with falling water limitation under counter-current flow. Accordingly, CCFL (Counter-current Flow Limitation) experiments were carried out for both vertical rectangular channels and vertical circular tubes varried in their size and configuration of their cross sections, to make clear CCFL characteristics in the vertical rectangular channels. In the experiments, l/de of the rectangular channel was changed from 3.5 to 180. As the results, it was clear that different equivalent hydraulic diameter de, namely width or water gap of channel, gave different CCFL characteristics of rectangular channel. But the influence of channel length l on CCFL characteristics was not observed. Besides, a dimensionless correlation to estimate a relation between upward air velocity and downward water velocity was proposed based on the present experimental results. The difference of CCFL characteristics between rectangular channels and circular tubes was also investigated. Especially for the rectangular channels, dry-patches appearing condition was made clear as a flow-map. (author)
Preliminary Study of ONB in Narrow-Vertical Rectangular Channel
International Nuclear Information System (INIS)
Omar, S. AL-Yahia; Jo, Daeseong
2015-01-01
The location where the vapor bubble can first exist at the heated surface is called 'onset of nucleate boiling (ONB). The subcooled boiling is highly efficient to remove the heat owing to the high heat transfer coefficient. The heat transfer is affected by the motion of the bulk liquid as well as the latent heat transport of the liquid microlayer between the bubble and the heated wall. However, with increasing in the wall temperature, the bubble growth will increase and may they aggregate at the heated surface forming a vapor film, which will prevent the heat transport from the wall and that leads to highly rise in wall temperature. This phenomenon called departure from nucleate boiling (DNB). Many experimental and numerical CFD methods were carried out to investigate the subcooled boiling because of its importance in the industrial applications. In the present study, vertical narrow rectangular channel heated from both side was simulated by using CFX-14 to investigate the subcooled wall boiling, and identical simulation is done by using TMAP to compare the ONB location between numerical simulation and empirical correlations that implemented in TMAP. The numerical results using CFX-14 are discussed and compared with the results obtained from TMAP. The coolant temperature increases gradually (linearly) in the downward direction owing to the uniform applied heat flux.
Preliminary Study of ONB in Narrow-Vertical Rectangular Channel
Energy Technology Data Exchange (ETDEWEB)
Omar, S. AL-Yahia; Jo, Daeseong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
The location where the vapor bubble can first exist at the heated surface is called 'onset of nucleate boiling (ONB). The subcooled boiling is highly efficient to remove the heat owing to the high heat transfer coefficient. The heat transfer is affected by the motion of the bulk liquid as well as the latent heat transport of the liquid microlayer between the bubble and the heated wall. However, with increasing in the wall temperature, the bubble growth will increase and may they aggregate at the heated surface forming a vapor film, which will prevent the heat transport from the wall and that leads to highly rise in wall temperature. This phenomenon called departure from nucleate boiling (DNB). Many experimental and numerical CFD methods were carried out to investigate the subcooled boiling because of its importance in the industrial applications. In the present study, vertical narrow rectangular channel heated from both side was simulated by using CFX-14 to investigate the subcooled wall boiling, and identical simulation is done by using TMAP to compare the ONB location between numerical simulation and empirical correlations that implemented in TMAP. The numerical results using CFX-14 are discussed and compared with the results obtained from TMAP. The coolant temperature increases gradually (linearly) in the downward direction owing to the uniform applied heat flux.
Turbulent subcooled boiling flow visualization experiments through a rectangular channel
International Nuclear Information System (INIS)
Estrada-Perez, Carlos E.; Dominguez-Ontiveros, Elvis E.; Hassan, Yassin A.
2008-01-01
Full text of publication follows: Proper characterization of subcooled boiling flow is of importance in many applications. It is of exceptional significance in the development of empirical models for the design of nuclear reactors, steam generators, and refrigeration systems. Most of these models are based on experimental studies that share the characteristics of utilizing point measurement probes with high temporal resolution, e.g. Hot Film Anemometry (HFA), Laser Doppler Velocimetry (LDV), and Fiber Optic Probes (FOP). However there appears to be a scarcity of experimental studies that can capture instantaneous whole-field measurements with a fast time response. Particle Tracking Velocimetry (PTV) may be used to overcome the limitations associated with point measurement techniques. PTV is a whole-flow-field technique providing instantaneous velocity vectors capable of high spatial and temporal resolution. PTV is also an exceptional tool for the analysis of boiling flow due to its ability to differentiate between the gas and liquid phases and subsequently deliver independent velocity fields associated with each phase. In this work, using PTV, liquid velocity fields of a turbulent subcooled boiling flow in a rectangular channel were successfully obtained. The present results agree with similar studies that used point measurement probes. However, the present study provides additional information; not only averaged profiles of the velocity components were obtained, instantaneous 2-D velocity fields were also readily available with a high temporal and spatial resolution. Analysis of fluctuating velocities, Reynolds stresses, and higher order statistics of the flow are presented. This work is an attempt to enrich the database already collected on turbulent subcooled boiling flow, with the hope that it will be useful in turbulence modeling efforts. (authors)
Modeling on bubbly to churn flow pattern transition in narrow rectangular channel
International Nuclear Information System (INIS)
Wang Yanlin; Chen Bingde; Huang Yanping; Wang Junfeng
2012-01-01
A theoretical model based on some reasonable concepts was developed to predict the bubbly flow to churn flow pattern transition in vertical narrow rectangular channel under flow boiling condition. The maximum size of ideal bubble in narrow rectangular channel was calculated based on previous literature. The thermal hydraulics boundary condition of bubbly to churn flow pattern transition was exported from Helmholtz and maximum size of ideal bubble. The theoretical model was validated by existent experimental data. (authors)
Energy Technology Data Exchange (ETDEWEB)
Triplett, C.E.
1996-12-01
This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.
International Nuclear Information System (INIS)
Triplett, C.E.
1996-12-01
This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan's investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra) n , where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan's aligned array results and to other studies of natural convection in horizontal tube arrays
Review of Critical Heat Flux Correlations for Upward Flow in a Vertical Thin Rectangular Channel
Energy Technology Data Exchange (ETDEWEB)
Choi, Gil Sik; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)
2014-05-15
From the view point of safety, this type of fuel has higher resistance to earthquake and external impact. The cross section of coolant flow channel in the reactor core composed with the plate fuel is a thin rectangular shape. Thermal-hydraulic characteristics of this thin rectangular channel are different with those of general circular rod fuel bundle flow channel. Accordingly it could be thought that the CHF correlation in a thin rectangular channel is different with that in a circular channel, for which a large number of researches on CHF prediction have been carried out. The objective of this paper is to review previous researches on CHF in a thin rectangular channel, summarize the important conclusion and propose the new simple CHF correlation, which is based on the data set under high pressure and high flow rate condition. The researches on CHF in rectangular channel have been partially carried out according to the pressure, heated surface number, heated surface wettability effect, flow driving force and flow direction conditions. From the literature researches on CHF for upward flow in a vertical thin rectangular channel, some CHF prediction methods were reviewed and compared. There is no universal correlation which can predict CHF at all conditions, but generally, Katto empirical correlation is known to be useful at high pressure and high flow rate. The new simple correlation was developed from the restricted data set, the CHF prediction capacity of which is better than that of Katto. Even though the prediction consistency of the new simple correlation is lower, MAE and RMS error decreased quite. For the more development of the new simple CHF correlation, the more advanced regression analysis method and theoretical analysis should be studied in future.
Review of Critical Heat Flux Correlations for Upward Flow in a Vertical Thin Rectangular Channel
International Nuclear Information System (INIS)
Choi, Gil Sik; Chang, Soon Heung
2014-01-01
From the view point of safety, this type of fuel has higher resistance to earthquake and external impact. The cross section of coolant flow channel in the reactor core composed with the plate fuel is a thin rectangular shape. Thermal-hydraulic characteristics of this thin rectangular channel are different with those of general circular rod fuel bundle flow channel. Accordingly it could be thought that the CHF correlation in a thin rectangular channel is different with that in a circular channel, for which a large number of researches on CHF prediction have been carried out. The objective of this paper is to review previous researches on CHF in a thin rectangular channel, summarize the important conclusion and propose the new simple CHF correlation, which is based on the data set under high pressure and high flow rate condition. The researches on CHF in rectangular channel have been partially carried out according to the pressure, heated surface number, heated surface wettability effect, flow driving force and flow direction conditions. From the literature researches on CHF for upward flow in a vertical thin rectangular channel, some CHF prediction methods were reviewed and compared. There is no universal correlation which can predict CHF at all conditions, but generally, Katto empirical correlation is known to be useful at high pressure and high flow rate. The new simple correlation was developed from the restricted data set, the CHF prediction capacity of which is better than that of Katto. Even though the prediction consistency of the new simple correlation is lower, MAE and RMS error decreased quite. For the more development of the new simple CHF correlation, the more advanced regression analysis method and theoretical analysis should be studied in future
Cherdantsev, Andrey; Hann, David; Azzopardi, Barry
2013-11-01
High-speed LIF-technique is applied to study gas-sheared liquid film in horizontal rectangular duct with 161 mm width. Instantaneous distributions of film thickness resolved in both longitudinal and transverse coordinates were obtained with a frequency of 10 kHz and spatial resolution from 0.125 mm to 0.04 mm. Processes of generation of fast and slow ripples by disturbance waves are the same as described in literature for downwards annular pipe flow. Disturbance waves are often localized by transverse coordinate and may have curved or slanted fronts. Fast ripples, covering disturbance waves, are typically horseshoe-shaped and placed in staggered order. Their characteristic transverse size is of order 1 cm and it decreases with gas velocity. Entrainment of liquid from film surface can also be visualized. Mechanisms of ripple disruption, known as ``bag break-up'' and ``ligament break-up,'' were observed. Both mechanisms may occur on the same disturbance waves. Various scenarios of droplet deposition on the liquid film are observed, including the impact, slow sinking and bouncing, characterized by different outcome of secondary droplets or entrapped bubbles. Number and size of bubbles increase greatly inside the disturbance waves. Both quantities increase with gas and liquid flow rates. EPSRC Programme Grant MEMPHIS (EP/K003976/1), and Roll-Royce UTC (Nottingham, for access to flow facility).
DNB Mechanistic model assessment based on experimental data in narrow rectangular channel
International Nuclear Information System (INIS)
Zhou Lei; Yan Xiao; Huang Yanping; Xiao Zejun; Huang Shanfang
2011-01-01
The departure from nuclear boiling (DNB) is important concerning about the safety of a PWR. Lacking assessment by experimental data points, it's doubtful whether the existing models can be used in narrow rectangular channels or not. Based on experimental data points in narrow rectangular channels, two kinds of classical DNB models, which include liquid sublayer dryout model (LSDM) and bubble crowding model (BCM), were assessed. The results show that the BCM has much wider application range than the LSDM. Several thermal parameters show systematical influences on the calculated results by the models. The performances of all the models deteriorate as the void fraction increases. The reason may be attributed to the geometrical differences between a circular tube and narrow rectangular channel. (authors)
International Nuclear Information System (INIS)
Wang Yanlin; Chen Bingde; Huang Yanping; Wang Junfeng
2011-01-01
A theoretical model was developed to predict the bubbly to churn flow pattern transition for vertical upward flows in narrow rectangular channel. The model was developed based on the imbalance theory of Helmholtz and some reasonable assumptions. The maximum ideal bubble in narrow rectangular channel and the thermal hydraulics boundary condition leading to bubbly flow to churn flow pattern transition was calculated. The model was validated by experimental data from previous researches. Comparison between predicted result and experimental result shows a reasonable good agreement. (author)
Utilizing horizontal reactors channels for neutron therapy
International Nuclear Information System (INIS)
Stankovsky, E.Yu.; Kurachenko, Yu.A.
2000-01-01
Two experimental heterogeneous reactors have been considered. The reactors may be applied in neutron capture therapy and in a conventional manner. The channel out of the core serves as the neutron source. At each of these facilities, both fast and epithermal neutron fluxes for BNCT research, human clinical trials, and characterized common computational techniques have been evaluated. (authors)
Hydrodynamics of slug flow in a vertical narrow rectangular channel under laminar flow condition
International Nuclear Information System (INIS)
Wang, Yang; Yan, Changqi; Cao, Xiaxin; Sun, Licheng; Yan, Chaoxing; Tian, Qiwei
2014-01-01
Highlights: • Slug flow hydrodynamics in a vertical narrow rectangular duct were investigated. • The velocity of trailing Taylor bubble undisturbed by the leading one was measured. • Correlation of Taylor bubble velocity with liquid slug length ahead it was proposed. • Evolution of length distributions of Taylor bubble and liquid slug was measured. • The model of predicted length distributions was applied to the rectangular channel. - Abstract: The hydrodynamics of gas–liquid two-phase slug flow in a vertical narrow rectangular channel with the cross section of 2.2 mm × 43 mm is investigated using a high speed video camera system. Simultaneous measurements of velocity and duration of Taylor bubble and liquid slug made it possible to determine the length distributions of the liquid slug and Taylor bubble. Taylor bubble velocity is dependent on the length of the liquid slug ahead, and an empirical correlation is proposed based on the experimental data. The length distributions of Taylor bubbles and liquid slugs are positively skewed (log-normal distribution) at all measuring positions for all flow conditions. A modified model based on that for circular tubes is adapted to predict the length distributions in the present narrow rectangular channel. In general, the experimental data is well predicted by the modified model
Critical heat flux of subcooled flow boiling in narrow rectangular channels
International Nuclear Information System (INIS)
Kureta, Masatoshi; Akimoto, Hajime
1999-01-01
In relation to the high-heat-load devices such as a solid-target cooling channel of a high-intensity neutron source, burnout experiments were performed to obtain critical heat flux (CHF) data systematically for vertical upward flow in one-side heated rectangular channels. One of the objectives of this study was to study an extensibility of existing CHF correlations and models, which were proposed for a round tube, to rectangular channels for design calculation. Existing correlations and models were reviewed and compared with obtained data. Sudo's thin liquid layer dryout model, Griffel correlation and Bernath correlation were in good agreement with the experimental data for short-heated-length and low inlet water temperature conditions. (author)
Present status of heat transfer in narrow gap rectangular channel
International Nuclear Information System (INIS)
Sudo, Yukio; Kaminaga, Masanori
1990-01-01
In the safety evaluation for research nuclear reactors, at the time of abnormal transient change and accidents, after the tripping of a primary coolant pump, such event that the flow direction of coolant in a core reverses from steady downward flow to rising flow is supposed. In this case, the coexisting convection field, in which free convection and forced convection coexist, arises in place of forced convection, and especially in the research reactors using plate type fuel like JRR-3, it is important to grasp the heat transfer characteristics in the coexisting convection field in a narrow channel. Jackson et al. proposed the heat transfer correlation equation which can be applied to wide conditions including the coexisting convection zone, but its applicability to a narrow channel has not been confirmed. Based on the experimental results, in this study, the effect that the decrease of gap exerts to the convection heat transfer characteristics reported so far was investigated. The experiment and the results are reported. In this experiment on the coexisting convection zone in a narrow gap, the effect of main flow acceleration arose sufficiently large as compared with the effect of buoyancy, and heat transfer was promoted. (K.I.)
Collapse of Non-Rectangular Channels in a Soft Elastomer
Tepayotl-Ramirez, Daniel; Park, Yong-Lae; Lu, Tong; Majidi, Carmel
2013-03-01
We examine the collapse of microchannels in a soft elastomer by treating the sidewalls as in- denters that penetrate the channel base. This approach leads to a closed-form algebraic mapping between applied pressure and cross-sectional deformation that are in strong agreement with ex- perimental measurements and Finite Element Analysis (FEA) simulation. Applications of this new approach to modeling soft microchannel collapse range from lab-on-a-chip microfluidics for pressure-controlled protein filtration to soft-matter pressures sensing. We demonstrate the latter by comparing theoretical predictions with experimental measurements of the pressure-controlled electrical resistance of liquid-phase Gallium alloy microchannels embedded in a soft silicone elas- tomer.
International Nuclear Information System (INIS)
Su Jiqiang; Sun Zhongning; Fan Guangming; Wang Shiming
2013-01-01
The long stripe coherent structure of the turbulent boundary layer in a small- scale vertical rectangular channel was observed by using hydrogen bubble flow trace visualization technique. The statistical properties of the long stripe in the experimental channel boundary layer were compared with that in the smooth flat plate boundary layer. The pitch characteristics were explained by the formation mechanism of the long stripe. It was analyzed that how the change of y + affected the distribution of the long stripe. In addition, the frequency characteristics of the long stripe were also investigated, and the correlation of the long stripe frequency in such a flow channel was obtained. (authors)
Analysis of flow distribution instability in parallel thin rectangular multi-channel system
Energy Technology Data Exchange (ETDEWEB)
Xia, G.L. [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an City 710049 (China); Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin City 150001 (China); Su, G.H., E-mail: ghsu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an City 710049 (China); Peng, M.J. [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin City 150001 (China)
2016-08-15
Highlights: • Flow distribution instability in parallel thin rectangular multi-channel system is studied using RELAP5 codes. • Flow excursion may bring parallel heating channel into the density wave oscillations region. • Flow distribution instability is more likely to happen at low power/flow ratio conditions. • The increase of channel number will not affect the flow distribution instability boundary. • Asymmetry inlet throttling and heating will make system more unstable. - Abstract: The flow distribution instability in parallel thin rectangular multi-channel system has been researched in the present study. The research model of parallel channel system is established by using RELAP5/MOD3.4 codes. The transient process of flow distribution instability is studied at imposed inlet mass flow rate and imposed pressure drop conditions. The influence of heating power, mass flow rate, system pressure and channel number on flow distribution instability are analyzed. Furthermore, the flow distribution instability of parallel two-channel system under asymmetric inlet throttling and heating power is studied. The results show that, if multi-channel system operates at the negative slope region of channel ΔP–G curve, small disturbance in pressure drop will lead to flow redistribution between parallel channels. Flow excursion may bring the operating point of heating channel into the density-wave oscillations region, this will result in out-phase or in-phase flow oscillations. Flow distribution instability is more likely to happen at low power/flow ratio conditions, the stability of parallel channel system increases with system pressure, the channel number has a little effect on system stability, but the asymmetry inlet throttling or heating power will make the system more unstable.
Flow Through A Horizontal Porous Channel With A Harmonic ...
African Journals Online (AJOL)
In this research work we provide a finite element solution to the problem of the flow through a horizontal channel with a harmonic pressure gradient. Results obtained shows that the velocity and temperature increases with time and that a turning point occurs in the temperature profile due to the viscous dissipation effect.
Direct Numerical Simulation Sediment Transport in Horizontal Channel
International Nuclear Information System (INIS)
Uhlmann, M.
2006-01-01
We numerically simulate turbulent flow in a horizontal plane channel over a bed of mobile particles. All scales of fluid motion are resolved without modeling and the phase interface is accurately represented. Our results indicate a possible scenario for the onset of erosion through collective motion induced by buffer-layer streaks. (Author) 27 refs
Study on critical heat flux based on wavelet transform in rectangular narrow channels
International Nuclear Information System (INIS)
Zhou Tao; Ju Zhongyun; Zhang Lei; Li Jingjing; Sheng Cheng; Xiao Zejun
2014-01-01
Critical heat flux is very important for the safety of nuclear reactor, and observing temperature rise rate is a feasible method. The wavelet transform is used to analyze the CHF temperature rise curves in rectangular narrow channels, which can remove relative weaker interference and effectively judge CHF. Rectangular narrow channel can strengthen heat transfer and reduce CHF, whose characteristics are proved by temperature rise curves analyzed by wavelet transform. Respectively applying Daubechies function and Haar function is to guarantee the accuracy of the wavelet analysis, and Daubechies function is more accurate than Haar function in the detail signal processing from results. While the wavelet analysis and experimental results are compared and found in good agreement with the experimental results. (authors)
Study on critical heat flux based on wavelet transform in rectangular narrow channels
International Nuclear Information System (INIS)
Zhou Tao; Ju Zhongyun; Zhang Lei; Li Jingjing; Sheng Cheng; Xiao Zejun
2014-01-01
Critical heat flux is very important for nuclear reactor safety, and observing temperature rise rate is a feasible method. Through using the wavelet transform to analyze the CHF temperature rise curves in rectangular narrow channels, it can remove relative weaker interference and effectively judge CHF. Rectangular narrow channel can strengthen heat transfer and reduce CHF, whose characteristics are proved by, temperature rise curves analyzed by wavelet transform. Respectively applying Daubechies function and Haar function is for guarantee the accuracy of the wavelet analysis, and Daubechies function is more accurate than Haar function in the detail signal processing from results. While the wavelet analysis and experimental results are compared and found in good agreement with the experimental results. (authors)
Effect of aspect ratio on the laminar-to-turbulent transition in rectangular channel
International Nuclear Information System (INIS)
Wang Chang; Gao Puzhen; Tan Sichao; Xu Chao
2012-01-01
Highlights: ► Effect of aspect ratio on the transition Reynolds number in rectangular channel is studied. ► Prediction correlation for transition Reynolds number is proposed. ► The initiation location of flow transition is studied. - Abstract: The critical Reynolds number of the laminar-to-turbulent transition in the rectangular channel is investigated based on the energy gradient method. The results show that the critical Reynolds number decreases with the increasing aspect ratio. However, the relative location of laminar breakdown does not migrate significantly with the variation of the aspect ratio. In addition, a theoretical correlation as a function of the aspect ratio is proposed to calculate the transition Reynolds number, and the predicted values are in good agreement with the experimental data obtained in the published literatures.
One-dimensional acoustic standing waves in rectangular channels for flow cytometry.
Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A; Naivar, Mark A; Lόpez, Gabriel P; Graves, Steven W
2012-07-01
Flow cytometry has become a powerful analytical tool for applications ranging from blood diagnostics to high throughput screening of molecular assemblies on microsphere arrays. However, instrument size, expense, throughput, and consumable use limit its use in resource poor areas of the world, as a component in environmental monitoring, and for detection of very rare cell populations. For these reasons, new technologies to improve the size and cost-to-performance ratio of flow cytometry are required. One such technology is the use of acoustic standing waves that efficiently concentrate cells and particles to the center of flow channels for analysis. The simplest form of this method uses one-dimensional acoustic standing waves to focus particles in rectangular channels. We have developed one-dimensional acoustic focusing flow channels that can be fabricated in simple capillary devices or easily microfabricated using photolithography and deep reactive ion etching. Image and video analysis demonstrates that these channels precisely focus single flowing streams of particles and cells for traditional flow cytometry analysis. Additionally, use of standing waves with increasing harmonics and in parallel microfabricated channels is shown to effectively create many parallel focused streams. Furthermore, we present the fabrication of an inexpensive optical platform for flow cytometry in rectangular channels and use of the system to provide precise analysis. The simplicity and low-cost of the acoustic focusing devices developed here promise to be effective for flow cytometers that have reduced size, cost, and consumable use. Finally, the straightforward path to parallel flow streams using one-dimensional multinode acoustic focusing, indicates that simple acoustic focusing in rectangular channels may also have a prominent role in high-throughput flow cytometry. Copyright © 2012 Elsevier Inc. All rights reserved.
Forced convective boiling heat transfer of water in vertical rectangular narrow channel
International Nuclear Information System (INIS)
Chen, Chong; Gao, Pu-zhen; Tan, Si-chao; Chen, Han-ying; Chen, Xian-bing
2015-01-01
Highlights: • Chen correlation cannot well predict the coefficient of rectangular channel. • Kim and Mudawar correlation is the best one among the Chen type correlations. • Lazarek and Black correlation predicted 7.0% of data within the ±30% error band. • The new correlation can well predict the coefficient with a small MAE of 14.4%. - Abstract: In order to research the characteristics of boiling flows in a vertical rectangular narrow channel, a series of convective boiling heat transfer experiments are performed. The test section is made of stainless steel with an inner diameter of 2 × 40 mm and heated length of 1100 mm. The 3194 experimental data points are obtained for a heat flux range of 10–700 kW/m 2 , a mass flux range of 200–2400 kg/m 2 s, a system pressure range of 0.1–2.5 MPa, and a quality range of 0–0.8. Eighteen prediction models are used to predict the flow boiling heat transfer coefficient of the rectangular narrow channel and the predicted value is compared against the database including 3194 data points, the results show that Chen type correlations and Lazarek and Black type correlations are not suitable for the rectangular channel very much. The Kim and Mudawar correlation is the best one among the 18 models. A new correlation is developed based on the superposition concept of nucleate boiling and convective boiling. the new correlation is shown to provide a good prediction against the database, evidenced by an overall MAE of 14.4%, with 95.2% and 98.6% of the data falling within ±30% and ±35% error bands, respectively
International Nuclear Information System (INIS)
Yu Zhiting; Tan Sichao; Yuan Hongsheng; Zhuang Nailiang; Chen Hanying
2015-01-01
An experimental study was conducted to investigate the flow instability in a vertical mini-rectangular channel with distilled water as the working fluid. The rotational speed of the primary pump is gradually reduced to lower the inlet flow rate until the flow becomes unstable, while maintaining all other thermal parameters unchanged. Three types of instability, characterized by large amplitude oscillation, small amplitude oscillation and flow excursion, were identified from the experimental data. A stability map for the vertical mini-rectangular channel under forced circulation was established based on the Subcooling number and Phase Change number. The oscillation periods were correlated with the fluid transit time and the boiling delay time. A flow pattern map for vertical upward flow in a mini-rectangular channel was applied to confirm the flow patterns during the oscillation. The mechanisms of the three types of instability were obtained by considering several types of flow instabilities and comparing them with the oscillations observed in this work. (author)
Premature and stable critical heat flux for downward flow in a narrow rectangular channel
International Nuclear Information System (INIS)
Lee, Juhyung; Chang, Soon Heung; Jeong, Yong Hoon; Jo, Daeseong
2014-01-01
It has been recommended that RRs and MTRs be designed to have sufficient margins for CHF and the onset of FI as well, since unstable flow could leads to premature CHF under very low wall heat flux in comparison to stable CHF. Even the fact and previous studies, however, the understanding of relationship among FI, premature CHF and stable CHF is not sufficient to date. In this regards, subcooled flow boiling in a vertical rectangular channel was experimentally investigated to enhance the understanding of the CHF and the effect of the two-phase flow instability on it under low pressure conditions, especially for downward flow which was adopted for Jordan Research and Training Reactor (JRTR) and Kijang research reactor (KJRR) to achieve easier fuel and irradiation rig loading. In this study, CHF for downward flow of water under low pressure in narrow rectangular channel was experimentally investigated. For conditions such as downward flow, narrow rectangular channel and low pressure, it has been deduced from literature that flow instability could largely influence on triggering CHF at lower heat flux, i. e. premature CHF. Total 54 CHF data, which includes premature and stable data was obtained for various fluid conditions and system configurations including inlet stiffness. The upper and lower boundaries of CHF were newly proposed based on the experiment
Critical heat flux for free convection boiling in thin rectangular channels
International Nuclear Information System (INIS)
Cheng, Lap Y.; Tichler, P.R.
1991-01-01
A review of the experimental data on free convection boiling critical heat flux (CHF) in vertical rectangular channels reveals three mechanisms of burnout. They are the pool boiling limit, the circulation limit, and the flooding limit associated with a transition in flow regime from churn to annular flow. The dominance of a particular mechanism depends on the dimensions of the channel. Analytical models were developed for each free convection boiling limit. Limited agreement with data is observed. A CHF correlation, which is valid for a wide range of gap sizes, was constructed from the CHFs calculated according to the three mechanisms of burnout. 17 refs., 7 figs
Experimental study on downward two-phase flow in narrow rectangular channel
Energy Technology Data Exchange (ETDEWEB)
Kim, T.H.; Jeong, J.H. [Pusan National Univ., Busan (Korea, Republic of)
2014-07-01
Adiabatic vertical two-phase flow of air and water through narrow rectangular channels was investigated. This study involved the observation of flow using a high speed camera and flow regimes were determined by image processing program using a MATLAB. The flows regimes in channel with downward flow are similar to those found by previous studies with upward flow. The flow regimes in downward flow at low liquid velocity are different from the previous studies in upward flow. The flow regimes can be classified into bubbly, cap-bubbly, slug and churn flow. (author)
Polydisperse particle-driven gravity currents in non-rectangular cross section channels
Zemach, T.
2018-01-01
We consider a high-Reynolds-number gravity current generated by polydisperse suspension of n types of particles distributed in a fluid of density ρi. Each class of particles in suspension has a different settling velocity. The current propagates along a channel of non-rectangular cross section into an ambient fluid of constant density ρa. The bottom and top of the channel are at z = 0, H, and the cross section is given by the quite general form -f1(z) ≤ y ≤ f2(z) for 0 ≤ z ≤ H. The flow is modeled by the one-layer shallow-water equations obtained for the time-dependent motion. We solve the problem by a finite-difference numerical code to present typical height h, velocity u, and mass fractions of particle (concentrations) (ϕ( j), j = 1, …, n) profiles. The runout length of suspensions in channels of power-law cross sections is analytically predicted using a simplified depth-averaged "box" model. We demonstrate that any degree of polydispersivity adds to the runout length of the currents, relative to that of equivalent monodisperse currents with an average settling velocity. The theoretical predictions are supported by the available experimental data. The present approach is a significant generalization of the particle-driven gravity current problem: on the one hand, now the monodisperse current in non-rectangular channels is a particular case of n = 1. On the other hand, the classical formulation of polydisperse currents for a rectangular channel is now just a particular case, f(z) = const., in the wide domain of cross sections covered by this new model.
Directory of Open Access Journals (Sweden)
A. H. ELBATRAN
2015-07-01
Full Text Available Helical channels have a wide range of applications in petroleum engineering, nuclear, heat exchanger, chemical, mineral and polymer industries. They are used in the separation processes for fluids of different densities. The centrifugal force, free surface and geometrical effects of the helical channel make the flow pattern more complicated; hence it is very difficult to perform physical experiment to predict channel performance. Computational Fluid Dynamics (CFD can be suitable alternative for studying the flow pattern characteristics in helical channels. The different ranges of dimensional parameters, such as curvature and torsion, often cause various flow regimes in the helical channels. In this study, the effects of physical parameters such as curvature, torsion, Reynolds number, Froude number and Dean Number on the characteristics of the turbulent flow in helical rectangular channels have been investigated numerically, using a finite volume RANSE code Fluent of Ansys workbench 10.1 UTM licensed. The physical parameters were reported for range of curvature (δ of 0.16 to 0.51 and torsion (λ of 0.032 to 0.1 .The numerical results of this study showed that the decrease in the channel curvature and the increase in the channel torsion numbers led to the increase of the flow velocity inside the channel and the change in the shape of water free surface at given Dean, Reynolds and Froude numbers.
Phase distribution measurements in narrow rectangular channels using image processing techniques
International Nuclear Information System (INIS)
Bentley, C.; Ruggles, A.
1991-01-01
Many high flux research reactor fuel assemblies are cooled by systems of parallel narrow rectangular channels. The HFIR is cooled by single phase forced convection under normal operating conditions. However, two-phase forced convection or two phase mixed convection can occur in the fueled region as a result of some hypothetical accidents. Such flow conditions would occur only at decay power levels. The system pressure would be around 0.15 MPa in such circumstances. Phase distribution of air-water flow in a narrow rectangular channel is examined using image processing techniques. Ink is added to the water and clear channel walls are used to allow high speed still photographs and video tape to be taken of the air-water flow field. Flow field images are digitized and stored in a Macintosh 2ci computer using a frame grabber board. Local grey levels are related to liquid thickness in the flow channel using a calibration fixture. Image processing shareware is used to calculate the spatially averaged liquid thickness from the image of the flow field. Time averaged spatial liquid distributions are calculated using image calculation algorithms. The spatially averaged liquid distribution is calculated from the time averaged spatial liquid distribution to formulate the combined temporally and spatially averaged fraction values. The temporally and spatially averaged liquid fractions measured using this technique compare well to those predicted from pressure gradient measurements at zero superficial liquid velocity
Laser--Doppler anemometry technique applied to two-phase dispersed flows in a rectangular channel
International Nuclear Information System (INIS)
Lee, S.L.; Srinivasan, J.
1979-01-01
A new optical technique using Laser--Doppler anemometry has been applied to the local measurement of turbulent upward flow of a dilute water droplet--air two-phase dispersion in a vertical rectangular channel. Individually examined were over 20,000 droplet signals coming from each of a total of ten transversely placed measuring points, the closest of which to the channel wall was 250 μ away from the wall. Two flows of different patterns due to different imposed flow conditions were investigated, one with and the other without a liquid film formed on the channel wall. Reported are the size and number density distribution and the axial and lateral velocity distributions for the droplets as well as the axial and lateral velocity distributions for the air
Heat transfer in a compact heat exchanger containing rectangular channels and using helium gas
Olson, D. A.
1991-01-01
Development of a National Aerospace Plane (NASP), which will fly at hypersonic speeds, require novel cooling techniques to manage the anticipated high heat fluxes on various components. A compact heat exchanger was constructed consisting of 12 parallel, rectangular channels in a flat piece of commercially pure nickel. The channel specimen was radiatively heated on the top side at heat fluxes of up to 77 W/sq cm, insulated on the back side, and cooled with helium gas flowing in the channels at 3.5 to 7.0 MPa and Reynolds numbers of 1400 to 28,000. The measured friction factor was lower than that of the accepted correlation for fully developed turbulent flow, although the uncertainty was high due to uncertainty in the channel height and a high ratio of dynamic pressure to pressure drop. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in channels. Flow nonuniformity from channel-to-channel was as high as 12 pct above and 19 pct below the mean flow.
Shirai, Atsushi; Masuda, Sunao
2013-01-01
The authors have previously presented a mathematical model to predict transit time of a neutrophil through an alveolar capillary segment which was modeled as an axisymmetric arc-shaped constriction settled in a cylindrical straight pipe to investigate the influence of entrance curvature of a capillary on passage of the cell. The axially asymmetric cross section of a capillary also influences the transit time because it requires three-dimensional deformation of a cell when it passes through the capillary and could lead to plasma leakage between the cell surface and the capillary wall. In this study, a rectangular channel was introduced, the side walls of which were moderately constricted, as a representative of axially asymmetric capillaries. Dependence of transit time of a neutrophil passing through the constriction on the constriction geometry, i.e., channel height, throat width and curvature radius of the constriction, was numerically investigated, the transit time being compared with that through the axisymmetric model. It was found that the transit time is dominated by the throat hydraulic diameter and curvature radius of the constriction and that the throat aspect ratio little affects the transit time with a certain limitation, indicating that if an appropriate curvature radius is chosen, such a rectangular channel model can be substituted for an axisymmetric capillary model having the same throat hydraulic diameter in terms of the transit time by choosing an appropriate curvature radius. Thus, microchannels fabricated by the photolithography technique, whose cross section is generally rectangular, are expected to be applicable to in vitro model experiments of neutrophil retention and passage in the alveolar capillaries. PMID:23527190
Counter-current gas-liquid two-phase flow in a narrow rectangular channel
International Nuclear Information System (INIS)
Sohn, Byung Hu; Kim, Byong Joo
2000-01-01
A study of counter-current two-phase flow in a narrow rectangular channel has been performed. Two-phase flow patterns and void fractions were experimentally studied in a 760 mm long and 100 mm wide test section with 3.0 mm gap. The resulting data have been compared to previous transition criteria and empirical correlations. The comparison of experimental data to the transition criteria developed by Taitel and Barnea showed good agreement for the bubbly-to-slug transition. For the criteria of Mishima and Ishii to be applicable to the slug to churn transition, a new model seems to be needed for the accurate prediction of the distribution parameter for the counter-current flow in narrow rectangular channels. For the churn-to-annular transition the model of Taitel and Barnea was found to be close to the experimental data. However the model should be improved in conjunction with the channel geometry to accurately predict the counter-current flow limitation and flow transition. It was verified the distribution parameter was well-correlated by the drift-flux model. The distribution parameter for the present study was found to be about 1.2 for all flow regimes except 1.0 for an annular flow. (author)
Interfacial shear stress in stratified flow in a horizontal rectangular duct
International Nuclear Information System (INIS)
Lorencez, C.; Kawaji, M.; Murao, Y.
1995-01-01
Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods
Interfacial shear stress in stratified flow in a horizontal rectangular duct
Energy Technology Data Exchange (ETDEWEB)
Lorencez, C.; Kawaji, M. [Univ. of Toronto (Canada); Murao, Y. [Tokushima Univ. (Japan)] [and others
1995-09-01
Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods.
Effect of the configuration of the corner in a narrow rectangular channel on flow and heat transfer
International Nuclear Information System (INIS)
Xu Jianjun; Chen Bingde; Wang Xiaojun
2009-01-01
In order to further understand the effect of the configuration of the corner in a narrow rectangular channel on flow and heat transfer, flow field and temperature field in a narrow rectangular channel were numerical simulated by using CFD code CFX10.0. The results show under the condition of equal quantity of heat of solid which is obtained by decreasing the solid of the corner, the distributions of inside wall temperature for the orthogonal and circular type configurations of the corner are almost the same as that of the archetypal configuration, and those can simulate heat transfer of the archetypal con- figuration. Under the condition of equal Re, secondary flow and friction pressure of the orthogonal type configuration are almost the same as those of the circular type configuration, which shows that the circular type configuration of the corner in a narrow channel can substituted for the archetypal configuration to simulate flow and heat transfer in a narrow rectangular channel. (authors)
Effects of the input polarization on JET polarimeter horizontal channels
International Nuclear Information System (INIS)
Gaudio, P.; Gelfusa, M.; Murari, A.; Orsitto, F.; Boboc, A.
2013-01-01
In the past, the analysis of JET polarimetry measurements were carried out only for the vertical channels using a polarimetry propagation code based on the Stokes vector formalism [1,2]. A new propagation code has been developed therefore for the horizontal chords to simulate and interpret the measurements of the Faraday rotation and Cotton–Mouton phase shift in JET. The code has been used to develop a theoretical study to the effect of the input polarization on the eventual quality of the measurements. The results allow choosing the best polarization to optimize the polarimetric measurements for the various experiments
On the prediction of single-phase forced convection heat transfer in narrow rectangular channels
International Nuclear Information System (INIS)
Ghione, Alberto; Noel, Brigitte; Vinai, Paolo; Demazière, Christophe
2014-01-01
In this paper, selected heat transfer correlations for single-phase forced convection are assessed for the case of narrow rectangular channels. The work is of interest in the thermal-hydraulic analysis of the Jules Horowitz Reactor (JHR), which is a research reactor under construction at CEA-Cadarache (France). In order to evaluate the validity of the correlations, about 300 tests from the SULTAN-JHR database were used. The SULTAN-JHR program was carried out at CEA-Grenoble and it includes different kinds of tests for two different vertical rectangular channels with height of 600 mm and gap of 1.51 and 2.16 mm. The experimental conditions range between 2 - 9 bar for the pressure; 0.5 - 18 m/s for the coolant velocity and 0.5 - 7.5 MW/m 2 for the heat flux (whose axial distribution is uniform). Forty-two thermocouples and eight pressure taps were placed at several axial locations, measuring wall temperature and pressure respectively. The analysis focused on turbulent flow with Reynolds numbers between 5.5 x 10 3 - 2.4 x 10 5 and Prandtl numbers between 1.5 - 6. It was shown that standard correlations as the Dittus-Boelter and Seider-Tate significantly under-estimate the heat transfer coefficient, especially at high Reynolds number. Other correlations specifically designed for narrow rectangular channels were also taken into account and compared. The correlation of Popov-Petukhov in the form suggested by Siman-Tov still under-estimates the heat transfer coefficient, even if slight improvements could be seen. A better agreement for the tests with gap equal to 2.16 mm could be found with the correlation of Ma and the one of Liang. However the heat transfer coefficient when the gap is equal to 1.51 mm could not be predicted accurately. Furthermore these correlations were based on data at low Reynolds numbers (up to 13000) and low heat flux, so the use of them for SULTAN-JHR may be questionable. According to the authors’ knowledge, existing models of heat transfer
Experimental study of falling film evaporation in large scale rectangular channel
International Nuclear Information System (INIS)
Huang, X.G.; Yang, Y.H.; Hu, P.
2015-01-01
Highlights: • This paper studies the falling film evaporation in large scale rectangular channel experimentally. • The effects of air flow rate, film temperature and film flow rate on falling film evaporation are analyzed. • Increasing the air flow rate is considered as an efficient method to enhance the evaporation rate. • A correlation including the wave effect for falling film evaporation is derived based on heat and mass transfer analogy. - Abstract: The falling film evaporation in a large scale rectangular channel is experimentally studied in this paper for the design and improvement of passive containment cooling system. The evaporation mass transfer coefficient h D is obtained by the evaporation rate and vapor partial pressure difference of film surface and air bulk. The experimental results indicate that increasing of air flow rate appears to enhance h D , while the film temperature and film flow rate have little effect on h D . Since the wave effect on evaporation is noticed in experiment, the evaporation mass transfer correlation including the wave effect is developed on the basis of heat and mass transfer analogy and experimental data
Experimental investigation of onset of nucleate boiling in this rectangular channels
International Nuclear Information System (INIS)
Belhadj, M.; Christensen, R.N.; Aldemir, T.
1988-01-01
The 10 kW, HEU fueled Ohio State University Research Reactor (OSURR) will be upgraded to operate with plate type LEU U 3 Si 2 , fuel elements in the power range 250-500 kW. The core will be cooled by natural convection and an onset of nucleate boiling (ONB) margin of 1.2 will be maintained in the hot channel under steady-state operation. The validity of the correlations used for predicting ONB in plate type research reactors is not known for low heat flux-low velocity flows. An experiment has been set up at The Ohio State University to investigate ONB for laminar flow in this rectangular channels. The results show that: The Bergles-Rohsenow correlation and the correlation proposed by Ricque and Siboul predict higher and lower ONB fluxes than actual, respectively. The ONB heat flux is flow velocity dependent
International Nuclear Information System (INIS)
Yan Changqi; Jin Guangyuan; Sun Licheng; Wang Yang
2015-01-01
Characteristics of local parameters of bubbly flow were investigated in rectangular channel (40 mm × 3 mm) under inclined and rolling conditions. Under vertical condition, the distribution type 'wall peak' and 'core peak' are observed, and 'core peak' exists when the liquid superficial velocity is low and the gas superficial velocity is high. Under inclined condition, the peaks of two distribution types get strengthened at the top of the channel, and weakened at the bottom. Under rolling condition, the peaks of two distribution types get strengthened compared with the same angle under inclined condition when the angle is getting larger. The influence from rolling motion gets stronger on the peak of two distribution types when the rolling movement is more violent. (authors)
Pressure drop of magnetohydrodynamic two-phase annular flow in rectangular channel
International Nuclear Information System (INIS)
Kumamaru, Hiroshige; Fujiwara, Yoshiki; Ogita, Kenji
1999-01-01
Numerical calculations have been performed on magnetohydrodynamic (MHD) two-phase annular flow in a rectangular channel with a small aspect ratio, i.e.a small ratio of the channel side perpendicular to the applied magnetic field and the side parallel to the field. Results of the present calculation agree nearly with Inoue et al.'s experimental results in the region of large liquid Reynolds numbers and large Hartmann numbers. Calculation results also show that the pressure drop ratio, i.e. the ratio of pressure drop of two-phase flow to that of single-phase flow under the same liquid flow rate and applied magnetic field, becomes lower than ∼0.02 for conditions of a fusion reactor plant. (author)
Khan, Md Imran; Billah, Md. Mamun; Rahman, Mohammed Mizanur; Hasan, Mohammad Nasim
2017-12-01
Numerical simulation of steady two-dimensional heat transfer in a rectangular channel with a centered variable speed cylinder has been performed in this paper. In this setup, an isoflux heater is placed at the bottom wall of the channel while the upper wall is kept isothermal with a low temperature. The cylinder's peripheral speed to maximum inlet fluid velocity ratio (ξ) is varied from 0.5 to 1.5 for both clockwise and anticlockwise rotational cases. Air has been considered as working fluid while other system parameters such as Grashof and Reynolds numbers are varied. The effects of rotational speed, Grashof and Reynolds numbers on the streamline pattern, isothermal lines, local and average Nusselt number are analyzed and presented. It is observed the cylinder's rotational direction and speed has a significant effect on the flow pattern, temperature distribution as well as heat transfer characteristics.
Heat transfer and friction characteristics in steam cooled rectangular channels with rib turbulators
Energy Technology Data Exchange (ETDEWEB)
Gong, Jianying; Gao, Tieyu; Li, Guojun [Xi' an Jiaotong University, Xi' an (China)
2014-01-15
We studied the heat transfer and friction characteristics in steam-cooled rectangular channels with rib turbulators on W side or H side walls in the Reynolds number (Re) range of 10000-80000. Each of the test channels was welded by four stainless steel plates to simulate the actual geometry and heat transfer structure of blade/vane internal cooling passage. The length of the channel L was 1000 mm, the cross section of the channel was 40 mm X 80 mm, and the pitch-to-rib height ratio p/e was kept at 10. The channel blockage ratio (W/H) was 0.047. Results showed that the Nusselt number (Nu) distributions displayed different trends at the entrance region with the increase of Re for the rib turbulators on the W side walls. The heat transfer performance of the rib turbulators on the H side walls was about 24- 27% higher than that on the W side walls at the same pumping power. In addition, semi-empirical correlations for the two cases, rib turbulators on W side walls and rib turbulators on H side walls, were developed based on the heat transfer results, which could be used in the design of the internal cooling passage of new generation steam-cooled gas turbine blade/vane.
International Nuclear Information System (INIS)
Vallee, Christophe
2012-01-01
Stratified two-phase flows were investigated at different test facilities with horizontal test sections in order to provide an experimental database for the development and validation of computational fluid dynamics (CFD) codes. These channels were designed with rectangular cross-sections to enable optimal observation conditions for the application of optical measurement techniques. Consequently, the local flow structure was visualised with a high-speed video camera, delivering data with highresolution in space and time as needed for CFD code validation. Generic investigations were performed at atmospheric pressure and room temperature in two air/water channels made of acrylic glass. Divers preliminary experiments were conducted with various measuring systems in a test section mounted between two separators. The second test facility, the Horizontal Air/Water Channel (HAWAC), is dedicated to co-current flow investigations. The hydraulic jump as the quasi-stationary discontinuous transition between super- and subcritical flow was studied in this closed channel. Moreover, the instable wave growth leading to slug flow was investigated from the test section inlet. For quantitative analysis of the optical measurements, an algorithm was developed to recognise the stratified interface in the camera frames, allowing statistical treatments for comparison with CFD calculation results. The third test apparatus was installed in the pressure chamber of the TOPFLOW test facility in order to be operated at reactor typical conditions under pressure equilibrium with the vessel atmosphere. The test section representing a flat model of the hot leg of the German Konvoi pressurised water reactor (PWR) scaled at 1:3 is equipped with large glass side walls in the region of the elbow and of the steam generator inlet chamber to allow visual observations. The experiments were conducted with air and water at room temperature and maximum pressures of 3 bar as well as with steam and water at
Energy Technology Data Exchange (ETDEWEB)
Vallee, Christophe
2012-08-22
Stratified two-phase flows were investigated at different test facilities with horizontal test sections in order to provide an experimental database for the development and validation of computational fluid dynamics (CFD) codes. These channels were designed with rectangular cross-sections to enable optimal observation conditions for the application of optical measurement techniques. Consequently, the local flow structure was visualised with a high-speed video camera, delivering data with highresolution in space and time as needed for CFD code validation. Generic investigations were performed at atmospheric pressure and room temperature in two air/water channels made of acrylic glass. Divers preliminary experiments were conducted with various measuring systems in a test section mounted between two separators. The second test facility, the Horizontal Air/Water Channel (HAWAC), is dedicated to co-current flow investigations. The hydraulic jump as the quasi-stationary discontinuous transition between super- and subcritical flow was studied in this closed channel. Moreover, the instable wave growth leading to slug flow was investigated from the test section inlet. For quantitative analysis of the optical measurements, an algorithm was developed to recognise the stratified interface in the camera frames, allowing statistical treatments for comparison with CFD calculation results. The third test apparatus was installed in the pressure chamber of the TOPFLOW test facility in order to be operated at reactor typical conditions under pressure equilibrium with the vessel atmosphere. The test section representing a flat model of the hot leg of the German Konvoi pressurised water reactor (PWR) scaled at 1:3 is equipped with large glass side walls in the region of the elbow and of the steam generator inlet chamber to allow visual observations. The experiments were conducted with air and water at room temperature and maximum pressures of 3 bar as well as with steam and water at
International Nuclear Information System (INIS)
Li Changwei; Cao Xiaxin; Sun Licheng; Jin Guangyuan
2013-01-01
Based on the data of two-phase flow in narrow rectangular channel, the influence of the two-phase flow friction characteristic under the different fluctuant states was analyzed. Through analyzing the experimental data, it is shown that the fluctuant amplitude of the friction pressure drop is affected slightly by the fluctuant period in narrow rectangular channel, but the frequency of the friction pressure drop fluctuation is changed. However, the change of fluctuant period is of little effect on the average frictional pressure drop. Comparing the φ l 2 (φ g 2 )-X variation curves at static condition with the ones at fluctuant condition, using the L-M method, it's found that the two phase frictional pressure drop in the narrow rectangular channel under the fluctuant state can be calculated by the φ l 2 (φ g 2 )-X variation curve at static condition. (authors)
International Nuclear Information System (INIS)
Sturgis, J.C.; Mudawar, I.
1999-01-01
An experimental study was undertaken to examine the enhancement in critical heat flux (CHF) provided by streamwise curvature. Curved and straight rectangular flow channels were fabricated with identical 5.0 x 2.5 mm cross sections and heated lengths of 101.6 mm in which the heat was applied to only one wall--the concave wall (32.3 mm radius) in the curved channel and a side wall in the straight. Tests were conducted using FC-72 liquid with mean inlet velocity and outlet subcooling of 0.25 to 10 m s -1 and 3 to 29 C, respectively. Centripetal acceleration for curved flow reached 315 times earth's gravitational acceleration. Critical heat flux was enhanced due to flow curvature at all conditions but the enhancement decreased with increasing subcooling. For near-saturated conditions, the enhancement was approximately 60% while for highly subcooled flow it was only 20%. The causes for the enhancement were identified as (1) increased pressure on the liquid-vapor interface at wetting fronts, (2) buoyancy forces and (3) increased subcooling at the concave wall. Flow visualization tests were conducted in transparent channels to explore the role of buoyancy forces in enhancing the critical heat flux. These forces were observed to remove vapor from the concave wall and distribute it throughout the cross section. Vapor removal was only effective at near-saturated conditions, yielding the observed substantial enhancement in CHF relative to the straight channel
Energy Technology Data Exchange (ETDEWEB)
Kim, T. H.; Yun, B. J.; Jeong, J. H. [Pusan National University, Geunjeong-gu, Busan (Korea, Republic of)
2015-05-15
Studies were mostly about flow in upward flow in medium size circular tube. Although there are great differences between upward and downward flow, studies on vertical upward flow are much more active than those on vertical downward flow in a channel. In addition, due to the increase of surface forces and friction pressure drop, the pattern of gas-liquid two-phase flow bounded to the gap of inside the rectangular channel is different from that in a tube. The downward flow in a rectangular channel is universally applicable to cool the plate type nuclear fuel in research reactor. The sub-channel of the plate type nuclear fuel is designed with a few millimeters. Downward air-water two-phase flow in vertical rectangular channel was experimentally observed. The depth, width, and length of the rectangular channel is 2.35 mm, 66.7 mm, and 780 mm, respectively. The test section consists of transparent acrylic plates confined within a stainless steel frame. The flow patterns of the downward flow in high liquid velocity appeared to be similar to those observed in previous studies with upward flow. In downward flow, the transition lines for bubbly-slug and slug-churn flow shift to left in the flow regime map constructed with abscissa of the superficial gas velocity and ordinate of the superficial liquid velocity. The flow patterns observed with downward flow at low liquid velocity are different from those with upward flow.
Energy Technology Data Exchange (ETDEWEB)
Xiao, Huahua; Wang, Qingsong; He, Xuechao; Sun, Jinhua; Yao, Liyin [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026 (China)
2010-02-15
Hydrogen is a promising energy in the future, and it is desirable to characterize the combustion behavior of its blends with air. The premixed hydrogen/air flame microstructure and propagation in a horizontal rectangular closed duct were recorded using high-speed video and Schlieren device. Numerical simulation was also performed on Fluent CFD code to compare with the experimental result. A tulip flame is formed during the flame propagating, and then the tulip flame formation mechanism was proposed based on the analysis. The induced reverse flow and vortex motion were observed both in experiment and simulation. The interactions among the flame, reverse flow and vortices in the burned gas change the flame shape and ultimately it develops into a tulip flame. During the formation of the tulip flame, the tulip cusp slows down and stops moving after its slightly forward moving, and then, it starts to move backward and keeps on a longer time, after that, it moves forward again. The structure of the tulip flame is becoming less stable with its length decreasing in flame propagation direction. The flame thickness increases gradually which is due to turbulence combustion. (author)
Traffic of leukocytes in microfluidic channels with rectangular and rounded cross-sections.
Yang, Xiaoxi; Forouzan, Omid; Burns, Jennie M; Shevkoplyas, Sergey S
2011-10-07
Traffic of leukocytes in microvascular networks (particularly through arteriolar bifurcations and venular convergences) affects the dynamics of capillary blood flow, initiation of leukocyte adhesion during inflammation, and localization and development of atherosclerotic plaques in vivo. Recently, a growing research effort has been focused on fabricating microvascular networks comprising artificial vessels with more realistic, rounded cross-sections. This paper investigated the impact of the cross-sectional geometry of microchannels on the traffic of leukocytes flowing with human whole blood through a non-symmetrical bifurcation that consisted of a 50 μm mother channel bifurcating into 30 μm and 50 μm daughter branches. Two versions of the same bifurcation comprising microchannels with rectangular and rounded cross-sections were fabricated using conventional multi-layer photolithography to produce rectangular microchannles that were then rounded in situ using a recently developed method of liquid PDMS/air bubble injection. For microchannels with rounded cross-sections, about two-thirds of marginated leukocytes traveling along a path in the top plane of the bifurcation entered the smallest 30 μm daughter branch. This distribution was reversed in microchannels with rectangular cross-sections--the majority of leukocytes traveling along a similar path continued to follow the 50 μm microchannels after the bifurcation. This dramatic difference in the distribution of leukocyte traffic among the branches of the bifurcation can be explained by preferential margination of leukocytes towards the corners of the 50 μm mother microchannels with rectangular cross-sections, and by the additional hindrance to leukocyte entry created by the sharp transition from the 50 μm mother microchannel to the 30 μm daughter branch at the intersection. The results of this study suggest that the trajectories of marginated leukocytes passing through non-symmetrical bifurcations are
Directory of Open Access Journals (Sweden)
Fengming Wang
2012-12-01
Full Text Available The flow and heat transfer characteristics inside a rectangular channel embedded with pin fins were numerically and experimentally investigated. Several differently shaped pin fins (i.e., circular, elliptical, and drop-shaped with the same cross-sectional areas were compared in a staggered arrangement. The Reynolds number based on the obstructed section hydraulic diameter (defined as the ratio of the total wetted surface area to the open duct volume available for flow was varied from 4800 to 8200. The more streamlined drop-shaped pin fins were better at delaying or suppressing separation of the flow passing through them, which decreased the aerodynamic penalty compared to circular pin fins. The heat transfer enhancement of the drop-shaped pin fins was less than that of the circular pin fins. In terms of specific performance parameters, drop-shaped pin fins are a promising alternative configuration to circular pin fins.
Flame Quenching Dynamics of High Velocity Flames in Rectangular Cross-section Channels
Mahuthannan, Ariff Magdoom; Lacoste, Deanna; Damazo, Jason; Kwon, Eddie; Roberts, William L.
2017-01-01
Understanding flame quenching for different conditions is necessary to develop safety devices like flame arrestors. In practical applications, the speed of a deflagration in the lab-fixed reference frame will be a strong function of the geometry through which the deflagration propagates. This study reports on the effect of the flame speed, at the entrance of a quenching section, on the quenching distance. A 2D rectangular channel joining two main spherical vessels is considered for studying this effect. Two different velocity regimes are investigated and referred to as configurations A, and B. For configuration A, the velocity of the flame is 20 m/s, while it is about 100 m/s for configuration B. Methane-air stoichiometric mixtures at 1 bar and 298 K are used. Simultaneous dynamic pressure measurements along with schlieren imaging are used to analyze the quenching of the flame. Risk assessment of re-ignition is also reported and analyzed.
Energy Technology Data Exchange (ETDEWEB)
Kim, Dong Eok; Myung, Byung-Soo [Kyungpook Nat’l Univ., Daegu (Korea, Republic of); Park, Su Cheong; Yu, Dong In [POSTECH, Pohang (Korea, Republic of); Kim, Moo Hwan [Korea Institute of Nuclear Safety (KINS), Daejeon (Korea, Republic of); Ahn, Ho Seon [Incheon Nat’l Univ., Incheon (Korea, Republic of)
2016-06-15
Based on a surface design with rectangular cavities and channels, we investigated the effects of gravity and capillary pressure on pool-boiling Critical Heat Flux (CHF). The microcavity structures could prevent liquid flow by the capillary pressure effect. In addition, the microchannel structures contributed to induce one-dimensional liquid flow on the boiling surface. The relationship between the CHF and capillary flow was clearly established. The driving potentials for the liquid supply into a boiling surface can be generated by the gravitational head and capillary pressure. Through an analysis of pool boiling and visualization data, we reveal that the liquid supplement to maintain the nucleate boiling condition on a boiling surface is closely related to the gravitational pressure head and capillary pressure effect.
Three-dimensional numerical simulations of turbulent cavitating flow in a rectangular channel
Iben, Uwe; Makhnov, Andrei; Schmidt, Alexander
2018-05-01
Cavitation is a phenomenon of formation of bubbles (cavities) in liquid as a result of pressure drop. Cavitation plays an important role in a wide range of applications. For example, cavitation is one of the key problems of design and manufacturing of pumps, hydraulic turbines, ship's propellers, etc. Special attention is paid to cavitation erosion and to performance degradation of hydraulic devices (noise, fluctuations of the mass flow rate, etc.) caused by the formation of a two-phase system with an increased compressibility. Therefore, development of a model to predict cavitation inception and collapse of cavities in high-speed turbulent flows is an important fundamental and applied task. To test the algorithm three-dimensional simulations of turbulent flow of a cavitating liquid in a rectangular channel have been conducted. The obtained results demonstrate the efficiency and robustness of the formulated model and the algorithm.
International Nuclear Information System (INIS)
Xu Jianjun; Chen Bingde; Wang Xiaojun
2011-01-01
The characteristic of the coalesced sliding bubble was visually observed by wide side and narrow side of the narrow rectangular channel using high speed digital camera. The results show that the coalesced time among the sliding bubbles is quick, and the new formation of coalesced bubble is not lift-off, and it continues to slide along the heated surface in low heat flux for the isolated bubble region. The influence region is about 2 times projected area of the sliding bubble when the sliding bubbles begin to interact. The sliding bubble velocities increase duo to the interaction among the bubbles, which contributes to enhance heat transfer of this region. Finally, the effect of coalesced interaction of growing bubble in the nucleation sites on bubble lift-off was discussed and analysed. (authors)
Flame Quenching Dynamics of High Velocity Flames in Rectangular Cross-section Channels
Mahuthannan, Ariff Magdoom
2017-01-05
Understanding flame quenching for different conditions is necessary to develop safety devices like flame arrestors. In practical applications, the speed of a deflagration in the lab-fixed reference frame will be a strong function of the geometry through which the deflagration propagates. This study reports on the effect of the flame speed, at the entrance of a quenching section, on the quenching distance. A 2D rectangular channel joining two main spherical vessels is considered for studying this effect. Two different velocity regimes are investigated and referred to as configurations A, and B. For configuration A, the velocity of the flame is 20 m/s, while it is about 100 m/s for configuration B. Methane-air stoichiometric mixtures at 1 bar and 298 K are used. Simultaneous dynamic pressure measurements along with schlieren imaging are used to analyze the quenching of the flame. Risk assessment of re-ignition is also reported and analyzed.
Experimental study on transition characteristics of pulsating flow in narrow rectangular channel
International Nuclear Information System (INIS)
Zhang Chuan; Tan Sichao; Liu Yusheng; Gao Puzhen; Zhao Jianing; Zhang Hong
2013-01-01
Experimental study of flow characteristic in smooth narrow rectangular channel under harmonic pulsating flow which covers laminar to turbulent flow (Reynolds number 7504-450) was carried out. The experimental results show that the frictional factors in acceleration phase of pulsating flow are higher than that in steady state, but lower than that in deceleration phase. Womersley parameter has a significant influence on the critical Reynolds number. The critical Reynolds number decreases with the increase of Womersley parameter in acceleration phase and it is opposite in deceleration phase. An empirical correlation was developed to predict the critical Reynolds number based on the experimental data, and the correlation can fit with critical Reynolds number in steady state. (authors)
Directory of Open Access Journals (Sweden)
Yasuhisa Shinmoto
2017-11-01
Full Text Available The use of immiscible liquids for cooling of surfaces with high heat generation density is proposed based on the experimental verification of its superior cooling characteristics in fundamental systems of pool boiling and flow boiling in a tube. For the purpose of practical applications, however, heat transfer characteristics due to flow boiling in narrow rectangular channels with different small gap sizes need to be investigated. The immiscible liquids employed here are FC72 and water, and the gap size is varied as 2, 1, and 0.5 mm between parallel rectangular plates of 30 mm × 175 mm, where one plate is heated. To evaluate the effect of gap size, the heat transfer characteristics are compared at the same inlet velocity. The generation of large flattened bubbles in a narrow gap results in two opposite trends of the heat transfer enhancement due to thin liquid film evaporation and of the deterioration due to the extension of dry patch in the liquid film. The situation is the same as that observed for pure liquids. The latter negative effect is emphasized for extremely small gap sizes if the flow rate ratio of more-volatile liquid to the total is not reduced. The addition of small flow rate of less-volatile liquid can increase the critical heat flux (CHF of pure more-volatile liquid, while the surface temperature increases at the same time and assume the values between those for more-volatile and less-volatile liquids. By the selection of small flow rate ratio of more-volatile liquid, the surface temperature of pure less-volatile liquid can be decreased without reducing high CHF inherent in the less-volatile liquid employed. The trend of heat transfer characteristics for flow boiling of immiscible mixtures in narrow channels is more sensitive to the composition compared to the flow boiling in a round tube.
Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel
Budiman, Alexander Christantho
2014-12-04
Abstract: Smoke-wire flow visualization is used to study the development of pre-set counter-rotating streamwise vortices in boundary layer flow over a wavy surface in a rectangular channel. The formation of the vortices is indicated by the vortical structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal to the leading edge of the wavy surface, and a jagged pattern in the form of uniform triangles cut at the leading edge. These perturbation wires and jagged pattern induce low-velocity streaks that result in the formation of counter-rotating streamwise vortices that evolve downstream to form the mushroom-like structures on the cross-sectional plane of the flow. The evolution of the most amplified disturbances can be attributed to the formation of these mushroom-like structures. It is also shown that the size of the mushroom-like structures depends on the channel entrance geometry, Reynolds number, and the channel gap.Graphical Abstract: [Figure not available: see fulltext.
Directory of Open Access Journals (Sweden)
Hanafi Abdalla S.
2008-01-01
Full Text Available This paper presents experimental and numerical studies for the case of turbulent forced and mixed convection flow of water through narrow vertical rectangular channel. The channel is composed of two parallel plates which are heated at a uniform heat flux, whereas, the other two sides of the channel are thermally insulated. The plates are of 64 mm in width, 800 mm in height, and separated from each other at a narrow gap of 2.7 mm. The Nusselt number distribution along the flow direction normalized by the Nusselt number for the case of turbulent forced convection flow is obtained experimentally with a comparison with the numerical results obtained from a commercial computer code. The quantitative determination of the nor- malized Nusselt number with respect to the dimension-less number Z = (Gr/Re21/8Pr0.5 is presented with a comparison with previous experimental results. Qualitative results are presented for the normalized temperature and velocity profiles in the transverse direction with a comparison between the forced and mixed convection flow for both the cases of upward and downward flow directions. The effect of the axial locations and the parameter Gr/Re on the variation of the normalized temperature profiles in the transverse direction for both the regions of forced and mixed convection and for both of the upward and downward flow directions are obtained. The normalized velocity profiles in the transverse directions are also determined at different inlet velocity and heat fluxes for the previous cases. It is found that the normalized Nusselt number is greater than one in the mixed convection region for both the cases of upward and downward flow and correlated well with the dimension-less parameter Z for both of the forced and mixed convection regions. The temperature profiles increase with increasing the axial location along the flow direction or the parameter Gr/Re for both of the forced and mixed convection regions, but this increase is
International Nuclear Information System (INIS)
Sharma, P K; Ambulkar, K K; Parmar, P R; Virani, C G; Thakur, A L; Joshi, L M; Nangru, S C
2010-01-01
A 3.7 GHz., 120 kW (pulsed), lower hybrid current drive (LHCD) system is employed to drive non-inductive plasma current in ADITYA tokamak. The rf power is coupled to the plasma through grill antenna and is placed in vacuum environment. A vacuum break between the pressurized transmission line and the grill antenna is achieved with the help of a multi (eight) channel rectangular RF vacuum window. The phasing between adjacent channels of 8-channel window (arranged in two rows) is important for launching lower hybrid waves and each channel should have independent vacuum window so that phase information is retained. The geometrical parameter of the grill antenna, like periodicity (9mm), channel dimensions (cross sectional dimension of 76mm x 7mm), etc. is to be maintained. These design constraint demanded a development of a multi channel rectangular RF vacuum window. To handle rf losses and thermal effects, high temperature vacuum brazing techniques is desired. Based on the above requirements we have successfully developed a multi channel rectangular rf vacuum window employing high temperature vacuum brazing technique. During the development process we could optimize the chemical processing parameters, brazing process parameters, jigs and fixtures for high temperature brazing and leak testing, etc. Finally the window is tested for low power rf performance using VNA. In this paper we would present the development of the said window in detail along with its mechanical, vacuum and rf performances.
Energy Technology Data Exchange (ETDEWEB)
Sharma, P K; Ambulkar, K K; Parmar, P R; Virani, C G; Thakur, A L [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Joshi, L M; Nangru, S C, E-mail: pramod@ipr.res.i [Central Electronics Engineering Research Institute, Pilani, Rajasthan 333 031 (India)
2010-02-01
A 3.7 GHz., 120 kW (pulsed), lower hybrid current drive (LHCD) system is employed to drive non-inductive plasma current in ADITYA tokamak. The rf power is coupled to the plasma through grill antenna and is placed in vacuum environment. A vacuum break between the pressurized transmission line and the grill antenna is achieved with the help of a multi (eight) channel rectangular RF vacuum window. The phasing between adjacent channels of 8-channel window (arranged in two rows) is important for launching lower hybrid waves and each channel should have independent vacuum window so that phase information is retained. The geometrical parameter of the grill antenna, like periodicity (9mm), channel dimensions (cross sectional dimension of 76mm x 7mm), etc. is to be maintained. These design constraint demanded a development of a multi channel rectangular RF vacuum window. To handle rf losses and thermal effects, high temperature vacuum brazing techniques is desired. Based on the above requirements we have successfully developed a multi channel rectangular rf vacuum window employing high temperature vacuum brazing technique. During the development process we could optimize the chemical processing parameters, brazing process parameters, jigs and fixtures for high temperature brazing and leak testing, etc. Finally the window is tested for low power rf performance using VNA. In this paper we would present the development of the said window in detail along with its mechanical, vacuum and rf performances.
International Nuclear Information System (INIS)
Xu Jianjun; Chen Bingde; Wang Xiaojun
2008-01-01
Flow and heat transfer in the narrow rectangular multi-channel is widely en- countered in the engineering application, hydrodynamic mixing in the narrow rectangular multi-channel is one of the important concerns. With the help of the Computational Fluid Dynamics code CFX, the effect of flow rate distribution of the main channel at the inlet on hydrodynamic mixing in the narrow rectangular multi-channel is numerical simulated. The results show that the flow rate distributions at the inlet have a great effect on hydrodynamics mixing in multi-channel, the flow rate in the main channel doesn't change with increasing the axial mixing section when the average flow rate at the inlet is set. Hydrodynamic mixing will arise in the mixing section when the different ratio of the flow rate distribution at the inlet is set, and hydrodynamic mixing increases with the difference of the flow rate distribution at the inlet increase. The trend of the flow rate distribution of the main channel is consistent during the whole axial mixing section, and hydrodynamic mixing in former 4 mixing section is obvious. (authors)
Particle-driven gravity currents in non-rectangular cross section channels
International Nuclear Information System (INIS)
Zemach, T.
2015-01-01
We consider a high-Reynolds-number gravity current generated by suspension of heavier particles in fluid of density ρ i , propagating along a channel into an ambient fluid of the density ρ a . The bottom and top of the channel are at z = 0, H, and the cross section is given by the quite general −f 1 (z) ≤ y ≤ f 2 (z) for 0 ≤ z ≤ H. The flow is modeled by the one-layer shallow-water equations obtained for the time-dependent motion which is produced by release from rest of a fixed volume of mixture from a lock. We solve the problem by the finite-difference numerical code to present typical height h(x, t), velocity u(x, t), and volume fraction of particles (concentration) ϕ(x, t) profiles. The methodology is illustrated for flow in typical geometries: power-law (f(z) = z α and f(z) = (H − z) α , where α is positive constant), trapezoidal, and circle. In general, the speed of propagation of the flows driven by suspensions decreases compared with those driven by a reduced gravity in homogeneous currents. However, the details depend on the geometry of the cross section. The runout length of suspensions in channels of power-law cross sections is analytically predicted using a simplified depth-averaged “box” model. The present approach is a significant generalization of the classical gravity current problem. The classical formulation for a rectangular channel is now just a particular case, f(z) = const., in the wide domain of cross sections covered by this new model
Chremmos, Ioannis
2010-01-01
The scattering of a surface plasmon polariton (SPP) by a rectangular dielectric channel discontinuity is analyzed through a rigorous magnetic field integral equation method. The scattering phenomenon is formulated by means of the magnetic-type scalar integral equation, which is subsequently treated through an entire-domain Galerkin method of moments (MoM), based on a Fourier-series plane wave expansion of the magnetic field inside the discontinuity. The use of Green's function Fourier transform allows all integrations over the area and along the boundary of the discontinuity to be performed analytically, resulting in a MoM matrix with entries that are expressed as spectral integrals of closed-form expressions. Complex analysis techniques, such as Cauchy's residue theorem and the saddle-point method, are applied to obtain the amplitudes of the transmitted and reflected SPP modes and the radiated field pattern. Through numerical results, we examine the wavelength selectivity of transmission and reflection against the channel dimensions as well as the sensitivity to changes in the refractive index of the discontinuity, which is useful for sensing applications.
Analytical solutions of heat transfer for laminar flow in rectangular channels
Directory of Open Access Journals (Sweden)
Rybiński Witold
2014-12-01
Full Text Available The paper presents two analytical solutions namely for Fanning friction factor and for Nusselt number of fully developed laminar fluid flow in straight mini channels with rectangular cross-section. This type of channels is common in mini- and microchannel heat exchangers. Analytical formulae, both for velocity and temperature profiles, were obtained in the explicit form of two terms. The first term is an asymptotic solution of laminar flow between parallel plates. The second one is a rapidly convergent series. This series becomes zero as the cross-section aspect ratio goes to infinity. This clear mathematical form is also inherited by the formulae for friction factor and Nusselt number. As the boundary conditions for velocity and temperature profiles no-slip and peripherally constant temperature with axially constant heat flux were assumed (H1 type. The velocity profile is assumed to be independent of the temperature profile. The assumption of constant temperature at the channel’s perimeter is related to the asymptotic case of channel’s wall thermal resistance: infinite in the axial direction and zero in the peripheral one. It represents typical conditions in a minichannel heat exchanger made of metal.
International Nuclear Information System (INIS)
Choi, Gil Sik; Chang, Soon Heung; Jeong, Yong Hoon
2016-01-01
A study, on the theoretical method to predict the critical heat flux (CHF) of saturated upward flow boiling water in vertical narrow rectangular channels, has been conducted. For the assessment of this CHF prediction method, 608 experimental data were selected from the previous researches, in which the heated sections were uniformly heated from both wide surfaces under the high pressure condition over 41 bar. For this purpose, representative previous liquid film dryout (LFD) models for circular channels were reviewed by using 6058 points from the KAIST CHF data bank. This shows that it is reasonable to define the initial condition of quality and entrainment fraction at onset of annular flow (OAF) as the transition to annular flow regime and the equilibrium value, respectively, and the prediction error of the LFD model is dependent on the accuracy of the constitutive equations of droplet deposition and entrainment. In the modified Levy model, the CHF data are predicted with standard deviation (SD) of 14.0% and root mean square error (RMSE) of 14.1%. Meanwhile, in the present LFD model, which is based on the constitutive equations developed by Okawa et al., the entire data are calculated with SD of 17.1% and RMSE of 17.3%. Because of its qualitative prediction trend and universal calculation convergence, the present model was finally selected as the best LFD model to predict the CHF for narrow rectangular channels. For the assessment of the present LFD model for narrow rectangular channels, effective 284 data were selected. By using the present LFD model, these data are predicted with RMSE of 22.9% with the dryout criterion of zero-liquid film flow, but RMSE of 18.7% with rivulet formation model. This shows that the prediction error of the present LFD model for narrow rectangular channels is similar with that for circular channels.
International Nuclear Information System (INIS)
Yan Chaoxing; Yan Changqi; Sun Licheng; Xing Dianchuan; Wang Yang
2013-01-01
On the basis of visual observation, the effects of aspect ratio on relationship between flow resistance and flow regime were investigated experimentally for two-phase flow in three rectangular channels with the same cross-section width of 43 mm and different heights of 1.41, 3 and 10 mm, respectively. According to the criteria in terms of restriction factor C o , the former two channels belong to narrow channel, whereas the last one is conventional channel. The experimental results show that the two-phase pressure drops in rectangular channel with different aspect ratios have different variation trends with the increase of the gas velocity. For the 10 mm channel, the gravitational pressure drop makes the major percentage of total pressure drop at low gas velocity while the frictional pressure drop is dominant for the 1.41 mm and 3 mm channels. With the increase of the gas flow rate, the frictional pressure drop contributes more to total pressure drop. The range of churn flow can be distinguished from its pressure drop characteristic in 10 mm channel. (authors)
Joekar-Niasar, V.
2013-01-25
Upscaling electroosmosis in porous media is a challenge due to the complexity and scale-dependent nonlinearities of this coupled phenomenon. "Pore-network modeling" for upscaling electroosmosis from pore scale to Darcy scale can be considered as a promising approach. However, this method requires analytical solutions for flow and transport at pore scale. This study concentrates on the development of analytical solutions of flow and transport in a single rectangular channel under combined effects of electrohydrodynamic forces. These relations will be used in future works for pore-network modeling. The analytical solutions are valid for all regimes of overlapping electrical double layers and have the potential to be extended to nonlinear Boltzmann distribution. The innovative aspects of this study are (a) contribution of overlapping of electrical double layers to the Stokes flow as well as Nernst-Planck transport has been carefully included in the analytical solutions. (b) All important transport mechanisms including advection, diffusion, and electromigration have been included in the analytical solutions. (c) Fully algebraic relations developed in this study can be easily employed to upscale electroosmosis to Darcy scale using pore-network modeling. © 2013 Springer Science+Business Media Dordrecht.
Joekar-Niasar, V.; Schotting, R.; Leijnse, A.
2013-01-01
Upscaling electroosmosis in porous media is a challenge due to the complexity and scale-dependent nonlinearities of this coupled phenomenon. "Pore-network modeling" for upscaling electroosmosis from pore scale to Darcy scale can be considered as a promising approach. However, this method requires analytical solutions for flow and transport at pore scale. This study concentrates on the development of analytical solutions of flow and transport in a single rectangular channel under combined effects of electrohydrodynamic forces. These relations will be used in future works for pore-network modeling. The analytical solutions are valid for all regimes of overlapping electrical double layers and have the potential to be extended to nonlinear Boltzmann distribution. The innovative aspects of this study are (a) contribution of overlapping of electrical double layers to the Stokes flow as well as Nernst-Planck transport has been carefully included in the analytical solutions. (b) All important transport mechanisms including advection, diffusion, and electromigration have been included in the analytical solutions. (c) Fully algebraic relations developed in this study can be easily employed to upscale electroosmosis to Darcy scale using pore-network modeling. © 2013 Springer Science+Business Media Dordrecht.
International Nuclear Information System (INIS)
Wang Junfeng; Huang Yanping; Wang Yanlin
2011-01-01
Highlights: → Specific points on the demand curve and flow patterns are visually studied. → Bubbly, churn, and annular flows were observed. → Onset of flow instability and bubbly-churn transition occurs at the same time. → The evolution of specific points and flow pattern transitions were examined. - Abstract: A simultaneous visualization and measurement study on some specific points on demand curves, such as onset of nucleate boiling (ONB), onset of significant void (OSV), onset of flow instability (OFI), and two-phase flow patterns in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, was carried out. New experimental approaches were adopted to identify OSV and OFI in a narrow rectangular channel. Under experimental conditions, the ONB could be predicted well by the Sato and Matsumura model. The OSV model of Bowring can reasonably predict the OSV if the single-side heated condition is considered. The OFI was close to the saturated boiling point and could be described accurately by Kennedy's correlation. The two-phase flow patterns observed in this experiment could be classified into bubbly, churn, and annular flow. Slug flow was never observed. The OFI always occurred when the bubbles at the channel exit began to coalesce, which corresponded to the beginning of the bubbly-churn transition in flow patterns. Finally, the evolution of specific points and flow pattern transitions were examined in a single-side heated narrow rectangular channel.
Energy Technology Data Exchange (ETDEWEB)
Lee, Juh Yung; Chang, Soon Heung; Jeong, Yong [KAIST, Daejeon (Korea, Republic of)
2016-05-15
The onset of flow instability (OFI) is the one of important boiling phenomena since it may induce the premature critical heat flux (CHF) at the lowest heat flux level due to sudden flow excursion in a single channel of multichannel configuration. Especially prediction of OFI for narrow rectangular channel is very crucial in relevant to thermal-hydraulic design and safety analysis of open pool-type research reactors (RRs) using plate-type fuels. Based on high speed video (HSV) technique, the authors observed and determined that OFI and the minimum premature CHF in a narrow rectangular channel are induced by abrupt pressure drop fluctuation due to the mergence of facing bubble boundary layers (BLs) on opposite boiling surfaces. In this study, new mechanistic OFI model for narrow rectangular channel heated on both sides has been derived, which satisfies with the real triggering phenomena. Force balance approach was used for modeling of the maximum BLT since the quantity is comparable to the bubble departure diameter. From the validation with OFI database, it was shown that the new model fairly well predicts OFI heat flux for wide range of conditions.
Energy Technology Data Exchange (ETDEWEB)
Li, Zi-chao; Qi, Shi; Zhou, Tao; Li, Bing; Shahzad, Muhammad Ali [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, Beijing (China); Huang, Yan-ping [Nuclear Reactor Thermal Hydraulics Technology, Chengdu (China). CNNC Key Lab.
2017-12-15
Saturated boiling of two-phase natural circulation has been experimentally investigated based on a natural circulation device with narrow rectangular channels. When heating power reaches a certain range, it is possible to observe the phenomenon of saturated boiling and flow pattern transition in the system. The results show the heat transfer coefficient of saturated boiling decreases with the increasing of pressure, heating power and size of narrow rectangle channels. The buoyancy force causing mixed convection decreases the heat transfer coefficient. Finally, a dimensionless number is introduced, which reflects length to width ratio of rectangular narrow section and Rayleigh number, in order to revise the presented correlation. All errors fall within the range of ±15%.
Prediction of critical heat flux in narrow rectangular channels using an artificial neural network
International Nuclear Information System (INIS)
Zhou Lei; Yan Xiao; Huang Yanping; Xiao Zejun; Yu Jiyang
2011-01-01
The concept of Critical heat flux (CHF) and its importance are introduced and the meaning to research CHF in narrow rectangular channels independently is emphasized. This paper is the first effort to predict CHF in NRCs using aritificial neural network. The mathematical structure of the artificial neural network and the error back-propagation algorithm are introduced. To predict CHF, the four dimensionless groups are inputted to the neural network and the output is the dimensionless CHF. As the hidden nodes increased, the training error decreases while the testing error decreases firstly and then transition occurs. Based on this, the hidden nodes are set as 5 and the trained network predicts all of the training and testing data points with RMS=0.0016 and μ=1.0003, which is better than several well-known existing correlations. Based on the trained network, the effect of several parameters on CHF are simulated and discussed. CHF increases almost linearly as the inlet subcooling increases. And larger mass flux enhances the effect of the inlet subcooling. CHF increases with the mass flux increasing. And the effect seems to be a little stronger for relatively low system pressure. CHF decreases almost linearly as the system pressure increases for the fixed inlet condition. The slope of the curve also increases with higher mass flux. This observation is limited to the ranges of the experimental database. CHF decreases as the heated length is increased and the gradients of the curves become very sharp for relatively short channel. CHF increases slightly with the diameter increasing with the variance of the gap limited within 1 to 3 mm. For relatively low mass flux, the effect of the equivalent diameter on CHF is insignificant. As the width of the channel is large enough, the effect of the gap is quite the same as that of the equivalent diameter. A BPNN is successfully trained based on near 500 CHF data points in NRCs, which has much better performances than the
International Nuclear Information System (INIS)
Huang, Dong; Gao, Puzhen; Chen, Chong; Lan, Shu
2013-01-01
Highlights: • Most of the slip ratio models and the Lockhart–Martinelli parameter based models give similar results. • The drift flux void fraction models give relatively small values. • The effect of void fraction correlations on two-phase friction pressure drop is inconspicuous. • The effect of void fraction correlations on two-phase acceleration pressure drop is significant. - Abstract: The void fraction of water during flow boiling in vertical narrow rectangular channel is experimentally investigated. The void fraction is indirectly determined using the present experimental data with various void fraction correlations or models published in the open literature. The effects of mass flux, mass quality, system pressure and inlet subcooling on the void fraction and pressure drop are discussed in detail. In addition, comparison and discussion among the numerous void fraction correlations are carried out. The effect of void fraction correlations on two-phase pressure drop is presented as well. The results reveal that most of the slip ratio correlations and the Lockhart–Martinelli parameter based void fraction correlations have results close to each other at mass quality higher than 0.2. The drift flux void fraction correlations give small values which are incompatible with other models making it inapplicable for narrow rectangular channel. The alteration of void fraction correlations has an inconspicuous effect on two-phase frictional pressure drop, while an obvious effect on two-phase accelerational pressure drop during flow boiling in narrow rectangular channel
International Nuclear Information System (INIS)
Song, Jung-Hyun; Lee, Juhyung; Jeong, Yong Hoon; Chang, Soon Heung
2014-01-01
As the research reactors operates with downward flow, they have some advantages; downward flow can reduce the radioisotopes in the upper part of research reactor and simplify the locking mechanism as countervailing the buoyancy force on the nuclear fuel. However, as the research reactor operates under the low pressure condition, the premature critical heat flux (CHF) can occur during the onset of flow instability (OFI) according to circumstances as the pressure fluctuates significantly. For that reason, it is important to know and set the margin for the onset of nucleate boiling (ONB) which is the preceding phenomena of OFI and CHF to predict and handle with OFI. In addition, research reactor is the nuclear reactor serves neutron source for many research fields such as neutron scattering, non-destructive testing, radioisotope treatment and so on, it is important to avoid ONB to get stable neutron source. IAEA also recommends for research reactors to have enough ONB margin to maintain the normal operation state in 'IAEA-TECDOC-233' (1980). Though the ONB in research reactor is emphasized for these reasons, there isn't sufficient ONB data under downward flow condition and no ONB prediction correlation for downward flow as well. In addition, in many researches; Mosyak et al., Hapke et al., Wu et al. and Hong et al., the existing ONB correlations are not suitable for narrow rectangular channel. In the present work, not only a new ONB prediction correlation would be developed, but also comparison between new correlation with several ONB correlations would be shown. In this paper, ONB data would be analyzed to develop new ONB prediction correlation
Amano, Ryoichi S.; Abou-Ellail, Mohsen M.; Elhaw, Samer; Saeed Ibrahim, Mohamed
2013-09-01
In this work a prediction was numerically modeled for a catalytically stabilized thermal combustion of a lean homogeneous mixture of air and hydrogen. The mixture flows in a narrow rectangular channel lined with a thin coating of platinum catalyst. The solution using an in-house code is based on the steady state partial differential continuity, momentum and energy conservation equations for the mixture and species involved in the reactions. A marching technique is used along the streamwise direction to solve the 2-D plane-symmetric laminar flow of the gas. Two chemical kinetic reaction mechanisms were included; one for the gas phase reactions consisting of 17 elementary reactions; of which 7 are forward-backward reactions while the other mechanism is for the surface reactions—which are the prime mover of the combustion under a lean mixture condition—consisting of 16 elementary reactions. The results were compared with a former congruent experimental work where temperature was measured using thermocouples, while using PLIF laser for measuring water and hydrogen mole fractions. The comparison showed good agreement. More results for the velocities, mole fractions of other species were carried out across the transverse and along the streamwise directions providing a complete picture of overall mechanism—gas and surface—and on the production, consumptions and travel of the different species. The variations of the average OH mole fraction with the streamwise direction showed a sudden increase in the region where the ignition occurred. Also the rate of reactions of the entire surface species were calculated along the streamwise direction and a surface water production flux equation was derived by calculating the law of mass action's constants from the concentrations of hydrogen, oxygen and the rate of formation of water near the surface.
International Nuclear Information System (INIS)
Lamsaadi, M.; Naimi, M.; Hasnaoui, M.
2006-01-01
A combined analytical and numerical study is conducted for two dimensional, steady state, buoyancy driven flows of non-Newtonian power law fluids confined in a shallow rectangular cavity submitted to uniform fluxes of heat along both its short vertical sides, while its long horizontal walls are considered adiabatic. The effect of the non-Newtonian behavior on the fluid flow and heat transfer characteristics is examined. An approximate theoretical solution is developed on the basis of the parallel flow assumption and validated numerically by solving the full governing equations
Investigation of Two-Phase Flow in Short Horizontal Mini Channel Height of 1 MM
Directory of Open Access Journals (Sweden)
Ron’shin Fedor
2016-01-01
Full Text Available The experiments with two-phase flow in the short horizontal rectangular minichannel with the height of 1 mm and width of 29 mm have been carried out using water and gas nitrogen. The five two-phase flow patterns have been recognized in the minichannel: churn, stratified, annular, bubble, and jet. These regimes are plotted on a graph and the boundaries between them determine precisely. The height of a horizontal minichannels has a significant role on boundaries between the flow regimes.
Taha, T.J.; Lefferts, Leonardus; van der Meer, Theodorus H.
2016-01-01
An experimental heat transfer investigation was carried out to examine the influence of carbon nanotubes (CNTs) layer deposits on the convective heat transfer performance inside rectangular microchannels. Successful synthesis of vertically aligned CNTs was achieved using a catalytic vapor deposition
Feng, Xin; Wu, Shi-Xiang; Zhao, Kun; Wang, Wei; Zhan, Hong-Lei; Jiang, Chen; Xiao, Li-Zhi; Chen, Shao-Hua
2015-11-30
The flow-pattern transition has been a challenging problem in two-phase flow system. We propose the terahertz time-domain spectroscopy (THz-TDS) to investigate the behavior underlying oil-water flow in rectangular horizontal pipes. The low water content (0.03-2.3%) in oil-water flow can be measured accurately and reliably from the relationship between THz peak amplitude and water volume fraction. In addition, we obtain the flow pattern transition boundaries in terms of flow rates. The critical flow rate Qc of the flow pattern transitions decreases from 0.32 m3 h to 0.18 m3 h when the corresponding water content increases from 0.03% to 2.3%. These properties render THz-TDS particularly powerful technology for investigating a horizontal oil-water two-phase flow system.
Mansoor, Mohammad M.
2012-02-01
A 3D-conjugate numerical investigation was conducted to predict heat transfer characteristics in a rectangular cross-sectional micro-channel employing simultaneously developing single-phase flows. The numerical code was validated by comparison with previous experimental and numerical results for the same micro-channel dimensions and classical correlations based on conventional sized channels. High heat fluxes up to 130W/cm 2 were applied to investigate micro-channel thermal characteristics. The entire computational domain was discretized using a 120×160×100 grid for the micro-channel with an aspect ratio of (α=4.56) and examined for Reynolds numbers in the laminar range (Re 500-2000) using FLUENT. De-ionized water served as the cooling fluid while the micro-channel substrate used was made of copper. Validation results were found to be in good agreement with previous experimental and numerical data [1] with an average deviation of less than 4.2%. As the applied heat flux increased, an increase in heat transfer coefficient values was observed. Also, the Reynolds number required for transition from single-phase fluid to two-phase was found to increase. A correlation is proposed for the results of average Nusselt numbers for the heat transfer characteristics in micro-channels with simultaneously developing, single-phase flows. © 2011 Elsevier Ltd.
Energy Technology Data Exchange (ETDEWEB)
Gong, Jianying; Li, Guojun; Gao, Tieyu [Xian Jiaotong University, Xian (China)
2014-09-15
The present experiment compares the heat transfer and friction characteristics in steam cooled and air cooled rectangular channels (simulating a gas turbine blade cooling passage) with two opposite rib-roughened walls. The Reynolds number (Re) whose length scale is the hydraulic diameter of the passage is set within the range of 10000-60000. The channel length is 1000 mm. The pitch-to-rib height ratio, the channel aspect ratio and the channel blockage ratio is 10, 0.5 and 0.047, respectively. It is found that the average Nu, the average friction coefficient, and the heat transfer performance of both steam and air in the ribbed channels show almost the same change trend with the increase of Re. Under the same test conditions, the average Nu of steam is 30.2% higher than that of air, the average friction coefficient is 18.4% higher, and the heat transfer performances of steam on the ribbed and the smooth walls are 8.4% and 7.3% higher than those of air, respectively. In addition, semi-empirical correlations for the two test channels are developed, which can predict the Nu under the given test condition. The correlations can be used in the design of the internal cooling passage of new generation steam cooled gas turbine blade/vane.
Air-water upward flow in prismatic channel of rectangular base
International Nuclear Information System (INIS)
Carvalho Tofani, P. de.
1984-01-01
Experiments had carried out to investigate the two-phase upward air-water flow structure, in a rectangular test section, by using independent measuring techniques, which comprise direct viewing and photography, electrical probes and gamma-ray attenuation. Flow pattern maps and correlations for flow pattern transitions, void fraction profiles, liquid film thickness and superficial average void fraction are proposed and compared to available data. (Author) [pt
Bouremel, Yann; Mitsudharmadi, Hatsari; Budiman, Alexander C.; Winoto, Sonny H.
2016-01-01
Particle Image Velocimetry (PIV) has been used to characterize the evolution of counter-rotating streamwise vortices in a rectangular channel with one sided wavy surface. The vortices were created by a uniform set of saw-tooth carved over the leading edge of a flat plate at the entrance of a flat rectangular channel with one-sided wavy wall. PIV measurements were taken over the spanwise and streamwise planes at different locations and at Reynolds number of 2500. Two other Reynolds numbers of 2885 and 3333 have also been considered for quantification purpose. Pairs of counter-rotating streamwise vortices have been shown experimentally to be centred along the spanwise direction at the saw-tooth valley where the vorticity ωz=0ωz=0. It has also been found that the vorticity ωzωz of the pairs of counter-rotating vortices decreases along the streamwise direction, and increases with the Reynolds number. Moreover, different quantifications of such counter-rotating vortices have been discussed such as their size, boundary layer, velocity profile and vorticity. The current study shows that the mixing due to the wall shear stress of counter-rotating streamwise vortices as well as their averaged viscous dissipation rate of kinetic energy decrease over flat and adverse pressure gradient surfaces while increasing over favourable pressure gradient surfaces. Finally, it was also demonstrated that the main direction of stretching is orientated at around 45° with the main flow direction.
Bouremel, Yann
2016-11-01
Particle Image Velocimetry (PIV) has been used to characterize the evolution of counter-rotating streamwise vortices in a rectangular channel with one sided wavy surface. The vortices were created by a uniform set of saw-tooth carved over the leading edge of a flat plate at the entrance of a flat rectangular channel with one-sided wavy wall. PIV measurements were taken over the spanwise and streamwise planes at different locations and at Reynolds number of 2500. Two other Reynolds numbers of 2885 and 3333 have also been considered for quantification purpose. Pairs of counter-rotating streamwise vortices have been shown experimentally to be centred along the spanwise direction at the saw-tooth valley where the vorticity ωz=0ωz=0. It has also been found that the vorticity ωzωz of the pairs of counter-rotating vortices decreases along the streamwise direction, and increases with the Reynolds number. Moreover, different quantifications of such counter-rotating vortices have been discussed such as their size, boundary layer, velocity profile and vorticity. The current study shows that the mixing due to the wall shear stress of counter-rotating streamwise vortices as well as their averaged viscous dissipation rate of kinetic energy decrease over flat and adverse pressure gradient surfaces while increasing over favourable pressure gradient surfaces. Finally, it was also demonstrated that the main direction of stretching is orientated at around 45° with the main flow direction.
International Nuclear Information System (INIS)
Perng, Shiang-Wuu; Wu, Horng-Wen; Jue, Tswen-Chyuan; Cheng, Kuo-Chih
2009-01-01
This paper numerically investigates the installation of the transverse rectangular cylinder along the gas diffusion layer (GDL) in the flow channel for the cell performance enhancement of a proton exchange membrane fuel cell (PEMFC). The effects of the blockage at various gap sizes and the width of the cylinder on the cell performance enhancement have been studied with changing the gap ratios λ = 0.05-0.3, for the same cylinder) and the width-to-height ratios (WR = 0.66-1.66, for the same cylinder height and gap ratio). The results show that the transverse installation of a rectangular cylinder in the fuel flow channel effectively enhances the cell performance of a PEMFC. In addition, the influence of the width of the cylinder on the cell performance is obvious, and the best cell performance enhancement occurs at the gap ratio 0.2 among the gap ratios of 0.05, 0.1, 0.2, and 0.3.
International Nuclear Information System (INIS)
Zhou, Tao; Duan, Jun; Hong, Dexun; Liu, Ping; Sheng, Cheng; Huang, Yanping
2013-01-01
Highlights: ► We observe the behavior of single bubbles in a narrow vertical rectangular channel. ► We analyze the force characteristics of the single bubble. ► Small bubbles in highly subcooled boiling region stick on the wall or slip slowly. ► The bubbles jumping from the wall are affected by drag force. ► The thermophoretic force makes bubbles jump from the wall strongly. - Abstract: The behavior of bubbles has an important influence on heat transfer during subcooled boiling. By observing the behavior of a single bubble in a narrow vertical rectangular channel, and analyzing the force characteristics of the single bubble, it turns out that small bubbles in the highly subcooled boiling region stick on the wall or slip slowly. The bubbles jumping from the wall are affected by drag force, and move with high speed. Maintaining a certain heating power, at the onset of boiling (ONB) point, the bubbles remain in a stable state. Furthermore, the thermophoretic force is considered in this paper. With increasing the temperature gradient in the fluid, the thermophoretic force causes the bubbles to jump from the wall easier
International Nuclear Information System (INIS)
Bakkas, M.; Hasnaoui, M.; Amahmid, A.
2010-01-01
A numerical study of laminar steady natural convection induced in a two dimensional horizontal channel provided with rectangular heating blocks, periodically mounted on its lower wall, is carried out. The blocks' surface temperature, T H ' , is maintained constant and the former are connected with adiabatic surfaces. The upper wall of the channel is maintained cold at a temperature T C ' H ' . Fluid flow, temperature fields and heat transfer rates are presented for different combinations of the governing parameters which are the Rayleigh number (10 2 ≤Ra≤2x10 6 ), the blocks' spacing (1/4≤C=l ' /H ' ≤1), the blocks' height (1/8≤B=h ' /H ' ≤1/2) and the relative width of the blocks (A=(L ' -l ' )/H ' =1/2). The results obtained in the case of air (Pr = 0.72) show that the flow structure and the heat transfer are significantly influenced by the control parameters. It is found that there are situations where the increase of the blocks' spacing leads to a reduction of heat transfer.
The Effect of Confluence Angle on the Flow Pattern at a Rectangular Open-Channel
Directory of Open Access Journals (Sweden)
F. Rooniyan
2014-02-01
Full Text Available Flow connection in channels is a phenomenon which frequently happens in rivers, water and drainage channels and urban sewage systems. The phenomenon appears to be more complex in rivers than in channels, especially at the y-junction bed joint that causes erosion and sedimentation at some areas resulting to morphological changes. Flow behavior at the channel junction area depends on variables such as channel geometry, discharge ratio, tributary width and y-junction connection angle of the channel, bed level changes at the bed joint, flow characteristic at the bed joint upstream and flow Froude number in different sections. In this research, fluent numerical model and junction angles of 30o, 45o & 60o are used to analyze and evaluate the effect of channel junction geometry on the flow pattern and the flow separation zone dimensions in different ratios of flow discharge (upstream channel discharge to total discharge of the flow. Results for two ratios of flow discharge are represented. Results are in agreement with earlier studies and it is shown that the change of the channel crossing angle affects the flow pattern in the main channel and also that the dimensions of the created separation zone in the main channel become larger when the crossing angle increases. This phenomenon can also be observed when the flow discharge ratio is lower. Analysis showed that the least dimension of the separation zone will be at the crossing angle of 45o .
24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES
Energy Technology Data Exchange (ETDEWEB)
Erik C. Westman
2003-10-24
Improved ground-imaging capabilities have enormous potential to increase energy, environmental, and economic benefits by improving exploration accuracy and reducing energy consumption during the mining cycle. Seismic tomography has been used successfully to monitor and evaluate geologic conditions ahead of a mining face. A primary limitation to existing seismic tomography, however, is the placement of sensors. The goal of this project is to develop an array of 24 seismic sensors capable of being mounted in either a vertical or horizontal borehole. Development of this technology reduces energy usage in excavation, transportation, ventilation, and processing phases of the mining operation because less waste is mined and the mining cycle suffers fewer interruptions. This new technology benefits all types of mines, including metal/nonmetal, coal, and quarrying. The primary research tasks focused on sensor placement method, sensor housing and clamping design, and cabling and connector selection. An initial design is described in the report. Following assembly, a prototype was tested in the laboratory as well as at a surface stone quarry. Data analysis and tool performance were used for subsequent design modifications. A final design is described, of which several components are available for patent application. Industry partners have shown clear support for this research and demonstrated an interest in commercialization following project completion.
Local gas- and liquid-phase measurements for air-water two-phase flows in a rectangular channel
International Nuclear Information System (INIS)
Zhou, X.; Sun, X.; Williams, M.; Fu, Y.; Liu, Y.
2014-01-01
Local gas- and liquid-phase measurements of various gas-liquid two-phase flows, including bubbly, cap-bubbly, slug, and churn-turbulent flows, were performed in an acrylic vertical channel with a rectangular cross section of 30 mm x 10 mm and height of 3.0 m. All the measurements were carried out at three measurement elevations along the flow channel, with z/D h = 9, 72, and 136, respectively, to study the flow development. The gas-phase velocity, void fraction, and bubble number frequency were measured using a double-sensor conductivity probe. A high-speed imaging system was utilized to perform the flow regime visualization and to provide additional quantitative information of the two-phase flow structure. An image processing scheme was developed to obtain the gas-phase velocity, void fraction, Sauter mean diameter, bubble number density, and interfacial area concentration. The liquid-phase velocity and turbulence measurements were conducted using a particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system, which enables whole-field and high-resolution data acquisition. An optical phase separation method, which uses fluorescent particles and optical filtration technique, is adopted to extract the velocity information of the liquid phase. An image pre-processing scheme is imposed on the raw PIV images acquired to remove noises due to the presence of bubble residuals and optically distorted particles in the images captured by the PIV-PLIF system. Due to the better light access and less bubble distortion in the narrow rectangular channel, the PIV-PLIF system were able to perform reasonably well in flows of even higher void fractions as compared to the situations with circular pipe test sections. The flow conditions being studied covered various flow regime transitions, void fractions, and liquid-phase flow Reynolds numbers. The obtained experimental data can also be used to validate two-phase CFD results. (author)
THERMOSS: a thermohydraulic model of flow stagnation in a horizontal fuel channel
International Nuclear Information System (INIS)
Gulshani, P.; Caplan, M.Z.; Spinks, N.J.
1984-01-01
Following a postulated inlet-side small break in the CANDU reactor, emergency coolant is injected to refull the horizontal fuel channels and remove the decay heat. As part of the accident analysis, the effects of loss of forced circulation during the accident are predicted. A break size exists for which, at the end of pump rundown, the break force balances the natural circulation force and the channel flow is reduced to near zero. The subcooled, stagnant channel condition is referred to as the standing-start condition. Subsequently, the channel coolant boils and stratifies. Eventually the steam flow from the channel heats up the endfitting to the saturation temperature and reaches the vertical feeder. The resulting buoyancy-induced flow then refills the channel. One dimensional, two-fluid conservation equations are solved in closed form to predict the duration of stagnation. In this calculation the channel water level is an important intermediate variable because it determines the amount of steam production
Datta, Subhra; Ghosal, Sandip; Patankar, Neelesh A
2006-02-01
Electroosmotic flow in a straight micro-channel of rectangular cross-section is computed numerically for several situations where the wall zeta-potential is not constant but has a specified spatial variation. The results of the computation are compared with an earlier published asymptotic theory based on the lubrication approximation: the assumption that any axial variations take place on a long length scale compared to a characteristic channel width. The computational results are found to be in excellent agreement with the theory even when the scale of axial variations is comparable to the channel width. In the opposite limit when the wavelength of fluctuations is much shorter than the channel width, the lubrication theory fails to describe the solution either qualitatively or quantitatively. In this short wave limit the solution is well described by Ajdari's theory for electroosmotic flow between infinite parallel plates (Ajdari, A., Phys. Rev. E 1996, 53, 4996-5005.) The infinitely thin electric double layer limit is assumed in the theory as well as in the simulation.
Directory of Open Access Journals (Sweden)
James A. Parsons
2001-01-01
Full Text Available The effect of channel rotation on jet impingement cooling by arrays of circular jets in twin channels was studied. Impinging jet flows were in the direction of rotation in one channel and opposite to the direction of rotation in the other channel. The jets impinged normally on the smooth, heated target wall in each channel. The spent air exited the channels through extraction holes in each target wall, which eliminates cross flow on other jets. Jet rotation numbers and jet Reynolds numbers varied from 0.0 to 0.0028 and 5000 to 10,000, respectively. For the target walls with jet flow in the direction of rotation (or opposite to the direction of rotation, as rotation number increases heat transfer decreases up to 25% (or 15% as compared to corresponding results for non-rotating conditions. This is due to the changes in flow distribution and rotation induced Coriolis and centrifugal forces.
International Nuclear Information System (INIS)
Mishima, K.; Nishihara, H.
1985-01-01
Critical heat flow (CHF) at low flow condition can become important in an MTR-type research reactor under a number of accident conditions. Regardless of the initial stages of these accidents, a condition which is basically the decay heat removal by natural convention boiling can develop. Under such conditions, burnout may occur even at a very low heat flow. In view of this, the CHF at low-flow-rate and low-pressure conditions has been studied for water flowing in thin rectangular channels. Experiments were carried out with two types of rectangular test sections, namely, the one heated from one wide side and the other heated from two opposite sides. In order to observe the effects of gravity, CHF was measured both in upflow and downflow. The CHF at complete bottom blockage was also studied. The results indicate that burnout can occur at a much lower heat flux than pool-boiling CHF or than predicted by the conventional correlations. There was observed a minimum CHF at complete bottom blockage and at very low downflow. The low CHF at very low downflow appears to be due to the stagnation of the bubble in the heated section. This fact indicates that special care should be taken in analyzing the boiling phenomenon which occurs when the coolant flow is very low in a low pressure system. (author)
Two-phase upward air water flow in a prismatic channel with rectangular base
International Nuclear Information System (INIS)
Carvalho Tofani, P. de
1984-01-01
Two-phase liquid-gas mixtures provide suitable means to simulate water-water vapor flows, which may occur in nuclear reactor cores. The mastery of physical transport phenomena is of great importance, as far as the analysis of such thermal systems is concerned. Within the framework of thermal-hydraulic programs, experiments have been carried out to investigate the two-phase upward air-water flow structure, in a rectangular test section, by using independent measuring techniques, which comprise direct viewing and photography, electrical probes and gamma-ray attenuation. In this paper, flow pattern maps and correlations for flow pattern transitions, void fraction profiles, liquid film thickness and superficial average void fraction are proposed and compared to available data. (Author) [pt
High-frame rate imaging of two-phase flow in a thin rectangular channel using fast neutrons.
Zboray, R; Mor, I; Dangendorf, V; Stark, M; Tittelmeier, K; Cortesi, M; Adams, R
2014-08-01
We have demonstrated the feasibility of performing high-frame-rate, fast neutron radiography of air-water two-phase flows in a thin channel with rectangular cross section. The experiments have been carried out at the accelerator facility of the Physikalisch-Technische Bundesanstalt. A polychromatic, high-intensity fast neutron beam with average energy of 6 MeV was produced by 11.5 MeV deuterons hitting a thick Be target. Image sequences down to 10 ms exposure times were obtained using a fast-neutron imaging detector developed in the context of fast-neutron resonance imaging. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two phase flow parameters like the volumetric gas fraction, bubble size and mean bubble velocities have been measured. The first results are promising, improvements for future experiments are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll
2013-01-01
In this paper, we introduce a new class of op- timal rectangular filtering matrices for single-channel speech enhancement. The new class of filters exploits the fact that the dimension of the signal subspace is lower than that of the full space. By doing this, extra degrees of freedom...... in the filters, that are otherwise reserved for preserving the signal subspace, can be used for achieving an improved output signal-to-noise ratio (SNR). Moreover, the filters allow for explicit control of the tradeoff between noise reduction and speech distortion via the chosen rank of the signal subspace...... and real signals. The results show a number of interesting things. Firstly, they show how speech distortion can be traded for noise reduction and vice versa in a seamless manner. Moreover, the introduced filter designs are capable of achieving both the upper and lower bounds for the output SNR via...
International Nuclear Information System (INIS)
Wang Junfeng; Huang Yanping; Wang Yanlin; Song Mingliang
2012-01-01
Highlights: ► Flow regimes were visually investigated in a heated narrow rectangular channel. ► Bubbly, churn, and annular flow were observed. Slug flow was never observed. ► Flow regime transition boundary could be predicted by existing criteria. ► Churn zone in present flow regime maps were poorly predicted by existing criteria. - Abstract: Flow regimes are very important in understanding two-phase flow resistance and heat transfer characteristics. In present work, two-phase flow regimes for steam–water flows in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, were visually studied at relatively low pressure and low mass flux condition. The flow regimes observed in this experiment could be classified into bubbly, churn and annular flow. Slug flow was never observed at any of the conditions in our experiment. Flow regime maps at the pressure of 0.7 MPa and 1.0 MPa were developed, and then the pressure effect on flow regime transition was analyzed. Based on the experimental results, the comparisons with some existing flow regime maps and transition criteria were conducted. The comparison results show that the bubbly transition boundary and annular formation boundary of heated steam–water flow were consistent with that of adiabatic air–water flow. However, the intermediate flow pattern between bubbly and annular flow was different. Hibiki and Mishima criteria could predict the bubbly transition boundary and annular formation boundary satisfactorily, but it poorly predicted churn zone in present experimental data.
Critical heat flux of forced flow boiling in a narrow one-side heated rectangular flow channel
Energy Technology Data Exchange (ETDEWEB)
Limin, Zheng [Shanghai Nuclear Engineering Research and Design Inst., SH (China); Iguchi, Tadashi; Kureta, Masatoshi; Akimoto, Hajime
1997-08-01
The present work deals with the critical heat flux (CHF) under subcooled flow boiling in a narrow one-side uniformly heated rectangular flow channel. The range of interest of parameters such as pressure, flow velocity and subcooling is around 0.1 MPa, 5-15 ms{sup -1} and 50degC, respectively. The rectangular flow channel used is 50 mm long, 12 mm in width and 0.2 to 3 mm in height. Test conditions were selected by combination of the following parameters: Gap=0.2-3.0 mm (D{sub hy}=0.3934-4.8 mm); flow length, 50.0 mm; water mass flux, 4.94-14.82 Mgm{sup -2}s{sup -1} (water flow velocity, 5-15 ms{sup -1}); exit pressure, 0.1 MPa; inlet temperature, 50degC, inlet coolant subcooling, 50degC. Over 40 CHF stable data points were obtained. CHF increased with the gap and flow velocity in a non-linear fashion. HTC increased with flow velocity and decreasing gap. Based on the experimental results, an empirical correlation was developed, indicating the dependence of CHF on the gap and flow velocity. All of data points predicted within {+-}18% error band for the present experimental data. On the other hand, another similitude-based correlation was also developed, indicating the dependence of Boiling number (Bo) on Reynolds number (Re) and the variable of Gap/La, where La is a characteristic length known as Laplace capillary constant. For the limited present experimental data, all of data points were predicted within {+-}16%. (author)
Critical heat flux of forced flow boiling in a narrow one-side heated rectangular flow channel
International Nuclear Information System (INIS)
Zheng Limin; Iguchi, Tadashi; Kureta, Masatoshi; Akimoto, Hajime.
1997-08-01
The present work deals with the critical heat flux (CHF) under subcooled flow boiling in a narrow one-side uniformly heated rectangular flow channel. The range of interest of parameters such as pressure, flow velocity and subcooling is around 0.1 MPa, 5-15 ms -1 and 50degC, respectively. The rectangular flow channel used is 50 mm long, 12 mm in width and 0.2 to 3 mm in height. Test conditions were selected by combination of the following parameters: Gap=0.2-3.0 mm (D hy =0.3934-4.8 mm); flow length, 50.0 mm; water mass flux, 4.94-14.82 Mgm -2 s -1 (water flow velocity, 5-15 ms -1 ); exit pressure, 0.1 MPa; inlet temperature, 50degC, inlet coolant subcooling, 50degC. Over 40 CHF stable data points were obtained. CHF increased with the gap and flow velocity in a non-linear fashion. HTC increased with flow velocity and decreasing gap. Based on the experimental results, an empirical correlation was developed, indicating the dependence of CHF on the gap and flow velocity. All of data points predicted within ±18% error band for the present experimental data. On the other hand, another similitude-based correlation was also developed, indicating the dependence of Boiling number (Bo) on Reynolds number (Re) and the variable of Gap/La, where La is a characteristic length known as Laplace capillary constant. For the limited present experimental data, all of data points were predicted within ±16%. (author)
Directory of Open Access Journals (Sweden)
Adel Asnaashari
2016-01-01
Full Text Available Transitions are structures that can change geometry and flow velocity through varying the cross-sections of their channels. Under subcritical flow and steady flow conditions, it is necessary to reduce the flow velocity gradually due to increasing water pressure and adverse pressure gradients. Due to the separation of flow and subsequent eddy formation, a significant energy loss is incurred along the transition. This study presents the results of experimental investigations of the subcritical flow along the expansive transition of rectangular to trapezoidal channels. A numerical simulation was developed using a finite volume of fluid (VOF method with a Reynolds stress turbulence model. Water surface profiles and velocity distributions of flow through the transition were measured experimentally and compared with the numerical results. A good agreement between the experimental and numerical model results showed that the Reynolds model and VOF method are capable of simulating the hydraulic flow in open channel transitions. Also, the efficiency of the transition and coefficient of energy head loss were calculated. The results show that with an increasing upstream Froude number, the efficiency of the transition and coefficient of energy head loss decrease and increase, respectively. The results also show the ability of numerical simulation to simulate the flow separation zones and secondary current along the transition for different inlet discharges.
Analysis of the Onset of Flow Instability in rectangular heated channel using drift flux model
International Nuclear Information System (INIS)
El-Hadjen, H.; Balistrou, M.; Hamidouche, T.; Bousbia-Salah, A.
2005-01-01
Two-phase flow excursion (Ledinegg) instability in boiling channels is of great concern in the design and operation of numerous practical systems especially in Research Reactors. Such instability can lead to significant reduction in channel flow, thereby causing premature burnout of the heated channel before the CHF point. The present work focuses on a simulation of pressure drop in forced convection boiling in vertical narrow and parallel uniformly heated channels. The objective is to determine the point of Onset of Flow Instability (OFI) by varying input flow rate. The axial void distribution is also provided. The numerical model is based on the finite difference method which transforms the partial differential conservation equation of mass, momentum and energy, in algebraic equations. Closure relationships based upon the drift flux model and other constitutive equations are considered to determine the channel pressure drop under steady state boiling conditions. The model validation is performed by confronting the calculations with the Oak Ridge National Laboratory thermal Hydraulic Test Loop (THTL) experimental data set. Further verification of this model is performed by code- to code verification using the results of RELAP5/Mod 3.2 code. (author)
International Nuclear Information System (INIS)
Fujii, Kota; Yamada, Masahiko
2013-01-01
Ice slurries are now commonly used as cold thermal storage materials, and have the potential to be applied to other engineering fields such as quenching metals to control properties, emergency cooling systems, and preservation of food and biomaterials at low temperatures. Although ice slurries have been widely utilized because of their high thermal storage densities, previous studies have revealed that the latent heat of ice particles is not completely released on melting because of insufficient contact between the ice particles and a heated surface. In this study, an injection flow that was bifurcated from the main flow of an ice slurry was employed to promote melting heat transfer of ice particles on a horizontal heated surface. The effects of injection angle and injection flow rate on local heat transfer coefficients and heat transfer coefficient ratios were determined experimentally. The results show that from two to three times higher heat transfer coefficients can be obtained by using large injection flow rates and injection angles. However, low injection angles improved the utilization rate of the latent heat of ice near the injection point by approximately a factor of two compared to that without injection. -- Highlights: • Melting of ice slurries were enhanced by the injection under constant total flow rate. • Contribution of ice particles and their latent heat to heat transfer was investigated. • Effect of velocity ratio of injection to that of main flow was examined. • Effect of the angle of injection flow to the main flow was also examined. • Appropriate conditions for the use of latent heat of ice and heat transfer did not coincide
Effect of the Aligned Flow Obstacles on Downward-Facing CHF in an Inclined Rectangular Channel
Energy Technology Data Exchange (ETDEWEB)
Jeong, Ui ju; Son, Hong Hyun; Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong [Hanyang, Seoul (Korea, Republic of)
2016-05-15
The cooling channel consists of the inclined (10 .deg. ) portion of the downward facing heating channel and vertical portion of the heating channel. Features unique to flow boiling with the downward-facing heater surface in the inclined cooling channel where the studs are installed have drawn a considerable attention. That's because prior studies on boiling crisis indicate the orientation of the heated wall can exert substantial influence on CHF. Especially, the concentration of the vapor near the downward facing heater surface makes this region susceptible to premature boiling crisis when compared to vertical or upward-facing heated wall. Also, the installed studs could cause a partial flow blockage, and distort the flow streamline. Due to the distortion, stagnation points may occur in the cooling channel, promoting the concentration of the vapor near the heated wall. Then, the locally degraded heat transfer around the points may result in the formation of vapor pocket. The primary objective of this study is to make available experimental data on the CHF values varying the shape of studs and to improve understanding of the mechanism of flow boiling crisis associated with the aligned flow obstructions by means of visual experimental study. This study presents experimental data for subcooled flow boiling of water at atmospheric pressure and low mass flux conditions. The major outcomes from this investigation can be summarized as follows: (1) The CHF value from bare test section is -320kW/m{sup 2} , significantly lower than the values from the existing correlations even considering the uncertainty in the experiments. (2) The CHF value is remarkably decreased as columnar structures are installed in the channel. It is confirmed that formation and extinction of local dryout occurs repeatedly just behind the first stud at heat flux of -160 kW/m{sup 2}.
Heat transfer and pressure drop in rectangular channels with crossing fins (a Review)
Sokolov, N. P.; Polishchuk, V. G.; Andreev, K. D.; Rassokhin, V. A.; Zabelin, N. A.
2015-06-01
Channels with crossing finning find wide use in the cooling paths of high-temperature gas turbine blade systems. At different times, different institutions carried out experimental investigations of heat transfer and pressure drop in channels with coplanar finning of opposite walls for obtaining semiempirical dependences of Nusselt criteria (dimensionless heat-transfer coefficients) and pressure drop coefficients on the operating Reynolds number and relative geometrical parameters (or their complexes). The shape of experimental channels, the conditions of experiments, and the used variables were selected so that they would be most suited for solving particular practical tasks. Therefore, the results obtained in processing the experimental data have large scatter and limited use. This article considers the results from experimental investigations of different authors. In comparing the results, additional calculations were carried out for bringing the mathematical correlations to the form of dependences from the same variables. Generalization of the results is carried out. In the final analysis, universal correlations are obtained for determining the pressure drop coefficients and Nusselt number values for the flow of working medium in channels with coplanar finning.
Directory of Open Access Journals (Sweden)
H Mohammadzadeh
2013-09-01
Full Text Available The tire-mechanics models have been developed for the study of wheel movement on the road or soil surface while these models are unlikely to describe the motion of wheels on uneven surfaces. Due to dynamical complexity of this phenomena and the importance of this subject for farm conditions and the wheel carrier devices, the present research aimed to investigate the effects of several parameters on the wheel passing the obstacle. The experiments were carried out using single wheel tester in soil bin condition. The results indicated a relatively linear relationship between the impact force applied on tire and forward speed of wheel and also the height of rectangular obstacle. The effect of inflation pressure was inversed in the range of complete formed tire’s body on impact force and in low levels of tire inflation pressure; tire’s body damps the maximum impact forces. The medium levels of pressure (about 150-200 kPa resulted in less horizontal force that applied on the wheel for different levels of forward speed and obstacle’s height. Tractive force for passing obstacle was increased by raising forward speed and the obstacle’s height.
Two-phase flow regimes for counter-current air-water flows in narrow rectangular channels
International Nuclear Information System (INIS)
Kim, Byong Joo; Sohn, Byung Hu; Jeong, Si Young
2001-01-01
A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally investigated in a 760 mm long and 100 mm wide test section with 2.0 and 5.0 mm gap widths. The resulting flow regime maps were compared with the existing transition criteria. The experimental data and the transition criteria of the models showed relatively good agreement. However, the discrepancies between the experimental data and the model predictions of the flow regime transition became pronounced as the gap width increased. As the gap width increased the transition gas superficial velocities increased. The critical void fraction for the bubbly-to-slug transition was observed to be about 0.25. The two-phase distribution parameter for the slug flow was larger for the narrower channel. The uncertainties in the distribution parameter could lead to a disagreement in slug-to-churn transition between the experimental findings and the transition criteria. For the transition from churn to annular flow the effect of liquid superficial velocity was found to be insignificant
International Nuclear Information System (INIS)
Kozma, R.; van Dam, H.; Hoogenboom, J.E.
1992-01-01
The primary objective of this paper is to introduce results of coolant boiling experiments in a simulated materials test reactor-type fuel assembly with plate fuel in an actual reactor environment. The experiments have been performed in the Hoger Onderwijs Reactor (HOR) research reactor at the Interfaculty Reactor Institute, Delft, The Netherlands. In the analysis, noise signals of self-powered neutron detectors located in the neighborhood of the boiling region and thermocouple in the channel wall and in the coolant are used. Flow patterns in the boiling coolant have been identified by means of analysis of probability density functions and power spectral densities of neutron noise. It is shown that boiling has an oscillating character due to partial channel blockage caused by steam slugs generated periodically between the plates. The observed phenomenon can serve as a basis for a boiling detection method in reactors with plate-type fuels
Experimental study of heat transfer in a heat exchanger with rectangular channels
International Nuclear Information System (INIS)
Hammami, Mahmoud; Ben Said, Akrem; Ben Maad, Rejeb; Rebay, Mourad
2009-01-01
This paper presents the results of an experimental study related to characterisation of a mini channel heat exchanger. Such heat exchanger may be used in water cooling of electronic components. The results obtained show the efficiency of this exchanger even with very low water flow rates. Indeed, in spite of the importance of the extracted heat fluxes which can reach about 50Kw/m 2 , the temperature of the cooled Aluminium bloc remained always lower than the tolerated threshold of 80 degree in electronic cooling. Moreover, several thermal characteristics such as equivalent thermal resistance of the exchanger, the average internal convective heat transfer coefficient and the increase in the temperature of the cooling water have been measured. The results presented have been obtained with in q uinconce r ectangular mini-channel heat exchanger, with a hydraulic diameter D h = 2mm. NOMENCLATURE h D Hydraulic diameter (mm). int
On the influence of plasma DBD actuator on the flow in a rectangular channel
Czech Academy of Sciences Publication Activity Database
Procházka, Pavel P.; Uruba, Václav
2014-01-01
Roč. 14, č. 1 (2014), s. 727-728 ISSN 1617-7061. [Annual Meeting of the International Association of Applied Mathematics and Mechanics /85./. Erlangen, 10.03.2014-14.03.2014] R&D Projects: GA ČR(CZ) GP14-25354P Institutional support: RVO:61388998 Keywords : plasma DBD * boundary layer * channel flow Subject RIV: BK - Fluid Dynamics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201410346/abstract
Flow behaviour in a CANDU horizontal fuel channel from stagnant subcooled initial conditions
International Nuclear Information System (INIS)
Caplan, M.Z.; Gulshani, P.; Holmes, R.W.; Wright, A.C.D.
1984-01-01
The flow behaviour in a CANDU primary system with horizontal fuel channels is described following a small inlet header break. With the primary pumps running, emergency coolant injection is in the forward direction so that the channel outlet feeders remain warmer than the inlet thereby promoting forward natural circulation. However, the break force opposes the forward driving force. Should the primary pumps run down after the circuit has refilled, there is a break size for which the natural circulation force is balanced by the break force and channels could, theoretically, stagnate. Result of visualization and of full-size channel tests on channel flow behaviour from an initially stagnant channel condition are discussed. After a channel stagnation, the decay power heats the coolant to saturation. Steam is then formed and the coolant stratifies. The steam expands into the subcooled water in the end fitting in a chugging type of flow regime due to steam condensation. After the end fitting reaches the saturation temperature, steam is able to penetrate into the vertical feeder thereby initiating a large buoyancy induced flow which refills the channel. The duration of stagnation is shown to be sensitive to small asymmetries in the initial conditions. A small initial flow can significantly shorten the occurrence and/or duration of boiling as has been confirmed by reactor experience. (author)
Study of ebullition inside a rectangular inclinable channel, of large hydraulic diameter
International Nuclear Information System (INIS)
Nehme, H.
1997-01-01
This work is performed in the framework of the investigation of-Severe Accidents of Water Cooled Nuclear Power Plants (PWR). A concept of molten core recovery is based on a retention in the lower head of the reactor vessel or in core-catchers which are externally cooled by water, Critical heat flux must be avoided in this external natural convection two-phase flow. The SULTAN experiment has been launched in order to investigate two-phase flow characteristics at experiment is described. Tests are performed under forced convection conditions for extended analytical investigation of the flow characteristics. They are mainly aimed to measure pressure drops, onset of critical heat flux (CHF), temperature and void fraction profiles in the flow. These results are describe and analyzed in a second part. The flow reveals to be very different from the classical flow in narrow channels. The difference is mainly due to 2-D effects and internal flow re-circulations. The limit of validity of 1-D analytical description of the flow is tested. This approach is improved by the proposal of a new correlation for the prediction of net vapor generation point and for the calculation of the mean density along the subcooled part of the flow. New CHF correlations are proposed. CHF is shown to be the same order of magnitude as these measured on the ULPU facility in UCSB and at the MIT. However 1-D approach has limitations at high qualities for large and inclined channels. A better description must be linked to the use of multi-dimensional numerical two-phase flow codes. (author)
International Nuclear Information System (INIS)
Rawashdeh, A.; Altamimi, R.; Lee, B.; Chung, Y. J.; Park, S.
2013-01-01
The influence of different single-phase heat transfer correlations on the fuel temperature and minimum critical heat flux ratio (MCHFR) during a typical accident of a 5 MW research reactor is investigated. A reactor uses plate type fuel, of which the cooling channels have a narrow rectangular shape. RELAP5/MOD3.3 tends to over-predict the Nusselt number (Nu) at a low Reynolds number (Re) region, and therefore the correlation set is modified to properly describe the thermal behavior at that region. To demonstrate the effect of Nu at a low-Re region on an accident analysis, a two-pump failure accident was chosen as a sample problem. In the accident, the downward core flow decreases by a pump coast-down, and then reverses upward by natural convection. During the pump coast-down and flow reversal, the flow undergoes a laminar flow regime which has a different Nu with respect to the correlation sets. Compared to the results by the original RELAP5/MOD3.3, the modified correlation set predicts the fuel temperature to be a little higher than the original value, and the MCHFR to be a little lower than the original value. Although the modified correlation set predicts the fuel temperature and the MCHFR to be less conservative than those calculated from the original correlation of RELAP5/MOD3.3, the maximum fuel temperature and the MCHFR still satisfy the safety acceptance criteria
Effect of back-pressure forcing on shock train structures in rectangular channels
Gnani, F.; Zare-Behtash, H.; White, C.; Kontis, K.
2018-04-01
The deceleration of a supersonic flow to the subsonic regime inside a high-speed engine occurs through a series of shock waves, known as a shock train. The generation of such a flow structure is due to the interaction between the shock waves and the boundary layer inside a long and narrow duct. The understanding of the physics governing the shock train is vital for the improvement of the design of high-speed engines and the development of flow control strategies. The present paper analyses the sensitivity of the shock train configuration to a back-pressure variation. The complex characteristics of the shock train at an inflow Mach number M = 2 in a channel of constant height are investigated with two-dimensional RANS equations closed by the Wilcox k-ω turbulence model. Under a sinusoidal back-pressure variation, the simulated results indicate that the shock train executes a motion around its mean position that deviates from a perfect sinusoidal profile with variation in oscillation amplitude, frequency, and whether the pressure is first increased or decreased.
Thermohydraulic calculations in rectangular channels for RA-6 type reactors with transition regime
International Nuclear Information System (INIS)
Sillin, N; Vertullo, A.; Masson, V.; Hilal, R
2009-01-01
In August 2000 and within the framework of the RA-6 core conversion from high to low enrichment (20%), a preliminary analysis was performed to evaluate the maximum power that the reactor could operate with the new kernel without makeing substantial changes. This meant keeping intact, for example, the concrete shield of the pool and the nucleus inlet and outlet pipes embedded in the walls. Preliminary results indicated that for these boundary conditions a maximum power of about 3 MWt could be achieved. In August 2005 the project was resumed and new calculations performed taking as a starting point the ECBE plate fuel element(U3O8-Al). A core was developed with cooling channle widths of 2.6 mm for the control fuel elements and 2.7 mm for standard fuel elements. The thermo-hydraulic calculation puts in evidence that coolant flow into the core was in the transitional regime for the vast majority of configurations. While TERMIC code, used for thermo-hydraulic design, has been extensively tested and validated for use in research reactors under turbulent and laminar flows, this is not so for transition conditions. The transition regime is strongly dependent on conditions such as flow inlet characteristics, channel geometry, etc.. and therefore there are no reliable correlations for general use. For this reason we found it convenient to carry out experiments simulating the working conditions in order to adjust the code results with experimental data. In the present work we show the experimental results, the simulation of the experiences using the TERMIC code, and the adjustments made to the correlations used by the code so that it can be applied to the thermo-hydraulic design of the new core. [es
Experimental study of horizontal annular channels under non-developed conditions
International Nuclear Information System (INIS)
Delgadino, G.; Balino, J.; Carrica, P.
1995-01-01
In this work an experimental study of the two-phase air-water flow in a horizontal annular channel under non-developed conditions is presented. A conductive local probe was placed at the end of the channel to measure the local phase indication function under a wide range of gas and water flow rates. The signal was processed to obtain the void fraction and statistical distributions of liquid and gas residence times. From these data the topology of the flow could be inferred. A laser intermittence detector was also located close to the channel exit, in order to measure statistical parameters for intermittent flows by means of a two-probe method
Experimental study of horizontal annular channels under non-developed conditions
Energy Technology Data Exchange (ETDEWEB)
Delgadino, G. [Rensselaer Polytechnic Institute, Troy, NY (United States); Balino, J.; Carrica, P. [Centro Atomico Bariloche e Instituto Balseriro (Argentina)
1995-09-01
In this work an experimental study of the two-phase air-water flow in a horizontal annular channel under non-developed conditions is presented. A conductive local probe was placed at the end of the channel to measure the local phase indication function under a wide range of gas and water flow rates. The signal was processed to obtain the void fraction and statistical distributions of liquid and gas residence times. From these data the topology of the flow could be inferred. A laser intermittence detector was also located close to the channel exit, in order to measure statistical parameters for intermittent flows by means of a two-probe method.
Directory of Open Access Journals (Sweden)
Foroutani Saeed
2017-01-01
Full Text Available This research investigates the laminar steady-forced convection heat transfer of a Cu-water nanofluid in a 2-D horizontal channel with different block geometries attached to the bottom wall. The block geometries assumed in this research are triangular and curve blocks. The governing equations associated with the required boundary conditions are solved using finite volume method based on the SIMPLE technique and the effects of Reynolds number, nanofluid volume fraction, block geometry, and the numbers of blocks on the local and average Nusselt numbers are explored. The obtained results show that nanoparticles can effectively enhance the heat transfer in a channel. Furthermore, the local and average Nusselt number distribution is strongly dependent on the block geometry. As observed, the heat transfer augments with the increase in the Reynolds number and nanofluid volume fraction for both block geometries. It is also concluded that the average Nusselt number of the curve block is higher than that of the triangular block for different Reynolds numbers which declares the importance of the block geometry in the heat transfer enhancement.
Properties of glutamate-gated ion channels in horizontal cells of the perch retina.
Schmidt, K F
1997-08-01
The effect of two different concentrations of L-glutamate and kainate on the gating kinetics of amino acid-sensitive non-NMDA channels were studied in cultured teleost retinal horizontal cells by single-channel recording and by noise analysis of whole-cell currents. When the glutamate agonist kainate was applied clearly parabolic mean-variance relations of whole-cell membrane currents (up to 3000 pA) indicated that this agonist was acting on one type of channels with a conductance of 5-10 pS. The cells were less sensitive when L-glutamate was used as the agonist and in most cases whole-cell currents amounted to less than 200 pA. The mean-variance relation of glutamate induced currents was complex, indicating that more than one type of channel opening could be involved. Power spectra of whole-cell currents were fitted with two Lorentzians with time constants of approx. 1 and 5-20 msec. Effects on amplitudes and time constants of agonist concentrations are demonstrated. Two categories of unitary events with mean open times of approx. 1 and 7 msec and conductances of approx. 7 and 12 pS, respectively, were obtained in single-channel recordings from cell-attached patches at different concentrations of glutamate in the pipette.
International Nuclear Information System (INIS)
Strugar, P.
1964-12-01
Calculation and experimental results shown in this paper show that higher thermal neutron flux is obtained in the reactor core with central horizontal reflector at the same power level. The flux is increased when the moderation capability of the core is decreased. Apart from increase of the thermal component of the neutron flux in the experimental channels, the central reflector causes decrease of the epithermal neutron flux and gamma radiation intensity. This is very useful for studying (n, γ) reaction, neutron diffraction, etc. [sr
Directory of Open Access Journals (Sweden)
Raj Kumar
2016-05-01
Full Text Available In this work, the effect of angle of attack ( α a of the discrete V-pattern baffle on thermohydraulic performance of rectangular channel has been studied experimentally. The baffle wall was constantly heated and the other three walls of the channel were kept insulated. The experimentations were conducted to collect the data on Nusselt number ( N u b and friction factor ( f b by varying the Reynolds number (Re = 3000–21,000 and angle of attack ( α a from 30° to 70°, for the kept values of relative baffle height ( H b / H = 0 . 50 , relative pitch ratio ( P b / H = 1 . 0 , relative discrete width ( g w / H b = 1 . 5 and relative discrete distance ( D d / L v = 0 . 67 . As compared to the smooth wall, the V-pattern baffle roughened channel enhances the Nusselt number ( N u b and friction factor ( f b by 4.2 and 5.9 times, respectively. The present discrete V-pattern baffle shapes with angle of attack ( α a of 60° equivalent to flow Reynolds number of 3000 yields the greatest thermohydraulic performance. Discrete V-pattern baffle has improved thermal performance as compared to other baffle shapes’ rectangular channel.
International Nuclear Information System (INIS)
Takase, K.; Hasan, M.Z.
1995-01-01
Convective heat transfer in MHD laminar flow through rectangular channels in the plasma-facing components of a fusion reactor has been analyzed numerically to investigate the effects of channel aspect ratio, defined as the ratio of the lengths of the plasma-facing side to the other side. The adverse effect of the nonuniformity of surface heat flus on Nusselt number (Nu) at the plasma-facing side can be alleviated by increasing the aspect ratio of a rectangular duct. At the center and corner of the plasma-facing side of a square duct, the Nu of non-MHD flow are 6.8 and 2.2, respectively, for uniform surface heat flux. In the presence of a strong magnetic field, Nu at the center and corner increases to 22 and 3.6, respectively. However, when the heat flux is highly nonuniform, as in the plasma-facing components, Nu decreases from 22 to 3.1 at the center and from 3.6 to 3.1 at the corner. When the aspect ratio is increased to 4, Nu at the center and corner increase to 5 and 4.7. Along the circumference of a rectangular channel, there are locations where the wall temperature is equal to or less than the bulk coolant temperature, thus making the Nu with conventional definition infinity or negative. The ratio between Nu of MHD flow and Nu of non-MHD flow for various aspect ratios is constant in the region of Hartmann number of more than 200 at least. On the other hand, its ratio increases monotonously with increasing the aspect ratio
Directory of Open Access Journals (Sweden)
Xi-yue Liu
2017-01-01
Full Text Available A simplified approach which utilizes an isotropic porous medium model has been widely adopted for modeling the flow through a compact heat exchanger. With respect to situations where the compact heat exchangers are partially installed inside a channel, such as the application of recuperators in an intercooled recuperative engine, the use of an isotropic porous medium model needs to be carefully assessed because the flow passing through the heat exchanger is very complicated. For this purpose, in this study the isotropic porous medium model is assessed together with specific pressure–velocity relationships for flow field modeling inside a rectangular channel with a built-in double-U-shaped tube bundle heat exchanger. Firstly, experiments were conducted using models to investigate the relationship between the pressure drop and the inlet velocity for a specific heat exchanger with different installation angles inside a rectangular channel. Secondly, a series of numerical computations were carried out using the isotropic porous medium model and the pressure–velocity relationship was then modified by introducing correction coefficients empirically. Finally, a three-dimensional (3-D direct computation was made using a computational fluid dynamics (CFD method for the comparison of detailed flow fields. The results suggest that the isotropic porous medium model is capable of making precise pressure drop predictions given the reasonable pressure–velocity relationship but is unable to precisely simulate the detailed flow features.
Khanjian, Assadour; Habchi, Charbel; Russeil, Serge; Bougeard, Daniel; Lemenand, Thierry
2018-05-01
Convective heat transfer enhancement can be achieved by generating secondary flow structures that are added to the main flow to intensify the fluid exchange between hot and cold regions. One method involves the use of vortex generators to produce streamwise and transverse vortices superimposed to the main flow. This study presents numerical computation results of laminar convection heat transfer in a rectangular channel whose bottom wall is equipped with one row of rectangular wing vortex generators. The governing equations are solved using finite volume method by considering steady state, laminar regime and incompressible flow. Three-dimensional numerical simulations are performed to study the effect of the angle of attack α of the wing on heat transfer and pressure drop. Different values are taken into consideration within the range 0° heat transfer enhancement, Nusselt number and the friction factor are studied on both local and global perspectives. Also, the location of the generated vortices within the channel is studied, as well as their effect on the heat transfer enhancement throughout the channel for all α values . Based on both local and global analysis, our results show that the angle of attack α has a direct impact on the heat transfer enhancement. By increasing its value, it leads to better enhancement until an optimal value is reached, beyond which the thermal performances decrease.
Khozani, Zohreh Sheikh; Bonakdari, Hossein; Zaji, Amir Hossein
2016-01-01
Two new soft computing models, namely genetic programming (GP) and genetic artificial algorithm (GAA) neural network (a combination of modified genetic algorithm and artificial neural network methods) were developed in order to predict the percentage of shear force in a rectangular channel with non-homogeneous roughness. The ability of these methods to estimate the percentage of shear force was investigated. Moreover, the independent parameters' effectiveness in predicting the percentage of shear force was determined using sensitivity analysis. According to the results, the GP model demonstrated superior performance to the GAA model. A comparison was also made between the GP program determined as the best model and five equations obtained in prior research. The GP model with the lowest error values (root mean square error ((RMSE) of 0.0515) had the best function compared with the other equations presented for rough and smooth channels as well as smooth ducts. The equation proposed for rectangular channels with rough boundaries (RMSE of 0.0642) outperformed the prior equations for smooth boundaries.
International Nuclear Information System (INIS)
Juarsa, Mulya; Putra, Nandy; Septiadi, Wayan Nata; Antariksawan, Anhar Riza
2014-01-01
Highlights: • Quenching in narrow rectangular channel with gap sizes variation was investigated. • The mechanism of counter-current flow depends on gap sizes variation. • The results confirmed the existence of CCFL in narrow rectangular channels. • CHF and mass flux gradient in the quenching was about 0.22 times than steady state. • Modification of CHF and mass flow rate dimensionless correlation was established. - Abstract: The quenching process has become an important thermal management study to intensify the safety margin for the integrity of the reactor vessel under the core meltdown condition. The boiling heat transfer mechanism in the channel is one aspect that needs further examination. The present study aimed to investigate the effect of the differences in channel gap size to counter-current flow limitation (CCFL) and critical heat flux (CHF) during transient cooling in atmospheric pressure and quenching using two vertical plates with 1 mm, 2 mm, and 3 mm gap sizes and heated length of 1100 mm. The initial temperature of the plate was set at 600 °C. Cooling water mass flow rate and sib-cooled temperature were set at about 0.089 kg/s and 90 °C, respectively. Calculations were performed to obtain the CHF value through the boiling curve using transient temperature data. Non-dimensional correlations from other research study was used in this research. The influence of gap sizes on CCFL and CHF resulted in an increased value of CHF relative to gap size; additionally, the CHF for gap sizes of 2 mm and 3 mm increased about 34.4% and 140.5%, respectively, compared to the CHF for the 1 mm gap size. In this research, a curve map of the relationship between non-dimensional CHF and non-dimensional mass flux of water flowing downward shows that the correlation of this experimental study has a gradient number of about 0.22 similar to Mishima and Nishihara correlation. The results confirmed the existence of CCFL in the vertical narrow rectangular channels due
Miller, Andrew; Villegas, Arturo; Diez, F Javier
2015-03-01
The solution to the startup transient EOF in an arbitrary rectangular microchannel is derived analytically and validated experimentally. This full 2D transient solution describes the evolution of the flow through five distinct periods until reaching a final steady state. The derived analytical velocity solution is validated experimentally for different channel sizes and aspect ratios under time-varying pressure gradients. The experiments used a time resolved micro particle image velocimetry technique to calculate the startup transient velocity profiles. The measurements captured the effect of time-varying pressure gradient fields derived in the analytical solutions. This is tested by using small reservoirs at both ends of the channel which allowed a time-varying pressure gradient to develop with a time scale on the order of the transient EOF. Results showed that under these common conditions, the effect of the pressure build up in the reservoirs on the temporal development of the transient startup EOF in the channels cannot be neglected. The measurements also captured the analytical predictions for channel walls made of different materials (i.e., zeta potentials). This was tested in channels that had three PDMS and one quartz wall, resulting in a flow with an asymmetric velocity profile due to variations in the zeta potential between the walls. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Salama, Amgad; El-Amin, Mohamed; Sun, Shuyu
2014-01-01
Numerical simulation of flow and heat transfer in two adjacent channels is conducted with one of the channels partially blocked. This system simulates typical channels of a material testing reactor. The blockage is assumed due to the buckling of one of the channel plates inward along its width. The blockage ratio considered in this work is defined as the ratio between the cross-sectional area of the blocked and the unblocked channel. In this work, we consider a blockage ratio of approximately 40%. However, the blockage is different along the width of the channel, ranging from 0% at the end of the channel to 90% in the middle. The channel walls are sandwiching volumetric heat sources that vary spatially as chopped cosine functions. Interesting patterns are highlighted and investigated. The reduction in the flow area of one channel results in the flow redistributing among the two channels according to the changes in their hydraulic conductivities. The results of the numerical simulations show that the maximum wall temperature in the blocked channel is well below the boiling temperature at the operating pressure.
Salama, Amgad
2014-08-25
Numerical simulation of flow and heat transfer in two adjacent channels is conducted with one of the channels partially blocked. This system simulates typical channels of a material testing reactor. The blockage is assumed due to the buckling of one of the channel plates inward along its width. The blockage ratio considered in this work is defined as the ratio between the cross-sectional area of the blocked and the unblocked channel. In this work, we consider a blockage ratio of approximately 40%. However, the blockage is different along the width of the channel, ranging from 0% at the end of the channel to 90% in the middle. The channel walls are sandwiching volumetric heat sources that vary spatially as chopped cosine functions. Interesting patterns are highlighted and investigated. The reduction in the flow area of one channel results in the flow redistributing among the two channels according to the changes in their hydraulic conductivities. The results of the numerical simulations show that the maximum wall temperature in the blocked channel is well below the boiling temperature at the operating pressure.
Energy Technology Data Exchange (ETDEWEB)
Sotelo-Avila, G.; Gallegos-Silva, J. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)
2002-03-01
The study of channel flow usually have its basis in the hydrostatic distribution of pressure and the rectilinear flow hypotheses. It is from this hypothesis that the main flow equations are obtained. However, this is not applicable to a vertically curved flow that is present in a curved bed channel. This kind of channel is used to join two different slopes or in ski jumps. This kind of flow presents several changes from the rectilinear flow as in the velocity and pressure distributions and even in the energy loses. The authors of this article propose an equation of gradually varied flow for vertically-curved bed rectangular channels that adds a coefficient to modify the velocity in the calculus of the local friction gradient. With these results is possible now to analyze flow profiles in vertically-curved bed channels where before were used the methods for straight channels and therefore, increase accuracy. [Spanish] Las hipotesis del movimiento rectilineo y de distribucion hidrostatica de la presion son ciertamente las mas importantes en la hidraulica de canales, y de ellas se derivan los principales modelos de flujo que usualmente emplean. Sin embargo, no es valido aplicar la misma hipotesis y metodos de analisis al flujo curvilineo, que ocurre cuando el canal adopta curvaturas verticales en el fondo, las cuales inducen cambios importantes en la distribucion de la velocidad, presion y hasta en la perdida d energia. Tal es el caso de canales que contienen curvas verticales para unir tramos de distintas pendientes y producir el cambio en la direccion del flujo en cubetas deflectoras y vertedores en tunel. Los autores de este articulo proponen una ecuacion de flujo gradualmente variado en canales rectangulares de fondo curvo, esta es de gran utilidad en la determinacion del perfil del flujo con dichas caracteristicas, donde se plantea la adicion de un factor de amplificacion de la velocidad en el calculo del gradiente local de friccion, para tomar en cuenta el
Energy Technology Data Exchange (ETDEWEB)
Liu Lifang, E-mail: liu_lifang1106@yahoo.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); State Nuclear Power Software Development Center, Building 1, Compound No. 29, North Third Ring Road, Xicheng District, Beijing 100029 (China); Lu Daogang [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China)
2012-09-15
Highlights: Black-Right-Pointing-Pointer The large amplitude and narrow-band vibration experiment was performed. Black-Right-Pointing-Pointer The added mass theory was used to analyze the test plates' natural vibration characteristics in static water. Black-Right-Pointing-Pointer The occurring condition of the large amplitude and narrow band vibration was investigated. Black-Right-Pointing-Pointer The large amplitude and narrow-band vibration mechanism was investigated. - Abstract: Further experiments and theoretical analysis were performed to investigate mechanism of the large-amplitude and narrow-band vibration behavior of a flexible flat plate in a rectangular channel. Test plates with different thicknesses were adopted in the FIV experiments. The natural vibration characteristics of the flexible flat plates in air were tested, and the added mass theory of column was used to analyze the flexible flat plates' natural vibration characteristics in static water. It was found that the natural vibration frequency of a certain test plate in static water is approximately within the main vibration frequency band of the plate when it was induced to vibrate with the large-amplitude and narrow-band in the rectangular channel. It can be concluded that the harmonic between the flowing fluid and the vibrating plate is one of the key reasons to induce the large-amplitude and narrow-band vibration phenomenon. The occurring condition of the phenomenon and some important narrow-band vibration characteristics of a foursquare fix-supported flexible flat plate were investigated.
International Nuclear Information System (INIS)
Yu, Shengzhi; Wang, Jianjun; Yan, Ming; Yan, Changqi; Cao, Xiaxin
2017-01-01
Highlights: • The phasic difference between flow rate and frictional pressure drop is negligible. • Effect mechanism of rolling motion on flow behaviors of NC is interpreted. • The startup model is proposed and verified. • Steady-state correlations are feasible to predict transient resistance. • The in-house code can simulate instantaneous flow behaviors of NC correctly. - Abstract: Effects of rolling motion on flow characteristics in a natural circulation system were investigated experimentally and numerically. The numerical results from validated code were mainly used to provide detailed information for the discussion and analysis of experimental results. The results indicate that under rolling motion condition, the phasic difference between flow rate and frictional pressure drop of narrow rectangular channel is negligible. Angular acceleration is the eigenvalue for the effects of rolling motion on flow rate under single-phase natural circulation condition. When angular acceleration is approximately equal, even though either the angle or the period of rolling motion is different, peak, trough and time-averaged values of flow rate are approximately equal. Under rolling motion and single-phase natural circulation conditions, the phenomenon that dimensionless time-averaged mass flow rate is smaller than that under steady state condition is controlled by the nonlinear relationship between mass flow rate and the resistance of loop. The factor also causes the result that the absolute difference of dimensionless flow rate between peak and steady state is smaller than that between trough and steady state. The startup model which is proposed in present paper can be used to predict the flow characteristics of single-phase natural circulation system at startup stage of rolling motion favorably. The self-developed code can simulate instantaneous flow characteristics of single-phase natural circulation system under rolling motion and steady state conditions
Directory of Open Access Journals (Sweden)
Calisir Tamer
2015-01-01
Full Text Available Thermal control of electronic components is a continuously emerging problem as power loads keep increasing. The present study is mainly focused on experimental and numerical investigation of impinging jet cooling of 18 (3 × 6 array flash mounted electronic components under a constant heat flux condition inside a rectangular channel in which air, following impingement, is forced to exit in a single direction along the channel formed by the jet orifice plate and impingement plate. Copper blocks represent heat dissipating electronic components. Inlet flow velocities to the channel were measured by using a Laser Doppler Anemometer (LDA system. Flow field observations were performed using a Particle Image Velocimetry (PIV and thermocouples were used for temperature measurements. Experiments and simulations were conducted for Re = 4000 – 8000 at fixed value of H = 10 × Dh. Flow field results were presented and heat transfer results were interpreted using the flow measurement observations. Numerical results were validated with experimental data and it was observed that the results are in agreement with the experiments.
Experimental investigation and physical description of stratified flow in horizontal channels
International Nuclear Information System (INIS)
Staebler, T.
2007-05-01
The interaction between a liquid film and turbulent gas flows plays an important role in many technical applications (e.g. in hydraulic engineering, process engineering and nuclear engineering). The local kinematic and turbulent time-averaged flow quantities for counter-current stratified flows (supercritical and subcritical flows with and without flow reversal) have been measured for the first time. Therefore, the method of Particle Image Velocimetry was applied. By using fluorescent particles in combination with an optical filter it was possible to determine the flow quantities of the liquid phase up to the free surface. Additionally, the gaseous phase was investigated by using the scattering of light of conventional particles. With a further measurement technique the void fraction distribution along the channel height has been determined. For this purpose, a single-tip conductivity probe was developed. Furthermore, water delivery rates and pressure losses along the test section were measured over a wide range of parameters. The measurements also revealed new details on the hysteresis effect after the occurrence of flow reversal. The experimental findings were used to develop and validate a statistical model in which the liquid phase is considered to be an agglomeration of interacting particles. The statistical consideration of the particle interactions delivers a differential equation which can be used to predict the local void fraction distribution with the local turbulent kinematic energies of the liquid phase. Beyond that, an additional statistical description is presented in which the probability density functions of the local void fraction are described by beta-functions. Both theoretical approaches can be used for numerical modelling whereas the statistical model can be used to describe the phase interactions and the statistical description to describe the turbulent fluctuations of the local void fraction. Thus, this work has made available all necessary
Alheadary, Wael Ghazy; Park, Kihong; Alouini, Mohamed-Slim
2016-01-01
In this paper, we derive the performances of optical wireless communication system utilizing adaptive subcarrier intensity modulation over the Malaga turbulent channel. More specifically, analytical closed-form solutions and asymptotic results
International Nuclear Information System (INIS)
Kinoshita, Hidetaka; Terada, Atsuhiko; Kaminaga, Masanori; Hino, Ryutaro
2001-10-01
In the design of a spallation target system, the water cooling system, for example a proton beam window and a safety hull, is used with narrow channels, in order to remove high heat flux and prevent lowering of system performance by absorption of neutron. And in narrow channel, heat transfer enhancement using 2-D rib is considered for reduction the cost of cooling component and decrease inventory of water in the cooling system, that is, decrease of the amount of irradiated water. But few studies on CHF with rib have been carried out. Experimental and analytical studies with rib-roughened test section, in 10:1 ratio of pitch to height, are being carried out in order to clarify the CHF in rib-roughened channel. This paper presents the review of previous researches on heat transfer in channel with rib roughness, overview of the test facility and the preliminary experimental and analytical results. As a result, wall friction factors were about 3 times as large as that of smooth channel, and heat transfer coefficients are about 2 times as large as that of smooth channel. The obtained CHF was as same as previous mechanistic model by Sudo. (author)
International Nuclear Information System (INIS)
Lillibridge, K.H.; Ghiaasiaan, S.M.; Abdel-Khalik, S.I.
1994-01-01
Countercurrent two-phase flow in horizontal and inclined channels, connecting a sealed liquid-filled reservoir to the atmosphere, is experimentally studied. This type of gravity-driven countercurrent two-phase flow can occur during the operation of passive safety coolant injection systems of advanced reactors. It can also occur in the pressurizer surge line of pressurized water reactors during severe accidents when the hot leg becomes voided. Four distinct flow regimes are identified: (a) stratified countercurrent, which mainly occurs when the channel is horizontal; (b) intermittent stratified-slug; (c) oscillating, which occurs when the angle of inclination is ≥30 deg; and (d) annular countercurrent. The characteristics of each regime and their sensitivity to important geometric parameters are examined. The superficial velocities in the stratified countercurrent and oscillating regimes are empirically correlated
Mansoor, Mohammad M.; Wong, Kokcheong; Siddique, Mansoor M.
2012-01-01
computational domain was discretized using a 120×160×100 grid for the micro-channel with an aspect ratio of (α=4.56) and examined for Reynolds numbers in the laminar range (Re 500-2000) using FLUENT. De-ionized water served as the cooling fluid while the micro
Alheadary, Wael G.
2016-10-13
In this paper, we derive the performances of optical wireless communication system utilizing adaptive subcarrier intensity modulation over the Malaga turbulent channel. More specifically, analytical closed-form solutions and asymptotic results are derived for average bit error rate, achievable spectral efficiency, outage probability, and ergodic capacity by utilizing series expansion identity of modified Bessel function. Our asymptotic and analytical results based on series solutions with finite numbers highly matched to the numerical results. By exploiting the inherent nature of fading channel, the proposed adaptive scheme enhances the spectral efficiency without additional transmit power while satisfying the required bit error rate criterion. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
International Nuclear Information System (INIS)
Stovall, T.K.; Crabtree, A.; Felde, D.
1995-01-01
The Advanced Neutron Source (ANS) reactor is being designed to provide a research tool with capabilities beyond those of any existing reactors. One portion of its state-of-the-art design requires high speed fluid flow through narrow channels between the fuel plates in the core. Experience with previous reactors has shown that fuel plate damage can occur when debris becomes lodged at the entrance to these channels. Such debris can disrupt the fluid flow to the plate surfaces and prevent adequate cooling of the fuel. Preliminary ANS designs addressed this issue by providing an unheated entrance length for each fuel plate. In theory, any flow disruption would recover within this unheated length, thus providing adequate heat removal from the downstream heated portions of the fuel plates
International Nuclear Information System (INIS)
Sudo, Y.; Kaminaga, M.
1990-01-01
The effects of channel gap size on mixed forced and free convective heat transfer characteristics were experimentally investigated for water flowing near atmospheric pressure in a 750 mm long and 50 mm wide channel heated from both sides. The channel gap sizes investigated were 2.5, 6, 18 and 50 mm. Experiments were carried out for both aiding and opposing forced convective flows with a Reynolds number Re x of 4x10 to 6x10 6 and a Grashof number Gr x of 2x10 4 to 6x10 11 , where the distance x from the inlet of the channel is adopted as the characteristic length in Re x and Gr x . As for the results, the following were revealed for the parameters ranges investigated in this study. (1) When the dimensionless parameter, Gr x /Re x 21/8 Pr 1/2 is less than 10 -4 , the flow shows the nature of forced convective heat transfer for a channel with any channel gap size in both aiding and opposing flows. (2) When Gr x /Re x 21/8 Pr 1/2 is larger than 10 -2 , the flow shows the nature of free convective heat transfer for a channel with any channel gap size in both aiding and opposing flows. (3) When Gr x /Re x 21/8 Pr 1/2 is between 10 -4 and 10 -2 for the channel with a channel gap size equal to or larger than 6 mm, the heat transfer coefficients in both aiding and opposing flows become, on the average, higher than those predicted by the previous correlations for either the pure turbulent forced convection or the pure free convection, and can be expressed in simple forms with a combination of Gr x /Re x 21/8 Pr 1/2 and the previous correlation for either the pure turbulent forced convection or the free convection along a flat plate. (4) When Gr x /Re x 21/8 Pr 1/2 is between 10 -4 and 10 -2 for the channel with a channel gap size of 2.5 mm, the heat transfer coefficients in both aiding and opposing flows also become, on the average, higher than those predicted by the previous correlations for either the pure turbulent forced convection or the pure free convection. (orig./GL)
Energy Technology Data Exchange (ETDEWEB)
Smolentsev, S., E-mail: sergey@fusion.ucla.edu [University of California, Los Angeles (United States); Courtessole, C.; Abdou, M.; Sharafat, S. [University of California, Los Angeles (United States); Sahu, S. [Institute of Plasma Research (India); Sketchley, T. [University of California, Los Angeles (United States)
2016-10-15
Highlights: • Numerical studies were performed as a pre-experimental analysis to the experiment on MHD PbLi flows in a rectangular duct with a flow channel insert (FCI). • Dynamic testing of foam-based SiC foam-based CVD coated FCI has been performed using MaPLE facility at UCLA. • Two physical models were proposed to explain the experimental results and 3D and 2D computations performed using COMSOL, HIMAG and UCLA codes. • The obtained results suggest that more work on FCI development, fabrication and testing has to be done to assure good hermetic properties before the implementation in a fusion device. - Abstract: A flow channel insert (FCI) is the key element of the DCLL blanket concept. The FCI serves as electrical and thermal insulator to reduce the MHD pressure drop and to decouple the temperature-limited ferritic structure from the flowing hot lead-lithium (PbLi) alloy. The main focus of the paper is on numerical computations to simulate MHD flows in the first experiments on PbLi flows in a stainless steel rectangular duct with a foam-based silicon carbide (SiC) FCI. A single uninterrupted long-term (∼6500 h) test has recently been performed on a CVD coated FCI sample in the flowing PbLi in a magnetic field up to 1.5 T at the PbLi temperature of 300 °C using the MaPLE loop at UCLA. An unexpectedly high MHD pressure drop measured in this experiment suggests that a PbLi ingress into the FCI occurred in the course of the experiment, resulting in degradation of electroinsulating FCI properties. The ingress through the protective CVD layer was further confirmed by the post-experimental microscopic analysis of the FCI. The numerical modeling included 2D and 3D computations using HIMAG, COMSOL and a UCLA research code to address important flow features associated with the FCI finite length, fringing magnetic field, rounded FCI corners and also to predict changes in the MHD pressure drop in the unwanted event of a PbLi ingress. Two physical
International Nuclear Information System (INIS)
Mewes, D.; Beckmann, H.
1989-01-01
Countercurrent flow of steam and water occurs in the horizontal and vertical lines of a PWR in case of a LOCA. In order to predict the emergency core cooling behaviour in case of a large or small break LOCA it is important to calculate the volumetric flow rate of water which will get to the reactor core. Theoretical and experimental results of countercurrent flow in horizontal and vertical channels given by publication and reports are critically reviewed for the purpose of a more physical understanding of the flow phenomena. The influence of geometry, pressure and other boundary conditions are emphasized. The existing models which are developed to calculate the onset of flooding are based on experimental results of small test facilities. The applicability of these models to large geometries and high pressures as well as the consideration of condensation and entrainment are investigated. (orig./HP) [de
Energy Technology Data Exchange (ETDEWEB)
Zboray, Robert [Paul Scherrer Institute, PSI Villigen 5232 (Switzerland); Dangendorf, Volker; Bromberger, Benjamin; Tittelmeier, Kai [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig 38116 (Germany); Mor, Ilan [Soreq NRC, Yavne 81800 (Israel)
2015-07-15
In a previous work, we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing, significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size, and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously.
Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Bromberger, Benjamin; Tittelmeier, Kai
2015-07-01
In a previous work, we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing, significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size, and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously.
International Nuclear Information System (INIS)
Chen, C C; Choi, Y D; Yoon, H Y
2013-01-01
Most tidal current turbine design are focused on middle and large scale for deep sea, less attention was paid in low water level channel, such as the region around the islands, coastal seas and rivers. This study aims to develop a horizontal axis tidal current turbine rotor blade which is applicable to low water level island region in southwest of Korea. The blade design is made by using BEMT(blade element momentum theory). The section airfoil profile of NACA63-415 is used, which shows good performance of lift coefficient and drag coefficient. Power coefficient, pressure and velocity distributions are investigated according to TSR by CFD analysis
Characterization of the slug flow formation in vertical-to-horizontal channels with obstructions
International Nuclear Information System (INIS)
Onder, E.N.
2004-01-01
This thesis presents the results of the work carried out to study the formation of slugs under conditions of vertical-to-horizontal counter-current flow with obstructions. A flow instability is the mechanism proposed for the formation of slugs in a co-current flow. However, to the best of author's knowledge no work has been carried out for the formation of slugs in a vertical-to-horizontal counter-current flow with obstructions. Despite the existence of a few studies on counter-current vertical-to-horizontal slug flow with obstructions, it is in particular of great importance in the area of nuclear reactor safety analysis of a CANDU reactor. A test section manufactured of 63.5 mm inner diameter (ID) plexiglass was used for this work. The test section consists of 2022 mm long vertical and 3327 mm long horizontal legs connected by a 90 o PVC elbow. The horizontal leg contains flanges in which an orifice may be installed. These flanges are located at the distance of 1110 mm and 2217 mm from the elbow. The experiments were carried out to study the frequency of the formation of slugs, the slug propagation velocity and the averaged void fraction of slugs. We also carried out experiments for the characterisation of the propagation of waves. This allowed us to obtain the initial conditions required by the present model in order to predict the formation of slugs. In this model, the initial profile of waves was used to start calculations. Therefore, the aim of these experiments was to obtain the initial profile of these waves. The comparison of the experimental data collected at the onset of flooding with that collected at the onset of slugging shows that the results are very close to each other. This reflects the fact that flooding is simultaneously accompanied by the formation of slugs in the horizontal leg. We found that, for a given liquid flow rate, the gas flow rate, necessary to form the slugs as well as to provoke flooding, decreases as the severity of the
Vieru, Dumitru; Fetecau, Corina; Rana, Mehwish
2012-05-01
The unsteady motion of a second grade fluid between two parallel side walls perpendicular to a plate is studied by means of the Fourier sine and cosine transforms. Initially, the fluid is at rest and at time t = 0+, the plate applies an oscillating shear to the fluid. The solutions that have been obtained, presented under integral and series form and written as a sum between steady time-periodic and transient solutions can be easily reduced to the similar solutions for Newtonian fluids performing the same motion. They describe the motion of the fluid some time after its initiation. After that time, when the transient solutions disappear, the motion of the fluid is described by the steady time-periodic solutions that are independent of the initial conditions. In the absence of side walls, more exactly when the distance between walls tends to infinity, all solutions reduce to those corresponding to the motion over an infinite plate. As it was to be expected, the steady time-periodic solutions corresponding to sine and cosine oscillations of the shear stress on the boundary differ by a phase shift. Finally, the influence of side walls on the fluid motion, the required time to reach the steady periodic flow, as well as the distance between walls for which the velocity of the fluid in the middle of the channel is unaffected by their presence are established by numerical calculus and graphical illustrations. As expected, the time needed to reach the steady periodic flows is lower in the presence of side walls. It is lower for Newtonian fluids in comparison with second grade fluids and greater for sine oscillations in comparison to the cosine oscillations of the boundary shear.
Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.
Zhou, Zhanru; Fang, Xiande; Li, Dingkun
2013-01-01
The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.
THERMOSS: A thermohydraulic model of flow stagnation in a horizontal fuel channel
International Nuclear Information System (INIS)
Gulshani, P.; Caplan, M.Z.; Spinks, N.J.
1984-01-01
A model, called THERMOSS, is developed to compute the duration of stagnation in a CANDU reactor fuel channel with subcooled, stagnant initial conditions. The model solves, in closed form, the one dimensional, two-fluid conservation equations. In the computation of the duration of stagnation, the channel water level is an important intermediate variable because it determines the amount of steam production. A feature of the model is that water level is determined by a momentum balance between frictional pressure drop in the steam phase and hydrostatic head in the liquid phase. This is in contrast to an ealier model in which the level was determined from mass balance considerations. A satisfactory agreement between the predicted and experimentally observed channel water level and duration of stagnation is obtained. (orig.)
International Nuclear Information System (INIS)
Song, Junghyun; Jeong, Yong Hoon; Lee, Juhyung; Chang, Soon Heung
2014-01-01
Research reactor is the nuclear reactor serves neutron source for many research fields such as neutron scattering, non-destructive testing, radioisotope treatment and so on. Due to that characteristic of research reactor, as many people work around the research reactor, research reactor should be designed to have much more conservative margin for normal operation. Boiling heat transfer is the one of the most efficient type in heat transfer modes, however, research reactor needs to avoid onset of nucleate boiling (ONB) in normal operation as IAEA recommend for research reactors to have enough ONB margin to maintain the normal operation state in 'IAEA-TECDOC-233' (1980) for the same reason explained above. Jordan Research and Training Reactor (JRTR) operates under downward flow in narrow rectangular channel in fuel assembly. There isn't sufficient heat transfer data under downward flow condition and only few ONB prediction correlation as well. In the present work, not only a new ONB prediction model would be developed, but also comparison between heat transfer data with several heat transfer correlations could be shown. In addition, as Sudo and Omar S. proposed differently about the Nusselt number behaviors in upward and downward convective heat transfer, the study of convective heat transfer should be conducted continuously to determine it exactly. In this paper, single-phase heat transfer data is analyzed by several heat transfer correlations before developing ONB prediction correlation. In this study, an experiment on the single-phase heat transfer was conducted. As shown in Fig. 5, comparison between experimental data and existing correlations shows quite huge difference as about 40%. Additional experiments on single-phase heat transfer at low heat flux are necessary to clarify the tendency of Nusselt number among heat flux and to develop new correlation for single-phase heat transfer
Neutron field for activation experiments in horizontal channel of training reactor VR-1
Czech Academy of Sciences Publication Activity Database
Štefánik, Milan; Katovsky, K.; Vinš, M.; Šoltéš, J.; Závorka, L.
2014-01-01
Roč. 104, NOV (2014), s. 302-305 ISSN 0969-806X. [1st International Conference on Dosimetry and its Applications (ICDA). Prague, 23.6.2013-28.6.2013] R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : spectral index * neutron spectrometry * dosimetry-foils activation technique * irradiation channel * reaction rate * Gamma -spectroscopy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.380, year: 2014
Energy Technology Data Exchange (ETDEWEB)
Ceuca, Sabin Cristian [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Laurinavicius, Darius [Lithuanian Energy Institute, Kaunas (Lithuania)
2016-11-15
The complex direct contact condensation phenomenon is investigated in horizontal flow channels both experimentally and numerically with special emphasis on its implications on safety assessment studies. Under certain conditions direct contact condensation can act as the driving force for the water hammer phenomenon with potentially local devastating results, thus posing a threat to the integrity of the affected NPP components. New experimental results of in-depth analysis of the direct contact condensation phenomena obtained in Kaunas at the Lithuanian Energy Institute will be presented. The German system code ATHLET employing for the calculation of the heat transfer coefficient a mechanistic model accounting for two different eddy length scales, combined with the interfacial area transport equation will be assessed against condensation induced water hammer experimental data from the integral thermal-hydraulic experimental facility PMK-2, located at the KFKI Atomic Energy Research Institute in Budapest Hungary.
Devakar, M.; Raje, Ankush
2018-05-01
The unsteady flow of two immiscible micropolar and Newtonian fluids through a horizontal channel is considered. In addition to the classical no-slip and hyper-stick conditions at the boundary, it is assumed that the fluid velocities and shear stresses are continuous across the fluid-fluid interface. Three cases for the applied pressure gradient are considered to study the problem: one with constant pressure gradient and the other two cases with time-dependent pressure gradients, viz. periodic and decaying pressure gradient. The Crank-Nicolson approach has been used to obtain numerical solutions for fluid velocity and microrotation for diverse sets of fluid parameters. The nature of fluid velocities and microrotation with various values of pressure gradient, Reynolds number, ratio of viscosities, micropolarity parameter and time is illustrated through graphs. It has been observed that micropolarity parameter and ratio of viscosities reduce the fluid velocities.
International Nuclear Information System (INIS)
Shvedov, O.V.; Aitov, G.M.; Balyuk, S.A.
1989-01-01
The effect of horizontal channels on the neutron field in the core of the TVR-M heavy-water cooled high-flux research reactor is experimentally studied. The experiments are carried out in a critical assembly using full-scale core model. The data are obtained characterizing soft and rigid effects of horizontal experimental channels on neutron field. The soft effect is connected with the total mass of experimental channels. It is practically uniform by the core azimuth and reveals itself in the decrease of neutron burst in the reflector, and, consequently in the decrease of neutron field distorsion in the external and middle fuel assembly rows. The rigid effect is conditioned by separate experimental channels located close to the core. It brings about local disturbance in the closest fuel assemblies. The data obtained are a part of experimental program on studying basis power distributions in the TVR-M reactor lattices. 2 refs.; 18 figs
Mixed convection heat transfer from confined tandem square cylinders in a horizontal channel
Huang, Zhu
2013-11-01
This paper presents a numerical study on the two-dimensional laminar mixed convective flow and heat transfer around two identical isothermal square cylinders arranged in tandem and confined in a channel. The spacing between the cylinders is fixed with four widths of the cylinder and the blockage ratio and the Prandtl number are fixed at 0.1 and 0.7 respectively. The mixed convective flow and heat transfer is simulated by high accuracy multidomain pseudospectral method. The Reynolds number (Re) is studied in the range 80 ≤ Re ≤ 150, the Richardson number (Ri) demonstrating the influence of thermal buoyancy ranges from 0 to 1. Numerical results reveal that, with the thermal buoyancy effect, the mixed convective flow sheds vortex behind the cylinders and keeps periodic oscillating. The variations of characteristic quantities related to flow and heat transfer processes, such as the overall drag and lift coefficients and the Nusselt numbers, are presented and discussed. Furthermore, the influence of thermal buoyancy on the fluid flow and heat transfer are discussed and analysed. © 2013 Elsevier Ltd. All rights reserved.
Zhu, Kang; Li, Yanzhong; Wang, Jiaojiao; Ma, Yuan; Wang, Lei; Xie, Fushou
2018-05-01
Bubble formation and condensation in liquid pipes occur widely in industrial systems such as cryogenic propellant feeding system. In this paper, an integrated theoretical model is established to give a comprehensive description of the bubble formation, motion and condensation process. The model is validated by numerical simulations and bubble condensation experiments from references, and good agreements are achieved. The bubble departure diameter at the orifice and the flow condensation length in the liquid channel are predicted by the model, and effects of various influencing parameters on bubble behaviors are analyzed. Prediction results indicate that the orifice diameter, the gas feeding rate, and the liquid velocity are the primary influence factors on the bubble departure diameter. The interfacial heat transfer as well as the bubble departure diameter has a direct impact on the bubble flow condensation length, which increases by 2.5 times over a system pressure range of 0.1 0.4 MPa, and decreases by 85% over a liquid subcooling range of 5 30 K. This work could be beneficial to the prediction of bubble formation and flow condensation processes and the design of cryogenic transfer pipes.
International Nuclear Information System (INIS)
Mouhtadi, D.; Amahmid, A.; Hasnaoui, M.; Bennacer, R.
2012-01-01
Highlights: ► We examine the validity of isothermal model for blocks with internal heat generation. ► Criteria based on comparison of total and local quantities are adopted. ► Thermal conductivity and Biot number required for the validity of the isothermal model are dependent on the Rayleigh number. ► The validity conditions are also affected by the multiplicity of solutions. - Abstract: This work presents a numerical study of air natural convection in a horizontal channel provided with heating blocks periodically distributed on its lower adiabatic surface. The blocks are submitted to a uniform heat generation and the channel upper surface is maintained at a cold constant temperature. The main objective of this study is to examine the validity of the model with isothermal blocks for the system under consideration. Then the calculations are performed using two different models. In the first (denoted Model 1 or M1) the calculations are performed by imposing a uniform volumetric heat generation inside the blocks. In the second model (denoted Model 2 or M2), the blocks are maintained isothermal at the average blocks surface temperature deduced from the Model 1. The controlling parameters of the present problem are the thermal conductivity ratio of the solid block and the fluid (0.1 ⩽ k* = k s /k a ⩽ 200) and the Rayleigh number (10 4 ⩽ Ra ⩽ 10 7 ). The validity of the isothermal model is examined for various Ra by using criteria based on local and mean heat transfer characteristics. It is found that some solutions of the isothermal model do not reproduce correctly the results of the first model even for very large conductivity ratios. The Biot number below which the Model 2 is valid depends strongly on the Rayleigh number and the type of solution.
International Nuclear Information System (INIS)
Schleisiek, K.; Dumaine, J.C.
1989-01-01
In the context of safety research for the OSIRIS reactor, tests have been performed on the Super BOB cell with a view to determining experimentally the internal characteristics (or ''S'' curves) of a channel with a rectangular heating cross-section 2 x 38 mm and 600 mm long. During these tests the maximum pressure at the channel exit was brought to 3 kg/cm 2 abs. The pressurization level in the High Flux Reactor will be higher. That is why tests have been carried out at maximum pressure of 5 kg/cm 2 abs allowable on the ''super BOB'' loop without modifying it. The first objective of this test series was to determine the ''S'' curves and the exchange coefficients experimentally. This document discusses the test conditions and test results
Hydraulics of free overfall in -shaped channels
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
analysing free overfall in -shaped channels is also presented where the flow over .... Experiments were conducted in two different horizontally laid -shaped .... c. 1 − ˆhc. [. 1. (2 − ˆhe)ˆhe. −. 1. (2 − ˆhc)ˆhc. ] . (20) where c refers to a critical state of .... Ferro V 1992 Flow measurement with rectangular free overfall. J. Irrig. Drain.
International Nuclear Information System (INIS)
Perroud, P.; Rebiere, J.
1965-01-01
Liquid hydrogen flows in a canal of rectangular cross section of 1 x 6 mm ; only one of the larger side is heated (length 190 mm) in order to simulate the cooling of a missile nozzle. The liquid is admitted subcooled at 25 deg. K in average and under a pressure of 8 bars. Mass velocity from 8.9 to 102 g/cm 2 .s, heat flux from 18 to 296.6 W/cm 2 and wall temperature reaching 800 deg. K. Two correlations of local heat transfer coefficients are presented, one for the region in two-phase flow and the other for the region in homogeneous gas-phase which are compared with the formula previously established for a cylindrical canal. An analysis of pressure drop is also given. Gross experimental results are separately published. (authors) [fr
Directory of Open Access Journals (Sweden)
Gabi ROSCA FARTAT
2015-05-01
Full Text Available The objective of this paper is to present a possible solution for the designing of a device for the decommissioning of the horizontal fuel channels in the CANDU 6 nuclear reactor. The decommissioning activities are dismantling, demolition, controlled removal of equipment, components, conventional or hazardous waste (radioactive, toxic in compliance with the international basic safety standards on radiation protection. One as the most important operation in the final phase of the nuclear reactor dismantling is the decommissioning of fuel channels. For the fuel channels decommissioning should be taken into account the detailed description of the fuel channel and its components, the installation documents history, adequate radiological criteria for decommissioning guidance, safety and environmental impact assessment, including radiological and non-radiological analysis of the risks that can occur for workers, public and environment, the description of the proposed program for decommissioning the fuel channel and its components, the description of the quality assurance program and of the monitoring program, the equipments and methods used to verify the compliance with the decommissioning criteria, the planning of performing the final radiological assessment at the end of the fuel channel decommissioning. These will include also, a description of the proposed radiation protection procedures to be used during decommissioning. The dismantling of the fuel channel is performed by one device which shall provide radiation protection during the stages of decommissioning, ensuring radiation protection of the workers. The device shall be designed according to the radiation protection procedures. The decommissioning device assembly of the fuel channel components is composed of the device itself and moving platform support for coupling of the selected channel to be dismantled. The fuel channel decommissioning device is an autonomous device designed for
Rectangular cartograms: the game
Berg, de M.T.; Nijnatten, van F.S.B.; Speckmann, B.; Verbeek, K.A.B.
2009-01-01
Raisz [3] introduced rectangular cartograms in 1934 as a way of visualizing spatial information, such as population or economic strength, of a set of regions like countries or states. Rectangular cartograms represent geographic regions by rectangles; the positioning and adjacencies of the rectangles
Jesinghausen, Steffen; Weiffen, Rene; Schmid, Hans-Joachim
2016-09-01
Wall slip is a long-known phenomenon in the field of rheology. Nevertheless, the origin and the evolution are not completely clear yet. Regarding suspensions, the effect becomes even more complicated, because different mechanisms like pure slip or slip due to particle migration have to be taken into account. Furthermore, suspensions themselves show many flow anomalies and the isolation of slip is complicated. In order to develop working physical models, further insight is necessary. In this work, we measured experimentally the wall slip velocities of different highly filled suspensions in a rectangular slit die directly with respect to the particle concentration and the particle size. The slip velocities were obtained using a particle image velocimetry (PIV) system. The suspensions consisting of a castor oil-cinnamon oil blend and PMMA particles were matched in terms of refractive indexes to appear transparent. Hereby, possible optical path lengths larger than 15 mm were achieved. The slip velocities were found to be in a quadratic relation to the wall shear stress. Furthermore, the overall flow rate as well as the particle concentration has a direct influence on the slip. Concerning the shear stress, there seem to be two regions of slip with different physical characteristics. Furthermore, we estimated the slip layer thickness directly from the velocity profiles and propose a new interpretation. The PIV technique is used to investigate the viscosity and implicit the concentration profile in the slit die. It is shown that the particle migration process is quite fast.
International Nuclear Information System (INIS)
Lee, Suk Ho; Kim, Hho Jung
1992-01-01
The physical benchmark problem on the direct-contact condensation under the horizontal cocurrent stratified flow was analyzed using the RELAP5/MOD2 and /MOD3 one-dimensional model. Analysis was performed for the Northwestern experiments, which involved condensing steam/water flow in a rectangular channel. The study showed that the RELAP5 interfacial heat transfer model, under the horizontal stratified flow regime, predicted the condensation rate well though the interfacial heat transfer area was underpredicted. However, some discrepancies in water layer thickness and local heat transfer coefficient with experimental results were found especially when there is a wavy interface, and those were satisfied only within the range. (Author)
Directory of Open Access Journals (Sweden)
Constantin POPESCU
2017-05-01
Full Text Available The authors contribution to this paper is to present a concept solution of a remote control robot (RCR used for decommissioning of the horizontal fuel channels pressure tube in the CANDU nuclear reactor. In this paper the authors highlight few details of geometry, operations, constraints by kinematics and dynamics of the robot movement inside of the reactor fuel channel. Inside operations performed has as the main steps of dismantling process the followings: unblock and extract the channel closure plug (from End Fitting - EF, unblock and extract the channel shield plug (from Lattice Tube - LT, cut the ends of the pressure tube, extract the pressure tube and cut it in small parts, sorting and storage extracted items in the safe robot container. All steps are performed in automatic mode. The remote control robot (RCR represents a safety system controlled by sensors and has the capability to analyze any error registered and decide next activities or abort the inside decommissioning procedure in case of any risk rise in order to ensure the environmental and workers protection.
Horizontal beam tubes in FRM-II
International Nuclear Information System (INIS)
Coors, D.; Vanvor, D.
2001-01-01
The new research reactor in Garching FRM-II is equipped with 10 leak tight horizontal beam tubes (BT1 - BT10), each of them consisting of a beam tube structure taking an insert with neutron channels. The design of all beam tube structures is similar whereas the inserts are adapted to the special requirements of the using of each beam tube. Inside the reflector tank the beam tube structures are shaped by the inner cones which are made of Al-alloy with circular and rectangular cross sections. They are located in the region of maximum neutron flux (exception BT10), they are directly connected to the flanges of the reflector tank, their lengths are about 1.5 m (exception BT10) and their axes are directed tagentially to the core centre thus contributing to a low γ-noise at the experiments. (orig.)
Directory of Open Access Journals (Sweden)
Ebtehaj Isa
2016-09-01
Full Text Available A vital topic regarding the optimum and economical design of rigid boundary open channels such as sewers and drainage systems is determining the movement of sediment particles. In this study, the incipient motion of sediment is estimated using three datasets from literature, including a wide range of hydraulic parameters. Because existing equations do not consider the effect of sediment bed thickness on incipient motion estimation, this parameter is applied in this study along with the multilayer perceptron (MLP, a hybrid method based on decision trees (DT (MLP-DT, to estimate incipient motion. According to a comparison with the observed experimental outcome, the proposed method performs well (MARE = 0.048, RMSE = 0.134, SI = 0.06, BIAS = -0.036. The performance of MLP and MLP-DT is compared with that of existing regression-based equations, and significantly higher performance over existing models is observed. Finally, an explicit expression for practical engineering is also provided.
Energy Technology Data Exchange (ETDEWEB)
Nehme, H
1997-02-18
This work is performed in the framework of the investigation of-Severe Accidents of Water Cooled Nuclear Power Plants (PWR). A concept of molten core recovery is based on a retention in the lower head of the reactor vessel or in core-catchers which are externally cooled by water, Critical heat flux must be avoided in this external natural convection two-phase flow. The SULTAN experiment has been launched in order to investigate two-phase flow characteristics at experiment is described. Tests are performed under forced convection conditions for extended analytical investigation of the flow characteristics. They are mainly aimed to measure pressure drops, onset of critical heat flux (CHF), temperature and void fraction profiles in the flow. These results are describe and analyzed in a second part. The flow reveals to be very different from the classical flow in narrow channels. The difference is mainly due to 2-D effects and internal flow re-circulations. The limit of validity of 1-D analytical description of the flow is tested. This approach is improved by the proposal of a new correlation for the prediction of net vapor generation point and for the calculation of the mean density along the subcooled part of the flow. New CHF correlations are proposed. CHF is shown to be the same order of magnitude as these measured on the ULPU facility in UCSB and at the MIT. However 1-D approach has limitations at high qualities for large and inclined channels. A better description must be linked to the use of multi-dimensional numerical two-phase flow codes. (author) 87 refs.
DEFF Research Database (Denmark)
Yamamoto, Atsushi; Sakata, Tsutomu; Ogawa, Koichi
2012-01-01
This paper presents results from an outdoor radio propagation experiment at 2.35 GHz using a channel sounder and a spherical horn antenna array. The propagation test was performed in Aalborg city in Denmark. Comparing the ray-tracing results and the results obtained with the proposed method...... on the measured data shows a good match in both the spatial and time domains....
Best connected rectangular arrangements
Directory of Open Access Journals (Sweden)
Krishnendra Shekhawat
2016-03-01
Full Text Available It can be found quite often in the literature that many well-known architects have employed either the golden rectangle or the Fibonacci rectangle in their works. On contrary, it is rare to find any specific reason for using them so often. Recently, Shekhawat (2015 proved that the golden rectangle and the Fibonacci rectangle are one of the best connected rectangular arrangements and this may be one of the reasons for their high presence in architectural designs. In this work we present an algorithm that generates n-4 best connected rectangular arrangements so that the proposed solutions can be further used by architects for their designs.
Wang, Boxue; Jia, Yangtao; Zhang, Haoyu; Jia, Shiyin; Liu, Jindou; Wang, Weifeng; Liu, Xingsheng
2018-02-01
An insulation micro-channel cooling (IMCC) has been developed for packaging high power bar-based vertical stack and horizontal array diode lasers, which eliminates many issues caused in its congener packaged by commercial copper formed micro-channel cooler(MCC), such as coefficient of thermal expansion (CTE) mismatch between cooler and diode laser bar, high coolant quality requirement (DI water) and channel corrosion and electro-corrosion induced by DI water if the DI-water quality is not well maintained The IMCC cooler separates water flow route and electrical route, which allows tap-water as coolant without electro-corrosion and therefore prolongs cooler lifetime dramatically and escalated the reliability of these diode lasers. The thickness of ceramic and copper in an IMCC cooler is well designed to minimize the CTE mismatch between laser bar and cooler, consequently, a very low "SMILE" of the laser bar can be achieved for small fast axis divergence after collimation. In additional, gold-tin hard solder bonding technology was also developed to minimize the risk of solder electromigration at high current density and thermal fatigue under hard-pulse operation mode. Testing results of IMCC packaged diode lasers are presented in this report.
Energy Technology Data Exchange (ETDEWEB)
Murasik, A. [Institute of Atomic Energy, Otwock-Swierk (Poland)
1997-12-31
By means of neutron diffraction, using the standard polycrystalline sample of Al{sub 2}O{sub 3}, measurements on three (of four spectrometers) already installed in the front of horizontal channels of MARIA reactor have been performed. Basing on these experiments as well as on activation measurements carried out earlier, the fluxes of monoenergetic neutrons have been estimated. These experiments allowed to determine (for a given geometry and kind of monochromators chosen) the resolution efficiency of instruments and high order contamination in the reflected beam. With the help of polycrystalline vanadium and TbBr{sub 3} sample, the possibility of studies using the inelastic scattering process have been tested. (author) 7 refs, 15 figs, 7 tabs
Energy Technology Data Exchange (ETDEWEB)
Strugar, P [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)
1964-12-01
Calculation and experimental results shown in this paper show that higher thermal neutron flux is obtained in the reactor core with central horizontal reflector at the same power level. The flux is increased when the moderation capability of the core is decreased. Apart from increase of the thermal component of the neutron flux in the experimental channels, the central reflector causes decrease of the epithermal neutron flux and gamma radiation intensity. This is very useful for studying (n, {gamma}) reaction, neutron diffraction, etc. [Serbo-Croat] Rezultati proracuna i merenja prikazanih u ovom radu ukazuju na cinjenicu da se u reaktoru sa ugradjenim centralnim horizontalnim reflektorom dobija veci fluks termalnih neutron pri istoj snazi i to utoliko veci ukoliko je moderaciona sposobnost aktivne zone manja. Pored uvecanja termalne komponente neutrona u snopu na horizontalnim eksperimentalnim kanalima centralni reflektor uslovljava i smanjenje epitermalne komponente, kao i intenzitet gamma zracenja. Ovo je pozeljno za proucavanje (n,{gamma}) reakcija, neutron diffraction, etc.
Directory of Open Access Journals (Sweden)
K.V.S. Raju
2014-06-01
Full Text Available This paper deals with a steady MHD forced convective flow of a viscous fluid of finite depth in a saturated porous medium over a fixed horizontal channel with thermally insulated and impermeable bottom wall in the presence of viscous dissipation and joule heating. The governing equations are solved in the closed form and the exact solutions are obtained for velocity and temperature distributions when the temperatures on the fixed bottom and on the free surface are prescribed. The expressions for flow rate, mean velocity, temperature, mean temperature, mean mixed temperature in the flow region and the Nusselt number on the free surface have been obtained. The cases of large and small values of porosity coefficients have been obtained as limiting cases. Further, the cases of small depth (shallow fluid and large depth (deep fluid are also discussed. The results are presented and discussed with the help of graphs.
International Nuclear Information System (INIS)
Ben-Ghazail, Mustafa Ali
2005-01-01
In this work the epithermal neutron was development from horizontal channel VI at Tajoura research reactor which can be used for Boron Neutron Capture Therapy. The analysis of reactivity and control rod worth is performed by three dimensional continues energy MCNP-4C code with neutron cross section data from the ENDF/B-VI evaluation. The neutron beam which is developed for medical purpose is generated from the reactor core by means of U-235 fission. The neutrons leaking through the cavity of HC in Be-9 reflector is guided through a tube made of stainless steel to patient position. The HC has two wheels. The first wheel is small and is used as a gate. The second is large and have three positions one to close the gate, the second to open the gate while the third for loading collimator. The collimator consists of the moderators and filters to optimize the neutron beam which is installed in the loading position. The HC VI is extended to the room constructed to allow space for other horizontal channels users. materials are used to optimize the neutron beam which was selected depending on neutron beam properties related to core loading and control rod position. The results of the development study show that the required values for the neutron beam characteristic can be nearly reached. The different comparisons of the calculations performed using MCNP-4C code with the requirements values of characteristics neutron beam show that the result values of MCNP-4C code model are reliable. (author)
Sun, Min-Chul; Kim, Garam; Kim, Sang Wan; Kim, Hyun Woo; Kim, Hyungjin; Lee, Jong-Ho; Shin, Hyungcheol; Park, Byung-Gook
2012-07-01
In order to extend the conventional low power Si CMOS technology beyond the 20-nm node without SOI substrates, we propose a novel co-integration scheme to build horizontal- and vertical-channel MOSFETs together and verify the idea using TCAD simulations. From the fabrication viewpoint, it is highlighted that this scheme provides additional vertical devices with good scalability by adding a few steps to the conventional CMOS process flow for fin formation. In addition, the benefits of the co-integrated vertical devices are investigated using a TCAD device simulation. From this study, it is confirmed that the vertical device shows improved off-current control and a larger drive current when the body dimension is less than 20 nm, due to the electric field coupling effect at the double-gated channel. Finally, the benefits from the circuit design viewpoint, such as the larger midpoint gain and beta and lower power consumption, are confirmed by the mixed-mode circuit simulation study.
International Nuclear Information System (INIS)
Frainer, V.J.
1979-01-01
A solution of the time-transient Heat Transfer Differential Equation in rectangular coordinates is presented, leading to a model which describes the temperature drop with time in rectangular bars. It is similar to an other model for cilindrical bars which has been previously developed in the Laboratory of Mechanical Metallurgy of UFRGS. Following these models, a generalization has been made, which permits cooling time evaluation for all profiles. These results are compared with experimental laboratory data in the 1200 to 800 0 C range. Some other existing models were also studied which have the purpose of studing the same phenomenon. Their mathematical forms and their evaluated values are analyzed and compared with experimental ones. (Author) [pt
Experiences with rectangular waveguide
International Nuclear Information System (INIS)
Beltran, J.; Sepulveda, J. J.; Navarro, E. A.
2000-01-01
A simple and didactic experimental arrangement is presented to show wave propagation along a structure with translational symmetry, particularly the rectangular waveguide. Parameters of this waveguide as cutoff frequency, guide wavelength and field distribution of fundamental mode can be measured. For this purpose a large paralelepipedical waveguide structure is designed and built, its dimensions can be varied in order to change its parameters. (Author) 9 refs
International Nuclear Information System (INIS)
Dang Lanh; Nguyen Nhi Dien; Pham Dinh Khang; Pham Ngoc Son and others
2004-01-01
As the nuclear disintegration is characteristic for a given isotope, specific measurements can be performed by means of coincidence techniques, whereby correlated phenomena must be simultaneously detected in order to be counted. As well bete-gamma as gamma-gamma cascades of the disintegration, which occur within very short time intervals, are suitable for these purposes. Also both annihilation gamma rays can be measured in coincidence. The pulses coming from the components of the cascades can be selected in energy by means of a pulse height analyser, and are fed into the coincidence circuit. In order to be counted, two pulses must arrive within the resolving time τ of the coincidence unit. Typical values of τ are of the order of the as for 'slow' coincidence and down to the ns for 'fast' coincidence. Actually, Coincidence and Linear amplifier units are two important pieces of the measuring system. The main task of the interbal sub-project is to study on and to design these NIM-standard blocks those are able to combine with other needed electronics modulars for the performance of a gamma-gamma coincidence system with the sake of nuclear structure research at a horizontal channel in the research reactor Dalat. (author)
International Nuclear Information System (INIS)
Supa-Amornkul, S.; Steward, F.R.; Lister, D.H.
2005-01-01
In CANDU-6 reactors, the pressurized hightemperature coolant flows through 380 fuel channels passing horizontally through the core. In 1996, higher than expected rates of wall thinning of the outlet feeders were ascribed to flow-accelerated corrosion (FAC). Such corrosion is strongly influenced by the hydrodynamics of the coolant. Results of preliminary flow visualization and modelling studies have suggested that flow conditions in the end-fitting annulus upstream of the outlet feeder may influence the pattern of FAC. For a full-scale flow visualization, an acrylic test section was built to simulate the cylindrical end-fitting with its annulus flow path. The tests were performed with water and air at atmospheric pressure and room temperature. The phase distribution along the length of the annulus was recorded with a digital video recorder. Size, concentration and velocity of the air bubbles at particular locations were studied with a high-speed digital still camera and a high-speed digital video camera. Phase distributions and variations in bubble size with velocity were determined. Significant effects on the flow patterns of spacer buttons in the annulus were observed. A commercial computational fluid dynamics (CFD) code-Fluent 6.1-was used to model the results. (authors)
Rectangular spectral collocation
Driscoll, Tobin A.
2015-02-06
Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon resampling differentiated polynomials into a lower-degree subspace makes differentiation matrices, and operators built from them, rectangular without any row deletions. Then, boundary and interface conditions can be adjoined to yield a square system. The resulting method is both flexible and robust, and avoids ambiguities that arise when applying the classical row deletion method outside of two-point scalar boundary-value problems. The new method is the basis for ordinary differential equation solutions in Chebfun software, and is demonstrated for a variety of boundary-value, eigenvalue and time-dependent problems.
Directory of Open Access Journals (Sweden)
Ronshin Fedor
2017-01-01
Full Text Available The two-phase flow has been studied experimentally in a short horizontal microchannel with the height of 50 μm and width of 20 mm. The following regimes of two-phase flows have been registered: jet, bubble, stratified, annular, and churn. The regime map of two-phase flow has been plotted. This map has been compared with the regime map plotted for the channels of larger cross-section; it is shown that the height and width of a rectangular channel has a significant effect on the boundaries between flow regimes.
A Characterization of Rectangular Distributions
Terrell, George R.
1983-01-01
It is well known that the smaller and the larger of a random sample of size two are positively correlated. The coefficient of correlation is at most one-half, and the upper bound is attained only for rectangular distributions.
Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena
International Nuclear Information System (INIS)
Vallee, Christophe; Hoehne, Thomas; Prasser, Horst-Michael; Suehnel, Tobias
2008-01-01
For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Dresden-Rossendorf (FZD). The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronised with the high-speed camera system. CFD post-test simulations of stratified flows were performed using the code ANSYS CFX. The Euler-Euler two fluid model with the free surface option was applied on grids of minimum 4 x 10 5 control volumes. The turbulence was modelled separately for each phase using the k-ω-based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow
Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena
International Nuclear Information System (INIS)
Vallee, Christophe; Hohne, Thomas; Prasser, Horst-Michael; Suhnel, Tobias
2007-01-01
For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Rossendorf. The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronized with the high-speed camera system. CFD post test simulations of stratified flows were performed using the code ANSYS CFX. The Euler- Euler two fluid model with the free surface option was applied on grids of minimum 4.10 5 control volumes. The turbulence was modelled separately for each phase using the k-ω based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow. (authors)
Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena
Energy Technology Data Exchange (ETDEWEB)
Vallee, Christophe [Forschungszentrum Dresden-Rossendorf e.V., Dresden (Germany)], E-mail: c.vallee@fzd.de; Hoehne, Thomas; Prasser, Horst-Michael; Suehnel, Tobias [Forschungszentrum Dresden-Rossendorf e.V., Dresden (Germany)
2008-03-15
For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Dresden-Rossendorf (FZD). The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronised with the high-speed camera system. CFD post-test simulations of stratified flows were performed using the code ANSYS CFX. The Euler-Euler two fluid model with the free surface option was applied on grids of minimum 4 x 10{sup 5} control volumes. The turbulence was modelled separately for each phase using the k-{omega}-based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow.
Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...
Energy Technology Data Exchange (ETDEWEB)
Lee, Kyung Won; Chun, Moon Hyun [Korea Advanced Institute of Science and Technolgy, Taejon (Korea, Republic of); Chu, In Cheol [KAERI, Taejon (Korea, Republic of)
2000-10-01
An experimental study of interfacial condensation heat transfer has been performed for countercurrent steam-water wavy flow in a horizontal circular pipe. A total of 105 local interfacial condensation heat transfer coefficients have been obtained for various combinations of test parameters. Two empirical Nusselt number correlations were developed and parametric effects of steam and water flow rates and the degree of water subcooling on the condensation heat transfer were examined. For the wavy interface condition, the local Nusselt number is more strongly sensitive to the steam Reynolds number than water Reynolds number as opposed to the case of smooth interface condition. Comparisons of the present circular pipe data with existing correlations showed that existing correlations developed for rectangular channels are not directly applicable to a horizontal circular pipe flow.
Horizontally viscous effects in a tidal basin: extending Taylor's problem
Roos, Pieter C.; Schuttelaars, H.M.
2009-01-01
The classical problem of Taylor (Proc. Lond. Math. Soc., vol. 20, 1921, pp. 148–181) of Kelvin wave reflection in a semi-enclosed rectangular basin of uniform depth is extended to account for horizontally viscous effects. To this end, we add horizontally viscous terms to the hydrodynamic model
Basic study on the rectangular numeric keys for touch screen.
Harada, H; Katsuura, T; Kikuchi, Y
1997-06-01
The present study was conducted to examine the optimum inter-key spacing of numeric rectangular keys for touch screens. Six male students (22-25 years old) and three female students (21-24 years old) participated in the experiment. Each subject performed the data entry task using rectangular keys of touch devices. These keys were arranged in both horizontal and vertical layouts. The sizes of the rectangular keys in both layouts were 12 x 21 mm and 15 x 39 mm, and each of the inter-key spacing of each key was 0, 3, 6, 12 and 21 mm. The response time with inter-key spacing of 3 mm was significantly faster than with the inter-key spacing of 0, 12 and 21 mm (p < 0.05). Keys of vertical position produced faster response time than that of horizontal position. The subjective ratings showed that the inter-key spacing of 6 mm was significantly better than the inter-key spacing of 0, 3, 12 and 21 mm (p < 0.05).
On Hubbell's rectangular source integral
International Nuclear Information System (INIS)
Stalker, John
2001-01-01
The integral H(a,b)=∫ 0 b ∫ 0 a dx dy/(1+x 2 +y 2 ) arises naturally in the study of radiation from a rectangular source and has been studied by many authors. This paper introduces a new series expansion which is rapidly convergent for large a and b
Chang, You-Tai; Peng, Kang-Ping; Li, Pei-Wen; Lin, Horng-Chih
2018-04-01
In this paper, we report on a novel fabrication process for the production of junctionless field-effect transistors with an ultrathin polycrystalline silicon (poly-Si) tube channel in a gate-all-around (GAA) configuration. The core of the poly-Si tube channel is filled with either a silicon nitride or a silicon oxide layer, and the effects of the core layers on the device characteristics are evaluated. The devices show excellent switching performance, thanks to the combination of the ultrathin tube channel and the GAA structure. Hysteresis loops in the transfer characteristics of the nitride-core devices are observed, owing to the dynamic trapping of electrons in the nitride core.
Horizontal liquid film-mist two phase flow, (1)
International Nuclear Information System (INIS)
Akagawa, Koji; Sakaguchi, Tadashi; Fujii, Terushige; Nakatani, Yoji; Nakaseko, Kosaburo.
1979-01-01
The characteristics of liquid film in annular spray flow, the generation of droplets from liquid film and the transport of droplets to a wall are the important matters in the planning and design of nuclear reactor cooling system and the channels of steam generators. The study on the liquid film spray flow is scarce, and its characteristics are not yet elucidated. The purpose of this series of studies is to clarify the characteristics of liquid film, the generation, diffusion and distribution of droplets and pressure loss in the liquid film spray flow composed of the liquid film on the lower wall and spraying gas flow in a rectangular, horizontal channel. In this paper, the concentration distribution and the diffusion coefficient of droplets on a cross section in the region of flow completion are reported. The experimental apparatuses and the experimental method, the flow rate of droplets and the velocity distribution of gas phase, the concentration distribution and the diffusion coefficient of droplets, and the diameter of generated droplets are explained. The equation for the concentration distribution of droplets using dimensionless characteristic value was derived. The mean diffusion coefficient of droplets was constant on a cross section, and the effects of gravity and turbulent diffusion can be evaluated. (Kako, I.)
International Nuclear Information System (INIS)
Szuta, M.
2006-01-01
international reputation in the field of energy production and transmutation and reactor physics computations. In order to analyse this topic experimentally, we propose to replace the expensive spallation source requiring accelerator by the neutron source obtained by converting the thermal neutron flux from the horizontal channel of the research reactor MARIA into fast neutron source. Taking into account the large amount of thermal neutrons in the horizontal channel, it is possible to use a fission converter i.e. an arrangement containing 235 U placed in the axis of the horizontal channel mouth. Thermal neutrons cause the fission reactions producing fast neutrons, which will be used instead of the neutrons from the spallation source. Five fuel rods of EK-10 type fuel placed vertically respect the beam of the thermal neutron flux of the used horizontal channel constitutes the converter. From the preliminary calculations it follows that the fast neutron source is approximately equal to 2 x 10 10 neutrons/s. A natural metallic uranium blanket with a moderator island will surround the fast neutron source what will enable us to perform the transmutation investigation of minor actinides (MA) and the long lived fission products (LLFP) in a wide range neutron energy spectrum. In such a system the mass of the 235 U will be deeply sub-critical
Motion of rectangular prismatic bodies
International Nuclear Information System (INIS)
Poreh, M.; Wray, R.N.
1979-01-01
Rectangular prismatic bodies can assume either a translatory or an auto-rotating mode of motion during free motion in the atmosphere. The translatory mode is stable only when the dimensionless moment of inertia of the bodies is large, however, large perturbations will always start auto-rotation. The characteristics of the auto-rotational mode are shown to depend primarily on the aspect ratio of the bodies which determines the dimensionless rotational speed and the lift coefficient. Both the average drag and lift-coefficients of auto-rotating bodies are estimated, but it is shown that secondary effects make it impossible to determine their exact trajectories in atmospheric flows
International Nuclear Information System (INIS)
Bae, Byeong Geon; Yun, Byong Jo; Kim, Kyoung Du
2014-01-01
It was mainly due to the fact that droplet entrainment affects the Peak Cladding Temperature (PCT) of the nuclear fuel rod in the Postulated accident conditions of NPP. Recently, droplet entrainment in the horizontally arranged primary piping system for the NPP is of interest because it affects directly the steam binding phenomena in the steam generators. Pan and Hanratty correlation is the only applicable one for the droplet entrainment rate model for horizontal flow. Moreover, there are no efforts for the model development on the basis of the droplet entrainment principal and physics phenomena. More recently, Korea Atomic Energy Research Institute (KAERI) proposed a new mechanistic droplet generation model applicable in the horizontal pipe for the SPACE code. However, constitutive relations in this new model require three model coefficients which have not yet been decided. The purpose of present work is determining three model coefficients by visualization experiment. For these model coefficients, the major physical parameters regarding the interfacial disturbance wave should be measured in this experiments. There are the wave slope, liquid fraction, wave hypotenuse length, wave velocity, wave frequency, and wavelength in the major physical parameters. The experiment was conducted at an air water horizontal rectangular channel with the PIV system. In this study, the experimental conditions were stratified-way flow during the droplet generation. Three coefficients were determined based on several data related to the interfacial wave. Additionally, we manufactured the parallel wire conductance probe to measure the fluctuating water level over time, and compared the wave height measured by the parallel wire conductance probe and image processing from images taken by high speed camera. Experimental investigation was performed for droplet entrainment from phase interface wave in an air-water stratified flow. In the experiments, we measured major physical parameters
Partitioning sparse rectangular matrices for parallel processing
Energy Technology Data Exchange (ETDEWEB)
Kolda, T.G.
1998-05-01
The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.
Improving flow distribution in influent channels using computational fluid dynamics.
Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae
2016-10-01
Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.
Mapping from rectangular to harmonic representation
International Nuclear Information System (INIS)
Schneider, W.; Bateman, G.
1986-08-01
An algorithm is developed to determine the Fourier harmonics representing the level contours of a scalar function given on a rectangular grid. This method is applied to the problem of computing the flux coordinates and flux surface average needed for 1-1/2-D transport codes and MHD stability codes from an equilibrium flux function given on a rectangular grid
Horizontally viscous effects in a tidal basin : Extending Taylor’s problem
Roos, P.C.; Schuttelaars, H.M.
2009-01-01
The classical problem of Taylor (Proc. Lond. Math. Soc., vol. 20, 1921, pp. 148–181) of Kelvin wave reflection in a semi-enclosed rectangular basin of uniform depth is extended to account for horizontally viscous effects. To this end, we add horizontally viscous terms to the hydrodynamic model
International Nuclear Information System (INIS)
Nakamura, Hideo
1996-05-01
The slug flow transitions and related phenomena for horizontal two-phase flows were studied for a better prediction of two-phase flows that typically appear during the reactor loss-of-coolant accidents (LOCAs). For better representation of the flow conditions experimentally, two large-scaled facility: TPTF for high-pressure steam/water two-phase flows and large duct test facility for air/water two-phase flows, were used. The visual observation of the flow using a video-probe was performed in the TPTF experiments for good understanding of the phenomena. The currently-used models and correlations based mostly on the small-scale low-pressure experiments were reviewed and improved based on these experimental results. The modified Taitel-Dukler model for prediction of transition into slug flow from wavy flow and the modified Steen-Wallis correlation for prediction of onset of liquid entrainment from the interfacial waves were obtained. An empirical correlation for the gas-liquid interfacial friction factor was obtained further for prediction of liquid levels at wavy flow. The region of slug flow regime that is generally under influences of the channel height and system pressure was predicted well when these models and correlations were applied together. (author). 90 refs
Regimes of Vorticity in the Wake of a Rectangular Vortex Generator
DEFF Research Database (Denmark)
Velte, Clara Marika; Okulov, Valery; Hansen, Martin Otto Laver
2011-01-01
This paper concerns the study of the secondary structures generated in the wake of a wall mounted rectangular vane, commonly referred to as a vortex generator. The study has been conducted by Stereoscopic PIV measurements in a wind tunnel and supplementary flow visualizations in a water channel...
Successive Standardization of Rectangular Arrays
Directory of Open Access Journals (Sweden)
Richard A. Olshen
2012-02-01
Full Text Available In this note we illustrate and develop further with mathematics and examples, the work on successive standardization (or normalization that is studied earlier by the same authors in [1] and [2]. Thus, we deal with successive iterations applied to rectangular arrays of numbers, where to avoid technical difficulties an array has at least three rows and at least three columns. Without loss, an iteration begins with operations on columns: first subtract the mean of each column; then divide by its standard deviation. The iteration continues with the same two operations done successively for rows. These four operations applied in sequence completes one iteration. One then iterates again, and again, and again, ... In [1] it was argued that if arrays are made up of real numbers, then the set for which convergence of these successive iterations fails has Lebesgue measure 0. The limiting array has row and column means 0, row and column standard deviations 1. A basic result on convergence given in [1] is true, though the argument in [1] is faulty. The result is stated in the form of a theorem here, and the argument for the theorem is correct. Moreover, many graphics given in [1] suggest that except for a set of entries of any array with Lebesgue measure 0, convergence is very rapid, eventually exponentially fast in the number of iterations. Because we learned this set of rules from Bradley Efron, we call it “Efron’s algorithm”. More importantly, the rapidity of convergence is illustrated by numerical examples.
three dimensional photoelastic investigations on thick rectangular
African Journals Online (AJOL)
user
1983-09-01
Sep 1, 1983 ... Thick rectangular plates are investigated by means of three-dimensional photoelasticity ... a thin plate theory and a higher order thick plate theory. 1. ..... number of fringes lest the accuracy of the results will be considerably.
Influence of a circular jet arrangement in a rectangular tank on flow and suspended sediment release
Althaus, Jenzer; Isabella, Jolanda Maria
2011-01-01
With the objective of high sediment release out of a rectangular tank the performance of a circular jet arrangement has been investigated. Therefore, experiments with four jets arranged in a horizontal circle placed in water with quasi homogeneous sediment concentration were conducted. The induced circulation was analysed by measuring the flow field. The influence of the flow circulation on suspension and on sediment release through the water intake was studied and discussed. The offbottom cl...
Rectangular-section mirror light pipes
Energy Technology Data Exchange (ETDEWEB)
Swift, P.D.; Lawlor, R. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Smith, G.B.; Gentle, A. [Department of Applied Physics, University of Technology, Sydney, Broadway, NSW 2007 (Australia)
2008-08-15
Using an integrated-ray approach an expression for the transmission of rectangular section mirror light pipe (MLP) has been derived for the case of collimated light input. The transmittance and the irradiance distribution at the exit aperture of rectangular-section MLPs have been measured experimentally and calculated theoretically for the case of collimated light input. The results presented extend the description of MLPs from the cylindrical case. Measured and calculated transmittances and irradiance distributions are in good agreement. (author)
Random Young diagrams in a Rectangular Box
DEFF Research Database (Denmark)
Beltoft, Dan; Boutillier, Cédric; Enriquez, Nathanaël
We exhibit the limit shape of random Young diagrams having a distribution proportional to the exponential of their area, and confined in a rectangular box. The Ornstein-Uhlenbeck bridge arises from the fluctuations around the limit shape.......We exhibit the limit shape of random Young diagrams having a distribution proportional to the exponential of their area, and confined in a rectangular box. The Ornstein-Uhlenbeck bridge arises from the fluctuations around the limit shape....
International Nuclear Information System (INIS)
Tatsuya Matsumoto; Akihiro Uchibori; Ryo Akasaka; Toshinori Seki; Shyuji Kaminishi; Koji Morita; Kenji Fukuda
2002-01-01
In order to develop analytical tools for the analyses of multi dimensional two-phase flow in channels with obstacles, the modified drift flux model has been applied. Numerical simulations of multi dimensional gas-liquid two-phase flow in a channel, with some kinds of obstacles inserted to simulate a simple sub-channel in the fuel bundle, were carried out. Analytical results were compared with experiments, to show the validity of the modified drift flux model. Experiments were carried out with using an apparatus of 2-D/3-D rectangular box with a perforated plate or a horizontal plate with slit hole or a vertical rod inserted. Nitrogen gas-water adiabatic two phase flow was circulated in the box. The apparatus was made of acrylic resin plates and be able to make the flow inside visualized. Two-phase flow pattern were recorded with a high-speed video camera and the mass flow rate of nitrogen gas was measured with a digital gas-mass flow meter. Comparisons between the experimental results and the numerical ones showed good agreements, thus it was verified the model would be applied for predicting flows in more complex geometry with obstacles. (authors)
A study on liquid lithium flow in rectangular duck perpendicular to a intense magnetic field
International Nuclear Information System (INIS)
Shen Xiuzhong; Chen Ke; Liu Yang; Zhang Qinshun
2001-01-01
A research on high-speed liquid-metal lithium flow through a non-expanding rectangular duck under uniform intense magnetic field is presented. A equations set with Poisson equation and Helmholtz equation, which control the electrical field and flow field respectively, has been deduced by analysis and PHsolver, a program to solve the equations set, has also been finished. The current density distribution and flow field in the non-expanding rectangular channel with intense magnetic field have been obtained from PHsolver by applying the wall-function in the boundary wall. The velocity profile in the duck appears M-shaped
Directory of Open Access Journals (Sweden)
K. Rahmani
2018-05-01
Full Text Available In this paper we present a pipeline for high quality semantic segmentation of building facades using Structured Random Forest (SRF, Region Proposal Network (RPN based on a Convolutional Neural Network (CNN as well as rectangular fitting optimization. Our main contribution is that we employ features created by the RPN as channels in the SRF.We empirically show that this is very effective especially for doors and windows. Our pipeline is evaluated on two datasets where we outperform current state-of-the-art methods. Additionally, we quantify the contribution of the RPN and the rectangular fitting optimization on the accuracy of the result.
Partial rectangular metric spaces and fixed point theorems.
Shukla, Satish
2014-01-01
The purpose of this paper is to introduce the concept of partial rectangular metric spaces as a generalization of rectangular metric and partial metric spaces. Some properties of partial rectangular metric spaces and some fixed point results for quasitype contraction in partial rectangular metric spaces are proved. Some examples are given to illustrate the observed results.
Numerical study of gravity currents in a channel
International Nuclear Information System (INIS)
Wang, D.
1985-01-01
A three-dimensional, primitive-equation model was used to study gravity currents produced by instantaneous releases of a buoyant fluid in a rectangular channel. Without rotation, the gravity current passes through two distinct phases: an initial adjustment phase in which the front speed is constant, and an eventual self-similar phase in which the front speed decreases with time. With rotation, the gravity current is confined to the right-hand wall, forming a coastal jet. The initial front-speed is constant; however, the front speed decreases rapidly due to strong mixing at the horizontal edge of the gravity current. Also, with rotation, part of the buoyant fluid is trapped near the source region, forming an anticyclonic vortex
Measurement on the cavitating vortex shedding behind rectangular obstacles
International Nuclear Information System (INIS)
Hegedus, F; Hos, C; Pandula, Z; Kullmann, L
2010-01-01
Measurement results on the cavitating vortex shedding behind sharp-edged rectangular bodies are presented, intended to provide benchmark cases for the validation of unsteady cavitation models of CFD codes. Rectangular bodies of increasing aspect ratio (1, 2, 3 and 4) were used with a constant 25mm height (12.5% blockage ratio). The water velocity in the 0.2x0.05m test section of the channel was varied between 1 and 12 m/s resulting in a Reynolds number in the range of (0.4-3.5)x105. Pressure signals were measured at several locations, notably in the wake. Dominant frequencies and Strouhal numbers are reported from cavitation-free flow (classic von Karman vortex shedding) up to supercavitation as a function of the free-stream Reynolds number. The results are in good agreement with the literature in case of the square cylinder. We experienced a slight increase of the dominant Strouhal number with increasing aspect ratio. This result is somewhat inconsistent with the literature, in which a fall of the Strouhal number can be observed at side ratio 2. This may be the consequence of the different ranges of Reynolds numbers. It was also found that between the inception of cavitation and the formation of supercavitation the Strouhal number is not affected by cavitation.
Measurement on the cavitating vortex shedding behind rectangular obstacles
Energy Technology Data Exchange (ETDEWEB)
Hegedus, F; Hos, C; Pandula, Z; Kullmann, L, E-mail: hegedusf@hds.bme.h [Department of Hydrodynamic Systems, Budapest University of Technology and Economics Muegyetem rkp. 1, Budapest 1111 (Hungary)
2010-08-15
Measurement results on the cavitating vortex shedding behind sharp-edged rectangular bodies are presented, intended to provide benchmark cases for the validation of unsteady cavitation models of CFD codes. Rectangular bodies of increasing aspect ratio (1, 2, 3 and 4) were used with a constant 25mm height (12.5% blockage ratio). The water velocity in the 0.2x0.05m test section of the channel was varied between 1 and 12 m/s resulting in a Reynolds number in the range of (0.4-3.5)x105. Pressure signals were measured at several locations, notably in the wake. Dominant frequencies and Strouhal numbers are reported from cavitation-free flow (classic von Karman vortex shedding) up to supercavitation as a function of the free-stream Reynolds number. The results are in good agreement with the literature in case of the square cylinder. We experienced a slight increase of the dominant Strouhal number with increasing aspect ratio. This result is somewhat inconsistent with the literature, in which a fall of the Strouhal number can be observed at side ratio 2. This may be the consequence of the different ranges of Reynolds numbers. It was also found that between the inception of cavitation and the formation of supercavitation the Strouhal number is not affected by cavitation.
Liquid metal MHD and heat transfer in a tokamak blanket slotted coolant channel
International Nuclear Information System (INIS)
Reed, C.B.; Hua, T.Q.; Black, D.B.; Kirillov, I.R.; Sidorenkov, S.I.; Shapiro, A.M.; Evtushenko, I.A.
1993-01-01
A liquid metal MHD (Magnetohydrodynamic)/heat transfer test was conducted at the ALEX (Argonne Liquid Metal Experiment) facility of ANL (Argonne National Laboratory), jointly between ANL and NIIEFA (Efremov Institute). The test section was a rectangular slotted channel geometry (meaning the channel has a high aspect ratio, in this case 10:1, and the long side is parallel to the applied magnetic field). Isothermal and heat transfer data were collected. A heat flux of ∼9 W/cm 2 was applied to the top horizontal surface (the long side) of the test section. Hartmann Numbers to 1050 (2 Tesla), interaction parameters to 9 x 10 3 , Peclet numbers of 10--200, based on the half-width of the small dimension (7mm), and velocities of 1--75 cm/sec. were achieved. The working fluid was NaK (sodium potassium eutectic). All four interior walls were bare, 300-series stainless steel, conducting walls
Subcooled flow boiling heat transfer from microporous surfaces in a small channel
International Nuclear Information System (INIS)
Yan, Sun; Li, Zhang; Hong, Xu; Xiaocheng, Zhong
2011-01-01
The continuously increasing requirement for high heat transfer rate in a compact space can be met by combining the small channel/microchannel and heat transfer enhancement methods during fluid subcooled flow boiling. In this paper, the sintered microporous coating, as an efficient means of enhancing nucleate boiling, was applied to a horizontal, rectangular small channel. Water flow boiling heat transfer characteristics from the small channel with/without the microporous coating were experimentally investigated. The small channel, even without the coating, presented flow boiling heat transfer enhancement at low vapor quality due to size effects of the channel. This enhancement was also verified by under-predictions from macro-scale correlations. In addition to the enhancement from the channel size, all six microporous coatings with various structural parameters were found to further enhance nucleate boiling significantly. Effects of the coating structural parameters, fluid mass flux and inlet subcooling were also investigated to identify the optimum condition for heat transfer enhancement. Under the optimum condition, the microporous coating could produce the heat transfer coefficients 2.7 times the smooth surface value in subcooled flow boiling and 3 times in saturated flow boiling. The combination of the microporous coating and small channel led to excellent heat transfer performance, and therefore was deemed to have promising application prospects in many areas such as air conditioning, chip cooling, refrigeration systems, and many others involving compact heat exchangers. (authors)
A CPW-Fed Rectangular Ring Monopole Antenna for WLAN Applications
Directory of Open Access Journals (Sweden)
Sangjin Jo
2014-01-01
Full Text Available We present a simple coplanar waveguide- (CPW- fed rectangular ring monopole antenna designed for dual-band wireless local area network (WLAN applications. The antenna is based on a simple structure composed of a CPW feed line and a rectangular ring. Dual-band WLAN operation can be achieved by controlling the distance between the rectangular ring and the ground plane of the CPW feed line, as well as the horizontal vertical lengths of the rectangular ring. Simulated and measured data show that the antenna has a compact size of 21.4×59.4 mm2, an impedance bandwidths of 2.21–2.70 GHz and 5.04–6.03 GHz, and a reflection coefficient of less than −10 dB. The antenna also exhibits an almost omnidirectional radiation pattern. This simple compact antenna with favorable frequency characteristics therefore is attractive for applications in dual-band WLAN.
Experimental investigation and CFD validation of Horizontal Air/Water slug flow
International Nuclear Information System (INIS)
Vallee, Christophe; Hoehne, Thomas
2007-01-01
For the investigation of co-current two-phase flows at atmospheric pressure and room temperature, the Horizontal Air/Water Channel (HAWAC) was built at Forschungszentrum Dresden-Rossendorf (FZD). At the channel inlet, a special device provides adjustable and well-defined inlet boundary conditions and therefore very good CFD validation possibilities. The HAWAC facility is designed for the application of optical measurement techniques, which deliver the high resolution required for CDF validation. Therefore, the 8 m long acrylic glass test-section with rectangular cross-section provides good observation possibilities. High-speed video observation was applied during slug flow. The camera images show the generation of slug flow from the inlet of the test-section. Parallel to the experiments, CFD calculations were carried out. The aim of the numerical simulations is to validate the prediction of slug flow with the existing multiphase flow models built in the commercial code ANSYS CFX. The Euler-Euler two-fluid model with the free surface option was applied to a grid of 600,000 control volumes. The turbulence was modelled separately for each phase using the k-ω based shear stress transport (SST) turbulence model. The results compare well in terms of slug formation, and breaking. The qualitative agreement between calculation and experiment is encouraging, while quantitative comparison show that further model improvement is needed. (author)
Solving the rectangular assignment problem and applications
Bijsterbosch, J.; Volgenant, A.
2010-01-01
The rectangular assignment problem is a generalization of the linear assignment problem (LAP): one wants to assign a number of persons to a smaller number of jobs, minimizing the total corresponding costs. Applications are, e.g., in the fields of object recognition and scheduling. Further, we show
A solution for the narrow rectangular punch
Panek, C.F.; Kalker, J.J.
1977-01-01
This paper considers the problem of a rectangular flat ended punch acting on an elastic half-space. An approximate solution is generated through application of the elastic line integral equations. The results produced by this method are then compared with another approximate solution already
Interfacial friction factors for air-water co-current stratified flow in inclined channels
Energy Technology Data Exchange (ETDEWEB)
Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1997-12-31
The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)
Interfacial friction factors for air-water co-current stratified flow in inclined channels
Energy Technology Data Exchange (ETDEWEB)
Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1998-12-31
The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)
Realization of Rectangular Artificial Spin Ice and Direct Observation of High Energy Topology.
Ribeiro, I R B; Nascimento, F S; Ferreira, S O; Moura-Melo, W A; Costa, C A R; Borme, J; Freitas, P P; Wysin, G M; de Araujo, C I L; Pereira, A R
2017-10-25
In this work, we have constructed and experimentally investigated frustrated arrays of dipoles forming two-dimensional artificial spin ices with different lattice parameters (rectangular arrays with horizontal and vertical lattice spacings denoted by a and b respectively). Arrays with three different aspect ratios γ = a/b = [Formula: see text], [Formula: see text] and [Formula: see text] are studied. Theoretical calculations of low-energy demagnetized configurations for these same parameters are also presented. Experimental data for demagnetized samples confirm most of the theoretical results. However, the highest energy topology (doubly-charged monopoles) does not emerge in our theoretical model, while they are seen in experiments for large enough γ. Our results also insinuate that the string tension connecting two magnetic monopoles in a pair vanishes in rectangular lattices with a critical ratio γ = γ c = [Formula: see text], supporting previous theoretical predictions.
Huixing Li; Yu Liu
2016-01-01
In order to investigate the characteristics of boiling heat transfer for hydrocarbon mixture refrigerant in plate-fin heat exchanger which is used in the petrochemical industry field, a model was established on boiling heat transfer in vertical rectangular channel. The simulated results were compared with the experimental data from literature. The results show that the deviation between the simulated results and experimental data is within ±15%. Meanwhile, the characteristic of boiling heat t...
g-Weak Contraction in Ordered Cone Rectangular Metric Spaces
Directory of Open Access Journals (Sweden)
S. K. Malhotra
2013-01-01
Full Text Available We prove some common fixed-point theorems for the ordered g-weak contractions in cone rectangular metric spaces without assuming the normality of cone. Our results generalize some recent results from cone metric and cone rectangular metric spaces into ordered cone rectangular metric spaces. Examples are provided which illustrate the results.
Directory of Open Access Journals (Sweden)
Yuanyuan Ma
2018-01-01
Full Text Available This paper focuses on the modeling, simulation, and experimental verification of wideband single-input single-output (SISO mobile fading channels for indoor propagation environments. The indoor reference channel model is derived from a geometrical rectangle scattering model, which consists of an infinite number of scatterers. It is assumed that the scatterers are exponentially distributed over the two-dimensional (2D horizontal plane of a rectangular room. Analytical expressions are derived for the probability density function (PDF of the angle of arrival (AOA, the PDF of the propagation path length, the power delay profile (PDP, and the frequency correlation function (FCF. An efficient sum-of-cisoids (SOC channel simulator is derived from the nonrealizable reference model by employing the SOC principle. It is shown that the SOC channel simulator approximates closely the reference model with respect to the FCF. The SOC channel simulator enables the performance evaluation of wideband indoor wireless communication systems with reduced realization expenditure. Moreover, the rationality and usefulness of the derived indoor channel model is confirmed by various measurements at 2.4, 5, and 60 GHz.
Metamaterial Embedded Wearable Rectangular Microstrip Patch Antenna
Directory of Open Access Journals (Sweden)
J. G. Joshi
2012-01-01
Full Text Available This paper presents an indigenous low-cost metamaterial embedded wearable rectangular microstrip patch antenna using polyester substrate for IEEE 802.11a WLAN applications. The proposed antenna resonates at 5.10 GHz with a bandwidth and gain of 97 MHz and 4.92 dBi, respectively. The electrical size of this antenna is 0.254λ×0.5λ. The slots are cut in rectangular patch to reduce the bending effect. This leads to mismatch the impedance at WLAN frequency band; hence, a metamaterial square SRR is embedded inside the slot. A prototype antenna has been fabricated and tested, and the measured results are presented in this paper. The simulated and measured results of the proposed antenna are found to be in good agreement. The bending effect on the performance of this antenna is experimentally verified.
Anisotropic rectangular metric for polygonal surface remeshing
Pellenard, Bertrand
2013-06-18
We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.
Anisotropic rectangular metric for polygonal surface remeshing
Pellenard, Bertrand; Morvan, Jean-Marie; Alliez, Pierre
2013-01-01
We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.
Pyrolysis oil combustion in a horizontal box furnace with an externally mixed nozzle
Combustion characteristics of neat biomass fast-pyrolysis oil were studied in a horizontal combustion chamber with a rectangular cross-section. An air-assisted externally mixed nozzle known to successfully atomize heavy fuel oils was installed in a modified nominal 100 kW (350,000 BTU/h nominal cap...
The effect of thermal conductance of vertical walls on natural convection in a rectangular enclosure
International Nuclear Information System (INIS)
Kikuchi, Y.; Yoshino, A.; Taii, K.
2004-01-01
This paper deals with the experimental results of natural convective heat transfer in a rectangular water layer bounded by vertical walls of different thermal conductance. The vertical walls were made of copper or stainless steel. A minimum was observed in the horizontal distribution of temperature near the heating wall since a secondary reverse flow occurred outside the boundary layer. For copper case the experimental results of Nusselt number agreed well with calculations under an isothermal wall condition. For stainless steel case, however, the measured values were lower than the calculations since a three-dimensional effect appeared in convection due to non-uniformity in wall temperature. (author)
Single-phase flow and flow boiling of water in horizontal rectangular microchannels
Mirmanto
2013-01-01
This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University The current study is part of a long term experimental project devoted to investigating single-phase flow pressure drop and heat transfer, flow boiling pressure drop and heat transfer, flow boiling instability and flow visualization of de-ionized water flow in microchannels. The experimental facility was first designed and constructed by S. Gedupudi (2009) and in the present study; ...
Vertical and horizontal subsidiarity
Directory of Open Access Journals (Sweden)
Ivan V. Daniluk
2016-02-01
Full Text Available This article makes an attempt to analyze the principle of subsidiarity in its two main manifestations, namely vertical and horizontal, to outline the principles of relations between the state and regions within the vertical subsidiarity, and features a collaboration of the government and civil society within the horizontal subsidiarity. Scientists identify two types, or two levels of the subsidiarity principle: vertical subsidiarity and horizontal subsidiarity. First, vertical subsidiarity (or territorial concerning relations between the state and other levels of subnational government, such as regions and local authorities; second, horizontal subsidiarity (or functional concerns the relationship between state and citizen (and civil society. Vertical subsidiarity expressed in the context of the distribution of administrative responsibilities to the appropriate higher level lower levels relative to the state structure, ie giving more powers to local government. However, state intervention has subsidiary-lower action against local authorities in cases of insolvency last cope on their own, ie higher organisms intervene only if the duties are less authority is insufficient to achieve the goals. Horizontal subsidiarity is within the relationship between power and freedom, and is based on the assumption that the concern for the common good and the needs of common interest community, able to solve community members (as individuals and citizens’ associations and role of government, in accordance horizontal subsidiarity comes to attracting features subsidiarity assistance, programming, coordination and possibly control.
Onset of a nucleate boiling and incipient point of net vapor generation in narrow channel
International Nuclear Information System (INIS)
Hong, G.
2014-01-01
An experimental study on onset of nucleate boiling (ONB) and incipient point of net vapor generation (IPNVG) in narrow rectangular channel was presented. Flow direction in the channel was vertical upward. The experimental results indicate that the classical correlations of ONB for conventional channels were not suitable for the present narrow rectangular channel. The wall superheat needed to initiate boiling is found to be higher for the same given values of heat and mass flux. The experimental results of IPNVG indicate that the heat flux, triggering net vapor generation in narrow rectangular channel, is litter lower than that calculated by correlations for conventional channels. The relative prediction error of qIPNVG by Griffith model, Saha model and Sun model ranges from -17.9% to +9.6%. A new correlation was developed to predict the ONB in narrow rectangular channel. The proposed correlation predictions agreed well with the experimental data. (author)
Conformal boundary state for the rectangular geometry
Energy Technology Data Exchange (ETDEWEB)
Bondesan, R., E-mail: roberto.bondesan@cea.fr [Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Institut Henri Poincare, 11 rue Pierre et Marie Curie, 75231 Paris (France); Dubail, J. [Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120 (United States); Jacobsen, J.L. [LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Institut Henri Poincare, 11 rue Pierre et Marie Curie, 75231 Paris (France); Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris (France); Saleur, H. [Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Institut Henri Poincare, 11 rue Pierre et Marie Curie, 75231 Paris (France); Physics Department, USC, Los Angeles, CA 90089-0484 (United States)
2012-09-11
We discuss conformal field theories (CFTs) in rectangular geometries, and develop a formalism that involves a conformal boundary state for the 1+1d open system. We focus on the case of homogeneous boundary conditions (no insertion of a boundary condition changing operator), for which we derive an explicit expression of the associated boundary state, valid for any arbitrary CFT. We check the validity of our solution, comparing it with known results for partition functions, numerical simulations of lattice discretizations, and coherent state expressions for free theories.
Numerical study on rectangular microhollow cathode discharge
International Nuclear Information System (INIS)
He Shoujie; Ouyang Jiting; He Feng; Li Shang
2011-01-01
Rectangular microhollow cathode discharge in argon is investigated by using two-dimensional time-dependent self-consistent fluid model. The electric potential, electric field, particle density, and mean electron energy are calculated. The results show that hollow cathode effect can be onset in the present configuration, with strong electric field and high mean electron energy in the cathode fall while high density and quasineutral plasma in the negative glow. The potential well and electric filed reversal are formed in the negative glow region. It is suggested that the presence of large electron diffusion flux necessitates the field reversal and potential well.
Droplet size in a rectangular Venturi scrubber
Costa, M. A. M.; Henrique, P. R.; Gonçalves, J. A. S.; Coury, J.R.
2004-01-01
The Venturi scrubber is a device which uses liquid in the form of droplets to efficiently remove fine particulate matter from gaseous streams. Droplet size is of fundamental importance for the scrubber performance. In the present experimental study, a laser diffraction technique was used in order to measure droplet size in situ in a Venturi scrubber with a rectangular cross section. Droplet size distribution was measured as a function of gas velocity (58.3 to 74.9 m/s), liquid-to-gas ratio (0...
Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers
Rooze, J.; André, M.; van der Gulik, G-J.S.; Fernandez Rivas, David; Gardeniers, Johannes G.E.; Rebrov, E.V.; Schouten, J.C.; Keurentjes, J.T.F.
2012-01-01
Decreasing the constriction size and residence time in hydrodynamic cavitation is predicted to give increased hot spot temperatures at bubble collapse and increased radical formation rate. Cavitation in a 100 × 100 μm2 rectangular micro channel and in a circular 750 μm diameter milli channel has
Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers
Rooze, J.; Andre, M.; Gulik, van der G.J.S.; Fernandez-Rivas, D.; Gardeniers, J.G.E.; Rebrov, E.; Schouten, J.C.; Keurentjes, J.T.F.
2012-01-01
Decreasing the constriction size and residence time in hydrodynamic cavitation is predicted to give increased hot spot temperatures at bubble collapse and increased radical formation rate. Cavitation in a 100 × 100 µm2 rectangular micro channel and in a circular 750 µm diameter milli channel has
Plasmonic band-stop filter with asymmetric rectangular ring for WDM networks
International Nuclear Information System (INIS)
Nezhad, Vahid Foroughi; Abrishamian, Mohammad Sadegh; Abaslou, Siamak
2013-01-01
We proposed a simple asymmetric rectangular band-stop filter based on metal–insulator–metal plasmonic waveguides. It is shown that the performance of the structure as a filter strongly depends on the asymmetry of the rectangular structure. An analytical model based on the analogy between MDM waveguides and the microwave transmission line is used to calculate the resonance wavelengths and explain the behavior of the filter. The bandwidth of spectra can be easily manipulated by adjusting the topological parameters of the filter. It is also demonstrated that by adjusting the bandwidth, the filter can be used for CWDM standard channels. The filter behavior is verified using the numerical finite difference time domain (FDTD) method. The filter is compact and has a footprint of 1 μm × 0.5 μm, which is suitable for integrated optical circuits. (paper)
MHD and heat transfer benchmark problems for liquid metal flow in rectangular ducts
International Nuclear Information System (INIS)
Sidorenkov, S.I.; Hua, T.Q.; Araseki, H.
1994-01-01
Liquid metal cooling systems of a self-cooled blanket in a tokamak reactor will likely include channels of rectangular cross section where liquid metal is circulated in the presence of strong magnetic fields. MHD pressure drop, velocity distribution and heat transfer characteristics are important issues in the engineering design considerations. Computer codes for the reliable solution of three-dimensional MHD flow problems are needed for fusion relevant conditions. Argonne National Laboratory and The Efremov Institute have jointly defined several benchmark problems for code validation. The problems, described in this paper, are based on two series of rectangular duct experiments conducted at ANL; one of the series is a joint ANL/Efremov experiment. The geometries consist of variation of aspect ratio and wall thickness (thus wall conductance ratio). The transverse magnetic fields are uniform and nonuniform in the axial direction
Search for horizontal bosons at the SSC
International Nuclear Information System (INIS)
Albright, C.H.; Deshpande, N.G.; Gunion, J.F.; Haber, H.E.
1984-01-01
The production process anti p p → l - l' + + X, where the leptons belong to two different generations and X refers to spectator jets, provides a clear signature for horizontal (generation-changing) bosons when the leptons are emitted nearly back-to-back and p/sub T//sup miss/ = 0. Cross sections and p/sub T/ distributions for each lepton are presented, and discovery limits on M/sub H/ are extracted for several different channels
Reading with a simulated 60-channel implant
Directory of Open Access Journals (Sweden)
Angelica ePerez Fornos
2011-05-01
Full Text Available First generation retinal prostheses containing 50-60 electrodes are currently in clinical trials. The purpose of this study was to evaluate the theoretical upper limit (best possible reading performance attainable with a state-of-the-art 60-channel retinal implant and to find the optimum viewing conditions for the task. Four normal volunteers performed full-page text reading tasks with a low resolution, 60-pixel viewing window that was stabilized in the central visual field. Two parameters were systematically varied: (1 spatial resolution (image magnification and (2 the orientation of the rectangular viewing window. Performance was measured in terms of reading accuracy (% of correctly read words and reading rates (words/min. Maximum reading performances were reached at spatial resolutions between 3.6 and 6 pixels/char. Performance declined outside this range for all subjects. In optimum viewing conditions (4.5 pixels/char, subjects achieved almost perfect reading accuracy and mean reading rates of 26 words/min for the vertical viewing window and of 34 words/min for the horizontal viewing window. These results suggest that, theoretically, some reading abilities can be restored with actual state-of-the-art retinal implant prototypes if image magnification is within an optimum range. Future retinal implants providing higher pixel resolutions, thus allowing for a wider visual span might allow faster reading rates.
International Nuclear Information System (INIS)
Nur Rahmad Yusuf
2013-01-01
Experimental studies to study the mechanism of boiling heat transfer in narrow rectangular channel under severe accident scenarios of TMI-2 nuclear power plant necessary for the understanding of management-related accidents. The research aims to obtain heat flux values and the critical heat flux (CHF) during the process of boiling heat transfer in narrow rectangular channel. Research methods experimentally using the HEATING-02 test section with cooling fluid is water temperature 98 °C. Experiments performed by varying the hot plate initial temperature of 100 °C, 200 °C and 300 °C with channel size 1 mm. Boiling during the cooling process was recorded by a transient temperature on the hot plate. Temperature data used to calculate the heat flux and wall temperature, the results are represented through the boiling curve. The results show that the higher plate temperature, the narrower width of the curve will be narrower and its mean that the plate surface cooling time will be slower. Results visualization is seen that the CCF occurred at the hot plate initial temperature of 100 °C, 200 °C and 300 °C with channel size 1 mm. (author)
Fully developed liquid-metal flow in multiple rectangular ducts in a strong uniform magnetic field
International Nuclear Information System (INIS)
Molokov, S.
1993-01-01
Fully developed liquid-metal flow in a straight rectangular duct with thin conducting walls is investigated. The duct is divided into a number of rectangular channels by electrically conducting dividing walls. A strong uniform magnetic field is applied parallel to the outer side walls and dividing walls and perpendicular to the top and the bottom walls. The analysis of the flow is performed by means of matched asymptotics at large values of the Hartmann number M. The asymptotic solution obtained is valid for arbitrary wall conductance ratio of the side walls and dividing walls, provided the top and bottom walls are much better conductors than the Hartmann layers. The influence of the Hartmann number, wall conductance ratio, number of channels and duct geometry on pressure losses and flow distribution is investigated. If the Hartmann number is high, the volume flux is carried by the core, occupying the bulk of the fluid and by thin layers with thickness of order M -1/2 . In some of the layers, however, the flow is reversed. As the number of channels increases the flow in the channels close to the centre approaches a Hartmann-type flow with no jets at the side walls. Estimation of pressure-drop increase in radial ducts of a self-cooled liquid-metal blanket with respect to flow in a single duct with walls of the same wall conductance ratio gives an upper limit of 30%. (author). 13 refs., 10 figs., 1 tab
Horizontal violence in Nursing
Directory of Open Access Journals (Sweden)
Tsimoulaki Evangelia
2017-01-01
Full Text Available One’s effort to clarify the definition of horizontal labour violence is of great importance, due to the variety of definitions that are mentioned in the worldwide scientific literature. Furthermore, the reference of multiple forms of such violence herein the nurse professional group is challenging, as well. Another fact of great importance is that, any form of professional violence (horizontal violence, horizontal mobbing in the work place environment can be possibly escalated and include even physical abuse (Bullying, besides the psychological and emotional impact for the victim. The definitions of Horizontal violence, Mobbing and Bullying, include a repeated negative behaviour emanating from at least one “predator” towards at least one “victim”, with work status differences and the existence or lack of physical abuse (Bullying. Horizontal violence is a hostile, aggressive and harmful behaviour which is either overt or concealed and is pointed from an individual to another individual of the same working rank and causes intense emotional pain at the victim. The manifestations vary from humiliating tasks assignment or the victim’s efforts undermining to clearly aggressive behaviors (criticism, intimidation, sarcasm etc.. The reason behind this phenomenon is multifactorial extended not only towards the working environment but also to the personal characteristics of the “predator” as well as the possible “victim”. The researchers emphasize the high incidence of the phenomenon, as well as the cost that is induced by the violent behaviors to both the health professionals and the hospital. Finally, they point out the paradox of the presence of violence inside a system that is designed to promote health.
Rectangular source integral and recurrence relations
International Nuclear Information System (INIS)
Prabha, Hem
2007-01-01
In this paper Hubbell's rectangular source integral H'(a,b), which is a double integral, is expressed as a series of many converging single integrals I n (a,b). Recurrence relations relate these integrals. Once one integral I 1 is computed, recurrence relations are used to compute other integrals. I 1 (a,b) can be computed analytically. H'(a,b) is approximated by considering the first seven terms in the series and the results are found to give good results for various values of a and b. Results are presented for the values of a and b (0.1 to 20 and to 2), respectively. The rate of convergence depends on the values of a and b
Droplet size in a rectangular Venturi scrubber
Directory of Open Access Journals (Sweden)
M. A. M. Costa
2004-06-01
Full Text Available The Venturi scrubber is a device which uses liquid in the form of droplets to efficiently remove fine particulate matter from gaseous streams. Droplet size is of fundamental importance for the scrubber performance. In the present experimental study, a laser diffraction technique was used in order to measure droplet size in situ in a Venturi scrubber with a rectangular cross section. Droplet size distribution was measured as a function of gas velocity (58.3 to 74.9 m/s, liquid-to-gas ratio (0.07 to 0.27 l/m³, and distance from liquid injection point (64 to 173 mm. It was found that all these variables significantly affect droplet size. The results were compared with the predictions from correlations found in the literature.
Large - scale Rectangular Ruler Automated Verification Device
Chen, Hao; Chang, Luping; Xing, Minjian; Xie, Xie
2018-03-01
This paper introduces a large-scale rectangular ruler automated verification device, which consists of photoelectric autocollimator and self-designed mechanical drive car and data automatic acquisition system. The design of mechanical structure part of the device refer to optical axis design, drive part, fixture device and wheel design. The design of control system of the device refer to hardware design and software design, and the hardware mainly uses singlechip system, and the software design is the process of the photoelectric autocollimator and the automatic data acquisition process. This devices can automated achieve vertical measurement data. The reliability of the device is verified by experimental comparison. The conclusion meets the requirement of the right angle test procedure.
The demagnetizing factors for the rectangular samples
International Nuclear Information System (INIS)
Akishin, P.G.; Gaganov, I.A.
1990-01-01
The influence of the demagnetization effect on the distribution of internal magnetic fields for finite samples is considered. The boundary integral method is used to compute the space distribution of the magnetic field in rectangular samples. On the basis of these calculations we compute the distribution of demagnetization factors in the sample for μSR experimental set-up with the real field geometry. The corresponding mathematical expectation and dispersion of this distribution are estimated. The results of the calculation are used in the analysis of the μSR data obtained for high T c superconductors. It is shown for these compounds that the correction to the penetration depth related to the broadening of the field distribution, is not more than 5%. 8 refs.; 2 figs.; 1 tab
Method and structure for cache aware transposition via rectangular subsections
Gustavson, Fred Gehrung; Gunnels, John A
2014-02-04
A method and structure for transposing a rectangular matrix A in a computer includes subdividing the rectangular matrix A into one or more square submatrices and executing an in-place transposition for each of the square submatrices A.sub.ij.
direct method of analysis of an isotropic rectangular plate direct
African Journals Online (AJOL)
eobe
This work evaluates the static analysis of an isotropic rectangular plate with various the static analysis ... method according to Ritz is used to obtain the total potential energy of the plate by employing the used to ..... for rectangular plates analysis, as the behavior of the ... results obtained by previous research work that used.
Towards characterizing graphs with a sliceable rectangular dual
Kusters, V.; Speckmann, B.; Di Giacomo, E.; Lubiw, A.
2015-01-01
Let G be a plane triangulated graph. A rectangular dual of G is a partition of a rectangle R into a set R of interior-disjoint rectangles, one for each vertex, such that two regions are adjacent if and only if the corresponding vertices are connected by an edge. A rectangular dual is sliceable if it
Obtaining S values for rectangular--solid tumors inside rectangular--solid host organs
International Nuclear Information System (INIS)
Stinchcomb, T.G.; Durham, J.S.; Fisher, D.R.
1991-01-01
A method is described for obtaining S values between a tumor and its host organ for use with the MIRD formalism. It applies the point-source specific absorbed fractions for an infinite water medium, tabulated by Berger, to a rectangular solid of arbitrary dimensions which contains a rectangular tumor of arbitrary dimensions. Contributions from pairs of source and target volume elements are summed for the S values between the tumor and itself, between the remaining healthy host organ and itself, and between the tumor and the remaining healthy host organ, with the reciprocity theorem assumed for the last. This method labeled MTUMOR, is interfaced with the widely used MIRDOSE program which incorporates the MIRD formalism. An example is calculated
Su, Jinghong; Chen, Xiaodong; Hu, Guoqing
2018-03-01
Inertial migration has emerged as an efficient tool for manipulating both biological and engineered particles that commonly exist with non-spherical shapes in microfluidic devices. There have been numerous studies on the inertial migration of spherical particles, whereas the non-spherical particles are still largely unexplored. Here, we conduct three-dimensional direct numerical simulations to study the inertial migration of rigid cylindrical particles in rectangular microchannels with different width/height ratios under the channel Reynolds numbers (Re) varying from 50 to 400. Cylindrical particles with different length/diameter ratios and blockage ratios are also concerned. Distributions of surface force with the change of rotation angle show that surface stresses acting on the particle end near the wall are the major contributors to the particle rotation. We obtain lift forces experienced by cylindrical particles at different lateral positions on cross sections of two types of microchannels at various Re. It is found that there are always four stable equilibrium positions on the cross section of a square channel, while the stable positions are two or four in a rectangular channel, depending on Re. By comparing the equilibrium positions of cylindrical particles and spherical particles, we demonstrate that the equivalent diameter of cylindrical particles monotonously increases with Re. Our work indicates the influence of a non-spherical shape on the inertial migration and can be useful for the precise manipulation of non-spherical particles.
Directory of Open Access Journals (Sweden)
WANG Minhao
2017-08-01
Full Text Available Plate structures with openings are common in many engineering structures. The study of the vibration characteristics of such structures is directly related to the vibration reduction, noise reduction and stability analysis of an overall structure. This paper conducts research into the free vibration characteristics of a thin elastic plate with a rectangular opening parallel to the plate in an arbitrary position. We use the improved Fourier series to represent the displacement tolerance function of the rectangular plate with an opening. We can divide the plate into an eight zone plate to simplify the calculation. We then use linear springs, which are uniformly distributed along the boundary, to simulate the classical boundary conditions and the boundary conditions of the boundaries between the regions. According to the energy functional and variational method, we can obtain the overall energy functional. We can also obtain the generalized eigenvalue matrix equation by studying the extremum of the unknown improved Fourier series expansion coefficients. We can then obtain the natural frequencies and corresponding vibration modes of the rectangular plate with an opening by solving the equation. We then compare the calculated results with the finite element method to verify the accuracy and effectiveness of the method proposed in this paper. Finally, we research the influence of the boundary condition, opening size and opening position on the vibration characteristics of a plate with an opening. This provides a theoretical reference for practical engineering application.
Fluid Flow and Infrared Image Analyses on Endwall Fitted with Short Rectangular Plate Fin
Institute of Scientific and Technical Information of China (English)
Kenyu OYAKAWA; Islam Md. DIDARUL; Minoru YAGA
2006-01-01
An experimental investigation is carried out to study fluid flow and heat transfer characteristics on the endwall fitted with arrays ( 7 × 7 ) of short rectangular plate fins of different pattern (co-angular and zigzag) for different pitch ratio. Experiments were conducted in a rectangular duct of 50 mm height for an air flow of Reynolds number ranged from 18750 to 62500 based on the equivalent diameter and air velocity of the duct. Infrared image analysis technique was employed to make clear the characteristics of local heat transfer coefficients on fin base, endwall and overall surface. Flow pattern around the short rectangular plates were visualized by inducing fluorescent dye in a water channel and longitudinal vortices were observed. Increasing the distance between plates in flow direction causes heat transfer enhancement for co-angular pattern, while decreasing the distance causes heat transfer enhancement for zigzag pattern. Zigzag pattern with pitch ratio 2 is found to be more effective in heat transfer enhancement than any other cases investigated.
Directory of Open Access Journals (Sweden)
Niya Ma
2018-02-01
Full Text Available Developing a three-dimensional laminar flow in the entrance region of rectangular microchannels has been investigated in this paper. When the hydrodynamic development length is the same magnitude as the microchannel length, entrance effects have to be taken into account, especially in relatively short ducts. Simultaneously, there are a variety of non-continuum or rarefaction effects, such as velocity slip and temperature jump. The available data in the literature appearing on this issue is quite limited, the available study is the semi-theoretical approximate model to predict pressure drop of developing slip flow in rectangular microchannels with different aspect ratios. In this paper, we apply the lattice Boltzmann equation method (LBE to investigate the developing slip flow through a rectangular microchannel. The effects of the Reynolds number (1 < Re < 1000, channel aspect ratio (0 < ε < 1, and Knudsen number (0.001 < Kn < 0.1 on the dimensionless hydrodynamic entrance length, and the apparent friction factor, and Reynolds number product, are examined in detail. The numerical solution of LBM can recover excellent agreement with the available data in the literature, which proves its accuracy in capturing fundamental fluid characteristics in the slip-flow regime.
Directory of Open Access Journals (Sweden)
Huixing Li
2016-05-01
Full Text Available In order to investigate the characteristics of boiling heat transfer for hydrocarbon mixture refrigerant in plate-fin heat exchanger which is used in the petrochemical industry field, a model was established on boiling heat transfer in vertical rectangular channel. The simulated results were compared with the experimental data from literature. The results show that the deviation between the simulated results and experimental data is within ±15%. Meanwhile, the characteristic of boiling heat transfer was investigated in vertical rectangular minichannel of plate-fin heat exchanger. The results show that the boiling heat transfer coefficient increases with the increase in quality and mass flux and is slightly impacted by the heat flux. This is because that the main boiling mechanism is forced convective boiling while the contribution of nucleate boiling is slight. The correlation of Liu and Winterton is in good agreement with the simulation results. The deviation between correlation calculations and simulation results is mostly less than ±15%. These results will provide some constructive instructions for the understanding of saturated boiling mechanism in a vertical rectangular minichannel and the prediction of heat transfer performance in plate-fin heat exchanger.
Peristaltic Flow of Carreau Fluid in a Rectangular Duct through a Porous Medium
Directory of Open Access Journals (Sweden)
R. Ellahi
2012-01-01
Full Text Available We have examined the peristaltic flow of Carreau fluid in a rectangular channel through a porous medium. The governing equations of motion are simplified by applying the long wavelength and low Reynolds number approximations. The reduced highly nonlinear partial differential equations are solved jointly by homotopy perturbation and Eigen function expansion methods. The expression for pressure rise is computed numerically by evaluating the numerical integration. The physical features of pertinent parameters have been discussed by plotting graphs of velocity, pressure rise, pressure gradient, and stream functions.
Wakefield accelerator with hybrid plasma-dielectric structure of rectangular cross-section
International Nuclear Information System (INIS)
Kiselev, V.A.; Linnik, A.F.; Mirnyj, V.I.; Onishchenko, I.N.; Uskov, V.V.
2010-01-01
Increase of wakefield intensity at its excitation by a long train of relativistic electron bunches in the rectangular dielectric structure when it is filled with plasma of resonant density was experimentally observed. The first portion of the bunches, produced by electron linac 'Almaz-2', ionizes gas at atmospheric pressure so that plasma frequency becomes equal to bunch repetition frequency and to the frequency of principal Eigen mode of the dielectric structure. Excitation enhancement at such resonant conditions is being studied taking into account the improvement of bunch train propagation in the transit channel caused by charge compensation with plasma and the electrodynamics change of the dielectric structure at filling with plasma.
Directory of Open Access Journals (Sweden)
Gang Nam Lee
2016-09-01
Full Text Available In this study, the behaviour of green water impacting on a fixed rectangular structure is studied, and the flow kinematics is investigated with a series of experiments and computational fluid dynamic simulations. The experiments are conducted in a two-dimensional wave flume with the structure under regular wave conditions that are scaled down by the ratio of 1:125 from the BW Pioneer FPSO (Floating production storage and offloading operated in the Gulf of Mexico. The mean values of the horizontal and vertical velocity profiles are provided for the water and bubbly flow induced by the interaction between the rectangular structure and regular waves. CFD simulations are also performed by STAR-CCM+ using the volume-of-fluid (VOF method based on the finite-volume method (FVM and all of CFD results are compared with the experimental data.
Flow Characteristics of Rectangular Underexpanded Impinging Jets
Institute of Scientific and Technical Information of China (English)
Minoru YAGA; Yoshio KINJO; Masumi TAMASHIRO; Kenyu OYAKAWA
2006-01-01
In this paper, the flow fields of underexpanded impinging jet issued from rectangular nozzles of aspect ratio 1,3 and 5 are numerically and experimentally studied. Two dimensional temperature and pressure distributions are measured by using infrared camera and the combination of a pressure scanning device and a stepping motor, respectively. The variation of the stagnation pressure on the impinging plate reveals that a hystcretic phenomenon exists during the increasing and decreasing of the pressure ratio for the aspect ratio of 3.0 and 5.0. It is also found that the nozzle of aspect ratio 1.0 caused the largest total pressure loss pc/p0 = 0.27 at the pressure ratio of p0/pb, = 6.5, where pc is the stagnation center pressure on the wall, p0 the upstream stagnation pressure, pb the ambient pressure. The other two nozzles showed that the pressure loss pc / p0=0.52 and 0.55 were achieved by the nozzles of the aspect ratio 3,0 and 5.0, respectively. The comparison between the calculations and experiments is fairly good, showing the three dimensional streamlines and structures of the shock waves in the jets. However, the hysteresis of the pressure variations observed in the experiments between the pressure ratio of 3.5 and 4.5 cannot be confirmed in the calculations.
Physics from angular projection of rectangular grids
International Nuclear Information System (INIS)
Singh, Ashmeet
2015-01-01
In this paper, we present a mathematical model for the angular projection of a rectangular arrangement of points in a grid. This simple yet interesting, problem has both scholarly value and applications for data extraction techniques to study the physics of various systems. Our work may help undergraduate students to understand subtle points in the angular projection of a grid and describes various quantities of interest in the projection with completeness and sufficient rigour. We show that for certain angular ranges, the projection has non-distinctness, and calculate the details of such angles, and correspondingly, the number of distinct points and the total projected length. We focus on interesting trends obtained for the projected length of the grid elements and present a simple application of the model to determine the geometry of an unknown grid whose spatial extensions are known, using measurement of the grid projection at two angles only. Towards the end, our model is shown to have potential applications in various branches of physical sciences, including crystallography, astrophysics, and bulk properties of materials. (paper)
Steady flow in shallow channel bends
De Vriend, H.J.
1981-01-01
Making use of a mathematical model solving the complete NavierStokes equations for steady flow in coiled rectangular pipes, fully-developed laminar flow in shallow curved channels is analysed physically and mathematically. Transverse convection of momentum by the secondary flow is shown to cause
Rectangular maximum-volume submatrices and their applications
Mikhalev, Aleksandr; Oseledets, I.V.
2017-01-01
We introduce a definition of the volume of a general rectangular matrix, which is equivalent to an absolute value of the determinant for square matrices. We generalize results of square maximum-volume submatrices to the rectangular case, show a connection of the rectangular volume with an optimal experimental design and provide estimates for a growth of coefficients and an approximation error in spectral and Chebyshev norms. Three promising applications of such submatrices are presented: recommender systems, finding maximal elements in low-rank matrices and preconditioning of overdetermined linear systems. The code is available online.
Rectangular maximum-volume submatrices and their applications
Mikhalev, Aleksandr
2017-10-18
We introduce a definition of the volume of a general rectangular matrix, which is equivalent to an absolute value of the determinant for square matrices. We generalize results of square maximum-volume submatrices to the rectangular case, show a connection of the rectangular volume with an optimal experimental design and provide estimates for a growth of coefficients and an approximation error in spectral and Chebyshev norms. Three promising applications of such submatrices are presented: recommender systems, finding maximal elements in low-rank matrices and preconditioning of overdetermined linear systems. The code is available online.
Rectangular-cladding silicon slot waveguide with improved nonlinear performance
Huang, Zengzhi; Huang, Qingzhong; Wang, Yi; Xia, Jinsong
2018-04-01
Silicon slot waveguides have great potential in hybrid silicon integration to realize nonlinear optical applications. We propose a rectangular-cladding hybrid silicon slot waveguide. Simulation result shows that, with a rectangular-cladding, the slot waveguide can be formed by narrower silicon strips, so the two-photon absorption (TPA) loss in silicon is decreased. When the cladding material is a nonlinear polymer, the calculated TPA figure of merit (FOMTPA) is 4.4, close to the value of bulk nonlinear polymer of 5.0. This value confirms the good nonlinear performance of rectangular-cladding silicon slot waveguides.
Horizontal wells in subsurface remediation
International Nuclear Information System (INIS)
Losonsky, G.; Beljin, M.S.
1992-01-01
This paper reports on horizontal wells which offer an effective alternative to vertical wells in various environmental remediation technologies. Hydrogeological advantages of horizontal wells over vertical wells include a larger zone of influence, greater screen length, higher specific capacity and lower groundwater screen entrance velocity. Because of these advantages, horizontal wells can reduce treatment time and costs of groundwater recovery (pump-and-treat), in situ groundwater aeration (sparging) and soil gas extraction (vacuum extraction). Horizontal wells are also more effective than vertical wells in landfill leachate collection (under-drains), bioremediation, and horizontal grout injection
Experimental study of critical heat flux in inclined rectangular gap
International Nuclear Information System (INIS)
Kim, S.J.; Kim, Y.H.; Noh, S.W.; Suh, K.Y.; Rempe, J.L.; Cheung, F.B.; Kim, S.B.
2003-01-01
In the TMI-2 accident, the lower part of the reactor pressure vessel was overheated and then rather rapidly cooled down, as was later found out in a vessel investigation project. This accounted for the possibility of gap cooling feasibility. For this reason, a great deal of investigations was performed to determine the critical heat flux (CHF) from the standpoint of in-vessel retention (IVR). As part of a joint Korean-U.S. International Nuclear Energy Research Initiative (INERI) project, Tests were conducted to examine the critical heat flux (CHF) on the one-dimensional downward heating rectangular channel having a narrow gap by changing the orientation of the copper test heater assembly in a pool of saturated water under the atmospheric pressure. The test parameters include both the gap sizes of 1, 2, 5 and 10 mm, and the surface orientation angles from the downward-facing position (180deg) to the vertical position (90deg), respectively. It was observed that the CHF generally decreases as the surface inclination angle increases and as the gap size decreases. However, in downward-facing position (180deg), somewhat differing results were detected relative to previous reports. For a certain gap size having a similar dimension with vapor layer thickness, more efficient heat transfer was detected and this may be interpreted by characteristic property such as the vapor layer thickness of water. In consistency with several studies reported in the literature, it was found that there exists a transition angle above that the CHF changes with a rapid slope. (author)
Steady flow in shallow channel bends
De Vriend, H.J.
1981-01-01
Making use of a mathematical model solving the complete NavierStokes equations for steady flow in coiled rectangular pipes, fully-developed laminar flow in shallow curved channels is analysed physically and mathematically. Transverse convection of momentum by the secondary flow is shown to cause important deformations of the main velocity distribution. The model is also used to investigate simplified computation methods for shallow channels. The usual 'shallow water approximation' is shown to...
International Nuclear Information System (INIS)
Kiselev, V.A.; Linnik, A.F.; Mirnyj, V.I.; Onishchenko, I.N.; Sotnikov, G.V.; Uskov, V.V.
2008-01-01
The possibility to enhance the efficiency of wake wave excitation in dielectric waveguides of rectangular cross-section was investigated by increase of electron bunches coupling with excited wakefield that was achieved by decrease of transit channel cross-section. At that for each configuration the required changes of dielectric plates size were made to for maintain the coincidence concurrence of bunch repetition frequency and frequency of the principal transverse mode of the corresponding dielectric waveguide. It is established, the decrease of transit channel leading to essential changing of topography of total field excited wake wave
Spectral Optical Readout of Rectangular-Miniature Hollow Glass Tubing for Refractive Index Sensing.
Rigamonti, Giulia; Bello, Valentina; Merlo, Sabina
2018-02-16
For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances.
analytical bending solution of all clamped isotropic rectangular plate
African Journals Online (AJOL)
HP
PLATE ON WINKLER'S FOUNDATION USING CHARACTERISTIC. ORTHOGONAL ... foundations, storage tanks, swimming pools, floor system of buildings, highways ..... “Energy Methods in Theory of Rectangular Plates. (use of Polynomial ...
Rectangular waveform linear transformer driver module design
International Nuclear Information System (INIS)
Zhao Yue; Xie Weiping; Zhou Liangji; Chen Lin
2014-01-01
Linear Transformer Driver is a novel pulsed power technology, its main merits include a parallel LC discharge array and Inductive Voltage Adder. The parallel LC discharge array lowers the whole circuit equivalent inductance and the Inductive Voltage Adder unites the modules in series in order to create a high electric field grads, meanwhile, restricts the high voltage in a small space. The lower inductance in favor of LTD output a fast waveform and IVA confine high voltage in secondary cavity. In recently, some LTD-based pulsed power system has been development yet. The usual LTD architecture provides damped sine shaped output pulses that may not be suitable in flash radiography, high power microwave production, z-pinch drivers, and certain other applications. A more suitable driver output pulse would have a flat or inclined top (slightly rising or falling). In this paper, we present the design of an LTD cavity that generates this type of the output pulse by including within its circular array some number of the harmonic bricks in addition to the standard bricks according to Fourier progression theory. The parallel LC discharge array circuit formula is introduced by Kirchhoff Law, and the sum of harmonic is proofed as an analytic result, meanwhile, rationality of design is proved by simulation. Varying gas spark discharge dynamic resistance with harmonic order and switches jitter are analyzed. The results are as following: The more harmonic order is an approach to the ideal rectangular waveform, but lead to more system complexity. The capacity decreases as harmonic order increase, and gas spark discharge dynamic resistance rises with the capacity. The rising time protracts and flat is decay or even vanishes and the shot to shot reproducibility is degenerate as the switches jitter is high. (authors)
Energy Technology Data Exchange (ETDEWEB)
Perroud, P; Rebiere, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires
1965-07-01
Liquid hydrogen flows in a canal of rectangular cross section of 1 x 6 mm ; only one of the larger side is heated (length 190 mm) in order to simulate the cooling of a missile nozzle. The liquid is admitted subcooled at 25 deg. K in average and under a pressure of 8 bars. Mass velocity from 8.9 to 102 g/cm{sup 2}.s, heat flux from 18 to 296.6 W/cm{sup 2} and wall temperature reaching 800 deg. K. Two correlations of local heat transfer coefficients are presented, one for the region in two-phase flow and the other for the region in homogeneous gas-phase which are compared with the formula previously established for a cylindrical canal. An analysis of pressure drop is also given. Gross experimental results are separately published. (authors) [French] L'hydrogene liquide s'ecoule dans un canal de section rectangulaire de 1 x 6 mm, dont une seule grande face est chauffante (longueur: 190 mm), de facon a simuler le refroidissement d'une tuyere de fusee. Le liquide est admis sous-refroidi a 25 deg. K en moyenne et sous une pression de 8 bars. Vitesse massique de 8,9 a 102 g/cm{sup 2}.s, densite de flux de chaleur de 18 a 296,6 W/cm{sup 2} et temperature de paroi atteignant 800 deg. K. Deux correlations des coefficients d'echanges thermiques locaux sont presentees, l'une pour la region en double-phase et l'autre pour la region en phase gazeuse homogene que l'on compare avec les formules etablies precedemment pour le canal cylindrique. Une analyse des pertes de charge est egalement donnee. Les resultats experimentaux bruts sont publies separement. (auteurs)
Tau method approximation of the Hubbell rectangular source integral
International Nuclear Information System (INIS)
Kalla, S.L.; Khajah, H.G.
2000-01-01
The Tau method is applied to obtain expansions, in terms of Chebyshev polynomials, which approximate the Hubbell rectangular source integral:I(a,b)=∫ b 0 (1/(√(1+x 2 )) arctan(a/(√(1+x 2 )))) This integral corresponds to the response of an omni-directional radiation detector situated over a corner of a plane isotropic rectangular source. A discussion of the error in the Tau method approximation follows
Experimental study of gas-liquid flow local characteristics in rectangular microchannel
Directory of Open Access Journals (Sweden)
Bartkus German
2017-01-01
Full Text Available Using high-speed video recording and the method of dual laser scanning the gas-liquid flow was investigated in a rectangular microchannel with an aspect ratio of 0.74 (cross section 269×362 μm. The T-mixer was used at the channel’s inlet for the two-phase flow formation. The peculiarity of this work is using a number of liquids (ethanol, distilled water, 40% aqueous ethanol with different physical properties, including surface tension, viscosity, and density, with nitrogen. Experiments were carried out for the vertically upward and horizontal flow. Using laser scanning method the maps of flow patterns were obtained for all mixtures.
International Nuclear Information System (INIS)
Sharma, Manish; Pilkhwal, D.S.; Vijayan, P.K.; Saha, D.; Sinha, R.K.
2002-06-01
Occurrence of instability in natural circulation loops can lead to problems in control and occurrence of critical heat flux (CHF) during low flow periods. Remaining within an identified stable zone operation is therefore desirable. Natural circulation loops can pass through an unstable zone during start-up and power raising. In the present work RELAPS / MOD 3.2 computer code has been used to simulate the unstable oscillatory behavior observed in a rectangular natural circulation loop having horizontal heater and horizontal cooler (HHHC) orientation. The results were compared with the experimental data. This report describes the nodalization scheme adopted tor this work and results of the analysis in detail. (author)
Heat Transfer Augmentation in Gas Turbine Blade Rectangular Passages Using Circular Ribs with Fins
Directory of Open Access Journals (Sweden)
Mohammed W. Al-Jibory
2017-11-01
Full Text Available In this paper, an experimental system was designed and built to simulate conditions in the gas turbine blade cooling and run the experimental part. Boundary conditions are: inlet coolant air temperature is 300K with Reynolds numbers (Re=7901 .The surrounding constant hot air temperatures was (673 K.The numerical simulations were done by using software FLUENT version (14.5, in this part, it was presented the effect of using circular ribs having middle fin fitted in rectangular passage channel on fluid flow and heat transfer characteristics. Ribs used with pitch-rib height of 10, rectangular channel of (30x60 mm cross section, 1.5 mm duct thickness and 0.5 m long. The temperature, velocity distribution contours, cooling air temperature distribution at the duct centerline, the inner wall surface temperature of the duct, and thermal performance factor are presented in this paper. it can be seen that the duct with all ribs with middle fins was the better case which leads to increase the coolant air temperature by (10.22 % and decrease the inner wall temperature by (6.15 % . The coolant air flow velocity seems to be accelerated and decelerated through the channel in the presence of ribs, so it was shown that the thermal performance factor along the duct is larger than 1, this is due to the fact that the ribs create turbulent conditions and increasing thermal surface area, and thus increasing heat transfer coefficient than the smooth channel.
NUMERICAL DETERMINATION OF HORIZONTAL SETTLERS PERFORMANCE
Directory of Open Access Journals (Sweden)
M. M. Biliaiev
2015-08-01
Full Text Available Purpose.Horizontal settlers are one of the most important elements in the technological scheme of water purification. Their use is associated with the possibility to pass a sufficiently large volume of water. The important task at the stage of their designing is evaluating of their effectiveness. Calculation of the efficiency of the settler can be made by mathematical modeling. Empirical, analytical models and techniques that are currently used to solve the problem, do not allow to take into account the shape of the sump and various design features that significantly affects the loyalty to a decision on the choice of the size of the settling tank and its design features. The use of analytical models is limited only to one-dimensional solutions, does not allow accounting for nonuniform velocity field of the flow in the settler. The use of advanced turbulence models for the calculation of the hydrodynamics in the settler complex forms now requires very powerful computers. In addition, the calculation of one variant of the settler may last for dozens of hours. The aim of the paper is to build a numerical model to evaluate the effectiveness of horizontal settling tank modified design. Methodology. Numerical models are based on: 1 equation of potential flow; 2 equation of inviscid fluid vortex flow; 3 equation of viscous fluid dynamics; 4 mass transfer equation. For numerical simulation the finite difference schemes are used. The numerical calculation is carried out on a rectangular grid. For the formation of the computational domain markers are used. Findings.The models allow calculating the clarification process in the settler with different form and different configuration of baffles. Originality. A new approach to investigate the mass transfer process in horizontal settler was proposed. This approach is based on the developed CFD models. Three fluid dynamics models were used for the numerical investigation of flows and waste waters purification
International Nuclear Information System (INIS)
Kolmogorov, A N
2004-01-01
The paper is published without modifications. Kolmogorov's manuscript was apparently prepared during his participation in one of expeditions of the ship 'D. Mendeleev' to the Atlantic Ocean (1969) or in a circumnavigation of the world (1971) organized by the Institute for Oceanology led at the time by A.S. Monin. As Kolmogorov himself wrote, the choice of the topic was stimulated by observations concerning '...meanders with horizontal sizes of hundreds of kilometers on a flow involving a layer of hundreds of meters, with subsequent disintegration of these meanders into vortices gradually decreasing in size to several kilometers'. In modern terminology, the paper is devoted to the problem of intensive mixing in pycnoclines, that is, thin layers of stratified fluid, caused by internal waves whose frequencies are less than the Brent-Vaeisaelae frequency. Here I would like to note two circumstances. The first is the scientific insight characteristic for Kolmogorov; this very approach was later reflected in numerous publications (see, for instance, the monograph by V.S. Modevich, V.I. Nikulin, and A.G. Stetsenko 'Dynamics of internal mixing in a stratified medium', Institute for Hydromechanics, Academy of Sciences of Ukraine, Naukova Dumka, Kiev 1988). The second, the more significant in my opinion, is the genuine intellectual curiosity and breadth of thought of this great thinker, who studied not only the most abstract mathematical constructions but also got his head out of the clouds with great interest to solve concrete applied problems
Single phase flow pressure drop and heat transfer in rectangular metallic microchannels
International Nuclear Information System (INIS)
Sahar, Amirah M.; Özdemir, Mehmed R.; Fayyadh, Ekhlas M.; Wissink, Jan; Mahmoud, Mohamed M.; Karayiannis, Tassos G.
2016-01-01
Numerical simulations were performed using Fluent 14.5 to investigate single phase flow and conjugate heat transfer in copper rectangular microchannels. Two different configurations were simulated: (1) single channel with hydraulic diameter of 0.561 mm and (2) multichannel configuration consisting of inlet and outlet manifolds and 25 channels with hydraulic diameter of 0.409 mm. In the single channel configuration, four numerical models were investigated namely, 2D thin-wall, 3D thin-wall (heated from the bottom), 3D thin-wall (three side heated) and 3D full conjugate models. In the multichannel configuration, only 3D full conjugate model was used. The simulation results of the single channel configuration were validated using experimental data of water as a test fluid while the results of the multichannel configuration were validated using experimental data of R134a refrigerant. In the multichannel configuration, flow distribution among the channels was also investigated. The 3D thin-wall model simulation was conducted at thermal boundary conditions similar to those assumed in the experimental data reduction (uniform heat flux) and showed excellent agreement with the experimental data. However, the results of the 3D full conjugate model demonstrated that there is a significant conjugate effect and the heat flux is not uniformly distributed along the channel resulting in significant deviation compared to the experimental data (more than 50%). Also, the results demonstrated that there is a significant difference between the 3D thin-wall and full conjugate models. The simulation of the multichannel configuration with an inlet manifold having gradual decrease in cross sectional area achieved very reasonable uniform flow distribution among the channels which will provide uniform heat transfer rates across the base of the microchannels.
Natural convection heat transfer within horizontal spent nuclear fuel assemblies
International Nuclear Information System (INIS)
Canaan, R.E.
1995-12-01
Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array
Energy Technology Data Exchange (ETDEWEB)
Sathyamurthi, Vijaykumar; Banerjee, Debjyoti [Texas A and M University, College Station, TX (United States). Dept. of Mechanical Engineering], e-mail: dbanerjee@tamu.edu
2009-07-01
The non-linear dynamical model of pool boiling on a horizontal rectangular heater is assessed from experimental results in this study. Pool boiling experiments are conducted over a horizontal rectangular silicon substrate measuring 63 mm x 35 mm with PF-5060 as the test fluid. Novel nano-thermocouples, micro-machined in-situ on the silicon substrate are used to measure the surface temperature fluctuations for steady state pool boiling. The acquisition frequency for temperature data from the nano-thermocouples is 1 k Hz. The surface temperature fluctuations are analyzed using the TISEAN{sup c} package. A time-delay embedding is employed to generate higher dimensional phase-space vectors from the temperature time series record. The optimal delay is determined from the first minimum of the mutual information function. Techniques such as recurrence plots, and false nearest neighbors tests are employed to assess the presence of deterministic chaotic dynamics. Chaos quantifiers such as correlation dimensions are found for various pool boiling regimes using the raw data as well as noise-reduced data. Additionally, pseudo-phase spaces are used to reconstruct the 'attractors'. The results after non-linear noise reduction shows definitive presence of low-dimensional (d {<=} 7) chaos in fully developed nucleate boiling, at critical heat flux and in film boiling. (author)
International Nuclear Information System (INIS)
Sathyamurthi, Vijaykumar; Banerjee, Debjyoti
2009-01-01
The non-linear dynamical model of pool boiling on a horizontal rectangular heater is assessed from experimental results in this study. Pool boiling experiments are conducted over a horizontal rectangular silicon substrate measuring 63 mm x 35 mm with PF-5060 as the test fluid. Novel nano-thermocouples, micro-machined in-situ on the silicon substrate are used to measure the surface temperature fluctuations for steady state pool boiling. The acquisition frequency for temperature data from the nano-thermocouples is 1 k Hz. The surface temperature fluctuations are analyzed using the TISEAN c package. A time-delay embedding is employed to generate higher dimensional phase-space vectors from the temperature time series record. The optimal delay is determined from the first minimum of the mutual information function. Techniques such as recurrence plots, and false nearest neighbors tests are employed to assess the presence of deterministic chaotic dynamics. Chaos quantifiers such as correlation dimensions are found for various pool boiling regimes using the raw data as well as noise-reduced data. Additionally, pseudo-phase spaces are used to reconstruct the 'attractors'. The results after non-linear noise reduction shows definitive presence of low-dimensional (d ≤ 7) chaos in fully developed nucleate boiling, at critical heat flux and in film boiling. (author)
Joining of Aluminium Alloy Sheets by Rectangular Mechanical Clinching
International Nuclear Information System (INIS)
Abe, Y.; Mori, K.; Kato, T.
2011-01-01
A mechanical clinching has the advantage of low running costs. However, the joint strength is not high. To improve the maximum load of the joined sheets by a mechanical clinching, square and rectangular mechanical clinching were introduced. In the mechanical clinching, the two sheets are mechanically joined by forming an interlock between the lower and upper sheets by the punch and die. The joined length with the interlock was increased by the rectangular punch and die. The deforming behaviours of the sheets in the mechanical clinching were investigated, and then the interlock in the sheets had distribution in the circumference of the projection. Although the interlocks were formed in both projection side and diagonal, the interlock in the diagonal was smaller because of the long contact length between the lower sheet and the die cavity surface. The maximum load of the joined sheets by the rectangular mechanical clinching was two times larger than the load by the round mechanical clinching.
A two-component NZRI metamaterial based rectangular cloak
Directory of Open Access Journals (Sweden)
Sikder Sunbeam Islam
2015-10-01
Full Text Available A new two-component, near zero refractive index (NZRI metamaterial is presented for electromagnetic rectangular cloaking operation in the microwave range. In the basic design a pi-shaped, metamaterial was developed and its characteristics were investigated for the two major axes (x and z-axis wave propagation through the material. For the z-axis wave propagation, it shows more than 2 GHz bandwidth and for the x-axis wave propagation; it exhibits more than 1 GHz bandwidth of NZRI property. The metamaterial was then utilized in designing a rectangular cloak where a metal cylinder was cloaked perfectly in the C-band area of microwave regime. The experimental result was provided for the metamaterial and the cloak and these results were compared with the simulated results. This is a novel and promising design for its two-component NZRI characteristics and rectangular cloaking operation in the electromagnetic paradigm.
Errors generated with the use of rectangular collimation
International Nuclear Information System (INIS)
Parks, E.T.
1991-01-01
This study was designed to determine whether various techniques for achieving rectangular collimation generate different numbers and types of errors and remakes and to determine whether operator skill level influences errors and remakes. Eighteen students exposed full-mouth series of radiographs on manikins with the use of six techniques. The students were grouped according to skill level. The radiographs were evaluated for errors and remakes resulting from errors in the following categories: cone cutting, vertical angulation, and film placement. Significant differences were found among the techniques in cone cutting errors and remakes, vertical angulation errors and remakes, and total errors and remakes. Operator skill did not appear to influence the number or types of errors or remakes generated. Rectangular collimation techniques produced more errors than did the round collimation techniques. However, only one rectangular collimation technique generated significantly more remakes than the other techniques
Two-Channel Dielectric Wake Field Accelerator
International Nuclear Information System (INIS)
Hirshfield, Jay L.
2012-01-01
Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at ∼30 GHz, and the structure is configured to exhibit a high transformer ratio (∼12:1). Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.
A review on critical heat flux in horizontal tubes
International Nuclear Information System (INIS)
Baburajan, P.K.; Gaikwad, Avinash; Prabhu, S.V.
2015-01-01
Coolant channels of PHWR during accident similar to loss of coolant accident (LOCA) may experience different flow transients with low pressure and low flow conditions. In the advanced PHWRs it is desired to have small amount of positive quality at the exit of the coolant channel to increase the thermal efficiency. Investigation on pressure drop and heat transfer coefficient under subcooled boiling condition is important in the design and operation of the PHWRs. Understanding of thermal hydraulic phenomena associated with horizontal flow is also important in the safety and accident management in these reactors. A detailed experimental investigation on the important thermal hydraulic phenomena of horizontal tubes under low pressure and low flow conditions is carried out. The phenomena covered in this work are measurement of diabatic single phase and subcooled boiling pressure drop and local heat transfer coefficients, steady state CHF, effect of upstream flow restrictions on flow transients and CHF, CHF under oscillatory flow and flow decreasing transients. A detailed literature review is carried out on CHF in horizontal channels to take stock of the works being carried out along with current state of the art and to justify the motivation for the experimental study. This paper presents the review of available literature on horizontal CHF with the results of the experimental work. (author)
Sadeghi, Arman
2018-03-01
Modeling of fluid flow in polyelectrolyte layer (PEL)-grafted microchannels is challenging due to their two-layer nature. Hence, the pertinent studies are limited only to circular and slit geometries for which matching the solutions for inside and outside the PEL is simple. In this paper, a simple variational-based approach is presented for the modeling of fully developed electroosmotic flow in PEL-grafted microchannels by which the whole fluidic area is considered as a single porous medium of variable properties. The model is capable of being applied to microchannels of a complex cross-sectional area. As an application of the method, it is applied to a rectangular microchannel of uniform PEL properties. It is shown that modeling a rectangular channel as a slit may lead to considerable overestimation of the mean velocity especially when both the PEL and electric double layer (EDL) are thick. It is also demonstrated that the mean velocity is an increasing function of the fixed charge density and PEL thickness and a decreasing function of the EDL thickness and PEL friction coefficient. The influence of the PEL thickness on the mean velocity, however, vanishes when both the PEL thickness and friction coefficient are sufficiently high.
Energy Technology Data Exchange (ETDEWEB)
Kim, Sin-Yeob; Shin, Dong-Ho; Park, Goon-Cherl; Cho, Hyoung Kyu [Seoul National Univ., Seoul (Korea, Republic of); Kim, Chan-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
VHTR being developed at Korea Atomic Energy Research Institute adopts an air-cooled Reactor Cavity Cooling System (RCCS) incorporating rectangular riser channels to remove the afterheat emitted from the reactor vessel. Because the performance of RCCS is determined by heat removal rate through the RCCS riser, it is important to understand the heat transfer phenomena in the RCCS riser to ensure the safety of the reactor. In the mixed convection, due to the buoyance force induced by temperature and density differences, local flow structure and heat transfer mode near the heated wall have significantly dissimilar characteristics from both forced convection and free convection. In this study, benchmark calculation was conducted to reproduce the previous statements that V2F turbulence model can capture the mixed convection phenomena with the Shehata's experimental data. Then, the necessity of the model validation for the mixed convection phenomena was confirmed with the CFD analyses for the geometry of the prototype RCCS riser. For the purpose of validating the turbulence models for mixed convection phenomena in the heated rectangular riser duct, validation plan with three experimental tests was introduced. Among them, the flow visualization test facility with preserved cross-section geometry was introduced and a preliminary test result was shown.
An analytical solution for Dean flow in curved ducts with rectangular cross section
Norouzi, M.; Biglari, N.
2013-05-01
In this paper, a full analytical solution for incompressible flow inside the curved ducts with rectangular cross-section is presented for the first time. The perturbation method is applied to solve the governing equations and curvature ratio is considered as the perturbation parameter. The previous perturbation solutions are usually restricted to the flow in curved circular or annular pipes related to the overly complex form of solutions or singularity situation for flow in curved ducts with non-circular shapes of cross section. This issue specifies the importance of analytical studies in the field of Dean flow inside the non-circular ducts. In this study, the main flow velocity, stream function of lateral velocities (secondary flows), and flow resistance ratio in rectangular curved ducts are obtained analytically. The effect of duct curvature and aspect ratio on flow field is investigated as well. Moreover, it is important to mention that the current analytical solution is able to simulate the Taylor-Görtler and Dean vortices (vortices in stable and unstable situations) in curved channels.
Natural Vibration Analysis of Clamped Rectangular Orthotropic Plates
dalaei, m.; kerr, a. d.
The natural vibrations of clamped rectangular orthotropic plates are analyzed using the extended Kantorovich method. The developed iterative scheme converges very rapidly to the final result. The obtained natural frequencies are evaluated for a square plate made of Kevlar 49 Epoxy and the obtained results are compared with those published by Kanazawa and Kawai, and by Leissa. The agreement was found to be very close. As there are no exact analytical solutions for clamped rectangular plates, the generated closed form expression for the natural modes, and the corresponding natural frequencies, are very suitable for use in engineering analyses.
Perron-Frobenius Theorem for Rectangular Tensors and Directed Hypergraphs
Lu, Linyuan; Yang, Arthur L. B.; Zhao, James J. Y.
2018-01-01
For any positive integers $r$, $s$, $m$, $n$, an $(r,s)$-order $(n,m)$-dimensional rectangular tensor ${\\cal A}=(a_{i_1\\cdots i_r}^{j_1\\cdots j_s}) \\in ({\\mathbb R}^n)^r\\times ({\\mathbb R}^m)^s$ is called partially symmetric if it is invariant under any permutation on the lower $r$ indexes and any permutation on the upper $s$ indexes. Such partially symmetric rectangular tensor arises naturally in studying directed hypergraphs. Ling and Qi [Front. Math. China, 2013] first studied the $(p,q)$-...
A new metamaterial-based wideband rectangular invisibility cloak
Islam, S. S.; Hasan, M. M.; Faruque, M. R. I.
2018-02-01
A new metamaterial-based wideband electromagnetic rectangular cloak is being introduced in this study. The metamaterial unit cell shows sharp transmittances in the C- and X-bands and displays wideband negative effective permittivity region there. The metamaterial unit cell was then applied in designing a rectangular-shaped electromagnetic cloak. The scattering reduction technique was adopted for the cloaking operation. The cloak operates in the certain portion of C-and X-bands that covers more than 4 GHz bandwidth region. The experimental results were provided as well for the metamaterial and the cloak.
Horizontal drilling under Lake Erie
Energy Technology Data Exchange (ETDEWEB)
Meller, R.
2001-07-01
Drilling oil wells under Lake Erie calls for horizontal drilling wells to be drilled from shore out into the pay-zone under the lake. The nature and characteristics of horizontal wells as compared to vertical wells are explored. Considerations that have to be taken into account in drilling horizontal wells are explained (the degree of curvature, drilling fluid quality, geosteering in the pay-zone, steering instrumentation, measurements while drilling (MWD), logging while drilling (LWD)). The concept and reasons for extended reach wells are outlined, along with characteristic features of multilateral wells.
Directory of Open Access Journals (Sweden)
Abderraouf Messai
2013-01-01
Full Text Available A rigorous full-wave analysis of high Tc superconducting rectangular microstrip patch over ground plane with rectangular aperture in the case where the patch is printed on a uniaxially anisotropic substrate material is presented. The dyadic Green’s functions of the considered structure are efficiently determined in the vector Fourier transform domain. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. The accuracy of the analysis is tested by comparing the computed results with measurements and previously published data for several anisotropic substrate materials. Numerical results showing variation of the resonant frequency and the quality factor of the superconducting antenna with regard to operating temperature are given. Finally, the effects of uniaxial anisotropy in the substrate on the resonant frequencies of different TM modes of the superconducting microstrip antenna with rectangular aperture in the ground plane are presented.
Numerical simulation of turbulent buoyant flows in horizontal channels
International Nuclear Information System (INIS)
Seiter, C.
1995-09-01
A numerical method is presented, to calculate the three-dimensional, time-dependent large scale structure of turbulent buoyant flows. The subject of the study is the Rayleigh-Benard-convection with air (Pr=0.71, Ra=2.5 10 6 , 10 7 ) and sodium (Pr=0.006, Ra=8.4 10 4 , 2.5 10 5 , 10 6 , 10 7 ) and a fluid layer with water and an internal heat source (Pr=7.0, Ra I =1.5 10 10 ) at moderate and high Rayleigh-numbers. The goal of the work is both, the analysis of structures of instantaneous as well as the statistical analysis of spatially and/or time averaged data, to give a contribution to the investigation of the characteristics of turbulent natural convection mainly in fluids with small Prandtl-numbers. The large eddy simulation of natural convection requires the development of appropriate momentum and heat subgrid scale models and the formulation of new boundary conditions. The used energy-length-models in the computer code TURBIT are extended methodically by modification of the characteristic length scales of the sub scale turbulence. The reduction or the increase of the sub scale turbulence correlations, caused by the influence of solid boundaries or the stratification, is considered. In the same way the new boundary conditions for the diffusive terms of the conservation equations are seen to be necessary, when the thermal or in the case of liquid metals the more critical hydrodynamic boundary layer is resolved insufficiently or not at all. The extended and new methods, models and boundary conditions, which enabled the realization of the planned simulations, are presented. (orig.)
Measurement of the local void fraction at high pressures in a heating channel
International Nuclear Information System (INIS)
Martin, R.
1969-01-01
Void fraction measurements were made in two phase flow boiling systems at high pressures in a uniformly heated, rectangular channel with a high aspect ratio. The local void fraction values were calculated from measurements of the absorption of a thin collimated X-ray beam (2 mm x 0.05 mm). The mean void fraction in a horizontal section results from integration of the local values across the section. At a fixed measuring station the quality and- void fraction were varied by changing the heat flux, flow rate and pressure systematically. Two channels were used differing in length and thickness (150.8 cm x 5.3 cm x 0.2 cm and the significant features of this study are: -1) The void fraction measurements are among the first obtained at such high pressure (80 to 140 kg/cm 2 ); -2) In the experimental region under consideration the measurements are systematic and numerous enough to allow accurate interpolations: mass velocity from 50 to 220 g/cm 2 .s, heat flux from 40 to 170 W/cm 2 and calculated steam quality from -0.2 to 0.2; -3) Many tests were performed under local boiling conditions with the mean temperature of the fluid below the saturation temperature; and -4) These results were compared to the predictions of certain models presented in the literature and simple empirical formulae were developed to fit the experimental results. (author) [fr
Analysis of Rectangular Microstrip Antennas with Air Substrates ...
African Journals Online (AJOL)
This paper presents an analysis of rectangular microstrip antennas with air substrates. The effect of the substrate thickness on the bandwidth and the efficiency are examined. An additional thin layer supporting the dielectric material is added to the air substrate in order to make the antenna mechanically rigid and easy to ...
Graphene-based tunable terahertz filter with rectangular ring ...
Indian Academy of Sciences (India)
A plasmonic band-pass filter based on graphene rectangular ring resonator with double narrow gaps is proposed and numerically investigated by finite-difference time-domain (FDTD) simulations. For the filter with or without gaps, the resonant frequencies can be effectively adjusted by changing the width of the graphene ...
Plasma-ﬁlled rippled wall rectangular backward wave oscillator
Indian Academy of Sciences (India)
Performance of the backward wave oscillator (BWO) is greatly enhanced with the introduction of plasma. Linear theory of the dispersion relation and the growth rate have been derived and analysed numerically for plasma-ﬁlled rippled wall rectangular waveguide driven by sheet electron beam. To see the effect of plasma ...
Internal flow characteristics of a rectangular ramjet air intake
Moerel, J.-L.; Veraar, R.G.; Halswijk, W.H.C.; Pimentel, R.; Corriveau, D.; Hamel, N.; Lesage, F.; Vos, J.B.
2009-01-01
Two research institutes TNO Defence, Security and Safety and DRDC-Valcartier have worked together on the improvement of modeling and simulation tools for the functioning of supersonic air intakes for realistic ramjet engines of tactical missiles. The emphasis laid on complex rectangular intake
The problem of isotropic rectangular plate with four clamped edges
Indian Academy of Sciences (India)
of rectangular plates has been a subject of study in solid mechanics for more than a cen- .... loading is solved first, giving the deflection function for the strip case and .... The authors gratefully acknowledge the advice and encouragement of ...
FDTD Analysis of U-Slot Rectangular Patch Antenna
Luk, K. M.; Tong, K. F.; Shum, S. M.; Lee, K. F.; Lee, R. Q.
1997-01-01
The U-slot rectangular patch antenna (Figure I) has been found experimentally to provide impedance and gain bandwidths of about 300 without the need of stacked or coplanar parasitic elements [1,2]. In this paper, simulation results of the U-slot patch using FDTD analysis are presented. Comparison with measured results are given.
Graphene-based tunable terahertz filter with rectangular ring ...
Indian Academy of Sciences (India)
WEI SU
2017-08-16
Aug 16, 2017 ... Abstract. A plasmonic band-pass filter based on graphene rectangular ring resonator with double narrow gaps is proposed and numerically investigated by finite-difference time-domain (FDTD) simulations. For the filter with or without gaps, the resonant frequencies can be effectively adjusted by changing ...
Optical vortex propagation in few-mode rectangular polymer waveguides
DEFF Research Database (Denmark)
Lyubopytov, Vladimir S.; Chipouline, Arkadi; Zywietz, Urs
2017-01-01
We demonstrate that rectangular few-mode dielectric waveguides, fabricated with standard lithographic technique, can support on-chip propagation of optical vortices. We show that specific superpositions of waveguide eigenmodes form quasi-degenerate modes carrying light with high purity states...
Shielding calculations for changing from circular to a Rectangular ...
African Journals Online (AJOL)
The Radiation Technology Centre (RTC) of the Ghana Atomic Energy Commission operates a 1.85 PBq Co-60 gamma irradiator for research, food preservation and medical sterilization. It has become necessary to improve the do-se rate delivered by changing the circular arrangement of sources to a rectangular one.
INVESTIGATION OF ADMIXTURE SEDIMENTATION IN THE HORIZONTAL SETTLER
Directory of Open Access Journals (Sweden)
V. A. Kozachyna
2016-08-01
Full Text Available Purpose.Sedimentation by gravity is the most common and extensively applied treatment process for the removal of solids from water and wastewater and it has been used for over one hundred years. Sedimentation tanks are one of the major parts of a treatment plant especially in purification of turbid flows. Horizontal settlers are mainly used for purification of high quantity of water. In these tanks, the low speed turbid water will flow through the length of the tank and suspended particle have enough time to settle. Finding new and useful methods for calculating and increasing hydraulic efficiency of horizontal settlers is the objective of many theoretical, experimental and numerical studies.But currently used models and methods in Ukraine do not allow taking into account geometrical form and various design features. In this paper the numerical model was developed to evaluate the effectiveness of horizontal settler with modified structure. Methodology. Numerical model is based on: 1 equation of viscous fluid dynamics; 2 mass transfer equation. For numerical simulation the finite difference schemes are used. The numerical calculation is carried out on a rectangular grid. For the formation of the computational domain markers are used. Findings.The model allows obtaining the purification process in the settler with different form and different configuration of baffles. Originality. A new approach to investigate the mass transfer process in horizontal settler was proposed. This approach is based on the developed CFD model. The fluid dynamics model was used for the numerical investigation of flows and waste waters purification. To investigate influence of baffles on settler efficiency physical experiment was carried out. Practical value.The developed model has more capacity than the existing models in Ukraine. The developed model allows computing quickly the efficiency of water purification in settlers. The model is not computationally expensive
Influence of Horizontal Seismic Excitation on Tank – Fluid – Soil Seismic Interaction
Directory of Open Access Journals (Sweden)
Kotrasová Kamila
2017-06-01
Full Text Available Ground-supported tanks are used to store a variety of liquids. During the earthquake activity the liquid exerts impulsive and convective effects. This paper provides theoretical background for hydrodynamic pressure that is being developing during an earthquake in the liquid storage ground-supported rectangular container – the endlessly long shipping channel, is grounded on hard soil or sub-soil.
Gillespie, M. I.; Kriek, R. J.
2017-12-01
A membraneless Divergent Electrode-Flow-Through (DEFT™) alkaline electrolyser, for unlocking profitable hydrogen production by combining a simplistic, inexpensive, modular and durable design, capable of overcoming existing technology current density thresholds, is ideal for decentralised renewable hydrogen production, with the only requirement of electrolytic flow to facilitate high purity product gas separation. Scale-up of the technology was performed, representing a deviation from the original tested stack design, incorporating elongated electrodes housed in a filter press assembly. The pilot plant operating parameters were limited to a low flow velocity range (0.03 m s-1 -0.04 m s-1) with an electrode gap of 2.5 mm. Performance of this pilot plant demonstrated repeatability to results previously obtained. Mesh electrodes with geometric area of 344.32 cm2 were used for plant performance testing. A NiO anode and Ni cathode combination developed optimal performance yielding 508 mA cm-2 at 2 VDC in contrast to a Ni anode and cathode combination providing 467 mA cm-2 at 2.26 VDC at 0.04 m s-1, 30% KOH and 80 °C. An IrO2/RuO2/TiO2 anode and Pt cathode combination underwent catalyst deactivation. Owing to the nature of the gas/liquid separation system, gas qualities were inadequate compared to results achieved previously. Future improvements will provide qualities similar to results achieved before.
Jin, Kaiqiang; Duan, Qiangling; Liew, K M; Peng, Zhongjing; Gong, Liang; Sun, Jinhua
2017-04-05
Research surrounding premixed flame propagation in ducts has a history of more than one hundred years. Most previous studies focus on the tulip flame formation and flame acceleration in pure gas fuel-air flame. However, the premixed natural gas-air flame may show different behaviors and pressure dynamics due to its unique composition. Natural gas, methane and acetylene are chosen here to conduct a comparison study on different flame behaviors and pressure dynamics, and to explore the influence of different compositions on premixed flame dynamics. The characteristics of flame front and pressure dynamics are recorded using high-speed schlieren photography and a pressure transducer, respectively. The results indicate that the compositions of the gas mixture greatly influence flame behaviors and pressure. Acetylene has the fastest flame tip speed and the highest pressure, while natural gas has a faster flame tip speed and higher pressure than methane. The Bychkov theory for predicting the flame skirt motion is verified, and the results indicate that the experimental data coincide well with theory in the case of equivalence ratios close to 1.00. Moreover, the Bychkov theory is able to predict flame skirt motion for acetylene, even outside of the best suitable expansion ratio range of 6
International Nuclear Information System (INIS)
Fukano, Tohru; Tominaga, Akira; Morikawa, Kengo.
1986-01-01
The aspect of a liquid film flowing near a flat plate type obstacle was observed, and the liquid film thickness and the entrainment were measured under a wide range of gas and liquid flow rates. The results are summarized as follows: (1) The configurations of film flows near the obstacle are classified according to whether (a) the liquid film climbs over the obstacle or not, (b) the air flows under the obstacle or not, or (c) the liquid film swells or sinks just upstream or downstream of the obstacle. (2) The lower the liquid flow rate, the larger the effect of the obstacle on the film thickness. (3) The generation of entrainment is regulated by the obstacle when the air volumetric flux is high and by the disturbance wave when it is low. (author)
Flow dynamics and concentration polarisation in spacer-filled channels
DEFF Research Database (Denmark)
Lipnizki, Jens; Jonsson, Gunnar Eigil
2002-01-01
The key to developing highly efficient spiral-wound modules is the improvement of the mass transfer mechanisms. In this study a study of the mass transfer has been carried out using a flat test cell with six permeate outlets and a rectangular feed channel. Using this experimental set-up, it has b...
Study on density wave oscillation in parallel channel by section form
International Nuclear Information System (INIS)
Huang Jun; Huang Yanping; Wang Yanlin
2013-01-01
Based on 170 density wave oscillation experimental data from parallel round tube and narrow rectangular channel, the experiment method, identification method of oscillation and analysis method of experimental data have be uniformed, and the oscillation boundary of round tube and narrow rectangular channel have be analyzed. The investigation results show that the oscillation boundary is not affected by the channel section forms with identical equivalent diameter with pressure l.0∼19.2 MPa, mass flux 101.9∼1200.0 kg·m-2·s -1 and inlet sub cooling 18.0∼85.2℃. (authors)
Flow Through a Rectangular-to-Semiannular Diffusing Transition Duct
Foster, Jeff; Wendt, Bruce J.; Reichert, Bruce A.; Okiishi, Theodore H.
1997-01-01
Rectangular-to-semiannular diffusing transition ducts are critical inlet components on supersonic airplanes having bifucated engine inlets. This paper documents measured details of the flow through a rectangular-to-semiannular transition duct having an expansion area ratio of 1.53. Three-dimensional velocity vectors and total pressures at the exit plane of the diffuser are presented. Surface oil-flow visualization and surface static pressure data are shown. The tests were conducted with an inlet Mach number of 0.786 and a Reynolds number based on the inlet centerline velocity and exit diameter of 3.2 x 10(exp 6). The measured data are compared with previously published computational results. The ability of vortex generators to reduce circumferential total pressure distortion is demonstrated.
On the prestressing and deformation of rectangular particle detector frames
International Nuclear Information System (INIS)
Margulies, S.
1978-01-01
Particle detectors such as spark chambers and multiwire proportional chambers (MWPC) generally contain planar electrodes stretched across rectangular frames. For detectors of reasonable size, this can result in fairly large forces acting on the frames. To maintain the electrode planes under uniform tension and to prevent sagging, the frames must be prestressed. This paper contains a detailed examination of the deformation of rectangular frames under stress. A simple model for this phenomenon is presented. The model consists of treating each side of the frame as an elastic beam subject to the condition that the sides remain perpendicular at the corners. The predictions of the model are in good agreement with measured deflections of a MWPC frame. The model is used to determine the optimum value of a single concentrated prestressing force F to best approximate the total distributed force W of a uniformly tensed electrode plane. For most geometries it is found that F is about 62% of W. (Auth.)
Free vibration analysis of rectangular plates with central cutout
Directory of Open Access Journals (Sweden)
Kanak Kalita
2016-12-01
Full Text Available A nine-node isoparametric plate element in conjunction with first-order shear deformation theory is used for free vibration analysis of rectangular plates with central cutouts. Both thick and thin plate problems are solved for various aspect ratios and boundary conditions. In this article, primary focus is given to the effect of rotary inertia on natural frequencies of perforated rectangular plates. It is found that rotary inertia has significant effect on thick plates, while for thin plates the rotary inertia term can be ignored. It is seen that the numerical convergence is very rapid and based on comparison with experimental and analytical data from literature, it is proposed that the present formulation is capable of yielding highly accurate results. Finally, some new numerical solutions are provided here, which may serve as benchmark for future research on similar problems.
Relativistic energy-dispersion relations of 2D rectangular lattices
Ata, Engin; Demirhan, Doğan; Büyükkılıç, Fevzi
2017-04-01
An exactly solvable relativistic approach based on inseparable periodic well potentials is developed to obtain energy-dispersion relations of spin states of a single-electron in two-dimensional (2D) rectangular lattices. Commutation of axes transfer matrices is exploited to find energy dependencies of the wave vector components. From the trace of the lattice transfer matrix, energy-dispersion relations of conductance and valence states are obtained in transcendental form. Graphical solutions of relativistic and nonrelativistic transcendental energy-dispersion relations are plotted to compare how lattice parameters V0, core and interstitial size of the rectangular lattice affects to the energy-band structures in a situation core and interstitial diagonals are of equal slope.
Are Haar-like Rectangular Features for Biometric Recognition Reducible?
DEFF Research Database (Denmark)
Nasrollahi, Kamal; Moeslund, Thomas B.
2013-01-01
Biometric recognition is still a very difficult task in real-world scenarios wherein unforeseen changes in degradations factors like noise, occlusion, blurriness and illumination can drastically affect the extracted features from the biometric signals. Very recently Haar-like rectangular features...... which have usually been used for object detection were introduced for biometric recognition resulting in systems that are robust against most of the mentioned degradations [9]. The problem with these features is that one can define many different such features for a given biometric signal...... and it is not clear whether all of these features are required for the actual recognition or not. This is exactly what we are dealing with in this paper: How can an initial set of Haar-like rectangular features, that have been used for biometric recognition, be reduced to a set of most influential features...
A Novel Dual-Band Circularly Polarized Rectangular Slot Antenna
Directory of Open Access Journals (Sweden)
Biao Li
2016-01-01
Full Text Available A coplanar waveguide fed dual-band circularly polarized rectangular slot antenna is presented. The proposed antenna consists of a rectangular metal frame acting as a ground and an S-shaped monopole as a radiator. The spatial distribution of the surface current density is employed to demonstrate that the circular polarization is generated by the S-shaped monopole which controls the path of the surface currents. An antenna prototype, having overall dimension 37 × 37 × 1 mm3, has been fabricated on FR4 substrate with dielectric constant 4.4. The proposed antenna achieves 10 dB return loss bandwidths and 3 dB axial ratio (AR in the frequency bands 2.39–2.81 GHz and 5.42–5.92 GHz, respectively. Both these characteristics are suitable for WLAN and WiMAX applications.
INTERACTION OF LIQUID FLAT SCREENS WITH GAS FLOW RESTRICTED BY CHANNEL WALLS
Directory of Open Access Journals (Sweden)
S. T. Aksentiev
2005-01-01
Full Text Available The paper gives description of physical pattern of liquid screen interaction that are injected from the internal walls of a rectangular channel with gas flow. Criterion dependences for determination of intersection coordinates of external boundaries with longitudinal channel axis and factor of liquid screen head resistance.
New model for burnout prediction in channels of various cross-section
Energy Technology Data Exchange (ETDEWEB)
Bobkov, V.P.; Kozina, N.V.; Vinogrado, V.N.; Zyatnina, O.A. [Institute of Physics and Power Engineering, Kaluga (Russian Federation)
1995-09-01
The model developed to predict a critical heat flux (CHF) in various channels is presented together with the results of data analysis. A model is the realization of relative method of CHF describing based on the data for round tube and on the system of correction factors. The results of data description presented here are for rectangular and triangular channels, annuli and rod bundles.
Effects of free-surface on design charts for open channels
African Journals Online (AJOL)
2011-12-14
Dec 14, 2011 ... Normal depth is an important parameter for the design of channels and canals. For rectangular, trapezoidal, and circular channel sections it is possible to express normal depth by a trial-and-error procedure or analytically. However, the effects of free-surface on the design charts for determination of the ...
Postbuckling Analysis Of A Rectangular Plate Loaded In Compression
Directory of Open Access Journals (Sweden)
Havran Jozef
2015-12-01
Full Text Available The stability analysis of a thin rectangular plate loaded in compression is presented. The nonlinear FEM equations are derived from the minimum total potential energy principle. The peculiarities of the effects of the initial imperfections are investigated using the user program. Special attention is paid to the influence of imperfections on the post-critical buckling mode. The FEM computer program using a 48 DOF element has been used for analysis. Full Newton-Raphson procedure has been applied.
Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations
Zhang, Liang; He, Wenlong; Donaldson, Craig R.; Cross, Adrian W.
2016-09-01
The mode-selective microwave reflector with periodic rectangular corrugations in the inner surface of a circular metallic waveguide is studied in this paper. The relations between the bandwidth and reflection coefficient for different numbers of corrugation sections were studied through a global optimization method. Two types of reflectors were investigated. One does not consider the phase response and the other does. Both types of broadband reflectors operating at W-band were machined and measured to verify the numerical simulations.
Thermal stresses in rectangular plates: variational and finite element solutions
International Nuclear Information System (INIS)
Laura, P.A.A.; Gutierrez, R.H.; Sanchez Sarmiento, G.; Basombrio, F.G.
1978-01-01
This paper deals with the development of an approximate method for the analysis of thermal stresses in rectangular plates (plane stress problem) and an evaluation of the relative accuracy of the finite element method. The stress function is expanded in terms of polynomial coordinate functions which identically satisfy the boundary conditions, and a variational approach is used to determine the expansion coefficients. The results are in good agreement with a finite element approach. (Auth.)
Diffusion of heat from a finite, rectangular, plane heat source
International Nuclear Information System (INIS)
Ferreri, J.C.; Caballero, C.H.
1985-01-01
Non-dimensional results for the temperature field originating in a rectangular, finite, plane heat source with infinitesimal thickness are introduced. The source decays in time, zero decay being a particular case. Results are useful for obtaining an aproximation of the maximum temperature of a system holding an internal heat source. The range selected for the parameters is specially useful in the case of a nuclear waste repository. The application to the case of mass diffussion arises from analogy. (Author) [es
Rectangular superpolynomials for the figure-eight knot 41
Kononov, Ya. A.; Morozov, A. Yu.
2017-11-01
We rewrite the recently proposed differential expansion formula for HOMFLY polynomials of the knot 41 in an arbitrary rectangular representation R = [rs] as a sum over all Young subdiagrams λ of R with surprisingly simple coefficients of the Z factors. Intriguingly, these coefficients are constructed from the quantum dimensions of symmetric representations of the groups SL(r) and SL(s) and restrict the summation to diagrams with no more than s rows and r columns. Moreover, the β-deformation to Macdonald dimensions yields polynomials with positive integer coefficients, which are plausible candidates for the role of superpolynomials for rectangular representations. Both the polynomiality and the positivity of the coefficients are nonobvious, nevertheless true. This generalizes the previously known formulas for symmetric representations to arbitrary rectangular representations. The differential expansion allows introducing additional gradings. For the trefoil knot 31, to which our results for the knot 41 are immediately extended, we obtain the so-called fourth grading of hyperpolynomials. The property of factorization in roots of unity is preserved even in the five-graded case.
Augmented Beta rectangular regression models: A Bayesian perspective.
Wang, Jue; Luo, Sheng
2016-01-01
Mixed effects Beta regression models based on Beta distributions have been widely used to analyze longitudinal percentage or proportional data ranging between zero and one. However, Beta distributions are not flexible to extreme outliers or excessive events around tail areas, and they do not account for the presence of the boundary values zeros and ones because these values are not in the support of the Beta distributions. To address these issues, we propose a mixed effects model using Beta rectangular distribution and augment it with the probabilities of zero and one. We conduct extensive simulation studies to assess the performance of mixed effects models based on both the Beta and Beta rectangular distributions under various scenarios. The simulation studies suggest that the regression models based on Beta rectangular distributions improve the accuracy of parameter estimates in the presence of outliers and heavy tails. The proposed models are applied to the motivating Neuroprotection Exploratory Trials in Parkinson's Disease (PD) Long-term Study-1 (LS-1 study, n = 1741), developed by The National Institute of Neurological Disorders and Stroke Exploratory Trials in Parkinson's Disease (NINDS NET-PD) network. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Research on applications of rectangular beam in micro laser propulsion
International Nuclear Information System (INIS)
Jiao, L.; Cai, J.; Ma, H.H.; Li, G.X.; Li, L.; Shen, Z.W.; Tang, Z.P.
2014-01-01
Highlights: • Diode laser bar of 808 nm is introduced into the micro laser propulsion field. • Double base propellant (DBP) coating with BOPP substrate was obtained. • The combination of laser power and energy decides the propulsion performance. • The new rectangular beam prefers to produce higher impulse. - Abstract: Micro laser propulsion is a new technology with brilliant future. In order to reduce the thruster mass and volume further, laser bar is introduced into the micro laser propulsion field. A new kind of 220 × 20 μm rectangular beam of 808 nm was obtained by oval lens compressing the light of diode at fast axes and slow axes. The effect of laser power, energy and coating thickness of double base propellant on propulsion performance was studied. Propulsion performance of double base propellant under static and dynamic mode shows some different characters. Compared to round beam, the new beam prefers to produce higher impulse. Ablation efficiency of DBP shows better performance in short laser duration. The combination of power density and energy density decides the laser propulsion performance. The new rectangular beam is appropriate for millisecond micro-laser propulsion
Noise control of subsonic cavity flows using plasma actuated receptive channels
International Nuclear Information System (INIS)
Gupta, Arnob Das; Roy, Subrata
2014-01-01
We introduce a passive receptive rectangular channel at the trailing edge of an open rectangular cavity to reduce the acoustic tones generated due to coherent shear layer impingement. The channel is numerically tested at Mach 0.3 using an unsteady three-dimensional large eddy simulation. Results show reduction in pressure fluctuations in the cavity due to which sound pressure levels are suppressed. Two linear dielectric barrier discharge plasma actuators are placed inside the channel to enhance the flow through it. Specifically, acoustic suppression of 7 dB was obtained for Mach 0.3 flow with the plasma actuated channel. Also, the drag coefficient for the cavity reduced by over three folds for the channel and over eight folds for the plasma actuated channel. Such a channel can be useful in noise and drag reduction for various applications, including weapons bay, landing gear and branched piping systems. (fast track communication)
International Nuclear Information System (INIS)
Probert, T.; Claesson, Johan
1997-04-01
In the KBS-3 concept canisters containing nuclear waste are deposited along parallel tunnels over a large rectangular area deep below the ground surface. The temperature field in rock due to such a rectangular grid of heat-releasing canisters is studied. An analytical solution for this problem for any heat source has been presented in a preceding paper. The complete solution is summarized in this paper. The solution is by superposition divided into two main parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. In this sequel to the first report, the local solution is discussed in detail. The local solution consists of three parts corresponding to line heat sources along tunnels, point heat sources along a tunnel and a line heat source along a canister. Each part depends on two special variables only. These parts are illustrated in dimensionless form. Inside the repository the local temperature field is periodic in the horizontal directions and has a short extent in the vertical direction. This allows us to look at the solution in a parallelepiped around a canister. The solution in the parallelepiped is valid for all canisters that are not too close to the repository edges. The total temperature field is calculated for the KBS-3 case. The temperature field is calculated using a heat release that is valid for the first 10 000 years after deposition. The temperature field is shown in 23 figures in order to illustrate different aspects of the complex thermal process
Stackelberg equilibria and horizontal differentiation
Lambertini, Luca
1993-01-01
This paper proposes a taxonomy of the Stackelberg equilibria emerging from a standard game of horizontal differentiation à la Hotelling in which the strategy set of the sellers in the location stage is the real axis. Repeated leadership appears the most advantageous position. Furthermore, this endogenously yields vertical differentiation between products at equilibrium.
Horizontal Diplopia Following Upper Blepharoplasty
Directory of Open Access Journals (Sweden)
Tomás Ortiz-Basso
2014-09-01
Full Text Available Diplopia is an infrequent complication after blepharoplasty. Most of the cases are in its vertical form due to trauma of the extraocular muscles. In this article, we present a case of horizontal diplopia following cosmetic upper blepharoplasty; we review the literature on this unexpected complication and offer some recommendations to avoid it.
International Nuclear Information System (INIS)
Sridhar, S.; Faghri, M.; Lessmann, R.C.
1990-01-01
Experiments have been carried out to study thermal wake effects in arrays of rectangular blocks encountered in electronic equipment. Data were obtained for a series of channel heights and flow velocities. The temperature rise due to wake effects behind a single heated module was found to be fairly independent of the channel height and the position of the heated block, for a given approach velocity. The adiabatic temperature rise data for a module due to a heated element immediately upstream of it for different inter-module spacings were found to correlate well in terms of a new parameter called the surface packing density. This paper reports that it was reported by the authors in an earlier paper that both the adiabatic heat transfer coefficient nd pressure-drop data for regular in-line arrays correlated well in terms of a composite geometric parameter called the column packing density. These experiments have been extended to a higher Reynolds number. Empirical correlations are presented here for friction factor and Nusselt number in terms of the volume packing density, and for the thermal wake effects in terms of the surface packing density. Data from literature for arrays with widely different geometric parameters are shown to agree with these correlations
International Nuclear Information System (INIS)
Yilbas, Bekir Sami; Akhtar, S.S.; Sahin, A.Z.
2016-01-01
Thermal stress developed in thermoelectric generators is critical for long service applications. High temperature gradients, due to a large temperature difference across the junctions, causes excessive stress levels developed in the device pins and electrodes at the interfaces. In the present study, a thermoelectric generator with horizontal pin configuration is considered and thermal stress analysis in the device is presented. Ceramic wafer is considered to resemble the high temperature plate and copper electrodes are introduced at the pin junctions to reduce the electrical resistance between the pins and the high and low temperature junction plates during the operation. Finite element code is used to simulate temperature and stress fields in the thermoelectric generator. In the simulations, convection and radiation losses from the thermoelectric pins are considered and bismuth telluride pin material with and without tapering is incorporated. It is found that von Mises stress attains high values at the interface between the hot and cold junctions and the copper electrodes. Thermal stress developed in tapered pin configuration attains lower values than that of rectangular pin cross-section. - Highlights: • Different cold junction temperatures improves thermoelectric generator performance. • von Mises stress remains high across copper electrodes and hot junction ceramics. • von Mises stress reduces along pin length towards cold junction. • Pin tapering lowers stress levels in thermoelectric generator.
Mechanism of occurrence of self-exciting sloshing in rectangular vessel by plane jet flow
International Nuclear Information System (INIS)
Fukaya, Masashi; Okamoto, Koji; Madarame, Haruki
1996-01-01
FBRs have free liquid surfaces in reactor vessels and others, and it is expected that the flow velocity of liquid sodium coolant heightens accompanying the reduction of the reactor size. In the field where free liquid surface and high velocity flow exist, there is the possibility that various unstable phenomena occur on the liquid surface by the interference of the free liquid surface and flow. One example is the self-exciting sloshing by flow. In order to elucidate the mechanism of occurrence of the phenomena in a simple system, the experimental and analytical examinations were carried out on the self-exciting sloshing of free liquid surface in a rectangular vessel by plane jet flow. The basic oscillation characteristics of self-exciting sloshing were examined, and the physical quantities that control the occurrence of self-exciting sloshing were investigated by examining the effect in the case of changing the shapes of vessels. The experiments on the self-exciting sloshing in the case of vertical, horizontal and oblique plane jet flows are reported. The model for the occurrence of oscillation, in which the interaction of sloshing and jet variation was simplified, is proposed, and the verification of the model is reported. (K.I.)
Pruvost, Jeremy; Cornet, J F; Goetz, Vincent; Legrand, Jack
2012-01-01
Modeling was done to simulate whole-year running of solar rectangular photobioreactors (PBRs). Introducing the concept of ideal reactor, the maximal biomass productivity that could be achieved on Earth on nitrate as N-source was calculated. Two additional factors were also analyzed with respect to dynamic calculations over the whole year: the effect of PBR location and the effects of given operating conditions on the resulting decrease in productivity compared with the ideal one. Simulations were conducted for the cyanobacterium Arthospira platensis, giving an ideal productivity (upper limit) in the range 55-60 tX ha(-1) year(-1) for a sun tracking system (and around 35-40 tX ha(-1) year(-1) for a fixed horizontal PBR). For an implantation in France (Nantes, west coast), the modification in irradiation conditions resulted in a decrease in biomass productivity of 40%. Various parameters were investigated, with special emphasis on the influence of the incident angle of solar illumination on resulting productivities, affecting both light capture and light transfer inside the bulk culture. It was also found that with appropriate optimization of the residence time as permitted by the model, productivities close to maximal could be achieved for a given location. Copyright © 2012 American Institute of Chemical Engineers (AIChE).
Droplet flow along the wall of rectangular channel with gradient of wettability
Kupershtokh, A. L.
2018-03-01
The lattice Boltzmann equations (LBE) method (LBM) is applicable for simulating the multiphysics problems of fluid flows with free boundaries, taking into account the viscosity, surface tension, evaporation and wetting degree of a solid surface. Modeling of the nonstationary motion of a drop of liquid along a solid surface with a variable level of wettability is carried out. For the computer simulation of such a problem, the three-dimensional lattice Boltzmann equations method D3Q19 is used. The LBE method allows us to parallelize the calculations on multiprocessor graphics accelerators using the CUDA programming technology.
Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel
Budiman, Alexander Christantho; Mitsudharmadi, Hatsari; Bouremel, Yann; Winoto, Sonny H.; Low, H. T.
2014-01-01
structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal
1988-05-01
use of liquid metals for current collectors in homopolar motors and generators has led to the design of machines of superior performance. The steady...In some applications of homopolar generators it becomes necessary not only to start and stop the machines but also to operate them under oscillating...conditions. This could be the case in an application where a homopolar generator behaves as an extremely high energy capacitor. Therefore, one is
Wall Shear Stress Induced by a Large Bubble Rising in an Inclined Rectangular Channel
Czech Academy of Sciences Publication Activity Database
Tihon, Jaroslav; Pěnkavová, Věra; Vejražka, Jiří
2014-01-01
Roč. 67, DEC (2014), s. 76-87 ISSN 0301-9322 R&D Projects: GA ČR(CZ) GAP101/12/0585 Institutional support: RVO:67985858 Keywords : taylor bubble * bubble rise velocity * bubble shape Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.061, year: 2014
The Winfrith horizontal impact rig
International Nuclear Information System (INIS)
Barr, P.
1985-12-01
The Horizontal Impact Rig has been designed to allow studies of the impact of radioactive material transport containers and their associated transport vehicles and impact limiters, using large scale models, and to allow physically large missiles to be projected for studying the impact behaviour of metal and concrete structures. It provides an adequately rigid support structure for impact experiments with targets of large dimensions. Details of its design, instrumentation, performance prediction and construction are given. (U.K.)
Atmospheric horizontal divergence and diffusion
International Nuclear Information System (INIS)
Castans, M.
1981-01-01
The action of horizontal divergence on diffusion near the ground is established through.a very simple flow model. The shape of the well-known Pasquill-Gifford-Turner curves, that apparently take account in some way of divergence, is justified. The possibility of explaining the discre--pancies between the conventional straight line model and experimental results, mainly under low-wind-speed satable conditions, is considered. Some hints for further research are made. (auth.)
International Nuclear Information System (INIS)
Mital, Manu
2013-01-01
Thermal management issues are limiting barriers to high density electronics packaging and miniaturization. Liquid cooling using microchannels is an attractive alternative to bulky aluminum heat sinks. The channels can be integrated directly into a chip, and cooling can be further enhanced using nanofluids. The goals of this study are to evaluate heat transfer improvement of a rectangular channel nanofluid heat sink with developing laminar flow, taking into account the pumping power penalty. The proposed model uses semi-empirical correlations to calculate effective nanofluid thermophysical properties, which are then incorporated into heat transfer and friction factor correlations in literature for single-phase flows. The predictions of the model are found to be in good agreement with experimental studies. The validated model is used to predict the thermal resistance and pumping power as a function of four design variables that include the channel width, the wall width, the flow velocity and the particle volume fraction. The parameters are optimized using a Genetic Algorithm (GA) with minimum thermal resistance as the objective function, and fixed specified value of pumping power as the constraint. For a given value of pumping power, the benefit of nanoparticle addition is evaluated by independently optimizing the heat sink, first with nanofluid, and then with base fluid. Comparing the minimized thermal resistances revealed only a small benefit since the nanoparticles increase the pumping power which can alternately be diverted toward an increased velocity in a pure fluid heat sink. The benefit further diminishes with increase in available pumping power. -- Highlights: ► Validated model used to predict heat transfer and pumping power (p.p.) in nanofluids. ► Genetic algorithm used to minimize thermal resistance with p.p. constraint. ► Heat sink design independently optimized with nanofluid and base fluid coolant. ► No significant benefit through particle
International Nuclear Information System (INIS)
Takashima, Keisuke; Adamovich, Igor V.; Xiong Zhongmin; Kushner, Mark J.; Starikovskaia, Svetlana; Czarnetzki, Uwe; Luggenhoelscher, Dirk
2011-01-01
Fast ionization wave (FIW), nanosecond pulse discharge propagation in nitrogen and helium in a rectangular geometry channel/waveguide is studied experimentally using calibrated capacitive probe measurements. The repetitive nanosecond pulse discharge in the channel was generated using a custom designed pulsed plasma generator (peak voltage 10-40 kV, pulse duration 30-100 ns, and voltage rise time ∼1 kV/ns), generating a sequence of alternating polarity high-voltage pulses at a pulse repetition rate of 20 Hz. Both negative polarity and positive polarity ionization waves have been studied. Ionization wave speed, as well as time-resolved potential distributions and axial electric field distributions in the propagating discharge are inferred from the capacitive probe data. ICCD images show that at the present conditions the FIW discharge in helium is diffuse and volume-filling, while in nitrogen the discharge propagates along the walls of the channel. FIW discharge propagation has been analyzed numerically using quasi-one-dimensional and two-dimensional kinetic models in a hydrodynamic (drift-diffusion), local ionization approximation. The wave speed and the electric field distribution in the wave front predicted by the model are in good agreement with the experimental results. A self-similar analytic solution of the fast ionization wave propagation equations has also been obtained. The analytic model of the FIW discharge predicts key ionization wave parameters, such as wave speed, peak electric field in the front, potential difference across the wave, and electron density as functions of the waveform on the high voltage electrode, in good agreement with the numerical calculations and the experimental results.
Investigation of imaging properties for submillimeter rectangular pinholes
Energy Technology Data Exchange (ETDEWEB)
Xia, Dan, E-mail: dxia@uchicago.edu [The Department of Radiology, The University of Chicago, Chicago, Illinois 60637 (United States); Moore, Stephen C., E-mail: scmoore@bwh.harvard.edu, E-mail: miaepark@bwh.harvard.edu, E-mail: mcervo@bwh.harvard.edu; Park, Mi-Ae, E-mail: scmoore@bwh.harvard.edu, E-mail: miaepark@bwh.harvard.edu, E-mail: mcervo@bwh.harvard.edu; Cervo, Morgan, E-mail: scmoore@bwh.harvard.edu, E-mail: miaepark@bwh.harvard.edu, E-mail: mcervo@bwh.harvard.edu [Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 (United States); Metzler, Scott D., E-mail: metzler@upenn.edu [The Department of Radiology, The University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)
2015-12-15
Purpose: Recently, a multipinhole collimator with inserts that have both rectangular apertures and rectangular fields of view (FOVs) has been proposed for SPECT imaging since it can tile the projection onto the detector efficiently and the FOVs in transverse and axial directions become separable. The purpose of this study is to investigate the image properties of rectangular-aperture pinholes with submillimeter apertures sizes. Methods: In this work, the authors have conducted sensitivity and FOV experiments for 18 replicates of a prototype insert fabricated in platinum/iridium (Pt/Ir) alloy with submillimeter square-apertures. A sin{sup q}θ fit to the experimental sensitivity has been performed for these inserts. For the FOV measurement, the authors have proposed a new formula to calculate the projection intensity of a flood image on the detector, taking into account the penumbra effect. By fitting this formula to the measured projection data, the authors obtained the acceptance angles. Results: The mean (standard deviation) of fitted sensitivity exponents q and effective edge lengths w{sub e} were, respectively, 10.8 (1.8) and 0.38 mm (0.02 mm), which were close to the values, 7.84 and 0.396 mm, obtained from Monte Carlo calculations using the parameters of the designed inserts. For the FOV measurement, the mean (standard deviation) of the transverse and axial acceptances were 35.0° (1.2°) and 30.5° (1.6°), which are in good agreement with the designed values (34.3° and 29.9°). Conclusions: These results showed that the physical properties of the fabricated inserts with submillimeter aperture size matched our design well.
Far-field potentials in cylindrical and rectangular volume conductors.
Dumitru, D; King, J C; Rogers, W E
1993-07-01
The occurrence of a transient dipole is one method of producing a far-field potential. This investigation qualitatively defines the characteristics of the near-field and far-field electrical potentials produced by a transient dipole in both cylindrical and rectangular volume conductors. Most body segments of electrophysiologic interest such as arms, legs, thorax, and neck are roughly cylindrical in shape. A centrally located dipole generator produces a nonzero equipotential region which is found to occur along the cylindrical wall at a distance from the dipole of approximately 1.4 times the cylinder's radius and 1.9 times the cylinder's radius for the center of the cylinder. This distance to the equi-potential zone along the surface wall expands but remains less than 3.0 times the cylindrical radius when the dipole is eccentrically placed. The magnitude of the equipotential region resulting from an asymmetrically placed dipole remains identical to that when the dipole is centrally located. This behavior is found to be very similar in rectangular shallow conducting volumes that model a longitudinal slice of the cylinder, thus allowing a simple experimental model of the cylinder to be utilized. Amplitudes of the equipotential region are inversely proportional to the cylindrical or rectangular volume's cross-sectional area at the location of dipolar imbalance. This study predicts that referential electrode montages, when placed at 3.0 times the radius or greater from a dipolar axially aligned far-field generator in cylindrical homogeneous volume conductors, will record only equipotential far-field effects.
Microwave corrosion detection using open ended rectangular waveguide sensors
Energy Technology Data Exchange (ETDEWEB)
Qaddoumi, N.; Handjojo, L.; Bigelow, T.; Easter, J.; Bray, A.; Zoughi, R.
2000-02-01
The use of microwave and millimeter wave nondestructive testing methods utilizing open ended rectangular waveguide sensors has shown great potential for detecting minute thickness variations in laminate structures, in particular those backed by a conducting plate. Slight variations in the dielectric properties of materials may also be detected using a set of optimal parameters which include the standoff distance and the frequency of operation. In a recent investigation, on detecting rust under paint, the dielectric properties of rust were assumed to be similar to those of Fe{sub 2}O{sub 3} powder. These values were used in an electromagnetic model that simulates the interaction of fields radiated by a rectangular waveguide aperture with layered structures to obtain optimal parameters. The dielectric properties of Fe{sub 2}O{sub 3} were measured to be very similar to the properties of paint. Nevertheless, the presence of a simulated Fe{sub 2}O{sub 3} layer under a paint layer was detected. In this paper the dielectric properties of several different rust samples from different environments are measured. The measurements indicate that the nature of real rust is quite diverse and is different from Fe{sub 2}O{sub 3} and paint, indicating that the presence of rust under paint can be easily detected. The same electromagnetic model is also used (with the newly measured dielectric properties of real rust) to obtain an optimal standoff distance at a frequency of 24 GHz. The results indicate that variations in the magnitude as well as the phase of the reflection coefficient can be used to obtain information about the presence of rust. An experimental investigation on detecting the presence of very thin rust layers (2.5--5 x 10{sup {minus}2} mm [09--2.0 x 10{sup {minus}3} in.]) using an open ended rectangular waveguide probe is also conducted. Microwave images of rusted specimens, obtained at 24 GHz, are also presented.
The demagnetizing field of a non-uniform rectangular prism
DEFF Research Database (Denmark)
Smith, Anders; Nielsen, Kaspar Kirstein; Christensen, Dennis
2010-01-01
The effect of demagnetization on the magnetic properties of a rectangular ferromagnetic prism under non-uniform conditions is investigated. A numerical model for solving the spatially varying internal magnetic field is developed, validated and applied to relevant cases. The demagnetizing field...... is solved by an analytical calculation and the coupling between applied field, the demagnetization tensor field and spatially varying temperature is solved through iteration. We show that the demagnetizing field is of great importance in many cases and that it is necessary to take into account the non...
Nonlinear dynamics and control of a vibrating rectangular plate
Shebalin, J. V.
1983-01-01
The von Karman equations of nonlinear elasticity are solved for the case of a vibrating rectangular plate by meams of a Fourier spectral transform method. The amplification of a particular Fourier mode by nonlinear transfer of energy is demonstrated for this conservative system. The multi-mode system is reduced to a minimal (two mode) system, retaining the qualitative features of the multi-mode system. The effect of a modal control law on the dynamics of this minimal nonlinear elastic system is examined.
Experimental study of subsonic microjet escaping from a rectangular nozzle
Aniskin, V. M.; Maslov, A. A.; Mukhin, K. A.
2016-10-01
The first experiments on the subsonic laminar microjets escaping from the nozzles of rectangular shape are carried out. The nozzle size is 83.3x3823 microns. Reynolds number calculated by the nozzle height and the average flow velocity at the nozzle exit ranged from 58 to 154. The working gas was air at room temperature. The velocity decay and velocity fluctuations along the center line of the jet are determined. The fundamental difference between the laminar microjets characteristics and subsonic turbulent jets of macro size is shown. Based on measurements of velocity fluctuations it is shown the presence of laminar-turbulent transition in microjets and its location is determined.
Finite-size resonance dielectric cylinder in a rectangular waveguide
International Nuclear Information System (INIS)
Chuprina, V.N.; Khizhnyak, N.A.
1988-01-01
The problem on resonance spread of an electromagnetic wave by a dielectric circular cylinder of finite size in a rectangular waveguide is solved by a numerical-analytical method. The cylinder axes are parallel. The cylinder can be used as a resonance tuning element in accelerating SHF-sections. Problems on cutting off linear algebraic equation systems, to which relations of macroscopic electrodynamics in the integral differential form written for the concrete problem considered here are reduced by analytical transformations, are investigated in the stage of numerical analysis. Theoretical dependences of the insertion of the voltage standing wave coefficient on the generator wave length calculated for different values of problem parameters are constracted
Pereira, A. A.; Gironas, J. A.; Passalacqua, P.; Mejia, A.; Niemann, J. D.
2017-12-01
Previous work has shown that lithological, tectonic and climatic processes have a major influence in shaping the geomorphology of river networks. Accordingly, quantitative classification methods have been developed to identify and characterize network types (dendritic, parallel, pinnate, rectangular and trellis) based solely on the self-affinity of their planform properties, computed from available Digital Elevation Model (DEM) data. In contrast, this research aim is to include both horizontal and vertical properties to evaluate a quantitative classification method for river networks. We include vertical properties to consider the unique surficial conditions (e.g., large and steep height drops, volcanic activity, and complexity of stream networks) of the Andes Mountains. Furthermore, the goal of the research is also to explain the implications and possible relations between the hydro-geomorphological properties and climatic conditions. The classification method is applied to 42 basins in the southern Andes in Chile, ranging in size from 208 Km2 to 8,000 Km2. The planform metrics include the incremental drainage area, stream course irregularity and junction angles, while the vertical metrics include the hypsometric curve and the slope-area relationship. We introduce new network structures (Brush, Funnel and Low Sinuosity Rectangular), possibly unique to the Andes, that can be quantitatively differentiated from previous networks identified in other geographic regions. Then, this research evaluates the effect that excluding different Strahler order streams has on the horizontal properties and therefore in the classification. We found that climatic conditions are not only linked to horizontal parameters, but also to vertical ones, finding significant correlation between climatic variables (average near-surface temperature and rainfall) and vertical measures (parameters associated with the hypsometric curve and slope-area relation). The proposed classification shows
comparative evaluation of pressure distribution between horizontal
African Journals Online (AJOL)
user
This paper presents comparative analysis between the pressure behavior of ... Green and source function were used to evaluate the performance of horizontal well and ..... Superscript. ' derivative. D = dimensionless. h = horizontal. = change.
Energy Technology Data Exchange (ETDEWEB)
Herman, C.; Kang, E. [Dept. of Mechanical Engineering, Johns Hopkins Univ., Baltimore, MD (United States)
2001-01-01
An experimental study was conducted of incompressible, moderate Reynolds number flow of air over heated rectangular blocks in a two-dimensional, horizontal channel. Holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in self- sustained oscillatory flow. Experiments were conducted in the laminar, transitional and turbulent flow regimes for Reynolds numbers in the range from Re = 520 to Re = 6600. Interferometric measurements were obtained in the thermally and fluiddynamically periodically fully developed flow region on the ninth heated block. Flow oscillations were first observed between Re = 1054 and Re = 1318. The period of oscillations, wavelength and propagation speed of the Tollmien-Schlichting waves in the main channel were measured at two characteristic flow velocities, Re = 1580 and Re = 2370. For these Reynolds numbers it was observed that two to three waves span one geometric periodicity length. At Re = 1580 the dominant oscillation frequency was found to be around 26 Hz and at Re = 2370 the frequency distribution formed a band around 125 Hz. Results regarding heat transfer and pressure drop are presented as a function of the Reynolds number, in terms of the block-average Nusselt number and the local Nusselt number as well as the friction factor. Measurements of the local Nusselt number together with visual observations indicate that the lateral mixing caused by flow instabilities is most pronounced along the upstream vertical wall of the heated block in the groove region, and it is accompanied by high heat transfer coefficients. At Reynolds numbers beyond the onset of oscillations the heat transfer in the grooved channel exceeds the performance of the reference geometry, the asymmetrically heated parallel plate channel. (orig.)
Bubble shape in horizontal and near horizontal intermittent flow
International Nuclear Information System (INIS)
Gu, Hanyang; Guo, Liejin
2015-01-01
Highlights: • The bubble shapes in intermittent flows are presented experimentally. • The nose-tail inversion phenomenon appears at a low Froude number in downward pipe. • Transition from plug to slug flow occurs when the bubble tail changes from staircase pattern to hydraulic jump. - Abstract: This paper presents an experimental study of the shape of isolated bubbles in horizontal and near horizontal intermittent flows. It is found that the shapes of the nose and body of bubble depend on the Froude number defined by gas/liquid mixture velocity in a pipe, whereas the shape of the back of bubble region depends on both the Froude number and bubble length. The photographic studies show that the transition from plug to slug flow occurs when the back of the bubble changes from staircase pattern to hydraulic jump with the increase of the Froude number and bubble length. The effect of pipe inclination on characteristics of bubble is significant: The bubble is inversely located in a downwardly inclined pipe when the Froude number is low, and the transition from plug flow to slug flow in an upward inclined pipe is more ready to occur compared with that in a downwardly inclined pipe
Applicability of electrical resistance tomography to rectangular vessels
International Nuclear Information System (INIS)
Ichijo, Noriaki; Matsuno, Shinsuke; Tokura, Susumu; Tochigi, Yoshikatsu; Misumi, Ryuta; Nishi, Kazuhiko; Kaminoyama, Meguru
2012-01-01
To ensure a stable operation of Joule-heated glass melters, it is necessary to observe the distribution of platinum group metal particles (noble metals) in molten glass. Electrical resistance tomography (ERT) has a potential to visualize the inside of the melter section because it can be applied at severe conditions such as high temperature and radioactive fields. Due to designing limitations, it is difficult to install electrodes on the wall of the glass melter. In addition, ERT is hardly applied to a rectangular section. To solve these problems, numerical and experimental studies have been implemented. To apply the ERT method, 8 electrodes are inserted from the top of the melter and set near the bottom to visualize the accumulation of noble metals on the bottom area. As a result of the numerical simulation and the experiment, it was clarified that the ERT can be applied to the rectangular vessel by inserting electrodes from the top of the vessel and has a potential to observe the accumulation of noble metals. (author)
Mechanical behavior analysis on electrostatically actuated rectangular microplates
Li, Zhikang; Zhao, Libo; Jiang, Zhuangde; Ye, Zhiying; Dai, Lu; Zhao, Yulong
2015-03-01
Microplates are widely used in various MEMS devices based on electrostatic actuation such as MEMS switches, micro pumps and capacitive micromachined ultrasonic transducers (CMUTs). Accurate predictions for the mechanical behavior of the microplate under electrostatic force are important not only for the design and optimization of these electrostatic devices but also for their operation. This paper presents a novel reduced-order model for electrostatically actuated rectangular and square microplates with a new method to treat the nonlinear electrostatic force. The model was developed using Galerkin method which turned the partial-differential equation governing the microplates into an ordinary equation system. Using this model and cosine-like deflection functions, explicit expressions were established for the deflection and pull-in voltage of the rectangular and square microplates. The theoretical results were well validated with the finite element method simulations and experimental data of literature. The expressions for the deflection analysis are able to predict the deflection up to the pull-in position with an error less than 5.0%. The expressions for the pull-in voltage analysis can determine the pull-in voltages with errors less than 1.0%. Additionally, the method to calculate the capacitance variation of the electrostatically actuated microplates was proposed. These theoretical analyses are helpful for design and optimization of electrostatically actuated microdevices.
Mechanical behavior analysis on electrostatically actuated rectangular microplates
International Nuclear Information System (INIS)
Li, Zhikang; Zhao, Libo; Jiang, Zhuangde; Ye, Zhiying; Zhao, Yulong; Dai, Lu
2015-01-01
Microplates are widely used in various MEMS devices based on electrostatic actuation such as MEMS switches, micro pumps and capacitive micromachined ultrasonic transducers (CMUTs). Accurate predictions for the mechanical behavior of the microplate under electrostatic force are important not only for the design and optimization of these electrostatic devices but also for their operation. This paper presents a novel reduced-order model for electrostatically actuated rectangular and square microplates with a new method to treat the nonlinear electrostatic force. The model was developed using Galerkin method which turned the partial-differential equation governing the microplates into an ordinary equation system. Using this model and cosine-like deflection functions, explicit expressions were established for the deflection and pull-in voltage of the rectangular and square microplates. The theoretical results were well validated with the finite element method simulations and experimental data of literature. The expressions for the deflection analysis are able to predict the deflection up to the pull-in position with an error less than 5.0%. The expressions for the pull-in voltage analysis can determine the pull-in voltages with errors less than 1.0%. Additionally, the method to calculate the capacitance variation of the electrostatically actuated microplates was proposed. These theoretical analyses are helpful for design and optimization of electrostatically actuated microdevices. (paper)
The calculation of dose rates from rectangular sources
International Nuclear Information System (INIS)
Hartley, B.M.
1998-01-01
A common problem in radiation protection is the calculation of dose rates from extended sources and irregular shapes. Dose rates are proportional to the solid angle subtended by the source at the point of measurement. Simple methods of calculating solid angles would assist in estimating dose rates from large area sources and therefore improve predictive dose estimates when planning work near such sources. The estimation of dose rates is of particular interest to producers of radioactive ores but other users of bulk radioactive materials may have similar interest. The use of spherical trigonometry can assist in determination of solid angles and a simple equation is derived here for the determination of the dose at any distance from a rectangular surface. The solid angle subtended by complex shapes can be determined by modelling the area as a patchwork of rectangular areas and summing the solid angles from each rectangle. The dose rates from bags of thorium bearing ores is of particular interest in Western Australia and measured dose rates from bags and containers of monazite are compared with theoretical estimates based on calculations of solid angle. The agreement is fair but more detailed measurements would be needed to confirm the agreement with theory. (author)
Measurement strategy for rectangular electrical capacitance tomography sensor
International Nuclear Information System (INIS)
Ye, Jiamin; Ge, Ruihuan; Qiu, Guizhi; Wang, Haigang
2014-01-01
To investigate the influence of the measurement strategy for the rectangular electrical capacitance tomography (ECT) sensor, a Finite Element Method (FEM) is utilized to create the model for simulation. The simulation was carried out using COMSOL Multiphysics(trade mark, serif) and Matlab(trade mark, serif). The length-width ratio of the rectangular sensing area is 5. Twelve electrodes are evenly arranged surrounding the pipe. The covering ratio of the electrodes is 90%. The capacitances between different electrode pairs are calculated for a bar distribution. The air of the relative permittivity 1.0 and the material of the permittivity 3.0 are used for the calibration. The relative permittivity of the second phase is 3.0. The noise free and noise data are used for the image reconstruction using the Linear Back Projection (LBP). The measurement strategies with 1-, 2- and 4- electrode excitation are compared using the correlation coefficient. Preliminary results show that the measurement strategy with 2-electrode excitation outperforms other measurement strategies with 1- or 4-electrode excitation
A Rectangular Planar Spiral Antenna for GIS Partial Discharge Detection
Directory of Open Access Journals (Sweden)
Xiaoxing Zhang
2014-01-01
Full Text Available A rectangular planar spiral antenna sensor was designed for detecting the partial discharge in gas insulation substations (GIS. It can expediently receive electromagnetic waves leaked from basin-type insulators and can effectively suppress low frequency electromagnetic interference from the surrounding environment. Certain effective techniques such as rectangular spiral structure, bow-tie loading, and back cavity structure optimization during the antenna design process can miniaturize antenna size and optimize voltage standing wave ratio (VSWR characteristics. Model calculation and experimental data measured in the laboratory show that the antenna possesses a good radiating performance and a multiband property when working in the ultrahigh frequency (UHF band. A comparative study between characteristics of the designed antenna and the existing quasi-TEM horn antenna was made. Based on the GIS defect simulation equipment in the laboratory, partial discharge signals were detected by the designed antenna, the available quasi-TEM horn antenna, and the microstrip patch antenna, and the measurement results were compared.
Numerical investigation of flow past a row of rectangular rods
Directory of Open Access Journals (Sweden)
S.Ul. Islam
2016-09-01
Full Text Available A numerical study of uniform flow past a row of rectangular rods with aspect ratio defined as R = width/height = 0.5 is performed using the Lattice Boltzmann method. For this study the Reynolds number (Re is fixed at 150, while spacings between the rods (g are taken in the range from 1 to 6. Depending on g, the flow is classified into four patterns: flip-flopping, nearly unsteady-inphase, modulated inphase-antiphase non-synchronized and synchronized. Sudden jumps in physical parameters were observed, attaining either maximum or minimum values, with the change in flow patterns. The mean drag coefficient (Cdmean of middle rod is higher than the second and fourth rod for flip-flopping pattern while in case of nearly unsteady-inphase the middle rod attains minimum drag coefficient. It is also found that the Strouhal number (St of first, second and fifth rod decreases as g increases while that of other two have mixed trend. The results further show that there exist secondary interaction frequencies together with primary vortex shedding frequency due to jet in the gap between rods for 1 ⩽ g ⩽ 3. For the average values of Cdmean and St, an empirical relation is also given as a function of gap spacing. This relation shows that the average values of Cdmean and St approach to those of single rectangular rod with increment in g.
Environmental restoration using horizontal wells
International Nuclear Information System (INIS)
Looney, B.B.; Kaback, D.S.; Hazen, T.C.; Corey, J.C.
1992-01-01
This paper reports that under sponsorship from the U.S. Department of Energy, technical personnel from the Savannah River Laboratory and other DOE laboratories, universities and private industry have completed a full scale demonstration of environmental remediation using horizontal wells. The test successfully removed approximately 7250 kg of contaminants. A large amount of characterization and monitoring data was collected to aid in interpretation of the test and to provide the information needed for future environmental restorations that employ directionally drilled wells as extraction or delivery systems
DEFF Research Database (Denmark)
Carrizosa, Emilio; Guerrero, Vanesa; Morales, Dolores Romero
2018-01-01
individuals as adjacent rectangular portions as possible and adding as few false adjacencies, i.e., adjacencies between rectangular portions corresponding to non-adjacent individuals, as possible. We formulate this visualization problem as a Mixed Integer Linear Programming (MILP) model. We propose......In this paper we address the problem of visualizing a frequency distribution and an adjacency relation attached to a set of individuals. We represent this information using a rectangular map, i.e., a subdivision of a rectangle into rectangular portions so that each portion is associated with one...
Enhanced Circular Dichroism of Gold Bilayered Slit Arrays Embedded with Rectangular Holes.
Zhang, Hao; Wang, Yongkai; Luo, Lina; Wang, Haiqing; Zhang, Zhongyue
2017-01-01
Gold bilayered slit arrays with rectangular holes embedded into the metal surface are designed to enhance the circular dichroism (CD) effect of gold bilayered slit arrays. The rectangular holes in these arrays block electric currents and generate localized surface plasmons around these holes, thereby strengthening the CD effect. The CD enhancement factor depends strongly on the rotational angle and the structural parameters of the rectangular holes; this factor can be enhanced further by drilling two additional rectangular holes into the metal surfaces of the arrays. These results help facilitate the design of chiral structures to produce a strong CD effect and large electric fields.
Patil, Harshal Bhauso; Dingare, Sunil Vishnu
2018-03-01
Heat exchange upgrade is a vital territory of research area. Utilization of reasonable systems can bring about noteworthy specialized points of interest coming about reserve funds of cost. Rectangular plates are viewed as best balance arrangement utilized for heat exchange improvement. This gives an enlargement strategy to heat exchange with beginning of limit layer and vortex development. To assess and look at the rate of heat exchange enhancement by rectangular plate fins with differing inclinations (0°-30°-60°), shifting Re and heat supply under forced convection are the principle destinations of this study. The study is done by fluctuating introductions of fins with various inclinations, input heat supply and Re under forced convection. The coefficient of heat transfer increments observed with the expansion in air speed for all the examined designs. The coefficient of the heat transfer is discovered higher at the edge of introduction of fins at 30° for inline arrangement and 0° for staggered arrangement. Looking at both the arrangements, it is discovered that the heat transfer coefficient in 0° fin staggered arrangement is about 17% higher than 30° inline arrangement and 76% higher than the vertical plate fin. For plate fin heat sink, boundary layer formation and growth results in decrease of the coefficient of heat transfer in forced convection. This issue is overcome by accommodating some rectangular fins on the plate fin. It brings about increment of heat transfer coefficient of the RPFHS under the states of trial factors. As indicated by past research, it is discovered that examination of the plate fin heat sink with various sorts of fins for horizontal orientation is done yet but this investigation expects to discover the upgrade of transfer coefficient of plate fin heat sink for its vertical position with rectangular plates at different inclinations under the shifting scopes of heat input supply, fin arrangements and Reynolds number (Re).
Horizontal gene transfer in chromalveolates
Directory of Open Access Journals (Sweden)
Bhattacharya Debashish
2007-09-01
Full Text Available Abstract Background Horizontal gene transfer (HGT, the non-genealogical transfer of genetic material between different organisms, is considered a potentially important mechanism of genome evolution in eukaryotes. Using phylogenomic analyses of expressed sequence tag (EST data generated from a clonal cell line of a free living dinoflagellate alga Karenia brevis, we investigated the impact of HGT on genome evolution in unicellular chromalveolate protists. Results We identified 16 proteins that have originated in chromalveolates through ancient HGTs before the divergence of the genera Karenia and Karlodinium and one protein that was derived through a more recent HGT. Detailed analysis of the phylogeny and distribution of identified proteins demonstrates that eight have resulted from independent HGTs in several eukaryotic lineages. Conclusion Recurring intra- and interdomain gene exchange provides an important source of genetic novelty not only in parasitic taxa as previously demonstrated but as we show here, also in free-living protists. Investigating the tempo and mode of evolution of horizontally transferred genes in protists will therefore advance our understanding of mechanisms of adaptation in eukaryotes.
Improved waterflooding efficiency by horizontal wells
Energy Technology Data Exchange (ETDEWEB)
Popa, C. G. [Petroleum and Gas Univ., Ploesti (Romania); Clipea, M. [SNP Petrom SA, ICPT Campina (Romania)
1998-12-31
The influence of well pattern involving the use of horizontal wells on the overall efficiency of the waterflooding process was analyzed. Three different scenarios were examined: (1) a pattern of using two parallel horizontal wells, one for injection, the other for production, (2) a pattern of one horizontal well for water injection and several vertical wells for production, and (3) a pattern of using vertical wells for injection and one horizontal well for production. In each case, the waterflooding process was simulated using a two phase two dimensional numerical model. Results showed that the pressure loss along the horizontal section had a large influence on the sweep efficiency whether the horizontal well was used for injection or production. Overall, the most successful combination appeared to be using vertical wells for injection and horizontal wells for production. 4 refs., 1 tab., 15 figs.
Numerical Study of the Buoyancy-Driven Flow in a Four-Electrode Rectangular Electrochemical Cell
Sun, Zhanyu; Agafonov, Vadim; Rice, Catherine; Bindler, Jacob
2009-11-01
Two-dimensional numerical simulation is done on the buoyancy-driven flow in a four-electrode rectangular electrochemical cell. Two kinds of electrode layouts, the anode-cathode-cathode-anode (ACCA) and the cathode-anode-anode-cathode (CAAC) layouts, are studied. In the ACCA layout, the two anodes are placed close to the channel outlets while the two cathodes are located between the two anodes. The CAAC layout can be converted from the ACCA layout by applying higher electric potential on the two middle electrodes. Density gradient was generated by the electrodic reaction I3^-+2e^- =3I^-. When the electrochemical cell is accelerated axially, buoyancy-driven flow occurs. In our model, electro-neutrality is assumed except at the electrodes. The Navier-Stokes equations with the Boussinesq approximation and the Nernst-Planck equations are employed to model the momentum and mass transports, respectively. It is found that under a given axial acceleration, the electrolyte density between the two middle electrodes determines the bulk flow through the electrochemical cell. The cathodic current difference is found to be able to measure the applied acceleration. Other important electro-hydrodynamic characteristics are also discussed.
A Microflow Cytometer with a Rectangular Quasi-Flat-Top Laser Spot
Directory of Open Access Journals (Sweden)
Jingjing Zhao
2016-09-01
Full Text Available This work develops a microflow cytometer, based on a microfluidic chip for three-dimensional (3D hydrodynamic focusing and a binary optical element (BOE for shaping and homogenizing a laser beam. The microfluidic chip utilizes sheath flows to confine the sample flow along the channel centerline with a narrow cross section. In addition to hydrodynamic focusing, secondary flows are generated to strengthen the focusing in the vertical direction. In experiments, the chip was able to focus the sample flow with cross sections of 15 μm high and 8–30 μm wide at 5 m/s, under the condition of the sample flow rates between 10 and 120 μL/min. Instead of using the conventional elliptical Gaussian spot for optical detection, we used a specially designed BOE and obtained a 50 μm × 10 μm rectangular quasi-flat-top spot. The microflow cytometer combining the chip and the BOE was tested to count 3, 5, and 7 μm fluorescence microbeads, and the experimental results were comparable to or better than those derived from two commercial instruments.
Simulation analysis of rectangular dielectric-loaded traveling wave amplifiers for THz sources
Directory of Open Access Journals (Sweden)
Changbiao Wang
2007-12-01
Full Text Available Nonlinear simulation results for a 220-GHz rectangular dielectric-loaded traveling-wave amplifier are presented. Simulations are used to check a linear theory that is developed by phenomenological introduction of an effective dielectric parameter for electron beam channel, and it is found that the rf power gains from Pierce three-wave theory and particle simulations are in reasonable agreement. It is shown that the rf power gain during initial beam-wave interaction is positive; the falling on the initial rf power profile, which has been thought to be the rf power transferred to the beam for bunching buildup (negative gain effect, is probably resulting from numerical errors. Beam-wave interaction mechanism is analyzed by examining the evolution of beam bunching centers. Influences of various parameters on amplifier performance are examined, and transverse space-charge effect is analyzed. A symmetric excitation scheme for rf couplers is proposed, and rf field jumps on the common intersection line of vacuum, dielectric, and metal wall, which were found in rf simulations, are explained theoretically.
International Nuclear Information System (INIS)
Erramli, H.; Blondiaux, G.
1994-01-01
Channeling phenomenon was predicted, many years ago, by stark. The first channeling experiments were performed in 1963 by Davies and his coworkers. Parallely Robinson and Oen have investigated this process by simulating trajectories of ions in monocrystals. This technique has been combined with many methods like Rutherford Backscattering Spectrometry (R.B.S.), Particles Induced X-rays Emission (P.I.X.E) and online Nuclear Reaction (N.R.A.) to localize trace elements in the crystal or to determine crystalline quality. To use channeling for material characterization we need data about the stopping power of the incident particle in the channeled direction. The ratios of channeled to random stopping powers of silicon for irradiation in the direction have been investigated and compared to the available theoretical results. We describe few applications of ion channeling in the field of materials characterization. Special attention is given to ion channeling combined with Charged Particle Activation Analysis (C.P.A.A.) for studying the behaviour of oxygen atoms in Czochralski silicon lattices under the influence of internal gettering and in different gaseous atmospheres. Association between ion channeling and C.P.A.A was also utilised for studying the influence of the growing conditions on concentration and position of carbon atoms at trace levels in the MOVPE Ga sub (1-x) Al sub x lattice. 6 figs., 1 tab., 32 refs. (author)
Rectangular amplitudes, conformal blocks, and applications to loop models
Energy Technology Data Exchange (ETDEWEB)
Bondesan, Roberto, E-mail: roberto.bondesan@cea.fr [LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Jacobsen, Jesper L. [LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris (France); Saleur, Hubert [Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Physics Department, USC, Los Angeles, CA 90089-0484 (United States)
2013-02-21
In this paper we continue the investigation of partition functions of critical systems on a rectangle initiated in [R. Bondesan, et al., Nucl. Phys. B 862 (2012) 553-575]. Here we develop a general formalism of rectangle boundary states using conformal field theory, adapted to describe geometries supporting different boundary conditions. We discuss the computation of rectangular amplitudes and their modular properties, presenting explicit results for the case of free theories. In a second part of the paper we focus on applications to loop models, discussing in details lattice discretizations using both numerical and analytical calculations. These results allow to interpret geometrically conformal blocks, and as an application we derive new probability formulas for self-avoiding walks.
Calculation of control rods in rectangular reactor, and applications (1960)
International Nuclear Information System (INIS)
Goshen, S.; Pazy, A.
1960-01-01
The aim of this report is to find a method for estimating the anti-reactivity of control rods perpendicular to the axis in a cylindrical pile. The paper is divided into two parts. In the first is given a method of calculating control rods in a rectangular pile, similar to the Nordheim-Scalettar method for cylindrical piles. As an example the formulas are given for the theories of one and two neutron groups, the generalisation for several groups being evident. In the second part we find by a variation method a formula for estimating the Laplacian of a pile, which may be divided into parallelepipeds for which the Laplacian are given. Finally, this formula is used to calculate the anti-reactivity of rods perpendicular to the axis in a cylindrical pile. (author) [fr
Critical current studies of a HTS rectangular coil
Energy Technology Data Exchange (ETDEWEB)
Zhong, Z. [Department of Engineering, University of Cambridge (United Kingdom); Chudy, M., E-mail: Michal.chudy@stuba.sk [Graduate School of Technology Management, University of Pretoria (South Africa); Institute of Power and Applied Electrical Engineering, Slovak University of Technology in Bratislava (Slovakia); Ruiz, H.S. [Department of Engineering, University of Leicester, Leicester LE1 7RH (United Kingdom); Zhang, X.; Coombs, T. [Department of Engineering, University of Cambridge (United Kingdom)
2017-05-15
Highlights: • Unique square pancake coil was manufactured. • Measurements in relatively high magnetic field were performed. • Different sections of the coil were characterized. • Parts of the coil which are limiting critical current were identified. - Abstract: Nowadays, superconducting high field magnets are used in numerous applications due to their superior properties. High temperature superconductors (HTS) are usually used for production of circular pancake or racetrack coils. However different geometries of HTS coils might be required for some specific applications. In this study, the HTS coil wound on a rectangular frame was fully characterized in homogeneous DC background field. The study contains measurements of critical current angular dependencies. The critical current of the entire coil and two selected strands under different magnitudes and orientations of external magnetic fields are measured. The critical regions of the coil in different angular regimes are determined. This study brings better understanding of the in- field performance of HTS coils wound on frames with right-angles.
The nanosecond generator RG-1 with near-rectangular pulse
International Nuclear Information System (INIS)
Bulan, V.V.; Grabovskij, E.V.; Gribov, A.N.; Luzhnov, V.G.
1996-01-01
The 300 kV, 17 Ohm generator RG-1, which can deliver near-rectangular pulses with a pulse duration of 80 ns FWHM, is described. The polarity of the output pulse can be changed by a simple switch. The fast capacities of the Marx generator are used instead of the pulse forming line. Multi-spark gas switches were developed to decrease the inductance of the discharged circuit. The generator is supplied by a built-in high voltage source and its operation is controlled by a minicomputer. It is used the power supply-line 220 V. The RG-1 can be used in different modes of operation: gas discharge, particle beam formation, etc. (author). 4 figs., 3 refs
Stress analysis and evaluation of a rectangular pressure vessel
International Nuclear Information System (INIS)
Rezvani, M.A.; Ziada, H.H.; Shurrab, M.S.
1992-10-01
This study addresses structural analysis and evaluation of an abnormal rectangular pressure vessel, designed to house equipment for drilling and collecting samples from Hanford radioactive waste storage tanks. It had to be qualified according to ASME boiler and pressure vessel code, Section VIII; however, it had the cover plate bolted along the long face, a configuration not addressed by the code. Finite element method was used to calculate stresses resulting from internal pressure; these stresses were then used to evaluate and qualify the vessel. Fatigue is not a concern; thus, it can be built according to Section VIII, Division I instead of Division 2. Stress analysis was checked against the code. A stayed plate was added to stiffen the long side of the vessel
The nanosecond generator RG-1 with near-rectangular pulse
Energy Technology Data Exchange (ETDEWEB)
Bulan, V V; Grabovskij, E V; Gribov, A N; Luzhnov, V G [TRINITI, Troitsk (Russian Federation)
1997-12-31
The 300 kV, 17 Ohm generator RG-1, which can deliver near-rectangular pulses with a pulse duration of 80 ns FWHM, is described. The polarity of the output pulse can be changed by a simple switch. The fast capacities of the Marx generator are used instead of the pulse forming line. Multi-spark gas switches were developed to decrease the inductance of the discharged circuit. The generator is supplied by a built-in high voltage source and its operation is controlled by a minicomputer. It is used the power supply-line 220 V. The RG-1 can be used in different modes of operation: gas discharge, particle beam formation, etc. (author). 4 figs., 3 refs.
Specific aspects of turbulent flow in rectangular ducts
Directory of Open Access Journals (Sweden)
Stanković Branislav D.
2017-01-01
Full Text Available The essential ideas of investigations of turbulent flow in a straight rectangular duct are chronologically presented. Fundamentally significant experimental and theoretical studies for mathematical modeling and numerical computations of this flow configuration are analyzed. An important physical aspect of this type of flow is presence of secondary motion in the plane perpendicular to the streamwise direction, which is of interest from both the engineering and the scientific viewpoints. The key facts for a task of turbulence modeling and optimal choice of the turbulence model are obtained through careful examination of physical mechanisms that generate secondary flows. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no.TR-33018: Increase in Energy and Ecology Efficiency of Processes in Pulverized Coal-Fired Furnace and Optimization of Utility Steam Boiler Air Pre-heater by Using In-House Developed Software Tools
Stability Analysis of Nonuniform Rectangular Beams Using Homotopy Perturbation Method
Directory of Open Access Journals (Sweden)
Seval Pinarbasi
2012-01-01
Full Text Available The design of slender beams, that is, beams with large laterally unsupported lengths, is commonly controlled by stability limit states. Beam buckling, also called “lateral torsional buckling,” is different from column buckling in that a beam not only displaces laterally but also twists about its axis during buckling. The coupling between twist and lateral displacement makes stability analysis of beams more complex than that of columns. For this reason, most of the analytical studies in the literature on beam stability are concentrated on simple cases: uniform beams with ideal boundary conditions and simple loadings. This paper shows that complex beam stability problems, such as lateral torsional buckling of rectangular beams with variable cross-sections, can successfully be solved using homotopy perturbation method (HPM.
Thermoelectric effects in a rectangular Aharonov-Bohm geometry
Pye, A. J.; Faux, D. A.; Kearney, M. J.
2016-04-01
The thermoelectric transport properties of a rectangular Aharonov-Bohm ring at low temperature are investigated using a theoretical approach based on Green's functions. The oscillations in the transmission coefficient as the field is varied can be used to tune the thermoelectric response of the ring. Large magnitude thermopowers are obtainable which, in conjunction with low conductance, can result in a high thermoelectric figure of merit. The effects of single site impurities and more general Anderson disorder are considered explicitly in the context of evaluating their effect on the Fano-type resonances in the transmission coefficient. Importantly, it is shown that even for moderate levels of disorder, the thermoelectric figure of merit can remain significant, increasing the appeal of such structures from the perspective of specialist thermoelectric applications.
Free Vibration of Rectangular Plates with Attached Discrete Sprung Masses
Directory of Open Access Journals (Sweden)
Ding Zhou
2012-01-01
Full Text Available A direct approach is used to derive the exact solution for the free vibration of thin rectangular plates with discrete sprung masses attached. The plate is simply supported along two opposite edges and elastically supported along the two other edges. The elastic support can represent a range of boundary conditions from free to clamped supports. Considering only the compatibility of the internal forces between the plate and the sprung masses, the equations of the coupled vibration of the plate-spring-mass system are derived. The exact expressions for mode and frequency equations of the coupled vibration of the plate and sprung masses are determined. The solutions converge steadily and monotonically to exact values. The correctness and accuracy of the solutions are demonstrated through comparison with published results. A parametric study is undertaken focusing on the plate with one or two sprung masses. The results can be used as a benchmark for further investigation.
Magnethohydrodynamic surface and body waves in rectangular and cylindrical geometries
International Nuclear Information System (INIS)
Donnelly, I.J.
1982-03-01
Low frequency magnetohydrodynamic (MHD) waves are studied in both rectangular slab and cylindrical geometry cavities containing low β plasmas. The plasma density distribution is modelled by an inner region of constant density surrounded by an outer region of lower density and a conducting boundary. The wave frequencies and fields are obtained as functions of the density distribution and the wavenumber components k(parall) and k(perp). The lowest frequency wave mode is a surface wave in which the wave fields decrease in magnitude with distance from the interface between the two plasma densities. It has the properties of a shear wave when k(perp)/k(parall) is either small or large but is compressive when k(perp) is approximately equal to k(parall). The surface wave does not exist when k(perp) = 0. Higher frequency modes have the properties of fast magnetosonic waves, at least in the inner density region
Free Vibration Analysis of Rectangular Orthotropic Membranes in Large Deflection
Directory of Open Access Journals (Sweden)
Zheng Zhou-Lian
2009-01-01
Full Text Available This paper reviewed the research on the vibration of orthotropic membrane, which commonly applied in the membrane structural engineering. We applied the large deflection theory of membrane to derive the governing vibration equations of orthotropic membrane, solved it, and obtained the power series formula of nonlinear vibration frequency of rectangular membrane with four edges fixed. The paper gave the computational example and compared the two results from the large deflection theory and the small one, respectively. Results obtained from this paper provide some theoretical foundation for the measurement of pretension by frequency method; meanwhile, the results provide some theoretical foundation for the research of nonlinear vibration of membrane structures and the response solving of membrane structures under dynamic loads.
Impedance of curved rectangular spiral coils around a conductive cylinder
Burke, S. K.; Ditchburn, R. J.; Theodoulidis, T. P.
2008-07-01
Eddy-current induction due to a thin conformable coil wrapped around a long conductive cylinder is examined using a second-order vector potential formalism. Compact closed-form expressions are derived for the self- and mutual impedances of curved rectangular spiral coils (i) in free space and (ii) when wrapped around the surface of the cylindrical rod. The validity of these expressions was tested against the results of a systematic series of experiments using a cylindrical Al-alloy rod and conformable coils manufactured using flexible printed-circuit-board technology. The theoretical expressions were in very good agreement with the experimental measurements. The significance of the results for eddy-current nondestructive inspection using flexible coils and flexible coil arrays is discussed.
Measurement of electron beam bunch phase length by rectangular cavities
International Nuclear Information System (INIS)
Afanas'ev, V.D.; Rudychev, V.G.; Ushakov, V.I.
1976-01-01
An analysis of a phase length of electron bunches with the help of crossed rectangular resonators with the Hsub(102) oscillation type has been made. It has been shown that the electron coordinates after the duplex resonator are described by an ellipse equation for a non-modulated beam. An influence of the initial energy spread upon the electron motion has been studied. It has been ascertained that energy modulation of the electron beam results in displacement of each electron with respect to the ellipse which is proportional to modulation energy, i.e. an error in determination of the phase length of an electron bunch is proportional to the beam energy spread. Relations have been obtained which enable to find genuine values of phases of the analyzed electrons with an accuracy up to linear multipliers
Energy tunneling through narrow waveguide channel and design of small antennas
Directory of Open Access Journals (Sweden)
Mitrović Miranda
2011-01-01
Full Text Available In this paper we investigate the conditions for energy tunneling through narrow channel obtained by reducing the height of rectangular waveguide. Tunneling of the energy occurs at the frequency for which the effective dielectric permittivity of the channel becomes equal to zero, so it can be treated as an ENZ (epsilon-near-zero metamaterial. We investigated how geometry of the channel and dielectric permittivity affect the transmission coefficient and field density in the channel. Adding slots in the channel, which are placed orthogonally to the wave propagation, we designed a small antenna with directivity of 5.44 dBi at the frequency of 3 GHz.
Quantitative study of rectangular waveguide behavior in the THz.
Energy Technology Data Exchange (ETDEWEB)
Rowen, Adam M.; Nordquist, Christopher Daniel; Wanke, Michael Clement
2009-10-01
This report describes our efforts to quantify the behavior of micro-fabricated THz rectangular waveguides on a configurable, robust semiconductor-based platform. These waveguides are an enabling technology for coupling THz radiation directly from or to lasers, mixers, detectors, antennas, and other devices. Traditional waveguides fabricated on semiconductor platforms such as dielectric guides in the infrared or co-planar waveguides in the microwave regions, suffer high absorption and radiative losses in the THz. The former leads to very short propagation lengths, while the latter will lead to unwanted radiation modes and/or crosstalk in integrated devices. This project exploited the initial developments of THz micro-machined rectangular waveguides developed under the THz Grand Challenge Program, but instead of focusing on THz transceiver integration, this project focused on exploring the propagation loss and far-field radiation patterns of the waveguides. During the 9 month duration of this project we were able to reproduce the waveguide loss per unit of length in the waveguides and started to explore how the loss depended on wavelength. We also explored the far-field beam patterns emitted by H-plane horn antennas attached to the waveguides. In the process we learned that the method of measuring the beam patterns has a significant impact on what is actually measured, and this may have an effect on most of the beam patterns of THz that have been reported to date. The beam pattern measurements improved significantly throughout the project, but more refinements of the measurement are required before a definitive determination of the beam-pattern can be made.
Explorando nuevos horizontes en NASA
Villanueva, G. L.
A pesar de la incesante expansión del Universo iniciada con el Big Bang 14 mil millones de años atrás, nuestro Universo se siente cada día más cercano. La inquebrantable vocación de la humanidad por descubrir nuevos horizontes ha permitido el acercamiento de civilizaciones en nuestro planeta y nos ha permitido conocer nuestro lugar en el Universo como nunca antes. En este artículo presento una breve sinopsis de nuestro trabajo que se relaciona con diversas investigaciones con implicaciones astrobiológicas, desde el origen de los ingredientes de la "sopa de la vida", hasta la evolución y composición de la atmósfera de Marte.
Nuclear component horizontal seismic restraint
International Nuclear Information System (INIS)
Snyder, G.J.
1988-01-01
In a nuclear reactor having a reactor vessel, a reactor guard vessel, a thermal insulation shell and a horizontal seismic restraint, a restraint is described comprising: a. a first ring on the wall of the reactor vessel; b. a second ring on the wall of the reactor guard vessel in alignment with the first ring; c. a first block attached to the second ring proximate the first ring so as to provide a predetermined clearance between the first block and the first ring which is reduced to zero during thermal expansion; d. motion limit means extending through an aperture in the thermal insulation shell in alignment with the second ring and the first block; the e. a second block attached to the motion limit means proximate the second ring and in alignment the first block so as to provide a predetermined clearance between the second block and the second ring which is reduced to zero during thermal expansion
Electrical Machines: Turn-to-Turn Capacitance in Formed Windings with Rectangular Cross-Section Wire
Djukic, Nenad; Encica, L.; Paulides, Johan
2015-01-01
Calculation of turn-to-turn capacitance (Ctt) in electrical machines (EMs) with formed windings with rectangular cross-section wire is presented. Three calculation methods are used for the calculation of Ctt in case of rectangular conductors – finite element (FE) method and two previously published
75 FR 82070 - Light-Walled Rectangular Pipe and Tube From China, Korea, and Mexico
2010-12-29
...-Walled Rectangular Pipe and Tube From China, Korea, and Mexico AGENCY: United States International Trade... from China, Korea, and Mexico that were found to be sold at less than fair value. Nacional de Acero S... panel proceeding in Light-Walled Rectangular Pipe and Tube from Mexico, USA-MEX-1904-04, to file...
77 FR 3497 - Light-Walled Rectangular Pipe and Tube From Taiwan
2012-01-24
... Rectangular Pipe and Tube From Taiwan Determination On the basis of the record \\1\\ developed in the subject... order on light-walled rectangular pipe and tube from Taiwan would be likely to lead to continuation or recurrence of material injury to an industry in the United States within a reasonably foreseeable time. \\1...
International Nuclear Information System (INIS)
Tanabe, Akira.
1993-01-01
In a channel box of a BWR type reactor, protruding pads are disposed in axial position on the lateral side of a channel box opposing to a control rod and facing the outer side portion of the control rod in a reactor core loaded state. In the initial loading stage of fuel assemblies, channel fasteners and spacer pads are abutted against each other in the upper portion between the channel boxes sandwiching the control rod therebetween. Further, in the lower portion, a gap as a channel for the movement of the control rod is ensured by the support of fuel support metals. If the channel box is bent toward the control rod along with reactor operation, the pads are abutted against each other to always ensure the gap through which the control rod can move easily. Further, when the pads are brought into contact with each other, the bending deformation of the channel box is corrected by urging to each other. Thus, the control rod can always be moved smoothly to attain reactor safety operation. (N.H.)
Finite element fatigue analysis of rectangular clutch spring of automatic slack adjuster
Xu, Chen-jie; Luo, Zai; Hu, Xiao-feng; Jiang, Wen-song
2015-02-01
The failure of rectangular clutch spring of automatic slack adjuster directly affects the work of automatic slack adjuster. We establish the structural mechanics model of automatic slack adjuster rectangular clutch spring based on its working principle and mechanical structure. In addition, we upload such structural mechanics model to ANSYS Workbench FEA system to predict the fatigue life of rectangular clutch spring. FEA results show that the fatigue life of rectangular clutch spring is 2.0403×105 cycle under the effect of braking loads. In the meantime, fatigue tests of 20 automatic slack adjusters are carried out on the fatigue test bench to verify the conclusion of the structural mechanics model. The experimental results show that the mean fatigue life of rectangular clutch spring is 1.9101×105, which meets the results based on the finite element analysis using ANSYS Workbench FEA system.
Study on the output factors of asymmetrical rectangular electron beam field
International Nuclear Information System (INIS)
Chen Yinghai; Yang Yueqin; Ma Yuhong; Zheng Jin; Zou Lijuan
2009-01-01
Objective: To evaluate the variant regularity of the output factors of asymmetrical rectangular electron beam field. Methods: The output factors of three special fields with different applicators and energies were measured by ionization chamber method at different off-axis distances. Then deviations of the output factors between asymmetrical and symmetric rectangular fields were calculated. Results: The changes of output factor with different off-axis distances in asymmetrical rectangular fields were basically consistent with those in standard square fields with the same applicator. It revealed that the output factor of asymmetrical rectangular field was related with the off-axis ratio of standard square field. Applicator and field size did not show obvious influence on the output factor. Conclusions: The output factor changes of asymmetrical rectangular field are mainly correlated with the off-axis ratio of standard square field. The correction of the output factor is determined by the off-axis ratio changes in standard square field. (authors)
Analysis of junior high school students' difficulty in resolving rectangular conceptual problems
Utami, Aliksia Kristiana Dwi; Mardiyana, Pramudya, Ikrar
2017-08-01
Geometry is one part of the mathematics that must be learned in school and it has important effects on the development of creative thinking skills of learners, but in fact, there are some difficulties experienced by the students. This research focuses on analysis difficulty in resolving rectangular conceptual problems among junior high school students in every creative thinking skills level. This research used a descriptive method aimed to identify the difficulties and cause of the difficulties experienced by five students. The difficulties are associated with rectangular shapes and related problems. Data collection was done based on students' work through test, interview, and observations. The result revealed that student' difficulties in understanding the rectangular concept can be found at every creative thinking skills level. The difficulties are identifying the objects rectangular in the daily life except for a rectangle and square, analyzing the properties of rectangular shapes, and seeing the interrelationships between figures.
2014-06-01
Rivers and streams evolve all the time. As a result, no stream channel is absolutely stable. Channels evolve at various speeds both vertically (degradation/aggradation) and horizontally (meander : migration). They also respond to man-made changes ran...
Kamermans, M.; Werblin, F.
1992-01-01
Horizontal cells (HCs) appear to release, and also to be sensitive to, GABA. The external GABA concentration is increased with depolarization of the HC membrane via an electrogenic GABA transporter. This extracellular GABA opens a GABAA-gated Cl- channel in the HC membrane. Since the equilibrium
Penetrating particles in horizontal air showers
International Nuclear Information System (INIS)
Wohlenberg, J.; Boehm, E.
1975-01-01
Particle density and arrival time of muons has been measured in Horizontal Air Showers. 5,600 showers have been recorded in 7,800 hours. Using stringent selection criteria 155 showers have been found horizontal (zenith angle larger 70 0 ) in the size range 4.1 > lg N > 5.5. The muons observed in these showers can be explained by purely electromagnetic origin of horizontal showers. (orig.) [de
A multi-channel coronal spectrophotometer.
Landman, D. A.; Orrall, F. Q.; Zane, R.
1973-01-01
We describe a new multi-channel coronal spectrophotometer system, presently being installed at Mees Solar Observatory, Mount Haleakala, Maui. The apparatus is designed to record and interpret intensities from many sections of the visible and near-visible spectral regions simultaneously, with relatively high spatial and temporal resolution. The detector, a thermoelectrically cooled silicon vidicon camera tube, has its central target area divided into a rectangular array of about 100,000 pixels and is read out in a slow-scan (about 2 sec/frame) mode. Instrument functioning is entirely under PDP 11/45 computer control, and interfacing is via the CAMAC system.
Weighted OFDM for wireless multipath channels
DEFF Research Database (Denmark)
Prasad, Ramjee; Nikookar, H.
2000-01-01
In this paper the novel method of "weighted OFDM" is addressed. Different types of weighting factors (including Rectangular, Bartlett, Gaussian. Raised cosine, Half-sin and Shanon) are considered. The impact of weighting of OFDM on the peak-to-average power ratio (PAPR) is investigated by means...... of simulation and is compared for the above mentioned weighting factors. Results show that by weighting of the OFDM signal the PAPR reduces. Bit error performance of weighted multicarrier transmission over a multipath channel is also investigated. Results indicate that there is a trade off between PAPR...
The bubble distribution in glass refining channels
Czech Academy of Sciences Publication Activity Database
Němec, Lubomír; Cincibusová, P.
2005-01-01
Roč. 49, č. 4 (2005), s. 269-277 ISSN 0862-5468 Institutional research plan: CEZ:AV0Z40320502 Keywords : glass fining * bubble distribution s models * horizontal channel Subject RIV: CA - Inorganic Chemistry Impact factor: 0.463, year: 2005
International Nuclear Information System (INIS)
Sizmann, R.; Varelas, C.
1976-01-01
There is experimental evidence that swift light ions incident at small angles towards single crystalline surfaces can lose an appreciable fraction of their kinetic energy during reflection. It is shown that these projectiles penetrate into the bulk surface region of the crystal. They can travel as channeled particles along long paths through the solid (surface channeling). The angular distribution and the depth history of the re-emerged projectiles are investigated by computer simulations. A considerable fraction of the penetrating projectiles re-emerges from the crystal with constant transverse energy if the angle of incidence is smaller than the critical angle for axial channeling. Analytical formulae are derived based on a diffusion model for surface channeling. A comparison with experimental data exhibits the relevance of the analytical solutions. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Haydon, S. C. [Department of Physics, University of New England, Armidale, NSW (Australia)
1968-04-15
A brief summary is given of the principal methods used for initiating spark channels and the various highly time-resolved techniques developed recently for studies with nanosecond resolution. The importance of the percentage overvoltage in determining the early history and subsequent development of the various phases of the growth of the spark channel is discussed. An account is then given of the recent photographic, oscillographic and spectroscopic investigations of spark channels initiated by co-axial cable discharges of spark gaps at low [{approx} 1%] overvoltages. The phenomena observed in the development of the immediate post-breakdown phase, the diffuse glow structure, the growth of the luminous filament and the final formation of the spark channel in hydrogen are described. A brief account is also given of the salient features emerging from corresponding studies of highly overvolted spark gaps in which the spark channel develops from single avalanche conditions. The essential differences between the two types of channel formation are summarized and possible explanations of the general features are indicated. (author)
Energy Technology Data Exchange (ETDEWEB)
Lyubimova, Tatyana; Kovalevskaya, Kseniya, E-mail: lyubimovat@mail.ru [Institute of Continuous Media Mechanics UB RAS, Perm (Russian Federation)
2016-12-15
The effect of gravity modulation on the onset of convection in a horizontal layer of viscoelastic Oldroyd fluid heated from below is considered. The analytical solution of the problem has been obtained for the case of stress-free boundaries and rectangular modulation. It has been shown that depending on the parameter values, the modulation can produce either stabilizing or destabilizing effects. The deformation retardation always exerts a stabilizing effect, which is most pronounced in the shortwave range. The numerical results obtained by the solution of full nonlinear problems agree well with the results of linear stability analysis. (paper)
Directory of Open Access Journals (Sweden)
Bessem Samet
2011-09-01
Full Text Available Recently, Azam, Arshad and Beg [ Banach contraction principle on cone rectangular metric spaces, Appl. Anal. Discrete Math. 2009] introduced the notion of cone rectangular metric spaces by replacing the triangular inequality of a cone metric space by a rectangular inequality. In this paper, we introduce the notion of c-chainable cone rectangular metric space and we establish a fixed point theorem for uniformly locally contractive mappings in such spaces. An example is given to illustrate our obtained result.
Vertical and horizontal access configurations
International Nuclear Information System (INIS)
Spampinato, P.T.
1987-01-01
A number of configuration features and maintenance operations are influenced by the choice of whether a design is based on vertical or horizontal access for replacing reactor components. The features which are impacted most include the first wall/blanket segmentation, the poloidal field coil locations, the toroidal field coil number and size, access port size for in-vessel components, and facilities. Since either configuration can be made to work, the choice between the two is not clear cut because both have certain advantages. It is apparent that there are large cost benefits in the poloidal field coil system for ideal coil locations for high elongation plasmas and marginal savings for the INTOR case. If we assume that a new tokamak design will require a higher plasma elongation, the recommendation is to arrange the poloidal field coils in a cost-effective manner while providing reasonable midplane access for heating interfaces and test modules. If a new design study is not based on a high elongation plasma, it still appears prudent to consider this approach so that in-vessel maintenance can be accomplished without moving very massive structures such as the bulk shield. 10 refs., 29 figs., 3 tabs
Horizontal vortex single chamber hydroturbine
Directory of Open Access Journals (Sweden)
Sergio Antonio Zarate-Orrego
2016-01-01
Full Text Available Se evaluó una máquina con alta resistencia de forma para extraer energía de una quebrada, río o corriente marina, y generar electricidad. Sin instrumentos adecuados, la investigación fue cualitativa. Se supuso que si aun así funcionaba, su comportamiento podía mejorar suavizándose la forma. El aparato tiene una tobera semi-convergente de paredes planas, una cámara de vórtice cilíndrica y un rodete. Capta agua por su sección mayor y la descarga tangencialmente por su sección menor en la cámara de vórtice; ésta tiene un orificio en una de sus paredes laterales. Así forma un vórtice horizontal que hace girar un rodete cuyo eje acciona un generador eléctrico. El trabajo experimental realizado mostró que sí es posible producir energía eléctrica con este dispositivo pese a las condiciones adversas en que se ensayó.
Horizontal gene transfer between bacteria.
Heuer, Holger; Smalla, Kornelia
2007-01-01
Horizontal gene transfer (HGT) refers to the acquisition of foreign genes by organisms. The occurrence of HGT among bacteria in the environment is assumed to have implications in the risk assessment of genetically modified bacteria which are released into the environment. First, introduced genetic sequences from a genetically modified bacterium could be transferred to indigenous micro-organisms and alter their genome and subsequently their ecological niche. Second, the genetically modified bacterium released into the environment might capture mobile genetic elements (MGE) from indigenous micro-organisms which could extend its ecological potential. Thus, for a risk assessment it is important to understand the extent of HGT and genome plasticity of bacteria in the environment. This review summarizes the present state of knowledge on HGT between bacteria as a crucial mechanism contributing to bacterial adaptability and diversity. In view of the use of GM crops and microbes in agricultural settings, in this mini-review we focus particularly on the presence and role of MGE in soil and plant-associated bacteria and the factors affecting gene transfer.
Investigations on flow reversal in stratified horizontal flow
International Nuclear Information System (INIS)
Staebler, T.; Meyer, L.; Schulenberg, T.; Laurien, E.
2005-01-01
The phenomena of flow reversal in stratified flows are investigated in a horizontal channel with application to the Emergency Core Cooling System (ECCS) in Pressurized Water Reactors (PWR). In case of a Loss-of-Coolant-Accident (LOCA), coolant can be injected through a secondary pipe within the feeding line of the primary circuit, the so called hot leg, counter-currently to the steam flow. It is essential that the coolant reaches the reactor core to prevent overheating. Due to high temperatures in such accident scenarios, steam is generated in the core, which escapes from the reactor vessel through the hot leg. In case of sufficiently high steam flow rates, only a reduced amount of coolant or even no coolant will be delivered to the reactor core. The WENKA test facility at the Institute for Nuclear and Energy Technologies (IKET) at Forschungszentrum Karlsruhe is capable to investigate the fluid dynamics of two-phase flows in such scenarios. Water and air flow counter-currently in a horizontal channel made of clear acrylic glass to allow full optical access. Flow rates of water and air can be varied independently within a wide range. Once flow reversal sets in, a strong hysteresis effect must be taken into account. This was quantified during the present investigations. Local experimental data are needed to expand appropriate models on flow reversal in horizontal two-phase flow and to include them into numerical codes. Investigations are carried out by means of Particle Image Velocimetry (PIV) to obtain local flow velocities without disturbing the flow. Due to the wavy character of the flow, strong reflections at the interfacial area must be taken into account. Using fluorescent particles and an optical filter allows eliminating the reflections and recording only the signals of the particles. The challenges in conducting local investigations in stratified wavy flows by applying optical measurement techniques are discussed. Results are presented and discussed allowing
Modelling of ultrasonic nondestructive testing in anisotropic materials - Rectangular crack
International Nuclear Information System (INIS)
Bostroem, A.
2001-12-01
Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry when searching for defects, in particular cracks. To develop and qualify testing procedures extensive experimental work on test blocks is usually required. This can take a lot of time and therefore be quite costly. A good mathematical model of the testing situation is therefore of great value as it can reduce the experimental work to a great extent. A good model can be very useful for parametric studies and as a pedagogical tool. A further use of a model is as a tool in the qualification of personnel. In anisotropic materials, e.g. austenitic welds, the propagation of ultrasound becomes much more complicated as compared to isotropic materials. Therefore, modelling is even more useful for anisotropic materials, and it in particular has a greater pedagogical value. The present project has been concerned with a further development of the anisotropic capabilities of the computer program UTDefect, which has so far only contained a strip-like crack as the single defect type for anisotropic materials. To be more specific, the scattering by a rectangular crack in an anisotropic component has been studied and the result is adapted to include transmitting and receiving ultrasonic probes. The component under study is assumed to be anisotropic with arbitrary anisotropy. On the other hand, it is assumed to be homogeneous, and this in particular excludes most welds, where it is seldom an adequate approximation to assume homogeneity. The anisotropy may be arbitrarily oriented and the same is true of the rectangular crack. The crack may also be located near a backside of the component. To solve the scattering problem for the crack an integral equation method is used. The probe model has been developed in an earlier project and to compute the signal response in the receiving probe an electromechanical reciprocity argument is employed. As a rectangle is a truly 3D scatterer the sizes of the
2013-07-16
...-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey: Notice of Commission... countervailing duty order on light-walled rectangular pipe and tube from China and the antidumping duty orders on light-walled rectangular pipe and tube from China, Korea, Mexico, and Turkey would be likely to lead to...
2013-12-10
...-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey; Scheduling of Full Five-Year... the Antidumping Duty Orders on Light-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and... on light- walled rectangular pipe and tube from China, Korea, Mexico, and Turkey would be likely to...
The Process of Horizontal Differentiation: Two Models.
Daft, Richard L.; Bradshaw, Patricia J.
1980-01-01
Explores the process of horizontal differentiation by examining events leading to the establishment of 30 new departments in five universities. Two types of horizontal differentiation processes--administrative and academic--were observed and each was associated with different organizational conditions. (Author/IRT)
Horizontal drilling assessment in Western Canada
International Nuclear Information System (INIS)
Catania, Peter; Wilson, Malcolm
1999-01-01
The first horizontal well was drilled in Saskatchewan in 1987. Since then, the number of horizontal wells drilled has escalated rapidly, averaging approximately 500 per year since 1993. When combined with horizontal wells drilled in Alberta, the major Canadian oil-producing province, the total number drilled in 1995 was 978. This total exceeds the National Energy Board (NEB) projected maximum of 816 wells per year. The NEB projections were based on a break-even point for the drilling of horizontal wells of a return of CDN $285,000 using a discount rate of 15%. This corresponded to a cumulative production from each individual well of some 11,000 m 3 . The introduction of a royalty-free production volume of 12,000 m 3 per horizontal well in Saskatchewan was instrumental in stimulating the rapid expansion in the use of horizontal wells and helping Canada to exceed the forecasted drilling level. Within Saskatchewan, daily production from 1964 active horizontal wells is in excess of 20,000 m 3 . Comparative analysis indicates that the average daily production per well has increased from approximately by 40% with the advent of horizontal wells. In total production terms, provincial production has increased from 11.7 million cubic metres in 1989 to 20.9 million m 3 in 1996. This represents an increase of almost 79% based primarily on the extensive use of horizontal wells. In 1996, horizontal wells produced 36% of the province's oil from 12% of the active wells. In the southeastern producing areas of Saskatchewan, the Williston Basin, declining oil-production has jumped 100%, with horizontal wells accounting for approximately 50% of total regional production. Pay zones in this areas, as in most of the province, tend to be relatively thin, with net pay frequently less that 5 m. The modest investment of some CDN $5 million in government research funding 10 years ago to stimulate the development of horizontal wells, combined with a favourable royalty structure, has been at
Permuting sparse rectangular matrices into block-diagonal form
Energy Technology Data Exchange (ETDEWEB)
Aykanat, Cevdet; Pinar, Ali; Catalyurek, Umit V.
2002-12-09
This work investigates the problem of permuting a sparse rectangular matrix into block diagonal form. Block diagonal form of a matrix grants an inherent parallelism for the solution of the deriving problem, as recently investigated in the context of mathematical programming, LU factorization and QR factorization. We propose graph and hypergraph models to represent the nonzero structure of a matrix, which reduce the permutation problem to those of graph partitioning by vertex separator and hypergraph partitioning, respectively. Besides proposing the models to represent sparse matrices and investigating related combinatorial problems, we provide a detailed survey of relevant literature to bridge the gap between different societies, investigate existing techniques for partitioning and propose new ones, and finally present a thorough empirical study of these techniques. Our experiments on a wide range of matrices, using state-of-the-art graph and hypergraph partitioning tools MeTiS and PaT oH, revealed that the proposed methods yield very effective solutions both in terms of solution quality and run time.
Interaction of weak shock waves with rectangular meshes in plate
Directory of Open Access Journals (Sweden)
O.A. Mikulich
2016-09-01
Full Text Available In mechanical engineering, building and other industries a significant part of the process includes the presence of various dynamic loads due to technological and mechanical impacts. Consideration of such load effects allows more accurate assessment of the structural elements strength or machine parts. Aim: The aim is to develop an algorithm for calculating of dynamic stress state of plates with meshes for pulse loading in the form of a weak shock wave. Materials and Methods: An integral and discrete Fourier transform were used to solve the problem. An application of Fourier transform by time allowed reducing the dynamic problem of flat deformation to the solution of a finite number of problems for the established oscillations at fixed cyclic frequency values. In the area of Fourier-images the method of boundary integral equations and the apparatus of a complex variable function theory are used to study the dynamic stress concentration. Results: Based on the developed methodology the distribution change of the dynamic circle stress over time on the edge of a rectangular hole is studied. The time sections of stress distribution fields under the influence of pulse dynamic load is constructed.
Modal density of rectangular structures in a wide frequency range
Parrinello, A.; Ghiringhelli, G. L.
2018-04-01
A novel approach to investigate the modal density of a rectangular structure in a wide frequency range is presented. First, the modal density is derived, in the whole frequency range of interest, on the basis of sound transmission through the infinite counterpart of the structure; then, it is corrected by means of the low-frequency modal behavior of the structure, taking into account actual size and boundary conditions. A statistical analysis reveals the connection between the modal density of the structure and the transmission of sound through its thickness. A transfer matrix approach is used to compute the required acoustic parameters, making it possible to deal with structures having arbitrary stratifications of different layers. A finite element method is applied on coarse grids to derive the first few eigenfrequencies required to correct the modal density. Both the transfer matrix approach and the coarse grids involved in the finite element analysis grant high efficiency. Comparison with alternative formulations demonstrates the effectiveness of the proposed methodology.
Compressibility effects in the shear layer over a rectangular cavity
Energy Technology Data Exchange (ETDEWEB)
Beresh, Steven J.; Wagner, Justin; Casper, Katya Marie
2016-10-26
we studied the influence of compressibility on the shear layer over a rectangular cavity of variable width in a free stream Mach number range of 0.6–2.5 using particle image velocimetry data in the streamwise centre plane. As the Mach number increases, the vertical component of the turbulence intensity diminishes modestly in the widest cavity, but the two narrower cavities show a more substantial drop in all three components as well as the turbulent shear stress. Furthermore, this contrasts with canonical free shear layers, which show significant reductions in only the vertical component and the turbulent shear stress due to compressibility. The vorticity thickness of the cavity shear layer grows rapidly as it initially develops, then transitions to a slower growth rate once its instability saturates. When normalized by their estimated incompressible values, the growth rates prior to saturation display the classic compressibility effect of suppression as the convective Mach number rises, in excellent agreement with comparable free shear layer data. The specific trend of the reduction in growth rate due to compressibility is modified by the cavity width.
Attenuation in Rectangular Waveguides with Finite Conductivity Walls
Directory of Open Access Journals (Sweden)
K. C. Yeong
2011-06-01
Full Text Available We present a fundamental and accurate approach to compute the attenuation of electromagnetic waves propagating in rectangular waveguides with finite conductivity walls. The wavenumbers kx and ky in the x and y directions respectively, are obtained as roots of a set of transcendental equations derived by matching the tangential component of the electric field (E and the magnetic field (H at the surface of the waveguide walls. The electrical properties of the wall material are determined by the complex permittivity ε, permeability μ, and conductivity σ. We have examined the validity of our model by carrying out measurements on the loss arising from the fundamental TE10 mode near the cutoff frequency. We also found good agreement between our results and those obtained by others including Papadopoulos’ perturbation method across a wide range of frequencies, in particular in the vicinity of cutoff. In the presence of degenerate modes however, our method gives higher losses, which we attribute to the coupling between modes as a result of dispersion.
Diversity of acoustic streaming in a rectangular acoustofluidic field.
Tang, Qiang; Hu, Junhui
2015-04-01
Diversity of acoustic streaming field in a 2D rectangular chamber with a traveling wave and using water as the acoustic medium is numerically investigated by the finite element method. It is found that the working frequency, the vibration excitation source length, and the distance and phase difference between two separated symmetric vibration excitation sources can cause the diversity in the acoustic streaming pattern. It is also found that a small object in the acoustic field results in an additional eddy, and affects the eddy size in the acoustic streaming field. In addition, the computation results show that with an increase of the acoustic medium's temperature, the speed of the main acoustic streaming decreases first and then increases, and the angular velocity of the corner eddies increases monotonously, which can be clearly explained by the change of the acoustic dissipation factor and shearing viscosity of the acoustic medium with temperature. Commercialized FEM software COMSOL Multiphysics is used to implement the computation tasks, which makes our method very easy to use. And the computation method is partially verified by an established analytical solution. Copyright © 2014 Elsevier B.V. All rights reserved.
Propagation of spiral waves pinned to circular and rectangular obstacles.
Sutthiopad, Malee; Luengviriya, Jiraporn; Porjai, Porramain; Phantu, Metinee; Kanchanawarin, Jarin; Müller, Stefan C; Luengviriya, Chaiya
2015-05-01
We present an investigation of spiral waves pinned to circular and rectangular obstacles with different circumferences in both thin layers of the Belousov-Zhabotinsky reaction and numerical simulations with the Oregonator model. For circular objects, the area always increases with the circumference. In contrast, we varied the circumference of rectangles with equal areas by adjusting their width w and height h. For both obstacle forms, the propagating parameters (i.e., wavelength, wave period, and velocity of pinned spiral waves) increase with the circumference, regardless of the obstacle area. Despite these common features of the parameters, the forms of pinned spiral waves depend on the obstacle shapes. The structures of spiral waves pinned to circles as well as rectangles with the ratio w/h∼1 are similar to Archimedean spirals. When w/h increases, deformations of the spiral shapes are observed. For extremely thin rectangles with w/h≫1, these shapes can be constructed by employing semicircles with different radii which relate to the obstacle width and the core diameter of free spirals.
LEDA 074886: A REMARKABLE RECTANGULAR-LOOKING GALAXY
International Nuclear Information System (INIS)
Graham, Alister W.; Spitler, Lee R.; Forbes, Duncan A.; Lisker, Thorsten; Janz, Joachim; Moore, Ben
2012-01-01
We report the discovery of an interesting and rare rectangular-shaped galaxy. At a distance of 21 Mpc, the dwarf galaxy LEDA 074886 has an absolute R-band magnitude of –17.3 mag. Adding to this galaxy's intrigue is the presence of an embedded, edge-on stellar disk (of extent 2 R e,disk = 12'' = 1.2 kpc) for which Forbes et al. reported v rot /σ ≈ 1.4. We speculate that this galaxy may be the remnant of two (nearly edge-on) merged disk galaxies in which the initial gas was driven inward and subsequently formed the inner disk, while the stars at larger radii effectively experienced a dissipationless merger event resulting in this 'emerald cut galaxy' having very boxy isophotes with a 4 /a = –0.05 to –0.08 from 3 to 5 kpc. This galaxy suggests that knowledge from simulations of both 'wet' and 'dry' galaxy mergers may need to be combined to properly understand the various paths that galaxy evolution can take, with a particular relevance to blue elliptical galaxies.
Computation of rectangular source integral by rational parameter polynomial method
International Nuclear Information System (INIS)
Prabha, Hem
2001-01-01
Hubbell et al. (J. Res. Nat Bureau Standards 64C, (1960) 121) have obtained a series expansion for the calculation of the radiation field generated by a plane isotropic rectangular source (plaque), in which leading term is the integral H(a,b). In this paper another integral I(a,b), which is related with the integral H(a,b) has been solved by the rational parameter polynomial method. From I(a,b), we compute H(a,b). Using this method the integral I(a,b) is expressed in the form of a polynomial of a rational parameter. Generally, a function f (x) is expressed in terms of x. In this method this is expressed in terms of x/(1+x). In this way, the accuracy of the expression is good over a wide range of x as compared to the earlier approach. The results for I(a,b) and H(a,b) are given for a sixth degree polynomial and are found to be in good agreement with the results obtained by numerically integrating the integral. Accuracy could be increased either by increasing the degree of the polynomial or by dividing the range of integration. The results of H(a,b) and I(a,b) are given for values of b and a up to 2.0 and 20.0, respectively
On signal design by the R/0/ criterion for non-white Gaussian noise channels
Bordelon, D. L.
1977-01-01
The use of the cut-off rate criterion for modulation system design is investigated for channels with non-white Gaussian noise. A signal space representation of the waveform channel is developed, and the cut-off rate for vector channels with additive non-white Gaussian noise and unquantized demodulation is derived. When the signal input to the channel is a continuous random vector, maximization of the cut-off rate with constrained average signal energy leads to a water-filling interpretation of optimal energy distribution in signal space. The necessary condition for a finite signal set to maximize the cut-off rate with constrained energy and an equally likely probability assignment of signal vectors is presented, and an algorithm is outlined for numerically computing the optimum signal set. As an example, the rectangular signal set which has the water-filling average energy distribution and the optimum rectangular set are compared.
DEFF Research Database (Denmark)
Carrizosa, Emilio; Guerrero, Vanesa; Morales, Dolores Romero
In this paper we address the problem of visualizing the proportions and the similarities attached to a set of individuals. We represent this information using a rectangular map, i.e., a subdivision of a rectangle into rectangular portions so that each portion is associated with one individual...... area and adjacency requirements, this visualization problem is formulated as a three-objective Mixed Integer Nonlinear Problem. The first objective seeks to maximize the number of true adjacencies that the rectangular map is able to reproduce, the second one is to minimize the number of false...
Directory of Open Access Journals (Sweden)
Ljiljana Stošić Mihajlović
2014-07-01
Full Text Available Marketing channel is a set of entities and institutions, completion of distribution and marketing activities, attend the efficient and effective networking of producers and consumers. Marketing channels include the total flows of goods, money and information taking place between the institutions in the system of marketing, establishing a connection between them. The functions of the exchange, the physical supply and service activities, inherent in the system of marketing and trade. They represent paths which products and services are moving after the production, which will ultimately end up buying and eating by the user.
Experimental and numerical study of a premixed flame stabilized by a rectangular section cylinder
Energy Technology Data Exchange (ETDEWEB)
Bailly, P.; Garreton, D. [Electricite de France (EDF), 92 - Clamart (France); Bruel, P.; Champion, M. et al. [Ecole Nationale Superieure de Mecanique et d`Aerotechnique (ENSMA), 86 - Poitiers (France)
1996-12-31
A numerical and experimental study of a turbulent reactive zone stabilized by a rectangular cross-section cylinder positioned in a fully developed turbulent channel flow of a propane-air mixture is presented. Such a flow geometry has been chosen because it features most of the phenomena (recirculation zones, flame stabilization, wall-flame interactions) present in systems of practical interest. The flow is experimentally investigated with a 2-D laser Doppler velocimeter and thin compensated thermocouples. The modelling of the reactive flow is based on a modified Bray-Moss-Libby combustion model associated with a Reynolds-Stress turbulence model. The resulting set of equations is solved by a finite difference Navier-Stokes code on a rectilinear mesh. The comparison between numerical nd experimental results shows that the use of a full second-order model with dedicated equations for both the Reynolds stresses and the scalar turbulent flux does not lead to a significant improvement of the numerical results. Indeed, although the longitudinal scalar turbulent flux exhibits a non-gradient behaviour, the evolution of the mean progress variable introduced by the Bray-Moss-Libby model appears to be mainly controlled by the transverse scalar gradient which follows in all cases a gradient like behaviour. Additional measurements and calculations are required to precise the exact range of mass flow rate, equivalence ratio and obstacle bluffness over which such a tendency can be observed. Nevertheless, the tentative conclusion of this study is that, as soon as a refinement of the modelling of reactive flows in combustors which involve flameholders similar to the one investigated in this study is needed, the use of a Reynolds-Stress model should be the first necessary step. Then, depending on the exact nature of the flow geometry, a second phase should consist in evaluating the need for the use of a full second order model like the one presented in this study. (authors) 25 refs.
Reshadi, Milad; Saidi, Mohammad Hassan; Ebrahimi, Abbas
2018-02-01
This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien-Tanner (PTT) model with the Gordon-Schowalter convected derivative which covers the upper convected Maxwell, Johnson-Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson-Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid system and is verified against 1D analytical solution of the velocity profile with less than 0.06% relative error. Also, a parametric study is carried out to investigate the effect of channel aspect ratio (width to height), wall zeta potential and the Debye-Hückel parameter on 2D velocity profile, volumetric flow rate and the Poiseuille number in the mixed EO/PD flows of viscoelastic fluids with different Weissenberg numbers. Our results show that, for low channel aspect ratios, the previous 1D analytical models underestimate the velocity profile at the channel half-width centerline in the case of favorable pressure gradients and overestimate it in the case of adverse pressure gradients. The results reveal that the inapplicability of the Debye-Hückel approximation at high zeta potentials is more significant for higher Weissenberg number fluids. Also, it is found that, under the specified values of electrokinetic parameters, there is a threshold for velocity scale ratio in which the Poiseuille number is approximately independent of channel aspect ratio.
International Nuclear Information System (INIS)
Herve, Patrick
1975-01-01
This is a theoretical study of an electrically viscous fluid flowing in a straight rectangular cross section channel, a wall of which, infinitely conducting, is placed perpendicularly to the direction of a uniform magnetic induction field. The three other walls of the channel being electrically insulating, remain motionless. Formulas giving velocity distribution law in the straight section of the flow in relation to the Hartmann's number, curves illustrating the accelerating effect produced across the whole section, by the application of the magnetic induction field, and example for the distribution of the electric current lines in case of a square section are given [fr
Investigation of process induced warpage for pultrusion of a rectangular hollow profile
DEFF Research Database (Denmark)
Baran, Ismet; Hattel, Jesper Henri; Akkerman, Remko
2015-01-01
A novel thermo-chemical–mechanical analysis of the pultrusion process is presented. A process simulation is performed for an industrially pultruded rectangular hollow profile containing both unidirectional (UD) roving and continuous filament mat (CFM) layers. The reinforcements are impregnated...
International Nuclear Information System (INIS)
Kubo, Shinji; Akino, Norio; Tanaka, Amane; Nagashima, Akira
1998-01-01
The present study investigates natural convection heat transfer from a heated cylinder cooled by a water slurry of Microencapsulated Phase Change Material (MCPCM). A normal paraffin hydrocarbon with carbon number of 18 and melting point of 27.9degC, is microencapsulated by Melamine resin into particles of which average diameter is 9.5 μm and specific weight is same as water. The slurry of the MCPCM and water is put into a rectangular enclosure with a heated horizontal cylinder. The heat transfer coefficients of the cylinder were evaluated. Changing the concentrations of PCM and temperature difference between cylinder surface and working fluid. Addition of MCPCM into water, the heat transfer is enhanced significantly comparison with pure water in cases with phase change and is reduced slightly in cases without phase change. (author)
Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation
Saghir, Shahid
2016-12-01
The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear static and dynamic behavior of rectangular microplates under small and large actuating forces. In the first part, we present and compare various approaches to develop reduced order models for the nonlinear von-Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in. In the second part, we present an investigation of the static and dynamic behavior of a fully clamped microplate. We investigate the effect of different non-dimensional design parameters on the static response. The forced-vibration response of the plate is then investigated when the plate is excited by a harmonic AC load superimposed to a DC load. The dynamic behavior is examined near the primary and secondary (superharmonic and subharmonic) resonances. The microplate shows a strong hardening behavior due to the cubic nonlinearity of midplane stretching. However, the behavior switches to softening as the DC load is increased. Next, near-square plates are studied to understand the effect of geometric imperfections of microplates. In the final part of the dissertation, we investigate the mechanical behavior of
Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies
Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.
2015-01-01
This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.
Psyplot: Visualizing rectangular and triangular Climate Model Data with Python
Sommer, Philipp
2016-04-01
The development and use of climate models often requires the visualization of geo-referenced data. Creating visualizations should be fast, attractive, flexible, easily applicable and easily reproducible. There is a wide range of software tools available for visualizing raster data, but they often are inaccessible to many users (e.g. because they are difficult to use in a script or have low flexibility). In order to facilitate easy visualization of geo-referenced data, we developed a new framework called "psyplot," which can aid earth system scientists with their daily work. It is purely written in the programming language Python and primarily built upon the python packages matplotlib, cartopy and xray. The package can visualize data stored on the hard disk (e.g. NetCDF, GeoTIFF, any other file format supported by the xray package), or directly from the memory or Climate Data Operators (CDOs). Furthermore, data can be visualized on a rectangular grid (following or not following the CF Conventions) and on a triangular grid (following the CF or UGRID Conventions). Psyplot visualizes 2D scalar and vector fields, enabling the user to easily manage and format multiple plots at the same time, and to export the plots into all common picture formats and movies covered by the matplotlib package. The package can currently be used in an interactive python session or in python scripts, and will soon be developed for use with a graphical user interface (GUI). Finally, the psyplot framework enables flexible configuration, allows easy integration into other scripts that uses matplotlib, and provides a flexible foundation for further development.
Thermal vibration of a rectangular single-layered graphene sheet with quantum effects
International Nuclear Information System (INIS)
Wang, Lifeng; Hu, Haiyan
2014-01-01
The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.
Recovery of the Dirac system from the rectangular Weyl matrix function
International Nuclear Information System (INIS)
Fritzsche, B; Kirstein, B; Roitberg, I Ya; Sakhnovich, A L
2012-01-01
Weyl theory for Dirac systems with rectangular matrix potentials is non-classical. The corresponding Weyl functions are rectangular matrix functions. Furthermore, they are non-expansive in the upper semi-plane. Inverse problems are studied for such Weyl functions, and some results are new even for the square Weyl functions. High-energy asymptotics of Weyl functions and Borg–Marchenko-type uniqueness results are derived too. (paper)
The time of simultaneous tunneling of identical particles through the rectangular quantum barrier
International Nuclear Information System (INIS)
Martsenyuk, L.S.; Omelchenko, S.A.
2010-01-01
Work is devoted to studying the influence of exchange processes on a time of simultaneous crossing by identical particles of a rectangular quantum barrier. It is shown, that such processes essentially influence on the parameters of tunneling. The size of addition to time of identical particles tunneling, arising up because of their exchange interaction in a field of a rectangular quantum barrier is first counted.
Design and construction of a mode converter from TE10(rectangular) to TE11(circular)
International Nuclear Information System (INIS)
Tubbing, B.J.D.
1984-08-01
The design and manufacturing of a wavelength mode converter from the TE 10 (rectangular) mode in oversized rectangular to the TE 11 (circular) mode in oversized circular waveguide is described. A differential equation for the cross-sectional shape of the converter was solved numerically. A stainless-steel mandrel was produced on a numerically controlled milling machine. Sixteen converters were produced by means of electroforming on one mandrel. (Auth.)
Directory of Open Access Journals (Sweden)
Wei Jing
2016-01-01
Full Text Available In order to study the vibration problem of liquid-solid coupling of rectangular liquid-storage structure with horizontal elastic baffle, ignoring the influence of surface gravity wave, two different velocity potential functions corresponding to the liquid above and below the elastic baffle are assumed; based on the theory of mathematical equation and energy method, the formulas of basic frequency of liquid-solid coupling vibration system are derived, the baffle joined to the tank wall with 3 kinds of boundary conditions, namely, four edges simply supported, two opposite edges clamped and two opposite edges simply supported, and four edges clamped; the influence rules of baffle length-width ratio, the ratio of baffle height to liquid level, baffle elastic modulus, baffle density, baffle thickness, and liquid density on the coupling vibration performance are studied. The results show that the frequency of the clamped boundary is minimum; the influences of baffle length-width ratio and relative height on the basic frequency are much greater than that of the other system parameters; the relation between baffle length-width ratio and the frequency is exponential, while baffle relative height has a parabola relation with the frequency; the larger the baffle length-width ratio, the closer the baffle to the liquid level; the coupling frequency will be reduced more obviously.
Bejan, Andrei-Stelian; Labihi, Abdelouhab; Croitoru, Cristiana Verona; Catalina, Tiberiu; Chehouani, Hassan; Benhamou, Brahim
2018-02-01
Buildings sector has one of the highest potential regarding the reduction of greenhouse gases emissions, as being responsible for more than 40% of energy consumption worldwide. This is why, in order to achieve indoor thermal comfort, it is mandatory to use energy-efficient systems. Materials acting as thermal energy storage (TES) represents one of the most effective strategy that can be implemented and nowadays, many studies are focusing their attention on latent heat storage, respectively on phase changing materials (PCM) which can embed a large embed a high quantity of energy, unlike classic materials acting as thermal mass. This purpose of this paper is to experimentally investigate the charge and discharge processes for an organic PCM (RT35 paraffin) macroencapsulated in an aluminium rectangular cavity which was placed first in a horizontal position and after in a vertical position. After several experimental campaigns conducted we determined that the vertical position enhance the heat transfer because of the natural convection which occurs inside the cavity. Therefore, the charging time is lower in case of the vertical cavity and the temperature measured inside and on the surface is higher.
SU-F-T-557: Evaluation of Detector Response in Rectangular Small Field Dosimetry
Energy Technology Data Exchange (ETDEWEB)
Qureshi, A [University of Toledo, Toledo, Ohio (United States); Tanny, S [SUNY Upstate Medical University, Syracuse NY (United States); Parsai, E; Sperling, N [University of Toledo Medical Center, Toledo, OH (United States)
2016-06-15
Purpose: As stereotactic treatment modalities grow towards becoming the standard of care, the need for accurate dose computation in small fields is becoming increasingly essential. The purpose of this study is to evaluate the response of different detectors, intended for small field dosimetry, in jaw defined small rectangular fields by analyzing output factors from a stereotactic clinical accelerator. Methods: Two Dosimeters, the Exradin A26 Microionization Chamber (Standard Imaging) and Edge Diode Detector (Sun Nuclear) were used to measure output factors taken on the Varian Edge Stereotactic Linear accelerator. Measurements were taken at 6MV and 6FFF at 10cm depth, 100cm SSD in a 48×48×40cm3 Welhoffer BluePhantom2 (IBA) with X and Y jaws set from 0.6 to 2.0cm. Output factors were normalized to a 5×5cm2 machine-specific reference field. Measurements were made in the vertical orientation for the A26 and horizontal orientation for both the A26 and Edge. Output factors were measured as: OF{sub FS} = M{sub FS}/M{sub ref} where M{sub FS} and M{sub ref} are the measured signals for the clinical field and the reference field, respectively. Measured output factors were then analyzed to establish relative responses of the detectors in small fields. Results: At 6MV the Edge detector exhibited a variation in output factors dependent on jaw positioning (X-by-Y vs Y-by-X) of 5.7% of the 5×5cm reference output and a variation of 3.33% at 6FFF. The A26 exhibited variation of output factor dependent on jaw positioning of upto 7.7% of the 5×5cm reference field at 6MV and upto 5.33% at 6FFF. Conclusion: Both the Edge detector and A26 responded as expected at small fields however a dependence on the jaw positioning was noted. At 6MV and 6FFF the detector response showed an increased dependence on the positioning of the X jaws as compared to the positioning of the Y jaws.
Experimental investigation on carbon nano tubes coated brass rectangular extended surfaces
International Nuclear Information System (INIS)
Senthilkumar, Rajendran; Prabhu, Sethuramalingam; Cheralathan, Marimuthu
2013-01-01
Finned surface has been extensively used for free convection cooling of internal combustion engines and several electronic kits etc. Here rectangular brass fin was preferred for analysis. Thermocouples were attached all over the surface of the fin in equal distances. The measurement of surface temperature and calculated convective heat transfer rate were reported for several heat input values. The overall system performance can be improved by enhancing heat transfer rate of extended surfaces. Based on the above requirement, brass surface was coated by carbon nano tubes. The temperature and heat transfer characteristics were investigated using Taguchi method for experimental design. Finally the performances of coated and non-coated rectangular brass fins were compared. The average percentage of increase in heat transfer rate was proved around 12% for carbon nanocoated rectangular brass fins. - Graphical abstract: The designed Natural and Forced convection Heat Transfer Test Rig measures the enhanced rate of heat transfer for nano coated rectangular fins than in non-coated fins. Highlights: ► Rectangular brass fins were preferred for convective heat transfer process. ► The rectangular brass fins are coated with multi wall carbon nano tubes in EBPVD process with nanometer thickness. ► Temperature and heat transfer rate were investigated for nanocoated and non-coated fins by using Taguchi method. ► Multi wall carbon nanotubes act as a pin fin to enhance surface area for effective convective heat transfer rate.
Channel Power in Multi-Channel Environments
M.G. Dekimpe (Marnik); B. Skiera (Bernd)
2004-01-01
textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key
Horizontal steam generator thermal-hydraulics
Energy Technology Data Exchange (ETDEWEB)
Ubra, O. [SKODA Praha Company, Prague (Czechoslovakia); Doubek, M. [Czech Technical Univ., Prague (Czechoslovakia)
1995-09-01
Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. The 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.
Productivity and injectivity of horizontal wells
Energy Technology Data Exchange (ETDEWEB)
Aziz, Khalid
2000-03-06
One of the key issues addressed was pressure drop in long horizontal wells and its influence on well performance. Very little information is available in the literature on flow in pipes with influx through pipe walls. Virtually all of this work has been in small diameter pipes and with single-phase flow. In order to address this problem new experimental data on flow in horizontal and near horizontal wells have been obtained. Experiments were conducted at an industrial facility on typical 6 1/8 ID, 100 feet long horizontal well model. The new data along with available information in the literature have been used to develop new correlations and mechanistic models. Thus it is now possible to predict, within reasonable accuracy, the effect of influx through the well on pressure drop in the well.
Horizontal cooperation in transport and logistics
Cruijssen, F.C.A.M.
2006-01-01
This thesis deals with horizontal cooperation in transport and logistics. It contains a comprehensive discussion of the available academic literature on this topic, many practical examples, and an empirical investigation of opportunities and impediments. Furthermore, three enabling concepts for
Horizontal-view interferometer on TEXT-Upgrade
International Nuclear Information System (INIS)
Jiang, Y.; Brower, D.L.
1994-01-01
The first experimental results from the horizontal-view, multichannel, heterodyne FIR interferometer system on TEXT-Upgrade are reported. The system employs parabolic beam-expansion optics and a 15 cm array with minimum channel spacing of 1.5 cm. Profiles of the plasma electron density will be presented. In addition, small-amplitude density perturbations resulting from sawteeth and tearing modes are examined. Due to the double-pass of the laser beam through the plasma and the large distance of the detector array [2.5 m] from the plasma, refractive effects must be addressed for densities greater than 2 x 10 13 cm -3 . A ray tracing code is developed to correct the measured profiles
Glăvan, D. O.; Radu, I.; Babanatsas, T.; Babanatis Merce, R. M.; Kiss, I.; Gaspar, M. C.
2018-01-01
The paper presents a pneumatic system with two oscillating masses. The system is composed of a cylinder (framework) with mass m1, which has a piston with mass m2 inside. The cylinder (framework system) has one supplying channel for compressed air and one evicting channel for each work chamber (left and right of the piston). Functionality of the piston position comparatively with the cylinder (framework) is possible through the supplying or evicting of compressed air. The variable force that keeps the movement depends on variation of the pressure that is changing depending on the piston position according to the cylinder (framework) and to the section form that is supplying and evicting channels with compressed air. The paper presents the physical model/pattern, the mathematical model/pattern (differential equations) and numerical solution of the differential equations in hypothesis with the section form of supplying and evicting channels with compressed air is rectangular (variation linear) or circular (variation nonlinear).
Natural convection heat transfer between vertical channel with flow resistance at the lower end
International Nuclear Information System (INIS)
Iwamoto, S.; Nishimura, S.; Ishihara, I.
2003-01-01
For natural convection in the geometrically complicated channel, the convection flow is suppressed by flow resistance due to such channel itself and the lopsided flow may take place. This could result in serious influences on the heat transfer in the channel. In order to investigate fundamentally the natural convection flow and heat transfer in such the channel, the vertical channel in which wall was heated with uniform heat flux and the flow resistance was given by small clearance between the lower end of channel and a wide horizontal floor. Flow pattern was observed by illuminating smoke filled in the channel and heat transfer rate was measured. (author)
Horizontal alveolar bone loss: A periodontal orphan
Jayakumar, A.; Rohini, S.; Naveen, A.; Haritha, A.; Reddy, Krishnanjeneya
2010-01-01
Background: Attempts to successfully regenerate lost alveolar bone have always been a clinician’s dream. Angular defects, at least, have a fairer chance, but the same cannot be said about horizontal bone loss. The purpose of the present study was to evaluate the prevalence of horizontal alveolar bone loss and vertical bone defects in periodontal patients; and later, to correlate it with the treatment modalities available in the literature for horizontal and vertical bone defects. Materials and Methods: The study was conducted in two parts. Part I was the radiographic evaluation of 150 orthopantomographs (OPGs) (of patients diagnosed with chronic periodontitis and seeking periodontal care), which were digitized and read using the AutoCAD 2006 software. All the periodontitis-affected teeth were categorized as teeth with vertical defects (if the defect angle was ≤45° and defect depth was ≥3 mm) or as having horizontal bone loss. Part II of the study comprised search of the literature on treatment modalities for horizontal and vertical bone loss in four selected periodontal journals. Results: Out of the 150 OPGs studied, 54 (36%) OPGs showed one or more vertical defects. Totally, 3,371 teeth were studied, out of which horizontal bone loss was found in 3,107 (92.2%) teeth, and vertical defects were found only in 264 (7.8%) of the teeth, which was statistically significant (P<.001). Search of the selected journals revealed 477 papers have addressed the treatment modalities for vertical and horizontal types of bone loss specifically. Out of the 477 papers, 461 (96.3%) have addressed vertical bone loss, and 18 (3.7%) have addressed treatment options for horizontal bone loss. Two papers have addressed both types of bone loss and are included in both categories. Conclusion: Horizontal bone loss is more prevalent than vertical bone loss but has been sidelined by researchers as very few papers have been published on the subject of regenerative treatment modalities for
Horizontal well impact on heavy oil supply
International Nuclear Information System (INIS)
Bowers, B.; Bielecki, J.; Hu, J.; Wall, B.; Drummond, K.
1993-01-01
Horizontal wells can take advantage of gravity drainage mechanisms, which can be important in conventional heavy oil and bitumen recovery. Horizontal drilling will impact on the development of established conventional heavy oil pools by infill drilling and application of enhanced recovery techniques. There will also be an impact on the development of extensions to established and newly discovered heavy oil pools, as well as a major impact on development of bitumen resources. To assess the impact of horizontal drilling on heavy oil supply, high-impact and low-impact scenarios were evaluated under specified oil-price assumptions for four heavy oil areas in Saskatchewan and Alberta. Horizontal well potential for infill drilling, waterflood projects, and thermal projects was assessed and estimates were made of such developments as reserves additions and heavy oil development wells under the two scenarios. In the low case, projected supply of conventional heavy oil and bitumen stabilizes at a level in the 90,000-94,000 m 3 /d after 1994. In the high case, overall supply continuously grows from 80,000 m 3 /d in 1992 to 140,000 m 3 /d in 2002. Through application of horizontal drilling, reserves additions in western Canada could be improved by ca 100 million m 3 by 2002. 14 figs., 6 tabs
Zhang, Ruobing; Liang, Dapeng; Zheng, Nanchen; Xiao, Jianfu; Mo, Mengbin; Li, Jing
2013-03-01
Pulsed electric field (PEF) is a novel non-thermal food processing technology that involves the electric discharge of high voltage short pulses through the food product. In PEF study, rectangular pulses are most commonly used for inactivating microorganisms. However, little information is available on the inactivation effect of rising time of rectangular pulse. In this paper, inactivation effects, electric field strength, treatment time and conductivity on staphylococcus aureus inactivation were investigated when the pulse rising time is reduced from 2.5 μs to 200 ns. Experimental results showed that inactivation effect of PEF increased with electric field strength, solution conductivity and treatment time. Rising time of the rectangular pulse had a significant effect on the inactivation of staphylococcus aureus. Rectangular pulses with a rising time of 200 ns had a better inactivation effect than that with 2 μs. In addition, temperature increase of the solution treated by pulses with 200 ns rising time was lower than that with 2 μs. In order to obtain a given inactivation effect, treatment time required for the rectangular pulse with 200 ns rise time was shorter than that with 2 μs.
Optimal design for rectangular isolated footings using the real soil pressure
Directory of Open Access Journals (Sweden)
Arnulfo Luévanos Rojas
2017-05-01
Full Text Available The standard design method (classical method for reinforced concrete rectangular footings is: First, a dimension is proposed and should comply with the allowable stresses; subsequently, the effective depth is obtained from the maximum moment and is checked against the bending shear and the punching shear until, it complies with these conditions and, then, steel reinforcement is obtained, but it is not guarantee that the minimum cost will be obtained. This paper shows an optimal design for reinforced concrete rectangular footings using the new model. A numerical experimentation is presented to show the model capability to estimate the minimum cost design of the materials used for a rectangular footing that supports an axial load and moments in two directions in accordance to the building code requirements for structural concrete and commentary (ACI 318-13. Also, a comparison is made between the optimal design and current design for rectangular footings. The solutions show that the optimal design is more economical and more precise with respect to the current design, because standard design is done by trial and error. Then, the optimal design should be used to obtain the minimum cost design for reinforced concrete rectangular footings.
International Nuclear Information System (INIS)
Zhang, Ruobing; Liang, Dapeng; Xiao, Jianfu; Mo, Mengbin; Li, Jing; Zheng, Nanchen
2013-01-01
Pulsed electric field (PEF) is a novel non-thermal food processing technology that involves the electric discharge of high voltage short pulses through the food product. In PEF study, rectangular pulses are most commonly used for inactivating microorganisms. However, little information is available on the inactivation effect of rising time of rectangular pulse. In this paper, inactivation effects, electric field strength, treatment time and conductivity on staphylococcus aureus inactivation were investigated when the pulse rising time is reduced from 2.5 μs to 200 ns. Experimental results showed that inactivation effect of PEF increased with electric field strength, solution conductivity and treatment time. Rising time of the rectangular pulse had a significant effect on the inactivation of staphylococcus aureus. Rectangular pulses with a rising time of 200 ns had a better inactivation effect than that with 2 μs. In addition, temperature increase of the solution treated by pulses with 200 ns rising time was lower than that with 2 μs. In order to obtain a given inactivation effect, treatment time required for the rectangular pulse with 200 ns rise time was shorter than that with 2 μs.
Analysis of the rectangular resonator with butterfly MMI coupler using SOI
Kim, Sun-Ho; Park, Jun-Hee; Kim, Eudum; Jeon, Su-Jin; Kim, Ji-Hoon; Choi, Young-Wan
2018-02-01
We propose a rectangular resonator sensor structure with butterfly MMI coupler using SOI. It consists of the rectangular resonator, total internal reflection (TIR) mirror, and the butterfly MMI coupler. The rectangular resonator is expected to be used as bio and chemical sensors because of the advantages of using MMI coupler and the absence of bending loss unlike ring resonators. The butterfly MMI coupler can miniaturize the device compared to conventional MMI by using a linear butterfly shape instead of a square in the MMI part. The width, height, and slab height of the rib type waveguide are designed to be 1.5 μm, 1.5 μm, and 0.9 μm, respectively. This structure is designed as a single mode. When designing a TIR mirror, we considered the Goos-Hänchen shift and critical angle. We designed 3:1 MMI coupler because rectangular resonator has no bending loss. The width of MMI is designed to be 4.5 μm and we optimize the length of the butterfly MMI coupler using finite-difference time-domain (FDTD) method for higher Q-factor. It has the equal performance with conventional MMI even though the length is reduced by 1/3. As a result of the simulation, Qfactor of rectangular resonator can be obtained as 7381.
Channelling and electromagnetic radiation of channelling particles
International Nuclear Information System (INIS)
Kalashnikov, N.
1983-01-01
A brief description is presented of the channelling of charged particles between atoms in the crystal lattice. The specificities are discussed of the transverse motion of channelling particles as are the origin and properties of quasi-characteristic radiation of channelling particles which accompany transfers from one band of permissible energies of the transverse motion of channelling particles to the other. (B.S.)
HORIZONTAL WELL DRILL-IN FLUIDS
Directory of Open Access Journals (Sweden)
Nediljka Gaurina-Međimurec
1998-12-01
Full Text Available Main objective of horizontal driling is to place a drain-hole for a long distance within the pay zone to enhance productivity or injectivity. In drilling horizontal wells, more serious problems appear than in drilling vertical wells. These problems are: poor hole cleaning, excessive torque and drag, hole filling, pipe stucking, wellbore instability, loss of circulation, formation damage, poor cement job, and difficulties at logging jobs. From that reason, successful drilling and production of horizontal well depends largely on the fluid used during drilling and completion phases. Several new fluids, that fulfill some or all of required properties (hole cleaning, cutting suspension, good lubrication, and relative low formation damage, are presented in this paper.
Horizontal bridges in polar dielectric liquids
Woisetschläger, Jakob; Wexler, Adam D.; Holler, Gert; Eisenhut, Mathias; Gatterer, Karl; Fuchs, Elmar C.
2012-01-01
When a high-voltage direct-current is applied to two beakers filled with polar liquid dielectrica like water or methanol, a horizontal bridge forms between the two beakers. By repeating a version of Pellat's experiment, it is shown that a horizontal bridge is stable by the action of electrohydrodynamic pressure. Thus, the static and dynamic properties of the phenomenon called a `floating water bridge' can be explained by the gradient of Maxwell pressure, replenishing the liquid within the bridge against any drainage mechanism. It is also shown that a number of liquids can form stable and long horizontal bridges. The stability of such a connection, and the asymmetry in mass flow through such bridges caused by the formation of ion clouds in the vicinity of the electrodes, is also discussed by two further experiments.
Horizontal bridges in polar dielectric liquids
Energy Technology Data Exchange (ETDEWEB)
Woisetschlaeger, Jakob [Graz University of Technology, Experimental Turbomachinery Research and Optical Measurement Group, Institute for Thermal Turbomachinery and Machine Dynamics, Graz (Austria); Wexler, Adam D.; Fuchs, Elmar C. [Wetsus, Center of Excellence for Sustainable Water Technology, Leeuwarden (Netherlands); Holler, Gert [Graz University of Technology, Institute of Electrical Measurement and Measurement Signal Processing, Graz (Austria); Eisenhut, Mathias [Graz University of Technology, Institute of Analytical Chemistry and Food Chemistry, Graz (Austria); Gatterer, Karl [Graz University of Technology, Institute of Physical and Theoretical Chemistry, Graz (Austria)
2012-01-15
When a high-voltage direct-current is applied to two beakers filled with polar liquid dielectrica like water or methanol, a horizontal bridge forms between the two beakers. By repeating a version of Pellat's experiment, it is shown that a horizontal bridge is stable by the action of electrohydrodynamic pressure. Thus, the static and dynamic properties of the phenomenon called a 'floating water bridge' can be explained by the gradient of Maxwell pressure, replenishing the liquid within the bridge against any drainage mechanism. It is also shown that a number of liquids can form stable and long horizontal bridges. The stability of such a connection, and the asymmetry in mass flow through such bridges caused by the formation of ion clouds in the vicinity of the electrodes, is also discussed by two further experiments. (orig.)
Kramer, W.; Clercx, H.J.H.; van Heijst, G.J.F.
2008-01-01
This paper reports on a numerical study of forced two-dimensional turbulence in a periodic channel with flat no-slip walls. Since corners or curved domain boundaries, which are met in the standard rectangular, square, or circular geometries, are absent in this geometry, the (statistical) analysis of
Kramer, W.; Clercx, H.J.H.; Heijst, van G.J.F.
2008-01-01
This paper reports on a numerical study of forced two-dimensional turbulence in a periodic channel with flat no-slip walls. Since corners or curved domain boundaries, met in the standard rectangular, square or circular geometries, are absent in this geometry, the (statistical) analysis of the flow
Heavy crude production from shallow formations: long horizontal wells versus horizontal fractures
Energy Technology Data Exchange (ETDEWEB)
Valko, P.; Economides, M. J. [Texas A and M Univ., TX (United States)
1998-12-31
The feasibility of producing heavy oil from shallow formations using either horizontal wells or short horizontal wells fractured horizontally is demonstrated. The problem of optimum proppant placement is solved in two steps. In step one, the finite productivity performance is considered in general terms showing that the performance is a function of two dimensionless parameters. Following derivation of optimum conditions, the solution is applied to the horizontal fracture consideration. The limiting factor is that to create an effective finite conductivity fracture, the dimensionless fracture conductivity must be on the order of unity, a fracture that is difficult to realize in higher permeability formations. The best candidates for the suggested configuration are shallow or moderate formations, or formations otherwise proven to accept horizontal fractures, and formations with low permeability/viscosity ratio. 7 refs., 2 tabs., 10 figs., 2 appendices.