WorldWideScience

Sample records for horizontal flux budget

  1. A statistical model for horizontal mass flux of erodible soil

    International Nuclear Information System (INIS)

    Babiker, A.G.A.G.; Eltayeb, I.A.; Hassan, M.H.A.

    1986-11-01

    It is shown that the mass flux of erodible soil transported horizontally by a statistically distributed wind flow has a statistical distribution. Explicit expression for the probability density function, p.d.f., of the flux is derived for the case in which the wind speed has a Weibull distribution. The statistical distribution for a mass flux characterized by a generalized Bagnold formula is found to be Weibull for the case of zero threshold speed. Analytic and numerical values for the average horizontal mass flux of soil are obtained for various values of wind parameters, by evaluating the first moment of the flux density function. (author)

  2. Radiation budget measurement/model interface research

    Science.gov (United States)

    Vonderhaar, T. H.

    1981-01-01

    The NIMBUS 6 data were analyzed to form an up to date climatology of the Earth radiation budget as a basis for numerical model definition studies. Global maps depicting infrared emitted flux, net flux and albedo from processed NIMBUS 6 data for July, 1977, are presented. Zonal averages of net radiation flux for April, May, and June and zonal mean emitted flux and net flux for the December to January period are also presented. The development of two models is reported. The first is a statistical dynamical model with vertical and horizontal resolution. The second model is a two level global linear balance model. The results of time integration of the model up to 120 days, to simulate the January circulation, are discussed. Average zonal wind, meridonal wind component, vertical velocity, and moisture budget are among the parameters addressed.

  3. Energy and variance budgets of a diffusive staircase with implications for heat flux scaling

    Science.gov (United States)

    Hieronymus, M.; Carpenter, J. R.

    2016-02-01

    Diffusive convection, the mode of double-diffusive convection that occur when both temperature and salinity increase with increasing depth, is commonplace throughout the high latitude oceans and diffusive staircases constitute an important heat transport process in the Arctic Ocean. Heat and buoyancy fluxes through these staircases are often estimated using flux laws deduced either from laboratory experiments, or from simplified energy or variance budgets. We have done direct numerical simulations of double-diffusive convection at a range of Rayleigh numbers and quantified the energy and variance budgets in detail. This allows us to compare the fluxes in our simulations to those derived using known flux laws and to quantify how well the simplified energy and variance budgets approximate the full budgets. The fluxes are found to agree well with earlier estimates at high Rayleigh numbers, but we find large deviations at low Rayleigh numbers. The close ties between the heat and buoyancy fluxes and the budgets of thermal variance and energy have been utilized to derive heat flux scaling laws in the field of thermal convection. The result is the so called GL-theory, which has been found to give accurate heat flux scaling laws in a very wide parameter range. Diffusive convection has many similarities to thermal convection and an extension of the GL-theory to diffusive convection is also presented and its predictions are compared to the results from our numerical simulations.

  4. Developing an Earth system Inverse model for the Earth's energy and water budgets.

    Science.gov (United States)

    Haines, K.; Thomas, C.; Liu, C.; Allan, R. P.; Carneiro, D. M.

    2017-12-01

    The CONCEPT-Heat project aims at developing a consistent energy budget for the Earth system in order to better understand and quantify global change. We advocate a variational "Earth system inverse" solution as the best methodology to bring the necessary expertise from different disciplines together. L'Ecuyer et al (2015) and Rodell et al (2015) first used a variational approach to adjust multiple satellite data products for air-sea-land vertical fluxes of heat and freshwater, achieving closed budgets on a regional and global scale. However their treatment of horizontal energy and water redistribution and its uncertainties was limited. Following the recent work of Liu et al (2015, 2017) which used atmospheric reanalysis convergences to derive a new total surface heat flux product from top of atmosphere fluxes, we have revisited the variational budget approach introducing a more extensive analysis of the role of horizontal transports of heat and freshwater, using multiple atmospheric and ocean reanalysis products. We find considerable improvements in fluxes in regions such as the North Atlantic and Arctic, for example requiring higher atmospheric heat and water convergences over the Arctic than given by ERA-Interim, thereby allowing lower and more realistic oceanic transports. We explore using the variational uncertainty analysis to produce lower resolution corrections to higher resolution flux products and test these against in situ flux data. We also explore the covariance errors implied between component fluxes that are imposed by the regional budget constraints. Finally we propose this as a valuable methodology for developing consistent observational constraints on the energy and water budgets in climate models. We take a first look at the same regional budget quantities in CMIP5 models and consider the implications of the differences for the processes and biases active in the models. Many further avenues of investigation are possible focused on better valuing

  5. Prediction of radiant heat flux from horizontal propane jet fire

    International Nuclear Information System (INIS)

    Zhou, Kuibin; Liu, Jiaoyan; Jiang, Juncheng

    2016-01-01

    Highlights: • Line source model for the radiant heat flux from horizontal jet fire is proposed. • A review on the difference between horizontal and vertical jet fires is conducted. • Effects of lift-off distance and flame shape are discussed for the line source model. • Line source model gives encouraging results relative to the validity of model system. - Abstract: Jet fires are often reported to occur in process industry with lots of hazardous heat energy released. A line source model describing the flame emissive power and subsequent heat flux radiated from a horizontal propane jet fire is evaluated through a testing against experimental fire data and comparison against other models. By a review on the jet flame behavior, the correlations of the lift-off distance, flame length and radiative fraction are proposed to close the line source model in theory. It is found that the fuel jet direction holds a considerable effect on the flame behavior by comparison between horizontal and vertical jet fires. Results indicate that the lift-off distance and the flame shape influence the model prediction to some extent. Comparison of model predictions against data collected in the near field and predictions from the point source model and multipoint source model gives encouraging results relative to the validity of model system.

  6. Assessment of fluid-to-fluid modelling of critical heat flux in horizontal 37-element bundle flows

    International Nuclear Information System (INIS)

    Yang, S.K.

    2006-01-01

    Fluid-to-fluid modelling laws of critical heat flux (CHF) available in the literature were reviewed. The applicability of the fluid-to-fluid modelling laws was assessed using available data ranging from low to high mass fluxes in horizontal 37-element bundles simulating a CANDU fuel string. Correlations consisting of dimensionless similarity groups were derived using modelling fluid data (Freon-12) to predict water CHF data in horizontal 37-element bundles with uniform and non-uniform axial-heat flux distribution (AFD). The results showed that at mass fluxes higher than ∼4,000 kg/m 2 s (water equivalent value), the vertical fluid-to-fluid modelling laws of Ahmad (1973) and Katto (1979) predict water CHF in horizontal 37-element bundles with non-uniform AFD with average errors of 1.4% and 3.0% and RMS errors of 5.9% and 6.1%, respectively. The Francois and Berthoud (2003) fluid-to-fluid modelling law predicts CHF in non-uniformly heated 37-element bundles in the horizontal orientation with an average error of 0.6% and an RMS error of 10.4% over the available range of 2,000 to 6,200 kg/m 2 s. (author)

  7. Wind tunnel experiments on the effects of tillage ridge features on wind erosion horizontal fluxes

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available In addition to the well-known soil factors which control wind erosion on flat, unridged surfaces, two specific processes affect the susceptibility of tillage ridged surfaces to wind erosion: ridge-induced roughness and ridge- trapping efficiency. In order to parameterize horizontal soil fluxes produced by wind over tillage ridges, eight-ridge configurations composed of sandy soil and exhibiting ridge heights to ridge spacing (RH/RS ratios ranging from 0.18 to 0.38 were experimented in a wind tunnel. These experiments are used to develop a parameterization of the horizontal fluxes over tillage ridged surfaces based only on the geometric characteristics of the ridges. Indeed, the key parameters controlling the horizontal flux, namely the friction velocity, threshold friction velocity and the adjustment coefficient, are derived through specific expressions, from ridge heights (RH and ridge spacing (RS. This parameterization was evaluated by comparing the results of the simulations to an additional experimental data set and to the data set obtained by Hagen and Armbrust (1992. In both cases, predicted and measured values are found to be in a satisfying agreement. This parameterization was used to evaluate the efficiency of ridges in reducing wind erosion. The results show that ridged surfaces, when compared to a loose, unridged soil surface, lead to an important reduction in the horizontal fluxes (exceeding 60%. Moreover, the effect of ridges in trapping particles contributes for more than 90% in the flux reduction while the ridge roughness effect is weak and decreases when the wind velocity increases.

  8. Radiation budget, soil heat flux and latent heat flux at the forest floor in warm, temperate mixed forest

    International Nuclear Information System (INIS)

    Tamai, K.; Abe, T.; Araki, M.; Ito, H.

    1998-01-01

    Seasonal changes in the radiation budget and soil heat flux of a forest floor were measured in a mixed forest located in Kyoto, Japan. The basal area at breast height in the survey forest was about 15·82 m 2 ha −1 , for evergreen trees, and 12·46 m 2 ha −1 , for deciduous trees. The sky view factor was 16 and 22% at the survey site in the foliate and defoliate seasons, respectively. The small difference between the sky view factor in the two seasons was reflected in the seasonal change in the radiation budget of the forest floor. Namely, the net long-wave radiation changed rapidly in leafing and falling days, and the rate of net short-wave radiation was highest in April. The distinctive characteristic of the radiation budget was that the rates of available radiation in the daytime and at night were almost equal in September and October. Latent heat flux at the forest floor was estimated to be around 94 MJ m −2 annually, from our measurement with the simulation model. (author)

  9. Neurotransmitter modulation of extracellular H+ fluxes from isolated retinal horizontal cells of the skate

    Science.gov (United States)

    Molina, Anthony J A; Verzi, Michael P; Birnbaum, Andrea D; Yamoah, Ebenezer N; Hammar, Katherine; Smith, Peter J S; Malchow, Robert Paul

    2004-01-01

    Self-referencing H+-selective microelectrodes were used to measure extracellular H+ fluxes from horizontal cells isolated from the skate retina. A standing H+ flux was detected from quiescent cells, indicating a higher concentration of free hydrogen ions near the extracellular surface of the cell as compared to the surrounding solution. The standing H+ flux was reduced by removal of extracellular sodium or application of 5-(N-ethyl-N-isopropyl) amiloride (EIPA), suggesting activity of a Na+–H+ exchanger. Glutamate decreased H+ flux, lowering the concentration of free hydrogen ions around the cell. AMPA/kainate receptor agonists mimicked the response, and the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) eliminated the effects of glutamate and kainate. Metabotropic glutamate agonists were without effect. Glutamate-induced alterations in H+ flux required extracellular calcium, and were abolished when cells were bathed in an alkaline Ringer solution. Increasing intracellular calcium by photolysis of the caged calcium compound NP-EGTA also altered extracellular H+ flux. Immunocytochemical localization of the plasmalemma Ca2+–H+-ATPase (PMCA pump) revealed intense labelling within the outer plexiform layer and on isolated horizontal cells. Our results suggest that glutamate modulation of H+ flux arises from calcium entry into cells with subsequent activation of the plasmalemma Ca2+–H+-ATPase. These neurotransmitter-induced changes in extracellular pH have the potential to play a modulatory role in synaptic processing in the outer retina. However, our findings argue against the hypothesis that hydrogen ions released by horizontal cells normally act as the inhibitory feedback neurotransmitter onto photoreceptor synaptic terminals to create the surround portion of the centre-surround receptive fields of retinal neurones. PMID:15272044

  10. Wind tunnel experiments on the effects of tillage ridge features on wind erosion horizontal fluxes

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available In addition to the well-known soil factors which control wind erosion on flat, unridged surfaces, two specific processes affect the susceptibility of tillage ridged surfaces to wind erosion: ridge-induced roughness and ridge- trapping efficiency.

    In order to parameterize horizontal soil fluxes produced by wind over tillage ridges, eight-ridge configurations composed of sandy soil and exhibiting ridge heights to ridge spacing (RH/RS ratios ranging from 0.18 to 0.38 were experimented in a wind tunnel. These experiments are used to develop a parameterization of the horizontal fluxes over tillage ridged surfaces based only on the geometric characteristics of the ridges. Indeed, the key parameters controlling the horizontal flux, namely the friction velocity, threshold friction velocity and the adjustment coefficient, are derived through specific expressions, from ridge heights (RH and ridge spacing (RS. This parameterization was evaluated by comparing the results of the simulations to an additional experimental data set and to the data set obtained by Hagen and Armbrust (1992. In both cases, predicted and measured values are found to be in a satisfying agreement.

    This parameterization was used to evaluate the efficiency of ridges in reducing wind erosion. The results show that ridged surfaces, when compared to a loose, unridged soil surface, lead to an important reduction in the horizontal fluxes (exceeding 60%. Moreover, the effect of ridges in trapping particles contributes for more than 90% in the flux reduction while the ridge roughness effect is weak and decreases when the wind velocity increases.

  11. Relative Role of Horizontal and Vertical Processes in Arctic Amplification

    Science.gov (United States)

    Kim, K. Y.

    2017-12-01

    The physical mechanism of Arctic amplification is still controversial. Specifically, relative role of vertical processes resulting from the reduction of sea ice in the Barents-Kara Seas is not clearly understood in comparison with the horizontal advection of heat and moisture. Using daily data, heat and moisture budgets are analyzed during winter (Dec. 1-Feb. 28) over the region of sea ice reduction in order to delineate the relative roles of horizontal and vertical processes. Detailed heat and moisture budgets in the atmospheric column indicate that the vertical processes, release of turbulent heat fluxes and evaporation, are a major contributor to the increased temperature and specific humidity over the Barents-Kara Seas. In addition, greenhouse effect caused by the increased specific humidity, also plays an important role in Arctic amplification. Horizontal processes such as advection of heat and moisture are the primary source of variability (fluctuations) in temperature and specific humidity in the atmospheric column. Advection of heat and moisture, on the other hand, is little responsible for the net increase in temperature and specific humidity over the Barents-Kara Seas.

  12. Analysis of neutron flux increase in the horizontal experimental channels of Ra reactor - masters thesis

    International Nuclear Information System (INIS)

    Strugar, P.

    1964-12-01

    Calculation and experimental results shown in this paper show that higher thermal neutron flux is obtained in the reactor core with central horizontal reflector at the same power level. The flux is increased when the moderation capability of the core is decreased. Apart from increase of the thermal component of the neutron flux in the experimental channels, the central reflector causes decrease of the epithermal neutron flux and gamma radiation intensity. This is very useful for studying (n, γ) reaction, neutron diffraction, etc. [sr

  13. Surface energy budget and turbulent fluxes at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Persson, Ola; Uttal, Taneil; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2017-04-01

    Determination of the surface energy budget (SEB) and all SEB components at the air-surface interface are required in a wide variety of applications including atmosphere-land/snow simulations and validation of the surface fluxes predicted by numerical models over different spatial and temporal scales. Here, comparisons of net surface energy budgets at two Arctic sites are made using long-term near-continuous measurements of hourly averaged surface fluxes (turbulent, radiation, and soil conduction). One site, Eureka (80.0 N; Nunavut, Canada), is located in complex topography near a fjord about 200 km from the Arctic Ocean. The other site, Tiksi (71.6 N; Russian East Siberia), is located on a relatively flat coastal plain less than 1 km from the shore of Tiksi Bay, a branch of the Arctic Ocean. We first analyzed diurnal and annual cycles of basic meteorological parameters and key SEB components at these locations. Although Eureka and Tiksi are located on different continents and at different latitudes, the annual course of the surface meteorology and SEB components are qualitatively similar. Surface energy balance closure is a formulation of the conservation of energy principle. Our direct measurements of energy balance for both Arctic sites show that the sum of the turbulent sensible and latent heat fluxes and the ground (conductive) heat flux systematically underestimate the net radiation by about 25-30%. This lack of energy balance closure is a fundamental and pervasive problem in micrometeorology. We discuss a variety of factors which may be responsible for the lack of SEB closure. In particular, various storage terms (e.g., air column energy storage due to radiative and/or sensible heat flux divergence, ground heat storage above the soil flux plate, energy used in photosynthesis, canopy biomass heat storage). For example, our observations show that the photosynthesis storage term is relatively small (about 1-2% of the net radiation), but about 8-12% of the

  14. Towards closure of regional heat budgets in the North Atlantic using Argo floats and surface flux datasets

    Directory of Open Access Journals (Sweden)

    N. C. Wells

    2009-04-01

    Full Text Available The upper ocean heat budget (0–300 m of the North Atlantic from 20°–60° N is investigated using data from Argo profiling floats for 1999–2005 and the NCEP/NCAR and NOC surface flux datasets. Estimates of the different terms in the budget (heat storage, advection, diffusion and surface exchange are obtained using the methodology developed by Hadfield et al. (2007a, b. The method includes optimal interpolation of the individual profiles to produce gridded fields with error estimates at a 10°×10° grid box resolution. Closure of the heat budget is obtained within the error estimates for some regions – particularly the eastern subtropical Atlantic – but not for those boxes that include the Gulf Stream. Over the whole range considered, closure is obtained for 13 (9 out of 20 boxes with the NOC (NCEP/NCAR surface fluxes. The seasonal heat budget at 20–30° N, 35–25° W is considered in detail. Here, the NCEP based budget has an annual mean residual of −55±35 Wm−2 compared with a NOC based value of −4±35 Wm−2. For this box, the net heat divergence of 36 Wm−2 (Ekman=−4 Wm−2, geostrophic=11 Wm−2, diffusion=29 Wm−2 offsets the net heating of 32 Wm−2 from the NOC surface heat fluxes. The results in this box are consistent with an earlier evaluation of the fluxes using measurements from research buoys in the subduction array which revealed biases in NCEP but good agreement of the buoy values with the NOC fields.

  15. Maximum allowable heat flux for a submerged horizontal tube bundle

    International Nuclear Information System (INIS)

    McEligot, D.M.

    1995-01-01

    For application to industrial heating of large pools by immersed heat exchangers, the socalled maximum allowable (or open-quotes criticalclose quotes) heat flux is studied for unconfined tube bundles aligned horizontally in a pool without forced flow. In general, we are considering boiling after the pool reaches its saturation temperature rather than sub-cooled pool boiling which should occur during early stages of transient operation. A combination of literature review and simple approximate analysis has been used. To date our main conclusion is that estimates of q inch chf are highly uncertain for this configuration

  16. Split core experiments; Part I. Axial neutron flux distribution measurements in the reactor core with a central horizontal reflector

    Energy Technology Data Exchange (ETDEWEB)

    Strugar, P; Raisic, N; Obradovic, D; Jovanovic, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1965-05-01

    A series of critical experiments were performed on the RB reactor in order to determine the thermal neutron flux increase in the central horizontal reflector formed by a split reactor core. The objectives of these experiments were to study the possibilities of improving the thermal neutron flux characteristics of the neutron beam in the horizontal beam tube of the RA research reactor. The construction of RA reactor enables to split the core in two, to form a central horizontal reflector in front of the beam tube. This is achieved by replacing 2% enriched uranium slugs in the fuel channel by dummy aluminium slugs. The purpose of the first series of experiments was to study the gain in thermal neutron component inside the horizontal reflector and the loss of reactivity as a function of the lattice pitch and central reflector thickness.

  17. Study on minimum heat-flux point during boiling heat transfer on horizontal plates

    International Nuclear Information System (INIS)

    Nishio, Shigefumi

    1985-01-01

    The characteristics of boiling heat transfer are usually shown by the boiling curve of N-shape having the maximum and minimum points. As for the limiting heat flux point, that is, the maximum point, there have been many reports so far, as it is related to the physical burn of heat flux-controlling type heating surfaces. But though the minimum heat flux point is related to the quench point as the problems in steel heat treatment, the core safety of LWRs, the operational stability of superconducting magnets, the start-up characteristics of low temperature machinery, the condition of vapor explosion occurrence and so on, the systematic information has been limited. In this study, the effects of transient property and the heat conductivity of heating surfaces on the minimum heat flux condition in the pool boiling on horizontal planes were experimentally examined by using liquid nitrogen. The experimental apparatuses for steady boiling, for unsteady boiling with a copper heating surface, and for unsteady boiling with a heating surface other than copper were employed. The boiling curves obtained with these apparatuses and the minimum heat flux point condition are discussed. (Kako, I.)

  18. Suspended Sediment Dynamics in the Macrotidal Seine Estuary (France): 2. Numerical Modeling of Sediment Fluxes and Budgets Under Typical Hydrological and Meteorological Conditions

    Science.gov (United States)

    Schulz, E.; Grasso, F.; Le Hir, P.; Verney, R.; Thouvenin, B.

    2018-01-01

    Understanding the sediment dynamics in an estuary is important for its morphodynamic and ecological assessment as well as, in case of an anthropogenically controlled system, for its maintenance. However, the quantification of sediment fluxes and budgets is extremely difficult from in-situ data and requires thoroughly validated numerical models. In the study presented here, sediment fluxes and budgets in the lower Seine Estuary were quantified and investigated from seasonal to annual time scales with respect to realistic hydro- and meteorological conditions. A realistic three-dimensional process-based hydro- and sediment-dynamic model was used to quantify mud and sand fluxes through characteristic estuarine cross-sections. In addition to a reference experiment with typical forcing, three experiments were carried out and analyzed, each differing from the reference experiment in either river discharge or wind and waves so that the effects of these forcings could be separated. Hydro- and meteorological conditions affect the sediment fluxes and budgets in different ways and at different locations. Single storm events induce strong erosion in the lower estuary and can have a significant effect on the sediment fluxes offshore of the Seine Estuary mouth, with the flux direction depending on the wind direction. Spring tides cause significant up-estuary fluxes at the mouth. A high river discharge drives barotropic down-estuary fluxes at the upper cross-sections, but baroclinic up-estuary fluxes at the mouth and offshore so that the lower estuary gains sediment during wet years. This behavior is likely to be observed worldwide in estuaries affected by density gradients and turbidity maximum dynamics.

  19. Diagnosing MJO Destabilization and Propagation with the Moisture and MSE Budgets

    Science.gov (United States)

    Maloney, Eric; Wolding, Brandon

    2015-04-01

    Novel diagnostics obtained as an extension of empirical orthogonal function analysis are used as a composting basis to gain insight into MJO dynamics through examination of reanalysis moisture and moist static energy budgets. The net effect of vertical moisture advection and cloud processes was found to be a modest positive feedback to column moisture anomalies during both enhanced and suppressed phases of the MJO. This positive feedback is regionally strengthened by anomalous surface fluxes of latent heat. The modulation of horizontal synoptic scale eddy mixing acts as a negative feedback to column moisture anomalies, while anomalous winds acting against the mean state moisture gradient aid in eastward propagation. These processes act in a systematic fashion across the Indian Ocean and oceanic regions of the Maritime Continent. The ability to approximately close the MSE budget serves an important role in constraining the moisture budget, whose residual is several times larger than the total and horizontal advective moisture tendencies. Comparison with TRMM precipitation anomalies suggests that the moisture budget residual results from an underestimation by ERAi of variations in both total precipitation and vertical moisture advection associated with the MJO. The results of this study support the concept of the MJO as a moisture-mode. This analysis is extended to examine the impact of boundary layer convergence driven by MJO SST anomalies on the vertically-integrated moisture budget. Results from a coupled version of the SP-CAM suggest that SST-driven moisture convergence anomalies are of a sufficient amplitude to be important for MJO propagation and destabilization, and may help explain why coupled models produce better simulations of the MJO than uncoupled models.

  20. Sea-to-air and diapycnal nitrous oxide fluxes in the eastern tropical North Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    A. Kock

    2012-03-01

    Full Text Available Sea-to-air and diapycnal fluxes of nitrous oxide (N2O into the mixed layer were determined during three cruises to the upwelling region off Mauritania. Sea-to-air fluxes as well as diapycnal fluxes were elevated close to the shelf break, but elevated sea-to-air fluxes reached further offshore as a result of the offshore transport of upwelled water masses. To calculate a mixed layer budget for N2O we compared the regionally averaged sea-to-air and diapycnal fluxes and estimated the potential contribution of other processes, such as vertical advection and biological N2O production in the mixed layer. Using common parameterizations for the gas transfer velocity, the comparison of the average sea-to-air and diapycnal N2O fluxes indicated that the mean sea-to-air flux is about three to four times larger than the diapycnal flux. Neither vertical and horizontal advection nor biological production were found sufficient to close the mixed layer budget. Instead, the sea-to-air flux, calculated using a parameterization that takes into account the attenuating effect of surfactants on gas exchange, is in the same range as the diapycnal flux. From our observations we conclude that common parameterizations for the gas transfer velocity likely overestimate the air-sea gas exchange within highly productive upwelling zones.

  1. The radiation budget of stratocumulus clouds measured by tethered balloon instrumentation: Variability of flux measurements

    Science.gov (United States)

    Duda, David P.; Stephens, Graeme L.; Cox, Stephen K.

    1990-01-01

    Measurements of longwave and shortwave radiation were made using an instrument package on the NASA tethered balloon during the FIRE Marine Stratocumulus experiment. Radiation data from two pairs of pyranometers were used to obtain vertical profiles of the near-infrared and total solar fluxes through the boundary layer, while a pair of pyrgeometers supplied measurements of the longwave fluxes in the cloud layer. The radiation observations were analyzed to determine heating rates and to measure the radiative energy budget inside the stratocumulus clouds during several tethered balloon flights. The radiation fields in the cloud layer were also simulated by a two-stream radiative transfer model, which used cloud optical properties derived from microphysical measurements and Mie scattering theory.

  2. Pollutant transport over complex terrain: Flux and budget calculations for the pollumet field campaign

    Science.gov (United States)

    Lehning, Michael; Richner, Hans; Kok, Gregory L.

    Especially over complex terrain, transport processes dominate the local pollutant concentrations observed. The data gathered during the POLLUMET measuring campaign in 1993 allow a quantitative analysis of the pollutant fluxes and the pollutant budgets. The data include airborne measurements by NCAR's King Air, radio soundings, radar wind profiles, and data from meteorological ground stations. The regions of interest were the rather densely populated Swiss Plateau, which is embedded between the Alps and the Jura Mountains, and a box south of the Alps covering the south Ticino region and parts of northern Italy. An interpolation scheme was developed to reconstruct the wind field from all available measurements. From the wind field and the reconstruction of the concentration field the fluxes into and out of a box with fixed boundaries are calculated. The pollutant budgets are obtained from the sum of the fluxes and considering a mean vertical velocity. To assess the uncertainties introduced through the interpolation of the measurements, an extensive sensitivity analysis is included. The Swiss Plateau exports ozone and nitrogen oxides. The export rates can be interpreted as an ozone accumulation or fraction of 'homemade pollution' between 3 and 10% and require a net production rate of 1-2 ppb h -1. Accumulation of nitrogen oxides amounts to 20-60%. The box south of the Alps imports polluted air from northern Italy. Thus, oxidized nitrogen is not exported but a net production of ozone still occurs at a rate of 1-2 ppb h -1. The interpolated flow and concentration fields are decomposed into the mean over a box-boundary and the deviation from that mean. This allows isolation of the contribution of local circulations and large-scale turbulence to the total flux. It is shown how the local thermotopographic circulations increasingly dominate the transport as typical Alpine topography is approached. Even over the Swiss Plateau, approximately 20 km away from Alpine topography

  3. Peak pool boiling heat flux from horizontal cylinders in subcooled liquids

    International Nuclear Information System (INIS)

    Elkassabgi, Y.

    1986-01-01

    The peak pool boiling heat flux is observed on horizontal cylindrical heaters in acetone, Freon-113, methanol, and isopropanol over ranges of subcooling from zero to 120 0 C. Photographs, and the data themselves, reveal that there are three distinct burnout mechanisms at different levels of subcooling. Three interpretive models provide the basis for accurate correlations of the present data, and data from the literature, in each of the three regimes. Burnout is dictated by condensation on the walls of the vapor jets and columns at low subcooling. In the intermediate regime, burnout is limited by natural convection which becomes very effective as vapor near the heater reduces boundary layer resistance. Burnout in the high-subcooling regime is independent of the level of subcoooling and is limited by the process of molecular effusion

  4. Bark beetle-induced tree mortality alters stand energy budgets due to water budget changes

    Science.gov (United States)

    Reed, David E.; Ewers, Brent E.; Pendall, Elise; Frank, John; Kelly, Robert

    2018-01-01

    Insect outbreaks are major disturbances that affect a land area similar to that of forest fires across North America. The recent mountain pine bark beetle ( D endroctonus ponderosae) outbreak and its associated blue stain fungi ( Grosmannia clavigera) are impacting water partitioning processes of forests in the Rocky Mountain region as the spatially heterogeneous disturbance spreads across the landscape. Water cycling may dramatically change due to increasing spatial heterogeneity from uneven mortality. Water and energy storage within trees and soils may also decrease, due to hydraulic failure and mortality caused by blue stain fungi followed by shifts in the water budget. This forest disturbance was unique in comparison to fire or timber harvesting because water fluxes were altered before significant structural change occurred to the canopy. We investigated the impacts of bark beetles on lodgepole pine ( Pinus contorta) stand and ecosystem level hydrologic processes and the resulting vertical and horizontal spatial variability in energy storage. Bark beetle-impacted stands had on average 57 % higher soil moisture, 1.5 °C higher soil temperature, and 0.8 °C higher tree bole temperature over four growing seasons compared to unimpacted stands. Seasonal latent heat flux was highly correlated with soil moisture. Thus, high mortality levels led to an increase in ecosystem level Bowen ratio as sensible heat fluxes increased yearly and latent heat fluxes varied with soil moisture levels. Decline in canopy biomass (leaf, stem, and branch) was not seen, but ground-to-atmosphere longwave radiation flux increased, as the ground surface was a larger component of the longwave radiation. Variability in soil, latent, and sensible heat flux and radiation measurements increased during the disturbance. Accounting for stand level variability in water and energy fluxes will provide a method to quantify potential drivers of ecosystem processes and services as well as lead to greater

  5. Second workshop of I.A.G./A.I.G. SEDIBUD - Sediment Budgets in Cold Environments: Sediment fluxes and sediment budgets in changing high-latitude and high-altitude cold environments

    Energy Technology Data Exchange (ETDEWEB)

    Beylich, Achim A; Lamoureux, Scott F; Decaulne, Armelle

    2007-07-01

    This Second Workshop of the I.A.G./A.I.G. Working Group SEDIBUD (Sediment Budgets in Cold Environments) builds on four previous ESF SEDIFLUX Science Meetings held in Saudarkrokur (Iceland) in June 2004, Clermont-Ferrand (France) in January 2005, Durham (UK) in December 2005 and Trondheim (Norway) in the end of October/beginning of November 2006. A first kick-off Meeting of the new I.A.G./A.I.G. SEDIBUD Workshop. The theme of this Second I.A.G./A.I.G. SEDIBUD Workshop is Sediment FLuxes and Sediment Budgets in Changing High-Latitude Cold Environments. The Workshop is split between scientific paper and poster presentations, presentation and discussion of SEDIBUD key test sites, discussions within defined work groups and guided field trip to Kaerkevagge. This workshop will address the key aim of SEDIBUD to discuss Source-to-Sink-Fluxes and Sediment Budgets in Changing Cold Environments. Major emphasis will be given to consequences of climate change, scaling issues and source-to-sink correlations. Central issues will be presentation and discussion of the SEDIFLUX Manual (First Edition), the selection of SEDIBUD key test sites, the discussion and development of further ideas to extend the scientific activities within SEDIBUD in a global framework.(auth)

  6. Overestimation of soil CO2 fluxes from closed chamber measurements at low atmospheric turbulence biases the diurnal pattern and the annual soil respiration budget

    DEFF Research Database (Denmark)

    Brændholt, Andreas; Larsen, Klaus Steenberg; Ibrom, Andreas

    2016-01-01

    Abstract Precise quantification of the diurnal and seasonal variation of soil respiration (Rs) is crucial to correctly estimate annual soil carbon fluxes as well as to correctly interpret the response of Rs to biotic and abiotic factors on different time scale. In this study we found a systematic...... day time, i.e. following the course of soil temperatures. This effect on the diurnal pattern was due to low turbulence primarily occurring during night time. We calculated different annual Rs budgets by filtering out fluxes for different levels of u⋆. The highest annual Rs budget was found when...

  7. Vorticity budget of a tornado-like vortex

    Energy Technology Data Exchange (ETDEWEB)

    Sassa, Koji; Takemura, Saki, E-mail: sassa@kochi-u.ac.jp [Department of Applied Science, Kochi University (Japan)

    2011-12-22

    We evaluated the vorticity budget of a tornado-like vortex by measuring vertical and horizontal circulations of it. Though spiral horizontal vortices are clearly observed to converge and tilted into the tornado-like vortex, their circulation is quite small. The conversion of the vertical vorticity concentrated at the side of the spiral horizontal vortices was found to mainly contribute to the maintenance of the tornado-like vortex.

  8. The influence of idealized surface heterogeneity on virtual turbulent flux measurements

    Science.gov (United States)

    De Roo, Frederik; Mauder, Matthias

    2018-04-01

    The imbalance of the surface energy budget in eddy-covariance measurements is still an unsolved problem. A possible cause is the presence of land surface heterogeneity, which affects the boundary-layer turbulence. To investigate the impact of surface variables on the partitioning of the energy budget of flux measurements in the surface layer under convective conditions, we set up a systematic parameter study by means of large-eddy simulation. For the study we use a virtual control volume approach, which allows the determination of advection by the mean flow, flux-divergence and storage terms of the energy budget at the virtual measurement site, in addition to the standard turbulent flux. We focus on the heterogeneity of the surface fluxes and keep the topography flat. The surface fluxes vary locally in intensity and these patches have different length scales. Intensity and length scales can vary for the two horizontal dimensions but follow an idealized chessboard pattern. Our main focus lies on surface heterogeneity of the kilometer scale, and one order of magnitude smaller. For these two length scales, we investigate the average response of the fluxes at a number of virtual towers, when varying the heterogeneity length within the length scale and when varying the contrast between the different patches. For each simulation, virtual measurement towers were positioned at functionally different positions (e.g., downdraft region, updraft region, at border between domains, etc.). As the storage term is always small, the non-closure is given by the sum of the advection by the mean flow and the flux-divergence. Remarkably, the missing flux can be described by either the advection by the mean flow or the flux-divergence separately, because the latter two have a high correlation with each other. For kilometer scale heterogeneity, we notice a clear dependence of the updrafts and downdrafts on the surface heterogeneity and likewise we also see a dependence of the energy

  9. Estimating regional-scale methane flux and budgets using CARVE aircraft measurements over Alaska

    Directory of Open Access Journals (Sweden)

    S. Hartery

    2018-01-01

    Full Text Available Methane (CH4 is the second most important greenhouse gas but its emissions from northern regions are still poorly constrained. In this study, we analyze a subset of in situ CH4 aircraft observations made over Alaska during the growing seasons of 2012–2014 as part of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE. Net surface CH4 fluxes are estimated using a Lagrangian particle dispersion model which quantitatively links surface emissions from Alaska and the western Yukon with observations of enhanced CH4 in the mixed layer. We estimate that between May and September, net CH4 emissions from the region of interest were 2.2 ± 0.5 Tg, 1.9 ± 0.4 Tg, and 2.3 ± 0.6 Tg of CH4 for 2012, 2013, and 2014, respectively. If emissions are only attributed to two biogenic eco-regions within our domain, then tundra regions were the predominant source, accounting for over half of the overall budget despite only representing 18 % of the total surface area. Boreal regions, which cover a large part of the study region, accounted for the remainder of the emissions. Simple multiple linear regression analysis revealed that, overall, CH4 fluxes were largely driven by soil temperature and elevation. In regions specifically dominated by wetlands, soil temperature and moisture at 10 cm depth were important explanatory variables while in regions that were not wetlands, soil temperature and moisture at 40 cm depth were more important, suggesting deeper methanogenesis in drier soils. Although similar environmental drivers have been found in the past to control CH4 emissions at local scales, this study shows that they can be used to generate a statistical model to estimate the regional-scale net CH4 budget.

  10. Estimating regional-scale methane flux and budgets using CARVE aircraft measurements over Alaska

    Science.gov (United States)

    Hartery, Sean; Commane, Róisín; Lindaas, Jakob; Sweeney, Colm; Henderson, John; Mountain, Marikate; Steiner, Nicholas; McDonald, Kyle; Dinardo, Steven J.; Miller, Charles E.; Wofsy, Steven C.; Chang, Rachel Y.-W.

    2018-01-01

    Methane (CH4) is the second most important greenhouse gas but its emissions from northern regions are still poorly constrained. In this study, we analyze a subset of in situ CH4 aircraft observations made over Alaska during the growing seasons of 2012-2014 as part of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE). Net surface CH4 fluxes are estimated using a Lagrangian particle dispersion model which quantitatively links surface emissions from Alaska and the western Yukon with observations of enhanced CH4 in the mixed layer. We estimate that between May and September, net CH4 emissions from the region of interest were 2.2 ± 0.5 Tg, 1.9 ± 0.4 Tg, and 2.3 ± 0.6 Tg of CH4 for 2012, 2013, and 2014, respectively. If emissions are only attributed to two biogenic eco-regions within our domain, then tundra regions were the predominant source, accounting for over half of the overall budget despite only representing 18 % of the total surface area. Boreal regions, which cover a large part of the study region, accounted for the remainder of the emissions. Simple multiple linear regression analysis revealed that, overall, CH4 fluxes were largely driven by soil temperature and elevation. In regions specifically dominated by wetlands, soil temperature and moisture at 10 cm depth were important explanatory variables while in regions that were not wetlands, soil temperature and moisture at 40 cm depth were more important, suggesting deeper methanogenesis in drier soils. Although similar environmental drivers have been found in the past to control CH4 emissions at local scales, this study shows that they can be used to generate a statistical model to estimate the regional-scale net CH4 budget.

  11. High-resolution digital movies of emerging flux and horizontal flows in active regions on the sun

    International Nuclear Information System (INIS)

    Topka, K.; Ferguson, S.; Frank, Z.; Tarbell, T.; Title, A.

    1988-01-01

    High-resolution observations of active regions in many wavelength bands obtained at the Vacuum Tower Telescope of NSO/Sunspot (Sacramento Peak) are presented. The SOUP tunable filter, HRSO 1024 x 1024 CCD camera, and a sunspot tracker for image stabilization were used. Subarrays of 512 x 512 pixels were processed digitally and recorded on videodisk in movie format. The movies with 0.5 to 1 arcsecond resolution of the following simultaneous observations were shown: green continuum, longitudinal magnetogram, Doppler velocity, Fe I 5576 A line center, H alpha wings, and H alpha line center. The best set of movies show a 90 x 90 arcsecond field-of-view of an active region at S29, W11. When viewed at speeds of a few thousand times real-time, the photospheric movies clearly show the active region fields being distorted by a remarkable combination of systematic flows and small eruptions of new flux. Flux emergence is most easily discovered in line center movies: an elongated dark feature appears first, followed soon after by bright points at one or both ends. A brief, strong upflow is seen when the dark feature first appears; downflow in the bright points persists much longer. The magnetic flux appears to increase gradually over this extended period. Some of the flux emergence events were studied in detail, with measurements of horizontal and vertical velocities and magnetic flux versus time within one footpoint of the loop

  12. High-resolution digital movies of emerging flux and horizontal flows in active regions on the sun

    Science.gov (United States)

    Topka, K.; Ferguson, S.; Frank, Z.; Tarbell, T.; Title, A.

    1988-01-01

    High-resolution observations of active regions in many wavelength bands obtained at the Vacuum Tower Telescope of NSO/Sunspot (Sacramento Peak) are presented. The SOUP tunable filter, HRSO 1024 x 1024 CCD camera, and a sunspot tracker for image stabilization were used. Subarrays of 512 x 512 pixels were processed digitally and recorded on videodisk in movie format. The movies with 0.5 to 1 arcsecond resolution of the following simultaneous observations were shown: green continuum, longitudinal magnetogram, Doppler velocity, Fe I 5576 A line center, H alpha wings, and H alpha line center. The best set of movies show a 90 x 90 arcsecond field-of-view of an active region at S29, W11. When viewed at speeds of a few thousand times real-time, the photospheric movies clearly show the active region fields being distorted by a remarkable combination of systematic flows and small eruptions of new flux. Flux emergence is most easily discovered in line center movies: an elongated dark feature appears first, followed soon after by bright points at one or both ends. A brief, strong upflow is seen when the dark feature first appears; downflow in the bright points persists much longer. The magnetic flux appears to increase gradually over this extended period. Some of the flux emergence events were studied in detail, with measurements of horizontal and vertical velocities and magnetic flux versus time within one footpoint of the loop.

  13. High-resolution digital movies of emerging flux and horizontal flows in active regions on the sun

    Science.gov (United States)

    Topka, K.; Ferguson, S.; Frank, Z.; Tarbell, T.; Title, A.

    1988-11-01

    High-resolution observations of active regions in many wavelength bands obtained at the Vacuum Tower Telescope of NSO/Sunspot (Sacramento Peak) are presented. The SOUP tunable filter, HRSO 1024 x 1024 CCD camera, and a sunspot tracker for image stabilization were used. Subarrays of 512 x 512 pixels were processed digitally and recorded on videodisk in movie format. The movies with 0.5 to 1 arcsecond resolution of the following simultaneous observations were shown: green continuum, longitudinal magnetogram, Doppler velocity, Fe I 5576 A line center, H alpha wings, and H alpha line center. The best set of movies show a 90 x 90 arcsecond field-of-view of an active region at S29, W11. When viewed at speeds of a few thousand times real-time, the photospheric movies clearly show the active region fields being distorted by a remarkable combination of systematic flows and small eruptions of new flux. Flux emergence is most easily discovered in line center movies: an elongated dark feature appears first, followed soon after by bright points at one or both ends. A brief, strong upflow is seen when the dark feature first appears; downflow in the bright points persists much longer. The magnetic flux appears to increase gradually over this extended period. Some of the flux emergence events were studied in detail, with measurements of horizontal and vertical velocities and magnetic flux versus time within one footpoint of the loop.

  14. Estimation of surface heat and moisture fluxes over a prairie grassland. I - In situ energy budget measurements incorporating a cooled mirror dew point hygrometer

    Science.gov (United States)

    Smith, Eric A.; Crosson, William L.; Tanner, Bertrand D.

    1992-01-01

    Attention is focused on in situ measurements taken during FIFE required to support the development and validation of a biosphere model. Seasonal time series of surface flux measurements obtained from two surface radiation and energy budget stations utilized to support the FIFE surface flux measurement subprogram are examined. Data collection and processing procedures are discussed along with the measurement analysis for the complete 1987 test period.

  15. Confronting the WRF and RAMS mesoscale models with innovative observations in the Netherlands: Evaluating the boundary layer heat budget

    Science.gov (United States)

    Steeneveld, G. J.; Tolk, L. F.; Moene, A. F.; Hartogensis, O. K.; Peters, W.; Holtslag, A. A. M.

    2011-12-01

    The Weather Research and Forecasting Model (WRF) and the Regional Atmospheric Mesoscale Model System (RAMS) are frequently used for (regional) weather, climate and air quality studies. This paper covers an evaluation of these models for a windy and calm episode against Cabauw tower observations (Netherlands), with a special focus on the representation of the physical processes in the atmospheric boundary layer (ABL). In addition, area averaged sensible heat flux observations by scintillometry are utilized which enables evaluation of grid scale model fluxes and flux observations at the same horizontal scale. Also, novel ABL height observations by ceilometry and of the near surface longwave radiation divergence are utilized. It appears that WRF in its basic set-up shows satisfactory model results for nearly all atmospheric near surface variables compared to field observations, while RAMS needed refining of its ABL scheme. An important inconsistency was found regarding the ABL daytime heat budget: Both model versions are only able to correctly forecast the ABL thermodynamic structure when the modeled surface sensible heat flux is much larger than both the eddy-covariance and scintillometer observations indicate. In order to clarify this discrepancy, model results for each term of the heat budget equation is evaluated against field observations. Sensitivity studies and evaluation of radiative tendencies and entrainment reveal that possible errors in these variables cannot explain the overestimation of the sensible heat flux within the current model infrastructure.

  16. The carbon budget of the North Sea

    NARCIS (Netherlands)

    Thomas, H.; Bozec, Y.; Baar, H.J.W. de; Elkalay, K.; Frankignoulle, M.; Schiettecatte, L.-S.; Kattner, G.; Borges, A.V.; Gattuso, J.-P.

    2005-01-01

    A carbon budget has been established for the North Sea, a shelf sea on the NW European continental shelf. The carbon exchange fluxes with the North Atlantic Ocean dominate the gross carbon budget. The net carbon budget – more relevant to the issue of the contribution of the coastal ocean to the

  17. Turbulent Convection Insights from Small-Scale Thermal Forcing with Zero Net Heat Flux at a Horizontal Boundary.

    Science.gov (United States)

    Griffiths, Ross W; Gayen, Bishakhdatta

    2015-11-13

    A large-scale circulation, a turbulent boundary layer, and a turbulent plume are noted features of convection at large Rayleigh numbers under differential heating on a single horizontal boundary. These might be attributed to the forcing, which in all studies has been limited to a unidirectional gradient over the domain scale. We instead apply forcing on a length scale smaller than the domain, and with variation in both horizontal directions. Direct numerical simulations show turbulence throughout the domain, a regime transition to a dominant domain-scale circulation, and a region of logarithmic velocity in the boundary layer, despite zero net heat flux. The results show significant similarities to Rayleigh-Bénard convection, demonstrate the significance of plume merging, support the hypothesis that the key driver of convection is the production of available potential energy without necessarily supplying total potential energy, and imply that contributions to domain-scale circulation in the oceans need not be solely from the large-scale gradients of forcing.

  18. Entropy budget of the earth,atmosphere and ocean system

    Institute of Scientific and Technical Information of China (English)

    GAN Zijun; YAN Youfangand; QI Yiquan

    2004-01-01

    The energy budget in the system of the earth, atmosphere and ocean conforms to the first law of thermodynamics, namely the law of conservation of energy, and it is balanced when the system is in a steady-state condition. However, the entropy budget following the second law of thermodynamics is unbalanced. In this paper, we deduce the expressions of entropy flux and re-estimate the earth, atmosphere and ocean annual mean entropy budget with the updated climatologically global mean energy budget and the climatologically air-sea flux data. The calculated results show that the earth system obtains a net influx of negative entropy (-1179.3 mWm-2K-1) from its surroundings, and the atmosphere and the ocean systems obtain a net input of negative entropy at about -537.4 mWm-2K-1 and -555.6 mWm-2K-1, respectively. Calculations of the entropy budget can provide some guidance for further understanding the spatial-temporal change of the local entropy flux, and the entropy production resulting from all kinds of irreversible processes inside these systems.

  19. A review on critical heat flux in horizontal tubes

    International Nuclear Information System (INIS)

    Baburajan, P.K.; Gaikwad, Avinash; Prabhu, S.V.

    2015-01-01

    Coolant channels of PHWR during accident similar to loss of coolant accident (LOCA) may experience different flow transients with low pressure and low flow conditions. In the advanced PHWRs it is desired to have small amount of positive quality at the exit of the coolant channel to increase the thermal efficiency. Investigation on pressure drop and heat transfer coefficient under subcooled boiling condition is important in the design and operation of the PHWRs. Understanding of thermal hydraulic phenomena associated with horizontal flow is also important in the safety and accident management in these reactors. A detailed experimental investigation on the important thermal hydraulic phenomena of horizontal tubes under low pressure and low flow conditions is carried out. The phenomena covered in this work are measurement of diabatic single phase and subcooled boiling pressure drop and local heat transfer coefficients, steady state CHF, effect of upstream flow restrictions on flow transients and CHF, CHF under oscillatory flow and flow decreasing transients. A detailed literature review is carried out on CHF in horizontal channels to take stock of the works being carried out along with current state of the art and to justify the motivation for the experimental study. This paper presents the review of available literature on horizontal CHF with the results of the experimental work. (author)

  20. Analysis of the radiation budget in regional climate simulations with COSMO-CLM for Africa

    Directory of Open Access Journals (Sweden)

    Steffen Kothe

    2014-09-01

    Full Text Available This study analysed two regional climate simulations for Africa regarding the radiation budgets with particular focus on the contribution of potentially influential parameters on uncertainties in the radiation components. The ERA-Interim driven simulations have been performed with the COSMO-CLM (grid-spacings of 0.44 ° or 0.22 °. The simulated budgets were compared to the satellite-based Global Energy and Water Cycle Experiment Surface Radiation Budget and ERA-Interim data sets. The COSMO-CLM tended to underestimate the net solar radiation and the outgoing long-wave radiation, and showed a regionally varying over- or underestimation in all budget components. An increase in horizontal resolution from 0.44 ° to 0.22 ° slightly reduced the mean errors by up to 5 %. Especially over sea regions, uncertainties in cloud fraction were the main influencing parameter on errors in the simulated radiation fluxes. Compared to former simulations the introduction of a new bare soil albedo treatment reduced the influence of uncertainties in surface albedo significantly. Over the African continent errors in aerosol optical depth and skin temperature were regionally important sources for the discrepancies within the simulated radiation. In a sensitivity test it was shown that the use of aerosol optical depth values from the MACC reanalysis product improved the simulated surface radiation substantially.

  1. Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, Mohan; Liner, Chris; Kerr, Dennis

    1999-10-15

    This final report describes the progress during the six year of the project on ''Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance.'' This report is funded under the Department of Energy's (DOE's) Class I program which is targeted towards improving the reservoir performance of mature oil fields located in fluvially-dominated deltaic deposits. The project involves using an integrated approach to characterize the reservoir followed by drilling of horizontal injection wells to improve production performance. The project was divided into two budget periods. In the first budget period, many modern technologies were used to develop a detailed reservoir management plan; whereas, in the second budget period, conventional data was used to develop a reservoir management plan. The idea was to determine the cost effectiveness of various technologies in improving the performance of mature oil fields.

  2. Mass, nutrient and oxygen budgets for the northeastern Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    G. Maze

    2012-10-01

    Full Text Available The northeast Atlantic is a key horizontal and vertical crossroads region for the meridional overturning circulation, but basic nutrient and oxygen fluxes are still poorly constrained by observations in the region. A surface to bottom northeast Atlantic Ocean budget for mass, nutrients (nitrate and phosphate and oxygen is determined using an optimization method based on three surveys of the OVIDE transect (from Greenland to Portugal completed with the World Ocean Atlas 2009. Budgets are derived for two communicating boxes representing the northeastern European basin (NEEB and the Irminger Sea.

    For the NEEB (Irminger box, it is found that 30% of the mass import (export across the OVIDE section reach (originate from the Nordic Seas, while 70% are redistributed between both boxes through the Reykjanes Ridge (9.3 ± 0.7 × 109 kg s−1.

    Net biological source/sink terms of nitrate point to both the Irminger and NEEB boxes as net organic matter production sites (consuming nitrate at a rate of –7.8 ± 6.5 kmol s−1 and –8.4 ± 6.6 kmol s−1, respectively. Using a standard Redfield ratio of C : N = 106 : 16, nitrate consumption rates indicate that about 40 TgC yr−1 of carbon is fixed by organic matter production between the OVIDE transect and the Greenland–Scotland Ridge. Nutrient fluxes also induce a net biological production of oxygen of 73 ± 60 kmol s−1 and 79 ± 62 kmol s−1 in the Irminger and NEEB boxes, which points to the region as being autotrophic.

    The abiotic air–sea oxygen flux leads to an oceanic oxygen uptake in the two regions (264 ± 66 kmol s−1 in the north and 443 ± 70 kmol s−1 in the south. The abiotic flux is partitioned into a mixing and a thermal component. It is found that the Irminger Sea oceanic oxygen uptake is driven by an air–sea heat flux cooling increasing the ocean surface

  3. Geography and Participatory Democracy in Brazil: Porto Alegre and Belo Horizonte Compared

    Directory of Open Access Journals (Sweden)

    Terence Wood

    2007-10-01

    Full Text Available This paper examines the participatory budgeting  process that an increasing number of municipalities, primarily but not exclusively in Brazil, are  using as a tool of governance. Background is  provided on municipal governance in Brazil as  well as on the Partido dos Trabalhadores, the political party primarily responsible for introducing participatory budgeting. This is followed by a  comparison of the participatory budgets of two  Brazilian cities: Porto Alegre and Belo Horizonte.  From this comparison we draw conclusions as to  how geography can condition the outcomes of  participatory budgeting processes. Resumen: Geografía y democracia participativa en Brasil:  Comparación entre Porto Alegre y Belo Horizonte Este artículo estudia el proceso de presupuestos  participativos que un número creciente de municipalidades, especialmente en Brasil, aunque no  exclusivamente, está utilizando como instrumento  de gobernabilidad. En el artículo se entrega información de fondo sobre los gobiernos municipales en Brasil y sobre el Partido de los Trabajadores, el partido político que es responsable de la  introducción del presupuesto participativo, para  posteriormente comparar los presupuestos participativos de dos ciudades brasileñas: Porto Alegre y  Belo Horizonte. Sobre la base de esta comparación sacamos conclusiones sobre cómo puede la  geografía condicionar el resultado de procesos de  presupuesto participativo.

  4. Influence of stiffness on CHF for horizontal tubes under LPLF conditions

    Energy Technology Data Exchange (ETDEWEB)

    Baburajan, P.K. [Nuclear Safety Analysis Division, AERB, Niyamak Bhavan, 400094 (India); Bisht, Govind Singh [Department of Mechanical Engineering, IIT Bombay, 400076 (India); Gaikwad, Avinash J. [Nuclear Safety Analysis Division, AERB, Niyamak Bhavan, 400094 (India); Prabhu, S.V., E-mail: svprabhu@iitb.ac.in [Department of Mechanical Engineering, IIT Bombay, 400076 (India)

    2014-10-01

    Highlights: • Effect of stiffness on the CHF in horizontal tube under LPLF conditions is studied. • CHF increases with the increase in stiffness. • Correlation for the prediction of CHF as a function of stiffness is developed. • Correlation for mass flux at CHF in terms of stiffness and initial mass flux is given. • RELAP5 is capable of predicting the effect of stiffness on CHF. - Abstract: Studies reported in the past on critical heat flux (CHF) are mostly limited to vertical flow, large channel diameter, high pressure and high mass flux. Since horizontal flow is commonly encountered in boiler tubes, refrigerating equipments and nuclear reactor fuel channels (PHWR), there is a need to understand horizontal flow CHF, generate sufficient experimental database and to develop reliable predictive method. Few studies are reported on the effect of upstream flow restrictions on flow instabilities and CHF. The present work investigates the effect of upstream flow restriction on CHF in horizontal flow at near atmospheric pressure conditions. In the present study, stiffness is defined as the ratio of upstream flow restriction pressure drop to the test section pressure drop. The classification of a flow boiling system as soft or stiff on the basis of quantification of the stiffness is attempted. Experimental data shows an increase in the CHF with the increase in the stiffness for a given initial mass flux. A correlation for the prediction of CHF under various stiffness conditions is developed. A correlation is suggested to predict the mass flux at CHF as a function of stiffness and initial mass flux. Modeling and transient analysis of the stiffness effect on CHF is carried out using the thermal hydraulic system code RELAP5. The predicted phenomena are in agreement with the experimental observations.

  5. Spatiotemporal Variability of Turbulence Kinetic Energy Budgets in the Convective Boundary Layer over Both Simple and Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Raj K. [Pacific Northwest National Laboratory, Richland, Washington; Berg, Larry K. [Pacific Northwest National Laboratory, Richland, Washington; Pekour, Mikhail [Pacific Northwest National Laboratory, Richland, Washington; Shaw, William J. [Pacific Northwest National Laboratory, Richland, Washington; Kosovic, Branko [National Center for Atmospheric Research, Boulder, Colorado; Mirocha, Jeffrey D. [Lawrence Livermore National Laboratory, Livermore, California; Ennis, Brandon L. [Sandia National Laboratories, Albuquerque, New Mexico

    2017-12-01

    The assumption of sub-grid scale (SGS) horizontal homogeneity within a model grid cell, which forms the basis of SGS turbulence closures used by mesoscale models, becomes increasingly tenuous as grid spacing is reduced to a few kilometers or less, such as in many emerging high-resolution applications. Herein, we use the turbulence kinetic energy (TKE) budget equation to study the spatio-temporal variability in two types of terrain—complex (Columbia Basin Wind Energy Study [CBWES] site, north-eastern Oregon) and flat (ScaledWind Farm Technologies [SWiFT] site, west Texas) using the Weather Research and Forecasting (WRF) model. In each case six-nested domains (three domains each for mesoscale and large-eddy simulation [LES]) are used to downscale the horizontal grid spacing from 10 km to 10 m using the WRF model framework. The model output was used to calculate the values of the TKE budget terms in vertical and horizontal planes as well as the averages of grid cells contained in the four quadrants (a quarter area) of the LES domain. The budget terms calculated along the planes and the mean profile of budget terms show larger spatial variability at CBWES site than at the SWiFT site. The contribution of the horizontal derivative of the shear production term to the total production shear was found to be 45% and 15% of the total shear, at the CBWES and SWiFT sites, respectively, indicating that the horizontal derivatives applied in the budget equation should not be ignored in mesoscale model parameterizations, especially for cases with complex terrain with <10 km scale.

  6. Modern Estimates of Global Water Cycle Fluxes

    Science.gov (United States)

    Rodell, M.; Beaudoing, H. K.; L'Ecuyer, T. S.; Olson, W. S.

    2014-12-01

    The goal of the first phase of the NASA Energy and Water Cycle Study (NEWS) Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. Here we describe results of the water cycle assessment, including mean annual and monthly fluxes over continents and ocean basins during the first decade of the millennium. To the extent possible, the water flux estimates are based on (1) satellite measurements and (2) data-integrating models. A careful accounting of uncertainty in each flux was applied within a routine that enforced multiple water and energy budget constraints simultaneously in a variational framework, in order to produce objectively-determined, optimized estimates. Simultaneous closure of the water and energy budgets caused the ocean evaporation and precipitation terms to increase by about 10% and 5% relative to the original estimates, mainly because the energy budget required turbulent heat fluxes to be substantially larger in order to balance net radiation. In the majority of cases, the observed annual, surface and atmospheric water budgets over the continents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land processes are a non-issue. Fluxes are poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and Indonesian Islands, leading to reliance on atmospheric analysis estimates. Other details of the study and future directions will be discussed.

  7. Causes of Potential Urban Heat Island Space Using Heat flux Budget Under Urban Canopy

    Science.gov (United States)

    Kwon, Y. J.; Lee, D. K.

    2017-12-01

    Raised concerns about possible contribution from urban heat island to global warming is about 30 percent. Therefore, mitigating urban heat island became one of major issues to solve among urban planners, urban designers, landscape architects, urban affair decision makers and etc. Urban heat island effect on a micro-scale is influenced by factors such as wind, water vapor and solar radiation. Urban heat island effect on a microscale is influenced by factors like wind, water vapor and solar radiation. These microscopic climates are also altered by factors affecting the heat content in space, like SVF and aspect ratio depending on the structural characteristics of various urban canyon components. Indicators of heat mitigation in urban design stage allows us to create a spatial structure considering the heat balance budget. The spatial characteristics affect thermal change by varying heat storage, emitting or absorbing the heat. The research defines characteristics of the space composed of the factors affecting the heat flux change as the potential urban heat island space. Potential urban heat island spaces are that having higher heat flux than periphery space. The study is to know the spatial characteristics that affects the subsequent temperature rise by the heat flux. As a research method, four types of potential heat island space regions were analyzed. I categorized the spatial types by comparing parameters' value of energy balance in day and night: 1) day severe areas, 2) day comfort areas, 3) night severe areas, 4) night comfort areas. I have looked at these four types of potential urban heat island areas from a microscopic perspective and investigated how various forms of heat influences on higher heat flux areas. This research was designed to investigate the heat indicators to be reflected in the design of urban canyon for heat mitigation. As a result, severe areas in daytime have high SVF rate, sensible heat is generated. Day comfort areas have shadow effect

  8. AN EXPERIMENTAL STUDY FOR HEAT TRANSFER ENHANCEMENT BY LAMINAR FORCED CONVECTION FROM HORIZONTAL AND INCLINED TUBE HEATED WITH CONSTANT HEAT FLUX, USING TWO TYPES OF POROUS MEDIA

    Directory of Open Access Journals (Sweden)

    Thamir K. Jassem

    2015-02-01

    Full Text Available An experimental forced laminar study was presented in this research for an air flowing through a circular channel for different angles ( ,30o,45o,60o, the channel was heated at constant heat flux , the channel also was packed with steel and glass spheres respectively . The tests were done for three values of Peclets number (2111.71,3945.42,4575.47 with changing the heat flux for each case and five times for each number.The results showed that the dimensionless temperature distribution  will decrease with increasing the dimensionless channel length for all cases with changing Peclet number, heat flux and inclination angles, and its lowest value will be for glass spheres at highest flux, while at lower flux for , and the decreasing in dimensionless temperature was closed for both types of packed at other inclination angles.The study declared that the local Nusselt number decreases with increasing the dimensionless length of the channel for both packeds and for different applied heat flux, also through this study it was declared that the average Nusselt increases as Peclet number increases for both packed. Its value for the glass spheres is greater than the steel spheres with percentage (98.3% at small Peclet, and percentage (97.2% at large Peclet number for the horizontal tube, and (98.3% at small Peclet number and (97.8% at large Peclet number at  .Through this study its was found that average Nusselt number increases along the channel as the heat flux increases, because the bulk temperature will increase as the flow proceeds toward the end of the channel , so the heat transfer coefficient will increase.  It was declared from this study that in the case of the steel packed the heat transfer will occur mainly by conduction, while in the case of glass packed the heat transfer will occur mainly by laminar forced convection, where the lowest Nusselt number (Nu=3.8 was found when the pipe is horizontal and lowest heat flux and lowest Peclet number.  

  9. Thirteen years of Aeolian dust dynamics in a desert region (Negev desert, Israel): analysis of horizontal and vertical dust flux, vertical dust distribution and dust grain size

    NARCIS (Netherlands)

    Offer, Z.Y.; Goossens, D.

    2004-01-01

    At Sede Boqer (northern Negev desert, Israel), aeolian dust dynamics have been measured during the period 1988–2000. This study focuses on temporal records of the vertical and horizontal dust flux, the vertical distribution of the dust particles in the atmosphere, and the grain size of the

  10. Flux, Budget and Sources of Black Carbon (BC) in the Continental Shelf of the Bohai and Yellow Seas, China

    Science.gov (United States)

    Fang, Y.; Chen, Y.; Tian, C.

    2015-12-01

    Black carbon (BC) derived from incomplete combustion of fossil fuels and biomass has received increasing attention due to their potential importance in a wide range of biogeochemical processes. China has been generally considered as the world's largest BC emitter. Due to a combination of the prevailing East Asia monsoon and large amounts of riverine outflow, BC released from China can be transported to the adjacent continental shelf seas, the Bohai Sea (BS) and Yellow Sea (YS). Based on measurements of BC in 191 surface sediments, 36 riverine water, and 2 seawater samples, as well as the reported BC data set of the aerosol samples in the Bohai Rim, the concentration, flux, and budget of BC in the BS and YS were investigated. The spatial distribution of the BC concentration in surface sediments was largely influenced by the regional hydrodynamic conditions, with high values mainly occurring in the central mud areas. The BC burial flux in the BS and YS ranged from 4 to 1100 μg/cm2/yr, and averaged 166 ± 200 μg/cm2/yr. The area-integrated sedimentary BC sink flux in the entire BS and YS was ~325 Gg/yr. The BC budget calculated in the BS showed that atmospheric deposition and riverine discharge played comparable importance in delivering BC to the BS, and sequestration to bottom sediments was the major BC output pattern, accounting for ~88% of the total input BC. Besides, we attempted to apportion the BC sources in the BS and YS surface sediments using PAHs (organic molecular proxies cogenerated with BC) and BC as an input data to the Positive Matrix Factorization (PMF) receptor model. Results showed that ~83% of the sediment BC was attributed to the combustion of fossil fuels, and the remaining ~17% was from biomass burning. Due to the differences in their production mechanisms and therefore physicochemical properties, the above distinction and quantification would help us better understand their different environmental behaviors in the complex continental shelf

  11. Anthropogenic heat flux estimation from space

    NARCIS (Netherlands)

    Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean Philippe; Grimmond, C.S.B.; Feigenwinter, Christian; Lindberg, Fredrik; Frate, Del Fabio; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans

    2016-01-01

    H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the impacts

  12. ANthropogenic heat FLUX estimation from Space

    NARCIS (Netherlands)

    Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean Philippe; Grimmong, C.S.B.; Feigenwinter, Christian; Lindberg, Fredrik; Frate, Del Fabio; Klostermann, Judith; Mi, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans

    2017-01-01

    The H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the

  13. Why budget accountability fails? The elusive links between parliaments and audit agencies in the oversight of the budget

    Directory of Open Access Journals (Sweden)

    CARLOS SANTISO

    2015-09-01

    Full Text Available ABSTRACTParliaments and audit agencies have critical and complementary roles in the oversight of the budget and the enforcement of government accountability. Yet, the nexus between parliaments and audit agencies is one of the weakest links in the accountability chain, generating an accountability gap in the budget process. This articles analyses the interactions between parliaments and audit agencies in the oversight of government finances during the latter stages of the budget process. Using proxies to evaluate the quality of those linkages, such as the follow-up to audit findings and the discharge of government, it shows important dysfunctions in the interactions between parliaments and audit agencies due to a combination of technical capacity constraints and political economy disincentives. It suggests that the effective functioning of the system of checks and balances in public budgeting critically hinges on the agility of the linkages between accountability institutions. As such, the failure of budget accountability is due to systemic dysfunctions in the systems of accountability, rather than the failure of an individual accountability institution acting in isolation. In addition, the effectiveness of the horizontal accountability architecture depends on the political economy incentives shaping the budget process, which are generated by the interactions between the choice of institutional design and budget rules, with the degree of political competition and electoral rules.

  14. Mixed convection boundary-layer flow from a horizontal circular cylinder with a constant surface heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Nazar, R.; Amin, N. [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2004-02-01

    The laminar mixed convection boundary-layer flow of a viscous and incompressible fluid past a horizontal circular cylinder, which is maintained at a constant heat flux and is placed in a stream flowing vertically upward has been theoretically studied in this paper. The solutions for the flow and heat transfer characteristics are evaluated numerically for different values of the mixed convection parameter {lambda} with the Prandtl number Pr = 1 and 7, respectively. It is found, as for the case of a heated or cooled cylinder, considered by Merkin [5], that assisting flow delays separation of the boundary-layer and can, if the assisting flow is strong enough, suppress it completely. The opposing flow, on the other side, brings the separation point nearer to the lower stagnation point and for sufficiently strong opposing flows there will not be a boundary-layer on the cylinder. (orig.)

  15. Application of the Critical Heat Flux Look-Up Table to Large Diameter Tubes

    Directory of Open Access Journals (Sweden)

    M. El Nakla

    2013-01-01

    Full Text Available The critical heat flux look-up table was applied to a large diameter tube, namely 67 mm inside diameter tube, to predict the occurrence of the phenomenon for both vertical and horizontal uniformly heated tubes. Water was considered as coolant. For the vertical tube, a diameter correction factor was directly applied to the 1995 critical heat flux look-up table. To predict the occurrence of critical heat flux in horizontal tube, an extra correction factor to account for flow stratification was applied. Both derived tables were used to predict the effect of high heat flux and tube blockage on critical heat flux occurrence in boiler tubes. Moreover, the horizontal tube look-up table was used to predict the safety limits of the operation of boiler for 50% allowable heat flux.

  16. Simulation of heat storages and associated heat budgets in the Pacific Ocean: 2. Interdecadal timescale

    Science.gov (United States)

    Auad, Guillermo; Miller, Arthur J.; White, Warren B.

    1998-11-01

    We use a primitive equation isopycnal model of the Pacific Ocean to simulate and diagnose the anomalous heat balance on interdecadal timescales associated with heat storage changes observed from 1970-1988 in the expendable bathythermograph (XBT) data set. Given the smallness of the interdecadal signals compared to the El Niño-Southern Oscillation (ENSO) signal, the agreement between model and observations is remarkably good. The total anomalous heat balance is made up of two parts, the diabatic part (from the model temperature equation) and the adiabatic part (from the model mass conservation equation) due to thermocline heave. We therefore describe our analysis of both the total and diabatic anomalous heat balances in four areas of the tropical and subtropical North Pacific Ocean in the upper 400 m. The interdecadal total (diabatic plus adiabatic) heat balance in the North Pacific Ocean is characterized by a complicated interplay of different physical processes, especially revealed in basin-scale averages of the heat budget components that have comparable amounts of variance. In smaller subregions, simpler balances hold. For example, in the western equatorial Pacific (area 1) the total heat content tendency term is nearly zero, so that a simple balance exists between surface heat flux, vertical heat transport, and horizontal mixing. In the western subtropical Pacific the total heat content tendency balances the three-dimensional divergence of the heat flux. We speculate that this complexity is indicative of multiple physical mechanisms involved in the generation of North Pacific interdecadal variability. The diabatic heat balance north of 24°N, a region of special interest to The World Ocean Circulation Experiment (WOCE), can be simplified to a balance between the tendency term, surface heat flux, and meridional advection, the last term dominated by anomalous advection of mean temperature gradients. For the western equatorial region the diabatic heat content

  17. A carbon budget for overfishing off Peru

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, J.J.

    1981-03-26

    The anchovy harvest off the coast of Peru has decreased from a maximum of about 12 million tons in 1970 to about 1 million tons/year between 1977 and 1979. This rise and collapse of the Peruvian anchovy fishery between the 1950s and the 1970s was accompanied by marked changes in the fluxes of a carbon budget for the upwelling ecosystem. These carbon budget changes are discussed in relation to anchovy production. (JMT)

  18. The eddy kinetic energy budget in the Red Sea

    KAUST Repository

    Zhan, Peng

    2016-06-09

    The budget of eddy kinetic energy (EKE) in the Red Sea, including the sources, redistributions and sink, is examined using a high-resolution eddy-resolving ocean circulation model. A pronounced seasonally varying EKE is identified, with its maximum intensity occurring in winter, and the strongest EKE is captured mainly in the central and northern basins within the upper 200 m. Eddies acquire kinetic energy from conversion of eddy available potential energy (EPE), from transfer of mean kinetic energy (MKE), and from direct generation due to time-varying (turbulent) wind stress, the first of which contributes predominantly to the majority of the EKE. The EPE-to-EKE conversion occurs almost in the entire basin, while the MKE-to-EKE transfer appears mainly along the shelf boundary of the basin (200 miso-bath) where high horizontal shear interacts with topography. The EKE generated by the turbulent wind stress is relatively small and limited to the southern basin. All these processes are intensified during winter, when the rate of energy conversion is about four to five times larger than that in summer. The EKE is redistributed by the vertical and horizontal divergence of energy flux and the advection of the mean flow. As a main sink of EKE, dissipation processes is ubiquitously found in the basin. The seasonal variability of these energy conversion terms can explain the significant seasonality of eddy activities in the Red Sea. This article is protected by copyright. All rights reserved.

  19. A carbon isotope budget for an anoxic marine sediment

    International Nuclear Information System (INIS)

    Boehme, S.E.; Blair, N.E.

    1991-01-01

    A carbon isotope budget has been determined for the coastal marine site, Cape Lookout Bight, NC. Isotope measurements of methane and σCO 2 fluxing out and buried in these sediments were applied to previously measured flux data (Martens et al., in press) to predict the isotopic composition of the incoming metabolizable organic matter. Methane leaves the sediment predominantly via ebullition with an isotopic composition of -60 per mil. Less than 2% of the methane produced is buried with an average diffusional flux value of -17 per mil and a burial value of +11 per mil. The isotope budget predicts a metabolizable organic carbon isotope signature of -19.3 per mil which is in excellent agreement with the measured total organic carbon value of -19.2 ± 0.3 per mil implying that the dominant remineralization processes have been identified

  20. The influence of plasma horizontal position on the neutron rate and flux of neutral atoms in injection heating experiment on the TUMAN-3M tokamak

    Science.gov (United States)

    Kornev, V. A.; Chernyshev, F. V.; Melnik, A. D.; Askinazi, L. G.; Wagner, F.; Vildjunas, M. I.; Zhubr, N. A.; Krikunov, S. V.; Lebedev, S. V.; Razumenko, D. V.; Tukachinsky, A. S.

    2013-11-01

    Horizontal displacement of plasma along the major radius has been found to significantly influence the fluxes of 2.45 MeV DD neutrons and high-energy charge-exchange atoms from neutral beam injection (NBI) heated plasma of the TUMAN-3M tokamak. An inward shift by Δ R = 1 cm causes 1.2-fold increase in the neutron flux and 1.9-fold increase in the charge-exchange atom flux. The observed increase in the neutron flux is attributed to joint action of several factors-in particular, improved high-energy ion capture and confinement and, probably, decreased impurity inflow from the walls, which leads to an increase in the density of target ions. A considerable increase in the flux of charge-exchange neutrals in inward-shifted plasma is due to the increased number of captured high-energy ions and, to some extent, the increased density of the neutral target. As a result of the increase in the content of high-energy ions, the central ion temperature T i (0) increased from 250 to 350 eV. The dependence of the neutron rate on major radius R 0 should be taken into account when designing compact tokamak-based neutron sources.

  1. WFIRST: Coronagraph Systems Engineering and Performance Budgets

    Science.gov (United States)

    Poberezhskiy, Ilya; cady, eric; Frerking, Margaret A.; Kern, Brian; Nemati, Bijan; Noecker, Martin; Seo, Byoung-Joon; Zhao, Feng; Zhou, Hanying

    2018-01-01

    The WFIRST coronagraph instrument (CGI) will be the first in-space coronagraph using active wavefront control to directly image and characterize mature exoplanets and zodiacal disks in reflected starlight. For CGI systems engineering, including requirements development, CGI performance is predicted using a hierarchy of performance budgets to estimate various noise components — spatial and temporal flux variations — that obscure exoplanet signals in direct imaging and spectroscopy configurations. These performance budgets are validated through a robust integrated modeling and testbed model validation efforts.We present the performance budgeting framework used by WFIRST for the flow-down of coronagraph science requirements, mission constraints, and observatory interfaces to measurable instrument engineering parameters.

  2. Horizontal accountability and presidential dominance: a difficult combination. The case of the Dominican Republic, 1967-2009

    Directory of Open Access Journals (Sweden)

    Leiv MARSTEINTREDET

    2011-03-01

    Full Text Available This article studies horizontal accountability in the Dominican Republic. First it analyses the rules regulating the system of checks and balances. Although important, institutional rules cannot explain the variation in the levels of accountability across time found in the Dominican case. Therefore, the article focuses on the execution of national budgets and the financial situation of the accountability institutions. The article suggests using an index of budgetary disproportionality based on a comparison of the congressionally approved budget and the executed budget to measure the level of horizontal accountability. A multivariate time-series regression analysis shows that budgetary disproportionality increases with presidential dominance. The article concludes that for the period 1967-2009, it is presidential behaviour more than any other factor that has prevented an effective system of checks and balances. Therefore the case confirms O’Donnell’s hypothesis of Delegative Democracies.

  3. Long-term monitoring of the earth's radiation budget; Proceedings of the Meeting, Orlando, FL, Apr. 17, 18, 1990

    Science.gov (United States)

    Barkstrom, Bruce R. (Editor)

    1990-01-01

    The uses of the broadband flux measurements as well as the improvements in the Earth Radiation Budget Experiment in instrumentation and data reduction are summarized. Scientific uses of earth-radiation budget data are discussed, along with a perspective on the instrumentation giving a new foundation for studies of the radiation budget, with emphasis on calibration and long-term stability. Cloud identification and angular modeling are covered including angular dependence models for radiance to flux conversion and the pattern recognition of clouds and ice in polar regions. The surface-radiation budget and atmospheric radiative flux divergence from the Clouds and Earth Radiant Energy System are covered, and time dependence of the earth's radiation fields, determination of the outgoing longwave radiation and its diurnal variations are considered.

  4. Analysis of neutron flux increase in the horizontal experimental channels of Ra reactor - masters thesis; Analiza povecanja neutronskog fluksa na horizontalnim eksperimentalnim kanalima reaktora RA - magistarski rad

    Energy Technology Data Exchange (ETDEWEB)

    Strugar, P [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1964-12-01

    Calculation and experimental results shown in this paper show that higher thermal neutron flux is obtained in the reactor core with central horizontal reflector at the same power level. The flux is increased when the moderation capability of the core is decreased. Apart from increase of the thermal component of the neutron flux in the experimental channels, the central reflector causes decrease of the epithermal neutron flux and gamma radiation intensity. This is very useful for studying (n, {gamma}) reaction, neutron diffraction, etc. [Serbo-Croat] Rezultati proracuna i merenja prikazanih u ovom radu ukazuju na cinjenicu da se u reaktoru sa ugradjenim centralnim horizontalnim reflektorom dobija veci fluks termalnih neutron pri istoj snazi i to utoliko veci ukoliko je moderaciona sposobnost aktivne zone manja. Pored uvecanja termalne komponente neutrona u snopu na horizontalnim eksperimentalnim kanalima centralni reflektor uslovljava i smanjenje epitermalne komponente, kao i intenzitet gamma zracenja. Ovo je pozeljno za proucavanje (n,{gamma}) reakcija, neutron diffraction, etc.

  5. Spatial structures in the heat budget of the Antarctic atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    W. J. van de Berg

    2008-01-01

    Full Text Available Output from the regional climate model RACMO2/ANT is used to calculate the heat budget of the Antarctic atmospheric boundary layer (ABL. The main feature of the wintertime Antarctic ABL is a persistent temperature deficit compared to the free atmosphere. The magnitude of this deficit is controlled by the heat budget. During winter, transport of heat towards the surface by turbulence and net longwave emission are the primary ABL cooling terms. These processes show horizontal spatial variability only on continental scales. Vertical and horizontal, i.e. along-slope, advection of heat are the main warming terms. Over regions with convex ice sheet topography, i.e. domes and ridges, warming by downward vertical advection is enhanced due to divergence of the ABL wind field. Horizontal advection balances excess warming caused by vertical advection, hence the temperature deficit in the ABL weakens over domes and ridges along the prevailing katabatic wind. Conversely, vertical advection is reduced in regions with concave topography, i.e. valleys, where the ABL temperature deficit enlarges along the katabatic wind. Along the coast, horizontal and vertical advection is governed by the inability of the large-scale circulation to adapt to small scale topographic features. Meso-scale topographic structures have thus a strong impact on the ABL winter temperature, besides latitude and surface elevation. During summer, this mechanism is much weaker, and the horizontal variability of ABL temperatures is smaller.

  6. Accounting for urban biogenic fluxes in regional carbon budgets.

    Science.gov (United States)

    Hardiman, Brady S; Wang, Jonathan A; Hutyra, Lucy R; Gately, Conor K; Getson, Jackie M; Friedl, Mark A

    2017-08-15

    Many ecosystem models incorrectly treat urban areas as devoid of vegetation and biogenic carbon (C) fluxes. We sought to improve estimates of urban biomass and biogenic C fluxes using existing, nationally available data products. We characterized biogenic influence on urban C cycling throughout Massachusetts, USA using an ecosystem model that integrates improved representation of urban vegetation, growing conditions associated with urban heat island (UHI), and altered urban phenology. Boston's biomass density is 1/4 that of rural forests, however 87% of Massachusetts' urban landscape is vegetated. Model results suggest that, kilogram-for-kilogram, urban vegetation cycles C twice as fast as rural forests. Urban vegetation releases (R E ) and absorbs (GEE) the equivalent of 11 and 14%, respectively, of anthropogenic emissions in the most urban portions of the state. While urban vegetation in Massachusetts fully sequesters anthropogenic emissions from smaller cities in the region, Boston's UHI reduces annual C storage by >20% such that vegetation offsets only 2% of anthropogenic emissions. Asynchrony between temporal patterns of biogenic and anthropogenic C fluxes further constrains the emissions mitigation potential of urban vegetation. However, neglecting to account for biogenic C fluxes in cities can impair efforts to accurately monitor, report, verify, and reduce anthropogenic emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Estimation of monthly solar exposure on horizontal surface by Angstrom-type regression equation

    International Nuclear Information System (INIS)

    Ravanshid, S.H.

    1981-01-01

    To obtain solar flux intensity, solar radiation measuring instruments are the best. In the absence of instrumental data there are other meteorological measurements which are related to solar energy and also it is possible to use empirical relationships to estimate solar flux intensit. One of these empirical relationships to estimate monthly averages of total solar radiation on a horizontal surface is the modified angstrom-type regression equation which has been employed in this report in order to estimate the solar flux intensity on a horizontal surface for Tehran. By comparing the results of this equation with four years measured valued by Tehran's meteorological weather station the values of meteorological constants (a,b) in the equation were obtained for Tehran. (author)

  8. Comparison of regional and ecosystem CO2 fluxes

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Søgaard, Henrik; Batchvarova, Ekaterina

    2009-01-01

    A budget method to derive the regional surface flux of CO2 from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO2 concentrations by i.e. an airplane, successive radio-soundings......A budget method to derive the regional surface flux of CO2 from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO2 concentrations by i.e. an airplane, successive radio...

  9. Research for rolling effects on flow pattern of gas-water flow in horizontal tubes

    International Nuclear Information System (INIS)

    Luan Feng; Yan Changqi

    2007-01-01

    The flow pattern transition of two-phase flow is caused by the inertial force resulted from rolling and incline of horizontal tubes under rolling state. an experimental study on the flow patterns of gas-water flow was carried out in horizontal tubes under rolling state, which rolling period is 15 second and rolling angle is 10 degrees, and a pattern flow picture is shown. It was found that there are two flow patterns in one rolling period under some gas flux and water flux. (authors)

  10. Global diffusive fluxes of methane in marine sediments

    Science.gov (United States)

    Egger, Matthias; Riedinger, Natascha; Mogollón, José M.; Jørgensen, Bo Barker

    2018-06-01

    Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of the methane oxidation barrier. Our new budget suggests that 45-61 Tg of methane are oxidized with sulfate annually, with approximately 80% of this oxidation occurring in continental shelf sediments (methane in steady-state diffusive sediments, we calculate that 3-4% of the global organic carbon flux to the seafloor is converted to methane. We further report a global imbalance of diffusive methane and sulfate fluxes into the sulfate-methane transition with no clear trend with respect to the corresponding depth of the methane oxidation barrier. The observed global mean net flux ratio between sulfate and methane of 1.4:1 indicates that, on average, the methane flux to the sulfate-methane transition accounts for only 70% of the sulfate consumption in the sulfate-methane transition zone of marine sediments.

  11. Budgeting suspended sediment fluxes in tropical monsoonal watersheds with limited data: the Lake Tana basin

    Directory of Open Access Journals (Sweden)

    Zimale Fasikaw A.

    2018-03-01

    Full Text Available Soil erosion decreases soil fertility of the uplands and causes siltation of lakes and reservoirs; the lakes and reservoirs in tropical monsoonal African highlands are especially affected by sedimentation. Efforts in reducing loads by designing management practices are hampered by lack of quantitative data on the relationship of erosion in the watersheds and sediment accumulation on flood plains, lakes and reservoirs. The objective of this study is to develop a prototype quantitative method for estimating sediment budget for tropical monsoon lakes with limited observational data. Four watersheds in the Lake Tana basin were selected for this study. The Parameter Efficient Distributed (PED model that has shown to perform well in the Ethiopian highlands is used to overcome the data limitations and recreate the missing sediment fluxes. PED model parameters are calibrated using daily discharge data and the occasionally collected sediment concentration when establishing the sediment rating curves for the major rivers. The calibrated model parameters are then used to predict the sediment budget for the 1994-2009 period. Sediment retained in the lake is determined from two bathymetric surveys taken 20 years apart whereas the sediment leaving the lake is calculated based on measured discharge and observed sediment concentrations. Results show that annually on average 34 t/ha/year of sediment is removed from the gauged part of the Lake Tana watersheds. Depending on the up-scaling method from the gauged to the ungauged part, 21 to 32 t/ha/year (equivalent to 24-38 Mt/year is transported from the upland watersheds of which 46% to 65% is retained in the flood plains and 93% to 96% is trapped on the flood plains and in the lake. Thus, only 4-7% of all sediment produced in the watersheds leaves the Lake Tana Basin.

  12. Ocean dynamic noise energy flux directivity in the 400 Hz to 700 Hz frequency band

    Institute of Scientific and Technical Information of China (English)

    Vladimir A. Shchurov; Galina F. Ivanova; Marianna V. Kuyanova; Helen S. Tkachenko

    2007-01-01

    Results of field studies of underwater dynamic noise energy flux directivity at two wind speeds, 6 m/s and 12 m/s, in the 400 Hz to 700 Hz frequency band in the deep open ocean are presented. The measurements were made by a freely drifting telemetric combined system at 500 m depth. Statistical characteristics of the horizontal and vertical dynamic noise energy flux directivity are considered as functions of wind speed and direction. Correlation between the horizontal dynamic noise energy flux direction and that of the wind was determined; a mechanism of the horizontal dynamic noise energy flux generation is related to the initial noise field scattering on ocean surface waves.

  13. Nitrogen emission and deposition budget in West and Central Africa

    International Nuclear Information System (INIS)

    Galy-Lacaux, C; Delon, C

    2014-01-01

    Atmospheric nitrogen depends on land surface exchanges of nitrogen compounds. In Sub Saharan Africa, deposition and emission fluxes of nitrogen compounds are poorly quantified, and are likely to increase in the near future due to land use change and anthropogenic pressure. This work proposes an estimate of atmospheric N compounds budget in West and Central Africa, along an ecosystem transect, from dry savanna to wet savanna and forest, for years 2000−2007. The budget may be considered as a one point in time budget, to be included in long term studies as one of the first reference point for Sub Saharan Africa. Gaseous dry deposition fluxes are estimated by considering N compounds concentrations measured in the frame of the IDAF network (IGAC/DEBITS/AFrica) at the monthly scale and modeling of deposition velocities at the IDAF sites, taking into account the bi directional exchange of ammonia. Particulate dry deposition fluxes are calculated using the same inferential method. Wet deposition fluxes are calculated from measurements of ammonium and nitrate chemical content in precipitations at the IDAF sites combined with the annual rainfall amount. In terms of emission, biogenic NO emissions are simulated at each IDAF site with a surface model coupled to an emission module elaborated from an artificial neural network equation. Ammonia emissions from volatilization are calculated from literature data on livestock quantity in each country and N content in manure. NO x and NH 3 emission from biomass burning and domestic fires are estimated from satellite data and emission factors. The total budget shows that emission sources of nitrogen compounds are in equilibrium with deposition fluxes in dry and wet savannas, with respectively 7.40 (±1.90) deposited and 9.01 (±3.44) kgN ha −1 yr −1 emitted in dry savanna, 8.38 (±2.04) kgN ha −1 yr −1 deposited and 9.60 (±0.69) kgN ha −1 yr −1 emitted in wet savanna. In forested ecosystems, the total budget is dominated

  14. Salt balance, fresh water residence time and budget for non ...

    African Journals Online (AJOL)

    Water and salt budgets suggest that in order to balance the inflow and outflow of water at Makoba bay, there is net flux of water from the bay to the open ocean during wet season. Residual salt fluxes between the bay and the open ocean indicate advective salt export. Exchange of water between the bay with the open ocean ...

  15. The Australian terrestrial carbon budget

    Directory of Open Access Journals (Sweden)

    V. Haverd

    2013-02-01

    Full Text Available This paper reports a study of the full carbon (C-CO2 budget of the Australian continent, focussing on 1990–2011 in the context of estimates over two centuries. The work is a contribution to the RECCAP (REgional Carbon Cycle Assessment and Processes project, as one of numerous regional studies. In constructing the budget, we estimate the following component carbon fluxes: net primary production (NPP; net ecosystem production (NEP; fire; land use change (LUC; riverine export; dust export; harvest (wood, crop and livestock and fossil fuel emissions (both territorial and non-territorial. Major biospheric fluxes were derived using BIOS2 (Haverd et al., 2012, a fine-spatial-resolution (0.05° offline modelling environment in which predictions of CABLE (Wang et al., 2011, a sophisticated land surface model with carbon cycle, are constrained by multiple observation types. The mean NEP reveals that climate variability and rising CO2 contributed 12 ± 24 (1σ error on mean and 68 ± 15 TgC yr−1, respectively. However these gains were partially offset by fire and LUC (along with other minor fluxes, which caused net losses of 26 ± 4 TgC yr−1 and 18 ± 7 TgC yr−1, respectively. The resultant net biome production (NBP is 36 ± 29 TgC yr−1, in which the largest contributions to uncertainty are NEP, fire and LUC. This NBP offset fossil fuel emissions (95 ± 6 TgC yr−1 by 38 ± 30%. The interannual variability (IAV in the Australian carbon budget exceeds Australia's total carbon emissions by fossil fuel combustion and is dominated by IAV in NEP. Territorial fossil fuel emissions are significantly smaller than the rapidly growing fossil fuel exports: in 2009–2010, Australia exported 2.5 times more carbon in fossil fuels than it emitted by burning fossil fuels.

  16. From COS ecosystem fluxes to GPP: integrating soil, branch and ecosystem fluxes.

    Science.gov (United States)

    Kooijmans, L.; Maseyk, K. S.; Vesala, T.; Mammarella, I.; Baker, I. T.; Seibt, U.; Sun, W.; Aalto, J.; Franchin, A.; Kolari, P.; Keskinen, H.; Levula, J.; Chen, H.

    2016-12-01

    The close coupling of Carbonyl Sulfide (COS) and CO2 due to a similar uptake pathway into plant stomata makes COS a promising new tracer that can potentially be used to partition the Net Ecosystem Exchange into gross primary production (GPP) and respiration. Although ecosystem-scale measurements have been made at several sites, the contribution of different ecosystem components to the total COS budget is often unknown. Besides that, the average Leaf Relative Uptake (LRU) ratio needs to be better determined to accurately translate COS ecosystem fluxes into GPP estimates when the simple linear correlation between GPP estimates and COS plant uptake is used. We performed two campaigns in the summer of 2015 and 2016 at the SMEAR II site in Hyytiälä, Finland to provide better constrained COS flux data for boreal forests. A combination of COS measurements were made during both years, i.e. atmospheric profile concentrations up to 125 m, eddy-covariance fluxes and soil chamber fluxes. In addition to these, branch chamber measurements were done in 2016 in an attempt to observe the LRU throughout the whole season. The LRU ratio shows an exponential correlation with photosynthetic active radiation (PAR) but is constant for PAR levels above 500 µmol m-2 s-1. Mid-day LRU values are 1.0 (aspen) and 1.5 (pine). The correlation between LRU and PAR can be explained by the fact that COS is hydrolyzed with the presence of the enzyme carbonic anhydrase, and is not light dependent, whereas the photosynthetic uptake of CO2 is. We observed nighttime fluxes on the order of 25-30 % of the daily maximum COS uptake. Soils are a small sink of COS and contribute to 3 % of the total ecosystem COS flux during daytime. In a comparison between observed and simulated fluxes from the Simple Biosphere (SiB) model, the modelled COS and CO2 ecosystem fluxes are on average 40 % smaller than the observed fluxes, however, the Ecosystem Relative Uptake (ERU) ratios are identical at a value of 1.9 ± 0

  17. Use of flux and morphologic sediment budgets for sandbar monitoring on the Colorado River in Marble Canyon, Arizona

    Science.gov (United States)

    Grams, Paul E.; Buscombe, Daniel D.; Topping, David J.; Hazel, Joseph E.; Kaplinski, Matt

    2015-01-01

    ., 2000) and depends entirely on infrequent tributary floods, monitoring of both sandbars and gross sand storage (the sand budget) is required to evaluate whether the high-flow protocol is having the intended effect of increasing sandbar size without progressively depleting sand from the system.There are many challenges associated with monitoring sand storage and active sand deposits in a river system as large and complex as the 450-km segment of the Colorado River between Glen Canyon Dam and Lake Mead. Previous studies have demonstrated the temporal variation in sand storage associated with sand-supply limitation (Topping et al., 2000) and the spatial variability in the amount of sand stored in eddies and the channel associated with channel hydraulics (Grams et al., 2013). In this study, we report on companion measurements of sand flux and morphologic change to quantify, for the first time, the relation between changes in sand mass balance, changes in within-channel sand storage, and changes in sandbars comprehensively for a 50-km river segment of the Colorado River in lower Marble Canyon within Grand Canyon National Park.We show that, when measured over the scale of a 50-km river segment, these complementary measurements of the sand budget agree within measurement uncertainty and provide a rare opportunity to integrate the temporally rich sand-flux record with the spatially rich morphologic measurements. Both methods show that sediment was evacuated from lower Marble Canyon over the 3-year study period. The flux-based budget shows the timing of changes in storage relative to dam-release patterns, while the morphologic measurements depict the spatial distribution of erosion and deposition among different depositional settings.

  18. Analysis of Source-to-Sink-Fluxes and Sediment Budgets in Changing High-Latitude and High-Altitude Cold Environments: SEDIFLUX Manual

    Energy Technology Data Exchange (ETDEWEB)

    Beylich, Achim A; Warburton, Jeff

    2007-07-01

    This First Edition of the SEDIFLUX Manual is an outcome of the European Science Foundation (ESF) Network SEDIFLUX - Sedimentary Source-to-Sink-Fluxes in Cold Environments (2004 - 2006) (http://www.ngu.no/sediflux, http://www.esf.org/sediflux). The development of this publication has been based on four ESF SEDIFLUX Science Meetings, which were held in Saudarkrokur (Iceland), June 18. - 21., 2004, Clermont-Ferrand (France), January 20. - 22., 2005, Durham (UK), December 16. - 19., 2005 and Trondheim (Norway), October 29. - November 2., 2006. The aim of this Manual is to provide guidance on developing quantitative frameworks for characterising catchment (field-based) sediment budget studies, so that: (1) baseline measurements at SEDIFLUX/SEDIBUD key test catchments are standardised thus enabling intersite comparisons, and (2) long-term changes in catchment geosystems as related to climate change are well documented. The main focus is on non-glacial processes, although within the context of glacierised catchments glacial sediment transfer processes are assumed as inputs/outputs of the periglacial / paraglacial system. This First Edition of the SEDIFLUX Manual will be further developed within the I.A.G./A.I.G. Working Group SEDIBUD - Sediment Budgets in Cold Environments (http://www.geomorph.org/wg/wgsb.html).(auth)

  19. Validation of farm-scale methane emissions using nocturnal boundary layer budgets

    Directory of Open Access Journals (Sweden)

    J. Stieger

    2015-12-01

    Full Text Available This study provides the first experimental validation of Swiss agricultural methane emission estimates at the farm scale. We measured CH4 concentrations at a Swiss farmstead during two intensive field campaigns in August 2011 and July 2012 to (1 quantify the source strength of livestock methane emissions using a tethered balloon system and (2 to validate inventory emission estimates via nocturnal boundary layer (NBL budgets. Field measurements were performed at a distance of 150 m from the nearest farm buildings with a tethered balloon system in combination with gradient measurements at eight heights on a 10 m tower to better resolve the near-surface concentrations. Vertical profiles of air temperature, relative humidity, CH4 concentration, wind speed, and wind direction showed that the NBL was strongly influenced by local transport processes and by the valley wind system. Methane concentrations showed a pronounced time course, with highest concentrations in the second half of the night. NBL budget flux estimates were obtained via a time–space kriging approach. Main uncertainties of NBL budget flux estimates were associated with nonstationary atmospheric conditions and the estimate of the inversion height zi (top of volume integration. The mean NBL budget fluxes of 1.60 ± 0.31 μg CH4 m-2 s-1 (1.40 ± 0.50 and 1.66 ± 0.20 μg CH4 m-2 s-1 in 2011 and 2012 respectively were in good agreement with local inventory estimates based on current livestock number and default emission factors, with 1.29 ± 0.47 and 1.74 ± 0.63 μg CH4 m-2 s-1 for 2011 and 2012 respectively. This indicates that emission factors used for the national inventory reports are adequate, and we conclude that the NBL budget approach is a useful tool to validate emission inventory estimates.

  20. Validation of farm-scale methane emissions using nocturnal boundary layer budgets

    Science.gov (United States)

    Stieger, J.; Bamberger, I.; Buchmann, N.; Eugster, W.

    2015-12-01

    This study provides the first experimental validation of Swiss agricultural methane emission estimates at the farm scale. We measured CH4 concentrations at a Swiss farmstead during two intensive field campaigns in August 2011 and July 2012 to (1) quantify the source strength of livestock methane emissions using a tethered balloon system and (2) to validate inventory emission estimates via nocturnal boundary layer (NBL) budgets. Field measurements were performed at a distance of 150 m from the nearest farm buildings with a tethered balloon system in combination with gradient measurements at eight heights on a 10 m tower to better resolve the near-surface concentrations. Vertical profiles of air temperature, relative humidity, CH4 concentration, wind speed, and wind direction showed that the NBL was strongly influenced by local transport processes and by the valley wind system. Methane concentrations showed a pronounced time course, with highest concentrations in the second half of the night. NBL budget flux estimates were obtained via a time-space kriging approach. Main uncertainties of NBL budget flux estimates were associated with nonstationary atmospheric conditions and the estimate of the inversion height zi (top of volume integration). The mean NBL budget fluxes of 1.60 ± 0.31 μg CH4 m-2 s-1 (1.40 ± 0.50 and 1.66 ± 0.20 μg CH4 m-2 s-1 in 2011 and 2012 respectively) were in good agreement with local inventory estimates based on current livestock number and default emission factors, with 1.29 ± 0.47 and 1.74 ± 0.63 μg CH4 m-2 s-1 for 2011 and 2012 respectively. This indicates that emission factors used for the national inventory reports are adequate, and we conclude that the NBL budget approach is a useful tool to validate emission inventory estimates.

  1. Diurnal and vertical variability of the sensible heat and carbon dioxide budgets in the atmospheric surface layer

    International Nuclear Information System (INIS)

    Casso-Torralba, P.; Rosa Soler, M.; Vila-Guerau de Arellano, J.; Bosveld, F.; Vermeulen, A.; Werner, C.; Moors, E.

    2008-08-01

    The diurnal and vertical variability of heat and carbon dioxide (CO2) in the atmospheric surface layer are studied by analyzing measurements from a 213 m tower in Cabauw (Netherlands). Observations of thermodynamic variables and CO2 mixing ratio as well as vertical profiles of the turbulent fluxes are used to retrieve the contribution of the budget terms in the scalar conservation equation. On the basis of the daytime evolution of turbulent fluxes, we calculate the budget terms by assuming that turbulent fluxes follow a linear profile with height. This assumption is carefully tested and the deviation from linearity is quantified. The budget calculation allows us to assess the importance of advection of heat and CO2 during day hours for three selected days. It is found that, under nonadvective conditions, the diurnal variability of temperature and CO2 is well reproduced from the flux divergence measurements. Consequently, the vertical transport due to the turbulent flux plays a major role in the daytime evolution of both scalars and the advection is a relatively small contribution. During the analyzed days with a strong contribution of advection of either heat or carbon dioxide, the flux divergence is still an important contribution to the budget. For heat, the quantification of the advection contribution is in close agreement with results from a numerical model. For carbon dioxide, we qualitatively corroborate the results with a Lagrangian transport model. Our estimation of advection is compared with traditional estimations based on the Net Ecosystem-atmosphere Exchange (NEE)

  2. Soil surface CO2 fluxes and the carbon budget of a grassland

    Science.gov (United States)

    Norman, J. M.; Garcia, R.; Verma, S. B.

    1992-01-01

    Measurements of soil surface CO2 fluxes are reported for three sites within the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) area, and simple empirical equations are fit to the data to provide predictions of soil fluxes from environmental observations. A prototype soil chamber, used to make the flux measurements, is described and tested by comparing CO2 flux measurements to a 40-L chamber, a 1-m/cu chamber, and eddy correlation. Results suggest that flux measurements with the prototype chamber are consistent with measurements by other methods to within about 20 percent. A simple empirical equation based on 10-cm soil temperature, 0- to 10-cm soil volumetric water content, and leaf area index predicts the soil surface CO2 flux with a rms error of 1.2 micro-mol sq m/s for all three sites. Further evidence supports using this equation to evaluate soil surface CO2 during the 1987 FIFE experiment. The soil surface CO2 fluxes when averaged over 24 hours are comparable to daily gross canopy photosynthetic rates. For 6 days of data the net daily accumulation of carbon is about 0.6 g CO2 sq m/d; this is only a few percent of the daily gross accumulation of carbon by photosynthesis. As the soil became drier in 1989, the net accumulation of carbon by the prairie increased, suggesting that the soil flux is more sensitive to temperature and drought than the photosynthetic fluxes.

  3. The effect of diameter on vertical and horizontal flow boiling crisis in a tube cooled by Freon-12

    International Nuclear Information System (INIS)

    Merilo, M.; Ahmad, S.Y.

    1979-03-01

    The influence of test section orientation and diameter on flow boiling crisis occurring in tubes has been studied experimentally using Freon-12 as a coolant. At low mass flux the critical heat flux (CHF) was lower in horizontal flow than in vertical. As either the liquid or vapour velocity, or both, were increased the vertical and horizontal CHF results converged. Above a mass flux of 4 Mg.m -2 .s -1 the results were essentially identical. The effect of tube diameter on boiling crisis in general depends crucially on the parameters which are maintained constant when the comparison is made. (author)

  4. Condensation Analysis of Steam/Air Mixtures in Horizontal Tubes

    International Nuclear Information System (INIS)

    Lee, Kwon Yeong; Bae, Sung Won; Kim, Moo Hwan

    2008-01-01

    Perhaps the most common flow configuration in which a convective condensation occurs is a flow in a horizontal circular tube. This configuration is encountered in air-conditioning and refrigeration condensers as well as condensers in Rankine power cycles. Although a convective condensation is also sometimes contrived to occur in a co-current vertical downward flow, a horizontal flow is often preferred because the flow can be repeatedly passed through the heat exchanger core in a serpentine fashion without trapping liquid or vapor in the return bends. Many researchers have investigated a in-tube condensation for horizontal heat exchangers. However, almost all of them obtained tube section-averaged data without a noncondensable gas. Recently, Wu and Vierow have experimentally studied the condensation of steam in a horizontal heat exchanger with air present. In order to measure the condenser tube inner surface temperatures and to calculate the local heat fluxes, they developed an innovative thermocouple design that allowed for nonintrusive measurements. Here we developed a theoretical model using the heat and mass analogy to analyze a steam condensation with a noncondensable gas in horizontal tubes

  5. The impact of lateral carbon fluxes on the European carbon balance

    International Nuclear Information System (INIS)

    Ciais, P.; Hauglustaine, D.; Borges, A.V.; Abril, G.; Meybeck, M.; Folberth, G.; Janssens, I.A.

    2008-01-01

    To date, little is known about the impact of processes which cause lateral carbon fluxes over continents, and from continents to oceans on the CO 2 - and carbon budgets at local, regional and continental scales. Lateral carbon fluxes contribute to regional carbon budgets as follows: Ecosystem CO 2 sink=Ecosystem carbon accumulation + Lateral carbon fluxes. We estimated the contribution of wood and food product trade, of emission and oxidation of reduced carbon species, and of river erosion and transport as lateral carbon fluxes to the carbon balance of Europe (EU-25). The analysis is completed by new estimates of the carbon fluxes of coastal seas. We estimated that lateral transport (all processes combined) is a flux of 165 Tg C yr -1 at the scale of EU-25. The magnitude of lateral transport is thus comparable to current estimates of carbon accumulation in European forests. The main process contributing to the total lateral flux out of Europe is the flux of reduced carbon compounds, corresponding to the sum of non-CO 2 gaseous species (CH 4 , CO, hydrocarbons,... ) emitted by ecosystems and exported out of the European boundary layer by the large scale atmospheric circulation. (authors)

  6. Warm-Core Intensification of a Hurricane Through Horizontal Eddy Heat Transports Inside the Eye

    Science.gov (United States)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob also identifies subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, excluding the eyewall (at least in an azimuthal mean sense), subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation cannot, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller contributions coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  7. The Ozone Budget in the Upper Troposphere from Global Modeling Initiative (GMI)Simulations

    Science.gov (United States)

    Rodriquez, J.; Duncan, Bryan N.; Logan, Jennifer A.

    2006-01-01

    Ozone concentrations in the upper troposphere are influenced by in-situ production, long-range tropospheric transport, and influx of stratospheric ozone, as well as by photochemical removal. Since ozone is an important greenhouse gas in this region, it is particularly important to understand how it will respond to changes in anthropogenic emissions and changes in stratospheric ozone fluxes.. This response will be determined by the relative balance of the different production, loss and transport processes. Ozone concentrations calculated by models will differ depending on the adopted meteorological fields, their chemical scheme, anthropogenic emissions, and treatment of the stratospheric influx. We performed simulations using the chemical-transport model from the Global Modeling Initiative (GMI) with meteorological fields from (It)h e NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), (2) the atmospheric GCM from NASA's Global Modeling and Assimilation Office(GMAO), and (3) assimilated winds from GMAO . These simulations adopt the same chemical mechanism and emissions, and adopt the Synthetic Ozone (SYNOZ) approach for treating the influx of stratospheric ozone -. In addition, we also performed simulations for a coupled troposphere-stratosphere model with a subset of the same winds. Simulations were done for both 4degx5deg and 2degx2.5deg resolution. Model results are being tested through comparison with a suite of atmospheric observations. In this presentation, we diagnose the ozone budget in the upper troposphere utilizing the suite of GMI simulations, to address the sensitivity of this budget to: a) the different meteorological fields used; b) the adoption of the SYNOZ boundary condition versus inclusion of a full stratosphere; c) model horizontal resolution. Model results are compared to observations to determine biases in particular simulations; by examining these comparisons in conjunction with the derived budgets, we may pinpoint

  8. Groundwater hydrology and estimation of horizontal groundwater flux from the Rio Grande at selected locations in Albuquerque, New Mexico, 2003-9

    Science.gov (United States)

    Rankin, Dale R.; McCoy, Kurt J.; More, Geoff J.M.; Worthington, Jeffrey A.; Bandy-Baldwin, Kimberly M.

    2013-01-01

    The Albuquerque, New Mexico, area has two principal sources of water: groundwater from the Santa Fe Group aquifer system and surface water from the San Juan-Chama Diversion Project. From 1960 to 2002, groundwater withdrawals from the Santa Fe Group aquifer system have caused water levels to decline more than 120 feet in some places within the Albuquerque area, resulting in a great deal of interest in quantifying the river-aquifer interaction associated with the Rio Grande. In 2003, the U.S. Geological Survey in cooperation with the Bureau of Reclamation, the Middle Rio Grande Endangered Species Collaborative Program, and the U.S. Army Corps of Engineers began a detailed characterization of the hydrogeology of the Rio Grande riparian corridor in the Albuquerque, New Mexico, area to provide hydrologic data and enhance the understanding of rates of water leakage from the Rio Grande to the alluvial aquifer, groundwater flow through the aquifer, and discharge of water from the aquifer to the riverside drains. A simple conceptual model of flow indicates that the groundwater table gently slopes from the Rio Grande towards riverside drains and the outer boundaries of the inner valley. Water infiltrating from the Rio Grande initially moves vertically below the river, but, as flow spreads farther into the Rio Grande inner valley alluvial aquifer, flow becomes primarily horizontal. The slope of the water-table surface may be strongly controlled by the riverside drains and influenced by other more distal hydrologic boundary conditions, such as groundwater withdrawals by wells. Results from 35 slug tests performed in the Rio Grande inner valley alluvial aquifer during January and February 2009 indicate that hydraulic-conductivity values ranged from 5 feet per day to 160 feet per day with a median hydraulic-conductivity for all transects of 40 feet per day. Median annual horizontal hydraulic gradients in the Rio Grande inner valley alluvial aquifer ranged from 0.011 to 0

  9. Interaction between granulation and small-scale magnetic flux observed by Hinode

    International Nuclear Information System (INIS)

    Zhang Jun; Yang Shuhong; Jin Chunlan

    2009-01-01

    With the polarimetric observations obtained by the Spectro-Polarimeter on board Hinode, we study the relationship between granular development and magnetic field evolution in the quiet Sun. Six typical cases are displayed to exhibit interaction between granules and magnetic elements, and we have obtained the following results. (1) A granule develops centrosymmetrically when no magnetic flux emerges within the granular cell. (2) A granule develops and splits noncentrosymmetrically while flux emerges at an outer part of the granular cell. (3) Magnetic flux emergence in a cluster of mixed polarities is detected at the position of a granule as soon as the granule breaks up. (4) A dipole emerges accompanied by the development of a granule, and the two elements of the dipole are rooted in the adjacent intergranular lanes and face each other across the granule. Advected by the horizontal granular motion, the positive element of the dipole then cancels with the pre-existing negative flux. (5) Flux cancellation also takes place between a positive element, which is advected by granular flow, and its surrounding negative flux. (6) While magnetic flux cancellation takes place in a granular cell, the granule shrinks and then disappears. (7) Horizontal magnetic fields are enhanced at the places where dipoles emerge and where opposite polarities cancel each other, but only the horizontal fields between the dipolar elements point in an orderly way from the positive elements to the negative ones. Our results reveal that granules and small-scale magnetic fluxes influence each other. Granular flow advects magnetic flux, and magnetic flux evolution suppresses granular development. There exist extremely large Doppler blue-shifts at the site of one canceling magnetic element. This phenomenon may be caused by the upward flow produced by magnetic reconnection below the photosphere. (research papers)

  10. Evaluating Observation Influence on Regional Water Budgets in Reanalyses

    Science.gov (United States)

    Bosilovich, Michael G.; Chern, Jiun-Dar; Mocko, David; Robertson, Franklin R.; daSilva, Arlindo M.

    2014-01-01

    The assimilation of observations in reanalyses incurs the potential for the physical terms of budgets to be balanced by a term relating the fit of the observations relative to a forecast first guess analysis. This may indicate a limitation in the physical processes of the background model, or perhaps inconsistencies in the observing system and its assimilation. In the MERRA reanalysis, an area of long term moisture flux divergence over land has been identified over the Central United States. Here, we evaluate the water vapor budget in this region, taking advantage of two unique features of the MERRA diagnostic output; 1) a closed water budget that includes the analysis increment and 2) a gridded diagnostic output data set of the assimilated observations and their innovations (e.g. forecast departures). In the Central United States, an anomaly occurs where the analysis adds water to the region, while precipitation decreases and moisture flux divergence increases. This is related more to a change in the observing system than to a deficiency in the model physical processes. MERRAs Gridded Innovations and Observations (GIO) data narrow the observations that influence this feature to the ATOVS and Aqua satellites during the 06Z and 18Z analysis cycles. Observing system experiments further narrow the instruments that affect the anomalous feature to AMSUA (mainly window channels) and AIRS. This effort also shows the complexities of the observing system, and the reactions of the regional water budgets in reanalyses to the assimilated observations.

  11. Characterization of horizontal air–water two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Ran; Kim, Seungjin, E-mail: skim@psu.edu

    2017-02-15

    Highlights: • A visualization study is performed to develop flow regime map in horizontal flow. • Database in horizontal bubbly flow is extended using a local conductivity probe. • Frictional pressure drop analysis is performed in horizontal bubbly flow. • Drift flux analysis is performed in horizontal bubbly flow. - Abstract: This paper presents experimental studies performed to characterize horizontal air–water two-phase flow in a round pipe with an inner diameter of 3.81 cm. A detailed flow visualization study is performed using a high-speed video camera in a wide range of two-phase flow conditions to verify previous flow regime maps. Two-phase flows are classified into bubbly, plug, slug, stratified, stratified-wavy, and annular flow regimes. While the transition boundaries identified in the present study compare well with the existing ones (Mandhane et al., 1974) in general, some discrepancies are observed for bubbly-to-plug/slug, and plug-to-slug transition boundaries. Based on the new transition boundaries, three additional test conditions are determined in horizontal bubbly flow to extend the database by Talley et al. (2015a). Various local two-phase flow parameters including void fraction, interfacial area concentration, bubble velocity, and bubble Sauter mean diameter are obtained. The effects of increasing gas flow rate on void fraction, bubble Sauter mean diameter, and bubble velocity are discussed. Bubbles begin to coalesce near the gas–liquid layer instead of in the highly packed region when gas flow rate increases. Using all the current experimental data, two-phase frictional pressure loss analysis is performed using the Lockhart–Martinelli method. It is found that the coefficient C = 24 yields the best agreement with the data with the minimum average difference. Moreover, drift flux analysis is performed to predict void-weighted area-averaged bubble velocity and area-averaged void fraction. Based on the current database, functional

  12. Seasonal and annual heat budgets offshore the Hanko Peninsula, Gulf of Finland

    Energy Technology Data Exchange (ETDEWEB)

    Merkouriadi, I.; Lepparanta, M. [Helsinki Univ. (Finland). Dept. of Physics], Email: ioanna.merkouriadi@helsinki.fi; Shirasawa, K. [Hokkaido Univ., Sapporo (Japan). Pan-Okhotsk Research Center, Inst. of Low Temperature Science

    2013-06-01

    A joint Finnish-Japanese sea-ice experiment 'Hanko-9012' carried out offshore the Hanko Peninsula included seasonal monitoring and intensive field campaigns. Ice, oceanographic and meteorological data were collected to examine the structure and properties of the Baltic Sea brackish ice, heat budget and solar radiation transfer through the ice cover. Here, the data from two years (2000 and 2001) are used for the estimation of the seasonal and annual heat budgets. Results present the surface heat balance, and the heat budget of the ice sheet and the waterbody. The ice cover acted as a good control measure of the net surface heat exchange. Solar radiation had a strong seasonal cycle with a monthly maximum at 160 and a minimum below 10 W m{sup -2}, while net terrestrial radiation was mostly between -40 and -60 W m{sup -2}. Latent heat exchange was much more important than sensible heat exchange, similar the net terrestrial radiation values in summer and autumn. A comparison between the latent heat flux released or absorbed by the ice and the net surface heat fluxes showed similar patterns, with a clearly better fit in 2001. The differences can be partly explained by the oceanic heat flux to the lower ice boundary. (orig.)

  13. Horizontal cosmic ray muon radiography for imaging nuclear threats

    International Nuclear Information System (INIS)

    Morris, Christopher L.; Bacon, Jeffrey; Borozdin, Konstantin; Fabritius, Joseph; Miyadera, Haruo; Perry, John; Sugita, Tsukasa

    2014-01-01

    Muon tomography is a technique that uses information contained in the Coulomb scattering of cosmic ray muons to generate three dimension images of volumes between tracking detectors. Advantages of this technique are the muons ability to penetrate significant overburden and the absence of any additional dose beyond the natural cosmic ray flux. Disadvantages include the long exposure times and limited resolution because of the low flux. Here we compare the times needed to image objects using both vertically and horizontally mounted tracking detectors and we develop a predictive model for other geometries

  14. Horizontal cosmic ray muon radiography for imaging nuclear threats

    Science.gov (United States)

    Morris, Christopher L.; Bacon, Jeffrey; Borozdin, Konstantin; Fabritius, Joseph; Miyadera, Haruo; Perry, John; Sugita, Tsukasa

    2014-07-01

    Muon tomography is a technique that uses information contained in the Coulomb scattering of cosmic ray muons to generate three dimension images of volumes between tracking detectors. Advantages of this technique are the muons ability to penetrate significant overburden and the absence of any additional dose beyond the natural cosmic ray flux. Disadvantages include the long exposure times and limited resolution because of the low flux. Here we compare the times needed to image objects using both vertically and horizontally mounted tracking detectors and we develop a predictive model for other geometries.

  15. Eddy Correlation Flux Measurement System (ECOR) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  16. Quantitative comparison of in situ soil CO2 flux measurement methods

    Science.gov (United States)

    Jennifer D. Knoepp; James M. Vose

    2002-01-01

    Development of reliable regional or global carbon budgets requires accurate measurement of soil CO2 flux. We conducted laboratory and field studies to determine the accuracy and comparability of methods commonly used to measure in situ soil CO2 fluxes. Methods compared included CO2...

  17. Estimation of emission fluxes from a horizontal flux budget method, exemplified with determination of pesticide volatilization

    DEFF Research Database (Denmark)

    Jensen, Niels Otto; Andersen, Helle Vibeke

    2008-01-01

    The paper describes an experimental set-up designed to measure the volatilization of different pesticides after application under full-scale field conditions. The pesticides were sprayed around the circumference of a circle and measurements of meteorology and air concentrations of pesticides were...

  18. Fluxes and budget of organic matter in the benthic boundary layer over the northwestern Mediterranean margin

    Science.gov (United States)

    Buscail, R.; Pocklington, R.; Daumas, R.; Guidi, L.

    1990-09-01

    Sediment traps were deployed at depths of 26 and 645 m at two stations on the continental margin of the Gulf of Lions (northwestern Mediterranean). During the same period, surficial sediments were sampled by box corer. The material collected by bottom sediment traps and in corresponding surface sediments was analysed for total organic carbon, hydrolysable organic carbon, nitrogen, sugars, amino acids and lignin-derived compounds. Seasonal variations in organic inputs and the difference between particles from bottom layers and sediment were compared. For the continental shelf station, the annual averages of organic compound fluxes were found to be: 552 mg m -2 d -1 (orgC), 183 mg m -2 d -1 (N), 283 mg m -2 d -1 (hydrolysable orgC), 181 mg m -2 d -1 (Ceq. glucose) and 478 mg m -2 d -1 (amino acids). These values would have to be reduced by half if the large fluxes of autumn, due to resuspension during storm events, were excluded. For the slope, the average annual fluxes were evaluated as: 92.7 mg m -2 d -1 (orgC); 9.4 mg m -2 d -1 (N); 74.1 mg m -2 d -1 (hydrolysable orgC); 11.8 mg m -2 d -1 (Ceq.glucose); and 68.2 mg m -2 d -1 (amino acids). The values obtained for material trapped over the shelf are 4-7 times (orgC and amino acids) and 15-19 times (sugars and nitrogen) higher than for the slope. In contrast, the content in organic compounds of surficial sediments on the slope is 2-3 times higher than that of the shelf deposits. Budgets of orgC transformation at the sediment-water interface were based on calculations which include bottom orgC fluxes, sedimentation rates and orgC content for the first centimetre of deposits. For the continental shelf area, 5.3 g m -2 y -1 have accumulated and 16.7 g m -2 y -1 are mineralized. For the canyon and adjacent slope, the figures are 0.4 and 0.6 g m -2 y -1, respectively. Over the upper adjacent slope, the major part of organic matter is transported by advective processes, which contribute to the sediment interface

  19. Studies of vertical fluxes of horizontal momentum in the lower atmosphere using the MU-radar

    Directory of Open Access Journals (Sweden)

    F. S. Kuo

    2008-11-01

    Full Text Available We study the momentum flux of the atmospheric motions in the height ranges between 6 and 22 km observed using the MU radar at Shigaraki in Japan during a 3 day period in January 1988. The data were divided by double Fourier transformation into data set of waves with downward- phase- velocity and data set of waves with upward-phase-velocity for independent momentum flux calculation. The result showed that both the 72 h averaged upward flux and downward flux of zonal momentum were negative at nearly each height, meaning that the upward flux was dominated by westward propagating waves while the downward flux was dominated by eastward propagating waves. The magnitude of the downward flux was approximately a factor of 1.5 larger than the upward flux for waves in the 2~7 h and 7~24 h period bands, and about equal to the upward flux in the 10–30 min and 30 min–2 h period bands. It is also observed that the vertical flux of zonal momentum tended to be small in each frequency band at the altitudes below the jet maximum (10~12 km, and the flux increased toward more negative values to reach a negative maximum at some altitude well above the jet maximum. Daily averaged flux showed tremendous variation: The 1st 24 h (quiet day was relatively quiet, and the fluxes of the 2nd and 3rd 24 h (active days increased sharply. Moreover, the upward fluxes of zonal momentum below 17 km in the quiet day for each period band (10~30 min, 30 min~2 h, 2~7 h, and 7~24 h were dominantly positive, while the corresponding downward fluxes were dominantly negative, meaning that the zonal momentum below 17 km in each period band under study were dominantly eastward (propagating along the mean wind. In the active days, both the upward fluxes and downward fluxes in each frequency band were dominantly negative throughout the whole altitude range 6.1–18.95 km.

  20. Determine Daytime Earth's Radiation Budget from DSCOVR

    Science.gov (United States)

    Su, W.; Thieman, M. M.; Duda, D. P.; Khlopenkov, K. V.; Liang, L.; Sun-Mack, S.; Minnis, P.; SUN, M.

    2017-12-01

    The Deep Space Climate Observatory (DSCOVR) platform provides a unique perspective for remote sensing of the Earth. With the National Institute of Standards and Technology Advanced Radiometer (NISTAR) and the Earth Polychromatic Imaging Camera (EPIC) onboard, it provides full-disk measurements of the broadband shortwave and total radiances reaching the L1 position. Because the satellite orbits around the L1 spot, it continuously observes a nearly full Earth, providing the potential to determine the daytime radiation budget of the globe at the top of the atmosphere. The NISTAR is a single-pixel instrument that measures the broadband radiance from the entire globe, while EPIC is a spectral imager with channels in the UV and visible ranges. The Level 1 NISTAR shortwave radiances are filtered radiances. To determine the daytime TOA shortwave and longwave radiative fluxes, the NISTAR measured shortwave radiances must be unfiltered first. We will describe the algorithm used to un-filter the shortwave radiances. These unfiltered NISTAR radiances are then converted to the full disk shortwave and daytime longwave fluxes, by accounting for the anisotropic characteristics of the Earth-reflected and emitted radiances. These anisotropy factors are determined by using the scene identifications determined from multiple low Earth orbit and geostationary satellites matched into the EPIC field of view. Time series of daytime radiation budget determined from NISTAR will be presented, and methodology of estimating the fluxes from the small unlit crescent of the Earth that comprises part of the field of view will also be described. The daytime shortwave and longwave fluxes from NISTAR will be compared with CERES dataset.

  1. Climate-induced hotspots in surface energy fluxes from 1948 to 2000

    International Nuclear Information System (INIS)

    Sheng Li; Liu Shuhua; Liu Heping

    2010-01-01

    Understanding how land surfaces respond to climate change requires knowledge of land-surface processes, which control the degree to which interannual variability and mean trends in climatic variables affect the surface energy budget. We use the latest version of the Community Land Model version 3.5 (CLM3.5), which is driven by the latest updated hybrid reanalysis-observation atmospheric forcing dataset constructed by Princeton University, to obtain global distributions of the surface energy budget from 1948 to 2000. We identify climate change hotspots and surface energy flux hotspots from 1948 to 2000. Surface energy flux hotspots, which reflect regions with strong changes in surface energy fluxes, reveal seasonal variations with strong signals in winter, spring, and autumn and weak ones in summer. Locations for surface energy flux hotspots are not, however, fully linked with those for climate change hotspots, suggesting that only in some regions are land surfaces more responsive to climate change in terms of interannual variability and mean trends.

  2. Vertical and horizontal processes in the global atmosphere and the maximum entropy production conjecture

    Directory of Open Access Journals (Sweden)

    S. Pascale

    2012-01-01

    Full Text Available The objective of this paper is to reconsider the Maximum Entropy Production conjecture (MEP in the context of a very simple two-dimensional zonal-vertical climate model able to represent the total material entropy production due at the same time to both horizontal and vertical heat fluxes. MEP is applied first to a simple four-box model of climate which accounts for both horizontal and vertical material heat fluxes. It is shown that, under condition of fixed insolation, a MEP solution is found with reasonably realistic temperature and heat fluxes, thus generalising results from independent two-box horizontal or vertical models. It is also shown that the meridional and the vertical entropy production terms are independently involved in the maximisation and thus MEP can be applied to each subsystem with fixed boundary conditions. We then extend the four-box model by increasing its resolution, and compare it with GCM output. A MEP solution is found which is fairly realistic as far as the horizontal large scale organisation of the climate is concerned whereas the vertical structure looks to be unrealistic and presents seriously unstable features. This study suggest that the thermal meridional structure of the atmosphere is predicted fairly well by MEP once the insolation is given but the vertical structure of the atmosphere cannot be predicted satisfactorily by MEP unless constraints are imposed to represent the determination of longwave absorption by water vapour and clouds as a function of the state of the climate. Furthermore an order-of-magnitude estimate of contributions to the material entropy production due to horizontal and vertical processes within the climate system is provided by using two different methods. In both cases we found that approximately 40 mW m−2 K−1 of material entropy production is due to vertical heat transport and 5–7 mW m−2 K−1 to horizontal heat transport.

  3. Geothermal Heat Flux Underneath Ice Sheets Estimated From Magnetic Satellite Data

    DEFF Research Database (Denmark)

    Fox Maule, Cathrine; Purucker, M.E.; Olsen, Nils

    The geothermal heat flux is an important factor in the dynamics of ice sheets, and it is one of the important parameters in the thermal budgets of subglacial lakes. We have used satellite magnetic data to estimate the geothermal heat flux underneath the ice sheets in Antarctica and Greenland...

  4. Large-scale Flow and Transport of Magnetic Flux in the Solar ...

    Indian Academy of Sciences (India)

    tribpo

    Abstract. Horizontal large-scale velocity field describes horizontal displacement of the photospheric magnetic flux in zonal and meridian directions. The flow systems of solar plasma, constructed according to the velocity field, create the large-scale cellular-like patterns with up-flow in the center and the down-flow on the ...

  5. AmeriFlux Measurement Network: Science Team Research

    Energy Technology Data Exchange (ETDEWEB)

    Law, B E

    2012-12-12

    Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.

  6. The carbon budget of California

    International Nuclear Information System (INIS)

    Potter, Christopher

    2010-01-01

    The carbon budget of a region can be defined as the sum of annual fluxes of carbon dioxide (CO 2 ) and methane (CH 4 ) greenhouse gases (GHGs) into and out of the regional surface coverage area. According to the state government's recent inventory, California's carbon budget is presently dominated by 115 MMTCE per year in fossil fuel emissions of CO 2 (>85% of total annual GHG emissions) to meet energy and transportation requirements. Other notable (non-ecosystem) sources of carbon GHG emissions in 2004 were from cement- and lime-making industries (7%), livestock-based agriculture (5%), and waste treatment activities (2%). The NASA-CASA (Carnegie Ames Stanford Approach) simulation model based on satellite observations of monthly vegetation cover (including those from the Moderate Resolution Imaging Spectroradiometer, MODIS) was used to estimate net ecosystem fluxes and vegetation biomass production over the period 1990-2004. California's annual NPP for all ecosystems in the early 2000s (estimated by CASA at 120 MMTCE per year) was roughly equivalent to its annual fossil fuel emission rates for carbon. However, since natural ecosystems can accumulate only a small fraction of this annual NPP total in long-term storage pools, the net ecosystem sink flux for atmospheric carbon across the state was estimated at a maximum rate of about 24 MMTCE per year under favorable precipitation conditions. Under less favorable precipitation conditions, such as those experienced during the early 1990s, ecosystems statewide were estimated to have lost nearly 15 MMTCE per year to the atmosphere. Considering the large amounts of carbon estimated by CASA to be stored in forests, shrublands, and rangelands across the state, the importance of protection of the natural NPP capacity of California ecosystems cannot be overemphasized.

  7. The European forest sector: past and future carbon budget and fluxes under different management scenarios

    Science.gov (United States)

    Pilli, Roberto; Grassi, Giacomo; Kurz, Werner A.; Fiorese, Giulia; Cescatti, Alessandro

    2017-05-01

    The comprehensive analysis of carbon stocks and fluxes of managed European forests is a prerequisite to quantify their role in biomass production and climate change mitigation. We applied the Carbon Budget Model (CBM) to 26 European countries, parameterized with country information on the historical forest age structure, management practices, harvest regimes and the main natural disturbances. We modeled the C stocks for the five forest pools plus harvested wood products (HWPs) and the fluxes among these pools from 2000 to 2030. The aim is to quantify, using a consistent modeling framework for all 26 countries, the main C fluxes as affected by land-use changes, natural disturbances and forest management and to assess the impact of specific harvest and afforestation scenarios after 2012 on the mitigation potential of the EU forest sector. Substitution effects and the possible impacts of climate are not included in this analysis. Results show that for the historical period from 2000 to 2012 the net primary productivity (NPP) of the forest pools at the EU level is on average equal to 639 Tg C yr-1. The losses are dominated by heterotrophic respiration (409 Tg C yr-1) and removals (110 Tg C yr-1), with direct fire emissions being only 1 Tg C yr-1, leading to a net carbon stock change (i.e., sink) of 110 Tg C yr-1. Fellings also transferred 28 Tg C yr-1 of harvest residues from biomass to dead organic matter pools. The average annual net sector exchange (NSE) of the forest system, i.e., the carbon stock changes in the forest pools including HWP, equals a sink of 122 Tg C yr-1 (i.e., about 19 % of the NPP) for the historical period, and in 2030 it reaches 126, 101 and 151 Tg C yr-1, assuming constant, increasing (+20 %) and decreasing (-20 %) scenarios, respectively, of both harvest and afforestation rates compared to the historical period. Under the constant harvest rate scenario, our findings show an incipient aging process of the forests existing in 1990: although NPP

  8. Rivers of Carbon: Carbon Fluxes in a Watershed Context

    Science.gov (United States)

    Wohl, E.; Tom, B.; Hovius, N.

    2017-12-01

    Research within the past decade has identified the roles of diverse terrestrial processes in mobilizing terrestrial carbon from bedrock, soil, and vegetation and in redistributing this carbon among the atmosphere, biota, geosphere, and oceans. Rivers are central to carbon redistribution, serving as the primary initial receptor of mobilized terrestrial carbon, as well as governing the proportions of carbon sequestered within sediment, transported to oceans, or released to the atmosphere. We use a riverine carbon budget to examine how key questions regarding carbon dynamics can be addressed across diverse spatial and temporal scales from sub-meter areas over a few hours on a single gravel bar to thousands of square kilometers over millions of years across an entire large river network. The portion of the budget applying to the active channel(s) takes the form of ,in which Cs is organic carbon storage over time t. Inputs are surface and subsurface fluxes from uplands (CIupl) and the floodplain (CIfp), including fossil, soil, and biospheric organic carbon; surface and subsurface fluxes of carbon dioxide to the channel (CICO2); and net primary productivity in the channel (CINPP). Outputs occur via respiration within the channel and carbon dioxide emissions (COgas) and fluxes of dissolved and particulate organic carbon to the floodplain and downstream portions of the river network (COriver). The analogous budget for the floodplain portion of a river corridor is .

  9. Groundwater hydrology and estimation of horizontal groundwater flux from the Rio Grande at selected locations in Albuquerque, New Mexico, 2009–10

    Science.gov (United States)

    Rankin, Dale R.; Oelsner, Gretchen P.; McCoy, Kurt J.; Goeff J.M. Moret,; Jeffery A. Worthington,; Kimberly M. Bandy-Baldwin,

    2016-03-17

    feet per day (ft/d) (Montaño) to 120 ft/d (Central) for paired transects, with a median hydraulic conductivity for all transects of 50 ft/d. Daily mean groundwater fluxes from the river through the inner valley alluvial aquifer computed using Darcy’s Law and the slug test results ranged from about 0.01 ft/d (Montaño West) to between 1.0 and 2.0 ft/d (Central East). Median annual groundwater fluxes from the river through the inner valley alluvial aquifer determined using the Suzuki-Stallman method was greatest at Alameda East (0.50 ft/d) and lowest at Alameda West (0.25 ft/d). The results from both methods agreed reasonably well.Seepage investigations conducted by measuring discharge in the east and west riverside drains provided information for computing changes in flow within the drains and for evaluating results from Darcy’s Law and Suzuki-Stallman method flux calculations. Discharge measured in the east riverside drain between the Barelas Bridge and the I-25 bridge indicated that the flow in the east riverside drain increased by an average of 56.5 cubic feet per day per linear foot (ft3/d/ft) of drain. Discharge measured in the west riverside drain between the Central bridge and the I-25 bridge indicated that flow increased between west drain miles 0 and 4, an average of 53.8 ft3/d/ft of drain, and that flow increased between west drain miles 7 and 10, an average of 44.9 ft3/d/ft of drain. In comparison to the seepage measurement results, the groundwater fluxes from the river through the inner valley alluvial aquifer calculated from Darcy’s Law (qslug) and by the Suzuki-Stallman method (qheat) would account for 20–36 percent or 53–95 percent, respectively, of the total flow in the east riverside drain and 22–31 percent or 19–26 percent, respectively, of the total flow in the west drain. These results indicate that the drains likely also receive water from outside the inner valley.The spatial variability of horizontal hydraulic gradients and

  10. Large-scale dynamical influence of a gravity wave generated over the Antarctic Peninsula – regional modelling and budget analysis

    Directory of Open Access Journals (Sweden)

    JOEL Arnault

    2013-03-01

    Full Text Available The case study of a mountain wave triggered by the Antarctic Peninsula on 6 October 2005, which has already been documented in the literature, is chosen here to quantify the associated gravity wave forcing on the large-scale flow, with a budget analysis of the horizontal wind components and horizontal kinetic energy. In particular, a numerical simulation using the Weather Research and Forecasting (WRF model is compared to a control simulation with flat orography to separate the contribution of the mountain wave from that of other synoptic processes of non-orographic origin. The so-called differential budgets of horizontal wind components and horizontal kinetic energy (after subtracting the results from the simulation without orography are then averaged horizontally and vertically in the inner domain of the simulation to quantify the mountain wave dynamical influence at this scale. This allows for a quantitative analysis of the simulated mountain wave's dynamical influence, including the orographically induced pressure drag, the counterbalancing wave-induced vertical transport of momentum from the flow aloft, the momentum and energy exchanges with the outer flow at the lateral and upper boundaries, the effect of turbulent mixing, the dynamics associated with geostrophic re-adjustment of the inner flow, the deceleration of the inner flow, the secondary generation of an inertia–gravity wave and the so-called baroclinic conversion of energy between potential energy and kinetic energy.

  11. Quantifying the Terrestrial Surface Energy Fluxes Using Remotely-Sensed Satellite Data

    Science.gov (United States)

    Siemann, Amanda Lynn

    The dynamics of the energy fluxes between the land surface and the atmosphere drive local and regional climate and are paramount to understand the past, present, and future changes in climate. Although global reanalysis datasets, land surface models (LSMs), and climate models estimate these fluxes by simulating the physical processes involved, they merely simulate our current understanding of these processes. Global estimates of the terrestrial, surface energy fluxes based on observations allow us to capture the dynamics of the full climate system. Remotely-sensed satellite data is the source of observations of the land surface which provide the widest spatial coverage. Although net radiation and latent heat flux global, terrestrial, surface estimates based on remotely-sensed satellite data have progressed, comparable sensible heat data products and ground heat flux products have not progressed at this scale. Our primary objective is quantifying and understanding the terrestrial energy fluxes at the Earth's surface using remotely-sensed satellite data with consistent development among all energy budget components [through the land surface temperature (LST) and input meteorology], including validation of these products against in-situ data, uncertainty assessments, and long-term trend analysis. The turbulent fluxes are constrained by the available energy using the Bowen ratio of the un-constrained products to ensure energy budget closure. All final products are within uncertainty ranges of literature values, globally. When validated against the in-situ estimates, the sensible heat flux estimates using the CFSR air temperature and constrained with the products using the MODIS albedo produce estimates closest to the FLUXNET in-situ observations. Poor performance over South America is consistent with the largest uncertainties in the energy budget. From 1984-2007, the longwave upward flux increase due to the LST increase drives the net radiation decrease, and the

  12. The impact of cloud inhomogeneities on the Earth radiation budget: the 14 October 1989 I.C.E. convective cloud case study

    Directory of Open Access Journals (Sweden)

    F. Parol

    1994-01-01

    Full Text Available Through their multiple interactions with radiation, clouds have an important impact on the climate. Nonetheless, the simulation of clouds in climate models is still coarse. The present evolution of modeling tends to a more realistic representation of the liquid water content; thus the problem of its subgrid scale distribution is crucial. For a convective cloud field observed during ICE 89, Landsat TM data (resolution: 30m have been analyzed in order to quantify the respective influences of both the horizontal distribution of liquid water content and cloud shape on the Earth radiation budget. The cloud field was found to be rather well-represented by a stochastic distribution of hemi-ellipsoidal clouds whose horizontal aspect ratio is close to 2 and whose vertical aspect ratio decreases as the cloud cell area increases. For that particular cloud field, neglecting the influence of the cloud shape leads to an over-estimate of the outgoing longwave flux; in the shortwave, it leads to an over-estimate of the reflected flux for high solar elevations but strongly depends on cloud cell orientations for low elevations. On the other hand, neglecting the influence of cloud size distribution leads to systematic over-estimate of their impact on the shortwave radiation whereas the effect is close to zero in the thermal range. The overall effect of the heterogeneities is estimated to be of the order of 10 W m-2 for the conditions of that Landsat picture (solar zenith angle 65°, cloud cover 70%; it might reach 40 W m-2 for an overhead sun and overcast cloud conditions.

  13. The impact of cloud inhomogeneities on the Earth radiation budget: the 14 October 1989 I.C.E. convective cloud case study

    Directory of Open Access Journals (Sweden)

    F. Parol

    Full Text Available Through their multiple interactions with radiation, clouds have an important impact on the climate. Nonetheless, the simulation of clouds in climate models is still coarse. The present evolution of modeling tends to a more realistic representation of the liquid water content; thus the problem of its subgrid scale distribution is crucial. For a convective cloud field observed during ICE 89, Landsat TM data (resolution: 30m have been analyzed in order to quantify the respective influences of both the horizontal distribution of liquid water content and cloud shape on the Earth radiation budget. The cloud field was found to be rather well-represented by a stochastic distribution of hemi-ellipsoidal clouds whose horizontal aspect ratio is close to 2 and whose vertical aspect ratio decreases as the cloud cell area increases. For that particular cloud field, neglecting the influence of the cloud shape leads to an over-estimate of the outgoing longwave flux; in the shortwave, it leads to an over-estimate of the reflected flux for high solar elevations but strongly depends on cloud cell orientations for low elevations. On the other hand, neglecting the influence of cloud size distribution leads to systematic over-estimate of their impact on the shortwave radiation whereas the effect is close to zero in the thermal range. The overall effect of the heterogeneities is estimated to be of the order of 10 W m-2 for the conditions of that Landsat picture (solar zenith angle 65°, cloud cover 70%; it might reach 40 W m-2 for an overhead sun and overcast cloud conditions.

  14. Reduction of horizontal wind speed in a boundary layer with obstacles

    DEFF Research Database (Denmark)

    Emeis, S.; Frandsen, S.

    1993-01-01

    The reduction of horizontal wind speed at hub height in an infinite cluster of wind turbines is computed from a balance between a loss of horizontal momentum due to the drag and replenishment from above by turbulent fluxes. This reduction is derived without assumptions concerning the vertical wind...... profile above or below hub height, only some basic assumptions on turbulent exchange have been made. Two applications of the result are presented, one considering wind turbines and one pressure drag on orographic obstacles in the atmospheric boundary layer. Both applications are basically governed...... by the same kind of momentum balance....

  15. Thermal neutron flux distribution in the ET R R-1 reactor core as experimentally measured and theoretically calculated by the code triton

    Energy Technology Data Exchange (ETDEWEB)

    Imam, M [National center for nuclear safety and radiation control, atomic energy authority, Cairo, (Egypt)

    1995-10-01

    Thermal neutron flux distributions that were measured earlier at the ET-R R-1 reactor are compared with those calculated by the three dimensional diffusion code Triton. This comparison was made for the horizontal and vertical flux distributions. The horizontal thermal flux distributions considered in this comparison were along the core diagonals at two planes of different heights from core bottom, where one at a level passing through the control rod at core center and the other at a level below this control rod. In the meantime all the control rods were taken into consideration. The effect of the existence of a water cavity inside the core as well as the influence of the control rods on the thermal flux are illustrated in this work. The vertical thermal flux distributions considered in the comparison were at two positions in core namely; one along the core height the horizontal reactor power distribution along the core height and the horizontal reactor power distribution along the core diagonal as calculated by the code Triton are also given this work. 8 figs., 1 tab.

  16. 7 CFR 3402.14 - Budget and budget narrative.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Budget and budget narrative. 3402.14 Section 3402.14... GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Preparation of an Application § 3402.14 Budget and budget narrative. Applicants must prepare the Budget, Form CSREES-2004, and a budget narrative...

  17. Effects of soil tillage on the energy budget of soybean (Glycine max (L.) Merr.)

    International Nuclear Information System (INIS)

    Casa, R.; Cascio, B. lo

    1997-01-01

    The different terms of the energy budget were measured by the Bowen ratio method on soybean (Glycine max (L.) Merr.) grown on a conventional tillage and a direct drilling system. The differences found in the energy budgets varied according to the degree of fractional ground cover and of soil water availability. Soil heat flux was greater for the direct drilling treatment, although soil heating was slower as compared to the conventional tillage. Comparisons for well watered and dry conditions revealed that the conventional tillage system used as latent heat a fraction of net radiation greater than the direct drilling treatment only in well watered conditions. In dry conditions the differences in latent heat fluxes and canopy resistances between the two tillage systems were smaller [it

  18. Rivulet flow round a horizontal cylinder subject to a uniform surface shear stress

    KAUST Repository

    Paterson, C.; Wilson, S. K.; Duffy, B. R.

    2014-01-01

    large stationary horizontal cylinder subject to a prescribed uniform azimuthal surface shear stress is investigated. In particular, we focus on the case where the volume flux is downwards but the shear stress is upwards, for which there is always a

  19. Electron energy budget in the high-latitude ionosphere during Viking/EISCAT coordinated measurements

    International Nuclear Information System (INIS)

    Lilensten, J.; Kofman, W.; Lathuillere, C.; Fontaine, D.; Eliasson, L.; Oran, E.S.

    1990-01-01

    The magnetospheric electron fluxes precipitating at the top of the auroral ionosphere contribute to the production of ionization, to the excitation of atmospheric constituents, and to the heating of the ambient electrons. This last process occurs essentially when the energy of the initial precipitated electrons and photoelectrons has been degraded to values lower than approximately 10 eV. The heated ambient electron gas loses this energy to the neutral gas and ambient ions. Finally, the temperature gradient produced in the ionospheric plasma induces a heat flux. In the absence of an electric field and for stationary conditions, the energy budget of ionospheric electrons results from the balance between these processes of heating, cooling, and heat conduction. The intensity of these different processes is quantitatively computed at each altitude in the ionosphere by combining simultaneous EISCAT and Viking in situ measurements, and by means of an electron transport model. The stationary electron flux, which leads to the heating rate, is computed, and remaining differences in the energy budget are discussed

  20. Comments on the 'minimum flux corona' concept

    International Nuclear Information System (INIS)

    Antiochos, S.K.; Underwood, J.H.

    1978-01-01

    Hearn's (1975) models of the energy balance and mass loss of stellar coronae, based on a 'minimum flux corona' concept, are critically examined. First, it is shown that the neglect of the relevant length scales for coronal temperature variation leads to an inconsistent computation of the total energy flux F. The stability arguments upon which the minimum flux concept is based are shown to be fallacious. Errors in the computation of the stellar wind contribution to the energy budget are identified. Finally we criticize Hearn's (1977) suggestion that the model, with a value of the thermal conductivity modified by the magnetic field, can explain the difference between solar coronal holes and quiet coronal regions. (orig.) 891 WL [de

  1. FINANCIAL EQUALIZATION TRANSFERS BETWEEN PUBLIC AUTHORITIES BUDGETS

    Directory of Open Access Journals (Sweden)

    Emilia Cornelia STOICA

    2015-07-01

    Full Text Available This paper presents financial balancing mechanisms that it is applied by the most of the states with competitive market economy, in order to ensure equity between local authorities, as well as the stability of the entire national tax and budgetary system. In this regard, it is described the concept of financial equalization and its structure according to two fundamental criteria: - equalization in accordance with the financial transfers orientation, distinguishing thus (1 horizontal equalization, which is carried out between local authorities and consists in assigning a part of the richest territorial collectivities resources to the disadvantaged ones; (2 vertical financial equalization, achieved through consolidated transfers the state / federal budget to the budgets by territorial administrative units, both for the operating budget section and for the development one; - financial equalization according to the regional or local disparities observed as a result of territorial-level analyzes: (1 financial equalization based on balancing public revenues of the administrative-territorial units, which tries to correct the differences between the financial resources of each local authority and (2 the financial balancing based on the costs, which aims to reduce differences between standard costs of public services per capita. Financial equalization mechanisms have as main objective the reduction as far as the total elimination of the regional or local disparities, which are also described in this article.

  2. Coastal polynyas in the southern Weddell Sea: Variability of the surface energy budget

    Science.gov (United States)

    Renfrew, Ian A.; King, John C.; Markus, Thorsten

    2002-06-01

    The surface energy budget of coastal polynyas in the southern Weddell Sea has been evaluated for the period 1992-1998 using a combination of satellite observations, meteorological data, and simple physical models. The study focuses on polynyas that habitually form off the Ronne Ice Shelf. The coastal polynya areal data are derived from an advanced multichannel polynya detection algorithm applied to passive microwave brightness temperatures. The surface sensible and latent heat fluxes are calculated via a fetch-dependent model of the convective-thermal internal boundary layer. The radiative fluxes are calculated using well-established empirical formulae and an innovative cloud model. Standard meteorological variables that are required for the flux calculations are taken from automatic weather stations and from the National Centers for Environmental Production/National Center for Atmospheric Research reanalyses. The 7 year surface energy budget shows an overall oceanic warming due to the presence of coastal polynyas. For most of the period the summertime oceanic warming, due to the absorption of shortwave radiation, is approximately in balance with the wintertime oceanic cooling. However, the anomalously large summertime polynya of 1997-1998 allowed a large oceanic warming of the region. Wintertime freezing seasons are characterized by episodes of high heat fluxes interspersed with more quiescent periods and controlled by coastal polynya dynamics. The high heat fluxes are primarily due to the sensible heat flux component, with smaller complementary latent and radiative flux components. The average freezing season area-integrated energy exchange is 3.48 × 1019 J, with contributions of 63, 22, and 15% from the sensible, latent, and radiative components, respectively. The average melting season area-integrated energy exchange is -5.31 × 1019 J, almost entirely due to the radiative component. There is considerable interannual variability in the surface energy budget

  3. A Climate Data Record (CDR) for the global terrestrial water budget: 1984-2010

    Science.gov (United States)

    Zhang, Yu; Pan, Ming; Sheffield, Justin; Siemann, Amanda L.; Fisher, Colby K.; Liang, Miaoling; Beck, Hylke E.; Wanders, Niko; MacCracken, Rosalyn F.; Houser, Paul R.; Zhou, Tian; Lettenmaier, Dennis P.; Pinker, Rachel T.; Bytheway, Janice; Kummerow, Christian D.; Wood, Eric F.

    2018-01-01

    Closing the terrestrial water budget is necessary to provide consistent estimates of budget components for understanding water resources and changes over time. Given the lack of in situ observations of budget components at anything but local scale, merging information from multiple data sources (e.g., in situ observation, satellite remote sensing, land surface model, and reanalysis) through data assimilation techniques that optimize the estimation of fluxes is a promising approach. Conditioned on the current limited data availability, a systematic method is developed to optimally combine multiple available data sources for precipitation (P), evapotranspiration (ET), runoff (R), and the total water storage change (TWSC) at 0.5° spatial resolution globally and to obtain water budget closure (i.e., to enforce P - ET - R - TWSC = 0) through a constrained Kalman filter (CKF) data assimilation technique under the assumption that the deviation from the ensemble mean of all data sources for the same budget variable is used as a proxy of the uncertainty in individual water budget variables. The resulting long-term (1984-2010), monthly 0.5° resolution global terrestrial water cycle Climate Data Record (CDR) data set is developed under the auspices of the National Aeronautics and Space Administration (NASA) Earth System Data Records (ESDRs) program. This data set serves to bridge the gap between sparsely gauged regions and the regions with sufficient in situ observations in investigating the temporal and spatial variability in the terrestrial hydrology at multiple scales. The CDR created in this study is validated against in situ measurements like river discharge from the Global Runoff Data Centre (GRDC) and the United States Geological Survey (USGS), and ET from FLUXNET. The data set is shown to be reliable and can serve the scientific community in understanding historical climate variability in water cycle fluxes and stores, benchmarking the current climate, and

  4. Global diffusive fluxes of methane in marine sediments

    NARCIS (Netherlands)

    Egger, M.; Riedinger, N.; Mogollón, J.M.; Jørgensen, B.B.

    2018-01-01

    Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of

  5. Groundwater fluxes into a submerged sinkhole area, Central Italy, using radon and water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Tuccimei, P. [Dipartimento di Scienze Geologiche, Universita ' Roma Tre' , Largo San Leonardo Murialdo 1, 00146 Rome (Italy)]. E-mail: tuccimei@uniroma3.it; Salvati, R. [Dipartimento di Scienze Geologiche, Universita ' Roma Tre' , Largo San Leonardo Murialdo 1, 00146 Rome (Italy); Capelli, G. [Dipartimento di Scienze Geologiche, Universita ' Roma Tre' , Largo San Leonardo Murialdo 1, 00146 Rome (Italy); Delitala, M.C. [Dipartimento di Scienze Geologiche, Universita ' Roma Tre' , Largo San Leonardo Murialdo 1, 00146 Rome (Italy); Primavera, P. [Dipartimento di Scienze Geologiche, Universita ' Roma Tre' , Largo San Leonardo Murialdo 1, 00146 Rome (Italy)

    2005-10-15

    The groundwater contribution into Green Lake and Black Lake (Vescovo Lakes Group), two cover collapse sinkholes in Pontina Plain (Central Italy), was estimated using water chemistry and a {sup 222}Rn budget. These data can constrain the interactions between sinkholes and deep seated fluid circulation, with a special focus on the possibility of the bedrock karst aquifer feeding the lake. The Rn budget accounted for all quantifiable surface and subsurface input and output fluxes including the flux across the sediment-water interface. The total value of groundwater discharge into Green Lake and Black Lake ({approx}540 {+-} 160 L s{sup -1}) obtained from the Rn budget is lower than, but comparable with historical data on the springs group discharge estimated in the same period of the year (800 {+-} 90 L s{sup -1}). Besides being an indirect test for the reliability of the Rn-budget 'tool', it confirms that both Green and Black Lake are effectively springs and not simply 'water filled' sinkholes. New data on the water chemistry and the groundwater fluxes into the sinkhole area of Vescovo Lakes allows the assessment of the mechanism responsible for sinkhole formation in Pontina Plain and suggests the necessity of monitoring the changes of physical and chemical parameters of groundwater below the plain in order to mitigate the associated risk.

  6. Groundwater fluxes into a submerged sinkhole area, Central Italy, using radon and water chemistry

    International Nuclear Information System (INIS)

    Tuccimei, P.; Salvati, R.; Capelli, G.; Delitala, M.C.; Primavera, P.

    2005-01-01

    The groundwater contribution into Green Lake and Black Lake (Vescovo Lakes Group), two cover collapse sinkholes in Pontina Plain (Central Italy), was estimated using water chemistry and a 222 Rn budget. These data can constrain the interactions between sinkholes and deep seated fluid circulation, with a special focus on the possibility of the bedrock karst aquifer feeding the lake. The Rn budget accounted for all quantifiable surface and subsurface input and output fluxes including the flux across the sediment-water interface. The total value of groundwater discharge into Green Lake and Black Lake (∼540 ± 160 L s -1 ) obtained from the Rn budget is lower than, but comparable with historical data on the springs group discharge estimated in the same period of the year (800 ± 90 L s -1 ). Besides being an indirect test for the reliability of the Rn-budget 'tool', it confirms that both Green and Black Lake are effectively springs and not simply 'water filled' sinkholes. New data on the water chemistry and the groundwater fluxes into the sinkhole area of Vescovo Lakes allows the assessment of the mechanism responsible for sinkhole formation in Pontina Plain and suggests the necessity of monitoring the changes of physical and chemical parameters of groundwater below the plain in order to mitigate the associated risk

  7. Revised budget for the oceanic uptake of anthropogenic carbon dioxide

    Science.gov (United States)

    Sarmiento, J.L.; Sundquist, E.T.

    1992-01-01

    TRACER-CALIBRATED models of the total uptake of anthropogenic CO2 by the world's oceans give estimates of about 2 gigatonnes carbon per year1, significantly larger than a recent estimate2 of 0.3-0.8 Gt C yr-1 for the synoptic air-to-sea CO2 influx. Although both estimates require that the global CO2 budget must be balanced by a large unknown terrestrial sink, the latter estimate implies a much larger terrestrial sink, and challenges the ocean model calculations on which previous CO2 budgets were based. The discrepancy is due in part to the net flux of carbon to the ocean by rivers and rain, which must be added to the synoptic air-to-sea CO2 flux to obtain the total oceanic uptake of anthropogenic CO2. Here we estimate the magnitude of this correction and of several other recently proposed adjustments to the synoptic air-sea CO2 exchange. These combined adjustments minimize the apparent inconsistency, and restore estimates of the terrestrial sink to values implied by the modelled oceanic uptake.

  8. Short communication: Assessment of activity patterns of growing rabbits in a flux-controlled chamber

    Directory of Open Access Journals (Sweden)

    Irene Olivas

    2013-06-01

    Full Text Available Flux-controlled and metabolic chambers are often used for nutritional and environmental studies. However, the potential alterations of animal behaviour and welfare are so far not fully understood. In consequence, this study had 2 main objectives: to assess potential alterations of animal activity pattern and time budget inside a flux chamber, and to assess the importance of the “rearing up” behaviour. To this end, 10 growing rabbits of different ages (from 1 to 5 wk of the growing period were housed inside a flux chamber. Their activity was continuously recorded and assessed, determining the frequency and duration of 8 different behaviours: lying, sleeping, sitting, eating, drinking, walking, rearing up and others. Nocturnal rabbit behaviour and time budget were not altered inside the chamber if compared to previously described rabbit activity under conventional cages. In addition, rabbits in this experiment presented a tendency to perform “rearing up” when housed inside the flux chamber.

  9. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

    International Nuclear Information System (INIS)

    Sinner, Joe

    2004-01-01

    Budget Period 2 of the East Binger Unit (''EBU'') DOE Project has been. Recent activities included additional data gathering and project monitoring, plus initiation of work on an SPE paper on the modeling efforts of the project. Early production performance suggests horizontal wells do not provide sufficient additional production over vertical wells to justify their incremental cost. It will take more time to evaluate the impact of the horizontal wells on sweep and ultimate recovery, but it is unlikely that an improvement in recovery will be sufficient to make the overall economic value of horizontal wells greater than the economic value of vertical wells. Monitoring of overall performance of the pilot area continues. Overall response to the various projects continues to be very favorable. Injection into the pilot area has nearly doubled, while gas production and nitrogen content of produced gas have both decreased. Nitrogen recycle within the pilot area has dropped from 60% to 20%. Efforts to further disseminate knowledge gained through this project, by means of technical paper presentations to industry groups, are underway. Project monitoring and technology transfer will be focus areas of Budget Period 3

  10. 224Ra distribution in surface and deep water of Long Island Sound: sources and horizontal transport rates

    International Nuclear Information System (INIS)

    Torgersen, T.; O'Donnell, J.; DeAngelo, E.; Turekian, K.K.; Turekian, V.C.; Tanaka, N.

    1997-01-01

    Measurements of surface water and deep water 224 Ra(half-life 3.64 days) distributions in Long Island Sound (LIS) were conducted in July 1991. Because the pycnocline structure of LIS had been in place for about 50 days in July (long compared to the half-life of 224 Ra) in the surface water and the deep water operate as separate systems. In the surface water, the fine-grain sediments of nearshore and saltmarsh environments provide a strong source of 224 Ra, which is horizontally mixed away from the short to central LIS. A one-dimensional model of 224 Ra distribution suggests a cross-LIS horizontal eddy dispersivity of 5-50 m 2 s -1 . In the deep water, the mid-LIS sediment flux of 224 Ra is enhanced by ∼ 2x relative to the periphery, and the horizontal eddy flux is from central LIS to the periphery. A second one-dimensional model suggests a cross-LIS horizontal eddy dispersivity below the thermocline of 5-50 m 2 -1 . 224 Ra fluxes into the deep water of the central LIS are likely enhanced by (1) inhomogeneous sediment or (2) a reduced scavenging of 224 Ra in the sediments of central LIS brought about by low oxygen conditions (hypoxia) and the loss of the MnO 2 scavenging layer in the sediments. These rates of horizontal eddy dispersivity are significantly less than the estimate of 100-650 m 2 s -1 (Riley, 1967) but are consistent with the transport necessary to explain the dynamics of oxygen depletion in summer LIS. These results demonstrate the use of 224 Ra for quantifying the parameters needed to describe estuarine mixing and transport. (Author)

  11. Flux canceling in three-dimensional radiative magnetohydrodynamic simulations

    Science.gov (United States)

    Thaler, Irina; Spruit, H. C.

    2017-05-01

    We aim to study the processes involved in the disappearance of magnetic flux between regions of opposite polarity on the solar surface using realistic three-dimensional (3D) magnetohydrodynamic (MHD) simulations. "Retraction" below the surface driven by magnetic forces is found to be a very effective mechanism of flux canceling of opposite polarities. The speed at which flux disappears increases strongly with initial mean flux density. In agreement with existing inferences from observations we suggest that this is a key process of flux disappearance within active complexes. Intrinsic kG strength concentrations connect the surface to deeper layers by magnetic forces, and therefore the influence of deeper layers on the flux canceling process is studied. We do this by comparing simulations extending to different depths. For average flux densities of 50 G, and on length scales on the order of 3 Mm in the horizontal and 10 Mm in depth, deeper layers appear to have only a mild influence on the effective rate of diffusion.

  12. Global volcanic emissions: budgets, plume chemistry and impacts

    Science.gov (United States)

    Mather, T. A.

    2012-12-01

    Over the past few decades our understanding of global volcanic degassing budgets, plume chemistry and the impacts of volcanic emissions on our atmosphere and environment has been revolutionized. Global volcanic emissions budgets are needed if we are to make effective use of regional and global atmospheric models in order to understand the consequences of volcanic degassing on global environmental evolution. Traditionally volcanic SO2 budgets have been the best constrained but recent efforts have seen improvements in the quantification of the budgets of other environmentally important chemical species such as CO2, the halogens (including Br and I) and trace metals (including measurements relevant to trace metal atmospheric lifetimes and bioavailability). Recent measurements of reactive trace gas species in volcanic plumes have offered intriguing hints at the chemistry occurring in the hot environment at volcanic vents and during electrical discharges in ash-rich volcanic plumes. These reactive trace species have important consequences for gas plume chemistry and impacts, for example, in terms of the global fixed nitrogen budget, volcanically induced ozone destruction and particle fluxes to the atmosphere. Volcanically initiated atmospheric chemistry was likely to have been particularly important before biological (and latterly anthropogenic) processes started to dominate many geochemical cycles, with important consequences in terms of the evolution of the nitrogen cycle and the role of particles in modulating the Earth's climate. There are still many challenges and open questions to be addressed in this fascinating area of science.

  13. Influence of Ice Cloud Microphysics on Imager-Based Estimates of Earth's Radiation Budget

    Science.gov (United States)

    Loeb, N. G.; Kato, S.; Minnis, P.; Yang, P.; Sun-Mack, S.; Rose, F. G.; Hong, G.; Ham, S. H.

    2016-12-01

    A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget from the TOA down to the surface along with the associated atmospheric and surface properties that influence it. CERES relies on a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, high-resolution spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. While the TOA radiation budget is largely determined directly from accurate broadband radiometer measurements, the surface radiation budget is derived indirectly through radiative transfer model calculations initialized using imager-based cloud and aerosol retrievals and meteorological assimilation data. Because ice cloud particles exhibit a wide range of shapes, sizes and habits that cannot be independently retrieved a priori from passive visible/infrared imager measurements, assumptions about the scattering properties of ice clouds are necessary in order to retrieve ice cloud optical properties (e.g., optical depth) from imager radiances and to compute broadband radiative fluxes. This presentation will examine how the choice of an ice cloud particle model impacts computed shortwave (SW) radiative fluxes at the top-of-atmosphere (TOA) and surface. The ice cloud particle models considered correspond to those from prior, current and future CERES data product versions. During the CERES Edition2 (and Edition3) processing, ice cloud particles were assumed to be smooth hexagonal columns. In the Edition4, roughened hexagonal columns are assumed. The CERES team is now working on implementing in a future version an ice cloud particle model comprised of a two-habit ice cloud model consisting of roughened hexagonal columns and aggregates of roughened columnar elements. In each case, we use the same ice particle model in both the

  14. A seasonal nitrogen deposition budget for Rocky Mountain National Park.

    Science.gov (United States)

    Benedict, K B; Carrico, C M; Kreidenweis, S M; Schichtel, B; Malm, W C; Collett, J L

    2013-07-01

    Nitrogen deposition is a concern in many protected ecosystems around the world, yet few studies have quantified a complete reactive nitrogen deposition budget including all dry and wet, inorganic and organic compounds. Critical loads that identify the level at which nitrogen deposition negatively affects an ecosystem are often defined using incomplete reactive nitrogen budgets. Frequently only wet deposition of ammonium and nitrate are considered, despite the importance of other nitrogen deposition pathways. Recently, dry deposition pathways including particulate ammonium and nitrate and gas phase nitric acid have been added to nitrogen deposition budgets. However, other nitrogen deposition pathways, including dry deposition of ammonia and wet deposition of organic nitrogen, still are rarely included. In this study, a more complete seasonal nitrogen deposition budget was constructed based on observations during a year-long study period from November 2008 to November 2009 at a location on the east side of Rocky Mountain National Park (RMNP), Colorado, USA. Measurements included wet deposition of ammonium, nitrate, and organic nitrogen, PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 microm, nitrate, and ammonium) concentrations of ammonium, nitrate, and organic nitrogen, and atmospheric gas phase concentrations of ammonia, nitric acid, and NO2. Dry deposition fluxes were determined from measured ambient concentrations and modeled deposition velocities. Total reactive nitrogen deposition by all included pathways was found to be 3.65 kg N x ha(-1) yr(-1). Monthly deposition fluxes ranged from 0.06 to 0.54 kg N x ha(-1)yr(-1), with peak deposition in the month of July and the least deposition in December. Wet deposition of ammonium and nitrate were the two largest deposition pathways, together contributing 1.97 kg N x ha(-1)yr(-1) or 54% of the total nitrogen deposition budget for this region. The next two largest deposition pathways were wet

  15. Urban surface energy fluxes based on remotely-sensed data and micrometeorological measurements over the Kansai area, Japan

    Science.gov (United States)

    Sukeyasu, T.; Ueyama, M.; Ando, T.; Kosugi, Y.; Kominami, Y.

    2017-12-01

    The urban heat island is associated with land cover changes and increases in anthropogenic heat fluxes. Clear understanding of the surface energy budget at urban area is the most important for evaluating the urban heat island. In this study, we develop a model based on remotely-sensed data for the Kansai area in Japan and clarify temporal transitions and spatial distributions of the surface energy flux from 2000 to 2016. The model calculated the surface energy fluxes based on various satellite and GIS products. The model used land surface temperature, surface emissivity, air temperature, albedo, downward shortwave radiation and land cover/use type from the moderate resolution imaging spectroradiometer (MODIS) under cloud free skies from 2000 to 2016 over the Kansai area in Japan (34 to 35 ° N, 135 to 136 ° E). Net radiation was estimated by a radiation budget of upward/downward shortwave and longwave radiation. Sensible heat flux was estimated by a bulk aerodynamic method. Anthropogenic heat flux was estimated by the inventory data. Latent heat flux was examined with residues of the energy budget and parameterization of bulk transfer coefficients. We validated the model using observed fluxes from five eddy-covariance measurement sites: three urban sites and two forested sites. The estimated net radiation roughly agreed with the observations, but the sensible heat flux were underestimated. Based on the modeled spatial distributions of the fluxes, the daytime net radiation in the forested area was larger than those in the urban area, owing to higher albedo and land surface temperatures in the urban area than the forested area. The estimated anthropogenic heat flux was high in the summer and winter periods due to increases in energy-requirements.

  16. Experimental study of the condensation heat transfer characteristics of CO2 in a horizontal microfin tube with a diameter of 4.95 mm

    Science.gov (United States)

    Son, Chang-Hyo; Oh, Hoo-Kyu

    2012-11-01

    The condensation heat transfer characteristics for CO2 flowing in a horizontal microfin tube were investigated by experiment with respect to condensation temperature and mass flux. The test section consists of a 2,400 mm long horizontal copper tube of 4.6 mm inner diameter. The experiments were conducted at refrigerant mass flux of 400-800 kg/m2s, and saturation temperature of 20-30 °C. The main experimental results showed that annular flow was highly dominated the majority of condensation flow in the horizontal microfin tube. The condensation heat transfer coefficient increases with decreasing saturation temperature and increasing mass flux. The experimental data were compared against previous heat transfer correlations. Most correlations failed to predict the experimental data. However, the correlation by Cavallini et al. showed relatively good agreement with experimental data in the microfin tube. Therefore, a new condensation heat transfer correlation is proposed with mean and average deviations of 3.14 and -7.6 %, respectively.

  17. The importance of biomass net uptake for a trace metal budget in a forest stand in north-eastern France

    International Nuclear Information System (INIS)

    Gandois, L.; Nicolas, M.; VanderHeijden, G.; Probst, A.

    2010-01-01

    The trace metal (TM: Cd, Cu, Ni, Pb and Zn) budget (stocks and annual fluxes) was evaluated in a forest stand (silver fir, Abies alba Miller) in north-eastern France. Trace metal concentrations were measured in different tree compartments in order to assess TM partitioning and dynamics in the trees. Inputs included bulk deposition, estimated dry deposition and weathering. Outputs were leaching and biomass exportation. Atmospheric deposition was the main input flux. The estimated dry deposition accounted for about 40% of the total trace metal deposition. The relative importance of leaching (estimated by a lumped parameter water balance model, BILJOU) and net biomass uptake (harvesting) for ecosystem exportation depended on the element. Trace metal distribution between tree compartments (stem wood and bark, branches and needles) indicated that Pb was mainly stored in the stem, whereas Zn and Ni, and to a lesser extent Cd and Cu, were translocated to aerial parts of the trees and cycled in the ecosystem. For Zn and Ni, leaching was the main output flux (> 95% of the total output) and the plot budget (input-output) was negative, whereas for Pb the biomass net exportation represented 60% of the outputs and the budget was balanced. Cadmium and Cu had intermediate behaviours, with 18% and 30% of the total output relative to biomass exportation, respectively, and the budgets were negative. The net uptake by biomass was particularly important for Pb budgets, less so for Cd and Cu and not very important for Zn and Ni in such forest stands.

  18. The importance of biomass net uptake for a trace metal budget in a forest stand in north-eastern France.

    Science.gov (United States)

    Gandois, L; Nicolas, M; VanderHeijden, G; Probst, A

    2010-11-01

    The trace metal (TM: Cd, Cu, Ni, Pb and Zn) budget (stocks and annual fluxes) was evaluated in a forest stand (silver fir, Abies alba Miller) in north-eastern France. Trace metal concentrations were measured in different tree compartments in order to assess TM partitioning and dynamics in the trees. Inputs included bulk deposition, estimated dry deposition and weathering. Outputs were leaching and biomass exportation. Atmospheric deposition was the main input flux. The estimated dry deposition accounted for about 40% of the total trace metal deposition. The relative importance of leaching (estimated by a lumped parameter water balance model, BILJOU) and net biomass uptake (harvesting) for ecosystem exportation depended on the element. Trace metal distribution between tree compartments (stem wood and bark, branches and needles) indicated that Pb was mainly stored in the stem, whereas Zn and Ni, and to a lesser extent Cd and Cu, were translocated to aerial parts of the trees and cycled in the ecosystem. For Zn and Ni, leaching was the main output flux (>95% of the total output) and the plot budget (input-output) was negative, whereas for Pb the biomass net exportation represented 60% of the outputs and the budget was balanced. Cadmium and Cu had intermediate behaviours, with 18% and 30% of the total output relative to biomass exportation, respectively, and the budgets were negative. The net uptake by biomass was particularly important for Pb budgets, less so for Cd and Cu and not very important for Zn and Ni in such forest stands. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Comparing a Carbon Budget for the Amazon Basin Derived from Aircraft Observations

    Science.gov (United States)

    Chow, V. Y.; Dayalu, A.; Wofsy, S. C.; Gerbig, C.

    2015-12-01

    We present and compare a carbon budget for the Brazilian Amazon Basin based on the Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) aircraft program, which occurred in November 2008 & May 2009, to other published carbon budgets. In particular, we compare our budget and analysis to others also derived from aircraft observations. Using mesoscale meteorological fields from ECMWF and WRF, we drive the Stochastic Time-Inverted Lagrangian Transport (STILT) model and couple the footprint, or influence, to a biosphere model represented by the Vegetation Photosynthesis Respiration Model (VPRM). Since it is the main driver for the VPRM, we use observed shortwave radiation from towers in Brazil and French Guyana to examine the modeled shortwave radiation data from GL 1.2 (a global radiation model based on GOES 8 visible imagery), ECMWF, and WRF to determine if there are any biases in the modeled shortwave radiation output. We use WRF-STILT and ECMWF-STILT, GL 1.2 shortwave radiation, temperature, and vegetation maps (IGBP and SYNMAP) updated by landuse scenarios modeled by Sim Amazonia 2 and Sim Brazil, to compute hourly a priori CO2 fluxes by calculating Gross Ecosystem Exchange and Respiration for the 4 significant vegetation types across two (wet and dry) seasons as defined by 10-years of averaged TRIMM precipitation data. SF6 from stations and aircraft observations are used to determine the anthropogenic CO2 background and the lateral boundary conditions are taken from CarbonTracker2013B. The BARCA aircraft mixing ratios are then used as a top down constraint in an inversion framework that solves for the parameters controlling the fluxes for each vegetation type. The inversion provides scaling factors for GEE and R for each vegetation type in each season. From there, we derive a budget for the Basin and compare/contrast with other published basinwide CO2 fluxes.

  20. Satellite data based approach for the estimation of anthropogenic heat flux over urban areas

    Science.gov (United States)

    Nitis, Theodoros; Tsegas, George; Moussiopoulos, Nicolas; Gounaridis, Dimitrios; Bliziotis, Dimitrios

    2017-09-01

    Anthropogenic effects in urban areas influence the thermal conditions in the environment and cause an increase of the atmospheric temperature. The cities are sources of heat and pollution, affecting the thermal structure of the atmosphere above them which results to the urban heat island effect. In order to analyze the urban heat island mechanism, it is important to estimate the anthropogenic heat flux which has a considerable impact on the urban energy budget. The anthropogenic heat flux is the result of man-made activities (i.e. traffic, industrial processes, heating/cooling) and thermal releases from the human body. Many studies have underlined the importance of the Anthropogenic Heat Flux to the calculation of the urban energy budget and subsequently, the estimation of mesoscale meteorological fields over urban areas. Therefore, spatially disaggregated anthropogenic heat flux data, at local and city scales, are of major importance for mesoscale meteorological models. The main objectives of the present work are to improve the quality of such data used as input for mesoscale meteorological models simulations and to enhance the application potential of GIS and remote sensing in the fields of climatology and meteorology. For this reason, the Urban Energy Budget concept is proposed as the foundation for an accurate determination of the anthropogenic heat discharge as a residual term in the surface energy balance. The methodology is applied to the cities of Athens and Paris using the Landsat ETM+ remote sensing data. The results will help to improve our knowledge on Anthropogenic Heat Flux, while the potential for further improvement of the methodology is also discussed.

  1. Nares Abyssal Plain Sediment Flux Studies, FY 1985 Annual Report

    International Nuclear Information System (INIS)

    Dymond, J.; Collier, R.

    1987-01-01

    The sediment trap NAP-1 was successfully recovered and the materials have been analyzed for a set of bio- and geochemical components. The trap mooring NAP-2 was deployed and recovered but no analyses have been completed. The bulk fluxes are relatively low at this site and are approximately 50% biogenic and 50% terrigenous. The flux of terrigenous material is very high due to primary atmospheric inputs and horizontal transport of resuspended sediments. The buoyant particle fluxes are also extremely low. The accumulation of material in the sediments reflects the crustal nature of the vertical flux and also shows the normal loss of labile biogenic phases

  2. Nimbus-7 Solar and Earth Flux Data in Native Binary Format

    Data.gov (United States)

    National Aeronautics and Space Administration — The NIMBUS7_ERB_SEFDT data set is the Solar and Earth Flux Data Tape (SEFDT) generated from Nimbus-7 Earth Radiation Budget (ERB) instrument data. The main purpose...

  3. Energetics and monsoon bifurcations

    Science.gov (United States)

    Seshadri, Ashwin K.

    2017-01-01

    Monsoons involve increases in dry static energy (DSE), with primary contributions from increased shortwave radiation and condensation of water vapor, compensated by DSE export via horizontal fluxes in monsoonal circulations. We introduce a simple box-model characterizing evolution of the DSE budget to study nonlinear dynamics of steady-state monsoons. Horizontal fluxes of DSE are stabilizing during monsoons, exporting DSE and hence weakening the monsoonal circulation. By contrast latent heat addition (LHA) due to condensation of water vapor destabilizes, by increasing the DSE budget. These two factors, horizontal DSE fluxes and LHA, are most strongly dependent on the contrast in tropospheric mean temperature between land and ocean. For the steady-state DSE in the box-model to be stable, the DSE flux should depend more strongly on the temperature contrast than LHA; stronger circulation then reduces DSE and thereby restores equilibrium. We present conditions for this to occur. The main focus of the paper is describing conditions for bifurcation behavior of simple models. Previous authors presented a minimal model of abrupt monsoon transitions and argued that such behavior can be related to a positive feedback called the `moisture advection feedback'. However, by accounting for the effect of vertical lapse rate of temperature on the DSE flux, we show that bifurcations are not a generic property of such models despite these fluxes being nonlinear in the temperature contrast. We explain the origin of this behavior and describe conditions for a bifurcation to occur. This is illustrated for the case of the July-mean monsoon over India. The default model with mean parameter estimates does not contain a bifurcation, but the model admits bifurcation as parameters are varied.

  4. A New Approach in Public Budgeting: Citizens' Budget

    Science.gov (United States)

    Bilge, Semih

    2015-01-01

    Change and transformation in the understanding and definition of citizenship has led to the emergence of citizen-oriented public service approach. This approach also raised a new term and concept in the field of public budgeting because of the transformation in the processes of public budgeting: citizens' budget. The citizens' budget which seeks…

  5. FY 1996 Congressional budget request: Budget highlights

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    The FY 1996 budget presentation is organized by the Department`s major business lines. An accompanying chart displays the request for new budget authority. The report compares the budget request for FY 1996 with the appropriated FY 1995 funding levels displayed on a comparable basis. The FY 1996 budget represents the first year of a five year plan in which the Department will reduce its spending by $15.8 billion in budget authority and by $14.1 billion in outlays. FY 1996 is a transition year as the Department embarks on its multiyear effort to do more with less. The Budget Highlights are presented by business line; however, the fifth business line, Economic Productivity, which is described in the Policy Overview section, cuts across multiple organizational missions, funding levels and activities and is therefore included in the discussion of the other four business lines.

  6. 3D modeling of satellite spectral images, radiation budget and energy budget of urban landscapes

    Science.gov (United States)

    Gastellu-Etchegorry, J. P.

    2008-12-01

    DART EB is a model that is being developed for simulating the 3D (3 dimensional) energy budget of urban and natural scenes, possibly with topography and atmosphere. It simulates all non radiative energy mechanisms (heat conduction, turbulent momentum and heat fluxes, water reservoir evolution, etc.). It uses DART model (Discrete Anisotropic Radiative Transfer) for simulating radiative mechanisms: 3D radiative budget of 3D scenes and their remote sensing images expressed in terms of reflectance or brightness temperature values, for any atmosphere, wavelength, sun/view direction, altitude and spatial resolution. It uses an innovative multispectral approach (ray tracing, exact kernel, discrete ordinate techniques) over the whole optical domain. This paper presents two major and recent improvements of DART for adapting it to urban canopies. (1) Simulation of the geometry and optical characteristics of urban elements (houses, etc.). (2) Modeling of thermal infrared emission by vegetation and urban elements. The new DART version was used in the context of the CAPITOUL project. For that, districts of the Toulouse urban data base (Autocad format) were translated into DART scenes. This allowed us to simulate visible, near infrared and thermal infrared satellite images of Toulouse districts. Moreover, the 3D radiation budget was used by DARTEB for simulating the time evolution of a number of geophysical quantities of various surface elements (roads, walls, roofs). Results were successfully compared with ground measurements of the CAPITOUL project.

  7. Thermal transient analysis applied to horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Duong, A.N. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[ConocoPhillips Canada Resources Corp., Calgary, AB (Canada)

    2008-10-15

    Steam assisted gravity drainage (SAGD) is a thermal recovery process used to recover bitumen and heavy oil. This paper presented a newly developed model to estimate cooling time and formation thermal diffusivity by using a thermal transient analysis along the horizontal wellbore under a steam heating process. This radial conduction heating model provides information on the heat influx distribution along a horizontal wellbore or elongated steam chamber, and is therefore important for determining the effectiveness of the heating process in the start-up phase in SAGD. Net heat flux estimation in the target formation during start-up can be difficult to measure because of uncertainties regarding heat loss in the vertical section; steam quality along the horizontal segment; distribution of steam along the wellbore; operational conditions; and additional effects of convection heating. The newly presented model can be considered analogous to pressure transient analysis of a buildup after a constant pressure drawdown. The model is based on an assumption of an infinite-acting system. This paper also proposed a new concept of a heating ring to measure the heat storage in the heated bitumen at the time of testing. Field observations were used to demonstrate how the model can be used to save heat energy, conserve steam and enhance bitumen recovery. 18 refs., 14 figs., 2 appendices.

  8. Under Secretary of Defense (Comptroller) > Budget Materials > Budget1998

    Science.gov (United States)

    functionalStatements OUSD(C) History FMR Budget Materials Budget Execution Financial Management Improving Financial Performance Reports Regulations banner DoD Budget Request 2019 | 2018 | 2017 |2016 | 2015 | 2014 | 2013 | 2012 President's Budget request for the Department of Defense sustains the President's commitment to invest in

  9. Comparison of regional and ecosystem CO{sub 2} fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Gryning, S. E. (Wind Energy Department, Risoe National Laboratory for Sustainable Energy, Technical Univ. of Denmark, Roskilde (Denmark)); Soegaard, H. (Institute of Geography and Geology, University of Copenhagen, Copenhagen (Denmark)); Batchvarova, E. (National Institute of Meteorology and Hydrology, Bulgarian Academy of Sciences, Sofia (Bulgaria))

    2009-07-01

    A budget method to derive the regional surface flux of CO{sub 2} from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO{sub 2} concentrations by i.e. an airplane, successive radio-soundings and standard measurements of the CO{sub 2} concentration near the ground. The method was used to derive the regional flux of CO{sub 2} over an agricultural site at Zealand in Denmark during an experiment on 12-13 June 2006. The regional fluxes of CO{sub 2} represent a combination of agricultural and forest surface conditions. It was found that the regional flux of CO{sub 2} in broad terms follows the behavior of the flux of CO{sub 2} at the agricultural (grassland) and the deciduous forest station. The regional flux is comparable not only in size but also in the diurnal (daytime) cycle of CO{sub 2} fluxes at the two stations. (orig.)

  10. The vertical, the horizontal and the rest: anatomy of the middle cohomology of Calabi-Yau fourfolds and F-theory applications

    Energy Technology Data Exchange (ETDEWEB)

    Braun, A.P. [Department of Mathematics, King’s College,London WC2R 2LS (United Kingdom); Watari, T. [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo,Kashiwano-ha 5-1-5, 277-8583 (Japan)

    2015-01-12

    The four-form field strength in F-theory compactifications on Calabi-Yau fourfolds takes its value in the middle cohomology group H{sup 4}. The middle cohomology is decomposed into a vertical, a horizontal and a remaining component, all three of which are present in general. We argue that a flux along the remaining or vertical component may break some symmetry, while a purely horizontal flux does not influence the unbroken part of the gauge group or the net chirality of charged matter fields. This makes the decomposition crucial to the counting of flux vacua in the context of F-theory GUTs. We use mirror symmetry to derive a combinatorial formula for the dimensions of these components applicable to any toric Calabi-Yau hypersurface, and also make a partial attempt at providing a geometric characterization of the four-cycles Poincaré dual to the remaining component of H{sup 4}. It is also found in general elliptic Calabi-Yau fourfolds supporting SU(5) gauge symmetry that a remaining component can be present, for example, in a form crucial to the symmetry breaking SU(5)⟶SU(3){sub C}×SU(2){sub L}×U(1){sub Y}. The dimension of the horizontal component is used to derive an estimate of the statistical distribution of the number of generations and the rank of 7-brane gauge groups in the landscape of F-theory flux vacua.

  11. Anthropogenic perturbation of the carbon fluxes from land to ocean

    KAUST Repository

    Regnier, Pierre

    2013-06-09

    A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr -1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (∼0.4 Pg C yr -1) or sequestered in sediments (∼0.5 Pg C yr -1) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of ∼0.1 Pg C yr -1 to the open ocean. According to our analysis, terrestrial ecosystems store ∼0.9 Pg C yr -1 at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr -1 previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land-ocean aquatic continuum need to be included in global carbon dioxide budgets.

  12. Natural convection in horizontal fluid layers

    International Nuclear Information System (INIS)

    Suo-Antilla, A.J.

    1977-02-01

    The experimental work includes developing and using a thermal convection cell to obtain measurements of the heat flux and turbulent core temperature of a horizontal layer of fluid heated internally and subject to both stabilizing and destabilizing temperature differences. The ranges of Rayleigh numbers tested were 10 7 equal to or less than R/sub I/ equal to or less than 10 13 and -10 10 equal to or less than R/sub E/ equal to or less than 10 10 . Power integral methods were found to be adequate for interpolating and extrapolating the data. The theoretical work consists of the derivation, solution and use of the mean field equations for study of thermally driven convection in horizontal layers of infinite extent. The equations were derived by a separation of variables technique where the horizontal directions were described by periodic structures and the vertical being some function of z. The derivation resulted in a coupled set of momentum and energy equations. The equations were simplified by using the infinite Prandtl number limit and neglecting direct intermodal interaction. Solutions to these equations are used to predict the existence of multi-wavenumber flows at all supercritical Rayleigh numbers. Subsequent inspection of existing experimental photographs of convecting fluids confirms their existence. The onset of time dependence is found to coincide with the onset of the second convective mode. Each mode is found to consist of two wavenumbers and typically the velocity and temperature fields of the right modal branch are found to be out of phase

  13. Estimation of bulk transfer coefficient for latent heat flux (Ce)

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    The bulk transfer coefficient for latent heat flux (Ce) has been estimated over the Arabian Sea from the moisture budget during the pre-monsoon season of 1988. The computations have been made over two regions (A: 0-8 degrees N: 60-68 degrees E: B: 0...

  14. The drift flux model in the ASSERT subchannel code

    International Nuclear Information System (INIS)

    Carver, M.B.; Judd, R.A.; Kiteley, J.C.; Tahir, A.

    1987-01-01

    The ASSERT subchannel code has been developed specifically to model flow and phase distributions within CANDU fuel bundles. ASSERT uses a drift-flux model that permits the phases to have unequal velocities, and can thus model phase separation tendencies that may occur in horizontal flow. The basic principles of ASSERT are outlined, and computed results are compared against data from various experiments for validation purposes. The paper concludes with an example of the use of the code to predict critical heat flux in CANDU geometries

  15. Subatmospheric boiling study of the operation of a horizontal thermosyphon reboiler loop: Instability

    International Nuclear Information System (INIS)

    Agunlejika, Ezekiel O.; Langston, Paul A.; Azzopardi, Barry J.; Hewakandamby, Buddhika N.

    2016-01-01

    Graphical abstract: The highlight of the characteristics of the geysering instability from analysed WMS data. Pictorial view of geysering instability, heat flux 9 kW/m"2 (P_S = 1.14 bar(a)), Static head = 1.265 m, valve setting = 1.0, process side pressure = 0.5 bar(a). - Highlights: • Characteristics of geysering instability in a horizontal thermosyphon reboiler loop is highlighted using Wire Mesh Sensor. • Interconnection between geysering instability and accompanying churn flow is identified. • Effects of stability parameters and pressure drop feedbacks on the loop at low heat fluxes are described. - Abstract: Distillation and chemical processing under vacuum is of immense interest to petroleum and chemical industries due to lower energy costs and improved safety. To tap into these benefits, energy efficient reboilers with lower maintenance costs are required. Here, a horizontal thermosyphon reboiler is investigated at subatmospheric pressures and low heat fluxes. This paper presents detailed experimental data obtained using Wire Mesh Sensor in a gas-liquid flow with heat transfer as well as temperatures, pressures and recirculation rates around the loop. Flow regimes which have been previously identified in other systems were detected. The nature of the instability which underpins the mechanisms involved and conditions aiding instability are reported. Churn flow pattern is persistently detected during instability. The nature of the instability and existence of oscillatory churn flow are interconnected.

  16. Micrometeorological data for energy-budget studies near Rogers Spring, Ash Meadows National Wildlife Refuge, Nye County, Nevada, 1994

    International Nuclear Information System (INIS)

    Nichols, W.D.; Rapp, T.R.

    1996-01-01

    The data were collected at two sites near Rogers Spring for use in energy-budget studies beginning in 1994. The data collected at each site included net radiation, air temperature at two heights, dew- point temperature at two heights, windspeed at two heights, soil heat flux, and soil temperature in the interval between the land surface and the buried heat-flux plates

  17. West Florida shelf circulation and temperature budget for the 1999 spring transition

    Science.gov (United States)

    He, Ruoying; Weisberg, Robert H.

    2002-01-01

    Mid-latitude continental shelves undergo a spring transition as the net surface heat flux changes from cooling to warming. Using in situ data and a numerical circulation model we investigate the circulation and temperature budget on the West Florida Continental Shelf (WFS) for the spring transition of 1999. The model is a regional adaptation of the primitive equation, Princeton Ocean Model forced by NCEP reanalysis wind and heat flux fields and by river inflows. Based on agreements between the modeled and observed fields we use the model to draw inferences on how the surface momentum and heat fluxes affect the seasonal and synoptic scale variability. We account for a strong southeastward current at mid-shelf by the baroclinic response to combined wind and buoyancy forcing, and we show how this local forcing leads to annually occurring cold and low salinity tongues. Through term-by-term analyses of the temperature budget we describe the WFS temperature evolution in spring. Heat flux largely controls the seasonal transition, whereas ocean circulation largely controls the synoptic scale variability. These two processes, however, are closely linked. Bottom topography and coastline geometry are important in generating regions of convergence and divergence. Rivers contribute to the local hydrography and are important ecologically. Along with upwelling, river inflows facilitate frontal aggregation of nutrients and the spring formation of a high concentration chlorophyll plume near the shelf break (the so-called ‘Green River’) coinciding with the cold, low salinity tongues. These features originate by local, shelf-wide forcing; the Loop Current is not an essential ingredient.

  18. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    Science.gov (United States)

    Duarte, Carlos M.

    2017-01-01

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain hidden in representations of the global carbon budget. Despite being confined to a narrow belt around the shoreline of the world's oceans, where they cover less than 7 million km2, vegetated coastal habitats support about 1 to 10 % of the global marine net primary production and generate a large organic carbon surplus of about 40 % of their net primary production (NPP), which is either buried in sediments within these habitats or exported away. Large, 10-fold uncertainties in the area covered by vegetated coastal habitats, along with variability about carbon flux estimates, result in a 10-fold bracket around the estimates of their contribution to organic carbon sequestration in sediments and the deep sea from 73 to 866 Tg C yr-1, representing between 3 % and 1/3 of oceanic CO2 uptake. Up to 1/2 of this carbon sequestration occurs in sink reservoirs (sediments or the deep sea) beyond these habitats. The organic carbon exported that does not reach depositional sites subsidizes the metabolism of heterotrophic organisms. In addition to a significant contribution to organic carbon production and sequestration, vegetated coastal habitats contribute as much to carbonate accumulation as coral reefs do. While globally relevant, the magnitude of global carbon fluxes supported by salt-marsh, mangrove, seagrass and macroalgal habitats is declining due to rapid habitat loss, contributing to loss of CO2 sequestration, storage capacity and carbon subsidies. Incorporating the carbon fluxes' vegetated coastal habitats' support into depictions of the carbon budget of the global ocean and its perturbations will improve current representations of the carbon budget of the global ocean.

  19. Budget Options

    National Research Council Canada - National Science Library

    2000-01-01

    This volume-part of the Congressional Budget Office's (CBO's) annual report to the House and Senate Committees on the Budget-is intended to help inform policymakers about options for the federal budget...

  20. MAGNETIC HELICITY FLUX IN THE PRESENCE OF SHEAR

    International Nuclear Information System (INIS)

    Hubbard, Alexander; Brandenburg, Axel

    2011-01-01

    Magnetic helicity has risen to be a major player in dynamo theory, with the helicity of the small-scale field being linked to the dynamo saturation process for the large-scale field. It is a nearly conserved quantity, which allows its evolution equation to be written in terms of production and flux terms. The flux term can be decomposed in a variety of fashions. One particular contribution that has been expected to play a significant role in dynamos in the presence of mean shear was isolated by Vishniac and Cho. Magnetic helicity fluxes are explicitly gauge dependent however, and the correlations that have come to be called the Vishniac-Cho flux were determined in the Coulomb gauge, which turns out to be fraught with complications in shearing systems. While the fluxes of small-scale helicity are explicitly gauge dependent, their divergences can be gauge independent. We use this property to investigate magnetic helicity fluxes of the small-scale field through direct numerical simulations in a shearing-box system and find that in a numerically usable gauge the divergence of the small-scale helicity flux vanishes, while the divergence of the Vishniac-Cho flux remains finite. We attribute this seeming contradiction to the existence of horizontal fluxes of small-scale magnetic helicity with finite divergences.

  1. Magnetic Helicity Flux in the Presence of Shear

    Science.gov (United States)

    Hubbard, Alexander; Brandenburg, Axel

    2011-01-01

    Magnetic helicity has risen to be a major player in dynamo theory, with the helicity of the small-scale field being linked to the dynamo saturation process for the large-scale field. It is a nearly conserved quantity, which allows its evolution equation to be written in terms of production and flux terms. The flux term can be decomposed in a variety of fashions. One particular contribution that has been expected to play a significant role in dynamos in the presence of mean shear was isolated by Vishniac & Cho. Magnetic helicity fluxes are explicitly gauge dependent however, and the correlations that have come to be called the Vishniac-Cho flux were determined in the Coulomb gauge, which turns out to be fraught with complications in shearing systems. While the fluxes of small-scale helicity are explicitly gauge dependent, their divergences can be gauge independent. We use this property to investigate magnetic helicity fluxes of the small-scale field through direct numerical simulations in a shearing-box system and find that in a numerically usable gauge the divergence of the small-scale helicity flux vanishes, while the divergence of the Vishniac-Cho flux remains finite. We attribute this seeming contradiction to the existence of horizontal fluxes of small-scale magnetic helicity with finite divergences.

  2. Water-carbon Links in a Tropical Forest: How Interbasin Groundwater Flow Affects Carbon Fluxes and Ecosystem Carbon Budgets

    Energy Technology Data Exchange (ETDEWEB)

    Genereux, David [North Carolina State Univ., Raleigh, NC (United States); Osburn, Christopher [North Carolina State Univ., Raleigh, NC (United States); Oberbauer, Steven [Florida Intl Univ., Miami, FL (United States); Oviedo Vargas, Diana [North Carolina State Univ., Raleigh, NC (United States); Dierick, Diego [Florida Intl Univ., Miami, FL (United States)

    2017-03-27

    This report covers the outcomes from a quantitative, interdisciplinary field investigation of how carbon fluxes and budgets in a lowland tropical rainforest are affected by the discharge of old regional groundwater into streams, springs, and wetlands in the forest. The work was carried out in a lowland rainforest of Costa Rica, at La Selva Biological Station. The research shows that discharge of regional groundwater high in dissolved carbon dioxide represents a significant input of carbon to the rainforest "from below", an input that is on average larger than the carbon input "from above" from the atmosphere. A stream receiving discharge of regional groundwater had greatly elevated emissions of carbon dioxide (but not methane) to the overlying air, and elevated downstream export of carbon from its watershed with stream flow. The emission of deep geological carbon dioxide from stream water elevates the carbon dioxide concentrations in air above the streams. Carbon-14 tracing revealed the presence of geological carbon in the leaves and stems of some riparian plants near streams that receive inputs of regional groundwater. Also, discharge of regional groundwater is responsible for input of dissolved organic matter with distinctive chemistry to rainforest streams and wetlands. The discharge of regional groundwater in lowland surface waters has a major impact on the carbon cycle in this and likely other tropical and non-tropical forests.

  3. Energy budgets and resistances to energy transport in sparsely vegetated rangeland

    Science.gov (United States)

    Nichols, W.D.

    1992-01-01

    Partitioning available energy between plants and bare soil in sparsely vegetated rangelands will allow hydrologists and others to gain a greater understanding of water use by native vegetation, especially phreatophytes. Standard methods of conducting energy budget studies result in measurements of latent and sensible heat fluxes above the plant canopy which therefore include the energy fluxes from both the canopy and the soil. One-dimensional theoretical numerical models have been proposed recently for the partitioning of energy in sparse crops. Bowen ratio and other micrometeorological data collected over phreatophytes growing in areas of shallow ground water in central Nevada were used to evaluate the feasibility of using these models, which are based on surface and within-canopy aerodynamic resistances, to determine heat and water vapor transport in sparsely vegetated rangelands. The models appear to provide reasonably good estimates of sensible heat flux from the soil and latent heat flux from the canopy. Estimates of latent heat flux from the soil were less satisfactory. Sensible heat flux from the canopy was not well predicted by the present resistance formulations. Also, estimates of total above-canopy fluxes were not satisfactory when using a single value for above-canopy bulk aerodynamic resistance. ?? 1992.

  4. Dynamical influence of gravity waves generated by the Vestfjella Mountains in Antarctica: radar observations, fine-scale modelling and kinetic energy budget analysis

    Directory of Open Access Journals (Sweden)

    Joel Arnault

    2012-02-01

    Full Text Available Gravity waves generated by the Vestfjella Mountains (in western Droning Maud Land, Antarctica, southwest of the Finnish/Swedish Aboa/Wasa station have been observed with the Moveable atmospheric radar for Antarctica (MARA during the SWEDish Antarctic Research Programme (SWEDARP in December 2007/January 2008. These radar observations are compared with a 2-month Weather Research Forecast (WRF model experiment operated at 2 km horizontal resolution. A control simulation without orography is also operated in order to separate unambiguously the contribution of the mountain waves on the simulated atmospheric flow. This contribution is then quantified with a kinetic energy budget analysis computed in the two simulations. The results of this study confirm that mountain waves reaching lower-stratospheric heights break through convective overturning and generate inertia gravity waves with a smaller vertical wavelength, in association with a brief depletion of kinetic energy through frictional dissipation and negative vertical advection. The kinetic energy budget also shows that gravity waves have a strong influence on the other terms of the budget, i.e. horizontal advection and horizontal work of pressure forces, so evaluating the influence of gravity waves on the mean-flow with the vertical advection term alone is not sufficient, at least in this case. We finally obtain that gravity waves generated by the Vestfjella Mountains reaching lower stratospheric heights generally deplete (create kinetic energy in the lower troposphere (upper troposphere–lower stratosphere, in contradiction with the usual decelerating effect attributed to gravity waves on the zonal circulation in the upper troposphere–lower stratosphere.

  5. Constraining the dynamics of the water budget at high spatial resolution in the world's water towers using models and remote sensing data; Snake River Basin, USA

    Science.gov (United States)

    Watson, K. A.; Masarik, M. T.; Flores, A. N.

    2016-12-01

    Mountainous, snow-dominated basins are often referred to as the water towers of the world because they store precipitation in seasonal snowpacks, which gradually melt and provide water supplies to downstream communities. Yet significant uncertainties remain in terms of quantifying the stores and fluxes of water in these regions as well as the associated energy exchanges. Constraining these stores and fluxes is crucial for advancing process understanding and managing these water resources in a changing climate. Remote sensing data are particularly important to these efforts due to the remoteness of these landscapes and high spatial variability in water budget components. We have developed a high resolution regional climate dataset extending from 1986 to the present for the Snake River Basin in the northwestern USA. The Snake River Basin is the largest tributary of the Columbia River by volume and a critically important basin for regional economies and communities. The core of the dataset was developed using a regional climate model, forced by reanalysis data. Specifically the Weather Research and Forecasting (WRF) model was used to dynamically downscale the North American Regional Reanalysis (NARR) over the region at 3 km horizontal resolution for the period of interest. A suite of satellite remote sensing products provide independent, albeit uncertain, constraint on a number of components of the water and energy budgets for the region across a range of spatial and temporal scales. For example, GRACE data are used to constrain basinwide terrestrial water storage and MODIS products are used to constrain the spatial and temporal evolution of evapotranspiration and snow cover. The joint use of both models and remote sensing products allows for both better understanding of water cycle dynamics and associated hydrometeorologic processes, and identification of limitations in both the remote sensing products and regional climate simulations.

  6. Analytical and Numerical Study of Soret and Dufour Effects on Double Diffusive Convection in a Shallow Horizontal Binary Fluid Layer Submitted to Uniform Fluxes of Heat and Mass

    Directory of Open Access Journals (Sweden)

    A. Lagra

    2018-01-01

    Full Text Available Combined Soret and Dufour effects on thermosolutal convection induced in a horizontal layer filled with a binary fluid and subject to constant heat and mass fluxes are investigated analytically and numerically. The thresholds marking the onset of supercritical and subcritical convection are predicted analytically and explicitly versus the governing parameters. The present investigation shows that different regions exist in the N-Du plane corresponding to different parallel flow regimes. The number, the extent, and the locations of these regions depend on whether SrDu>-(1+Le2/2Le2=f(Le or SrDu<-(1+Le2/2Le2. Conjugate effects of cross-phenomena on thresholds of fluid flow and heat and mass transfer characteristics are illustrated and discussed.

  7. Element fluxes through European forest ecosystems and their relationships with stand and site characteristics

    International Nuclear Information System (INIS)

    Vries, W. de; Salm, C. van der; Reinds, G.J.; Erisman, J.W.

    2007-01-01

    This paper describes a European wide assessment of element budgets, using available data on deposition, meteorology and soil solution chemistry at 121 Intensive Monitoring plots. Input fluxes from the atmosphere were derived from fortnightly or monthly measurements of bulk deposition and throughfall, corrected for canopy uptake. Element outputs from the forest ecosystem were derived by multiplying fortnightly or monthly measurements of the soil solution composition at the bottom of the root zone with simulated unsaturated soil water fluxes. Despite the uncertainties in the calculated budgets, the results indicate that: (i) SO 4 is still the dominant source of actual soil acidification despite the generally lower input of S than N, due to the different behaviour of S (near tracer) and N (strong retention); (ii) base cation removal due to man-induced soil acidification is limited; and (iii) Al release is high in areas with high S inputs and low base status. - An assessment of element budgets, using available data on deposition, meteorology and soil solution chemistry at 121 Intensive Monitoring plots in Europe

  8. The Budget as a Management Tool: Zero Base Budgeting, Panacea ...

    African Journals Online (AJOL)

    Nigeria has been experiencing difficulties in Budget implementation. The objective of this article is to present alternative forms of budgeting and after exposition on them, to recommend one that could mitigate budget implementation problem for Nigeria. Two types of budgeting addressed are incremental and zero-base.

  9. A fusion of top-down and bottom-up modeling techniques to constrain regional scale carbon budgets

    Science.gov (United States)

    Goeckede, M.; Turner, D. P.; Michalak, A. M.; Vickers, D.; Law, B. E.

    2009-12-01

    The effort to constrain regional scale carbon budgets benefits from assimilating as many high quality data sources as possible in order to reduce uncertainties. Two of the most common approaches used in this field, bottom-up and top-down techniques, both have their strengths and weaknesses, and partly build on very different sources of information to train, drive, and validate the models. Within the context of the ORCA2 project, we follow both bottom-up and top-down modeling strategies with the ultimate objective of reconciling their surface flux estimates. The ORCA2 top-down component builds on a coupled WRF-STILT transport module that resolves the footprint function of a CO2 concentration measurement in high temporal and spatial resolution. Datasets involved in the current setup comprise GDAS meteorology, remote sensing products, VULCAN fossil fuel inventories, boundary conditions from CarbonTracker, and high-accuracy time series of atmospheric CO2 concentrations. Surface fluxes of CO2 are normally provided through a simple diagnostic model which is optimized against atmospheric observations. For the present study, we replaced the simple model with fluxes generated by an advanced bottom-up process model, Biome-BGC, which uses state-of-the-art algorithms to resolve plant-physiological processes, and 'grow' a biosphere based on biogeochemical conditions and climate history. This approach provides a more realistic description of biomass and nutrient pools than is the case for the simple model. The process model ingests various remote sensing data sources as well as high-resolution reanalysis meteorology, and can be trained against biometric inventories and eddy-covariance data. Linking the bottom-up flux fields to the atmospheric CO2 concentrations through the transport module allows evaluating the spatial representativeness of the BGC flux fields, and in that way assimilates more of the available information than either of the individual modeling techniques alone

  10. Causes for the recent increase in sea surface salinity in the north ...

    African Journals Online (AJOL)

    When comparing the period 2002–2009 with the period 1993–2001, significant changes in the salt budget were identified. The increase in SSS in the more recent period appeared to be driven by changes in the atmospheric freshwater flux, mainly attributed to a regional decrease in precipitation. Horizontal advection partly ...

  11. Critical heat flux and post-critical heat flux performance of a 6-m, 37-element fully segmented bundle cooled by Freon-12

    International Nuclear Information System (INIS)

    Nickerson, J.R.

    1982-05-01

    A 6-m, 37-element, electrically heated bundle with full end plate simulation, cooled by Freon-12, has been tested for CHF (critical heat flux) and post-CHF conditions in the MR-3 Freon loop. The bundle was tested in a horizontal attitude and had a uniform axial heat flux distribution and radial heat flux depression. A total of 110 CHF points have been collected over the following range of water equivalent conditions: exit pressure 8.27 - 11.03 MPa, mass flux 1.38 - 8.14 Mg.m -2 .s -1 , inlet subcooling 0 - 500 kJ.kg -1 , outlet quality 10% - 37%. The data have been correlated on both a systems and local conditions basis over a limited mass flux range to within 2.8% rms. Significant CHF increases over smooth bundle results have been observed along with significant CHF improvement over a two end plate bundle simulation in the lower mass flux ranges. A satisfactory axial drypatch spreading correlation has been determined and extensive drypatch wall superheat mapping has been performed

  12. An intercomparison and validation of satellite-based surface radiative energy flux estimates over the Arctic

    Science.gov (United States)

    Riihelä, Aku; Key, Jeffrey R.; Meirink, Jan Fokke; Kuipers Munneke, Peter; Palo, Timo; Karlsson, Karl-Göran

    2017-05-01

    Accurate determination of radiative energy fluxes over the Arctic is of crucial importance for understanding atmosphere-surface interactions, melt and refreezing cycles of the snow and ice cover, and the role of the Arctic in the global energy budget. Satellite-based estimates can provide comprehensive spatiotemporal coverage, but the accuracy and comparability of the existing data sets must be ascertained to facilitate their use. Here we compare radiative flux estimates from Clouds and the Earth's Radiant Energy System (CERES) Synoptic 1-degree (SYN1deg)/Energy Balanced and Filled, Global Energy and Water Cycle Experiment (GEWEX) surface energy budget, and our own experimental FluxNet / Satellite Application Facility on Climate Monitoring cLoud, Albedo and RAdiation (CLARA) data against in situ observations over Arctic sea ice and the Greenland Ice Sheet during summer of 2007. In general, CERES SYN1deg flux estimates agree best with in situ measurements, although with two particular limitations: (1) over sea ice the upwelling shortwave flux in CERES SYN1deg appears to be underestimated because of an underestimated surface albedo and (2) the CERES SYN1deg upwelling longwave flux over sea ice saturates during midsummer. The Advanced Very High Resolution Radiometer-based GEWEX and FluxNet-CLARA flux estimates generally show a larger range in retrieval errors relative to CERES, with contrasting tendencies relative to each other. The largest source of retrieval error in the FluxNet-CLARA downwelling shortwave flux is shown to be an overestimated cloud optical thickness. The results illustrate that satellite-based flux estimates over the Arctic are not yet homogeneous and that further efforts are necessary to investigate the differences in the surface and cloud properties which lead to disagreements in flux retrievals.

  13. Hafnium at subduction zones: isotopic budget of input and output fluxes

    International Nuclear Information System (INIS)

    Marini, J.Ch.

    2004-05-01

    Subduction zones are the primary regions of mass exchanges between continental crust and mantle of Earth through sediment subduction toward the earth's mantle and by supply of mantellic magmas to volcanic arcs. We analyze these mass exchanges using Hafnium and Neodymium isotopes. At the Izu-Mariana subduction zone, subducting sediments have Hf and Nd isotopes equivalent to Pacific seawater. Altered oceanic crust has Hf and Nd isotopic compositions equivalent to the isotopic budget of unaltered Pacific oceanic crust. At Luzon and Java subduction zones, arc lavas present Hf isotopic ratios highly radiogenic in comparison to their Nd isotopic ratios. Such compositions of the Luzon and Java arc lavas are controlled by a contamination of their sources by the subducted oceanic sediments. (author)

  14. Do budget balance rules anchor budget balance expectations? -- Some international evidence

    OpenAIRE

    Rülke, Jan-Christoph; Frenkel, Michael; Lis, Eliza

    2013-01-01

    This is the first study that analyzes whether budget balance expectations are anchored and whether budget balance rules effectively anchor expectations. To this end, we use a unique data set which covers budget balance expectations in 17 countries that implemented a budget balance rules. While our results are mixed concerning the general impact of budget balance rules on anchoring expectations, we do find that specific features of budget balance rules are important to successfully anchor budg...

  15. Future projections of the surface heat and water budgets of the Mediterranean Sea in an ensemble of coupled atmosphere-ocean regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, C.; Somot, S.; Deque, M.; Sevault, F. [CNRM-GAME, Meteo-France, CNRS, Toulouse (France); Calmanti, S.; Carillo, A.; Dell' Aquilla, A.; Sannino, G. [ENEA, Rome (Italy); Elizalde, A.; Jacob, D. [Max Planck Institute for Meteorology, Hamburg (Germany); Gualdi, S.; Oddo, P.; Scoccimarro, E. [INGV, Bologna (Italy); L' Heveder, B.; Li, L. [Laboratoire de Meteorologie Dynamique, Paris (France)

    2012-10-15

    Within the CIRCE project ''Climate change and Impact Research: the Mediterranean Environment'', an ensemble of high resolution coupled atmosphere-ocean regional climate models (AORCMs) are used to simulate the Mediterranean climate for the period 1950-2050. For the first time, realistic net surface air-sea fluxes are obtained. The sea surface temperature (SST) variability is consistent with the atmospheric forcing above it and oceanic constraints. The surface fluxes respond to external forcing under a warming climate and show an equivalent trend in all models. This study focuses on the present day and on the evolution of the heat and water budget over the Mediterranean Sea under the SRES-A1B scenario. On the contrary to previous studies, the net total heat budget is negative over the present period in all AORCMs and satisfies the heat closure budget controlled by a net positive heat gain at the strait of Gibraltar in the present climate. Under climate change scenario, some models predict a warming of the Mediterranean Sea from the ocean surface (positive net heat flux) in addition to the positive flux at the strait of Gibraltar for the 2021-2050 period. The shortwave and latent flux are increasing and the longwave and sensible fluxes are decreasing compared to the 1961-1990 period due to a reduction of the cloud cover and an increase in greenhouse gases (GHGs) and SSTs over the 2021-2050 period. The AORCMs provide a good estimates of the water budget with a drying of the region during the twenty-first century. For the ensemble mean, he decrease in precipitation and runoff is about 10 and 15% respectively and the increase in evaporation is much weaker, about 2% compared to the 1961-1990 period which confirm results obtained in recent studies. Despite a clear consistency in the trends and results between the models, this study also underlines important differences in the model set-ups, methodology and choices of some physical parameters inducing

  16. Is Zero-Based Budgeting Different from Planning--Programming--Budgeting Systems?

    Science.gov (United States)

    Hentschke, Guilbert C.

    1977-01-01

    Successful adoption of zero-base budgeting (ZBB) will be greater than that of planning-programming-budgeting-systems (PPBS) because perceived problems inherent in PPBS are largely missing in ZBB; ZBB appears to fit current school district budgeting behavior; and ZBB seems to improve communication about the need for budget reform. (Author/IRT)

  17. Natural convection heat transfer from a horizontal cylinder in liquid sodium. Pt. 2. Generalized correlation for laminar natural convection heat transfer

    International Nuclear Information System (INIS)

    Hata, K.; Takeuchi, Y.

    1999-01-01

    For pt.I see ibid., vol.193, p.105-18, 1999. Rigorous numerical solution of natural convection heat transfer, from a horizontal cylinder with uniform surface heat flux or with uniform surface temperature, to liquid sodium was derived by solving the fundamental equations for laminar natural convection heat transfer without the boundary layer approximation. It was made clear that the local and average Nusselt numbers experimentally obtained and reported in part 1 of this paper were described well by the numerical solutions for uniform surface heat fluxes, but that those for uniform surface temperatures could not describe the angular distribution of the local Nusselt numbers and about 10% underpredicted the average Nusselt numbers. Generalized correlation for natural convection heat transfer from a horizontal cylinder with a uniform surface heat flux in liquid metals was presented based on the rigorous theoretical values for a wide range of Rayleigh numbers. It was confirmed that the correlation can describe the authors' and other workers' experimental data on horizontal cylinders in various kinds of liquid metals for a wide range of Rayleigh numbers. Another correlation for a horizontal cylinder with a uniform surface temperature in liquid metals, which may be applicable for special cases such as natural convection heat transfer in a sodium-to-sodium heat exchanger etc. was also presented based on the rigorous theoretical values for a wide range of Rayleigh numbers. These correlations can also describe the rigorous numerical solutions for non-metallic liquids and gases for the Prandtl numbers up to 10. (orig.)

  18. Energy budget of the convective boundary layer over an urban and rural environment

    Energy Technology Data Exchange (ETDEWEB)

    Kerschgens, M J; Hacker, J M

    1985-05-01

    The results of a two day field study in and around the city of Bonn (50/sup 0/ 42'N, 7/sup 0/ 2'E) are presented. The study was designed to compare the energy balances at the top of the rural and urban canopy layer, and to get estimates of the various terms of the budgets of sensible and latent heat. The synoptic situation during the experiment was dominated by a high pressure cell leading to mostly undisturbed conditions with a convective boundary layer under a subsidence inversion. The measurements of several ground-based instruments, a radiosonde, two tethered sondes and a motorglider were combined to give a comprehensive picture of the contrasts between the urban and rural conditions. Main results of the study are: a confirmation of the previously supposed relation between the strength of the urban heat and moisture anomaly and the mean wind; a correlation between the Bowen ratio of the canopy fluxes and the fractional amount of green space in urban areas; a negligible difference in the net radiative fluxes and their divergences between the urban and rural environment; significant differences in the energy budgets of the two regions, especially in the divergences of the turbulent vertical heat fluxes and the advection mechanisms and time-height cross sections of the Bulk-Richardson number for two sites upwind and downwind of the city.

  19. Two-phase flow through small branches in a horizontal pipe with stratified flow

    International Nuclear Information System (INIS)

    Smoglie, C.

    1985-02-01

    In the field of reactor safety the occurrence of a small break in a horizontal primary coolant pipe is of great importance. This report presents the description and results of experiments designed to determine the mass flow rate and quality through a small break at the bottom, the top or the side of a main pipe with stratified gas-liquid flow. If the interface level is far below (above) the branch, only single-phase gas (liquid) flow enters the branch. For smaller distances the interface is locally deformed because of the pressure decrease due to the fluid acceleration near the branch inlet (Bernoulli effect) and liquid (gas) can be entrained. This report contains photographs illustrating the flow phenomena as well as a general correlation to determine the beginning of entrainment. Results are presented on the branch mass flow rate and quality as a function of a normalized distance between the interface and the branch inlet. A model was developed which enables to predict the branch quality and mass flux. Results from air-water flow through horizontal branches, were extrapolated for steam water flow at high pressure with critical branch mass flux. (orig./HS) [de

  20. Zircons reveal magma fluxes in the Earth's crust.

    Science.gov (United States)

    Caricchi, Luca; Simpson, Guy; Schaltegger, Urs

    2014-07-24

    Magma fluxes regulate the planetary thermal budget, the growth of continents and the frequency and magnitude of volcanic eruptions, and play a part in the genesis and size of magmatic ore deposits. However, because a large fraction of the magma produced on the Earth does not erupt at the surface, determinations of magma fluxes are rare and this compromises our ability to establish a link between global heat transfer and large-scale geological processes. Here we show that age distributions of zircons, a mineral often present in crustal magmatic rocks, in combination with thermal modelling, provide an accurate means of retrieving magma fluxes. The characteristics of zircon age populations vary significantly and systematically as a function of the flux and total volume of magma accumulated in the Earth's crust. Our approach produces results that are consistent with independent determinations of magma fluxes and volumes of magmatic systems. Analysis of existing age population data sets using our method suggests that porphyry-type deposits, plutons and large eruptions each require magma input over different timescales at different characteristic average fluxes. We anticipate that more extensive and complete magma flux data sets will serve to clarify the control that the global heat flux exerts on the frequency of geological events such as volcanic eruptions, and to determine the main factors controlling the distribution of resources on our planet.

  1. Fast neutron fluxes distribution in Egyptian ilmenite concrete

    International Nuclear Information System (INIS)

    Megahed, R.M.; Abou El-Nasr, T.Z.; Bashter, I.I.

    1978-01-01

    This work is concerned with the study of the distribution of fast neutron fluxes in a new type of heavy concrete made from Egyptian ilmenite ores. The neutron source used was a collimated beam of reactor neutrons emitted from one of the horizontal channels of the ET-RR-1 reactor. Measurements were carried-out using phosphorous activation detectors. Iso-flux curves were represented which give directly the shape and thickness required to attenuate the emitted fast neutron flux to a certain value. The relaxation lengths were also evaluated from the measured data for both disc monodirectional source and infinite plane monodirectional source. The obtained values were compared with that calculated using the derived values of relative number densities and microscopic removal cross-sections of the different constituents. The obtained data show that ilmenite concrete attenuates fast neutron flux more strongly than ordinary concrete. A semiemperical formula was derived to calculate the fast neutron flux at different thicknesses along the beam axis. Another semiemperical formula was also derived to calculate the fast neutron flux in ordinary concrete along the beam axis using the corresponding value in ilmenite concrete

  2. Management effects on net ecosystem carbon and GHG budgets at European crop sites

    DEFF Research Database (Denmark)

    Ceschia, Eric; Bêziat, P; Dejoux, J.F.

    2010-01-01

    The greenhouse gas budgets of 15 European crop sites covering a large climatic gradient and corresponding to 41 site-years were estimated. The sites included a wide range of management practices (organic and/or mineral fertilisation, tillage or ploughing, with or without straw removal....... The variability of the different terms and their relative contributions to the net ecosystem carbon budget (NECB) were analysed for all site-years, and the effect of management on NECB was assessed. To account for greenhouse gas (GHG) fluxes that were not directly measured on site, we estimated the emissions...... caused by field operations (EFO) for each site using emission factors from the literature. The EFO were added to the NECB to calculate the total GHG budget (GHGB) for a range of cropping systems and management regimes. N2O emissions were calculated following the IPCC (2007) guidelines, and CH4 emissions...

  3. Long-term measurement of terpenoid flux above a Larix kaempferi forest using a relaxed eddy accumulation method

    Science.gov (United States)

    Mochizuki, Tomoki; Tani, Akira; Takahashi, Yoshiyuki; Saigusa, Nobuko; Ueyama, Masahito

    2014-02-01

    Terpenoids emitted from forests contribute to the formation of secondary organic aerosols and affect the carbon budgets of forest ecosystems. To investigate seasonal variation in terpenoid flux involved in the aerosol formation and carbon budget, we measured the terpenoid flux of a Larix kaempferi forest between May 2011 and May 2012 by using a relaxed eddy accumulation method. Isoprene was emitted from a fern plant species Dryopteris crassirhizoma on the forest floor and monoterpenes from the L. kaempferi. α-Pinene was the dominant compound, but seasonal variation of the monoterpene composition was observed. High isoprene and monoterpene fluxes were observed in July and August. The total monoterpene flux was dependent on temperature, but several unusual high positive fluxes were observed after rain fall events. We found a good correlation between total monoterpene flux and volumetric soil water content (r = 0.88), and used this correlation to estimate monoterpene flux after rain events and calculate annual terpenoid emissions. Annual carbon emission in the form of total monoterpenes plus isoprene was determined to be 0.93% of the net ecosystem exchange. If we do not consider the effect of rain fall, carbon emissions may be underestimated by about 50%. Our results suggest that moisture conditions in the forest soil is a key factor controlling the monoterpene emissions from the forest ecosystem.

  4. Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004)

    Science.gov (United States)

    Huang, Peisheng; Sanford, Thomas B.; Imberger, JöRg

    2009-12-01

    Heat and turbulent kinetic energy budgets of the ocean surface layer during the passage of Hurricane Frances were examined using a three-dimensional hydrodynamic model. In situ data obtained with the Electromagnetic-Autonomous Profiling Explorer (EM-APEX) floats were used to set up the initial conditions of the model simulation and to compare to the simulation results. The spatial heat budgets reveal that during the hurricane passage, not only the entrainment in the bottom of surface mixed layer but also the horizontal water advection were important factors determining the spatial pattern of sea surface temperature. At the free surface, the hurricane-brought precipitation contributed a negligible amount to the air-sea heat exchange, but the precipitation produced a negative buoyancy flux in the surface layer that overwhelmed the instability induced by the heat loss to the atmosphere. Integrated over the domain within 400 km of the hurricane eye on day 245.71 of 2004, the rate of heat anomaly in the surface water was estimated to be about 0.45 PW (1 PW = 1015 W), with about 20% (0.09 PW in total) of this was due to the heat exchange at the air-sea interface, and almost all the remainder (0.36 PW) was downward transported by oceanic vertical mixing. Shear production was the major source of turbulent kinetic energy amounting 88.5% of the source of turbulent kinetic energy, while the rest (11.5%) was attributed to the wind stirring at sea surface. The increase of ocean potential energy due to vertical mixing represented 7.3% of the energy deposited by wind stress.

  5. Reynolds-Stress Budgets in an Impinging Shock Wave/Boundary-Layer Interaction

    Science.gov (United States)

    Vyas, Manan A.; Yoder, Dennis A.; Gaitonde, Datta V.

    2018-01-01

    Implicit large-eddy simulation (ILES) of a shock wave/boundary-layer interaction (SBLI) was performed. Comparisons with experimental data showed a sensitivity of the current prediction to the modeling of the sidewalls. This was found to be common among various computational studies in the literature where periodic boundary conditions were used in the spanwise direction, as was the case in the present work. Thus, although the experiment was quasi-two-dimensional, the present simulation was determined to be two-dimensional. Quantities present in the exact equation of the Reynolds-stress transport, i.e., production, molecular diffusion, turbulent transport, pressure diffusion, pressure strain, dissipation, and turbulent mass flux were calculated. Reynolds-stress budgets were compared with past large-eddy simulation and direct numerical simulation datasets in the undisturbed portion of the turbulent boundary layer to validate the current approach. The budgets in SBLI showed the growth in the production term for the primary normal stress and energy transfer mechanism was led by the pressure strain term in the secondary normal stresses. The pressure diffusion term, commonly assumed as negligible by turbulence model developers, was shown to be small but non-zero in the normal stress budgets, however it played a key role in the primary shear stress budget.

  6. Home - House Budget Committee

    Science.gov (United States)

    Initiatives Hearings Full Menu About Toggle Links Members History Staff Rules & Budget Law News Toggle Links Press Releases Budget Digests HBC Publications Op-Eds Speeches & Statements Budgets Toggle Links FY 2018 Budget FY 2017 Budget FY 2017 Reconciliation FY 2016 Budget FY 2016 Reconciliation FY 2015

  7. Late Budgets

    DEFF Research Database (Denmark)

    Andersen, Asger Lau; Lassen, David Dreyer; Nielsen, Lasse Holbøll Westh

    are negative rather than positive; and when there is divided government. We test the hypotheses of the model using a unique data set of late budgets for US state governments, based on dates of budget approval collected from news reports and a survey of state budget o¢ cers for the period 1988...

  8. Zero-based budgeting: Pathway to sustainable budget implementation in Nigeria

    Directory of Open Access Journals (Sweden)

    Udeh Francis Nnoli

    2017-10-01

    Full Text Available This paper investigates the application of Zero-Based Budgeting (ZBB system to budget implementation by the Federal Government of Nigeria by ascertaining among others, the relationship between ZBB approach and budget performance indices in Nigeria. To achieve the above, primary data were obtained through questionnaires that were specifically designed for this study. The data obtained were analysed with the SPSS version 21. The statistical tools employed were Analysis of Variance (ANOVA and Pearson Correlation Coefficiant (PCC. The Cronbach’s Alpha reliability test was used to test the internal consistency/reliability of the instrument used for the study. On the basis of the analysis, we found that there is significant difference in the effectiveness of ZBB in terms of budget implementation compared to the Traditional Budgeting System (TBS. It was also found that the application of ZBB tend to be performance-driven and is able to detect the redundant programmes/projects and staff, thereby recommending either realignment, discharge, transfer or redeployment of projects or resources. The study therefore, recommends among others that ZBB should be encouraged as a good means of budget implementation and also close monitoring of budget execution should be enshrined in work ethics at every stage of budget preparation and implementation in the country. This is believed would go a long way to strengthen measures aimed at mitigating poor budget implementation in the country.

  9. Steady-state nucleate pool boiling mechanism at low heat fluxes

    International Nuclear Information System (INIS)

    Bastos, L.E.G.

    1979-01-01

    Heat is transfered in the steady state to a horizontal cooper disc inmersed in water at saturation temperature. Levels of heat flux are controlled so that convection and the nucleate boiling can be observed. The value of heat flux is determined experimentally and high speed film is used to record bubble growth. In order to explain the phenomenon the oretical model is proposed in which part of the heat is transfered by free convection during nucleate boiling regime. Agreement between the experiments and the theoretical model is good. (Author) [pt

  10. Numerical study of natural convection heat transfer in a horizontal channel provided with rectangular blocks releasing uniform heat flux and mounted on its lower wall

    International Nuclear Information System (INIS)

    Bakkas, M.; Amahmid, A.; Hasnaoui, M.

    2008-01-01

    Two-dimensional laminar steady natural convection in a horizontal channel with the upper wall maintained cold at a constant temperature and the lower one provided with rectangular heating blocks, periodically distributed, has been studied numerically. The blocks are connected with adiabatic segments and their surfaces are assumed to release a uniform heat flux. The study is performed using air as the working fluid (Pr = 0.72). The spacing between the blocks is maintained constant (C = l'/H' = 0.5) while the Rayleigh number and the relative height of the blocks are respectively varied in the ranges 10 2 ≤ Ra ≤ 2 x 10 6 and 1/8 ≤ B = h'/H' ≤ 1/2. The effect of the computational domain length on the multiplicity of solutions is investigated. Flow and temperature fields are also produced for various combinations of the governing parameters. It is demonstrated that, depending on the length of the computational domain and the governing parameters, different flow structures can be obtained

  11. Flux-gradient relationships and soil-water diffusivity from curves of water content versus time

    Energy Technology Data Exchange (ETDEWEB)

    Nofziger, D.L.; Ahuja, L.R.; Swartzendruber, D.

    Direct analysis of a family of curves of soil-water content vs. time at different fixed positions enables assessment of the flux-gradient relationship prior to the calculations of soil-water diffusivity. The method is evaluated on both smooth and random-error data generated from the solution of the horizontal soil-water intake problem with a known diffusivity function. Interpolation, differentiation, and intergration are carried out by least-squares curve fitting based on the 2 recently developed techniques of parabolic splines and sliding parabolas, with all computations performed by computer. Results are excellent for both smooth and random-error input data, whether in terms of recovering the original known diffusivity function, assessing the nature of the flux-gradient relationship, or in making the numerous checks and validations at various intermediate stages of computation. The method applies for any horizontal soil-wetting process independently of the specific boundary conditions, including water entry through a nonzero inlet resistance. It should be adaptable to horizontal dewatering, and extendable to vertical flow. (11 refs.)

  12. The O2 A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets

    International Nuclear Information System (INIS)

    Fauchez, Thomas; Rossi, Loic; Stam, Daphne M.

    2017-01-01

    Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A s , the optical thickness b cloud , the altitude of water clouds, and the mixing ratio of biosignature O 2 on the strength of the O 2 A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios ( η < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O 2 mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O 2 or any other absorbing gas.

  13. California Budget Simulation

    Science.gov (United States)

    Mallinson, Daniel J.

    2018-01-01

    The California Budget Challenge produced by Next10 provides a useful and intuitive tool for instructors to introduce students to public budgeting. Students will reason through a series of budgeting decisions using information provided on the fiscal and practical implications of their choices. The Challenge is updated with each budget cycle, so it…

  14. Radiation budget changes with dry forest clearing in temperate Argentina.

    Science.gov (United States)

    Houspanossian, Javier; Nosetto, Marcelo; Jobbágy, Esteban G

    2013-04-01

    Land cover changes may affect climate and the energy balance of the Earth through their influence on the greenhouse gas composition of the atmosphere (biogeochemical effects) but also through shifts in the physical properties of the land surface (biophysical effects). We explored how the radiation budget changes following the replacement of temperate dry forests by crops in central semiarid Argentina and quantified the biophysical radiative forcing of this transformation. For this purpose, we computed the albedo and surface temperature for a 7-year period (2003-2009) from MODIS imagery at 70 paired sites occupied by native forests and crops and calculated the radiation budget at the tropopause and surface levels using a columnar radiation model parameterized with satellite data. Mean annual black-sky albedo and diurnal surface temperature were 50% and 2.5 °C higher in croplands than in dry forests. These contrasts increased the outgoing shortwave energy flux at the top of the atmosphere in croplands by a quarter (58.4 vs. 45.9 W m(-2) ) which, together with a slight increase in the outgoing longwave flux, yielded a net cooling of -14 W m(-2) . This biophysical cooling effect would be equivalent to a reduction in atmospheric CO2 of 22 Mg C ha(-1) , which involves approximately a quarter to a half of the typical carbon emissions that accompany deforestation in these ecosystems. We showed that the replacement of dry forests by crops in central Argentina has strong biophysical effects on the energy budget which could counterbalance the biogeochemical effects of deforestation. Underestimating or ignoring these biophysical consequences of land-use changes on climate will certainly curtail the effectiveness of many warming mitigation actions, particularly in semiarid regions where high radiation load and smaller active carbon pools would increase the relative importance of biophysical forcing. © 2012 Blackwell Publishing Ltd.

  15. Budgeting for School Media Centers.

    Science.gov (United States)

    Drott, M. Carl

    1978-01-01

    Describes various forms of budgets and discusses concepts in budgeting useful to supervisors of school media centers: line item budgets, capital budgets, creating budgets, the budget calendar, innovations, PPBS (Planning, Programing, Budgeting System), zero-based budgeting, cost-benefit analysis, benefits, benefit guidelines, and budgeting for the…

  16. Seasonal and Intra-annual Controls on CO2 Flux in Arctic Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, Walter [San Diego State Univ., CA (United States); Kalhori, Aram [San Diego State Univ., CA (United States)

    2015-12-01

    In order to advance the understanding of the patterns and controls on the carbon budget in the Arctic region, San Diego State University has maintained eddy covariance flux towers at three sites in Arctic Alaska, starting in 1997.

  17. Carbon budget over 12 years in a production crop under temperate climate

    Science.gov (United States)

    Buysse, Pauline; Bodson, Bernard; Debacq, Alain; De Ligne, Anne; Heinesch, Bernard; Manise, Tanguy; Moureaux, Christine; Aubinet, Marc

    2017-04-01

    Carbon dioxide (CO2) exchanges between crops and the atmosphere are influenced by both climatic and crop management drivers. The investigated crop, situated at the Lonzée Terrestrial Observatory (LTO, candidate ICOS site) in Belgium and managed for more than 70 years using conventional farming practices, was monitored over three complete sugar beet (or maize)/winter wheat/potato/winter wheat rotation cycles from 2004 to 2016. Continuous eddy-covariance measurements and regular biomass samplings were performed in order to obtain the daily and seasonal Net Ecosystem Exchange (NEE), Gross Primary Productivity, Total Ecosystem Respiration, Net Primary Productivity, and Net Biome Production (NBP). Meteorological data and crop management practices were also recorded. The main objectives were to analyze the CO2 flux responses to climatic drivers and to establish the C budget of the cropland. Crop type significantly influenced the measured CO2 fluxes. In addition to crop season duration, which had an obvious impact on cumulated NEE values for each crop type, the CO2 flux response to photosynthetic photon flux density, vapor pressure deficit and temperature differed between crop types, while no significant response to soil water content was observed in any of them. Besides, a significant positive relationship between crop residue amount and ecosystem respiration was observed. Over the 12 years, NEE was negative (-4.34 ± 0.21 kg C m-2) but NBP was positive (1.05 ± 0.30 kg C m-2), i.e. as soon as all lateral carbon fluxes - dominated by carbon exportation - are included in the budget, the site behaves as a carbon source. Intercrops were seen to play a major role in the carbon budget, being mostly due to the long time period it represented (59 % of the 12 year time period). An in-depth analysis of intercrop periods and, more specifically, growing cover crops (mustard in the case of our study), is developed in a companion poster (ref. abstract EGU2017-12216, session SSS9

  18. Two-phase heat transfer and pressure drop of LNG during saturated flow boiling in a horizontal tube

    Science.gov (United States)

    Chen, Dongsheng; Shi, Yumei

    2013-12-01

    Two-phase heat transfer and pressure drop of LNG (liquefied natural gas) have been measured in a horizontal smooth tube with an inner diameter of 8 mm. The experiments were conducted at inlet pressures from 0.3 to 0.7 MPa with a heat flux of 8-36 kW m-2, and mass flux of 49.2-201.8 kg m-2 s-1. The effect of vapor quality, inlet pressure, heat flux and mass flux on the heat transfer characteristic are discussed. The comparisons of the experimental data with the predicted value by existing correlations are analyzed. Zou et al. (2010) correlation shows the best accuracy with 24.1% RMS deviation among them. Moreover four frictional pressure drop methods are also chosen to compare with the experimental database.

  19. Morphology-dependent water budgets and nutrient fluxes in arctic thaw ponds

    Science.gov (United States)

    Koch, Joshua C.; Gurney, Kirsty; Wipfli, Mark S.

    2014-01-01

    Thaw ponds on the Arctic Coastal Plain of Alaska are productive ecosystems, providing habitat and food resources for many fish and bird species. Permafrost in this region creates unique pond morphologies: deep troughs, shallow low-centred polygons (LCPs) and larger coalescent ponds. By monitoring seasonal trends in pond volume and chemistry, we evaluated whether pond morphology and size affect water temperature and desiccation, and nitrogen (N) and phosphorus (P) fluxes. Evaporation was the largest early-summer water flux in all pond types. LCPs dried quickly and displayed high early-summer nutrient concentrations and losses. Troughs consistently received solute-rich subsurface inflows, which accounted for 12 to 42 per cent of their volume and may explain higher P in the troughs. N to P ratios increased and ammonium concentrations decreased with pond volume, suggesting that P and inorganic N availability may limit ecosystem productivity in older, larger ponds. Arctic summer temperatures will likely increase in the future, which may accelerate mid-summer desiccation. Given their morphology, troughs may remain wet, become warmer and derive greater nutrient loads from their thawing banks. Overall, seasonal- to decadal-scale warming may increase ecosystem productivity in troughs relative to other Arctic Coastal Plain ponds. 

  20. Projected change in East Asian summer monsoon by dynamic downscaling: Moisture budget analysis

    Science.gov (United States)

    Jung, Chun-Yong; Shin, Ho-Jeong; Jang, Chan Joo; Kim, Hyung-Jin

    2015-02-01

    The summer monsoon considerably affects water resource and natural hazards including flood and drought in East Asia, one of the world's most densely populated area. In this study, we investigate future changes in summer precipitation over East Asia induced by global warming through dynamical downscaling with the Weather Research and Forecast model. We have selected a global model from the Coupled Model Intercomparison Project Phase 5 based on an objective evaluation for East Asian summer monsoon and applied its climate change under Representative Concentration Pathway 4.5 scenario to a pseudo global warming method. Unlike the previous studies that focused on a qualitative description of projected precipitation changes over East Asia, this study tried to identify the physical causes of the precipitation changes by analyzing a local moisture budget. Projected changes in precipitation over the eastern foothills area of Tibetan Plateau including Sichuan Basin and Yangtze River displayed a contrasting pattern: a decrease in its northern area and an increase in its southern area. A local moisture budget analysis indicated the precipitation increase over the southern area can be mainly attributed to an increase in horizontal wind convergence and surface evaporation. On the other hand, the precipitation decrease over the northern area can be largely explained by horizontal advection of dry air from the northern continent and by divergent wind flow. Regional changes in future precipitation in East Asia are likely to be attributed to different mechanisms which can be better resolved by regional dynamical downscaling.

  1. Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves

    International Nuclear Information System (INIS)

    Li, Dan; Sun, Ting; Liu, Maofeng; Yang, Long; Wang, Linlin; Gao, Zhiqiu

    2015-01-01

    Heat waves (HWs) are projected to become more frequent and last longer over most land areas in the late 21st century, which raises serious public health concerns. Urban residents face higher health risks due to synergies between HWs and urban heat islands (UHIs) (i.e., UHIs are higher under HW conditions). However, the responses of urban and rural surface energy budgets to HWs are still largely unknown. This study analyzes observations from two flux towers in Beijing, China and reveals significant differences between the responses of urban and rural (cropland) ecosystems to HWs. It is found that UHIs increase significantly during HWs, especially during the nighttime, implying synergies between HWs and UHIs. Results indicate that the urban site receives more incoming shortwave radiation and longwave radiation due to HWs as compared to the rural site, resulting in a larger radiative energy input into the urban surface energy budget. Changes in turbulent heat fluxes also diverge strongly for the urban site and the rural site: latent heat fluxes increase more significantly at the rural site due to abundant available water, while sensible heat fluxes and possibly heat storage increase more at the urban site. These comparisons suggest that the contrasting responses of urban and rural surface energy budgets to HWs are responsible for the synergies between HWs and UHIs. As a result, urban mitigation and adaption strategies such as the use of green roofs and white roofs are needed in order to mitigate the impact of these synergies. (letter)

  2. Application of a Subfilter-Scale Flux Model over the Ocean Using OHATS Field Data

    DEFF Research Database (Denmark)

    Kelly, Mark C.; Wyngaard, John C.; Sullivan, Peter P.

    2009-01-01

    the scalar flux model appeared to perform adequately over the ocean. Analysis of data from the Ocean Horizontal Array Turbulence Study (OHATS) reveals a need to account for the moving ocean–air interface in the subfilter stress model. The authors develop simple parameterizations for the effect of surface......-induced pressure fluctuations on the subfilter stress, leading to good predictions of subfilter momentum flux both over land and in OHATS....

  3. Horizontal accountability and presidential dominance: a difficult combination. The case of the Dominican Republic, 1967-2009 Rendición de cuentas horizontal y preponderancia presidencial: una combinación difícil. El caso de República Dominicana, 1967-2009

    Directory of Open Access Journals (Sweden)

    Leiv MARSTEINTREDET

    2011-03-01

    Full Text Available This article studies horizontal accountability in the Dominican Republic. First it analyses the rules regulating the system of checks and balances. Although important, institutional rules cannot explain the variation in the levels of accountability across time found in the Dominican case. Therefore, the article focuses on the execution of national budgets and the financial situation of the accountability institutions. The article suggests using an index of budgetary disproportionality based on a comparison of the congressionally approved budget and the executed budget to measure the level of horizontal accountability. A multivariate time-series regression analysis shows that budgetary disproportionality increases with presidential dominance. The article concludes that for the period 1967-2009, it is presidential behaviour more than any other factor that has prevented an effective system of checks and balances. Therefore the case confirms O’Donnell’s hypothesis of Delegative Democracies.Este artículo estudia la rendición de cuentas horizontal en República Dominicana. Primero se estudian las normas constitucionales que regulan el sistema de pesos y contrapesos. Aunque importantes, estas no explican la gran variación en niveles de rendición de cuentas observada en el caso dominicano. Por lo tanto, el trabajo se enfoca en el ejercicio de los gastos de los presupuestos nacionales y la situación financiera de las instituciones de control. El artículo sugiere analizar la situación presupuestaria de las instituciones fiscalizadoras y propone utilizar la desproporcionalidad entre el presupuesto aprobado y el ejecutado como un indicador del nivel de rendición de cuentas en un país. Un análisis multivariado de regresión de series de tiempo demuestra que la desproporcionalidad presupuestal aumenta con la preponderancia presidencial. Se concluye que, para el caso dominicano en el período 1967-2009, el comportamiento de varios presidentes m

  4. DCS Budget Tracking System

    Data.gov (United States)

    Social Security Administration — DCS Budget Tracking System database contains budget information for the Information Technology budget and the 'Other Objects' budget. This data allows for monitoring...

  5. Natural convection heat transfer from a horizontal wavy surface in a porous enclosure

    International Nuclear Information System (INIS)

    Murthy, P.V.S.N.; Kumar, B.V.R.; Singh, P.

    1997-01-01

    The effect of surface undulations on the natural convection heat transfer from an isothermal surface in a Darcian fluid-saturated porous enclosure has been numerically analyzed using the finite element method on a graded nonuniform mesh system. The flow-driving Rayleigh number Ra together with the geometrical parameters of wave amplitude a, wave phase φ, and the number of waves N considered in the horizontal dimension of the cavity are found to influence the flow and heat transfer process in the enclosure. For Ra around 50 and above, the phenomenon of flow separation and reattachment is noticed on the walls of the enclosure. A periodic shift in the reattachment point from the bottom wall to the adjacent walls in the clockwise direction, leading to the manifestation of cycles of unicellular and bicellular clockwise and counterclockwise flows, is observed, with the phase varying between 0 degree and 350 degree. The counterflow in the secondary circulation zone is intensified with the increase in the value of Ra. The counterflow on the wavy wall hinders the heat transfer into the system. An increase in either wave amplitude or the number of waves considered per unit length decreases the global heat flux into the system. Only marginal changes in global heat flux are noticed with increasing Ra. On the whole, the comparison of global heat flux results in the wavy wall case with those of the horizontal flat wall case shows that, in a porous enclosure, the wavy wall reduces the heat transfer into the system

  6. The O{sub 2} A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Fauchez, Thomas [Laboratoire d’Optique Atmosphèrique (LOA), UMR 8518, Université Lille 1, Villeneuve d’Ascq (France); Rossi, Loic; Stam, Daphne M. [Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

    2017-06-10

    Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A {sub s}, the optical thickness b {sub cloud}, the altitude of water clouds, and the mixing ratio of biosignature O{sub 2} on the strength of the O{sub 2} A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios ( η < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O{sub 2} mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O{sub 2} or any other absorbing gas.

  7. Evaluating the UK's carbon budget using a dense network of tall-tower observations

    Science.gov (United States)

    White, E.; Rigby, M. L.; Manning, A.; Lunt, M. F.; Ganesan, A.; O'Doherty, S.; Stavert, A.; Stanley, K. M.; Williams, M. D.; Smallman, T. L.; Comyn-Platt, E.; Levy, P. E.

    2017-12-01

    The UK has committed to reducing greenhouse gas (GHG) emissions to 80% of 1990 levels by 2050. Evaluating the UK's GHG emissions, and in particular those of carbon dioxide, is imperative to the UK's ability to track progress towards these goals. Making top-down estimates of regional carbon dioxide emissions is challenging due to the rapid temporal variability in the biogenic flux, and the co-location of anthropogenic and biogenic sources and sinks. We present a hierarchical Bayesian inverse modelling framework, which is able to estimate a yearly total (anthropogenic and biogenic) carbon dioxide budget for the UK. Using observations from a high-density GHG monitoring network, combined with high temporal resolution prior information and a Lagrangian atmospheric transport model (NAME, developed by the UK Met Office), we derive a net positive flux for the UK of 0.39 Pg/yr in 2014. We will compare the outcome of inversions that used prior information from two different biosphere models, CARDAMOM and JULES. This comparison helps to understand more about the biogenic processes contributing to the UK's carbon dioxide budget, limitations with different modelling approaches and the sensitivity of the inversion framework to the choice of prior. A better understanding of how the biogenic flux changes throughout the year can, in turn, help to improve the UK's anthropogenic carbon dioxide inventory by identifying times in the year when the anthropogenic signal may be possible to detect.

  8. Vertical, horizontal, and temporal changes in temperature in the Atlantis II and Discovery hot brine pools, Red Sea

    KAUST Repository

    Swift, Stephen A.; Bower, Amy S.; Schmitt, Raymond W.

    2012-01-01

    convective layers is rapid on time scales of 3-5 years and, thus, heat is lost from the brine pools to overlying Red Sea Deep Water. Heat budgets suggest that the heat flux from hydrothermal venting has decreased from 0.54. GW to 0.18. GW since 1966. A tow

  9. Evaluating short-term hydro-meteorological fluxes using GRACE-derived water storage changes

    Science.gov (United States)

    Eicker, A.; Jensen, L.; Springer, A.; Kusche, J.

    2017-12-01

    Atmospheric and terrestrial water budgets, which represent important boundary conditions for both climate modeling and hydrological studies, are linked by evapotranspiration (E) and precipitation (P). These fields are provided by numerical weather prediction models and atmospheric reanalyses such as ERA-Interim and MERRA-Land; yet, in particular the quality of E is still not well evaluated. Via the terrestrial water budget equation, water storage changes derived from products of the Gravity Recovery and Climate Experiment (GRACE) mission, combined with runoff (R) data can be used to assess the realism of atmospheric models. In this contribution we will investigate the closure of the water balance for short-term fluxes, i.e. the agreement of GRACE water storage changes with P-E-R flux time series from different (global and regional) atmospheric reanalyses, land surface models, as well as observation-based data sets. Missing river runoff observations will be extrapolated using the calibrated rainfall-runoff model GR2M. We will perform a global analysis and will additionally focus on selected river basins in West Africa. The investigations will be carried out for various temporal scales, focusing on short-term fluxes down to daily variations to be detected in daily GRACE time series.

  10. The effect of motivation profile and participative budgeting on budget goal commitment

    DEFF Research Database (Denmark)

    Sandalgaard, Niels; Bukh, Per Nikolaj; Poulsen, Carsten Stig

    2009-01-01

    The effect of participative budgeting on motivation is often considered in management accounting research. In this study we focus on dispositional factors of motivation rooted in personality that affect budgeting. Especially we focus on the effect of personality traits in the form of achievement......, power and affiliation motives on budget goal commitment in interaction with participative budgeting. The study is based on a survey among bank managers at different organizational levels of a Scandinavian regional bank and the results indicate that the effect of participative budgeting on budget goal...... commitment is moderated by the implicit power motivation of the bank manager....

  11. Energy budget of the volcano Stromboli, Italy

    Science.gov (United States)

    Mcgetchin, T. R.; Chouet, B. A.

    1979-01-01

    The results of the analyses of movies of eruptions at Stromboli, Italy, and other available data are used to discuss the question of its energy partitioning among various energy transport mechanisms. Energy is transported to the surface from active volcanoes in at least eight modes, viz. conduction (and convection) of the heat through the surface, radiative heat transfer from the vent, acoustical radiation in blast and jet noise, seismic radiation, thermal energy of ejected particles, kinetic energy of ejected particles, thermal energy of ejected gas, and kinetic energy of ejected gas. Estimated values of energy flux from Stromboli by these eight mechanisms are tabulated. The energy budget of Stromboli in its normal mode of activity appears to be dominated by heat conduction (and convection) through the ground surface. Heat carried by eruption gases is the most important of the other energy transfer modes. Radiated heat from the open vent and heat carried by ejected lava particles also contribute to the total flux, while seismic energy accounts for about 0.5% of the total. All other modes are trivial by comparison.

  12. Horizontal Residual Mean Circulation: Evaluation of Spatial Correlations in Coarse Resolution Ocean Models

    Science.gov (United States)

    Li, Y.; McDougall, T. J.

    2016-02-01

    Coarse resolution ocean models lack knowledge of spatial correlations between variables on scales smaller than the grid scale. Some researchers have shown that these spatial correlations play a role in the poleward heat flux. In order to evaluate the poleward transport induced by the spatial correlations at a fixed horizontal position, an equation is obtained to calculate the approximate transport from velocity gradients. The equation involves two terms that can be added to the quasi-Stokes streamfunction (based on temporal correlations) to incorporate the contribution of spatial correlations. Moreover, these new terms do not need to be parameterized and is ready to be evaluated by using model data directly. In this study, data from a high resolution ocean model have been used to estimate the accuracy of this HRM approach for improving the horizontal property fluxes in coarse-resolution ocean models. A coarse grid is formed by sub-sampling and box-car averaging the fine grid scale. The transport calculated on the coarse grid is then compared to the transport on original high resolution grid scale accumulated over a corresponding number of grid boxes. The preliminary results have shown that the estimate on coarse resolution grids roughly match the corresponding transports on high resolution grids.

  13. Assessing the net effect of long-term drainage on a permafrost ecosystem through year-round eddy-covariance flux measurements

    Science.gov (United States)

    Kittler, F.; Heimann, M.; Goeckede, M.; Zimov, S. A.; Zimov, N.

    2014-12-01

    Permafrost regions in the Northern high latitudes play a key role in the carbon budget of the earth system because of their massive carbon reservoir and the uncertain feedback processes with future climate change. For an improved understanding of mechanisms and drivers dominating permafrost carbon cycling, more observations in high-latitude regions are needed. Particularly the contribution of wintertime fluxes to the annual carbon budget and the impact of disturbances on biogeochemical and biogeophysical ecosystem properties, and the resulting modification of the carbon cycle, have rarely been studied to date. In summer of 2013, we established a new eddy-covariance station for continuous, year-round monitoring of carbon fluxes and their environmental drivers near Cherskii in Northeast Siberia (68.75°N, 161.33°E). Parts of the observation area have been disturbed by drainage since 2004, altering the soil water conditions in a way that is expected for degrading ice-rich permafrost under a warming climate. With two eddy-covariance towers running in parallel over the disturbed (drained) area and a reference area nearby, respectively, we can directly infer the disturbance effect on the carbon cycle budgets and the dominating biogeochemical mechanisms. This study presents findings based on 16 months of continuous eddy-covariance CO2 flux measurements (July 2013 - October 2014) for both observation areas. At both towers, we observed systematic, non-zero flux contributions outside the growing seasons that significantly altered annual CO2 budgets. A direct comparison of fluxes between the two disturbance regimes indicates a net reduction of the sink strength for CO2 in the disturbed area during the growing season, mostly caused by reduced CO2 uptake with low water levels in late summer. Moreover, shifts in soil temperatures and snow cover caused by reduced soil water levels result in lower net CO2 emissions during the winter at the drained area, which is partly

  14. A synthesis of the impact of Russian forests on the global carbon budget for 1961-1998

    International Nuclear Information System (INIS)

    Shvidenko, Anatoly; Nilsson, Sten

    2003-01-01

    An attempt is made to synthesize the current understanding of the impact of Russian forests on the global carbon (C) budget for the period 1961-1998 (37 years), based on a detailed inventory of pools and fluxes in 1988-1992, and a historical reconstruction of a full forest carbon budget for 1961-1998. All major intermediate indicators of the budget (phytomass, net primary production, impact of disturbances, soil respiration, etc.) were independently estimated and compared with earlier reported results. During the entire period, the C pools of Russian forest land (FL, 882.0 106 ha in 1998) increased by 433 Tg C/yr, of which 153 Tg C/yr are accumulated in live biomass, 57 Tg C/yr in above- and below-ground dead wood, and 223 Tg C/yr are sequestered in soil. A significant part of this increase deals with land-cover changes. The annual average C uptake by the FL from the atmosphere, defined by a flux-based method, is estimated to be 322 Tg C/yr for 1961-1998. The lateral transport to the lithosphere and hydrosphere comprised 47 Tg C/yr (including charcoal), which is considered part of the 'missing C sink.' The uncertainties (excluding unrecognized biases) of averages for the entire period are estimated to be in the range of ±5-8% and ±24% for major fluxes out/into the atmosphere and for net ecosystem exchange, respectively (a priori confidential probability of 0.9). If the impact of land-cover change is excluded, the average annual sink in 1961-1998, estimated by both pool- and flux-based methods, was 268 ± 94 and 272 ± 68 Tg C/yr, respectively. The reported results are in line with recent estimates for Northern Eurasia made by inverse modeling at the continental scale, if land classes other than forests contribute to the total sink of terrestrial vegetation

  15. Mixed convection-radiation interaction in boundary-layer flow over horizontal surfaces

    Science.gov (United States)

    Ibrahim, F. S.; Hady, F. M.

    1990-06-01

    The effect of buoyancy forces and thermal radiation on the steady laminar plane flow over an isothermal horizontal flat plate is investigated within the framework of first-order boundary-layer theory, taking into account the hydrostatic pressure variation normal to the plate. The fluid considered is a gray, absorbing-emitting but nonscattering medium, and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. Both a hot surface facing upward and a cold surface facing downward are considered in the analysis. Numerical results for the local Nusselt number, the local wall shear stress, the local surface heat flux, as well as the velocity and temperature distributions are presented for gases with a Prandtl number of 0.7 for various values of the radiation-conduction parameter, the buoyancy parameter, and the temperature ratio parameter.

  16. An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean

    NARCIS (Netherlands)

    Lana, A.; Bell, T. G.; Simo, R.; Vallina, S. M.; Ballabrera-Poy, J.; Kettle, A. J.; Dachs, J.; Bopp, L.; Saltzman, E. S.; Stefels, J.; Johnson, J. E.; Liss, P. S.

    2011-01-01

    The potentially significant role of the biogenic trace gas dimethylsulfide (DMS) in determining the Earth's radiation budget makes it necessary to accurately reproduce seawater DMS distribution and quantify its global flux across the sea/air interface. Following a threefold increase of data (from

  17. An Extended Eddy-Diffusivity Mass-Flux Scheme for Unified Representation of Subgrid-Scale Turbulence and Convection

    Science.gov (United States)

    Tan, Zhihong; Kaul, Colleen M.; Pressel, Kyle G.; Cohen, Yair; Schneider, Tapio; Teixeira, João.

    2018-03-01

    Large-scale weather forecasting and climate models are beginning to reach horizontal resolutions of kilometers, at which common assumptions made in existing parameterization schemes of subgrid-scale turbulence and convection—such as that they adjust instantaneously to changes in resolved-scale dynamics—cease to be justifiable. Additionally, the common practice of representing boundary-layer turbulence, shallow convection, and deep convection by discontinuously different parameterizations schemes, each with its own set of parameters, has contributed to the proliferation of adjustable parameters in large-scale models. Here we lay the theoretical foundations for an extended eddy-diffusivity mass-flux (EDMF) scheme that has explicit time-dependence and memory of subgrid-scale variables and is designed to represent all subgrid-scale turbulence and convection, from boundary layer dynamics to deep convection, in a unified manner. Coherent up and downdrafts in the scheme are represented as prognostic plumes that interact with their environment and potentially with each other through entrainment and detrainment. The more isotropic turbulence in their environment is represented through diffusive fluxes, with diffusivities obtained from a turbulence kinetic energy budget that consistently partitions turbulence kinetic energy between plumes and environment. The cross-sectional area of up and downdrafts satisfies a prognostic continuity equation, which allows the plumes to cover variable and arbitrarily large fractions of a large-scale grid box and to have life cycles governed by their own internal dynamics. Relatively simple preliminary proposals for closure parameters are presented and are shown to lead to a successful simulation of shallow convection, including a time-dependent life cycle.

  18. Sensible Heat Flux Related to Variations in Atmospheric Turbulence Kinetic Energy on a Sandy Beach

    Science.gov (United States)

    2017-06-01

    production, turbulent transport by pressure fluctuations, dissipation and flux divergence . The TKE budget as explained by Srivastava and Sarthi (2002...generation of turbulence. Term 3 is flux divergence , which describes the differential transport of TKE by turbulent eddies. Term 4, dissipation, is a sink...the time series data to align all signals to the same time base. Winds were rotated into a shore-normal frame of reference. All data outside of T

  19. Atmospheric components of the surface energy budget over young sea ice: Results from the N-ICE2015 campaign

    Science.gov (United States)

    Walden, Von P.; Hudson, Stephen R.; Cohen, Lana; Murphy, Sarah Y.; Granskog, Mats A.

    2017-08-01

    The Norwegian young sea ice campaign obtained the first measurements of the surface energy budget over young, thin Arctic sea ice through the seasonal transition from winter to summer. This campaign was the first of its kind in the North Atlantic sector of the Arctic. This study describes the atmospheric and surface conditions and the radiative and turbulent heat fluxes over young, thin sea ice. The shortwave albedo of the snow surface ranged from about 0.85 in winter to 0.72-0.80 in early summer. The near-surface atmosphere was typically stable in winter, unstable in spring, and near neutral in summer once the surface skin temperature reached 0°C. The daily average radiative and turbulent heat fluxes typically sum to negative values (-40 to 0 W m-2) in winter but then transition toward positive values of up to nearly +60 W m-2 as solar radiation contributes significantly to the surface energy budget. The sensible heat flux typically ranges from +20-30 W m-2 in winter (into the surface) to negative values between 0 and -20 W m-2 in spring and summer. A winter case study highlights the significant effect of synoptic storms and demonstrates the complex interplay of wind, clouds, and heat and moisture advection on the surface energy components over sea ice in winter. A spring case study contrasts a rare period of 24 h of clear-sky conditions with typical overcast conditions and highlights the impact of clouds on the surface radiation and energy budgets over young, thin sea ice.

  20. Radiation dosimetry at the BNL High Flux Beam Reactor

    International Nuclear Information System (INIS)

    Holden, N.E.; Hu, J.P.; Reciniello, R.N.

    1998-02-01

    The HFBR is a heavy water, D 2 O, cooled and moderated reactor with twenty-eight fuel elements containing a maximum of 9.8 kilograms of 235 U. The core is 53 cm high and 48 cm in diameter and has an active volume of 97 liters. The HFBR, which was designed to operate at forty mega-watts, 40 NW, was upgraded to operate at 60 NW. Since 1991, it has operated at 30 MW. In a normal 30 MW operating cycle the HFBR operates 24 hours a day for thirty days, with a six to fourteen day shutdown period for refueling and maintenance work. While most reactors attempts to minimize the escape of neutrons from the core, the HFBR's D 2 O design allows the thermal neutron flux to peak in the reflector region and maximizes the number of thermal neutrons available to nine horizontal external beams, H-1 to H-9. The HFBR neutron dosimetry effort described here compares measured and calculated energy dependent neutron and gamma ray flux densities and/or dose rates at horizontal beam lines and vertical irradiation thimbles

  1. Horizontal beam tubes in FRM-II

    International Nuclear Information System (INIS)

    Coors, D.; Vanvor, D.

    2001-01-01

    The new research reactor in Garching FRM-II is equipped with 10 leak tight horizontal beam tubes (BT1 - BT10), each of them consisting of a beam tube structure taking an insert with neutron channels. The design of all beam tube structures is similar whereas the inserts are adapted to the special requirements of the using of each beam tube. Inside the reflector tank the beam tube structures are shaped by the inner cones which are made of Al-alloy with circular and rectangular cross sections. They are located in the region of maximum neutron flux (exception BT10), they are directly connected to the flanges of the reflector tank, their lengths are about 1.5 m (exception BT10) and their axes are directed tagentially to the core centre thus contributing to a low γ-noise at the experiments. (orig.)

  2. Volcanic volatile budgets and fluxes inferred from melt inclusions from post-shield volcanoes in Hawaii and the Canary Islands

    Science.gov (United States)

    Moore, L.; Gazel, E.; Bodnar, R. J.; Carracedo, J. C.

    2017-12-01

    Pre-eruptive volatile contents of volcanic melts recorded by melt inclusions are useful for estimating rates of deep earth ingassing and outgassing on geologic timescales. Ocean island volcanoes may erupt melts derived from recycled material and thus have implications regarding the degree to which volatile-bearing phases like magnesite can survive subduction and be recycled by intraplate magmatism. However, melt inclusions affected by degassing will not reflect the original volatile content of the primary melt. Post-shield ocean island volcanoes are thought to erupt volatile-rich melts that ascend quickly, crystallizing in deep reservoirs and are more likely to reflect the composition of the primary melt. In this study, we compare melt inclusions from post-shield volcanoes, Haleakala (East Maui, Hawaii) and Tenerife (Canary Islands), to estimate the volatile budgets of two presumably plume-related ocean-island settings. Melt inclusions from Haleakala contain up to 1.5 wt% CO2, up to 1.3 wt% H2O, and about 2000 ppm of S. The CO2 concentration is similar to estimates for primary CO2 concentrations for Hawaii, suggesting that the melt inclusions in this study trapped a melt that underwent minimal degassing. Assuming a melt production rate of 2 km3/ka for postshield Hawaiian volcanism, the average fluxes of CO2 and S are about 80 t/year and 10 t/year respectively. Melt inclusions from Tenerife contain up to 1 wt% CO2, up to 2 wt% H2O, and about 4000 ppm of S. Assuming a melt production rate of 0.8 km3/ka for the northeast rift zone of Tenerife, the average fluxes of CO2 and S are about 20 t/year and 8 t/year respectively. The concentration of CO2 is lower than estimates of the primary melt CO2 content based on CO2/Nb from El Hierro. This may indicate that the inclusions trapped a melt that had degassed significantly, or that some of the CO2 in the inclusions has been sequestered in carbonate daughter crystals, which were observed in abundance.

  3. Characteristics of two-phase flow pattern transitions and pressure drop of five refrigerants in horizontal circular small tubes

    Energy Technology Data Exchange (ETDEWEB)

    Pamitran, A.S. [Department of Mechanical Engineering, University of Indonesia, Kampus Baru UI, Depok 16424 (Indonesia); Choi, Kwang-Il [Graduate School, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749 (Korea); Oh, Jong-Taek [Department of Refrigeration and Air Conditioning Engineering, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749 (Korea); Hrnjak, Pega [Department of Mechanical Science and Engineering, ACRC, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States)

    2010-05-15

    An experimental investigation on the characteristics of two-phase flow pattern transitions and pressure drop of R-22, R-134a, R-410A, R-290 and R-744 in horizontal small stainless steel tubes of 0.5, 1.5 and 3.0 mm inner diameters is presented. Experimental data were obtained over a heat flux range of 5-40 kW/m{sup 2}, mass flux range of 50-600 kg/(m{sup 2} s), saturation temperature range of 0-15 C, and quality up to 1.0. Experimental data were evaluated with Wang et al. and Wojtan et al. [Wang, C.C., Chiang, C.S., Lu, D.C., 1997. Visual observation of two-phase flow pattern of R-22, R-134a, and R-407C in a 6.5-mm smooth tube. Exp. Therm. Fluid Sci. 15, 395-405; Wojtan, L., Ursenbacher, T., Thome, J.R., 2005. Investigation of flow boiling in horizontal tubes: part I - a new diabatic two-phase flow pattern map. Int. J. Heat Mass Transfer 48, 2955-2969.] flow pattern maps. The effects of mass flux, heat flux, saturation temperature and inner tube diameter on the pressure drop of the working refrigerants are reported. The experimental pressure drop was compared with the predictions from some existing correlations. A new two-phase pressure drop model that is based on a superposition model for two-phase flow boiling of refrigerants in small tubes is presented. (author)

  4. BEYOND BUDGETING

    Directory of Open Access Journals (Sweden)

    Edo Cvrkalj

    2015-12-01

    Full Text Available Traditional budgeting principles, with strictly defined business goals, have been, since 1998, slowly growing into more sophisticated and organization-adjusted alternative budgeting concepts. One of those alternative concepts is the “Beyond budgeting” model with an implemented performance effects measuring process. In order for the model to be practicable, budget planning and control has to be reoriented to the “bottom up” planning and control approach. In today’s modern business surroundings one has to take both present and future opportunities and threats into consideration, by valorizing them in a budget which would allow a company to realize a whole pallet of advantages over the traditional budgeting principles which are presented later in the article. It is essential to emphasize the importance of successfully implementing the new budgeting principles within an organization. If the implementation has been lacking and done without a higher goal in mind, it is easily possible that the process has been implemented without coordination, planning and control framework within the organization itself. Further in the article we present an overview of managerial techniques and instruments within the “Beyond budgeting” model such as balanced scorecard, rolling forecast, dashboard, KPI and other supporting instruments. Lastly we define seven steps for implementing the “Beyond budgeting” model and offer a comparison of “Beyond budgeting” model against traditional budgeting principles which lists twelve reasons why “Beyond budgeting” is better suited to modern and market-oriented organizations. Each company faces those challenges in their own characteristic way but implementing new dynamic planning models will soon become essential for surviving in the market.

  5. Public Budgeting: The Compromises Among the Sound Budgeting Principles in Contingency Funding

    Science.gov (United States)

    2017-06-01

    funding for major aircraft using supplemental appropriations in place of incremental funding as intended for normal budgeting practices. This was a prime... incrementally funded on an annual basis. This change in budgeting practices lacked predictability because it allowed last-minute budget requests with low...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. PUBLIC BUDGETING

  6. Effect of superficial velocity on vaporization pressure drop with propane in horizontal circular tube

    Science.gov (United States)

    Novianto, S.; Pamitran, A. S.; Nasruddin, Alhamid, M. I.

    2016-06-01

    Due to its friendly effect on the environment, natural refrigerants could be the best alternative refrigerant to replace conventional refrigerants. The present study was devoted to the effect of superficial velocity on vaporization pressure drop with propane in a horizontal circular tube with an inner diameter of 7.6 mm. The experiments were conditioned with 4 to 10 °C for saturation temperature, 9 to 20 kW/m2 for heat flux, and 250 to 380 kg/m2s for mass flux. It is shown here that increased heat flux may result in increasing vapor superficial velocity, and then increasing pressure drop. The present experimental results were evaluated with some existing correlations of pressure drop. The best prediction was evaluated by Lockhart-Martinelli (1949) with MARD 25.7%. In order to observe the experimental flow pattern, the present results were also mapped on the Wang flow pattern map.

  7. Carbon dioxide fluxes from an urban area in Beijing

    Science.gov (United States)

    Song, Tao; Wang, Yuesi

    2012-03-01

    A better understanding of urban carbon dioxide (CO 2) emissions is important for quantifying urban contributions to the global carbon budget. From January to December 2008, CO 2 fluxes were measured, by eddy covariance at 47 m above ground on a meteorological tower in a high-density residential area in Beijing. The results showed that the urban surface was a net source of CO 2 in the atmosphere. Diurnal flux patterns were similar to those previously observed in other cities and were largely influenced by traffic volume. Carbon uptake by both urban vegetation during the growing season and the reduction of fuel consumption for domestic heating resulted in less-positive daily fluxes in the summer. The average daily flux measured in the summer was 0.48 mg m - 2 s - 1 , which was 82%, 35% and 36% lower than those in the winter, spring and autumn, respectively. The reduction of vehicles on the road during the 29th Olympic and Paralympic Games had a significant impact on CO 2 flux. The flux of 0.40 mg m - 2 s - 1 for September 2008 was approximately 0.17 mg m - 2 s - 1 lower than the flux for September 2007. Annual CO 2 emissions from the study site were estimated at 20.6 kg CO 2 m - 2 y - 1 , considerably higher than yearly emissions obtained from other urban and suburban landscapes.

  8. Nucleate boiling heat transfer on horizontal tubes in bundles

    International Nuclear Information System (INIS)

    Fujital, Y.; Ohta, H.; Hidaka, S.; Nishikawa, K.

    1986-01-01

    In order to clarify the heat transfer mechanisms of the flooded type horizontal tube bundle evaporator, heat transfer characteristics of tube bundles of experimental scale which consist both of smooth and enhanced tubes were investigated in detail. The experiments of saturated nucleate boiling were performed by using Freon 113 under pressures 0.1 to 1 MPa, and the effects of various parameters, for example, bundle arrangement, heat flux, pressure on the characteristics of an individual tube are clarified. Experimental data is reproduced well by a proposed heat transfer model in which convective heat transfer coefficients due to rising bubbles are estimated as a function of their volumetric flow rate

  9. High-Resolution Wellbore Temperature Logging Combined with a Borehole-Scale Heat Budget: Conceptual and Analytical Approaches to Characterize Hydraulically Active Fractures and Groundwater Origin

    Directory of Open Access Journals (Sweden)

    Guillaume Meyzonnat

    2018-01-01

    Full Text Available This work aims to provide an overview of the thermal processes that shape wellbore temperature profiles under static and dynamic conditions. Understanding of the respective influences of advection and conduction heat fluxes is improved through the use of a new heat budget at the borehole scale. Keeping in mind the thermal processes involved, a qualitative interpretation of the temperature profiles allows the occurrence, the position, and the origin of groundwater flowing into wellbores from hydraulically active fractures to be constrained. With the use of a heat budget developed at the borehole scale, temperature logging efficiency has been quantitatively enhanced and allows inflow temperatures to be calculated through the simultaneous use of a flowmeter. Under certain hydraulic or pumping conditions, both inflow intensities and associated temperatures can also be directly modelled from temperature data and the use of the heat budget. Theoretical and applied examples of the heat budget application are provided. Applied examples are shown using high-resolution temperature logging, spinner flow metering, and televiewing for three wells installed in fractured bedrock aquifers in the St-Lawrence Lowlands, Quebec, Canada. Through relatively rapid manipulations, thermal measurements in such cases can be used to detect the intervals or discrete positions of hydraulically active fractures in wellbores, as well as the existence of ambient flows with a high degree of sensitivity, even at very low flows. Heat budget calculations at the borehole scale during pumping indicate that heat advection fluxes rapidly dominate over heat conduction fluxes with the borehole wall. The full characterization of inflow intensities provides information about the distribution of hydraulic properties with depth. The full knowledge of inflow temperatures indicates horizons that are drained from within the aquifer, providing advantageous information on the depth from which

  10. Understanding the Budget Process

    Directory of Open Access Journals (Sweden)

    Mesut Yalvaç

    2000-03-01

    Full Text Available Many different budgeting techniques can be used in libraries, and some combination of these will be appropriate for almost any individual situation. Li-ne-item, program, performance, formula, variable, and zero-base budgets all have features that may prove beneficial in the preparation of a budget. Budgets also serve a variety of functions, providing for short-term and long-term financial planning as well as for cash management over a period of time. Short-term plans are reflected in the operating budget, while long-term plans are reflected in the capital budget. Since the time when cash is available to an organization does not usually coincide with the time that disbursements must be made, it is also important to carefully plan for the inflow and outflow of funds by means of a cash budget.      During the budget process an organization selects its programs and activities by providing the necessary funding; the library, along with others in the organization, must justify its requests. Because of the cyclical nature of the budget process, it is possible continually to gather information and evaluate alternatives for the next budget period so that the library may achieve its maximum potential for service to its patrons.

  11. Basin-scale assessment of the land surface energy budget in the National Centers for Environmental Prediction operational and research NLDAS-2 systems

    Science.gov (United States)

    Xia, Youlong; Cosgrove, Brian A.; Mitchell, Kenneth E.; Peters-Lidard, Christa D.; Ek, Michael B.; Kumar, Sujay; Mocko, David; Wei, Helin

    2016-01-01

    This paper compares the annual and monthly components of the simulated energy budget from the North American Land Data Assimilation System phase 2 (NLDAS-2) with reference products over the domains of the 12 River Forecast Centers (RFCs) of the continental United States (CONUS). The simulations are calculated from both operational and research versions of NLDAS-2. The reference radiation components are obtained from the National Aeronautics and Space Administration Surface Radiation Budget product. The reference sensible and latent heat fluxes are obtained from a multitree ensemble method applied to gridded FLUXNET data from the Max Planck Institute, Germany. As these references are obtained from different data sources, they cannot fully close the energy budget, although the range of closure error is less than 15% for mean annual results. The analysis here demonstrates the usefulness of basin-scale surface energy budget analysis for evaluating model skill and deficiencies. The operational (i.e., Noah, Mosaic, and VIC) and research (i.e., Noah-I and VIC4.0.5) NLDAS-2 land surface models exhibit similarities and differences in depicting basin-averaged energy components. For example, the energy components of the five models have similar seasonal cycles, but with different magnitudes. Generally, Noah and VIC overestimate (underestimate) sensible (latent) heat flux over several RFCs of the eastern CONUS. In contrast, Mosaic underestimates (overestimates) sensible (latent) heat flux over almost all 12 RFCs. The research Noah-I and VIC4.0.5 versions show moderate-to-large improvements (basin and model dependent) relative to their operational versions, which indicates likely pathways for future improvements in the operational NLDAS-2 system.

  12. Basin-Scale Assessment of the Land Surface Energy Budget in the National Centers for Environmental Prediction Operational and Research NLDAS-2 Systems

    Science.gov (United States)

    Xia, Youlong; Peters-Lidard, Christa D.; Cosgrove, Brian A.; Mitchell, Kenneth E.; Peters-Lidard, Christa; Ek, Michael B.; Kumar, Sujay V.; Mocko, David M.; Wei, Helin

    2015-01-01

    This paper compares the annual and monthly components of the simulated energy budget from the North American Land Data Assimilation System phase 2 (NLDAS-2) with reference products over the domains of the 12 River Forecast Centers (RFCs) of the continental United States (CONUS). The simulations are calculated from both operational and research versions of NLDAS-2. The reference radiation components are obtained from the National Aeronautics and Space Administration Surface Radiation Budget product. The reference sensible and latent heat fluxes are obtained from a multitree ensemble method applied to gridded FLUXNET data from the Max Planck Institute, Germany. As these references are obtained from different data sources, they cannot fully close the energy budget, although the range of closure error is less than 15%formean annual results. The analysis here demonstrates the usefulness of basin-scale surface energy budget analysis for evaluating model skill and deficiencies. The operational (i.e., Noah, Mosaic, and VIC) and research (i.e., Noah-I and VIC4.0.5) NLDAS-2 land surface models exhibit similarities and differences in depicting basin-averaged energy components. For example, the energy components of the five models have similar seasonal cycles, but with different magnitudes. Generally, Noah and VIC overestimate (underestimate) sensible (latent) heat flux over several RFCs of the eastern CONUS. In contrast, Mosaic underestimates (overestimates) sensible (latent) heat flux over almost all 12 RFCs. The research Noah-I and VIC4.0.5 versions show moderate-to-large improvements (basin and model dependent) relative to their operational versions, which indicates likely pathways for future improvements in the operational NLDAS-2 system.

  13. Understanding Long-term, Large-scale Shoreline Change and the Sediment Budget on Fire Island, NY, using a 3D hydrodynamics-based model

    Science.gov (United States)

    List, J. H.; Safak, I.; Warner, J. C.; Schwab, W. C.; Hapke, C. J.; Lentz, E. E.

    2016-02-01

    The processes responsible for long-term (decadal) shoreline change and the related imbalance in the sediment budget on Fire Island, a 50 km long barrier island on the south coast of Long Island, NY, has been the subject of debate. The estimated net rate of sediment leaving the barrier at the west end of the island is approximately double the estimated net rate of sediment entering in the east, but the island-wide average sediment volume change associated with shoreline change is near zero and cannot account for this deficit. A long-held hypothesis is that onshore sediment flux from the inner continental shelf within the western half of the island is responsible for balancing the sediment budget. To investigate this possibility, we use a nested, 3-D, hydrodynamics-based modeling system (COAWST) to simulate the island-wide alongshore and cross-shore transport, in combination with shoreline change observations. The modeled, net alongshore transport gradients in the nearshore predict that the central part of Fire Island should be erosional, yet shoreline change observations show this area to be accretionary. We compare the model-predicted alongshore transport gradients with the flux gradients that would be required to generate the observed shoreline change, to give the pattern of sediment volume gains or losses that cannot be explained by the modeled alongshore transport gradients. Results show that the western 30 km of coast requires an input of sediment, supporting the hypothesis of onshore flux in this area. The modeled cross-shore flux of sediment between the shoreface and inner shelf is consistent these results, with onshore-directed bottom currents creating an environment more conducive to onshore sediment flux in the western 30 km of the island compared to the eastern 20 km. We conclude that the cross-shore flux of sediment can explain the shoreline change observations, and is an integral component of Fire Island's sediment budget.

  14. Carbon budgets for two Portuguese estuaries: implications for the management and conservation of coastal waters

    Directory of Open Access Journals (Sweden)

    Ana P. Oliveira

    2014-07-01

    The results presented illustrate that Tagus and Sado estuaries represent an important land/ocean boundary for carbon transformation and emission, and confirm the anthropogenic pressure that these estuaries are subject to. Carbon budgets vary markedly within and between these two estuaries reflecting the human pressure. Anthropogenic inputs, autochthonous carbon production and primary production are indicated as the main responsible for the carbon production within the estuaries. Both estuaries export carbon to the ocean and to the atmosphere. The inorganic carbon faction has a major role in the carbon budget, enriching the ocean in carbon dioxide, contributing this for the greenhouse effect. Our understanding of organic and inorganic carbon fluxes in Tagus and Sado estuaries is vital for an efficient protection and preservation of such ecosystems being helpful in limit human-caused damage and in restoring damaged estuarine/coastal ecosystems. In addition, the economic impact of the carbon fluxes to the atmosphere, estimated as €375,000 per year, creates the appropriate incentives to reduce emissions and shift them to higher-value uses. Suggesting, therefore, a coastal management re-oriented towards a more adaptive approach through the use of carbon market-based policies. This study is a contribution to the integration of coastal and global carbon cycles. However, additional efforts are required to fully merge other components subsystems, such as salt marshes, with these budgets. Moreover, a fully comprehension of the community metabolism in these estuaries will greatly improve this integration.

  15. Library Budget Primer.

    Science.gov (United States)

    Warner, Alice Sizer

    1993-01-01

    Discusses the advantages and disadvantages of six types of budgets commonly used by many different kinds of libraries. The budget types covered are lump-sum; formula; line or line-item; program; performance or function; and zero-based. Accompanying figures demonstrate the differences between four of the budget types. (three references) (KRN)

  16. The Agency's budget

    International Nuclear Information System (INIS)

    1964-01-01

    A total Agency Budget of $10 406 000 for 1965 was approved by the General Conference at its session of September 1964; the Budget for the year 1964 amounted to $9 812 000. The consolidated Budget figures are shown in the table at the end of this article. The Budget falls into two parts - the Regular Budget and the Operational Budget. The Regular Budget provides for the ordinary administrative expenses of the Agency, and for expert panels, special missions, symposia and conferences, distribution of information, and scientific and technical services. In conformity with the Agency's Statute, these expenses are met by contributions made according to Voluntary contributions are paid initially into a General Fund established for this purpose, and money for operations is transferred to the respective Operating Funds as appropriate, and as approved by the Board of Governors. The scale of assessments for 1965 is based on the United Nations scale for 1964. The assessments are estimated to yield $7 713 000 - an increase of 6.8 per cent; however, more than three quarters of this increase will be offset by credits which Member States will receive as a result of a cash surplus brought forward. The Operational Budget is financed by voluntary contributions and is divided into two parts - Operating Fund I, devoted to certain laboratory and research projects, and Operating Fund II, for technical assistance, training and research contracts.

  17. Heavy crude production from shallow formations: long horizontal wells versus horizontal fractures

    Energy Technology Data Exchange (ETDEWEB)

    Valko, P.; Economides, M. J. [Texas A and M Univ., TX (United States)

    1998-12-31

    The feasibility of producing heavy oil from shallow formations using either horizontal wells or short horizontal wells fractured horizontally is demonstrated. The problem of optimum proppant placement is solved in two steps. In step one, the finite productivity performance is considered in general terms showing that the performance is a function of two dimensionless parameters. Following derivation of optimum conditions, the solution is applied to the horizontal fracture consideration. The limiting factor is that to create an effective finite conductivity fracture, the dimensionless fracture conductivity must be on the order of unity, a fracture that is difficult to realize in higher permeability formations. The best candidates for the suggested configuration are shallow or moderate formations, or formations otherwise proven to accept horizontal fractures, and formations with low permeability/viscosity ratio. 7 refs., 2 tabs., 10 figs., 2 appendices.

  18. Measurement of the neutron flux distributions, epithermal index, Westcott thermal neutron flux in the irradiation capsules of hydraulic conveyer (Hyd) and pneumatic tubes (Pn) facilities of the KUR

    International Nuclear Information System (INIS)

    Chatani, Hiroshi

    2001-05-01

    The reactions of Au(n, γ) 198 Au and Ti(n, p) 47 or 48 Sc were used for the measurements of the thermal and epithermal (thermal + epithermal) and the fast neutron flux distributions, respectively. In the case of Hyd (Hydraulic conveyer), the thermal + epithermal and fast neutron flux distributions in the horizontal direction in the capsule are especially flat; the distortion of the fluxes are 0.6% and 5.4%, respectively. However, these neutron fluxes in the vertical direction are low at the top and high at the bottom of the capsule. These differences between the top and bottom are 14% for both distributions. On the other hand, in polyethylene capsules of Pn-1, 2, 3 (Pneumatic tubes Nos. 1, 2, 3), in contrast with Hyd, these neutron flux distributions in the horizontal direction have gradients of 8 - 18% per 2.5 cm diameter, and those on the vertical axis have a distortion of approximately 5%. The strength of the epithermal dE/E component relative to the neutron density including both thermal and epithermal neutrons, i.e., the epithermal index, for the hydraulic conveyer (Hyd) and pneumatic tube No.2 (Pn-2), in which the irradiation experiments can be achieved, are determined by the multiple foil activation method using the reactions of Au(n, γ) 198 Au and Co(n, γ) 60(m+g) Co. The epithermal index observed in an aluminum capsule of Hyd is 0.034-0.04, and the Westcott thermal neutron flux is 1.2x10 14 cm -2 sec -1 at approximately 1 cm above the bottom. The epithermal index in a Pn-2 polyethylene capsule was measured by not only the multiple foil activation method but also the Cd-ratio method in which the Au(n, γ) 198 Au reaction in a cadmium cover is also used. The epithermal index is 0.045 - 0.055, and the thermal neutron flux is 1.8x10 13 cm -2 sec -1 . (J.P.N.)

  19. Earth Radiation Budget Experiment (ERBE) Data Sets for Global Environment and Climate Change Studies

    Science.gov (United States)

    Bess, T. Dale; Carlson, Ann B.; Denn, Fredrick M.

    1997-01-01

    For a number of years there has been considerable interest in the earth's radiation budget (ERB) or energy balance, and entails making the best measurements possible of absorbed solar radiation, reflected shortwave radiation (RSW), thermal outgoing longwave radiation (OLR), and net radiation. ERB data are fundamental to the development of realistic climate models and studying natural and anthropogenic perturbations of the climate. Much of the interest and investigations in the earth's energy balance predated the age of earth-orbiting satellites (Hunt et al., 1986). Beginning in the mid 1960's earth-orbiting satellites began to play an important role in making measurements of the earth's radiation flux although much effort had gone into measuring ERB parameters prior to 1960 (House et al., 1986). Beginning in 1974 and extending until the present time, three different satellite experiments (not all operating at the same time) have been making radiation budget measurements almost continually in time. Two of the experiments were totally dedicated to making radiation budget measurements of the earth, and the other experiment flown on NOAA sun-synchronous AVHRR weather satellites produced radiation budget parameters as a by-product. The heat budget data from the AVHRR satellites began collecting data in June 1974 and have operated almost continuously for 23 years producing valuable data for long term climate monitoring.

  20. Budget Analysis: Review of the Governor's Proposed Budget, 1999-00.

    Science.gov (United States)

    New York State Office of the Comptroller, Albany.

    This report provides an overview of the 1999-2000 executive budget for New York State. The budget calls for $72.7 billion in all funds spending and proposes that a $1.8 billion surplus from the 1998-99 fiscal year be used to fill budget gaps in fiscal years 2000-01 and 2001-02. The report focuses on spending for education, health and social…

  1. Plan Your Advertising Budget.

    Science.gov (United States)

    Britt, Steuart-Henderson

    1979-01-01

    Methods for establishing an advertising budget are reviewed. They include methods based on percentage of sales or profits, unit of sales, and objective and task. Also discussed are ways to allocate a promotional budget. The most common breakdowns are: departmental budgets, total budget, calendar periods, media, and sales area. (JMD)

  2. Preliminary estimation of Vulcano of CO2 budget and continuous monitoring of summit soil CO2 flux

    OpenAIRE

    Inguaggiato, S.; Mazot, A.; Diliberto, I. S.; Rouwet, D.; Vita, F.; Capasso, G.; Bobrowski, N.; Inguaggiato, C.; Grassa, F.

    2008-01-01

    Total CO2 output from fumaroles, soil gases, bubbling and water dissolved gases were estimated at Vulcano Island, Italy. The fumaroles output has been estimated from SO2 plume flux, while soil flux emission has been carried out through 730 CO2 fluxes measured on the island surface, performed by means of accumulation chamber method. Vulcano Island, located in the Aeolian Archipelago, is an active volcano that has been in state of solphataric activity, since the last eru...

  3. Effect of orientation on critical heat flux in a 3-rod bundle cooled by Freon-12

    International Nuclear Information System (INIS)

    Dimmick, G.R.

    1979-06-01

    Critical heat flux measurements have been made in a segmented 3-rod test section cooled by Freon-12. Three test section orientations were used: vertical, inclined at 11 deg to the vertical, and horizontal. It was found that at flows of less than 2.5 Mg.m -2 .s -1 the transverse gravity force on the inclined and horizontal orientations reduced the magnitude of the critical heat flux and also changed the location of initial dryout when compared to the vertical data. To account for the effect of orientation during correlation of the data, the Reynolds number was modified to include a transverse gravity term. The minimum standard deviation for the data from the three orientations combined was 3.4 percent and less than 3.7 percent for the three orientations separately. (author)

  4. Quantifying the Global Fresh Water Budget: Capabilities from Current and Future Satellite Sensors

    Science.gov (United States)

    Hildebrand, Peter; Zaitchik, Benjamin

    2007-01-01

    The global water cycle is complex and its components are difficult to measure, particularly at the global scales and with the precision needed for assessing climate impacts. Recent advances in satellite observational capabilities, however, are greatly improving our knowledge of the key terms in the fresh water flux budget. Many components of the of the global water budget, e.g. precipitation, atmospheric moisture profiles, soil moisture, snow cover, sea ice are now routinely measured globally using instruments on satellites such as TRMM, AQUA, TERRA, GRACE, and ICESat, as well as on operational satellites. New techniques, many using data assimilation approaches, are providing pathways toward measuring snow water equivalent, evapotranspiration, ground water, ice mass, as well as improving the measurement quality for other components of the global water budget. This paper evaluates these current and developing satellite capabilities to observe the global fresh water budget, then looks forward to evaluate the potential for improvements that may result from future space missions as detailed by the US Decadal Survey, and operational plans. Based on these analyses, and on the goal of improved knowledge of the global fresh water budget under the effects of climate change, we suggest some priorities for the future, based on new approaches that may provide the improved measurements and the analyses needed to understand and observe the potential speed-up of the global water cycle under the effects of climate change.

  5. Budgeting and Beyond

    DEFF Research Database (Denmark)

    Rohde, Carsten

    Budgets and budget control has been known since the early 19th century1. However the use of budget control was until the beginning of the 1920ies in US primarily related to governmental units and states and to a minor extent to business units in practice. At that time James McKinsey describes...

  6. Validating modeled turbulent heat fluxes across large freshwater surfaces

    Science.gov (United States)

    Lofgren, B. M.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Fitzpatrick, L.; Blanken, P.; Spence, C.; Lenters, J. D.; Xiao, C.; Charusambot, U.

    2017-12-01

    Turbulent fluxes of latent and sensible heat are important physical processes that influence the energy and water budgets of the Great Lakes. Validation and improvement of bulk flux algorithms to simulate these turbulent heat fluxes are critical for accurate prediction of hydrodynamics, water levels, weather, and climate over the region. Here we consider five heat flux algorithms from several model systems; the Finite-Volume Community Ocean Model, the Weather Research and Forecasting model, and the Large Lake Thermodynamics Model, which are used in research and operational environments and concentrate on different aspects of the Great Lakes' physical system, but interface at the lake surface. The heat flux algorithms were isolated from each model and driven by meteorological data from over-lake stations in the Great Lakes Evaporation Network. The simulation results were compared with eddy covariance flux measurements at the same stations. All models show the capacity to the seasonal cycle of the turbulent heat fluxes. Overall, the Coupled Ocean Atmosphere Response Experiment algorithm in FVCOM has the best agreement with eddy covariance measurements. Simulations with the other four algorithms are overall improved by updating the parameterization of roughness length scales of temperature and humidity. Agreement between modelled and observed fluxes notably varied with geographical locations of the stations. For example, at the Long Point station in Lake Erie, observed fluxes are likely influenced by the upwind land surface while the simulations do not take account of the land surface influence, and therefore the agreement is worse in general.

  7. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    Energy Technology Data Exchange (ETDEWEB)

    Eckley, Chris S., E-mail: eckley.chris@epa.gov [US Environmental Protection Agency, Region-10, Seattle, WA 98101 (United States); Tate, Mike T. [US Geological Survey, Middleton, WI 53562 (United States); Lin, Che-Jen [Center for Advances on Water and Air quality, Lamar University, Beaumont, TX 77710 (United States); Gustin, Mae [Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV 89557 (United States); Dent, Stephen [CDM Smith, Portland, OR 97205 (United States); Eagles-Smith, Collin [US Geological Survey, Corvallis, OR 97331 (United States); Lutz, Michelle A. [US Geological Survey, Middleton, WI 53562 (United States); Wickland, Kimberly P. [US Geological Survey Boulder, CO 80303 (United States); Wang, Bronwen [US Geological Survey, Anchorage, AK 99508 (United States); Gray, John E. [US Geological Survey, Denver, CO 80225 (United States); Edwards, Grant C. [Department of Environment and Geography, Macquarie University, North Ryde, NSW 2109 (Australia); Krabbenhoft, Dave P. [US Geological Survey, Middleton, WI 53562 (United States); Smith, David B. [US Geological Survey, Denver, CO 80225 (United States)

    2016-10-15

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere. - Highlights: • Soil-air Hg fluxes are an important component of the

  8. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    International Nuclear Information System (INIS)

    Eckley, Chris S.; Tate, Mike T.; Lin, Che-Jen; Gustin, Mae; Dent, Stephen; Eagles-Smith, Collin; Lutz, Michelle A.; Wickland, Kimberly P.; Wang, Bronwen; Gray, John E.; Edwards, Grant C.; Krabbenhoft, Dave P.; Smith, David B.

    2016-01-01

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere. - Highlights: • Soil-air Hg fluxes are an important component of the

  9. Budgeting Approaches in Community Colleges

    Science.gov (United States)

    Palmer, James C.

    2014-01-01

    Several budgeting approaches have been initiated as alternatives to the traditional, incremental process. These include formula budgeting; zero-base budgeting; planning, programming, and budgeting systems; and responsibility center budgeting. Each is premised on assumptions about how organizations might best make resource allocation decisions.…

  10. The effect of an iron plug on the neutron flux distributions in water

    International Nuclear Information System (INIS)

    Lotfi, A.; Maayouf, R.M.A.; Megahid, R.

    1978-01-01

    This work is concerned with studying both fast and thermal neutron fluxes distribution in water and its perturbation due to the presence of a cylindrical iron plug. The measurements were carried out using a collimated neutron beam emitted from one of the horizontal channels of the ET-RR-1 reactor. The fast neutron fluxes were measured using phosphorus activation detectors, while the thermal neutron ones were measured using fission fragment track detectors from glass. The results show that the presence of an iron plug causes a remarkable change in the intensities of both the fast and thermal neutron fluxes distribution in the water medium surrounding the iron plug. The flux intensities at the peaks, formed beyond the iron plug in case of thermal neutrons, are also compared with values calculated using the available emperical formula

  11. Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics.

    Science.gov (United States)

    Touliatos, Dionysios; Dodd, Ian C; McAinsh, Martin

    2016-08-01

    Vertical farming systems (VFS) have been proposed as an engineering solution to increase productivity per unit area of cultivated land by extending crop production into the vertical dimension. To test whether this approach presents a viable alternative to horizontal crop production systems, a VFS (where plants were grown in upright cylindrical columns) was compared against a conventional horizontal hydroponic system (HHS) using lettuce ( Lactuca sativa L . cv. "Little Gem") as a model crop. Both systems had similar root zone volume and planting density. Half-strength Hoagland's solution was applied to plants grown in perlite in an indoor controlled environment room, with metal halide lamps providing artificial lighting. Light distribution (photosynthetic photon flux density, PPFD) and yield (shoot fresh weight) within each system were assessed. Although PPFD and shoot fresh weight decreased significantly in the VFS from top to base, the VFS produced more crop per unit of growing floor area when compared with the HHS. Our results clearly demonstrate that VFS presents an attractive alternative to horizontal hydroponic growth systems and suggest that further increases in yield could be achieved by incorporating artificial lighting in the VFS.

  12. Zero-based budgeting: Pathway to sustainable budget implementation in Nigeria

    OpenAIRE

    Udeh Francis Nnoli; Sopekan Sam Adeyemi; Oraka Azubuike Onuora

    2017-01-01

    This paper investigates the application of Zero-Based Budgeting (ZBB) system to budget implementation by the Federal Government of Nigeria by ascertaining among others, the relationship between ZBB approach and budget performance indices in Nigeria. To achieve the above, primary data were obtained through questionnaires that were specifically designed for this study. The data obtained were analysed with the SPSS version 21. The statistical tools employed were Analysis of Variance (ANOVA) and ...

  13. Momentum flux associated with gravity waves in the low-latitude troposphere

    Directory of Open Access Journals (Sweden)

    S. R. Prabhakaran Nayar

    Full Text Available The vertical fluxes of horizontal momentum at tropospheric heights are calculated for four days, 25–28 August 1999. The mean zonal wind during these days show the presence of strong westward wind at the upper troposphere. Both the symmetric beam radar method and the power spectral method of evaluation of vertical flux of zonal and meridional momentum shows nearly the same result for quiet conditions. The temporal evolution of the momentum flux is estimated for a day with strong zonal shear and convection. These results indicate that on 28 August 1999, the strong downward vertical wind in the lower altitude range is associated with upward vertical flux of zonal momentum, and strong upward vertical wind is associated with downward vertical flux. Similarly, the strong shear in zonal wind is associated with the increase in negative values in vertical flux in the upper troposphere. Analysis of the role of wave periods in the transport of momentum flux indicates that the vertical momentum flux magnitude is not evenly distributed in all wave periods, but instead it peaks at certain wave periods in the range 10 to 100 min.

    Key words. Meteorology and atmospheric dynamics (convective process; tropical meteorology; precipitation

  14. Some advance on the comprehension of SR analysis for estimating the flux of a scalar

    Science.gov (United States)

    Castellví, Dr

    2009-04-01

    the scalar time trace to estimate scalar surface fluxes (Paw U et al., 1995). The analysis consists on determination of the mean ramp-pattern dimensions observed in the trace measured at one height. SR analysis is a simple transilient theory that is Lagrangian in nature and based on the scalar conservation equation. Here, it is shown (indirectly) that for a steady, incompressible and horizontally homogeneous flow, the production term in the budget equation of the mean turbulent variance of a scalar can be expressed in terms of the mean ramp dimensions observed in the trace. Therefore, the budget equation provides a link between the contrasting DM and SR analysis methods for estimating scalar surface fluxes. The dissipation method is based on the finest turbulence scales, whereas the SR analysis is based on canopy-scale coherent structures. By normalizing the budget equation, and invoking similarity, it is shown that DM and SR analysis are closely related (details were given in Castellvi and Snyder, 2008). However, SR analysis avoids the disadvantages of DM and it also overcomes potential problems related with the EC method (such as perfect alignment, rotation of the wind field, sensor separation, shadowing, etc.) because the velocity field (i.e., the sonic anemometer) is not required in SR analysis. The relation between SR analysis and DM allows to better interpret a crucial parameter (originally, denoted as ) involved in SR analysis. The parameter  was implemented to account for three assumptions made to solve the scalar flux conservation equation coupled with the Lagrangian scalar mass conservation equation. Considering an air parcel that suddenly moves down to the surface which volume covers all the vertical extend of the surface sources (sinks), the assumptions made are the following; (1) The air parcel remains in contact with the sources (sinks) for a period during which it has been enriched (depleted) of scalar, (2) During the enrichment phase there is not

  15. Fertilization effects on biomass production, nutrient leaching and budgets in four stand development stages of short rotation forest poplar

    DEFF Research Database (Denmark)

    Georgiadis, Petros; Nielsen, Anders Tærø; Stupak, Inge

    2017-01-01

    leaching based on water fluxes modelled with CoupModel and soil solution analyses and calculated the nutrient budgets. Fertilization effects depended on the stage of stand development, but were inconsistent in time. The biomass production increased in EST in the first year after fertilization and in PT...

  16. Budgeting Time to Teach about the School Budget

    Science.gov (United States)

    Weiss, Dale

    2011-01-01

    As a teacher in the Milwaukee Public Schools (MPS) for the past 16 years, the author has grown used to dismal budget cut news arriving each February. Although cuts are always frustrating and their results burdensome, the school has been able to "hang on" reasonably well. This year, however, the budget cuts were extreme. In this article,…

  17. STATE BUDGET APPROPRIATION MANAGERS AS THE SUBJECTS OF BUDGET PLANNING IN THE REPUBLIC OF LITHUANIA

    Directory of Open Access Journals (Sweden)

    Bronius Sudavicius

    2017-01-01

    Full Text Available The subject. The article deals with the problem of legal status of the state budget appropriation managers in the process of budget planning in the Republic of Lithuania.The purpose of the article is evaluation of state budget appropriation managers’ role in the process of budget planning in the Republic of Lithuania.The methodology of research is the analysis of the budgetary legislation of the Republic of Lithuania and the scientific literature, using the methods of logical and systematic analysis and other methods of scientific researchMain results, and scope of it’s application. The legal definition and the system of state budget appropriation managers is analyzed in the article. Particular attention is given to the question of role of state budget appropriation managers in the process of budget framework. The role of the Government and Parliament, as well as a special body of management of public finances (in the Republic of Lithuania, the Ministry of Finance – legislative and executive authorities – is emphasized in the scientific literature. But it is often not mentioned what an important place in this process other participants of budgetary relations – state budget appropriation managers – takes. The main participation of state budget appropriation managers in the budget planning process related to the planning of the budget expenditures.Preparation of strategic plans and programmes of budgetary funds by state budget appropriation managers can be considered part of governance activities in general. For budget planning drawn up draft budgets of the programs by state budget appropriation managers is particularly important.Conclusions. The efficiency of the use of state funds depends on the spending of funds, the quality and validity of the developed programmes of activities led by their agencies. State budget appropriation managers are involved, along with other entities, on each stage of the budget planning. They provide the

  18. Horizontal wells in subsurface remediation

    International Nuclear Information System (INIS)

    Losonsky, G.; Beljin, M.S.

    1992-01-01

    This paper reports on horizontal wells which offer an effective alternative to vertical wells in various environmental remediation technologies. Hydrogeological advantages of horizontal wells over vertical wells include a larger zone of influence, greater screen length, higher specific capacity and lower groundwater screen entrance velocity. Because of these advantages, horizontal wells can reduce treatment time and costs of groundwater recovery (pump-and-treat), in situ groundwater aeration (sparging) and soil gas extraction (vacuum extraction). Horizontal wells are also more effective than vertical wells in landfill leachate collection (under-drains), bioremediation, and horizontal grout injection

  19. Revisiting Gill's Circulation. Dynamic Response to Diabatic Heating of Different Horizontal Extents

    Science.gov (United States)

    Reboredo, B.; Bellon, G.

    2017-12-01

    The horizontal extent of diabatic heating associated with the MJO is thought to be crucial to its development, and the inability of GCMs to simulate the spatial, horizontal organization of clouds is considered a leading hypothesis to explain their limited capacity to simulate MJO events. This prevents the MJO large-circulation response from developing and feeding back on the development of clouds. We apply mid-tropospheric heating of different size in simple linear and non-linear models of the tropical atmosphere following Gill's seminal work on heat-induced tropical circulations. Results show that there is a scale for which the characteristic circulation {Γ c} for the vertical advection of moisture to produce the latent heat mean {Q} gives a rough estimate of the real world MJO scale. Overturning circulation flow rates above {Γ c} account for a circulation that transports more moisture than necessary to be maintained, and below {Γ c}, circulation would not transport enough moisture to maintain circulation. This dynamic scale might constrain the size of the spatially-organised convection necessary to the development of an MJO event. However, other effects are expected to modulate this scale, such as vertical advection of moisture anomalies, horizontal advection, evaporation, radiative heating, and sensible heat fluxes.

  20. Airborne particulate concentrations and fluxes at an active uranium mill tailings site

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1978-01-01

    Direct measurements of airborne particulate concentrations and fluxes of transported mill tailing materials were measured at an active mill tailings site. Experimental measurement equipment consisted of meteorological instrumentation to automatically activate total particulate air samplers as a function of wind speed increments and direction, as well as particle cascade impactors to measure airborne respirable concentrations as a function of particle size. In addition, an inertial impaction device measured nonrespirable fluxes of airborne particles. Caclulated results are presented in terms of the airborne solid concentration in g/m 3 , the horizontal airborne mass flux in g/(m 2 -day) for total collected nonrespirable particles and the radionuclide concentrations in dpm/g as a function of particle diameter for respirable and nonrespirable particles

  1. Atmospheric nitrogen deposition budget in a subtropical hydroelectric reservoir (Nam Theun II case study, Lao PDR)

    Science.gov (United States)

    Adon, Marcellin; Galy-Lacaux, Corinne; Serça, Dominique; Guerin, Frederic; Guedant, Pierre; Vonghamsao, Axay; Rode, Wanidaporn

    2016-04-01

    With 490 km² at full level of operation, Nam Theun 2 (NT2) is one of the largest hydro-reservoir in South East Asia. NT2 is a trans-basin hydropower project that diverts water from the Nam Theun river (a Mekong tributary) to the Xe Ban Fai river (another Mekong tributary). Atmospheric deposition is an important source of nitrogen (N), and it has been shown that excessive fluxes of N from the atmosphere has resulted in eutrophication of many coastal waters. A large fraction of atmospheric N input is in the form of inorganic N. This study presents an estimation of the atmospheric inorganic nitrogen budget into the NT2 hydroelectric reservoir based on a two-year monitoring (July 2010 to July 2012) including gas concentrations and precipitation. Dry deposition fluxes are calculated from monthly mean surface measurements of NH3, HNO3 and NO2 concentrations (passive samplers) together with simulated deposition velocities, and wet deposition fluxes from NH4+ and NO3- concentrations in single event rain samples (automated rain sampler). Annual rainfall amount was 2500 and 3160 mm for the two years. The average nitrogen deposition flux is estimated at 1.13 kgN.ha-1.yr-1 from dry processes and 5.52 kgN.ha-1.yr-1 from wet ones, i.e., an average annual total nitrogen flux of 6.6 kgN.ha-1.yr-1 deposited into the NT2 reservoir. The wet deposition contributes to 83% of the total N deposition. The nitrogen deposition budget has been also calculated over the rain tropical forest surrounding the reservoir. Due to higher dry deposition velocities above forested ecosystems, gaseous dry deposition flux is estimated at 4.0 kgN.ha-1.yr-1 leading to a total nitrogen deposition about 9.5 kgN.ha-1.yr-1. This result will be compared to nitrogen deposition in the African equatorial forested ecosystems in the framework of the IDAF program (IGAC-DEBITS-AFrica).

  2. Carbon fluxes and the carbon budget in agroecosystems on agro-gray soils of the forest-steppe in the Baikal region

    Science.gov (United States)

    Pomazkina, L. V.; Sokolova, L. G.; Zvyagintseva, E. N.

    2013-06-01

    Field studies devoted to the transformation of the carbon cycle in agroecosystems on agro-gray soils (including soils contaminated with fluorides from aluminum smelters) in dependence on the changes in the hydrothermic conditions were performed for the first time within the framework of the long-term (1996-2010) soil monitoring in the forest-steppe zone of the Baikal region. The major attention was paid to the impact of the environmental factors on the synthesis and microbial destruction of organic carbon compounds. Certain differences in the fluxes and budget of carbon were found for the plots with cereal and row crops and for the permanent and annual fallow plots. The adverse effect of fluorides manifested itself in the enhanced C-CO2 emission under unfavorable water and temperature conditions. The long-term average C-CO2 emission from the soils contaminated with fluorides in agroecosystems with wheat after fallow was higher than that from the uncontaminated soil (179 and 198 g of C/m2, respectively) and higher than that in the agroecosystems with a potato monoculture (129 and 141 g of C/m2, respectively). At the same time, no significant variations in the content of the carbon of the microbial biomass (Cmicr) in dependence on the environmental factors were found. The utilization of carbon for respiration and for growth of the soil microorganisms on the contaminated soil were unbalanced in particular years and for the entire period of the observations. The ratio between the fluxes of the net mineralized and re-immobilized carbon was used for the integral assessment of the functioning regime of the agroecosystems and the loads on them. Independently from the soil contamination with fluorides, the loads on the agroecosystems with wheat were close to the maximum permissible value, and the loads on the agroecosystems with potatoes were permissible. It was shown that the carbon deficit in the uncontaminated soils was similar under the wheat and potatoes (-30 and -28 g

  3. Estimating noctural ecosystem respiration from the vertical turbulent flux and change in storange of CO2

    NARCIS (Netherlands)

    Gorsel, van E.; Delpierre, N.; Leuning, R.; Black, A.; Munger, J.W.; Wofsy, S.; Aubinet, M.; Feigenwinter, C.; Beringer, J.; Bonal, D.; Chen, B.; Chen, J.; Clement, R.; Davis, K.J.; Desai, A.R.; Dragoni, D.; Etzold, S.; Grünwald, T.; Gu, L.; Heinesch, B.; Hutyra, L.R.; Jans, W.W.P.; Kutsch, W.; Law, B.E.; Leclerc, Y.; Mammarella, I.; Montagnani, L.; Noormets, A.; Rebmann, C.; Wharton, S.

    2009-01-01

    Micrometeorological measurements of nighttime ecosystem respiration can be systematically biased when stable atmospheric conditions lead to drainage flows associated with decoupling of air flow above and within plant canopies. The associated horizontal and vertical advective fluxes cannot be

  4. Public Budget Database - Budget Authority and offsetting receipts 1976-Current

    Data.gov (United States)

    Executive Office of the President — This file contains historical budget authority and offsetting receipts for 1976 through the current budget year, as well as four years of projections. It can be used...

  5. Experimental Study of Flow Boiling Heat Transfer in a Horizontal Microfin Tube

    OpenAIRE

    Yu, Jian; Koyama, Shigeru; Momoki, Satoru

    1995-01-01

    An experimental study on flow boiling heat transfer in a horizontal microfin tube is conducted with pure refrigerants HFC134a, HCFC123 and HCFC22 using a water-heated double-tube type test section. The test microfin tube is a copper tube having the following dimensions: 8.37mm mean inside diameter, 0.168mm fin height, 60fin number and 18 degree of helix angle. The local heat transfer coefficients for both counter and parallel flows are measured in a range of heat flux of 1 to 93W/m^2, mass ve...

  6. Delta-Flux: An eddy covariance network for a climate-smart Lower Mississippi Basin

    Science.gov (United States)

    Runkle, Benjamin R. K.; Rigby, James R.; Reba, Michele L.; Anapalli, Saseendran S.; Bhattacharjee, Joydeep; Krauss, Ken W.; Liang, Lu; Locke, Martin A.; Novick, Kimberly A.; Sui, Ruixiu; Suvočarev, Kosana; White, Paul M.

    2017-01-01

    Networks of remotely monitored research sites are increasingly the tool used to study regional agricultural impacts on carbon and water fluxes. However, key national networks such as the National Ecological Observatory Network and AmeriFlux lack contributions from the Lower Mississippi River Basin (LMRB), a highly productive agricultural area with opportunities for soil carbon sequestration through conservation practices. The authors describe the rationale to create the new Delta-Flux network, which will coordinate efforts to quantify carbon and water budgets at seventeen eddy covariance flux tower sites in the LMRB. The network structure will facilitate climate-smart management strategies based on production-scale and continuous measurements of carbon and water fluxes from the landscape to the atmosphere under different soil and water management conditions. The seventeen instrumented field sites are expected to monitor fluxes within the most characteristic landscapes of the target area: row-crop fields, pasture, grasslands, forests, and marshes. The network participants are committed to open collaboration and efficient regionalization of site-level findings to support sustainable agricultural and forestry management and conservation of natural resources.

  7. Radiation budget in green beans crop with and without polyethylene cover

    International Nuclear Information System (INIS)

    Souza, J.L. de; Escobedo, J.F.

    1997-01-01

    The radiation budget in agricultural crops is very important on the microclimate characterization, on the water losses determination and on dry matter accumulation of vegetation. This work describes the radiation budget determination in a green beans crop (Phaseolus vulgaris L.), in Botucatu, SP, Brazil (22° 54′S; 48° 27′W; 850 m), under two different conditions: the normal field culture and in a polyethylene greenhouse. The densities of fluxes of radiation were used to construct diurnal curves of the components of global radiation (Rg), reflected radiation (Rr), net radiation (Rn).The arithmetic's relations allowed to obtain the components net short-waves (Rc) and net long-waves (Rl). The analysis of these components related to the leaf area index (LAI) in many phenological phases of the culture showed Rg distributed in 68%, 85%, 17% and 66%, 76%, 10% to Rn, Rc and Rl in the internal and external ambients in a polyethylene greenhouse, respectively [pt

  8. Majorana neutrino transition magnetic moment in a variant of Zee model with horizontal symmetry

    International Nuclear Information System (INIS)

    Dhar, Jyoti; Dev, S.

    1992-01-01

    A SU(2) H symmetric variant of Zee model of lepton flavour violation is presented and is shown to lead to neutrino transition magnetic moment of the order required to explain the solar neutrino deficit and the possible anticorrelation of solar neutrino flux with sunspot activity via VVO mechanism. The use of horizontal symmetry leads to totally degenerate neutrino states which may be combined to form a ZKM Dirac neutrino with naturally small mass. (author). 22 refs., 1 fig

  9. Hydrological and solute budgets of Lake Qinghai, the largest lake on the Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zhangdong [Chinese Academy of Sciences (CAS), Beijing (China); National Cheng Kung Univ., Tainan City (Taiwan); You, Chen-Feng [National Cheng Kung Univ., Tainan City (Taiwan); Wang, Yi [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shi, Yuewei [Bureau of Hydrology and Water Resources of Qinghai Province, Xining (China)

    2009-12-04

    Water level and chemistry of Lake Qinghai are sensitive to climate changes and are important for paleoclimatic implications. An accurate understanding of hydrological and chemical budgets is crucial for quantifying geochemical proxies and carbon cycle. Published results of water budget are firstly reviewed in this paper. Chemical budget and residence time of major dissolved constituents in the lake are estimated using reliable water budget and newly obtained data for seasonal water chemistry. The results indicate that carbonate weathering is the most important riverine process, resulting in dominance of Ca 2+ and DIC for river waters and groundwater. Groundwater contribution to major dissolved constituents is relatively small (4.2 ± 0.5%). Wet atmospheric deposition contributes annually 7.4–44.0% soluble flux to the lake, resulting from eolian dust throughout the seasons. Estimates of chemical budget further suggest that (1) the Buha-type water dominates the chemical components of the lake water, (2) Na+, Cl-, Mg 2+ , and K+ in lake water are enriched owing to their conservative behaviors, and (3) precipitation of authigenic carbonates (low-Mg calcite, aragonite, and dolomite) transits quickly dissolved Ca 2+ into the bottom sediments of the lake, resulting in very low Ca 2+ in the lake water. Therefore, authigenic carbonates in the sediments hold potential information on the relative contribution of different solute inputs to the lake and the lake chemistry in the past.

  10. Automated Budget System -

    Data.gov (United States)

    Department of Transportation — The Automated Budget System (ABS) automates management and planning of the Mike Monroney Aeronautical Center (MMAC) budget by providing enhanced capability to plan,...

  11. Disturbance and climate effects on carbon stocks and fluxes across western Oregon USA.

    Science.gov (United States)

    B.E. Law; D. Turner; J. Campbell; O.J. Sun; S. Van Tuyl; W.D. Ritts; W.B. Cohen

    2004-01-01

    We used a spatially nested hierarchy of field and remote-sensing observations and a process model, Biome-BGC, to produce a carbon budget for the forested region of Oregon, and to determine the relative influence of differences in climate and disturbance among the ecoregions on carbon stocks and fluxes. The simulations suggest that annual net uptake (net ecosystem...

  12. Flooding Regime Impacts on Radiation, Evapotranspiration, and Latent Energy Fluxes over Groundwater-Dependent Riparian Cottonwood and Saltcedar Forests

    Directory of Open Access Journals (Sweden)

    James Cleverly

    2015-01-01

    Full Text Available Radiation and energy balances are key drivers of ecosystem water and carbon cycling. This study reports on ten years of eddy covariance measurements over groundwater-dependent ecosystems (GDEs in New Mexico, USA, to compare the role of drought and flooding on radiation, water, and energy budgets of forests differing in species composition (native cottonwood versus nonnative saltcedar and flooding regime. After net radiation (700–800 W m−2, latent heat flux was the largest energy flux, with annual values of evapotranspiration exceeding annual precipitation by 250–600%. Evaporative cooling dominated the energy fluxes of both forest types, although cottonwood generated much lower daily values of sensible heat flux (<−5 MJ m−2 d−1. Drought caused a reduction in evaporative cooling, especially in the saltcedar sites where evapotranspiration was also reduced, but without a substantial decline in depth-to-groundwater. Our findings have broad implications on water security and the management of native and nonnative vegetation within semiarid southwestern North America. Specifically, consideration of the energy budgets of GDEs as they respond to fluctuations in climatic conditions can inform the management options for reducing evapotranspiration and maintaining in-stream flow, which is legally mandated as part of interstate and international water resources agreements.

  13. Water cycle research associated with the CaPE hydrometeorology project (CHymP

    Science.gov (United States)

    Duchon, Claude E.

    1993-01-01

    One outgrowth of the Convection and Precipitation/Electrification (CaPE) experiment that took place in central Florida during July and August 1991 was the creation of the CaPE Hydrometeorology Project (CHymP). The principal goal of this project is to investigate the daily water cycle of the CaPE experimental area by analyzing the numerous land and atmosphere in situ and remotely sensed data sets that were generated during the 40-days of observations. The water cycle comprises the atmospheric branch. In turn, the atmospheric branch comprises precipitation leaving the base of the atmospheric volume under study, evaporation and transpiration entering the base, the net horizontal fluxes of water vapor and cloud water through the volume and the conversion of water vapor to cloud water and vice-versa. The sum of these components results in a time rate of change in the water and liquid water (or ice) content of the atmospheric volume. The components of the land branch are precipitation input to and evaporation and transpiration output from the surface, net horizontal fluxes of surface and subsurface water, the sum of which results in a time rate of change in surface and subsurface water mass. The objective of CHymP is to estimate these components in order to determine the daily water budget for a selected area within the CaPE domain. This work began in earnest in the summer of 1992 and continues. Even estimating all the budget components for one day is a complex and time consuming task. The discussions below provides a short summary of the rainfall quality assessment procedures followed by a plan for estimating the horizontal moisture flux.

  14. THE POSITION BUDGETS OF ADMINISTRATIVE AND TERRITORIAL UNITS IN GENERAL CONSOLIDATED BUDGET

    Directory of Open Access Journals (Sweden)

    CHIRCULESCU MARIA FELICIA

    2017-12-01

    Full Text Available The budget is a tool of territorial administrative units of financial and budgetary policy in which the state intervenes in the economy at the local level, having a major impact on general government.Through the decentralization processes that are increasingly debated and applied, the paper aims to highlight the importance of the territorial administrative unit budgets in the consolidated budget in Romania.Thus, the work comprises both theoretical notions concerning the presentation of the consolidated state budget and the budget of the territorial administrative units. The relevance of the work lies in the importance of general government in the regulation of macroeconomic balances by sizing or macroeconomic imbalances, with modern methods that analyze the possibilities and effects of new types of deficits or surpluses in the public sector.

  15. Operational budgeting using fuzzy goal programming

    OpenAIRE

    Saeed Mohammadi; Kamran Feizi; Ali Khatami Firouz Abadi

    2013-01-01

    Having an efficient budget normally has different advantages such as measuring the performance of various organizations, setting appropriate targets and promoting managers based on their achievements. However, any budgeting planning requires prediction of different cost components. There are various methods for budgeting planning such as incremental budgeting, program budgeting, zero based budgeting and performance budgeting. In this paper, we present a fuzzy goal programming to estimate oper...

  16. Teaching the Federal Budget, National Debt, and Budget Deficit: Findings from High School Teachers

    Science.gov (United States)

    Marri, Anand R.; Ahn, Meesuk; Crocco, Margaret Smith; Grolnick, Maureen; Gaudelli, William; Walker, Erica N.

    2011-01-01

    The issues surrounding the federal budget, national debt, and budget deficit are complex, but not beyond the reach of young students. This study finds scant treatment of the federal budget, national debt, and budget deficit in high schools today. It is hardly surprising that high school teachers spend so little time discussing these topics in…

  17. Use of Atmospheric Budget to Reduce Uncertainty in Estimated Water Availability over South Asia from Different Reanalyses

    Science.gov (United States)

    Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal

    2016-07-01

    Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P-E). Here, we compute P-E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P-E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P-E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P-E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making.

  18. Use of Atmospheric Budget to Reduce Uncertainty in Estimated Water Availability over South Asia from Different Reanalyses.

    Science.gov (United States)

    Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal

    2016-07-08

    Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P-E). Here, we compute P-E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P-E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P-E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P-E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making.

  19. Preparing the operating budget.

    Science.gov (United States)

    Williams, R B

    1983-12-01

    The process of preparing a hospital pharmacy budget is presented. The desired characteristics of a budget and the process by which it is developed and approved are described. Fixed, flexible, and zero-based budget types are explained, as are the major components of a well-developed budget: expense, workload, productivity, revenue, and capital equipment and other expenditures. Specific methods for projecting expenses and revenues, based on historical data, are presented along with a discussion of variables that must be considered in order to achieve an accurate and useful budget. The current shift in emphasis away from revenue capture toward critical analysis of pharmacy costs underscores the importance of budgetary analysis for hospital pharmacy managers.

  20. Estimates of magnetic flux, and energy balance in the plasma sheet during substorm expansion

    Science.gov (United States)

    Hesse, Michael; Birn, Joachim; Pulkkinen, Tuija

    1996-01-01

    The energy and magnetic flux budgets of the magnetotail plasma sheet during substorm expansion are investigated. The possible mechanisms that change the energy content of the closed field line region which contains all the major dissipation mechanisms of relevance during substorms, are considered. The compression of the plasma sheet mechanism and the diffusion mechanism are considered and excluded. It is concluded that the magnetic reconnection mechanism can accomplish the required transport. Data-based empirical magnetic field models are used to investigate the magnetic flux transport required to account for the observed magnetic field dipolarizations in the inner magnetosphere. It is found that the magnetic flux permeating the current sheet is typically insufficient to supply the required magnetic flux. It is concluded that no major substorm-type magnetospheric reconfiguration is possible in the absence of magnetic reconnection.

  1. Between Bedside and Budget

    NARCIS (Netherlands)

    J.L.T. Blank; E. Eggink

    1998-01-01

    Original title: Tussen bed en budget. The report Between bedside and budget (Tussen bed en budget) describes an extensive empirical study of the efficiency of general and university hospitals in the Netherlands. A policy summary recaps the main findings of the study. Those findings

  2. Flux distribution measurements in the Bruce A unit 1 reactor

    International Nuclear Information System (INIS)

    Okazaki, A.; Kettner, D.A.; Mohindra, V.K.

    1977-07-01

    Flux distribution measurements were made by copper wire activation during low power commissioning of the unit 1 reactor of the Bruce A generating station. The distribution was measured along one diameter near the axial and horizontal midplanes of the reactor core. The activity distribution along the copper wire was measured by wire scanners with NaI detectors. The experiments were made for five configurations of reactivity control mechanisms. (author)

  3. Operational budgeting using fuzzy goal programming

    Directory of Open Access Journals (Sweden)

    Saeed Mohammadi

    2013-10-01

    Full Text Available Having an efficient budget normally has different advantages such as measuring the performance of various organizations, setting appropriate targets and promoting managers based on their achievements. However, any budgeting planning requires prediction of different cost components. There are various methods for budgeting planning such as incremental budgeting, program budgeting, zero based budgeting and performance budgeting. In this paper, we present a fuzzy goal programming to estimate operational budget. The proposed model uses fuzzy triangular as well as interval number to estimate budgeting expenses. The proposed study of this paper is implemented for a real-world case study in province of Qom, Iran and the results are analyzed.

  4. Carbon Budgets for Catchments Across a Managed Landscape Mosaic in Southeast Sweden: Contributing to the Safety Assessment of a Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Loefgren, Anders; Miliander, Sofia; Truve, Johan

    2006-01-01

    Ecosystem budgets of matter contribute to the assessment of transport and accumulation of bioavailable contaminants in a landscape, since flows of matter and energy ultimately determine the rates at which contaminants will be partitioned in the environment. This study compares ecosystem properties, such as net primary production (NPP), sequestration of matter and fluxes to food sources for humans, which are of potential interest to describe fluxes and accumulation of bioavailable radionuclides in 14 catchments within a larger catchment area in southeast Sweden. The carbon budgets, used as a proxy for organic matter, are mainly based on local estimates of pools and fluxes, which have been distributed across a landscape mosaic of different vegetation types and management regimes using a geographical information system (GIS). NPP varied by a factor close to two (432 - 709 gC/m 2 /y), while net ecosystem production ranged between -124 and 159 gC/m 2 /y for the different catchments. Carbon sequestration mainly occurred in the vegetation while the soil organic carbon pool was mainly a source of carbon. Large herbivores consumed on average 4.5 % of the above-ground green tissue production. When arable land was present in the catchment, the flux of carbon to humans was highest from crops and, in decreasing order, milk and beef, followed by the flux from hunting and berry/fungus picking. The results can be used to estimate the potential assimilation of radionuclides in vegetation and the potential exposure to humans of bioavailable radionuclides

  5. Understanding the Budget Process

    OpenAIRE

    Mesut Yalvaç

    2000-01-01

    Many different budgeting techniques can be used in libraries, and some combination of these will be appropriate for almost any individual situation. Li-ne-item, program, performance, formula, variable, and zero-base budgets all have features that may prove beneficial in the preparation of a budget. Budgets also serve a variety of functions, providing for short-term and long-term financial planning as well as for cash management over a period of time. Short-term plans are reflected in the oper...

  6. Toward an Improved Understanding of the Global Fresh Water Budget

    Science.gov (United States)

    Hildebrand, Peter H.

    2005-01-01

    The major components of the global fresh water cycle include the evaporation from the land and ocean surfaces, precipitation onto the Ocean and land surfaces, the net atmospheric transport of water from oceanic areas over land, and the return flow of water from the land back into the ocean. The additional components of oceanic water transport are few, principally, the mixing of fresh water through the oceanic boundary layer, transport by ocean currents, and sea ice processes. On land the situation is considerably more complex, and includes the deposition of rain and snow on land; water flow in runoff; infiltration of water into the soil and groundwater; storage of water in soil, lakes and streams, and groundwater; polar and glacial ice; and use of water in vegetation and human activities. Knowledge of the key terms in the fresh water flux budget is poor. Some components of the budget, e.g. precipitation, runoff, storage, are measured with variable accuracy across the globe. We are just now obtaining precise measurements of the major components of global fresh water storage in global ice and ground water. The easily accessible fresh water sources in rivers, lakes and snow runoff are only adequately measured in the more affluent portions of the world. presents proposals are suggesting methods of making global measurements of these quantities from space. At the same time, knowledge of the global fresh water resources under the effects of climate change is of increasing importance and the human population grows. This paper provides an overview of the state of knowledge of the global fresh water budget, evaluating the accuracy of various global water budget measuring and modeling techniques. We review the measurement capabilities of satellite instruments as compared with field validation studies and modeling approaches. Based on these analyses, and on the goal of improved knowledge of the global fresh water budget under the effects of climate change, we suggest

  7. How to determine the GHG budget of a pasture field with grazing animals

    Science.gov (United States)

    Ammann, Christof; Neftel, Albrecht; Felber, Raphael

    2016-04-01

    Up to now the scientific investigation and description of the agriculture related greenhouse gas (GHG) exchange has been largely separated into (i) direct animal related and (ii) ecosystem area related processes and measurement methods. An overlap of the two usually separated topics occurs for grazed pastures, where direct animal and pasture area emissions are relevant. In the present study eddy covariance (EC) flux measurements on the field scale were combined with a source location attribution (footprint) model and with GPS position measurements of the individual animals. The experiment was performed on a pasture field in Switzerland under a rotational full grazing regime with dairy cows. The exchange fluxes of CH4, CO2, and N2O were measured simultaneously over the entire year. The observed CH4 emission fluxes correlated well with the presence of cows in the flux footprint. When converted to average emission per cow, the results agreed with published values from respiration chamber experiments with similar cows. For CO2 a sophisticated partitioning algorithm was applied to separate the pasture and animal contributions, because both were in the same order of magnitude. The N2O exchange fully attributable to the pasture soil showed considerable and continuous emissions through the entire seasonal course mainly modulated by soil moisture and temperature. The resulting GHG budget shows that the largest GHG effect of the pasture system was due to enteric CH4 emissions followed by soil N2O emissions, but that the carbon storage change was affected by a much larger uncertainty. The results demonstrate that the EC technique in combination with animal position information allows to consistently quantify the exchange of all three GHG on the pasture and to adequately distinguish between direct animal and diffuse area sources (and sinks). Yet questions concerning a standardized attribution of animal related emissions to the pasture GHG budget still need to be resolved.

  8. Stockage de carbone et flux de gaz à effet de serre en prairie (synthèse bibliographique

    Directory of Open Access Journals (Sweden)

    Jérôme, E.

    2013-01-01

    Full Text Available Carbon sequestration and greenhouse gas fluxes in grassland. A review. Grassland carbon (C sequestration can play an important role in mitigating total greenhouse gas (GHG emissions of livestock production systems. An accurate inventory of livestock production system contribution to GHG emissions requires to think in terms of global budget, by considering both the GHG sources and the mitigation potential trough grassland soil carbon sequestration. There is a huge variability in C and GHG balances of grasslands that is mainly due to management practices and climatic conditions. The present article shows that, to reduce the uncertainties of the results, long term measurements at the field scale are necessary. Also, it shows the importance of taking into account the fluxes of the three main GHGs (carbon dioxide, nitrous oxide, methane into account when calculating the GHG budget. This article also highlights the need for a better understanding of the mechanisms driving the fluxes, in relation to environmental factors and management practices, in order to propose mitigation strategies able to enhance soil carbon sequestration in soils and to reduce methane and nitrous oxide emissions.

  9. Comparative assessment of condensation models for horizontal tubes

    International Nuclear Information System (INIS)

    Schaffrath, A.; Kruessenberg, A.K.; Lischke, W.; Gocht, U.; Fjodorow, A.

    1999-01-01

    The condensation in horizontal tubes plays an important role e.g. for the determination of the operation mode of horizontal steam generators of VVER reactors or passive safety systems for the next generation of nuclear power plants. Two different approaches (HOTKON and KONWAR) for modeling this process have been undertaken by Forschungszentrum Juelich (FZJ) and University for Applied Sciences Zittau/Goerlitz (HTWS) and implemented into the 1D-thermohydraulic code ATHLET, which is developed by the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH for the analysis of anticipated and abnormal transients in light water reactors. Although the improvements of the condensation models are developed for different applications (VVER steam generators - emergency condenser of the SWR1000) with strongly different operation conditions (e.g. the temperature difference over the tube wall in HORUS is up to 30 K and in NOKO up to 250 K, the heat flux density in HORUS is up to 40 kW/m 2 and in NOKO up to 1 GW/m 2 ) both models are now compared and assessed by Forschungszentrum Rossendorf FZR e.V. Therefore, post test calculations of selected HORUS experiments were performed with ATHLET/KONWAR and compared to existing ATHLET and ATHLET/HOTKON calculations of HTWS. It can be seen that the calculations with the extension KONWAR as well as HOTKON improve significantly the agreement between computational and experimental data. (orig.) [de

  10. Formation Mechanism of Self Assembled Horizontal ErSb Nanowires Embedded in a GaSb(001) Matrix

    Science.gov (United States)

    Wilson, Nathaniel; Kraemer, Stephan; PalmstrøM, Chris

    The ErxGa1-xSb exhibits a variety of self-assembling nanostructures. In order to harness these nanostructures for use in devices and other material systems it is important to understand their formation. We have characterized the growth mechanism of self-assembled horizontal ErSb nanowires in a GaSb(001) matrix through the use of in-situ Scanning Tunneling Microscopy (STM) as well as ex-situ Transmission Electron Microscopy (TEM). We observe large GaSb macrosteps on the growth surface of Er.3Ga.7Sb samples. The areas near the ledge and base of the macrosteps show significant differences in size and distribution of ErSb nanowires. Results suggest that the formation of macrosteps drives the transition from vertical to horizontal nanowires in the ErxGa1-xSb system. We also observe a low temperature growth mode, which results in horizontal nanowire formation under a wide range of flux conditions. This new growth mode does not exhibit the embedded growth observed in the formation of nanowires at higher temperatures and may allow for horizontal nanowire formation without the presence of macrosteps, as well as the formation of smaller nanoparticles which may be useful for achieving smaller nanoparticle dimensions and electron confinement effects. This work was supported by NSF-DMR under 1507875.

  11. System Budgets

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1996-01-01

    The lecture note is aimed at introducing system budgets for optical communication systems. It treats optical fiber communication systems (six generations), system design, bandwidth effects, other system impairments and optical amplifiers.......The lecture note is aimed at introducing system budgets for optical communication systems. It treats optical fiber communication systems (six generations), system design, bandwidth effects, other system impairments and optical amplifiers....

  12. Vertical and horizontal subsidiarity

    Directory of Open Access Journals (Sweden)

    Ivan V. Daniluk

    2016-02-01

    Full Text Available This article makes an attempt to analyze the principle of subsidiarity in its two main manifestations, namely vertical and horizontal, to outline the principles of relations between the state and regions within the vertical subsidiarity, and features a collaboration of the government and civil society within the horizontal subsidiarity. Scientists identify two types, or two levels of the subsidiarity principle: vertical subsidiarity and horizontal subsidiarity. First, vertical subsidiarity (or territorial concerning relations between the state and other levels of subnational government, such as regions and local authorities; second, horizontal subsidiarity (or functional concerns the relationship between state and citizen (and civil society. Vertical subsidiarity expressed in the context of the distribution of administrative responsibilities to the appropriate higher level lower levels relative to the state structure, ie giving more powers to local government. However, state intervention has subsidiary-lower action against local authorities in cases of insolvency last cope on their own, ie higher organisms intervene only if the duties are less authority is insufficient to achieve the goals. Horizontal subsidiarity is within the relationship between power and freedom, and is based on the assumption that the concern for the common good and the needs of common interest community, able to solve community members (as individuals and citizens’ associations and role of government, in accordance horizontal subsidiarity comes to attracting features subsidiarity assistance, programming, coordination and possibly control.

  13. The 'People's Budget' and Budget Effectiveness:The Case of Local ...

    African Journals Online (AJOL)

    All over the world, participatory budgeting is being advocated. This is based on the belief that stakeholders' participation in the budgeting process improves transparency, accountability and service delivery. Using evidence from 105 Civil Society Organisations (CSOs) in Kabalore and Kamwenge district local governments ...

  14. Heat transfer during forced convection condensation inside horizontal tube

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, T.N. [M.M.M. Engineering College, Gorakhpur, Uttar Pradesh (India). Dept. of Mechanical Engineering; Varma, H.K.; Gupta, C.P. [Roorkee Univ., Uttar Pradesh (India). Dept. of Mechanical and Industrial Engineering

    1995-03-01

    This paper presents the results of an experimental investigation on heat transfer behaviour during forced convection condensation inside a horizontal tube for wavy, semi-annular and annular flows. A qualitative study was made of the effect of various parameters - refrigerant mass flux, vapour quality, condensate film temperature drop and average vapour mass velocity - on average condensing-heat transfer coefficient. Akers-Rosson correlations have been found to predict the heat transfer coefficients within {+-} 25% for the entire range of data. A closer examination of the data revealed that the nature of the relation for the heat transfer coefficient changes from annular and semi-annular flow to wavy flow. Akers-Rosson correlations with changed constant and power have been recommended for the two flow regimes. (author)

  15. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    International Nuclear Information System (INIS)

    Kirkham, R.R.

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy's Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, G T , is a major component of the energy balance in arid systems and G T generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and G T for all sites

  16. 42 CFR 457.140 - Budget.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Budget. 457.140 Section 457.140 Public Health... Child Health Insurance Programs and Outreach Strategies § 457.140 Budget. The State plan, or plan amendment that has a significant impact on the approved budget, must include a budget that describes the...

  17. CURRENT BUILDUP IN EMERGING SERPENTINE FLUX TUBES

    International Nuclear Information System (INIS)

    Pariat, E.; Masson, S.; Aulanier, G.

    2009-01-01

    The increase of magnetic flux in the solar atmosphere during active-region formation involves the transport of the magnetic field from the solar convection zone through the lowest layers of the solar atmosphere, through which the plasma β changes from >1 to <1 with altitude. The crossing of this magnetic transition zone requires the magnetic field to adopt a serpentine shape also known as the sea-serpent topology. In the frame of the resistive flux-emergence model, the rising of the magnetic flux is believed to be dynamically driven by a succession of magnetic reconnections which are commonly observed in emerging flux regions as Ellerman bombs. Using a data-driven, three-dimensional (3D) magnetohydrodynamic numerical simulation of flux emergence occurring in active region 10191 on 2002 November 16-17, we study the development of 3D electric current sheets. We show that these currents buildup along the 3D serpentine magnetic-field structure as a result of photospheric diverging horizontal line-tied motions that emulate the observed photospheric evolution. We observe that reconnection can not only develop following a pinching evolution of the serpentine field line, as usually assumed in two-dimensional geometry, but can also result from 3D shearing deformation of the magnetic structure. In addition, we report for the first time on the observation in the UV domain with the Transition Region and Coronal Explorer (TRACE) of extremely transient loop-like features, appearing within the emerging flux domain, which link several Ellermam bombs with one another. We argue that these loop transients can be explained as a consequence of the currents that build up along the serpentine magnetic field.

  18. Russian boreal peatlands dominate the natural European methane budget

    International Nuclear Information System (INIS)

    Schneider, Julia; Jungkunst, Hermann F; Wolf, Ulrike; Schreiber, Peter; Kutzbach, Lars; Gazovic, Michal; Miglovets, Mikhail; Mikhaylov, Oleg; Grunwald, Dennis; Erasmi, Stefan; Wilmking, Martin

    2016-01-01

    About 60% of the European wetlands are located in the European part of Russia. Nevertheless, data on methane emissions from wetlands of that area are absent. Here we present results of methane emission measurements for two climatically different years from a boreal peatland complex in European Russia. Winter fluxes were well within the range of what has been reported for the peatlands of other boreal regions before, but summer fluxes greatly exceeded the average range of 5–80 mg CH 4 m −2 d −1 for the circumpolar boreal zone. Half of the measured fluxes ranged between 150 and 450 mg CH 4 m −2 d −1 . Extrapolation of our data to the whole boreal zone of European Russia shows that theses emissions could amount to up to 2.7 ± 1.1 Tg CH 4 a −1 , corresponding to 69% of the annual emissions from European wetlands or 33% of the total annual natural European methane emission. In 2008, climatic conditions corresponded to the long term mean, whereas the summer of 2011 was warmer and noticeably drier. Counterintuitively, these conditions led to even higher CH 4 emissions, with peaks up to two times higher than the values measured in 2008. As Russian peatlands dominate the areal extend of wetlands in Europe and are characterized by very high methane fluxes to the atmosphere, it is evident, that sound European methane budgeting will only be achieved with more insight into Russian peatlands. (letter)

  19. Environmental budget and policy goal

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sang Hwan [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    The assigned budget for environmental sector is quite insufficient to meet enormous environmental demand. Under this circumstance, there is only one way to solve environmental problems efficiently, i.e. to use a given budget efficiently. Therefore, the study on efficient utilization of a given environmental invested finance is needed by customizing a diagnosis of present condition on the operation of environmental budget and environmental investment analysis. In this respect, an entire national budget of 1999 and environmental budget were analyzed in this study. By analyzing economic efficiency of sewage disposal program, integrated septic tank system, VOC regulation, incinerator construction program, food waste disposal program, and recycling program, an efficient budget policy was presented. 19 refs., 18 figs., 169 tabs.

  20. Baseline budgeting for continuous improvement.

    Science.gov (United States)

    Kilty, G L

    1999-05-01

    This article is designed to introduce the techniques used to convert traditionally maintained department budgets to baseline budgets. This entails identifying key activities, evaluating for value-added, and implementing continuous improvement opportunities. Baseline Budgeting for Continuous Improvement was created as a result of a newly named company president's request to implement zero-based budgeting. The president was frustrated with the mind-set of the organization, namely, "Next year's budget should be 10 to 15 percent more than this year's spending." Zero-based budgeting was not the answer, but combining the principles of activity-based costing and the Just-in-Time philosophy of eliminating waste and continuous improvement did provide a solution to the problem.

  1. An iterative procedure for estimating areally averaged heat flux using planetary boundary layer mixed layer height and locally measured heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, R. L.; Gao, W.; Lesht, B. M.

    2000-04-04

    Measurements at the central facility of the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) are intended to verify, improve, and develop parameterizations in radiative flux models that are subsequently used in General Circulation Models (GCMs). The reliability of this approach depends upon the representativeness of the local measurements at the central facility for the site as a whole or on how these measurements can be interpreted so as to accurately represent increasingly large scales. The variation of surface energy budget terms over the SGP CART site is extremely large. Surface layer measurements of the sensible heat flux (H) often vary by a factor of 2 or more at the CART site (Coulter et al. 1996). The Planetary Boundary Layer (PBL) effectively integrates the local inputs across large scales; because the mixed layer height (h) is principally driven by H, it can, in principal, be used for estimates of surface heat flux over scales on the order of tens of kilometers. By combining measurements of h from radiosondes or radar wind profiles with a one-dimensional model of mixed layer height, they are investigating the ability of diagnosing large-scale heat fluxes. The authors have developed a procedure using the model described by Boers et al. (1984) to investigate the effect of changes in surface sensible heat flux on the mixed layer height. The objective of the study is to invert the sense of the model.

  2. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences

    Science.gov (United States)

    Howarth, R.W.; Billen, G.; Swaney, D.; Townsend, A.; Jaworski, N.; Lajtha, K.; Downing, J.A.; Elmgren, Ragnar; Caraco, N.; Jordan, T.; Berendse, F.; Freney, J.; Kudeyarov, V.; Murdoch, P.; Zhu, Z.-L.

    1996-01-01

    We present estimates of total nitrogen and total phosphorus fluxes in rivers to the North Atlantic Ocean from 14 regions in North America, South America, Europe, and Africa which collectively comprise the drainage basins to the North Atlantic. The Amazon basin dominates the overall phosphorus flux and has the highest phosphorus flux per area. The total nitrogen flux from the Amazon is also large, contributing 3.3 Tg yr-1 out of a total for the entire North Atlantic region of 13.1 Tg yr-1. On a per area basis, however, the largest nitrogen fluxes are found in the highly disturbed watersheds around the North Sea, in northwestern Europe, and in the northeastern U.S., all of which have riverine nitrogen fluxes greater than 1,000 kg N km-2 yr-1. Non-point sources of nitrogen dominate riverine fluxes to the coast in all regions. River fluxes of total nitrogen from the temperate regions of the North Atlantic basin are correlated with population density, as has been observed previously for fluxes of nitrate in the world's major rivers. However, more striking is a strong linear correlation between river fluxes of total nitrogen and the sum of anthropogenically-derived nitrogen inputs to the temperate regions (fertilizer application, human-induced increases in atmospheric deposition of oxidized forms of nitrogen, fixation by leguminous crops, and the import/export of nitrogen in agricultural products). On average, regional nitrogen fluxes in rivers are only 25% of these anthropogenically derived nitrogen inputs. Denitrification in wetlands and aquatic ecosystems is probably the dominant sink, with storage in forests perhaps also of importance. Storage of nitrogen in groundwater, although of importance in some localities, is a very small sink for nitrogen inputs in all regions. Agricultural sources of nitrogen dominate inputs in many regions, particularly the Mississippi basin and the North Sea drainages. Deposition of oxidized nitrogen, primarily of industrial origin, is the

  3. Going beyond the stationary flux towers to assess the interactions of land use and climate

    Science.gov (United States)

    Yakir, Dan; Rohatyn, shani; Ramati, Efrat; Tatrinov, Fedor; Rotenberg, Eyal

    2017-04-01

    Networks of permanent, stationary flux towers that allows continuous canopy-scale measurements over annual time-scales have revolutionized the study of the contemporary carbon cycle over the past two decades. However, this approach is limited in addressing questions related to dynamic changes in land use, vegetation types, disturbance, and their interactions with variations in environmental conditions. Using mobile laboratory for measuring CO2, water, energy, COS, and VOC fluxes, permitted us to extend our stationary flux tower measurements across many sites, but also limited measurements to short-time campaigns (days to weeks). To overcome this limitation, we adopted an empirical approach (often used in remote sensing) and used state of the art campaign-based ecosystem flux measurements to 'calibrate' local meteorological data available on continuous basis, to estimate annual-scale carbon, water, and energy budgets. Using this approach, we investigated the interactions of land use change (afforestation) and climate (humid Mediterranean to semi-arid, 730 to 300 mm in annual precipitation) on the ecosystem fluxes. The results showed that across this climatic range, afforestation increased ET markedly more in the wet (+200 mm yr-1 or 30% of P) than in the dry end (+58 mm yr-1 or 19% of P). Similarly, increase in carbon sequestration (NEE) associated with forestation was greater in the wet sites (+460 gC m-2 yr-1) than in the dry sites (+30 gC m-2 yr-1). In contrast, ecosystem net-radiation (Rn) and sensible heat flux (H) increased due to afforestation much more in the dry sites than in the wet sites ( 47 vs. 27 and 49 vs. 17 Wm-2, respectively). COS and VOC fluxes were also measured but reported separately. The results provided quantitative assessment of shifts in the tradeoffs associated with afforestation in this region, between the hydrological and energy-budget 'costs', vs. carbon sequestration and other ecosystem services, (e.g, surface cooling, erosion

  4. Estimating sediment and caesium-137 fluxes in the Ribble Estuary through time-series airborne remote sensing

    International Nuclear Information System (INIS)

    Wakefield, R.; Tyler, A.N.; McDonald, P.; Atkin, P.A.; Gleizon, P.; Gilvear, D.

    2011-01-01

    High spatial and temporal resolution airborne imagery were acquired for the Ribble Estuary, North West England in 1997 and 2003, to assess the application of time-series airborne remote sensing to quantify total suspended sediment and radionuclide fluxes during a flood and ebb tide sequence. Concomitant measurements of suspended particulate matter (SPM) and water column turbidity were obtained during the time-series image acquisition for the flood and ebb tide sequence on the 17th July 2003 to verify the assumption of a vertically well mixed estuary and thus justifying the vertical extrapolation of spatially integrated estimate of surface SPM. The 137 Cs activity concentrations were calculated from a relatively stable relationship between SPM and 137 Cs for the Ribble Estuary. Total estuary wide budgets of sediment and 137 Cs were obtained by combining the image-derived estimates of surface SPM and 137 Cs with estimates of water volume from a two-dimensional hydrodynamic model (VERSE) developed for the Ribble Estuary. These indicate that around 10,000 tonnes of sediment and 2.72 GBq of 137 Cs were deposited over the tidal sequence monitored in July 2003. This compared favourably with bed height elevation change estimated from field work. An uncertainty analysis on the total sediment and 137 Cs flux yielded a total budget of the order of 40% on the final estimate. The results represent a novel approach to providing a spatially integrated estimate of the total net sediment and radionuclide flux in an intertidal environment over a flood and ebb tide sequence. - Research highlights: → This paper provides a rare insight into the next flux of sediment and associated radionuclide loading into an estuary over and ebb and flood tide sequence. → The paper uses high temporal resolution airborne imagery coupled with concomitant sampling to convert total suspended sediment flux to 137 Cs loading. → For the estuary and date studied, it is estimate that an 10,000 tonnes of

  5. Improved waterflooding efficiency by horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Popa, C. G. [Petroleum and Gas Univ., Ploesti (Romania); Clipea, M. [SNP Petrom SA, ICPT Campina (Romania)

    1998-12-31

    The influence of well pattern involving the use of horizontal wells on the overall efficiency of the waterflooding process was analyzed. Three different scenarios were examined: (1) a pattern of using two parallel horizontal wells, one for injection, the other for production, (2) a pattern of one horizontal well for water injection and several vertical wells for production, and (3) a pattern of using vertical wells for injection and one horizontal well for production. In each case, the waterflooding process was simulated using a two phase two dimensional numerical model. Results showed that the pressure loss along the horizontal section had a large influence on the sweep efficiency whether the horizontal well was used for injection or production. Overall, the most successful combination appeared to be using vertical wells for injection and horizontal wells for production. 4 refs., 1 tab., 15 figs.

  6. Extension of virtual flux decomposition model to the case of two vegetation layers: FDM-2

    International Nuclear Information System (INIS)

    Kallel, Abdelaziz

    2012-01-01

    As an approximation, the forest could be assumed a discrete media composed of three main components: trees, understory vegetation and soil background. To describe the reflectance of such a canopy in the optical wavelength domain, it is necessary to develop a radiative transfer model which considers two vegetation layers (understory and trees). In this article, we propose a new model, FDM-2, an extension of the flux decomposition model (FDM), to take into account such a canopy architecture. Like FDM, FDM-2 models the diffuse flux anisotropy and takes into account the hot spot effect as well as conserves energy. The hot spot which corresponds to an increase of the probability of photon escape after first collision close to the backscattering direction is modeled as a decrease of “the effective vegetation density” encountered by the diffuse flux (E + 1 ) and the radiance both created by first order scattering of the direct sun radiation. Compared to the turbid case (for which our model is equivalent to SAIL++ and therefore accurately conserving energy), such a density variation redistributes energy but does not affect the budget. Energy remains well conserved in the discrete case as well. To solve the RT problem, FDM-2 separates E + 1 from the high order diffuse flux. As E + 1 corresponding effective density is not constant function of the altitude (when traveling along the canopy) therefore it is decomposed into sub-fluxes of constant densities. The sub-flux RT problems are linear and simply solved based on SAIL++ formalism. The global RT solution is obtained summing the contribution of the sub-fluxes. Simulation tests confirm that FDM-2 conserves energy (i.e., radiative budget closes to zero in the purist corner case with an error due to the discretization less than 0.5%). Compared to the Rayspread model (among the best 3-D models of the RAMI Exercise third phase), our model provides similar performance.

  7. A test section design to simulate horizontal two-phase air-water flow

    International Nuclear Information System (INIS)

    Faccini, Jose Luiz H.; Cesar, Silvia B.G.; Coutinho, Jorge A.; Freitas, Sergio Carlos; Addor, Pedro N.

    2002-01-01

    In this work an air-water two-phase flow horizontal test section assembling at Nuclear Engineering Institute (IEN) is presented. The test section was designed to allow four-phase flow patterns to be simulated: bubble flow, stratified flow, wave flow and slug flow. These flow patterns will be identified by non-conventional ultrasonic techniques which have been developed to meet this particular application. Based on the separated flow and drift-flux models the test section design steps are shown. A description of the test section and its instrumentation and data acquisition system is also provided. (author)

  8. Mean and turbulent mass flux measurements in an idealised street network.

    Science.gov (United States)

    Carpentieri, Matteo; Robins, Alan G; Hayden, Paul; Santi, Edoardo

    2018-03-01

    Pollutant mass fluxes are rarely measured in the laboratory, especially their turbulent component. They play a major role in the dispersion of gases in urban areas and modern mathematical models often attempt some sort of parametrisation. An experimental technique to measure mean and turbulent fluxes in an idealised urban array was developed and applied to improve our understanding of how the fluxes are distributed in a dense street canyon network. As expected, horizontal advective scalar fluxes were found to be dominant compared with the turbulent components. This is an important result because it reduces the complexity in developing parametrisations for street network models. On the other hand, vertical mean and turbulent fluxes appear to be approximately of the same order of magnitude. Building height variability does not appear to affect the exchange process significantly, while the presence of isolated taller buildings upwind of the area of interest does. One of the most interesting results, again, is the fact that even very simple and regular geometries lead to complex advective patterns at intersections: parametrisations derived from measurements in simpler geometries are unlikely to capture the full complexity of a real urban area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Phase Offsets and the Energy Budgets of Hot Jupiters

    Science.gov (United States)

    Schwartz, Joel C.; Kashner, Zane; Jovmir, Diana; Cowan, Nicolas B.

    2017-12-01

    Thermal phase curves of short-period planets on circular orbits provide joint constraints on the fraction of incoming energy that is reflected (Bond albedo) and the fraction of absorbed energy radiated by the night hemisphere (heat recirculation efficiency). Many empirical studies of hot Jupiters have implicitly assumed that the dayside is the hottest hemisphere and the nightside is the coldest hemisphere. For a given eclipse depth and phase amplitude, an orbital lag between a planet’s peak brightness and its eclipse—a phase offset—implies that planet’s nightside emits greater flux. To quantify how phase offsets impact the energy budgets of short-period planets, we compile all infrared observations of the nine planets with multi-band eclipse depths and phase curves. Accounting for phase offsets shifts planets to lower Bond albedo and greater day-night heat transport, usually by ≲1σ. For WASP-12b, the published phase variations have been analyzed in two different ways, and the inferred energy budget depends sensitively on which analysis one adopts. Our fiducial scenario supports a Bond albedo of {0.27}-0.13+0.12, significantly higher than the published optical geometric albedo, and a recirculation efficiency of {0.03}-0.02+0.07, following the trend of larger day-night temperature contrast with greater stellar irradiation. If instead we adopt the alternative analysis, then WASP-12b has a Bond albedo consistent with zero and a much higher recirculation efficiency. To definitively determine the energy budget of WASP-12b, new observational analyses will be necessary.

  10. Monitoring air quality in California's Central Valley with aircraft and continuous mountaintop observations - attribution insights gained by considering the scalar budget equation

    Science.gov (United States)

    Faloona, I. C.; Trousdell, J.; Caputi, D.; Conley, S. A.

    2017-12-01

    Ozone is one of the six criteria pollutants established by the US EPA's Clean Air Act, and one of two that still routinely violates federal standards as it is a secondary pollutant and therefore subject to indirect control strategies on complex, non-linear atmospheric chemistry. While improvements have been seen in many regions where ozone controls are in place, gains in California's San Joaquin Valley have lagged many other districts across the state. We present airborne measurements from several different campaigns in the valley (DISCOVER-AQ, ArvinO3, and CABOTS) along with data from a mountaintop monitoring site on its upwind side near the Pacific coast that has been operational for 5 years, and we shed light on several outstanding questions concerning air pollution in California's vast Central Valley. The framework of analysis is centered on the primitive equation of any atmospheric constituent - the scalar budget equation. By measuring each term in this equation, we gain insights into the relative impacts of exogenous (due to long range transport) vs. endogenous ozone (due to local photochemical production). We further argue that small aircraft campaigns with an emphasis on scalar budgeting sorties are a cost-effective tool in uncovering specific shortcomings of regional air quality models (e.g., lateral boundary conditions can be tested by comparing horizontal advection, turbulence parameterizations by comparing vertical fluxes, and chemical mechanisms by comparing net photochemical production rates.) In the case of NOx and CH4, for instance, we find that solving for surface emissions points toward inventory underestimates of both species by at least a factor of two. We discuss possible causes of these discrepancies, and suggest other ways to specifically vet aspects of regional air quality models with airborne measurements of meteorological and chemical variables.

  11. Sediment nitrous oxide fluxes are dominated by uptake in a temperate estuary

    Directory of Open Access Journals (Sweden)

    Sarah Quinn Foster

    2016-03-01

    Full Text Available Coastal marine ecosystems are generally considered important sources of nitrous oxide (N2O, a powerful greenhouse gas and ozone depleting substance. To date most studies have focused on the environmental factors controlling N2O production although N2O uptake has been observed in a variety of coastal ecosystems. In this study, we examined sediment fluxes of N2O during two years (2012-2013 in a shallow temperate estuary (Waquoit Bay, MA, USA. Overall sediments were a net N2O sink (-23 ±5.2 nmol m-2 h-1, mean ±SE, significantly less than zero p<0.0001. N2O fluxes were significantly correlated to water column dissolved N2O (% saturation (p<0.0001, inorganic phosphorus (DIP (p=0.0017 and nitrogen (DIN (p=0.0019, as well as to temperature (p=0.0192. Additionally, there was a positive correlation between sediment N2O uptake and both oxygen (O2 and DIP uptake (p=0.0002 and p<0.0001, O2 and DIP sediment uptake, respectively. Results from this study indicate that sediments in shallow coastal ecosystems can be a strong sink of dissolved N2O, and therefore may mitigate N2O efflux to the atmosphere and export to the coastal ocean. Establishing the nature and strength of relationships between environmental conditions and sediment N2O fluxes moves us towards better-constrained models that will improve ecosystem management strategies, N2O budgets, and our ability to predict the response of coastal ecosystems to local and global change. Establishing the nature and strength of relationships between environmental conditions and sediment N2O fluxes moves us towards better-constrained models that will improve ecosystem management strategies, N2O budgets, and our ability to predict the response of coastal ecosystems to local and global change.

  12. Budget institutions and taxation

    DEFF Research Database (Denmark)

    Aaskoven, Lasse

    2018-01-01

    While a number of different studies have explored the effects of budgetary procedures and the centralization of the budget process on government debt, deficits and spending, few of them have explored whether such fiscal institutions matter for public revenue. This article argues that centralizing...... the budget process raises the levels of taxation by limiting the ability of individual government officials to veto tax increases in line with common-pool-problem arguments regarding public finances. Using detailed data on budgetary procedures from 15 EU countries, the empirical analysis shows that greater...... centralization of the budget process increases taxation as a share of GDP and that both the type of budget centralization and level of government fractionalization matter for the size of this effect. The results suggest that further centralizing the budget process limits government debt and deficits...

  13. ‘FLEXIBLE’ BUDGETS ARE ALREADY BUDGETING PROCESS ANALYSIS OF PRODUCTION COSTS FOR OIL AND FAT ENTERPRISES

    Directory of Open Access Journals (Sweden)

    V. Shvetz’

    2013-10-01

    Full Text Available The problems of methodological fundamentals of managerial accounting of manufacturing costs in information provision for budgeting, not only at the enterprise level, but also as it is required by current conditions of advanced control, in the context of structural production units of “responsibility centers” using “flexible” budgets, which are prepared during the manufacturing process are examined. Unlike a simple comparison of the regular budgets (scheduled amount of work divided by regulatory costs per unit, “flexible” budget makes adjustments to the planned budget because it represents the actual amount of work divided by regulatory costs, which is included with the comparison of the amount of work that are not fulfilled, or carried to a greater or lesser extent compared with the expected budget. Thus, “Flexible” budgets reveal the actual extent of the changes compared with the expected budget.

  14. The Similarity Hypothesis and New Analytical Support on the Estimation of Horizontal Infiltration into Sand

    International Nuclear Information System (INIS)

    Prevedello, C.L.; Loyola, J.M.T.

    2010-01-01

    A method based on a specific power-law relationship between the hydraulic head and the Boltzmann variable, presented using a similarity hypothesis, was recently generalized to a range of powers to satisfy the Bruce and Klute equation exactly. Here, considerations are presented on the proposed similarity assumption, and new analytical support is given to estimate the water density flux into and inside the soil, based on the concept of sorptivity and on Buckingham-Darcy's law. Results show that the new analytical solution satisfies both theories in the calculation of water density fluxes and is in agreement with experimental results of water infiltrating horizontally into sand. However, the utility of this analysis still needs to be verified for a variety of different textured soils having a diverse range of initial soil water contents.

  15. The effect of the advanced drift-flux model of ASSERT-PV on critical heat flux, flow and void distributions in CANDU bundle subchannels

    International Nuclear Information System (INIS)

    Hammouda, N.; Rao, Y.F.

    2017-01-01

    Highlights: • Presentation of the “advanced” drift-flux model of the subchannel code ASSERT-PV. • Study the effect of the drift-flux model of ASSERT on CHF and flow distribution. • Quantify model component effects with flow, quality and dryout power measurements. - Abstract: This paper studies the effect of the drift flux model of the subchannel code ASSERT-PV on critical heat flux (CHF), void fraction and flow distribution across fuel bundles. Numerical experiments and comparison against measurements were performed to examine the trends and relative behaviour of the different components of the model under various flow conditions. The drift flux model of ASSERT-PV is composed of three components: (a) the lateral component or diversion cross-flow, caused by pressure difference between connected subchannels, (b) the turbulent diffusion component or the turbulent mixing through gaps of subchannels, caused by instantaneous turbulent fluctuations or flow oscillations, and (c) the void drift component that occurs due to the two-phase tendency toward a preferred distribution. This study shows that the drift flux model has a significant impact on CHF, void fraction and flow distribution predictions. The lateral component of the drift flux model has a stronger effect on CHF predictions than the axial component, especially for horizontal flow. Predictions of CHF, void fraction and flow distributions are most sensitive to the turbulent diffusion component of the model, followed by the void drift component. Buoyancy drift can be significant, but it does not have as much influence on CHF and flow distribution as the turbulent diffusion and void drift.

  16. Horizontal steam generator PGV-1000 thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O. [Skoda Company, Prague (Switzerland); Doubek, M. [Czech Technical Univ., Prague (Switzerland)

    1995-12-31

    A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.). 5 refs.

  17. Horizontal steam generator PGV-1000 thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Ubra, O.; Doubek, M.

    1995-01-01

    A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.)

  18. Horizontal steam generator PGV-1000 thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O [Skoda Company, Prague (Switzerland); Doubek, M [Czech Technical Univ., Prague (Switzerland)

    1996-12-31

    A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.). 5 refs.

  19. Patterns and controls of inter-annual variability in the terrestrial carbon budget

    Science.gov (United States)

    Marcolla, Barbara; Rödenbeck, Christian; Cescatti, Alessandro

    2017-08-01

    The terrestrial carbon fluxes show the largest variability among the components of the global carbon cycle and drive most of the temporal variations in the growth rate of atmospheric CO2. Understanding the environmental controls and trends of the terrestrial carbon budget is therefore essential to predict the future trajectories of the CO2 airborne fraction and atmospheric concentrations. In the present work, patterns and controls of the inter-annual variability (IAV) of carbon net ecosystem exchange (NEE) have been analysed using three different data streams: ecosystem-level observations from the FLUXNET database (La Thuile and 2015 releases), the MPI-MTE (model tree ensemble) bottom-up product resulting from the global upscaling of site-level fluxes, and the Jena CarboScope Inversion, a top-down estimate of surface fluxes obtained from observed CO2 concentrations and an atmospheric transport model. Consistencies and discrepancies in the temporal and spatial patterns and in the climatic and physiological controls of IAV were investigated between the three data sources. Results show that the global average of IAV at FLUXNET sites, quantified as the standard deviation of annual NEE, peaks in arid ecosystems and amounts to ˜ 120 gC m-2 y-1, almost 6 times more than the values calculated from the two global products (15 and 20 gC m-2 y-1 for MPI-MTE and the Jena Inversion, respectively). Most of the temporal variability observed in the last three decades of the MPI-MTE and Jena Inversion products is due to yearly anomalies, whereas the temporal trends explain only about 15 and 20 % of the variability, respectively. Both at the site level and on a global scale, the IAV of NEE is driven by the gross primary productivity and in particular by the cumulative carbon flux during the months when land acts as a sink. Altogether these results offer a broad view on the magnitude, spatial patterns and environmental drivers of IAV from a variety of data sources that can be

  20. Sediment Budget in the Taiwan Strait with High Fluvial Sediment Inputs from Mountainous Rivers: New Observations and Synthesis

    Directory of Open Access Journals (Sweden)

    Shuh-Ji Kao

    2008-01-01

    Full Text Available The shallow Taiwan Strait at the southern opening of the East China Sea (ECS receives abundant sediments from turbid mountainous rivers in Taiwan. The volume of sediment is among the highest sediment yields on the global surface. This large amount of sediment discharged from modern Taiwan (range: 175 - 380 Mt y-1 based on 50-yr data is comparable to that discharged from Changjaing (500 Mt y-1-decreasing in recent decades, underscoring the importance of sediment budget in the Taiwan Strait and sediment flux from Taiwan into the ECS.We documented fluvial mud and sand concentrations during flash flooding with our observations indicating that fluvial materials in Taiwan¡¦s rivers are chiefly composed of mud (> 70 and up to 98 . By contrast, sand fraction dominates (> 85 for most stations surface sediments in the Taiwan Strait. Super typhoon Herb alone delivered 130 Mt of sediments from Choshui, the largest river in Taiwan, yet only insignificant amounts of mud were found at the river mouth six months later. The actions of waves, tides, and currents apparently prevent the deposition of fine grained sediments. Assuming sand occupied 30 (the maximum of the 60 Mt y-1 total sediment input from major western Taiwanese rivers, our annual budget estimate shows that the amount of sand input (18 5 Mt y-1 is comparable to the burial output of sand (12 10 Mt y-1. However, mud burial (6 5 Mt y-1 in the strait is far below the estimated mud input (42 11 Mt y-1, resulting in a significant shortfall. Hydrodynamic conditions were synthesized to explain the distribution pattern of limited mud patches in the strait and to reveal potential pathways by which fine-grain sediment transportation takes place in the seas surrounding Taiwan. A significant shortfall in the mud budget in the Taiwan Strait suggests that ~85 of the fluvial mud left the strait. Alternatively, the 50-year modern sediment flux data used in this study reflects exacerbated sediment flux due to human

  1. Ozone flux of an urban orange grove: multiple scaled measurements and model comparisons

    Science.gov (United States)

    Alstad, K. P.; Grulke, N. E.; Jenerette, D. G.; Schilling, S.; Marrett, K.

    2009-12-01

    There is significant uncertainty about the ozone sink properties of the phytosphere due to a complexity of interactions and feedbacks with biotic and abiotic factors. Improved understanding of the controls on ozone fluxes is critical to estimating and regulating the total ozone budget. Ozone exchanges of an orange orchard within the city of Riverside, CA were examined using a multiple-scaled approach. We access the carbon, water, and energy budgets at the stand- to leaf- level to elucidate the mechanisms controlling the variability in ozone fluxes of this agro-ecosystem. The two initial goals of the study were 1. To consider variations and controls on the ozone fluxes within the canopy; and, 2. To examine different modeling and scaling approaches for totaling the ozone fluxes of this orchard. Current understanding of the total ozone flux between the atmosphere near ground and the phytosphere (F-total) include consideration of a fraction which is absorbed by vegetation through stomatal uptake (F-absorb), and fractional components of deposition on external, non-stomatal, surfaces of the vegetation (F-external) and soil (F-soil). Multiplicative stomatal-conductance models have been commonly used to estimate F-absorb, since this flux cannot be measured directly. We approach F-absorb estimates for this orange orchard using chamber measurement of leaf stomatal-conductance, as well as non-chamber sap-conductance collected on branches of varied aspect and sun/shade conditions within the canopy. We use two approaches to measure the F-total of this stand. Gradient flux profiles were measured using slow-response ozone sensors collecting within and above the canopy (4.6 m), and at the top of the tower (8.5 m). In addition, an eddy-covariance system fitted with a high-frequency chemiluminescence ozone system will be deployed (8.5 m). Preliminary ozone gradient flux profiles demonstrate a substantial ozone sink strength of this orchard, with diurnal concentration differentials

  2. The Surface Radiation Budget over Oceans and Continents.

    Science.gov (United States)

    Garratt, J. R.; Prata, A. J.; Rotstayn, L. D.; McAvaney, B. J.; Cusack, S.

    1998-08-01

    An updated evaluation of the surface radiation budget in climate models (1994-96 versions; seven datasets available, with and without aerosols) and in two new satellite-based global datasets (with aerosols) is presented. All nine datasets capture the broad mean monthly zonal variations in the flux components and in the net radiation, with maximum differences of some 100 W m2 occurring in the downwelling fluxes at specific latitudes. Using long-term surface observations, both from land stations and the Pacific warm pool (with typical uncertainties in the annual values varying between ±5 and 20 W m2), excess net radiation (RN) and downwelling shortwave flux density (So) are found in all datasets, consistent with results from earlier studies [for global land, excesses of 15%-20% (12 W m2) in RN and about 12% (20 W m2) in So]. For the nine datasets combined, the spread in annual fluxes is significant: for RN, it is 15 (50) W m2 over global land (Pacific warm pool) in an observed annual mean of 65 (135) W m2; for So, it is 25 (60) W m2 over land (warm pool) in an annual mean of 176 (197) W m2.The effects of aerosols are included in three of the authors' datasets, based on simple aerosol climatologies and assumptions regarding aerosol optical properties. They offer guidance on the broad impact of aerosols on climate, suggesting that the inclusion of aerosols in models would reduce the annual So by 15-20 W m2 over land and 5-10 W m2 over the oceans. Model differences in cloud cover contribute to differences in So between datasets; for global land, this is most clearly demonstrated through the effects of cloud cover on the surface shortwave cloud forcing. The tendency for most datasets to underestimate cloudiness, particularly over global land, and possibly to underestimate atmospheric water vapor absorption, probably contributes to the excess downwelling shortwave flux at the surface.

  3. Zero-Base Budgeting:; An Institutional Experience.

    Science.gov (United States)

    Alexander, Donald L.; Anderson, Roger C.

    Zero-base budgeting as it is used at Allegany College is described. Zero-based budgeting is defined as a budgeting and planning approach that requires the examination of every item in a budget request as if the request were being proposed for the first time. Budgets (decision packages) are first made up for decision units (i.e., a course for the…

  4. Horizontal drilling assessment in Western Canada

    International Nuclear Information System (INIS)

    Catania, Peter; Wilson, Malcolm

    1999-01-01

    The first horizontal well was drilled in Saskatchewan in 1987. Since then, the number of horizontal wells drilled has escalated rapidly, averaging approximately 500 per year since 1993. When combined with horizontal wells drilled in Alberta, the major Canadian oil-producing province, the total number drilled in 1995 was 978. This total exceeds the National Energy Board (NEB) projected maximum of 816 wells per year. The NEB projections were based on a break-even point for the drilling of horizontal wells of a return of CDN $285,000 using a discount rate of 15%. This corresponded to a cumulative production from each individual well of some 11,000 m 3 . The introduction of a royalty-free production volume of 12,000 m 3 per horizontal well in Saskatchewan was instrumental in stimulating the rapid expansion in the use of horizontal wells and helping Canada to exceed the forecasted drilling level. Within Saskatchewan, daily production from 1964 active horizontal wells is in excess of 20,000 m 3 . Comparative analysis indicates that the average daily production per well has increased from approximately by 40% with the advent of horizontal wells. In total production terms, provincial production has increased from 11.7 million cubic metres in 1989 to 20.9 million m 3 in 1996. This represents an increase of almost 79% based primarily on the extensive use of horizontal wells. In 1996, horizontal wells produced 36% of the province's oil from 12% of the active wells. In the southeastern producing areas of Saskatchewan, the Williston Basin, declining oil-production has jumped 100%, with horizontal wells accounting for approximately 50% of total regional production. Pay zones in this areas, as in most of the province, tend to be relatively thin, with net pay frequently less that 5 m. The modest investment of some CDN $5 million in government research funding 10 years ago to stimulate the development of horizontal wells, combined with a favourable royalty structure, has been at

  5. Observations of HNO3, ΣAN, ΣPN and NO2 fluxes: evidence for rapid HOx chemistry within a pine forest canopy

    Directory of Open Access Journals (Sweden)

    D. K. Farmer

    2008-07-01

    Full Text Available Measurements of exchange of reactive nitrogen oxides between the atmosphere and a ponderosa pine forest in the Sierra Nevada Mountains are reported. During winter, we observe upward fluxes of NO2, and downward fluxes of total peroxy and peroxy acyl nitrates (ΣPNs, total gas and particle phase alkyl and multifunctional alkyl nitrates (ΣANs(g+p, and the sum of gaseous HNO3 and semi-volatile NO3− particles (HNO3(g+p. We use calculations of the vertical profile and flux of NO, partially constrained by observations, to show that net midday ΣNOyi fluxes in winter are –4.9 ppt m s−1. The signs and magnitudes of these wintertime individual and ΣNOyi fluxes are in the range of prior measurements. In contrast, during summer, we observe downward fluxes only of ΣANs(g+p, and upward fluxes of HNO3(g+p, ΣPNs and NO2 with signs and magnitudes that are unlike most, if not all, previous observations and analyses of fluxes of individual nitrogen oxides. The results imply that the mechanisms contributing to NOy fluxes, at least at this site, are much more complex than previously recognized. We show that the observations of upward fluxes of HNO3(g+p and σPNs during summer are consistent with oxidation of NO2 and acetaldehyde by an OH x residence time of 1.1×1010 molec OH cm−3 s, corresponding to 3 to 16×107 molecules cm−3 OH within the forest canopy for a 420 to 70 s canopy residence time. We show that ΣAN(g+p fluxes are consistent with this range in OH if the reaction of OH with ΣANs produces either HNO3 or NO2 with a 6–30% yield. Calculations of NO fluxes constrained by the NO2 observations and the inferred OH indicate that NOx fluxes are downward into the canopy because of the substantial conversion of NOx to HNO3 and σPNs in the canopy. Even so, we derive that NOx emission fluxes of ~15 ng(N m−2 s−1 at midday during summer are required to balance the NOx and NOy flux budgets. These fluxes are partly explained by estimates of soil

  6. Year-Round Carbon Fluxes in a Subarctic Landscape Show the Importance of Lake Emissions According to Season

    Science.gov (United States)

    Jammet, M.; Crill, P. M.; Friborg, T.

    2014-12-01

    Lakes are increasingly recognized as important components of the global terrestrial carbon budget. Northern lakes are especially of interest due to a high density of open-water ecosystems in Northern latitudes and a potential increase in lake areal extent where permafrost is thawing. A better understanding of lake-atmosphere interactions requires long-term and direct measurement of surface fluxes. This is rarely achieved in Northern landscapes where seasonally ice-covered lakes are mostly studied during the open water season, and measurement methods do not always allow an integration of all gas transport pathways to the atmosphere. We present here ecosystem-scale data from Stordalen (68°20'N, 19°03'E), a thawing permafrost peatland in subarctic Sweden, where an eddy covariance system is used in an innovative way to quantify the importance of methane (CH4) emissions from a shallow lake. After more than a year of surface flux monitoring, it is found that spring is a crucial season for lake-atmosphere CH4 exchange. Despite its shallow depth, more than half of annual CH4 emissions from the lake were recorded at ice-out, suggesting significant winter CH4 production in lake sediments. Lake water dynamics seemed to drive the observed spring release rates. In contrast, summer methane emissions in Stordalen were dominated by the minerotrophic fens. This underlines the importance of considering the full annual budget when assessing the carbon source strength of seasonally ice-covered lakes. Carbon dioxide fluxes were also monitored and will be briefly discussed, as well as the significance of northern lakes spring burst for global atmospheric CH4 budget.

  7. Under Secretary of Defense (Comptroller) > Budget

    Science.gov (United States)

    functionalStatements OUSD(C) History FMR Budget Materials Budget Execution Financial Management Improving Financial Performance Reports Regulations Press Release | Budget Briefing | Transcripts: David L. Norquist, Under PDF document. Click on Excel icon for Excel document Overview - FY2019 Defense Budget Performance

  8. Budget goal commitment, clinical managers' use of budget information and performance.

    Science.gov (United States)

    Macinati, Manuela S; Rizzo, Marco G

    2014-08-01

    Despite the importance placed on accounting as a means to influence performance in public healthcare, there is still a lot to be learned about the role of management accounting in clinical managers' work behavior and their link with organizational performance. The article aims at analyzing the motivational role of budgetary participation and the intervening role of individuals' mental states and behaviors in influencing the relationship between budgetary participation and performance. According to the goal-setting theory, SEM technique was used to test the relationships among variables. The data were collected by a survey conducted in an Italian hospital. The results show that: (i) budgetary participation does not directly influence the use of budget information, but the latter is encouraged by the level of budget goal commitment which, as a result, is influenced by the positive motivational consequences of participative budgeting; (ii) budget goal commitment does not directly influence performance, but the relationship is mediated by the use of budget information. This study contributes to health policy and management accounting literature and has significant policy implications. Mainly, the findings prove that the introduction of business-like techniques in the healthcare sector can improve performance if attitudinal and behavioral variables are adequately stimulated. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Potential Applications of Gosat Based Carbon Budget Products to Refine Terrestrial Ecosystem Model

    Science.gov (United States)

    Kondo, M.; Ichii, K.

    2011-12-01

    Estimation of carbon exchange in terrestrial ecosystem associates with difficulties due to complex entanglement of physical and biological processes: thus, the net ecosystem productivity (NEP) estimated from simulation often differs among process-based terrestrial ecosystem models. In addition to complexity of the system, validation can only be conducted in a point scale since reliable observation is only available from ground observations. With a lack of large spatial data, extension of model simulation to a global scale results in significant uncertainty in the future carbon balance and climate change. Greenhouse gases Observing SATellite (GOSAT), launched by the Japanese space agency (JAXA) in January, 2009, is the 1st operational satellite promised to deliver the net land-atmosphere carbon budget to the terrestrial biosphere research community. Using that information, the model reproducibility of carbon budget is expected to improve: hence, gives a better estimation of the future climate change. This initial analysis is to seek and evaluate the potential applications of GOSAT observation toward the sophistication of terrestrial ecosystem model. The present study was conducted in two processes: site-based analysis using eddy covariance observation data to assess the potential use of terrestrial carbon fluxes (GPP, RE, and NEP) to refine the model, and extension of the point scale analysis to spatial using Carbon Tracker product as a prototype of GOSAT product. In the first phase of the experiment, it was verified that an optimization routine adapted to a terrestrial model, Biome-BGC, yielded the improved result with respect to eddy covariance observation data from AsiaFlux Network. Spatial data sets used in the second phase were consists of GPP from empirical algorithm (e.g. support vector machine), NEP from Carbon Tracker, and RE from the combination of these. These spatial carbon flux estimations was used to refine the model applying the exactly same

  10. Prediction of evaporation heat transfer coefficient based on gas-liquid two-phase annular flow regime in horizontal microfin tubes

    International Nuclear Information System (INIS)

    Wang Yueshe; Wang Yanling; Wang, G.-X.; Honda, Hiroshi

    2009-01-01

    A physical model of gas-liquid two-phase annular flow regime is presented for predicting the enhanced evaporation heat transfer characteristics in horizontal microfin tubes. The model is based on the equivalence of a periodical distortion of the disturbance wave in the substrate layer. Corresponding to the stratified flow model proposed previously by authors, the dimensionless quantity Fr 0 = G/[gd e ρ v (ρ l - ρ v )] 0.5 may be used as a measure for determining the applicability of the present theoretical model, which was used to restrict the transition boundary between the stratified-wavy flow and the annular/intermittent flows. Comparison of the prediction of the circumferential average heat transfer coefficient with available experimental data for four tubes and three refrigerants reveals that a good agreement is obtained or the trend is better than that of the previously developed stratified flow model for Fr 0 > 4.0 as long as the partial dry out of tube does not occur. Obviously, the developed annular model is applicable and reliable for evaporation in horizontal microfin tubes under the case of high heat flux and high mass flux.

  11. Prediction of evaporation heat transfer coefficient based on gas-liquid two-phase annular flow regime in horizontal microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yueshe, E-mail: wangys@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Yanling, Wang [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, G -X [Mechanical Engineering Department, The University of Akron, Akron, OH 44325-3903 (United States); Honda, Hiroshi [Kyushu University, 337 Kasuya-machi, Kasuya-gun, Kukuoka 811-2307 (Japan)

    2009-10-15

    A physical model of gas-liquid two-phase annular flow regime is presented for predicting the enhanced evaporation heat transfer characteristics in horizontal microfin tubes. The model is based on the equivalence of a periodical distortion of the disturbance wave in the substrate layer. Corresponding to the stratified flow model proposed previously by authors, the dimensionless quantity Fr{sub 0} = G/[gd{sub e}{rho}{sub v}({rho}{sub l} - {rho}{sub v})]{sup 0.5} may be used as a measure for determining the applicability of the present theoretical model, which was used to restrict the transition boundary between the stratified-wavy flow and the annular/intermittent flows. Comparison of the prediction of the circumferential average heat transfer coefficient with available experimental data for four tubes and three refrigerants reveals that a good agreement is obtained or the trend is better than that of the previously developed stratified flow model for Fr{sub 0} > 4.0 as long as the partial dry out of tube does not occur. Obviously, the developed annular model is applicable and reliable for evaporation in horizontal microfin tubes under the case of high heat flux and high mass flux.

  12. Analytical characterization of selective benthic flux components in estuarine and coastal waters

    Science.gov (United States)

    King, Jeffrey N.

    2011-01-01

    Benthic flux is the rate of flow across the bed of a water body, per unit area of bed. It is forced by component mechanisms, which interact. For example, pressure gradients across the bed, forced by tide, surface gravity waves, density gradients, bed–current interaction, turbulence, and terrestrial hydraulic gradients, drive an advective benthic flux of water and constituents between estuarine and coastal waters, and surficial aquifers. Other mechanisms also force benthic flux, such as chemical gradients, bioturbation, and dispersion. A suite of component mechanisms force a total benthic flux at any given location, where each member of the suite contributes a component benthic flux. Currently, the types and characteristics of component interactions are not fully understood. For example, components may interact linearly or nonlinearly, and the interaction may be constructive or destructive. Benthic flux is a surface water–groundwater interaction process. Its discharge component to a marine water body is referred to, in some literature, as submarine groundwater discharge. Benthic flux is important in characterizing water and constituent budgets of estuarine and coastal systems. Analytical models to characterize selective benthic flux components are reviewed. Specifically, these mechanisms are for the component associated with the groundwater tidal prism, and forced by surface gravity wave setup, surface gravity waves on a plane bed, and the terrestrial hydraulic gradient. Analytical models are applied to the Indian River Lagoon, Florida; Great South Bay, New York; and the South Atlantic Bight in South Carolina and portions of North Carolina.

  13. Anthropogenic Increase Of Soil Erosion In The Gangetic Plain Revealed By Geochemical Budget Of Erosion

    Science.gov (United States)

    Galy, V.; France-Lanord, C.; Galy, A.; Gaillardet, J.

    2007-12-01

    Tectonic and climatic factors are the key natural variables controlling the erosion through complex interactions. Nonetheless, over the last few hundred years, human activity also exerts a dominant control in response to extensive land use. The geochemical budget of erosion allows the balance between the different erosion processes to be quantified. The chemical composition of river sediment results from the chemical composition of the source rock modified by (1) weathering reactions occurring during erosion and (2) physical segregation during transport. If erosion is at steady state, the difference between the chemical composition of source rocks and that of river sediments must therefore be counterbalanced by the dissolved flux. However, climatic variations or anthropic impact can induce changes in the erosion distribution in a given basin resulting in non steady state erosion. Using a mass balance approach, the comparison of detailed geochemical data on river sediments with the current flux of dissolved elements allows the steady state hypothesis to be tested. In this study, we present a geochemical budget of weathering for the Ganga basin, one of the most densely populated basin in the world, based on detailed sampling of Himalayan rivers and of the Ganga in the delta. Sampling includes depth profile in the river, to assess the variability generated by transport processes. Himalayan river sediments are described by the dilution of an aluminous component (micas + clays + feldspars) by quartz. Ganga sediments on the other hand correspond to the mixing of bedload, similar to coarse Himalayan sediments, with an aluminous component highly depleted in alkaline elements. Compared with the dissolved flux, the depletion of alkaline elements in Ganga sediments shows that the alkaline weathering budget is imbalanced. This imbalance results from an overabundance of fine soil material in the Ganga sediment relative to other less weathered material directly derived from

  14. Annual sediment flux estimates in a tidal strait using surrogate measurements

    Science.gov (United States)

    Ganju, N.K.; Schoellhamer, D.H.

    2006-01-01

    Annual suspended-sediment flux estimates through Carquinez Strait (the seaward boundary of Suisun Bay, California) are provided based on surrogate measurements for advective, dispersive, and Stokes drift flux. The surrogates are landward watershed discharge, suspended-sediment concentration at one location in the Strait, and the longitudinal salinity gradient. The first two surrogates substitute for tidally averaged discharge and velocity-weighted suspended-sediment concentration in the Strait, thereby providing advective flux estimates, while Stokes drift is estimated with suspended-sediment concentration alone. Dispersive flux is estimated using the product of longitudinal salinity gradient and the root-mean-square value of velocity-weighted suspended-sediment concentration as an added surrogate variable. Cross-sectional measurements validated the use of surrogates during the monitoring period. During high freshwater flow advective and dispersive flux were in the seaward direction, while landward dispersive flux dominated and advective flux approached zero during low freshwater flow. Stokes drift flux was consistently in the landward direction. Wetter than average years led to net export from Suisun Bay, while dry years led to net sediment import. Relatively low watershed sediment fluxes to Suisun Bay contribute to net export during the wet season, while gravitational circulation in Carquinez Strait and higher suspended-sediment concentrations in San Pablo Bay (seaward end of Carquinez Strait) are responsible for the net import of sediment during the dry season. Annual predictions of suspended-sediment fluxes, using these methods, will allow for a sediment budget for Suisun Bay, which has implications for marsh restoration and nutrient/contaminant transport. These methods also provide a general framework for estimating sediment fluxes in estuarine environments, where temporal and spatial variability of transport are large. ?? 2006 Elsevier Ltd. All rights

  15. BUDGET PLANNING IN FINANCIAL MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Nataliya Melnichuk

    2015-11-01

    Full Text Available The purpose of the paper is to determine the nature, targets, functions, principles and methods of budget planning and development of classifications due to its types. The essence of budget planning presented by various authors, is own interpretation (the process of developing a plan of formation, distribution and redistribution of financial funds according to budget system units during the reporting period based on budgetary purposes and targets defined by socio-economic development strategy is proposed. Methodology. The following methods such as cognition, induction, deduction, analysis and synthesis have been used in the process of survey. Results of the survey proves that budget planning plays an essential role in the financial management. On condition business environment changing even the best management system can become obsolete. The immediate reaction to the new trends in the financial system as a whole, in the industry is possible with budget planning as well. It also allows to make appropriate adjustments to the plans. Adjustment of long-term, medium-term and short-term plans makes it possible, without changing goals, to change ways of their achievement and thus to raise the level of efficiency of budget funds formation and use. It is necessary to revise the whole system plans, including their mission and goals in the case of global changes in the external and internal environment. Practical implications. The proposed approach to the classification of budget planning types allows to cope with the shortcomings of modern planning in the public sector (the development of the targets according to the state budget expenditures in Ukraine remains a formality and it rarely complies with realities. Value/originality is specified in the proposed interpretation which differs from existing ones that provides clarification of budget planning purpose in financial management; classification of budget planning principles, which differs from previous

  16. Horizontal H 2-air turbulent buoyant jet resulting from hydrogen leakage

    KAUST Repository

    El-Amin, Mohamed

    2012-02-01

    The current article is devoted to introducing mathematical and physical analyses with numerical investigation of a buoyant jet resulting from hydrogen leakage in air from a horizontal round source. H 2-air jet is an example of the non-Boussinesq buoyant jet in which a low-density gas jet is injected/leak into a high-density ambient. The density of the mixture is a function of the concentration only, the binary gas mixture is assumed to be of a linear mixing type and the rate of entrainment is assumed to be a function of the plume centerline velocity and the ratio of the mean plume and ambient densities. On the other hand, the local rate of entrainment consists of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The top-hat profile assumption is used to obtain the mean centerline velocity, width, density and concentration of the H 2-air horizontal jet in addition to kinematic relations which govern the jet trajectories. A set of ordinary differential equations is obtained and solved numerically using Runge-Kutta method. In the second step, the mean axial velocity, mean concentration and mean density of the jet are obtained based on Gaussian model. Finally, several quantities of interest, including the cross-stream velocity, Reynolds stress, velocity-concentration correlation (radial flux), turbulent eddy viscosity and turbulent eddy diffusivity, are obtained by solving the governing partial differential equations. Additionally, the turbulent Schmidt number is estimated and the normalized jet-feed material density and the normalized momentum flux density are correlated. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  17. Scientific and theoretical principles of personnel costs’ budgeting

    Directory of Open Access Journals (Sweden)

    O.P. Gutsal

    2015-06-01

    Full Text Available The object of this article is to determine the main purpose of company’s budgeting, to study its functions in terms of personnel management, to identify the main advantages and disadvantages of budgeting and to determine the stages of realization budgeting in the company. There have been considered the purpose and aim of budgeting. The main functions of budgeting, which include such ones as: planning, forecasting, information and analysis function, motivational, coordinative, control and involvement function have been identified (determined. In terms of defined functions of budgeting their essence in budgeting personnel costs has been outlined. The main advantages and disadvantages of budgeting have been found. There has been determined the implementing and realization company’s budgeting. The process of budgeting is realized according to the following consecutive stages: preparatory and analytical stage; definition of budget constraints; drafting up the budget; discussion and adjustment of budget indicators; adoption of budget; analysis and control of the budget. There also has been considered budget organization structure which includes budget committee, budget planning and analysis department, financial responsibility center.

  18. THE BUDGETING PROCESS IN ROMANIA

    Directory of Open Access Journals (Sweden)

    TURCIN MARIUS CATALIN

    2015-08-01

    Full Text Available This paper presents the stages of the budgeting process in Romania and the institutions involved in its carry out, having regard to the recent legislative amendments in the field. The study describes the importance of some state institutions in achieving the economic and social policy objectives. According to practice, the institution specializing in drafting the budget bill is the Government, who submits the budget bill annually to the Parliament for adopting the national budget, accompanied by the explanatory statement, annexes and interpretative calculations. The preparatory works are fulfilled by the Ministry of Public Finance and in parallel, by the ministries, authorities, local administrations or other public institutions to prepare their own drafts budget.

  19. Constraining Marsh Carbon Budgets Using Long-Term C Burial and Contemporary Atmospheric CO2 Fluxes

    Science.gov (United States)

    Forbrich, I.; Giblin, A. E.; Hopkinson, C. S.

    2018-03-01

    Salt marshes are sinks for atmospheric carbon dioxide that respond to environmental changes related to sea level rise and climate. Here we assess how climatic variations affect marsh-atmosphere exchange of carbon dioxide in the short term and compare it to long-term burial rates based on radiometric dating. The 5 years of atmospheric measurements show a strong interannual variation in atmospheric carbon exchange, varying from -104 to -233 g C m-2 a-1 with a mean of -179 ± 32 g C m-2 a-1. Variation in these annual sums was best explained by differences in rainfall early in the growing season. In the two years with below average rainfall in June, both net uptake and Normalized Difference Vegetation Index were less than in the other three years. Measurements in 2016 and 2017 suggest that the mechanism behind this variability may be rainfall decreasing soil salinity which has been shown to strongly control productivity. The net ecosystem carbon balance was determined as burial rate from four sediment cores using radiometric dating and was lower than the net uptake measured by eddy covariance (mean: 110 ± 13 g C m-2 a-1). The difference between these estimates was significant and may be because the atmospheric measurements do not capture lateral carbon fluxes due to tidal exchange. Overall, it was smaller than values reported in the literature for lateral fluxes and highlights the importance of investigating lateral C fluxes in future studies.

  20. Fiscal Year 2015 Budget

    Data.gov (United States)

    Montgomery County of Maryland — This dataset includes the Fiscal Year 2015 Council-approved operating budget for Montgomery County. The dataset does not include revenues and detailed agency budget...

  1. Eddy Correlation Flux Measurement System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  2. High flux and high resolution VUV beam line for synchrotron radiation

    International Nuclear Information System (INIS)

    Wilcke, H.; Boehmer, W.; Schwentner, N.

    1982-04-01

    A beam line has been optimized for high flux and high resolution in the wavelength range from 30 nm to 300 nm. Sample chambers for luminescence spectroscopy on gaseous, liquid and solid samples and for photoelectron spectroscopy have been integrated. The synchrotron radiation from the storage ring DORIS (at DESY, Hamburg) emitted into 50 mrad in horizontal and into 2.2 mrad in vertical direction is focused by a cylindrical and a plane elliptical mirror into the entrance slit of a 2m normal incidence monochromator. The light flux from the exit slit is focused by a rotational elliptic mirror onto the sample yielding a size of the light spot of 4 x 0.15 mm 2 . The light flux at the sample reaches 7 x 10 12 photons nm -1 s -1 at 8 eV photon energy for a current of 100 mA in DORIS. A resolution of 0.007 nm has been obtained. (orig.)

  3. FFTF [Fast Flux Test Facility] performance measurements for safety, productivity and control

    International Nuclear Information System (INIS)

    Newland, D.J.; Praetorius, P.R.; Tomaszewski, T.A.

    1987-05-01

    A useful set of performance measurements for Safety, Productivity and Control has evolved at the Fast Flux Test Facility (FFTF). In response to declining budgets and the resulting need to safely manage a manpower rampdown, an ''Early Warning System'' was developed in 1984. Its purpose was to monitor the effects of the staffing rampdown such that appropriate remedial action could be taken to correct adverse trends before a significant problem occurred. 1 tab

  4. Expanding Spatial and Temporal Coverage of Arctic CH4 and CO2 Fluxes

    Science.gov (United States)

    Murphy, P.; Oechel, W. C.; Moreaux, V.; Losacco, S.; Zona, D.

    2013-12-01

    Carbon storage and exchange in Arctic ecosystems is the subject of intensive study focused on determining rates, controls, and mechanisms of CH4 and CO2 fluxes. The Arctic contains more than 1 Gt of Carbon in the upper meter of soil, both in the active layer and permafrost (Schuur et al., 2008; Tarnocai et al., 2009). However, the annual pattern and controls on the release of CH4 is inadequately understood in Arctic tundra ecosystems. Annual methane budgets are poorly understood, and very few studies measure fluxes through the freeze-up cycle during autumn months (Mastepanov et al., 2008; Mastepanov et al., 2010; Sturtevant et al., 2012). There is no known, relatively continuous, CH4 flux record for the Arctic. Clearly, the datasets that currently exist for budget calculations and model parameterization and verification are inadequate. This is likely due to the difficult nature of flux measurements in the Arctic. In September 2012, we initiated a research project towards continuous methane flux measurements along a latitudinal transect in Northern Alaska. The eddy-covariance (EC) technique is challenging in such extreme weather conditions due to the effects of ice formation and precipitation on instrumentation, including gas analyzers and sonic anemometers. The challenge is greater in remote areas of the Arctic, when low power availability and limited communication can lead to delays in data retrieval or data loss. For these reasons, a combination of open- and closed-path gas analyzers, and several sonic anemometers (including one with heating), have been installed on EC towers to allow for cross-comparison and cross-referencing of calculated fluxes. Newer instruments for fast CH4 flux determination include: the Los Gatos Research Fast Greenhouse Gas Analyzer and the Li-Cor LI-7700. We also included the self-heated Metek Class-A uSonic-3 Anemometer as a new instrument. Previously existing instruments used for comparison include the Li-Cor LI-7500; Li-Cor LI-7200

  5. Soft Budget Constraints in Public Hospitals.

    Science.gov (United States)

    Wright, Donald J

    2016-05-01

    A soft budget constraint arises when a government is unable to commit to not 'bailout' a public hospital if the public hospital exhausts its budget before the end of the budget period. It is shown that if the political costs of a 'bailout' are relatively small, then the public hospital exhausts the welfare-maximising budget before the end of the budget period and a 'bailout' occurs. In anticipation, the government offers a budget to the public hospital that may be greater than or less than the welfare-maximising budget. In either case, the public hospital treats 'too many' elective patients before the 'bailout' and 'too few' after. The introduction of a private hospital reduces the size of any 'bailout' and increases welfare. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Cycle-Based Budgeting Toolkit: A Primer

    Science.gov (United States)

    Yan, Bo

    2016-01-01

    At the core, budgeting is about distributing and redistributing limited financial resources for continuous improvement. Incremental budgeting is limited in achieving the goal due to lack of connection between outcomes and budget decisions. Zero-based budgeting fills the gap, but is cumbersome to implement, especially for large urban school…

  7. Annual CO2 budget and seasonal CO2 exchange signals at a high Arctic permafrost site on Spitsbergen, Svalbard archipelago

    DEFF Research Database (Denmark)

    Luërs, J.; Westermann, Signe; Piel, K.

    2014-01-01

    -lasting snow cover, and several months of darkness. This study presents a complete annual cycle of the CO2 net ecosystem exchange (NEE) dynamics for a high Arctic tundra area at the west coast of Svalbard based on eddy covariance flux measurements. The annual cumulative CO2 budget is close to 0 g C m-2 yr-1...

  8. In-core neutron flux measurements at PARR using self powered neutron detector

    International Nuclear Information System (INIS)

    Hussain, A.; Ansari, S.A.

    1989-10-01

    This report describes experimental reactor physics measure ments at PARR using the in-core neutron detectors. Rhodium self powered neutron detectors (SPND) were used in the PARR core and several measurements were made aimed at detector calibration, response time determination and neutron flux measurements. The detectors were calibrated at low power using gold foils and full power by the thermal channel. Based on this calibration it was observed that the detector response remains almost linear throughout the power range. The self powered detectors were used for on-line determination of absolute neutron flux in the core as well as the spatial distribution of neutron flux or reactor power. The experimental, axial and horizontal flux mapping results at certain locations in the core are presented. The total response time of rhodium detector was experimentally determined to be about 5 minutes, which agree well with the theoretical results. Because of longer response time of SPND of the detectors it is not possible to use them in the reactor protection system. (author). 10 figs

  9. The prevalence of Beyond Budgeting in Denmark

    DEFF Research Database (Denmark)

    Sandalgaard, Niels

      The annual budget has been criticised in recent years. The critics claim, among other things, that the annual budget is not suitable for today's business environment, that annual budgets stimulate dysfunctional behaviour and furthermore that the use of budgets is too costly. This paper examines...... this critique as well as the current status of the traditional annual budget in a contingency perspective by using data from a survey among the largest Danish companies. The conclusion is that only 4% of the companies claim to have abandoned the traditional, annual budget, 2% have decided or are in the process...... of doing so and 11% are considering abandoning it. These "Beyond Budgeting" companies are more critical towards the traditional budget than other companies. The study also shows that the critical attitude towards annual budgets as well as the decision of abandoning the budget cannot be associated...

  10. 7 CFR 906.33 - Budget.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 906.33 Section 906.33 Agriculture Regulations... GRANDE VALLEY IN TEXAS Order Regulating Handling Expenses and Assessments § 906.33 Budget. At the... budget of income and expenditures necessary for the administration of this part. The committee shall...

  11. Evaporation heat transfer of carbon dioxide at low temperature inside a horizontal smooth tube

    Science.gov (United States)

    Yoon, Jung-In; Son, Chang-Hyo; Jung, Suk-Ho; Jeon, Min-Ju; Yang, Dong-Il

    2017-05-01

    In this paper, the evaporation heat transfer coefficient of carbon dioxide at low temperature of -30 to -20 °C in a horizontal smooth tube was investigated experimentally. The test devices consist of mass flowmeter, pre-heater, magnetic gear pump, test section (evaporator), condenser and liquid receiver. Test section is made of cooper tube. Inner and outer diameter of the test section is 8 and 9.52 mm, respectively. The experiment is conducted at mass fluxes from 100 to 300 kg/m2 s, saturation temperature from -30 to -20 °C. The main results are summarized as follows: In case that the mass flux of carbon dioxide is 100 kg/m2 s, the evaporation heat transfer coefficient is almost constant regardless of vapor quality. In case of 200 and 300 kg/m2 s, the evaporation heat transfer coefficient increases steadily with increasing vapor quality. For the same mass flux, the evaporation heat transfer coefficient increases as the evaporation temperature of the refrigerant decreases. In comparison of heat transfer correlations with the experimental result, the evaporation heat transfer correlations do not predict them exactly. Therefore, more accurate heat transfer correlation than the previous one is required.

  12. 7 CFR 1744.64 - Budget adjustment.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Budget adjustment. 1744.64 Section 1744.64... Disbursement of Funds § 1744.64 Budget adjustment. (a) If more funds are required than are available in a budget account, the borrower may request RUS's approval of a budget adjustment to use funds from another...

  13. Comparisons of watershed sulfur budgets in southeast Canada and northeast US: New approaches and implications

    Science.gov (United States)

    Mitchell, M.J.; Lovett, G.; Bailey, S.; Beall, F.; Burns, D.; Buso, D.; Clair, T.A.; Courchesne, F.; Duchesne, L.; Eimers, C.; Fernandez, I.; Houle, D.; Jeffries, D.S.; Likens, G.E.; Moran, M.D.; Rogers, C.; Schwede, D.; Shanley, J.; Weathers, K.C.; Vet, R.

    2011-01-01

    concentrations and deposition predictions with the predictions of two continental-scale air quality models, the Community Multiscale Air Quality (CMAQ) model and A Unified Regional Air-quality Modeling System (AURAMS) that utilize complete inventories of emissions and chemical budgets. The results of this comparison indicated that the predictive relationship provides an accurate representation of SO2 concentrations and S deposition for the region that is generally consistent with these models, and thus provides confidence that our approach could be used to develop accurate watershed S budgets for these 15 sites. Most watersheds showed large net losses of SO42- on an annual basis, and the watershed mass balances were grouped into five categories based on the relative value of mean annual net losses or net gains. The net annual fluxes of SO42- showed a strong relationship with hydrology; the largest net annual negative fluxes were associated with years of greatest precipitation amount and highest discharge. The important role of catchment hydrology on S budgets suggests implications for future predicted climate change as it affects patterns of precipitation and drought. The sensitivity of S budgets is likely to be greatest in watersheds with the greatest wetland area, which are particularly sensitive to drying and wetting cycles. A small number of the watersheds in this analysis were shown to have substantial S sources from mineral weathering, but most showed evidence of an internal source of SO42-, which is likely from the mineralization of organic S stored from decades of increased S deposition. Mobilization of this internal S appears to contribute about 1-6 kg S ha-1 year-1 to stream fluxes at these sites and is affecting the rate and extent of recovery from acidification as S deposition rates have declined in recent years. This internal S source should be considered when developing critical deposition loads that will promote ecosystem recovery from acidification and the depl

  14. 7 CFR 956.41 - Budget.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 956.41 Section 956.41 Agriculture Regulations... OF SOUTHEAST WASHINGTON AND NORTHEAST OREGON Expenses and Assessments § 956.41 Budget. Prior to each fiscal period and as may be necessary thereafter, the committee shall prepare an estimated budget of...

  15. 7 CFR 945.41 - Budget.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 945.41 Section 945.41 Agriculture Regulations... COUNTIES IN IDAHO, AND MALHEUR COUNTY, OREGON Order Regulating Handling Budget, Expenses and Assessments § 945.41 Budget. At the beginning of each fiscal period, and as may be necessary thereafter, the...

  16. 7 CFR 958.41 - Budget.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 958.41 Section 958.41 Agriculture Regulations... Budget. Prior to each fiscal period, and as may be necessary thereafter the committee shall prepare a budget of estimated income and expenditures necessary for the administration of this part. The committee...

  17. 7 CFR 966.41 - Budget.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 966.41 Section 966.41 Agriculture Regulations... Handling Expenses and Assessments § 966.41 Budget. At the beginning of each fiscal period and as may be necessary thereafter, the committee shall prepare an estimated budget of income and expenditures necessary...

  18. 7 CFR 948.76 - Budget.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 948.76 Section 948.76 Agriculture Regulations... Regulating Handling Expenses and Assessments § 948.76 Budget. As soon as practicable after the beginning of... budget of income and expenditures necessary for its administration of this part. Each area committee may...

  19. 7 CFR 959.41 - Budget.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 959.41 Section 959.41 Agriculture Regulations... Handling Expenses and Assessments § 959.41 Budget. As soon as practicable after the beginning of each fiscal period and as may be necessary thereafter, the committee shall prepare an estimated budget of...

  20. Motivation in Beyond Budgeting: A Motivational Paradox?

    DEFF Research Database (Denmark)

    Sandalgaard, Niels; Bukh, Per Nikolaj

    In this paper we discuss the role of motivation in relation to budgeting and we analyse how the Beyond Budgeting model functions compared with traditional budgeting. In the paper we focus on budget related motivation (and motivation in general) and conclude that the Beyond Budgeting model...

  1. Experimental study on the minimum drag coefficient of supercritical pressure water in horizontal tubes

    International Nuclear Information System (INIS)

    Lei, Xianliang; Li, Huixiong; Guo, YuMeng; Zhang, Qing; Zhang, Weiqiang; Zhang, Qian

    2016-01-01

    Highlights: • The minimum drag coefficient phenomenon (MDC) has been observed and further investigated. • Effects of heat flux, mass flux and pressure to MDC have been discussed. • A series of comparisons between existing correlations and data have been conducted. • Two correlations of drag coefficient are proposed for isothermal and nonisothermal flow. - Abstract: Hydraulic resistance and its components are of great importance for understanding the turbulence nature of supercritical fluid and establishing prediction methods. Under supercritical pressures, the hydraulic resistance of the fluid exhibits a “pit” in the regions near its pseudo-critical point, which is hereafter called the minimum drag coefficient phenomenon. However, this special phenomenon was paid a little attention before. Hence systematical experiments have been carried out to investigate the hydraulic resistance of supercritical pressure water in both adiabatic and heated horizontal tubes. Parametric effects of heat flux, pressure and mass fluxes to drag coefficient are further compared. It is found that almost all of the existing correlations don’t agree well with the experimental data due to the insufficient consideration of thermal-properties near the pseudocritical point. Two correlations of the drag coefficients are finally proposed by introducing the new variable of the derivative of density with respect to temperature or Prandtl number, which can better predict the drag coefficient of isothermal and nonisothermal flow respectively.

  2. BUDGET AND PUBLIC DEBT

    Directory of Open Access Journals (Sweden)

    Morar Ioan Dan

    2014-12-01

    Full Text Available The issue of public budgeting is an important issue for public policy of the state, for the simple reason that no money from the state budget can not promote public policy. Budgetary policy is official government Doctrine vision mirror and also represents a starting point for other public policies, which in turn are financed by the public budget. Fiscal policy instruments at its disposal handles the public sector in its structure, and the private sector. Tools such as grant, budgetary allocation, tax, welfare under various forms, direct investments and not least the state aid is used by the state through their budgetary policies to directly and indirectly infuence sector, and the private. Fiscal policies can be grouped according to the structure of the public sector in these components, namely fiscal policy, budgeting and resource allocation policies for financing the budget deficit. An important issue is the financing of the budget deficit budgetary policies. There are two funding possibilities, namely, the higher taxes or more axles site and enter the second call to public loans. Both options involve extra effort from taxpayers in the current fiscal year when they pay higher taxes or a future period when public loans will be repaid. We know that by virtue of "fiscal pact" structural deficits of the member countries of the EU are limited by the European Commission, according to the macro structural stability and budget of each Member State. This problem tempers to some extent the governments of the Member States budgetary appetite, but does not solve the problem of chronic budget deficits. Another issue addressed in this paper is related to the public debt, the absolute amount of its relative level of public datoriri, about the size of GDP, public debt financing and its repayment sources. Sources of public debt issuance and monetary impact on the budget and monetary stability are variables that must underpin the justification of budgetary

  3. Thermal neutron flux measurements in the rotary specimen rack of the IPR-R1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Rose Mary G. do Prado; Rodrigues, Rogério R.; Souza, Luiz Claudio A., E-mail: souzarm@cdtn.br, E-mail: rrr@cdtn.br, E-mail: lcas@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The thermal neutron flux in the rotary specimen rack of the IPR-R1 TRIGA reactor at the Nuclear Technology Development Center (CDTN), Belo Horizonte, Brazil, has been measured by the neutron activation method, using bare and cadmium covered gold foils. Those foils were irradiated in the rotary specimen rack with the reactor at 100 kW. The reactor core configuration has 63 fuel elements, composed of 59 original aluminum-clad elements and 4 stainless steel-clad fuel elements. The gamma activities of the foils were measured using Ge spectrometer. The perturbations of the thermal neutron flux caused by the introduction of an absorbing foil into the medium were considered in order to obtain accurate determination of the flux. The thermal neutron flux obtained was 7.4 x 10{sup 11} n.cm{sup -2}.s{sup -1}. (author)

  4. 24 CFR 968.225 - Budget revisions.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Budget revisions. 968.225 Section... Fewer Than 250 Units) § 968.225 Budget revisions. (a) A PHA shall not incur any modernization cost in excess of the total HUD-approved CIAP budget. A PHA shall submit a budget revision, in a form prescribed...

  5. Horizontal Accelerator

    Data.gov (United States)

    Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...

  6. FLEXIBLE BUDGET OF SPORT COMPETITIONS

    Directory of Open Access Journals (Sweden)

    Dragan Vukasović

    2009-11-01

    Full Text Available Manager of sport competition has right to decide and also to take responsibility for costs, income and financial results. From economic point of wiev flexible budget and planning cost calculations is top management base for analyzing success level of sport competition. Flexible budget is made before sport competition with few output level, where one is always from static plan-master plan. At the end of competition when we have results, we make report of plan executing and we also analyzing plan variances. Results of comparation between achieved and planning level of static budget can be acceptable if achieved level is approximate to budget level or if we analyzing results from gross or net income. Flexible budget become very important in case of world eco- nomic crises

  7. 25 CFR 122.7 - Budget.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Budget. 122.7 Section 122.7 Indians BUREAU OF INDIAN... § 122.7 Budget. (a) By August 1 of each year, the Osage Tribal Education Committee will submit a proposed budget to the Assistant Secretary or to his/her designated representative for formal approval...

  8. 7 CFR 955.41 - Budget.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 955.41 Section 955.41 Agriculture Regulations... Assessments § 955.41 Budget. At least 60 days prior to each fiscal period, or such other date as may be... budget of income and expenditures necessary for the administration of this part. The committee may...

  9. Beyond Zero Based Budgeting.

    Science.gov (United States)

    Ogden, Daniel M., Jr.

    1978-01-01

    Suggests that the most practical budgeting system for most managers is a formalized combination of incremental and zero-based analysis because little can be learned about most programs from an annual zero-based budget. (Author/IRT)

  10. Zero-base budgeting and the library.

    Science.gov (United States)

    Sargent, C W

    1978-01-01

    This paper describes the application of zero-base budgeting to libraries and the procedures involved in setting up this type of budget. It describes the "decision packages" necessary when this systmem is employed, as well as how to rank the packages and the problems which are related to the process. Zero-base budgeting involves the entire staff of a library, and the incentive engendered makes for a better and more realistic budget. The paper concludes with the problems which one might encounter in zero-base budgeting and the major benefits of the system. PMID:626795

  11. Satellite-Derived Distributions, Inventories and Fluxes of Dissolved and Particulate Organic Matter Along the Northeastern U.S. Continental Margin

    Science.gov (United States)

    Mannino, A.; Hooker, S. B.; Hyde, K.; Novak, M. G.; Pan, X.; Friedrichs, M.; Cahill, B.; Wilkin, J.

    2011-01-01

    Estuaries and the coastal ocean experience a high degree of variability in the composition and concentration of particulate and dissolved organic matter (DOM) as a consequence of riverine and estuarine fluxes of terrigenous DOM, sediments, detritus and nutrients into coastal waters and associated phytoplankton blooms. Our approach integrates biogeochemical measurements, optical properties and remote sensing to examine the distributions and inventories of organic carbon in the U.S. Middle Atlantic Bight and Gulf of Maine. Algorithms developed to retrieve colored DOM (CDOM), Dissolved (DOC) and Particulate Organic Carbon (POC) from NASA's MODIS-Aqua and SeaWiFS satellite sensors are applied to quantify the distributions and inventories of DOC and POC. Horizontal fluxes of DOC and POC from the continental margin to the open ocean are estimated from SeaWiFS and MODIS-Aqua distributions of DOC and POC and horizontal divergence fluxes obtained from the Northeastern North Atlantic ROMS model. SeaWiFS and MODIS imagery reveal the importance of estuarine outflow to the export of CDOM and DOC to the coastal ocean and a net community production of DOC on the shelf.

  12. The Global Methane Budget 2000-2012

    Science.gov (United States)

    Saunois, Marielle; Bousquet, Philippe; Poulter, Benjamin; Peregon, Anna; Ciais, Philippe; Canadell, Josep G.; Dlugokencky, Edward J.; Etiope, Giuseppe; Bastviken, David; Houweling, Sander; hide

    2016-01-01

    scenarios. Bottom-up approaches suggest larger global emissions (736 TgCH4 yr(exp -1), range 596-884) mostly because of larger natural emissions from individual sources such as inland waters, natural wetlands and geological sources. Considering the atmospheric constraints on the top-down budget, it is likely that some of the individual emissions reported by the bottom-up approaches are overestimated, leading to too large global emissions. Latitudinal data from top-down emissions indicate a predominance of tropical emissions (approximately 64% of the global budget, less than 30deg N) as compared to mid (approximately 32%, 30-60deg N) and high northern latitudes (approximately 4%, 60-90deg N). Top-down inversions consistently infer lower emissions in China (approximately 58 TgCH4 yr(exp -1), range 51-72, minus14% ) and higher emissions in Africa (86 TgCH4 yr(exp -1), range 73-108, plus 19% ) than bottom-up values used as prior estimates. Overall, uncertainties for anthropogenic emissions appear smaller than those from natural sources, and the uncertainties on source categories appear larger for top-down inversions than for bottom-up inventories and models. The most important source of uncertainty on the methane budget is attributable to emissions from wetland and other inland waters. We show that the wetland extent could contribute 30-40% on the estimated range for wetland emissions. Other priorities for improving the methane budget include the following: (i) the development of process-based models for inland-water emissions, (ii) the intensification of methane observations at local scale (flux measurements) to constrain bottom-up land surface models, and at regional scale (surface networks and satellites) to constrain top-down inversions, (iii) improvements in the estimation of atmospheric loss by OH, and (iv) improvements of the transport models integrated in top-down inversions. The data presented here can be downloaded from the Carbon Dioxide Information Analysis Center

  13. KoFlux: Korean Regional Flux Network in AsiaFlux

    Science.gov (United States)

    Kim, J.

    2002-12-01

    AsiaFlux, the Asian arm of FLUXNET, held the Second International Workshop on Advanced Flux Network and Flux Evaluation in Jeju Island, Korea on 9-11 January 2002. In order to facilitate comprehensive Asia-wide studies of ecosystem fluxes, the meeting launched KoFlux, a new Korean regional network of long-term micrometeorological flux sites. For a successful assessment of carbon exchange between terrestrial ecosystems and the atmosphere, an accurate measurement of surface fluxes of energy and water is one of the prerequisites. During the 7th Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment (GAME) held in Nagoya, Japan on 1-2 October 2001, the Implementation Committee of the Coordinated Enhanced Observing Period (CEOP) was established. One of the immediate tasks of CEOP was and is to identify the reference sites to monitor energy and water fluxes over the Asian continent. Subsequently, to advance the regional and global network of these reference sites in the context of both FLUXNET and CEOP, the Korean flux community has re-organized the available resources to establish a new regional network, KoFlux. We have built up domestic network sites (equipped with wind profiler and radiosonde measurements) over deciduous and coniferous forests, urban and rural rice paddies and coastal farmland. As an outreach through collaborations with research groups in Japan, China and Thailand, we also proposed international flux sites at ecologically and climatologically important locations such as a prairie on the Tibetan plateau, tropical forest with mixed and rapid land use change in northern Thailand. Several sites in KoFlux already begun to accumulate interesting data and some highlights are presented at the meeting. The sciences generated by flux networks in other continents have proven the worthiness of a global array of micrometeorological flux towers. It is our intent that the launch of KoFlux would encourage other scientists to initiate and

  14. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    Science.gov (United States)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2017-08-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  15. FY 1997 congressional budget request: Budget highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This is an overview of the 1997 budget request for the US DOE. The topics of the overview include a policy overview, the budget by business line, business lines by organization, crosswalk from business line to appropriation, summary by appropriation, energy supply research and development, uranium supply and enrichment activities, uranium enrichment decontamination and decommissioning fund, general science and research, weapons activities, defense environmental restoration and waste management, defense nuclear waste disposal, departmental administration, Office of the Inspector General, power marketing administrations, Federal Energy Regulatory commission, nuclear waste disposal fund, fossil energy research and development, naval petroleum and oil shale reserves, energy conservation, economic regulation, strategic petroleum reserve, energy information administration, clean coal technology and a Department of Energy Field Facilities map.

  16. Increased terrestrial to ocean sediment and carbon fluxes in the northern Chesapeake Bay associated with twentieth century land alteration

    Science.gov (United States)

    Saenger, C.; Cronin, T. M.; Willard, D.; Halka, J.; Kerhin, R.

    2008-01-01

    We calculated Chesapeake Bay (CB) sediment and carbon fluxes before and after major anthropogenic land clearance using robust monitoring, modeling and sedimentary data. Four distinct fluxes in the estuarine system were considered including (1) the flux of eroded material from the watershed to streams, (2) the flux of suspended sediment at river fall lines, (3) the burial flux in tributary sediments, and (4) the burial flux in main CB sediments. The sedimentary maximum in Ambrosia (ragweed) pollen marked peak land clearance (~1900 a.d.). Rivers feeding CB had a total organic carbon (TOC)/total suspended solids of 0.24??0.12, and we used this observation to calculate TOC fluxes from sediment fluxes. Sediment and carbon fluxes increased by 138-269% across all four regions after land clearance. Our results demonstrate that sediment delivery to CB is subject to significant lags and that excess post-land clearance sediment loads have not reached the ocean. Post-land clearance increases in erosional flux from watersheds, and burial in estuaries are important processes that must be considered to calculate accurate global sediment and carbon budgets. ?? 2008 Coastal and Estuarine Research Federation.

  17. Building information modeling in budgeting

    Directory of Open Access Journals (Sweden)

    Strnad, Michal

    2017-12-01

    Full Text Available Construction activity is one of the financially demanding and ever-changing locations of implementation. The basic idea of the budget is to determine all the possible costs that will arise during construction work. The budget must be a transparent and effective way of communication in the context of supplier-customer relationships. For this reason it is essential to give the budget the structure that is now represented by the price system. It is important to adhere to the principles of budgeting and technical standards. It is necessary to have good documentation for budgeting such as project documentation and much more. However, the construction product range is one of the most extensive, the product group can be changed several times in the investment phase not only materially but also cost-effectively because of the longest production cycle in the construction industry.

  18. Verification of uncertainty budgets

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Madsen, B.S.

    2005-01-01

    , and therefore it is essential that the applicability of the overall uncertainty budget to actual measurement results be verified on the basis of current experimental data. This should be carried out by replicate analysis of samples taken in accordance with the definition of the measurand, but representing...... the full range of matrices and concentrations for which the budget is assumed to be valid. In this way the assumptions made in the uncertainty budget can be experimentally verified, both as regards sources of variability that are assumed negligible, and dominant uncertainty components. Agreement between...

  19. How to choose methods for lake greenhouse gas flux measurements?

    Science.gov (United States)

    Bastviken, David

    2017-04-01

    Lake greenhouse gas (GHG) fluxes are increasingly recognized as important for lake ecosystems as well as for large scale carbon and GHG budgets. However, many of our flux estimates are uncertain and it can be discussed if the presently available data is representative for the systems studied or not. Data are also very limited for some important flux pathways. Hence, many ongoing efforts try to better constrain fluxes and understand flux regulation. A fundamental challenge towards improved knowledge and when starting new studies is what methods to choose. A variety of approaches to measure aquatic GHG exchange is used and data from different methods and methodological approaches have often been treated as equally valid to create large datasets for extrapolations and syntheses. However, data from different approaches may cover different flux pathways or spatio-temporal domains and are thus not always comparable. Method inter-comparisons and critical method evaluations addressing these issues are rare. Emerging efforts to organize systematic multi-lake monitoring networks for GHG fluxes leads to method choices that may set the foundation for decades of data generation and therefore require fundamental evaluation of different approaches. The method choices do not only regard the equipment but also for example consideration of overall measurement design and field approaches, relevant spatial and temporal resolution for different flux components, and accessory variables to measure. In addition, consideration of how to design monitoring approaches being affordable, suitable for widespread (global) use, and comparable across regions is needed. Inspired by discussions with Prof. Dr. Cristian Blodau during the EGU General Assembly 2016, this presentation aims to (1) illustrate fundamental pros and cons for a number of common methods, (2) show how common methodological approaches originally adapted for other environments can be improved for lake flux measurements, (3) suggest

  20. Rapid Budget Analysis of the Agricultural Sector for the General Budget Support Annual Review 2010/11

    OpenAIRE

    Francken, Nathalie; Zorya, S

    2010-01-01

    The main objective of the budget analysis chapter is to provide an overall assessment of how well the approved budget allocations in 2010-11 align with the strategic objectives and with sector strategic priorities of the Second National Strategy for Growth and Reduction of Poverty (known by its Kiswahili acronym, MKUKUTA II). It also assesses the consistency of the actual spending and approved budget in 2009-10. In evaluating the alignment of the budget and MKUKUTA's strategic objectives and ...

  1. Innovative Concepts of Budgeting in the Enterprises

    Directory of Open Access Journals (Sweden)

    Adam Bąk

    2009-03-01

    Full Text Available The article presents the current concepts of budgeting with the special focus on innovative budgets. It includes the evolution of the budgeting concept starting from the traditional one which was applied in the second half of the 20th Century and assumed the budget as the main tool for the achievement of company’s goals. The next presented method is Better Budgeting. It arouse at the nineties as the resposne for the critics of the traditional method which was accused for the fixed assumptions which were no longer matching with the fast changing competitive environment. This method assumed the high level of budget preparation as he opposite to the detailed level as well as shorter planning period. The Beyond Budgeting was the most radical method and eliminated budget as the tool supporting the management; the concept has been used from the nineties until today, by more than seventy multinational companies from beyond budgeting round table. However, Beyond Budgeting was also criticised for not being applied in the industrial sector and too theoretical approach. Therefore, Ronald Gleicha from European Business School, established a working group, which icludes the scientists and managers, in order to create by mid of 2009, the new and opitimal method, which is called Modern Budgeting.

  2. Budget Elements of Economic Security: Specifics of Classification

    Directory of Open Access Journals (Sweden)

    О. S.

    2017-02-01

    Full Text Available Theoretical aspects of economic security in conjunction with budget components such as “budget interests” and “budget necessities” are analyzed. Key positions of the categories “budget interests” and “budget necessities” in the theory of economic security in the budgetary area are substantiated given their priority role in setting up its implementation strategy. The category “budget interests” is defined as the system of budget necessities of the interest holders, implemented through budget activities of entities and aimed at seeking benefits through the budget, in order to guarantee functioning and development of the society, the state, legal entities and physical persons. “Budget necessities” are defined as the need in budget funds to achieve and sustain, at a certain level, life activities of individuals, social groups, society, state and legal entities. Classification of budget interests by various criteria is made in the context of their impact on the economic security of the state. It is demonstrated that the four-tier classification of the budget interests by interest holder is essential to guaranteeing economic security in the budgetary area: budget interests of the state: the interests held by central and local power offices; budget interests of legal entities: the interests of profit and non-profit (public, budgetary, party and other organizations; budget interests of individuals: basic necessities of individuals, met by budget transfers, which stand out of the array of public necessities by their individual character.

  3. Polity age and political budget cycles

    DEFF Research Database (Denmark)

    Aaskoven, Lasse

    2018-01-01

    Incumbent incentive for competence-signaling and lack of voter information are generally thought to be factors that increase the prevalence of political budget cycles. These mechanisms should be more prevalent in new political units. Since the creation of new political units is rarely exogenous......-experimental to study whether political budget cycles are larger in new political units. Contrary to theoretical predictions, political budget cycles seem to be of a smaller scale in the new municipalities, but only regarding budget cycles in budgetary overruns. The findings are of wider interest for discussions about...... the mechanisms behind context-conditional political budget cycles....

  4. Budgeting in Nonprofit Organizations.

    Science.gov (United States)

    Kelly, Lauren

    1985-01-01

    This description of the role of budgets in nonprofit organizations uses libraries as an example. Four types of budgets--legislative, management, cash, and capital--are critiqued in terms of cost effectiveness, implementation, and facilitation of organizational control and objectives. (CLB)

  5. Refined global methyl halide budgets with respect to rapeseed (Brassica napus) by life-cycle measurements

    Science.gov (United States)

    Jiao, Y.; Acdan, J.; Xu, R.; Deventer, M. J.; Rhew, R. C.

    2017-12-01

    A precise quantification of global methyl halide budgets is needed to evaluate the ozone depletion potential of these compounds and to predict future changes of stratospheric ozone. However, the global budgets of methyl halides are not balanced between currently identified and quantified sources and sinks. Our study re-evaluated the methyl bromide budget from global cultivated rapeseed (Brassica napus) through life-cycle flux measurements both in the greenhouse and in the field, yielding a methyl bromide emission rate that scales globally to 1.0 - 1.2 Gg yr-1. While this indicates a globally significant source, it is much smaller than the previously widely cited value of 5 - 6 Gg yr-1(Mead et al., 2008), even taking into account the near tripling of annual global yield of rapeseed since the previous evaluation was conducted. Our study also evaluated the methyl chloride and methyl iodide emission levels from rapeseed, yielding emission rates that scale to 5.4 Gg yr-1 for methyl chloride and 1.8 Gg yr-1 of methyl iodide. The concentrations of the methyl donor SAM (S-adenosyl methionine) and the resultant product SAH (S-Adenosyl-L-homocysteine) were also analyzed to explore their role in biogenic methyl halide formation. Halide gradient incubations showed that the magnitude of methyl halide emissions from rapeseed is highly correlated to soil halide levels, thus raising the concern that the heterogeneity of soil halide contents geographically should be considered when extrapolating to global budget.

  6. Entropy Generation on Nanofluid Flow through a Horizontal Riga Plate

    Directory of Open Access Journals (Sweden)

    Tehseen Abbas

    2016-06-01

    Full Text Available In this article, entropy generation on viscous nanofluid through a horizontal Riga plate has been examined. The present flow problem consists of continuity, linear momentum, thermal energy, and nanoparticle concentration equation which are simplified with the help of Oberbeck-Boussinesq approximation. The resulting highly nonlinear coupled partial differential equations are solved numerically by means of the shooting method (SM. The expression of local Nusselt number and local Sherwood number are also taken into account and discussed with the help of table. The physical influence of all the emerging parameters such as Brownian motion parameter, thermophoresis parameter, Brinkmann number, Richardson number, nanoparticle flux parameter, Lewis number and suction parameter are demonstrated graphically. In particular, we conferred their influence on velocity profile, temperature profile, nanoparticle concentration profile and Entropy profile.

  7. Examining the role of SGD on the nitrogen budget of the fourth largest estuary in the USA, Mobile Bay, Alabama

    Science.gov (United States)

    Dimova, N. T.; Montiel, D.; Lu, Y.; Adyasari, D.

    2017-12-01

    The present study aims to help understand further the importance of submarine groundwater discharge (SGD) to Mobile Bay, Alabama with respect to associated nitrogen (N-) fluxes. Based on a three-year long study we found that on a large scale, when comparing Mobile River discharge to SGD, during the dry season, the SGD flux is only 2.5% of Mobile River discharge, whereas, during the wet season, this contribution is less than 1%. However, when examining the nitrogen budget of MB, we found that during the dry season, SGD delivers about half of the fluxes to the Bay. Furthermore, we found that the distribution of these SGD-derived inputs along the MB shoreline is very heterogeneous. Shallow geophysical electrical resistivity imaging and multiple sediment cores recovered in the examined areas reveal a rich organic sediment layer (up to 80 cm thick at some locations) which is perhaps responsible for the observed enhanced N-fluxes. Ongoing microbial, DOM and stable isotope sediment examination aim to explain the geochemical processes responsible for the disproportionally large SGD-delivered nitrogen fluxes in the identified impacted coastal areas.

  8. The Effect of Cumulus Cloud Field Anisotropy on Domain-Averaged Solar Fluxes and Atmospheric Heating Rates

    Science.gov (United States)

    Hinkelman, Laura M.; Evans, K. Franklin; Clothiaux, Eugene E.; Ackerman, Thomas P.; Stackhouse, Paul W., Jr.

    2006-01-01

    Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of x-z plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction, i.e., the cloud fraction when the field is projected on a surface perpendicular to the direction of the incident solar beam.

  9. Plasma column displacement measurements by modified Rogowski sine-coil and Biot-Savart/magnetic flux equation solution on IR-T1 tokamak

    International Nuclear Information System (INIS)

    Razavi, M.; Mollai, M.; Khorshid, P.; Nedzelskiy, I.; Ghoranneviss, M.

    2010-01-01

    The modified Rogowski sine-coil (MRSC) has been designed and implemented for the plasma column horizontal displacement measurements on small IR-T1 tokamak. MRSC operation has been examined on test assembly and tokamak. Obtained results show high sensitivity to the plasma column horizontal displacement and negligible sensitivity to the vertical displacement; linearity in wide, ±0.1 m, range of the displacements; and excellent, 1.5%, agreement with the results of numerical solution of Biot-Savart and magnetic flux equations.

  10. Horizontal drilling under Lake Erie

    Energy Technology Data Exchange (ETDEWEB)

    Meller, R.

    2001-07-01

    Drilling oil wells under Lake Erie calls for horizontal drilling wells to be drilled from shore out into the pay-zone under the lake. The nature and characteristics of horizontal wells as compared to vertical wells are explored. Considerations that have to be taken into account in drilling horizontal wells are explained (the degree of curvature, drilling fluid quality, geosteering in the pay-zone, steering instrumentation, measurements while drilling (MWD), logging while drilling (LWD)). The concept and reasons for extended reach wells are outlined, along with characteristic features of multilateral wells.

  11. Eddy covariance flux measurements confirm extreme CH4 emissions from a Swiss hydropower reservoir and resolve their short-term variability

    Directory of Open Access Journals (Sweden)

    S. Sobek

    2011-09-01

    Full Text Available Greenhouse gas budgets quantified via land-surface eddy covariance (EC flux sites differ significantly from those obtained via inverse modeling. A possible reason for the discrepancy between methods may be our gap in quantitative knowledge of methane (CH4 fluxes. In this study we carried out EC flux measurements during two intensive campaigns in summer 2008 to quantify methane flux from a hydropower reservoir and link its temporal variability to environmental driving forces: water temperature and pressure changes (atmospheric and due to changes in lake level. Methane fluxes were extremely high and highly variable, but consistently showed gas efflux from the lake when the wind was approaching the EC sensors across the open water, as confirmed by floating chamber flux measurements. The average flux was 3.8 ± 0.4 μg C m−2 s−1 (mean ± SE with a median of 1.4 μg C m−2 s−1, which is quite high even compared to tropical reservoirs. Floating chamber fluxes from four selected days confirmed such high fluxes with 7.4 ± 1.3 μg C m−2 s−1. Fluxes increased exponentially with increasing temperatures, but were decreasing exponentially with increasing atmospheric and/or lake level pressure. A multiple regression using lake surface temperatures (0.1 m depth, temperature at depth (10 m deep in front of the dam, atmospheric pressure, and lake level was able to explain 35.4% of the overall variance. This best fit included each variable averaged over a 9-h moving window, plus the respective short-term residuals thereof. We estimate that an annual average of 3% of the particulate organic matter (POM input via the river is sufficient to sustain these large CH4 fluxes. To compensate the global warming potential associated with the CH4 effluxes from this hydropower reservoir a 1.3 to 3.7 times larger terrestrial area with net carbon dioxide uptake is needed if a European-scale compilation of grasslands, croplands and forests is taken as reference. This

  12. Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the western Amazon basin

    Science.gov (United States)

    Arn Teh, Yit; Murphy, Wayne A.; Berrio, Juan-Carlos; Boom, Arnoud; Page, Susan E.

    2017-08-01

    The Amazon plays a critical role in global atmospheric budgets of methane (CH4) and nitrous oxide (N2O). However, while we have a relatively good understanding of the continental-scale flux of these greenhouse gases (GHGs), one of the key gaps in knowledge is the specific contribution of peatland ecosystems to the regional budgets of these GHGs. Here we report CH4 and N2O fluxes from lowland tropical peatlands in the Pastaza-Marañón foreland basin (PMFB) in Peru, one of the largest peatland complexes in the Amazon basin. The goal of this research was to quantify the range and magnitude of CH4 and N2O fluxes from this region, assess seasonal trends in trace gas exchange, and determine the role of different environmental variables in driving GHG flux. Trace gas fluxes were determined from the most numerically dominant peatland vegetation types in the region: forested vegetation, forested (short pole) vegetation, Mauritia flexuosa-dominated palm swamp, and mixed palm swamp. Data were collected in both wet and dry seasons over the course of four field campaigns from 2012 to 2014. Diffusive CH4 emissions averaged 36.05 ± 3.09 mg CH4-C m-2 day-1 across the entire dataset, with diffusive CH4 flux varying significantly among vegetation types and between seasons. Net ebullition of CH4 averaged 973.3 ± 161.4 mg CH4-C m-2 day-1 and did not vary significantly among vegetation types or between seasons. Diffusive CH4 flux was greatest for mixed palm swamp (52.0 ± 16.0 mg CH4-C m-2 day-1), followed by M. flexuosa palm swamp (36.7 ± 3.9 mg CH4-C m-2 day-1), forested (short pole) vegetation (31.6 ± 6.6 mg CH4-C m-2 day-1), and forested vegetation (29.8 ± 10.0 mg CH4-C m-2 day-1). Diffusive CH4 flux also showed marked seasonality, with divergent seasonal patterns among ecosystems. Forested vegetation and mixed palm swamp showed significantly higher dry season (47.2 ± 5.4 mg CH4-C m-2 day-1 and 85.5 ± 26.4 mg CH4-C m-2 day-1, respectively) compared to wet season emissions

  13. Political Budget Cycles

    DEFF Research Database (Denmark)

    Aaskoven, Lasse; Lassen, David Dreyer

    2017-01-01

    The political budget cycle—how elections affect government fiscal policy—is one of the most studied subjects in political economy and political science. The key theoretical question is whether incumbent governments can time or structure public finances in ways that improve their chances of reelec......The political budget cycle—how elections affect government fiscal policy—is one of the most studied subjects in political economy and political science. The key theoretical question is whether incumbent governments can time or structure public finances in ways that improve their chances...... on political budget cycles have recently focused on conditions under which such cycles are likely to obtain. Much recent research focuses on subnational settings, allowing comparisons of governments in similar institutional environments, and a consensus on the presences of cycles in public finances...

  14. Heat and Flux. Enabling the Wind Turbine Controller

    Energy Technology Data Exchange (ETDEWEB)

    Schaak, P. [ECN Wind Energy, Petten (Netherlands)

    2006-09-15

    In the years 1999-2003 ECN invented and patented the technique 'Heat and Flux'. The idea behind Heat and Flux is that tuning turbines at the windward side of a wind farm more transparent than usual, i.e. realising an axial induction factor below the Lanchester-Betz optimum of 1/3, should raise net farm production and lower mechanical turbine loading without causing draw-backs. For scaled farms in a boundary layer wind tunnel this hypothesis has been proved in previous projects. To enable alternative turbine transparencies, the wind turbine controller must support the additional control aim 'desired transparency'. During this study we have determined a general method to design a transparency control algorithm. This method has been implemented in ECN's 'Control Tool' for designing wind turbine control algorithms. The aero-elastic wind turbine code Phatas has been used to verify the resulting control algorithm. Heat and Flux does not fundamentally change the control of horizontal axis variable speed wind turbines. The axial induction can be reduced by an offset on blade pitch or generator torque. Weighing reliability against performance profits, it appeared to be advisable to adapt only blade angle control.

  15. Budgets and behaviors of uranium and thorium series isotopes in the Santa Monica Basin off the California Coast

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lei.

    1991-12-16

    Samples from three time-series sediment traps deployed in the Santa Monica Basin off the California coast were analyzed to study the flux and scavenging of uranium and thorium series isotopes. Variations of uranium and thorium series isotopes fluxes in the water column were obtained by integrating these time-series deployment results. Mass and radionuclide fluxes measured from bottom sediment traps compare favorably with fluxed determined from sediment core data. This agreement suggests that the near-bottom sediment traps are capable of collecting settling particles representative of the surface sediment. The phase distributions of {sup 234}Th in the water column were calculated by an inverse method using sediment trap data, which help to study the variations of {sup 234}Th scavenging in the water column. Scavenging and radioactive decay of {sup 234}Th are the two principal processes for balancing {sup 234}Th budget in the water column. The residence times of dissolved and particulate {sup 234}Th were determined by a {sup 234}Th scavenging model.

  16. Budgets and behaviors of uranium and thorium series isotopes in the Santa Monica Basin off the California Coast

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lei [Oregon State Univ., Corvallis, OR (United States)

    1991-12-16

    Samples from three time-series sediment traps deployed in the Santa Monica Basin off the California coast were analyzed to study the flux and scavenging of uranium and thorium series isotopes. Variations of uranium and thorium series isotopes fluxes in the water column were obtained by integrating these time-series deployment results. Mass and radionuclide fluxes measured from bottom sediment traps compare favorably with fluxed determined from sediment core data. This agreement suggests that the near-bottom sediment traps are capable of collecting settling particles representative of the surface sediment. The phase distributions of 234Th in the water column were calculated by an inverse method using sediment trap data, which help to study the variations of 234Th scavenging in the water column. Scavenging and radioactive decay of 234Th are the two principal processes for balancing 234Th budget in the water column. The residence times of dissolved and particulate 234Th were determined by a 234Th scavenging model.

  17. Evaporation heat transfer of hot water from horizontal free service

    International Nuclear Information System (INIS)

    Koizumi, Y.; Ebihara, Y.; Hirota, T.; Murase, M.

    2011-01-01

    Evaporation heat transfer from the hot water flow to the cold air flow in a horizontal duct was examined. Hot water was in the range of 35 o C ~ 65 o C. Cold air was approximately 25 o C. The air velocity was varied from 0.0656 m/s ~ 1.41 m/s. The heat transfer rate from the water flow to the air flow became large with an increase in the air velocity. The higher the water temperature was, the larger the heat transfer rate was. When the total heat flux from water to the air flow is divided into two terms; the evaporation term and the forced flow convection term, the evaporation term dominate main part and that is about 90 ~ 80 % of the total heat flux. The measured values of the evaporation term and the forced flow convection term were larger than the predicted because of the effect of the diffusion of evaporated vapor. The correlation to predict the heat transfer from the hot water flow to the cold air flow with the evaporation was developed by modifying the laminar flow mass transfer correlation and the laminar forced convection heat transfer correlation. Good results were obtained. (author)

  18. Evaporation heat transfer of hot water from horizontal free service

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Y.; Ebihara, Y.; Hirota, T. [Shinshu Univ., Ueda, Nagano (Japan); Murase, M. [INSS, Mihama-cho, Fukui (Japan)

    2011-07-01

    Evaporation heat transfer from the hot water flow to the cold air flow in a horizontal duct was examined. Hot water was in the range of 35{sup o}C ~ 65{sup o}C. Cold air was approximately 25{sup o}C. The air velocity was varied from 0.0656 m/s ~ 1.41 m/s. The heat transfer rate from the water flow to the air flow became large with an increase in the air velocity. The higher the water temperature was, the larger the heat transfer rate was. When the total heat flux from water to the air flow is divided into two terms; the evaporation term and the forced flow convection term, the evaporation term dominate main part and that is about 90 ~ 80 % of the total heat flux. The measured values of the evaporation term and the forced flow convection term were larger than the predicted because of the effect of the diffusion of evaporated vapor. The correlation to predict the heat transfer from the hot water flow to the cold air flow with the evaporation was developed by modifying the laminar flow mass transfer correlation and the laminar forced convection heat transfer correlation. Good results were obtained. (author)

  19. Patterns and controls of inter-annual variability in the terrestrial carbon budget

    Directory of Open Access Journals (Sweden)

    B. Marcolla

    2017-08-01

    Full Text Available The terrestrial carbon fluxes show the largest variability among the components of the global carbon cycle and drive most of the temporal variations in the growth rate of atmospheric CO2. Understanding the environmental controls and trends of the terrestrial carbon budget is therefore essential to predict the future trajectories of the CO2 airborne fraction and atmospheric concentrations. In the present work, patterns and controls of the inter-annual variability (IAV of carbon net ecosystem exchange (NEE have been analysed using three different data streams: ecosystem-level observations from the FLUXNET database (La Thuile and 2015 releases, the MPI-MTE (model tree ensemble bottom–up product resulting from the global upscaling of site-level fluxes, and the Jena CarboScope Inversion, a top–down estimate of surface fluxes obtained from observed CO2 concentrations and an atmospheric transport model. Consistencies and discrepancies in the temporal and spatial patterns and in the climatic and physiological controls of IAV were investigated between the three data sources. Results show that the global average of IAV at FLUXNET sites, quantified as the standard deviation of annual NEE, peaks in arid ecosystems and amounts to  ∼  120 gC m−2 y−1, almost 6 times more than the values calculated from the two global products (15 and 20 gC m−2 y−1 for MPI-MTE and the Jena Inversion, respectively. Most of the temporal variability observed in the last three decades of the MPI-MTE and Jena Inversion products is due to yearly anomalies, whereas the temporal trends explain only about 15 and 20 % of the variability, respectively. Both at the site level and on a global scale, the IAV of NEE is driven by the gross primary productivity and in particular by the cumulative carbon flux during the months when land acts as a sink. Altogether these results offer a broad view on the magnitude, spatial patterns and environmental drivers of IAV

  20. Towards integrated assessment of the northern Adriatic Sea sediment budget using remote sensing

    Science.gov (United States)

    Taramelli, A.; Filipponi, F.; Valentini, E.; Zucca, F.; Gutierrez, O. Q.; Liberti, L.; Cordella, M.

    2014-12-01

    Understanding the factors influencing sediment fluxes is a key issue to interpret the evolution of coastal sedimentation under natural and human impact and relevant for the natural resources management. Despite river plumes represent one of the major gain in sedimentary budget of littoral cells, knowledge of factors influencing complex behavior of coastal plumes, like river discharge characteristics, wind stress and hydro-climatic variables, has not been yet fully investigated. Use of Earth Observation data allows the identification of spatial and temporal variations of suspended sediments related to river runoff, seafloor erosion, sediment transport and deposition processes. Objective of the study is to investigate sediment fluxes in northern Adriatic Sea by linking suspended sediment patterns of coastal plumes to hydrologic and climatic forcing regulating the sedimentary cell budget and geomorphological evolution in coastal systems and continental shelf waters. Analysis of Total Suspended Matter (TSM) product, derived from 2002-2012 MERIS time series, was done to map changes in spatial and temporal dimension of suspended sediments, focusing on turbid plume waters and intense wind stress conditions. From the generated multi temporal TSM maps, dispersal patterns of major freshwater runoff plumes in northern Adriatic Sea were evaluated through spatial variability of coastal plumes shape and extent. Additionally, sediment supply from river distributary mouths was estimated from TSM and correlated with river discharge rates, wind field and wave field through time. Spatial based methodology has been developed to identify events of wave-generated resuspension of sediments, which cause variation in water column turbidity, occurring during intense wind stress and extreme metocean conditions, especially in the winter period. The identified resuspension events were qualitatively described and compared with to hydro-climatic variables. The identification of spatial and

  1. STATE BUDGET AND BUDGETARY PROCEDURES IN ROMANIA

    Directory of Open Access Journals (Sweden)

    POPA George Dorel

    2013-12-01

    Full Text Available In Romania, the budget process is governed by the Constitution and the Law of Public Finance no. 500/2002, act that includes the elaboration of the draft budget, approving the state budget, budget execution and budget control. All these activities are carried out in a legal way and administrative- institutional way, presenting features from country to country. The budget shows many traits in common: it is a decision process, because its essence consists in allocating budgetary resources for public goods such as education, health, national defence and so on. On the other hand is an essentially political process because allocation decisions budgetary resources are determined by the political groups, the mechanism of representation and voting, is a complex process with many participants (schools, hospitals, ministries, etc.. The budgetary process is a cyclic process, as it follows a well-defined calendar as a consequence of yearly and advertising budget. In conclusion, the budget process is a set of consecutive stages of development, approval, execution, control and reporting of the state budget, which ends with the approval of its execution account.

  2. Formation and evolution of plasmoids and flux-ropes in the Earth's Magnetotail

    Science.gov (United States)

    Ge, Y.; Raeder, J.

    2013-12-01

    The observation of plasmoids and flux-ropes in the Earth's magnetotail was crucial to establish the simultaneous presence of multiple x-lines in the tail, and has become the basis for the Near Earth Neutral Line (NENL) model of substorms. While the 'classical' NENL model envisions x-lines that extend across the entire tail, recent observations have shown that neither do the x-lines and resulting plasmoids encompass the entire tail, nor do the x-lines have to lie along the y-axis. Furthermore, several x-line/plasmoid/flux-rope structures can exist simultaneously. The fragmentation of the tail by spatially and temporally limited x-lines has important consequences for the mass and energy budget of the tail. Recent ARTEMIS observations have shown that the plasmoids in the distant tail are limited in the Y direction and some flux ropes are tilted during their tailward propagation. In this study we simulate plasmoids and flux-ropes in the Earth's magnetotail using the Open Global Geospace Circulation Model (OpenGGCM). We investigate the generation mechanisms for tail plasmoids and flux-ropes and their evolution as they propagate in the magnetotail. The simulation results show that the limited extend of NENL controls the length or the Y scale of tail plasmoid and flux rope. In addition, by studying their 3D magnetic topology we find that tilted flux ropes form due to a progressive spreading of the reconnection line along the east-west direction, which produces and releases the two ends of the flux rope at different times and at different speeds. By constructing a catalogue of observational signatures of plasmoid and flux rope we compare the differences of their signatures and find that large-scale plasmoids have much weaker core fields than that found inside the small-scale flux ropes.

  3. Formation and evolution of plasmoid and flux-rope in the Earth's Magnetotail

    Science.gov (United States)

    Ge, Yasong; Raeder, Joachim

    2015-04-01

    The observation of plasmoids and flux-ropes in the Earth's magnetotail was crucial to establish the simultaneous presence of multiple x-lines in the tail, and has become the basis for the Near Earth Neutral Line (NENL) model of substorms. While the "classical" NENL model envisions x-lines that extend across the entire tail, recent observations have shown that neither do the x-lines and resulting plasmoids encompass the entire tail, nor do the x-lines have to lie along the y-axis. The fragmentation of the tail by spatially and temporally limited x-lines has important consequences for the mass and energy budget of the tail. Recent ARTEMIS observations have shown that the plasmoids in the distant tail are limited in the Y direction and some flux ropes are tilted during their tailward propagation. Understanding their formation and evolution during their propagation through the magnetotail shall shred more light on the general energy and flux transport of the Earth's magnetosphere. In this study we simulate plasmoids and flux-ropes in the Earth's magnetotail using the Open Global Geospace Circulation Model (OpenGGCM). We investigate the generation mechanisms for tail plasmoids and flux-ropes and their evolution as they propagate in the magnetotail. The simulation results show that the limited extend of NENL controls the length or the Y scale of tail plasmoid and flux rope. In addition, by studying their 3D magnetic topology we find that the tilted flux rope forms due to a progressive spreading of reconnection line along the east-west direction, which produces and releases two ends of the flux rope at different times and in different speeds. By constructing a catalogue of observational signatures of plasmoid and flux rope we compare the differences of their signatures and find that large-scale plasmoids have much weaker core fields than that inside the small-scale flux ropes.

  4. Turbulence kinetic energy budget during the afternoon transition - Part 1: Observed surface TKE budget and boundary layer description for 10 intensive observation period days

    Science.gov (United States)

    Nilsson, Erik; Lohou, Fabienne; Lothon, Marie; Pardyjak, Eric; Mahrt, Larry; Darbieu, Clara

    2016-07-01

    The decay of turbulence kinetic energy (TKE) and its budget in the afternoon period from midday until zero-buoyancy flux at the surface is studied in a two-part paper by means of measurements from the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign for 10 intensive observation period days. Here, in Part 1, near-surface measurements from a small tower are used to estimate a TKE budget. The overall boundary layer characteristics and mesoscale situation at the site are also described based upon taller tower measurements, radiosoundings and remote sensing instrumentation. Analysis of the TKE budget during the afternoon transition reveals a variety of different surface layer dynamics in terms of TKE and TKE decay. This is largely attributed to variations in the 8 m wind speed, which is responsible for different amounts of near-surface shear production on different afternoons and variations within some of the afternoon periods. The partitioning of near-surface production into local dissipation and transport in neutral and unstably stratified conditions was investigated. Although variations exist both between and within afternoons, as a rule of thumb, our results suggest that about 50 % of the near-surface production of TKE is compensated for by local dissipation near the surface, leaving about 50 % available for transport. This result indicates that it is important to also consider TKE transport as a factor influencing the near-surface TKE decay rate, which in many earlier studies has mainly been linked with the production terms of TKE by buoyancy and wind shear. We also conclude that the TKE tendency is smaller than the other budget terms, indicating a quasi-stationary evolution of TKE in the afternoon transition. Even though the TKE tendency was observed to be small, a strong correlation to mean buoyancy production of -0.69 was found for the afternoon period. For comparison with previous results, the TKE budget terms are normalized with

  5. Carbon budget of the vineyard – A new feature of sustainability

    Directory of Open Access Journals (Sweden)

    Pitacco Andrea

    2015-01-01

    Full Text Available Vineyards received scarce attention in relation to the continuous monitoring of carbon fluxes and the assessment of their overall budget, as a common believe is that agricultural crops cannot be net carbon sinks. Indeed, many technical inputs, massive periodical harvests, and the repeated disturbances of upper soil layers, all contribute to a substantial loss both of the old and newly-synthesized organic matter. Woody perennials, however, can behave differently: they grow a permanent structure, stand undisturbed in the same field for decades, originate abundant pruning debris, and are often grass-covered. We have been monitoring the Net Ecosystem Exchange (NEE by eddy covariance and the carbon partitioning in a temperate vineyard in North Eastern Italy. Five complete yearly budgets confirm a steady and substantial sink capacity of the system, with a yearly NEE around 800–900 gC m−2, grape harvest representing about 20–25% of it. Biometrical assessment of growth and partitioning show a good agreement with micrometeorological measurements and demonstrate a large input of organic matter into the soil. Even if it can be objected that this sink may be only temporary and the built-up can be substantially disrupted at the end of the vineyard life cycle, these results show that there is a concrete possibility of storing carbon in temperate-climate vineyards, possibly contributing to the global carbon budget. This sink capacity might be accounted in the official calculation of wine carbon footprint and represents a new, relevant feature of their sustainability.

  6. Defense.gov Special Report: 2013 Fiscal Budget

    Science.gov (United States)

    Department of Defense Submit Search 2013 Fiscal Budget Published Feb. 13, 2012 Top Stories Budget Proposal Slows Cost Growth, Pentagon Leaders Say The Defense Department's proposed fiscal 2013 budget request Department officials told a Senate panel. Story Officials Seek Construction Funds, More BRAC in Budget

  7. Penetrating particles in horizontal air showers

    International Nuclear Information System (INIS)

    Wohlenberg, J.; Boehm, E.

    1975-01-01

    Particle density and arrival time of muons has been measured in Horizontal Air Showers. 5,600 showers have been recorded in 7,800 hours. Using stringent selection criteria 155 showers have been found horizontal (zenith angle larger 70 0 ) in the size range 4.1 > lg N > 5.5. The muons observed in these showers can be explained by purely electromagnetic origin of horizontal showers. (orig.) [de

  8. Global Carbon Budget 2016

    Science.gov (United States)

    Quéré, Corinne Le; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Korsbakken, Jan Ivar; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; hide

    2016-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere the global carbon budget is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1(sigma), reflecting the current capacity to characterize the annual estimates of each component of the global carbon budget. For the last decade available (2006-2015), EFF was 9

  9. Colorado Children's Budget 2013

    Science.gov (United States)

    Buck, Beverly; Baker, Robin

    2013-01-01

    The "Colorado Children's Budget" presents and analyzes investments and spending trends during the past five state fiscal years on services that benefit children. The "Children's Budget" focuses mainly on state investment and spending, with some analysis of federal investments and spending to provide broader context of state…

  10. Downwelling Longwave Fluxes at Continental Surfaces-A Comparison of Observations with GCM Simulations and Implications for the Global Land-Surface Radiation Budget.

    Science.gov (United States)

    Garratt, J. R.; Prata, A. J.

    1996-03-01

    Previous work suggests that general circulation (global climate) models have excess net radiation at land surfaces, apparently due to overestimates in downwelling shortwave flux and underestimates in upwelling long-wave flux. Part of this excess, however, may be compensated for by an underestimate in downwelling longwave flux. Long term observations of the downwelling longwave component at several land stations in Europe, the United States, Australia, and Antarctica suggest that climate models (four are used, as in previous studies) underestimate this flux component on an annual basis by up to 10 W m2, yet with low statistical significance. It is probable that the known underestimate in boundary-layer air temperature contributes to this, as would low model cloudiness and neglect of minor gases such as methane, nitrogen oxide, and the freons. The bias in downwelling longwave flux, together with those found earlier for downwelling shortwave and upwlling long-wave fluxes, are consistent with the model bias found previously for net radiation. All annually averaged fluxes and biases are deduced for global land as a whole.

  11. A catchment-scale carbon and greenhouse gas budget of a subarctic landscape

    DEFF Research Database (Denmark)

    Christensen, Torben R; Johansson, Torbjörn; Olsrud, Maria

    2007-01-01

    forest, and mires, lakes and alpine ecosystems. The magnitudes of atmospheric exchange of carbon in the form of the GHGs, CO2 and CH4 in these various ecosystems differ significantly, ranging from little or no flux in barren ecosystems over a small CO2 sink function and low rates of CH4 exchange...... in the heaths to significant CO2 uptake in the forests and also large emissions of CH4 from the mires and small lakes. The overall catchment budget, given the size distribution of the individual ecosystem types and a first approximation of run-off as dissolved organic carbon, reveals a landscape currently...

  12. [The department budget, in the context of the hospital global budget. Initial results in general medicine].

    Science.gov (United States)

    Besançon, F

    1984-02-23

    In a general hospital (Hôtel-Dieu, in the center of Paris), run with a global budget, budgets determined for each unit were introduced as an experiment in 1980. Physicians were in charge of certain expenses, mainly: linen, drugs, transportation of patients to and from other hospitals within Paris, and blood fractions. The whole does not exceed 4% of the turnover (FF 20 millions in 1980) of a 67 bed internal medicine unit. Other accounts deal with the stays, admissions, prescriptions of technical acts, laboratory analyses, and X-rays. In 1980, expenses were 11% more than budgeted, but the increase in stays and particularly in admissions was significantly greater. The resulting savings were 8.8% and 18.7% for stays and admissions respectively. Psychic reactions were variable. The subsequent budgets followed the fluctuations of recorded expenses, which were fairly important in both directions. The unit budget may be an advance or a regression, in a restrictive and past-perpetuating context. The coherence between the unit budget and the global hospital budget is questionable. Physicians were willing to take part in accounting and saving. They have good reason for not enlarging their financial responsibilities. Conversely, they may give more attention to diseases of public opinion.

  13. Estimation of aerosol plutonium transport by the dust-flux method: a perspective on application of detailed data

    International Nuclear Information System (INIS)

    Shinn, J.H.

    1976-01-01

    Two methods of dust-flux measurements are discussed which have been utilized to estimate aerosol plutonium deposition and resuspension. In previous studies the methods were found to be sufficiently detailed to permit parameterization of dust-flux to the erodibility of the soil, and a seventh-power dependency of dust-flux (or plutonium flux) to wind speed was observed in worst case conditions. The eddy-correlation method is technically more difficult, requires high-speed data acquisition, and requires an instrument response time better than one second, but the eddy-correlation method has been shown feasible with new fast-response sensors, and it is more useful in limited areas because it can be used as a probe. The flux-gradient method is limited by critical assumptions and is more bulky, but the method is more commonly used and accepted. The best approach is to use both methods simultaneously. It is suggested that several questions should be investigated by the methods, such as saltation stimulation of dust-flux, simultaneous suspension and deposition, foliar deposition and trapping, erodibility of crusted surfaces, and horizontally heterogeneous erodibility

  14. Dose budget for exposure control

    International Nuclear Information System (INIS)

    Nair, P.S.

    1999-01-01

    Dose budget is an important management tool to effectively control the collective dose incurred in a nuclear facility. The budget represents a set of yardsticks or guidelines for use in controlling the internal activities, involving radiation exposure in the organisation. The management, through budget can evaluate the radiation protection performance at every level of the organisation where a number of independent functional groups work on routine and non-routine jobs. The discrepancy between the plan and the actual performance is high lighted through the budgets. The organisation may have to change the course of its operation in a particular area or revise its plan with due focus on appropriate protective measures. (author)

  15. Condensation heat transfer of R22 and R410A in horizontal smooth and microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man-Hoe; Shin, Joeng-Seob [Korea Advanced Institute of Science and Technology, Daejeon (Korea). Department of Mechanical Engineering

    2005-09-01

    An experimental investigation of condensation heat transfer in 9.52 mm O.D. horizontal copper tubes was conducted using R22 and R410A. The test rig had a straight, horizontal test section with an active length of 0.92 m and was cooled by the heat transfer fluid (cold water) circulated in a surrounding annulus. Constant heat flux of 11.0 kW/m{sup 2} was maintained throughout the experiment and refrigerant quality varied from 0.9 to 0.1. The condensation test results at 45 {sup o}C were reported for 40-80 kg/h mass flow rate. The local and average condensation coefficients for seven microfin tubes were presented compared to those for a smooth tube. The average condensation coefficients of R22 and R410A for the microfin tubes were 1.7-3.19 and 1.7-2.94 times larger than those in smooth tube, respectively. (author)

  16. Ignition and flame spread properties of wood, elaborated during a new test method based on convective heat flux

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt; Poulsen, Annemarie

    2007-01-01

    Ignition and flame spread properties on selected types of wood are elaborated. The tests are established in a new test setup in which the test specimen can be fixed in different angles due to a horizontal level. The heat exposing the test objects is arranged as a convective flux. This principle...

  17. Horizontal violence in Nursing

    Directory of Open Access Journals (Sweden)

    Tsimoulaki Evangelia

    2017-01-01

    Full Text Available One’s effort to clarify the definition of horizontal labour violence is of great importance, due to the variety of definitions that are mentioned in the worldwide scientific literature. Furthermore, the reference of multiple forms of such violence herein the nurse professional group is challenging, as well. Another fact of great importance is that, any form of professional violence (horizontal violence, horizontal mobbing in the work place environment can be possibly escalated and include even physical abuse (Bullying, besides the psychological and emotional impact for the victim. The definitions of Horizontal violence, Mobbing and Bullying, include a repeated negative behaviour emanating from at least one “predator” towards at least one “victim”, with work status differences and the existence or lack of physical abuse (Bullying. Horizontal violence is a hostile, aggressive and harmful behaviour which is either overt or concealed and is pointed from an individual to another individual of the same working rank and causes intense emotional pain at the victim. The manifestations vary from humiliating tasks assignment or the victim’s efforts undermining to clearly aggressive behaviors (criticism, intimidation, sarcasm etc.. The reason behind this phenomenon is multifactorial extended not only towards the working environment but also to the personal characteristics of the “predator” as well as the possible “victim”. The researchers emphasize the high incidence of the phenomenon, as well as the cost that is induced by the violent behaviors to both the health professionals and the hospital. Finally, they point out the paradox of the presence of violence inside a system that is designed to promote health.

  18. Two-phase flow through small branches in a horizontal pipe with stratified flow

    International Nuclear Information System (INIS)

    Smoglie, C.

    1984-12-01

    This report presents the description and results of experiments designed to determine the mass flow rate and quality through a small break at the bottom, the top or the side of a main pipe with stratified gas-liquid flow. If the interface level is far below (above) the branch, only single-phase gas (liquid) flow enters the branch. For smaller distances the interface is locally deformed because of the pressure decrease due to the fluid acceleration near the branch inlet (Bernoulli effect) and liquid (gas) can be entrained. This report contains photographs illustrating the flow phenomena as well as a general correlation to determine the beginning of entrainment. Results are presented on the branch mass flow rate and quality as a function of a normalized distance between the interface and the branch inlet. A model was developed which enables to predict the branch quality and mass flux. Results from air-water flow through horizontal branches, were extrapolated for steam water flow at high pressure with critical branch mass flux. (orig./HP) [de

  19. R404A condensing under forced flow conditions inside smooth, microfin and cross-hatched horizontal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Infante Ferreira, C A; Nan, X [Delft University of Technology (Netherlands). Laboratory for Refrigeration and Indoor Climate Control; Newell, T A; Chato, J C [University of Illinois, Urbana, IL (United States). Dept. of Mechanical and Industrial Engineering

    2003-06-01

    Two-phase heat transfer coefficient characteristics of R404A condensing under forced flow conditions inside smooth, microfin and cross-hatched horizontal tubes are experimentally investigated. Experimental parameters include a lubricating polyol ester oil concentration varied from 0 to 4%. The test runs were done at average inlet saturated condensing temperatures of 40{sup o}C. The inlet vapor was kept at saturation (quality = 1.0). The mass fluxes were between 200 and 600 kg/m{sup 2}s, and the heat fluxes were selected to obtain a quality of 0.0 at the outlet of the test section, varying from 5 to 45 kW/m{sup 2}. The heat transfer enhancement factor varied between 1.8 and 2.4 for both microfin and cross-hatched tubes. The larger values applied for larger mass fluxes for the cross-hatched tube and smaller mass fluxes for the microfin tube. Enhancement factors increased as oil concentration increased up to oil concentrations of 2%. For higher oil concentrations the enhancement decreased especially at high mass fluxes, the cross-hatched tube being less sensitive to oil contamination. Pressure drop in the test section increased by approximately 25% as the oil concentration increased from 0 to 4%. The results from the experiments are compared with those calculated from correlations reported in the literature. Moreover, modified correlations for the condensation heat transfer coefficient are proposed for practical applications. (author)

  20. Laboratory administration--capital budgeting.

    Science.gov (United States)

    Butros, F

    1997-01-01

    The process of capital budgeting varies among different health-care institutions. Understanding the concept of present value of money, incremental cash flow statements, and the basic budgeting techniques will enable the laboratory manager to make the rational and logical decisions that are needed in today's competitive health-care environment.

  1. Horizontal steam generator thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O. [SKODA Praha Company, Prague (Czechoslovakia); Doubek, M. [Czech Technical Univ., Prague (Czechoslovakia)

    1995-09-01

    Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. The 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.

  2. Aspect as a Driver of Soil Carbon and Water Fluxes in Desert Environments

    Science.gov (United States)

    Sutter, L., Jr.; Barron-Gafford, G.; Sanchez-Canete, E. P.

    2016-12-01

    Within dryland environments, precipitation and incoming energy are the primary determinants of carbon and water cycling. We know aspect can influence how much sun energy reaches the ground surface, but how does this spatial feature of the landscape propagate into temporal moisture and carbon flux dynamics? We made parallel measurements across north and south-facing slopes to examine the effects of aspect on soil temperature and moisture and the resulting soil carbon and water flux rates within a low elevation, desert site in the Santa Catalina-Jemez Critical Zone Observatory. We coupled spatially distributed measurements at a single point in time with diel patterns of soil fluxes at singular point and in response to punctuated rain events. Reponses concerning aspect after spring El Niño rainfall events were complex, with higher cumulative carbon flux on the south-facing slope two weeks post rain, despite higher daily flux values starting on the north-facing slope ten days after the rain. Additional summer monsoon rain events and dry season measurements will give further insights into patterns under hotter conditions of periodic inter-storm drought. We will complete a year-round carbon and water flux budget of this site by measuring throughout the winter rainfall months. Ultimately, our work will illustrate the interactive effects of a range of physical factors on soil fluxes. Critical zone soil dynamics, especially within dryland environments, are very complex, but capturing the uncertainty around these flux is necessary to understand concerning vertical carbon and water exchange and storage.

  3. BUDGET PLANNING IN FINANCIAL MANAGEMENT

    OpenAIRE

    Nataliya Melnichuk

    2015-01-01

    The purpose of the paper is to determine the nature, targets, functions, principles and methods of budget planning and development of classifications due to its types. The essence of budget planning presented by various authors, is own interpretation (the process of developing a plan of formation, distribution and redistribution of financial funds according to budget system units during the reporting period based on budgetary purposes and targets defined by socio-economic development strategy...

  4. Defense.gov Special Report: 2015 Fiscal Budget

    Science.gov (United States)

    Department of Defense Submit Search FY 2015 Fiscal Budget News Stories Dempsey Calls for Budget Increase increase its budget, the chairman of the Joint Chiefs of Staff said. Story James: Air Force Grapples with Congress to Fund Readiness The Air Force fiscal 2015 budget request is shrinking because of Congressional

  5. 40 CFR 96.140 - State trading budgets.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false State trading budgets. 96.140 Section...) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Allowance Allocations § 96.140 State trading budgets. The State trading budgets for annual...

  6. Study of the Local Horizon. (Spanish Title: Estudio del Horizonte Local.) Estudo do Horizonte Local

    Science.gov (United States)

    Ros, Rosa M.

    2009-12-01

    The study of the horizon is fundamental to easy the first observations of the students at any education center. A simple model, to be developed in each center, allows to easy the study and comprehension of the rudiments of astronomy. The constructed model is presented in turn as a simple equatorial clock, other models (horizontal and vertical) may be constructed starting from it. El estudio del horizonte es fundamental para poder facilitar las primeras observaciones de los alumnos en un centro educativo. Un simple modelo, que debe realizarse para cada centro, nos permite facilitar el estudio y la comprensión de los primeros rudimentos astronómicos. El modelo construido se presenta a su vez como un sencillo modelo de reloj ecuatorial y a partir de él se pueden construir otros modelos (horizontal y vertical). O estudo do horizonte é fundamental para facilitar as primeiras observações dos alunos num centro educativo. Um modelo simples, que deve ser feito para cada centro, permite facilitar o estudo e a compreensão dos primeiros rudimentos astronômicos. O modelo construído apresenta-se, por sua vez, como um modelo simples de relógio equatorial e a partir dele pode-se construir outros modelos (horizontal e vertical)

  7. 7 CFR 3015.115 - Budget revisions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Budget revisions. 3015.115 Section 3015.115..., DEPARTMENT OF AGRICULTURE UNIFORM FEDERAL ASSISTANCE REGULATIONS Programmatic Changes and Budget Revisions § 3015.115 Budget revisions. (a) Nonconstruction projects. (1) Except as provided in paragraph (a)(2) of...

  8. Should Corrupt Countries receive Budget Support?

    OpenAIRE

    Kolstad, Ivar

    2005-01-01

    Corruption makes budget support ineffective, and sometimes counter-productive. Budget support is particularly unsuitable in partner countries where political corruption is rampant. As donors increase budget support, it is a paradox that corruption is not more of an issue in evaluations and public financial management assessment methods.

  9. Lean Mean Times--Budgeting for School Media Technology.

    Science.gov (United States)

    Johnson, Doug

    1995-01-01

    Discusses budgeting strategies for school media technology programs. Highlights include sources for school funding, school district budget information, control of the budget, how to write an effective budget, working with other community and school groups, local politics, and sidebars that discuss spreadsheets and maintenance budgets. (LRW)

  10. Colorado Children's Budget 2010

    Science.gov (United States)

    Colorado Children's Campaign, 2010

    2010-01-01

    The "Children's Budget 2010" is intended to be a resource guide for policymakers and advocates who are interested in better understanding how Colorado funds children's programs and services. It attempts to clarify often confusing budget information and describe where the state's investment trends are and where those trends will lead the…

  11. 40 CFR 97.140 - State trading budgets.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false State trading budgets. 97.140 Section...) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Allowance Allocations § 97.140 State trading budgets. The State trading budgets for annual allocations of CAIR NOX allowances...

  12. The Budget-Related Antecedents of Job Performance

    Directory of Open Access Journals (Sweden)

    Emine Yilmaz Karakoc

    2016-04-01

    Full Text Available This study aims to investigate budget related antecedents of job performance of managers. For this purpose, relationships among budgetary participation, budget goal commitment, information sharing, and job performance of managers were examined. The sample consists of managers who are responsible from the budgets of their units in different private enterprises located in Turkey. Survey data was analyzed with confirmatory factor analyses and Structural Equation Modeling. Results indicate that budgetary participation has statistically significant and positive impact on job performance. It also positively affects budget goal commitment and information sharing. Budget goal commitment and information sharing have significant and positive impact on job performance. In addition, budget goal commitment positively affects information sharing of managers. Analyses also revealed that budget goal commitment and information sharing have partial mediation effect on the relationship between budgetary participation and job performance.

  13. 25 CFR 41.12 - Annual budget.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Annual budget. 41.12 Section 41.12 Indians BUREAU OF... NAVAJO COMMUNITY COLLEGE Tribally Controlled Community Colleges § 41.12 Annual budget. Appropriations... identified in the Bureau of Indian Affairs Budget Justification. Funds appropriated for grants under this...

  14. Defense.gov Special Report: Fiscal Budget

    Science.gov (United States)

    Department of Defense Submit Search 2012 Fiscal Budget Published Feb. 15, 2011 Top Stories Commanders Cite Department is losing billions of dollars by Congress' failure to pass the department's fiscal 2011 budget . Gates told a Senate committee. Story Gates, Mullen Take Budget to Senate WASHINGTON, Feb. 17, 2011 - The

  15. Particle propagation, wave growth and energy dissipation in a flaring flux tube

    Science.gov (United States)

    White, S. M.; Melrose, D. B.; Dulk, G. A.

    1986-01-01

    Wave amplification by downgoing particles in a common flare model is investigated. The flare is assumed to occur at the top of a coronal magnetic flux loop, and results in the heating of plasma in the flaring region. The hot electrons propagate down the legs of the flux tube towards increasing magnetic field. It is simple to demonstrate that the velocity distributions which result in this model are unstable to both beam instabilities and cyclotron maser action. An explanation is presented for the propagation effects on the distribution, and the properties of the resulting amplified waves are explored, concentrating on cyclotron maser action, which has properties (emission in the z mode below the local gyrofrequency) quite different from maser action by other distributions considered in the context of solar flares. The z mode waves will be damped in the coronal plasma surrounding the flaring flux tube and lead to heating there. This process may be important in the overall energy budget of the flare. The downgoing maser is compared with the loss cone maser, which is more likely to produce observable bursts.

  16. Estimates of direct biological transport of radioactive waste in the deep sea with special reference to organic carbon budgets

    International Nuclear Information System (INIS)

    Rowe, G.T.; Shepherd, J.; Needler, G.; Hargrave, B.; Marietta, M.

    1986-01-01

    Calculations can be made for the maximum theoretical transport of pollutants such as radionuclides by movement of organisms out of a deep-sea benthic boundary layer dump site based on a presumption of a steady state organic carbon budget and estimated biological concentration factors. A calculated flux rate depends on the difference between a limiting input of organic matter and that carbon used by the biota or accumulating in the sediment. On average, the potential biological mass transport is low compared to physical transport. Exceptions to this generalization are possible in the far field after spatial gradients are obliterated or if natural mass migrations or periodic spawning concentrations occur in the near field. Biologically mediated fluxes of contaminants due to mixing of sediments by bioturbation or vertical flux due to scavenging by sinking particles are significant for movements of pollutants to and from sediments. These pathways contribute to the direct input of contaminants into food webs which may contain harvestable species. These fluxes are unimportant for mass transfers in the ocean but they determine the exposure of critical groups to contaminants

  17. A Capsule Look at Zero-Base Budgeting.

    Science.gov (United States)

    Griffin, William A., Jr.

    Weaknesses of the traditional incremental budgeting approach are considered as background to indicate the need for a new system of budgeting in educational institutions, and a step-by-step description of zero-based budgeting (ZBB) is presented. Proposed advantages of ZBB include the following: better staff morale due to a budget that is open and…

  18. 24 CFR 982.157 - Budget and expenditure.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Budget and expenditure. 982.157... and PHA Administration of Program § 982.157 Budget and expenditure. (a) Budget submission. Each PHA fiscal year, the PHA must submit its proposed budget for the program to HUD for approval at such time and...

  19. 34 CFR 75.251 - The budget period.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false The budget period. 75.251 Section 75.251 Education... Multi-Year Projects § 75.251 The budget period. (a) The Secretary usually approves a budget period of... budget period; and (2) Indicates his or her intention to make contination awards to fund the remainder of...

  20. Flow under standing waves Part 1. Shear stress distribution, energy flux and steady streaming

    DEFF Research Database (Denmark)

    Gislason, Kjartan; Fredsøe, Jørgen; Deigaard, Rolf

    2009-01-01

    The conditions for energy flux, momentum flux and the resulting streaming velocity are analysed for standing waves formed in front of a fully reflecting wall. The exchange of energy between the outer wave motion and the near bed oscillatory boundary layer is considered, determining the horizontal...... energy flux inside and outside the boundary layer. The momentum balance, the mean shear stress and the resulting time averaged streaming velocities are determined. For a laminar bed boundary layer the analysis of the wave drift gives results similar to the original work of Longuet-Higgins from 1953......-dimensional simulations of standing waves have also been made by application of a general purpose Navier-Stokes solver. The results agree well with those obtained by the boundary layer analysis. Wave reflection from a plane sloping wall is also investigated by using the same numerical model and by physical laboratory...

  1. Collection assessment and acquisitions budgets

    CERN Document Server

    Lee, Sul H

    2013-01-01

    This invaluable new book contains timely information about the assessment of academic library collections and the relationship of collection assessment to acquisition budgets. The rising cost of information significantly influences academic libraries'abilities to acquire the necessary materials for students and faculty, and public libraries'abilities to acquire material for their clientele. Collection Assessment and Acquisitions Budgets examines different aspects of the relationship between the assessment of academic library collections and the management of library acquisition budgets. Librar

  2. Strategies for estimating the water budget at different scales using the JGrass-NewAGE system

    Science.gov (United States)

    Bancheri, M.; Rigon, R.; Serafin, F.; Abera, W.; Bottazzi, M.

    2017-12-01

    Recently we presented two papers one dedicated to the estimation of the water budget components in a small, basin, the Posina catchment [Abera et al., 2017], and the other in a large basin, the Blue Nile [Abera et al., 2017b]. At the smallest scale the ground measurements available do not guarantee the closure of the budget without making additional hypothesis. The large scale case, instead, was largely supported by remote sensing data either for calibration and/or validation. This contribution explains how we actually did it, clarifies some aspects of the informatics and openly discusses the issues risen in our work. We also consider varying configuration of the water budget schemes at the subbasin level, and how this affects the estimates.Finally we analyse the problem of travel times [Rigon et al., 2016a, Rigon et al, 2016b] as it comes out from considering the multiple fluxes and storages. All considerations and simulations are based on the JGrass-NewAGE system [Formetta et al., 2014] and its evolution (Bancheri [2017]).ReferencesAbera, W., Formetta, G., Borga, M., & Rigon, R. (2017a). Estimating the water budget components and their variability in a pre-alpine basin with JGrass-NewAGE. Advances in Water Resources, http://doi.org/10.1016/j.advwatres.2017.03.010Abera, W., Formetta, G., Brocca, L., & Rigon, R. (2017b). Modeling the water budget of the Upper Blue Nile basin using the JGrass-NewAge model system and satellite data. Hydrology and Earth System Sciences. http://doi.org/10.5194/hess-21-3145-2017Bancheri, M., A travel time model for water budget of complex catchments, ph.D Thesis, 2017Formetta, G., Antonello, A., Franceschi, S., David, O., & Rigon, R. (2014). Hydrological modelling with components: A GIS-based open-source framework. Environmental Modelling and Software,. http://doi.org/10.1016/j.envsoft.2014.01.019Rigon, R., Bancheri, M., Formetta, G., & de Lavenne, A. (2016). The geomorphological unit hydrograph from a historical-critical perspective

  3. Implementing Site-based Budgeting.

    Science.gov (United States)

    Sielke, Catherine C.

    2001-01-01

    Discusses five questions that must be answered before implementing site-based budgeting: Why are we doing this? What budgeting decisions will be devolved to the school site? How do dollars flow from the central office to the site? Who will be involved at the site? How will accountability be achieved? (Author/PKP)

  4. Quantum-classical interface based on single flux quantum digital logic

    Science.gov (United States)

    McDermott, R.; Vavilov, M. G.; Plourde, B. L. T.; Wilhelm, F. K.; Liebermann, P. J.; Mukhanov, O. A.; Ohki, T. A.

    2018-04-01

    We describe an approach to the integrated control and measurement of a large-scale superconducting multiqubit array comprising up to 108 physical qubits using a proximal coprocessor based on the Single Flux Quantum (SFQ) digital logic family. Coherent control is realized by irradiating the qubits directly with classical bitstreams derived from optimal control theory. Qubit measurement is performed by a Josephson photon counter, which provides access to the classical result of projective quantum measurement at the millikelvin stage. We analyze the power budget and physical footprint of the SFQ coprocessor and discuss challenges and opportunities associated with this approach.

  5. 42 CFR 441.472 - Budget methodology.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Budget methodology. 441.472 Section 441.472 Public... Self-Directed Personal Assistance Services Program § 441.472 Budget methodology. (a) The State shall set forth a budget methodology that ensures service authorization resides with the State and meets the...

  6. 40 CFR 35.9035 - Budget period.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Budget period. 35.9035 Section 35.9035... ASSISTANCE Financial Assistance for the National Estuary Program § 35.9035 Budget period. An applicant may choose its budget period in consultation with and subject to the approval of the Regional Administrator. ...

  7. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step...... length, step height, and.flux start level. Filtrating 8 kg/m(3) yeast cell suspensions by a vibrating 0.45 x 10(-6) m pore size microfiltration hollow fiber module, critical fluxes from 5.6 x 10(-6) to 1.2 x 10(-5) m/s have been measured using various step lengths from 300 to 1200 seconds. Thus......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...

  8. An Integrated Approach to Estimate Instantaneous Near-Surface Air Temperature and Sensible Heat Flux Fields during the SEMAPHORE Experiment.

    Science.gov (United States)

    Bourras, Denis; Eymard, Laurence; Liu, W. Timothy; Dupuis, Hélène

    2002-03-01

    A new technique was developed to retrieve near-surface instantaneous air temperatures and turbulent sensible heat fluxes using satellite data during the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment, which was conducted in 1993 under mainly anticyclonic conditions. The method is based on a regional, horizontal atmospheric temperature advection model whose inputs are wind vectors, sea surface temperature fields, air temperatures around the region under study, and several constants derived from in situ measurements. The intrinsic rms error of the method is 0.7°C in terms of air temperature and 9 W m2 for the fluxes, both at 0.16° × 0.16° and 1.125° × 1.125° resolution. The retrieved air temperature and flux horizontal structures are in good agreement with fields from two operational general circulation models. The application to SEMAPHORE data involves the First European Remote Sensing Satellite (ERS-1) wind fields, Advanced Very High Resolution Radiometer (AVHRR) SST fields, and European Centre for Medium-Range Weather Forecasts (ECMWF) air temperature boundary conditions. The rms errors obtained by comparing the estimations with research vessel measurements are 0.3°C and 5 W m2.

  9. Relating Radiative Fluxes on Arctic Sea Ice Area Using Arctic Observation and Reanalysis Integrated System (ArORIS)

    Science.gov (United States)

    Sledd, A.; L'Ecuyer, T. S.

    2017-12-01

    With Arctic sea ice declining rapidly and Arctic temperatures rising faster than the rest of the globe, a better understanding of the Arctic climate, and ice cover-radiation feedbacks in particular, is needed. Here we present the Arctic Observation and Reanalysis Integrated System (ArORIS), a dataset of integrated products to facilitate studying the Arctic using satellite, reanalysis, and in-situ datasets. The data include cloud properties, radiative fluxes, aerosols, meteorology, precipitation, and surface properties, to name just a few. Each dataset has uniform grid-spacing, time-averaging and naming conventions for ease of use between products. One intended use of ArORIS is to assess Arctic radiation and moisture budgets. Following that goal, we use observations from ArORIS - CERES-EBAF radiative fluxes and NSIDC sea ice fraction and area to quantify relationships between the Arctic energy balance and surface properties. We find a discernable difference between energy budgets for years with high and low September sea ice areas. Surface fluxes are especially responsive to the September sea ice minimum in months both leading up to September and the months following. In particular, longwave fluxes at the surface show increased sensitivity in the months preceding September. Using a single-layer model of solar radiation we also investigate the individual responses of surface and planetary albedos to changes in sea ice area. By partitioning the planetary albedo into surface and atmospheric contributions, we find that the atmospheric contribution to planetary albedo is less sensitive to changes in sea ice area than the surface contribution. Further comparisons between observations and reanalyses can be made using the available datasets in ArORIS.

  10. Urban Surface Radiative Energy Budgets Determined Using Aircraft Scanner Data

    Science.gov (United States)

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.; Estes, Maury G.; Arnold, James E. (Technical Monitor)

    2002-01-01

    the surface energy budget. Knowledge of it is important in any attempt to describe the radiative and mass fluxes which occur at the surface. Use of energy terms in modeling surface energy budgets allows the direct comparison of various land surfaces encountered in a urban landscape, from vegetated (forest and herbaceous) to non-vegetated (bare soil, roads, and buildings). These terms are also easily measured using remote sensing from aircraft or satellite platforms allowing one to examine the spacial variability. The partitioning of energy budget terms depends on the surface type. In natural landscapes, the partitioning is dependent on canopy biomass, leaf area index, aerodynamic roughness, and moisture status, all of which are influenced by the development stage of the ecosystem. In urban landscapes, coverage by man-made materials substantially alters the surface face energy budget. The remotely sensed data obtained from aircraft and satellites, when properly calibrated allows the measurement of important terms in the radiative surface energy budget a urban landscape scale.

  11. Budget-makers and health care systems.

    Science.gov (United States)

    White, Joseph

    2013-10-01

    Health programs are shaped by the decisions made in budget processes, so how budget-makers view health programs is an important part of making health policy. Budgeting in any country involves its own policy community, with key players including budgeting professionals and political authorities. This article reviews the typical pressures on and attitudes of these actors when they address health policy choices. The worldview of budget professionals includes attitudes that are congenial to particular policy perspectives, such as the desire to select packages of programs that maximize population health. The pressures on political authorities, however, are very different: most importantly, public demand for health care services is stronger than for virtually any other government activity. The norms and procedures of budgeting also tend to discourage adoption of some of the more enthusiastically promoted health policy reforms. Therefore talk about rationalizing systems is not matched by action; and action is better explained by the need to minimize blame. The budget-maker's perspective provides insight about key controversies in healthcare policy such as decentralization, competition, health service systems as opposed to health insurance systems, and dedicated vs. general revenue finance. It also explains the frequency of various "gaming" behaviors. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Heat and salt budgets over the Gulf Stream North Wall during LatMix survey in winter 2012.

    Science.gov (United States)

    Sanchez-Rios, A.; Shearman, R. K.; D'Asaro, E. A.; Lee, C.; Gula, J.; Klymak, J. M.

    2016-02-01

    As part of the ONR-sponsored LatMix Experiment, ship-based and glider-based observations following a Lagrangian float are used to examine the evolution of temperature, salinity and density along the Gulf Stream north wall in wintertime. Satellite observations during the survey and the in-situ measurements showed the presence of submesoscale (1) calculated for this regions corroborates the possibility of submesoscale dynamics. Using a heat and salinity budget, we show that surface forcing, entrainment from below and advection by the mean flow velocities are not sufficient to explain the observed rate of change of heat and salinity in the mixed layer. Although confidence estimates prevent an accurate flux divergence calculation, Reynold flux estimates are consistent with a cross-frontal exchange that can reproduce the observed temporal trends.

  13. 12 CFR 917.8 - Budget preparation.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Budget preparation. 917.8 Section 917.8 Banks... POWERS AND RESPONSIBILITIES OF BANK BOARDS OF DIRECTORS AND SENIOR MANAGEMENT § 917.8 Budget preparation. (a) Adoption of budgets. Each Bank's board of directors shall be responsible for the adoption of an...

  14. Budgetering och budgeteringsprocessen inom ekonomiförvaltningen

    OpenAIRE

    Finnström, Anders

    2013-01-01

    Syftet med undersökningen är att ge en bild av vad budgetering är och budgeteringsprocessen inom ekonomiförvaltningen. Forskningsproblemet är att ta reda på vilken kritiken är mot budgetering, hur man kan förbättra budgetarbetet och få fram vilka de alternativa metoderna är till budgetering. I lärdomsprovets teoretiska del behandlas vad en budget är, syften med en budget, huvud- och delbudgetar, budgeteringsprocessen, kritik och alternativa metoder till budgeteringen. I den empiriska delen ha...

  15. Budget 2002: business taxation measures

    OpenAIRE

    Blow, L.; Hawkins, M.; Klemm, A.; McCrae, J.; Simpson, H.

    2002-01-01

    Following the 2002 Budget, this Briefing Note examines some of the Chancellor's changes to business taxation. A number of Budget measures, including the research and development tax credit for large companies and the exemption of capital gains on the sale of subsidiaries, are welcome and should improve the efficiency of the UK's tax system. All of these measures were subject to extensive prior consultation. A number of other measures were not foreshadowed in the Pre-Budget Report. Three of th...

  16. A Stable U Isotopic Perspective on the U Budget and Global Extent of Modern Anoxia in the Ocean.

    Science.gov (United States)

    Tissot, F.; Dauphas, N.

    2015-12-01

    Isotopic fractionation between U4+ and U6+makes U stable isotopes potential tracers of global paleoredox conditions. In this work [1], we put the U-proxy up to a test against a highly constrained system: the modern ocean. We measured a large number of seawater samples from geographically diverse locations and found that the open ocean has a homogenous isotopic composition at δ238USW= -0.392 ± 0.005 ‰ (rel. to CRM-112a). From our measurement of rock samples (n=64) and compilations of literature data (n=380), we then estimated the U isotopic compositions of the various reservoirs involved in the modern oceanic U budget, as well as the fractionation factors associated with U incorporation into those reservoirs. Using a steady-state model, we compared the isotopic composition of the seawater predicted by the four most recent U oceanic budgets [2-5] to the modern seawater value we measured. Three of these budgets [2-4] predict a seawater isotopic composition in very good agreement with the observed δ238USW, which strengthens our confidence in the isotopic fractionation factors associated with each deposition environment and the fact that U is at steady-state in the modern ocean. The U oceanic budget of Henderson and Anderson (2003) does not reproduce the observed seawater composition because the U flux to anoxic/euxinic sediments relative to the total U flux out of the ocean is high in their model, which our analysis shows cannot be correct. The U isotopic composition of seawater is used to constrain the extent of anoxia in the modern ocean (% of seafloor covered by anoxic/euxinic sediments), which is 0.21 ± 0.09 %. This work demonstrates that stable isotopes of U can indeed trace the extent of anoxia in the modern global ocean, thereby validating the application of U isotope measurements to paleoredox reconstructions. Based on the above work, we will present the best estimate of the modern oceanic U budget. [1] Tissot F.L.H., Dauphas N. (2015) Geochim Cosmochim

  17. Fiscal Year 2010 Budget Request. Summary Justification

    Science.gov (United States)

    2009-05-01

    SERVICES AND DEFENSE AGENCIES INTRODUCTION Services and Defense Agencies HIGHLIGHTS Overview The FY 2010 budget request organizes, trains...DoD FY 2010 Budget Request Summary Justification SPECIAL TOPICS INTRODUCTION Special Topics HIGHLIGHTS Overview The FY 2010 budget... MANGEMENT 2-48 DoD FY 2010 Budget Request Summary Justification SPECIAL TOPICS FINANCIAL MANGEMENT 2-49 While DoD has made progress in

  18. Upward nitrate transport by phytoplankton in oceanic waters: balancing nutrient budgets in oligotrophic seas

    Directory of Open Access Journals (Sweden)

    Tracy A. Villareal

    2014-03-01

    Full Text Available In oceanic subtropical gyres, primary producers are numerically dominated by small (1–5 µm diameter pro- and eukaryotic cells that primarily utilize recycled nutrients produced by rapid grazing turnover in a highly efficient microbial loop. Continuous losses of nitrogen (N to depth by sinking, either as single cells, aggregates or fecal pellets, are balanced by both nitrate inputs at the base of the euphotic zone and N2-fixation. This input of new N to balance export losses (the biological pump is a fundamental aspect of N cycling and central to understanding carbon fluxes in the ocean. In the Pacific Ocean, detailed N budgets at the time-series station HOT require upward transport of nitrate from the nutricline (80–100 m into the surface layer (∼0–40 m to balance productivity and export needs. However, concentration gradients are negligible and cannot support the fluxes. Physical processes can inject nitrate into the base of the euphotic zone, but the mechanisms for transporting this nitrate into the surface layer across many 10s of m in highly stratified systems are unknown. In these seas, vertical migration by the very largest (102–103 µm diameter phytoplankton is common as a survival strategy to obtain N from sub-euphotic zone depths. This vertical migration is driven by buoyancy changes rather than by flagellated movement and can provide upward N transport as nitrate (mM concentrations in the cells. However, the contribution of vertical migration to nitrate transport has been difficult to quantify over the required basin scales. In this study, we use towed optical systems and isotopic tracers to show that migrating diatom (Rhizosolenia mats are widespread in the N. Pacific Ocean from 140°W to 175°E and together with other migrating phytoplankton (Ethmodiscus, Halosphaera, Pyrocystis, and solitary Rhizosolenia can mediate time-averaged transport of N (235 µmol N m-2 d-1 equivalent to eddy nitrate injections (242 µmol NO3− m

  19. 7 CFR 1744.63 - The telephone loan budget.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false The telephone loan budget. 1744.63 Section 1744.63... Disbursement of Funds § 1744.63 The telephone loan budget. When the loan is made, RUS provides the borrower a Telephone Loan Budget, RUS Form 493. This budget divides the loan into budget accounts such as “Engineering...

  20. Comparing inversion techniques for constraining CO2 fluxes in the Brazilian Amazon Basin with aircraft observations

    Science.gov (United States)

    Chow, V. Y.; Gerbig, C.; Longo, M.; Koch, F.; Nehrkorn, T.; Eluszkiewicz, J.; Ceballos, J. C.; Longo, K.; Wofsy, S. C.

    2012-12-01

    The Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) aircraft program spanned the dry to wet and wet to dry transition seasons in November 2008 & May 2009 respectively. It resulted in ~150 vertical profiles covering the Brazilian Amazon Basin (BAB). With the data we attempt to estimate a carbon budget for the BAB, to determine if regional aircraft experiments can provide strong constraints for a budget, and to compare inversion frameworks when optimizing flux estimates. We use a LPDM to integrate satellite-, aircraft-, & surface-data with mesoscale meteorological fields to link bottom-up and top-down models to provide constraints and error bounds for regional fluxes. The Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by meteorological fields from BRAMS, ECMWF, and WRF are coupled to a biosphere model, the Vegetation Photosynthesis Respiration Model (VPRM), to determine regional CO2 fluxes for the BAB. The VPRM is a prognostic biosphere model driven by MODIS 8-day EVI and LSWI indices along with shortwave radiation and temperature from tower measurements and mesoscale meteorological data. VPRM parameters are tuned using eddy flux tower data from the Large-Scale Biosphere Atmosphere experiment. VPRM computes hourly CO2 fluxes by calculating Gross Ecosystem Exchange (GEE) and Respiration (R) for 8 different vegetation types. The VPRM fluxes are scaled up to the BAB by using time-averaged drivers (shortwave radiation & temperature) from high-temporal resolution runs of BRAMS, ECMWF, and WRF and vegetation maps from SYNMAP and IGBP2007. Shortwave radiation from each mesoscale model is validated using surface data and output from GL 1.2, a global radiation model based on GOES 8 visible imagery. The vegetation maps are updated to 2008 and 2009 using landuse scenarios modeled by Sim Amazonia 2 and Sim Brazil. A priori fluxes modeled by STILT-VPRM are optimized using data from BARCA, eddy covariance sites, and flask measurements. The

  1. A critical evaluation of the upper ocean heat budget in the Climate Forecast System Reanalysis data for the south central equatorial Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hailong; Liu Xiangcui [State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing (China); Zhang Minghua [Institute for Terrestrial and Planetary Atmospheres, Stony Brook University, State University of New York, Stony Brook, NY (United States); Lin Wuyin, E-mail: lhl@lasg.iap.ac.cn [Atmospheric Sciences Division, Brookhaven National Laboratory, Upton, NY (United States)

    2011-07-15

    Coupled ocean-atmospheric models suffer from the common bias of a spurious rain belt south of the central equatorial Pacific throughout the year. Observational constraints on key processes responsible for this bias are scarce. The recently available reanalysis from a coupled model system for the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) data is a potential benchmark for climate models in this region. Its suitability for model evaluation and validation, however, needs to be established. This paper examines the mixed layer heat budget and the ocean surface currents-key factors for the sea surface temperature control in the double Inter-Tropical Convergence Zone in the central Pacific-from 5 deg. S to 10 deg. S and 170 deg. E to 150 deg. W. Two independent approaches are used. The first approach is through comparison of CFSR data with collocated station observations from field experiments; the second is through the residual analysis of the heat budget of the mixed layer. We show that the CFSR overestimates the net surface flux in this region by 23 W m{sup -2}. The overestimated net surface flux is mainly due to an even larger overestimation of shortwave radiation by 44 W m{sup -2}, which is compensated by a surface latent heat flux overestimated by 14 W m{sup -2}. However, the quality of surface currents and the associated oceanic heat transport in CFSR are not compromised by the surface flux biases, and they agree with the best available estimates. The uncertainties of the observational data from field experiments are also briefly discussed in the present study.

  2. Measurement of mass flux in two-phase flow using combinations of Pitot tubes and gamma densitometers

    International Nuclear Information System (INIS)

    Hau, K.F.F.L.; Banerjee, S.

    1981-01-01

    New experimental data indicate that mass flux in cocurrent gas-liquid flows may be determined by the use of Pitot tubes in conjunction with a local mixture density measurement technique. The data were taken over a wide range of flow regimes in a horizontal pipe and included separated patterns such as stratified and annular flows. Local mixture densities were obtained by a computer-assisted algebraic reconstruction technique that used chordal average densities measured by traversing gamma beam attenuation. The results extend the applicability of this mass flux measurement technique well beyond the relatively homogeneous, high-pressure, steam-water flow situations originally studied by S. Banerjee and D.M. Nguyen. 13 refs

  3. HORIZONTAL WELL DRILL-IN FLUIDS

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1998-12-01

    Full Text Available Main objective of horizontal driling is to place a drain-hole for a long distance within the pay zone to enhance productivity or injectivity. In drilling horizontal wells, more serious problems appear than in drilling vertical wells. These problems are: poor hole cleaning, excessive torque and drag, hole filling, pipe stucking, wellbore instability, loss of circulation, formation damage, poor cement job, and difficulties at logging jobs. From that reason, successful drilling and production of horizontal well depends largely on the fluid used during drilling and completion phases. Several new fluids, that fulfill some or all of required properties (hole cleaning, cutting suspension, good lubrication, and relative low formation damage, are presented in this paper.

  4. Productivity and injectivity of horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Khalid

    2000-03-06

    One of the key issues addressed was pressure drop in long horizontal wells and its influence on well performance. Very little information is available in the literature on flow in pipes with influx through pipe walls. Virtually all of this work has been in small diameter pipes and with single-phase flow. In order to address this problem new experimental data on flow in horizontal and near horizontal wells have been obtained. Experiments were conducted at an industrial facility on typical 6 1/8 ID, 100 feet long horizontal well model. The new data along with available information in the literature have been used to develop new correlations and mechanistic models. Thus it is now possible to predict, within reasonable accuracy, the effect of influx through the well on pressure drop in the well.

  5. Budgeting in an imaging Department

    International Nuclear Information System (INIS)

    Nyalla, A. M.

    2006-01-01

    budgeting form an integral part of an imaging department. It is a plan to cope with necessary expenses in the future. It involves identifying the needs and income sources required to cover the needs.Covers specific items and time-usually a year and is expressed in monetary terms. The micro budget is put in the macro budget of the hospital. defines financial support for the department. Considers: a fiscal year, projection of patients, types of examinations, type of equipment, monetary exchange, and inflation rate

  6. Evaluation of Latent Heat Flux Fields from Satellites and Models during SEMAPHORE.

    Science.gov (United States)

    Bourras, Denis; Liu, W. Timothy; Eymard, Laurence; Tang, Wenqing

    2003-02-01

    Latent heat fluxes were derived from satellite observations in the region of Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE), which was conducted near the Azores islands in the North Atlantic Ocean in autumn of 1993. The satellite fluxes were compared with output fields of two atmospheric circulation models and in situ measurements. The rms error of the instantaneous satellite fluxes is between 35 and 40 W m-2 and the bias is 60-85 W m-2. The large bias is mainly attributed to a bias in satellite-derived atmospheric humidity and is related to the particular shape of the vertical humidity profiles during SEMAPHORE. The bias in humidity implies that the range of estimated fluxes is smaller than the range of ship fluxes, by 34%-38%. The rms errors for fluxes from models are 30-35 W m-2, and the biases are smaller than the biases in satellite fluxes (14-18 W m-2). Two case studies suggest that the satellites detect horizontal gradients of wind speed and specific humidity if the magnitude of the gradients exceeds a detection threshold, which is 1.27 g kg-1 (100 km)-1 for specific humidity and between 0.35 and 0.82 m s-1 (30 km)-1 for wind speed. In contrast, the accuracy of the spatial gradients of bulk variables from models always varies as a function of the location and number of assimilated observations. A comparison between monthly fluxes from satellites and models reveals that satellite-derived flux anomaly fields are consistent with reanalyzed fields, whereas operational model products lack part of the mesoscale structures present in the satellite fields.

  7. The water vapour flux above Switzerland and its role in the August 2005 extreme precipitation and flooding

    Energy Technology Data Exchange (ETDEWEB)

    N' Dri Koffi, Ernest; Maetzler, Christian [Bern Univ. (Switzerland). Inst. of Applied Physics; Graham, Edward [Bern Univ. (Switzerland). Inst. of Applied Physics; University of the Highlands and Islands, Stornoway, Scotland (United Kingdom). Lews Castle College

    2013-10-15

    The water budget approach is applied to an atmospheric box above Switzerland (hereafter referred to as the 'Swiss box') to quantify the atmospheric water vapour flux using ECMWF ERA-Interim reanalyses. The results confirm that the water vapour flux through the Swiss box is highly temporally variable, ranging from 1 to 5 x 10{sup 7} kg/s during settled anticyclonic weather, but increasing in size by a factor of ten or more during high speed currents of water vapour. Overall, Switzerland and the Swiss box 'import' more water vapour than it 'exports', but the amount gained remains only a small fraction (1% to 5%) of the total available water vapour passing by. High inward water vapour fluxes are not necessarily linked to high precipitation episodes. The water vapour flux during the August 2005 floods, which caused severe damage in central Switzerland, is examined and an assessment is made of the computed water vapour fluxes compared to high spatio-temporal rain gauge and radar observations. About 25% of the incoming water vapour flux was stored in Switzerland. The computed water vapour fluxes from ECMWF data compare well with the mean rain gauge observations and the combined rain-gauge radar precipitation products. (orig.)

  8. Mangrove production and carbon sinks: A revision of global budget estimates

    Science.gov (United States)

    Bouillon, S.; Borges, A.V.; Castaneda-Moya, E.; Diele, K.; Dittmar, T.; Duke, N.C.; Kristensen, E.; Lee, S.-Y.; Marchand, C.; Middelburg, J.J.; Rivera-Monroy, V. H.; Smith, T. J.; Twilley, R.R.

    2008-01-01

    Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of ???-218 ?? 72 Tg C a-1. When using the best available estimates of various carbon sinks (organic carbon export, sediment burial, and mineralization), it appears that >50% of the carbon fixed by mangrove vegetation is unaccounted for. This unaccounted carbon sink is conservatively estimated at ??? 112 ?? 85 Tg C a-1, equivalent in magnitude to ??? 30-40% of the global riverine organic carbon input to the coastal zone. Our analysis suggests that mineralization is severely underestimated, and that the majority of carbon export from mangroves to adjacent waters occurs as dissolved inorganic carbon (DIC). CO2 efflux from sediments and creek waters and tidal export of DIC appear to be the major sinks. These processes are quantitatively comparable in magnitude to the unaccounted carbon sink in current budgets, but are not yet adequately constrained with the limited published data available so far. Copyright 2008 by the American Geophysical Union.

  9. Regional nitrous oxide flux in Amazon basin

    International Nuclear Information System (INIS)

    Felippe, Monica Tais Siqueira D'Amelio

    2010-01-01

    Nitrous oxide (N 2 O) is the third most important anthropogenic greenhouse gas. Globally, the main sources of N 2 O are nitrification and denitrification in soils. About two thirds of the soil emissions occur in the tropics and approximately 20% originate in wet rain forest ecosystems, like the Amazon forest. The work presented here involves aircraft vertical profiles of N 2 O from the surface to 4 km over two sites in the Eastern and Central Amazon: Tapajos National Forest (2000-2009) and Cuieiras Biologic Reserve (2004-2007), and the estimation of N 2 O fluxes for regions upwind of these sites using two methods: Column Integration Technique and Inversion Model - FLEXPART. To our knowledge, these regional scale N 2 O measurements in Amazonia are unique and represent a new approach to looking regional scale emissions. For the both methods, the fluxes upwind of Cuieiras Biologic Reserve exhibited little seasonality, and the annual mean was 1.9 ±1.6 mgN 2 Om -2 day -1 for the Column Integration Technique and 2.3±0.9 mgN 2 Om -2 day -1 for Inversion Model - FLEXPART. For fluxes upwind of Tapajos Nacional Forest, the Inversion Model - FLEXPART presented about half (0.9±1.7 mgN 2 Om -2 day -1 ) of the Column Integration Technique (2.0±1.1 mgN 2 Om -2 day -1 ) for the same period (2004-2008). One reason could be because the inversion model does not consider anthropic activities, once it had a good representation for less impacted area. Both regions presented similar emission during wet season. By Column Integration Technique, fluxes upwind Tapajos Nacional Forest were similar for dry and wet seasons. The dry season N 2 O fluxes exhibit significant correlations with CO fluxes, indicating a larger than expected source of N 2 O from biomass burning. The average CO:N 2 O ratio for all 38 profiles sampled during the dry season was 82±69 mol CO:molN 2 O and suggests a larger biomass burning contribution to the global N 2 O budget than previously reported. (author)

  10. Turbulence kinetic energy budget during the afternoon transition – Part 1: Observed surface TKE budget and boundary layer description for 10 intensive observation period days

    Directory of Open Access Journals (Sweden)

    E. Nilsson

    2016-07-01

    Full Text Available The decay of turbulence kinetic energy (TKE and its budget in the afternoon period from midday until zero-buoyancy flux at the surface is studied in a two-part paper by means of measurements from the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST field campaign for 10 intensive observation period days. Here, in Part 1, near-surface measurements from a small tower are used to estimate a TKE budget. The overall boundary layer characteristics and mesoscale situation at the site are also described based upon taller tower measurements, radiosoundings and remote sensing instrumentation. Analysis of the TKE budget during the afternoon transition reveals a variety of different surface layer dynamics in terms of TKE and TKE decay. This is largely attributed to variations in the 8 m wind speed, which is responsible for different amounts of near-surface shear production on different afternoons and variations within some of the afternoon periods. The partitioning of near-surface production into local dissipation and transport in neutral and unstably stratified conditions was investigated. Although variations exist both between and within afternoons, as a rule of thumb, our results suggest that about 50 % of the near-surface production of TKE is compensated for by local dissipation near the surface, leaving about 50 % available for transport. This result indicates that it is important to also consider TKE transport as a factor influencing the near-surface TKE decay rate, which in many earlier studies has mainly been linked with the production terms of TKE by buoyancy and wind shear. We also conclude that the TKE tendency is smaller than the other budget terms, indicating a quasi-stationary evolution of TKE in the afternoon transition. Even though the TKE tendency was observed to be small, a strong correlation to mean buoyancy production of −0.69 was found for the afternoon period. For comparison with previous results, the TKE

  11. Nutrient Budgets Calculated in Floodwaters Using a Whole-Ecosystem Experimental Manipulation

    Science.gov (United States)

    Talbot, C. J.; Paterson, M. J.; Xenopoulos, M. A.

    2017-12-01

    Flooding provides pathways for nutrients to move into surface waters and alter nutrient concentrations, therefore influencing downstream ecosystems and increasing events of eutrophication. Nutrient enrichment will likely affect water quality, primary production, and overall ecosystem function. Quantifying nutrient movement post-flood will help evaluate the risks or advantages that flooding will have on ecosystem processes. Here we constructed nutrient budgets using data collected as part of the Flooded Upland Dynamics Experiment (FLUDEX) at the Experimental Lakes Area (ELA) in northwestern Ontario. Three experimental reservoirs with varying amounts of stored carbon were created by flooding forested land from May through September annually from 1999 to 2003. Organic matter became a significant source of nutrients under flooded conditions and elevated reservoir total nitrogen (TN) and total phosphorus (TP) concentrations within one week of flooding. The highest TN (2.6 mg L-1) and TP (579 µg L-1) concentrations throughout the entire flooding experiment occurred in the medium carbon reservoir within the first two weeks of flooding in 1999. TN and TP fluxes were positive in all years of flooding. TP fluxes decreased after each flooding season therefore, TP production may be less problematic in floodplains subject to frequent repeated flooding. However, TN fluxes remained large even after repeated flooding. Therefore, flooding, whether naturally occurring or from anthropogenic flow alteration, may be responsible for producing significant amounts of nitrogen and phosphorus in aquatic ecosystems.

  12. CEA budget in 1982

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    In 1982, the amount of the CEA budget will be 13.4 billions French Francs. The main characteristics are the priority for employment and investments. In this budget programs are adapted to fit R and D to the government policy: innovation, industrial valorization and fundamental research especially thermonuclear fusion and in the electronuclear field to safety, reprocessing and radioactive waste management.

  13. Relevance of methodological choices for accounting of land use change carbon fluxes

    Science.gov (United States)

    Pongratz, Julia; Hansis, Eberhard; Davis, Steven

    2015-04-01

    To understand and potentially steer how humans shape land-climate interactions it is important to accurately attribute greenhouse gas fluxes from land use and land cover change (LULCC) in space and time. However, such accounting of carbon fluxes from LULCC generally requires choosing from multiple options of how to attribute the fluxes to regions and to LULCC activities. Applying a newly-developed and spatially-explicit bookkeeping model, BLUE ("bookkeeping of land use emissions"), we quantify LULCC carbon fluxes and attribute them to land-use activities and countries by a range of different accounting methods. We present results with respect to a Kyoto Protocol-like ``commitment'' accounting period, using land use emissions of 2008-12 as example scenario. We assess the effect of accounting methods that vary (1) the temporal evolution of carbon stocks, (2) the state of the carbon stocks at the beginning of the period, (3) the temporal attribution of carbon fluxes during the period, and (4) treatment of LULCC fluxes that occurred prior to the beginning of the period. We show that the methodological choices result in grossly different estimates of carbon fluxes for the different attribution definitions. The global net flux in the accounting period varies between 4.3 Pg(C) uptake and 15.2 Pg(C) emissions, depending on the accounting method. Regional results show different modes of variation. This finding has implications for both political and scientific considerations: Not all methodological choices are currently specified under the UNFCCC treaties on land use, land-use change and forestry. Yet, a consistent accounting scheme is crucial to assure comparability of individual LULCC activities, quantify their relevance for the global annual carbon budget, and assess the effects of LULCC policies.

  14. Urban Evapotranspiration and Carbon Dioxide Flux in Miami - Dade, Florida

    Science.gov (United States)

    Bernier, T.; Hopper, W.

    2010-12-01

    Atmospheric Carbon Dioxide (CO2) concentrations are leading indicators of secular climate change. With increasing awareness of the consequences of climate change, methods for monitoring this change are becoming more important daily. Of particular interest is the carbon dioxide exchange between natural and urban landscapes and the correlation of atmospheric CO2 concentrations. Monitoring Evapotranspiration (ET) is important for assessments of water availability for growing populations. ET is surprisingly understudied in the hydrologic cycle considering ET removes as much as 80 to over 100% of precipitation back into the atmosphere as water vapor. Lack of understanding in spatial and temporal ET estimates can limit the credibility of hydrologic water budgets designed to promote sustainable water use and resolve water-use conflicts. Eddy covariance (EC) methods are commonly used to estimate ET and CO2 fluxes. The EC platform consist of a (CSAT) 3-D Sonic Anemometer and a Li-Cor Open Path CO2/ H2O Analyzer. Measurements collected at 10 Hz create a very large data sets. A EC flux tower located in the Snapper Creek Well Field as part of a study to estimate ET for the Miami Dade County Water and Sewer project. Data has been collected from December 17, 2009 to August 30, 2010. QA/QC is performed with the EdiRe data processing software according to Ameri-flux protocols. ET estimates along with other data--latent-heat flux, sensible-heat flux, rainfall, air temperature, wind speed and direction, solar irradiance, net radiation, soil-heat flux and relative humidity--can be used to aid in the development of water management policies and regulations. Currently, many financial institutions have adopted an understanding about baseline environmental monitoring. The “Equator Principle” is an example of a voluntary standard for managing social and environmental risk in project financing and has changed the way in which projects are financed.

  15. Investigating effect of environmental controls on dynamics of CO2 budget in a subtropical estuarial marsh wetland ecosystem

    Science.gov (United States)

    Lee, Sung-Ching; Fan, Chao-Jung; Wu, Zih-Yi; Juang, Jehn-Yih

    2015-02-01

    In this study, we quantified the ecosystem-scale CO2 exchange of two different but typical low-latitude vegetation types, para grass and reed, in a subtropical wetland ecosystem by integrating flux observation with the parameterization of environmental variables. In addition, we explored how seasonal dynamics of environmental factors affected variations in CO2 budget. The results suggest that gross primary production (GPP, in the order of 1700 gC m-2 yr-1) of CO2 was higher in this site than in previous studies of northern peatlands and estuarial wetlands because of the direct effect of environmental factors. Temperature and radiation had a larger effect than water status (soil moisture content and vapor pressure deficit) on GPP for the two low-latitude ecosystems, which differ from the results for high-latitude regions. Environmental variables had a strong but different impact on the CO2 budget for para grass and reed areas. This diversity led to different potential shifts and trends of biomass accumulation and distribution of these two typical low-latitude vegetation types under different scenarios of environmental change. The findings from this study can sufficiently provide quantitative understanding of CO2 budgets in low-latitude wetlands.

  16. Impact of groundwater levels on evaporation and water-vapor fluxes in highly saline soils

    Science.gov (United States)

    Munoz, J. F.; Hernández, M. F.; Braud, I.; Gironas, J. A.; Suarez, F. I.

    2012-12-01

    In aquifers of arid and hyper-arid zones, such as those occurring in the Chilean Andes high plateau, it is important to determine both the quantity and location of water discharges at the temporal scales of interest to close the basin's water budget and thus, to manage the water resource properly. In zones where shallow aquifers are the main source of water, overexploitation of the water resource changes the dynamics of water, heat and solute transport in the vadose zone. As aquifers are exploited, fluctuations in depth to groundwater are exacerbated. These fluctuations modify both soil structure and evaporation from the ground, which is typically the most important discharge from the water budget and is very difficult to estimate. Therefore, a correct quantification of evaporation from these soils is essential to improve the accuracy of the water balance estimation. The objective of this study was to investigate the evaporation processes and water-vapor fluxes in a soil column filled with a saline soil from the Salar del Huasco basin, Chile. Water content, electrical conductivity and temperature at different depths in the soil profile were monitored to determine the liquid and vapor fluxes within the soil column. The results showed that evaporation is negligible when the groundwater table is deeper than 1 m. For shallower groundwater levels, evaporation increases in an exponential fashion reaching a value of 3 mm/day when the groundwater table is near the surface of the ground. These evaporation rates are on the same order of magnitude than the field measurements, but slightly lower due to the controlled conditions maintained in the laboratory. Isothermal fluid fluxes were predominant over the non-isothermal fluid and water vapor fluxes. The net flux for all the phreatic levels tested in the laboratory showed different behaviors, with ascending or descending flows as a consequence of changes in water content and temperature distribution within the soil. It was

  17. Ignition and flame spread properties of wood, elaborated during a new test method based on convective heat flux

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    Ignition and flame spread properties on selected types of wood and wall papers are elaborated. Tests are established in a new test setup in which the test specimen can be fixed in different angles due to a horizontal level. The heat exposing the test objects is arranged as a convective flux......, established from a Bunsen burners pilot flame. This principal is somewhat in contrast to the more typical radiation established fluxes. For instance, the ISO 9239 (DS 2000) test method is based on a gas fired radiant panel. And in the ISO 5657 standard, the ignition properties are investigated on test...

  18. Bugetul funcțional (Line - Item Budget) și metoda Buget Bază Zero ( Zero Base Budgeting - ZBB)

    OpenAIRE

    Dan Tudor LAZĂR; Adrian Mihai INCEU

    2004-01-01

    A line-item budget lists, in vertical columns, each of the revenue sources and each of the types – or classes – of items will purchase during the fiscal year. The line-item budget, which is the most widely used of all budgeting systems, offers many advantages. It is comparatively easy to prepare and doesn’t require sophisticated financial skills. Also, the line-item budget is straightforward, simple to administer and readily understood by everybody. Moreover, the simplicity of the system make...

  19. Top-of-atmosphere radiative fluxes - Validation of ERBE scanner inversion algorithm using Nimbus-7 ERB data

    Science.gov (United States)

    Suttles, John T.; Wielicki, Bruce A.; Vemury, Sastri

    1992-01-01

    The ERBE algorithm is applied to the Nimbus-7 earth radiation budget (ERB) scanner data for June 1979 to analyze the performance of an inversion method in deriving top-of-atmosphere albedos and longwave radiative fluxes. The performance is assessed by comparing ERBE algorithm results with appropriate results derived using the sorting-by-angular-bins (SAB) method, the ERB MATRIX algorithm, and the 'new-cloud ERB' (NCLE) algorithm. Comparisons are made for top-of-atmosphere albedos, longwave fluxes, viewing zenith-angle dependence of derived albedos and longwave fluxes, and cloud fractional coverage. Using the SAB method as a reference, the rms accuracy of monthly average ERBE-derived results are estimated to be 0.0165 (5.6 W/sq m) for albedos (shortwave fluxes) and 3.0 W/sq m for longwave fluxes. The ERBE-derived results were found to depend systematically on the viewing zenith angle, varying from near nadir to near the limb by about 10 percent for albedos and by 6-7 percent for longwave fluxes. Analyses indicated that the ERBE angular models are the most likely source of the systematic angular dependences. Comparison of the ERBE-derived cloud fractions, based on a maximum-likelihood estimation method, with results from the NCLE showed agreement within about 10 percent.

  20. Turbulence fluxes and variances measured with a sonic anemometer mounted on a tethered balloon

    OpenAIRE

    Canut, Guylaine; Couvreux, Fleur; Lothon, Marie; Legain, Dominique; Piguet, Bruno; Lampert, Astrid; Maurel, William; Moulin, Eric

    2016-01-01

    This study presents the first deployment in field campaigns of a balloon-borne turbulence probe, developed with a sonic anemometer and an inertial motion sensor suspended below a tethered balloon. This system measures temperature and horizontal and vertical wind at high frequency and allows the estimation of heat and momentum fluxes as well as turbulent kinetic energy in the lower part of the boundary layer. The system was validated during three field experiments with differ...

  1. Performance of horizontal versus vertical vapor extraction wells

    International Nuclear Information System (INIS)

    Birdsell, K.H.; Roseberg, N.D.; Edlund, K.M.

    1994-06-01

    Vapor extraction wells used for site remediation of volatile organic chemicals in the vadose zone are typically vertical wells. Over the past few years, there has been an increased interest in horizontal wells for environmental remediation. Despite the interest and potential benefits of horizontal wells, there has been little study of the relative performance of horizontal and vertical vapor extraction wells. This study uses numerical simulations to investigate the relative performance of horizontal versus vertical vapor extraction wells under a variety of conditions. The most significant conclusion that can be drawn from this study is that in a homogeneous medium, a single, horizontal vapor extraction well outperforms a single, vertical vapor extraction well (with surface capping) only for long, linear plumes. Guidelines are presented regarding the use of horizontal wells

  2. Injection space charge: enlargements of flux density functioning point choice

    International Nuclear Information System (INIS)

    Ropert, A.

    In Saturne, injection consists of a synchrobetatron filling of the chamber, with the goal of providing a beam with the following characteristics circulating in the machine: horizontal flux density 90 πmm mrd, vertical flux density 210 πmm mrd, dispersion in moments +- 7 x 10 -3 , and number of particles 2 x 10 12 . The determination of the principal injection parameters was made by means of GOC calculation programs. The goal of this study is to show a certain number of phenomena induced by the forces due to space charge and left suspended up to this point: variations in the intensity injectable into the machine extension of the beam occupation zone in the ν/sub x'/ ν/sub z/ diagram, and turn-turn interactions. The effects of the space charge lead to a deterioration of the injected beam for certain functioning points leading to the selection of a zone in the ν/sub x'/ ν/sub z/ diagram that is particularly suitable for beam injection

  3. Carbon budget and its response to environmental factors in young and mature poplar plantations along the middle and lower reaches of the Yangtze River, China

    Science.gov (United States)

    Jinxing Zhou; Yuan Wei; Jun Yang; Xiaohui Yang; Zeping Jiang; Jiquan Chen; Asko Noormets; Xiaosong Zhao

    2012-01-01

    Although poplar forest is the dominant plantation type in China, there is uncertainty about the carbon budget of these forests across the country. The observations, performed in 2006, of two eddy covariance flux towers on a young poplar plantation (Yueyang, Hunan province) and a mature poplar plantation (Huaining, Anhui province) provide an opportunity to understand...

  4. Carbon Fluxes and Transport Along the Terrestrial Aquatic Continuum

    Science.gov (United States)

    Butman, D. E.; Kolka, R.; Fennel, K.; Stackpoole, S. M.; Trettin, C.; Windham-Myers, L.

    2017-12-01

    Terrestrial wetlands, inland surface waters, tidal wetlands and estuaries, and the coastal ocean are distinct aquatic ecosystems that integrate carbon (C) fluxes and processing among the major earth system components: the continents, oceans, and atmosphere. The development of the 2nd State of the Carbon Cycle Report (SOCCR2) noted that incorporating the C cycle dynamics for these ecosystems was necessary to reconcile some of the gaps associated with the North American C budget. We present major C stocks and fluxes for Canada, Mexico and the United States. North America contains nearly 42% of the global terrestrial wetland area. Terrestrial wetlands, defined as soils that are seasonally or permanently inundated or saturated, contain significant C stocks equivalent to 174,000 Tg C in the top 40 cm of soil. While terrestrial wetlands are a C sink of approximately 64 Tg C yr-1, they also emit 21 Tg of CH4 yr-1. Inland waters are defined as lakes, reservoirs, rivers, and streams. Carbon fluxes, which include lateral C export to the coast, riverine and lacustrine CO2 emissions, and C burial in lakes and reservoirs are estimated at 507 Tg yr-1. Estuaries and tidal wetlands assimilate C and nutrients from uplands and rivers, and their total C stock is 1,323 Tg C in the top 1 m of soils and sediment. Accounting for soil accretion, lateral C flux, and CO2 assimilation and emission, tidal wetlands and estuaries are net sinks with a total flux equal to 6 Tg C yr-1. The coastal ocean and sea shelfs, defined as non-estuarine waters within 200 nautical miles (370 km) of the coast, function as net sinks, with the air-sea exchange of CO2 estimated at 150 Tg C yr-1. In total, fluxes from these four aquatic ecosystems are equal to a loss of 302 Tg C yr-1. Including these four discrete fluxes in this assessment demonstrates the importance of linking hydrology and biogeochemical cycling to evaluate the impacts of climate change and human activities on carbon fluxes across the

  5. Flux agreement above a Scots pine plantation

    Science.gov (United States)

    Gay, L. W.; Vogt, R.; Bernhofer, Ch.; Blanford, J. H.

    1996-03-01

    The surface energy exchange of 12m high Scots pine plantation at Hartheim, Germany, was measured with a variety of methods during a 11-day period of fine weather in mid-May 1992. Net radiation and rate of thermal storage were measured with conventional net radiometers, soil heat flux discs and temperature-based storage models. The turbulent fluxes discussed in this report were obtained with an interchanging Bowen ratio energy budget system (BREB, at 14 m), two one-propeller eddy correlation systems (OPEC systems 1 and 2 at 17m), a 1-dimensional sonic eddy correlation system (SEC system 3) at 15 m, all on one “low” tower, and a 3-dimensional sonic eddy correlation system (SEC system 22) at 22 m on the “high” tower that was about 46 m distant. All systems measured sensible and latent heat (H and LE) directly, except for OPEC systems 1 and 2 which estimated LE as a residual term in the surface energy balance. Closure of turbulent fluxes from the two SEC systems was around 80% for daytime and 30% for night, with closure of 1-dimensional SEC system 3 exceeding that of 3-dimensional SEC system 22. The night measurements of turbulent fluxes contained considerable uncertainty, especially with the BREB system where measured gradients often yielded erroneous fluxes due to problems inherent in the method (i.e., computational instability as Bowen's ratio approaches -1). Also, both eddy correlation system designs (OPEC and SEC) appeared to underestimate |H| during stable conditions at night. In addition, both sonic systems (1- and 3-dimensional) underestimated |LE| during stable conditions. The underestimate of |H| at night generated residual estimates of OPEC LE containing a “phantom dew” error that erroneously decreased daily LE totals by about 10 percent. These special night problems are circumvented here by comparing results for daytime periods only, rather than for full days. To summarize, turbulent fluxes on the low tower from OPEC system 2 and the adjacent

  6. Participative Budgeting, Budget Evaluation, and Organizational Trust in Post-Secondary Educational Institutions in Canada

    Science.gov (United States)

    Simmons, Cynthia V.

    2012-01-01

    The purpose of this research was to investigate the relationship between a participative budgeting system, the attitudes toward the budget, and levels of organizational trust held by administrators in post-secondary institutions. A 50-item questionnaire was distributed to college and university administrators across Canada. A series of regression…

  7. Integrated Budget Office Toolbox

    Science.gov (United States)

    Rushing, Douglas A.; Blakeley, Chris; Chapman, Gerry; Robertson, Bill; Horton, Allison; Besser, Thomas; McCarthy, Debbie

    2010-01-01

    The Integrated Budget Office Toolbox (IBOT) combines budgeting, resource allocation, organizational funding, and reporting features in an automated, integrated tool that provides data from a single source for Johnson Space Center (JSC) personnel. Using a common interface, concurrent users can utilize the data without compromising its integrity. IBOT tracks planning changes and updates throughout the year using both phasing and POP-related (program-operating-plan-related) budget information for the current year, and up to six years out. Separating lump-sum funds received from HQ (Headquarters) into separate labor, travel, procurement, Center G&A (general & administrative), and servicepool categories, IBOT creates a script that significantly reduces manual input time. IBOT also manages the movement of travel and procurement funds down to the organizational level and, using its integrated funds management feature, helps better track funding at lower levels. Third-party software is used to create integrated reports in IBOT that can be generated for plans, actuals, funds received, and other combinations of data that are currently maintained in the centralized format. Based on Microsoft SQL, IBOT incorporates generic budget processes, is transportable, and is economical to deploy and support.

  8. Flux wire measurements in Cavalier for verifying computer code applications

    International Nuclear Information System (INIS)

    Fehr, M.; Stubbs, J.; Hosticka, B.

    1988-01-01

    The Cavalier and UVAR research reactors are to be converted from high-enrichment uranium (HEU) to low-enrichment uranium (LEU) fuel. As a first step, an extensive set of gold wire activation measurements has been taken on the Cavalier reactor. Axial traverses show internal consistency to the order of ±5%, while horizontal traverses show somewhat larger deviations. The activation measurements will be converted to flux measurements via the Thermos code and will then be used to verify the Leopard-2DB codes. The codes will ultimately be used to design an upgraded LEU core for the UVAR

  9. Implications of Nash Bargaining for Horizontal Industry Integration

    OpenAIRE

    Richard E. Just; Siddhartha Mitra; Sinaia Netanyahu

    2005-01-01

    This article shows how horizontal industry integration can arise from transferable asymmetry of technologies and endowments. The Nash bargaining solution suggests that greater technological diversity among coordinating parties yields greater gains from horizontal integration. The framework fits the case where a firm with a superior technology franchises the technology by horizontal integration. The results appear to fit hog production where integration has been primarily horizontal and, in pa...

  10. USGS budget request up for 1994

    Science.gov (United States)

    White, M. Catherine

    The president's U.S. Geological Survey budget request for fiscal year 1994 totals $598 million—up $20 million from the current budget. This would restore about half of the $42.46 million cut from its budget in fiscal 1993.In releasing the budget, Bruce Babbitt, Secretary of the Department of the Interior, said, “The USGS reflects the new administration's understanding that investing in America requires investing in a strong Earth science capability,” and that “we need high-quality scientific information on natural hazards and on our water, mineral, energy, and land resources to serve as the building blocks for making intelligent decisions and planning future growth.”

  11. The annual ammonia budget of fertilised cut grassland – Part 1: Micrometeorological flux measurements and emissions after slurry application

    Directory of Open Access Journals (Sweden)

    C. Spirig

    2010-02-01

    Full Text Available Two commercial ammonia (NH3 analysers were customised to allow continuous measurements of vertical concentration gradients. The gradients were used to derive ammonia exchange fluxes above a managed grassland site at Oensingen (Switzerland by application of the aerodynamic gradient method. The measurements from July 2006 to October 2007 covered five complete growth-cut cycles and included six applications of liquid cattle slurry. The average accuracy of the flux measurements during unstable and near-neutral conditions was 20% and the detection limit was 10 ng NH3 m−2 s−1. Hence the flux measurements are considered sufficiently accurate for studying typical NH3 deposition rates over growing vegetation. Quantifying the overall emissions after slurry applications required the application of elaborate interpolations because of difficulties capturing the initial emissions during broadspreading of liquid manure. The emissions were also calculated with a mass balance method yielding similar fluxes. NH3 losses after slurry application expressed as percentage of emitted nitrogen versus applied total ammoniacal nitrogen (TAN varied between 4 and 19%, which is roughly a factor of three lower than the values for broadspreading of liquid manure in emission inventories. The comparatively low emission factors appear to be a consequence of the low dry matter content of the applied slurry and soil properties favouring ammonium adsorption.

  12. Historical effects of dissolved organic carbon export and land management decisions on the watershed-scale forest carbon budget of a coastal British Columbia Douglas-fir-dominated landscape

    Directory of Open Access Journals (Sweden)

    B. P. Smiley

    2017-07-01

    Full Text Available Abstract Background To address how natural disturbance, forest harvest, and deforestation from reservoir creation affect landscape-level carbon (C budgets, a retrospective C budget for the 8500 ha Sooke Lake Watershed (SLW from 1911 to 2012 was developed using historical spatial inventory and disturbance data. To simulate forest C dynamics, data was input into a spatially-explicit version of the Carbon Budget Model-Canadian Forest Sector (CBM-CFS3. Transfers of terrestrial C to inland aquatic environments need to be considered to better capture the watershed scale C balance. Using dissolved organic C (DOC and stream flow measurements from three SLW catchments, DOC load into the reservoir was derived for a 17-year period. C stocks and stock changes between a baseline and two alternative management scenarios were compared to understand the relative impact of successive reservoir expansions and sustained harvest activity over the 100-year period. Results Dissolved organic C flux for the three catchments ranged from 0.017 to 0.057 Mg C ha−1 year−1. Constraining CBM-CFS3 to observed DOC loads required parameterization of humified soil C losses of 2.5, 5.5, and 6.5%. Scaled to the watershed and assuming none of the exported terrestrial DOC was respired to CO2, we hypothesize that over 100 years up to 30,657 Mg C may have been available for sequestration in sediment. By 2012, deforestation due to reservoir creation/expansion resulted in the watershed forest lands sequestering 14 Mg C ha−1 less than without reservoir expansion. Sustained harvest activity had a substantially greater impact, reducing forest C stores by 93 Mg C ha−1 by 2012. However approximately half of the C exported as merchantable wood during logging (~176,000 Mg C may remain in harvested wood products, reducing the cumulative impact of forestry activity from 93 to 71 Mg C ha−1. Conclusions Dissolved organic C flux from temperate forest ecosystems is a

  13. Historical effects of dissolved organic carbon export and land management decisions on the watershed-scale forest carbon budget of a coastal British Columbia Douglas-fir-dominated landscape.

    Science.gov (United States)

    Smiley, B P; Trofymow, J A

    2017-12-01

    To address how natural disturbance, forest harvest, and deforestation from reservoir creation affect landscape-level carbon (C) budgets, a retrospective C budget for the 8500 ha Sooke Lake Watershed (SLW) from 1911 to 2012 was developed using historical spatial inventory and disturbance data. To simulate forest C dynamics, data was input into a spatially-explicit version of the Carbon Budget Model-Canadian Forest Sector (CBM-CFS3). Transfers of terrestrial C to inland aquatic environments need to be considered to better capture the watershed scale C balance. Using dissolved organic C (DOC) and stream flow measurements from three SLW catchments, DOC load into the reservoir was derived for a 17-year period. C stocks and stock changes between a baseline and two alternative management scenarios were compared to understand the relative impact of successive reservoir expansions and sustained harvest activity over the 100-year period. Dissolved organic C flux for the three catchments ranged from 0.017 to 0.057 Mg C ha -1  year -1 . Constraining CBM-CFS3 to observed DOC loads required parameterization of humified soil C losses of 2.5, 5.5, and 6.5%. Scaled to the watershed and assuming none of the exported terrestrial DOC was respired to CO 2 , we hypothesize that over 100 years up to 30,657 Mg C may have been available for sequestration in sediment. By 2012, deforestation due to reservoir creation/expansion resulted in the watershed forest lands sequestering 14 Mg C ha -1 less than without reservoir expansion. Sustained harvest activity had a substantially greater impact, reducing forest C stores by 93 Mg C ha -1 by 2012. However approximately half of the C exported as merchantable wood during logging (~176,000 Mg C) may remain in harvested wood products, reducing the cumulative impact of forestry activity from 93 to 71 Mg C ha -1 . Dissolved organic C flux from temperate forest ecosystems is a small but persistent C flux which may have long term

  14. NCTN Budget

    Science.gov (United States)

    Learn about the budget for the National Clinical Trials Network (NCTN), a National Cancer Institute program that gives funds and other support to cancer research organizations to conduct cancer clinical trials.

  15. Design and analysis of EI core structured transverse flux linear reluctance actuator

    OpenAIRE

    FENERCİOĞLU, AHMET; AVŞAR, YUSUF

    2015-01-01

    In this study, an EI core linear actuator is proposed for horizontal movement systems. It is a transverse flux linear switched reluctance motor designed with an EI core structure geometrically. The actuator is configured into three phases and at a 6/4 pole ratio, and it has a stationary active stator along with a sliding passive translator. The stator consists of E cores and the translator consists of I cores. The actuator has a yokeless design because the stator and translator have no back i...

  16. The Influence of Anthropogenic Greenhouse Gases and Aerosols on the Surface Heat and Moisture Budgets.

    Science.gov (United States)

    Ramaswamy, V.; Freidenreich, S.; Ginoux, P. A.; Ming, Y.; Paynter, D.; Persad, G.; Schwarzkopf, M. D.

    2017-12-01

    Emissions of greenhouse gases and aerosols alter atmospheric composition and `force' major perturbations in the radiative fluxes at the top-of-the-atmosphere and surface. In this paper, we discuss the radiative changes caused by anthropogenic greenhouse gases and aerosols at the surface, and its importance in the context of effects on the global hydrologic cycle. An important characteristic of imbalances forced by radiative species is the tendency for responses to occur in the non-radiative components, in order for the surface energy and moisture budgets to re-establish equilibrium. Using the NOAA/ GFDL global climate models used in CMIP3 and CMIP5, and to be used in CMIP6, we investigate how the surface energy balance has evolved with time under the action of the emissions, and the manner of changes in the surface radiative, sensible and latent heat components. We diagnose the relative importance of the forcings on the global and continental scales, the differing mechanisms due to greenhouse gases and aerosols on surface heat and moisture budgets, and the relative roles of the atmospheric constituents on precipitation and evaporation. Scattering and absorbing properties of aerosols can have contrasting effects on precipitation, with the aerosol indirect effect presenting another complication owing to the uncertainty in its magnitude. We compare the modeled surface flux changes against observations made from multiple platforms over the 20th and the early period of the 21st centuries, and asses the models' strengths and weaknesses. We also explore the consequences for the surface balance and precipitation in the 21st century under various emission scenarios.

  17. Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the western Amazon basin

    Directory of Open Access Journals (Sweden)

    Y. A. Teh

    2017-08-01

    Full Text Available The Amazon plays a critical role in global atmospheric budgets of methane (CH4 and nitrous oxide (N2O. However, while we have a relatively good understanding of the continental-scale flux of these greenhouse gases (GHGs, one of the key gaps in knowledge is the specific contribution of peatland ecosystems to the regional budgets of these GHGs. Here we report CH4 and N2O fluxes from lowland tropical peatlands in the Pastaza–Marañón foreland basin (PMFB in Peru, one of the largest peatland complexes in the Amazon basin. The goal of this research was to quantify the range and magnitude of CH4 and N2O fluxes from this region, assess seasonal trends in trace gas exchange, and determine the role of different environmental variables in driving GHG flux. Trace gas fluxes were determined from the most numerically dominant peatland vegetation types in the region: forested vegetation, forested (short pole vegetation, Mauritia flexuosa-dominated palm swamp, and mixed palm swamp. Data were collected in both wet and dry seasons over the course of four field campaigns from 2012 to 2014. Diffusive CH4 emissions averaged 36.05 ± 3.09 mg CH4–C m−2 day−1 across the entire dataset, with diffusive CH4 flux varying significantly among vegetation types and between seasons. Net ebullition of CH4 averaged 973.3 ± 161.4 mg CH4–C m−2 day−1 and did not vary significantly among vegetation types or between seasons. Diffusive CH4 flux was greatest for mixed palm swamp (52.0 ± 16.0 mg CH4–C m−2 day−1, followed by M. flexuosa palm swamp (36.7 ± 3.9 mg CH4–C m−2 day−1, forested (short pole vegetation (31.6 ± 6.6 mg CH4–C m−2 day−1, and forested vegetation (29.8 ± 10.0 mg CH4–C m−2 day−1. Diffusive CH4 flux also showed marked seasonality, with divergent seasonal patterns among ecosystems. Forested vegetation and mixed palm swamp showed significantly higher

  18. STUDY CONCERNING THE EXECUTION OF LOCAL BUDGETS REVENUES

    Directory of Open Access Journals (Sweden)

    Cristinel ICHIM

    2013-12-01

    Full Text Available Implementation of local budget revenues is a very important sub-phase of the local budgetary process its correct accomplishment ensures regularity and efficiency in revenue collection, which will cover the local budget expenditures. Through this scientific approach we intended to achieve an analysis of the implementation of revenues mobilized to the local budgets in Romania. The study started with fixing the concept of execution of budget revenues and defining its phases, and followed with the analysis of the implementation of local budget revenues in three levels, namely: the overall local budgets in Romania, at the city level and at the community level. We have to mention that the analysis of the execution of local budgets was done in 2011, based on existing data in the last occurrence of the Romanian Statistical Yearbook for 2012. The paper concluded with some considerations regarding the execution of local budgets revenues and some proposals for improving the collection of local income.

  19. Radiation budget measurement/model interface

    Science.gov (United States)

    Vonderhaar, T. H.; Ciesielski, P.; Randel, D.; Stevens, D.

    1983-01-01

    This final report includes research results from the period February, 1981 through November, 1982. Two new results combine to form the final portion of this work. They are the work by Hanna (1982) and Stevens to successfully test and demonstrate a low-order spectral climate model and the work by Ciesielski et al. (1983) to combine and test the new radiation budget results from NIMBUS-7 with earlier satellite measurements. Together, the two related activities set the stage for future research on radiation budget measurement/model interfacing. Such combination of results will lead to new applications of satellite data to climate problems. The objectives of this research under the present contract are therefore satisfied. Additional research reported herein includes the compilation and documentation of the radiation budget data set a Colorado State University and the definition of climate-related experiments suggested after lengthy analysis of the satellite radiation budget experiments.

  20. Vertical distribution and fluxes of ammonia at Great Dun Fell

    Science.gov (United States)

    Sutton, M. A.; Perthue, E.; Fowler, D.; Storeton-West, R. L.; Cape, J. N.; Arends, B. G.; Möls, J. J.

    As part of the study of the ammonia budget over Great Dun Fell, measurements of fluxes of gaseous ammonia (NH 3) with the hill surface (grass moorland and blanket bog) were made using micrometeorological techniques, to provide information on NH 3 removal by the hill surface and on vertical concentration gradients. Measurements of vertical concentration, χ, profiles of NH 3 concentration were coupled with turbulent diffusivities to determine fluxes, Fg deposition velocities, and canopy resistances, Rc to uptake by the ground. Consistent with published measurements for this site, NH 3 was generally found to deposit efficiently to the vegetation canopy, with mean Rc of 5 and 27 s m - for example days shown. However, short periods of NH 3 emission from the moorland were also observed at small χ (cloud processing: depletion of χ by in-cloud reaction would be expected to favour NH 3 emission from down-wind agricultural land and moorland, though emission from the hill itself during immersion in cloud is unlikely. Comparison of two measurement techniques to determine air concentrations (batch wet rotating denuder, inlet 0.5 m height; continuous wet denuder, inlets 0.3, 2 m heights) showed acceptable agreement, although because vertical concentration gradients were large (small Rc) the height of sampling had a substantial effect. Vertical gradients are also relevant to the use of the measured concentrations as estimates of NH 3 in the air mass passing over the hill, for modelling atmospheric budgets. Where NH 3 deposition occurs at the maximum rate, concentrations measured at 1 m require a 35% correction in neutral conditions when scaling to a reference height of 10 m.