WorldWideScience

Sample records for hopping combining 3d

  1. Hops

    Science.gov (United States)

    ... The effectiveness ratings for HOPS are as follows:Body odor. Early research suggests that applying a deodorant that ... specific zinc salt to the underarm can reduce body odor. Insomnia. Some research suggests that taking a combination ...

  2. 3D analysis of semiconductor devices: A combination of 3D imaging and 3D elemental analysis

    Science.gov (United States)

    Fu, Bianzhu; Gribelyuk, Michael A.

    2018-04-01

    3D analysis of semiconductor devices using a combination of scanning transmission electron microscopy (STEM) Z-contrast tomography and energy dispersive spectroscopy (EDS) elemental tomography is presented. 3D STEM Z-contrast tomography is useful in revealing the depth information of the sample. However, it suffers from contrast problems between materials with similar atomic numbers. Examples of EDS elemental tomography are presented using an automated EDS tomography system with batch data processing, which greatly reduces the data collection and processing time. 3D EDS elemental tomography reveals more in-depth information about the defect origin in semiconductor failure analysis. The influence of detector shadowing and X-rays absorption on the EDS tomography's result is also discussed.

  3. Combining 3D structure of real video and synthetic objects

    Science.gov (United States)

    Kim, Man-Bae; Song, Mun-Sup; Kim, Do-Kyoon

    1998-04-01

    This paper presents a new approach of combining real video and synthetic objects. The purpose of this work is to use the proposed technology in the fields of advanced animation, virtual reality, games, and so forth. Computer graphics has been used in the fields previously mentioned. Recently, some applications have added real video to graphic scenes for the purpose of augmenting the realism that the computer graphics lacks in. This approach called augmented or mixed reality can produce more realistic environment that the entire use of computer graphics. Our approach differs from the virtual reality and augmented reality in the manner that computer- generated graphic objects are combined to 3D structure extracted from monocular image sequences. The extraction of the 3D structure requires the estimation of 3D depth followed by the construction of a height map. Graphic objects are then combined to the height map. The realization of our proposed approach is carried out in the following steps: (1) We derive 3D structure from test image sequences. The extraction of the 3D structure requires the estimation of depth and the construction of a height map. Due to the contents of the test sequence, the height map represents the 3D structure. (2) The height map is modeled by Delaunay triangulation or Bezier surface and each planar surface is texture-mapped. (3) Finally, graphic objects are combined to the height map. Because 3D structure of the height map is already known, Step (3) is easily manipulated. Following this procedure, we produced an animation video demonstrating the combination of the 3D structure and graphic models. Users can navigate the realistic 3D world whose associated image is rendered on the display monitor.

  4. Potential Cost Savings with 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization

    Science.gov (United States)

    2014-05-01

    1 Potential Cost Savings with 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization David N. Ford...2014 4. TITLE AND SUBTITLE Potential Cost Savings with 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization 5a...Manufacturing ( 3D printing ) 2 Research Context Problem: Learning curve savings forecasted in SHIPMAIN maintenance initiative have not materialized

  5. Combining Synchronous and Asynchronous Collaboration within 3D City Models

    Science.gov (United States)

    Klimke, Jan; Döllner, Jürgen

    This paper presents an approach for combining spatially distributed synchronous and asynchronous collaboration within 3D city models. Software applications use these models as additional communication medium to facilitate communication of georeferenced and geospatial information. Collaboration tools should support both the communication with other collaborators and their awareness of the current collaboration context. To support collaborative knowledge construction and gathering, we have designed a collaboration system to facilitate (a) creation of annotations that have 3D references to the virtual 3D city model and (b) collection information about the context in which these annotations are created. Our approach supports synchronous collaboration in connection with the creation of non volatile, precisely georeferenced units of information allow for a comprehensible form of cooperation in spatially distributed settings. Storage and retrieval of this information is provided through a Web Feature Service, which eases integration of collaboration data into existing applications. We further introduce a visualization technique that integrates annotations as complex structured data into the 3D visualization. This avoids media breaks and disruptions in working processes and creates a spatial coherence between annotation and annotated feature or geometry.

  6. Combining Different Modalities for 3D Imaging of Biological Objects

    CERN Document Server

    Tsyganov, E; Kulkarni, P; Mason, R; Parkey, R; Seliuonine, S; Shay, J; Soesbe, T; Zhezher, V; Zinchenko, A I

    2005-01-01

    A resolution enhanced NaI(Tl)-scintillator micro-SPECT device using pinhole collimator geometry has been built and tested with small animals. This device was constructed based on a depth-of-interaction measurement using a thick scintillator crystal and a position sensitive PMT to measure depth-dependent scintillator light profiles. Such a measurement eliminates the parallax error that degrades the high spatial resolution required for small animal imaging. This novel technique for 3D gamma-ray detection was incorporated into the micro-SPECT device and tested with a $^{57}$Co source and $^{98m}$Tc-MDP injected in mice body. To further enhance the investigating power of the tomographic imaging different imaging modalities can be combined. In particular, as proposed and shown in this paper, the optical imaging permits a 3D reconstruction of the animal's skin surface thus improving visualization and making possible depth-dependent corrections, necessary for bioluminescence 3D reconstruction in biological objects. ...

  7. Combining different modalities for 3D imaging of biological objects

    International Nuclear Information System (INIS)

    Tsyganov, Eh.; Antich, P.; Kulkarni, P.; Mason, R.; Parkey, R.; Seliuonine, S.; Shay, J.; Soesbe, T.; Zhezher, V.; Zinchenko, A.

    2005-01-01

    A resolution enhanced NaI(Tl)-scintillator micro-SPECT device using pinhole collimator geometry has been built and tested with small animals. This device was constructed based on a depth-of-interaction measurement using a thick scintillator crystal and a position sensitive PMT to measure depth-dependent scintillator light profiles. Such a measurement eliminates the parallax error that degrades the high spatial resolution required for small animal imaging. This novel technique for 3D gamma-ray detection was incorporated into the micro-SPECT device and tested with a 57 Co source and 98m Tc-MDP injected in mice body. To further enhance the investigating power of the tomographic imaging different imaging modalities can be combined. In particular, as proposed and shown, the optical imaging permits a 3D reconstruction of the animal's skin surface thus improving visualization and making possible depth-dependent corrections, necessary for bioluminescence 3D reconstruction in biological objects. This structural information can provide even more detail if the x-ray tomography is used as presented in the paper

  8. A combined system for 3D printing cybersecurity

    Science.gov (United States)

    Straub, Jeremy

    2017-06-01

    Previous work has discussed the impact of cybersecurity breaches on 3D printed objects. Multiple attack types that could weaken objects, make them unsuitable for certain applications and even create safety hazards have been presented. This paper considers a visible light sensing-based verification system's efficacy as a means of thwarting cybersecurity threats to 3D printing. This system detects discrepancies between expected and actual printed objects (based on an independent pristine CAD model). Whether reliance on an independent CAD model is appropriate is also considered. The future of 3D printing is projected and the importance of cybersecurity in this future is discussed.

  9. Automated assignment and 3D structure calculations using combinations of 2D homonuclear and 3D heteronuclear NOESY spectra

    International Nuclear Information System (INIS)

    Oezguen, Numan; Adamian, Larisa; Xu Yuan; Rajarathnam, Krishna; Braun, Werner

    2002-01-01

    The NOAH/DIAMOD suite uses feedback filtering and self-correcting distance geometry to generate 3D structures from unassigned NOESY spectra. In this study we determined the minimum set of experiments needed to generate a high quality structure bundle. Different combinations of 3D 15 N-edited, 13 C-edited HSQC-NOESY and 2D homonuclear 1 H- 1 H NOESY spectra of the 77 amino acid protein, myeloid progenitor inhibitory factor-1 (MPIF-1) were used as input for NOAH/DIAMOD calculations. The quality of the assignments of NOESY cross peaks and the accuracy of the automatically generated 3D structures were compared to those obtained with a conventional manual procedure. Combining data from two types of experiments synergistically increased the number of peaks assigned unambiguously in both individual spectra. As a general trend for the accuracy of the structures we observed structural variations in the backbone fold of the final structures of about 2 A for single spectral data, of 1 A to 1.5 A for double spectral data, and of 0.6 A for triple spectral data sets. The quality of the assignments and 3D structures from the optimal data using all three spectra were similar to those obtained from traditional assignment methods with structural variations within the bundle of 0.6 A and 1.3 A for backbone and heavy atoms, respectively. Almost all constraints (97%) of the automatic NOESY cross peak assignments were cross compatible with the structures from the conventional manual assignment procedure, and an even larger proportion (99%) of the manually derived constraints were compatible with the automatically determined 3D structures. The two mean structures determined by both methods differed only by 1.3 A rmsd for the backbone atoms in the well-defined regions of the protein. Thus NOAD/DIAMOD analysis of spectra from labeled proteins provides a reliable method for high throughput analysis of genomic targets

  10. Combined shape and topology optimization of 3D structures

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Bærentzen, Jakob Andreas; Nobel-Jørgensen, Morten

    2015-01-01

    We present a method for automatic generation of 3D models based on shape and topology optimization. The optimization procedure, or model generation process, is initialized by a set of boundary conditions, an objective function, constraints and an initial structure. Using this input, the method...... will automatically deform and change the topology of the initial structure such that the objective function is optimized subject to the specified constraints and boundary conditions. For example, this tool can be used to improve the stiffness of a structure before printing, reduce the amount of material needed...

  11. Potential Cost Savings for Use of 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization

    Science.gov (United States)

    2014-04-30

    bäÉîÉåíÜ=^ååì~ä=^Åèìáëáíáçå= oÉëÉ~êÅÜ=póãéçëáìã= qÜìêëÇ~ó=pÉëëáçåë= sçäìãÉ=ff= = Potential Cost Savings for Use of 3D Printing Combined With 3D...TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Potential Cost Savings for Use of 3D Printing Combined With 3D Imaging and...Chair: RADM David Lewis, USN Program Executive Officer, SHIPS Potential Cost Savings for Use of 3D Printing Combined With 3D Imaging and CPLM for

  12. Hybrid Detectors for Neutrons Combining Phenyl- Polysiloxanes with 3D Silicon Detectors

    International Nuclear Information System (INIS)

    Dalla Palma, Matteo; Quaranta, Alberto; Collazuol, Gianmaria; Carturan, Sara; Cinausero, Marco; Gramegna, Fabiana; Marchi, Tommaso; Dalla Betta, Gian-Franco; Mendicino, Roberto; Povoli, Marco; Boscardin, Maurizio; Giacomini, Gabriele; Ronchin, Sabina; Zorzi, Nicola

    2013-06-01

    We report on the initial results of a research project aimed at the development hybrid detectors for fast neutrons by combining a phenyl-polysiloxane-based converter with a 3D silicon detector. To this purpose, new 3D sensor structures have been designed, fabricated and electrically tested, showing low depletion voltage and good leakage current. Moreover, the radiation detection capability of 3D sensors was tested by measuring the signals recorded from alpha particles, gamma rays, and pulsed lasers. The converter has been poured into the 3D cavities with excellent coupling, as confirmed by cross-section SEM analyses. Preliminary tests with neutrons have been carried out on the first hybrid detector prototypes at the CN accelerator of INFN LNL. The device design and technology are discussed, along with the first results from the electrical and functional characterization. (authors)

  13. Combining 3d Volume and Mesh Models for Representing Complicated Heritage Buildings

    Science.gov (United States)

    Tsai, F.; Chang, H.; Lin, Y.-W.

    2017-08-01

    This study developed a simple but effective strategy to combine 3D volume and mesh models for representing complicated heritage buildings and structures. The idea is to seamlessly integrate 3D parametric or polyhedral models and mesh-based digital surfaces to generate a hybrid 3D model that can take advantages of both modeling methods. The proposed hybrid model generation framework is separated into three phases. Firstly, after acquiring or generating 3D point clouds of the target, these 3D points are partitioned into different groups. Secondly, a parametric or polyhedral model of each group is generated based on plane and surface fitting algorithms to represent the basic structure of that region. A "bare-bones" model of the target can subsequently be constructed by connecting all 3D volume element models. In the third phase, the constructed bare-bones model is used as a mask to remove points enclosed by the bare-bones model from the original point clouds. The remaining points are then connected to form 3D surface mesh patches. The boundary points of each surface patch are identified and these boundary points are projected onto the surfaces of the bare-bones model. Finally, new meshes are created to connect the projected points and original mesh boundaries to integrate the mesh surfaces with the 3D volume model. The proposed method was applied to an open-source point cloud data set and point clouds of a local historical structure. Preliminary results indicated that the reconstructed hybrid models using the proposed method can retain both fundamental 3D volume characteristics and accurate geometric appearance with fine details. The reconstructed hybrid models can also be used to represent targets in different levels of detail according to user and system requirements in different applications.

  14. Multiscale 3D manufacturing: combining thermal extrusion printing with additive and subtractive direct laser writing

    Science.gov (United States)

    Malinauskas, Mangirdas; Lukoševičius, Laurynas; MackevičiÅ«tÄ--, DovilÄ--; BalčiÅ«nas, Evaldas; RekštytÄ--, Sima; Paipulas, Domas

    2014-05-01

    A novel approach for efficient manufacturing of three-dimensional (3D) microstructured scaffolds designed for cell studies and tissue engineering applications is presented. A thermal extrusion (fused filament fabrication) 3D printer is employed as a simple and low-cost tabletop device enabling rapid materialization of CAD models out of biocompatible and biodegradable polylactic acid (PLA). Here it was used to produce cm- scale microporous (pore size varying from 100 to 400 µm) scaffolds. The fabricated objects were further laser processed in a direct laser writing (DLW) subtractive (ablation) and additive (lithography) manners. The first approach enables precise surface modification by creating micro-craters, holes and grooves thus increasing the surface roughness. An alternative way is to immerse the 3D PLA scaffold in a monomer solution and use the same DLW setup to refine its inner structure by fabricating dots, lines or a fine mesh on top as well as inside the pores of previously produced scaffolds. The DLW technique is empowered by ultrafast lasers - it allows 3D structuring with high spatial resolution in a great variety of photosensitive materials. Structure geometry on macro- to micro- scales could be finely tuned by combining these two fabrication techniques. Such artificial 3D substrates could be used for cell growth or as biocompatible-biodegradable implants. This combination of distinct material processing techniques enables rapid fabrication of diverse functional micro- featured and integrated devices. Hopefully, the proposed approach will find numerous applications in the field of ms, microfluidics, microoptics and many others.

  15. Improved Intelligent Underlay-Overlay Combined with Frequency Hopping in GSM

    DEFF Research Database (Denmark)

    Wigard, Jeroen; Nielsen, Thomas Toftegaard; Mogensen, Preben Elgaard

    1997-01-01

    IUO (intelligent underlay-overlay) in a combination with random frequency hopping in GSM is analysed. Several improvements to the original IUO concept analysed in Nielsen et al. (1997) are introduced. With the improved IUO concept it is possible to load a network configuration consisting of 4...

  16. Low-Complexity Combining Schemes in Dual-Hop AF Relaying Systems

    KAUST Repository

    Gaaloul, Fakhreddine; Alouini, Mohamed-Slim; Radaydeh, Redha M.

    2011-01-01

    This paper investigates the performance of different low-complexity combining schemes in the context of dual-hop amplify-and-forward (AF) relaying networks. It is assumed that the relay uses single transmit (receive) antenna due to space limitation

  17. Combined photogrammetry and 3-D CAD for plant documentation and planning of refits

    International Nuclear Information System (INIS)

    Fraas, K.C.; Giese, U.; Kamsties, K.D.

    1991-01-01

    Meticulous advance planning and erection studies using a three-dimensional computer-aided design model of the plant area concerned can reduce the problem that unexpected events during a plant refit will prolong the required inspection period. This presupposes that a 3-D CAD scale model of the running plant has been generated. A method is described with which the as-built condition of the plant area is converted into a 3-D CAD model by combining photogrammetry with 3-D CAD. The minimum amount of time required for in-plant surveying and the completeness and clarity of results are the special advantages of this method in comparison with other measurement techniques. Selected applications are presented. (orig.) [de

  18. 3D measurement using combined Gray code and dual-frequency phase-shifting approach

    Science.gov (United States)

    Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin; Liu, Xin

    2018-04-01

    The combined Gray code and phase-shifting approach is a commonly used 3D measurement technique. In this technique, an error that equals integer multiples of the phase-shifted fringe period, i.e. period jump error, often exists in the absolute analog code, which can lead to gross measurement errors. To overcome this problem, the present paper proposes 3D measurement using a combined Gray code and dual-frequency phase-shifting approach. Based on 3D measurement using the combined Gray code and phase-shifting approach, one set of low-frequency phase-shifted fringe patterns with an odd-numbered multiple of the original phase-shifted fringe period is added. Thus, the absolute analog code measured value can be obtained by the combined Gray code and phase-shifting approach, and the low-frequency absolute analog code measured value can also be obtained by adding low-frequency phase-shifted fringe patterns. Then, the corrected absolute analog code measured value can be obtained by correcting the former by the latter, and the period jump errors can be eliminated, resulting in reliable analog code unwrapping. For the proposed approach, we established its measurement model, analyzed its measurement principle, expounded the mechanism of eliminating period jump errors by error analysis, and determined its applicable conditions. Theoretical analysis and experimental results show that the proposed approach can effectively eliminate period jump errors, reliably perform analog code unwrapping, and improve the measurement accuracy.

  19. Combining 2D angiogenesis and 3D osteosarcoma microtissues to improve vascularization.

    Science.gov (United States)

    Chaddad, Hassan; Kuchler-Bopp, Sabine; Fuhrmann, Guy; Gegout, Hervé; Ubeaud-Sequier, Geneviève; Schwinté, Pascale; Bornert, Fabien; Benkirane-Jessel, Nadia; Idoux-Gillet, Ysia

    2017-11-15

    Angiogenesis is now well known for being involved in tumor progression, aggressiveness, emergence of metastases, and also resistance to cancer therapies. In this study, to better mimic tumor angiogenesis encountered in vivo, we used 3D culture of osteosarcoma cells (MG-63) that we deposited on 2D endothelial cells (HUVEC) grown in monolayer. We report that endothelial cells combined with tumor cells were able to form a well-organized network, and that tubule-like structures corresponding to new vessels infiltrate tumor spheroids. These vessels presented a lumen and expressed specific markers as CD31 and collagen IV. The combination of 2D endothelial cells and 3D microtissues of tumor cells also increased expression of angiogenic factors as VEGF, CXCR4 and ICAM1. The cell environment is the key point to develop tumor vascularization in vitro and to be closer to tumor encountered in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The effect of correlations on the non-ohmic behavior of the small-polaron hopping conductivity in 1D and 3D disordered systems

    International Nuclear Information System (INIS)

    Dimakogianni, M; Triberis, G P

    2010-01-01

    According to percolation theory the investigation of charge transport in disordered systems is equivalent to the study of the possibility of the passage of the carriers through a random network of impedances which interconnect the different lattice sites. When the site energies are not the same, the energy of a site affects the incoming as well as the outgoing impedances connected to the given site and this gives rise to correlations between neighboring impedances. This new condition characterizes the transport process and imposes the evaluation of the average number of sites accessible by a bond from a given site for all possible configurations of sites that satisfy the percolation condition. The generalized molecular crystal model, appropriate for the study of small-polaron hopping transport in disordered systems, and the Kubo formula permit the evaluation of these impedances. Taking correlations into account, theoretical percolation considerations applicable to one-dimensional and three-dimensional disordered systems, lead to analytical expressions for the temperature and electric field dependence of the DC conductivity at high (multi-phonon-assisted hopping) and low (few-phonon-assisted hopping) temperatures. The theoretical analysis reveals the effect of correlations on the non-ohmic behavior of the small-polaron hopping conductivity and permits the evaluation of the maximum hopping distance. Quantitative estimates of this effect are presented comparing the theoretical results, including correlations with those ignoring them, previously reported, applying them to recent experimental data for a wide temperature range and from low up to moderate electric fields.

  1. Tailorable Surface Morphology of 3D Scaffolds by Combining Additive Manufacturing with Thermally Induced Phase Separation.

    Science.gov (United States)

    Di Luca, Andrea; de Wijn, Joost R; van Blitterswijk, Clemens A; Camarero-Espinosa, Sandra; Moroni, Lorenzo

    2017-08-01

    The functionalization of biomaterials substrates used for cell culture is gearing towards an increasing control over cell activity. Although a number of biomaterials have been successfully modified by different strategies to display tailored physical and chemical surface properties, it is still challenging to step from 2D substrates to 3D scaffolds with instructive surface properties for cell culture and tissue regeneration. In this study, additive manufacturing and thermally induced phase separation are combined to create 3D scaffolds with tunable surface morphology from polymer gels. Surface features vary depending on the gel concentration, the exchanging temperature, and the nonsolvent used. When preosteoblasts (MC-3T3 cells) are cultured on these scaffolds, a significant increase in alkaline phosphatase activity is measured for submicron surface topography, suggesting a potential role on early cell differentiation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Apply 3D model on the customized product color combination for the interior decoration

    Science.gov (United States)

    Chen, Cheih-Ying

    2013-03-01

    The customized product color interface for the interior decoration is designed to simulate the display of various color combination sofas in the interior of the room. There are 144 color combinations of the spatial image resulted from four the interior rooms and 36 popular color sofas. The image compositing technique is adopted to appear the 144 color combinations of the spatial image on computer screen. This study tests the experience of using the interface by the questionnaire for User Interface Satisfaction (QUIS). The results show that the high grade of evaluation items including wonderful, easy, satisfying, stimulating and flexible for the experience of users. Therefore, the entrepreneur who wants to display the color primarily commodity could using the customized color combination interface with 3D models for consumers to take opportunity to find the appropriate products to meet with the interior room, so as to shorten communication time between entrepreneurs and consumers.

  3. Combination of photogrammetric and geoelectric methods to assess 3d structures associated to natural hazards

    Science.gov (United States)

    Fargier, Yannick; Dore, Ludovic; Antoine, Raphael; Palma Lopes, Sérgio; Fauchard, Cyrille

    2016-04-01

    The extraction of subsurface materials is a key element for the economy of a nation. However, natural degradation of underground quarries is a major issue from an economic and public safety point of view. Consequently, the quarries stakeholders require relevant tools to define hazards associated to these structures. Safety assessment methods of underground quarries are recent and mainly based on rock physical properties. This kind of method leads to a certain homogeneity assumption of pillar internal properties that can cause an underestimation of the risk. Electrical Resistivity Imaging (ERI) is a widely used method that possesses two advantages to overcome this limitation. The first is to provide a qualitative understanding for the detection and monitoring of anomalies in the pillar body (e.g. faults). The second is to provide a quantitative description of the electrical resistivity distribution inside the pillar. This quantitative description can be interpreted with constitutive laws to help decision support (water content decreases the mechanical resistance of a chalk). However, conventional 2D and 3D Imaging techniques are usually applied to flat surface surveys or to surfaces with moderate topography. A 3D inversion of more complex media (case of the pillar) requires a full consideration of the geometry that was never taken into account before. The Photogrammetric technique presents a cost effective solution to obtain an accurate description of the external geometry of a complex media. However, this method has never been fully coupled with a geophysical method to enhance/improve the inversion process. Consequently we developed a complete procedure showing that photogrammetric and ERI tools can be efficiently combined to assess a complex 3D structure. This procedure includes in a first part a photogrammetric survey, a processing stage with an open source software and a post-processing stage finalizing a 3D surface model. The second part necessitates the

  4. Combining ESPI with laser scanning for 3D characterization of racing tyres sections

    Science.gov (United States)

    Pagliarulo, Vito; Farroni, Flavio; Ferraro, Pietro; Lanzotti, Antonio; Martorelli, Massimo; Memmolo, Pasquale; Speranza, Domenico; Timpone, Francesco

    2018-05-01

    In this work is exploited the possibility to use two optical techniques and combining their measurements for the 3D characterization of different tyres with particular attention to the tyre's section. Electronic Speckle Pattern Interferometry (ESPI) and Laser Scanner (LS) based on principle of triangulation have been employed for investigating and studying the tyre's section and 3D shape respectively. As case studies two different racing tyres, Michelin S9H and Pirelli Diablo respectively, have been considered. The investigation has been focused at the aim to evaluate and measure the section's components in order to add to the 3D model obtained by Laser Scanning accurate information about the different layers along through the tyres sections. It is important to note that the assessment about the different layers along the section is a very difficult task to obtain by visual inspection or classical microscopy and even with the LS. Here we demonstrate that the different layers can be easily highlighted and identified by mean of the ESPI.

  5. Performance analysis of decode-and-forward dual-hop optical spatial modulation with diversity combiner over atmospheric turbulence

    Science.gov (United States)

    Odeyemi, Kehinde O.; Owolawi, Pius A.; Srivastava, Viranjay M.

    2017-11-01

    Dual-hops transmission is a growing interest technique that can be used to mitigate against atmospheric turbulence along the Free Space Optical (FSO) communication links. This paper analyzes the performance of Decode-and-Forward (DF) dual-hops FSO systems in-conjunction with spatial modulation and diversity combiners over a Gamma-Gamma atmospheric turbulence channel using heterodyne detection. Maximum Ratio Combiner (MRC), Equal Gain Combiner (EGC) and Selection Combiner (SC) are considered at the relay and destination as mitigation tools to improve the system error performance. Power series expansion of modified Bessel function is used to derive the closed form expression for the end-to-end Average Pairwise Error Probability (APEP) expressions for each of the combiners under study and a tight upper bound on the Average Bit Error Rate (ABER) per hop is given. Thus, the overall end-to-end ABER for the dual-hops FSO system is then evaluated. The numerical results depicted that dual-hops transmission systems outperformed the direct link systems. Moreover, the impact of having the same and different combiners at the relay and destination are also presented. The results also confirm that the combination of dual hops transmission with spatial modulation and diversity combiner significantly improves the systems error rate with the MRC combiner offering an optimal performance with respect to variation in atmospheric turbulence, change in links average received SNR and link range of the system.

  6. Combining heterogenous features for 3D hand-held object recognition

    Science.gov (United States)

    Lv, Xiong; Wang, Shuang; Li, Xiangyang; Jiang, Shuqiang

    2014-10-01

    Object recognition has wide applications in the area of human-machine interaction and multimedia retrieval. However, due to the problem of visual polysemous and concept polymorphism, it is still a great challenge to obtain reliable recognition result for the 2D images. Recently, with the emergence and easy availability of RGB-D equipment such as Kinect, this challenge could be relieved because the depth channel could bring more information. A very special and important case of object recognition is hand-held object recognition, as hand is a straight and natural way for both human-human interaction and human-machine interaction. In this paper, we study the problem of 3D object recognition by combining heterogenous features with different modalities and extraction techniques. For hand-craft feature, although it reserves the low-level information such as shape and color, it has shown weakness in representing hiconvolutionalgh-level semantic information compared with the automatic learned feature, especially deep feature. Deep feature has shown its great advantages in large scale dataset recognition but is not always robust to rotation or scale variance compared with hand-craft feature. In this paper, we propose a method to combine hand-craft point cloud features and deep learned features in RGB and depth channle. First, hand-held object segmentation is implemented by using depth cues and human skeleton information. Second, we combine the extracted hetegerogenous 3D features in different stages using linear concatenation and multiple kernel learning (MKL). Then a training model is used to recognize 3D handheld objects. Experimental results validate the effectiveness and gerneralization ability of the proposed method.

  7. RECONSTRUCTION OF 3D VECTOR MODELS OF BUILDINGS BY COMBINATION OF ALS, TLS AND VLS DATA

    Directory of Open Access Journals (Sweden)

    H. Boulaassal

    2012-09-01

    Full Text Available Airborne Laser Scanning (ALS, Terrestrial Laser Scanning (TLS and Vehicle based Laser Scanning (VLS are widely used as data acquisition methods for 3D building modelling. ALS data is often used to generate, among others, roof models. TLS data has proven its effectiveness in the geometric reconstruction of building façades. Although the operating algorithms used in the processing chain of these two kinds of data are quite similar, their combination should be more investigated. This study explores the possibility of combining ALS and TLS data for simultaneously producing 3D building models from bird point of view and pedestrian point of view. The geometric accuracy of roofs and façades models is different due to the acquisition techniques. In order to take these differences into account, the surfaces composing roofs and façades are extracted with the same algorithm of segmentation. Nevertheless the segmentation algorithm must be adapted to the properties of the different point clouds. It is based on the RANSAC algorithm, but has been applied in a sequential way in order to extract all potential planar clusters from airborne and terrestrial datasets. Surfaces are fitted to planar clusters, allowing edge detection and reconstruction of vector polygons. Models resulting from TLS data are obviously more accurate than those generated from ALS data. Therefore, the geometry of the roofs is corrected and adapted according to the geometry of the corresponding façades. Finally, the effects of the differences between raw ALS and TLS data on the results of the modeling process are analyzed. It is shown that such combination could be used to produce reliable 3D building models.

  8. Optimal combination of illusory and luminance-defined 3-D surfaces: A role for ambiguity.

    Science.gov (United States)

    Hartle, Brittney; Wilcox, Laurie M; Murray, Richard F

    2018-04-01

    The shape of the illusory surface in stereoscopic Kanizsa figures is determined by the interpolation of depth from the luminance edges of adjacent inducing elements. Despite ambiguity in the position of illusory boundaries, observers reliably perceive a coherent three-dimensional (3-D) surface. However, this ambiguity may contribute additional uncertainty to the depth percept beyond what is expected from measurement noise alone. We evaluated the intrinsic ambiguity of illusory boundaries by using a cue-combination paradigm to measure the reliability of depth percepts elicited by stereoscopic illusory surfaces. We assessed the accuracy and precision of depth percepts using 3-D Kanizsa figures relative to luminance-defined surfaces. The location of the surface peak was defined by illusory boundaries, luminance-defined edges, or both. Accuracy and precision were assessed using a depth-discrimination paradigm. A maximum likelihood linear cue combination model was used to evaluate the relative contribution of illusory and luminance-defined signals to the perceived depth of the combined surface. Our analysis showed that the standard deviation of depth estimates was consistent with an optimal cue combination model, but the points of subjective equality indicated that observers consistently underweighted the contribution of illusory boundaries. This systematic underweighting may reflect a combination rule that attributes additional intrinsic ambiguity to the location of the illusory boundary. Although previous studies show that illusory and luminance-defined contours share many perceptual similarities, our model suggests that ambiguity plays a larger role in the perceptual representation of illusory contours than of luminance-defined contours.

  9. One-shot 3D scanning by combining sparse landmarks with dense gradient information

    Science.gov (United States)

    Di Martino, Matías; Flores, Jorge; Ferrari, José A.

    2018-06-01

    Scene understanding is one of the most challenging and popular problems in the field of robotics and computer vision and the estimation of 3D information is at the core of most of these applications. In order to retrieve the 3D structure of a test surface we propose a single shot approach that combines dense gradient information with sparse absolute measurements. To that end, we designed a colored pattern that codes fine horizontal and vertical fringes, with sparse corners landmarks. By measuring the deformation (bending) of horizontal and vertical fringes, we are able to estimate surface local variations (i.e. its gradient field). Then corner sparse landmarks are detected and matched to infer spare absolute information about the test surface height. Local gradient information is combined with the sparse absolute values which work as anchors to guide the integration process. We show that this can be mathematically done in a very compact and intuitive way by properly defining a Poisson-like partial differential equation. Then we address in detail how the problem can be formulated in a discrete domain and how it can be practically solved by straight forward linear numerical solvers. Finally, validation experiment are presented.

  10. Welding distortion analysis of multipass joint combination with different sequences using 3D FEM and experiment

    International Nuclear Information System (INIS)

    Manurung, Yupiter H.P.; Lidam, Robert Ngendang; Rahim, M. Ridzwan; Zakaria, M. Yusof; Redza, M. Ridhwan; Sulaiman, M. Shahar; Tham, Ghalib; Abas, Sunhaji K.

    2013-01-01

    This paper presents an investigation of the welding sequence effect on induced angular distortion using FEM and experiments. The specimen of a combined joint geometry was modeled and simulated using Multipass Welding Advisor (MWA) in SYSWELD 2010 based on the thermal-elastic-plastic approach with low manganese carbon steel S3355J2G3 as specimen material and Goldak's double ellipsoid as heat source model. To validate the simulation results, a series of experiments was conducted with two different welding sequences using automated welding process, low carbon steel as parent metal, digital GMAW power source with premixed shielding gas and both-sided clamping technique. Based on the results, it was established that the thermo-elastic-plastic 3D FEM analysis shows good agreement with experimental results and the welding sequence “from outside to inside” induced less angular distortion compared to “from inside to outside”. -- Highlights: • 3D FEM was used to analyze the welding distortion on two different sequences. • Simulation results were validated with experiments using automated welding system. • Simulation results and experiments showed acceptable accuracy. • Welding sequence “outside–inside” showed less distortion than “inside–outside”

  11. Fabrication of Capacitive Acoustic Resonators Combining 3D Printing and 2D Inkjet Printing Techniques

    Directory of Open Access Journals (Sweden)

    Rubaiyet Iftekharul Haque

    2015-10-01

    Full Text Available A capacitive acoustic resonator developed by combining three-dimensional (3D printing and two-dimensional (2D printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency.

  12. Triple-Layer Vascular Grafts Fabricated by Combined E-Jet 3D Printing and Electrospinning.

    Science.gov (United States)

    Huang, Ruiying; Gao, Xiangkai; Wang, Jian; Chen, Haoxiang; Tong, Chunyi; Tan, Yongjun; Tan, Zhikai

    2018-05-29

    Small-diameter tissue-engineered vascular grafts are urgently needed for clinic arterial substitute. To simulate the structures and functions of natural blood vessels, we designed a novel triple-layer poly(ε-caprolactone) (PCL) fibrous vascular graft by combining E-jet 3D printing and electrospinning techniques. The resultant vascular graft consisted of an interior layer comprising 3D-printed highly aligned strong fibers, a middle layer made by electrospun densely fibers, and an exterior structure composed of mixed fibers fabricated by co-electrospraying. The biocompatible triple-layer graft was used for in vivo implantation, and results demonstrated that the longitudinally-aligned fibers within the lumen of the graft could enhance the proliferation and migration of endothelial cells, while maintained good mechanical properties. The exterior layer provided a pathway that encouraged cells to migrate into the scaffold after implantation. This experimental graft overcame the limitations of conventionally electrospun vascular grafts of inadequate porosity and lowly cell penetration. The unique structure of the triple-layer vascular graft promoted cell growth and infiltration in vivo, thus provided an encouraging substitute for in situ tissue engineering.

  13. Combining 3D printed forms with textile structures - mechanical and geometrical properties of multi-material systems

    International Nuclear Information System (INIS)

    Sabantina, L; Kinzel, F; Ehrmann, A; Finsterbusch, K

    2015-01-01

    The 3D printing belongs to the rapidly emerging technologies which have the chance to revolutionize the way products are created. In the textile industry, several designers have already presented creations of shoes, dresses or other garments which could not be produced with common techniques. 3D printing, however, is still far away from being a usual process in textile and clothing production. The main challenge results from the insufficient mechanical properties, especially the low tensile strength, of pure 3D printed products, prohibiting them from replacing common technologies such as weaving or knitting. Thus, one way to the application of 3D printed forms in garments is combining them with textile fabrics, the latter ensuring the necessary tensile strength. This article reports about different approaches to combine 3D printed polymers with different textile materials and fabrics, showing chances and limits of this technique. (paper)

  14. High sensitivity and high resolution element 3D analysis by a combined SIMS–SPM instrument

    Directory of Open Access Journals (Sweden)

    Yves Fleming

    2015-04-01

    Full Text Available Using the recently developed SIMS–SPM prototype, secondary ion mass spectrometry (SIMS data was combined with topographical data from the scanning probe microscopy (SPM module for five test structures in order to obtain accurate chemical 3D maps: a polystyrene/polyvinylpyrrolidone (PS/PVP polymer blend, a nickel-based super-alloy, a titanium carbonitride-based cermet, a reticle test structure and Mg(OH2 nanoclusters incorporated inside a polymer matrix. The examples illustrate the potential of this combined approach to track and eliminate artefacts related to inhomogeneities of the sputter rates (caused by samples containing various materials, different phases or having a non-flat surface and inhomogeneities of the secondary ion extraction efficiencies due to local field distortions (caused by topography with high aspect ratios. In this respect, this paper presents the measured relative sputter rates between PVP and PS as well as in between the different phases of the TiCN cermet.

  15. 3D ultrasound-CT registration of the liver using combined landmark-intensity information

    International Nuclear Information System (INIS)

    Lange, Thomas; Schlag, Peter M.; Papenberg, Nils; Heldmann, Stefan; Modersitzki, Jan; Fischer, Bernd; Lamecker, Hans

    2009-01-01

    An important issue in computer-assisted surgery of the liver is a fast and reliable transfer of preoperative resection plans to the intraoperative situation. One problem is to match the planning data, derived from preoperative CT or MR images, with 3D ultrasound images of the liver, acquired during surgery. As the liver deforms significantly in the intraoperative situation non-rigid registration is necessary. This is a particularly challenging task because pre- and intraoperative image data stem from different modalities and ultrasound images are generally very noisy. One way to overcome these problems is to incorporate prior knowledge into the registration process. We propose a method of combining anatomical landmark information with a fast non-parametric intensity registration approach. Mathematically, this leads to a constrained optimization problem. As distance measure we use the normalized gradient field which allows for multimodal image registration. A qualitative and quantitative validation on clinical liver data sets of three different patients has been performed. We used the distance of dense corresponding points on vessel center lines for quantitative validation. The combined landmark and intensity approach improves the mean and percentage of point distances above 3 mm compared to rigid and thin-plate spline registration based only on landmarks. The proposed algorithm offers the possibility to incorporate additional a priori knowledge - in terms of few landmarks - provided by a human expert into a non-rigid registration process. (orig.)

  16. Automatic registration of optical imagery with 3d lidar data using local combined mutual information

    Directory of Open Access Journals (Sweden)

    E. G. Parmehr

    2013-10-01

    Full Text Available Automatic registration of multi-sensor data is a basic step in data fusion for photogrammetric and remote sensing applications. The effectiveness of intensity-based methods such as Mutual Information (MI for automated registration of multi-sensor image has been previously reported for medical and remote sensing applications. In this paper, a new multivariable MI approach that exploits complementary information of inherently registered LiDAR DSM and intensity data to improve the robustness of registering optical imagery and LiDAR point cloud, is presented. LiDAR DSM and intensity information has been utilised in measuring the similarity of LiDAR and optical imagery via the Combined MI. An effective histogramming technique is adopted to facilitate estimation of a 3D probability density function (pdf. In addition, a local similarity measure is introduced to decrease the complexity of optimisation at higher dimensions and computation cost. Therefore, the reliability of registration is improved due to the use of redundant observations of similarity. The performance of the proposed method for registration of satellite and aerial images with LiDAR data in urban and rural areas is experimentally evaluated and the results obtained are discussed.

  17. Combining Front Vehicle Detection with 3D Pose Estimation for a Better Driver Assistance

    Directory of Open Access Journals (Sweden)

    Yu Peng

    2012-09-01

    Full Text Available Driver assistant systems enhance traffic safety and efficiency. The accurate 3D pose of a front vehicle can help a driver to make the right decision on the road. We propose a novel real-time system to estimate the 3D pose of the front vehicle. This system consists of two parallel threads: vehicle rear tracking and mapping. The vehicle rear is first identified in the video captured by an onboard camera, after license plate localization and foreground extraction. The 3D pose estimation technique is then employed with respect to the extracted vehicle rear. Most current 3D pose estimation techniques need prior models or a stereo initialization with user cooperation. It is extremely difficult to obtain prior models due to the varying appearance of vehicles' rears. Moreover, it is unsafe to ask for drivers' cooperation when a vehicle is running. In our system, two initial keyframes for stereo algorithms are automatically extracted by vehicle rear detection and tracking. Map points are defined as a collection of point features extracted from the vehicle's rear with their 3D information. These map points are inferences that relate the 2D features detected in following vehicles' rears with the 3D world. The relative 3D pose of the onboard camera to the front vehicle rear is then estimated through matching the map points with point features detected on the front vehicle rear. We demonstrate the capabilities of our system by testing on real-time and synthesized videos. In order to make the experimental analysis visible, we demonstrated an estimated 3D pose through augmented reality, which needs accurate and real-time 3D pose estimation.

  18. Combined Sector and Channel Hopping Schemes for Efficient Rendezvous in Directional Antenna Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    AbdulMajid M. Al-Mqdashi

    2017-01-01

    Full Text Available Rendezvous is a prerequisite and important process for secondary users (SUs to establish data communications in cognitive radio networks (CRNs. Recently, there has been a proliferation of different channel hopping- (CH- based schemes that can provide rendezvous without relying on any predetermined common control channel. However, the existing CH schemes were designed with omnidirectional antennas which can degrade their rendezvous performance when applied in CRNs that are highly crowded with primary users (PUs. In such networks, the large number of PUs may lead to the inexistence of any common available channel between neighboring SUs which result in a failure of their rendezvous process. In this paper, we consider the utilization of directional antennas in CRNs for tackling the issue. Firstly, we propose two coprimality-based sector hopping (SH schemes that can provide efficient pairwise sector rendezvous in directional antenna CRNs (DIR-CRNs. Then, we propose an efficient CH scheme that can be combined within the SH schemes for providing a simultaneous sector and channel rendezvous. The guaranteed rendezvous of our schemes are proven by deriving the theoretical upper bounds of their rendezvous delay metrics. Furthermore, extensive simulation comparisons with other related rendezvous schemes are conducted to illustrate the significant outperformance of our schemes.

  19. H-Ransac a Hybrid Point Cloud Segmentation Combining 2d and 3d Data

    Science.gov (United States)

    Adam, A.; Chatzilari, E.; Nikolopoulos, S.; Kompatsiaris, I.

    2018-05-01

    In this paper, we present a novel 3D segmentation approach operating on point clouds generated from overlapping images. The aim of the proposed hybrid approach is to effectively segment co-planar objects, by leveraging the structural information originating from the 3D point cloud and the visual information from the 2D images, without resorting to learning based procedures. More specifically, the proposed hybrid approach, H-RANSAC, is an extension of the well-known RANSAC plane-fitting algorithm, incorporating an additional consistency criterion based on the results of 2D segmentation. Our expectation that the integration of 2D data into 3D segmentation will achieve more accurate results, is validated experimentally in the domain of 3D city models. Results show that HRANSAC can successfully delineate building components like main facades and windows, and provide more accurate segmentation results compared to the typical RANSAC plane-fitting algorithm.

  20. Heavy Metal Ion Removal and Wastewater Treatment by Combined Magnetic Particle and 3-D Electrochemical Technology

    National Research Council Canada - National Science Library

    Beltran, Michael

    1996-01-01

    .... Theoretical and experimental investigations performed in Phase I showed the feasibility of purification of wastewaters from Cr, Ni, and Cd by means of 3-D electrolysis with a cathode of carbon felt...

  1. Three-dimensional (3D)- computed tomography bronchography and angiography combined with 3D-video-assisted thoracic surgery (VATS) versus conventional 2D-VATS anatomic pulmonary segmentectomy for the treatment of non-small cell lung cancer.

    Science.gov (United States)

    She, Xiao-Wei; Gu, Yun-Bin; Xu, Chun; Li, Chang; Ding, Cheng; Chen, Jun; Zhao, Jun

    2018-02-01

    Compared to the pulmonary lobe, the anatomical structure of the pulmonary segment is relatively complex and prone to variation, thus the risk and difficulty of segmentectomy is increased. We compared three-dimensional computed tomography bronchography and angiography (3D-CTBA) combined with 3D video-assisted thoracic surgery (3D-VATS) to perform segmentectomy to conventional two-dimensional (2D)-VATS for the treatment of non-small cell lung cancer (NSCLC). We retrospectively reviewed the data of randomly selected patients who underwent 3D-CTBA combined with 3D-VATS (3D-CTBA-VATS) or 2D-VATS at the Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University Hospital, from January 2014 to May 2017. The operative duration of 3D group was significantly shorter than the 2D group (P 0.05). The extent of intraoperative bleeding and postoperative drainage in the 3D group was significantly lower than in the 2D group (P 3D group was shorter than in the 2D group (P 0.05). However, hemoptysis and pulmonary air leakage (>3d) occurred significantly less frequently in the 3D than in the 2D group (P 3D-CTBA-VATS is a more accurate and smooth technique and leads to reduced intraoperative and postoperative complications. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  2. Efficient and reliable 3D dose quality assurance for IMRT by combining independent dose calculations with measurements

    NARCIS (Netherlands)

    Visser, R.; Wauben, D. J. L.; de Groot, M.; Godart, J.; Langendijk, J. A.; van t Veld, Aart A.; Korevaar, E. W.

    Purpose: Advanced radiotherapy treatments require appropriate quality assurance (QA) to verify 3D dose distributions. Moreover, increase in patient numbers demand efficient QA-methods. In this study, a time efficient method that combines model-based QA and measurement-based QA was developed; i.e.,

  3. Combination of SANS and 3D stochastic reconstruction techniques for the study of nanostructured materials

    CERN Document Server

    Kikkinides, E S; Steriotis, T A; Kanellopoulos, N K; Mitropoulos, A C; Treimer, W

    2002-01-01

    Ceramic nanostructured materials have recently received scientific and industrial interest due to their unique properties. A series of such nanoporous structures were characterised by SANS techniques. The resulting scattering curves were analysed to obtain basic structural information regarding the pore size distribution and autocorrelation function of each material. Furthermore, stochastic reconstruction models were employed to generate 3D images with the same basic structural characteristics obtained from SANS. Finally, simulation results of permeation on the reconstructed images provide very good agreement with experimental data. (orig.)

  4. Low-Complexity Combining Schemes in Dual-Hop AF Relaying Systems

    KAUST Repository

    Gaaloul, Fakhreddine

    2011-07-18

    This paper investigates the performance of different low-complexity combining schemes in the context of dual-hop amplify-and-forward (AF) relaying networks. It is assumed that the relay uses single transmit (receive) antenna due to space limitation and to reduce the processing complexity. On the other hand, the transmitter and the receiver use antenna arrays to improve the overall diversity gain. However, this gain is achieved at the expense of increased processing complexity and power consumption. To this end, some combining schemes aiming at reducing the processing complexity and decreasing the number of active receive channels are investigated. Through the analysis, new formulas for the end-to-end signal-to-noise ratio (SNR) statistics in slowly varying and frequency flat Rayleigh fading channels are derived, which are then used to present some performance measures. Numerical and simulation results are presented to clarify the trade-off between the achieved diversity gain and the receive processing complexity. © 2011 IEEE.

  5. Structured Light Based 3d Scanning for Specular Surface by the Combination of Gray Code and Phase Shifting

    Science.gov (United States)

    Zhang, Yujia; Yilmaz, Alper

    2016-06-01

    Surface reconstruction using coded structured light is considered one of the most reliable techniques for high-quality 3D scanning. With a calibrated projector-camera stereo system, a light pattern is projected onto the scene and imaged by the camera. Correspondences between projected and recovered patterns are computed in the decoding process, which is used to generate 3D point cloud of the surface. However, the indirect illumination effects on the surface, such as subsurface scattering and interreflections, will raise the difficulties in reconstruction. In this paper, we apply maximum min-SW gray code to reduce the indirect illumination effects of the specular surface. We also analysis the errors when comparing the maximum min-SW gray code and the conventional gray code, which justifies that the maximum min-SW gray code has significant superiority to reduce the indirect illumination effects. To achieve sub-pixel accuracy, we project high frequency sinusoidal patterns onto the scene simultaneously. But for specular surface, the high frequency patterns are susceptible to decoding errors. Incorrect decoding of high frequency patterns will result in a loss of depth resolution. Our method to resolve this problem is combining the low frequency maximum min-SW gray code and the high frequency phase shifting code, which achieves dense 3D reconstruction for specular surface. Our contributions include: (i) A complete setup of the structured light based 3D scanning system; (ii) A novel combination technique of the maximum min-SW gray code and phase shifting code. First, phase shifting decoding with sub-pixel accuracy. Then, the maximum min-SW gray code is used to resolve the ambiguity resolution. According to the experimental results and data analysis, our structured light based 3D scanning system enables high quality dense reconstruction of scenes with a small number of images. Qualitative and quantitative comparisons are performed to extract the advantages of our new

  6. Patellofemoral joint dysfunction. Combined diagnostic imaging evaluation (X-rays, 3D helical CT and MRI)

    International Nuclear Information System (INIS)

    Carrascosa, P.; Sanchez, F.; Mazzucco, J.; Capanay, C.; Carrascosa, J.

    2000-01-01

    The comprehensive study including 3D helical CT, Magnetic Resonance (MR) and X-ray exams provide a more complete diagnosis than those obtained through the conventional CT. We studied 43 patients with presumptive or certain diagnosis of patellofemoral instability. All the patients were studied by: a) Radiological pair; b) Tomography under extension and flexion, without and with contraction, using a helical CT equipment; and c) MRI STIR sequence in axial plane. The findings were classified as muscular lesion, cartilage lesion, bone and associated lesions (e.g. synovitis), statistically comparing both studies (comprehensive vs. conventional). The results allow us to accept the hypothesis that the comprehensive study provides a more complete diagnosis about the origin of the patellofemoral dysfunction. In 65% of the patients, the conventional study gave a negative result. Only in 35% of the cases the result was positive, but incomplete, showing only 35.3% of the pathological findings detected by the comprehensive study. (author)

  7. The Combination of Spherical Photogrammetry and UAV for 3D Modeling

    Science.gov (United States)

    Ihsanudin, T.; Affriani, A. R.

    2017-12-01

    The complete of 3D models required the object that was recorded from both side and top. If the object recorded from above, then the object from the side can not be covered, and if the objects recorded from the side, it can not be covered from the top. Recording of objects from the side using spherical photogrammetry method and from the top using UAV method. The merge of both models using a conform transformation, by bringing the spherical photogrammetry coordinates system to the UAV model. The object of this research is Ratu Boko temple, Sleman, Yogyakarta. The spherical photogrammetry recording was performed by rotating the camera in 360° angle on the entire area of the temple. The area consists of 12 stations. The UAV method uses a drone with flight attitude of 20 meters. The merge of the both models produced the completeness of the temple model from the top and side.

  8. Hydrocarbon Seeps Formations: a Study Using 3-D Seismic Attributes in Combination with Satellite Data

    Science.gov (United States)

    Garcia-Pineda, O. G.; MacDonald, I. R.; Shedd, W.

    2011-12-01

    Analyzing the magnitude of oil discharges from natural hydrocarbon seeps is important in improving our understanding of carbon contribution as oil migrates from deeper sediments to the water column, and then eventually to the atmosphere. Liquid hydrocarbon seepage in the deep water of the Gulf of Mexico (GOM) is associated with deep cutting faults, associated with vertical salt movement, that provide conduits for the upward migration of oil and gas. Seeps transform surface geology and generate prominent geophysical targets that can be identified on 3-D seismic data as seafloor amplitude anomalies maps that correlate with the underlying deep fault systems. Using 3D seismic data, detailed mapping of the northern GOM has identified more than 21,000 geophysical anomalies across the basin. In addition to seismic data, Synthetic Aperture Radar (SAR) images have proven to be a reliable tool for localizing natural seepage of oil. We used a Texture Classifier Neural Network Algorithm (TCNNA) to process more than 1200 SAR images collected over the GOM. We quantified more than 900 individual seep formations distributed along the continental shelf and in deep water. Comparison of the geophysical anomalies with the SAR oil slick targets shows good general agreement between the distributions of the two indicators. However, there are far fewer active oil slicks than geophysical anomalies, most of which are probably associated with gas seepage. By examining several sites where the location of active venting can be determined by submersibles observations, we found that the active oily vents are often spatially offset from the most intense geophysical targets (i.e. GC600, GC767, GC204, etc). In addition to the displacement of the oil by deep sea currents, we propose that during the 100K years of activity, the location of the vents on the seafloor probably migrate as carbonate cementation reduces the permeability of the upper sediment. Many of the geophysical targets may represent

  9. HOP: Achieving Efficient Anonymity in MANETs by Combining HIP, OLSR, and Pseudonyms

    Directory of Open Access Journals (Sweden)

    Campos Javier

    2011-01-01

    Full Text Available Offering secure and anonymous communications in mobile ad hoc networking environments is essential to achieve confidence and privacy, thus promoting widespread adoption of this kind of networks. In addition, some minimum performance levels must be achieved for any solution to be practical and become widely adopted. In this paper, we propose and implement HOP, a novel solution based on cryptographic Host Identity Protocol (HIP that offers security and user-level anonymity in MANET environments while maintaining good performance levels. In particular, we introduce enhancements to the authentication process to achieve Host Identity Tag (HIT relationship anonymity, along with source/destination HIT anonymity when combined with multihoming. Afterward we detail how we integrate our improved version of HIP with the OLSR routing protocol to achieve efficient support for pseudonyms. We implemented our proposal in an experimental testbed, and the results obtained show that performance levels achieved are quite good, and that the integration with OLSR is achieved with a low overhead.

  10. Simultaneous acquisition of 3D shape and deformation by combination of interferometric and correlation-based laser speckle metrology.

    Science.gov (United States)

    Dekiff, Markus; Berssenbrügge, Philipp; Kemper, Björn; Denz, Cornelia; Dirksen, Dieter

    2015-12-01

    A metrology system combining three laser speckle measurement techniques for simultaneous determination of 3D shape and micro- and macroscopic deformations is presented. While microscopic deformations are determined by a combination of Digital Holographic Interferometry (DHI) and Digital Speckle Photography (DSP), macroscopic 3D shape, position and deformation are retrieved by photogrammetry based on digital image correlation of a projected laser speckle pattern. The photogrammetrically obtained data extend the measurement range of the DHI-DSP system and also increase the accuracy of the calculation of the sensitivity vector. Furthermore, a precise assignment of microscopic displacements to the object's macroscopic shape for enhanced visualization is achieved. The approach allows for fast measurements with a simple setup. Key parameters of the system are optimized, and its precision and measurement range are demonstrated. As application examples, the deformation of a mandible model and the shrinkage of dental impression material are measured.

  11. Is 3D MPRAGE better than the combination DIR/PSIR for cortical lesion detection at 3T MRI?

    Science.gov (United States)

    Nelson, Flavia; Poonawalla, Aziz; Datta, Sushmita; Wolinsky, Jerry; Narayana, Ponnada

    2014-03-01

    Based on the application of newer magnetic resonance imaging (MRI) acquisition sequences, the detection of cortical lesions (CL) in multiple sclerosis (MS) has significantly improved. Double inversion recovery (DIR) at 3T has increased the detection sensitivity and classification specificity when combined with phase sensitive inversion recovery (PSIR). Previous findings with 3D magnetization prepared rapid acquisition with gradient echo (MPRAGE) sequences, showed improved classification specificity of purely intracortical (IC) and mixed (MX) lesions, compared to the classification based on DIR/PSIR. Direct comparison between the detection of CL by 3D MPRAGE and by DIR/PSIR at 3T has not been evaluated. Eleven subjects were imaged on a 3T magnet. DIR/PSIR and 3D MPRAGE images were reviewed independently. Each image set was reviewed twice; only lesions detected on both sessions were scored. Review time per scan was ~5min for DIR/PSIR and ~15min for 3D MPRAGE. We identified 141 CL (62 IC+79 MX) based on DIR/PSIR images vs. 93 (38 IC+55 MX) based on MPRAGE from all eleven patients. MPRAGE under-detected the number of CL in seven cases and over-detected the number of CL in three, only one case had the same number of CL on both sets of images. Combination DIR/PSIR at 3T is superior to 3D MPRAGE for detection of cortical gray matter lesions in MS. The contrast-to-noise ratio of CL appears to be inferior on the MPRAGE images relative to DIR/PSIR. © 2013 Published by Elsevier B.V.

  12. Combining radar systems to get a 3D - picture of the bird migration

    NARCIS (Netherlands)

    Liechti, F.; Dokter, A.; Shamoun, J.; van Gasteren, H.; Holleman, I.

    2008-01-01

    For military training flights bird strikes en route are still a severe problem. To reduce collisions an international project has been launched by the European Space agency (ESA), aiming 1) for a compilation of information on current bird movements by various sensors, 2) to combine them in a single

  13. Contactless and absolute linear displacement detection based upon 3D printed magnets combined with passive radio-frequency identification

    Science.gov (United States)

    Windl, Roman; Abert, Claas; Bruckner, Florian; Huber, Christian; Vogler, Christoph; Weitensfelder, Herbert; Suess, Dieter

    2017-11-01

    Within this work a passive and wireless magnetic sensor, to monitor linear displacements, is proposed. We exploit recent advances in 3D printing and fabricate a polymer bonded magnet with a spatially linear magnetic field component corresponding to the length of the magnet. Regulating the magnetic compound fraction during printing allows specific shaping of the magnetic field distribution. A giant magnetoresistance magnetic field sensor is combined with a radio-frequency identification tag in order to passively monitor the exerted magnetic field of the printed magnet. Due to the tailored magnetic field, a displacement of the magnet with respect to the sensor can be detected within the sub-mm regime. The sensor design provides good flexibility by controlling the 3D printing process according to application needs. Absolute displacement detection using low cost components and providing passive operation, long term stability, and longevity renders the proposed sensor system ideal for structural health monitoring applications.

  14. Contactless and absolute linear displacement detection based upon 3D printed magnets combined with passive radio-frequency identification

    Directory of Open Access Journals (Sweden)

    Roman Windl

    2017-11-01

    Full Text Available Within this work a passive and wireless magnetic sensor, to monitor linear displacements, is proposed. We exploit recent advances in 3D printing and fabricate a polymer bonded magnet with a spatially linear magnetic field component corresponding to the length of the magnet. Regulating the magnetic compound fraction during printing allows specific shaping of the magnetic field distribution. A giant magnetoresistance magnetic field sensor is combined with a radio-frequency identification tag in order to passively monitor the exerted magnetic field of the printed magnet. Due to the tailored magnetic field, a displacement of the magnet with respect to the sensor can be detected within the sub-mm regime. The sensor design provides good flexibility by controlling the 3D printing process according to application needs. Absolute displacement detection using low cost components and providing passive operation, long term stability, and longevity renders the proposed sensor system ideal for structural health monitoring applications.

  15. Combining a wavelet transform with a channelized Hotelling observer for tumor detection in 3D PET oncology imaging

    Science.gov (United States)

    Lartizien, Carole; Tomei, Sandrine; Maxim, Voichita; Odet, Christophe

    2007-03-01

    This study evaluates new observer models for 3D whole-body Positron Emission Tomography (PET) imaging based on a wavelet sub-band decomposition and compares them with the classical constant-Q CHO model. Our final goal is to develop an original method that performs guided detection of abnormal activity foci in PET oncology imaging based on these new observer models. This computer-aided diagnostic method would highly benefit to clinicians for diagnostic purpose and to biologists for massive screening of rodents populations in molecular imaging. Method: We have previously shown good correlation of the channelized Hotelling observer (CHO) using a constant-Q model with human observer performance for 3D PET oncology imaging. We propose an alternate method based on combining a CHO observer with a wavelet sub-band decomposition of the image and we compare it to the standard CHO implementation. This method performs an undecimated transform using a biorthogonal B-spline 4/4 wavelet basis to extract the features set for input to the Hotelling observer. This work is based on simulated 3D PET images of an extended MCAT phantom with randomly located lesions. We compare three evaluation criteria: classification performance using the signal-to-noise ratio (SNR), computation efficiency and visual quality of the derived 3D maps of the decision variable λ. The SNR is estimated on a series of test images for a variable number of training images for both observers. Results: Results show that the maximum SNR is higher with the constant-Q CHO observer, especially for targets located in the liver, and that it is reached with a smaller number of training images. However, preliminary analysis indicates that the visual quality of the 3D maps of the decision variable λ is higher with the wavelet-based CHO and the computation time to derive a 3D λ-map is about 350 times shorter than for the standard CHO. This suggests that the wavelet-CHO observer is a good candidate for use in our guided

  16. Optimal transcostal high-intensity focused ultrasound with combined real-time 3D movement tracking and correction

    International Nuclear Information System (INIS)

    Marquet, F; Aubry, J F; Pernot, M; Fink, M; Tanter, M

    2011-01-01

    Recent studies have demonstrated the feasibility of transcostal high intensity focused ultrasound (HIFU) treatment in liver. However, two factors limit thermal necrosis of the liver through the ribs: the energy deposition at focus is decreased by the respiratory movement of the liver and the energy deposition on the skin is increased by the presence of highly absorbing bone structures. Ex vivo ablations were conducted to validate the feasibility of a transcostal real-time 3D movement tracking and correction mode. Experiments were conducted through a chest phantom made of three human ribs immersed in water and were placed in front of a 300 element array working at 1 MHz. A binarized apodization law introduced recently in order to spare the rib cage during treatment has been extended here with real-time electronic steering of the beam. Thermal simulations have been conducted to determine the steering limits. In vivo 3D-movement detection was performed on pigs using an ultrasonic sequence. The maximum error on the transcostal motion detection was measured to be 0.09 ± 0.097 mm on the anterior–posterior axis. Finally, a complete sequence was developed combining real-time 3D transcostal movement correction and spiral trajectory of the HIFU beam, allowing the system to treat larger areas with optimized efficiency. Lesions as large as 1 cm in diameter have been produced at focus in excised liver, whereas no necroses could be obtained with the same emitted power without correcting the movement of the tissue sample.

  17. Online 3D Ear Recognition by Combining Global and Local Features.

    Science.gov (United States)

    Liu, Yahui; Zhang, Bob; Lu, Guangming; Zhang, David

    2016-01-01

    The three-dimensional shape of the ear has been proven to be a stable candidate for biometric authentication because of its desirable properties such as universality, uniqueness, and permanence. In this paper, a special laser scanner designed for online three-dimensional ear acquisition was described. Based on the dataset collected by our scanner, two novel feature classes were defined from a three-dimensional ear image: the global feature class (empty centers and angles) and local feature class (points, lines, and areas). These features are extracted and combined in an optimal way for three-dimensional ear recognition. Using a large dataset consisting of 2,000 samples, the experimental results illustrate the effectiveness of fusing global and local features, obtaining an equal error rate of 2.2%.

  18. Online 3D Ear Recognition by Combining Global and Local Features.

    Directory of Open Access Journals (Sweden)

    Yahui Liu

    Full Text Available The three-dimensional shape of the ear has been proven to be a stable candidate for biometric authentication because of its desirable properties such as universality, uniqueness, and permanence. In this paper, a special laser scanner designed for online three-dimensional ear acquisition was described. Based on the dataset collected by our scanner, two novel feature classes were defined from a three-dimensional ear image: the global feature class (empty centers and angles and local feature class (points, lines, and areas. These features are extracted and combined in an optimal way for three-dimensional ear recognition. Using a large dataset consisting of 2,000 samples, the experimental results illustrate the effectiveness of fusing global and local features, obtaining an equal error rate of 2.2%.

  19. MR venography using the 3D-MEDIC (multi echo data imaging combination) sequence for lower extremities

    International Nuclear Information System (INIS)

    Kitagawa, Hisashi; Kishi, Takayuki; Saito, Ryo; Shohji, Tomokazu; Noguchi, Keiji; Sunohara, Nobuo

    2008-01-01

    It is possible to diagnose varicose vein from medical history and physical examinations including inspection and palpation. Non-contrast enhanced MRV (magnetic resonance venography) is becoming popular because it can be easily performed without being affected by the radiographer's skill. We thought that the use of MEDIC (multi echo data imaging combination) would enable us to delineate varicose veins within a short acquisition time and without need for synchronization or contrast enhancement. We used the SIEMENS MAGNETOM Avanto 1.5-Tesla unit to acquire images. Our subjects were five healthy volunteers and five patients with varicose vein. The signal strength of deep veins and muscles were measured. The SNR (signal-to-nose ratio) of deep veins and the CNR (contrast-to-noise ratio) between deep veins and muscles were also measured. Flip angle, fat suppression methods, MTC (magnetic transfer contrast) pulse, and combined echo. Using the optimum image acquisition protocol following our preliminary study with varicose vein patients, the ability of the 3D-MEDIC method to delineate varicose veins was compared with that of the electrocardiogram (ECG)-synchronized two-dimensional time of flight (2D-TOF) method. We found that the following settings would enable us to acquire images from a wide range=coronal, within short acquisition time and needless ECG-triggering. Flip angle=20 degrees, fat suppression method=water excitation, MTC pulse=ON, combined echo=2. 3D-MEDIC was better than the 2D-TOF method in delineating the varicose vein itself and the connection between the varicose vein and deep veins. It is expected that 3D-MEDIC may be useful in the clinical diagnosis of varicose veins. (author)

  20. Solution of 3D inverse scattering problems by combined inverse equivalent current and finite element methods

    International Nuclear Information System (INIS)

    Kılıç, Emre; Eibert, Thomas F.

    2015-01-01

    An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained

  1. Solution of 3D inverse scattering problems by combined inverse equivalent current and finite element methods

    Energy Technology Data Exchange (ETDEWEB)

    Kılıç, Emre, E-mail: emre.kilic@tum.de; Eibert, Thomas F.

    2015-05-01

    An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.

  2. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Soumyaranjan; Sanger, Kuldeep; Heiskanen, Arto [DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby (Denmark); Trifol, Jon; Szabo, Peter [Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Søltofts Plads, Building 229, DK-2800 Kgs. Lyngby (Denmark); Dufva, Marin; Emnéus, Jenny [DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby (Denmark); Wolff, Anders, E-mail: anders.wolff@nanotech.dtu.dk [DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby (Denmark)

    2016-04-01

    Limitations in controlling scaffold architecture using traditional fabrication techniques are a problem when constructing engineered tissues/organs. Recently, integration of two pore architectures to generate dual-pore scaffolds with tailored physical properties has attracted wide attention in tissue engineering community. Such scaffolds features primary structured pores which can efficiently enhance nutrient/oxygen supply to the surrounding, in combination with secondary random pores, which give high surface area for cell adhesion and proliferation. Here, we present a new technique to fabricate dual-pore scaffolds for various tissue engineering applications where 3D printing of poly(vinyl alcohol) (PVA) mould is combined with salt leaching process. In this technique the sacrificial PVA mould, determining the structured pore architecture, was filled with salt crystals to define the random pore regions of the scaffold. After crosslinking the casted polymer the combined PVA-salt mould was dissolved in water. The technique has advantages over previously reported ones, such as automated assembly of the sacrificial mould, and precise control over pore architecture/dimensions by 3D printing parameters. In this study, polydimethylsiloxane and biodegradable poly(ϵ-caprolactone) were used for fabrication. However, we show that this technique is also suitable for other biocompatible/biodegradable polymers. Various physical and mechanical properties of the dual-pore scaffolds were compared with control scaffolds with either only structured or only random pores, fabricated using previously reported methods. The fabricated dual-pore scaffolds supported high cell density, due to the random pores, in combination with uniform cell distribution throughout the scaffold, and higher cell proliferation and viability due to efficient nutrient/oxygen transport through the structured pores. In conclusion, the described fabrication technique is rapid, inexpensive, scalable, and compatible

  3. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching

    International Nuclear Information System (INIS)

    Mohanty, Soumyaranjan; Sanger, Kuldeep; Heiskanen, Arto; Trifol, Jon; Szabo, Peter; Dufva, Marin; Emnéus, Jenny; Wolff, Anders

    2016-01-01

    Limitations in controlling scaffold architecture using traditional fabrication techniques are a problem when constructing engineered tissues/organs. Recently, integration of two pore architectures to generate dual-pore scaffolds with tailored physical properties has attracted wide attention in tissue engineering community. Such scaffolds features primary structured pores which can efficiently enhance nutrient/oxygen supply to the surrounding, in combination with secondary random pores, which give high surface area for cell adhesion and proliferation. Here, we present a new technique to fabricate dual-pore scaffolds for various tissue engineering applications where 3D printing of poly(vinyl alcohol) (PVA) mould is combined with salt leaching process. In this technique the sacrificial PVA mould, determining the structured pore architecture, was filled with salt crystals to define the random pore regions of the scaffold. After crosslinking the casted polymer the combined PVA-salt mould was dissolved in water. The technique has advantages over previously reported ones, such as automated assembly of the sacrificial mould, and precise control over pore architecture/dimensions by 3D printing parameters. In this study, polydimethylsiloxane and biodegradable poly(ϵ-caprolactone) were used for fabrication. However, we show that this technique is also suitable for other biocompatible/biodegradable polymers. Various physical and mechanical properties of the dual-pore scaffolds were compared with control scaffolds with either only structured or only random pores, fabricated using previously reported methods. The fabricated dual-pore scaffolds supported high cell density, due to the random pores, in combination with uniform cell distribution throughout the scaffold, and higher cell proliferation and viability due to efficient nutrient/oxygen transport through the structured pores. In conclusion, the described fabrication technique is rapid, inexpensive, scalable, and compatible

  4. Combination of Tls Point Clouds and 3d Data from Kinect v2 Sensor to Complete Indoor Models

    Science.gov (United States)

    Lachat, E.; Landes, T.; Grussenmeyer, P.

    2016-06-01

    The combination of data coming from multiple sensors is more and more applied for remote sensing issues (multi-sensor imagery) but also in cultural heritage or robotics, since it often results in increased robustness and accuracy of the final data. In this paper, the reconstruction of building elements such as window frames or door jambs scanned thanks to a low cost 3D sensor (Kinect v2) is presented. Their combination within a global point cloud of an indoor scene acquired with a terrestrial laser scanner (TLS) is considered. If the added elements acquired with the Kinect sensor enable to reach a better level of detail of the final model, an adapted acquisition protocol may also provide several benefits as for example time gain. The paper aims at analyzing whether the two measurement techniques can be complementary in this context. The limitations encountered during the acquisition and reconstruction steps are also investigated.

  5. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan; Kuldeep, Kuldeep; Heiskanen, Arto

    2016-01-01

    Limitations in controlling scaffold architecture using traditional fabrication techniques are a problem when constructing engineered tissues/organs. Recently, integration of two pore architectures to generate dual-pore scaffolds with tailored physical properties has attracted wide attention...... in tissue engineering community. Such scaffolds features primary structured pores which can efficiently enhance nutrient/oxygen supply to the surrounding, in combination with secondary random pores, which give high surface area for cell adhesion and proliferation. Here, we present a new technique...... to fabricate dual-pore scaffolds for various tissue engineering applications where 3D printing of poly(vinyl alcohol) (PVA) mould is combined with salt leaching process. In this technique the sacrificial PVA mould, determining the structured pore architecture, was filled with salt crystals to define the random...

  6. COMBINATION OF TLS POINT CLOUDS AND 3D DATA FROM KINECT V2 SENSOR TO COMPLETE INDOOR MODELS

    Directory of Open Access Journals (Sweden)

    E. Lachat

    2016-06-01

    Full Text Available The combination of data coming from multiple sensors is more and more applied for remote sensing issues (multi-sensor imagery but also in cultural heritage or robotics, since it often results in increased robustness and accuracy of the final data. In this paper, the reconstruction of building elements such as window frames or door jambs scanned thanks to a low cost 3D sensor (Kinect v2 is presented. Their combination within a global point cloud of an indoor scene acquired with a terrestrial laser scanner (TLS is considered. If the added elements acquired with the Kinect sensor enable to reach a better level of detail of the final model, an adapted acquisition protocol may also provide several benefits as for example time gain. The paper aims at analyzing whether the two measurement techniques can be complementary in this context. The limitations encountered during the acquisition and reconstruction steps are also investigated.

  7. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching.

    Science.gov (United States)

    Mohanty, Soumyaranjan; Sanger, Kuldeep; Heiskanen, Arto; Trifol, Jon; Szabo, Peter; Dufva, Marin; Emnéus, Jenny; Wolff, Anders

    2016-04-01

    Limitations in controlling scaffold architecture using traditional fabrication techniques are a problem when constructing engineered tissues/organs. Recently, integration of two pore architectures to generate dual-pore scaffolds with tailored physical properties has attracted wide attention in tissue engineering community. Such scaffolds features primary structured pores which can efficiently enhance nutrient/oxygen supply to the surrounding, in combination with secondary random pores, which give high surface area for cell adhesion and proliferation. Here, we present a new technique to fabricate dual-pore scaffolds for various tissue engineering applications where 3D printing of poly(vinyl alcohol) (PVA) mould is combined with salt leaching process. In this technique the sacrificial PVA mould, determining the structured pore architecture, was filled with salt crystals to define the random pore regions of the scaffold. After crosslinking the casted polymer the combined PVA-salt mould was dissolved in water. The technique has advantages over previously reported ones, such as automated assembly of the sacrificial mould, and precise control over pore architecture/dimensions by 3D printing parameters. In this study, polydimethylsiloxane and biodegradable poly(ϵ-caprolactone) were used for fabrication. However, we show that this technique is also suitable for other biocompatible/biodegradable polymers. Various physical and mechanical properties of the dual-pore scaffolds were compared with control scaffolds with either only structured or only random pores, fabricated using previously reported methods. The fabricated dual-pore scaffolds supported high cell density, due to the random pores, in combination with uniform cell distribution throughout the scaffold, and higher cell proliferation and viability due to efficient nutrient/oxygen transport through the structured pores. In conclusion, the described fabrication technique is rapid, inexpensive, scalable, and compatible

  8. Rapid differentiation of Chinese hop varieties (Humulus lupulus) using volatile fingerprinting by HS-SPME-GC-MS combined with multivariate statistical analysis.

    Science.gov (United States)

    Liu, Zechang; Wang, Liping; Liu, Yumei

    2018-01-18

    Hops impart flavor to beer, with the volatile components characterizing the various hop varieties and qualities. Fingerprinting, especially flavor fingerprinting, is often used to identify 'flavor products' because inconsistencies in the description of flavor may lead to an incorrect definition of beer quality. Compared to flavor fingerprinting, volatile fingerprinting is simpler and easier. We performed volatile fingerprinting using head space-solid phase micro-extraction gas chromatography-mass spectrometry combined with similarity analysis and principal component analysis (PCA) for evaluating and distinguishing between three major Chinese hops. Eighty-four volatiles were identified, which were classified into seven categories. Volatile fingerprinting based on similarity analysis did not yield any obvious result. By contrast, hop varieties and qualities were identified using volatile fingerprinting based on PCA. The potential variables explained the variance in the three hop varieties. In addition, the dendrogram and principal component score plot described the differences and classifications of hops. Volatile fingerprinting plus multivariate statistical analysis can rapidly differentiate between the different varieties and qualities of the three major Chinese hops. Furthermore, this method can be used as a reference in other fields. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  9. Acoustic position finding of partial discharges in transformers. Combination of partial discharge measurement technology with 3D visualization; Akustische Ortung von Teilentladungen in Transformatoren. TE-Messtechnik und 3-D-Visualisierung kombiniert

    Energy Technology Data Exchange (ETDEWEB)

    Kraetge, Alexander; Hoek, Stefan [Omicron Electronics GmbH, Klaus (Austria)

    2013-11-01

    A new measuring system facilitates the detection of partial discharges in transformers by means of the fully synchronous combination of measurement technology for electrical partial discharges with intuitive 3D visualization of the test object. The contribution under consideration describes the application of this system with examples from the measurement practice.

  10. Initial results of the FUSION-X-US prototype combining 3D automated breast ultrasound and digital breast tomosynthesis.

    Science.gov (United States)

    Schaefgen, Benedikt; Heil, Joerg; Barr, Richard G; Radicke, Marcus; Harcos, Aba; Gomez, Christina; Stieber, Anne; Hennigs, André; von Au, Alexandra; Spratte, Julia; Rauch, Geraldine; Rom, Joachim; Schütz, Florian; Sohn, Christof; Golatta, Michael

    2018-06-01

    To determine the feasibility of a prototype device combining 3D-automated breast ultrasound (ABVS) and digital breast tomosynthesis in a single device to detect and characterize breast lesions. In this prospective feasibility study, the FUSION-X-US prototype was used to perform digital breast tomosynthesis and ABVS in 23 patients with an indication for tomosynthesis based on current guidelines after clinical examination and standard imaging. The ABVS and tomosynthesis images of the prototype were interpreted separately by two blinded experts. The study compares the detection and BI-RADS® scores of breast lesions using only the tomosynthesis and ABVS data from the FUSION-X-US prototype to the results of the complete diagnostic workup. Image acquisition and processing by the prototype was fast and accurate, with some limitations in ultrasound coverage and image quality. In the diagnostic workup, 29 solid lesions (23 benign, including three cases with microcalcifications, and six malignant lesions) were identified. Using the prototype, all malignant lesions were detected and classified as malignant or suspicious by both investigators. Solid breast lesions can be localized accurately and fast by the Fusion-X-US system. Technical improvements of the ultrasound image quality and ultrasound coverage are needed to further study this new device. The prototype combines tomosynthesis and automated 3D-ultrasound (ABVS) in one device. It allows accurate detection of malignant lesions, directly correlating tomosynthesis and ABVS data. The diagnostic evaluation of the prototype-acquired data was interpreter-independent. The prototype provides a time-efficient and technically reliable diagnostic procedure. The combination of tomosynthesis and ABVS is a promising diagnostic approach.

  11. Combining 3D seismic tomography and ground-penetrating radar to reveal the structure of a megalithic burial tomb

    Science.gov (United States)

    Mendes, Manuela; Caldeira, Bento; Borges, José

    2017-04-01

    This work describes a case study concerning a prehistoric buried tomb (around 3000 years B.C.) located near Évora (Portugal). This monument is a tomb completely buried with only five visible irregular small stones distributed in a circle of 3 meter in diameter. A multi-approach combining 3D seismic tomography and ground-penetrating radar (GPR) have been applied to identify hidden elements and arrangement of the stones, required prior to any excavation work. The methodology for the 3D seismic data acquisition involves a total of 24 shots recorded by four lines, with twelve fixed receivers each one. For the GPR survey was used a 400 MHz antenna which moves along parallel lines with 50 cm separation, over a 30x30 m2 area that contains the buried tomb; the GPR unit was configured to a horizontal rate of 50 scans per meter (1024 samples/scan) and a time window of 60 ns. This multi-approach procedure allowed defining: (i) the housing of the tomb in the basement structure; (ii) the presence of a hidden corridor; (iii) the description of the internal structure of the walls of the tomb; (iv) the state of preservation of the monument. Acknowledgements: This work is co-financed by the European Union through the European Regional Development Fund under COMPETE 2020 (Operational Program for Competitiveness and Internationalization) through the ICT project (UID / GEO / 04683/2013) under the reference POCI-01-0145 -FEDER-007690.

  12. A 3D implementation of ray tracing combined with diffraction on facets: Verification and a potential application

    International Nuclear Information System (INIS)

    Clarke, Adrian J.M.; Hesse, Evelyn; Ulanowski, Zbigniew; Kaye, Paul H.

    2006-01-01

    A 3D implementation of a new model of light scattering applicable to dielectric faceted objects is introduced. The model combines standard geometric optics with diffraction on individual facets. It can be applied to any faceted geometry. The model adds no significant computational overheads to classical geometric optics yet provides much improved results. Initial results for long hexagonal columns are compared to SVM and appear favourable. 2D scattering patterns are calculated for a hexagonal column in a fixed orientation and compared to those created by ice analogue crystals in the laboratory with close agreement. The comparison includes the observation of a guided wave propagating along the length of the column. The new model is then applied to a selection of geometries to illustrate how it could be used to aid particle characterization, particularly in the case of cirrus ice

  13. Vaginal dose point reporting in cervical cancer patients treated with combined 2D/3D external beam radiotherapy and 2D/3D brachytherapy

    International Nuclear Information System (INIS)

    Westerveld, Henrike; Pötter, Richard; Berger, Daniel; Dankulchai, Pittaya; Dörr, Wolfgang; Sora, Mircea-Constantin; Pötter-Lang, Sarah; Kirisits, Christian

    2013-01-01

    Background and purpose: Traditionally, vaginal dose points have been defined at the vaginal source level, thus not providing dose information for the entire vagina. Since reliable vaginal dose volume/surface histograms are unavailable, a strategy for comprehensive vaginal dose reporting for combined EBRT and BT was established and investigated. Material and methods: An anatomical vaginal reference point was defined at the level of the Posterior–Inferior Border of Symphysis (PIBS), plus two points ±2 cm (mid/introitus vagina). For BT extra points were selected for the upper vagina at 12/3/6/9 o’clock, at the vaginal surface and 5 mm depth. A vaginal reference length (VRL) was defined from ring centre to PIBS. Fifty-nine patients treated for cervical cancer were included in this retrospective feasibility study. Results: The method was applicable to all patients. Total EQD2 doses at PIBS and ±2 cm were 36.7 Gy (3.1–68.2), 49.6 Gy (32.1–89.6) and 4.3 Gy (1.0–46.6). At the vaginal surface at ring level doses were respectively 266.1 Gy (67.6–814.5)/225.9 Gy (61.5–610.5) at 3/9 o’clock, and 85.1 Gy (55.4–140.3)/72.0 Gy (49.1–108.9) at 12/6 o’clock. Mean VRL on MRI was 5.6 cm (2.0–9.4). Conclusions: With this novel system, a comprehensive reporting of vaginal doses is feasible. The present study has demonstrated large dose variations between patients observed in all parts of the vagina, resulting from different contributions from EBRT and BT

  14. An Effective Hybrid Routing Algorithm in WSN: Ant Colony Optimization in combination with Hop Count Minimization

    Directory of Open Access Journals (Sweden)

    Ailian Jiang

    2018-03-01

    Full Text Available Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs. This paper investigates the existing ant colony optimization (ACO-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime.

  15. Combined parameters estimation for 131I dosimetry treatment planning in Hyperthyroidism using 2D and 3D

    International Nuclear Information System (INIS)

    Hermanos Ameijeiras, La Habana (Cuba))" data-affiliation=" (Departamento de Medicina Nuclear, HCQ Hermanos Ameijeiras, La Habana (Cuba))" >López Díaz, Adlín; Hermanos Ameijeiras, La Habana (Cuba))" data-affiliation=" (Departamento de Medicina Nuclear, HCQ Hermanos Ameijeiras, La Habana (Cuba))" >San Pedro, Aley Palau; Hermanos Ameijeiras, La Habana (Cuba))" data-affiliation=" (Departamento de Medicina Nuclear, HCQ Hermanos Ameijeiras, La Habana (Cuba))" >Martín Escuela, Juan Miguel; Reynosa Montejo, Reysel; Torres Aroche, Leonel Alberto

    2017-01-01

    Optimization and verification of Specific Patient Treatment Planning with unsealed sources in hyperthyroidism diseases is a desirable goal from medical and radiation protection viewpoints. In order to verify the estimation of patient’s specific treatment dose and his/her related parameters, a combination of 3 different apparatus or pieces of equipment used in nuclear medicine were studied - the Iodine Probe, a Philips Forte Camera with pinhole collimators and a Mediso Nucline with HEGP for planar and SPECT techniques- by using the typical neck phantom and 131 I sources simulating diagnosis and treatment procedure. The linear behavior on diagnostic and therapeutic activity range was verified, showing a linear correlation fitting factor R 2 > 0,99. The differences between thyroid uptake determinations in all equipment were less than 6 % for therapeutic activities and less than 1,1 % in the diagnostic range. The combined protocol to calculate all the necessary parameters for the patient treatment dose planning using 2D or 3D approach was established and verified, avoiding wasting time with gamma cameras and with only one administration of 131 I. (author)

  16. Efficient and reliable 3D dose quality assurance for IMRT by combining independent dose calculations with measurements

    International Nuclear Information System (INIS)

    Visser, R.; Wauben, D. J. L.; Godart, J.; Langendijk, J. A.; Veld, A. A. van't; Korevaar, E. W.; Groot, M. de

    2013-01-01

    Purpose: Advanced radiotherapy treatments require appropriate quality assurance (QA) to verify 3D dose distributions. Moreover, increase in patient numbers demand efficient QA-methods. In this study, a time efficient method that combines model-based QA and measurement-based QA was developed; i.e., the hybrid-QA. The purpose of this study was to determine the reliability of the model-based QA and to evaluate time efficiency of the hybrid-QA method. Methods: Accuracy of the model-based QA was determined by comparison of COMPASS calculated dose with Monte Carlo calculations for heterogeneous media. In total, 330 intensity modulated radiation therapy (IMRT) treatment plans were evaluated based on the mean gamma index (GI) with criteria of 3%/3mm and classification of PASS (GI ≤ 0.4), EVAL (0.4 0.6), and FAIL (GI ≥ 0.6). Agreement between model-based QA and measurement-based QA was determined for 48 treatment plans, and linac stability was verified for 15 months. Finally, time efficiency improvement of the hybrid-QA was quantified for four representative treatment plans. Results: COMPASS calculated dose was in agreement with Monte Carlo dose, with a maximum error of 3.2% in heterogeneous media with high density (2.4 g/cm 3 ). Hybrid-QA results for IMRT treatment plans showed an excellent PASS rate of 98% for all cases. Model-based QA was in agreement with measurement-based QA, as shown by a minimal difference in GI of 0.03 ± 0.08. Linac stability was high with an average GI of 0.28 ± 0.04. The hybrid-QA method resulted in a time efficiency improvement of 15 min per treatment plan QA compared to measurement-based QA. Conclusions: The hybrid-QA method is adequate for efficient and accurate 3D dose verification. It combines time efficiency of model-based QA with reliability of measurement-based QA and is suitable for implementation within any radiotherapy department.

  17. Analysis of toxicity in a group of patients treated for pancreatic cancer with combined modality 3D radiation therapy

    International Nuclear Information System (INIS)

    Fine, Robert M.; Fernandez-Vicioso, Eduardo; Higgins, Patrick; Schell, Michael; Sohn, Jason; Pelley, Robert; Walsh, R. M.; Vogt, David; Hermann, Robert

    1995-01-01

    Purpose: To evaluate the acute toxicity of a group of 37 pancreatic cancer patients treated with noncoplanar, nonopposed, conformal radiation therapy with concurrent chemotherapy (5-FU). Materials and Methods: We retrospectively evaluated a group of initially nonadvanced 37 pancreatic cancer patients treated with combined concurrent chemotherapy and 3D radiation therapy treated between 1992 until 1995. During this period we began treating the initially unresectable patients with preoperative chemo-RT (50.4 Gy) after treating an initial group of unresectable patients to a higher dose of 66.6 Gy. We also include a group of patients who received postop chemo-RT after Whipple resection (59.4 Gy). All radiation was delivered at a 1.8 Gy per fraction dose rate. The total group was made up of 37 patients of whom 21 were male (57%) and 16 female (43%). There were 22 (59%) head of pancreas lesions, 10 (27%) body of pancreas lesions, and 5 (14%) head and body of pancreas cancers. Of these 37 patients 7 (19%) were treated with chemo-RT as their only treatment, 10 patients (29%) were treated post Whipple resection, and 20 patients (54%) were treated with preoperative intent. Results: Three patients (8%) required a treatment break, one with a body and 2 with head lesions. Two of these patients stopped RT short of planned dose (32.56 and 46.8 Gy) both suffering from nausea, vomiting, and anorexia with the third, who finished a planned 66.6 Gy dose, after a 4 day rest for leukopenia. One of 20 patients (5%) preop patients underwent the planned post chemo-RT Whipple resection, while 4 of the 20 patients (20%), remained unresectable, but without disease progression and had Iodine 125 interstitial implants at exploration delivering a minimal tumor dose of 120 Gy on top or the 50.4 Gy delivered preoperatively. Four patients (11%) maintained a minimal Karnofsky score of 100, 23 patients (62%) maintained a minimal KPS of 90, 6 patients (16%) maintained a minimal KPS of 80, and 4

  18. Non-contrast-enhanced 3D volumetric time-resolved MRA combining PCASL for intracranial vessels. President award proceedings

    International Nuclear Information System (INIS)

    Nakamura, Masanobu; Yoneyama, Masami; Tabuchi, Takashi; Tatsuno, Satoshi; Takemura, Atsushi; Obara, Makoto; Takahara, Taro

    2013-01-01

    Hemodynamic information is required for accurate diagnosis, effective treatment, and follow-up examination of numerous cerebrovascular diseases. A recently introduced technique for non-contrast 3-dimensional (3D) volumetric time-resolved magnetic resonance angiography (MRA)-contrast inherent inflow enhanced multi phase angiography (CINEMA)-provides useful qualitative information on the morphologic and dynamic filling of intracranial vessels and requires no catheter insertion or contrast agent. We propose combining CINEMA with pseudo-continuous arterial spin labeling (PCASL). We present a preliminary study of non-contrast time-resolved MRA with time-of-arrival map and discuss its clinical relevance. Studies in all volunteers and patients clearly depicted major intracranial vessels. In patients, CINEMA-PCASL demonstrated the nidus, feeding arteries, and right posterior cerebral artery, and subsequent draining into the superficial venous system was clearly observed with a temporal resolution of 200 ms. Time-of-arrival maps presented the different filling time of every segment vessel in a single colorful image. The expected pattern of delayed transit to more distal vessels is apparent as well as the earlier arrival in central portions of larger vessels. This preliminary study demonstrated the usefulness of the CINEMA-PCASL technique in evaluating the cerebral vasculature. Simultaneous acquisition of high quality temporal and spatial resolutions obviated the need for contrast agent. (author)

  19. Non-contrast-enhanced 3D volumetric time-resolved MRA combining PCASL for intracranial vessels. President award proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Masanobu; Yoneyama, Masami; Tabuchi, Takashi; Tatsuno, Satoshi [Yaesu Clinic, Tokyo (Japan); Takemura, Atsushi; Obara, Makoto [Philips Electronics Japan, Tokyo (Japan); Takahara, Taro [Tokai Univ., Hiratsuka, Kanagawa (Japan)

    2013-02-15

    Hemodynamic information is required for accurate diagnosis, effective treatment, and follow-up examination of numerous cerebrovascular diseases. A recently introduced technique for non-contrast 3-dimensional (3D) volumetric time-resolved magnetic resonance angiography (MRA)-contrast inherent inflow enhanced multi phase angiography (CINEMA)-provides useful qualitative information on the morphologic and dynamic filling of intracranial vessels and requires no catheter insertion or contrast agent. We propose combining CINEMA with pseudo-continuous arterial spin labeling (PCASL). We present a preliminary study of non-contrast time-resolved MRA with time-of-arrival map and discuss its clinical relevance. Studies in all volunteers and patients clearly depicted major intracranial vessels. In patients, CINEMA-PCASL demonstrated the nidus, feeding arteries, and right posterior cerebral artery, and subsequent draining into the superficial venous system was clearly observed with a temporal resolution of 200 ms. Time-of-arrival maps presented the different filling time of every segment vessel in a single colorful image. The expected pattern of delayed transit to more distal vessels is apparent as well as the earlier arrival in central portions of larger vessels. This preliminary study demonstrated the usefulness of the CINEMA-PCASL technique in evaluating the cerebral vasculature. Simultaneous acquisition of high quality temporal and spatial resolutions obviated the need for contrast agent. (author)

  20. Potential Geophysical Field Transformations and Combined 3D Modelling for Estimation the Seismic Site Effects on Example of Israel

    Science.gov (United States)

    Eppelbaum, Lev; Meirova, Tatiana

    2015-04-01

    It is well-known that the local seismic site effects may have a significant contribution to the intensity of damage and destruction (e.g., Hough et al., 1990; Regnier et al., 2000; Bonnefoy-Claudet et al., 2006; Haase et al., 2010). The thicknesses of sediments, which play a large role in amplification, usually are derived from seismic velocities. At the same time, thickness of sediments may be determined (or defined) on the basis of 3D combined gravity-magnetic modeling joined with available geological materials, seismic data and borehole section examination. Final result of such investigation is a 3D physical-geological model (PGM) reflecting main geological peculiarities of the area under study. Such a combined study needs in application of a reliable 3D mathematical algorithm of computation together with advanced methodology of 3D modeling. For this analysis the developed GSFC software was selected. The GSFC (Geological Space Field Calculation) program was developed for solving a direct 3-D gravity and magnetic prospecting problem under complex geological conditions (Khesin et al., 1996; Eppelbaum and Khesin, 2004). This program has been designed for computing the field of Δg (Bouguer, free-air or observed value anomalies), ΔZ, ΔX, ΔY , ΔT , as well as second derivatives of the gravitational potential under conditions of rugged relief and inclined magnetization. The geological space can be approximated by (1) three-dimensional, (2) semi-infinite bodies and (3) those infinite along the strike closed, L.H. non-closed, R.H. on-closed and open). Geological bodies are approximated by horizontal polygonal prisms. The program has the following main advantages (besides abovementioned ones): (1) Simultaneous computing of gravity and magnetic fields; (2) Description of the terrain relief by irregularly placed characteristic points; (3) Computation of the effect of the earth-air boundary by the method of selection directly in the process of interpretation; (4

  1. New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging

    DEFF Research Database (Denmark)

    Ludwig, W.; King, A.; Reischig, P.

    2009-01-01

    Non-destructive, three-dimensional (3D) characterization of the grain structure in mono-phase polycrystalline materials is an open challenge in material science. Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting possibilities for mapping 3D grain shapes....... A recent extension of this methodology, termed X-ray diffraction contrast tomography (DCT), combines the principles of X-ray diffraction imaging, three-dimensional X-ray diffraction microscopy (3DXRD) and image reconstruction from projections. DCT provides simultaneous access to 3D grain shape...

  2. Effect of application timing and method on efficacy and phytotoxicity of 1,3-D, chloropicrin and metam-sodium combinations in squash plasticulture.

    Science.gov (United States)

    Desaeger, Johan A; Seebold, Kenneth W; Csinos, Alex S

    2008-03-01

    Metam-sodium, 1,3-dichloropropene (1,3-D) and chloropicrin are widely used soil fumigants. Combined application of metam-sodium and 1,3-D + chloropicrin is intended to improve efficacy and broaden spectrum of control, but little is known about the effect on crop safety. This study aimed to evaluate the effects of application timing of fumigant combinations on soilborne pest and disease control (nematodes, soil fungi and weeds) and growth of squash. Two separate tests with chisel-injected and drip-applied fumigant combinations and plant-back times ranging from 1 to 4 weeks were conducted in Tifton, GA, USA, in spring and fall 2002. Fumigant combinations using 1,3-D, chloropicrin and metam-sodium were as effective as methyl bromide in controlling Meloidogyne incognita (Kofoid & White) Chitwood, Pythium irregulare Buis., Rhizoctonia solani Kühn and Cyperus esculentus L. Chisel-applied combinations were more effective in terms of root-knot nematode control than drip-applied combinations. Root-knot nematode reduced squash yields by up to 60%. Phytotoxicity problems and lower yields were observed during spring, especially following 1,3-D + chloropicrin and when plant-back periods were shorter. The main problem with fumigant alternatives to methyl bromide may not be reduced efficacy but, in particular for 1,3-D products, loss of flexibility in terms of longer plant-back periods. (c) 2008 Society of Chemical Industry.

  3. Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system.

    Science.gov (United States)

    Chiang, Mao-Hsiung; Lin, Hao-Ting

    2011-01-01

    This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot's end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H(∞) tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to

  4. A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience

    Science.gov (United States)

    Jerath, Ravinder; Crawford, Molly W.; Barnes, Vernon A.

    2015-01-01

    The Global Workspace Theory and Information Integration Theory are two of the most currently accepted consciousness models; however, these models do not address many aspects of conscious experience. We compare these models to our previously proposed consciousness model in which the thalamus fills-in processed sensory information from corticothalamic feedback loops within a proposed 3D default space, resulting in the recreation of the internal and external worlds within the mind. This 3D default space is composed of all cells of the body, which communicate via gap junctions and electrical potentials to create this unified space. We use 3D illustrations to explain how both visual and non-visual sensory information may be filled-in within this dynamic space, creating a unified seamless conscious experience. This neural sensory memory space is likely generated by baseline neural oscillatory activity from the default mode network, other salient networks, brainstem, and reticular activating system. PMID:26379573

  5. A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience

    Directory of Open Access Journals (Sweden)

    Ravinder eJerath

    2015-08-01

    Full Text Available The Global Workspace Theory and Information Integration Theory are two of the most currently accepted consciousness models; however, these models do not address many aspects of conscious experience. We compare these models to our previously proposed consciousness model in which the thalamus fills-in processed sensory information from corticothalamic feedback loops within a proposed 3D default space, resulting in the recreation of the internal and external worlds within the mind. This 3D default space is composed of all cells of the body, which communicate via gap junctions and electrical potentials to create this unified space. We use 3D illustrations to explain how both visual and non-visual sensory information is filled-in within this dynamic space, creating a unified seamless conscious experience. This neural sensory memory space is likely generated by baseline neural oscillatory activity from the default mode network, other salient networks, brainstem, and reticular activating system.

  6. A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience.

    Science.gov (United States)

    Jerath, Ravinder; Crawford, Molly W; Barnes, Vernon A

    2015-01-01

    The Global Workspace Theory and Information Integration Theory are two of the most currently accepted consciousness models; however, these models do not address many aspects of conscious experience. We compare these models to our previously proposed consciousness model in which the thalamus fills-in processed sensory information from corticothalamic feedback loops within a proposed 3D default space, resulting in the recreation of the internal and external worlds within the mind. This 3D default space is composed of all cells of the body, which communicate via gap junctions and electrical potentials to create this unified space. We use 3D illustrations to explain how both visual and non-visual sensory information may be filled-in within this dynamic space, creating a unified seamless conscious experience. This neural sensory memory space is likely generated by baseline neural oscillatory activity from the default mode network, other salient networks, brainstem, and reticular activating system.

  7. Multi-view 3D human pose estimation combining single-frame recovery, temporal integration and model adaptation

    NARCIS (Netherlands)

    Hofmann, K.M.; Gavrilla, D.M.

    2009-01-01

    We present a system for the estimation of unconstrained 3D human upper body movement from multiple cameras. Its main novelty lies in the integration of three components: single frame pose recovery, temporal integration and model adaptation. Single frame pose recovery consists of a hypothesis

  8. External control of the Drosophila melanogaster egg to imago development period by specific combinations of 3D low-frequency electric and magnetic fields.

    Science.gov (United States)

    Makarov, Vladimir I; Khmelinskii, Igor

    2016-01-01

    We report that the duration of the egg-to-imago development period of the Drosophila melanogaster, and the imago longevity, are both controllable by combinations of external 3-dimensional (3D) low-frequency electric and magnetic fields (LFEMFs). Both these periods may be reduced or increased by applying an appropriate configuration of external 3D LFEMFs. We report that the longevity of D. melanogaster imagoes correlates with the duration of the egg-to-imago development period of the respective eggs. We infer that metabolic processes in both eggs and imago are either accelerated (resulting in reduced time periods) or slowed down (resulting in increased time periods). We propose that external 3D LFEMFs induce electric currents in live systems as well as mechanical vibrations on sub-cell, whole-cell and cell-group levels. These external fields induce media polarization due to ionic motion and orientation of electric dipoles that could moderate the observed effects. We found that the longevity of D. melanogaster imagoes is affected by action of 3D LFEMFs on the respective eggs in the embryonic development period (EDP). We interpret this effect as resulting from changes in the regulation mechanism of metabolic processes in D. melanogaster eggs, inherited by the resulting imagoes. We also tested separate effects of either 3D electric or 3D magnetic fields, which were significantly weaker.

  9. 3D wake measurements from a scanning wind lidar in combination with a fast wind field reconstruction model

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Herges, T. G.; Astrup, Poul

    2017-01-01

    University of Denmark. The purpose of the SpinnerLidar measurements at SWIFT is to measure the response of a V27 turbine wake to varying inflow conditions and turbine operating states. Although our fast scanning SpinnerLidar is able to measure the line-of-sight projected wind speed at up to 400 points per......-Stokes CFD code “Lincom Cyclop-buster model,”3 the corresponding 3D wind vector field (u, v, w) can be reconstructed under constraints for conservation of mass and momentum. The resulting model calculated line-of-sight projections of the 3D wind velocity vectors will become consistent with the line...

  10. A Combined Pharmacophore Modeling, 3D QSAR and Virtual Screening Studies on Imidazopyridines as B-Raf Inhibitors

    Directory of Open Access Journals (Sweden)

    Huiding Xie

    2015-05-01

    Full Text Available B-Raf kinase is an important target in treatment of cancers. In order to design and find potent B-Raf inhibitors (BRIs, 3D pharmacophore models were created using the Genetic Algorithm with Linear Assignment of Hypermolecular Alignment of Database (GALAHAD. The best pharmacophore model obtained which was used in effective alignment of the data set contains two acceptor atoms, three donor atoms and three hydrophobes. In succession, comparative molecular field analysis (CoMFA and comparative molecular similarity indices analysis (CoMSIA were performed on 39 imidazopyridine BRIs to build three dimensional quantitative structure-activity relationship (3D QSAR models based on both pharmacophore and docking alignments. The CoMSIA model based on the pharmacophore alignment shows the best result (q2 = 0.621, r2pred = 0.885. This 3D QSAR approach provides significant insights that are useful for designing potent BRIs. In addition, the obtained best pharmacophore model was used for virtual screening against the NCI2000 database. The hit compounds were further filtered with molecular docking, and their biological activities were predicted using the CoMSIA model, and three potential BRIs with new skeletons were obtained.

  11. A Combined Pharmacophore Modeling, 3D QSAR and Virtual Screening Studies on Imidazopyridines as B-Raf Inhibitors.

    Science.gov (United States)

    Xie, Huiding; Chen, Lijun; Zhang, Jianqiang; Xie, Xiaoguang; Qiu, Kaixiong; Fu, Jijun

    2015-05-29

    B-Raf kinase is an important target in treatment of cancers. In order to design and find potent B-Raf inhibitors (BRIs), 3D pharmacophore models were created using the Genetic Algorithm with Linear Assignment of Hypermolecular Alignment of Database (GALAHAD). The best pharmacophore model obtained which was used in effective alignment of the data set contains two acceptor atoms, three donor atoms and three hydrophobes. In succession, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on 39 imidazopyridine BRIs to build three dimensional quantitative structure-activity relationship (3D QSAR) models based on both pharmacophore and docking alignments. The CoMSIA model based on the pharmacophore alignment shows the best result (q(2) = 0.621, r(2)(pred) = 0.885). This 3D QSAR approach provides significant insights that are useful for designing potent BRIs. In addition, the obtained best pharmacophore model was used for virtual screening against the NCI2000 database. The hit compounds were further filtered with molecular docking, and their biological activities were predicted using the CoMSIA model, and three potential BRIs with new skeletons were obtained.

  12. Combined magnetic vector-scalar potential finite element computation of 3D magnetic field and performance of modified Lundell alternators in Space Station applications. Ph.D. Thesis

    Science.gov (United States)

    Wang, Ren H.

    1991-01-01

    A method of combined use of magnetic vector potential (MVP) based finite element (FE) formulations and magnetic scalar potential (MSP) based FE formulations for computation of three-dimensional (3D) magnetostatic fields is developed. This combined MVP-MSP 3D-FE method leads to considerable reduction by nearly a factor of 3 in the number of unknowns in comparison to the number of unknowns which must be computed in global MVP based FE solutions. This method allows one to incorporate portions of iron cores sandwiched in between coils (conductors) in current-carrying regions. Thus, it greatly simplifies the geometries of current carrying regions (in comparison with the exclusive MSP based methods) in electric machinery applications. A unique feature of this approach is that the global MSP solution is single valued in nature, that is, no branch cut is needed. This is again a superiority over the exclusive MSP based methods. A Newton-Raphson procedure with a concept of an adaptive relaxation factor was developed and successfully used in solving the 3D-FE problem with magnetic material anisotropy and nonlinearity. Accordingly, this combined MVP-MSP 3D-FE method is most suited for solution of large scale global type magnetic field computations in rotating electric machinery with very complex magnetic circuit geometries, as well as nonlinear and anisotropic material properties.

  13. Combining 3D human in vitro methods for a 3Rs evaluation of novel titanium surfaces in orthopaedic applications.

    Science.gov (United States)

    Stevenson, G; Rehman, S; Draper, E; Hernández-Nava, E; Hunt, J; Haycock, J W

    2016-07-01

    In this study, we report on a group of complementary human osteoblast in vitro test methods for the preclinical evaluation of 3D porous titanium surfaces. The surfaces were prepared by additive manufacturing (electron beam melting [EBM]) and plasma spraying, allowing the creation of complex lattice surface geometries. Physical properties of the surfaces were characterized by SEM and profilometry and 3D in vitro cell culture using human osteoblasts. Primary human osteoblast cells were found to elicit greater differences between titanium sample surfaces than an MG63 osteoblast-like cell line, particularly in terms of cell survival. Surface morphology was associated with higher osteoblast metabolic activity and mineralization on rougher titanium plasma spray coated surfaces than smoother surfaces. Differences in osteoblast survival and metabolic activity on titanium lattice structures were also found, despite analogous surface morphology at the cellular level. 3D confocal microscopy identified osteoblast organization within complex titanium surface geometries, adhesion, spreading, and alignment to the biomaterial strut geometries. Mineralized nodule formation throughout the lattice structures was also observed, and indicative of early markers of bone in-growth on such materials. Testing methods such as those presented are not traditionally considered by medical device manufacturers, but we suggest have value as an increasingly vital tool in efficiently translating pre-clinical studies, especially in balance with current regulatory practice, commercial demands, the 3Rs, and the relative merits of in vitro and in vivo studies. Biotechnol. Bioeng. 2016;113: 1586-1599. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  14. 3D ARCHITECTURAL VIDEOMAPPING

    Directory of Open Access Journals (Sweden)

    R. Catanese

    2013-07-01

    Full Text Available 3D architectural mapping is a video projection technique that can be done with a survey of a chosen building in order to realize a perfect correspondence between its shapes and the images in projection. As a performative kind of audiovisual artifact, the real event of the 3D mapping is a combination of a registered video animation file with a real architecture. This new kind of visual art is becoming very popular and its big audience success testifies new expressive chances in the field of urban design. My case study has been experienced in Pisa for the Luminara feast in 2012.

  15. Combined dynamic contrast-enhancement and serial 3D-subtraction analysis in magnetic resonance imaging of osteoid osteomas

    Energy Technology Data Exchange (ETDEWEB)

    Kalle, T. von; Winkler, P. [Klinikum Stuttgart Olgahospital, Department of Paediatric Radiology, Stuttgart (Germany); Langendoerfer, M.; Fernandez, F.F. [Klinikum Stuttgart Olgahospital, Department of Paediatric Orthopaedics, Stuttgart (Germany)

    2009-10-15

    The purpose of this study was to retrospectively correlate the results of dynamic contrast-enhanced magnetic resonance imaging (MRI) with histological and clinical diagnoses in patients with osteoid osteomas. Fifty-four patients with the MR diagnosis of osteoid osteoma were studied. MRI (1.5 Tesla) consisted of thin-section STIR sequences, dynamic 3D T1 gradient echo sequences during application of contrast material, and high-resolution postcontrast T1 spin echo sequences with fat saturation (maximum voxel size 0.6 x 0.6 x 3.0 mm). Evaluation was focused on serial image subtraction during the early phase after contrast injection and on time-intensity curves. The surrounding edema was helpful in finding the nidus in each lesion. In 49 of 54 patients (90.7%), the diagnosis of osteoid osteoma was certain or highly probable (sensitivity 1.0, positive predictive value 0.91). A total of 38 of 54 osteoid osteomas were histologically proven. Five MRI diagnoses were regarded as false positives. A similar proportion has been reported for computed tomography. Tailored high-resolution MR examinations with dynamic contrast enhancement can reliably diagnose osteoid osteomas and exactly localize the nidus without radiation exposure. We propose a stepwise approach with STIR sequences, dynamic contrast-enhanced scanning, and high-resolution postcontrast T1 spin echo sequences with fat saturation. (orig.)

  16. Combined dynamic contrast-enhancement and serial 3D-subtraction analysis in magnetic resonance imaging of osteoid osteomas

    International Nuclear Information System (INIS)

    Kalle, T. von; Winkler, P.; Langendoerfer, M.; Fernandez, F.F.

    2009-01-01

    The purpose of this study was to retrospectively correlate the results of dynamic contrast-enhanced magnetic resonance imaging (MRI) with histological and clinical diagnoses in patients with osteoid osteomas. Fifty-four patients with the MR diagnosis of osteoid osteoma were studied. MRI (1.5 Tesla) consisted of thin-section STIR sequences, dynamic 3D T1 gradient echo sequences during application of contrast material, and high-resolution postcontrast T1 spin echo sequences with fat saturation (maximum voxel size 0.6 x 0.6 x 3.0 mm). Evaluation was focused on serial image subtraction during the early phase after contrast injection and on time-intensity curves. The surrounding edema was helpful in finding the nidus in each lesion. In 49 of 54 patients (90.7%), the diagnosis of osteoid osteoma was certain or highly probable (sensitivity 1.0, positive predictive value 0.91). A total of 38 of 54 osteoid osteomas were histologically proven. Five MRI diagnoses were regarded as false positives. A similar proportion has been reported for computed tomography. Tailored high-resolution MR examinations with dynamic contrast enhancement can reliably diagnose osteoid osteomas and exactly localize the nidus without radiation exposure. We propose a stepwise approach with STIR sequences, dynamic contrast-enhanced scanning, and high-resolution postcontrast T1 spin echo sequences with fat saturation. (orig.)

  17. Combining Public Domain and Professional Panoramic Imagery for the Accurate and Dense 3d Reconstruction of the Destroyed Bel Temple in Palmyra

    Science.gov (United States)

    Wahbeh, W.; Nebiker, S.; Fangi, G.

    2016-06-01

    This paper exploits the potential of dense multi-image 3d reconstruction of destroyed cultural heritage monuments by either using public domain touristic imagery only or by combining the public domain imagery with professional panoramic imagery. The focus of our work is placed on the reconstruction of the temple of Bel, one of the Syrian heritage monuments, which was destroyed in September 2015 by the so called "Islamic State". The great temple of Bel is considered as one of the most important religious buildings of the 1st century AD in the East with a unique design. The investigations and the reconstruction were carried out using two types of imagery. The first are freely available generic touristic photos collected from the web. The second are panoramic images captured in 2010 for documenting those monuments. In the paper we present a 3d reconstruction workflow for both types of imagery using state-of-the art dense image matching software, addressing the non-trivial challenges of combining uncalibrated public domain imagery with panoramic images with very wide base-lines. We subsequently investigate the aspects of accuracy and completeness obtainable from the public domain touristic images alone and from the combination with spherical panoramas. We furthermore discuss the challenges of co-registering the weakly connected 3d point cloud fragments resulting from the limited coverage of the touristic photos. We then describe an approach using spherical photogrammetry as a virtual topographic survey allowing the co-registration of a detailed and accurate single 3d model of the temple interior and exterior.

  18. New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, W., E-mail: ludwig@esrf.fr [Universite de Lyon, INSA-Lyon, MATEIS CNRS UMR 5510, 69621Villeurbanne (France); European Synchrotron Radiation Facility, BP220, 38043 Grenoble (France); King, A. [European Synchrotron Radiation Facility, BP220, 38043 Grenoble (France); School of Materials, University of Manchester, Manchester, M13 9PL (United Kingdom); Reischig, P. [European Synchrotron Radiation Facility, BP220, 38043 Grenoble (France); Herbig, M. [Universite de Lyon, INSA-Lyon, MATEIS CNRS UMR 5510, 69621Villeurbanne (France); Lauridsen, E.M.; Schmidt, S. [Riso National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, DK-4000 Roskilde (Denmark); Proudhon, H.; Forest, S. [MINES ParisTech, Centre des materiaux, CNRS UMR 7633, BP 87, 91003 Evry Cedex (France); Cloetens, P.; Roscoat, S. Rolland du [European Synchrotron Radiation Facility, BP220, 38043 Grenoble (France); Buffiere, J.Y. [Universite de Lyon, INSA-Lyon, MATEIS CNRS UMR 5510, 69621Villeurbanne (France); Marrow, T.J. [School of Materials, University of Manchester, Manchester, M13 9PL (United Kingdom); Poulsen, H.F. [Riso National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, DK-4000 Roskilde (Denmark)

    2009-10-25

    Non-destructive, three-dimensional (3D) characterization of the grain structure in mono-phase polycrystalline materials is an open challenge in material science. Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting possibilities for mapping 3D grain shapes and crystallographic orientations for certain categories of polycrystalline materials. Direct visualisation of the three-dimensional grain boundary network or of two-phase (duplex) grain structures by means of absorption and/or phase contrast techniques may be possible, but is restricted to specific material systems. A recent extension of this methodology, termed X-ray diffraction contrast tomography (DCT), combines the principles of X-ray diffraction imaging, three-dimensional X-ray diffraction microscopy (3DXRD) and image reconstruction from projections. DCT provides simultaneous access to 3D grain shape, crystallographic orientation and local attenuation coefficient distribution. The technique applies to the larger range of plastically undeformed, polycrystalline mono-phase materials, provided some conditions on grain size and texture are fulfilled. The straightforward combination with high-resolution microtomography opens interesting new possibilities for the observation of microstructure related damage and deformation mechanisms in these materials.

  19. New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging

    International Nuclear Information System (INIS)

    Ludwig, W.; King, A.; Reischig, P.; Herbig, M.; Lauridsen, E.M.; Schmidt, S.; Proudhon, H.; Forest, S.; Cloetens, P.; Roscoat, S. Rolland du; Buffiere, J.Y.; Marrow, T.J.; Poulsen, H.F.

    2009-01-01

    Non-destructive, three-dimensional (3D) characterization of the grain structure in mono-phase polycrystalline materials is an open challenge in material science. Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting possibilities for mapping 3D grain shapes and crystallographic orientations for certain categories of polycrystalline materials. Direct visualisation of the three-dimensional grain boundary network or of two-phase (duplex) grain structures by means of absorption and/or phase contrast techniques may be possible, but is restricted to specific material systems. A recent extension of this methodology, termed X-ray diffraction contrast tomography (DCT), combines the principles of X-ray diffraction imaging, three-dimensional X-ray diffraction microscopy (3DXRD) and image reconstruction from projections. DCT provides simultaneous access to 3D grain shape, crystallographic orientation and local attenuation coefficient distribution. The technique applies to the larger range of plastically undeformed, polycrystalline mono-phase materials, provided some conditions on grain size and texture are fulfilled. The straightforward combination with high-resolution microtomography opens interesting new possibilities for the observation of microstructure related damage and deformation mechanisms in these materials.

  20. Breaking the Crowther limit: Combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Hovden, Robert, E-mail: rmh244@cornell.edu [School of Applied and Engineering Physics and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853 (United States); Ercius, Peter [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Jiang, Yi [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Wang, Deli; Yu, Yingchao; Abruña, Héctor D. [Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 (United States); Elser, Veit [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Muller, David A. [School of Applied and Engineering Physics and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853 (United States)

    2014-05-01

    To date, high-resolution (<1 nm) imaging of extended objects in three-dimensions (3D) has not been possible. A restriction known as the Crowther criterion forces a tradeoff between object size and resolution for 3D reconstructions by tomography. Further, the sub-Angstrom resolution of aberration-corrected electron microscopes is accompanied by a greatly diminished depth of field, causing regions of larger specimens (>6 nm) to appear blurred or missing. Here we demonstrate a three-dimensional imaging method that overcomes both these limits by combining through-focal depth sectioning and traditional tilt-series tomography to reconstruct extended objects, with high-resolution, in all three dimensions. The large convergence angle in aberration corrected instruments now becomes a benefit and not a hindrance to higher quality reconstructions. A through-focal reconstruction over a 390 nm 3D carbon support containing over 100 dealloyed and nanoporous PtCu catalyst particles revealed with sub-nanometer detail the extensive and connected interior pore structure that is created by the dealloying instability. - Highlights: • Develop tomography technique for high-resolution and large field of view. • We combine depth sectioning with traditional tilt tomography. • Through-focal tomography reduces tilts and improves resolution. • Through-focal tomography overcomes the fundamental Crowther limit. • Aberration-corrected becomes a benefit and not a hindrance for tomography.

  1. 3-D seismic response analysis of liquid-tank-foundation system by using BEM-FEM-impedance function combination

    International Nuclear Information System (INIS)

    Cho, Eu-Kyeong; Park, Jung-Il; Lee, Jong-Rim

    1995-01-01

    A new analytic scheme to resolve the liquid-soil-structure interaction problem in cylindrical liquid storage tanks on the deformable soil is presented. Boundary elements and finite elements are combined to simulate the liquid-structure coupling effect while tuned foundation impedance functions (TFIF's) are representing the motion of the rigid foundation block on the flexible soil. Because the coupled dynamic system is expressed explicitly in terms of mass and stiffness, the developed scheme is applicable to any standard dynamic analysis methodologies. (author)

  2. In-room ultrasound fusion combined with fully compatible 3D-printed holding arm – rethinking interventional MRI

    Directory of Open Access Journals (Sweden)

    Friebe M

    2018-03-01

    Full Text Available Michael Friebe,1 Juan Sanchez,1 Sathish Balakrishnan,1 Alfredo Illanes,1 Yeshaswini Nagaraj,2 Robert Odenbach,1 Marwah Matooq,1 Gabriele Krombach,3 Michael Vogele,4 Axel Boese1 1Chair of Intelligent Catheter, Otto-von-Guericke-University, Magdeburg, Germany; 2University of Groningen, University Medical Center Groningen, Center for Medical Imaging North East Netherlands, Groningen, the Netherlands; 3Universitätsklinikum Giessen, Radiologische Klinik, Giessen, Germany; 4Interventional Systems GmbH, Kitzbühel, Austria Abstract: There is no real need to discuss the potential advantages – mainly the excellent soft tissue contrast, nonionizing radiation, flow, and molecular information – of magnetic resonance imaging (MRI as an intraoperative diagnosis and therapy system particularly for neurological applications and oncological therapies. Difficult patient access in conventional horizontal-field superconductive magnets, very high investment and operational expenses, and the need for special nonferromagnetic therapy tools have however prevented the widespread use of MRI as imaging and guidance tool for therapy purposes. The interventional use of MRI systems follows for the last 20+ years the strategy to use standard diagnostic systems and add more or less complicated and expensive components (eg, MRI-compatible robotic systems, specially shielded in-room monitors, dedicated tools and devices made from low-susceptibility materials, etc to overcome the difficulties in the therapy process. We are proposing to rethink that approach using an in-room portable ultrasound (US system that can be safely operated till 1 m away from the opening of a 3T imaging system. The live US images can be tracked using an optical inside–out approach adding a camera to the US probe in combination with optical reference markers to allow direct fusion with the MRI images inside the MRI suite. This leads to a comfortable US-guided intervention and excellent patient

  3. 3D imaging of cement-based materials at submicron resolution by combining laser scanning confocal microscopy with serial sectioning.

    Science.gov (United States)

    Yio, M H N; Mac, M J; Wong, H S; Buenfeld, N R

    2015-05-01

    In this paper, we present a new method to reconstruct large volumes of nontransparent porous materials at submicron resolution. The proposed method combines fluorescence laser scanning confocal microscopy with serial sectioning to produce a series of overlapping confocal z-stacks, which are then aligned and stitched based on phase correlation. The method can be extended in the XY plane to further increase the overall image volume. Resolution of the reconstructed image volume does not degrade with increase in sample size. We have used the method to image cementitious materials, hardened cement paste and concrete and the results obtained show that the method is reliable. Possible applications of the method such as three-dimensional characterization of the pores and microcracks in hardened concrete, three-dimensional particle shape characterization of cementitious materials and three-dimensional characterization of other porous materials such as rocks and bioceramics are discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  4. Gender dimorphic ACL strain in response to combined dynamic 3D knee joint loading: implications for ACL injury risk.

    Science.gov (United States)

    Mizuno, Kiyonori; Andrish, Jack T; van den Bogert, Antonie J; McLean, Scott G

    2009-12-01

    While gender-based differences in knee joint anatomies/laxities are well documented, the potential for them to precipitate gender-dimorphic ACL loading and resultant injury risk has not been considered. To this end, we generated gender-specific models of ACL strain as a function of any six degrees of freedom (6DOF) knee joint load state via a combined cadaveric and analytical approach. Continuously varying joint forces and torques were applied to five male and five female cadaveric specimens and recorded along with synchronous knee flexion and ACL strain data. All data (approximately 10,000 samples) were submitted to specimen-specific regression analyses, affording ACL strain predictions as a function of the combined 6 DOF knee loads. Following individual model verifications, generalized gender-specific models were generated and subjected to 6 DOF external load scenarios consistent with both a clinical examination and a dynamic sports maneuver. The ensuing model-based strain predictions were subsequently examined for gender-based discrepancies. Male and female specimen-specific models predicted ACL strain within 0.51%+/-0.10% and 0.52%+/-0.07% of the measured data respectively, and explained more than 75% of the associated variance in each case. Predicted female ACL strains were also significantly larger than respective male values for both simulated 6 DOF load scenarios. Outcomes suggest that the female ACL will rupture in response to comparatively smaller external load applications. Future work must address the underlying anatomical/laxity contributions to knee joint mechanical and resultant ACL loading, ultimately affording prevention strategies that may cater to individual joint vulnerabilities.

  5. Patient-specific puzzle implant preformed with 3D-printed rapid prototype model for combined orbital floor and medial wall fracture.

    Science.gov (United States)

    Kim, Young Chul; Min, Kyung Hyun; Choi, Jong Woo; Koh, Kyung S; Oh, Tae Suk; Jeong, Woo Shik

    2018-04-01

    The management of combined orbital floor and medial wall fractures involving the inferomedial strut is challenging due to absence of stable cornerstone. In this article, we proposed surgical strategies using customized 3D puzzle implant preformed with Rapid Prototype (RP) skull model. Retrospective review was done in 28 patients diagnosed with combined orbital floor and medial wall fracture. Using preoperative CT scans, original and mirror-imaged RP skull models for each patient were prepared and sterilized. In all patients, porous polyethylene-coated titanium mesh was premolded onto RP skull model in two ways; Customized 3D jigsaw puzzle technique was used in 15 patients with comminuted inferomedial strut, whereas individual 3D implant technique was used in each fracture for 13 patients with intact inferomedial strut. Outcomes including enophthalmos, visual acuity, and presence of diplopia were assessed and orbital volume was measured using OsiriX software preoperatively and postoperatively. Satisfactory results were achieved in both groups in terms of clinical improvements. Of 10 patients with preoperative diplopia, 9 improved in 6 months, except one with persistent symptom who underwent extraocular muscle rupture. 18 patients who had moderate to severe enophthalmos preoperatively improved, and one remained with mild degree. Orbital volume ratio, defined as volumetric ratio between affected and control orbit, decreased from 127.6% to 99.79% (p puzzle and individual reconstruction technique provide accurate restoration of combined orbital floor and medial wall fractures. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  7. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  8. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  9. Influence of extremely low frequency, low energy electromagnetic fields and combined mechanical stimulation on chondrocytes in 3-D constructs for cartilage tissue engineering.

    Science.gov (United States)

    Hilz, Florian M; Ahrens, Philipp; Grad, Sibylle; Stoddart, Martin J; Dahmani, Chiheb; Wilken, Frauke L; Sauerschnig, Martin; Niemeyer, Philipp; Zwingmann, Jörn; Burgkart, Rainer; von Eisenhart-Rothe, Rüdiger; Südkamp, Norbert P; Weyh, Thomas; Imhoff, Andreas B; Alini, Mauro; Salzmann, Gian M

    2014-02-01

    Articular cartilage, once damaged, has very low regenerative potential. Various experimental approaches have been conducted to enhance chondrogenesis and cartilage maturation. Among those, non-invasive electromagnetic fields have shown their beneficial influence for cartilage regeneration and are widely used for the treatment of non-unions, fractures, avascular necrosis and osteoarthritis. One very well accepted way to promote cartilage maturation is physical stimulation through bioreactors. The aim of this study was the investigation of combined mechanical and electromagnetic stress affecting cartilage cells in vitro. Primary articular chondrocytes from bovine fetlock joints were seeded into three-dimensional (3-D) polyurethane scaffolds and distributed into seven stimulated experimental groups. They either underwent mechanical or electromagnetic stimulation (sinusoidal electromagnetic field of 1 mT, 2 mT, or 3 mT; 60 Hz) or both within a joint-specific bioreactor and a coil system. The scaffold-cell constructs were analyzed for glycosaminoglycan (GAG) and DNA content, histology, and gene expression of collagen-1, collagen-2, aggrecan, cartilage oligomeric matrix protein (COMP), Sox9, proteoglycan-4 (PRG-4), and matrix metalloproteinases (MMP-3 and -13). There were statistically significant differences in GAG/DNA content between the stimulated versus the control group with highest levels in the combined stimulation group. Gene expression was significantly higher for combined stimulation groups versus static control for collagen 2/collagen 1 ratio and lower for MMP-13. Amongst other genes, a more chondrogenic phenotype was noticed in expression patterns for the stimulated groups. To conclude, there is an effect of electromagnetic and mechanical stimulation on chondrocytes seeded in a 3-D scaffold, resulting in improved extracellular matrix production. © 2013 Wiley Periodicals, Inc.

  10. Automatic gallbladder segmentation using combined 2D and 3D shape features to perform volumetric analysis in native and secretin-enhanced MRCP sequences.

    Science.gov (United States)

    Gloger, Oliver; Bülow, Robin; Tönnies, Klaus; Völzke, Henry

    2017-11-24

    We aimed to develop the first fully automated 3D gallbladder segmentation approach to perform volumetric analysis in volume data of magnetic resonance (MR) cholangiopancreatography (MRCP) sequences. Volumetric gallbladder analysis is performed for non-contrast-enhanced and secretin-enhanced MRCP sequences. Native and secretin-enhanced MRCP volume data were produced with a 1.5-T MR system. Images of coronal maximum intensity projections (MIP) are used to automatically compute 2D characteristic shape features of the gallbladder in the MIP images. A gallbladder shape space is generated to derive 3D gallbladder shape features, which are then combined with 2D gallbladder shape features in a support vector machine approach to detect gallbladder regions in MRCP volume data. A region-based level set approach is used for fine segmentation. Volumetric analysis is performed for both sequences to calculate gallbladder volume differences between both sequences. The approach presented achieves segmentation results with mean Dice coefficients of 0.917 in non-contrast-enhanced sequences and 0.904 in secretin-enhanced sequences. This is the first approach developed to detect and segment gallbladders in MR-based volume data automatically in both sequences. It can be used to perform gallbladder volume determination in epidemiological studies and to detect abnormal gallbladder volumes or shapes. The positive volume differences between both sequences may indicate the quantity of the pancreatobiliary reflux.

  11. An automated device for the digitization and 3D modelling of insects, combining extended-depth-of-field and all-side multi-view imaging

    Directory of Open Access Journals (Sweden)

    Bernhard Ströbel

    2018-05-01

    Full Text Available Digitization of natural history collections is a major challenge in archiving biodiversity. In recent years, several approaches have emerged, allowing either automated digitization, extended depth of field (EDOF or multi-view imaging of insects. Here, we present DISC3D: a new digitization device for pinned insects and other small objects that combines all these aspects. A PC and a microcontroller board control the device. It features a sample holder on a motorized two-axis gimbal, allowing the specimens to be imaged from virtually any view. Ambient, mostly reflection-free illumination is ascertained by two LED-stripes circularly installed in two hemispherical white-coated domes (front-light and back-light. The device is equipped with an industrial camera and a compact macro lens, mounted on a motorized macro rail. EDOF images are calculated from an image stack using a novel calibrated scaling algorithm that meets the requirements of the pinhole camera model (a unique central perspective. The images can be used to generate a calibrated and real color texturized 3Dmodel by ‘structure from motion’ with a visibility consistent mesh generation. Such models are ideal for obtaining morphometric measurement data in 1D, 2D and 3D, thereby opening new opportunities for trait-based research in taxonomy, phylogeny, eco-physiology, and functional ecology.

  12. A versatile method for combining different biopolymers in a core/shell fashion by 3D plotting to achieve mechanically robust constructs.

    Science.gov (United States)

    Akkineni, Ashwini Rahul; Ahlfeld, Tilman; Lode, Anja; Gelinsky, Michael

    2016-10-07

    Three-dimensional extrusion of two different biomaterials in a core/shell (c/s) fashion has gained much interest in the last couple of years as it allows for fabricating constructs with novel and interesting properties. We now demonstrate that combining high concentrated (16.7 wt%) alginate hydrogels as shell material with low concentrated, soft biopolymer hydrogels as core leads to mechanically stable and robust 3D scaffolds. Alginate, chitosan, gellan gum, gelatin and collagen hydrogels were utilized successfully as core materials-hydrogels which are too soft for 3D plotting of open-porous structures without an additional mechanical support. The respective c/s scaffolds were characterized concerning their morphology, mechanical properties and swelling behavior. It could be shown that core as well as shell part can be loaded with growth factors and that the release depends on core composition and shell thickness. Neither the plotting process nor the crosslinking with 1M CaCl 2 denatured the proteins. When core and shell were loaded with different growth factors (VEGF and BMP-2, respectively) a dual release was achieved. Finally, live human endothelial cells were integrated in the core material, demonstrating that this new strategy can be used for bioprinting purposes as well.

  13. Identification of the Structural Features of Guanine Derivatives as MGMT Inhibitors Using 3D-QSAR Modeling Combined with Molecular Docking

    Directory of Open Access Journals (Sweden)

    Guohui Sun

    2016-06-01

    Full Text Available DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT, which plays an important role in inducing drug resistance against alkylating agents that modify the O6 position of guanine in DNA, is an attractive target for anti-tumor chemotherapy. A series of MGMT inhibitors have been synthesized over the past decades to improve the chemotherapeutic effects of O6-alkylating agents. In the present study, we performed a three-dimensional quantitative structure activity relationship (3D-QSAR study on 97 guanine derivatives as MGMT inhibitors using comparative molecular field analysis (CoMFA and comparative molecular similarity indices analysis (CoMSIA methods. Three different alignment methods (ligand-based, DFT optimization-based and docking-based alignment were employed to develop reliable 3D-QSAR models. Statistical parameters derived from the models using the above three alignment methods showed that the ligand-based CoMFA (Qcv2 = 0.672 and Rncv2 = 0.997 and CoMSIA (Qcv2 = 0.703 and Rncv2 = 0.946 models were better than the other two alignment methods-based CoMFA and CoMSIA models. The two ligand-based models were further confirmed by an external test-set validation and a Y-randomization examination. The ligand-based CoMFA model (Qext2 = 0.691, Rpred2 = 0.738 and slope k = 0.91 was observed with acceptable external test-set validation values rather than the CoMSIA model (Qext2 = 0.307, Rpred2 = 0.4 and slope k = 0.719. Docking studies were carried out to predict the binding modes of the inhibitors with MGMT. The results indicated that the obtained binding interactions were consistent with the 3D contour maps. Overall, the combined results of the 3D-QSAR and the docking obtained in this study provide an insight into the understanding of the interactions between guanine derivatives and MGMT protein, which will assist in designing novel MGMT inhibitors with desired activity.

  14. Quantification of anthropogenic impact on groundwater-dependent terrestrial ecosystem using geochemical and isotope tools combined with 3-D flow and transport modelling

    Science.gov (United States)

    Zurek, A. J.; Witczak, S.; Dulinski, M.; Wachniew, P.; Rozanski, K.; Kania, J.; Postawa, A.; Karczewski, J.; Moscicki, W. J.

    2015-02-01

    Groundwater-dependent ecosystems (GDEs) have important functions in all climatic zones as they contribute to biological and landscape diversity and provide important economic and social services. Steadily growing anthropogenic pressure on groundwater resources creates a conflict situation between nature and man which are competing for clean and safe sources of water. Such conflicts are particularly noticeable in GDEs located in densely populated regions. A dedicated study was launched in 2010 with the main aim to better understand the functioning of a groundwater-dependent terrestrial ecosystem (GDTE) located in southern Poland. The GDTE consists of a valuable forest stand (Niepolomice Forest) and associated wetland (Wielkie Błoto fen). It relies mostly on groundwater from the shallow Quaternary aquifer and possibly from the deeper Neogene (Bogucice Sands) aquifer. In July 2009 a cluster of new pumping wells abstracting water from the Neogene aquifer was set up 1 km to the northern border of the fen. A conceptual model of the Wielkie Błoto fen area for the natural, pre-exploitation state and for the envisaged future status resulting from intense abstraction of groundwater through the new well field was developed. The main aim of the reported study was to probe the validity of the conceptual model and to quantify the expected anthropogenic impact on the studied GDTE. A wide range of research tools was used. The results obtained through combined geologic, geophysical, geochemical, hydrometric and isotope investigations provide strong evidence for the existence of upward seepage of groundwater from the deeper Neogene aquifer to the shallow Quaternary aquifer supporting the studied GDTE. Simulations of the groundwater flow field in the study area with the aid of a 3-D flow and transport model developed for Bogucice Sands (Neogene) aquifer and calibrated using environmental tracer data and observations of hydraulic head in three different locations on the study area

  15. 3D biometrics systems and applications

    CERN Document Server

    Zhang, David

    2013-01-01

    Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications

  16. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based 3D bioprinting

    NARCIS (Netherlands)

    Wüst, S.; Godla, M.E.; Müller, R.; Hofmann, S.

    2014-01-01

    Three-dimensional (3-D) bioprinting is the layer-by-layer deposition of biological material with the aim of achieving stable 3-D constructs for application in tissue engineering. It is a powerful tool for the spa- tially directed placement of multiple materials and/or cells within the 3-D sample.

  17. A combined vector potential-scalar potential method for FE computation of 3D magnetic fields in electrical devices with iron cores

    Science.gov (United States)

    Wang, R.; Demerdash, N. A.

    1991-01-01

    A method of combined use of magnetic vector potential based finite-element (FE) formulations and magnetic scalar potential (MSP) based formulations for computation of three-dimensional magnetostatic fields is introduced. In this method, the curl-component of the magnetic field intensity is computed by a reduced magnetic vector potential. This field intensity forms the basic of a forcing function for a global magnetic scalar potential solution over the entire volume of the region. This method allows one to include iron portions sandwiched in between conductors within partitioned current-carrying subregions. The method is most suited for large-scale global-type 3-D magnetostatic field computations in electrical devices, and in particular rotating electric machinery.

  18. Wireless Multi Hop Access Networks and Protocols

    OpenAIRE

    Nilsson Plymoth, Anders

    2007-01-01

    As more and more applications and services in our society now depend on the Internet, it is important that dynamically deployed wireless multi hop networks are able to gain access to the Internet and other infrastructure networks and services. This thesis proposes and evaluates solutions for providing multi hop Internet Access. It investigates how ad hoc networks can be combined with wireless and mesh networks in order to create wireless multi hop access networks. When several access points t...

  19. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  20. Details of recurrence sites after elective nodal irradiation (ENI) using 3D-conformal radiotherapy (3D-CRT) combined with chemotherapy for thoracic esophageal squamous cell carcinoma--a retrospective analysis.

    Science.gov (United States)

    Yamashita, Hideomi; Okuma, Kae; Wakui, Reiko; Kobayashi-Shibata, Shino; Ohtomo, Kuni; Nakagawa, Keiichi

    2011-02-01

    To describe patterns of recurrence of elective nodal irradiation (ENI) in definitive chemoradiotherapy (CRT) for thoracic esophageal squamous cell carcinoma (SqCC) using 3D-conformal radiotherapy. One hundred and twenty-six consecutive patients with stages I-IVB thoracic esophageal SqCC newly diagnosed between June 2000 and July 2009 and treated with 3D-CRT in our institution were recruited from our database. Definitive CRT consisted of two cycles of nedaplatin/5FU repeated every 4 weeks, with concurrent radiation therapy of 50-50.4 Gy in 25-28 fractions. Until completion, radiotherapy was delivered to the N1 and M1a lymph nodes as ENI in addition to gross tumor volume. All 126 patients were included in this analysis, and their tumors were staged as follows: T1/T2/T3/T4, 28/18/54/26; N0/N1, 50/76; M0/M1a/M1b, 91/5/30. The mean follow-up period for the 63 surviving patients was 28.3 (±22.8) months. Eighty-seven patients (69%) achieved complete response (CR) without any residual tumor at least once after completion of CRT. After achieving CR, each of 40 patients experienced failures (local=20 and distant=20) and no patient experienced elective nodal failure without having any other site of recurrence. The upper thoracic esophageal carcinoma showed significantly more (34%) relapses at the local site than the middle (9%) or lower thoracic (11%) carcinomas. The 2-year and 3-year overall survival was 56% and 43%, respectively. The 1-year, 2-year and 3-year disease-free survival was 46%, 38% and 33%, respectively. In CRT for esophageal SqCC, ENI was effective for preventing regional nodal failure. The upper thoracic esophageal carcinomas had significantly more local recurrences than the middle or lower thoracic sites. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina.

    Science.gov (United States)

    Zawadzki, Robert J; Zhang, Pengfei; Zam, Azhar; Miller, Eric B; Goswami, Mayank; Wang, Xinlei; Jonnal, Ravi S; Lee, Sang-Hyuck; Kim, Dae Yu; Flannery, John G; Werner, John S; Burns, Marie E; Pugh, Edward N

    2015-06-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has recently been used to achieve exquisite subcellular resolution imaging of the mouse retina. Wavefront sensing-based AO typically restricts the field of view to a few degrees of visual angle. As a consequence the relationship between AO-SLO data and larger scale retinal structures and cellular patterns can be difficult to assess. The retinal vasculature affords a large-scale 3D map on which cells and structures can be located during in vivo imaging. Phase-variance OCT (pv-OCT) can efficiently image the vasculature with near-infrared light in a label-free manner, allowing 3D vascular reconstruction with high precision. We combined widefield pv-OCT and SLO imaging with AO-SLO reflection and fluorescence imaging to localize two types of fluorescent cells within the retinal layers: GFP-expressing microglia, the resident macrophages of the retina, and GFP-expressing cone photoreceptor cells. We describe in detail a reflective afocal AO-SLO retinal imaging system designed for high resolution retinal imaging in mice. The optical performance of this instrument is compared to other state-of-the-art AO-based mouse retinal imaging systems. The spatial and temporal resolution of the new AO instrumentation was characterized with angiography of retinal capillaries, including blood-flow velocity analysis. Depth-resolved AO-SLO fluorescent images of microglia and cone photoreceptors are visualized in parallel with 469 nm and 663 nm reflectance images of the microvasculature and other structures. Additional applications of the new instrumentation are discussed.

  2. Controlling T2 blurring in 3D RARE arterial spin labeling acquisition through optimal combination of variable flip angles and k-space filtering.

    Science.gov (United States)

    Zhao, Li; Chang, Ching-Di; Alsop, David C

    2018-02-09

    To improve the SNR efficiency and reduce the T 2 blurring of 3D rapid acquisition with relaxation enhancement stack-of-spiral arterial spin labeling imaging by using variable refocusing flip angles and k-space filtering. An algorithm for determining the optimal combination of variable flip angles and filtering correction is proposed. The flip angles are designed using extended phase graph physical simulations in an analytical and global optimization framework, with an optional constraint on deposited power. Optimal designs for correcting to Hann and Fermi window functions were compared with conventional constant amplitude or variable flip angle only designs on 6 volunteers. With the Fermi window correction, the proposed optimal designs provided 39.8 and 27.3% higher SNR (P variable flip angle designs. Even when power deposition was limited to 50% of the constant amplitude design, the proposed method outperformed the SNR (P variable flip angles can be derived as the output of an optimization problem. The combined design of variable flip angle and k-space filtering provided superior SNR to designs primarily emphasizing either approach singly. © 2018 International Society for Magnetic Resonance in Medicine.

  3. Breaking the Crowther limit: Combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions

    International Nuclear Information System (INIS)

    Hovden, Robert; Ercius, Peter; Jiang, Yi; Wang, Deli; Yu, Yingchao; Abruña, Héctor D.; Elser, Veit; Muller, David A.

    2014-01-01

    To date, high-resolution ( 6 nm) to appear blurred or missing. Here we demonstrate a three-dimensional imaging method that overcomes both these limits by combining through-focal depth sectioning and traditional tilt-series tomography to reconstruct extended objects, with high-resolution, in all three dimensions. The large convergence angle in aberration corrected instruments now becomes a benefit and not a hindrance to higher quality reconstructions. A through-focal reconstruction over a 390 nm 3D carbon support containing over 100 dealloyed and nanoporous PtCu catalyst particles revealed with sub-nanometer detail the extensive and connected interior pore structure that is created by the dealloying instability. - Highlights: • Develop tomography technique for high-resolution and large field of view. • We combine depth sectioning with traditional tilt tomography. • Through-focal tomography reduces tilts and improves resolution. • Through-focal tomography overcomes the fundamental Crowther limit. • Aberration-corrected becomes a benefit and not a hindrance for tomography

  4. Open 3D Projects

    Directory of Open Access Journals (Sweden)

    Felician ALECU

    2010-01-01

    Full Text Available Many professionals and 3D artists consider Blender as being the best open source solution for 3D computer graphics. The main features are related to modeling, rendering, shading, imaging, compositing, animation, physics and particles and realtime 3D/game creation.

  5. ACM-based automatic liver segmentation from 3-D CT images by combining multiple atlases and improved mean-shift techniques.

    Science.gov (United States)

    Ji, Hongwei; He, Jiangping; Yang, Xin; Deklerck, Rudi; Cornelis, Jan

    2013-05-01

    In this paper, we present an autocontext model(ACM)-based automatic liver segmentation algorithm, which combines ACM, multiatlases, and mean-shift techniques to segment liver from 3-D CT images. Our algorithm is a learning-based method and can be divided into two stages. At the first stage, i.e., the training stage, ACM is performed to learn a sequence of classifiers in each atlas space (based on each atlas and other aligned atlases). With the use of multiple atlases, multiple sequences of ACM-based classifiers are obtained. At the second stage, i.e., the segmentation stage, the test image will be segmented in each atlas space by applying each sequence of ACM-based classifiers. The final segmentation result will be obtained by fusing segmentation results from all atlas spaces via a multiclassifier fusion technique. Specially, in order to speed up segmentation, given a test image, we first use an improved mean-shift algorithm to perform over-segmentation and then implement the region-based image labeling instead of the original inefficient pixel-based image labeling. The proposed method is evaluated on the datasets of MICCAI 2007 liver segmentation challenge. The experimental results show that the average volume overlap error and the average surface distance achieved by our method are 8.3% and 1.5 m, respectively, which are comparable to the results reported in the existing state-of-the-art work on liver segmentation.

  6. Refined 3d-3d correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Alday, Luis F.; Genolini, Pietro Benetti; Bullimore, Mathew; Loon, Mark van [Mathematical Institute, University of Oxford, Andrew Wiles Building,Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG (United Kingdom)

    2017-04-28

    We explore aspects of the correspondence between Seifert 3-manifolds and 3d N=2 supersymmetric theories with a distinguished abelian flavour symmetry. We give a prescription for computing the squashed three-sphere partition functions of such 3d N=2 theories constructed from boundary conditions and interfaces in a 4d N=2{sup ∗} theory, mirroring the construction of Seifert manifold invariants via Dehn surgery. This is extended to include links in the Seifert manifold by the insertion of supersymmetric Wilson-’t Hooft loops in the 4d N=2{sup ∗} theory. In the presence of a mass parameter for the distinguished flavour symmetry, we recover aspects of refined Chern-Simons theory with complex gauge group, and in particular construct an analytic continuation of the S-matrix of refined Chern-Simons theory.

  7. A methodology to accurately quantify patellofemoral cartilage contact kinematics by combining 3D image shape registration and cine-PC MRI velocity data.

    Science.gov (United States)

    Borotikar, Bhushan S; Sipprell, William H; Wible, Emily E; Sheehan, Frances T

    2012-04-05

    Patellofemoral osteoarthritis and its potential precursor patellofemoral pain syndrome (PFPS) are common, costly, and debilitating diseases. PFPS has been shown to be associated with altered patellofemoral joint mechanics; however, an actual variation in joint contact stresses has not been established due to challenges in accurately quantifying in vivo contact kinematics (area and location). This study developed and validated a method for tracking dynamic, in vivo cartilage contact kinematics by combining three magnetic resonance imaging (MRI) techniques, cine-phase contrast (CPC), multi-plane cine (MPC), and 3D high-resolution static imaging. CPC and MPC data were acquired from 12 healthy volunteers while they actively extended/flexed their knee within the MRI scanner. Since no gold standard exists for the quantification of in vivo dynamic cartilage contact kinematics, the accuracy of tracking a single point (patellar origin relative to the femur) represented the accuracy of tracking the kinematics of an entire surface. The accuracy was determined by the average absolute error between the PF kinematics derived through registration of MPC images to a static model and those derived through integration of the CPC velocity data. The accuracy ranged from 0.47 mm to 0.77 mm for the patella and femur and from 0.68 mm to 0.86 mm for the patellofemoral joint. For purely quantifying joint kinematics, CPC remains an analytically simpler and more accurate (accuracy <0.33 mm) technique. However, for application requiring the tracking of an entire surface, such as quantifying cartilage contact kinematics, this combined imaging approach produces accurate results with minimal operator intervention. Published by Elsevier Ltd.

  8. A 3d-3d appetizer

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Du; Ye, Ke [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, 91125 (United States)

    2016-11-02

    We test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T[L(p,1)] and the partition function of complex Chern-Simons theory on L(p,1). In particular, for p=1, we show how the familiar S{sup 3} partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p,1)] becomes a constant independent of p. In addition, we study T[L(p,1)] on the squashed three-sphere S{sub b}{sup 3}. This enables us to see clearly, at the level of partition function, to what extent G{sub ℂ} complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  9. Role of combined DWIBS/3D-CE-T1w whole-body MRI in tumor staging: Comparison with PET-CT

    International Nuclear Information System (INIS)

    Manenti, Guglielmo; Cicciò, Carmelo; Squillaci, Ettore; Strigari, Lidia; Calabria, Ferdinando; Danieli, Roberta

    2012-01-01

    Objectives: To assess the diagnostic performance of whole-body magnetic resonance imaging (WB-MRI) by diffusion-weighted whole-body imaging with background body signal suppression (DWIBS) in malignant tumor detection and the potential diagnostic advantages in generating fused DWIBS/3D-contrast enhanced T1w (3D-CE-T1w) images. Methods: 45 cancer patients underwent 18F-FDG PET-CT and WB-MRI for staging purpose. Fused DWIBS/3D-CE T1w images were generated off-line. 3D-CE-T1w, DWIBS images alone and fused with 3D-CE T1w were compared by two readers groups for detection of primary diseases and local/distant metastases. Diagnostic performance between the three WB-MRI data sets was assessed using receiver operating characteristic (ROC) curve analysis. Imaging exams and histopathological results were used as standard of references. Results: Areas under the ROC curves of DWIBS vs. 3D-CE-T1w vs. both sequences in fused fashion were 0.97, 0.978, and 1.00, respectively. The diagnostic performance in tumor detection of fused DWIBS/3D-CE-T1w images were statistically superior to DWIBS (p < 0.001) and 3D-CE-T1w (p ≤ 0.002); while the difference between DWIBS and 3D-CE-T1w did not show statistical significance difference. Detection rates of malignancy did not differ between WB-MRI with DWIBS and 18F-FDG PET-CT. Conclusion: WB-MRI with DWIBS is to be considered as alternative tool to conventional whole-body methods for tumor staging and during follow-up in cancer patients.

  10. Skull base chordomas: treatment outcome and prognostic factors in adult patients following conformal treatment with 3D planning and high dose fractionated combined proton and photon radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Munzenrider, J E; Hug, E; McManus, P; Adams, J; Efird, J; Liebsch, N J

    1995-07-01

    Purpose: To report treatment outcome and prognostic factors for local recurrence-free survival and overall survival in adult patients with skull base chordomas treated with 3D planning and high dose fractionated combined proton and photon radiation therapy. Methods and Materials: From 1975 through 1993, 132 adult patients with skull base chordomas were treated with fractionated combined proton and photon radiation therapy. Seventy five patients (57%) were male and 57 (43%) female. Age ranged from 19 to 80 years (median 45.5 years). All pathology was verified at MGH by a single pathologist. Ninety six had non-chondroid (NCC) and 36 chondroid chordomas (CC), respectively. Median prescribed dose was 68.7 CGE (CGE, Cobalt Gray-equivalent: proton Gy X RBE 1.1 + photon Gy), ranging from 36 to 79.2 CGE; 95% received {>=} 66.6 CGE. Between 70 and 100% of the dose was given with the 160 MeV proton beam at the Harvard Cyclotron. 3D CT-based treatment planning has been employed in all patients treated since 1980. Median follow-up was 46 months (range 2-158 months). Results: Treatment outcome was evaluated in terms of local recurrence-free survival (LRFS) and disease specific survival (DSS), as well as treatment-related morbidity. Local failure (LF), defined as progressive neurological deficit with definite increase in tumor volume on CT or MRI scan, occurred in 39 patients (29.5%). LF was more common among women than among men:(26(57)) (46%) vs (13(75)) (17%), respectively. Thirty three of the 39 LF were seen in non-chondroid chordoma patients, with 6 occurring in patients with the chondroid variant (34% of NCC and 17% of CC), respectively. Distant metastasis was documented in 8 patients. LRFS was 81 {+-} 5.8%, 59 {+-} 8.3%, and 43 {+-} 10.4%, and DSS was 94 {+-} 3.6%, 80 {+-} 6.7%, and 50 {+-} 10.7% at 36, 60, and 96 months, respectively, for the total group. LRFS and DSS were not significantly different for patients with NCC than those with CC (p > .05). Gender was

  11. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  12. Human in vitro 3D co-culture model to engineer vascularized bone-mimicking tissues combining computational tools and statistical experimental approach.

    Science.gov (United States)

    Bersini, Simone; Gilardi, Mara; Arrigoni, Chiara; Talò, Giuseppe; Zamai, Moreno; Zagra, Luigi; Caiolfa, Valeria; Moretti, Matteo

    2016-01-01

    The generation of functional, vascularized tissues is a key challenge for both tissue engineering applications and the development of advanced in vitro models analyzing interactions among circulating cells, endothelium and organ-specific microenvironments. Since vascularization is a complex process guided by multiple synergic factors, it is critical to analyze the specific role that different experimental parameters play in the generation of physiological tissues. Our goals were to design a novel meso-scale model bridging the gap between microfluidic and macro-scale studies, and high-throughput screen the effects of multiple variables on the vascularization of bone-mimicking tissues. We investigated the influence of endothelial cell (EC) density (3-5 Mcells/ml), cell ratio among ECs, mesenchymal stem cells (MSCs) and osteo-differentiated MSCs (1:1:0, 10:1:0, 10:1:1), culture medium (endothelial, endothelial + angiopoietin-1, 1:1 endothelial/osteo), hydrogel type (100%fibrin, 60%fibrin+40%collagen), tissue geometry (2 × 2 × 2, 2 × 2 × 5 mm(3)). We optimized the geometry and oxygen gradient inside hydrogels through computational simulations and we analyzed microvascular network features including total network length/area and vascular branch number/length. Particularly, we employed the "Design of Experiment" statistical approach to identify key differences among experimental conditions. We combined the generation of 3D functional tissue units with the fine control over the local microenvironment (e.g. oxygen gradients), and developed an effective strategy to enable the high-throughput screening of multiple experimental parameters. Our approach allowed to identify synergic correlations among critical parameters driving microvascular network development within a bone-mimicking environment and could be translated to any vascularized tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A Combination of 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation Studies of Benzimidazole-Quinolinone Derivatives as iNOS Inhibitors

    Directory of Open Access Journals (Sweden)

    Peixun Liu

    2012-09-01

    Full Text Available Inducible Nitric Oxide Synthase (iNOS has been involved in a variety of diseases, and thus it is interesting to discover and optimize new iNOS inhibitors. In previous studies, a series of benzimidazole-quinolinone derivatives with high inhibitory activity against human iNOS were discovered. In this work, three-dimensional quantitative structure-activity relationships (3D-QSAR, molecular docking and molecular dynamics (MD simulation approaches were applied to investigate the functionalities of active molecular interaction between these active ligands and iNOS. A QSAR model with R2 of 0.9356, Q2 of 0.8373 and Pearson-R value of 0.9406 was constructed, which presents a good predictive ability in both internal and external validation. Furthermore, a combined analysis incorporating the obtained model and the MD results indicates: (1 compounds with the proper-size hydrophobic substituents at position 3 in ring-C (R3 substituent, hydrophilic substituents near the X6 of ring-D and hydrophilic or H-bond acceptor groups at position 2 in ring-B show enhanced biological activities; (2 Met368, Trp366, Gly365, Tyr367, Phe363, Pro344, Gln257, Val346, Asn364, Met349, Thr370, Glu371 and Tyr485 are key amino acids in the active pocket, and activities of iNOS inhibitors are consistent with their capability to alter the position of these important residues, especially Glu371 and Thr370. The results provide a set of useful guidelines for the rational design of novel iNOS inhibitors.

  14. Underwater 3D filming

    Directory of Open Access Journals (Sweden)

    Roberto Rinaldi

    2014-12-01

    Full Text Available After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.

  15. Real-time 3D internal marker tracking during arc radiotherapy by the use of combined MV-kV imaging

    International Nuclear Information System (INIS)

    Liu, W; Wiersma, R D; Mao, W; Luxton, G; Xing, L

    2008-01-01

    To minimize the adverse dosimetric effect caused by tumor motion, it is desirable to have real-time knowledge of the tumor position throughout the beam delivery process. A promising technique to realize the real-time image guided scheme in external beam radiation therapy is through the combined use of MV and onboard kV beam imaging. The success of this MV-kV triangulation approach for fixed-gantry radiation therapy has been demonstrated. With the increasing acceptance of modern arc radiotherapy in the clinics, a timely and clinically important question is whether the image guidance strategy can be extended to arc therapy to provide the urgently needed real-time tumor motion information. While conceptually feasible, there are a number of theoretical and practical issues specific to the arc delivery that need to be resolved before clinical implementation. The purpose of this work is to establish a robust procedure of system calibration for combined MV and kV imaging for internal marker tracking during arc delivery and to demonstrate the feasibility and accuracy of the technique. A commercially available LINAC equipped with an onboard kV imager and electronic portal imaging device (EPID) was used for the study. A custom built phantom with multiple ball bearings was used to calibrate the stereoscopic MV-kV imaging system to provide the transformation parameters from imaging pixels to 3D world coordinates. The accuracy of the fiducial tracking system was examined using a 4D motion phantom capable of moving in accordance with a pre-programmed trajectory. Overall, spatial accuracy of MV-kV fiducial tracking during the arc delivery process for normal adult breathing amplitude and period was found to be better than 1 mm. For fast motion, the results depended on the imaging frame rates. The RMS error ranged from ∼0.5 mm for the normal adult breathing pattern to ∼1.5 mm for more extreme cases with a low imaging frame rate of 3.4 Hz. In general, highly accurate real

  16. Real-time 3D internal marker tracking during arc radiotherapy by the use of combined MV-kV imaging.

    Science.gov (United States)

    Liu, W; Wiersma, R D; Mao, W; Luxton, G; Xing, L

    2008-12-21

    To minimize the adverse dosimetric effect caused by tumor motion, it is desirable to have real-time knowledge of the tumor position throughout the beam delivery process. A promising technique to realize the real-time image guided scheme in external beam radiation therapy is through the combined use of MV and onboard kV beam imaging. The success of this MV-kV triangulation approach for fixed-gantry radiation therapy has been demonstrated. With the increasing acceptance of modern arc radiotherapy in the clinics, a timely and clinically important question is whether the image guidance strategy can be extended to arc therapy to provide the urgently needed real-time tumor motion information. While conceptually feasible, there are a number of theoretical and practical issues specific to the arc delivery that need to be resolved before clinical implementation. The purpose of this work is to establish a robust procedure of system calibration for combined MV and kV imaging for internal marker tracking during arc delivery and to demonstrate the feasibility and accuracy of the technique. A commercially available LINAC equipped with an onboard kV imager and electronic portal imaging device (EPID) was used for the study. A custom built phantom with multiple ball bearings was used to calibrate the stereoscopic MV-kV imaging system to provide the transformation parameters from imaging pixels to 3D world coordinates. The accuracy of the fiducial tracking system was examined using a 4D motion phantom capable of moving in accordance with a pre-programmed trajectory. Overall, spatial accuracy of MV-kV fiducial tracking during the arc delivery process for normal adult breathing amplitude and period was found to be better than 1 mm. For fast motion, the results depended on the imaging frame rates. The RMS error ranged from approximately 0.5 mm for the normal adult breathing pattern to approximately 1.5 mm for more extreme cases with a low imaging frame rate of 3.4 Hz. In general

  17. In Vivo Evaluation of 3D-Printed Polycaprolactone Scaffold Implantation Combined with β-TCP Powder for Alveolar Bone Augmentation in a Beagle Defect Model

    Directory of Open Access Journals (Sweden)

    Su A. Park

    2018-02-01

    Full Text Available Insufficient bone volume is one of the major challenges encountered by dentists after dental implant placement. This study aimed to evaluate the efficacy of a customized three-dimensional polycaprolactone (3D PCL scaffold implant fabricated with a 3D bio-printing system to facilitate rapid alveolar bone regeneration. Saddle-type bone defects were surgically created on the healed site after extracting premolars from the mandibles of four beagle dogs. The defects were radiologically examined using computed tomography for designing a customized 3D PCL scaffold block to fit the defect site. After fabricating 3D PCL scaffolds using rapid prototyping, the scaffolds were implanted into the alveolar bone defects along with β-tricalcium phosphate powder. In vivo analysis showed that the PCL blocks maintained the physical space and bone conductivity around the defects. In addition, no inflammatory infiltrates were observed around the scaffolds. However, new bone formation occurred adjacent to the scaffolds, rather than directly in contact with them. More new bone was observed around PCL blocks with 400/1200 lattices than around blocks with 400/400 lattices, but the difference was not significant. These results indicated the potential of 3D-printed porous PCL scaffolds to promote alveolar bone regeneration for defect healing in dentistry.

  18. Underwater 3D filming

    OpenAIRE

    Rinaldi, Roberto

    2014-01-01

    After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” ) and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Unde...

  19. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  20. Pertunjukan Teater Karo Hip Hop Kontemporer KAI

    Directory of Open Access Journals (Sweden)

    Silvia Anggreni Purba

    2013-11-01

    Pertunjukan Teater Karo Hip Hop Kontemporer KAI. The performance of Karo Theater collaborated with Hip Hop stems from a simple idea to collaborate Karo cultural traditions with popular culture. The performances can be enjoyed without having limitation on the language and culture. The process of combining two different cultures is a form of hybrid culture, and it may occur due to the globalization process. Through the process of deposition of the observations and strong impression, this performance is then brought into the form of Hip Hop as a preferred form which is energetic, personal and global. This performance is part of a modern tragedy with its destructive character which has explored the emotion and has presented it to the audiences. The exploration of Karo cultural tradition and Hip Hop dance as a language of symbols is able to reinforce words. The movement is not revealed by the verbal phrase but is presented through the movement of Hip Hop dance. The interpretation of the legend and texts into movement is carried out through the training process at the laboratory as a searching process and experiment, and afterward can be realized by considering the basic elements of Hip Hop, Karo cultural elements and performance. Karo Hip Hop Theatre is expected to become a preferred aesthetic form of a modern theater without losing its tradition form. Keyword: a contemporary Karo theater, Hip Hop, hybrid culture.

  1. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...

  2. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: From drug product design to in vivo testing

    DEFF Research Database (Denmark)

    Genina, Natalja; Boetker, Johan Peter; Colombo, Stefano

    2017-01-01

    for treatment of tuberculosis (TB) that negatively interact with each other upon simultaneous release in acidic environment. The dcDUs were designed in silico by computer aided design (CAD) and fabricated in two steps; first three-dimensional (3D) printing of the outer structure, followed by hot-melt extrusion...... (HME) of the drug-containing filaments. The structure of the fabricated dcDUs was visualized by scanning electron microscopy (SEM). The 3D printed compartmentalized shells were loaded with filaments containing active pharmaceutical ingredient (API) and selectively sealed to modulate drug dissolution...

  3. 3-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon

    , if this significant reduction in the element count can still provide precise and robust 3-D vector flow estimates in a plane. The study concludes that the RC array is capable of estimating precise 3-D vector flow both in a plane and in a volume, despite the low channel count. However, some inherent new challenges...... ultrasonic vector flow estimation and bring it a step closer to a clinical application. A method for high frame rate 3-D vector flow estimation in a plane using the transverse oscillation method combined with a 1024 channel 2-D matrix array is presented. The proposed method is validated both through phantom...... hampers the task of real-time processing. In a second study, some of the issue with the 2-D matrix array are solved by introducing a 2-D row-column (RC) addressing array with only 62 + 62 elements. It is investigated both through simulations and via experimental setups in various flow conditions...

  4. DELTA 3D PRINTER

    Directory of Open Access Journals (Sweden)

    ȘOVĂILĂ Florin

    2016-07-01

    Full Text Available 3D printing is a very used process in industry, the generic name being “rapid prototyping”. The essential advantage of a 3D printer is that it allows the designers to produce a prototype in a very short time, which is tested and quickly remodeled, considerably reducing the required time to get from the prototype phase to the final product. At the same time, through this technique we can achieve components with very precise forms, complex pieces that, through classical methods, could have been accomplished only in a large amount of time. In this paper, there are presented the stages of a 3D model execution, also the physical achievement after of a Delta 3D printer after the model.

  5. Die spacer thickness reproduction for central incisor crown fabrication with combined computer-aided design and 3D printing technology: an in vitro study.

    Science.gov (United States)

    Hoang, Lisa N; Thompson, Geoffrey A; Cho, Seok-Hwan; Berzins, David W; Ahn, Kwang Woo

    2015-05-01

    The inability to control die spacer thickness has been reported. However, little information is available on the congruency between the computer-aided design parameters for die spacer thickness and the actual printout. The purpose of this study was to evaluate the accuracy and precision of the die spacer thickness achieved by combining computer-aided design and 3-dimensional printing technology. An ivorine maxillary central incisor was prepared for a ceramic crown. The prepared tooth was duplicated by using polyvinyl siloxane duplicating silicone, and 80 die-stone models were produced from Type IV dental stone. The dies were randomly divided into 5 groups with assigned die spacer thicknesses of 25 μm, 45 μm, 65 μm, 85 μm, and 105 μm (n=16). The printed resin copings, obtained from a printer (ProJet DP 3000; 3D Systems), were cemented onto their respective die-stone models with self-adhesive resin cement and stored at room temperature until sectioning into halves in a buccolingual direction. The internal gap was measured at 5 defined locations per side of the sectioned die. Images of the printed resin coping/die-stone model internal gap dimensions were obtained with an inverted bright field metallurgical microscope at ×100 magnification. The acquired digital image was calibrated, and measurements were made using image analysis software. Mixed models (α=.05) were used to evaluate accuracy. A false discovery rate at 5% was used to adjust for multiple testing. Coefficient of variation was used to determine the precision for each group and was evaluated statistically with the Wald test (α=.05). The accuracy, expressed in terms of the mean differences between the prescribed die spacer thickness and the measured internal gap (standard deviation), was 50 μm (11) for the 25 μm group simulated die spacer thickness, 30 μm (10) for the 45 μm group, 15 μm (14) for the 65 μm group, 3 μm (23) for the 85 μm group, and -10 μm (32) for the 105 μm group. The

  6. Which Fault Orientations Occur during Oblique Rifting? Combining Analog and Numerical 3d Models with Observations from the Gulf of Aden

    Science.gov (United States)

    Autin, J.; Brune, S.

    2013-12-01

    Oblique rift systems like the Gulf of Aden are intrinsically three-dimensional. In order to understand the evolution of these systems, one has to decode the fundamental mechanical similarities of oblique rifts. One way to accomplish this, is to strip away the complexity that is generated by inherited fault structures. In doing so, we assume a laterally homogeneous segment of Earth's lithosphere and ask how many different fault populations are generated during oblique extension inbetween initial deformation and final break-up. We combine results of an analog and a numerical model that feature a 3D segment of a layered lithosphere. In both cases, rift evolution is recorded quantitatively in terms of crustal fault geometries. For the numerical model, we adopt a novel post-processing method that allows to infer small-scale crustal fault orientation from the surface stress tensor. Both models involve an angle of 40 degrees between the rift normal and the extensional direction which allows comparison to the Gulf of Aden rift system. The resulting spatio-temporal fault pattern of our models shows three normal fault orientations: rift-parallel, extension-orthogonal, and intermediate, i.e. with a direction inbetween the two previous orientations. The rift evolution involves three distinct phases: (i) During the initial rift phase, wide-spread faulting with intermediate orientation occurs. (ii) Advanced lithospheric necking enables rift-parallel normal faulting at the rift flanks, while strike-slip faulting in the central part of the rift system indicates strain partitioning. (iii) During continental break-up, displacement-orthogonal as well as intermediate faults occur. We compare our results to the structural evolution of the Eastern Gulf of Aden. External parts of the rift exhibit intermediate and displacement-orthogonal faults while rift-parallel faults are present at the rift borders. The ocean-continent transition mainly features intermediate and displacement

  7. Professional Papervision3D

    CERN Document Server

    Lively, Michael

    2010-01-01

    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  8. Novel 3D media technologies

    CERN Document Server

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  9. High-speed production line combines 3D printing with precision machining : Customized mass production in the factory of the future

    NARCIS (Netherlands)

    N.n.

    2015-01-01

    The development of additive manufacturing is progressing rapidly. One of the main advances in the progression of this technology is 3D printing of metals. To enhance this trend, TNO's additive manufacturing department in Eindhoven, The Netherlands, is devel-oping "Hyproline", a "High Performance

  10. The Lidar Cyclops Syndrome Bypassed: 3D Wind Field Measurements from a Turbine mounted Lidar in combination with a fast CFD solver

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Astrup, Poul; van Dooren, Marijn Floris

    as the “Lidar Cyclops syndrome” with reference to the one-eyed Cyclops in old Greek mythology. However, by feeding a single lidar’s line-of-sight (LOS) rotor plane scanned wind speeds to a fast CFD solver, it has been possible to determine the entire 3D velocity vectors at each measurement point consistent...

  11. Evaluation of the combined effects of target size, respiratory motion and background activity on 3D and 4D PET/CT images

    International Nuclear Information System (INIS)

    Park, Sang-June; Ionascu, Dan; Killoran, Joseph; Chin, Lee; Berbeco, Ross; Mamede, Marcelo; Gerbaudo, Victor H

    2008-01-01

    Gated (4D) PET/CT has the potential to greatly improve the accuracy of radiotherapy at treatment sites where internal organ motion is significant. However, the best methodology for applying 4D-PET/CT to target definition is not currently well established. With the goal of better understanding how to best apply 4D information to radiotherapy, initial studies were performed to investigate the effect of target size, respiratory motion and target-to-background activity concentration ratio (TBR) on 3D (ungated) and 4D PET images. Using a PET/CT scanner with 4D or gating capability, a full 3D-PET scan corrected with a 3D attenuation map from 3D-CT scan and a respiratory gated (4D) PET scan corrected with corresponding attenuation maps from 4D-CT were performed by imaging spherical targets (0.5-26.5 mL) filled with 18 F-FDG in a dynamic thorax phantom and NEMA IEC body phantom at different TBRs (infinite, 8 and 4). To simulate respiratory motion, the phantoms were driven sinusoidally in the superior-inferior direction with amplitudes of 0, 1 and 2 cm and a period of 4.5 s. Recovery coefficients were determined on PET images. In addition, gating methods using different numbers of gating bins (1-20 bins) were evaluated with image noise and temporal resolution. For evaluation, volume recovery coefficient, signal-to-noise ratio and contrast-to-noise ratio were calculated as a function of the number of gating bins. Moreover, the optimum thresholds which give accurate moving target volumes were obtained for 3D and 4D images. The partial volume effect and signal loss in the 3D-PET images due to the limited PET resolution and the respiratory motion, respectively were measured. The results show that signal loss depends on both the amplitude and pattern of respiratory motion. However, the 4D-PET successfully recovers most of the loss induced by the respiratory motion. The 5-bin gating method gives the best temporal resolution with acceptable image noise. The results based on the 4D

  12. Wearable 3D measurement

    Science.gov (United States)

    Manabe, Yoshitsugu; Imura, Masataka; Tsuchiya, Masanobu; Yasumuro, Yoshihiro; Chihara, Kunihiro

    2003-01-01

    Wearable 3D measurement realizes to acquire 3D information of an objects or an environment using a wearable computer. Recently, we can send voice and sound as well as pictures by mobile phone in Japan. Moreover it will become easy to capture and send data of short movie by it. On the other hand, the computers become compact and high performance. And it can easy connect to Internet by wireless LAN. Near future, we can use the wearable computer always and everywhere. So we will be able to send the three-dimensional data that is measured by wearable computer as a next new data. This paper proposes the measurement method and system of three-dimensional data of an object with the using of wearable computer. This method uses slit light projection for 3D measurement and user"s motion instead of scanning system.

  13. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3...... important to appreciate the analysis. Before turning to the presentation of preliminary findings and a discussion of 3D digital modelling, it begins, however, with an outline of industry specific ICT strategic issues. Paper type. Multi-site field study...

  14. Wheeled hopping robot

    Science.gov (United States)

    Fischer, Gary J [Albuquerque, NM

    2010-08-17

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  15. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  16. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article ...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  17. Herramientas SIG 3D

    Directory of Open Access Journals (Sweden)

    Francisco R. Feito Higueruela

    2010-04-01

    Full Text Available Applications of Geographical Information Systems on several Archeology fields have been increasing during the last years. Recent avances in these technologies make possible to work with more realistic 3D models. In this paper we introduce a new paradigm for this system, the GIS Thetrahedron, in which we define the fundamental elements of GIS, in order to provide a better understanding of their capabilities. At the same time the basic 3D characteristics of some comercial and open source software are described, as well as the application to some samples on archeological researchs

  18. Bootstrapping 3D fermions

    Energy Technology Data Exchange (ETDEWEB)

    Iliesiu, Luca [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Kos, Filip; Poland, David [Department of Physics, Yale University, New Haven, CT 06520 (United States); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States); Yacoby, Ran [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States)

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions 〈ψψψψ〉 in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ×ψ OPE, and also on the central charge C{sub T}. We observe features in our bounds that coincide with scaling dimensions in the Gross-Neveu models at large N. We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  19. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  20. Automated 3-D Radiation Mapping

    International Nuclear Information System (INIS)

    Tarpinian, J. E.

    1991-01-01

    This work describes an automated radiation detection and imaging system which combines several state-of-the-art technologies to produce a portable but very powerful visualization tool for planning work in radiation environments. The system combines a radiation detection system, a computerized radiation imaging program, and computerized 3-D modeling to automatically locate and measurements are automatically collected and imaging techniques are used to produce colored, 'isodose' images of the measured radiation fields. The isodose lines from the images are then superimposed over the 3-D model of the area. The final display shows the various components in a room and their associated radiation fields. The use of an automated radiation detection system increases the quality of radiation survey obtained measurements. The additional use of a three-dimensional display allows easier visualization of the area and associated radiological conditions than two-dimensional sketches

  1. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  2. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and have...

  3. 3D Harmonic Echocardiography:

    NARCIS (Netherlands)

    M.M. Voormolen (Marco)

    2007-01-01

    textabstractThree dimensional (3D) echocardiography has recently developed from an experimental technique in the ’90 towards an imaging modality for the daily clinical practice. This dissertation describes the considerations, implementation, validation and clinical application of a unique

  4. Combining the 3D model generated from point clouds and thermography to identify the defects presented on the facades of a building

    Science.gov (United States)

    Huang, Yishuo; Chiang, Chih-Hung; Hsu, Keng-Tsang

    2018-03-01

    Defects presented on the facades of a building do have profound impacts on extending the life cycle of the building. How to identify the defects is a crucial issue; destructive and non-destructive methods are usually employed to identify the defects presented on a building. Destructive methods always cause the permanent damages for the examined objects; on the other hand, non-destructive testing (NDT) methods have been widely applied to detect those defects presented on exterior layers of a building. However, NDT methods cannot provide efficient and reliable information for identifying the defects because of the huge examination areas. Infrared thermography is often applied to quantitative energy performance measurements for building envelopes. Defects on the exterior layer of buildings may be caused by several factors: ventilation losses, conduction losses, thermal bridging, defective services, moisture condensation, moisture ingress, and structure defects. Analyzing the collected thermal images can be quite difficult when the spatial variations of surface temperature are small. In this paper the authors employ image segmentation to cluster those pixels with similar surface temperatures such that the processed thermal images can be composed of limited groups. The surface temperature distribution in each segmented group is homogenous. In doing so, the regional boundaries of the segmented regions can be identified and extracted. A terrestrial laser scanner (TLS) is widely used to collect the point clouds of a building, and those point clouds are applied to reconstruct the 3D model of the building. A mapping model is constructed such that the segmented thermal images can be projected onto the 2D image of the specified 3D building. In this paper, the administrative building in Chaoyang University campus is used as an example. The experimental results not only provide the defect information but also offer their corresponding spatial locations in the 3D model.

  5. Sci-Thur AM: YIS – 03: Combining sagittally-reconstructed 3D and live-2D ultrasound for high-dose-rate prostate brachytherapy needle segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Hrinivich, Thomas; Hoover, Douglas; Surry, Kathleen; Edirisinghe, Chandima; D’Souza, David; Fenster, Aaron; Wong, Eugene [University of Western Ontario, London Regional Cancer Program/LHSC, London Regional Cancer Program/LHSC, Robarts Research Institute, London Regional Cancer Program/LHSC, Robarts Research Institute, University of Western Ontario (Canada)

    2016-08-15

    Ultrasound-guided high-dose-rate prostate brachytherapy (HDR-BT) needle segmentation is performed clinically using live-2D sagittal images. Organ segmentation is then performed using axial images, introducing a source of geometric uncertainty. Sagittally-reconstructed 3D (SR3D) ultrasound enables both needle and organ segmentation, but suffers from shadow artifacts. We present a needle segmentation technique augmenting SR3D with live-2D sagittal images using mechanical probe tracking to mitigate image artifacts and compare it to the clinical standard. Seven prostate cancer patients underwent TRUS-guided HDR-BT during which the clinical and proposed segmentation techniques were completed in parallel using dual ultrasound video outputs. Calibrated needle end-length measurements were used to calculate insertion depth errors (IDEs), and the dosimetric impact of IDEs was evaluated by perturbing clinical treatment plan source positions. The proposed technique provided smaller IDEs than the clinical approach, with mean±SD of −0.3±2.2 mm and −0.5±3.7mm respectively. The proposed and clinical techniques resulted in 84% and 43% of needles with IDEs within ±3mm, and IDE ranges across all needles of [−7.7mm, 5.9mm] and [−9.3mm, 7.7mm] respectively. The proposed and clinical IDEs lead to mean±SD changes in the volume of the prostate receiving the prescription dose of −0.6±0.9% and −2.0±5.3% respectively. The proposed technique provides improved HDR-BT needle segmentation accuracy over the clinical technique leading to decreased dosimetric uncertainty by eliminating the axial-to-sagittal registration, and mitigates the effect of shadow artifacts by incorporating mechanically registered live-2D sagittal images.

  6. Combination tones along the basilar membrane in a 3D finite element model of the cochlea with acoustic boundary layer attenuation

    Science.gov (United States)

    Böhnke, Frank; Scheunemann, Christian; Semmelbauer, Sebastian

    2018-05-01

    The propagation of traveling waves along the basilar membrane is studied in a 3D finite element model of the cochlea using single and two-tone stimulation. The advantage over former approaches is the consideration of viscous-thermal boundary layer damping which makes the usual but physically unjustified assumption of Rayleigh damping obsolete. The energy loss by viscous boundary layer damping is 70 dB lower than the actually assumed power generation by outer hair cells. The space-time course with two-tone stimulation shows the traveling waves and the periodicity of the beat frequency f2 - f1.

  7. Combination of 2D/3D ligand-based similarity search in rapid virtual screening from multimillion compound repositories. Selection and biological evaluation of potential PDE4 and PDE5 inhibitors.

    Science.gov (United States)

    Dobi, Krisztina; Hajdú, István; Flachner, Beáta; Fabó, Gabriella; Szaszkó, Mária; Bognár, Melinda; Magyar, Csaba; Simon, István; Szisz, Dániel; Lőrincz, Zsolt; Cseh, Sándor; Dormán, György

    2014-05-28

    Rapid in silico selection of target focused libraries from commercial repositories is an attractive and cost effective approach. If structures of active compounds are available rapid 2D similarity search can be performed on multimillion compound databases but the generated library requires further focusing by various 2D/3D chemoinformatics tools. We report here a combination of the 2D approach with a ligand-based 3D method (Screen3D) which applies flexible matching to align reference and target compounds in a dynamic manner and thus to assess their structural and conformational similarity. In the first case study we compared the 2D and 3D similarity scores on an existing dataset derived from the biological evaluation of a PDE5 focused library. Based on the obtained similarity metrices a fusion score was proposed. The fusion score was applied to refine the 2D similarity search in a second case study where we aimed at selecting and evaluating a PDE4B focused library. The application of this fused 2D/3D similarity measure led to an increase of the hit rate from 8.5% (1st round, 47% inhibition at 10 µM) to 28.5% (2nd round at 50% inhibition at 10 µM) and the best two hits had 53 nM inhibitory activities.

  8. Efficient combination of a 3D Quasi-Newton inversion algorithm and a vector dual-primal finite element tearing and interconnecting method

    International Nuclear Information System (INIS)

    Voznyuk, I; Litman, A; Tortel, H

    2015-01-01

    A Quasi-Newton method for reconstructing the constitutive parameters of three-dimensional (3D) penetrable scatterers from scattered field measurements is presented. This method is adapted for handling large-scale electromagnetic problems while keeping the memory requirement and the time flexibility as low as possible. The forward scattering problem is solved by applying the finite-element tearing and interconnecting full-dual-primal (FETI-FDP2) method which shares the same spirit as the domain decomposition methods for finite element methods. The idea is to split the computational domain into smaller non-overlapping sub-domains in order to simultaneously solve local sub-problems. Various strategies are proposed in order to efficiently couple the inversion algorithm with the FETI-FDP2 method: a separation into permanent and non-permanent subdomains is performed, iterative solvers are favorized for resolving the interface problem and a marching-on-in-anything initial guess selection further accelerates the process. The computational burden is also reduced by applying the adjoint state vector methodology. Finally, the inversion algorithm is confronted to measurements extracted from the 3D Fresnel database. (paper)

  9. Spatial relationship between bone formation and mechanical stimulus within cortical bone: Combining 3D fluorochrome mapping and poroelastic finite element modelling.

    Science.gov (United States)

    Carrieroa, A; Pereirab, A F; Wilson, A J; Castagno, S; Javaheri, B; Pitsillides, A A; Marenzana, M; Shefelbine, S J

    2018-06-01

    Bone is a dynamic tissue and adapts its architecture in response to biological and mechanical factors. Here we investigate how cortical bone formation is spatially controlled by the local mechanical environment in the murine tibia axial loading model (C57BL/6). We obtained 3D locations of new bone formation by performing 'slice and view' 3D fluorochrome mapping of the entire bone and compared these sites with the regions of high fluid velocity or strain energy density estimated using a finite element model, validated with ex-vivo bone surface strain map acquired ex-vivo using digital image correlation. For the comparison, 2D maps of the average bone formation and peak mechanical stimulus on the tibial endosteal and periosteal surface across the entire cortical surface were created. Results showed that bone formed on the periosteal and endosteal surface in regions of high fluid flow. Peak strain energy density predicted only the formation of bone periosteally. Understanding how the mechanical stimuli spatially relates with regions of cortical bone formation in response to loading will eventually guide loading regime therapies to maintain or restore bone mass in specific sites in skeletal pathologies.

  10. 3D Surgical Simulation

    OpenAIRE

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2010-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive ...

  11. Novel experimental surgical strategy to prevent traumatic neuroma formation by combining a 3D-printed Y-tube with an autograft.

    Science.gov (United States)

    Bolleboom, Anne; de Ruiter, Godard C W; Coert, J Henk; Tuk, Bastiaan; Holstege, Jan C; van Neck, Johan W

    2018-02-09

    OBJECTIVE Traumatic neuromas may develop after nerve injury at the proximal nerve stump, which can lead to neuropathic pain. These neuromas are often resistant to therapy, and excision of the neuroma frequently leads to recurrence. In this study, the authors present a novel surgical strategy to prevent neuroma formation based on the principle of centro-central anastomosis (CCA), but rather than directly connecting the nerve ends to an autograft, they created a loop using a 3D-printed polyethylene Y-shaped conduit with an autograft in the distal outlets. METHODS The 3D-printed Y-tube with autograft was investigated in a model of rat sciatic nerve transection in which the Y-tube was placed on the proximal sciatic nerve stump and a peroneal graft was placed between the distal outlets of the Y-tube to form a closed loop. This model was compared with a CCA model, in which a loop was created between the proximal tibial and peroneal nerves with a peroneal autograft. Additional control groups consisted of the closed Y-tube and the extended-arm Y-tube. Results were analyzed at 12 weeks of survival using nerve morphometry for the occurrence of neuroma formation and axonal regeneration in plastic semi-thin sections. RESULTS Among the different surgical groups, the Y-tube with interposed autograft was the only model that did not result in neuroma formation at 12 weeks of survival. In addition, a 13% reduction in the number of myelinated axons regenerating through the interposed autograft was observed in the Y-tube with autograft model. In the CCA model, the authors also observed a decrease of 17% in the number of myelinated axons, but neuroma formation was present in this model. The closed Y-tube resulted in minimal nerve regeneration inside the tube together with extensive neuroma formation before the entrance of the tube. The extended-arm Y-tube model clearly showed that the majority of the regenerating axons merged into the Y-tube arm, which was connected to the autograft

  12. 3D composite image, 3D MRI, 3D SPECT, hydrocephalus

    International Nuclear Information System (INIS)

    Mito, T.; Shibata, I.; Sugo, N.; Takano, M.; Takahashi, H.

    2002-01-01

    The three-dimensional (3D)SPECT imaging technique we have studied and published for the past several years is an analytical tool that permits visual expression of the cerebral circulation profile in various cerebral diseases. The greatest drawback of SPECT is that the limitation on precision of spacial resolution makes intracranial localization impossible. In 3D SPECT imaging, intracranial volume and morphology may vary with the threshold established. To solve this problem, we have produced complimentarily combined SPECT and helical-CT 3D images by means of general-purpose visualization software for intracranial localization. In hydrocephalus, however, the key subject to be studied is the profile of cerebral circulation around the ventricles of the brain. This suggests that, for displaying the cerebral ventricles in three dimensions, CT is a difficult technique whereas MRI is more useful. For this reason, we attempted to establish the profile of cerebral circulation around the cerebral ventricles by the production of combined 3D images of SPECT and MRI. In patients who had shunt surgery for hydrocephalus, a difference between pre- and postoperative cerebral circulation profiles was assessed by a voxel distribution curve, 3D SPECT images, and combined 3D SPECT and MRI images. As the shunt system in this study, an Orbis-Sigma valve of the automatic cerebrospinal fluid volume adjustment type was used in place of the variable pressure type Medos valve currently in use, because this device requires frequent changes in pressure and a change in pressure may be detected after MRI procedure. The SPECT apparatus used was PRISM3000 of the three-detector type, and 123I-IMP was used as the radionuclide in a dose of 222 MBq. MRI data were collected with an MAGNEXa+2 with a magnetic flux density of 0.5 tesla under the following conditions: field echo; TR 50 msec; TE, 10 msec; flip, 30ueK; 1 NEX; FOV, 23 cm; 1-mm slices; and gapless. 3D images are produced on the workstation TITAN

  13. Dynamic analysis of centrifugal machines rotors supported on ball bearings by combined application of 3D and beam finite element models

    Science.gov (United States)

    Pavlenko, I. V.; Simonovskiy, V. I.; Demianenko, M. M.

    2017-08-01

    This research paper is aimed to investigating rotor dynamics of multistage centrifugal machines with ball bearings by using the computer programs “Critical frequencies of the rotor” and “Forced oscillations of the rotor,” which are implemented the mathematical model based on the use of beam finite elements. Free and forces oscillations of the rotor for the multistage centrifugal oil pump NPS 200-700 are observed by taking into account the analytical dependence of bearing stiffness on rotor speed, which is previously defined on the basis of results’ approximation for the numerical simulation in ANSYS by applying 3D finite elements. The calculations found that characteristic and constrained oscillations of rotor and corresponded to them forms of vibrations, as well as the form of constrained oscillation on the actual frequency for acceptable residual unbalance are determined.

  14. Crustal and mantle structure of the greater Jan Mayen-East Greenland region (NE Atlantic) from combined 3D structural, S-wave velocity, and gravity modeling

    Science.gov (United States)

    Tan, P.; Sippel, J.; Scheck-Wenderoth, M.; Meeßen, C.; Breivik, A. J.

    2016-12-01

    The study area is located between the Jan Mayen Ridge and the east coast of Greenland. It has a complex geological setting with the ultraslow Kolbeinsey and Mohn's spreading ridges, the anomalously shallow Eggvin Bank, the Jan Mayen Microcontinent (JMMC), and the tectonically active West Jan Mayen Fracture Zone (WJMFZ). In this study, we present the results of forward 3D structural, S-wave velocity, and gravity modeling which provide new insights into the deep crust and mantle structure and the wide-ranging influence of the Iceland Plume. The crustal parts of the presented 3D structural model are mainly constrained by local seismic refraction and reflection data. Accordingly, greatest crustal thicknesses (24 km) are observed on the northern boundary of the JMMC, while the average crustal thickness is 8.5 km and 4 km in the Kolbeinsey and Mohn's Ridge, respectively. The densities of the crustal parts are from previous studies. Additionally, the mantle density is derived from S-wave velocity data (between 50 and 250 km depth), while densities of the lithospheric mantle between the Moho and 50 km are calculated assuming isostatic equilibrium at 250 km depth. This is used as a starting density model which is further developed to obtain a reasonable fit between the calculated and measured (free-air) gravity fields. The observed S-wave tomographic data and the gravity modeling prove that the Iceland plume anomaly in the asthenosphere affects the lithospheric thickness and temperature, from the strongly influenced Middle Kolbeinsey Ridge, to the less affected North Kolbeinsey Ridge (Eggvin Bank), and to the little impacted Mohn's Ridge. Thus, the age-temperature relations of the different mid-ocean ridges of the study area are perturbed to different degrees controlled by the distance from the Iceland Plume. Furthermore, we find that the upper 50 km of lithospheric mantle are thermally affected by the plume only in the southwestern parts of the study area.

  15. Serial analysis of 3D H-1 MRSI for patients with newly diagnosed GBM treated with combination therapy that includes bevacizumab.

    Science.gov (United States)

    Nelson, Sarah J; Li, Yan; Lupo, Janine M; Olson, Marram; Crane, Jason C; Molinaro, Annette; Roy, Ritu; Clarke, Jennifer; Butowski, Nicholas; Prados, Michael; Cha, Soonmee; Chang, Susan M

    2016-10-01

    Interpretation of changes in the T1- and T2-weighted MR images from patients with newly diagnosed glioblastoma (GBM) treated with standard of care in conjunction with anti-angiogenic agents is complicated by pseudoprogression and pseudoresponse. The hypothesis being tested in this study was that 3D H-1 magnetic resonance spectroscopic imaging (MRSI) provides estimates of levels of choline, creatine, N-acetylaspartate (NAA), lactate and lipid that change in response to treatment and that metrics describing these characteristics are associated with survival. Thirty-one patients with newly diagnosed GBM and being treated with radiation therapy (RT), temozolomide, erlotinib and bevacizumab were recruited to receive serial MR scans that included 3-D lactate edited MRSI at baseline, mid-RT, post-RT and at specific follow-up time points. The data were processed to provide estimates of metrics representing changes in metabolite levels relative to normal appearing brain. Cox proportional hazards analysis was applied to examine the relationship of these parameters with progression free survival (PFS) and overall survival (OS). There were significant reductions in parameters that describe relative levels of choline to NAA and creatine, indicating that the treatment caused a decrease in tumor cellularity. Changes in the levels of lactate and lipid relative to the NAA from contralateral brain were consistent with vascular normalization. Metabolic parameters from the first serial follow-up scan were associated with PFS and OS, when accounting for age and extent of resection. Integrating metabolic parameters into the assessment of patients with newly diagnosed GBM receiving therapies that include anti-angiogenic agents may be helpful for tracking changes in tumor burden, resolving ambiguities in anatomic images caused by non-specific treatment effects and for predicting outcome.

  16. Representation of architectural artifacts: definition of an approach combining the complexity of the 3d digital instance with the intelligibility of the theoretical model.

    Directory of Open Access Journals (Sweden)

    David Lo Buglio

    2012-12-01

    Full Text Available EnWith the arrival of digital technologies in the field of architectural documentation, many tools and methods for data acquisition have been considerably developed. However, these developments are primarily used for recording colorimetric and dimensional properties of the objects processed. The actors, of the disciplines concerned by 3D digitization of architectural heritage, are facing with a large number of data, leaving the survey far from its cognitive dimension. In this context, it seems necessary to provide innovative solutions in order to increase the informational value of the representations produced by strengthen relations between "multiplicity" of data and "intelligibility" of the theoretical model. With the purpose of answering to the lack of methodology we perceived, this article therefore offers an approach to the creation of representation systems that articulate the digital instance with the geometric/semantic model.ItGrazie all’introduzione delle tecnologie digitali nel campo della documentazione architettonica, molti strumenti e metodi di acquisizione hanno avuto un notevole sviluppo. Tuttavia, questi sviluppi si sono principalmente concentrati sulla registrazione e sulla restituzione delle proprietà geometriche e colorimetriche degli oggetti di studio. Le discipline interessate alla digitalizzazione 3D del patrimonio architettonico hanno pertanto la possibilità di produrre delle grandi quantità di dati attraverso un’evoluzione delle pratiche di documentazione che potrebbero progressivamente far scomparire la dimensione cognitiva del rilievo. In questo contesto, appare necessario fornire soluzioni innovative per aumentare il valore informativo delle rappresentazioni digitali tramite l’identificazione delle relazioni potenziali che è possibile costruire fra le nozioni di "molteplicità" ed "intelligibilità". Per rispondere a questo deficit metodologico, questo articolo presenta le basi di un approccio per la

  17. Cortical dynamics of figure-ground separation in response to 2D pictures and 3D scenes:How V2 combines border ownership, stereoscopic cues, and Gestalt grouping rules

    Directory of Open Access Journals (Sweden)

    Stephen eGrossberg

    2016-01-01

    Full Text Available The FACADE model, and its laminar cortical realization and extension in the 3D LAMINART model, have explained, simulated, and predicted many perceptual and neurobiological data about how the visual cortex carries out 3D vision and figure-ground perception, and how these cortical mechanisms enable 2D pictures to generate 3D percepts of occluding and occluded objects. In particular, these models have proposed how border ownership occurs, but have not yet explicitly explained the correlation between multiple properties of border ownership neurons in cortical area V2 that were reported in a remarkable series of neurophysiological experiments by von der Heydt and his colleagues; namely, border ownership, contrast preference, binocular stereoscopic information, selectivity for side-of-figure, Gestalt rules, and strength of attentional modulation, as well as the time course during which such properties arise. This article shows how, by combining 3D LAMINART properties that were discovered in two parallel streams of research, a unified explanation of these properties emerges. This explanation proposes, moreover, how these properties contribute to the generation of consciously seen 3D surfaces. The first research stream models how processes like 3D boundary grouping and surface filling-in interact in multiple stages within and between the V1 interblob – V2 interstripe – V4 cortical stream and the V1 blob – V2 thin stripe – V4 cortical stream, respectively. Of particular importance for understanding figure-ground separation is how these cortical interactions convert computationally complementary boundary and surface mechanisms into a consistent conscious percept, including the critical use of surface contour feedback signals from surface representations in V2 thin stripes to boundary representations in V2 interstripes. Remarkably, key figure-ground properties emerge from these feedback interactions. The second research stream shows how cells that

  18. Identification of the transition arrays 3d74s-3d74p in Br X and 3d64s-3d64p in Br XI

    International Nuclear Information System (INIS)

    Zeng, X.T.; Jupen, C.; Bengtsson, P.; Engstroem, L.; Westerlind, M.; Martinson, I.

    1991-01-01

    We report a beam-foil study of multiply ionized bromine in the region 400-1300A, performed with 6 and 8 MeV Br ions from a tandem accelerator. At these energies transitions belonging to Fe-like Br X and Mn-like Br XI are expected to be prominent. We have identified 31 lines as 3d 7 4s-3d 7 4p transitions in Br X, from which 16 levels of the previously unknown 3d 7 4s configuration could be established. We have also added 6 new 3d 7 4p levels to the 99 previously known. For Br XI we have classified 9 lines as 3d 6 4s-3d 6 4p combinations. The line identifications have been corroborated by isoelectronic comparisons and theoretical calculations using the superposition-of-configurations technique. (orig.)

  19. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...... facilitated discussions during the course as well as through a survey distributed to the participating students. The analysis of the experiences shows a mixed picture consisting of both benefits and limits to the experimental technique. A discussion about the applicability of the technique and about...

  20. Repellent and insecticidal efficacy of a combination of dinotefuran, pyriproxyfen and permethrin (Vectra® 3D against Culex pipiens in dogs

    Directory of Open Access Journals (Sweden)

    Emilie Bouhsira

    2016-09-01

    Compared to control dogs, the spot-on formulation provided a repellent efficacy (anti-feeding effect against mosquitoes of 98.9%, 98.8%, 98.6%, 96.7% and 97.9% on Days 1, 7, 14, 21 and 28 respectively. There was a significant difference (p ≤ 0.05 between the treated and controlled groups on every assessment day. The insecticidal efficacy on treated dogs at 90 min was 34.7%, 50.3%, 39.7%, 22.8% and 11.4% on Days 1, 7, 14, 21 and 28 respectively. There was a significant difference between the treated and controlled groups for live mosquitoes for all assessment days (p 96% against Culex pipiens which lasted for 28 days. The results suggest that the Vectra® 3D spot-on solution could be used as an effective mosquito control strategy in dogs and is therefore recommended for use in a dirofilariosis prevention programme.

  1. Hopping transport in solids

    CERN Document Server

    Pollak, M

    1991-01-01

    The hopping process, which differs substantially from conventional transport processes in crystals, is the central process in the transport phenomena discussed in this book. Throughout the book the term ``hopping'' is defined as the inelastic tunneling transfer of an electron between two localized electronic states centered at different locations. Such processes do not occur in conventional electronic transport in solids, since localized states are not compatible with the translational symmetry of crystals.The rapid growth of interest in hopping transport has followed in the footsteps of the

  2. 3D Surgical Simulation

    Science.gov (United States)

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  3. Tracing man's impact on groundwater dependent ecosystem using geochemical an isotope tools combined with 3D flow and transport modeling: case study from southern Poland

    Science.gov (United States)

    Zurek, Anna; Witczak, Stanislaw; Kania, Jaroslaw; Wachniew, Przemyslaw; Rozanski, Kazimierz; Dulinski, Marek; Jench, Olga

    2013-04-01

    Niepolomice Forest. There is a growing concern that continued exploitation of those wells may lead to lowering water table in the Niepolomice Forest area and, as a consequence, may trigger drastic changes in this unique ecosystem. A dedicated study was launched with the main aim to quantify the interaction between Niepolomice Forest, with the focus the Wielkie Bloto fen, and the underlying Bogucice Sands aquifer. The work was pursued along three major lines: (i) vertical profiling of the Wielkie Bloto fen aimed at characterizing chemical and isotope contrast in the shallow groundwater occupying the Quaternary cover in order to identify upward leakage of deeper groundwater in the investigated area, (ii) regular monitoring of flow rate, chemistry and environmental isotopes of the Dluga Woda stream draining the Wielkie Bloto fen, and (iii) 3D modeling of groundwater flow in the vicinity of the Wielkie Bloto fen focusing on quantifying the impact of the Wola Batorska well field on the regional groundwater flow patterns. The results of isotope and chemical analyses confirmed existence of upward seepage of groundwater from the Bogucice Sands aquifer in the area of Wielkie Bloto fen. Preliminary assessment of the water balance of Dluga Woda catchment indicates that the baseflow originating from groundwater seepage is equal approximately 16% of the annual precipitation. Results of 3D flow model applied to the study area indicate that prolonged operation of the well-field Wola Batorska at maximum capacity may lead to substantial lowering of water table in the Niepolomice Forest area and, as a consequence, endanger further existence of this unique GDTE. Acknowledgements. Partial financial support of this work through GENESIS project (http:/www.thegenesisproject.eu) funded by the European Commission 7FP contract 226536, and through statutory funds of the AGH University of Science and Technology (projects No.11.11.140.026 and 11.11.220.01) is kindly acknowledged.

  4. 3D PHOTOGRAPHS IN CULTURAL HERITAGE

    Directory of Open Access Journals (Sweden)

    W. Schuhr

    2013-07-01

    color differences. Though 3D photographs are a well established basic photographic and photogrammetric tool, they are still a matter of research and practical improvement: – For example, multistage concepts for 3D heritage photographs, e.g., combining before and aft images and images showing different focus, daytime etc., as well as combining 3D imagery of different sensors and comparing 3D imagery with drawings etc. and even standards for exposing and processing 3D heritage photographs are only some topics for recent research. – To advise on state-of-the-art 3D visualisation methodology for Cultural heritage purposes an updated synoptically overview, even claiming completeness, also will be dealt with. – 3D photographs increasingly should replace old fashioned subjective interpreted manual 2D drawings (in 2D only of heritage monuments. – Currently we are witnesses of early developments, showing Cultural Heritage objects in 3D crystal as well as in 3D printings.

  5. Scaffold hopping in drug discovery using inductive logic programming.

    Science.gov (United States)

    Tsunoyama, Kazuhisa; Amini, Ata; Sternberg, Michael J E; Muggleton, Stephen H

    2008-05-01

    In chemoinformatics, searching for compounds which are structurally diverse and share a biological activity is called scaffold hopping. Scaffold hopping is important since it can be used to obtain alternative structures when the compound under development has unexpected side-effects. Pharmaceutical companies use scaffold hopping when they wish to circumvent prior patents for targets of interest. We propose a new method for scaffold hopping using inductive logic programming (ILP). ILP uses the observed spatial relationships between pharmacophore types in pretested active and inactive compounds and learns human-readable rules describing the diverse structures of active compounds. The ILP-based scaffold hopping method is compared to two previous algorithms (chemically advanced template search, CATS, and CATS3D) on 10 data sets with diverse scaffolds. The comparison shows that the ILP-based method is significantly better than random selection while the other two algorithms are not. In addition, the ILP-based method retrieves new active scaffolds which were not found by CATS and CATS3D. The results show that the ILP-based method is at least as good as the other methods in this study. ILP produces human-readable rules, which makes it possible to identify the three-dimensional features that lead to scaffold hopping. A minor variant of a rule learnt by ILP for scaffold hopping was subsequently found to cover an inhibitor identified by an independent study. This provides a successful result in a blind trial of the effectiveness of ILP to generate rules for scaffold hopping. We conclude that ILP provides a valuable new approach for scaffold hopping.

  6. New Technologies for Acquisition and 3-D Visualization of Geophysical and Other Data Types Combined for Enhanced Understandings and Efficiencies of Oil and Gas Operations, Deepwater Gulf of Mexico

    Science.gov (United States)

    Thomson, J. A.; Gee, L. J.; George, T.

    2002-12-01

    This presentation shows results of a visualization method used to display and analyze multiple data types in a geospatially referenced three-dimensional (3-D) space. The integrated data types include sonar and seismic geophysical data, pipeline and geotechnical engineering data, and 3-D facilities models. Visualization of these data collectively in proper 3-D orientation yields insights and synergistic understandings not previously obtainable. Key technological components of the method are: 1) high-resolution geophysical data obtained using a newly developed autonomous underwater vehicle (AUV), 2) 3-D visualization software that delivers correctly positioned display of multiple data types and full 3-D flight navigation within the data space and 3) a highly immersive visualization environment (HIVE) where multidisciplinary teams can work collaboratively to develop enhanced understandings of geospatially complex data relationships. The initial study focused on an active deepwater development area in the Green Canyon protraction area, Gulf of Mexico. Here several planned production facilities required detailed, integrated data analysis for design and installation purposes. To meet the challenges of tight budgets and short timelines, an innovative new method was developed based on the combination of newly developed technologies. Key benefits of the method include enhanced understanding of geologically complex seabed topography and marine soils yielding safer and more efficient pipeline and facilities siting. Environmental benefits include rapid and precise identification of potential locations of protected deepwater biological communities for avoidance and protection during exploration and production operations. In addition, the method allows data presentation and transfer of learnings to an audience outside the scientific and engineering team. This includes regulatory personnel, marine archaeologists, industry partners and others.

  7. Cortical Dynamics of Figure-Ground Separation in Response to 2D Pictures and 3D Scenes: How V2 Combines Border Ownership, Stereoscopic Cues, and Gestalt Grouping Rules.

    Science.gov (United States)

    Grossberg, Stephen

    2015-01-01

    The FACADE model, and its laminar cortical realization and extension in the 3D LAMINART model, have explained, simulated, and predicted many perceptual and neurobiological data about how the visual cortex carries out 3D vision and figure-ground perception, and how these cortical mechanisms enable 2D pictures to generate 3D percepts of occluding and occluded objects. In particular, these models have proposed how border ownership occurs, but have not yet explicitly explained the correlation between multiple properties of border ownership neurons in cortical area V2 that were reported in a remarkable series of neurophysiological experiments by von der Heydt and his colleagues; namely, border ownership, contrast preference, binocular stereoscopic information, selectivity for side-of-figure, Gestalt rules, and strength of attentional modulation, as well as the time course during which such properties arise. This article shows how, by combining 3D LAMINART properties that were discovered in two parallel streams of research, a unified explanation of these properties emerges. This explanation proposes, moreover, how these properties contribute to the generation of consciously seen 3D surfaces. The first research stream models how processes like 3D boundary grouping and surface filling-in interact in multiple stages within and between the V1 interblob-V2 interstripe-V4 cortical stream and the V1 blob-V2 thin stripe-V4 cortical stream, respectively. Of particular importance for understanding figure-ground separation is how these cortical interactions convert computationally complementary boundary and surface mechanisms into a consistent conscious percept, including the critical use of surface contour feedback signals from surface representations in V2 thin stripes to boundary representations in V2 interstripes. Remarkably, key figure-ground properties emerge from these feedback interactions. The second research stream shows how cells that compute absolute disparity in

  8. Cortical Dynamics of Figure-Ground Separation in Response to 2D Pictures and 3D Scenes: How V2 Combines Border Ownership, Stereoscopic Cues, and Gestalt Grouping Rules

    Science.gov (United States)

    Grossberg, Stephen

    2016-01-01

    The FACADE model, and its laminar cortical realization and extension in the 3D LAMINART model, have explained, simulated, and predicted many perceptual and neurobiological data about how the visual cortex carries out 3D vision and figure-ground perception, and how these cortical mechanisms enable 2D pictures to generate 3D percepts of occluding and occluded objects. In particular, these models have proposed how border ownership occurs, but have not yet explicitly explained the correlation between multiple properties of border ownership neurons in cortical area V2 that were reported in a remarkable series of neurophysiological experiments by von der Heydt and his colleagues; namely, border ownership, contrast preference, binocular stereoscopic information, selectivity for side-of-figure, Gestalt rules, and strength of attentional modulation, as well as the time course during which such properties arise. This article shows how, by combining 3D LAMINART properties that were discovered in two parallel streams of research, a unified explanation of these properties emerges. This explanation proposes, moreover, how these properties contribute to the generation of consciously seen 3D surfaces. The first research stream models how processes like 3D boundary grouping and surface filling-in interact in multiple stages within and between the V1 interblob—V2 interstripe—V4 cortical stream and the V1 blob—V2 thin stripe—V4 cortical stream, respectively. Of particular importance for understanding figure-ground separation is how these cortical interactions convert computationally complementary boundary and surface mechanisms into a consistent conscious percept, including the critical use of surface contour feedback signals from surface representations in V2 thin stripes to boundary representations in V2 interstripes. Remarkably, key figure-ground properties emerge from these feedback interactions. The second research stream shows how cells that compute absolute disparity

  9. BER Analysis Using Beat Probability Method of 3D Optical CDMA Networks with Double Balanced Detection

    Directory of Open Access Journals (Sweden)

    Chih-Ta Yen

    2015-01-01

    Full Text Available This study proposes novel three-dimensional (3D matrices of wavelength/time/spatial code for code-division multiple-access (OCDMA networks, with a double balanced detection mechanism. We construct 3D carrier-hopping prime/modified prime (CHP/MP codes by extending a two-dimensional (2D CHP code integrated with a one-dimensional (1D MP code. The corresponding coder/decoder pairs were based on fiber Bragg gratings (FBGs and tunable optical delay lines integrated with splitters/combiners. System performance was enhanced by the low cross correlation properties of the 3D code designed to avoid the beat noise phenomenon. The CHP/MP code cardinality increased significantly compared to the CHP code under the same bit error rate (BER. The results indicate that the 3D code method can enhance system performance because both the beating terms and multiple-access interference (MAI were reduced by the double balanced detection mechanism. Additionally, the optical component can also be relaxed for high transmission scenery.

  10. 3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography

    DEFF Research Database (Denmark)

    Herbig, M.; King, Andrew; Reischig, Peter

    2011-01-01

    X-ray diffraction contrast tomography is a recently developed, non-destructive synchrotron imaging technique which characterizes microstructure and grain orientation in polycrystalline materials in three dimensions. By combining it with propagation-based phase-contrast tomography it is possible t...

  11. 3D silicon strip detectors

    International Nuclear Information System (INIS)

    Parzefall, Ulrich; Bates, Richard; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Eckert, Simon; Eklund, Lars; Fleta, Celeste; Jakobs, Karl; Kuehn, Susanne; Lozano, Manuel; Pahn, Gregor; Parkes, Chris; Pellegrini, Giulio; Pennicard, David; Piemonte, Claudio; Ronchin, Sabina; Szumlak, Tomasz; Zoboli, Andrea; Zorzi, Nicola

    2009-01-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10 15 N eq /cm 2 , which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10 15 N eq /cm 2 . The tests were performed with three systems: a highly focused IR-laser with 5μm spot size to make position-resolved scans of the charge collection efficiency, an Sr 90 β-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of the results obtained with 3D-STC-modules.

  12. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  13. 4D-SPECT/CT in orthopaedics: a new method of combined quantitative volumetric 3D analysis of SPECT/CT tracer uptake and component position measurements in patients after total knee arthroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Rasch, Helmut; Falkowski, Anna L.; Forrer, Flavio [Kantonsspital Baselland, Institute for Radiology and Nuclear Medicine, Bruderholz (Switzerland); Henckel, Johann [Imperial College London, London (United Kingdom); Hirschmann, Michael T. [Kantonsspital Baselland, Department of Orthopaedic Surgery and Traumatology, Bruderholz (Switzerland)

    2013-09-15

    The purpose was to evaluate the intra- and inter-observer reliability of combined quantitative 3D-volumetric single-photon emission computed tomography (SPECT)/CT analysis including size, intensity and localisation of tracer uptake regions and total knee arthroplasty (TKA) position. Tc-99m-HDP-SPECT/CT of 100 knees after TKA were prospectively analysed. The anatomical areas represented by a previously validated localisation scheme were 3D-volumetrically analysed. The maximum intensity was recorded for each anatomical area. Ratios between the respective value and the mid-shaft of the femur as the reference were calculated. Femoral and tibial TKA position (varus-valgus, flexion-extension, internal rotation- external rotation) were determined on 3D-CT. Two consultant radiologists/nuclear medicine physicians interpreted the SPECT/CTs twice with a 2-week interval. The inter- and intra-observer reliability was determined (ICCs). Kappa values were calculated for the area with the highest tracer uptake between the observers. The measurements of tracer uptake intensity showed excellent inter- and intra-observer reliabilities for all regions (tibia, femur and patella). Only the tibial shaft area showed ICCs <0.89. The kappa values were almost perfect (0.856, p < 0.001; 95 % CI 0.778, 0.922). For measurements of the TKA position, there was strong agreement within and between the readings of the two observers; the ICCs for the orientation of TKA components for inter- and intra-observer reliability were nearly perfect (ICCs >0.84). This combined 3D-volumetric standardised method of analysing the location, size and the intensity of SPECT/CT tracer uptake regions (''hotspots'') and the determination of the TKA position was highly reliable and represents a novel promising approach to biomechanics. (orig.)

  14. 2.5D Representations Combining in vivo 3D MRI and ex vivo 2D MSI Approaches to Study the Lipid Distribution in the Whole Sheep Brain

    OpenAIRE

    Labas , Valérie; Teixeira-Gomes , Ana Paula; Andersson , Frédéric; Ménigot , Sébastien; Batailler , Martine; Adriaensen , Hans; Migaud , Martine; Chaillou , Elodie

    2015-01-01

    National audience; Mass Spectrometry Imaging (MSI) provides easily high spatially resolved masses allowing characterization of endogenous lipids. These latter constitute about 70% of the composition of the white matter of the brain which can be implicated in developmental and/or cognitive troubles. In order to examine the molecular distribution of lipids in whole sheep brain, and especially in white/grey matter, we combined in vivo and ex vivo images, obtained in the same animals, using Magne...

  15. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  16. 3D Biomimetic Platform

    Science.gov (United States)

    Scott Carnell, Lisa A. (Inventor)

    2017-01-01

    An apparatus and method that utilizes a radiation source and a simulated microgravity to provide combined stressors. The response of cells/bacteria/viruses and/or other living matter to the combined stressors can be evaluated to predict the effects of extended space missions. The apparatus and method can also be utilized to study diseases and to develop new treatments and vaccinations.

  17. Mobile 3D tomograph

    International Nuclear Information System (INIS)

    Illerhaus, Bernhard; Goebbels, Juergen; Onel, Yener; Sauerwein, Christoph

    2008-01-01

    Mobile tomographs often have the problem that high spatial resolution is impossible owing to the position or setup of the tomograph. While the tree tomograph developed by Messrs. Isotopenforschung Dr. Sauerwein GmbH worked well in practice, it is no longer used as the spatial resolution and measuring time are insufficient for many modern applications. The paper shows that the mechanical base of the method is sufficient for 3D CT measurements with modern detectors and X-ray tubes. CT measurements with very good statistics take less than 10 min. This means that mobile systems can be used, e.g. in examinations of non-transportable cultural objects or monuments. Enhancement of the spatial resolution of mobile tomographs capable of measuring in any position is made difficult by the fact that the tomograph has moving parts and will therefore have weight shifts. With the aid of tomographies whose spatial resolution is far higher than the mechanical accuracy, a correction method is presented for direct integration of the Feldkamp algorithm [de

  18. A dose planning study on applicator guided stereotactic IMRT boost in combination with 3D MRI based brachytherapy in locally advanced cervical cancer

    International Nuclear Information System (INIS)

    Assenholt, Marianne S.; Petersen, Joergen B.; Nielsen, Soeren K.; Lindegaard, Jacob C.; Tanderup, Kari

    2008-01-01

    Purpose. Locally advanced cervical cancer is usually treated with external beam radiotherapy followed by brachytherapy (BT). However, if response or tumour topography is unfavourable it may be difficult to reach a sufficient BT dose. The purpose of this study was to explore whether an applicator guided stereotactic IMRT boost could be combined with brachytherapy to improve dose volume parameters. Material and methods. Dose plans of 6 patients with HR CTV volumes of 31-100cc at the time of BT were analysed. MRI was performed with a combined intracavitary (IC)-interstitial (IS) ring applicator in situ. A radiotherapy schedule consisting of 45Gy (1.8Gyx25) IMRT followed by boost of 28Gy (7Gyx4fx) was modelled. Four different boost techniques were evaluated: IC-BT, IC/IS-BT, IC-BT+IMRT and IMRT. Dose plans were optimised for maximal tumour dose (D90) and coverage (V85Gy) while respecting DVH constraints in organs at risk: D2cc <75Gy in rectum and sigmoid and <90Gy in bladder (EQD2). In combined BT+IMRT dose plans, the IMRT plan was optimised on top of the BT dose distribution. Volumes irradiated to more than 60 Gy EQD2 (V60Gy) were evaluated. Results. Median dose coverage in IC plans was 74% [66-93%]. By using IC/IS or IC-BT+IMRT boost, the median coverage was improved to 95% [78-99%], and to 96% [69-99%] respectively. For IMRT alone, a median coverage of 98% [90-100%] was achieved, but V60Gy volumes were significantly increased by a median factor of 2.0 [1.4-2.3] as compared to IC/IS. It depended on the individual tumour topography whether IC/IS-BT or IC-BT+IMRT boost was the most favourable technique. Conclusion. It is technically possible to create dose plans that combine image guided BT and IMRT. In this study the dose coverage could be significantly increased by adding IS-BT or IMRT boost to the intracavitary dose. Using IMRT alone for boost cannot be advocated since this results in a significant increase of the volume irradiated to 60Gy

  19. 3D Printing and 3D Bioprinting in Pediatrics.

    Science.gov (United States)

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-07-13

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  20. 3D Printing and 3D Bioprinting in Pediatrics

    OpenAIRE

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-01-01

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  1. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  2. In situ repair of bone and cartilage defects using 3D scanning and 3D printing

    OpenAIRE

    Li, Lan; Yu, Fei; Shi, Jianping; Shen, Sheng; Teng, Huajian; Yang, Jiquan; Wang, Xingsong; Jiang, Qing

    2017-01-01

    Three-dimensional (3D) printing is a rapidly emerging technology that promises to transform tissue engineering into a commercially successful biomedical industry. However, the use of robotic bioprinters alone is not sufficient for disease treatment. This study aimed to report the combined application of 3D scanning and 3D printing for treating bone and cartilage defects. Three different kinds of defect models were created to mimic three orthopedic diseases: large segmental defects of long bon...

  3. Digital Dentistry — 3D Printing Applications

    Directory of Open Access Journals (Sweden)

    Zaharia Cristian

    2017-03-01

    Full Text Available Three-dimensional (3D printing is an additive manufacturing method in which a 3D item is formed by laying down successive layers of material. 3D printers are machines that produce representations of objects either planned with a CAD program or scanned with a 3D scanner. Printing is a method for replicating text and pictures, typically with ink on paper. We can print different dental pieces using different methods such as selective laser sintering (SLS, stereolithography, fused deposition modeling, and laminated object manufacturing. The materials are certified for printing individual impression trays, orthodontic models, gingiva mask, and different prosthetic objects. The material can reach a flexural strength of more than 80 MPa. 3D printing takes the effectiveness of digital projects to the production phase. Dental laboratories are able to produce crowns, bridges, stone models, and various orthodontic appliances by methods that combine oral scanning, 3D printing, and CAD/CAM design. Modern 3D printing has been used for the development of prototypes for several years, and it has begun to find its use in the world of manufacturing. Digital technology and 3D printing have significantly elevated the rate of success in dental implantology using custom surgical guides and improving the quality and accuracy of dental work.

  4. Case study of 3D fingerprints applications.

    Directory of Open Access Journals (Sweden)

    Feng Liu

    Full Text Available Human fingers are 3D objects. More information will be provided if three dimensional (3D fingerprints are available compared with two dimensional (2D fingerprints. Thus, this paper firstly collected 3D finger point cloud data by Structured-light Illumination method. Additional features from 3D fingerprint images are then studied and extracted. The applications of these features are finally discussed. A series of experiments are conducted to demonstrate the helpfulness of 3D information to fingerprint recognition. Results show that a quick alignment can be easily implemented under the guidance of 3D finger shape feature even though this feature does not work for fingerprint recognition directly. The newly defined distinctive 3D shape ridge feature can be used for personal authentication with Equal Error Rate (EER of ~8.3%. Also, it is helpful to remove false core point. Furthermore, a promising of EER ~1.3% is realized by combining this feature with 2D features for fingerprint recognition which indicates the prospect of 3D fingerprint recognition.

  5. 3D imaging using X-Ray tomography and SEM combined FIB to study non isothermal creep damage of (111) oriented samples of γ / γ ′ nickel base single crystal superalloy MC2

    KAUST Repository

    Jouiad, Mustapha

    2012-01-01

    An unprecedented investigation consisting of the association of X-Ray tomography and Scanning Electron Microscopy combined with Focus Ion Beam (SEM-FIB) is conducted to perform a 3D reconstruction imaging. These techniques are applied to study the non-isothermal creep behavior of close (111) oriented samples of MC2 nickel base superalloys single crystal. The issue here is to develop a strategy to come out with the 3D rafting of γ\\' particles and its interaction whether with dislocation structures or/and with the preexisting voids. This characterization is uncommonly performed away from the conventional studied orientation [001] in order to feed the viscoplastic modeling leading to its improvement by taking into account the crystal anisotropy. The creep tests were performed at two different conditions: classical isothermal tests at 1050°C under 140 MPa and a non isothermal creep test consisting of one overheating at 1200°C and 30 seconds dwell time during the isothermal creep life. The X-Ray tomography shows a great deformation heterogeneity that is pronounced for the non-isothermal tested samples. This deformation localization seems to be linked to the preexisting voids. Nevertheless, for both tested samples, the voids coalescence is the precursor of the observed damage leading to failure. SEM-FIB investigation by means of slice and view technique gives 3D views of the rafted γ\\' particles and shows that γ corridors evolution seems to be the main creep rate controlling parameter. © 2012 Trans Tech Publications, Switzerland.

  6. 3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Herbig, Michael [Universite de Lyon, Lyon, MATEIS, UMR5510 CNRS, 69621 Villeurbanne (France); King, Andrew [GKSS-Research Centre, Geesthacht (Germany); Reischig, Peter [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Proudhon, Henry [MINES ParisTech, Centre des materiaux, CNRS UMR 7633, BP 87, 91003 Evry Cedex (France); Lauridsen, Erik M. [Riso-DTU, Technical University of Denmark, Roskilde (Denmark); Marrow, James [Manchester Materials Science Centre, Manchester (United Kingdom); Buffiere, Jean-Yves [Universite de Lyon, Lyon, MATEIS, UMR5510 CNRS, 69621 Villeurbanne (France); Ludwig, Wolfgang, E-mail: wolfgang.ludwig@insa-lyon.fr [Universite de Lyon, Lyon, MATEIS, UMR5510 CNRS, 69621 Villeurbanne (France); European Synchrotron Radiation Facility, Grenoble, France, BP 220, 38043 Grenoble (France)

    2011-01-15

    X-ray diffraction contrast tomography is a recently developed, non-destructive synchrotron imaging technique which characterizes microstructure and grain orientation in polycrystalline materials in three dimensions. By combining it with propagation-based phase-contrast tomography it is possible to get a full picture description for the analysis of local crack growth rate of short fatigue cracks in three dimensions: the three-dimensional crack morphology at different propagation stages, and the shape and orientation of the grains around the crack. An approach has been developed on the metastable beta titanium alloy Ti 21S that allows for visualization and analysis of the growth rate and crystallographic orientation of the fracture surface.

  7. 3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography

    International Nuclear Information System (INIS)

    Herbig, Michael; King, Andrew; Reischig, Peter; Proudhon, Henry; Lauridsen, Erik M.; Marrow, James; Buffiere, Jean-Yves; Ludwig, Wolfgang

    2011-01-01

    X-ray diffraction contrast tomography is a recently developed, non-destructive synchrotron imaging technique which characterizes microstructure and grain orientation in polycrystalline materials in three dimensions. By combining it with propagation-based phase-contrast tomography it is possible to get a full picture description for the analysis of local crack growth rate of short fatigue cracks in three dimensions: the three-dimensional crack morphology at different propagation stages, and the shape and orientation of the grains around the crack. An approach has been developed on the metastable beta titanium alloy Ti 21S that allows for visualization and analysis of the growth rate and crystallographic orientation of the fracture surface.

  8. 3D local structure around copper site of rabbit prion-related protein: Quantitative determination by XANES spectroscopy combined with multiple-scattering calculations

    International Nuclear Information System (INIS)

    Cui, P.X.; Lian, F.L.; Wang, Y.; Wen, Yi; Chu, W.S.; Zhao, H.F.; Zhang, S.; Li, J.; Lin, D.H.; Wu, Z.Y.

    2014-01-01

    Prion-related protein (PrP), a cell-surface copper-binding glycoprotein, is considered to be responsible for a number of transmissible spongiform encephalopathies (TSEs). The structural conversion of PrP from the normal cellular isoform (PrP C ) to the post-translationally modified form (PrP Sc ) is thought to be relevant to Cu 2+ binding to histidine residues. Rabbits are one of the few mammalian species that appear to be resistant to TSEs, because of the structural characteristics of the rabbit prion protein (RaPrP C ) itself. Here we determined the three-dimensional local structure around the C-terminal high-affinity copper-binding sites using X-ray absorption near-edge structure combined with ab initio calculations in the framework of the multiple-scattering (MS) theory. Result shows that two amino acid resides, Gln97 and Met108, and two histidine residues, His95 and His110, are involved in binding this copper(II) ion. It might help us understand the roles of copper in prion conformation conversions, and the molecular mechanisms of prion-involved diseases. - Highlights: ► The first structure of the metal ion binding site in RaPrP fifth copper-binding site. ► Quantitative determination by XANES spectroscopy combined with ab initio calculations. ► Provide a proof of the roles of copper in prion conformation conversions. ► Provide a proof of the molecular mechanisms of prion-involved diseases

  9. μCT-based, in vivo dynamic bone histomorphometry allows 3D evaluation of the early responses of bone resorption and formation to PTH and alendronate combination therapy.

    Science.gov (United States)

    de Bakker, Chantal M J; Altman, Allison R; Tseng, Wei-Ju; Tribble, Mary Beth; Li, Connie; Chandra, Abhishek; Qin, Ling; Liu, X Sherry

    2015-04-01

    Current osteoporosis treatments improve bone mass by increasing net bone formation: anti-resorptive drugs such as bisphosphonates block osteoclast activity, while anabolic agents such as parathyroid hormone (PTH) increase bone remodeling, with a greater effect on formation. Although these drugs are widely used, their role in modulating formation and resorption is not fully understood, due in part to technical limitations in the ability to longitudinally assess bone remodeling. Importantly, it is not known whether or not PTH-induced bone formation is independent of resorption, resulting in controversy over the effectiveness of combination therapies that use both PTH and an anti-resorptive. In this study, we developed a μCT-based, in vivo dynamic bone histomorphometry technique for rat tibiae, and applied this method to longitudinally track changes in bone resorption and formation as a result of treatment with alendronate (ALN), PTH, or combination therapy of both PTH and ALN (PTH+ALN). Correlations between our μCT-based measures of bone formation and measures of bone formation based on calcein-labeled histology (r=0.72-0.83) confirm the accuracy of this method. Bone remodeling parameters measured through μCT-based in vivo dynamic bone histomorphometry indicate an increased rate of bone formation in rats treated with PTH and PTH+ALN, together with a decrease in bone resorption measures in rats treated with ALN and PTH+ALN. These results were further supported by traditional histology-based measurements, suggesting that PTH was able to induce bone formation while bone resorption was suppressed. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. 3D Volume Rendering and 3D Printing (Additive Manufacturing).

    Science.gov (United States)

    Katkar, Rujuta A; Taft, Robert M; Grant, Gerald T

    2018-07-01

    Three-dimensional (3D) volume-rendered images allow 3D insight into the anatomy, facilitating surgical treatment planning and teaching. 3D printing, additive manufacturing, and rapid prototyping techniques are being used with satisfactory accuracy, mostly for diagnosis and surgical planning, followed by direct manufacture of implantable devices. The major limitation is the time and money spent generating 3D objects. Printer type, material, and build thickness are known to influence the accuracy of printed models. In implant dentistry, the use of 3D-printed surgical guides is strongly recommended to facilitate planning and reduce risk of operative complications. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. 3D game environments create professional 3D game worlds

    CERN Document Server

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  12. 3D local structure around copper site of rabbit prion-related protein: Quantitative determination by XANES spectroscopy combined with multiple-scattering calculations

    Science.gov (United States)

    Cui, P. X.; Lian, F. L.; Wang, Y.; Wen, Yi; Chu, W. S.; Zhao, H. F.; Zhang, S.; Li, J.; Lin, D. H.; Wu, Z. Y.

    2014-02-01

    Prion-related protein (PrP), a cell-surface copper-binding glycoprotein, is considered to be responsible for a number of transmissible spongiform encephalopathies (TSEs). The structural conversion of PrP from the normal cellular isoform (PrPC) to the post-translationally modified form (PrPSc) is thought to be relevant to Cu2+ binding to histidine residues. Rabbits are one of the few mammalian species that appear to be resistant to TSEs, because of the structural characteristics of the rabbit prion protein (RaPrPC) itself. Here we determined the three-dimensional local structure around the C-terminal high-affinity copper-binding sites using X-ray absorption near-edge structure combined with ab initio calculations in the framework of the multiple-scattering (MS) theory. Result shows that two amino acid resides, Gln97 and Met108, and two histidine residues, His95 and His110, are involved in binding this copper(II) ion. It might help us understand the roles of copper in prion conformation conversions, and the molecular mechanisms of prion-involved diseases.

  13. 3D Radiotherapy Can Be Safely Combined With Sandwich Systemic Gemcitabine Chemotherapy in the Management of Pancreatic Cancer: Factors Influencing Outcome

    International Nuclear Information System (INIS)

    Spry, Nigel; Harvey, Jennifer; MacLeod, Craig; Borg, Martin; Ngan, Samuel Y.; Millar, Jeremy L.; Graham, Peter; Zissiadis, Yvonne; Kneebone, Andrew; Carroll, Susan; Davies, Terri; Reece, William H.H.; Iacopetta, Barry; Goldstein, David

    2008-01-01

    Purpose: The aim of this Phase II study was to examine whether concurrent continuous infusion 5-fluorouracil (CI 5FU) plus three-dimensional conformal planning radiotherapy sandwiched between gemcitabine chemotherapy is effective, tolerable, and safe in the management of pancreatic cancer. Methods and Materials: Patients were enrolled in two strata: (1) resected pancreatic cancer at high risk of local relapse (postsurgery arm, n = 22) or (2) inoperable pancreatic cancer in head or body without metastases (locally advanced arm, n = 41). Gemcitabine was given at 1,000 mg/m 2 weekly for 3 weeks followed by 1 week rest then 5-6 weeks of radiotherapy and concurrent CI 5FU (200 mg/m 2 /day). After 4 weeks' rest, gemcitabine treatment was reinitiated for 12 weeks. Results: For the two arms combined, treatment-related Grade 3 and 4 toxicities were reported by 25 (39.7%) and 7 (11.1%) patients, respectively. No significant late renal or hepatic toxicity was observed. In the postsurgery arm (R1 54.5%), median time to progressive disease from surgery was 11.0 months, median time to failure of local control was 32.9 months, and median survival time was 15.6 months. The 1- and 2-year survival rates were 63.6% and 31.8%. No significant associations between outcome and mutations in K-ras or TP53 or microsatellite instability were identified. Post hoc investigation of cancer antigen 19-9 levels found baseline levels and increases postbaseline were associated with shorter survival (p = 0.0061 and p < 0.0001, respectively). Conclusions: This three-dimensional chemoradiotherapy regimen is safe and promising, with encouraging local control for a substantial proportion of patients, and merits testing in a randomized trial

  14. The Future Is 3D

    Science.gov (United States)

    Carter, Luke

    2015-01-01

    3D printers are a way of producing a 3D model of an item from a digital file. The model builds up in successive layers of material placed by the printer controlled by the information in the computer file. In this article the author argues that 3D printers are one of the greatest technological advances of recent times. He discusses practical uses…

  15. The 3D additivist cookbook

    NARCIS (Netherlands)

    Allahyari, Morehshin; Rourke, Daniel; Rasch, Miriam

    The 3D Additivist Cookbook, devised and edited by Morehshin Allahyari & Daniel Rourke, is a free compendium of imaginative, provocative works from over 100 world-leading artists, activists and theorists. The 3D Additivist Cookbook contains .obj and .stl files for the 3D printer, as well as critical

  16. In situ repair of bone and cartilage defects using 3D scanning and 3D printing.

    Science.gov (United States)

    Li, Lan; Yu, Fei; Shi, Jianping; Shen, Sheng; Teng, Huajian; Yang, Jiquan; Wang, Xingsong; Jiang, Qing

    2017-08-25

    Three-dimensional (3D) printing is a rapidly emerging technology that promises to transform tissue engineering into a commercially successful biomedical industry. However, the use of robotic bioprinters alone is not sufficient for disease treatment. This study aimed to report the combined application of 3D scanning and 3D printing for treating bone and cartilage defects. Three different kinds of defect models were created to mimic three orthopedic diseases: large segmental defects of long bones, free-form fracture of femoral condyle, and International Cartilage Repair Society grade IV chondral lesion. Feasibility of in situ 3D bioprinting for these diseases was explored. The 3D digital models of samples with defects and corresponding healthy parts were obtained using high-resolution 3D scanning. The Boolean operation was used to achieve the shape of the defects, and then the target geometries were imported in a 3D bioprinter. Two kinds of photopolymerized hydrogels were synthesized as bioinks. Finally, the defects of bone and cartilage were restored perfectly in situ using 3D bioprinting. The results of this study suggested that 3D scanning and 3D bioprinting could provide another strategy for tissue engineering and regenerative medicine.

  17. The Philippine "Hip Hop Stick Dance"

    Science.gov (United States)

    Lewis, Lisa

    2012-01-01

    This article introduces a dance that blends the traditional cultural heritage of the Philippines with modern music and moves. "Hip Hop Stick Dance" incorporates Tinikling (the Philippine national dance) and Arnis (a Filipino style of martial arts) to create a contemporary combination of rhythm, dance, and fitness. It was designed to introduce…

  18. Climate, weather, and hops

    Science.gov (United States)

    As climate and weather become more variable, hop growers face increased uncertainty in making decisions about their crop. Given the unprecedented nature of these changes, growers may no longer have enough information and intuitive understanding to adequately assess the situation and evaluate their m...

  19. Electron hopping through proteins

    Czech Academy of Sciences Publication Activity Database

    Warren, J. J.; Ener, M. E.; Vlček, Antonín; Winkler, J. R.; Gray, H. B.

    2012-01-01

    Roč. 256, 21-22 (2012), s. 2478-2487 ISSN 0010-8545 R&D Projects: GA MŠk(CZ) ME10124 Institutional support: RVO:61388955 Keywords : electron transfer * multistep tunneling * hopping maps Subject RIV: CG - Electrochemistry Impact factor: 11.016, year: 2012

  20. Basin Hopping Graph

    DEFF Research Database (Denmark)

    Kucharik, Marcel; Hofacker, Ivo; Stadler, Peter

    2014-01-01

    of the folding free energy landscape, however, can provide the relevant information. Results We introduce the basin hopping graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect...

  1. High-Speed On-Board Data Processing for Science Instruments: HOPS

    Science.gov (United States)

    Beyon, Jeffrey

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 â€" April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.

  2. A combined pharmacophore modeling, 3D-QSAR and molecular docking study of substituted bicyclo-[3.3.0]oct-2-enes as liver receptor homolog-1 (LRH-1) agonists

    Science.gov (United States)

    Lalit, Manisha; Gangwal, Rahul P.; Dhoke, Gaurao V.; Damre, Mangesh V.; Khandelwal, Kanchan; Sangamwar, Abhay T.

    2013-10-01

    A combined pharmacophore modelling, 3D-QSAR and molecular docking approach was employed to reveal structural and chemical features essential for the development of small molecules as LRH-1 agonists. The best HypoGen pharmacophore hypothesis (Hypo1) consists of one hydrogen-bond donor (HBD), two general hydrophobic (H), one hydrophobic aromatic (HYAr) and one hydrophobic aliphatic (HYA) feature. It has exhibited high correlation coefficient of 0.927, cost difference of 85.178 bit and low RMS value of 1.411. This pharmacophore hypothesis was cross-validated using test set, decoy set and Cat-Scramble methodology. Subsequently, validated pharmacophore hypothesis was used in the screening of small chemical databases. Further, 3D-QSAR models were developed based on the alignment obtained using substructure alignment. The best CoMFA and CoMSIA model has exhibited excellent rncv2 values of 0.991 and 0.987, and rcv2 values of 0.767 and 0.703, respectively. CoMFA predicted rpred2 of 0.87 and CoMSIA predicted rpred2 of 0.78 showed that the predicted values were in good agreement with the experimental values. Molecular docking analysis reveals that π-π interaction with His390 and hydrogen bond interaction with His390/Arg393 is essential for LRH-1 agonistic activity. The results from pharmacophore modelling, 3D-QSAR and molecular docking are complementary to each other and could serve as a powerful tool for the discovery of potent small molecules as LRH-1 agonists.

  3. Calibrated HDRI in 3D point clouds

    DEFF Research Database (Denmark)

    Bülow, Katja; Tamke, Martin

    2017-01-01

    the challenges of dynamic smart lighting planning in outdoor urban space. This paper presents findings on how 3D capturing of outdoor environments combined with HDRI establishes a new way for analysing and representing the spatial distribution of light in combination with luminance data.......3D-scanning technologies and point clouds as means for spatial representation introduce a new paradigm to the measuring and mapping of physical artefacts and space. This technology also offers possibilities for the measuring and mapping of outdoor urban lighting and has the potential to meet...

  4. 3D Spectroscopy in Astronomy

    Science.gov (United States)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  5. 3D Elevation Program—Virtual USA in 3D

    Science.gov (United States)

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  6. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  7. 3D IBFV : hardware-accelerated 3D flow visualization

    NARCIS (Netherlands)

    Telea, A.C.; Wijk, van J.J.

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique presented by van Wijk (2001) for 2D flow visualization in two main directions. First, we decompose the 3D

  8. 3D for Graphic Designers

    CERN Document Server

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  9. Qademah Fault 3D Survey

    KAUST Repository

    Hanafy, Sherif M.

    2014-01-01

    Objective: Collect 3D seismic data at Qademah Fault location to 1. 3D traveltime tomography 2. 3D surface wave migration 3. 3D phase velocity 4. Possible reflection processing Acquisition Date: 26 – 28 September 2014 Acquisition Team: Sherif, Kai, Mrinal, Bowen, Ahmed Acquisition Layout: We used 288 receiver arranged in 12 parallel lines, each line has 24 receiver. Inline offset is 5 m and crossline offset is 10 m. One shot is fired at each receiver location. We use the 40 kgm weight drop as seismic source, with 8 to 15 stacks at each shot location.

  10. 3D Bayesian contextual classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  11. 3-D printers for libraries

    CERN Document Server

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  12. Reconstruction and Analysis of Shapes from 3D Scans

    NARCIS (Netherlands)

    Haar, F.B. ter

    2009-01-01

    In this thesis, we measure 3D shapes with the use of 3D laser technology, a recent technology that combines physics, mathematics, and computer science to acquire the surface geometry of 3D shapes in the computer. We use this surface geometry to fully reconstruct real world shapes as computer models,

  13. Supernova Remnant in 3-D

    Science.gov (United States)

    2009-01-01

    of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and

  14. Cultivated grapevines represent a symptomless reservoir for the transmission of hop stunt viroid to hop crops: 15 years of evolutionary analysis.

    Directory of Open Access Journals (Sweden)

    Yoko Kawaguchi-Ito

    Full Text Available Hop stunt was a mysterious disorder that first emerged in the 1940s in commercial hops in Japan. To investigate the origin of this disorder, we infected hops with natural Hop stunt viroid (HpSVd isolates derived from four host species (hop, grapevine, plum and citrus, which except for hop represent possible sources of the ancestral viroid. These plants were maintained for 15 years, then analyzed the HpSVd variants present. Here we show that the variant originally found in cultivated grapevines gave rise to various combinations of mutations at positions 25, 26, 54, 193, and 281. However, upon prolonged infection, these variants underwent convergent evolution resulting in a limited number of adapted mutants. Some of them showed nucleotide sequences identical to those currently responsible for hop stunt epidemics in commercial hops in Japan, China, and the United States. Therefore, these results indicate that we have successfully reproduced the original process by which a natural HpSVd variant naturally introduced into cultivated hops was able to mutate into the HpSVd variants that are currently present in commercial hops. Furthermore, and importantly, we have identified cultivated grapevines as a symptomless reservoir in which HSVd can evolve and be transmitted to hop crops to cause epidemics.

  15. The Digital Space Shuttle, 3D Graphics, and Knowledge Management

    Science.gov (United States)

    Gomez, Julian E.; Keller, Paul J.

    2003-01-01

    The Digital Shuttle is a knowledge management project that seeks to define symbiotic relationships between 3D graphics and formal knowledge representations (ontologies). 3D graphics provides geometric and visual content, in 2D and 3D CAD forms, and the capability to display systems knowledge. Because the data is so heterogeneous, and the interrelated data structures are complex, 3D graphics combined with ontologies provides mechanisms for navigating the data and visualizing relationships.

  16. Abusir 3D survey 2015

    Directory of Open Access Journals (Sweden)

    Yukinori Kawae

    2016-12-01

    Full Text Available In 2015, in collaboration with the Czech Institute of Egyptology, we, a Japanese consortium, initiated the Abusir 3D Survey (A-3DS for the 3D documentation of the site’s pyramids, which have not been updated since the time of the architectural investigations of Vito Maragioglio and Celeste Rinaldi in the 1960s to the 1970s. The first season of our project focused on the exterior of Neferirkare’s pyramid, the largest pyramid at Abusir. By developing a strategic mathematical 3D survey plan, step-by-step 3D documentation to suit specific archaeological needs, and producing a new display method for the 3D data, we successfully measured the dimensions of the pyramid in a cost-effective way.

  17. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... a channel limited 2-D transducer array and the conventional 3-D beamforming technique, Parallel Beamforming. The first part of the scientific contributions demonstrate that 3-D synthetic aperture imaging achieves a better image quality than the Parallel Beamforming technique. Data were obtained using both...

  18. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... are (vx, vy, vz) = (-0.03, 95, 1.0) ± (9, 6, 1) cm/s compared with the expected (0, 96, 0) cm/s. Afterwards, 3D vector flow images from a cross-sectional plane of the vessel are presented. The out of plane velocities exhibit the expected 2D circular-symmetric parabolic shape. The experimental results...... verify that the 3D TO method estimates the complete 3D velocity vectors, and that the method is suitable for 3D vector flow imaging....

  19. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  20. E3D, 3-D Elastic Seismic Wave Propagation Code

    International Nuclear Information System (INIS)

    Larsen, S.; Harris, D.; Schultz, C.; Maddix, D.; Bakowsky, T.; Bent, L.

    2004-01-01

    1 - Description of program or function: E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output. 2 - Methods: The software simulates wave propagation by solving the elasto-dynamic formulation of the full wave equation on a staggered grid. The solution scheme is 4-order accurate in space, 2-order accurate in time

  1. Immunotoxicity of ochratoxin A and aflatoxin B1 in combination is associated with the nuclear factor kappa B signaling pathway in 3D4/21 cells.

    Science.gov (United States)

    Hou, Lili; Gan, Fang; Zhou, Xuan; Zhou, Yajiao; Qian, Gang; Liu, Zixuan; Huang, Kehe

    2018-05-01

    The co-contamination of cereals, grains, crops, and animal feeds by mycotoxins is a universal problem. Humans and animals are exposed to several mycotoxins simultaneously as evidenced by extensive studies on this topic. Yet, most studies have addressed the effects of mycotoxins individually. Aflatoxin B1 and ochratoxin A can induce immunotoxicity. However, it remains unclear whether a combination of these mycotoxins aggravates immunotoxicity and the potential mechanism underlying this effect. In this study, we used the cell line 3D4/21, swine alveolus macrophages and innate immune cell. The results showed that the percentage of cell inhibition, annexin V/PI-positive rates, and the expression of pro-inflammatory cytokines (tumor necrosis factor alpha and interleukin-6) significantly increased and the release of lactate dehydrogenase and phagocytotic index were significantly decreased at different concentrations of aflatoxin B1 and ochratoxin A combination when compared with control. The combination of aflatoxin B1 and ochratoxin A significantly decreased the production of GSH and increased reactive oxygen species level. However, N-acetylcysteine suppressed the oxidative stress and alleviated the immunotoxicity induced by the combination. The combination of aflatoxin B1 and ochratoxin A markedly enhanced the degradation of IκBa, the phosphorylation of nuclear factor kappa B (p65), and the translocation of activated nuclear factor kappa B (NF-κB) into the nuclei as demonstrated by western blotting and confocal laser scanning microscopy. These effects could be reversed by BAY 11-7082, a specific inhibitor of NF-κB. Taken together, a combination of aflatoxin B1 and ochratoxin A could aggravate immunotoxicity by activating the NF-κB signaling pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The rendering context for stereoscopic 3D web

    Science.gov (United States)

    Chen, Qinshui; Wang, Wenmin; Wang, Ronggang

    2014-03-01

    3D technologies on the Web has been studied for many years, but they are basically monoscopic 3D. With the stereoscopic technology gradually maturing, we are researching to integrate the binocular 3D technology into the Web, creating a stereoscopic 3D browser that will provide users with a brand new experience of human-computer interaction. In this paper, we propose a novel approach to apply stereoscopy technologies to the CSS3 3D Transforms. Under our model, each element can create or participate in a stereoscopic 3D rendering context, in which 3D Transforms such as scaling, translation and rotation, can be applied and be perceived in a truly 3D space. We first discuss the underlying principles of stereoscopy. After that we discuss how these principles can be applied to the Web. A stereoscopic 3D browser with backward compatibility is also created for demonstration purposes. We take advantage of the open-source WebKit project, integrating the 3D display ability into the rendering engine of the web browser. For each 3D web page, our 3D browser will create two slightly different images, each representing the left-eye view and right-eye view, both to be combined on the 3D display to generate the illusion of depth. And as the result turns out, elements can be manipulated in a truly 3D space.

  3. 3D shape detection of the indoor space based on 3D-Hough method

    OpenAIRE

    安齋, 達也; ANZAI, Tatsuya

    2013-01-01

    This paper describes methods for detecting the 3D shapes of the indoor space that is represented as a combination of planes such as a wall, desk, or whatnot. Detecting the planes makes it possible to perform calibration of multiple sensors and 3D mapping, and then produces various services such as the acquisition of life logs, AR interaction, and invader detection. This paper proposes and verifies three algorithms. First, it mentions a way to use2D-Hough.The proposed technique converts 3D dat...

  4. 3D Biomaterial Microarrays for Regenerative Medicine

    DEFF Research Database (Denmark)

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...... for tissue engineering and drug screening applications....... cell differentiation into tissue-specifi c lineages. The use of 3D biomaterial microarrays can, if optimized correctly, result in a more than 1000-fold reduction in biomaterials and cells consumption when engineering optimal materials combinations, which makes these miniaturized systems very attractive...

  5. 3-D neutron transport benchmarks

    International Nuclear Information System (INIS)

    Takeda, T.; Ikeda, H.

    1991-03-01

    A set of 3-D neutron transport benchmark problems proposed by the Osaka University to NEACRP in 1988 has been calculated by many participants and the corresponding results are summarized in this report. The results of K eff , control rod worth and region-averaged fluxes for the four proposed core models, calculated by using various 3-D transport codes are compared and discussed. The calculational methods used were: Monte Carlo, Discrete Ordinates (Sn), Spherical Harmonics (Pn), Nodal Transport and others. The solutions of the four core models are quite useful as benchmarks for checking the validity of 3-D neutron transport codes

  6. Handbook of 3D integration

    CERN Document Server

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  7. SU-E-T-451: Hybrid-VMAT: A Novel Technique Combining VMAT and 3D in Planning Whole Breast Radiotherapy with a Simultaneously-Integrated Boost (WBRT+SIB)

    International Nuclear Information System (INIS)

    Guida, K; Qamar, K; Thompson, M

    2015-01-01

    Purpose: The RTOG 1005 trial offered a hypofractionated arm in delivering WBRT+SIB. Traditionally, treatments were planned at our institution using field-in-field (FiF) tangents with a concurrent 3D conformal boost. With the availability of VMAT, it is possible that a hybrid VMAT-3D planning technique could provide another avenue in treating WBRT+SIB. Methods: A retrospective study of nine patients previously treated using RTOG 1005 guidelines was performed to compare FiF+3D plans with the hybrid technique. A combination of static tangents and partial VMAT arcs were used in base-dose optimization. The hybrid plans were optimized to deliver 4005cGy to the breast PTVeval and 4800cGy to the lumpectomy PTVeval over 15 fractions. Plans were optimized to meet the planning goals dictated by RTOG 1005. Results: Hybrid plans yielded similar coverage of breast and lumpectomy PTVs (average D95 of 4013cGy compared to 3990cGy for conventional), while reducing the volume of high dose within the breast; the average D30 and D50 for the hybrid technique were 4517cGy and 4288cGy, compared to 4704cGy and 4377cGy for conventional planning. Hybrid plans increased conformity as well, yielding CI95% values of 1.22 and 1.54 for breast and lumpectomy PTVeval volumes; in contrast, conventional plans averaged 1.49 and 2.27, respectively. The nearby organs at risk (OARs) received more low dose with the hybrid plans due to low dose spray from the partial arcs, but all hybrid plans did meet the acceptable constraints, at a minimum, from the protocol. Treatment planning time was also reduced, as plans were inversely optimized (VMAT) rather than forward optimized. Conclusion: Hybrid-VMAT could be a solution in delivering WB+SIB, as plans yield very conformal treatment plans and maintain clinical standards in OAR sparing. For treating breast cancer patients with a simultaneously-integrated boost, Hybrid-VMAT offers superiority in dosimetric conformity and planning time as compared to FIF

  8. SU-E-T-451: Hybrid-VMAT: A Novel Technique Combining VMAT and 3D in Planning Whole Breast Radiotherapy with a Simultaneously-Integrated Boost (WBRT+SIB)

    Energy Technology Data Exchange (ETDEWEB)

    Guida, K; Qamar, K; Thompson, M [University of Kansas Hospital, Kansas City, MO (United States)

    2015-06-15

    Purpose: The RTOG 1005 trial offered a hypofractionated arm in delivering WBRT+SIB. Traditionally, treatments were planned at our institution using field-in-field (FiF) tangents with a concurrent 3D conformal boost. With the availability of VMAT, it is possible that a hybrid VMAT-3D planning technique could provide another avenue in treating WBRT+SIB. Methods: A retrospective study of nine patients previously treated using RTOG 1005 guidelines was performed to compare FiF+3D plans with the hybrid technique. A combination of static tangents and partial VMAT arcs were used in base-dose optimization. The hybrid plans were optimized to deliver 4005cGy to the breast PTVeval and 4800cGy to the lumpectomy PTVeval over 15 fractions. Plans were optimized to meet the planning goals dictated by RTOG 1005. Results: Hybrid plans yielded similar coverage of breast and lumpectomy PTVs (average D95 of 4013cGy compared to 3990cGy for conventional), while reducing the volume of high dose within the breast; the average D30 and D50 for the hybrid technique were 4517cGy and 4288cGy, compared to 4704cGy and 4377cGy for conventional planning. Hybrid plans increased conformity as well, yielding CI95% values of 1.22 and 1.54 for breast and lumpectomy PTVeval volumes; in contrast, conventional plans averaged 1.49 and 2.27, respectively. The nearby organs at risk (OARs) received more low dose with the hybrid plans due to low dose spray from the partial arcs, but all hybrid plans did meet the acceptable constraints, at a minimum, from the protocol. Treatment planning time was also reduced, as plans were inversely optimized (VMAT) rather than forward optimized. Conclusion: Hybrid-VMAT could be a solution in delivering WB+SIB, as plans yield very conformal treatment plans and maintain clinical standards in OAR sparing. For treating breast cancer patients with a simultaneously-integrated boost, Hybrid-VMAT offers superiority in dosimetric conformity and planning time as compared to FIF

  9. Communication: Fully coherent quantum state hopping

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Craig C., E-mail: cmartens@uci.edu [University of California, Irvine, California 92697-2025 (United States)

    2015-10-14

    In this paper, we describe a new and fully coherent stochastic surface hopping method for simulating mixed quantum-classical systems. We illustrate the approach on the simple but unforgiving problem of quantum evolution of a two-state quantum system in the limit of unperturbed pure state dynamics and for dissipative evolution in the presence of both stationary and nonstationary random environments. We formulate our approach in the Liouville representation and describe the density matrix elements by ensembles of trajectories. Population dynamics are represented by stochastic surface hops for trajectories representing diagonal density matrix elements. These are combined with an unconventional coherent stochastic hopping algorithm for trajectories representing off-diagonal quantum coherences. The latter generalizes the binary (0,1) “probability” of a trajectory to be associated with a given state to allow integers that can be negative or greater than unity in magnitude. Unlike existing surface hopping methods, the dynamics of the ensembles are fully entangled, correctly capturing the coherent and nonlocal structure of quantum mechanics.

  10. 3D Printed Multimaterial Microfluidic Valve.

    Directory of Open Access Journals (Sweden)

    Steven J Keating

    Full Text Available We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  11. 3D Models of Immunotherapy

    Science.gov (United States)

    This collaborative grant is developing 3D models of both mouse and human biology to investigate aspects of therapeutic vaccination in order to answer key questions relevant to human cancer immunotherapy.

  12. Cortical Dynamics of Figure-Ground Separation in Response to 2D Pictures and 3D Scenes: How V2 Combines Border Ownership, Stereoscopic Cues, and Gestalt Grouping Rules

    OpenAIRE

    Grossberg, Stephen

    2016-01-01

    The FACADE model, and its laminar cortical realization and extension in the 3D LAMINART model, have explained, simulated, and predicted many perceptual and neurobiological data about how the visual cortex carries out 3D vision and figure-ground perception, and how these cortical mechanisms enable 2D pictures to generate 3D percepts of occluding and occluded objects. In particular, these models have proposed how border ownership occurs, but have not yet explicitly explained the correlation bet...

  13. AI 3D Cybug Gaming

    OpenAIRE

    Ahmed, Zeeshan

    2010-01-01

    In this short paper I briefly discuss 3D war Game based on artificial intelligence concepts called AI WAR. Going in to the details, I present the importance of CAICL language and how this language is used in AI WAR. Moreover I also present a designed and implemented 3D War Cybug for AI WAR using CAICL and discus the implemented strategy to defeat its enemies during the game life.

  14. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  15. 3D bioprinting for engineering complex tissues.

    Science.gov (United States)

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. 3D accelerator magnet calculations using MAGNUS-3D

    International Nuclear Information System (INIS)

    Pissanetzky, S.; Miao, Y.

    1989-01-01

    The steady trend towards increased magnetic and geometric complexity in the design of accelerator magnets has caused a need for reliable 3D computer models and a better understanding of the behavior of magnetic system in three dimensions. The capabilities of the MAGNUS-3D family of programs are ideally suited to solve this class of problems and provide insight into 3D effects. MAGNUS-3D can solve any problem of magnetostatics involving permanent magnets, nonlinear ferromagnetic materials and electric conductors. MAGNUS-3D uses the finite element method and the two-scalar-potentials formulation of Maxwell's equations to obtain the solution, which can then be used interactively to obtain tables of field components at specific points or lines, plots of field lines, function graphs representing a field component plotted against a coordinate along any line in space (such as the beam line), and views of the conductors, the mesh and the magnetic bodies. The magnetic quantities that can be calculated include the force or torque on conductors or magnetic parts, the energy, the flux through a specified surface, line integrals of any field component along any line in space, and the average field or potential harmonic coefficients. We describe the programs with emphasis placed on their use for accelerator magnet design, and present an advanced example of actual calculations. (orig.)

  17. Magma emplacement in 3D

    Science.gov (United States)

    Gorczyk, W.; Vogt, K.

    2017-12-01

    Magma intrusion is a major material transfer process in Earth's continental crust. Yet, the mechanical behavior of the intruding magma and its host are a matter of debate. In this study, we present a series of numerical thermo-mechanical experiments on mafic magma emplacement in 3D.In our model, we place the magmatic source region (40 km diameter) at the base of the mantle lithosphere and connect it to the crust by a 3 km wide channel, which may have evolved at early stages of magmatism during rapid ascent of hot magmatic fluids/melts. Our results demonstrate continental crustal response due to magma intrusion. We observe change in intrusion geometries between dikes, cone-sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions as well as injection time. The rheology and temperature of the host-rock are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favours host rock displacement and magma pools along the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle-crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle-crust. Low-density source magma results in T-shaped intrusions in cross-section with magma sheets at the surface.

  18. PRODUCTION WITH 3D PRINTERS IN TEXTILES [REVIEW

    OpenAIRE

    KESKIN Reyhan; GOCEK Ikilem

    2015-01-01

    3D printers are gaining more attention, finding different applications and 3D printing is being regarded as a ‘revolution’ of the 2010s for production. 3D printing is a production method that produces 3-dimensional objects by combining very thin layers over and over to form the object using 3D scanners or via softwares either private or open source. 3D printed materials find application in a large range of fields including aerospace, automotive, medicine and material science. There are severa...

  19. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  20. Majorana edge States in atomic wires coupled by pair hopping.

    Science.gov (United States)

    Kraus, Christina V; Dalmonte, Marcello; Baranov, Mikhail A; Läuchli, Andreas M; Zoller, P

    2013-10-25

    We present evidence for Majorana edge states in a number conserving theory describing a system of spinless fermions on two wires that are coupled by pair hopping. Our analysis is based on a combination of a qualitative low energy approach and numerical techniques using the density matrix renormalization group. In addition, we discuss an experimental realization of pair-hopping interactions in cold atom gases confined in optical lattices.

  1. 3D imaging, 3D printing and 3D virtual planning in endodontics.

    Science.gov (United States)

    Shah, Pratik; Chong, B S

    2018-03-01

    The adoption and adaptation of recent advances in digital technology, such as three-dimensional (3D) printed objects and haptic simulators, in dentistry have influenced teaching and/or management of cases involving implant, craniofacial, maxillofacial, orthognathic and periodontal treatments. 3D printed models and guides may help operators plan and tackle complicated non-surgical and surgical endodontic treatment and may aid skill acquisition. Haptic simulators may assist in the development of competency in endodontic procedures through the acquisition of psycho-motor skills. This review explores and discusses the potential applications of 3D printed models and guides, and haptic simulators in the teaching and management of endodontic procedures. An understanding of the pertinent technology related to the production of 3D printed objects and the operation of haptic simulators are also presented.

  2. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  3. Materialedreven 3d digital formgivning

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2010-01-01

    Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...

  4. 3D future internet media

    CERN Document Server

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  5. MAP3D: a media processor approach for high-end 3D graphics

    Science.gov (United States)

    Darsa, Lucia; Stadnicki, Steven; Basoglu, Chris

    1999-12-01

    Equator Technologies, Inc. has used a software-first approach to produce several programmable and advanced VLIW processor architectures that have the flexibility to run both traditional systems tasks and an array of media-rich applications. For example, Equator's MAP1000A is the world's fastest single-chip programmable signal and image processor targeted for digital consumer and office automation markets. The Equator MAP3D is a proposal for the architecture of the next generation of the Equator MAP family. The MAP3D is designed to achieve high-end 3D performance and a variety of customizable special effects by combining special graphics features with high performance floating-point and media processor architecture. As a programmable media processor, it offers the advantages of a completely configurable 3D pipeline--allowing developers to experiment with different algorithms and to tailor their pipeline to achieve the highest performance for a particular application. With the support of Equator's advanced C compiler and toolkit, MAP3D programs can be written in a high-level language. This allows the compiler to successfully find and exploit any parallelism in a programmer's code, thus decreasing the time to market of a given applications. The ability to run an operating system makes it possible to run concurrent applications in the MAP3D chip, such as video decoding while executing the 3D pipelines, so that integration of applications is easily achieved--using real-time decoded imagery for texturing 3D objects, for instance. This novel architecture enables an affordable, integrated solution for high performance 3D graphics.

  6. Modification of 3D milling machine to 3D printer

    OpenAIRE

    Taska, Abraham

    2014-01-01

    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  7. Aspects of defects in 3d-3d correspondence

    International Nuclear Information System (INIS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-01-01

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2,0) theory of type A_N_−_1 on a 3-manifold M. The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,ℂ)) on M and a 3d N=2 theory T_N[M]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T[SU(N)], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N>2. We also highlight the non-Abelian description of the 3d N=2T_N[M] theory with defect included, when such a description is available. This paper is a companion to our shorter paper http://dx.doi.org/10.1088/1751-8113/49/30/30LT02, which summarizes our main results.

  8. Hip-Hop Education Resources

    Science.gov (United States)

    Hall, Marcella Runell

    2009-01-01

    Hip-hop music and culture are often cited as being public pedagogy, meaning the music itself has intrinsic educational value. Non-profit organizations and individual educators have graciously taken the lead in utilizing hip-hop to educate. As the academy continues to debate its effectiveness, teachers and community organizers are moving forward.…

  9. Stereoscopic 3D graphics generation

    Science.gov (United States)

    Li, Zhi; Liu, Jianping; Zan, Y.

    1997-05-01

    Stereoscopic display technology is one of the key techniques of areas such as simulation, multimedia, entertainment, virtual reality, and so on. Moreover, stereoscopic 3D graphics generation is an important part of stereoscopic 3D display system. In this paper, at first, we describe the principle of stereoscopic display and summarize some methods to generate stereoscopic 3D graphics. Secondly, to overcome the problems which came from the methods of user defined models (such as inconvenience, long modifying period and so on), we put forward the vector graphics files defined method. Thus we can design more directly; modify the model simply and easily; generate more conveniently; furthermore, we can make full use of graphics accelerator card and so on. Finally, we discuss the problem of how to speed up the generation.

  10. 3D Printed Bionic Nanodevices.

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  11. 3D Printed Bionic Nanodevices

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.

    2016-01-01

    Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with

  12. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  13. Markerless 3D Face Tracking

    DEFF Research Database (Denmark)

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  14. 3D Terahertz Beam Profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Jepsen, Peter Uhd

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  15. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  16. 3D Pit Stop Printing

    Science.gov (United States)

    Wright, Lael; Shaw, Daniel; Gaidds, Kimberly; Lyman, Gregory; Sorey, Timothy

    2018-01-01

    Although solving an engineering design project problem with limited resources or structural capabilities of materials can be part of the challenge, students making their own parts can support creativity. The authors of this article found an exciting solution: 3D printers are not only one of several tools for making but also facilitate a creative…

  17. PRODUCTION WITH 3D PRINTERS IN TEXTILES [REVIEW

    Directory of Open Access Journals (Sweden)

    KESKIN Reyhan

    2015-05-01

    Full Text Available 3D printers are gaining more attention, finding different applications and 3D printing is being regarded as a ‘revolution’ of the 2010s for production. 3D printing is a production method that produces 3-dimensional objects by combining very thin layers over and over to form the object using 3D scanners or via softwares either private or open source. 3D printed materials find application in a large range of fields including aerospace, automotive, medicine and material science. There are several 3D printing methods such as fused deposition modeling (FDM, stereolithographic apparatus (SLA, selective laser sintering (SLS, inkjet 3D printing and laminated object manufacturing (LOM. 3D printing process involves three steps: production of the 3D model file, conversion of the 3D model file into G-code and printing the object. 3D printing finds a large variety of applications in many fields; however, textile applications of 3D printing remain rare. There are several textile-like 3D printed products mostly for use in fashion design, for research purposes, for technical textile applications and for substituting traditional textiles suchas weft-knitted structures and lace patterns. 3D printed textile-like structures are not strong enough for textile applications as they tend to break easily and although they have the drape of a textile material, they still lack the flexibility of textiles. 3D printing technology has to gain improvement to produce materials that will be an equivalent for textile materials, and has to be a faster method to compete with traditional textile production methods.

  18. 3D histomorphometric quantification from 3D computed tomography

    International Nuclear Information System (INIS)

    Oliveira, L.F. de; Lopes, R.T.

    2004-01-01

    The histomorphometric analysis is based on stereologic concepts and was originally applied to biologic samples. This technique has been used to evaluate different complex structures such as ceramic filters, net structures and cancellous objects that are objects with inner connected structures. The measured histomorphometric parameters of structure are: sample volume to total reconstructed volume (BV/TV), sample surface to sample volume (BS/BV), connection thickness (Tb Th ), connection number (Tb N ) and connection separation (Tb Sp ). The anisotropy was evaluated as well. These parameters constitute the base of histomorphometric analysis. The quantification is realized over cross-sections recovered by cone beam reconstruction, where a real-time microfocus radiographic system is used as tomographic system. The three-dimensional (3D) histomorphometry, obtained from tomography, corresponds to an evolution of conventional method that is based on 2D analysis. It is more coherent with morphologic and topologic context of the sample. This work shows result from 3D histomorphometric quantification to characterize objects examined by 3D computer tomography. The results, which characterizes the internal structures of ceramic foams with different porous density, are compared to results from conventional methods

  19. DYNA3D2000*, Explicit 3-D Hydrodynamic FEM Program

    International Nuclear Information System (INIS)

    Lin, J.

    2002-01-01

    1 - Description of program or function: DYNA3D2000 is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation. 2 - Method of solution: Discretization of a continuous model transforms partial differential equations into algebraic equations. A numerical solution is then obtained by solving these algebraic equations through a direct time marching scheme. 3 - Restrictions on the complexity of the problem: Recent software improvements have eliminated most of the user identified limitations with dynamic memory allocation and a very large format description that has pushed potential problem sizes beyond the reach of most users. The dominant restrictions remain in code execution speed and robustness, which the developers constantly strive to improve

  20. 3-D Discrete Analytical Ridgelet Transform

    OpenAIRE

    Helbert , David; Carré , Philippe; Andrès , Éric

    2006-01-01

    International audience; In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines:...

  1. Supercritical fluid extraction of hops

    Directory of Open Access Journals (Sweden)

    ZORAN ZEKOVIC

    2007-01-01

    Full Text Available Five cultivars of hop were extracted by the method of supercritical fluid extraction using carbon dioxide (SFE–CO2 as extractant. The extraction (50 g of hop sample using a CO2 flow rate of 97.725 L/h was done in the two steps: 1. extraction at 150 bar and 40°C for 2.5 h (sample of series A was obtained and, after that, the same sample of hop was extracted in the second step: 2. extraction at 300 bar and 40 °C for 2.5 h (sample of series B was obtained. The Magnum cultivar was chosen for the investigation of the extraction kinetics. For the qualitative and quantitative analysis of the obtained hop extracts, the GC-MS method was used. Two of four themost common compounds of hop aroma (a-humulene and b-caryophyllene were detected in samples of series A. In addition, isomerized a-acids and a high content of b-acids were detected. The a-acids content in the samples of series B was the highest in the extract of the Magnum cultivar (it is a bitter variety of hop. The low contents of a-acids in all the other hop samples resulted in extracts with low a-acids content, i.e., that contents were under the prescribed a-acids content.

  2. 3D modeling based on CityEngine

    Science.gov (United States)

    Jia, Guangyin; Liao, Kaiju

    2017-03-01

    Currently, there are many 3D modeling softwares, like 3DMAX, AUTOCAD, and more populous BIM softwares represented by REVIT. CityEngine modeling software introduced in this paper can fully utilize the existing GIS data and combine other built models to make 3D modeling on internal and external part of buildings in a rapid and batch manner, so as to improve the 3D modeling efficiency.

  3. Enhanced photovoltaic performance utilizing effective charge transfers and light scattering effects by the combination of mesoporous, hollow 3D-ZnO along with 1D-ZnO in CdS quantum dot sensitized solar cells.

    Science.gov (United States)

    Chetia, Tridip Ranjan; Barpuzary, Dipankar; Qureshi, Mohammad

    2014-05-28

    A combination of 3-dimensional (3D) hollow mesoporous ZnO microspheres (ZnO HMSP) and vertically grown one-dimensional ZnO nanowires (1D ZnO NWs) on a fluorine doped tin oxide (FTO) coated glass substrate has been investigated as a photoanode for a CdS quantum dot-sensitized solar cell (QSSC). A comparative study of the photovoltaic performance of the solar cell with devices fabricated with pristine ZnO HMSPs and ZnO NWs was carried out. The proposed photovoltaic device exhibits an enhancement in power conversion efficiency (PCE) upto ∼74% and ∼35%, as compared to the 1D ZnO NW and ZnO HMSP based solar cells. The maximum incident photon-to-current conversion efficiency (IPCE) for the solar cell was observed to be ∼40%, whereas for the devices fabricated with bare ZnO HMSP and ZnO NW the IPCE were only ∼32% and ∼19%, respectively. The enhanced photovoltaic performance of the solar cell is attributed to the high Brunauer-Emmett-Teller (BET) surface area, efficient light-scattering effects and facilitated diffusion of the electrolyte for better functioning of the redox couple (S(2-)/Sn(2-)) in the hybrid photoanode. Moreover, a faster electron transport through 1D ZnO NWs provides better charge collection from the photoactive layer, which leads to an increase in the short circuit current density of the device. The present study highlights the design and development of a new hybrid photoanode for solar harvesting.

  4. 3D integrated superconducting qubits

    Science.gov (United States)

    Rosenberg, D.; Kim, D.; Das, R.; Yost, D.; Gustavsson, S.; Hover, D.; Krantz, P.; Melville, A.; Racz, L.; Samach, G. O.; Weber, S. J.; Yan, F.; Yoder, J. L.; Kerman, A. J.; Oliver, W. D.

    2017-10-01

    As the field of quantum computing advances from the few-qubit stage to larger-scale processors, qubit addressability and extensibility will necessitate the use of 3D integration and packaging. While 3D integration is well-developed for commercial electronics, relatively little work has been performed to determine its compatibility with high-coherence solid-state qubits. Of particular concern, qubit coherence times can be suppressed by the requisite processing steps and close proximity of another chip. In this work, we use a flip-chip process to bond a chip with superconducting flux qubits to another chip containing structures for qubit readout and control. We demonstrate that high qubit coherence (T1, T2,echo > 20 μs) is maintained in a flip-chip geometry in the presence of galvanic, capacitive, and inductive coupling between the chips.

  5. Mortars for 3D printing

    Directory of Open Access Journals (Sweden)

    Demyanenko Olga

    2018-01-01

    Full Text Available The paper is aimed at developing scientifically proven compositions of mortars for 3D printing modified by a peat-based admixture with improved operational characteristics. The paper outlines the results of experimental research on hardened cement paste and concrete mixture with the use of modifying admixture MT-600 (thermally modified peat. It is found that strength of hardened cement paste increases at early age when using finely dispersed admixtures, which is the key factor for formation of construction and technical specifications of concrete for 3D printing technologies. The composition of new formations of hardened cement paste modified by MT-600 admixture were obtained, which enabled to suggest the possibility of their physico-chemical interaction while hardening.

  6. Forensic 3D Scene Reconstruction

    International Nuclear Information System (INIS)

    LITTLE, CHARLES Q.; PETERS, RALPH R.; RIGDON, J. BRIAN; SMALL, DANIEL E.

    1999-01-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene

  7. 3D neutron transport modelization

    International Nuclear Information System (INIS)

    Warin, X.

    1996-12-01

    Some nodal methods to solve the transport equation in 3D are presented. Two nodal methods presented at an OCDE congress are described: a first one is a low degree one called RTN0; a second one is a high degree one called BDM1. The two methods can be made faster with a totally consistent DSA. Some results of parallelization show that: 98% of the time is spent in sweeps; transport sweeps are easily parallelized. (K.A.)

  8. 3D Printing A Survey

    Directory of Open Access Journals (Sweden)

    Muhammad Zulkifl Hasan

    2017-08-01

    Full Text Available Solid free fabrication SFF are produced to enhance the printing instrument utilizing distinctive strategies like Piezo spout control multi-spout injet printers or STL arrange utilizing cutting information. The procedure is utilized to diminish the cost and enhance the speed of printing. A few techniques take long at last because of extra process like dry the printing. This study will concentrate on SFFS utilizing UV gum for 3D printing.

  9. 3D neutron transport modelization

    Energy Technology Data Exchange (ETDEWEB)

    Warin, X.

    1996-12-01

    Some nodal methods to solve the transport equation in 3D are presented. Two nodal methods presented at an OCDE congress are described: a first one is a low degree one called RTN0; a second one is a high degree one called BDM1. The two methods can be made faster with a totally consistent DSA. Some results of parallelization show that: 98% of the time is spent in sweeps; transport sweeps are easily parallelized. (K.A.). 10 refs.

  10. [Real time 3D echocardiography

    Science.gov (United States)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  11. 3D treatment planning systems.

    Science.gov (United States)

    Saw, Cheng B; Li, Sicong

    2018-01-01

    Three-dimensional (3D) treatment planning systems have evolved and become crucial components of modern radiation therapy. The systems are computer-aided designing or planning softwares that speed up the treatment planning processes to arrive at the best dose plans for the patients undergoing radiation therapy. Furthermore, the systems provide new technology to solve problems that would not have been considered without the use of computers such as conformal radiation therapy (CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). The 3D treatment planning systems vary amongst the vendors and also the dose delivery systems they are designed to support. As such these systems have different planning tools to generate the treatment plans and convert the treatment plans into executable instructions that can be implemented by the dose delivery systems. The rapid advancements in computer technology and accelerators have facilitated constant upgrades and the introduction of different and unique dose delivery systems than the traditional C-arm type medical linear accelerators. The focus of this special issue is to gather relevant 3D treatment planning systems for the radiation oncology community to keep abreast of technology advancement by assess the planning tools available as well as those unique "tricks or tips" used to support the different dose delivery systems. Copyright © 2018 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  12. Compact 3D quantum memory

    Science.gov (United States)

    Xie, Edwar; Deppe, Frank; Renger, Michael; Repp, Daniel; Eder, Peter; Fischer, Michael; Goetz, Jan; Pogorzalek, Stefan; Fedorov, Kirill G.; Marx, Achim; Gross, Rudolf

    2018-05-01

    Superconducting 3D microwave cavities offer state-of-the-art coherence times and a well-controlled environment for superconducting qubits. In order to realize at the same time fast readout and long-lived quantum information storage, one can couple the qubit to both a low-quality readout and a high-quality storage cavity. However, such systems are bulky compared to their less coherent 2D counterparts. A more compact and scalable approach is achieved by making use of the multimode structure of a 3D cavity. In our work, we investigate such a device where a transmon qubit is capacitively coupled to two modes of a single 3D cavity. External coupling is engineered so that the memory mode has an about 100 times larger quality factor than the readout mode. Using an all-microwave second-order protocol, we realize a lifetime enhancement of the stored state over the qubit lifetime by a factor of 6 with a fidelity of approximately 80% determined via quantum process tomography. We also find that this enhancement is not limited by fundamental constraints.

  13. 3D Graphics with Spreadsheets

    Directory of Open Access Journals (Sweden)

    Jan Benacka

    2009-06-01

    Full Text Available In the article, the formulas for orthographic parallel projection of 3D bodies on computer screen are derived using secondary school vector algebra. The spreadsheet implementation is demonstrated in six applications that project bodies with increasing intricacy – a convex body (cube with non-solved visibility, convex bodies (cube, chapel with solved visibility, a coloured convex body (chapel with solved visibility, and a coloured non-convex body (church with solved visibility. The projections are revolvable in horizontal and vertical plane, and they are changeable in size. The examples show an unusual way of using spreadsheets as a 3D computer graphics tool. The applications can serve as a simple introduction to the general principles of computer graphics, to the graphics with spreadsheets, and as a tool for exercising stereoscopic vision. The presented approach is usable at visualising 3D scenes within some topics of secondary school curricula as solid geometry (angles and distances of lines and planes within simple bodies or analytic geometry in space (angles and distances of lines and planes in E3, and even at university level within calculus at visualising graphs of z = f(x,y functions. Examples are pictured.

  14. Fabricating 3D figurines with personalized faces.

    Science.gov (United States)

    Tena, J Rafael; Mahler, Moshe; Beeler, Thabo; Grosse, Max; Hengchin Yeh; Matthews, Iain

    2013-01-01

    We present a semi-automated system for fabricating figurines with faces that are personalised to the individual likeness of the customer. The efficacy of the system has been demonstrated by commercial deployments at Walt Disney World Resort and Star Wars Celebration VI in Orlando Florida. Although the system is semi automated, human intervention is limited to a few simple tasks to maintain the high throughput and consistent quality required for commercial application. In contrast to existing systems that fabricate custom heads that are assembled to pre-fabricated plastic bodies, our system seamlessly integrates 3D facial data with a predefined figurine body into a unique and continuous object that is fabricated as a single piece. The combination of state-of-the-art 3D capture, modelling, and printing that are the core of our system provide the flexibility to fabricate figurines whose complexity is only limited by the creativity of the designer.

  15. Imaging chemical reactions - 3D velocity mapping

    Science.gov (United States)

    Chichinin, A. I.; Gericke, K.-H.; Kauczok, S.; Maul, C.

    Visualising a collision between an atom or a molecule or a photodissociation (half-collision) of a molecule on a single particle and single quantum level is like watching the collision of billiard balls on a pool table: Molecular beams or monoenergetic photodissociation products provide the colliding reactants at controlled velocity before the reaction products velocity is imaged directly with an elaborate camera system, where one should keep in mind that velocity is, in general, a three-dimensional (3D) vectorial property which combines scattering angles and speed. If the processes under study have no cylindrical symmetry, then only this 3D product velocity vector contains the full information of the elementary process under study.

  16. Debris Dispersion Model Using Java 3D

    Science.gov (United States)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  17. 3D FaceCam: a fast and accurate 3D facial imaging device for biometrics applications

    Science.gov (United States)

    Geng, Jason; Zhuang, Ping; May, Patrick; Yi, Steven; Tunnell, David

    2004-08-01

    Human faces are fundamentally three-dimensional (3D) objects, and each face has its unique 3D geometric profile. The 3D geometric features of a human face can be used, together with its 2D texture, for rapid and accurate face recognition purposes. Due to the lack of low-cost and robust 3D sensors and effective 3D facial recognition (FR) algorithms, almost all existing FR systems use 2D face images. Genex has developed 3D solutions that overcome the inherent problems in 2D while also addressing limitations in other 3D alternatives. One important aspect of our solution is a unique 3D camera (the 3D FaceCam) that combines multiple imaging sensors within a single compact device to provide instantaneous, ear-to-ear coverage of a human face. This 3D camera uses three high-resolution CCD sensors and a color encoded pattern projection system. The RGB color information from each pixel is used to compute the range data and generate an accurate 3D surface map. The imaging system uses no moving parts and combines multiple 3D views to provide detailed and complete 3D coverage of the entire face. Images are captured within a fraction of a second and full-frame 3D data is produced within a few seconds. This described method provides much better data coverage and accuracy in feature areas with sharp features or details (such as the nose and eyes). Using this 3D data, we have been able to demonstrate that a 3D approach can significantly improve the performance of facial recognition. We have conducted tests in which we have varied the lighting conditions and angle of image acquisition in the "field." These tests have shown that the matching results are significantly improved when enrolling a 3D image rather than a single 2D image. With its 3D solutions, Genex is working toward unlocking the promise of powerful 3D FR and transferring FR from a lab technology into a real-world biometric solution.

  18. Low Power Multi-Hop Networking Analysis in Intelligent Environments.

    Science.gov (United States)

    Etxaniz, Josu; Aranguren, Gerardo

    2017-05-19

    Intelligent systems are driven by the latest technological advances in many different areas such as sensing, embedded systems, wireless communications or context recognition. This paper focuses on some of those areas. Concretely, the paper deals with wireless communications issues in embedded systems. More precisely, the paper combines the multi-hop networking with Bluetooth technology and a quality of service (QoS) metric, the latency. Bluetooth is a radio license-free worldwide communication standard that makes low power multi-hop wireless networking available. It establishes piconets (point-to-point and point-to-multipoint links) and scatternets (multi-hop networks). As a result, many Bluetooth nodes can be interconnected to set up ambient intelligent networks. Then, this paper presents the results of the investigation on multi-hop latency with park and sniff Bluetooth low power modes conducted over the hardware test bench previously implemented. In addition, the empirical models to estimate the latency of multi-hop communications over Bluetooth Asynchronous Connectionless Links (ACL) in park and sniff mode are given. The designers of devices and networks for intelligent systems will benefit from the estimation of the latency in Bluetooth multi-hop communications that the models provide.

  19. Extreme Kinematics in Selected Hip Hop Dance Sequences.

    Science.gov (United States)

    Bronner, Shaw; Ojofeitimi, Sheyi; Woo, Helen

    2015-09-01

    Hip hop dance has many styles including breakdance (breaking), house, popping and locking, funk, streetdance, krumping, Memphis jookin', and voguing. These movements combine the complexity of dance choreography with the challenges of gymnastics and acrobatic movements. Despite high injury rates in hip hop dance, particularly in breakdance, to date there are no published biomechanical studies in this population. The purpose of this study was to compare representative hip hop steps found in breakdance (toprock and breaking) and house and provide descriptive statistics of the angular displacements that occurred in these sequences. Six expert female hip hop dancers performed three choreographed dance sequences, top rock, breaking, and house, to standardized music-based tempos. Hip, knee, and ankle kinematics were collected during sequences that were 18 to 30 sec long. Hip, knee, and ankle three-dimensional peak joint angles were compared in repeated measures ANOVAs with post hoc tests where appropriate (pHip hop maximal joint angles exceeded reported activities of daily living and high injury sports such as gymnastics. Hip hop dancers work at weight-bearing joint end ranges where muscles are at a functional disadvantage. These results may explain why lower extremity injury rates are high in this population.

  20. Magmatic Systems in 3-D

    Science.gov (United States)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  1. Perceptual attributes of crosstalk in 3D images

    NARCIS (Netherlands)

    Seuntiëns, P.J.H.; Meesters, L.M.J.; IJsselsteijn, W.A.

    2005-01-01

    Nowadays, crosstalk is probably one of the most annoying distortions in 3D displays. So far, display designers still have a relative lack of knowledge about the relevant subjective attributes of crosstalk and how they are combined in an overall 3D viewing experience model. The aim of the current

  2. Hall effect in hopping regime

    International Nuclear Information System (INIS)

    Avdonin, A.; Skupiński, P.; Grasza, K.

    2016-01-01

    A simple description of the Hall effect in the hopping regime of conductivity in semiconductors is presented. Expressions for the Hall coefficient and Hall mobility are derived by considering averaged equilibrium electron transport in a single triangle of localization sites in a magnetic field. Dependence of the Hall coefficient is analyzed in a wide range of temperature and magnetic field values. Our theoretical result is applied to our experimental data on temperature dependence of Hall effect and Hall mobility in ZnO. - Highlights: • Expressions for Hall coefficient and mobility for hopping conductivity are derived. • Theoretical result is compared with experimental curves measured on ZnO. • Simultaneous action of free and hopping conduction channels is considered. • Non-linearity of hopping Hall coefficient is predicted.

  3. Hall effect in hopping regime

    Energy Technology Data Exchange (ETDEWEB)

    Avdonin, A., E-mail: avdonin@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa (Poland); Skupiński, P. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa (Poland); Grasza, K. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa (Poland); Institute of Electronic Materials Technology, ul. Wólczyńska 133, 01-919 Warszawa (Poland)

    2016-02-15

    A simple description of the Hall effect in the hopping regime of conductivity in semiconductors is presented. Expressions for the Hall coefficient and Hall mobility are derived by considering averaged equilibrium electron transport in a single triangle of localization sites in a magnetic field. Dependence of the Hall coefficient is analyzed in a wide range of temperature and magnetic field values. Our theoretical result is applied to our experimental data on temperature dependence of Hall effect and Hall mobility in ZnO. - Highlights: • Expressions for Hall coefficient and mobility for hopping conductivity are derived. • Theoretical result is compared with experimental curves measured on ZnO. • Simultaneous action of free and hopping conduction channels is considered. • Non-linearity of hopping Hall coefficient is predicted.

  4. Wireless 3D Chocolate Printer

    Directory of Open Access Journals (Sweden)

    FROILAN G. DESTREZA

    2014-02-01

    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  5. Interactive 3D Mars Visualization

    Science.gov (United States)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  6. Virtual 3-D Facial Reconstruction

    Directory of Open Access Journals (Sweden)

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  7. 3D Rainbow Particle Tracking Velocimetry

    Science.gov (United States)

    Aguirre-Pablo, Andres A.; Xiong, Jinhui; Idoughi, Ramzi; Aljedaani, Abdulrahman B.; Dun, Xiong; Fu, Qiang; Thoroddsen, Sigurdur T.; Heidrich, Wolfgang

    2017-11-01

    A single color camera is used to reconstruct a 3D-3C velocity flow field. The camera is used to record the 2D (X,Y) position and colored scattered light intensity (Z) from white polyethylene tracer particles in a flow. The main advantage of using a color camera is the capability of combining different intensity levels for each color channel to obtain more depth levels. The illumination system consists of an LCD projector placed perpendicularly to the camera. Different intensity colored level gradients are projected onto the particles to encode the depth position (Z) information of each particle, benefiting from the possibility of varying the color profiles and projected frequencies up to 60 Hz. Chromatic aberrations and distortions are estimated and corrected using a 3D laser engraved calibration target. The camera-projector system characterization is presented considering size and depth position of the particles. The use of these components reduces dramatically the cost and complexity of traditional 3D-PTV systems.

  8. Integrated Biogeomorphological Modeling Using Delft3D

    Science.gov (United States)

    Ye, Q.; Jagers, B.

    2011-12-01

    The skill of numerical morphological models has improved significantly from the early 2D uniform, total load sediment models (with steady state or infrequent wave updates) to recent 3D hydrodynamic models with multiple suspended and bed load sediment fractions and bed stratigraphy (online coupled with waves). Although there remain many open questions within this combined field of hydro- and morphodynamics, we observe an increasing need to include biological processes in the overall dynamics. In riverine and inter-tidal environments, there is often an important influence by riparian vegetation and macrobenthos. Over the past decade more and more researchers have started to extend the simulation environment with wrapper scripts and other quick code hacks to estimate their influence on morphological development in coastal, estuarine and riverine environments. Although one can in this way quickly analyze different approaches, these research tools have generally not been designed with reuse, performance and portability in mind. We have now implemented a reusable, flexible, and efficient two-way link between the Delft3D open source framework for hydrodynamics, waves and morphology, and the water quality and ecology modules. The same link will be used for 1D, 2D and 3D modeling on networks and both structured and unstructured grids. We will describe the concepts of the overall system, and illustrate it with some first results.

  9. Combined in-depth, 3D, en face imaging of the optic disc, optic disc pits and optic disc pit maculopathy using swept-source megahertz OCT at 1050 nm.

    Science.gov (United States)

    Maertz, Josef; Kolb, Jan Philip; Klein, Thomas; Mohler, Kathrin J; Eibl, Matthias; Wieser, Wolfgang; Huber, Robert; Priglinger, Siegfried; Wolf, Armin

    2018-02-01

    To demonstrate papillary imaging of eyes with optic disc pits (ODP) or optic disc pit associated maculopathy (ODP-M) with ultrahigh-speed swept-source optical coherence tomography (SS-OCT) at 1.68 million A-scans/s. To generate 3D-renderings of the papillary area with 3D volume-reconstructions of the ODP and highly resolved en face images from a single densely-sampled megahertz-OCT (MHz-OCT) dataset for investigation of ODP-characteristics. A 1.68 MHz-prototype SS-MHz-OCT system at 1050 nm based on a Fourier-domain mode-locked laser was employed to acquire high-definition, 3D datasets with a dense sampling of 1600 × 1600 A-scans over a 45° field of view. Six eyes with ODPs, and two further eyes with glaucomatous alteration or without ocular pathology are presented. 3D-rendering of the deep papillary structures, virtual 3D-reconstructions of the ODPs and depth resolved isotropic en face images were generated using semiautomatic segmentation. 3D-rendering and en face imaging of the optic disc, ODPs and ODP associated pathologies showed a broad spectrum regarding ODP characteristics. Between individuals the shape of the ODP and the appending pathologies varied considerably. MHz-OCT en face imaging generates distinct top-view images of ODPs and ODP-M. MHz-OCT generates high resolution images of retinal pathologies associated with ODP-M and allows visualizing ODPs with depths of up to 2.7 mm. Different patterns of ODPs can be visualized in patients for the first time using 3D-reconstructions and co-registered high-definition en face images extracted from a single densely sampled 1050 nm megahertz-OCT (MHz-OCT) dataset. As the immediate vicinity to the SAS and the site of intrapapillary proliferation is located at the bottom of the ODP it is crucial to image the complete structure and the whole depth of ODPs. Especially in very deep pits, where non-swept-source OCT fails to reach the bottom, conventional swept-source devices and the MHz-OCT alike are feasible

  10. Proses Produksi Pembuatan Tekstur Material pada Desain 3d Karakter Menggunakan Perangkat Lunak Maxon 3D Bodypaint

    Directory of Open Access Journals (Sweden)

    Ardiyan Ardiyan

    2014-10-01

    Full Text Available Digital production proses using integrated image editor software, which has own drawing tools function, makes easier producing textures material that applied in 3D model. The feature of image editor combined with 3D Editor Software makes the easier adjustment of 3D model needs when we see the visible improvement, so the software utilization will be more efficient. In the discussion, this study is done by making the production of 3D model, that is the 3D Character that has material texturing from utilizing the available image editor software features, so the alternative production by using the integrated image editor is possibly to be done. The discussion can be utilized as an insight into the manufacture of technical design in determining the design workflow of 3D models. Utilization of software take one example of software Maxon Cinema 4D version 14, which is used as a reference as software that integrates image processing therein. 

  11. Analysis of 3-D images

    Science.gov (United States)

    Wani, M. Arif; Batchelor, Bruce G.

    1992-03-01

    Deriving generalized representation of 3-D objects for analysis and recognition is a very difficult task. Three types of representations based on type of an object is used in this paper. Objects which have well-defined geometrical shapes are segmented by using a fast edge region based segmentation technique. The segmented image is represented by plan and elevation of each part of the object if the object parts are symmetrical about their central axis. The plan and elevation concept enables representing and analyzing such objects quickly and efficiently. The second type of representation is used for objects having parts which are not symmetrical about their central axis. The segmented surface patches of such objects are represented by the 3-D boundary and the surface features of each segmented surface. Finally, the third type of representation is used for objects which don't have well-defined geometrical shapes (for example a loaf of bread). These objects are represented and analyzed from its features which are derived using a multiscale contour based technique. Anisotropic Gaussian smoothing technique is introduced to segment the contours at various scales of smoothing. A new merging technique is used which enables getting the current best estimate of break points at each scale. This new technique enables elimination of loss of accuracy of localization effects at coarser scales without using scale space tracking approach.

  12. 3D Printed Bionic Ears

    Science.gov (United States)

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  13. 3D DNA Origami Crystals.

    Science.gov (United States)

    Zhang, Tao; Hartl, Caroline; Frank, Kilian; Heuer-Jungemann, Amelie; Fischer, Stefan; Nickels, Philipp C; Nickel, Bert; Liedl, Tim

    2018-05-18

    3D crystals assembled entirely from DNA provide a route to design materials on a molecular level and to arrange guest particles in predefined lattices. This requires design schemes that provide high rigidity and sufficiently large open guest space. A DNA-origami-based "tensegrity triangle" structure that assembles into a 3D rhombohedral crystalline lattice with an open structure in which 90% of the volume is empty space is presented here. Site-specific placement of gold nanoparticles within the lattice demonstrates that these crystals are spacious enough to efficiently host 20 nm particles in a cavity size of 1.83 × 10 5 nm 3 , which would also suffice to accommodate ribosome-sized macromolecules. The accurate assembly of the DNA origami lattice itself, as well as the precise incorporation of gold particles, is validated by electron microscopy and small-angle X-ray scattering experiments. The results show that it is possible to create DNA building blocks that assemble into lattices with customized geometry. Site-specific hosting of nano objects in the optically transparent DNA lattice sets the stage for metamaterial and structural biology applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  15. RELAP5-3D User Problems

    International Nuclear Information System (INIS)

    Riemke, Richard Allan

    2001-01-01

    The Reactor Excursion and Leak Analysis Program with 3D capability (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics and 3D neutron kinetics. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution

  16. LOTT RANCH 3D PROJECT

    International Nuclear Information System (INIS)

    Larry Lawrence; Bruce Miller

    2004-01-01

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  17. Using high-order polynomial basis in 3-D EM forward modeling based on volume integral equation method

    Science.gov (United States)

    Kruglyakov, Mikhail; Kuvshinov, Alexey

    2018-05-01

    3-D interpretation of electromagnetic (EM) data of different origin and scale becomes a common practice worldwide. However, 3-D EM numerical simulations (modeling)—a key part of any 3-D EM data analysis—with realistic levels of complexity, accuracy and spatial detail still remains challenging from the computational point of view. We present a novel, efficient 3-D numerical solver based on a volume integral equation (IE) method. The efficiency is achieved by using a high-order polynomial (HOP) basis instead of the zero-order (piecewise constant) basis that is invoked in all routinely used IE-based solvers. We demonstrate that usage of the HOP basis allows us to decrease substantially the number of unknowns (preserving the same accuracy), with corresponding speed increase and memory saving.

  18. Interchain coupling and 3D modeling of trans-polyacetylene

    International Nuclear Information System (INIS)

    Bronold, F.; Saxena, A.; Bishop, A.R.

    1992-01-01

    In spite of the success of the SSH model for trans-polyacetylene in interpreting many experimental results (e.g. optical and magnetic properties) there remain some aspects of the real material which are outside the scope of the simple 1D model. Especially ordering phenomena of doped and undoped trans-polyacetylene as well as transport properties (e.g. electronic and thermal conductivity) are beyond a 1D description. There are many attempts to construct a transport theory for this novel class of materials using solitons or polaxons as the basic ingredients. But so far it is not yet clear whether these typical 1D excitations still exist in crystalline transpolyacetylene. Therefore, to clarify the role which intrinsic self-localized nonlinear excitations characteristic of 1D models play in the bulk (3D) material, we study the stability of a polaronic excitation against interchain coupling. As a preliminary step we consider first two coupled t-(CH) x -chains where the π-electrons are allowed to hop from one chain to the other. Then we introduce a 3D generalization of the SSH model and study a polaron in a 3D crystalline environment

  19. Assessment of Delft3D Morphodynamic Model During Duck94

    National Research Council Canada - National Science Library

    Welsch, Charlotte

    2002-01-01

    ... over a wide range of conditions. The Delfi3D 2- DH model utilizes shallow water equations to phase resolve the mean and infragravity motions in combination with an advection diffusion equation for the sediment transport...

  20. A 3D printed helical antenna with integrated lens

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2015-01-01

    A novel antenna configuration comprising a helical antenna with an integrated lens is demonstrated in this work. The antenna is manufactured by a unique combination of 3D printing of plastic material (ABS) and inkjet printing of silver nano

  1. On the Capacity of a GSM Frequency Hopping network with Intelligent Underlayer-Overlayer

    DEFF Research Database (Denmark)

    Nielsen, Thomas Toftegaard; Wigard, Jeroen; Mogensen, Preben Elgaard

    1997-01-01

    . By combining this reuse partitioning with frequency hopping, an increase in the network capacity in terms of carried traffic per cell is achieved. Simulations have indicated that for slow moving mobiles a gain of approximately 35% is achieved by this new feature when compared with a frequency hopping network...

  2. Telerobotics and 3-d TV

    International Nuclear Information System (INIS)

    Able, E.

    1990-01-01

    This paper reports on the development of telerobotic techniques that can be used in the nuclear industry. The approach has been to apply available equipment, modify available equipment, or design and build anew. The authors have successfully built an input controller which can be used with standard industrial robots, converting them into telerobots. A clean room industrial robot has been re-engineered into an advanced telerobot engineered for the nuclear industry, using a knowledge of radiation tolerance design principles and collaboration with the manufacturer. A powerful hydraulic manipulator has been built to respond to a need for more heavy duty devices for in-cell handling. A variety of easy to use 3-D TV systems has been developed

  3. 3D stacked chips from emerging processes to heterogeneous systems

    CERN Document Server

    Fettweis, Gerhard

    2016-01-01

    This book explains for readers how 3D chip stacks promise to increase the level of on-chip integration, and to design new heterogeneous semiconductor devices that combine chips of different integration technologies (incl. sensors) in a single package of the smallest possible size.  The authors focus on heterogeneous 3D integration, addressing some of the most important challenges in this emerging technology, including contactless, optics-based, and carbon-nanotube-based 3D integration, as well as signal-integrity and thermal management issues in copper-based 3D integration. Coverage also includes the 3D heterogeneous integration of power sources, photonic devices, and non-volatile memories based on new materials systems.   •Provides single-source reference to the latest research in 3D optoelectronic integration: process, devices, and systems; •Explains the use of wireless 3D integration to improve 3D IC reliability and yield; •Describes techniques for monitoring and mitigating thermal behavior in 3D I...

  4. Mobile glasses-free 3D using compact waveguide hologram

    Science.gov (United States)

    Pyun, K.; Choi, C.; Morozov, A.; Putilin, A.; Bovsunovskiy, I.; Kim, S.; Ahn, J.; Lee, H.-S.; Lee, S.

    2013-02-01

    The exploding mobile communication devices make 3D data available anywhere anytime. However, to record and reconstruct 3D, the huge number of optical components is often required, which makes overall device size bulky and image quality degraded due to the error-prone tuning. In addition, if additional glass is required, then user experience of 3D is exhausting and unpleasant. Holography is the ultimate 3D that users experience natural 3D in every direction. For mobile glasses-free 3D experience, it is critical to make holography device that can be as compact and integrated as possible. For reliable and economical mass production, integrated optics is needed as integrated circuits in semiconductor industry. Thus, we propose mobile glasses-free 3D using compact waveguide hologram in terms of overall device sizes, quantity of elements and combined functionality of each element. The main advantages of proposed solution are as follows: First, this solution utilizes various integral optical elements, where each of them is a united not adjustable optical element, replacing separate and adjustable optical elements with various forms and configurations. Second, geometrical form of integral elements provides small sizes of whole device. Third, geometrical form of integral elements allows creating flat device. And finally, absence of adjustable elements provide rigidly of whole device. The usage of integrated optical means based on waveguide holographic elements allows creating a new type of compact and high functional devices for mobile glasses-free 3D applications such as mobile medical 3D data visualization.

  5. Mobile glasses-free 3D using compact waveguide hologram

    International Nuclear Information System (INIS)

    Pyun, K; Choi, C; Kim, S; Ahn, J; Lee, H-S; Lee, S; Morozov, A; Bovsunovskiy, I; Putilin, A

    2013-01-01

    The exploding mobile communication devices make 3D data available anywhere anytime. However, to record and reconstruct 3D, the huge number of optical components is often required, which makes overall device size bulky and image quality degraded due to the error-prone tuning. In addition, if additional glass is required, then user experience of 3D is exhausting and unpleasant. Holography is the ultimate 3D that users experience natural 3D in every direction. For mobile glasses-free 3D experience, it is critical to make holography device that can be as compact and integrated as possible. For reliable and economical mass production, integrated optics is needed as integrated circuits in semiconductor industry. Thus, we propose mobile glasses-free 3D using compact waveguide hologram in terms of overall device sizes, quantity of elements and combined functionality of each element. The main advantages of proposed solution are as follows: First, this solution utilizes various integral optical elements, where each of them is a united not adjustable optical element, replacing separate and adjustable optical elements with various forms and configurations. Second, geometrical form of integral elements provides small sizes of whole device. Third, geometrical form of integral elements allows creating flat device. And finally, absence of adjustable elements provide rigidly of whole device. The usage of integrated optical means based on waveguide holographic elements allows creating a new type of compact and high functional devices for mobile glasses-free 3D applications such as mobile medical 3D data visualization.

  6. Embedding complex objects with 3d printing

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-10-12

    A CMOS technology-compatible fabrication process for flexible CMOS electronics embedded during additive manufacturing (i.e. 3D printing). A method for such a process may include printing a first portion of a 3D structure; pausing the step of printing the 3D structure to embed the flexible silicon substrate; placing the flexible silicon substrate in a cavity of the first portion of the 3D structure to embed the flexible silicon substrate in the 3D structure; and resuming the step of printing the 3D structure to form the second portion of the 3D structure.

  7. Supercritical carbon dioxide hop extraction

    Directory of Open Access Journals (Sweden)

    Pfaf-Šovljanski Ivana I.

    2005-01-01

    Full Text Available The hop of Magnum cultivar was extracted using supercritical carbon dioxide (SFE-as extractant. Extraction was carried out in the two steps: the first one being carried out at 150 bar and 40°C for 2.5 h (Extract A, and the second was the extraction of the same hop sample at 300 bar and 40°C for 2.5 h (Extract B. Extraction kinetics of the system hop-SFE-CO2 was investigated. Two of four most common compounds of hop aroma (α-humulene and β-caryophyllene were detected in Extract A. Isomerised α-acids and β-acids were detected too. a-Acid content in Extract B was high (that means it is a bitter variety of hop. Mathematical modeling using empirical model characteristic time model and simple single sphere model has been performed on Magnum cultivar extraction experimental results. Characteristic time model equations, best fitted experimental results. Empirical model equation, fitted results well, while simple single sphere model equation poorly approximated the results.

  8. Natural fibre composites for 3D Printing

    OpenAIRE

    Pandey, Kapil

    2015-01-01

    3D printing has been common option for prototyping. Not all the materials are suitable for 3D printing. Various studies have been done and still many are ongoing regarding the suitability of the materials for 3D printing. This thesis work discloses the possibility of 3D printing of certain polymer composite materials. The main objective of this thesis work was to study the possibility for 3D printing the polymer composite material composed of natural fibre composite and various different ...

  9. Fabrication of Nanostructured Poly-ε-caprolactone 3D Scaffolds for 3D Cell Culture Technology

    KAUST Repository

    Schipani, Rossana

    2015-04-21

    Tissue engineering is receiving tremendous attention due to the necessity to overcome the limitations related to injured or diseased tissues or organs. It is the perfect combination of cells and biomimetic-engineered materials. With the appropriate biochemical factors, it is possible to develop new effective bio-devices that are capable to improve or replace biological functions. Latest developments in microfabrication methods, employing mostly synthetic biomaterials, allow the production of three-dimensional (3D) scaffolds that are able to direct cell-to-cell interactions and specific cellular functions in order to drive tissue regeneration or cell transplantation. The presented work offers a rapid and efficient method of 3D scaffolds fabrication by using optical lithography and micro-molding techniques. Bioresorbable polymer poly-ε-caprolactone (PCL) was the material used thanks to its high biocompatibility and ability to naturally degrade in tissues. 3D PCL substrates show a particular combination in the designed length scale: cylindrical shaped pillars with 10μm diameter, 10μm height, arranged in a hexagonal lattice with spacing of 20μm were obtained. The sidewalls of the pillars were nanostructured by attributing a 3D architecture to the scaffold. The suitability of these devices as cell culture technology supports was evaluated by plating NIH/3T3 mouse embryonic fibroblasts and human Neural Stem Cells (hNSC) on them. Scanning Electron Microscopy (SEM) analysis was carried out in order to examine the micro- and nano-patterns on the surface of the supports. In addition, after seeding of cells, SEM and immunofluorescence characterization of the fabricated systems were performed to check adhesion, growth and proliferation. It was observed that cells grow and develop healthy on the bio-polymeric devices by giving rise to well-interconnected networks. 3D PCL nano-patterned pillared scaffold therefore may have considerable potential as effective tool for

  10. 3-D discrete analytical ridgelet transform.

    Science.gov (United States)

    Helbert, David; Carré, Philippe; Andres, Eric

    2006-12-01

    In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines: 3-D discrete radial lines going through the origin defined from their orthogonal projections and 3-D planes covered with 2-D discrete line segments. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a 3-D DART adapted to a specific application. Indeed, the 3-D DART representation is not orthogonal, It is associated with a flexible redundancy factor. The 3-D DART has a very simple forward/inverse algorithm that provides an exact reconstruction without any iterative method. In order to illustrate the potentiality of this new discrete transform, we apply the 3-D DART and its extension to the Local-DART (with smooth windowing) to the denoising of 3-D image and color video. These experimental results show that the simple thresholding of the 3-D DART coefficients is efficient.

  11. Composites of 3D-Printed Polymers and Textile Fabrics*

    Science.gov (United States)

    Martens, Yasmin; Ehrmann, Andrea

    2017-08-01

    3D printing belongs to the rapidly emerging technologies of our time. Due to its recent drawback - the technology is relatively slow compared with other primary shaping methods, such as injection molding -, 3D printing is often not used for creating complete large components but to add specific features to existing larger objects. One of the possibilities to create such composites with an additional value consists in combining 3D printed polymers with textile fabrics. Several attempts have been made to enhance the adhesion between both materials, a task which is still challenging for diverse material combinations. Our paper reports about new experiments combining 3D printed embossed designs, snap fasteners and zip fasteners with different textile base materials, showing the possibilities and technical limits of these novel composites.

  12. ORMGEN3D, 3-D Crack Geometry FEM Mesh Generator

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryson, J.W.

    1994-01-01

    1 - Description of program or function: ORMGEN3D is a finite element mesh generator for computational fracture mechanics analysis. The program automatically generates a three-dimensional finite element model for six different crack geometries. These geometries include flat plates with straight or curved surface cracks and cylinders with part-through cracks on the outer or inner surface. Mathematical or user-defined crack shapes may be considered. The curved cracks may be semicircular, semi-elliptical, or user-defined. A cladding option is available that allows for either an embedded or penetrating crack in the clad material. 2 - Method of solution: In general, one eighth or one-quarter of the structure is modelled depending on the configuration or option selected. The program generates a core of special wedge or collapsed prism elements at the crack front to introduce the appropriate stress singularity at the crack tip. The remainder of the structure is modelled with conventional 20-node iso-parametric brick elements. Element group I of the finite element model consists of an inner core of special crack tip elements surrounding the crack front enclosed by a single layer of conventional brick elements. Eight element divisions are used in a plane orthogonal to the crack front, while the number of element divisions along the arc length of the crack front is user-specified. The remaining conventional brick elements of the model constitute element group II. 3 - Restrictions on the complexity of the problem: Maxima of 5,500 nodes, 4 layers of clad elements

  13. 3D-Printed Biopolymers for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Xiaoming Li

    2014-01-01

    Full Text Available 3D printing technology has recently gained substantial interest for potential applications in tissue engineering due to the ability of making a three-dimensional object of virtually any shape from a digital model. 3D-printed biopolymers, which combine the 3D printing technology and biopolymers, have shown great potential in tissue engineering applications and are receiving significant attention, which has resulted in the development of numerous research programs regarding the material systems which are available for 3D printing. This review focuses on recent advances in the development of biopolymer materials, including natural biopolymer-based materials and synthetic biopolymer-based materials prepared using 3D printing technology, and some future challenges and applications of this technology are discussed.

  14. Crowdsourcing Based 3d Modeling

    Science.gov (United States)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  15. CROWDSOURCING BASED 3D MODELING

    Directory of Open Access Journals (Sweden)

    A. Somogyi

    2016-06-01

    Full Text Available Web-based photo albums that support organizing and viewing the users’ images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  16. 3D full-field quantification of cell-induced large deformations in fibrillar biomaterials by combining non-rigid image registration with label-free second harmonic generation.

    Science.gov (United States)

    Jorge-Peñas, Alvaro; Bové, Hannelore; Sanen, Kathleen; Vaeyens, Marie-Mo; Steuwe, Christian; Roeffaers, Maarten; Ameloot, Marcel; Van Oosterwyck, Hans

    2017-08-01

    To advance our current understanding of cell-matrix mechanics and its importance for biomaterials development, advanced three-dimensional (3D) measurement techniques are necessary. Cell-induced deformations of the surrounding matrix are commonly derived from the displacement of embedded fiducial markers, as part of traction force microscopy (TFM) procedures. However, these fluorescent markers may alter the mechanical properties of the matrix or can be taken up by the embedded cells, and therefore influence cellular behavior and fate. In addition, the currently developed methods for calculating cell-induced deformations are generally limited to relatively small deformations, with displacement magnitudes and strains typically of the order of a few microns and less than 10% respectively. Yet, large, complex deformation fields can be expected from cells exerting tractions in fibrillar biomaterials, like collagen. To circumvent these hurdles, we present a technique for the 3D full-field quantification of large cell-generated deformations in collagen, without the need of fiducial markers. We applied non-rigid, Free Form Deformation (FFD)-based image registration to compute full-field displacements induced by MRC-5 human lung fibroblasts in a collagen type I hydrogel by solely relying on second harmonic generation (SHG) from the collagen fibrils. By executing comparative experiments, we show that comparable displacement fields can be derived from both fibrils and fluorescent beads. SHG-based fibril imaging can circumvent all described disadvantages of using fiducial markers. This approach allows measuring 3D full-field deformations under large displacement (of the order of 10 μm) and strain regimes (up to 40%). As such, it holds great promise for the study of large cell-induced deformations as an inherent component of cell-biomaterial interactions and cell-mediated biomaterial remodeling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Vrste i tehnike 3D modeliranja

    OpenAIRE

    Bernik, Andrija

    2010-01-01

    Proces stvaranja 3D stvarnih ili imaginarnih objekata naziva se 3D modeliranje. Razvoj računalne tehnologije omogućuje korisniku odabir raznih metoda i tehnika kako bi se postigla optimalna učinkovitost. Odabir je vezan za klasično 3D modeliranje ili 3D skeniranje pomoću specijaliziranih programskih i sklopovskih rješenja. 3D tehnikama modeliranja korisnik može izraditi 3D model na nekoliko načina: koristi poligone, krivulje ili hibrid dviju spomenutih tehnika pod nazivom subdivizijsko modeli...

  18. Kuvaus 3D-tulostamisesta hammastekniikassa

    OpenAIRE

    Munne, Mauri; Mustonen, Tuomas; Vähäjylkkä, Jaakko

    2013-01-01

    3D-tulostaminen kehittyy nopeasti ja yleistyy koko ajan. Tulostimien tarkkuuksien kehittyessä 3D-tulostus on ottamassa myös jalansijaa hammastekniikan alalta. Tämän opinnäytetyön tarkoituksena on kuvata 3D-tulostamisen tilaa hammastekniikassa. 3D-tulostaminen on Suomessa vielä melko harvinaista, joten opinnäytetyön tavoitteena on koota yhteen kaikki mahdollinen tieto liittyen 3D-tulostamiseen hammastekniikassa. Tavoitteena on myös 3D-tulostimen testaaminen käytännössä aina suun skannaami...

  19. NIF Ignition Target 3D Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  20. Creating 3D visualizations of MRI data: A brief guide

    Science.gov (United States)

    Madan, Christopher R.

    2015-01-01

    While magnetic resonance imaging (MRI) data is itself 3D, it is often difficult to adequately present the results papers and slides in 3D. As a result, findings of MRI studies are often presented in 2D instead. A solution is to create figures that include perspective and can convey 3D information; such figures can sometimes be produced by standard functional magnetic resonance imaging (fMRI) analysis packages and related specialty programs. However, many options cannot provide functionality such as visualizing activation clusters that are both cortical and subcortical (i.e., a 3D glass brain), the production of several statistical maps with an identical perspective in the 3D rendering, or animated renderings. Here I detail an approach for creating 3D visualizations of MRI data that satisfies all of these criteria. Though a 3D ‘glass brain’ rendering can sometimes be difficult to interpret, they are useful in showing a more overall representation of the results, whereas the traditional slices show a more local view. Combined, presenting both 2D and 3D representations of MR images can provide a more comprehensive view of the study’s findings. PMID:26594340

  1. 3D printing for clinical application in otorhinolaryngology.

    Science.gov (United States)

    Zhong, Nongping; Zhao, Xia

    2017-12-01

    Three-dimensional (3D) printing is a promising technology that can use a patient's image data to create complex and personalized constructs precisely. It has made great progress over the past few decades and has been widely used in medicine including medical modeling, surgical planning, medical education and training, prosthesis and implants. Three-dimensional (3D) bioprinting is a powerful tool that has the potential to fabricate bioengineered constructs of the desired shape layer-by-layer using computer-aided deposition of living cells and biomaterials. Advances in 3D printed implants and future tissue-engineered constructs will bring great progress to the field of otolaryngology. By integrating 3D printing into tissue engineering and materials, it may be possible for otolaryngologists to implant 3D printed functional grafts into patients for reconstruction of a variety of tissue defects in the foreseeable future. In this review, we will introduce the current state of 3D printing technology and highlight the applications of 3D printed prosthesis and implants, 3D printing technology combined with tissue engineering and future directions of bioprinting in the field of otolaryngology.

  2. 3D mass digitization: a milestone for archeological documentation

    Directory of Open Access Journals (Sweden)

    Pedro Santos

    2017-05-01

    Full Text Available In the heritage field, the demand for fast and efficient 3D digitization technologies for historic remains is increasing. Besides, 3D digitization has proved to be a promising approach to enable precise reconstructions of objects. Yet, unlike the digital acquisition of cultural goods in 2D widely used today, 3D digitization often still requires a significant investment of time and money. To make it more widely available to heritage institutions, the Competence Center for Cultural Heritage Digitization at the Fraunhofer Institute for Computer Graphics Research IGD has developed CultLab3D, the world’s first 3D mass digitization facility for collections of three-dimensional objects. CultLab3D is specifically designed to automate the entire 3D digitization process thus allowing to scan and archive objects on a large-scale. Moreover, scanning and lighting technologies are combined to capture the exact geometry, texture, and optical material properties of artefacts to produce highly accurate photo-realistic representations. The unique setup allows to shorten the time needed for digitization to several minutes per artefact instead of hours, as required by conventional 3D scanning methods.

  3. 3D-LSI technology for image sensor

    International Nuclear Information System (INIS)

    Motoyoshi, Makoto; Koyanagi, Mitsumasa

    2009-01-01

    Recently, the development of three-dimensional large-scale integration (3D-LSI) technologies has accelerated and has advanced from the research level or the limited production level to the investigation level, which might lead to mass production. By separating 3D-LSI technology into elementary technologies such as (1) through silicon via (TSV) formation, (2) bump formation, (3) wafer thinning, (4) chip/wafer alignment, and (5) chip/wafer stacking and reconstructing the entire process and structure, many methods to realize 3D-LSI devices can be developed. However, by considering a specific application, the supply chain of base wafers, and the purpose of 3D integration, a few suitable combinations can be identified. In this paper, we focus on the application of 3D-LSI technologies to image sensors. We describe the process and structure of the chip size package (CSP), developed on the basis of current and advanced 3D-LSI technologies, to be used in CMOS image sensors. Using the current LSI technologies, CSPs for 1.3 M, 2 M, and 5 M pixel CMOS image sensors were successfully fabricated without any performance degradation. 3D-LSI devices can be potentially employed in high-performance focal-plane-array image sensors. We propose a high-speed image sensor with an optical fill factor of 100% to be developed using next-generation 3D-LSI technology and fabricated using micro(μ)-bumps and micro(μ)-TSVs.

  4. Hip-Hop and the Academic Canon

    Science.gov (United States)

    Abe, Daudi

    2009-01-01

    Over the last 30 years, the hip-hop movement has risen from the margins to become the preeminent force in US popular culture. In more recent times academics have begun to harness the power of hip-hop culture and use it as a means of infusing transformative knowledge into the mainstream academic discourse. On many college campuses, hip-hop's…

  5. Young Children Manifest Spiritualities in Their Hip-Hop Writing

    Science.gov (United States)

    Norton, Nadjwa E. L.

    2014-01-01

    In this article, the author combines multicultural feminist critical theories with the voices of Black and Latina/Latino young spiritual children to extend culturally responsive teaching. The author illuminates how children use their hip-hop writing to construct themselves as people who communicate with God, choose spiritual content for their…

  6. Distributed 3-D iterative reconstruction for quantitative SPECT

    International Nuclear Information System (INIS)

    Ju, Z.W.; Frey, E.C.; Tsui, B.M.W.

    1995-01-01

    The authors describe a distributed three dimensional (3-D) iterative reconstruction library for quantitative single-photon emission computed tomography (SPECT). This library includes 3-D projector-backprojector pairs (PBPs) and distributed 3-D iterative reconstruction algorithms. The 3-D PBPs accurately and efficiently model various combinations of the image degrading factors including attenuation, detector response and scatter response. These PBPs were validated by comparing projection data computed using the projectors with that from direct Monte Carlo (MC) simulations. The distributed 3-D iterative algorithms spread the projection-backprojection operations for all the projection angles over a heterogeneous network of single or multi-processor computers to reduce the reconstruction time. Based on a master/slave paradigm, these distributed algorithms provide dynamic load balancing and fault tolerance. The distributed algorithms were verified by comparing images reconstructed using both the distributed and non-distributed algorithms. Computation times for distributed 3-D reconstructions running on up to 4 identical processors were reduced by a factor approximately 80--90% times the number of the processors participating, compared to those for non-distributed 3-D reconstructions running on a single processor. When combined with faster affordable computers, this library provides an efficient means for implementing accurate reconstruction and compensation methods to improve quality and quantitative accuracy in SPECT images

  7. From 2D to 3D: Using Illumination Cones to Build 3d Face Model

    International Nuclear Information System (INIS)

    Xiao, S S; Jin, M

    2006-01-01

    To solve the problem derivate by lighting condition and position of the camera, a new method using illumination cones to build 3d face model has been proposed. Due to illumination variability, the same object can show dramatic difference even as being viewed in fixed pose. To handle this variability, an object recognition system must employ a representation that is either invariant to, or can model this variability. The proposed technique presents an appearance-based method for modeling the variability due to illumination in the images of objects. The method differs from past appearance-based methods. Evenmore, a small set of training images is used to generate a representation that the illumination cone models the complete set of images of an object with Lambertian reflectance surface under a combination of arbitrary point light sources at infinity. After building up the illumination cones, researches focus on how to present the 3d model of the face. Combining illumination and texture feature to build up 3d model of the face make it easy solving the problem in recognition of face under different pose

  8. Will 3D printers manufacture your meals?

    NARCIS (Netherlands)

    Bommel, K.J.C. van

    2013-01-01

    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  9. Eesti 3D jaoks kitsas / Virge Haavasalu

    Index Scriptorium Estoniae

    Haavasalu, Virge

    2009-01-01

    Produktsioonifirma Digitaalne Sputnik: Kaur ja Kaspar Kallas tegelevad filmide produtseerimise ning 3D digitaalkaamerate tootearendusega (Silicon Imaging LLC). Vendade Kallaste 3D-kaamerast. Kommenteerib Eesti Filmi Sihtasutuse direktor Marge Liiske

  10. Hip-Hop Pop Art

    Science.gov (United States)

    Talley, Clarence, Sr.

    2011-01-01

    Art has a way of helping students better understand and appreciate the world around them, particularly the things that are most important to them. Hip hop is one of those generational genres that capture the attention of young students like few other things do. Drawing on this genre to get students to create art is an excellent way to demonstrate…

  11. 3D-Printed Millimeter Wave Structures

    Science.gov (United States)

    2016-03-14

    demonstrates the resolution of the printer with a 10 micron nozzle. Figure 2: Measured loss tangent of SEBS and SBS samples. 3D - Printed Millimeter... 3D printing of styrene-butadiene-styrene (SBS) and styrene ethylene/butylene-styrene (SEBS) is used to demonstrate the feasibility of 3D - printed ...Additionally, a dielectric lens is printed which improves the antenna gain of an open-ended WR-28 waveguide from 7 to 8.5 dBi. Keywords: 3D printing

  12. Digital Dentistry — 3D Printing Applications

    OpenAIRE

    Zaharia Cristian; Gabor Alin-Gabriel; Gavrilovici Andrei; Stan Adrian Tudor; Idorasi Laura; Sinescu Cosmin; Negruțiu Meda-Lavinia

    2017-01-01

    Three-dimensional (3D) printing is an additive manufacturing method in which a 3D item is formed by laying down successive layers of material. 3D printers are machines that produce representations of objects either planned with a CAD program or scanned with a 3D scanner. Printing is a method for replicating text and pictures, typically with ink on paper. We can print different dental pieces using different methods such as selective laser sintering (SLS), stereolithography, fused deposition mo...

  13. Detectors in 3D available for assessment

    CERN Document Server

    Re, Valerio

    2014-01-01

    This deliverable reports on 3D devices resulting from the vertical integration of pixel sensors and readout electronics. After 3D integration steps such as etching of through-silicon vias and backside metallization of readout integrated circuits, ASICs and sensors are interconnected to form a 3D pixel detector. Various 3D detectors have been devised in AIDA WP3 and their status and performance is assessed here.

  14. SHOP: scaffold hopping by GRID-based similarity searches

    DEFF Research Database (Denmark)

    Bergmann, Rikke; Linusson, Anna; Zamora, Ismael

    2007-01-01

    A new GRID-based method for scaffold hopping (SHOP) is presented. In a fully automatic manner, scaffolds were identified in a database based on three types of 3D-descriptors. SHOP's ability to recover scaffolds was assessed and validated by searching a database spiked with fragments of known...... scaffolds were in the 31 top-ranked scaffolds. SHOP also identified new scaffolds with substantially different chemotypes from the queries. Docking analysis indicated that the new scaffolds would have similar binding modes to those of the respective query scaffolds observed in X-ray structures...

  15. 3D modelling for multipurpose cadastre

    NARCIS (Netherlands)

    Abduhl Rahman, A.; Van Oosterom, P.J.M.; Hua, T.C.; Sharkawi, K.H.; Duncan, E.E.; Azri, N.; Hassan, M.I.

    2012-01-01

    Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D

  16. Expanding Geometry Understanding with 3D Printing

    Science.gov (United States)

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  17. 3D Characterization of Recrystallization Boundaries

    DEFF Research Database (Denmark)

    Zhang, Yubin; Godfrey, Andrew William; MacDonald, A. Nicole

    2016-01-01

    A three-dimensional (3D) volume containing a recrystallizing grain and a deformed matrix in a partially recrystallized pure aluminum was characterized using the 3D electron backscattering diffraction technique. The 3D shape of a recrystallizing boundary, separating the recrystallizing grain...... on the formation of protrusions/retrusions....

  18. 3D-Printable Antimicrobial Composite Resins

    NARCIS (Netherlands)

    Yue, Jun; Zhao, Pei; Gerasimov, Jennifer Y.; van de Lagemaat, Marieke; Grotenhuis, Arjen; Rustema-Abbing, Minie; van der Mei, Henny C.; Busscher, Henk J.; Herrmann, Andreas; Ren, Yijin

    2015-01-01

    3D printing is seen as a game-changing manufacturing process in many domains, including general medicine and dentistry, but the integration of more complex functions into 3D-printed materials remains lacking. Here, it is expanded on the repertoire of 3D-printable materials to include antimicrobial

  19. See-through 3D technology for augmented reality

    Science.gov (United States)

    Lee, Byoungho; Lee, Seungjae; Li, Gang; Jang, Changwon; Hong, Jong-Young

    2017-06-01

    Augmented reality is recently attracting a lot of attention as one of the most spotlighted next-generation technologies. In order to get toward realization of ideal augmented reality, we need to integrate 3D virtual information into real world. This integration should not be noticed by users blurring the boundary between the virtual and real worlds. Thus, ultimate device for augmented reality can reconstruct and superimpose 3D virtual information on the real world so that they are not distinguishable, which is referred to as see-through 3D technology. Here, we introduce our previous researches to combine see-through displays and 3D technologies using emerging optical combiners: holographic optical elements and index matched optical elements. Holographic optical elements are volume gratings that have angular and wavelength selectivity. Index matched optical elements are partially reflective elements using a compensation element for index matching. Using these optical combiners, we could implement see-through 3D displays based on typical methodologies including integral imaging, digital holographic displays, multi-layer displays, and retinal projection. Some of these methods are expected to be optimized and customized for head-mounted or wearable displays. We conclude with demonstration and analysis of fundamental researches for head-mounted see-through 3D displays.

  20. Hybrid 3D Printing of Soft Electronics.

    Science.gov (United States)

    Valentine, Alexander D; Busbee, Travis A; Boley, John William; Raney, Jordan R; Chortos, Alex; Kotikian, Arda; Berrigan, John Daniel; Durstock, Michael F; Lewis, Jennifer A

    2017-10-01

    Hybrid 3D printing is a new method for producing soft electronics that combines direct ink writing of conductive and dielectric elastomeric materials with automated pick-and-place of surface mount electronic components within an integrated additive manufacturing platform. Using this approach, insulating matrix and conductive electrode inks are directly printed in specific layouts. Passive and active electrical components are then integrated to produce the desired electronic circuitry by using an empty nozzle (in vacuum-on mode) to pick up individual components, place them onto the substrate, and then deposit them (in vacuum-off mode) in the desired location. The components are then interconnected via printed conductive traces to yield soft electronic devices that may find potential application in wearable electronics, soft robotics, and biomedical devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. 3D Detectors for Synchrotron Applications

    CERN Document Server

    Pennicard, D

    2009-01-01

    3D detectors are a novel variety of photodiode radiation detector, invented by Parker, Kenney and Segal (1997). Instead of having n- and p-type contacts on the front and back surfaces of a silicon substrate, like a standard photodiode, they have columns of doped material passing through the thickness of the silicon. This structure means that the detector can combine a reasonable substrate thickness with a very small electrode spacing, resulting in a low depletion voltage, fast charge collection and low charge sharing. These detectors have a couple of promising applications. Their fast charge collection and low depletion voltage should make them very radiation-tolerant. So, they could be used for future particle physics experiments at the Super Large Hadron Collider (SLHC), where high levels of radiation damage are expected. Also, their low charge sharing means they could potentially improve X-ray diffraction measurements at synchrotrons such as Diamond Light Source. This would allow these experiments, for exa...

  2. 3D printed helical antenna with lens

    KAUST Repository

    Farooqui, Muhammad Fahad

    2016-12-19

    The gain of an antenna can be enhanced through the integration of a lens, however this technique has traditionally been restricted to planar antennas due to fabrication limitations of standard manufacturing processes. Here, with a unique combination of 3D and 2D inkjet printing of dielectric and metallic inks respectively, we demonstrate a Fresnel lens that has been monolithically integrated to a non-planar antenna (helix) for the first time. Antenna measurements show that the integration of a Fresnel lens enhances the gain of a 2-turn helix by around 4.6 dB giving a peak gain of about 12.9 dBi at 8.8 GHz.

  3. Recent trends in bioinks for 3D printing.

    Science.gov (United States)

    Gopinathan, Janarthanan; Noh, Insup

    2018-01-01

    The worldwide demand for the organ replacement or tissue regeneration is increasing steadily. The advancements in tissue engineering and regenerative medicine have made it possible to regenerate such damaged organs or tissues into functional organ or tissue with the help of 3D bioprinting. The main component of the 3D bioprinting is the bioink, which is crucial for the development of functional organs or tissue structures. The bioinks used in 3D printing technology require so many properties which are vital and need to be considered during the selection. Combination of different methods and enhancements in properties are required to develop more successful bioinks for the 3D printing of organs or tissue structures. This review consists of the recent state-of-art of polymer-based bioinks used in 3D printing for applications in tissue engineering and regenerative medicine. The subsection projects the basic requirements for the selection of successful bioinks for 3D printing and developing 3D tissues or organ structures using combinations of bioinks such as cells, biomedical polymers and biosignals. Different bioink materials and their properties related to the biocompatibility, printability, mechanical properties, which are recently reported for 3D printing are discussed in detail. Many bioinks formulations have been reported from cell-biomaterials based bioinks to cell-based bioinks such as cell aggregates and tissue spheroids for tissue engineering and regenerative medicine applications. Interestingly, more tunable bioinks, which are biocompatible for live cells, printable and mechanically stable after printing are emerging with the help of functional polymeric biomaterials, their modifications and blending of cells and hydrogels. These approaches show the immense potential of these bioinks to produce more complex tissue/organ structures using 3D bioprinting in the future.

  4. View-based 3-D object retrieval

    CERN Document Server

    Gao, Yue

    2014-01-01

    Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res

  5. Wafer level 3-D ICs process technology

    CERN Document Server

    Tan, Chuan Seng; Reif, L Rafael

    2009-01-01

    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  6. 3D Printing of Fluid Flow Structures

    OpenAIRE

    Taira, Kunihiko; Sun, Yiyang; Canuto, Daniel

    2017-01-01

    We discuss the use of 3D printing to physically visualize (materialize) fluid flow structures. Such 3D models can serve as a refreshing hands-on means to gain deeper physical insights into the formation of complex coherent structures in fluid flows. In this short paper, we present a general procedure for taking 3D flow field data and producing a file format that can be supplied to a 3D printer, with two examples of 3D printed flow structures. A sample code to perform this process is also prov...

  7. The Esri 3D city information model

    International Nuclear Information System (INIS)

    Reitz, T; Schubiger-Banz, S

    2014-01-01

    With residential and commercial space becoming increasingly scarce, cities are going vertical. Managing the urban environments in 3D is an increasingly important and complex undertaking. To help solving this problem, Esri has released the ArcGIS for 3D Cities solution. The ArcGIS for 3D Cities solution provides the information model, tools and apps for creating, analyzing and maintaining a 3D city using the ArcGIS platform. This paper presents an overview of the 3D City Information Model and some sample use cases

  8. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    Science.gov (United States)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  9. RELAP5-3D User Problems

    Energy Technology Data Exchange (ETDEWEB)

    Riemke, Richard Allan

    2002-09-01

    The Reactor Excursion and Leak Analysis Program with 3D capability1 (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics2 and 3D neutron kinetics3,4. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature5,6,7,8,9,10. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution.

  10. 3DSEM: A 3D microscopy dataset

    Directory of Open Access Journals (Sweden)

    Ahmad P. Tafti

    2016-03-01

    Full Text Available The Scanning Electron Microscope (SEM as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples. Keywords: 3D microscopy dataset, 3D microscopy vision, 3D SEM surface reconstruction, Scanning Electron Microscope (SEM

  11. Recent advances in 3D printing of biomaterials.

    Science.gov (United States)

    Chia, Helena N; Wu, Benjamin M

    2015-01-01

    3D Printing promises to produce complex biomedical devices according to computer design using patient-specific anatomical data. Since its initial use as pre-surgical visualization models and tooling molds, 3D Printing has slowly evolved to create one-of-a-kind devices, implants, scaffolds for tissue engineering, diagnostic platforms, and drug delivery systems. Fueled by the recent explosion in public interest and access to affordable printers, there is renewed interest to combine stem cells with custom 3D scaffolds for personalized regenerative medicine. Before 3D Printing can be used routinely for the regeneration of complex tissues (e.g. bone, cartilage, muscles, vessels, nerves in the craniomaxillofacial complex), and complex organs with intricate 3D microarchitecture (e.g. liver, lymphoid organs), several technological limitations must be addressed. In this review, the major materials and technology advances within the last five years for each of the common 3D Printing technologies (Three Dimensional Printing, Fused Deposition Modeling, Selective Laser Sintering, Stereolithography, and 3D Plotting/Direct-Write/Bioprinting) are described. Examples are highlighted to illustrate progress of each technology in tissue engineering, and key limitations are identified to motivate future research and advance this fascinating field of advanced manufacturing.

  12. 3D tomography of cells in micro-channels

    Science.gov (United States)

    Quint, S.; Christ, A. F.; Guckenberger, A.; Himbert, S.; Kaestner, L.; Gekle, S.; Wagner, C.

    2017-09-01

    We combine confocal imaging, microfluidics, and image analysis to record 3D-images of cells in flow. This enables us to recover the full 3D representation of several hundred living cells per minute. Whereas 3D confocal imaging has thus far been limited to steady specimens, we overcome this restriction and present a method to access the 3D shape of moving objects. The key of our principle is a tilted arrangement of the micro-channel with respect to the focal plane of the microscope. This forces cells to traverse the focal plane in an inclined manner. As a consequence, individual layers of passing cells are recorded, which can then be assembled to obtain the volumetric representation. The full 3D information allows for a detailed comparison with theoretical and numerical predictions unfeasible with, e.g., 2D imaging. Our technique is exemplified by studying flowing red blood cells in a micro-channel reflecting the conditions prevailing in the microvasculature. We observe two very different types of shapes: "croissants" and "slippers." Additionally, we perform 3D numerical simulations of our experiment to confirm the observations. Since 3D confocal imaging of cells in flow has not yet been realized, we see high potential in the field of flow cytometry where cell classification thus far mostly relies on 1D scattering and fluorescence signals.

  13. Virtual 3d City Modeling: Techniques and Applications

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2013-08-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach are using for Virtual 3-D City models generation, in first approach, researcher are using Conventional techniques such as Vector Map data, DEM, Aerial images, second approach are based on High resolution satellite images with LASER scanning, In third method, many researcher are using Terrestrial images by using Close Range Photogrammetry with DSM & Texture mapping. We start this paper from the introduction of various Geomatics techniques for 3D City modeling. These techniques divided in to two main categories: one is based on Automation (Automatic, Semi-automatic and Manual methods), and another is Based on Data input techniques (one is Photogrammetry, another is Laser Techniques). After details study of this, finally in short, we are trying to give the conclusions of this study. In the last, we are trying to give the conclusions of this research paper and also giving a short view for justification and analysis, and present trend for 3D City modeling. This paper gives an overview about the Techniques related with "Generation of Virtual 3-D City models using Geomatics Techniques" and the Applications of Virtual 3D City models. Photogrammetry, (Close range, Aerial, Satellite), Lasergrammetry, GPS, or combination of these modern Geomatics techniques play a major role to create a virtual 3-D City model. Each and every techniques and method has some advantages and some drawbacks. Point cloud model is a modern trend for virtual 3-D city model. Photo-realistic, Scalable, Geo-referenced virtual 3

  14. Task Assignment and Path Planning for Multiple Autonomous Underwater Vehicles Using 3D Dubins Curves †.

    Science.gov (United States)

    Cai, Wenyu; Zhang, Meiyan; Zheng, Yahong Rosa

    2017-07-11

    This paper investigates the task assignment and path planning problem for multiple AUVs in three dimensional (3D) underwater wireless sensor networks where nonholonomic motion constraints of underwater AUVs in 3D space are considered. The multi-target task assignment and path planning problem is modeled by the Multiple Traveling Sales Person (MTSP) problem and the Genetic Algorithm (GA) is used to solve the MTSP problem with Euclidean distance as the cost function and the Tour Hop Balance (THB) or Tour Length Balance (TLB) constraints as the stop criterion. The resulting tour sequences are mapped to 2D Dubins curves in the X - Y plane, and then interpolated linearly to obtain the Z coordinates. We demonstrate that the linear interpolation fails to achieve G 1 continuity in the 3D Dubins path for multiple targets. Therefore, the interpolated 3D Dubins curves are checked against the AUV dynamics constraint and the ones satisfying the constraint are accepted to finalize the 3D Dubins curve selection. Simulation results demonstrate that the integration of the 3D Dubins curve with the MTSP model is successful and effective for solving the 3D target assignment and path planning problem.

  15. Task Assignment and Path Planning for Multiple Autonomous Underwater Vehicles Using 3D Dubins Curves †

    Directory of Open Access Journals (Sweden)

    Wenyu Cai

    2017-07-01

    Full Text Available This paper investigates the task assignment and path planning problem for multiple AUVs in three dimensional (3D underwater wireless sensor networks where nonholonomic motion constraints of underwater AUVs in 3D space are considered. The multi-target task assignment and path planning problem is modeled by the Multiple Traveling Sales Person (MTSP problem and the Genetic Algorithm (GA is used to solve the MTSP problem with Euclidean distance as the cost function and the Tour Hop Balance (THB or Tour Length Balance (TLB constraints as the stop criterion. The resulting tour sequences are mapped to 2D Dubins curves in the X − Y plane, and then interpolated linearly to obtain the Z coordinates. We demonstrate that the linear interpolation fails to achieve G 1 continuity in the 3D Dubins path for multiple targets. Therefore, the interpolated 3D Dubins curves are checked against the AUV dynamics constraint and the ones satisfying the constraint are accepted to finalize the 3D Dubins curve selection. Simulation results demonstrate that the integration of the 3D Dubins curve with the MTSP model is successful and effective for solving the 3D target assignment and path planning problem.

  16. Investigation Into the Utilization of 3D Printing in Laser Cooling Experiments

    Science.gov (United States)

    Hazlett, Eric; Nelson, Brandon; de Leon, Sam Diaz; Shaw, Jonah

    2016-05-01

    With the advancement of 3D printing new opportunities are abound in many different fields, but with the balance between the precisions of atomic physics experiments and the material properties of current 3D printers the benefit of 3D printing technology needs to be investigated. We report on the progress of two investigations of 3D printing of benefit to atomic physics experiments: laser feedback module and the other being an optical chopper. The first investigation looks into creation of a 3D printed laser diode feedback module. This 3D printed module would allow for the quick realization of an external cavity diode laser that would have an adjustable cavity distance. We will report on the first tests of this system, by looking at Rb spectroscopy and mode-hop free tuning range as well as possibilities of using these lasers for MOT generation. We will also discuss our investigation into a 3D-printed optical chopper that utilizes an Arduino and a computer hard drive motor. By implementing an additional Arduino we create a low cost way to quickly measure laser beam waists.

  17. Animation of 3D Model of Human Head

    Directory of Open Access Journals (Sweden)

    V. Michalcin

    2007-04-01

    Full Text Available The paper deals with the new algorithm of animation of 3D model of the human head in combination with its global motion. The designed algorithm is very fast and with low calculation requirements, because it does not need the synthesis of the input videosequence for estimation of the animation parameters as well as the parameters of global motion. The used 3D model Candide generates different expressions using its animation units which are controlled by the animation parameters. These ones are estimated on the basis of optical flow without the need of extracting of the feature points in the frames of the input videosequence because they are given by the selected vertices of the animation units of the calibrated 3D model Candide. The established multiple iterations inside the designed animation algorithm of 3D model of the human head between two successive frames significantly improved its accuracy above all for the large motion.

  18. Hopping models and ac universality

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Schrøder, Thomas

    2002-01-01

    Some general relations for hopping models are established. We proceed to discuss the universality of the ac conductivity which arises in the extreme disorder limit of the random barrier model. It is shown that the relevant dimension entering into the diffusion cluster approximation (DCA) is the h......Some general relations for hopping models are established. We proceed to discuss the universality of the ac conductivity which arises in the extreme disorder limit of the random barrier model. It is shown that the relevant dimension entering into the diffusion cluster approximation (DCA......) is the harmonic (fracton) dimension of the diffusion cluster. The temperature scaling of the dimensionless frequency entering into the DCA is discussed. Finally, some open problems regarding ac universality are listed....

  19. Visualizing 3-D microscopic specimens

    Science.gov (United States)

    Forsgren, Per-Ola; Majlof, Lars L.

    1992-06-01

    The confocal microscope can be used in a vast number of fields and applications to gather more information than is possible with a regular light microscope, in particular about depth. Compared to other three-dimensional imaging devices such as CAT, NMR, and PET, the variations of the objects studied are larger and not known from macroscopic dissections. It is therefore important to have several complementary ways of displaying the gathered information. We present a system where the user can choose display techniques such as extended focus, depth coding, solid surface modeling, maximum intensity and other techniques, some of which may be combined. A graphical user interface provides easy and direct control of all input parameters. Motion and stereo are available options. Many three- dimensional imaging devices give recordings where one dimension has different resolution and sampling than the other two which requires interpolation to obtain correct geometry. We have evaluated algorithms with interpolation in object space and in projection space. There are many ways to simplify the geometrical transformations to gain performance. We present results of some ways to simplify the calculations.

  20. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    NARCIS (Netherlands)

    A. Hoffmann (Alan)

    2014-01-01

    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and

  1. Effective sensitivity in 3D PET: The impact of detector dead time on 3D system performance

    International Nuclear Information System (INIS)

    Bailey, D.L.; Jones, T.; Meikle, S.R.

    1996-01-01

    3D PET has higher sensitivity than 2D PET. Sensitivity is determined by two components: the geometric solid angle for detection, and the fractional dead time, i.e., the time for which the detector is unavailable for accepting events. The loss in overall sensitivity as a function of radioactivity concentration due to these factors for 3D PET has been characterized by a parameter, the effective sensitivity, which combines absolute sensitivity and noise equivalent count rates. This parameter includes scatter, system sensitivity, dead time, and random coincidence rates, and permits comparisons between different tomographs as well as the same tomograph under different conditions. Effective sensitivity decreases most rapidly for larger, open 3D tomographs. The loss in effective sensitivity with increasing count rate suggests that new faster scintillation detectors will be needed to realize the sensitivity gain of 3D PET over a wide dynamic range of radioactivity concentrations

  2. 3D Scientific Visualization with Blender

    Science.gov (United States)

    Kent, Brian R.

    2015-03-01

    This is the first book written on using Blender (an open source visualization suite widely used in the entertainment and gaming industries) for scientific visualization. It is a practical and interesting introduction to Blender for understanding key parts of 3D rendering and animation that pertain to the sciences via step-by-step guided tutorials. 3D Scientific Visualization with Blender takes you through an understanding of 3D graphics and modelling for different visualization scenarios in the physical sciences.

  3. Remote Collaborative 3D Printing - Process Investigation

    Science.gov (United States)

    2016-04-01

    COLLABORATIVE 3D PRINTING - PROCESS INVESTIGATION Cody M. Reese, PE CAD MODEL PRINT MODEL PRINT PREVIEW PRINTED PART AERIAL VIRTUAL This...REMOTE COLLABORATIVE 3D PRINTING - PROCESS INVESTIGATION 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Cody M. Reese...release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Remote Collaborative 3D Printing project is a collaboration between

  4. Microfabricating 3D Structures by Laser Origami

    Science.gov (United States)

    2011-11-09

    10.1117/2.1201111.003952 Microfabricating 3D structures by laser origami Alberto Piqué, Scott Mathews, Andrew Birnbaum, and Nicholas Charipar A new...folding known as origami allows the transformation of flat patterns into 3D shapes. A similar approach can be used to generate 3D structures com... geometries . The overarching challenge is to move away from traditional planar semiconductor photolitho- graphic techniques, which severely limit the type of

  5. 3D Scientific Visualization with Blender

    Science.gov (United States)

    Kent, Brian R.

    2015-03-01

    This is the first book written on using Blender for scientific visualization. It is a practical and interesting introduction to Blender for understanding key parts of 3D rendering and animation that pertain to the sciences via step-by-step guided tutorials. 3D Scientific Visualization with Blender takes you through an understanding of 3D graphics and modelling for different visualization scenarios in the physical sciences.

  6. 3D images and expert system

    International Nuclear Information System (INIS)

    Hasegawa, Jun-ichi

    1998-01-01

    This paper presents an expert system called 3D-IMPRESS for supporting applications of three dimensional (3D) image processing. This system can automatically construct a 3D image processing procedure based on a pictorial example of the goal given by a user. In the paper, to evaluate the performance of the system, it was applied to construction of procedures for extracting specific component figures from practical chest X-ray CT images. (author)

  7. ERP system for 3D printing industry

    Directory of Open Access Journals (Sweden)

    Deaky Bogdan

    2017-01-01

    Full Text Available GOCREATE is an original cloud-based production management and optimization service which helps 3D printing service providers to use their resources better. The proposed Enterprise Resource Planning system can significantly increase income through improved productivity. With GOCREATE, the 3D printing service providers get a much higher production efficiency at a much lower licensing cost, to increase their competitiveness in the fast growing 3D printing market.

  8. Perspectives on Materials Science in 3D

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte

    2012-01-01

    Materials characterization in 3D has opened a new era in materials science, which is discussed in this paper. The original motivations and visions behind the development of one of the new 3D techniques, namely the three dimensional x-ray diffraction (3DXRD) method, are presented and the route...... to its implementation is described. The present status of materials science in 3D is illustrated by examples related to recrystallization. Finally, challenges and suggestions for the future success for 3D Materials Science relating to hardware evolution, data analysis, data exchange and modeling...

  9. Getting started in 3D with Maya

    CERN Document Server

    Watkins, Adam

    2012-01-01

    Deliver professional-level 3D content in no time with this comprehensive guide to 3D animation with Maya. With over 12 years of training experience, plus several award winning students under his belt, author Adam Watkins is the ideal mentor to get you up to speed with 3D in Maya. Using a structured and pragmatic approach Getting Started in 3D with Maya begins with basic theory of fundamental techniques, then builds on this knowledge using practical examples and projects to put your new skills to the test. Prepared so that you can learn in an organic fashion, each chapter builds on the know

  10. Illustrating Mathematics using 3D Printers

    OpenAIRE

    Knill, Oliver; Slavkovsky, Elizabeth

    2013-01-01

    3D printing technology can help to visualize proofs in mathematics. In this document we aim to illustrate how 3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology makes the realization of such tools more accessible than ever. This is an updated version of a paper included in book Low-Cost 3D Printing for science, education and Sustainable Devel...

  11. A 3d game in python

    OpenAIRE

    Xu, Minghui

    2014-01-01

    3D game has widely been accepted and loved by many game players. More and more different kinds of 3D games were developed to feed people’s needs. The most common programming language for development of 3D game is C++ nowadays. Python is a high-level scripting language. It is simple and clear. The concise syntax could speed up the development cycle. This project was to develop a 3D game using only Python. The game is about how a cat lives in the street. In order to live, the player need...

  12. Dimensional accuracy of 3D printed vertebra

    Science.gov (United States)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  13. Range and energetics of charge hopping in organic semiconductors

    Science.gov (United States)

    Abdalla, Hassan; Zuo, Guangzheng; Kemerink, Martijn

    2017-12-01

    The recent upswing in attention for the thermoelectric properties of organic semiconductors (OSCs) adds urgency to the need for a quantitative description of the range and energetics of hopping transport in organic semiconductors under relevant circumstances, i.e., around room temperature (RT). In particular, the degree to which hops beyond the nearest neighbor must be accounted for at RT is still largely unknown. Here, measurements of charge and energy transport in doped OSCs are combined with analytical modeling to reach the univocal conclusion that variable-range hopping is the proper description in a large class of disordered OSC at RT. To obtain quantitative agreement with experiment, one needs to account for the modification of the density of states by ionized dopants. These Coulomb interactions give rise to a deep tail of trap states that is independent of the material's initial energetic disorder. Insertion of this effect into a classical Mott-type variable-range hopping model allows one to give a quantitative description of temperature-dependent conductivity and thermopower measurements on a wide range of disordered OSCs. In particular, the model explains the commonly observed quasiuniversal power-law relation between the Seebeck coefficient and the conductivity.

  14. 3D vision in a virtual reality robotics environment

    Science.gov (United States)

    Schutz, Christian L.; Natonek, Emerico; Baur, Charles; Hugli, Heinz

    1996-12-01

    Virtual reality robotics (VRR) needs sensing feedback from the real environment. To show how advanced 3D vision provides new perspectives to fulfill these needs, this paper presents an architecture and system that integrates hybrid 3D vision and VRR and reports about experiments and results. The first section discusses the advantages of virtual reality in robotics, the potential of a 3D vision system in VRR and the contribution of a knowledge database, robust control and the combination of intensity and range imaging to build such a system. Section two presents the different modules of a hybrid 3D vision architecture based on hypothesis generation and verification. Section three addresses the problem of the recognition of complex, free- form 3D objects and shows how and why the newer approaches based on geometric matching solve the problem. This free- form matching can be efficiently integrated in a VRR system as a hypothesis generation knowledge-based 3D vision system. In the fourth part, we introduce the hypothesis verification based on intensity images which checks object pose and texture. Finally, we show how this system has been implemented and operates in a practical VRR environment used for an assembly task.

  15. Creating Learning Environment Connecting Engineering Design and 3D Printing

    Science.gov (United States)

    Pikkarainen, Ari; Salminen, Antti; Piili, Heidi

    Engineering education in modern days require continuous development in didactics, pedagogics and used practical methods. 3D printing provides excellent opportunity to connect different engineering areas into practice and produce learning by doing applications. The 3D-printing technology used in this study is FDM (Fused deposition modeling). FDM is the most used 3D-printing technology by commercial numbers at the moment and the qualities of the technology makes it popular especially in academic environments. For achieving the best result possible, students will incorporate the principles of DFAM (Design for additive manufacturing) into their engineering design studies together with 3D printing. This paper presents a plan for creating learning environment for mechanical engineering students combining the aspects of engineering design, 3D-CAD learning and AM (additive manufacturing). As a result, process charts for carrying out the 3D printing process from technological point of view and design process for AM from engineering design point of view were created. These charts are used in engineering design education. The learning environment is developed to work also as a platform for Bachelor theses, work-training environment for students, prototyping service centre for cooperation partners and source of information for mechanical engineering education in Lapland University of Applied Sciences.

  16. Laser printing of cells into 3D scaffolds

    International Nuclear Information System (INIS)

    Ovsianikov, A; Gruene, M; Koch, L; Maiorana, F; Chichkov, B; Pflaum, M; Wilhelmi, M; Haverich, A

    2010-01-01

    One of the most promising approaches in tissue engineering is the application of 3D scaffolds, which provide cell support and guidance in the initial tissue formation stage. The porosity of the scaffold and internal pore organization influence cell migration and play a major role in its biodegradation dynamics, nutrient diffusion and mechanical stability. In order to control cell migration and cellular interactions within the scaffold, novel technologies capable of producing 3D structures in accordance with predefined design are required. The two-photon polymerization (2PP) technique, used in this report for the fabrication of scaffolds, allows the realization of arbitrary 3D structures with submicron spatial resolution. Highly porous 3D scaffolds, produced by 2PP of acrylated poly(ethylene glycol), are seeded with cells by means of laser-induced forward transfer (LIFT). In this laser printing approach, a propulsive force, resulting from laser-induced shock wave, is used to propel individual cells or cell groups from a donor substrate towards the receiver substrate. We demonstrate that with this technique printing of multiple cell types into 3D scaffolds is possible. Combination of LIFT and 2PP provides a route for the realization of 3D multicellular tissue constructs and artificial ECM engineered on the microscale.

  17. AUTOMATIC TEXTURE MAPPING OF ARCHITECTURAL AND ARCHAEOLOGICAL 3D MODELS

    Directory of Open Access Journals (Sweden)

    T. P. Kersten

    2012-07-01

    Full Text Available Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.

  18. Automatic Texture Mapping of Architectural and Archaeological 3d Models

    Science.gov (United States)

    Kersten, T. P.; Stallmann, D.

    2012-07-01

    Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.

  19. 3D Printed Photoresponsive Devices Based on Shape Memory Composites.

    Science.gov (United States)

    Yang, Hui; Leow, Wan Ru; Wang, Ting; Wang, Juan; Yu, Jiancan; He, Ke; Qi, Dianpeng; Wan, Changjin; Chen, Xiaodong

    2017-09-01

    Compared with traditional stimuli-responsive devices with simple planar or tubular geometries, 3D printed stimuli-responsive devices not only intimately meet the requirement of complicated shapes at macrolevel but also satisfy various conformation changes triggered by external stimuli at the microscopic scale. However, their development is limited by the lack of 3D printing functional materials. This paper demonstrates the 3D printing of photoresponsive shape memory devices through combining fused deposition modeling printing technology and photoresponsive shape memory composites based on shape memory polymers and carbon black with high photothermal conversion efficiency. External illumination triggers the shape recovery of 3D printed devices from the temporary shape to the original shape. The effect of materials thickness and light density on the shape memory behavior of 3D printed devices is quantified and calculated. Remarkably, sunlight also triggers the shape memory behavior of these 3D printed devices. This facile printing strategy would provide tremendous opportunities for the design and fabrication of biomimetic smart devices and soft robotics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hybrid 3D-2D printing for bone scaffolds fabrication

    Science.gov (United States)

    Seleznev, V. A.; Prinz, V. Ya

    2017-02-01

    It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields.

  1. Direct G-code manipulation for 3D material weaving

    Science.gov (United States)

    Koda, S.; Tanaka, H.

    2017-04-01

    The process of conventional 3D printing begins by first build a 3D model, then convert to the model to G-code via a slicer software, feed the G-code to the printer, and finally start the printing. The most simple and popular 3D printing technique is Fused Deposition Modeling. However, in this method, the printing path that the printer head can take is restricted by the G-code. Therefore the printed 3D models with complex pattern have structural errors like holes or gaps between the printed material lines. In addition, the structural density and the material's position of the printed model are difficult to control. We realized the G-code editing, Fabrix, for making a more precise and functional printed model with both single and multiple material. The models with different stiffness are fabricated by the controlling the printing density of the filament materials with our method. In addition, the multi-material 3D printing has a possibility to expand the physical properties by the material combination and its G-code editing. These results show the new printing method to provide more creative and functional 3D printing techniques.

  2. A Straightforward Approach for 3D Bacterial Printing.

    Science.gov (United States)

    Lehner, Benjamin A E; Schmieden, Dominik T; Meyer, Anne S

    2017-07-21

    Sustainable and personally tailored materials production is an emerging challenge to society. Living organisms can produce and pattern an extraordinarily wide range of different molecules in a sustainable way. These natural systems offer an abundant source of inspiration for the development of new environmentally friendly materials production techniques. In this paper, we describe the first steps toward the 3-dimensional printing of bacterial cultures for materials production and patterning. This methodology combines the capability of bacteria to form new materials with the reproducibility and tailored approach of 3D printing systems. For this purpose, a commercial 3D printer was modified for bacterial systems, and new alginate-based bioink chemistry was developed. Printing temperature, printhead speed, and bioink extrusion rate were all adapted and customized to maximize bacterial health and spatial resolution of printed structures. Our combination of 3D printing technology with biological systems enables a sustainable approach for the production of numerous new materials.

  3. Assessing hopping developmental level in childhood using wearable inertial sensor devices.

    Science.gov (United States)

    Masci, Ilaria; Vannozzi, Giuseppe; Getchell, Nancy; Cappozzo, Aurelio

    2012-07-01

    Assessing movement skills is a fundamental issue in motor development. Current process-oriented assessments, such as developmental sequences, are based on subjective judgments; if paired with quantitative assessments, a better understanding of movement performance and developmental change could be obtained. Our purpose was to examine the use of inertial sensors to evaluate developmental differences in hopping over distance. Forty children executed the task wearing the inertial sensor and relevant time durations and 3D accelerations were obtained. Subjects were also categorized in different developmental levels according to the hopping developmental sequence. Results indicated that some time and kinematic parameters changed with some developmental levels, possibly as a function of anthropometry and previous motor experience. We concluded that, since inertial sensors were suitable in describing hopping performance and sensitive to developmental changes, this technology is promising as an in-field and user-independent motor development assessment tool.

  4. Fundamentals of beer and hop chemistry

    Directory of Open Access Journals (Sweden)

    Denis De Keukeleire

    2000-02-01

    Full Text Available Beer brewing is an intricate process encompassing mixing and further elaboration of four essential raw materials, including barley malt, brewing water, hops and yeast. Particularly hops determine to a great extent typical beer qualities such as bitter taste, hoppy flavour, and foam stability. Conversely, hop-derived bitter acids account for an offending lightstruck flavour, which is formed on exposure of beer to light. These various processes are presented in detail, while due emphasis is placed on state-of-the-art hop technology, which provides brewers with efficient means to control bitterness, foam, and light-stability thereby allowing for the production of beers with consistent quality.

  5. Towards sustainable and clean 3D Geoinformation

    NARCIS (Netherlands)

    Stoter, J.E.; Ledoux, H.; Zlatanova, S.; Biljecki, F.; Kolbe, T.H.; Bill, R.; Donaubauer, A.

    2016-01-01

    This paper summarises the on going research activities of the 3D Geoinformation Group at the Delft University of Technology. The main challenge underpinning the research of this group is providing clean and appropriate 3D data about our environment in order to serve a wide variety of applications.

  6. Pattern recognition: invariants in 3D

    International Nuclear Information System (INIS)

    Proriol, J.

    1992-01-01

    In e + e - events, the jets have a spherical 3D symmetry. A set of invariants are defined for 3D objects with a spherical symmetry. These new invariants are used to tag the number of jets in e + e - events. (K.A.) 3 refs

  7. 3D Printing: What Are the Hazards?

    Science.gov (United States)

    Randolph, Susan A

    2018-03-01

    As the popularity of three-dimensional (3D) printers increases, more research will be conducted to evaluate the benefits and risks of this technology. Occupational health professionals should stay abreast of new recommendations to protect workers from exposure to 3D printer emissions.

  8. Illustrating the disassembly of 3D models

    KAUST Repository

    Guo, Jianwei; Yan, Dongming; Li, Er; Dong, Weiming; Wonka, Peter; Zhang, Xiaopeng

    2013-01-01

    We present a framework for the automatic disassembly of 3D man-made models and the illustration of the disassembly process. Given an assembled 3D model, we first analyze the individual parts using sharp edge loops and extract the contact faces

  9. 3D, or Not to Be?

    Science.gov (United States)

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  10. Embedding complex objects with 3d printing

    KAUST Repository

    Hussain, Muhammad Mustafa; Diaz, Cordero Marlon Steven

    2017-01-01

    A CMOS technology-compatible fabrication process for flexible CMOS electronics embedded during additive manufacturing (i.e. 3D printing). A method for such a process may include printing a first portion of a 3D structure; pausing the step

  11. 3D Printing of Molecular Models

    Science.gov (United States)

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  12. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be

  13. 3D Printing. What's the Harm?

    Science.gov (United States)

    Love, Tyler S.; Roy, Ken

    2016-01-01

    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  14. 3D Printed Block Copolymer Nanostructures

    Science.gov (United States)

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  15. 3D-printed cereal foods

    NARCIS (Netherlands)

    Noort, M.; Bommel, K. van; Renzetti, S.

    2017-01-01

    Additive manufacturing, also known as 3D printing, is an up-and-coming production technology based on layer-by-layer deposition of material to reproduce a computer-generated 3D design. Additive manufacturing is a collective term used for a variety of technologies, such as fused deposition modeling

  16. A Framework for 3d Printing

    DEFF Research Database (Denmark)

    Pilkington, Alan; Frandsen, Thomas; Kapetaniou, Chrystalla

    3D printing technologies and processes offer such a radical range of options for firms that we currently lack a structured way of recording possible impact and recommending actions for managers. The changes arising from 3d printing includes more than just new options for product design, but also...

  17. The 3D-city model

    DEFF Research Database (Denmark)

    Holmgren, Steen; Rüdiger, Bjarne; Tournay, Bruno

    2001-01-01

    We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain...... of 3D city models....

  18. 3D Programmable Micro Self Assembly

    National Research Council Canada - National Science Library

    Bohringer, Karl F; Parviz, Babak A; Klavins, Eric

    2005-01-01

    .... We have developed a "self assembly tool box" consisting of a range of methods for micro-scale self-assembly in 2D and 3D We have shown physical demonstrations of simple 3D self-assemblies which lead...

  19. Wow! 3D Content Awakens the Classroom

    Science.gov (United States)

    Gordon, Dan

    2010-01-01

    From her first encounter with stereoscopic 3D technology designed for classroom instruction, Megan Timme, principal at Hamilton Park Pacesetter Magnet School in Dallas, sensed it could be transformative. Last spring, when she began pilot-testing 3D content in her third-, fourth- and fifth-grade classrooms, Timme wasn't disappointed. Students…

  20. Immersive 3D Geovisualization in Higher Education

    Science.gov (United States)

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2015-01-01

    In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…

  1. LandSIM3D: modellazione in real time 3D di dati geografici

    Directory of Open Access Journals (Sweden)

    Lambo Srl Lambo Srl

    2009-03-01

    Full Text Available LandSIM3D: realtime 3D modelling of geographic data LandSIM3D allows to model in 3D an existing landscape in a few hours only and geo-referenced offering great landscape analysis and understanding tools. 3D projects can then be inserted into the existing landscape with ease and precision. The project alternatives and impact can then be visualized and studied into their immediate environmental. The complex evolution of the landscape in the future can also be simulated and the landscape model can be manipulated interactively and better shared with colleagues. For that reason, LandSIM3D is different from traditional 3D imagery solutions, normally reserved for computer graphics experts. For more information about LandSIM3D, go to www.landsim3d.com.

  2. Inclined nanoimprinting lithography for 3D nanopatterning

    International Nuclear Information System (INIS)

    Liu Zhan; Bucknall, David G; Allen, Mark G

    2011-01-01

    We report a non-conventional shear-force-driven nanofabrication approach, inclined nanoimprint lithography (INIL), for producing 3D nanostructures of varying heights on planar substrates in a single imprinting step. Such 3D nanostructures are fabricated by exploiting polymer anisotropic dewetting where the degree of anisotropy can be controlled by the magnitude of the inclination angle. The feature size is reduced from micron scale of the template to a resultant nanoscale pattern. The underlying INIL mechanism is investigated both experimentally and theoretically. The results indicate that the shear force generated at a non-zero inclination angle induced by the INIL apparatus essentially leads to asymmetry in the polymer flow direction ultimately resulting in 3D nanopatterns with different heights. INIL removes the requirements in conventional nanolithography of either utilizing 3D templates or using multiple lithographic steps. This technique enables various 3D nanoscale devices including angle-resolved photonic and plasmonic crystals to be fabricated.

  3. Density-Based 3D Shape Descriptors

    Directory of Open Access Journals (Sweden)

    Schmitt Francis

    2007-01-01

    Full Text Available We propose a novel probabilistic framework for the extraction of density-based 3D shape descriptors using kernel density estimation. Our descriptors are derived from the probability density functions (pdf of local surface features characterizing the 3D object geometry. Assuming that the shape of the 3D object is represented as a mesh consisting of triangles with arbitrary size and shape, we provide efficient means to approximate the moments of geometric features on a triangle basis. Our framework produces a number of 3D shape descriptors that prove to be quite discriminative in retrieval applications. We test our descriptors and compare them with several other histogram-based methods on two 3D model databases, Princeton Shape Benchmark and Sculpteur, which are fundamentally different in semantic content and mesh quality. Experimental results show that our methodology not only improves the performance of existing descriptors, but also provides a rigorous framework to advance and to test new ones.

  4. 3D-grafiikka ja pelimoottorit

    OpenAIRE

    Sillanpää, Otto

    2014-01-01

    Tässä opinnäytetyössä tutkitaan miten 3D-mallit saadaan sellaiseen muotoon, että ne olisivat käytettävissä eri pelimoottoreissa. Tutkimuksen tarkoituksena on selvittää, miten luodaan 3D-malleja pelimoottoreihin, sekä miten 3D-mallinnusohjelmat ja pelimoottorit eroavat toisistaan, kun käsitellään 3D-malleja. Tässä työssä pelimoottoreina toimivat Valven Source sekä Epic Gamesin Unreal Engine 3. 3D-mallinnusohjelmista käytössä olivat Autodeskin 3ds Max 2014 ja Blender Foundationin Blender 2.7...

  5. BEAMS3D Neutral Beam Injection Model

    Energy Technology Data Exchange (ETDEWEB)

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  6. Fabrication of 3D Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  7. Maintaining and troubleshooting your 3D printer

    CERN Document Server

    Bell, Charles

    2014-01-01

    Maintaining and Troubleshooting Your 3D Printer by Charles Bell is your guide to keeping your 3D printer running through preventive maintenance, repair, and diagnosing and solving problems in 3D printing. If you've bought or built a 3D printer such as a MakerBot only to be confounded by jagged edges, corner lift, top layers that aren't solid, or any of a myriad of other problems that plague 3D printer enthusiasts, then here is the book to help you get past all that and recapture the joy of creative fabrication. The book also includes valuable tips for builders and those who want to modify the

  8. Voice and gesture-based 3D multimedia presentation tool

    Science.gov (United States)

    Fukutake, Hiromichi; Akazawa, Yoshiaki; Okada, Yoshihiro

    2007-09-01

    This paper proposes a 3D multimedia presentation tool that allows the user to manipulate intuitively only through the voice input and the gesture input without using a standard keyboard or a mouse device. The authors developed this system as a presentation tool to be used in a presentation room equipped a large screen like an exhibition room in a museum because, in such a presentation environment, it is better to use voice commands and the gesture pointing input rather than using a keyboard or a mouse device. This system was developed using IntelligentBox, which is a component-based 3D graphics software development system. IntelligentBox has already provided various types of 3D visible, reactive functional components called boxes, e.g., a voice input component and various multimedia handling components. IntelligentBox also provides a dynamic data linkage mechanism called slot-connection that allows the user to develop 3D graphics applications by combining already existing boxes through direct manipulations on a computer screen. Using IntelligentBox, the 3D multimedia presentation tool proposed in this paper was also developed as combined components only through direct manipulations on a computer screen. The authors have already proposed a 3D multimedia presentation tool using a stage metaphor and its voice input interface. This time, we extended the system to make it accept the user gesture input besides voice commands. This paper explains details of the proposed 3D multimedia presentation tool and especially describes its component-based voice and gesture input interfaces.

  9. MAGNUS-3D: Accelerator magnet calculations in 3-dimensions

    Science.gov (United States)

    Pissanetzky, S.

    1988-12-01

    MAGNUS-3D is a professional finite element code for nonlinear magnetic engineering. MAGNUS-3D can solve numerically any general problem of linear or nonlinear magnetostatics in three dimensions. The problem is formulated in a domain with Dirichlet, Neumann or periodic boundary conditions, that can contain any combination of conductors of any shape in space, nonlinear magnetic materials with magnetic properties specified by magnetization tables, and nonlinear permanent magnets with any given demagnetization curve. MAGNUS-3D uses the two-scalar-potentials formulation of Magnetostatics and the finite element method, has an automatic 3D mesh generator, and advanced post-processing features that include graphics on a variety of supported devices, tabulation, and calculation of design quantities required in Magnetic Engineering. MAGNUS-3D is a general purpose 3D code, but it has been extensively used for accelerator work and many special features required for accelerator engineering have been incorporated into the code. One of such features is the calculation of field harmonic coefficients averaged in the direction of the beam, so important for the design of magnet ends. Another feature is its ability to calculate line integrals of any field component along the direction of the beam, or plot the field as a function of the z coordinate. MAGNUS-3D has found applications to the design of accelerator magnets and spectrometers, steering magnets, wigglers and undulators for free electron lasers, microtrons and magnets for synchrotron light sources, as well as magnets for NMR and medical applications, recording heads and various magnetic devices. There are three more programs closely associated with MAGNUS-3D. MAGNUS-GKS is the graphical postprocessor for the package; it supports a numer of output devices, including color vector or bit map devices. WIRE is an independent program that can calculate the field produced by any configuration of electric conductors in space, at any

  10. Software for 3D diagnostic image reconstruction and analysis

    International Nuclear Information System (INIS)

    Taton, G.; Rokita, E.; Sierzega, M.; Klek, S.; Kulig, J.; Urbanik, A.

    2005-01-01

    Recent advances in computer technologies have opened new frontiers in medical diagnostics. Interesting possibilities are the use of three-dimensional (3D) imaging and the combination of images from different modalities. Software prepared in our laboratories devoted to 3D image reconstruction and analysis from computed tomography and ultrasonography is presented. In developing our software it was assumed that it should be applicable in standard medical practice, i.e. it should work effectively with a PC. An additional feature is the possibility of combining 3D images from different modalities. The reconstruction and data processing can be conducted using a standard PC, so low investment costs result in the introduction of advanced and useful diagnostic possibilities. The program was tested on a PC using DICOM data from computed tomography and TIFF files obtained from a 3D ultrasound system. The results of the anthropomorphic phantom and patient data were taken into consideration. A new approach was used to achieve spatial correlation of two independently obtained 3D images. The method relies on the use of four pairs of markers within the regions under consideration. The user selects the markers manually and the computer calculates the transformations necessary for coupling the images. The main software feature is the possibility of 3D image reconstruction from a series of two-dimensional (2D) images. The reconstructed 3D image can be: (1) viewed with the most popular methods of 3D image viewing, (2) filtered and processed to improve image quality, (3) analyzed quantitatively (geometrical measurements), and (4) coupled with another, independently acquired 3D image. The reconstructed and processed 3D image can be stored at every stage of image processing. The overall software performance was good considering the relatively low costs of the hardware used and the huge data sets processed. The program can be freely used and tested (source code and program available at

  11. The psychology of the 3D experience

    Science.gov (United States)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  12. 3D Visualization Development of SIUE Campus

    Science.gov (United States)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  13. Pathways for Learning from 3D Technology

    Science.gov (United States)

    Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.

    2016-01-01

    The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion" in that 3D presentations could provide additional sensorial cues (e.g., depth cues) that lead to a higher sense of being surrounded by the stimulus; a connection through general interest such that 3D presentation increases a viewer’s interest that leads to greater attention paid to the stimulus (e.g., "involvement"); and a connection through discomfort, with the 3D goggles causing discomfort that interferes with involvement and thus with memory. The memories of 396 participants who viewed two-dimensional (2D) or 3D movies at movie theaters in Southern California were tested. Within three days of viewing a movie, participants filled out an online anonymous questionnaire that queried them about their movie content memories, subjective movie-going experiences (including emotional reactions and "presence") and demographic backgrounds. The responses to the questionnaire were subjected to path analyses in which several different links between 3D presentation to memory (and other variables) were explored. The results showed there were no effects of 3D presentation, either directly or indirectly, upon memory. However, the largest effects of 3D presentation were on emotions and immersion, with 3D presentation leading to reduced positive emotions, increased negative emotions and lowered immersion, compared to 2D presentations. PMID:28078331

  14. Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator.

    Science.gov (United States)

    Jiang, Wenwen; Ong, Frank; Johnson, Kevin M; Nagle, Scott K; Hope, Thomas A; Lustig, Michael; Larson, Peder E Z

    2018-06-01

    To achieve motion robust high resolution 3D free-breathing pulmonary MRI utilizing a novel dynamic 3D image navigator derived directly from imaging data. Five-minute free-breathing scans were acquired with a 3D ultrashort echo time (UTE) sequence with 1.25 mm isotropic resolution. From this data, dynamic 3D self-navigating images were reconstructed under locally low rank (LLR) constraints and used for motion compensation with one of two methods: a soft-gating technique to penalize the respiratory motion induced data inconsistency, and a respiratory motion-resolved technique to provide images of all respiratory motion states. Respiratory motion estimation derived from the proposed dynamic 3D self-navigator of 7.5 mm isotropic reconstruction resolution and a temporal resolution of 300 ms was successful for estimating complex respiratory motion patterns. This estimation improved image quality compared to respiratory belt and DC-based navigators. Respiratory motion compensation with soft-gating and respiratory motion-resolved techniques provided good image quality from highly undersampled data in volunteers and clinical patients. An optimized 3D UTE sequence combined with the proposed reconstruction methods can provide high-resolution motion robust pulmonary MRI. Feasibility was shown in patients who had irregular breathing patterns in which our approach could depict clinically relevant pulmonary pathologies. Magn Reson Med 79:2954-2967, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. 3D characterisation of RCF crack networks

    Directory of Open Access Journals (Sweden)

    Ahlström Johan

    2014-06-01

    Full Text Available Rolling contact fatigue (RCF damage is becoming more frequent with increased traffic and loading conditions in the railway industry. Defects which are characterized by a two-lobe darkened surface and a V-shaped surface-breaking crack are often so-called squats. The origination and propagation of squats in railway rails is the topic of many recent studies; the associated crack networks develop with complicated geometry near the surface of rails that is difficult to characterise using most non-destructive methods. The cracks can be examined with repeated metallographic sectioning, but the process is time-consuming and destructive. In order to reduce time, as well as information and material loss, high-resolution and high-energy X-ray imaging of railway rails was done in the current study. Combining the exposures from a range of angles using image analysis, a 3D representation of the complex crack network is achieved. The latter was complemented with metallographic sectioning to determine the accuracy of prediction of the geometrical reconstruction.

  16. 3D bioprinting of structural proteins.

    Science.gov (United States)

    Włodarczyk-Biegun, Małgorzata K; Del Campo, Aránzazu

    2017-07-01

    3D bioprinting is a booming method to obtain scaffolds of different materials with predesigned and customized morphologies and geometries. In this review we focus on the experimental strategies and recent achievements in the bioprinting of major structural proteins (collagen, silk, fibrin), as a particularly interesting technology to reconstruct the biochemical and biophysical composition and hierarchical morphology of natural scaffolds. The flexibility in molecular design offered by structural proteins, combined with the flexibility in mixing, deposition, and mechanical processing inherent to bioprinting technologies, enables the fabrication of highly functional scaffolds and tissue mimics with a degree of complexity and organization which has only just started to be explored. Here we describe the printing parameters and physical (mechanical) properties of bioinks based on structural proteins, including the biological function of the printed scaffolds. We describe applied printing techniques and cross-linking methods, highlighting the modifications implemented to improve scaffold properties. The used cell types, cell viability, and possible construct applications are also reported. We envision that the application of printing technologies to structural proteins will enable unprecedented control over their supramolecular organization, conferring printed scaffolds biological properties and functions close to natural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. World Wind 3D Earth Viewing

    Science.gov (United States)

    Hogan, Patrick; Maxwell, Christopher; Kim, Randolph; Gaskins, Tom

    2007-01-01

    World Wind allows users to zoom from satellite altitude down to any place on Earth, leveraging high-resolution LandSat imagery and SRTM (Shuttle Radar Topography Mission) elevation data to experience Earth in visually rich 3D. In addition to Earth, World Wind can also visualize other planets, and there are already comprehensive data sets for Mars and the Earth's moon, which are as easily accessible as those of Earth. There have been more than 20 million downloads to date, and the software is being used heavily by the Department of Defense due to the code s ability to be extended and the evolution of the code courtesy of NASA and the user community. Primary features include the dynamic access to public domain imagery and its ease of use. All one needs to control World Wind is a two-button mouse. Additional guides and features can be accessed through a simplified menu. A JAVA version will be available soon. Navigation is automated with single clicks of a mouse, or by typing in any location to automatically zoom in to see it. The World Wind install package contains the necessary requirements such as the .NET runtime and managed DirectX library. World Wind can display combinations of data from a variety of sources, including Blue Marble, LandSat 7, SRTM, NASA Scientific Visualization Studio, GLOBE, and much more. A thorough list of features, the user manual, a key chart, and screen shots are available at http://worldwind.arc.nasa.gov.

  18. Axial tomography in 3D live cell microscopy

    Science.gov (United States)

    Richter, Verena; Bruns, Sarah; Bruns, Thomas; Piper, Mathis; Weber, Petra; Wagner, Michael; Cremer, Christoph; Schneckenburger, Herbert

    2017-07-01

    A miniaturized setup for sample rotation on a microscope stage has been developed, combined with light sheet, confocal or structured illumination microscopy and applied to living cells as well as to small organisms. This setup permits axial tomography with improved visualization of single cells or small cell clusters as well as an enhanced effective 3D resolution upon sample rotation.

  19. Hydrogel-based reinforcement of 3D bioprinted constructs

    NARCIS (Netherlands)

    Melchels, FPW; Blokzijl, M M; Levato, R; Peiffer, Q C; de Ruijter, M; Hennink, Wim E.; Vermonden, T.; Malda, J

    2016-01-01

    Progress within the field of biofabrication is hindered by a lack of suitable hydrogel formulations. Here, we present a novel approach based on a hybrid printing technique to create cellularized 3D printed constructs. The hybrid bioprinting strategy combines a reinforcing gel for mechanical support

  20. Time Series Analysis of 3D Coordinates Using Nonstochastic Observations

    NARCIS (Netherlands)

    Velsink, H.

    2016-01-01

    Adjustment and testing of a combination of stochastic and nonstochastic observations is applied to the deformation analysis of a time series of 3D coordinates. Nonstochastic observations are constant values that are treated as if they were observations. They are used to formulate constraints on

  1. Time Series Analysis of 3D Coordinates Using Nonstochastic Observations

    NARCIS (Netherlands)

    Hiddo Velsink

    2016-01-01

    From the article: Abstract Adjustment and testing of a combination of stochastic and nonstochastic observations is applied to the deformation analysis of a time series of 3D coordinates. Nonstochastic observations are constant values that are treated as if they were observations. They are used to

  2. Nanorobotics for creating NEMS from 3D helical nanostructures

    International Nuclear Information System (INIS)

    Dong, Lixin; Zhang, Li; Bell, Dominik J; Gruetzmacher, Detlev; Nelson, Bradley J

    2007-01-01

    Robotic manipulation at the nanometer scale is a promising technology for structuring, characterizing and assembling nano building blocks into nanoelectromechanical systems (NEMS). Combined with recently developed nanofabrication processes, a hybrid approach to building NEMS from 3D SiGe/Si/Cr and Si/Cr nanostructures is presented. Nanosensors and nanoactuators are investigated from experimental, theoretical, and design perspectives

  3. A clearer view of the insect brain – combining bleaching with standard whole-mount immunocytochemistry allows confocal imaging of pigment-covered brain areas for 3D reconstruction.

    Directory of Open Access Journals (Sweden)

    Anna Lisa Stöckl

    2015-09-01

    Full Text Available In the study of insect neuroanatomy, three-dimensional reconstructions of neurons and neuropils have become a standard technique. As images have to be obtained from whole-mount brain preparations, pigmentation on the brain surface poses a serious challenge to imaging. In insects, this is a major problematic in the first visual neuropil of the optic lobe, the lamina, which is obstructed by the pigment of the retina as well as by the pigmented fenestration layer. This has prevented inclusion of this major processing center of the insect visual system into most neuroanatomical brain atlases and hinders imaging of neurons within the lamina by confocal microscopy. It has recently been shown that hydrogen peroxide bleaching is compatible with immunohistochemical labeling in insect brains, and we therefore developed a simple technique for removal of pigments on the surface of insect brains by chemical bleaching. We show that our technique enables imaging of the pigment-obstructed regions of insect brains when combined with standard protocols for both anti-synapsin-labeled as well as neurobiotin-injected samples. This method can be combined with different fixation procedures, as well as different fluorophore excitation wavelengths without negative effects on staining quality. It can therefore serve as an effective addition to most standard histology protocols used in insect neuroanatomy.

  4. Fasilitas Pelatihan dan Pergelaran Seni Tari Hip Hop di Surabaya

    OpenAIRE

    Yanuar, Sandy

    2014-01-01

    Fasilitas Pelatihan dan Pergelaran Seni Tari Hip Hop di Surabaya merupakan fasilitas yang disediakan bagi semua penari Hip Hop di Surabaya untuk berlatih menari dan mempertunjukan tarian Hip Hop. Fasilitas ini tersedia bagi semua penari Hip Hop termasuk penari difable, mengingat kaum difable juga dapat menari Hip Hop. Namun karena di Surabaya belum memiliki fasilitas yang memadai bagi semua penari Hip Hop termasuk penari difable untuk menari dan memiliki tempat pertunjukan yang berkarakter Hi...

  5. 3D Laser Scanner for Underwater Manipulation

    Directory of Open Access Journals (Sweden)

    Albert Palomer

    2018-04-01

    Full Text Available Nowadays, research in autonomous underwater manipulation has demonstrated simple applications like picking an object from the sea floor, turning a valve or plugging and unplugging a connector. These are fairly simple tasks compared with those already demonstrated by the mobile robotics community, which include, among others, safe arm motion within areas populated with a priori unknown obstacles or the recognition and location of objects based on their 3D model to grasp them. Kinect-like 3D sensors have contributed significantly to the advance of mobile manipulation providing 3D sensing capabilities in real-time at low cost. Unfortunately, the underwater robotics community is lacking a 3D sensor with similar capabilities to provide rich 3D information of the work space. In this paper, we present a new underwater 3D laser scanner and demonstrate its capabilities for underwater manipulation. In order to use this sensor in conjunction with manipulators, a calibration method to find the relative position between the manipulator and the 3D laser scanner is presented. Then, two different advanced underwater manipulation tasks beyond the state of the art are demonstrated using two different manipulation systems. First, an eight Degrees of Freedom (DoF fixed-base manipulator system is used to demonstrate arm motion within a work space populated with a priori unknown fixed obstacles. Next, an eight DoF free floating Underwater Vehicle-Manipulator System (UVMS is used to autonomously grasp an object from the bottom of a water tank.

  6. 3D Laser Scanner for Underwater Manipulation.

    Science.gov (United States)

    Palomer, Albert; Ridao, Pere; Youakim, Dina; Ribas, David; Forest, Josep; Petillot, Yvan

    2018-04-04

    Nowadays, research in autonomous underwater manipulation has demonstrated simple applications like picking an object from the sea floor, turning a valve or plugging and unplugging a connector. These are fairly simple tasks compared with those already demonstrated by the mobile robotics community, which include, among others, safe arm motion within areas populated with a priori unknown obstacles or the recognition and location of objects based on their 3D model to grasp them. Kinect-like 3D sensors have contributed significantly to the advance of mobile manipulation providing 3D sensing capabilities in real-time at low cost. Unfortunately, the underwater robotics community is lacking a 3D sensor with similar capabilities to provide rich 3D information of the work space. In this paper, we present a new underwater 3D laser scanner and demonstrate its capabilities for underwater manipulation. In order to use this sensor in conjunction with manipulators, a calibration method to find the relative position between the manipulator and the 3D laser scanner is presented. Then, two different advanced underwater manipulation tasks beyond the state of the art are demonstrated using two different manipulation systems. First, an eight Degrees of Freedom (DoF) fixed-base manipulator system is used to demonstrate arm motion within a work space populated with a priori unknown fixed obstacles. Next, an eight DoF free floating Underwater Vehicle-Manipulator System (UVMS) is used to autonomously grasp an object from the bottom of a water tank.

  7. Medical 3D Printing for the Radiologist

    Science.gov (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A.; Cai, Tianrun; Kumamaru, Kanako K.; George, Elizabeth; Wake, Nicole; Caterson, Edward J.; Pomahac, Bohdan; Ho, Vincent B.; Grant, Gerald T.

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. ©RSNA, 2015 PMID:26562233

  8. 3D bioprinting of tissues and organs.

    Science.gov (United States)

    Murphy, Sean V; Atala, Anthony

    2014-08-01

    Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.

  9. Medical 3D Printing for the Radiologist.

    Science.gov (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. (©)RSNA, 2015.

  10. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.

    Science.gov (United States)

    Goyanes, Alvaro; Det-Amornrat, Usanee; Wang, Jie; Basit, Abdul W; Gaisford, Simon

    2016-07-28

    Acne is a multifactorial inflammatory skin disease with high prevalence. In this work, the potential of 3D printing to produce flexible personalised-shape anti-acne drug (salicylic acid) loaded devices was demonstrated by two different 3D printing (3DP) technologies: Fused Deposition Modelling (FDM) and stereolithography (SLA). 3D scanning technology was used to obtain a 3D model of a nose adapted to the morphology of an individual. In FDM 3DP, commercially produced Flex EcoPLA™ (FPLA) and polycaprolactone (PCL) filaments were loaded with salicylic acid by hot melt extrusion (HME) (theoretical drug loading - 2% w/w) and used as feedstock material for 3D printing. Drug loading in the FPLA-salicylic acid and PCL-salicylic acid 3D printed patches was 0.4% w/w and 1.2% w/w respectively, indicating significant thermal degradation of drug during HME and 3D printing. Diffusion testing in Franz cells using a synthetic membrane revealed that the drug loaded printed samples released printed as a nose-shape mask by FDM 3DP, but the PCL-salicylic acid filament was not. In the SLA printing process, the drug was dissolved in different mixtures of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) (PEG) that were solidified by the action of a laser beam. SLA printing led to 3D printed devices (nose-shape) with higher resolution and higher drug loading (1.9% w/w) than FDM, with no drug degradation. The results of drug diffusion tests revealed that drug diffusion was faster than with the FDM devices, 229 and 291μg/cm(2) within 3h for the two formulations evaluated. In this study, SLA printing was the more appropriate 3D printing technology to manufacture anti-acne devices with salicylic acid. The combination of 3D scanning and 3D printing has the potential to offer solutions to produce personalised drug loaded devices, adapted in shape and size to individual patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Extra Dimensions: 3D in PDF Documentation

    International Nuclear Information System (INIS)

    Graf, Norman A

    2012-01-01

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) and the ISO PRC file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. Until recently, Adobe's Acrobat software was also capable of incorporating 3D content into PDF files from a variety of 3D file formats, including proprietary CAD formats. However, this functionality is no longer available in Acrobat X, having been spun off to a separate company. Incorporating 3D content now requires the additional purchase of a separate plug-in. In this talk we present alternatives based on open source libraries which allow the programmatic creation of 3D content in PDF format. While not providing the same level of access to CAD files as the commercial software, it does provide physicists with an alternative path to incorporate 3D content into PDF files from such disparate applications as detector geometries from Geant4, 3D data sets, mathematical surfaces or tesselated volumes.

  12. Advanced 3D Printers for Cellular Solids

    Science.gov (United States)

    2016-06-30

    06-2016 1-Aug-2014 31-Dec-2015 Final Report: Advanced 3D printers for Cellular Solids The views, opinions and/or findings contained in this report are...2211 3d printing, cellular solids REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8...Papers published in non peer-reviewed journals: Final Report: Advanced 3D printers for Cellular Solids Report Title Final Report for DURIP grant W911NF

  13. Pharmacophore definition and 3D searches.

    Science.gov (United States)

    Langer, T; Wolber, G

    2004-12-01

    The most common pharmacophore building concepts based on either 3D structure of the target or ligand information are discussed together with the application of such models as queries for 3D database search. An overview of the key techniques available on the market is given and differences with respect to algorithms used and performance obtained are highlighted. Pharmacophore modelling and 3D database search are shown to be successful tools for enriching screening experiments aimed at the discovery of novel bio-active compounds.: © 2004 Elsevier Ltd . All rights reserved.

  14. 3D radiative transfer in stellar atmospheres

    International Nuclear Information System (INIS)

    Carlsson, M

    2008-01-01

    Three-dimensional (3D) radiative transfer in stellar atmospheres is reviewed with special emphasis on the atmospheres of cool stars and applications. A short review of methods in 3D radiative transfer shows that mature methods exist, both for taking into account radiation as an energy transport mechanism in 3D (magneto-) hydrodynamical simulations of stellar atmospheres and for the diagnostic problem of calculating the emergent spectrum in more detail from such models, both assuming local thermodynamic equilibrium (LTE) and in non-LTE. Such methods have been implemented in several codes, and examples of applications are given.

  15. Nonperturbative summation over 3D discrete topologies

    International Nuclear Information System (INIS)

    Freidel, Laurent; Louapre, David

    2003-01-01

    The group field theories realizing the sum over all triangulations of all topologies of 3D discrete gravity amplitudes are known to be nonuniquely Borel summable. We modify these models to construct a new group field theory which is proved to be uniquely Borel summable, defining in an unambiguous way a nonperturbative sum over topologies in the context of 3D dynamical triangulations and spin foam models. Moreover, we give some arguments to support the fact that, despite our modification, this new model is similar to the original one, and therefore could be taken as a definition of the sum over topologies of 3D quantum gravity amplitudes

  16. 3D background aerodynamics using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, N.N.

    2002-11-01

    3D rotor computations for the Greek Geovilogiki (GEO) 44 meter rotor equipped with 19 meters blades are performed. The lift and drag polars are extracted at five spanvise locations r/R= (.37, .55, .71, .82, .93) based on identification of stagnation points between 2D and 3D computations. The inner most sections shows clear evidence of 3D radial pumping, with increased lift compared to 2D values. In contrast to earlier investigated airfoils a very limited impact on the drag values are observed. (au)

  17. 3D Printing the ATLAS' barrel toroid

    CERN Document Server

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  18. [3D planning in maxillofacial surgery].

    Science.gov (United States)

    Hoarau, R; Zweifel, D; Lanthemann, E; Zrounba, H; Broome, M

    2014-10-01

    The development of new technologies such as three-dimensional (3D) planning has changed the everyday practice in maxillofacial surgery. Rapid prototyping associated with the 3D planning has also enabled the creation of patient specific surgical tools, such as cutting guides. As with all new technologies, uses, practicalities, cost effectiveness and especially benefits for the patients have to be carefully evaluated. In this paper, several examples of 3D planning that have been used in our institution are presented. The advantages such as the accuracy of the reconstructive surgery and decreased operating time, as well as the difficulties have also been addressed.

  19. Participation and 3D Visualization Tools

    DEFF Research Database (Denmark)

    Mullins, Michael; Jensen, Mikkel Holm; Henriksen, Sune

    2004-01-01

    With a departure point in a workshop held at the VR Media Lab at Aalborg University , this paper deals with aspects of public participation and the use of 3D visualisation tools. The workshop grew from a desire to involve a broad collaboration between the many actors in the city through using new...... perceptions of architectural representation in urban design where 3D visualisation techniques are used. It is the authors? general finding that, while 3D visualisation media have the potential to increase understanding of virtual space for the lay public, as well as for professionals, the lay public require...

  20. 3D Bio-Printing Review

    Science.gov (United States)

    Du, Xianbin

    2018-01-01

    Ultimate goal of tissue engineering is to replace pathological or necrotic body tissue or organ by artificial tissue or organ and tissue engineering is a very promising research field. 3D bio-printing is a kind of emerging technologies and a branch of tissue engineering. It has made significant progress in the past decade. 3D bio-printing can realize tissue and organ construction in vitro and has wide application in basic research and pharmacy. This paper is to make an analysis and review on 3D bio-printing from the perspectives of bioink, printing technology and technology application.

  1. 3D printed magnetic polymer composite transformers

    Science.gov (United States)

    Bollig, Lindsey M.; Hilpisch, Peter J.; Mowry, Greg S.; Nelson-Cheeseman, Brittany B.

    2017-11-01

    The possibility of 3D printing a transformer core using fused deposition modeling methods is explored. With the use of additive manufacturing, ideal transformer core geometries can be achieved in order to produce a more efficient transformer. In this work, different 3D printed settings and toroidal geometries are tested using a custom integrated magnetic circuit capable of measuring the hysteresis loop of a transformer. These different properties are then characterized, and it was determined the most effective 3D printed transformer core requires a high fill factor along with a high concentration of magnetic particulate.

  2. An Improved Version of TOPAZ 3D

    International Nuclear Information System (INIS)

    Krasnykh, Anatoly

    2003-01-01

    An improved version of the TOPAZ 3D gun code is presented as a powerful tool for beam optics simulation. In contrast to the previous version of TOPAZ 3D, the geometry of the device under test is introduced into TOPAZ 3D directly from a CAD program, such as Solid Edge or AutoCAD. In order to have this new feature, an interface was developed, using the GiD software package as a meshing code. The article describes this method with two models to illustrate the results

  3. 3D face modeling, analysis and recognition

    CERN Document Server

    Daoudi, Mohamed; Veltkamp, Remco

    2013-01-01

    3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application s

  4. 3D background aerodynamics using CFD

    DEFF Research Database (Denmark)

    Sørensen, Niels N.

    2002-01-01

    3D rotor computations for the Greek Geovilogiki (GEO) 44 meter rotor equipped with 19 meters blades are performed. The lift and drag polars are extracted at five spanvise locations r/R= (.37, .55, .71, .82, .93) based on identification of stagnationpoints between 2D and 3D computations. The inner...... most sections shows clear evidence of 3D radial pumping, with increased lift compared to 2D values. In contrast to earlier investigated airfoils a very limited impact on the drag values are observed....

  5. FUN3D Manual: 13.3

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2018-01-01

    This manual describes the installation and execution of FUN3D version 13.3, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  6. FUN3D Manual: 12.8

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  7. FUN3D Manual: 13.1

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2017-01-01

    This manual describes the installation and execution of FUN3D version 13.1, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  8. FUN3D Manual: 13.2

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2017-01-01

    This manual describes the installation and execution of FUN3D version 13.2, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  9. FUN3D Manual: 12.9

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2016-01-01

    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  10. FUN3D Manual: 13.0

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2016-01-01

    This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  11. FUN3D Manual: 12.7

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  12. Determination of the 3d34d and 3d35s configurations of Fe V

    International Nuclear Information System (INIS)

    Azarov, V.I.

    2001-01-01

    The analysis of the spectrum of four times ionized iron, Fe V, has led to the determination of the 3d 3 4d and 3d 3 5s configurations. From 975 classified lines in the region 645-1190 A we have established 123 of 168 theoretically possible 3d 3 4d levels and 26 of 38 possible 3d 3 5s levels. The estimated accuracy of values of energy levels of these two configurations is about 0.7 cm -1 and 1.0 cm -1 , respectively. The level structure of the system of the 3d 4 , 3d 3 4s, 3d 3 4d and 3d 3 5s configurations has been theoretically interpreted and the energy parameters have been determined by a least squares fit to the observed levels. A comparison of parameters in Cr III and Fe V ions is given. (orig.)

  13. 3D object-oriented image analysis in 3D geophysical modelling

    DEFF Research Database (Denmark)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  14. Hop-by-HopWorm Propagation with Carryover Epidemic Model in Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jun-Won Ho

    2015-10-01

    Full Text Available In the internet, a worm is usually propagated in a random multi-hop contact manner. However, the attacker will not likely select this random multi-hop propagation approach in a mobile sensor network. This is because multi-hop worm route paths to random vulnerable targets can be often breached due to node mobility, leading to failure of fast worm spread under this strategy. Therefore, an appropriate propagation strategy is needed for mobile sensor worms. To meet this need, we discuss a hop-by-hop worm propagation model in mobile sensor networks. In a hop-by-hop worm propagation model, benign nodes are infected by worm in neighbor-to-neighbor spread manner. Since worm infection occurs in hop-by-hop contact, it is not substantially affected by a route breach incurred by node mobility. We also propose the carryover epidemic model to deal with the worm infection quota deficiency that might occur when employing an epidemic model in a mobile sensor network. We analyze worm infection capability under the carryover epidemic model. Moreover, we simulate hop-by-hop worm propagation with carryover epidemic model by using an ns-2 simulator. The simulation results demonstrate that infection quota carryovers are seldom observed where a node’s maximum speed is no less than 20 m/s.

  15. How Does a Hopping Kangaroo Breathe?

    Science.gov (United States)

    Giuliodori, Mauricio J.; Lujan, Heidi L.; Janbaih, Hussein; DiCarlo, Stephen E.

    2010-01-01

    We developed a model to demonstrate how a hopping kangaroo breathes. Interestingly, a kangaroo uses less energy to breathe while hopping than while standing still. This occurs, in part, because rather than using muscle power to move air into and out of the lungs, air is pulled into (inspiration) and pushed out of (expiration) the lungs as the…

  16. Hip-hop and urban studies

    NARCIS (Netherlands)

    Jaffe, R.

    2014-01-01

    How can urban studies research engage fruitfully with hip-hop? This contribution responds to the essays by David Beer and Martin Lamotte on ‘street music’, urban ethnography and ghettoized communities. It discusses how a social science engagement with hip-hop texts might differ from cultural studies

  17. Hopping Conductivity Enhanced by Microwave Radiation

    International Nuclear Information System (INIS)

    Ovadyahu, Z

    2012-01-01

    Hopping conductivity is enhanced when exposed to microwave (MW) fields. Data taken on several Anderson-localized systems and granular-aluminium are presented to illustrate the generality of the phenomenon. It is suggested that the effect is due to a field-enhanced hopping, which is the ac version of a non-ohmic effect familiar from studies in the dc transport regime.

  18. 3D laparoscopic surgery: a prospective clinical trial.

    Science.gov (United States)

    Agrusa, Antonino; Di Buono, Giuseppe; Buscemi, Salvatore; Cucinella, Gaspare; Romano, Giorgio; Gulotta, Gaspare

    2018-04-03

    Since it's introduction, laparoscopic surgery represented a real revolution in clinical practice. The use of a new generation three-dimensional (3D) HD laparoscopic system can be considered a favorable "hybrid" made by combining two different elements: feasibility and diffusion of laparoscopy and improved quality of vision. In this study we report our clinical experience with use of three-dimensional (3D) HD vision system for laparoscopic surgery. Between 2013 and 2017 a prospective cohort study was conducted at the University Hospital of Palermo. We considered 163 patients underwent to laparoscopic three-dimensional (3D) HD surgery for various indications. This 3D-group was compared to a retrospective-prospective control group of patients who underwent the same surgical procedures. Considerating specific surgical procedures there is no significant difference in term of age and gender. The analysis of all the groups of diseases shows that the laparoscopic procedures performed with 3D technology have a shorter mean operative time than comparable 2D procedures when we consider surgery that require complex tasks. The use of 3D laparoscopic technology is an extraordinary innovation in clinical practice, but the instrumentation is still not widespread. Precisely for this reason the studies in literature are few and mainly limited to the evaluation of the surgical skills to the simulator. This study aims to evaluate the actual benefits of the 3D laparoscopic system integrating it in clinical practice. The three-dimensional view allows advanced performance in particular conditions, such as small and deep spaces and promotes performing complex surgical laparoscopic procedures.

  19. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    Science.gov (United States)

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  20. 3D-modeling and 3D-printing explorations on Japanese tea ceremony utensils

    NARCIS (Netherlands)

    Levy, P.D.; Yamada, Shigeru

    2017-01-01

    In this paper, we inquire aesthetical aspects of the Japanese tea ceremony, described as the aesthetics in the imperfection, based on novel fabrication technologies: 3D-modeling and 3D-printing. To do so, 3D-printed utensils (chashaku and chasen) were iteratively designed for the ceremony and were

  1. Tangible 3D modeling of coherent and themed structures

    DEFF Research Database (Denmark)

    Walther, Jeppe Ullè; Bærentzen, J. Andreas; Aanæs, Henrik

    2016-01-01

    We present CubeBuilder, a system for interactive, tangible 3D shape modeling. CubeBuilder allows the user to create a digital 3D model by placing physical, non-interlocking cubic blocks. These blocks may be placed in a completely arbitrary fashion and combined with other objects. In effect......, this turns the task of 3D modeling into a playful activity that hardly requires any learning on the part of the user. The blocks are registered using a depth camera and entered into the cube graph where each block is a node and adjacent blocks are connected by edges. From the cube graph, we transform......, allows the user to tangibly build structures of greater details than the blocks provide in and of themselves. We show a number of shapes that have been modeled by users and are indicative of the expressive power of the system. Furthermore, we demonstrate the scalability of the tangible interface which...

  2. 3D Protein Dynamics in the Cell Nucleus.

    Science.gov (United States)

    Singh, Anand P; Galland, Rémi; Finch-Edmondson, Megan L; Grenci, Gianluca; Sibarita, Jean-Baptiste; Studer, Vincent; Viasnoff, Virgile; Saunders, Timothy E

    2017-01-10

    The three-dimensional (3D) architecture of the cell nucleus plays an important role in protein dynamics and in regulating gene expression. However, protein dynamics within the 3D nucleus are poorly understood. Here, we present, to our knowledge, a novel combination of 1) single-objective based light-sheet microscopy, 2) photoconvertible proteins, and 3) fluorescence correlation microscopy, to quantitatively measure 3D protein dynamics in the nucleus. We are able to acquire >3400 autocorrelation functions at multiple spatial positions within a nucleus, without significant photobleaching, allowing us to make reliable estimates of diffusion dynamics. Using this tool, we demonstrate spatial heterogeneity in Polymerase II dynamics in live U2OS cells. Further, we provide detailed measurements of human-Yes-associated protein diffusion dynamics in a human gastric cancer epithelial cell line. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. 3D printing of bacteria into functional complex materials.

    Science.gov (United States)

    Schaffner, Manuel; Rühs, Patrick A; Coulter, Fergal; Kilcher, Samuel; Studart, André R

    2017-12-01

    Despite recent advances to control the spatial composition and dynamic functionalities of bacteria embedded in materials, bacterial localization into complex three-dimensional (3D) geometries remains a major challenge. We demonstrate a 3D printing approach to create bacteria-derived functional materials by combining the natural diverse metabolism of bacteria with the shape design freedom of additive manufacturing. To achieve this, we embedded bacteria in a biocompatible and functionalized 3D printing ink and printed two types of "living materials" capable of degrading pollutants and of producing medically relevant bacterial cellulose. With this versatile bacteria-printing platform, complex materials displaying spatially specific compositions, geometry, and properties not accessed by standard technologies can be assembled from bottom up for new biotechnological and biomedical applications.

  4. Tailored 3D CuO Nanogrid Formation

    International Nuclear Information System (INIS)

    Lee, J.; Gouma, P.I.

    2011-01-01

    This paper reports on the controlled synthesis of 3D CuO nano grids by the combined use of electro spinning and thermal oxidation of a composite metal mesh/polymer mat architecture. The obtained nano grids result from three steps encompassing: (i) Cu atom clusters diffusing into the nano fibers producing polymer-metal core-shell-type fibers (ii) decomposition of the polymeric shell; (iii) oxidation of the metallic core of the nano fibers to form self-supported, open nano grids consisting of continuous nano fibers of CuO nanoparticles with an average diameter of 20 nm. The calculated band gap energy of the cupric oxide nano grids was determined from the UV-Vis spectrum to be 1.32 eV. The unique 3D CuO nano grids may be used as key components of 3D nano batteries, photo catalysts, and p-type chemo sensors.

  5. Designing Biomaterials for 3D Printing.

    Science.gov (United States)

    Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim

    2016-10-10

    Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.

  6. Tissue and Organ 3D Bioprinting.

    Science.gov (United States)

    Xia, Zengmin; Jin, Sha; Ye, Kaiming

    2018-02-01

    Three-dimensional (3D) bioprinting enables the creation of tissue constructs with heterogeneous compositions and complex architectures. It was initially used for preparing scaffolds for bone tissue engineering. It has recently been adopted to create living tissues, such as cartilage, skin, and heart valve. To facilitate vascularization, hollow channels have been created in the hydrogels by 3D bioprinting. This review discusses the state of the art of the technology, along with a broad range of biomaterials used for 3D bioprinting. It provides an update on recent developments in bioprinting and its applications. 3D bioprinting has profound impacts on biomedical research and industry. It offers a new way to industrialize tissue biofabrication. It has great potential for regenerating tissues and organs to overcome the shortage of organ transplantation.

  7. Mobile 3D Viewer Supporting RFID System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J J; Yang, S W; Choi, Y [Chungang Univ., Seoul (Korea, Republic of)

    2007-07-01

    As hardware capabilities of mobile devices are being rapidly enhanced, applications based upon mobile devices are also being developed in wider areas. In this paper, a prototype mobile 3D viewer with the object identification through RFID system is presented. To visualize 3D engineering data such as CAD data, we need a process to compute triangulated data from boundary based surface like B-rep solid or trimmed surfaces. Since existing rendering engines on mobile devices do not provide triangulation capability, mobile 3D programs have focused only on an efficient handling with pre-tessellated geometry. We have developed a light and fast triangulation process based on constrained Delaunay triangulation suitable for mobile devices in the previous research. This triangulation software is used as a core for the mobile 3D viewer on a PDA with RFID system that may have potentially wide applications in many areas.

  8. Nonlaser-based 3D surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  9. 3D Maps Representation Using GNG

    Directory of Open Access Journals (Sweden)

    Vicente Morell

    2014-01-01

    Full Text Available Current RGB-D sensors provide a big amount of valuable information for mobile robotics tasks like 3D map reconstruction, but the storage and processing of the incremental data provided by the different sensors through time quickly become unmanageable. In this work, we focus on 3D maps representation and propose the use of the Growing Neural Gas (GNG network as a model to represent 3D input data. GNG method is able to represent the input data with a desired amount of neurons or resolution while preserving the topology of the input space. Experiments show how GNG method yields a better input space adaptation than other state-of-the-art 3D map representation methods.

  10. Advances in 3D neuronal cell culture

    NARCIS (Netherlands)

    Frimat, Jean Philippe; Xie, Sijia; Bastiaens, Alex; Schurink, Bart; Wolbers, Floor; Den Toonder, Jaap; Luttge, Regina

    2015-01-01

    In this contribution, the authors present our advances in three-dimensional (3D) neuronal cell culture platform technology contributing to controlled environments for microtissue engineering and analysis of cellular physiological and pathological responses. First, a micromachined silicon sieving

  11. 3D VISUALIZATION FOR VIRTUAL MUSEUM DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. Skamantzari

    2016-06-01

    Full Text Available The interest in the development of virtual museums is nowadays rising rapidly. During the last decades there have been numerous efforts concerning the 3D digitization of cultural heritage and the development of virtual museums, digital libraries and serious games. The realistic result has always been the main concern and a real challenge when it comes to 3D modelling of monuments, artifacts and especially sculptures. This paper implements, investigates and evaluates the results of the photogrammetric methods and 3D surveys that were used for the development of a virtual museum. Moreover, the decisions, the actions, the methodology and the main elements that this kind of application should include and take into consideration are described and analysed. It is believed that the outcomes of this application will be useful to researchers who are planning to develop and further improve the attempts made on virtual museums and mass production of 3D models.

  12. Intrinsic defects in 3D printed materials

    OpenAIRE

    Bolton, Christopher; Dagastine, Raymond

    2015-01-01

    We discuss the impact of bulk structural defects on the coherence, phase and polarisation of light passing through transparent 3D printed materials fabricated using a variety of commercial print technologies.

  13. Mobile 3D Viewer Supporting RFID System

    International Nuclear Information System (INIS)

    Kim, J. J.; Yang, S. W.; Choi, Y.

    2007-01-01

    As hardware capabilities of mobile devices are being rapidly enhanced, applications based upon mobile devices are also being developed in wider areas. In this paper, a prototype mobile 3D viewer with the object identification through RFID system is presented. To visualize 3D engineering data such as CAD data, we need a process to compute triangulated data from boundary based surface like B-rep solid or trimmed surfaces. Since existing rendering engines on mobile devices do not provide triangulation capability, mobile 3D programs have focused only on an efficient handling with pre-tessellated geometry. We have developed a light and fast triangulation process based on constrained Delaunay triangulation suitable for mobile devices in the previous research. This triangulation software is used as a core for the mobile 3D viewer on a PDA with RFID system that may have potentially wide applications in many areas

  14. Measuring Visual Closeness of 3-D Models

    KAUST Repository

    Gollaz Morales, Jose Alejandro

    2012-09-01

    Measuring visual closeness of 3-D models is an important issue for different problems and there is still no standardized metric or algorithm to do it. The normal of a surface plays a vital role in the shading of a 3-D object. Motivated by this, we developed two applications to measure visualcloseness, introducing normal difference as a parameter in a weighted metric in Metro’s sampling approach to obtain the maximum and mean distance between 3-D models using 3-D and 6-D correspondence search structures. A visual closeness metric should provide accurate information on what the human observers would perceive as visually close objects. We performed a validation study with a group of people to evaluate the correlation of our metrics with subjective perception. The results were positive since the metrics predicted the subjective rankings more accurately than the Hausdorff distance.

  15. Radiosity diffusion model in 3D

    Science.gov (United States)

    Riley, Jason D.; Arridge, Simon R.; Chrysanthou, Yiorgos; Dehghani, Hamid; Hillman, Elizabeth M. C.; Schweiger, Martin

    2001-11-01

    We present the Radiosity-Diffusion model in three dimensions(3D), as an extension to previous work in 2D. It is a method for handling non-scattering spaces in optically participating media. We present the extension of the model to 3D including an extension to the model to cope with increased complexity of the 3D domain. We show that in 3D more careful consideration must be given to the issues of meshing and visibility to model the transport of light within reasonable computational bounds. We demonstrate the model to be comparable to Monte-Carlo simulations for selected geometries, and show preliminary results of comparisons to measured time-resolved data acquired on resin phantoms.

  16. 3D Membrane Imaging and Porosity Visualization

    KAUST Repository

    Sundaramoorthi, Ganesh; Hadwiger, Markus; Ben Romdhane, Mohamed; Behzad, Ali Reza; Madhavan, Poornima; Nunes, Suzana Pereira

    2016-01-01

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore

  17. 3D-printed Bioanalytical Devices

    Science.gov (United States)

    Bishop, Gregory W; Satterwhite-Warden, Jennifer E; Kadimisetty, Karteek; Rusling, James F

    2016-01-01

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices. PMID:27250897

  18. Eyes on the Earth 3D

    Science.gov (United States)

    Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.

    2013-01-01

    Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.

  19. Expedient Gap Definition Using 3D LADAR

    National Research Council Canada - National Science Library

    Edwards, Lulu; Jersey, Sarah R

    2006-01-01

    .... Army Engineer Research and Development Center (ERDC), ASI has developed an algorithm to reduce the 3D point cloud acquired with the LADAR system into sets of 2D profiles that describe the terrain...

  20. 3D modeling of the marine relief

    OpenAIRE

    Mànuel-González, Bernat; Garcia Benadí, Albert; Río Fernandez, Joaquín del; Cadena Muñoz, Francisco Javier; Manuel Lázaro, Antonio

    2012-01-01

    The article detail the systematic process for transformation the 2D representation to 3D representation, likewise the systematic process for gather up of data, and the considerations and instrumentation necessary for this action. Peer Reviewed