WorldWideScience

Sample records for hoop column antenna

  1. FINITE ELEMENT ANALYSIS OF THE BEHAVIOUR OF REINFORCED CONCRETE COLUMNS CONFINED BY OVERLAPPING HOOPS SUBJECTED TO RAPID CONCENTRIC LOADING

    Directory of Open Access Journals (Sweden)

    Xiang Zeng

    2017-12-01

    Full Text Available The strain rate sensitivity of concrete material was discovered approximately one hundred years ago, and it has a marked effect on the behaviour of concrete members subjected to dynamic loadings such as strong earthquake and impact loading. Because of the great importance of the confined reinforced concrete (RC columns in RC structures, the dynamic behaviour of the columns induced by the strain rate effect has been studied, but only few experiments and analyses have been conducted. To investigate the behaviour of overlapping hoop-confined square reinforced normal-strength concrete columns, considering the strain rate effect at a strain rate of 10-5/sec to 10-1/sec induced by earthquake excitation, an explicit dynamic finite element analysis (FEA model was developed in ABAQUS to predict the behaviour of confined RC columns subjected to the rapid concentric loading. A locally modified stress-strain relation of confined concrete with the strain rate sensitivity of the concrete material and the confining effect of overlapping hoops were proposed to complete the simulation of the dynamic behaviour of concrete with the concrete plastic-constitutive model in ABAQUS. The finite element predictions are consistent with the existing test results. Based on the FEA model, a parametric investigation was conducted to capture more information about the behaviour of confined RC columns under varying loading rates.

  2. Numerical Simulation of Dual-Channel Communication of Column Plasma Antenna Excited by a Surface Wave

    International Nuclear Information System (INIS)

    Duanmu Gang; Zhao Changming; Liang Chao; Xu Yuemin

    2014-01-01

    This paper focuses on the application of plasma as wireless antenna. In order to reveal the radiation characteristics of column plasma antenna, we chose the finite-difference time-domain (FDTD) numerical analysis method to simulate radiation impedance and efficiencies of each channel for a few sets of plasma densities and plasma collision frequencies. Simulation results demonstrate that a plasma antenna shares similar characteristics with a metallic antenna in radiation impedance and efficiency of each channel when an appropriate setting is adopted. Unlike a metallic antenna, a plasma antenna is capable of realizing such functions as dynamic reconfiguration, digital control and dual-channel communication. Thus it is possible to carry out dual-channel communication by plasma antenna, indicating a new path for modern intelligent communication. (plasma technology)

  3. Projectile Motion Hoop Challenge

    Science.gov (United States)

    Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.

    2018-01-01

    Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in "The Physics Teacher" ("TPT"); however, the "Hoop Challenge" is a new setup not…

  4. Jumping hoops on water

    Science.gov (United States)

    Yang, Eunjin; Kim, Ho-Young

    2015-11-01

    Small aquatic arthropods, such as water striders and fishing spiders, are able to jump off water to a height several times their body length. Inspired by the unique biological motility on water, we study a simple model using a flexible hoop to provide fundamental understanding and a mimicking principle of small jumpers on water. Behavior of a hoop on water, which is coated with superhydrophobic particles and initially bent into an ellipse from an equilibrium circular shape, is visualized with a high speed camera upon launching it into air by releasing its initial elastic strain energy. We observe that jumping of our hoops is dominated by the dynamic pressure of water rather than surface tension, and thus it corresponds to the dynamic condition experienced by fishing spiders. We calculate the reaction forces provided by water adopting the unsteady Bernoulli equation as well as the momentum loss into liquid inertia and viscous friction. Our analysis allows us to predict the jumping efficiency of the hoop on water in comparison to that on ground, and to discuss the evolutionary pressure rendering fishing spiders select such dynamic behavior.

  5. Through the regulatory hoop

    International Nuclear Information System (INIS)

    Kirner, N.P.

    1985-01-01

    There are many regulatory hoops through which waste generators, brokers, and disposal site operators must jump to dispose of waste safely. As the proposed exclusionary date of January 1, 1986, approaches, these regulatory hoops have the distinct possibility of multiplying or at least changing shape. The state of Washington, in its role as an Agreement State with the US Nuclear Regulatory Commission, licenses and inspects the commercial operator of the Northwest Compact's low-level radioactive waste disposal site on the Hanford Reservation. Washington has received as much as 53%, or 1.4 million cubic feet per year, of the nation's total volume of waste disposed. To control such a large volume of waste, a regulatory program involving six agencies has developed over the years in Washington

  6. Projectile Motion Hoop Challenge

    Science.gov (United States)

    Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.

    2018-04-01

    Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in The Physics Teacher; however, the "Hoop Challenge" is a new setup not before described in TPT. In this article an experiment is illustrated to explore projectile motion in a fun and challenging manner that has been used with both high school and university students. With a few simple materials, students have a vested interest in being able to calculate the height of the projectile at a given distance from its launch site. They also have an exciting visual demonstration of projectile motion when the lab is over.

  7. Antennas.

    Science.gov (United States)

    1982-03-03

    arc csch csch - 1 Russian English rot curl lg log !i FIVE-METER SPHERICAL MILLIMETER-BAND ANTENNA P.M. Geruni This article presents the basic...rlpe’ I operating band, MHz elliptical Xk, mm X , m fk, MHz z wavgudeeg MHz f =1.2f f =0.95f waegid H X B rip = E40 104.5 56.4 2872 5410 3446 5141 E48...aperture In order to do this, we expand (30) into a series with respect to y. Limiting ourselves to the first three terms of the expansion, we obtain r

  8. Radio antennas

    Science.gov (United States)

    Gibson, S. W.

    This book is concerned with providing an explanation of the function of an antenna without delving too deeply into the mathematics or theory. The characteristics of an antenna are examined, taking into account aspects of antenna radiation, wave motion on the antenna, resistance in the antenna, impedance, the resonant antenna, the effect of the ground, polarization, radiation patterns, coupling effects between antenna elements, and receiving vs. transmitting. Aspects of propagation are considered along with the types of antennas, transmission lines, matching devices, questions of antenna design, antennas for the lower frequency bands, antennas for more than one band, limited space antennas, VHF antennas, and antennas for 20, 15, and 10 meters. Attention is given to devices for measuring antenna parameters, approaches for evaluating the antenna, questions of safety, and legal aspects.

  9. Full hoop casing for midframe of industrial gas turbine engine

    Science.gov (United States)

    Myers, Gerald A.; Charron, Richard C.

    2015-12-01

    A can annular industrial gas turbine engine, including: a single-piece rotor shaft spanning a compressor section (82), a combustion section (84), a turbine section (86); and a combustion section casing (10) having a section (28) configured as a full hoop. When the combustion section casing is detached from the engine and moved to a maintenance position to allow access to an interior of the engine, a positioning jig (98) is used to support the compressor section casing (83) and turbine section casing (87).

  10. Quantum hoop conjecture: Black hole formation by particle collisions

    Energy Technology Data Exchange (ETDEWEB)

    Casadio, Roberto, E-mail: casadio@bo.infn.it [Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna (Italy); I.N.F.N., Sezione di Bologna, viale Berti Pichat 6/2, 40127 Bologna (Italy); Micu, Octavian, E-mail: octavian.micu@spacescience.ro [Institute of Space Science, Bucharest, P.O. Box MG-23, RO-077125 Bucharest-Magurele (Romania); Scardigli, Fabio, E-mail: fabio@phys.ntu.edu.tw [Dipartimento di Matematica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano (Italy); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2014-05-01

    We address the issue of (quantum) black hole formation by particle collision in quantum physics. We start by constructing the horizon wave-function for quantum mechanical states representing two highly boosted non-interacting particles that collide in flat one-dimensional space. From this wave-function, we then derive a probability that the system becomes a black hole as a function of the initial momenta and spatial separation between the particles. This probability allows us to extend the hoop conjecture to quantum mechanics and estimate corrections to its classical counterpart.

  11. The bead on a rotating hoop revisited: an unexpected resonance

    Science.gov (United States)

    Raviola, Lisandro A.; Véliz, Maximiliano E.; Salomone, Horacio D.; Olivieri, Néstor A.; Rodríguez, Eduardo E.

    2017-01-01

    The bead on a rotating hoop is a typical problem in mechanics, frequently posed to junior science and engineering students in basic physics courses. Although this system has a rich dynamics, it is usually not analysed beyond the point particle approximation in undergraduate textbooks, nor empirically investigated. Advanced textbooks show the existence of bifurcations owing to the system's nonlinear nature, and some papers demonstrate, from a theoretical standpoint, its points of contact with phase transition phenomena. However, scarce experimental research has been conducted to better understand its behaviour. We show in this paper that a minor modification to the problem leads to appealing consequences that can be studied both theoretically and empirically with the basic conceptual tools and experimental skills available to junior students. In particular, we go beyond the point particle approximation by treating the bead as a rigid spherical body, and explore the effect of a slightly non-vertical hoop's rotation axis that gives rise to a resonant behaviour not considered in previous works. This study can be accomplished by means of digital video and open source software. The experience can motivate an engaging laboratory project by integrating standard curriculum topics, data analysis and experimental exploration.

  12. Fate of the Hoop Conjecture in Quantum Gravity.

    Science.gov (United States)

    Anzà, Fabio; Chirco, Goffredo

    2017-12-08

    We consider a closed region R of 3D quantum space described via SU(2) spin networks. Using the concentration of measure phenomenon we prove that, whenever the ratio between the boundary ∂R and the bulk edges of the graph overcomes a finite threshold, the state of the boundary is always thermal, with an entropy proportional to its area. The emergence of a thermal state of the boundary can be traced back to a large amount of entanglement between boundary and bulk degrees of freedom. Using the dual geometric interpretation provided by loop quantum gravity, we interpret such phenomenon as a pregeometric analogue of Thorne's "hoop conjecture," at the core of the formation of a horizon in general relativity.

  13. Acoustic emission from fiber reinforced plastic damaged hoop wrapped cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, A.; Kung, D.; Westbrook, D.R.

    2000-03-01

    Metal lined continuous fiber reinforced plastic (FRP) hoop wrapped cylinders with axial cuts to the FRP were modeled mathematically and tested experimentally. Steel lined and aluminum alloy lined glass FRP vessels were subjected to acoustic emission tests (AE) and hydraulic burst tests. The burst pressure decreased monotonically with the length of the axial cut. Acoustic emission increased initially with a decrease in burst pressure, and attained a maximum at an intermediate level of damage to the FRP. However, acoustic emission decreased when the level of damage was higher and the burst pressure was lower. Implications of the findings are discussed in the context of the search for an acoustic emission test method to inspect periodically the vessels used for the storage of compressed gaseous fuels on natural gas vehicles (NGV) and hydrogen vehicles.

  14. Repulsion analysis of permanent magnets for the Hoop energy storage system

    International Nuclear Information System (INIS)

    O, B. H.; Cho, S. B.; Kim, D. I.

    1996-01-01

    The repulsion force of permanent magnets is studied in order to analyze the instability problem of the rotational motion of a hoop levitated by permanent magnets in the Hoop Energy Storage System (HESS). The hoop of permanent magnets is levitated to remove the mechanical complexities caused by the rotational axis. It is important to maintain stable rotational motion at any speed for the efficiency as well as the safety of the system. To set up the equations of motion, the force of levitation and the source of perturbation are represented in terms of real parameters of the permanent magnets. The instability conditions and various geometric effects of the permanent magnets are analyzed. (author)

  15. Antenna toolkit

    CERN Document Server

    Carr, Joseph

    2006-01-01

    Joe Carr has provided radio amateurs and short-wave listeners with the definitive design guide for sending and receiving radio signals with Antenna Toolkit 2nd edition.Together with the powerful suite of CD software, the reader will have a complete solution for constructing or using an antenna - bar the actual hardware! The software provides a simple Windows-based aid to carrying out the design calculations at the heart of successful antenna design. All the user needs to do is select the antenna type and set the frequency - a much more fun and less error prone method than using a con

  16. Wireless communication capability of a reconfigurable plasma antenna

    International Nuclear Information System (INIS)

    Kumar, Rajneesh; Bora, Dhiraj

    2011-01-01

    A 30 cm long plasma column is excited by a surface wave, which acts as a plasma antenna. Using plasma properties (pattern formation/striations in plasmas) single plasma antenna can be transformed into array, helical, and spiral plasma antenna. Experiments are carried out to study the power patterns, directivity, and half power beam width of such different plasma antennas. Moreover, field properties of plasma and copper antenna are studied. Further, wireless communication and jamming capability of plasma antenna are tested. Findings of this study suggest that directivity and communication range can be increased by converting single plasma antenna in to array/helical/spiral plasma antenna. Field frequencies of plasma antenna determine the communication and jamming of radio frequency waves. Therefore, this study invokes applications of pattern formation or striations of plasmas in plasma antenna technology.

  17. Expanded heat treatment to form residual compressive hoop stress on inner surface of zirconium alloy tubing

    International Nuclear Information System (INIS)

    Megata, Masao

    1997-01-01

    A specific heat treatment process that introduces hoop stress has been developed. This technique can produce zirconium alloy tubing with a residual compressive hoop stress near the inner surface by taking advantage of the mechanical anisotropy in hexagonal close-packed zirconium crystal. Since a crystal having its basal pole parallel to the tangential direction of the tubing is easier to exhibit plastic elongation under the hoop stress than that having its basal pole parallel to the radial direction, the plastic and elastic elongation can coexist under a certain set of temperature and hoop stress conditions. The mechanical anisotropy plays a role to extend the coexistent stress range. Thus, residual compressive hoop stress is formed at the inner surface where more plastic elongation occurs during the heat treatment. This process is referred to as expanded heat treatment. Since this is a fundamental crystallographic principle, it has various applications. The application to improve PCI/SCC (pellet cladding interaction/stress corrosion cracking) properties of water reactor fuel cladding is promising. Excellent results were obtained with laboratory-scale heat treatment and an out-reactor iodine SCC test. These results included an extension of the time to SCC failure. (author)

  18. Curtain Antenna Array Simulation Research Based on MATLAB

    Directory of Open Access Journals (Sweden)

    Hongbo LIU

    2014-01-01

    Full Text Available For the radiating capacity of curtain antenna array, this paper constructs a three- line-four-column curtain antenna array using cage antenna as the antenna array element and obtains a normalizing 3D radiation patterns through conducting simulation with MATLAB. Meanwhile, the relationships between the antenna spacing and the largest directivity coefficient, as well as the communication frequency and largest directivity coefficient are analyzed in this paper. It turns out that the max value will generate when the antenna spacing is around 18 m and the best communication effect will be achieved when the communication frequency is about 12.4 MHz.

  19. Numerical Simulation of Plasma Antenna with FDTD Method

    International Nuclear Information System (INIS)

    Chao, Liang; Yue-Min, Xu; Zhi-Jiang, Wang

    2008-01-01

    We adopt cylindrical-coordinate FDTD algorithm to simulate and analyse a 0.4-m-long column configuration plasma antenna. FDTD method is useful for solving electromagnetic problems, especially when wave characteristics and plasma properties are self-consistently related to each other. Focus on the frequency from 75 MHz to 400 MHz, the input impedance and radiation efficiency of plasma antennas are computed. Numerical results show that, different from copper antenna, the characteristics of plasma antenna vary simultaneously with plasma frequency and collision frequency. The property can be used to construct dynamically reconBgurable antenna. The investigation is meaningful and instructional for the optimization of plasma antenna design

  20. Numerical simulation of plasma antenna with FDTD method

    International Nuclear Information System (INIS)

    Liang Chao; Xu Yuemin; Wang Zhijiang

    2008-01-01

    We adopt cylindrical-coordinate FDTD algorithm to simulate and analyse a 0.4-m-long column configuration plasma antenna. FDTD method is useful for solving electromagnetic problems, especially when wave characteristics and plasma properties are self-consistently related to each other. Focus on the frequency from 75 MHz to 400 MHz, the input impedance and radiation efficiency of plasma antennas are computed. Numerical results show that, different from copper antenna, the characteristics of plasma antenna vary simultaneously with plasma frequency and collision frequency. The property can be used to construct dynamically reconfigurable antenna. The investigation is meaningful and instructional for the optimization of plasma antenna design. (authors)

  1. Representing the Ghetto Playground: From "Be Like Mike" to "Hoop Dreams."

    Science.gov (United States)

    Chown, Jeffrey

    This paper traces representational strategies employed by "Hoop Dreams," the documentary for which two black teenagers and their families consented to have three white film makers follow them around in their day-to-day life for five years. Storytelling techniques, choice of narrator, and on- vs. off-screen action all reflect film maker…

  2. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  3. Superluminal antenna

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, John; Earley, Lawrence M.; Krawczyk, Frank L.; Potter, James M.; Romero, William P.; Wang, Zhi-Fu

    2018-04-17

    A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable.

  4. Black objects and hoop conjecture in five-dimensional space-time

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yuta; Shinkai, Hisa-aki, E-mail: m1m08a26@info.oit.ac.j, E-mail: shinkai@is.oit.ac.j [Faculty of Information Science and Technology, Osaka Institute of Technology, 1-79-1 Kitayama, Hirakata, Osaka 573-0196 (Japan)

    2010-02-21

    We numerically investigated the sequences of initial data of a thin spindle and a thin ring in five-dimensional space-time in the context of the cosmic censorship conjecture. We modeled the matter in non-rotating homogeneous spheroidal or toroidal configurations under the momentarily static assumption, solved the Hamiltonian constraint equation and searched the apparent horizons. We discussed when S{sup 3} (black-hole) or S{sup 1} x S{sup 2} (black-ring) horizons ('black objects') are formed. By monitoring the location of the maximum Kretchmann invariant, an appearance of 'naked singularity' or 'naked ring' under special situations is suggested. We also discuss the validity of the hyper-hoop conjecture using a minimum area around the object, and show that the appearance of the ring horizon does not match with this hoop.

  5. Relation Between Residual and Hoop Stresses and Rolling Bearing Fatigue Life

    Science.gov (United States)

    Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.

    2015-01-01

    Rolling-element bearings operated at high speed or high vibration may require a tight interference fit between the bore of the bearing and shaft to prevent rotation of the bearing bore around the shaft and fretting damage at the interfaces. Previous work showed that the hoop stresses resulting from tight interference fits can reduce bearing lives by as much as 65 percent. Where tight interference fits are required, case-carburized steel such as AISI 9310 or M50 NiL is often used because the compressive residual stresses inhibit subsurface crack formation and the ductile core inhibits inner-ring fracture. The presence of compressive residual stress and its combination with hoop stress also modifies the Hertz stress-life relation. This paper analyzes the beneficial effect of residual stresses on rolling-element bearing fatigue life in the presence of high hoop stresses for three bearing steels. These additional stresses were superimposed on Hertzian principal stresses to calculate the inner-race maximum shearing stress and the resulting fatigue life of the bearing. The load-life exponent p and Hertz stress-life exponent n increase in the presence of compressive residual stress, which yields increased life, particularly at lower stress levels. The Zaretsky life equation is described and is shown to predict longer bearing lives and greater load- and stress-life exponents, which better predicts observed life of bearings made from vacuum-processed steel.

  6. Optimization of deformations and hoop stresses in TSV liners to boost interconnect reliability in electronic appliances

    Science.gov (United States)

    Juma, Mary Atieno; Zhang, Xuliang; He, Song Bai; Abusabah, Ahmed I. A.

    2015-12-01

    Recently, there has been a lot of research with electronic products because more and different functions are integrated into devices and the final product sizes have to be small to meet the market demand. A lot of research has been done on the (TSVs) Through Silicon Vias. In this paper, through silicon via liners are investigated. The liners: silicon dioxide, polystyrene and polypropylene carbonate are exposed to pressure on their inner surfaces and this yielded hoop stresses within their thickness. Deflections too occurred and this is a proof that deformation really took place. In one of our papers, hoop stresses for the same materials were investigated. The values were a little higher but different for each material used. In this paper, we use global cylindrical, partial cylinder model with different theta in Analysis system 14 to model the through silicon via liners. The values are lower meaning the reliability of the liners have been optimized and boosted. However, silicon dioxide liner had the lowest hoop stress around its circumference and lowest deflection value meaning that it's still one of the most reliable materials in the manufacture of through silicon via liners in the industry; but overdependence can be avoided if the other liners are used too.

  7. Broadband standard dipole antenna for antenna calibration

    Science.gov (United States)

    Koike, Kunimasa; Sugiura, Akira; Morikawa, Takao

    1995-06-01

    Antenna calibration of EMI antennas is mostly performed by the standard antenna method at an open-field test site using a specially designed dipole antenna as a reference. In order to develop broadband standard antennas, the antenna factors of shortened dipples are theoretically investigated. First, the effects of the dipole length are analyzed using the induced emf method. Then, baluns and loads are examined to determine their influence on the antenna factors. It is found that transformer-type baluns are very effective for improving the height dependence of the antenna factors. Resistive loads are also useful for flattening the frequency dependence. Based on these studies, a specification is developed for a broadband standard antenna operating in the 30 to 150 MHz frequency range.

  8. Antennas in inhomogeneous media

    CERN Document Server

    Galejs, Janis; Fock, V A; Wait, J R

    2013-01-01

    Antennas in Inhomogeneous Media details the methods of analyzing antennas in such inhomogeneous media. The title covers the complex geometrical configurations along with its variational formulations. The coverage of the text includes various conditions the antennas are subjected to, such as antennas in the interface between two media; antennas in compressible isotropic plasma; and linear antennas in a magnetoionic medium. The selection also covers insulated loops in lossy media; slot antennas with a stratified dielectric or isotropic plasma layers; and cavity-backed slot antennas. The book wil

  9. Non-hoop winding effect on bonding temperature of laser assisted tape winding process

    Science.gov (United States)

    Zaami, Amin; Baran, Ismet; Akkerman, Remko

    2018-05-01

    One of the advanced methods for production of thermoplastic composite methods is laser assisted tape winding (LATW). Predicting the temperature in LATW process is very important since the temperature at nip-point (bonding line through width) plays a pivotal role in a proper bonding and hence the mechanical performance. Despite the hoop-winding where the nip-point is the straight line, non-hoop winding includes a curved nip-point line. Hence, the non-hoop winding causes somewhat a different power input through laser-rays and-reflections and consequently generates unknown complex temperature profile on the curved nip-point line. Investigating the temperature at the nip-point line is the point of interest in this study. In order to understand this effect, a numerical model is proposed to capture the effect of laser-rays and their reflections on the nip-point temperature. To this end, a 3D optical model considering the objects in LATW process is considered. Then, the power distribution (absorption and reflection) from the optical analysis is used as an input (heat flux distribution) for the thermal analysis. The thermal analysis employs a fully-implicit advection-diffusion model to calculate the temperature on the surfaces. The results are examined to demonstrate the effect of winding direction on the curved nip-point line (tape width) which has not been considered in literature up to now. Furthermore, the results can be used for designing a better and more efficient setup in the LATW process.

  10. PULSE COLUMN

    Science.gov (United States)

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  11. Plasma antennas: dynamically configurable antennas for communications

    International Nuclear Information System (INIS)

    Borg, G.; Harris, J.

    1999-01-01

    In recent years, the rapid growth in both communications and radar systems has led to a concomitant growth in the possible applications and requirements of antennas. These new requirements include compactness and conformality, rapid reconfigurability for directionality and frequency agility. For military applications, antennas should also allow low absolute or out-of-band radar cross-section and facilitate low probability of intercept communications. Investigations have recently begun worldwide on the use of ionised gases or plasmas as the conducting medium in antennas that could satisfy these requirements. Such plasma antennas may even offer a viable alternative to metal in existing applications when overall technical requirements are considered. A recent patent for ground penetrating radar claims the invention of a plasma antenna for the transmission of pulses shorter than 100 ns in which it is claimed that current ringing is avoided and signal processing simplified compared with a metal antenna. A recent US ONR tender has been issued for the design and construction of a compact and rapidly reconfigurable antenna for dynamic signal reception over the frequency range 1 - 45 GHz based on plasma antennas. Recent basic physics experiments at ANU have demonstrated that plasma antennas can attain adequate efficiency, predictable radiation patterns and low base-band noise for HF and VHF communications. In this paper we describe the theory of the low frequency plasma antenna and present a few experimental results

  12. Research of Effective Width of FRP U-shaped Hoop Reinforcement Properties of Concrete Beams by Shear

    Directory of Open Access Journals (Sweden)

    Li Baokun

    2015-01-01

    Full Text Available The paste fiber reinforced composite material (hereinafter referred to as FRP U-shaped hoop of reinforced concrete beams interfacial debonding is an important reinforcement technology research. For the effective width of the CFRP U-shaped hoop reinforcement, it is still a lack of in-depth research, only relying on the test research huge workload, this article (ANSYS and the numerical simulation in the whole process of the shear load release properties of finite element calculation software. According to the results of finite element analysis, the author studied the CFRP U-shaped hoop to increase the width of the shear capacity of reinforced concrete beams by the impact.

  13. Effects of varying the through silicon via liners thickness on their hoop stresses and deflections

    Directory of Open Access Journals (Sweden)

    Juma Mary Atieno

    2017-03-01

    Full Text Available Through silicon via (TSV interconnect reliability is a problem in electronic packaging. The authors address the insertion losses, deflections which can result to separation of TSV layers and hoop stresses. These problems are due to different coefficient of thermal expansion between materials. The authors propose a robust methodology for (TSV liners in this paper which in turn solves the reliability problem in (TSV. Silicon dioxide material is used in their paper as a TSV liner. First, they modelled the equivalent TSV circuit in advanced design systems (ADS. The authors then simulated it to obtain the TSV characterisation from which they obtained the S-parameter S21 which represents the insertion losses. Insertion losses have been described with changes in frequencies from 0 to 20 GHz with changes in TSV thickness from 7 to 8 µm. Later two different shapes of the TSV liner; the disc- and rod-shaped are modelled in analysis system 14 software. The two shapes with a radius of 5 µm each and a fixed pressure of 100 µPa developed changes in hoop stresses and deflections when the liners thicknesses are varied from 2 to 3 µm. The disc shape experienced least reliability problems so the authors propose its use in via structures.

  14. Hydride-induced degradation of hoop ductility in textured zirconium-alloy tubes: A theoretical analysis

    International Nuclear Information System (INIS)

    Qin, W.; Szpunar, J.A.; Kozinski, J.

    2012-01-01

    Hydride-induced degradation of hoop ductility in Zr-alloy tubular components has been studied for many years because of its importance in the nuclear industry. In this paper the role of intergranular and intragranular δ-hydrides in the degradation of ductility of the textured Zr-alloy tubes is investigated. The correlation among hydride distribution, orientation and morphology in the tubes is formulated based on thermodynamic modeling, and then analyzed. The results show that the applied stress, the crystallographic texture of α-Zr matrix, the grain-boundary structure, and the morphology and size of Zr grains simultaneously govern the site preference and the orientation of hydrides. A criterion is proposed to determine the threshold stress of hydride reorientation. The hoop ductility of the hydrided Zr tubes is discussed using the concept of macroscopic fracture strain. It is shown that the intergranular hydrides may be more deleterious to ductility than the intragranular ones. This work defines a general framework for understanding the relation of the microstructure of hydride-forming materials to embrittlement.

  15. A Single Atom Antenna

    International Nuclear Information System (INIS)

    Trinter, Florian; Williams, Joshua B; Weller, Miriam; Waitz, Markus; Pitzer, Martin; Voigtsberger, Jörg; Schober, Carl; Kastirke, Gregor; Müller, Christian; Goihl, Christoph; Burzynski, Phillip; Wiegandt, Florian; Wallauer, Robert; Kalinin, Anton; Schmidt, Lothar Ph H; Schöffler, Markus S; Jahnke, Till; Dörner, Reinhard; Chiang, Ying-Chih; Gokhberg, Kirill

    2015-01-01

    Here we demonstrate the smallest possible implementation of an antenna-receiver complex which consists of a single (helium) atom acting as the antenna and a second (neon) atom acting as a receiver. (paper)

  16. Antenna Pattern Range (APR)

    Data.gov (United States)

    Federal Laboratory Consortium — TheAntenna Pattern Range (APR)features a non-metallic arch with a trolley to move the transmit antenna from the horizon to zenith. At the center of the ground plane,...

  17. Equipment: Antenna systems

    Science.gov (United States)

    Petrie, L. E.

    1986-03-01

    Some antenna fundamentals as well as definitions of the principal terms used in antenna engineering are described. Methods are presented for determining the desired antenna radiation patterns for HF communication circuit or service area. Sources for obtaining or computing radiation pattern information are outlined. Comparisons are presented between the measured and computed radiation patterns. The effect of the properties of the ground on the antenna gain and the pattern are illustrated for several types of antennas. Numerous examples are given of the radiation patterns for typical antennas used on short, intermediate and long distance circuits for both mobile and fixed service operations. The application of adaptive antenna arrays and active antennas in modern HF communication systems are briefly reviewed.

  18. Efficient trap of a coaxial gun plasma in an axisymmetric mirror with an internal hoop

    International Nuclear Information System (INIS)

    Asano, Shiro; Ihara, Makoto; Fukao, Masayuki

    1989-01-01

    A method to trap a high temperature and high density plasma from a coaxial gun in a mirror machine is described. The method is to inject plasma parallel to the axis from a coaxial gun located off the axis. The validity of the method is experimentally demonstrated with an MHD-stabilized axisymmetric mirror with an internal hoop. Density, electron and ion temperatures and their time behaviors were measured and it was made clear that a high density high temperature plasma was well trapped in the mirror by the parallel off-axis injection while the plasma was little trapped by on-axis injection. The plasma parameters obtained were also compared with those of a conventional titanium washer gun plasma. The causes to restrict the maximum ion temperature and of its quick decay are discussed. (author)

  19. Robust Design of Docking Hoop for Recovery of Autonomous Underwater Vehicle with Experimental Results

    Directory of Open Access Journals (Sweden)

    Wei Peng Lin

    2015-12-01

    Full Text Available Control systems prototyping is usually constrained by model complexity, embedded system configurations, and interface testing. The proposed control system prototyping of a remotely-operated vehicle (ROV with a docking hoop (DH to recover an autonomous underwater vehicle (AUV named AUVDH using a combination of software tools allows the prototyping process to be unified. This process provides systematic design from mechanical, hydrodynamics, dynamics modelling, control system design, and simulation to testing in water. As shown in a three-dimensional simulation of an AUVDH model using MATLAB™/Simulink™ during the launch and recovery process, the control simulation of a sliding mode controller is able to control the positions and velocities under the external wave, current, and tether forces. In the water test using the proposed Python-based GUI platform, it shows that the AUVDH is capable to perform station-keeping under the external disturbances.

  20. The hoop conjecture and cosmic censorship in the brane-world

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Ken-ichi; Nakamura, Kouji; Mishima, Takashi

    2003-07-03

    The initial data of gravity for a cylindrical matter distribution confined on the brane is studied in the framework of the single brane Randall-Sundrum scenario. We numerically found that the sufficiently thin configuration of matter leads to the formation of the marginal surface on the brane in the Randall-Sundrum model, even if the configuration is infinitely long. This means that the hoop conjecture proposed by Thorne does not hold in the Randall-Sundrum scenario; Even if a mass M does not get compacted into a region whose circumference (C) in every direction is C{approx}<4{pi}GM, black holes with horizons can form on the brane-world of the Randall-Sundrum scenario.

  1. Antenna theory: Analysis and design

    Science.gov (United States)

    Balanis, C. A.

    The book's main objective is to introduce the fundamental principles of antenna theory and to apply them to the analysis, design, and measurements of antennas. In a description of antennas, the radiation mechanism is discussed along with the current distribution on a thin wire. Fundamental parameters of antennas are examined, taking into account the radiation pattern, radiation power density, radiation intensity, directivity, numerical techniques, gain, antenna efficiency, half-power beamwidth, beam efficiency, bandwidth, polarization, input impedance, and antenna temperature. Attention is given to radiation integrals and auxiliary potential functions, linear wire antennas, loop antennas, linear and circular arrays, self- and mutual impedances of linear elements and arrays, broadband dipoles and matching techniques, traveling wave and broadband antennas, frequency independent antennas and antenna miniaturization, the geometrical theory of diffraction, horns, reflectors and lens antennas, antenna synthesis and continuous sources, and antenna measurements.

  2. Antenna Controller Replacement Software

    Science.gov (United States)

    Chao, Roger Y.; Morgan, Scott C.; Strain, Martha M.; Rockwell, Stephen T.; Shimizu, Kenneth J.; Tehrani, Barzia J.; Kwok, Jaclyn H.; Tuazon-Wong, Michelle; Valtier, Henry; Nalbandi, Reza; hide

    2010-01-01

    The Antenna Controller Replacement (ACR) software accurately points and monitors the Deep Space Network (DSN) 70-m and 34-m high-efficiency (HEF) ground-based antennas that are used to track primarily spacecraft and, periodically, celestial targets. To track a spacecraft, or other targets, the antenna must be accurately pointed at the spacecraft, which can be very far away with very weak signals. ACR s conical scanning capability collects the signal in a circular pattern around the target, calculates the location of the strongest signal, and adjusts the antenna pointing to point directly at the spacecraft. A real-time, closed-loop servo control algorithm performed every 0.02 second allows accurate positioning of the antenna in order to track these distant spacecraft. Additionally, this advanced servo control algorithm provides better antenna pointing performance in windy conditions. The ACR software provides high-level commands that provide a very easy user interface for the DSN operator. The operator only needs to enter two commands to start the antenna and subreflector, and Master Equatorial tracking. The most accurate antenna pointing is accomplished by aligning the antenna to the Master Equatorial, which because of its small size and sheltered location, has the most stable pointing. The antenna has hundreds of digital and analog monitor points. The ACR software provides compact displays to summarize the status of the antenna, subreflector, and the Master Equatorial. The ACR software has two major functions. First, it performs all of the steps required to accurately point the antenna (and subreflector and Master Equatorial) at the spacecraft (or celestial target). This involves controlling the antenna/ subreflector/Master-Equatorial hardware, initiating and monitoring the correct sequence of operations, calculating the position of the spacecraft relative to the antenna, executing the real-time servo control algorithm to maintain the correct position, and

  3. Essential Characteristics of Plasma Antennas Filled with He-Ar Penning Gases

    International Nuclear Information System (INIS)

    Sun Naifeng; Li Wenzhong; Wang Shiqing; Li Jian; Ci Jiaxiang

    2012-01-01

    Based on the essential theory of Penning gases, the discharge characteristics of He-Ar Penning gases in insulating tubes were analyzed qualitatively. The relation between the effective length of an antenna column filled with He-Ar Penning gases and the applied radio frequency (RF) power was investigated both theoretically and experimentally. The distribution of the plasma density along the antenna column in different conditions was studied. The receiving characteristics of local frequency modulated (FM) electromagnetic waves by the plasma antenna filled with He-Ar Penning gases were compared with those by an aluminum antenna with the same dimensions. Results show that it is feasible to take plasma antennas filled with He-Ar Penning gases as receiving antennas.

  4. Phased array antenna control

    Science.gov (United States)

    Doland, G. D. (Inventor)

    1978-01-01

    Several new and useful improvements in steering and control of phased array antennas having a small number of elements, typically on the order of 5 to 17 elements are provided. Among the improvements are increasing the number of beam steering positions, reducing the possibility of phase transients in signals received or transmitted with the antennas, and increasing control and testing capacity with respect to the antennas.

  5. Experiments with dipole antennas

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2009-01-01

    Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a variant of the Yagi-Uda antenna is explored. The experiments are suitable as laboratory works and classroom demonstrations, and are attractive for student projects.

  6. Understanding the requirements of self-expandable stents for heart valve replacement: Radial force, hoop force and equilibrium.

    Science.gov (United States)

    Cabrera, María Sol; Oomens, Cees W J; Baaijens, Frank P T

    2017-04-01

    A proper interpretation of the forces developed during stent crimping and deployment is of paramount importance for a better understanding of the requirements for successful heart valve replacement. The present study combines experimental and computational methods to assess the performance of a nitinol stent for tissue-engineered heart valve implantation. To validate the stent model, the mechanical response to parallel plate compression and radial crimping was evaluated experimentally. Finite element simulations showed good agreement with the experimental findings. The computational models were further used to determine the hoop force on the stent and radial force on a rigid tool during crimping and self-expansion. In addition, stent deployment against ovine and human pulmonary arteries was simulated to determine the hoop force on the stent-artery system and the equilibrium diameter for different degrees of oversizing. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Cellular Reflectarray Antenna

    Science.gov (United States)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  8. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  9. Comment on `Banana-doughnut kernels and mantle tomography' by van der Hilst and de Hoop

    Science.gov (United States)

    Montelli, R.; Nolet, G.; Dahlen, F. A.

    2006-12-01

    E debbasi considerare come non è cosa più difficile a trattare, né più dubbia a riuscire, nè più pericolosa a maneggiare, che farsi capo ad introdurre nuovi ordini. Perché lo introduttore ha per nimici tutti quelli che delli ordini vecchi fanno bene, et ha tepidi defensori tutti quelli che delli ordini nuovi farebbono bene.† Machiavelli, Il Principe The claim by van der Hilst and de Hoop that finite-frequency (FF) inversion of seismic traveltimes does not result in measurable improvements in tomographic images is misguided, and based upon a biased selection of images in the upper mantle, where wave front healing effects are indeed small, and where our models are generally poorly resolved because we primarily used teleseismic waves that travel steeply in the upper mantle; and upon an improper application of statistics to the better-resolved anomalies in the lower mantle. If station corrections for long-period P waves are computed using ray theory, as we do, unmodelled FF effects may be responsible for slow anomalies of up to 0.3 per cent beneath very small island stations, but these effects are negligible for larger islands such as Reunion and Kerguelen. The presence of a plume beneath these islands is the most probable explanation for the observed low velocities.

  10. Directional borehole antenna - Theory

    International Nuclear Information System (INIS)

    Falk, L.

    1992-02-01

    A directional antenna has been developed for the borehole radar constructed during phase 2 of the Stripa project. The new antenna can determine the azimuth of a strong reflector with an accuracy of about 3 degrees as confirmed during experiments in Stripa, although the ratio of borehole diameter to wavelength is small, about 0.03. The antenna synthesizes the effect of a loop antenna rotating in the borehole from four signals measured in turn by a stationary antenna. These signals are also used to calculate an electric dipole signal and a check sum which is used to examine the function of the system. The theory of directional antennas is reviewed and used to design an antenna consisting of four parallel wires. The radiation pattern of this antenna is calculated using transmission line theory with due regard to polarization, which is of fundamental importance for the analysis of directional data. In particular the multipole expansion of the field is calculated to describe the antenna radiation pattern. Various sources of error, e.g. the effect of the borehole, are discussed and the methods of calibrating the antenna are reviewed. The ambiguity inherent in a loop antenna can be removed by taking the phase of the signal into account. Typical reflectors in rock, e.g. fracture zones an tunnels, may be modelled as simple geometrical structures. The corresponding analysis is described and exemplified on measurements from Stripa. Radar data is nowadays usually analyzed directly on the computer screen using the program RADINTER developed within the Stripa project. An algorithm for automatic estimation of the parameters of a reflector have been tested with some success. The relation between measured radar data and external coordinates as determined by rotational indicators is finally expressed in terms of Euler angles. (au)

  11. Handbook of antenna technologies

    CERN Document Server

    Liu, Duixian; Nakano, Hisamatsu; Qing, Xianming; Zwick, Thomas

    2016-01-01

    The Handbook of Antenna Technologies aims to present the rapid development of antenna technologies, particularly in the past two decades, and also showcasing the newly developed technologies and the latest applications. The handbook will provide readers with the comprehensive updated reference information covering theory, modeling and optimization methods, design and measurement, new electromagnetic materials, and applications of antennas. The handbook will widely cover not only all key antenna design issues but also fundamentals, issues related to antennas (transmission, propagation, feeding structure, materials, fabrication, measurement, system, and unique design challenges in specific applications). This handbook will benefit the readers as a full and quick technical reference with a high-level historic review of technology, detailed technical descriptions and the latest practical applications.

  12. GPS antenna designs

    Science.gov (United States)

    Laube, Samuel J. P.

    1987-05-01

    Application of the current GPS NAVSTAR system to civilian service requires that a right hand, circularly polarized, -160 dBW spread spectrum signal be received from an orbiting satellite, where the antenna environment is also moving. This presents a design challenge when inexpensive antennas are desired. The intent of this survey is to provide information on the antennas mentioned and to construct and test prototypes to determine whether the choice made by the industry, the quadrifilar helix, is the best. The helix antenna is currently the low cost standard for GPS. Prototype versions were constructed using 12 gauge wire and subminiature coaxial hardline. The constructed antennas were tested using a signal generator and a reference turnstile. A spectrum analyzer was used to measure the level of the received signal.

  13. More about Birkhoff's invariant and Thorne's hoop conjecture for horizons

    Energy Technology Data Exchange (ETDEWEB)

    Cvetic, M [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Gibbons, G W; Pope, C N [DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, Cambridge CB3 OWA (United Kingdom)

    2011-10-07

    A recent precise formulation of the hoop conjecture in four spacetime dimensions is that the Birkhoff invariant {beta} (the least maximal length of any sweepout or foliation by circles) of an apparent horizon of energy E and area A should satisfy {beta} {<=} 4{pi}E. This conjecture together with the cosmic censorship or isoperimetric inequality implies that the length l of the shortest non-trivial closed geodesic satisfies l{sup 2} {<=} {pi}A. We have tested these conjectures on the horizons of all four-charged rotating black hole solutions of ungauged supergravity theories and found that they always hold. They continue to hold in the presence of a negative cosmological constant, and for multi-charged rotating solutions in gauged supergravity. Surprisingly, they also hold for the Ernst-Wild static black holes immersed in a magnetic field, which are asymptotic to the Melvin solution. In five spacetime dimensions we define {beta} as the least maximal area of all sweepouts of the horizon by two-dimensional tori, and find in all cases examined that {beta} (g) {<=} {l_brace}16 {pi}/ 3{r_brace} E, which we conjecture holds quiet generally for apparent horizons. In even spacetime dimensions D = 2N + 2, we find that for sweepouts by the product S{sup 1} x S{sup D-4}, {beta} is bounded from above by a certain dimension-dependent multiple of the energy E. We also find that l{sup D-2} is bounded from above by a certain dimension-dependent multiple of the horizon area A. Finally, we show that l{sup D-3} is bounded from above by a certain dimension-dependent multiple of the energy, for all Kerr-AdS black holes.

  14. Smart antennas in aerospace applications

    NARCIS (Netherlands)

    Verpoorte, Jaco; Schippers, Harmen; Roeloffzen, C.G.H.; Marpaung, D.A.I.

    2010-01-01

    The interest in Smart Antennas for aerospace applications is growing. This paper describes smart antennas which can be used on aircraft. Two aerospace applications are discussed in more detail: a phased array antenna with optical beam forming and a large vibrating phased array antenna with

  15. Stone column settlement performance in structured anisotropic clays: the influence of creep

    Directory of Open Access Journals (Sweden)

    Brian G. Sexton

    2016-10-01

    Full Text Available The recently developed elasto-viscoplastic Creep-SCLAY1S model has been used in conjunction with PLAXIS 2D to investigate the effectiveness of vibro-replacement in a creep-prone clay. The Creep-SCLAY1S model accounts for anisotropy, bonding, and destructuration, and uses the concept of a constant rate of viscoplastic multiplier to calculate creep strain rate. A comparison of settlement improvement factors with and without creep indicates that ‘total’ settlement improvement factors (primary plus creep are lower than their ‘primary’ counterparts (primary settlement only. The lowest settlement improvement factors arise for analyses incorporating the effect of bonding and destructuration. Examination of the variations of vertical stress with time and depth has indicated that vertical stress is transferred from the soil to the column as the soil creeps. This results in additional column yielding. In addition, the radial and hoop stresses in the soil are lower for the ‘creep’ case. The reduced radial stresses lead to additional column bulging and hence more settlement, whereas the hoop stress reductions appear to be a secondary effect, caused by additional plastic deformation for the ‘creep’ case.

  16. Mechanical behavior of confined self-compacting reinforced concrete circular columns under concentric axial loading

    Directory of Open Access Journals (Sweden)

    Fouad Khairallah

    2013-12-01

    Full Text Available While there is abundant research information on ordinary confined concrete, there are little data on the behavior of Self-Compacting Concrete (SCC under such condition. Due to higher shrinkage and lower coarse aggregate content of SCC compared to that of Normal Concrete (NC, its composite performance under confined conditions needs more investigation. This paper has been devoted to investigate and compare the mechanical behavior of confined concrete circular columns cast with SCC and NC under concentric axial loading. The parameters affecting are including concrete compressive strength and confinement configuration. Twenty column specimens were casted and confined using four confinement techniques, CFRP wrap, FRP tube, GFRP wrap, and spiral steel hoops. The performance of the tested column specimens is evaluated based on mode of failure, load–displacement curve, stress–strain characteristics, ultimate strength, ductility, and degree of confinement.

  17. Antennas from theory to practice

    CERN Document Server

    Huang, Yi

    2008-01-01

    Practical, concise and complete reference for the basics of modern antenna design Antennas: from Theory to Practice discusses the basics of modern antenna design and theory. Developed specifically for engineers and designers who work with radio communications, radar and RF engineering, this book offers practical and hands-on treatment of antenna theory and techniques, and provides its readers the skills to analyse, design and measure various antennas. Key features: Provides thorough coverage on the basics of transmission lines, radio waves and propag

  18. Reconfigurable Plasma Antenna Array by Using Fluorescent Tube for Wi-Fi Application

    Directory of Open Access Journals (Sweden)

    H. Ja’afar

    2016-06-01

    Full Text Available This paper presents a new design of reconfigurable plasma antenna array using commercial fluorescent tube. A round shape reconfigurable plasma antenna array is proposed to collimate beam radiated by an omnidirectional antenna (monopole antenna operates at 2.4GHz in particular direction. The antenna design is consisted of monopole antenna located at the center of circular aluminum ground. The monopole antenna is surrounded by a cylindrical shell of conducting plasma. The plasma shield consists of 12 commercial fluorescent tubes aligned in series containing a mixture of Argon gas and mercury vapor which upon electrification forms plasma columns. The plasma behaves as a conductor and acts as a reflector in radiation, in the condition where plasma frequency,ωp is higher than operating frequency. From this concepts, when all plasma elements are activated or switched to ON, the radiation signal from monopole antenna will trapped inside the plasma blanket and meanwhile when one or more plasma elements is deactivated (switched OFF, the radiation from monopole antenna will escape. This antenna has the capability to change its patterns with beam direction at 0°, 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300° and 330° at frequency 2.4 GHz. The proposed antenna has been successfully fabricated and measured with conclusive results.

  19. Buoyant Cable Antenna System

    National Research Council Canada - National Science Library

    Gerhard, Erich M

    2008-01-01

    .... For instance, in one embodiment two oppositely extending curves each float and each are pressed by the water in a balanced manner to provide a stable platform for one or more antennas which can be...

  20. Micropatch Antenna Phase Shifting

    National Research Council Canada - National Science Library

    Thursby, Michael

    2000-01-01

    .... We have been looking at the ability of embedded element to adjust the phase shift seen by the element with the goal of being able to remove the phase shifting devices from the antenna and replace...

  1. Micropatch Antenna Phase Shifting

    National Research Council Canada - National Science Library

    Thursby, Michael

    1999-01-01

    .... We have been looking at the ability of embedded element to adjust the phase shift seen by the element wit the goal of being able to remove the phase shifting devices from the antenna and replace...

  2. Microwave antenna holography

    Science.gov (United States)

    Rochblatt, David J.; Seidel, Boris L.

    1992-01-01

    This microwave holography technique utilizes the Fourier transform relation between the complex far field radiation pattern of an antenna and the complex aperture field distribution. Resulting aperture phase and amplitude distribution data can be used to precisely characterize various crucial performance parameters, including panel alignment, panel shaping, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation effects. The methodology of data processing presented here was successfully applied to the Deep Space Network (DSN) 34-m beam waveguide antennas. The antenna performance was improved at all operating frequencies by reducing the main reflector mechanical surface rms error to 0.43 mm. At Ka-band (32 GHz), the estimated improvement is 4.1 dB, resulting in an aperture efficiency of 52 percent. The performance improvement was verified by efficiency measurements and additional holographic measurements.

  3. The Effect of Peak Temperatures and Hoop Stresses on Hydride Reorientations of Zirconium Alloy Cladding Tubes under Interim Dry Storage Condition

    International Nuclear Information System (INIS)

    Cha, Hyun Jin; Jang, Ki Nam; Kim, Kyu Tae

    2016-01-01

    In this study, the effect of peak temperatures and hoop tensile stresses on hydride reorientation in cladding was investigated. It was shown that the 250ppm-H specimens generated larger radial hydride fractions and longer radial hydrides than the 500ppm-H ones. The precipitated hydride in radial direction severely degrades mechanical properties of spent fuel rod. Hydride reorientation is related to cladding material, cladding temperature, hydrogen contents, thermal cycling, hoop stress and cooling rate. US NRC established the regulation on cladding temperature during the dry storage, which is the maximum fuel cladding temperature should not exceed 400 .deg. C for all fuel burnups under normal conditions of storage. However, if it is proved that the best estimate cladding hoop stress is equal to or less than 90MPa for the temperature limit proposed, a higher short-term temperature limit is allowed for low burnup fuel. In this study, 250ppm and 500ppm hydrogen-charged Zr-Nb alloy cladding tubes were selected to evaluate the effect of peak temperatures and hoop tensile stresses on the hydride reorientation during the dry storage. In order to evaluate threshold stresses in relation to various peak temperatures, four peak temperatures of 250, 300, 350, and 400 .deg. C and three tensile hoop stresses of 80, 100, 120MPa were selected.

  4. Modeling Stone Columns.

    Science.gov (United States)

    Castro, Jorge

    2017-07-11

    This paper reviews the main modeling techniques for stone columns, both ordinary stone columns and geosynthetic-encased stone columns. The paper tries to encompass the more recent advances and recommendations in the topic. Regarding the geometrical model, the main options are the "unit cell", longitudinal gravel trenches in plane strain conditions, cylindrical rings of gravel in axial symmetry conditions, equivalent homogeneous soil with improved properties and three-dimensional models, either a full three-dimensional model or just a three-dimensional row or slice of columns. Some guidelines for obtaining these simplified geometrical models are provided and the particular case of groups of columns under footings is also analyzed. For the latter case, there is a column critical length that is around twice the footing width for non-encased columns in a homogeneous soft soil. In the literature, the column critical length is sometimes given as a function of the column length, which leads to some disparities in its value. Here it is shown that the column critical length mainly depends on the footing dimensions. Some other features related with column modeling are also briefly presented, such as the influence of column installation. Finally, some guidance and recommendations are provided on parameter selection for the study of stone columns.

  5. Reflection and refraction of a transient temperature field at a plane interface using Cagniard-de Hoop approach.

    Science.gov (United States)

    Shendeleva, M L

    2001-09-01

    An instantaneous line heat source located in the medium consisting of two half-spaces with different thermal properties is considered. Green's functions for the temperature field are derived using the Laplace and Fourier transforms in time and space and their inverting by the Cagniard-de Hoop technique known in elastodynamics. The characteristic feature of the proposed approach consists in the application of the Cagniard-de Hoop method to the transient heat conduction problem. The idea is suggested by the fact that the Laplace transform in time reduces the heat conduction equation to a Helmholtz equation, as for the wave propagation. Derived solutions exhibit some wave properties. First, the temperature field is decomposed into the source field and the reflected field in one half-space and the transmitted field in the other. Second, the laws of reflection and refraction can be deduced for the rays of the temperature field. In this connection the ray concept is briefly discussed. It is shown that the rays, introduced in such a way that they are consistent with Snell's law do not represent the directions of heat flux in the medium. Numerical computations of the temperature field as well as diagrams of rays and streamlines of the temperature field are presented.

  6. Modeling of compact loop antennas

    International Nuclear Information System (INIS)

    Baity, F.W.

    1987-01-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak

  7. Antenna for Ultrawideband Channel Sounding

    DEFF Research Database (Denmark)

    Zhekov, Stanislav Stefanov; Tatomirescu, Alexandru; Pedersen, Gert F.

    2016-01-01

    A novel compact antenna for ultrawideband channel sounding is presented. The antenna is composed of a symmetrical biconical antenna modified by adding a cylinder and a ring to each cone. A feeding coaxial cable is employed during the simulations in order to evaluate and reduce its impact on the a......A novel compact antenna for ultrawideband channel sounding is presented. The antenna is composed of a symmetrical biconical antenna modified by adding a cylinder and a ring to each cone. A feeding coaxial cable is employed during the simulations in order to evaluate and reduce its impact...

  8. ( Anogeissus leiocarpus ) timber columns

    African Journals Online (AJOL)

    A procedure for designing axially loaded Ayin (Anogeissus leiocarpus) wood column or strut has been investigated. Instead of the usual categorization of columns into short, intermediate and slender according to the value of slenderness ratio, a continuous column formula representing the three categories was derived.

  9. Column Liquid Chromatography.

    Science.gov (United States)

    Majors, Ronald E.; And Others

    1984-01-01

    Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…

  10. Influence of ties on the behavior of short reinforced concrete columns strengthened by external CFRP

    Directory of Open Access Journals (Sweden)

    Sarsam Kaiss

    2018-01-01

    Full Text Available An experimental study was carried out to investigate the behavior of normal strength reinforce concret (RC circular short column strengthned with “carbon fiber reinforced polymer (CFRP sheets”. Three series comprising totally of (15 specimens loaded until failure under concentric compresion load. Strengthening was varied by changing the number of CFRP strips, spacing and wrapping methods. The findings of this research can be summarized as follows: for the columns without CFRP, the influence of the tie spacing was significant: compared with 130 mm tie spacing, dropping the spacing to 100 mm and 70 mm increased the load carrying capacity by 18% and 26%, respectively. The columns with less internal confinement (lesser amount of ties were strengthened more significantly by the CFRP than the ones with greater amount of internal ties. As an example of the varying effectiveness of the fully wrapped CFRP, the column with ties at 130 mm was strengthened by 90% with the CFRP. In contrast, the ones with 70 mm spaced ties only increased in strength with CFRP by 66%. Compared with the control specimen (no CFRP, the same amount of CFRP when used as hoop strips led to more strengthening than using CFRP as a spiral strip- the former led to nearly 9% more strengthening than the latter in the case of 130 mm spaced internal steel ties. In the case of 100 mm internal steel ties, the difference (between the hoops & spiral CFRP strengthening is close to 4%. In contrast, there is no difference between the two methods of strengthening in the heavily tied columns (70 mm tied spacing.

  11. Stretchable antenna for wearable electronics

    KAUST Repository

    Hussain, Muhammad Mustafa; Hussain, Aftab Mustansir; Shamim, Atif; Ghaffar, Farhan Abdul

    2017-01-01

    Various examples are provided for stretchable antennas that can be used for applications such as wearable electronics. In one example, a stretchable antenna includes a flexible support structure including a lateral spring section having a proximal

  12. Dynamic Flaps Electronic Scan Antenna

    National Research Council Canada - National Science Library

    Gonzalez, Daniel

    2000-01-01

    A dynamic FLAPS(TM) electronic scan antenna was the focus of this research. The novelty S of this SBIR resides in the use of plasma as the main component of this dynamic X-Band phased S array antenna...

  13. Wireless Distributed Antenna MIMO

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to system applications of multicore optical fibers. One embodiment relates to a base transceiver station for a wireless telecommunication system comprising a plurality of antenna units arranged in a MIMO configuration and adapted for transmission and/or reception...... of radio-frequency signals, an optical transmitter in the form of an electro-optic conversion unit for each of said plurality of antenna units, each electro-optic conversion unit adapted for converting an RF signal into an optical signal, a plurality of a single core optical fibers for guiding the optical...

  14. Printed MIMO antenna engineering

    CERN Document Server

    Sharawi, Mohammad S

    2014-01-01

    Wireless communications has made a huge leap during the past two decades. The multiple-input-multiple-output (MIMO) technology was proposed in the 1990's as a viable solution that can overcome the data rate limit experienced by single-input-single-output (SISO) systems. This resource is focused on printed MIMO antenna system design. Printed antennas are widely used in mobile and handheld terminals due to their conformity with the device, low cost, good integration within the device elements and mechanical parts, as well as ease of fabrication.A perfect design companion for practicing engineers

  15. Non-standard antennas

    CERN Document Server

    Le Chevalier, Francois; Staraj, Robert

    2013-01-01

    This book aims at describing the wide variety of new technologies and concepts of non-standard antenna systems - reconfigurable, integrated, terahertz, deformable, ultra-wideband, using metamaterials, or MEMS,  etc, and how they open the way to a wide range of applications, from personal security and communications to multifunction radars and towed sonars, or satellite navigation systems, with space-time diversity on transmit and receive. A reference book for designers  in this lively scientific community linking antenna experts and signal processing engineers.

  16. DSN Microwave Antenna Holography

    Science.gov (United States)

    Rochblatt, D. J.; Seidel, B. L.

    1984-01-01

    The DSN microwave antenna holography project will obtain three-dimensional pictures of the large DSN antenna surfaces. These pictures must be of suffi icient resolution to allow adjustment of the reflector panels to an rms surface of 0.5 mm (0.25 mm, goal). The major parameters and equations needed to define a holographic measurement system are outlined and then the proof of concept demonstration measurement that was made at DSS-43 (Australia) that resulted in contour maps with spatial resolution of 7 m in the aperture plane and resolution orthogonal to the aperture plane of 0.7 mm was discussed.

  17. Optical response of bowtie antennas

    Science.gov (United States)

    Guo, Ying-Nan; Pan, Shi; Li, Xu-Feng; Wang, Shuo; Wang, Qiao

    2010-10-01

    Optical properties of bowtie antennas are investigated using a numerical method of finite-difference time-domain (FDTD). The optical response in the antenna feed gap is simulated as functions of its geometry parameters (flare angle, arm length, apex width, thickness, gap dimension, as well as the index of substrate), which provide a clear guideline to exploit such antenna structures in practice.

  18. Electromagnetic reciprocity in antenna theory

    CERN Document Server

    Stumpf, Martin

    2018-01-01

    The reciprocity theorem is among the most intriguing concepts in wave field theory and has become an integral part of almost all standard textbooks on electromagnetic (EM) theory. This book makes use of the theorem to quantitatively describe EM interactions concerning general multiport antenna systems. It covers a general reciprocity-based description of antenna systems, their EM scattering properties, and further related aspects. Beginning with an introduction to the subject, Electromagnetic Reciprocity in Antenna Theory provides readers first with the basic prerequisites before offering coverage of the equivalent multiport circuit antenna representations, EM coupling between multiport antenna systems and their EM interactions with scatterers, accompanied with the corresponding EM compensation theorems.

  19. Antenna theory analysis and design

    CERN Document Server

    Balanis, Constantine A

    2005-01-01

    The discipline of antenna theory has experienced vast technological changes. In response, Constantine Balanis has updated his classic text, Antenna Theory, offering the most recent look at all the necessary topics. New material includes smart antennas and fractal antennas, along with the latest applications in wireless communications. Multimedia material on an accompanying CD presents PowerPoint viewgraphs of lecture notes, interactive review questions, Java animations and applets, and MATLAB features. Like the previous editions, Antenna Theory, Third Edition meets the needs of e

  20. Small Column Ion Exchange

    International Nuclear Information System (INIS)

    Huff, Thomas

    2010-01-01

    Small Column Ion Exchange (SCIX) leverages a suite of technologies developed by DOE across the complex to achieve lifecycle savings. Technologies are applicable to multiple sites. Early testing supported multiple sites. Balance of SRS SCIX testing supports SRS deployment. A forma Systems Engineering Evaluation (SEE) was performed and selected Small Column Ion Exchange columns containing Crystalline Silicotitanate (CST) in a 2-column lead/lag configuration. SEE considered use of Spherical Resorcinol-Formaldehyde (sRF). Advantages of approach at SRS include: (1) no new buildings, (2) low volume of Cs waste in solid form compared to aqueous strip effluent; and availability of downstream processing facilities for immediate processing of spent resin.

  1. Multiple Antenna Systems with Inherently Decoupled Radiators

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Knudsen, Mikael B.; Pedersen, Gert Frølund

    2012-01-01

    In multiple antenna systems mutual coupling needs to be minimized. We propose an alternative novel decoupling technique, investigating several multiple antenna configurations for small handsets through measurements and numerical simulations. The influence of different novel designs on performance...... metrics such as total loss, antenna isolation and envelope correlation coefficient are investigated. By varying antenna impedance bandwidth and antenna location with respect to the handset, both Planar Inverted F Antenna (PIFA) and Inverted F Antennas (IFA) were investigated in different UMTS frequency...

  2. Behavior and Three-Dimensional Finite Element Modeling of Circular Concrete Columns Partially Wrapped with FRP Strips

    Directory of Open Access Journals (Sweden)

    Junjie Zeng

    2018-03-01

    Full Text Available Fiber-reinforced polymer (FRP jacketing/wrapping has become an attractive strengthening technique for concrete columns. Wrapping an existing concrete column with continuous FRP jackets with the fiber in the jacket being oriented in the hoop direction is referred to as FRP full wrapping strengthening technique. In practice, however, strengthening concrete columns with vertically discontinuous FRP strips is also favored and this technique is referred to as FRP partial wrapping strengthening technique. Existing research has demonstrated that FRP partial wrapping strengthening technique is a promising and economical alternative to the FRP full wrapping strengthening technique. Although extensive experimental investigations have hitherto been conducted on partially FRP-confined concrete columns, the confinement mechanics of confined concrete in partially FRP-confined circular columns remains unclear. In this paper, an experimental program consisting of fifteen column specimens was conducted and the test results were presented. A reliable three-dimensional (3D finite element (FE approach for modeling of partially FRP-confined circular columns was established. In the proposed FE approach, an accurate plastic-damage model for concrete under multiaxial compression is employed. The accuracy of the proposed FE approach was verified by comparisons between the numerical results and the test results. Numerical results from the verified FE approach were then presented to gain an improved understanding of the behavior of confined concrete in partially FRP-confined concrete columns.

  3. JCE Feature Columns

    Science.gov (United States)

    Holmes, Jon L.

    1999-05-01

    The Features area of JCE Online is now readily accessible through a single click from our home page. In the Features area each column is linked to its own home page. These column home pages also have links to them from the online Journal Table of Contents pages or from any article published as part of that feature column. Using these links you can easily find abstracts of additional articles that are related by topic. Of course, JCE Online+ subscribers are then just one click away from the entire article. Finding related articles is easy because each feature column "site" contains links to the online abstracts of all the articles that have appeared in the column. In addition, you can find the mission statement for the column and the email link to the column editor that I mentioned above. At the discretion of its editor, a feature column site may contain additional resources. As an example, the Chemical Information Instructor column edited by Arleen Somerville will have a periodically updated bibliography of resources for teaching and using chemical information. Due to the increase in the number of these resources available on the WWW, it only makes sense to publish this information online so that you can get to these resources with a simple click of the mouse. We expect that there will soon be additional information and resources at several other feature column sites. Following in the footsteps of the Chemical Information Instructor, up-to-date bibliographies and links to related online resources can be made available. We hope to extend the online component of our feature columns with moderated online discussion forums. If you have a suggestion for an online resource you would like to see included, let the feature editor or JCE Online (jceonline@chem.wisc.edu) know about it. JCE Internet Features JCE Internet also has several feature columns: Chemical Education Resource Shelf, Conceptual Questions and Challenge Problems, Equipment Buyers Guide, Hal's Picks, Mathcad

  4. Broadband Monopole Antenna

    Science.gov (United States)

    2017-09-14

    December 2017 The below identified patent application is available for licensing. Requests for information should be addressed to...CROSS REFERENCE TO OTHER PATENT APPLICATIONS [0002] United States Patent Application Ser. No. 15/220,692 filed on July 27, 2016 is incorporated by...antenna operating near 2.5 GHz to obtain an octave of bandwidth. One solution for this is given by Werner et al. in United States Patent

  5. Antenna conditioning with insulating antenna tiles in Phaedrus-T

    International Nuclear Information System (INIS)

    Intrator, T.; Probert, P.; Doczy, M.; Diebold, D.; Brouchous, D.

    1994-01-01

    In the course of our Alfven wave heating and current drive experiments several different two and four strap antennas have been installed in Phaedrus-T. The motivation focusing the redesign of the antenna into a four strap design was to enable traveling wave phasing, and to reduce the k parallel ∼0 component of the wavenumber spectrum, and consequent edge power deposition. The latest modifications to the 4 strap antenna have dramatically improved its behavior, and enabled us to suppress its RF power induced impurity generation. The remaining gas reflux fueling is significant and is not local to the antenna

  6. Distillation Column Flooding Predictor

    Energy Technology Data Exchange (ETDEWEB)

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  7. Nuclear reactor control column

    International Nuclear Information System (INIS)

    Bachovchin, D.M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest crosssectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor

  8. Stretchable antenna for wearable electronics

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-04-13

    Various examples are provided for stretchable antennas that can be used for applications such as wearable electronics. In one example, a stretchable antenna includes a flexible support structure including a lateral spring section having a proximal end and at a distal end; a metallic antenna disposed on at least a portion of the lateral spring section, the metallic antenna extending along the lateral spring section from the proximal end; and a metallic feed coupled to the metallic antenna at the proximal end of the lateral spring section. In another example, a method includes patterning a polymer layer disposed on a substrate to define a lateral spring section; disposing a metal layer on at least a portion of the lateral spring section, the metal layer forming an antenna extending along the portion of the lateral spring section; and releasing the polymer layer and the metal layer from the substrate.

  9. A Compact UWB Diversity Antenna

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2014-01-01

    Full Text Available A compact printed ultrawideband (UWB diversity antenna with a size of 30 mm × 36 mm operating at a frequency range of 3.1–10.6 GHz is proposed. The antenna is composed of two semielliptical monopoles fed by two microstrip lines. Two semicircular slots, two rectangular slots, and one stub are introduced in the ground plane to adjust the impedance bandwidth of the antenna and improve the isolation between two feeding ports. The simulated and measured results show that impedance bandwidth of the proposed antenna can cover the whole UWB band with a good isolation of < −15 dB. The radiation patterns, peak antenna gain, and envelope correlation coefficient are also measured and discussed. The measured results show that the proposed antenna can be a good candidate for some portable MIMO/diversity UWB applications.

  10. Efficient Placement of Directional Antennas

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Feng [Los Alamos National Laboratory; Kasiviswanathan, Shiva [Los Alamos National Laboratory

    2010-09-20

    Directional antenna is an technology for the proliferation of wireless networks. In centralized wireless network, wireless devices communicate through base stations. Directed antennas are placed on base stations and form a backbone of communication. The communication between base stations and wireless devices can be interfered due to a large number of wireless device. Methodically positioning and orienting directed antennas can help to reduce the interference while saving energy. An integer linear programming is developed for siting and directing antennas on multiple base stations, and this formulation can be extended to model non-overlapping channels. Through the integer programming formulation, optimal antenna positions can be used to analyze the performance of directed antennas with different parameters like the number base stations and the number of non-overlapping channels.

  11. Improvements in solvent extraction columns

    International Nuclear Information System (INIS)

    Aughwane, K.R.

    1987-01-01

    Solvent extraction columns are used in the reprocessing of irradiated nuclear fuel. For an effective reprocessing operation a solvent extraction column is required which is capable of distributing the feed over most of the column. The patent describes improvements in solvent extractions columns which allows the feed to be distributed over an increased length of column than was previously possible. (U.K.)

  12. Minimum Q Electrically Small Antennas

    DEFF Research Database (Denmark)

    Kim, O. S.

    2012-01-01

    Theoretically, the minimum radiation quality factor Q of an isolated resonance can be achieved in a spherical electrically small antenna by combining TM1m and TE1m spherical modes, provided that the stored energy in the antenna spherical volume is totally suppressed. Using closed-form expressions...... for a multiarm spherical helix antenna confirm the theoretical predictions. For example, a 4-arm spherical helix antenna with a magnetic-coated perfectly electrically conducting core (ka=0.254) exhibits the Q of 0.66 times the Chu lower bound, or 1.25 times the minimum Q....

  13. Comparison of hoop-net trapping and visual surveys to monitor abundance of the Rio Grande cooter (Pseudemys gorzugi

    Directory of Open Access Journals (Sweden)

    Ivana Mali

    2018-05-01

    Full Text Available Abundance estimates play an important part in the regulatory and conservation decision-making process. It is important to correct monitoring data for imperfect detection when using these data to track spatial and temporal variation in abundance, especially in the case of rare and elusive species. This paper presents the first attempt to estimate abundance of the Rio Grande cooter (Pseudemys gorzugi while explicitly considering the detection process. Specifically, in 2016 we monitored this rare species at two sites along the Black River, New Mexico via traditional baited hoop-net traps and less invasive visual surveys to evaluate the efficacy of these two sampling designs. We fitted the Huggins closed-capture estimator to estimate capture probabilities using the trap data and distance sampling models to estimate detection probabilities using the visual survey data. We found that only the visual survey with the highest number of observed turtles resulted in similar abundance estimates to those estimated using the trap data. However, the estimates of abundance from the remaining visual survey data were highly variable and often underestimated abundance relative to the estimates from the trap data. We suspect this pattern is related to changes in the basking behavior of the species and, thus, the availability of turtles to be detected even though all visual surveys were conducted when environmental conditions were similar. Regardless, we found that riverine habitat conditions limited our ability to properly conduct visual surveys at one site. Collectively, this suggests visual surveys may not be an effective sample design for this species in this river system. When analyzing the trap data, we found capture probabilities to be highly variable across sites and between age classes and that recapture probabilities were much lower than initial capture probabilities, highlighting the importance of accounting for detectability when monitoring this species

  14. Buckling of liquid columns

    NARCIS (Netherlands)

    Habibi, M.; Rahmani, Y.; Bonn, D.; Ribe, N.M.

    2010-01-01

    Under appropriate conditions, a column of viscous liquid falling onto a rigid surface undergoes a buckling instability. Here we show experimentally and theoretically that liquid buckling exhibits a hitherto unsuspected complexity involving three different modes—viscous, gravitational, and

  15. Solvent extraction columns

    International Nuclear Information System (INIS)

    Middleton, P.; Smith, J.R.

    1979-01-01

    In pulsed columns for use in solvent extraction processes, e.g. the reprocessing of nuclear fuel, the horizontal perforated plates inside the column are separated by interplate spacers manufactured from metallic neutron absorbing material. The spacer may be in the form of a spiral or concentric circles separated by radial limbs, or may be of egg-box construction. Suitable neutron absorbing materials include stainless steel containing boron or gadolinium, hafnium metal or alloys of hafnium. (UK)

  16. Ultra wide band antennas

    CERN Document Server

    Begaud, Xavier

    2013-01-01

    Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog

  17. Antennas on circular cylinders

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1959-01-01

    On the basis of the results obtained by Silver and Saunders [4] for the field radiated from an arbitrary slot in a perfectly conducting circular cylinder, expressions have been derived for the field radiated by a narrow helical slot, with an arbitrary aperture field distribution, in a circular...... antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two...

  18. Ultra wideband antennas design, methodologies, and performance

    CERN Document Server

    Galvan-Tejada, Giselle M; Jardón Aguilar, Hildeberto

    2015-01-01

    Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book:Discusses the developed theory for UWB antennas in frequency and time domainsDelivers a brief exposition of numerical methods for electromagnetics oriented to antennasDescribes solid-planar equivalen

  19. A coated rigid elliptical inclusion loaded by a couple in the presence of uniform interfacial and hoop stresses

    Science.gov (United States)

    Wang, Xu; Schiavone, Peter

    2018-06-01

    We consider a confocally coated rigid elliptical inclusion, loaded by a couple and introduced into a remote uniform stress field. We show that uniform interfacial and hoop stresses along the inclusion-coating interface can be achieved when the two remote normal stresses and the remote shear stress each satisfy certain conditions. Our analysis indicates that: (i) the uniform interfacial tangential stress depends only on the area of the inclusion and the moment of the couple; (ii) the rigid-body rotation of the rigid inclusion depends only on the area of the inclusion, the coating thickness, the shear moduli of the composite and the moment of the couple; (iii) for given remote normal stresses and material parameters, the coating thickness and the aspect ratio of the inclusion are required to satisfy a particular relationship; (iv) for prescribed remote shear stress, moment and given material parameters, the coating thickness, the size and aspect ratio of the inclusion are also related. Finally, a harmonic rigid inclusion emerges as a special case if the coating and the matrix have identical elastic properties.

  20. VC and ACIS/HOOPS based semi-physical virtual prototype design and motion simulation of 2D scanning mirror

    Science.gov (United States)

    Liu, Xiangyan; Dai, Xiaobing; He, Xudong; Gao, Pengcheng

    2013-10-01

    Image-spectrum integrated instrument is an infrared scanning system which integrates optics, mechanics, electrics and information processing. Not only can it achieve scene imaging, but also it can detect, track and identify targets of interests in the scene through acquiring their spectra. After having a brief introduction to image-spectrum integrated instrument and analyzing how 2D scanning mirror works, this paper built 3D model of 2D scanning mirror and simulated its motion using two PCs basing on VC++ and ACIS/HOOPS. Two PCs communicate with each other through serial ports. One PC serves as host computer, on which controlling software runs, is responsible for loading image sequence, image processing, target detecting, and generating and sending motion commands to scanning mirror. The other serves as slave computer, on which scanning mirror motion simulation software runs, is responsible for receiving motion commands to control scanning mirror to finish corresponding movements. This method proposed in this paper adopted semi-physical virtual prototype technology and used real scene image sequence to control virtual 2D scanning mirror and simulates motion of real 2D scanning mirror. It has no need for real scanning mirror and is of important practical significance for debugging controlling software of 2D scanning mirror.

  1. The Ultrawideband Leaky Lens Antenna

    NARCIS (Netherlands)

    Bruni, S.; Neto, A.; Marliani, F.

    2007-01-01

    A novel directive and nondispersive antenna is presented: the ultrawideband (UWB) leaky lens. It is based on the broad band Cherenkov radiation occurring at a slot printed between different infinite homogeneous dielectrics. The first part of the paper presents the antenna concept and the UWB design.

  2. Antennas for light and plasmons

    NARCIS (Netherlands)

    Dikken, D.J.W.

    2015-01-01

    Antennas have been used for over a century as emitters, scatterers and receivers of electromagnetic waves. All wireless communication devices, such as radio, mobile phones and satellite communication are strongly dependent on the capability of an antenna to localize propagating electromagnetic waves

  3. Optically Controlled Phased Array Antenna

    National Research Council Canada - National Science Library

    Garafalo, David

    1998-01-01

    .... The antenna is a 3-foot by 9 foot phased array capable of a scan angle of 120 degrees. The antenna was designed to be conformal to the cargo door of a large aircraft and is designed to operate in the frequency range of 830 - 1400 MHz with a 30...

  4. Backfire antennas with dipole elements

    DEFF Research Database (Denmark)

    Nielsen, Erik Dragø; Pontoppidan, Knud

    1970-01-01

    A method is set up for a theoretical investigation of arbitrary backfire antennas based upon dipole structures. The mutual impedance between the dipole elements of the antenna is taken into account, and the field radiated due to a surface wave reflector of finite extent is determined by calculating...

  5. Slot-Coupled Barbel Antenna

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant.......A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant....

  6. DEA deformed stretchable patch antenna

    International Nuclear Information System (INIS)

    Jiang, X-J; Jalali Mazlouman, S; Menon, C; Mahanfar, A; Vaughan, R G

    2012-01-01

    A stretchable patch antenna (SPA) whose frequency is tuned by a planar dielectric elastomer actuator (DEA) is presented in this paper. This mechanically reconfigurable antenna system has a configuration resembling a pre-stretched silicone belt. Part of the belt is embedded with a layer of conductive liquid metal to form the patch antenna. Part of the belt is sandwiched between conductive electrodes to form the DEA. Electrical activation of the DEA results in a contraction of the patch antenna, and as a result, in a variation of its resonance frequency. Design and fabrication steps of this system are presented. Measurement results for deformation, resonance frequency variation and efficiency of the patch antenna are also presented. (paper)

  7. The ICRF antennas for TFTR

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Colestock, P.L.; Gardner, W.L.; Hosea, J.C.; Nagy, A.; Stevens, J.; Swain, D.W.; Wilson, J.R.

    1988-01-01

    Two compact loop antennas have been designed to provide ion cyclotron resonant frequency (ICRF) heating for TFTR. The antennas can convey a total of 10 MW to accomplish core heating in either high-density or high-temperature plasmas. The near-term goal of heating TFTR plasmas and the longer-term goals of ease in handling (for remote maintenance) and high reliability (in an inaccessible tritium tokamak environment) were major considerations in the antenna designs. The compact loop configuration facilitates handling because the antennas fit completely through their ports. Conservative design and extensive testing were used to attain the reliability required for TFTR. This paper summarizes how these antennas will accomplish these goals. 5 figs, 1 tab

  8. Assembly for connecting the column ends of two capillary columns

    International Nuclear Information System (INIS)

    Kolb, B.; Auer, M.; Pospisil, P.

    1984-01-01

    In gas chromatography, the column ends of two capillary columns are inserted into a straight capillary from both sides forming annular gaps. The capillary is located in a tee out of which the capillary columns are sealingly guided, and to which carrier gas is supplied by means of a flushing flow conduit. A ''straight-forward operation'' having capillary columns connected in series and a ''flush-back operation'' are possible. The dead volume between the capillary columns can be kept small

  9. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase......-shift. Experimental results inX-band, in good agreement with the theory, show that it is possible to scan the main lobe an angle ofpm30degby a variation of the frequencypm300MHz, and where the 3 dB beamwidth is less than10deg. The directivity was 14.7 dB, while the gain was 8.1 dB. The efficiency might be improved...

  10. Metamaterial antennas: the most successful metamaterial technology?

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2015-01-01

    The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas.......The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas....

  11. 47 CFR 73.510 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna. No...

  12. Reconfigurable antenna using plasma reflector

    Science.gov (United States)

    Jusoh, Mohd Taufik; Ahmad, Khairol Amali; Din, Muhammad Faiz Md; Hashim, Fakroul Ridzuan

    2018-02-01

    This paper presents the feasibility study and design of plasma implementation in industrial, scientific and medical (ISM) communication band. A reflector antenna with rounded shaped is proposed to collimate beam in particular direction radiated by a quarter wave antenna operating at 2.4GHz. The simulations result has shown that by using plasma as the reflector elements, the gain, directivity and radiation patterns are identical with metal elements with only small different in the broadside direction. The versatility of the antenna is achievable by introducing electrical reconfigurable option to change the beam pattern.

  13. Absorption Efficiency of Receiving Antennas

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Frandsen, Aksel

    2005-01-01

    A receiving antenna with a matched load will always scatter some power. This paper sets an upper and a lower bound on the absorption efficiency (absorbed power over sum of absorbed and scattered powers), which lies between 0 and 100% depending on the directivities of the antenna and scatter...... patterns. It can approach 100% as closely as desired, although in practice this may not be an attractive solution. An example with a small endfire array of dipoles shows an efficiency of 93%. Several examples of small conical horn antennas are also given, and they all have absorption efficiencies less than...

  14. Reconfigurable Antenna for Medical Applications

    Directory of Open Access Journals (Sweden)

    Elizabeth RUFUS

    2009-12-01

    Full Text Available Microwave imaging systems offer much promise for biomedical applications such as cancer detection because of their good penetration, non invasive and non ionizing nature and low cost. The resolution is one of the major problems faced in such systems, which can be improved by applying signal processing techniques. The key element for the microwave imaging system is the antenna. This paper present a fractal antenna which has low profile, light weight and is easy to be fabricated. It has been successfully demonstrated to have multiband characteristics. The simulated results show that the proposed antenna has very good radiation characteristics suitable for imaging applications.

  15. Large inflated-antenna system

    Science.gov (United States)

    Hinson, W. F.; Keafer, L. S.

    1984-01-01

    It is proposed that for inflatable antenna systems, technology feasibility can be demonstrated and parametric design and scalability (scale factor 10 to 20) can be validated with an experiment using a 16-m-diameter antenna attached to the Shuttle. The antenna configuration consists of a thin film cone and paraboloid held to proper shape by internal pressure and a self-rigidizing torus. The cone and paraboloid would be made using pie-shaped gores with the paraboloid being coated with aluminum to provide reflectivity. The torus would be constructed using an aluminum polyester composite that when inflated would erect to a smooth shell that can withstand loads without internal pressure.

  16. Columns in Clay

    Science.gov (United States)

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  17. Slender CRC Columns

    DEFF Research Database (Denmark)

    Aarup, Bendt; Jensen, Lars Rom; Ellegaard, Peter

    2005-01-01

    CRC is a high-performance steel fibre reinforced concrete with a typical compressive strength of 150 MPa. Design methods for a number of structural elements have been developed since CRC was invented in 1986, but the current project set out to further investigate the range of columns for which...

  18. Practical column design guide

    CERN Document Server

    Nitsche, M

    2017-01-01

    This book highlights the aspects that need to be considered when designing distillation columns in practice. It discusses the influencing parameters as well as the equations governing them, and presents several numerical examples. The book is intended both for experienced designers and for those who are new to the subject.

  19. Electrically floating, near vertical incidence, skywave antenna

    Science.gov (United States)

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  20. Inflatable Antennas Support Emergency Communication

    Science.gov (United States)

    2010-01-01

    Glenn Research Center awarded Small Business Innovation Research (SBIR) contracts to ManTech SRS Technologies, of Newport Beach, California, to develop thin film inflatable antennas for space communication. With additional funding, SRS modified the concepts for ground-based inflatable antennas. GATR (Ground Antenna Transmit and Receive) Technologies, of Huntsville, Alabama, licensed the technology and refined it to become the world s first inflatable antenna certified by the Federal Communications Commission. Capable of providing Internet access, voice over Internet protocol, e-mail, video teleconferencing, broadcast television, and other high-bandwidth communications, the systems have provided communication during the wildfires in California, after Hurricane Katrina in Mississippi, and following the 2010 Haiti earthquake.

  1. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael

    2003-01-01

    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication sa...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  2. Antenna design for mobile devices

    CERN Document Server

    Zhang, Zhijun

    2017-01-01

    - Integrates state-of-the-art technologies with a special section for step-by-step antenna design - Features up-to-date bio-safety and electromagnetic compatibility regulation compliance and latest standards - Newly updated with MIMO antenna design, measurements and requirements - Accessible to readers of many levels, from introductory to specialist - Written by a practicing expert who has hired and trained numerous engineers

  3. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  4. Antennas for mobile satellite communications

    Science.gov (United States)

    Huang, John

    1991-12-01

    A NASA sponsored program, called the Mobile Satellite (MSAT) system, has prompted the development of several innovative antennas at L-band frequencies. In the space segment of the MSAT system, an efficient, light weight, circularly polarized microstrip array that uses linearly polarized elements was developed as a multiple beam reflector feed system. In the ground segment, a low-cost, low-profile, and very efficient microstrip Yagi array was developed as a medium-gain mechanically steered vehicle antenna. Circularly shaped microstrip patches excited at higher-order modes were also developed as low-gain vehicle antennas. A more recent effort called for the development of a 20/30 GHz mobile terminal antenna for future-generation mobile satellite communications. To combat the high insertion loss encountered at 20/30 GHz, series-fed Monolithic Microwave Integrated Circuit (MMIC) microstrip array antennas are currently being developed. These MMIC arrays may lead to the development of several small but high-gain Ka-band antennas for the Personal Access Satellite Service planned for the 2000s.

  5. Nine Words - Nine Columns

    DEFF Research Database (Denmark)

    Trempe Jr., Robert B.; Buthke, Jan

    2016-01-01

    This book records the efforts of a one-week joint workshop between Master students from Studio 2B of Arkitektskolen Aarhus and Master students from the Harbin Institute of Technology in Harbin, China. The workshop employed nine action words to instigate team-based investigation into the effects o...... as formwork for the shaping of wood veneer. The resulting columns ‘wear’ every aspect of this design pipeline process and display the power of process towards an architectural resolution....

  6. Development of film antenna for diversity reception; Diversity taio film antenna no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, K; Taniguchi, T; Kubota, K [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Based on the principle of capacitance-loaded window antennas, a new film antenna construction pasting an antenna element on a defogger element printed on a rear window was found. The film antennas show high reception performance, and can be used as television diversity antennas or a VICS-FM multiplex antenna. This paper describes the antenna design concept, the antenna construction and the application to a recreational vehicle which styling is 1.3-Box wagon for the electric accessory. 2 refs., 11 figs.

  7. Some Recent Developments of Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2012-01-01

    Full Text Available Although the microstrip antenna has been extensively studied in the past few decades as one of the standard planar antennas, it still has a huge potential for further developments. The paper suggests three areas for further research based on our previous works on microstrip antenna elements and arrays. One is exploring the variety of microstrip antenna topologies to meet the desired requirement such as ultrawide band (UWB, high gain, miniaturization, circular polarization, multipolarized, and so on. Another is to apply microstrip antenna to form composite antenna which is more potent than the individual antenna. The last is growing towards highly integration of antenna/array and feeding network or operating at relatively high frequencies, like sub-millimeter wave or terahertz (THz wave regime, by using the advanced machining techniques. To support our points of view, some examples of antennas developed in our group are presented and discussed.

  8. NMFS Water Column Sonar Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water column sonar data are an important component of fishery independent surveys, habitat studies and other research. NMFS water column sonar data are archived here.

  9. Confinement of Reinforced-Concrete Columns with Non-Code Compliant Confining Reinforcement plus Supplemental Pen-Binder

    Directory of Open Access Journals (Sweden)

    Anang Kristianto

    2012-11-01

    Full Text Available One of the important requirements for earthquake resistant building related to confinement is the use of seismic hooks in the hoop or confining reinforcement of reinforced-concrete column elements. However, installation of a confining reinforcement with a 135-degree hook is not easy. Therefore, in practice, many construction workers apply a confining reinforcement with a 90-degreehook (non-code compliant. Based on research and records of recent earthquakes in Indonesia, the use of a non-code compliant confining reinforcement for concrete columns produces structures with poor seismic performance. This paper presents a study that introduces an additional element that is expected to improve the effectiveness of concrete columns confined with a non-code compliant confining reinforcement. The additional element, named a pen-binder, is used to keep the non-code compliant confining reinforcement in place. The effectiveness of this element under pure axial concentric loading was investigatedcomprehensively.The specimens tested in this study were 18 concrete columns,with a cross-section of 170 mm x 170 mm and a height of 480 mm. The main test variables were the material type of the pen-binder, the angle of the hook, and the confining reinforcement configuration.The test results indicate that adding pen-binders can effectively improve the strength and ductility of the column specimens confined with a non-code compliant confining reinforcement

  10. Antenna for passive RFID tags

    Science.gov (United States)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Vladescu, Marian; Craciun, Anca-Ileana; Craciun, Alexandru

    2015-02-01

    Minuscule devices, called RFID tags are attached to objects and persons and emit information which positioned readers may capture wirelessly. Many methods of identification have been used, but that of most common is to use a unique serial number for identification of person or object. RFID tags can be characterized as either active or passive [1,2]. Traditional passive tags are typically in "sleep" state until awakened by the reader's emitted field. In passive tags, the reader's field acts to charge the capacitor that powers the badge and this can be a combination of antenna and barcodes obtained with SAW( Surface Acoustic Wave) devices [1,2,3] . The antenna in an RFID tag is a conductive element that permits the tag to exchange data with the reader. The paper contribution are targeted to antenna for passive RFID tags. The electromagnetic field generated by the reader is somehow oriented by the reader antenna and power is induced in the tag only if the orientation of the tag antenna is appropriate. A tag placed orthogonal to the reader yield field will not be read. This is the reason that guided manufacturers to build circular polarized antenna capable of propagating a field that is alternatively polarized on all planes passing on the diffusion axis. Passive RFID tags are operated at the UHF frequencies of 868MHz (Europe) and 915MHz (USA) and at the microwave frequencies of 2,45 GHz and 5,8 GHz . Because the tags are small dimensions, in paper, we present the possibility to use circular polarization microstrip antenna with fractal edge [2].

  11. Modern lens antennas for communications engineering

    CERN Document Server

    Thornton, John

    2012-01-01

    The aim of this book is to present the modern design principles and analysis of lens antennas. It gives graduates and RF/Microwave professionals the design insights in order to make full use of lens antennas.  Why do we want to write a book in lens antennas? Because this topic has not been thoroughly publicized, its importance is underestimated. As antennas play a key role in communication systems, recent development in wireless communications would indeed benefit from the characteristics of lens antennas: low profile, and low cost etc.  The major advantages of lens antennas are na

  12. Antenna Miniaturization with MEMS Tunable Capacitors

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss and their characterist......In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss...

  13. Elevator frames two columns

    OpenAIRE

    Marín Jiménez, Juan Francisco

    2015-01-01

    This project aims to solve the problem of vertical transport of charges raised by a company with the standard UNE 58-132-91/6. The purpose of this project is the industrial design of a system of load handling by a bi-columned lifting device, tractioned by flat belts and steel cables from a transport level to a different level in order to connect two different assembly lines situated at different heights. The goal of this project is lifting a 780 Kg load at a 2.400 mm height....

  14. Column: Every Last Byte

    Directory of Open Access Journals (Sweden)

    Simson Garfinkel

    2011-06-01

    Full Text Available Inheritance powder is the name that was given to poisons, especially arsenic, that were commonly used in the 17th and early 18th centuries to hasten the death of the elderly. For most of the 17th century, arsenic was deadly but undetectable, making it nearly impossible to prove that someone had been poisoned. The first arsenic test produced a gas—hardly something that a scientist could show to a judge. Faced with a growing epidemic of poisonings, doctors and chemists spent decades searching for something better.(see PDF for full column

  15. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-09-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array has been designed for the first time on Low Temperature Co-fired Ceramic (LTCC) based substrate. LTCC provides a suitable platform for the development of these antennas due to its properties of vertical stack up and embedded passives. The complete antenna concept involves integration of this fractal antenna array with a Fresnel lens antenna providing a total gain of 15dB which is appropriate for medium range radar applications. The thesis also presents a comparison between the designed fractal antenna and a conventional patch antenna outlining the advantages of fractal antenna over the later one. The fractal antenna has a bandwidth of 1.8 GHz which is 7.5% of the centre frequency (24GHz) as compared to 1.9% of the conventional patch antenna. Furthermore the fractal design exhibits a size reduction of 53% as compared to the patch antenna. In the end a sensitivity analysis is carried out for the fractal antenna design depicting the robustness of the proposed design against the typical LTCC fabrication tolerances.

  16. Annular pulse column development studies

    International Nuclear Information System (INIS)

    Benedict, G.E.

    1980-01-01

    The capacity of critically safe cylindrical pulse columns limits the size of nuclear fuel solvent extraction plants because of the limited cross-sectional area of plutonium, U-235, or U-233 processing columns. Thus, there is a need to increase the cross-sectional area of these columns. This can be accomplished through the use of a column having an annular cross section. The preliminary testing of a pilot-plant-scale annular column has been completed and is reported herein. The column is made from 152.4-mm (6-in.) glass pipe sections with an 89-mm (3.5-in.) o.d. internal tube, giving an annular width of 32-mm (1.25-in.). Louver plates are used to swirl the column contents to prevent channeling of the phases. The data from this testing indicate that this approach can successfully provide larger-cross-section critically safe pulse columns. While the capacity is only 70% of that of a cylindrical column of similar cross section, the efficiency is almost identical to that of a cylindrical column. No evidence was seen of any non-uniform pulsing action from one side of the column to the other

  17. Study of the hoop fracture behaviour of nuclear fuel cladding from ring compression tests by means of non-linear optimization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, F.J., E-mail: javier.gomez@amsimulation.com [Advanced Material Simulation, AMS, Bilbao (Spain); Martin Rengel, M.A., E-mail: mamartin.rengel@upm.es [E.T.S.I. Caminos, Canales y Puertos, Universidad Politécnica de Madrid, C/Professor Aranguren SN, E-28040 Madrid (Spain); Ruiz-Hervias, J.; Puerta, M.A. [E.T.S.I. Caminos, Canales y Puertos, Universidad Politécnica de Madrid, C/Professor Aranguren SN, E-28040 Madrid (Spain)

    2017-06-15

    In this work, the hoop fracture toughness of ZIRLO{sup ®} fuel cladding is calculated as a function of three parameters: hydrogen concentration, temperature and displacement rate. To this end, pre-hydrided samples with nominal hydrogen concentrations of 0 (as-received), 150, 250, 500, 1200 and 2000 ppm were prepared. Hydrogen was precipitated as zirconium hydrides in the shape of platelets oriented along the hoop direction. Ring Compression Tests (RCTs) were conducted at three temperatures (20, 135 and 300 °C) and two displacement rates (0.5 and 100 mm/min). A new method has been proposed in this paper which allows the determination of fracture toughness from ring compression tests. The proposed method combines the experimental results, the cohesive crack model, finite elements simulations, numerical calculations and non-linear optimization techniques. The parameters of the cohesive crack model were calculated by minimizing the difference between the experimental data and the numerical results. An almost perfect fitting of the experimental results is achieved by this method. In addition, an estimation of the error in the calculated fracture toughness is also provided.

  18. Compact Low Frequency Radio Antenna

    Science.gov (United States)

    Punnoose, Ratish J.

    2008-11-11

    An antenna is disclosed that comprises a pair of conductive, orthogonal arches and a pair of conductive annular sector plates, wherein adjacent legs of each arch are fastened to one of the annular sector plates and the opposite adjacent pair of legs is fastened to the remaining annular sector plate. The entire antenna structure is spaced apart from a conductive ground plane by a thin dielectric medium. The antenna is driven by a feed conduit passing through the conductive ground plane and dielectric medium and attached to one of the annular sector plates, wherein the two orthogonal arched act as a pair of crossed dipole elements. This arrangement of elements provides a radiation pattern that is largely omni-directional above the horizon.

  19. Biogenic Amines in Insect Antennae

    Directory of Open Access Journals (Sweden)

    Marianna I. Zhukovskaya

    2017-06-01

    Full Text Available Insect antenna is a multisensory organ, each modality of which can be modulated by biogenic amines. Octopamine (OA and its metabolic precursor tyramine (TA affect activity of antennal olfactory receptor neurons. There is some evidence that dopamine (DA modulates gustatory neurons. Serotonin can serve as a neurotransmitter in some afferent mechanosensory neurons and both as a neurotransmitter and neurohormone in efferent fibers targeted at the antennal vessel and mechanosensory organs. As a neurohormone, serotonin affects the generation of the transepithelial potential by sensillar accessory cells. Other possible targets of biogenic amines in insect antennae are hygro- and thermosensory neurons and epithelial cells. We suggest that the insect antenna is partially autonomous in the sense that biologically active substances entering its hemolymph may exert their effects and be cleared from this compartment without affecting other body parts.

  20. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-01-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array

  1. Wireless interrogation of passive antenna sensors

    International Nuclear Information System (INIS)

    Deshmukh, S; Huang, H

    2010-01-01

    Recently, we discovered that the resonant frequency of a microstrip patch antenna is sensitive to mechanical strains or crack presence in the ground plane. Based on this principle, antenna sensors have been demonstrated to measure strain and detect crack in metallic structures. This paper presents a wireless method to remotely interrogate a dual-frequency antenna sensor. An interrogation horn antenna was used to irradiate the antenna sensor with a linear chirp microwave signal. By implementing a light-activated switch at the sensor node and performing signal processing of the backscattered signals, the resonant frequencies of the antenna sensor along both polarizations can be measured remotely. Since the antenna sensor does not need a local power source and can be interrogated wirelessly, electric wiring can be eliminated. The sensor implementation, the signal processing and the experimental setup that validate the remote interrogation of the antenna sensor are presented. A power budget model has also been established to estimate the maximum interrogation range

  2. Statistical monitoring of linear antenna arrays

    KAUST Repository

    Harrou, Fouzi; Sun, Ying

    2016-01-01

    The paper concerns the problem of monitoring linear antenna arrays using the generalized likelihood ratio (GLR) test. When an abnormal event (fault) affects an array of antenna elements, the radiation pattern changes and significant deviation from

  3. Accurate determination of antenna directivity

    DEFF Research Database (Denmark)

    Dich, Mikael

    1997-01-01

    The derivation of a formula for accurate estimation of the total radiated power from a transmitting antenna for which the radiated power density is known in a finite number of points on the far-field sphere is presented. The main application of the formula is determination of directivity from power......-pattern measurements. The derivation is based on the theory of spherical wave expansion of electromagnetic fields, which also establishes a simple criterion for the required number of samples of the power density. An array antenna consisting of Hertzian dipoles is used to test the accuracy and rate of convergence...

  4. Mobile Phone Antenna Performance 2016

    DEFF Research Database (Denmark)

    Pedersen, Gert F.

    This study investigates the antenna performance of a number of mobile phones widely used in the Nordic Countries. The study is supported by the Nordic Council of Ministers. The antenna performance of the phones is vital for the phones ability to ensure radio coverage in low signal situations....... The study is based on the mobile systems in the Nordic mobile networks and on both speech and data services. The selected phone models are among the most popular new phones at the time of this study....

  5. Estimation of complex permittivity using loop antenna

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna.......A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna....

  6. System and circuit models for microwave antennas

    OpenAIRE

    Sobhy, Mohammed; Sanz-Izquierdo, Benito; Batchelor, John C.

    2007-01-01

    This paper describes how circuit and system models are derived for antennas from measurement of the input reflection coefficient. Circuit models are used to optimize the antenna performance and to calculate the radiated power and the transfer function of the antenna. System models are then derived for transmitting and receiving antennas. The most important contribution of this study is to show how microwave structures can be integrated into the simulation of digital communication systems. Thi...

  7. Numerical Study of Planar GPR Antenna Measurements

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    The formulation of planar near-field measurements of GPR antennas determines the plane-wave spectra of the GPR antenna in terms of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical study investigates how the formulation is affected by (1...

  8. Theory of antennas for gravitational radiation

    International Nuclear Information System (INIS)

    Hirakawa, Hiromasa; Narihara, Kazumichi; Fujimoto, Masakatsu.

    1976-01-01

    A theory of antennas for gravitational radiation is presented. On the basis of the eigenmode system and the structure symmetry, the emission and reception characteristics and the directivity pattern of antennas are treated. The antenna thermal noise is discussed in connection with the coupling constant of vibration sensors and with the effect of cold-damping. (auth.)

  9. 47 CFR 78.105 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 78.105 Section 78.105... SERVICE Technical Regulations § 78.105 Antenna systems. (a) For fixed stations operating in the 12.7-13.2... planes. (2) New periscope antenna systems will be authorized upon a certification that the radiation, in...

  10. 47 CFR 74.641 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 74.641 Section 74.641... Stations § 74.641 Antenna systems. (a) For fixed stations operating above 2025 MHz, the following standards... elevation planes. (2) New periscope antenna systems will be authorized upon a certification that the...

  11. Collapsible structure for an antenna reflector

    Science.gov (United States)

    Trubert, M. R. (Inventor)

    1973-01-01

    A collapsible support for an antenna reflector for use in supporting spacecraft antennas is described. The support has a regid base and a number of struts which are pivoted at the base. The deployment of the struts and their final configuration for supporting the antenna are illustrated.

  12. Inflatable antenna for earth observing systems

    Science.gov (United States)

    Wang, Hong-Jian; Guan, Fu-ling; Xu, Yan; Yi, Min

    2010-09-01

    This paper describe mechanical design, dynamic analysis, and deployment demonstration of the antenna , and the photogrammetry detecting RMS of inflatable antenna surface, the possible errors results form the measurement are also analysed. Ticra's Grasp software are used to predict the inflatable antenna pattern based on the coordinates of the 460 points on the parabolic surface, the final results verified the whole design process.

  13. Adaptive Nulling in Hybrid Reflector Antennas

    Science.gov (United States)

    1992-09-01

    correction of reflector distortion and vernier beamsteering, MEEE Trans. Antennas Propagat, 36:1351-1358. 4 Cherrette , A.R., et al (1989) Compensation of...Propagat, 36:1351-1358. 4. Cherrette , A.R., et al (1989) Compensation of reflector antenna surface distortion using an array feed,IEEE Trans. Antennas

  14. Fundamentals of antennas concepts and applications

    CERN Document Server

    Christodoulou, Christos G

    2001-01-01

    This tutorial explains antenna design and application for various systems, including communications, remote sensing, radar, and biomedicine. It describes basic wire and array antennas in detail and introduces other types such as reflectors, lenses, horns, Yagi, microstrip, and frequency-independent antennas. Integration issues and technical challenges are discussed. Aimed at students, engineers, researchers, and technical professionals.

  15. Column-to-column packing variation of disposable pre-packed columns for protein chromatography.

    Science.gov (United States)

    Schweiger, Susanne; Hinterberger, Stephan; Jungbauer, Alois

    2017-12-08

    In the biopharmaceutical industry, pre-packed columns are the standard for process development, but they must be qualified before use in experimental studies to confirm the required performance of the packed bed. Column qualification is commonly done by pulse response experiments and depends highly on the experimental testing conditions. Additionally, the peak analysis method, the variation in the 3D packing structure of the bed, and the measurement precision of the workstation influence the outcome of qualification runs. While a full body of literature on these factors is available for HPLC columns, no comparable studies exist for preparative columns for protein chromatography. We quantified the influence of these parameters for commercially available pre-packed and self-packed columns of disposable and non-disposable design. Pulse response experiments were performed on 105 preparative chromatography columns with volumes of 0.2-20ml. The analyte acetone was studied at six different superficial velocities (30, 60, 100, 150, 250 and 500cm/h). The column-to-column packing variation between disposable pre-packed columns of different diameter-length combinations varied by 10-15%, which was acceptable for the intended use. The column-to-column variation cannot be explained by the packing density, but is interpreted as a difference in particle arrangement in the column. Since it was possible to determine differences in the column-to-column performance, we concluded that the columns were well-packed. The measurement precision of the chromatography workstation was independent of the column volume and was in a range of±0.01ml for the first peak moment and±0.007 ml 2 for the second moment. The measurement precision must be considered for small columns in the range of 2ml or less. The efficiency of disposable pre-packed columns was equal or better than that of self-packed columns. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. Column: File Cabinet Forensics

    Directory of Open Access Journals (Sweden)

    Simson Garfinkel

    2011-12-01

    Full Text Available Researchers can spend their time reverse engineering, performing reverse analysis, or making substantive contributions to digital forensics science. Although work in all of these areas is important, it is the scientific breakthroughs that are the most critical for addressing the challenges that we face.Reverse Engineering is the traditional bread-and-butter of digital forensics research. Companies like Microsoft and Apple deliver computational artifacts (operating systems, applications and phones to the commercial market. These artifacts are bought and used by billions. Some have evil intent, and (if society is lucky, the computers end up in the hands of law enforcement. Unfortunately the original vendors rarely provide digital forensics tools that make their systems amenable to analysis by law enforcement. Hence the need for reverse engineering.(see PDF for full column

  17. Application of the SWE-to-PWE antenna diagnostics technique to an offset reflector antenna

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Frandsen, Aksel; Breinbjerg, Olav

    2008-01-01

    Electrical and mechanical errors in an antenna may seriously affect the antenna's performance. Although their presence is usually detected by anomalies in the antenna's far-field pattern, their identification is normally possible only through an analysis of the antenna's extreme near field....... The reconstruction of the extreme near field on the basis of near- or far-field measurements is thus an essential step in antenna diagnostics....

  18. The Antenna Bride and Bridegroom

    Science.gov (United States)

    2007-03-01

    ALMA Achieves Major Milestone With Antenna-Link Success The Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project, reached a major milestone on 2 March, when two 12-m ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object. "This achievement results from the integration of many state-of-the-art components from Europe and North America and bodes well for the success of ALMA in Chile", said Catherine Cesarsky, ESO's Director General. ESO PR Photo 10/07 ESO PR Photo 10/07 The Prototype Antennas The milestone achievement, technically termed 'First Fringes', came at the ALMA Test Facility (ATF), located near Socorro in New Mexico. Faint radio waves emitted by the planet Saturn were collected by two ALMA prototype antennas, then processed by new, high-tech electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. The planet's radio emissions at a frequency of 104 gigahertz were tracked by the ALMA system for more than an hour. Such pairs of antennas are the basic building blocks of the multi-antenna imaging system ALMA. In such a system, the signals recorded by each antenna are electronically combined with the signals of every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly detailed image of the astronomical object under observation. When completed in the year 2012, ALMA will have 66 antennas. "Our congratulations go to the dedicated team of scientists, engineers and technicians who produced this groundbreaking achievement for ALMA. Much hard work and many long hours went into this effort, and we appreciate it all. This team should be very proud today," said NRAO Director Fred K.Y. Lo. "With this milestone behind us, we now can proceed with increased confidence toward completing ALMA," he added. ALMA, located at an elevation of 5,000m in the Atacama Desert of

  19. Photogrammetry Of A Parabolic Antenna

    Science.gov (United States)

    Merrick, W. D.; Lansing, F. L.; Stoller, F. W.; Lobb, V. B.

    1988-01-01

    Surface measured with accuracy better than 10 to the negative fifth power times diameter. Report describes use of advanced close-range photogrammetry to determine deviations of 34-m-diameter antenna main reflector and subreflector from nominal paraboloidal shapes. Measurements enable removal of linear offsets and angular misalignments of subreflector, with consequent increase of 4 percent in aperture efficiency.

  20. Tunable Antennas for Mobile Devices

    DEFF Research Database (Denmark)

    Morris, Art; Barrio, Samantha Caporal Del; Shin, J

    2014-01-01

    Modern mobile terminal design has been driven by the user interface and broadband connectivity. Real world RF performance has substantially fallen recently which impacts data rates, battery life and often causes lost connections. This has been caused by changing antenna location and reduced anten...

  1. Wireless Communication with Multiple Antennas

    Indian Academy of Sciences (India)

    2013-07-05

    Emre Telatar, “Capacity of Multi-antenna Gaussian Channels,” European. Transactions on Telecommunications, vol.10, No.6, pp.585-595, 1999. Similar diminishing-return behaviour with M fixed. B. Sundar Rajan (ECE). IASc Talk ...

  2. Coupling between minimum scattering antennas

    DEFF Research Database (Denmark)

    Andersen, J.; Lessow, H; Schjær-Jacobsen, Hans

    1974-01-01

    Coupling between minimum scattering antennas (MSA's) is investigated by the coupling theory developed by Wasylkiwskyj and Kahn. Only rotationally symmetric power patterns are considered, and graphs of relative mutual impedance are presented as a function of distance and pattern parameters. Crossed...

  3. Compact electron beam focusing column

    Science.gov (United States)

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-12-01

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  4. Theory of the JET ICRH antenna

    International Nuclear Information System (INIS)

    Theilhaber, K.

    1984-01-01

    The JET antenna has been conceived as a 'limiter antenna', completely recessed in a lateral frame which has the dual purpose of protecting the conductors and limiting the plasma radius. The coupling of this antenna is calculated in slab geometry, using a variational formulation which finds the self-consistent currents in the antenna elements. Full account is taken of the modes excited inside the limiter frame and of their coupling to waves in the inhomogeneous plasma. This yields the antenna impedance as a function of frequency and the field structure inside the plasma, including power fluxes and dispersion, as a function of penetration. (author)

  5. Microstrip Antenna Design for Femtocell Coverage Optimization

    Directory of Open Access Journals (Sweden)

    Afaz Uddin Ahmed

    2014-01-01

    Full Text Available A mircostrip antenna is designed for multielement antenna coverage optimization in femtocell network. Interference is the foremost concern for the cellular operator in vast commercial deployments of femtocell. Many techniques in physical, data link and network-layer are analysed and developed to settle down the interference issues. A multielement technique with self-configuration features is analyzed here for coverage optimization of femtocell. It also focuses on the execution of microstrip antenna for multielement configuration. The antenna is designed for LTE Band 7 by using standard FR4 dielectric substrate. The performance of the proposed antenna in the femtocell application is discussed along with results.

  6. Forward Scattering of Loaded and Unloaded Antennas

    DEFF Research Database (Denmark)

    Gustafsson, Mats; Andersen, Jørgen Bach; Kristensson, Gerhard

    2012-01-01

    Forward scattering of antennas is related to antenna performance via the forward-scattering sum rule. The forward-scattering sum rule is an integral identity that shows that a weighted integral of the extinction cross section over all spectrum is proportional to the static polarizability...... of the antenna structure. Here, the forward-scattering sum rule is experimentally verified for loaded, short-circuit, and open-circuit cylindrical dipole antennas. It is also shown that the absorption efficiency cannot be greater than 1/2 for reciprocal linearly polarized lossless matched antennas...... with a symmetric radiation pattern in the forward and backward directions....

  7. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  8. Miniaturized Planar Split-Ring Resonator Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    on how small this antenna can be. In practice, the lower bound is set by losses in utilized materials and manufacturing inaccuracies. As an example, an antenna of ka=0.09 was designed, fabricated and tested. Although the initially fabricated antenna prototype had the input impedance of 43 ohms......, it was subsequently tuned to 50 ohms simply by cutting out the excessive arm length. This tuning technique is especially useful in practical applications, since it allows the antenna to be tuned in-place and thereby compensate for various inaccuracies as well as for an antenna environment....

  9. COMWIN Antenna System Fiscal Year 2000 Report

    National Research Council Canada - National Science Library

    Adams, R

    2000-01-01

    .... The Joint Tactical Radio (JTR) requires this frequency. The figure of merit to determine whether the radio is efficient in the band is a Standing Wave Ratio (VSWR) of less than 3:1. The COMWIN antenna system would consist of three antennas. The first antenna, in the form of a vest, would operate in the 30- to 500-MHz band. The helmet antenna would operate in the 500- to 2000 MHz band. An antenna that runs down the edges would operate in the 2- to 30-MHz band.

  10. Measurement of Antenna Bore-Sight Gain

    Science.gov (United States)

    Fortinberry, Jarrod; Shumpert, Thomas H.

    2016-01-01

    The absolute or free-field gain of a simple antenna can be approximated using standard antenna theory formulae or for a more accurate prediction, numerical methods may be employed to solve for antenna parameters including gain. Both of these methods will result in relatively reasonable estimates but in practice antenna gain is usually verified and documented via measurements and calibration. In this paper, a relatively simple and low-cost, yet effective means of determining the bore-sight free-field gain of a VHF/UHF antenna is proposed by using the Brewster angle relationship.

  11. Benchmark simulations of ICRF antenna coupling

    International Nuclear Information System (INIS)

    Louche, F.; Lamalle, P. U.; Messiaen, A. M.; Compernolle, B. van; Milanesio, D.; Maggiora, R.

    2007-01-01

    The paper reports on ongoing benchmark numerical simulations of antenna input impedance parameters in the ion cyclotron range of frequencies with different coupling codes: CST Microwave Studio, TOPICA and ANTITER 2. In particular we study the validity of the approximation of a magnetized plasma slab by a dielectric medium of suitably chosen permittivity. Different antenna models are considered: a single-strap antenna, a 4-strap antenna and the 24-strap ITER antenna array. Whilst the diagonal impedances are mostly in good agreement, some differences between the mutual terms predicted by Microwave Studio and TOPICA have yet to be resolved

  12. Design of broadband single polarized antenna

    Science.gov (United States)

    Shin, Phoo Kho; Aziz, Mohamad Zoinol Abidin Abd.; Ahmad, Badrul Hisham; Ramli, Mohamad Hafize Bin; Fauzi, Noor Azamiah Md; Malek, Mohd Fareq Abd

    2015-05-01

    In practical wireless communication application, bandwidth enhancement becomes one of the major design considerations. At the same time, circular polarized (CP) antenna received much attention for the applications of modern wireless communication system when compared to linear polarized (LP) antenna. This is because CP antenna can reduce the multipath effect. Hence, broadband antenna with operating frequency at 2.4GHz for WLAN application is proposed. The proposed antenna is done by using L-probe amendment with rectangular patch. The rectangular patch and copper ground plane is separated with 10mm air gap. This approach is used to enhance the bandwidth and the gain of the proposed antenna. The bandwidth of the designed antenna is more than 200MHz which meet broadband application. The return loss for the antenna is below -10dB to achieved 90% matching efficiency. The position of L-probe feed is altered in order to obtained different polarizations. The broadband antenna had been designed and simulated by using Computer Simulation Technology (CST) software. In this paper, the comparison for single polarized antenna with the design of non-inverted patch and inverted patch is discussed. The characteristics of the S-parameter, axial ratio, gain, surface current for each designed antenna are analyzed.

  13. Group Delay of High Q Antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2013-01-01

    Group Delay variations versus frequency is an essential factor which can cause distortion and degradation in the signals. Usually this is an issue in wideband communication systems, such as satellite communication systems, which are used for transmitting wideband data. However, group delay can also...... become an issue, when working with high Q antennas, because of the steep phase shift over the frequency. In this paper, it is measured how large group delay variations can become, when going from a low Q antenna to a high Q antenna. The group delay of a low Q antenna is shown to be around 1.3 ns, whereas...... a high Q antenna has group delay of around 22 ns. It is due to this huge group delay variation characteristics of high Q antennas, that signal distortion might occur in the radio system with high Q antennas....

  14. SKB - PNC. Development of tunnel radar antennas

    International Nuclear Information System (INIS)

    Falk, L.

    1991-07-01

    Tunnel antennas for the RAMAC borehole radar system have been developed and tested in the field. The antennas are of the loaded dipole type and the receiver and transmitter electronics have been rebuilt to screen them from the antennas. A series of measurements has demonstrated that the radar pulse is short and well shaped and relatively free from ringing, even compared with the existing borehole antennas. Two antenna sets were tested: one centered at 60 MHz and another above 100 MHz. Both produced excellent radar pictures when tested in tunnels in Stripa mine. The antennas have been designed to be easy to carry, since the signal quality often depends on the way the antenna is held relative to electric conductors in the tunnels. (au) (46 figs., 57 refs.)

  15. Improvement of antenna decoupling in radar systems

    Science.gov (United States)

    Anchidin, Liliana; Topor, Raluca; Tamas, Razvan D.; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban

    2015-02-01

    In this paper we present a type of antipodal Vivaldi antenna design, which can be used for pulse radiation in UWB communication. The Vivaldi antenna is a special tapered slot antenna with planar structure which is easily to be integrated with transmitting elements and receiving elements to form a compact structure. When the permittivity is very large, the wavelength of slot mode is so short that the electromagnetic fields concentrate in the slot to form an effective and balanced transmission line. Due to its simple structure and small size the Vivaldi antennas are one of the most popular designs used in UWB applications. However, for a two-antenna radar system, there is a high mutual coupling between two such antennas due to open configuration. In this paper, we propose a new method for reducing this effect. The method was validated by simulating a system of two Vivaldi antennas in front of a standard target.

  16. Effects of a shoot training programme with a reduced hoop diameter rim on free-throw performance and kinematics in young basketball players.

    Science.gov (United States)

    Khlifa, Riadh; Aouadi, Ridha; Shephard, Roy; Chelly, Mohamed Souhaiel; Hermassi, Souhail; Gabbett, Tim J

    2013-01-01

    The present paper investigated the effects of a shoot training programme with a reduced hoop diameter (0.35 m) rim on kinematics and performance of basketball free-throws. Eighteen young male basketball players were divided into control (CG, n = 9) and experimental (EG, n = 9) groups. Both groups undertook a 10-week training programme comprising two training sessions per week. Under fatigued conditions, each participant shot 150 free-throws in each training session, with the CG using a standard rim, and the EG a smaller rim. All other training was identical between groups. Ball release parameters, player's kinematics and mean of successful free-throws (out of 150 attempts) were determined for each participant, before and after completion of the training programme. Following training, a significant increase (P training with a reduced rim significantly improves free-throw performance in young basketball players.

  17. Safety barriers and lighting columns.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1972-01-01

    Problems arising from the sitting of lighting columns on the central reserve are reviewed, and remedial measures such as break-away lighting supports and installation of safety fences on the central reserve on both sides of the lighting columns are examined.

  18. Mush Column Magma Chambers

    Science.gov (United States)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  19. Antenna Arrays and Automotive Applications

    CERN Document Server

    Rabinovich, Victor

    2013-01-01

    This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book’s exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that ...

  20. Broadband Cylindrical Antenna and Method

    Science.gov (United States)

    2016-07-27

    May 2017 The below identified patent application is available for licensing. Requests for information should be addressed to: TECHNOLOGY...CROSS REFERENCE TO OTHER PATENT APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The present invention is...Slotted cylinder antennas have been proposed in submarine applications before. For example, in U.S. Patent No. 6,127,983, Rivera and Josypenko disclose

  1. Miniaturization of Spherical Magnetodielectric Antennas

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle

    ; Arbitrary order of the spherical wave, arbitrary radius of the spherical antenna, as well as arbitrarily large core permeability and/or permittivity, given an inversely proportional frequency variation of the imaginary part(s) and an arbitrary dispersion of the real part(s) - thus describing both lossless...... with a magnetic loss tangent of 1 and relative permeability of 300 yield Q/e equal 65% of the Chu lower bound, with a simultaneous e of 71%....

  2. Hybrid Maritime Satellite Communication Antenna

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst

    Hybrid antennas for a maritime satellite communication terminal with simultaneous operation at L- and Ka-band have been investigated. The frequency bands of interest are 1; 525:0 1; 660:5 MHz (RX+TX, RHCP), 19:7 20:2 (RX, LHCP) and 29:5 30:0 GHz (TX, RHCP), which are all part of the Inmarsat BGAN...

  3. Band-notched spiral antenna

    Science.gov (United States)

    Jeon, Jae; Chang, John

    2018-03-13

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  4. Layout Of Antennas And Cables In A Large Array

    Science.gov (United States)

    Logan, Ronald T., Jr.

    1995-01-01

    Layout devised to minimize total land area occupied by large phased array of antennas and to minimize total length of cables in array. In original intended application, array expanded version of array of paraboloidal-dish microwave communication antennas of Deep Space Network. Layout also advantageous for other phased arrays of antennas and antenna elements, including notably printed-circuit microwave antenna arrays.

  5. Column-Oriented Database Systems (Tutorial)

    NARCIS (Netherlands)

    D. Abadi; P.A. Boncz (Peter); S. Harizopoulos

    2009-01-01

    textabstractColumn-oriented database systems (column-stores) have attracted a lot of attention in the past few years. Column-stores, in a nutshell, store each database table column separately, with attribute values belonging to the same column stored contiguously, compressed, and densely packed, as

  6. Antenna development for astroparticle and radioastronomy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, Didier, E-mail: charrier@emn.fr [Subatech, Ecole des Mines de Nantes - CNRS/IN2P3 - Universite de Nantes (France)

    2012-01-11

    An active dipole antenna is in operation since five years at the Nancay radio Observatory (France) in the CODALEMA experiment. A new version of this active antenna has been developed, whose shape gave its name of 'Butterfly' antenna. Compared to the previous version, this new antenna has been designed to be more efficient at low frequencies, which could permit the detection of atmospheric showers at large distances. Despite a size of only 2 m Multiplication-Sign 1 m in each polarization, its sensitivity is excellent in the 30-80 MHz bandwidth. Three antennas in dual polarization were installed on the CODALEMA experiment, and four other have been recently installed on the Auger area in the scope of the AERA project. The main characteristics of the Butterfly antenna are detailed with an emphasis on its key features which make it a good candidate for the low frequency radioastronomy and the radio detection of transients induced by high energy cosmic rays.

  7. Millimeter-wave antennas configurations and applications

    CERN Document Server

    du Preez, Jaco

    2016-01-01

    This book comprehensively reviews the state of the art in millimeter-wave antennas, traces important recent developments and provides information on a wide range of antenna configurations and applications. While fundamental theoretical aspects are discussed whenever necessary, the book primarily focuses on design principles and concepts, manufacture, measurement techniques, and practical results. Each of the various antenna types scalable to millimeter-wave dimensions is considered individually, with coverage of leaky-wave and surface-wave antennas, printed antennas, integrated antennas, and reflector and lens systems. The final two chapters address the subject from a systems perspective, providing an overview of supporting circuitry and examining in detail diverse millimeter-wave applications, including high-speed wireless communications, radio astronomy, and radar. The vast amount of information now available on millimeter-wave systems can be daunting for researchers and designers entering the field. This b...

  8. A Review of Antennas for Picosatellite Applications

    Directory of Open Access Journals (Sweden)

    Abdul Halim Lokman

    2017-01-01

    Full Text Available Cube Satellite (CubeSat technology is an attractive emerging alternative to conventional satellites in radio astronomy, earth observation, weather forecasting, space research, and communications. Its size, however, poses a more challenging restriction on the circuitry and components as they are expected to be closely spaced and very power efficient. One of the main components that will require careful design for CubeSats is their antennas, as they are needed to be lightweight, small in size, and compact or deployable for larger antennas. This paper presents a review of antennas suitable for picosatellite applications. An overview of the applications of picosatellites will first be explained, prior to a discussion on their antenna requirements. Material and antenna topologies which have been used will be subsequently discussed prior to the presentation of several deployable configurations. Finally, a perspective and future research work on CubeSat antennas will be discussed in the conclusion.

  9. Metamaterial Embedded Wearable Rectangular Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    J. G. Joshi

    2012-01-01

    Full Text Available This paper presents an indigenous low-cost metamaterial embedded wearable rectangular microstrip patch antenna using polyester substrate for IEEE 802.11a WLAN applications. The proposed antenna resonates at 5.10 GHz with a bandwidth and gain of 97 MHz and 4.92 dBi, respectively. The electrical size of this antenna is 0.254λ×0.5λ. The slots are cut in rectangular patch to reduce the bending effect. This leads to mismatch the impedance at WLAN frequency band; hence, a metamaterial square SRR is embedded inside the slot. A prototype antenna has been fabricated and tested, and the measured results are presented in this paper. The simulated and measured results of the proposed antenna are found to be in good agreement. The bending effect on the performance of this antenna is experimentally verified.

  10. Spherical near-field antenna measurements — The most accurate antenna measurement technique

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2016-01-01

    The spherical near-field antenna measurement technique combines several advantages and generally constitutes the most accurate technique for experimental characterization of radiation from antennas. This paper/presentation discusses these advantages, briefly reviews the early history and present...

  11. An Approach for Smart Antenna Testbed

    Science.gov (United States)

    Kawitkar, R. S.; Wakde, D. G.

    2003-07-01

    The use of wireless, mobile, personal communications services are expanding rapidly. Adaptive or "Smart" antenna arrays can increase channel capacity through spatial division. Adaptive antennas can also track mobile users, improving both signal range and quality. For these reasons, smart antenna systems have attracted widespread interest in the telecommunications industry for applications to third generation wireless systems.This paper aims to design and develop an advanced antennas testbed to serve as a common reference for testing adaptive antenna arrays and signal combining algorithms, as well as complete systems. A flexible suite of off line processing software should be written using matlab to perform system calibration, test bed initialization, data acquisition control, data storage/transfer, off line signal processing and analysis and graph plotting. The goal of this paper is to develop low complexity smart antenna structures for 3G systems. The emphasis will be laid on ease of implementation in a multichannel / multi-user environment. A smart antenna test bed will be developed, and various state-of-the-art DSP structures and algorithms will be investigated.Facing the soaring demand for mobile communications, the use of smart antenna arrays in mobile communications systems to exploit spatial diversity to further improve spectral efficiency has recently received considerable attention. Basically, a smart antenna array comprises a number of antenna elements combined via a beamforming network (amplitude and phase control network). Some of the benefits that can be achieved by using SAS (Smart Antenna System) include lower mobile terminal power consumption, range extension, ISI reduction, higher data rate support, and ease of integration into the existing base station system. In terms of economic benefits, adaptive antenna systems employed at base station, though increases the per base station cost, can increase coverage area of each cell site, thereby reducing

  12. VAlidation STandard antennas: Past, present and future

    DEFF Research Database (Denmark)

    Drioli, Luca Salghetti; Ostergaard, A; Paquay, M

    2011-01-01

    designed for validation campaigns of antenna measurement ranges. The driving requirements of VAST antennas are their mechanical stability over a given operational temperature range and with respect to any orientation of the gravity field. The mechanical design shall ensure extremely stable electrical....../V-band of telecom satellites. The paper will address requirements for future VASTs and possible architecture for multi-frequency Validation Standard antennas....

  13. International Mapping of Antenna-Measurement Facilities

    DEFF Research Database (Denmark)

    Boccia, Luigi; Breinbjerg, Olav; Di Massa, Giuseppe

    2006-01-01

    This paper presents a comprehensive international mapping of antenna-measurement facilities. This initiative, conducted within the framework of the Antenna Centre of Excellence (ACE) of the European Union, is oriented toward all institutions having research, development, or operational activities...... measurements, in particular from the wireless communication industry, to identify and contact antenna-measurement facilities. The first phase of the mapping showed a significant and encouraging reaction to this initiative, with more than 50 European facilities currently registered. The next phase aims...

  14. Porous textile antenna designs for improved wearability

    Science.gov (United States)

    Shahariar, Hasan; Soewardiman, Henry; Muchler, Clifford A.; Adams, Jacob J.; Jur, Jesse S.

    2018-04-01

    Textile antennas are an integral part of the next generation personalized wearable electronics system. However, the durability of textile antennas are rarely discussed in the literature. Typical textile antennas are prone to damage during normal wearable user scenarios, washing, and heat cycling over time. Fabricating a durable, washable, flexible, and breathable (like textile materials) antenna is challenging due to the incompatibility of the mechanical properties of conductive materials and soft textile materials. This paper describes a scalable screen printing process on an engineered nonwoven substrate to fabricate microstrip patch antennas with enhanced durability. This work used an Evolon® nonwoven substrate with low surface roughness (˜Ra = 18 μm) and high surface area (˜2.05 mm2 mm-2 of fabric area) compared to traditional textile materials, which allows the ink to penetrate evenly in the fiber bulk with its strong capillary wicking force and enhances print resolution. The composite layer of ink and fiber is conductive and enables the antennas to maintain high mechanical flexibility without varying its RF (Radio Frequency) properties. Additionally, the antennas are packaged by laminating porous polyurethane web to make the device durable and washable. The fully packaged antennas maintain the structural flexibility and RF functionality after 15 cycles of washing and drying. To improve the air permeability and enhance flexibility the antenna is also modified by incorporating holes in the both patch and ground layer of the antenna. The antennas were analyzed before and after submerging in water to observe the effect of wetting and drying with respect to frequency response. The porous antenna with holes recovered 3x times faster than the one without holes (solid) from fully wet state (saturated with water) to the dry state, demonstrating its potential use as a moisture sensor system.

  15. Reconfigurable antennas radiations using plasma Faraday cage

    OpenAIRE

    Barro , Oumar Alassane; Himdi , Mohamed; Lafond , Olivier

    2015-01-01

    International audience; This letter presents a new reconfigurable plasma antenna associated with a Faraday cage. The Faraday cage is realized using a fluorescent lamp. A patch antenna with a broadside radiation pattern or a monopole antenna with an end-fire radiation pattern , operating at 2.45 GHz, is placed inside Faraday cage. The performance of the reconfigurable system is observed in terms of input reflection coefficient, gain and radiation pattern via simulation and measurement. It is s...

  16. Design of reconfigurable antennas using graph models

    CERN Document Server

    Costantine, Joseph; Christodoulou, Christos G; Christodoulou, Christos G

    2013-01-01

    This lecture discusses the use of graph models to represent reconfigurable antennas. The rise of antennas that adapt to their environment and change their operation based on the user's request hasn't been met with clear design guidelines. There is a need to propose some rules for the optimization of any reconfigurable antenna design and performance. Since reconfigurable antennas are seen as a collection of self-organizing parts, graph models can be introduced to relate each possible topology to a corresponding electromagnetic performance in terms of achieving a characteristic frequency of oper

  17. Handbook of smart antennas for RFID systems

    CERN Document Server

    2010-01-01

    The Handbook of Smart Antennas for RFID Systems is a single comprehensive reference on the smart antenna technologies applied to RFID. This book will provide a timely reference book for researchers and students in the areas of both smart antennas and RFID technologies. It is the first book to combine two of the most important wireless technologies together in one book. The handbook will feature chapters by leading experts in both academia and industry offering an in-depth description of terminologies and concepts related to smart antennas in various RFID systems applications.

  18. Thermal Loss in High-Q Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Bahramzy, Pevand; Svendsen, Simon

    2014-01-01

    Tunable antennas are very promising for future generations of mobile communications, where antennas are required to cover a wide range operating bands. This letter aims at characterizing the loss mechanism of tunable antennas. Tunable antennas typically exhibit a high Quality factor (Q), which ca...... lead to thermal loss due to the conductivity of the metal. The investigation shows that copper loss is non-negligible for high Q values. In the proposed design the copper loss is 2 dB, for a Q of 260 at 700 MHz....

  19. MILA Antenna Control Unit Replacement Project

    Science.gov (United States)

    Bresette, Jeremy

    2007-01-01

    The Air to Ground Subsystem (AGS) Antenna Control Units at the MILA Ground Network Tracking Station are at end-of-life and are being replaced. AGS consists of two antennas at MILA (Quad-Helix and Teltrac). Software was taken from the existing Subsystem Controller and modified for the Antenna Control Unit (ACU). The software is capable of receiving and sending commands to and from the ACU. Moving the azimuth clockwise, counterclockwise, moving the elevation up or down, turning servo power on and off, and inputting azimuth and elevation angles are commands that the antenna can receive.

  20. A Design of Double Broadband MIMO Antenna

    Directory of Open Access Journals (Sweden)

    Yanfeng Geng

    2015-01-01

    Full Text Available The MIMO antenna applied to LTE mobile system should be miniaturization and can work in the current communication frequency band; isolation between each antenna unit also should be good so as to reduce loss of radio wave energy and improve the antenna performance of the MIMO system. This paper puts forward the design scheme of a broadband MIMO double antenna. And the design of antenna unit and debugging and related technical measures, such as bending antenna bracket, are both presented; the integration design of high isolation of ultra broadband MIMO antenna is realized on the plate with the volume of 100 × 52 × 0.8 mm3; antenna working bands are 698 MHz~960 MHz and 1710 MHz~2700 MHz; in the whole spectrum, the 10 dB of port isolation can be basically achieved; in low frequency band, the isolation degree of antenna port can reach 12 dB.

  1. Vivaldi Antenna for RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    J. Schneider

    2016-12-01

    Full Text Available Energy harvesting is a future technology for capturing ambient energy from the environment to be recycled to feed low-power devices. A planar antipodal Vivaldi antenna is presented for gathering energy from GSM, WLAN, UMTS and related applications. The designed antenna has the potential to be used in energy harvesting systems. Moreover, the antenna is suitable for UWB applications, because it operates according to FCC regulations (3.1 – 10.6 GHz. The designed antenna is printed on ARLON 600 substrate and operates in frequency band from 0.810 GHz up to more than 12 GHz. Experimental results show good conformity with simulated performance.

  2. Water Column Sonar Data Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The collection and analysis of water column sonar data is a relatively new avenue of research into the marine environment. Primary uses include assessing biological...

  3. LIQUID-LIQUID EXTRACTION COLUMNS

    Science.gov (United States)

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  4. Column-Oriented Database Systems (Tutorial)

    OpenAIRE

    Abadi, D.; Boncz, Peter; Harizopoulos, S.

    2009-01-01

    textabstractColumn-oriented database systems (column-stores) have attracted a lot of attention in the past few years. Column-stores, in a nutshell, store each database table column separately, with attribute values belonging to the same column stored contiguously, compressed, and densely packed, as opposed to traditional database systems that store entire records (rows) one after the other. Reading a subset of a table’s columns becomes faster, at the potential expense of excessive disk-head s...

  5. A 3D printed helical antenna with integrated lens

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2015-01-01

    A novel antenna configuration comprising a helical antenna with an integrated lens is demonstrated in this work. The antenna is manufactured by a unique combination of 3D printing of plastic material (ABS) and inkjet printing of silver nano

  6. Inkjet-Printed Ultra Wide Band Fractal Antennas

    KAUST Repository

    Maza, Armando Rodriguez

    2012-01-01

    reduction, a Cantor-based fractal antenna which performs a larger bandwidth compared to previously published UWB Cantor fractal monopole antenna, and a 3D loop fractal antenna which attains miniaturization, impedance matching and multiband characteristics

  7. Development of Novel Integrated Antennas for CubeSats

    Data.gov (United States)

    National Aeronautics and Space Administration — The antenna system on a small satellite is a critical component, as a failure of the antenna can lead to mission failure. Present antenna systems are typically wire...

  8. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L., E-mail: stenzel@physics.ucla.edu; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2015-07-15

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B{sub 0}. Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B{sub 0}. The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B{sub 0} has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental

  9. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    International Nuclear Information System (INIS)

    Stenzel, R. L.; Urrutia, J. M.

    2015-01-01

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B 0 . Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B 0 . The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B 0 has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental interest and of

  10. Interpretation of PISCES -- A RF antenna system experimental results

    International Nuclear Information System (INIS)

    Rothweil, D.A.; Phelps, D.A.; Doerner, R.

    1995-10-01

    The paper describes experimental data from rf coupling experiments using one to four coil antenna arrays that encircle a linear magnetized plasma column. Experimental results using single turn coil that produce symmetric (i.e. m = 0), dipole (m = 1), and radial rf magnetic fields for coupling to ion waves are compared. By operating without a Faraday shield, it was observed for the first time that the plasma resistive load seen by these different antenna types tends to increase with the number of turns to at least the second power. A four-turn m = 0 coil experienced a record 3--5 Ω loading, corresponding to over 90% power coupling to the plasma. A four-turn m = 1 coil experienced up to 1--1.5 Ω loading, also higher than previous observations. First time observations using a two coil array of m = 0 coil are also reported. As predicted, the loading decreases with increasing phase between coil from 0 degree to 180 degree. Experiments using four coil arrays were difficult to optimize and interpret primarily due to complexity of the manual tuning. To facilitate this optimization in the future, a proposed feedback control system that automatically matches load variations between 0.2 and 10 Ω is described

  11. Experimental application of QCD antennas

    International Nuclear Information System (INIS)

    Bobrovskyi, Sergei

    2010-02-01

    A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)

  12. Experimental application of QCD antennas

    Energy Technology Data Exchange (ETDEWEB)

    Bobrovskyi, Sergei

    2010-02-15

    A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)

  13. Solar energy collection by antennas

    Energy Technology Data Exchange (ETDEWEB)

    Corkish, R.; Green, M.A.; Puzzer, T. [University of New South Wales, Sydney (Australia). Centre for Advanced Silicon Photovoltaics and Photonics

    2002-12-01

    The idea of collecting solar electromagnetic radiation with antenna-rectifier (rectenna) structures was proposed three decades ago but has not yet been achieved. The idea has been promoted as having potential to achieve efficiency approaching 100% but thermodynamic considerations imply a lower limit of 85.4% for a non-frequency-selective rectenna and 86.8% for one with infinite selectivity, assuming maximal concentration in each case. This paper reviews the history and technical context of solar rectennas and discusses the major issues: thermodynamic efficiency limits, rectifier operation at optical frequencies, harmonics production and electrical noise. (author)

  14. Antenna analysis using neural networks

    Science.gov (United States)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern

  15. Radiotracer Imaging of Sediment Columns

    Science.gov (United States)

    Moses, W. W.; O'Neil, J. P.; Boutchko, R.; Nico, P. S.; Druhan, J. L.; Vandehey, N. T.

    2010-12-01

    Nuclear medical PET and SPECT cameras routinely image radioactivity concentration of gamma ray emitting isotopes (PET - 511 keV; SPECT - 75-300 keV). We have used nuclear medical imaging technology to study contaminant transport in sediment columns. Specifically, we use Tc-99m (T1/2 = 6 h, Eγ = 140 keV) and a SPECT camera to image the bacteria mediated reduction of pertechnetate, [Tc(VII)O4]- + Fe(II) → Tc(IV)O2 + Fe(III). A 45 mL bolus of Tc-99m (32 mCi) labeled sodium pertechnetate was infused into a column (35cm x 10cm Ø) containing uranium-contaminated subsurface sediment from the Rifle, CO site. A flow rate of 1.25 ml/min of artificial groundwater was maintained in the column. Using a GE Millennium VG camera, we imaged the column for 12 hours, acquiring 44 frames. As the microbes in the sediment were inactive, we expected most of the iron to be Fe(III). The images were consistent with this hypothesis, and the Tc-99m pertechnetate acted like a conservative tracer. Virtually no binding of the Tc-99m was observed, and while the bolus of activity propagated fairly uniformly through the column, some inhomogeneity attributed to sediment packing was observed. We expect that after augmentation by acetate, the bacteria will metabolically reduce Fe(III) to Fe(II), leading to significant Tc-99m binding. Imaging sediment columns using nuclear medicine techniques has many attractive features. Trace quantities of the radiolabeled compounds are used (micro- to nano- molar) and the half-lives of many of these tracers are short (Image of Tc-99m distribution in a column containing Rifle sediment at four times.

  16. Performance evaluation of a rectifier column using gamma column scanning

    Directory of Open Access Journals (Sweden)

    Aquino Denis D.

    2017-12-01

    Full Text Available Rectifier columns are considered to be a critical component in petroleum refineries and petrochemical processing installations as they are able to affect the overall performance of these facilities. It is deemed necessary to monitor the operational conditions of such vessels to optimize processes and prevent anomalies which could pose undesired consequences on product quality that might lead to huge financial losses. A rectifier column was subjected to gamma scanning using a 10-mCi Co-60 source and a 2-inch-long detector in tandem. Several scans were performed to gather information on the operating conditions of the column under different sets of operating parameters. The scan profiles revealed unexpected decreases in the radiation intensity at vapour levels between trays 2 and 3, and between trays 4 and 5. Flooding also occurred during several scans which could be attributed to parametric settings.

  17. Determination of antenna factors using a three-antenna method at open-field test site

    Science.gov (United States)

    Masuzawa, Hiroshi; Tejima, Teruo; Harima, Katsushige; Morikawa, Takao

    1992-09-01

    Recently NIST has used the three-antenna method for calibration of the antenna factor of an antenna used for EMI measurements. This method does not require the specially designed standard antennas which are necessary in the standard field method or the standard antenna method, and can be used at an open-field test site. This paper theoretically and experimentally examines the measurement errors of this method and evaluates the precision of the antenna-factor calibration. It is found that the main source of the error is the non-ideal propagation characteristics of the test site, which should therefore be measured before the calibration. The precision of the antenna-factor calibration at the test site used in these experiments, is estimated to be 0.5 dB.

  18. 47 CFR 74.737 - Antenna location.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna location. 74.737 Section 74.737 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... Booster Stations § 74.737 Antenna location. (a) An applicant for a new low power TV, TV translator, or TV...

  19. 47 CFR 74.1237 - Antenna location.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna location. 74.1237 Section 74.1237 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... FM Broadcast Booster Stations § 74.1237 Antenna location. (a) An applicant for a new station to be...

  20. 3D printed helical antenna with lens

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2016-01-01

    of 3D and 2D inkjet printing of dielectric and metallic inks respectively, we demonstrate a Fresnel lens that has been monolithically integrated to a non-planar antenna (helix) for the first time. Antenna measurements show that the integration of a

  1. 47 CFR 73.753 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.753 Section 73.753 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate...

  2. Active patch antennas for transponder applications

    Energy Technology Data Exchange (ETDEWEB)

    Biffi Gentili, G; Avitabile, G; Bonifacio, F; Salvador, C [Florence Univ. (Italy). Dip. di Ingegneria Elettronica

    1996-01-01

    The paper deals with two patch antenna structures that are mainly taught for short range link and non-contact identification system (RFID). The proposed antennas were developed by starting from an original concept of cross-polarization usefully applicable, in compliance with european for transponder applications are described and experimental results are reported.

  3. Multiband Patch Antenna for Femtocell Application

    Directory of Open Access Journals (Sweden)

    M. R. Zaman

    2014-01-01

    Full Text Available A microstrip patch antenna for multiple LTE (long term evaluation frequency bands for femtocell application is proposed in this paper. Distributed antenna solution (DAS has been introduced in cellular network to achieve homogenous indoor coverage. Femtocell is the latest extension to these solutions. It is a smart solution to both coverage and capacity scales. Femtocell operation in LTE band is occupied by higher frequency bands. For multiband femtocell application, miniature antenna design is quite essential. The antenna proposed here is composed of basic monopole structure with two parasitic elements at both sides of the active element. A rectangular slot is introduced at the ground plane of the proposed antenna. The antenna is designed using ElnoS HK light CCL substrate material of relative permittivity of 9.4, dielectric loss-tangent of 0.003 and thickness of 3 mm. The S11 response of the antenna is shown to have a bandwidth of 1.01 GHz starting from 1.79 GHz to 2.8 GHz. The characteristics of the antenna are analysed using Ansoft HFSS software.

  4. Waveguide Phased Array Antenna Analysis and Synthesis

    NARCIS (Netherlands)

    Visser, H.J.; Keizer, W.P.M.N.

    1996-01-01

    Results of two software packages for analysis and synthesis of waveguide phased array antennas are shown. The antennas consist of arrays of open-ended waveguides where irises can be placed in the waveguide apertures and multiple dielectric sheets in front of the apertures in order to accomplish a

  5. Antenna Design Exploiting the Duplex Isolation

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pedersen, Gert Frølund

    2013-01-01

    A novel design addressing the antenna bandwidth issue for future communication standards on handsets is presented. It consists of a tunableantenna- pair for operation with a tunable front-end. The antennas are narrow-band and frequency-reconfigurable. This Letter focuses on the low communication ...

  6. Wireless SAW Sensors Having Integrated Antennas

    Science.gov (United States)

    Gallagher, Mark (Inventor); Malocha, Donald C. (Inventor)

    2015-01-01

    A wireless surface acoustic wave sensor includes a piezoelectric substrate, a surface acoustic wave device formed on the substrate, and an antenna formed on the substrate. In some embodiments, the antenna is formed on the surface of the substrate using one or more of photolithography, thin film processing, thick film processing, plating, and printing.

  7. GPS Antenna Data Needed : GPS Adjacent Band Compatibility Workshop Volpe Center, Cambridge MA

    Science.gov (United States)

    2014-09-18

    Topics. 1. Technical Objective: Receiver Antenna Mask and Electronics Data. 2. Definition of Receiver Antenna Mask. 3. Use of Receiver Antenna Mask. 4. Approaches to Generate the Antenna Mask. 5. Request for Receiver Antenna Data. 6. Next Steps.

  8. Post column derivatisation analyses review. Is post-column derivatisation incompatible with modern HPLC columns?

    Science.gov (United States)

    Jones, Andrew; Pravadali-Cekic, Sercan; Dennis, Gary R; Shalliker, R Andrew

    2015-08-19

    Post Column derivatisation (PCD) coupled with high performance liquid chromatography or ultra-high performance liquid chromatography is a powerful tool in the modern analytical laboratory, or at least it should be. One drawback with PCD techniques is the extra post-column dead volume due to reaction coils used to enable adequate reaction time and the mixing of reagents which causes peak broadening, hence a loss of separation power. This loss of efficiency is counter-productive to modern HPLC technologies, -such as UHPLC. We reviewed 87 PCD methods published from 2009 to 2014. We restricted our review to methods published between 2009 and 2014, because we were interested in the uptake of PCD methods in UHPLC environments. Our review focused on a range of system parameters including: column dimensions, stationary phase and particle size, as well as the geometry of the reaction loop. The most commonly used column in the methods investigated was not in fact a modern UHPLC version with sub-2-micron, (or even sub-3-micron) particles, but rather, work-house columns, such as, 250 × 4.6 mm i.d. columns packed with 5 μm C18 particles. Reaction loops were varied, even within the same type of analysis, but the majority of methods employed loop systems with volumes greater than 500 μL. A second part of this review illustrated briefly the effect of dead volume on column performance. The experiment evaluated the change in resolution and separation efficiency of some weak to moderately retained solutes on a 250 × 4.6 mm i.d. column packed with 5 μm particles. The data showed that reaction loops beyond 100 μL resulted in a very serious loss of performance. Our study concluded that practitioners of PCD methods largely avoid the use of UHPLC-type column formats, so yes, very much, PCD is incompatible with the modern HPLC column. Copyright © 2015. Published by Elsevier B.V.

  9. Reflectarray antennas theory, designs, and applications

    CERN Document Server

    Nayeri, Payam; Elsherbeni, Atef Z

    2018-01-01

    This book provides engineers with a comprehensive review of the state-of-the-art in reflectarray antenna research and development. The authors describe, in detail, design procedures for a wide range of applications, including broadband, multi-band, multi-beam, contour-beam, beam-scanning, and conformal reflectarray antennas. They provide sufficient coverage of basic reflectarray theory to fully understand reflectarray antenna design and analysis such that the readers can pursue reflectarray research on their own. Throughout the book numerous illustrative design examples including numerical and experimental results are provided. Featuring in-depth theoretical analysis along with practical design examples, Reflectarray Antennas is an excellent text/reference for engineering graduate students, researchers, and engineers in the field of antennas. It belongs on the bookshelves of university libraries, research institutes, and industrial labs and research facilities.

  10. Super wideband characteristics of monopolar patch antenna

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2013-12-01

    Full Text Available A simple method of acquiring super wideband characteristics for monopolar patch antenna is proposed. Through adopting a modified cone as feeding and radiating structure, the monopolar patch antenna can reach the impedance bandwidth of more than 1:23.4 for voltage standing wave ratio (VSWR ≤ 2. In the whole operating band, the antenna has the like-monopole omnidirectional radiation patterns and the peak gains of 3.8–8.7 dB. Meanwhile, the height of the antenna is just 0.074λ(c, and the diameter of the radiated body is 0.205λ(c, which is smaller than other ultra-wideband omnidirectional antenna.

  11. Textile UWB Antenna Bending and Wet Performances

    Directory of Open Access Journals (Sweden)

    Mai A. R. Osman

    2012-01-01

    Full Text Available The vision and ideas of wearable computing systems describe future electronic systems as an integral part of our everyday clothing that provides the wearer with such intelligent personal assistants. Recently, there has been growing interest in the antenna community to merge between wearable systems technology, ultrawideband (UWB technology and textile technology. This work aimed to make closer steps towards real wearability by investigating the possibilities of designing wearable UWB antenna where textile materials are used for the substrate as well as the conducting parts of the designed antenna. Two types of conducting materials have been used for conducting parts, while a nonconducting fabric has been used as antenna substrate material. A set of comparative results of the proposed design were presented and discussed. Moreover, effects on the return loss by means of measurements for each fabricated antenna prototype under bent and fully wet conditions were discussed in more details.

  12. Present and future JET ICRF antennae

    International Nuclear Information System (INIS)

    Kaye, A.; Brown, T.; Bhatnagar, V.; Crawley, P.; Jacquinot, J.; Lobel, R.; Plancoulaine, J.; Rebut, P.H.; Wade, T.; Walker, C.

    1994-01-01

    Since the initial operation of the JET ICRF system in 1985, up to 22 MW has been coupled to the plasma, many heating scenarios have been demonstrated and the main technological problem of RF-specific impurity production overcome. Many developments of the antennae have taken place over this period, notably the replacement of the water-cooled nickel screens with indirectly cooled beryllium screens, and the forthcoming installation of eight new A2 antennae for operation during the pumped divertor phase of JET. The A2 antennae include enhanced provision for fast wave current drive experiments on JET. This paper describes the beryllium screens, the technological results from operation and subsequent inspection of these screens, the design of the A2 antennae and the results from high power RF testing of a model of the A2 antenna. (orig.)

  13. 5G MIMO Conformal Microstrip Antenna Design

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2017-01-01

    Full Text Available With the development of wireless communication technology, 5G will develop into a new generation of wireless mobile communication systems. MIMO (multiple-input multiple-output technology is expected to be one of the key technologies in the field of 5G wireless communications. In this paper, 4 pairs of microstrip MIMO conformal antennas of 35 GHz have been designed. Eight-element microstrip Taylor antenna array with series-feeding not only achieves the deviation of the main lobe of the pattern but also increases the bandwidth of the antenna array and reduces sidelobe. MIMO antennas have been fabricated and measured. Measurement results match the simulation results well. The return loss of the antenna at 35 GHz is better than 20 dB, the first sidelobe level is −16 dB, and the angle between the main lobe and the plane of array is 60°.

  14. Antenna complexes protect Photosystem I from Photoinhibition

    Science.gov (United States)

    Alboresi, Alessandro; Ballottari, Matteo; Hienerwadel, Rainer; Giacometti, Giorgio M; Morosinotto, Tomas

    2009-01-01

    Background Photosystems are composed of two moieties, a reaction center and a peripheral antenna system. In photosynthetic eukaryotes the latter system is composed of proteins belonging to Lhc family. An increasing set of evidences demonstrated how these polypeptides play a relevant physiological function in both light harvesting and photoprotection. Despite the sequence similarity between antenna proteins associated with the two Photosystems, present knowledge on their physiological role is mostly limited to complexes associated to Photosystem II. Results In this work we analyzed the physiological role of Photosystem I antenna system in Arabidopsis thaliana both in vivo and in vitro. Plants depleted in individual antenna polypeptides showed a reduced capacity for photoprotection and an increased production of reactive oxygen species upon high light exposure. In vitro experiments on isolated complexes confirmed that depletion of antenna proteins reduced the resistance of isolated Photosystem I particles to high light and that the antenna is effective in photoprotection only upon the interaction with the core complex. Conclusion We show that antenna proteins play a dual role in Arabidopsis thaliana Photosystem I photoprotection: first, a Photosystem I with an intact antenna system is more resistant to high light because of a reduced production of reactive oxygen species and, second, antenna chlorophyll-proteins are the first target of high light damages. When photoprotection mechanisms become insufficient, the antenna chlorophyll proteins act as fuses: LHCI chlorophylls are degraded while the reaction center photochemical activity is maintained. Differences with respect to photoprotection strategy in Photosystem II, where the reaction center is the first target of photoinhibition, are discussed. PMID:19508723

  15. Telecommunications Antennas for the Juno Mission to Jupiter

    Science.gov (United States)

    Vacchione, Joseph D.; Kruid, Ronald C.; Prata, Aluizio, Jr.; Amaro, Luis R.; Mittskus, Anthony P.

    2012-01-01

    The Juno Mission to Jupiter requires a full sphere of coverage throughout its cruise to and mission at Jupiter. This coverage is accommodated through the use of five (5) antennas; forward facing low gain, medium gain, and high gain antennas, and an aft facing low gain antenna along with an aft mounted low gain antenna with a torus shaped antenna pattern. Three of the antennas (the forward low and medium gain antennas) are classical designs that have been employed on several prior NASA missions. Two of the antennas employ new technology developed to meet the Juno mission requirements. The new technology developed for the low gain with torus shaped radiation pattern represents a significant evolution of the bicone antenna. The high gain antenna employs a specialized surface shaping designed to broaden the antenna's main beam at Ka-band to ease the requirements on the spacecraft's attitude control system.

  16. NOx retention in scrubbing column

    International Nuclear Information System (INIS)

    Nakazone, A.K.; Costa, R.E.; Lobao, A.S.T.; Matsuda, H.T.; Araujo, B.F.

    1988-07-01

    During the UO 2 dissolution in nitric acid, some different species of NO x are released. The off gas can either be refluxed to the dissolver or be released and retained on special columns. The final composition of the solution is the main parameter to take in account. A process for nitrous gases retention using scubber columns containing H 2 O or diluted HNO 3 is presented. Chemiluminescence measurement was employed to NO x evalution before and after scrubbing. Gas flow, temperature, residence time are the main parameters considered in this paper. For the dissolution of 100g UO 2 in 8M nitric acid, a 6NL/h O 2 flow was the best condition for the NO/NO 2 oxidation with maximum adsorption in the scrubber columns. (author) [pt

  17. Determination of hoop direction effective elastic moduli of non-circular profile, fiber reinforced polymer composite sewer liner pipes from lateral ring compression tests

    International Nuclear Information System (INIS)

    Czél, Gergely; Takács, Dénes

    2015-01-01

    A new material property determination method is presented for the calculation of effective elastic moduli of non-circular ring specimens cut from filament wound oval profile polymer composite sewer liner pipes. The hoop direction elastic moduli was determined using the test results obtained from ring compression tests, which is a very basic setup, and requires no special equipment. Calculations were executed for many different oval profiles, and diagrams were constructed, from which the cross section dependent C_e_f_f constants can be taken. The new method was validated by the comparison of tests and finite element analysis results. The calculation method and the diagrams are essential design tools for engineers, and a big step forward in sizing non-circular profile liner pipes. - Highlights: • A simple modulus measurement method is presented for non-circular ring specimens. • The evaluation method is validated against a finite element model. • Profile shape dependent constants are presented for a wide range of cross-sections. • A set of charts with the constants are provided to aid design engineers.

  18. Thermal analysis of in-situ curing for thermoset, hoop-wound structures using infrared heating: Part II. Dependent scattering effect

    International Nuclear Information System (INIS)

    Chern, B.C.; Moon, T.J.; Howell, J.R.

    1995-01-01

    The volume fraction of the fibers present in commercial filament wound structures, formed from either epoxy-impregnated tapes (open-quotes prepregclose quotes) or fiber strands pulled through an epoxy bath, approaches 60 percent. Such close-packed structures are near the region that may cause dependent scattering effects to be important; that is, the scattering characteristics of one fiber may be affected by the presence of nearby fibers. This dependent scattering may change the single-fiber extinction coefficient and phase function, and thus may change the radiative transfer in such materials. This effect is studied for unidirectional fibers dispersed in a matrix with nonunity refractive index, and with large size parameter (fiber diameter to wavelength ratio) typical of commercial fiber-matrix composites. Only the case of radiation incident normal to the cylinder axes is considered, as this maximizes the dependent effects. The dependent extinction efficiency is found by solving the dispersion relations for the complex effective propagation constant of the composites. An estimation of this dependent scattering effect on the infrared in-situ curing of thermoset-hoop-wound structures is also conducted. It is found that the wave interference effect is significant for S-glass/3501-6 composite, and neglect of this effect tends to overestimate the temperature and cure state within the materials during IR in-situ curing. 23 refs., 8 figs

  19. Application of an antenna excited high pressure microwave discharge to compact discharge lamps

    International Nuclear Information System (INIS)

    Kando, M; Fukaya, T; Ohishi, Y; Mizojiri, T; Morimoto, Y; Shido, M; Serita, T

    2008-01-01

    A novel type of high pressure microwave discharge has been investigated to feed the microwave power at the centre of the compact high pressure discharge lamps using the antenna effect. This method of microwave discharge is named as the antenna excited microwave discharge (AEMD). The 2.45 GHz microwave of around 50 W from the solid state microwave generator can sustain a stable plasma column in the small gap between a couple of antennas fitted on the compact lamp filled with discharge gases at a pressure higher than atmosphere. The AEMD has been applied to a compact metal halide lamp and an extremely high pressure mercury discharge lamp. As a result, the metal halide lamp showed high luminous efficacy of around 130 lm W -1 . The excellent lamp properties obtained here can be explained by the low heating loss at the antennas and the lamp wall. The profiles of the microwave electric field in the lamp and the microwave launcher have been numerically calculated to consider the microwave power supply into the lamp

  20. Design of silicon-based fractal antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2012-11-20

    This article presents Sierpinski carpet fractal antennas implemented in conventional low resistivity (Ï =10 Ω cm) as well as high resistivity (Ï =1500 Ω cm) silicon mediums. The fractal antenna is 36% smaller as compared with a typical patch antenna at 24 GHz and provides 13% bandwidth on high resistivity silicon, suitable for high data rate applications. For the first time, an on-chip fractal antenna array is demonstrated in this work which provides double the gain of a single fractal element as well as enhanced bandwidth. A custom test fixture is utilized to measure the radiation pattern and gain of these probe-fed antennas. In addition to gain and impedance characterization, measurements have also been made to study intrachip communication through these antennas. The comparison between the low resistivity and high resistivity antennas indicate that the former is not a suitable medium for array implementation and is only suitable for short range communication whereas the latter is appropriate for short and medium range wireless communication. The design is well-suited for compact, high data rate System-on-Chip (SoC) applications as well as for intrachip communication such as wireless global clock distribution in synchronous systems. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:180-186, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27245 Copyright © 2012 Wiley Periodicals, Inc.

  1. Design of silicon-based fractal antennas

    KAUST Repository

    Ghaffar, Farhan A.; Shamim, Atif

    2012-01-01

    This article presents Sierpinski carpet fractal antennas implemented in conventional low resistivity (Ï =10 Ω cm) as well as high resistivity (Ï =1500 Ω cm) silicon mediums. The fractal antenna is 36% smaller as compared with a typical patch antenna at 24 GHz and provides 13% bandwidth on high resistivity silicon, suitable for high data rate applications. For the first time, an on-chip fractal antenna array is demonstrated in this work which provides double the gain of a single fractal element as well as enhanced bandwidth. A custom test fixture is utilized to measure the radiation pattern and gain of these probe-fed antennas. In addition to gain and impedance characterization, measurements have also been made to study intrachip communication through these antennas. The comparison between the low resistivity and high resistivity antennas indicate that the former is not a suitable medium for array implementation and is only suitable for short range communication whereas the latter is appropriate for short and medium range wireless communication. The design is well-suited for compact, high data rate System-on-Chip (SoC) applications as well as for intrachip communication such as wireless global clock distribution in synchronous systems. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:180-186, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27245 Copyright © 2012 Wiley Periodicals, Inc.

  2. Scalable Notch Antenna System for Multiport Applications

    Directory of Open Access Journals (Sweden)

    Abdurrahim Toktas

    2016-01-01

    Full Text Available A novel and compact scalable antenna system is designed for multiport applications. The basic design is built on a square patch with an electrical size of 0.82λ0×0.82λ0 (at 2.4 GHz on a dielectric substrate. The design consists of four symmetrical and orthogonal triangular notches with circular feeding slots at the corners of the common patch. The 4-port antenna can be simply rearranged to 8-port and 12-port systems. The operating band of the system can be tuned by scaling (S the size of the system while fixing the thickness of the substrate. The antenna system with S: 1/1 in size of 103.5×103.5 mm2 operates at the frequency band of 2.3–3.0 GHz. By scaling the antenna with S: 1/2.3, a system of 45×45 mm2 is achieved, and thus the operating band is tuned to 4.7–6.1 GHz with the same scattering characteristic. A parametric study is also conducted to investigate the effects of changing the notch dimensions. The performance of the antenna is verified in terms of the antenna characteristics as well as diversity and multiplexing parameters. The antenna system can be tuned by scaling so that it is applicable to the multiport WLAN, WIMAX, and LTE devices with port upgradability.

  3. Validating and comparing GNSS antenna calibrations

    Science.gov (United States)

    Kallio, Ulla; Koivula, Hannu; Lahtinen, Sonja; Nikkonen, Ville; Poutanen, Markku

    2018-03-01

    GNSS antennas have no fixed electrical reference point. The variation of the phase centre is modelled and tabulated in antenna calibration tables, which include the offset vector (PCO) and phase centre variation (PCV) for each frequency according to the elevations and azimuths of the incoming signal. Used together, PCV and PCO reduce the phase observations to the antenna reference point. The remaining biases, called the residual offsets, can be revealed by circulating and rotating the antennas on pillars. The residual offsets are estimated as additional parameters when combining the daily GNSS network solutions with full covariance matrix. We present a procedure for validating the antenna calibration tables. The dedicated test field, called Revolver, was constructed at Metsähovi. We used the procedure to validate the calibration tables of 17 antennas. Tables from the IGS and three different calibration institutions were used. The tests show that we were able to separate the residual offsets at the millimetre level. We also investigated the influence of the calibration tables from the different institutions on site coordinates by performing kinematic double-difference baseline processing of the data from one site with different antenna tables. We found small but significant differences between the tables.

  4. Smart antennas for nuclear instruments

    International Nuclear Information System (INIS)

    Jain, Ranjan Bala; Singhi, B.M.

    2005-01-01

    The advances in the field of computer and communications are leading to the development of smart embedded nuclear instruments. These instruments have highly sophisticated signal-processing algorithms based on FPGA and ASICS, provisions of present day connectivity and user interfaces. The developments in the connectivity, standards and bus technologies have made possible to access these instruments on LAN and WAN with suitable reliability and security. To get rid of wires i.e. in order to access these instruments, without wires at any place, wireless technology has evolved and become integral part of day-to-day activities. The environment monitoring can be done remotely, if smart antennas are incorporated on these instruments

  5. Passive Microwave Components and Antennas

    DEFF Research Database (Denmark)

    State-of-the-art microwave systems always require higher performance and lower cost microwave components. Constantly growing demands and performance requirements of industrial and scientific applications often make employing traditionally designed components impractical. For that reason, the design...... and development process remains a great challenge today. This problem motivated intensive research efforts in microwave design and technology, which is responsible for a great number of recently appeared alternative approaches to analysis and design of microwave components and antennas. This book highlights...... techniques. Modelling and computations in electromagnetics is a quite fast-growing research area. The recent interest in this field is caused by the increased demand for designing complex microwave components, modeling electromagnetic materials, and rapid increase in computational power for calculation...

  6. Chromatographic properties PLOT multicapillary columns.

    Science.gov (United States)

    Nikolaeva, O A; Patrushev, Y V; Sidelnikov, V N

    2017-03-10

    Multicapillary columns (MCCs) for gas chromatography make it possible to perform high-speed analysis of the mixtures of gaseous and volatile substances at a relatively large amount of the loaded sample. The study was performed using PLOT MCCs for gas-solid chromatography (GSC) with different stationary phases (SP) based on alumina, silica and poly-(1-trimethylsilyl-1-propyne) (PTMSP) polymer as well as porous polymers divinylbenzene-styrene (DVB-St), divinylbenzene-vinylimidazole (DVB-VIm) and divinylbenzene-ethylene glycol dimethacrylate (DVB-EGD). These MCCs have the efficiency of 4000-10000 theoretical plates per meter (TP/m) and at a column length of 25-30cm can separate within 10-20s multicomponent mixtures of substances belonging to different classes of chemical compounds. The sample amount not overloading the column is 0.03-1μg and depends on the features of a porous layer. Examples of separations on some of the studied columns are considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. CPW to CPS transition for feeding UWB antennas

    DEFF Research Database (Denmark)

    Butrym, Alexander; Pivnenko, Sergey

    2004-01-01

    The paper considers a transition (balun) from Coplanar Waveguide (CPW) to Coplanar Stripline (CPS) which is non-resonant and suitable for feeding UWB antennas such as Tapered Slot Antennas (Vivaldi antennas in particular), bow-tie antennas, and other. Some numerical and experimental results...

  8. CPW to CPS transition for feeding UWB antennas

    DEFF Research Database (Denmark)

    Butrym, Alexander; Pivnenko, Sergey

    2006-01-01

    The paper considers a transition (balun) from Coplanar Waveguide (CPW) to Coplanar Stripline (CPS) which is non-resonant and suitable for feeding UWB antennas such as Tapered Slot Antennas (Vivaldi antennas, in particular), bow-tie antennas, and other. Some numerical and experimental results...

  9. Logo Antenna for 5.8 GHz Wireless Communications (invited)

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A logo antenna for the 5.8 GHz ISM band is presented. The idea behind the logo antenna is to use the company or university logo as part of the antenna. When disguised as a logo, it may be more acceptable to place the antenna at optimal locations to obtain good coverage. In the present work...

  10. Logo Antenna for 5.8 GHz Wireless Communications

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A logo antenna for the 5.8 GHz ISM band is presented. The idea behind the logo antenna is to use the company or university logo as part of the antenna. When disguised as a logo, it may be more acceptable to place the antenna at optimal locations to obtain good coverage. In the present work...

  11. Aerogel-Based Antennas for Aerospace and Terrestrial Applications

    Science.gov (United States)

    Meador, Mary Ann (Inventor); Miranda, Felix (Inventor); Van Keuls, Frederick (Inventor)

    2016-01-01

    Systems and methods for lightweight, customizable antenna with improved performance and mechanical properties are disclosed. In some aspects, aerogels can be used, for example, as a substrate for antenna fabrication. The reduced weight and expense, as well as the increased ability to adapt antenna designs, permits a systems to mitigate a variety of burdens associated with antennas while providing added benefits.

  12. 47 CFR 73.54 - Antenna resistance and reactance measurements.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna resistance and reactance measurements... measurements. (a) The resistance of an omnidirectional series fed antenna is measured at either the base of the... the point of common radiofrequency input to the directional antenna system after the antenna has been...

  13. Slot Antenna for Wireless Temperature Measurement Systems

    DEFF Research Database (Denmark)

    Acar, Öncel; Jakobsen, Kaj Bjarne

    2016-01-01

    This paper presents a novel clover-slot antenna for a surface-acoustic-wave sensor based wireless temperature measurement system. The slot is described by a parametric locus curve that has the shape of a clover. The antenna is operated at high temperatures, in rough environments, and has a 43......% fractional bandwidth at the 2.4 GHz ISM-band. The slot antenna has been optimized for excitation by a passive chip soldered onto it. Measurement results are compared with simulation results and show good agreements....

  14. Rectifying antenna and method of manufacture

    Science.gov (United States)

    Bhansali, Shekhar (Inventor); Buckle, Kenneth (Inventor); Goswami, D. Yogi (Inventor); Stefanakos, Elias (Inventor); Weller, Thomas (Inventor)

    2006-01-01

    In accordance with the present invention, an aperture rectenna is provided where the substrate is transparent and of sufficient mechanical strength to support the fabricated structure above it. An aperture antenna is deposited on the transparent substrate and a metal-insulator-metal (MIM) diode is constructed on top of the aperture antenna. There is an insulating layer between the aperture antenna metal and the metal ground plane optimized to maximize the collection of incident radiation. The top of the structure is capped with a metal ground plane layer, which also serves as the DC connection points for each rectenna element.

  15. FDTD simulation tools for UWB antenna analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2005-02-01

    This paper describes the development of a set of software tools useful for analyzing ultra-wideband (UWB) antennas and structures. These tools are used to perform finite difference time domain (FDTD) simulation of a conical antenna with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed using spherical coordinate-based FDTD equations that are derived from first principles. The simulation results for CW excitation are compared to simulation and measured results from published sources; the results for UWB excitation are new.

  16. FDTD simulation tools for UWB antenna analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2004-12-01

    This paper describes the development of a set of software tools useful for analyzing ultra-wideband (UWB) antennas and structures. These tools are used to perform finite difference time domain (FDTD) simulation of a conical antenna with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed using spherical coordinate-based FDTD equations that are derived from first principles. The simulation results for CW excitation are compared to simulation and measured results from published sources; the results for UWB excitation are new.

  17. Vertically Polarized Omnidirectional Printed Slot Loop Antenna

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Thaysen, Jesper

    2015-01-01

    A novel vertically polarized omnidirectional printed slot loop antenna has been designed, simulated, fabricated and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform and in-phase fields in the slot in order to obtain an omnidirectional radiation...... pattern. The antenna is designed for the 2.45 GHz Industrial, Scientific and Medical band. Applications of the antenna are many. One is for on-body applications since it is ideal for launching a creeping waves due to the polarization....

  18. Resonant double loop antenna development at ORNL

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Brown, R.A.; Bryan, W.E.; Fadnek, A.; Hoffman, D.J.; King, J.F.; Livesey, R.L.; McIlwain, R.L.

    1988-01-01

    As part of the development of ion cyclotron resonant heating (ICRH) systems for fusion research, Oak Ridge National Laboratory (ORNL) has built resonant double loop (RDL) antennas for the Tokamak Fusion Test Reactor (TFTR) (Princeton Plasma Physics Laboratory, Princeton, NJ, US) and Tore Supra (Centre d'Etudes Nucleaire, Cadarache, France). Each antenna has been designed to deliver 4 MW of power. The electrical circuit and the mechanical philosophy employed are the same for both antennas, but different operating environments lead to substantial differences in the designs of specific components. A description and a comparison of the technologies developed in the two designs are presented. 5 refs., 4 figs., 1 tab

  19. MIMO Communication Using Single Feed Antenna Arrays

    DEFF Research Database (Denmark)

    Alrabadi, Osama

    Multi-input-multi-output (MIMO) communication has emerged as a promis- ing technology for meeting the increasing demand on higher data rates. The technology exploits the spatial resource dimension by sending the datas- treams to different locations in the multi element array (MEA) domain while...... conventionally to a single antenna element while mod- ulating the other datastreams in the analogue RF domain, using simple switched antenna systems (SAS) or sophisticated reactance-assisted antenna systems. The use of a SAS is found simple to implement, but can hardly handle high order signal formats...

  20. Implanted Antennas in Medical Wireless Communications

    CERN Document Server

    Rahmat-Samii, Yahya; Balanis, Constantine

    2006-01-01

    Implanted Antennas in Medical Wireless Communications summarizes the results of recent research activities on the subject of implanted antennas for medical wireless communication systems. It is anticipated that in the near future sophisticated medical devices will be implanted inside the human body for medical telemetry and telemedicine. To establish effective and efficient wireless links with these devices, it is pivotal to give special attention to antenna designs that are low profile, small, safe, and cost effective. In this book, authors Yahya Rahmat-Samii and Jaehoon Kim demonstrate how a

  1. The principles of radio engineering and antennas. II Antennas (2nd revised and enlarged edition)

    Science.gov (United States)

    Belotserkovskii, G. B.

    This book represents the second part of a textbook for technical schools. The characteristics and parameters of antennas are considered along with transmission lines, the theory of single dipoles and radiator systems, and the technological realization of elements and units of the antenna-feeder system, taking into account filters and multiport networks for microwave communications applications, and ferrite circulators and isolators. The first edition of this textbook was published in 1969. For the current edition, the material in the first edition has been revised, and new material has been introduced. Much attention is given to microwave antennas, including, in particular, arrays with electrical scanning characteristics. Other topics discussed are related to the general principles of antennas, the matching of the impedance of transmission lines, the elements of transmission lines, aperture-type antennas for microwaves, and the functional characteristics of antennas for ultrashort waves.

  2. A Fast Adaptive Receive Antenna Selection Method in MIMO System

    Directory of Open Access Journals (Sweden)

    Chaowei Wang

    2013-01-01

    Full Text Available Antenna selection has been regarded as an effective method to acquire the diversity benefits of multiple antennas while potentially reduce hardware costs. This paper focuses on receive antenna selection. According to the proportion between the numbers of total receive antennas and selected antennas and the influence of each antenna on system capacity, we propose a fast adaptive antenna selection algorithm for wireless multiple-input multiple-output (MIMO systems. Mathematical analysis and numerical results show that our algorithm significantly reduces the computational complexity and memory requirement and achieves considerable system capacity gain compared with the optimal selection technique in the same time.

  3. Compact antennas for wireless communications and terminals theory and design

    CERN Document Server

    Laheurte, Jean-Marc

    2012-01-01

    Compact Antennas for Wireless Communications and Terminals deals with compact microwave antennas and, more specifically, with the planar version of these antennas. Planar antennas are the most appropriate type of antenna in modern communication systems and more generally in all applications requiring miniaturization, integration and conformation such as in mobile phone handsets.The book is suitable for students, engineers and scientists eager to understand the principles of planar and small antennas, their design and fabrication issues, and modern aspects such as UWB antennas, recon

  4. Low-Q Electrically Small Spherical Magnetic Dipole Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    Three novel electrically small antenna configurations radiating a TE10 spherical mode corresponding to a magnetic dipole are presented and investigated: multiarm spherical helix (MSH) antenna, spherical split ring resonator (S-SRR) antenna, and spherical split ring (SSR) antenna. All three antennas...... are self-resonant, with the input resistance tuned to 50 ohms by an excitation curved dipole/monopole. A prototype of the SSR antenna has been fabricated and measured, yielding results that are consistent with the numerical simulations. Radiation quality factors (Q) of these electrically small antennas (in...

  5. Fluorescence Enhancement Factors on Optical Antennas: Enlarging the Experimental Values without Changing the Antenna Design

    Directory of Open Access Journals (Sweden)

    Jérôme Wenger

    2012-01-01

    Full Text Available Plasmonic antennas offer promising opportunities to control the emission of quantum objects. As a consequence, the fluorescence enhancement factor is widely used as a figure of merit for a practical antenna realization. However, the fluorescence enhancement factor is not an intrinsic property of the antenna. It critically depends on several parameters, some of which are often disregarded. In this contribution, I explore the influence of the setup collection efficiency, emitter's quantum yield, and excitation intensity. Improperly setting these parameters may significantly alter the enhancement values, leading to potential misinterpretations. The discussion is illustrated by an antenna example of a nanoaperture surrounded by plasmonic corrugations.

  6. Planar Millimeter-Wave Antennas: A Comparative Study

    Directory of Open Access Journals (Sweden)

    K. Pitra

    2011-04-01

    Full Text Available The paper describes the design and the experimental verification of three types of wideband antennas. Attention is turned to the bow-tie antenna, the Vivaldi antenna and the spiral antenna designed for the operation at millimeter waves. Bandwidth, input impedance, gain, and directivity pattern are the investigated parameters. Antennas are compared considering computer simulations in CST Microwave Studio and measured data.

  7. Stockbridge Antenna Measurement and Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Stockbridge Antenna Measurement Facility is located 23 miles southwest of AFRL¹s Rome Research Site. This unique measurement facility is designed to evaluate the...

  8. Antenna Miniaturization in Complex Electromagnetic Environments

    DEFF Research Database (Denmark)

    Zhang, Jiaying

    improved compared to the 2-D planar electrically small loop antennas. Measurement Techniques for ESAs In this dissertation we proposed two novel measurement techniques for electrically small antennas. A modified Wheeler cap method for the radiation efficiency measurement of balanced electrically small....... Moreover, the modified Wheeler cap method for measurements of small antennas in complex environments is further developed. A cable-free impedance and gain measurement technique for electrically small antennas is also proposed. The electromagnetic model of this technique is derived by using the spherical...... wave expansion, and it is valid for arbitrary electrically small AUT at arbitrary distances between the probe and AUT. The whole measurement setup is modeled by the cascade of three coupled multipleort networks. The electromagnetic model, the simulation results, and the obtained measurement results...

  9. Visualization of electromagnetic exposure near LTE antennae

    Science.gov (United States)

    Zvezdina, M. Yu; Shokova, Yu A.; Nazarova, O. Yu; Al-Ali, H. T. A.; Al-Farhan, G. H. A.

    2018-01-01

    Technical progress in wireless data transfer has given an opportunity to apply information and communication technologies in various areas of economics. Digital economy is linked to the 4th and 5th generation mobile network deployment. The peculiarities of the abovementioned standards decrease BTS antenna range three times in dense developed areas and worsen electromagnetic background in big cities. In the paper the comparative assessment results for rooftop electromagnetic exposure near BTS LTE and BTS GSM antennae are given. It is shown, that at the same level of transmitter power, energy flux density for LTE standard is three times less than the one for GSM. Moreover, the conclusion is made that the rooftop could be considered safe for people for indefinite time if antenna is placed more than 5 meters above the rooftop. The value of antenna height is taken to be on the safe side, as it is required by an application of “preventive principle”.

  10. Phase shifter for antenna beam steering

    Energy Technology Data Exchange (ETDEWEB)

    Jindal, Ravi, E-mail: rjindal21@gmail.com [Master’s(MS) in System Electronics and General Electrical, Ecole Polytechnique of university of Nantes France, IETR, Nantes (France); Razban, Tchanguiz, E-mail: tchanguiz.razban-haghighi@univ-nantes.fr [Electronics and Telecommunication Institute of Rennes (IETR-UMR 6164), Ecole Polytechnique of university of Nantes France, IETR, Nantes (France)

    2016-03-09

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aim of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.

  11. GBO RF Anechoic Chamber & Antenna Test Range

    Data.gov (United States)

    Federal Laboratory Consortium — A shielded anechoic chamber measuring 15 by 15 by 37 feet is located in the Jansky Laboratory at Green Bank. This chamber has been outfitted as a far-field antenna...

  12. Phase shifter for antenna beam steering

    International Nuclear Information System (INIS)

    Jindal, Ravi; Razban, Tchanguiz

    2016-01-01

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aim of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.

  13. A Modal Description of Multiport Antennas

    Directory of Open Access Journals (Sweden)

    Jonathan J. Lynch

    2011-01-01

    Full Text Available This paper presents a modal description of multiport antennas that leads directly to a rigorous network representation and simple quadratic expressions for gain, efficiency, and effective area. The analysis shows that the transmitting and receiving properties of an element antenna array are exactly described by a 2×2 element scattering matrix together with a set of orthonormal mode functions and accounts for effects such as mutual coupling, scattering, reflection, and losses. The approach is quite general, only requiring that the antenna be finite and reciprocal. The scattering network description simplifies accounting of power flow while retaining a close connection to the physical antenna characteristics. The orthonormal mode functions provide a complete basis for radiated and received fields, facilitating beamforming. The theory provides rigorous definitions of input-output signals and links them to the underlying electromagnetics in a straightforward manner.

  14. Multiband Photonic Phased-Array Antenna

    Science.gov (United States)

    Tang, Suning

    2015-01-01

    A multiband phased-array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. Crystal Research, Inc., has developed a multiband photonic antenna that is based on a high-speed, optical, true-time-delay beamformer. It is capable of simultaneously steering multiple independent radio frequency (RF) beams in less than 1,000 nanoseconds. This high steering speed is 3 orders of magnitude faster than any existing optical beamformer. Unlike other approaches, this technology uses a single controlling device per operation band, eliminating the need for massive optical switches, laser diodes, and fiber Bragg gratings. More importantly, only one beamformer is needed for all antenna elements.

  15. Development of ceramic-free antenna feeder

    International Nuclear Information System (INIS)

    Moriyama, S.; Kimura, H.; Fujii, T.; Saigusa, M.; Arai, H.

    1994-01-01

    We have proposed a ceramics-free antenna feeder line employing a ridged waveguide as a local support for IC antenna of next-generation tokamaks. One fourth mock-up model of the all metal waveguide designed for the ITER ICRF system is fabricated and electrical characteristics of the model including the coaxial line - waveguide converter are measured. Power reflection coefficient of the model including the coax-waveguide converter to the input coaxial line is estimated to be less than 15% below the cut-off frequency of 107 MHz and less than 3% above the cut-off frequency. It is found that this ceramics-free antenna support employing a ridged waveguide is quite available for IC antenna of next-generation tokamaks. (author)

  16. PBG based terahertz antenna for aerospace applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on high-gain antennas in the terahertz spectrum and their optimization. The terahertz spectrum is an unallocated EM spectrum, which is being explored for a number of applications, especially to meet increasing demands of high data rates for wireless space communications. Space communication systems using the terahertz spectrum can resolve the problems of limited bandwidth of present wireless communications without radio-frequency interference. This book describes design of such high-gain antennas and their performance enhancement using photonic band gap (PBG) substrates. Further, optimization of antenna models using evolutionary algorithm based computational engine has been included. The optimized high-performance compact antenna may be used for various wireless applications, such as inter-orbital communications and on-vehicle satellite communications.

  17. 3D printed helical antenna with lens

    KAUST Repository

    Farooqui, Muhammad Fahad

    2016-12-19

    The gain of an antenna can be enhanced through the integration of a lens, however this technique has traditionally been restricted to planar antennas due to fabrication limitations of standard manufacturing processes. Here, with a unique combination of 3D and 2D inkjet printing of dielectric and metallic inks respectively, we demonstrate a Fresnel lens that has been monolithically integrated to a non-planar antenna (helix) for the first time. Antenna measurements show that the integration of a Fresnel lens enhances the gain of a 2-turn helix by around 4.6 dB giving a peak gain of about 12.9 dBi at 8.8 GHz.

  18. Hybrid Methods in Designing Sierpinski Gasket Antennas

    Directory of Open Access Journals (Sweden)

    Mudrik Alaydrus

    2010-12-01

    Full Text Available Sierpinki gasket antennas as example of fractal antennas show multiband characteristics. The computer simulation of Sierpinksi gasket monopole with finite ground needs prohibitively large computer memory and more computational time. Hybrid methods consist of surface integral equation method and physical optics or uniform geometrical theory of diffraction should alleviate this computational burdens. The so-called full hybridization of the different methods with modifying the incoming electromagnetic waves in case of hybrid method surface integral equation method and physical optics and modification of the Greens function for hybrid method surface integral equation method and uniform geometrical theory of diffraction plays the central role in the observation. Comparison between results of different methods are given and also measurements of three Sierpinksi gasket antennas. The multiband characteristics of the antennas still can be seen with some reduction and enhancement of resonances.

  19. Resonant-bar gravitational radiation antennas

    International Nuclear Information System (INIS)

    Blair, D.G.

    1987-01-01

    This paper reviews the concept of gravitational radiation, and describes the worldwide research programme for the development of high-sensitivity resonant-bar antennas which are aimed at detecting gravitational radiation from astrophysical sources. (author)

  20. Focused Application Software for Ferrite Patch Antennas

    National Research Council Canada - National Science Library

    Trott, Keith

    1999-01-01

    ... (brick and tetrahedral elements) are combined by MRC via a graphical user interface (GUI) into a user friendly code capable of modeling conformal antennas with ferrite sub and superstrates recessed in planar surfaces.

  1. Radiation Pattern of Chair Armed Microstrip Antenna

    Science.gov (United States)

    Mishra, Rabindra Kishore; Sahu, Kumar Satyabrat

    2016-12-01

    This work analyzes planar antenna conformable to chair arm shaped surfaces for WLAN application. Closed form expressions for its radiation pattern are developed and validated using measurements on prototype and commercial EM code at 2.4 GHz.

  2. Compact, Frequency Reconfigurable, Printed Monopole Antenna

    Directory of Open Access Journals (Sweden)

    Ricardo Gonçalves

    2012-01-01

    Full Text Available This paper proposes a possible implementation of a compact printed monopole antenna, useful to operate in UMTS and WLAN bands. In order to accomplish that, a miniaturization technique based on the application of chip inductors is used in conjunction with frequency reconfiguration capability. The chip inductors change the impedance response of the monopole, allowing to reduce the resonant frequency. In order to be able to operate the antenna in these two different frequencies, an antenna reconfiguration technique based on PIN diodes is applied. This procedure allows the change of the active form of the antenna leading to a shift in the resonant frequency. The prototype measurements show good agreement with the simulation results.

  3. Resonance spectra of diabolo optical antenna arrays

    Directory of Open Access Journals (Sweden)

    Hong Guo

    2015-10-01

    Full Text Available A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  4. Heating profiles on ICRF antenna Faraday shields

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Hahs, C.L.; Riemer, B.W.; Ryan, P.M.; Williamson, D.E.

    1991-01-01

    A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. A high-heat-flux, uncooled Faraday shield has also been designed for the fast-wave current drive (FWCD) antenna on D3-D. For both components, the improved understanding of the heating profiles made it possible to design for heat fluxes that would otherwise have been too close to mechanically established limits. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the D3-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed. 3 refs., 6 figs., 2 tabs

  5. Deep Space Network Antenna Logic Controller

    Science.gov (United States)

    Ahlstrom, Harlow; Morgan, Scott; Hames, Peter; Strain, Martha; Owen, Christopher; Shimizu, Kenneth; Wilson, Karen; Shaller, David; Doktomomtaz, Said; Leung, Patrick

    2007-01-01

    The Antenna Logic Controller (ALC) software controls and monitors the motion control equipment of the 4,000-metric-ton structure of the Deep Space Network 70-meter antenna. This program coordinates the control of 42 hydraulic pumps, while monitoring several interlocks for personnel and equipment safety. Remote operation of the ALC runs via the Antenna Monitor & Control (AMC) computer, which orchestrates the tracking functions of the entire antenna. This software provides a graphical user interface for local control, monitoring, and identification of faults as well as, at a high level, providing for the digital control of the axis brakes so that the servo of the AMC may control the motion of the antenna. Specific functions of the ALC also include routines for startup in cold weather, controlled shutdown for both normal and fault situations, and pump switching on failure. The increased monitoring, the ability to trend key performance characteristics, the improved fault detection and recovery, the centralization of all control at a single panel, and the simplification of the user interface have all reduced the required workforce to run 70-meter antennas. The ALC also increases the antenna availability by reducing the time required to start up the antenna, to diagnose faults, and by providing additional insight into the performance of key parameters that aid in preventive maintenance to avoid key element failure. The ALC User Display (AUD) is a graphical user interface with hierarchical display structure, which provides high-level status information to the operation of the ALC, as well as detailed information for virtually all aspects of the ALC via drill-down displays. The operational status of an item, be it a function or assembly, is shown in the higher-level display. By pressing the item on the display screen, a new screen opens to show more detail of the function/assembly. Navigation tools and the map button allow immediate access to all screens.

  6. Designing a fractal antenna of 2400 MHz

    International Nuclear Information System (INIS)

    Miranda Hamburger, Fabio

    2012-01-01

    The design of a fractal antenna with 2400 MHz of frequency has been studied. The fractal used is described by Waclaw Spierpi.ski. The initial figure, also known as seed, is divided using equilateral triangles with the aim of obtaining a perimeter similar to a meaningful portion of wave length. The use of λ to establish an ideal perimeter has reduced the radiation resistance. The adequate number of iterations needed to design the antenna is calculated based on λ. (author) [es

  7. 3D Printing Electrically Small Spherical Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2013-01-01

    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  8. Time-Zone-Pattern Satellite Broadcasting Antenna

    Science.gov (United States)

    Galindo, Victor; Rahmat-Samii, Yahya; Imbriale, William A.; Cohen, Herb; Cagnon, Ronald R.

    1988-01-01

    Direct-broadcast satellite antenna designs provide contoured beams to match four time zones in 48 contiguous states and spot beams for Alaska, Hawaii, and Puerto Rico presented in 29-page report. Includes descriptions of procedures used to arrive at optimized designs. Arrangements, amplitudes, and phases of antenna feeds presented in tables. Gain contours shown graphically. Additional tables of performance data given for cities in service area of Eastern satellite.

  9. A note on antennas: Definitions and methods

    DEFF Research Database (Denmark)

    Bach, Henning

    1987-01-01

    Definitions of scattered and diffracted fields, originally given by R. F. Millar, are reviewed and supplemented. The definitions are used to discuss relations between results obtained by commonly used pattern prediction methods for reflector antennas.......Definitions of scattered and diffracted fields, originally given by R. F. Millar, are reviewed and supplemented. The definitions are used to discuss relations between results obtained by commonly used pattern prediction methods for reflector antennas....

  10. International Conference on Antenna Theory and Techniques

    Science.gov (United States)

    1999-12-03

    Krüger, Introduction to Solar radio astronomy and radio physics.- D.Reidel publishing company. Dordrecht: Hol- land/Boston: USA. London: England. 1982...REFERENCES 1. M. S. Juk, J. B. Molochkov Designing lens, scan- ning, broadband of antennae and feeder devices. - Moscow: Energia , 1973. - 440 p...system of this antenna was exe- cuted. Besides the thermal deformations of a mirror caused by daytime solar heating were investigated as well as

  11. Magneto-Electric Dipole Antenna Arrays

    OpenAIRE

    Gupta, Shulabh; Jiang, Li Jun; Caloz, Christophe

    2014-01-01

    A planar magneto-electric (ME) dipole antenna array is proposed and demonstrated by both full-wave analysis and experiments. The proposed structure leverages the infinite wavelength propagation characteristic of composite right/left-handed (CRLH) transmission lines to form high-gain magnetic radiators combined with radial conventional electric radiators, where the overall structure is excited by a single differential feed. The traveling-wave type nature of the proposed ME-dipole antenna enabl...

  12. Helicon plasma with additional immersed antenna

    International Nuclear Information System (INIS)

    Aanesland, A; Charles, C; Boswell, R W; Fredriksen, A

    2004-01-01

    A 'primary' RF power (H-power) at 13.56 MHz is coupled to a plasma source excited by an external double saddle field Helicon antenna. A 'secondary' RF power (S-power), also at 13.56 MHz but with variable phase, is additionally coupled by inserting a second antenna in contact with the plasma through one end of the source. The immersed antenna can be grounded or floating, allowing a self-bias to form in the latter case. Changes in the plasma density and electron temperature are measured in both cases with varying power on the immersed antenna. The plasma potential increases dramatically with S-power in the grounded case, and is found to be similar in size to the sum of the plasma potential and the self-bias formed in the floating case for all powers. Hence, the sheath between the immersed antenna and the plasma is shown to be equal in both the grounded and floating cases. Although the power efficiency does not vary significantly as a function of the S-power, it is consistently lower for the grounded case possibly as a result of a dc current to ground. The plasma parameters are drastically changed as the phase between the two antennae are varied (floating case), and a sinusoidal function was fitted to the plasma parameters as a function of the phase shift. The calculated power loss to the antenna indicates that the power efficiency of the immersed antenna, as the phase is changed, is altered from 80% to 10%

  13. An Overview of Antenna R&D Efforts in Support of NASA's Space Exploration Vision

    Science.gov (United States)

    Manning, Robert M.

    2007-01-01

    This presentation reviews the research and development work being conducted at Glenn Research Center in the area of antennas for space exploration. In particular, after reviewing the related goals of the agency, antenna technology development at GRC is discussed. The antennas to be presented are large aperture inflatable antennas, phased array antennas, a 256 element Ka-band antenna, a ferroelectric reflectarray antenna, multibeam antennas, and several small antennas.

  14. Modeling of column apparatus processes

    CERN Document Server

    Boyadjiev, Christo; Boyadjiev, Boyan; Popova-Krumova, Petya

    2016-01-01

    This book presents a new approach for the modeling of chemical and interphase mass transfer processes in industrial column apparatuses, using convection-diffusion and average-concentration models. The convection-diffusion type models are used for a qualitative analysis of the processes and to assess the main, small and slight physical effects, and then reject the slight effects. As a result, the process mechanism can be identified. It also introduces average concentration models for quantitative analysis, which use the average values of the velocity and concentration over the cross-sectional area of the column. The new models are used to analyze different processes (simple and complex chemical reactions, absorption, adsorption and catalytic reactions), and make it possible to model the processes of gas purification with sulfur dioxide, which form the basis of several patents.

  15. Printing of Wearable Antenna on Textile

    Directory of Open Access Journals (Sweden)

    Khirotdin Rd. Khairilhijra

    2018-01-01

    Full Text Available A wearable antenna which is meant to be a part of the clothing used for communication purposes includes tracking, navigation and mobile computing has been seen in demand due to the recent miniaturization of wireless devices. Printing of conductive ink provides flexibility properties on electronics thus allowing it to be used on conformal surfaces. However, the current printing techniques mostly suffer from ink incompatibility and limited of substrates to be printed with. Hence, this paper intend to discloses the printing of wearable antenna using alternative technique via syringe-based deposition system with conductive ink on textile. A validation between simulation and measurement of return loss, (S11 and radiation pattern of the antenna printed is also performed. It was found that a functional antenna is successfully printed on textile since the performances obtained are as expected. The antenna resonated at a minimum resonant frequency of 1.82 GHz which the S11 gathered at-18.90 dB. The radiation pattern for both simulation and measurement is as predicted since both have a larger magnitude of the main lobe than the side lobe. The magnitude of the main lobe from measurement was observed to be 8.83 dB higher than the magnitude of the main lobe of the simulation which is only 3.77 dB. It is proven that the syringe-based deposition system is capable of printing functional antenna on textile.

  16. Compact super-wideband optical antenna

    Science.gov (United States)

    Wang, Wen C.; Forber, Richard; Bui, Kenneth

    2009-05-01

    We present progress on advanced optical antennas, which are compact, small size-weight-power units capable to receive super wideband radiated RF signals from 30 MHz to over 3 GHz. Based on electro-optical modulation of fiber-coupled guided wave light, these dielectric E-field sensors exhibit dipole-like azimuthal omni directionality, and combine small size (channels, and high EO sensing materials. The antenna system photonic link consists of a 1550 nm PM fiber-pigtailed laser, a specialized optical modulator antenna in channel waveguide format, a wideband photoreceiver, and optical phase stabilizing components. The optical modulator antenna design employs a dielectric (no electrode) Mach-Zehnder interferometer (MZI) arranged so that sensing RF bandwidth is not limited by optical transit time effects, and MZI phase drift is bias stabilized. For a prototype optical antenna system that is < 100 in3, < 10 W, < 5 lbs, we present test data on sensitivity (< 20 mV/m-Hz1/2), RF bandwidth, and antenna directionality, and show good agreement with theoretical predictions.

  17. Antenna development for astroparticle and radioastronomy experiments

    International Nuclear Information System (INIS)

    Charrier, Didier

    2012-01-01

    An active dipole antenna is in operation since five years at the Nançay radio Observatory (France) in the CODALEMA experiment. A new version of this active antenna has been developed, whose shape gave its name of “Butterfly” antenna. Compared to the previous version, this new antenna has been designed to be more efficient at low frequencies, which could permit the detection of atmospheric showers at large distances. Despite a size of only 2 m×1 m in each polarization, its sensitivity is excellent in the 30-80 MHz bandwidth. Three antennas in dual polarization were installed on the CODALEMA experiment, and four other have been recently installed on the Auger area in the scope of the AERA project. The main characteristics of the Butterfly antenna are detailed with an emphasis on its key features which make it a good candidate for the low frequency radioastronomy and the radio detection of transients induced by high energy cosmic rays.

  18. Three-dimensional analysis of antenna sheaths

    International Nuclear Information System (INIS)

    Myra, J.R.; D'Ippolito, D.A.; Ho, Y.L.

    1996-01-01

    The present work is motivated by the importance of r.f. sheaths in determining the antenna-plasma interaction and the sensitivity of the sheaths to the complicated three-dimensional structure of modern ion cyclotron range of frequency (ICRF) antennas. To analyze r.f. sheaths on the plasma facing regions of the launcher, we first calculate the contact points of the tokamak magnetic field lines on the surface of the antenna Faraday screen and nearby limiters for realistic three-dimensional magnetic flux surface and antenna geometries. Next, the r.f. voltage that can drive sheaths at the contact points is determined and used to assess the resulting sheath power dissipation, r.f.-driven sputtering, and r.f.-induced convective cells (which produce edge profile modification). The calculations are embodied in a computer code, ANSAT (antenna sheath analysis tool), and sample ANSAT runs are shown to highlight the physics- and geometry-dependent characteristics of the r.f. sheaths and their relationship to the antenna design. One use of ANSAT is therefore as a design tool, to assess the strengths and weaknesses of a given design with respect to critical voltage handling and edge plasma interaction issues. Additionally, examples are presented where ANSAT has been useful in the analysis and interpretation of ICRF experiments (orig.)

  19. Studies of column supported towers

    International Nuclear Information System (INIS)

    Chauvel, D.; Costaz, J.-L.

    1991-01-01

    As a result of a research and development programme into the civil engineering of cooling towers launched in 1978 by Electricite de France, very high cooling towers were built at Golfech and Chooz, in France, using column supports. This paper discusses the evolution of this new type of support from classical diagonal supports, presents some of the results of design calculations and survey measurements taken during construction of the shell and analyses the behaviour of the structure. (author)

  20. SPEEDUPtrademark ion exchange column model

    International Nuclear Information System (INIS)

    Hang, T.

    2000-01-01

    A transient model to describe the process of loading a solute onto the granular fixed bed in an ion exchange (IX) column has been developed using the SpeedUptrademark software package. SpeedUp offers the advantage of smooth integration into other existing SpeedUp flowsheet models. The mathematical algorithm of a porous particle diffusion model was adopted to account for convection, axial dispersion, film mass transfer, and pore diffusion. The method of orthogonal collocation on finite elements was employed to solve the governing transport equations. The model allows the use of a non-linear Langmuir isotherm based on an effective binary ionic exchange process. The SpeedUp column model was tested by comparing to the analytical solutions of three transport problems from the ion exchange literature. In addition, a sample calculation of a train of three crystalline silicotitanate (CST) IX columns in series was made using both the SpeedUp model and Purdue University's VERSE-LC code. All test cases showed excellent agreement between the SpeedUp model results and the test data. The model can be readily used for SuperLigtrademark ion exchange resins, once the experimental data are complete

  1. One- and two-dimensional antenna arrays for microwave wireless power transfer (MWPT) systems and dual-antenna transceivers

    Science.gov (United States)

    Lin, Yo-Sheng; Hu, Chun-Hao; Chang, Chi-Ho; Tsao, Ping-Chang

    2018-06-01

    In this work, we demonstrate novel one-dimensional (1D) and two-dimensional (2D) antenna arrays for both microwave wireless power transfer (MWPT) systems and dual-antenna transceivers. The antenna array can be used as the MWPT receiving antenna of an integrated MWPT and Bluetooth (BLE) communication module (MWPT-BLE module) for smart CNC (computer numerical control) spindle incorporated with the cloud computing system SkyMars. The 2D antenna array has n rows of 1 × m 1D array, and each array is composed of multiple (m) differential feeding antenna elements. Each differential feeding antenna element is a differential feeding structure with a microstrip antenna stripe. The stripe length is shorter than one wavelength to minimise the antenna area and to prevent being excited to a high-order mode. That is, the differential feeding antenna element can suppress the even mode. The mutual coupling between the antenna elements can be suppressed, and the isolation between the receiver and the transmitter can be enhanced. An inclination angle of the main beam aligns with the broadside, and the main beam is further concentrated and shrunk at the elevation direction. Moreover, if more differential feeding antenna elements are used, antenna gain and isolation can be further enhanced. The excellent performance of the proposed antenna arrays indicates that they are suitable for both MWPT systems and dual-antenna transceivers.

  2. Two generalizations of column-convex polygons

    International Nuclear Information System (INIS)

    Feretic, Svjetlan; Guttmann, Anthony J

    2009-01-01

    Column-convex polygons were first counted by area several decades ago, and the result was found to be a simple, rational, generating function. In this work we generalize that result. Let a p-column polyomino be a polyomino whose columns can have 1, 2, ..., p connected components. Then column-convex polygons are equivalent to 1-convex polyominoes. The area generating function of even the simplest generalization, namely 2-column polyominoes, is unlikely to be solvable. We therefore define two classes of polyominoes which interpolate between column-convex polygons and 2-column polyominoes. We derive the area generating functions of those two classes, using extensions of existing algorithms. The growth constants of both classes are greater than the growth constant of column-convex polyominoes. Rather tight lower bounds on the growth constants complement a comprehensive asymptotic analysis.

  3. Performance Enhancement of the Patch Antennas Applying Micromachining Technology

    Directory of Open Access Journals (Sweden)

    Mohamed N. Azermanesh

    2007-09-01

    Full Text Available This paper reports on the application of micromachining technology for performance enhancement of two types of compact antennas which are becoming a common practice in microsystems. Shorted patch antennas (SPA and folded shorted patch antennas operating in the 5-6 GHz ISM band, with intended application in short-range wireless communications, are considered. The electrical length of antennas are modified by etching the substrate of the antennas, thus providing a new degree of freedom to control the antenna operating properties, which is the main novelty of our work. The gain and bandwidth of the antennas are increased by increasing the etching depth. However, etching the substrate affects the operating frequency as well. To keep the operating frequency at a pre-specified value, the dimension of the antennas must be increased by deepening the etching depth. Therefore, a trade off between the performance enhancement of the antennas and the dimensional enlargement is required.

  4. Analysis of equivalent antenna based on FDTD method

    Directory of Open Access Journals (Sweden)

    Yun-xing Yang

    2014-09-01

    Full Text Available An equivalent microstrip antenna used in radio proximity fuse is presented. The design of this antenna is based on multilayer multi-permittivity dielectric substrate which is analyzed by finite difference time domain (FDTD method. Equivalent iterative formula is modified in the condition of cylindrical coordinate system. The mixed substrate which contains two kinds of media (one of them is airtakes the place of original single substrate. The results of equivalent antenna simulation show that the resonant frequency of equivalent antenna is similar to that of the original antenna. The validity of analysis can be validated by means of antenna resonant frequency formula. Two antennas have same radiation pattern and similar gain. This method can be used to reduce the weight of antenna, which is significant to the design of missile-borne antenna.

  5. Characteristics of the wire biconical antenna used for EMC measurements

    Science.gov (United States)

    Austin, Brian A.; Fourie, Andre P. C.

    1991-08-01

    The characteristics of a wire biconical antenna that determine its antenna factor were computed by using the method of moments code NEC-2. A fairly extensive validation exercise was conducted from which a suitable computer model was derived. The input impedance, gain, and radiation patterns of the antenna were computed for special cases where the biconical antenna is used above a conducting ground plane for open-field EMC (electromagnetic compatibility) testing. The effects of height above the ground plane and polarization of the antenna on these parameters were found and the antenna factor was corrected for them. The current distribution along the antenna elements was also examined, and it was found that significant pattern distortion can occur at some frequencies when a horizontal wire biconical antenna is used close to the ground. These results will allow this broadband antenna to be used with confidence in applications where previously only resonant dipoles were specified.

  6. Performance Verification on UWB Antennas for Breast Cancer Detection

    Directory of Open Access Journals (Sweden)

    Vijayasarveswari V.

    2017-01-01

    Full Text Available Breast cancer is a common disease among women and death figure is continuing to increase. Early breast cancer detection is very important. Ultra wide-band (UWB is the promising candidate for short communication applications. This paper presents the performance of different types of UWB antennas for breast cancer detection. Two types of antennas are used i.e: UWB pyramidal antenna and UWB horn antenna. These antennas are used to transmit and receive the UWB signal. The collected signals are fed into developed neural network module to measure the performance efficiency of each antenna. The average detection efficiency is 88.46% and 87.55% for UWB pyramidal antenna and UWB horn antenna respectively. These antennas can be used to detect breast cancer in the early stage and save precious lives.

  7. Superconducting microstrip antennas: An experimental comparison of two feeding methods

    International Nuclear Information System (INIS)

    Richard, M.A.; Claspy, P.C.; Bhasin, K.B.

    1993-01-01

    The recent discovery of high-temperature superconductors (HTS's) has generated a substantial amount of interest in microstrip antenna applications. However, the high permittivity of substrates compatible with HTS causes difficulty in feeding such antennas because of the high patch edge impedance. In this paper, two methods for feeding HTS microstrip antennas at K and Ka-band are examined. Superconducting microstrip antennas that are directly coupled and gap-coupled to a microstrip transmission line have been designed and fabricated on lanthanum aluminate substrates using Y-Ba-Cu-O superconducting thin films. Measurements from these antennas, including input impedance, bandwidth, efficiency, and patterns, are presented and compared with published models. The measured results demonstrate that usable antennas can be constructed using either of these architectures, although the antennas suffer from narrow bandwidths. In each case, the HTS antenna shows a substantial improvement over an identical antenna made with normal metals

  8. 60 GHz Antenna Diagnostics from Planar Near Field Antenna Measurement Without External Frequency Conversion

    DEFF Research Database (Denmark)

    Popa, Paula Irina; Pivnenko, Sergey; Breinbjerg, Olav

    2015-01-01

    ,J.M. Nielsen, O. Breinbjerg, 60 GHz Antenna Measurement Setup using a VNA without External Frequency Conversion,36th Annual Symposium of the Antenna Measurement Technique Association ,October 12-17,Tucson, Arizona, 2014]. In this work we extend the validation of this 60 GHz planar near-field (PNF) set...

  9. Vertically Polarized Omnidirectional Printed Slot Loop AntennaPrinted Slot Loop Antenna (invited)

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper

    2015-01-01

    and in-phase fields in the slot in order to obtain an omnidirectional radiation pattern. The antenna is designed for the 2.45 GHz Industrial, Scientific and Medical band. Applications of the antenna are many. One is for on-body applications since it is ideal for launching a creeping waves due...

  10. 29 CFR 1926.755 - Column anchorage.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Column anchorage. 1926.755 Section 1926.755 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.755 Column anchorage. (a) General requirements for erection stability. (1) All columns shall be anchored by a minimum of 4 anchor...

  11. Adsorption columns for use in radioimmunoassays

    International Nuclear Information System (INIS)

    1976-01-01

    Adsorption columns are provided which can be utilized in radioimmunoassay systems such as those involving the separation of antibody-antigen complexes from free antigens. The preparation of the columns includes the treatment of retaining substrate material to render it hydrophilic, preparation and degassing of the separation material and loading the column

  12. Thermal process of an air column

    International Nuclear Information System (INIS)

    Lee, F.T.

    1994-01-01

    Thermal process of a hot air column is discussed based on laws of thermodynamics. The kinetic motion of the air mass in the column can be used as a power generator. Alternatively, the column can also function as a exhaust/cooler

  13. Pulsed energy storage antennas for ionospheric modification

    Directory of Open Access Journals (Sweden)

    R. F. Wuerker

    2005-01-01

    Full Text Available Interesting, "new", very high peak-power pulsed radio frequency (RF antennas have been assembled at the HIPAS Observatory (Alaska, USA and also at the University of California at Los Angeles (UCLA, USA; namely, a pair of quarter wavelength (λ/4 long cylindrical conductors separated by a high voltage spark gap. Such a combination can radiate multi-megawatt RF pulses whenever the spark gap fires. The antenna at HIPAS is 53m long (λ/2 with a central pressurized SF6 spark gap. It is mounted 5 meters (λ/21 above a ground plane. It radiates at 2.85MHz. The two antenna halves are charged to ± high voltages by a Tesla coil. Spark gap voltages of 0.4 MV (at the instant of spark gap closure give peak RF currents of ~1200A which correspond to ~14 MW peak total radiated power, or ~56 MW of Effective Radiated Power (ERP. The RF pulse train is initially square, decaying exponentially in time with Qs of ~50. Two similar but smaller 80-MHz antennas were assembled at UCLA to demonstrate their synchronization with a pulsed laser which fired the spark gaps in the two antennas simultanoeously. These experiments show that one can anticipate a pulsed array of laser synchronized antennas having a coherent Effective Radiated Power (ERP>10GW. One can even reconsider a pulse array radiating at 1.43MHz which corresponds to the electron gyrofrequency in the Earth's magnetic field at ~200km altitude. These "new" pulsed high power antennas are hauntingly similar to the ones used originally by Hertz (1857-1894 during his (1886-1889 seminal verifications of Maxwell's (1864 theory of electrodynamics.

  14. Pulsed energy storage antennas for ionospheric modification

    Directory of Open Access Journals (Sweden)

    R. F. Wuerker

    2005-01-01

    Full Text Available Interesting, "new", very high peak-power pulsed radio frequency (RF antennas have been assembled at the HIPAS Observatory (Alaska, USA and also at the University of California at Los Angeles (UCLA, USA; namely, a pair of quarter wavelength (λ/4 long cylindrical conductors separated by a high voltage spark gap. Such a combination can radiate multi-megawatt RF pulses whenever the spark gap fires. The antenna at HIPAS is 53m long (λ/2 with a central pressurized SF6 spark gap. It is mounted 5 meters (λ/21 above a ground plane. It radiates at 2.85MHz. The two antenna halves are charged to ± high voltages by a Tesla coil. Spark gap voltages of 0.4 MV (at the instant of spark gap closure give peak RF currents of ~1200A which correspond to ~14 MW peak total radiated power, or ~56 MW of Effective Radiated Power (ERP. The RF pulse train is initially square, decaying exponentially in time with Qs of ~50. Two similar but smaller 80-MHz antennas were assembled at UCLA to demonstrate their synchronization with a pulsed laser which fired the spark gaps in the two antennas simultanoeously. These experiments show that one can anticipate a pulsed array of laser synchronized antennas having a coherent Effective Radiated Power (ERP>10GW. One can even reconsider a pulse array radiating at 1.43MHz which corresponds to the electron gyrofrequency in the Earth's magnetic field at ~200km altitude. These "new" pulsed high power antennas are hauntingly similar to the ones used originally by Hertz (1857-1894 during his (1886-1889 seminal verifications of Maxwell's (1864 theory of electrodynamics.

  15. Dielectric optical antenna thermal emitters and metamaterials

    Science.gov (United States)

    Schuller, Jonathan Aaron

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this thesis, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial. We further show that these particles can serve as "broadcasting" antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas.

  16. Dielectric Optical Antenna Emitters and Metamaterials

    Science.gov (United States)

    Schuller, Jon

    2009-03-01

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this talk, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial [1]. We further show that these particles can serve as ``broadcasting'' antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas and discuss extensions of the demonstrated concepts to different materials systems and frequency regimes. [1] J.A. Schuller, et al., Phys. Rev. Lett. 99, 107401 (2007)

  17. Experimental Research on Seismic Performance of a New-Type of R/C Beam-Column Joints with End Plates

    Directory of Open Access Journals (Sweden)

    Shufeng Li

    2017-01-01

    Full Text Available This paper presents a new-type of fabricated beam-column connections with end plates. The joint details are as follows: the concrete beams are connected to column by end plates and six high strength long bolts passing through the core area. In addition, in order to increase the stiffness and shear strength, stirrups are replaced by the steel plate hoop in the core zone. To examine the fail behavior of the fabricated beam-column connection specimens, a quasi-static test is conducted for nine full-scale models to obtain the hysteresis curves, skeleton curves, ductility, energy dissipation capacity, and other seismic indicators. The experimental results show that all specimens failed in bending in a malleable way with a beam plastic hinge and the hysteresis curves are excellently plump for the end plate connections. From the seismic indexes, the fabricated connection specimens exhibit better seismic performance, which can provide reference for the application of prefabricated frame structure in the earthquake area.

  18. U Patch Antenna for RFID and Wireless Applications

    International Nuclear Information System (INIS)

    Abi Saad, R.; Melhem, Z.; Nader, C.; Zaatar, Y.; Zaouk, D.

    2011-01-01

    in this paper, we propose a new multi-band patch antenna structure for embedded RFID (Radio Frequency Identification) readers and wireless communications. The proposed antenna is a dual band microstrip patch antenna using U-slot geometry. The operating frequencies of the proposed antenna are chosen as 2.4 and 0.9 (GHz), obtained by optimizing the physical dimensions of the U-slot. Several parameters have been investigated using Ansoft Designer software. The antenna is fed through a quarter wavelength transformer for impedance matching. An additional layer of alumina is added above the surface of the conductors to increase the performance of the antenna. (author)

  19. A Modal Approach to Compact MIMO Antenna Design

    Science.gov (United States)

    Yang, Binbin

    MIMO (Multiple-Input Multiple-Output) technology offers new possibilities for wireless communication through transmission over multiple spatial channels, and enables linear increases in spectral efficiency as the number of the transmitting and receiving antennas increases. However, the physical implementation of such systems in compact devices encounters many physical constraints mainly from the design of multi-antennas. First, an antenna's bandwidth decreases dramatically as its electrical size reduces, a fact known as antenna Q limit; secondly, multiple antennas closely spaced tend to couple with each other, undermining MIMO performance. Though different MIMO antenna designs have been proposed in the literature, there is still a lack of a systematic design methodology and knowledge of performance limits. In this dissertation, we employ characteristic mode theory (CMT) as a powerful tool for MIMO antenna analysis and design. CMT allows us to examine each physical mode of the antenna aperture, and to access its many physical parameters without even exciting the antenna. For the first time, we propose efficient circuit models for MIMO antennas of arbitrary geometry using this modal decomposition technique. Those circuit models demonstrate the powerful physical insight of CMT for MIMO antenna modeling, and simplify MIMO antenna design problem to just the design of specific antenna structural modes and a modal feed network, making possible the separate design of antenna aperture and feeds. We therefore develop a feed-independent shape synthesis technique for optimization of broadband multi-mode apertures. Combining the shape synthesis and circuit modeling techniques for MIMO antennas, we propose a shape-first feed-next design methodology for MIMO antennas, and designed and fabricated two planar MIMO antennas, each occupying an aperture much smaller than the regular size of lambda/2 x lambda/2. Facilitated by the newly developed source formulation for antenna stored

  20. Inkjet-Printed Ultra Wide Band Fractal Antennas

    KAUST Repository

    Maza, Armando Rodriguez

    2012-05-01

    In this work, Paper-based inkjet-printed Ultra-wide band (UWB) fractal antennas are presented. Three new designs, a combined UWB fractal monopole based on the fourth order Koch Snowflake fractal which utilizes a Sierpinski Gasket fractal for ink reduction, a Cantor-based fractal antenna which performs a larger bandwidth compared to previously published UWB Cantor fractal monopole antenna, and a 3D loop fractal antenna which attains miniaturization, impedance matching and multiband characteristics. It is shown that fractals prove to be a successful method of reducing fabrication cost in inkjet printed antennas while retaining or enhancing printed antenna performance.

  1. GPR Diagnostics of columns in archaeological contexts

    Science.gov (United States)

    Soldovieri, Francesco; Masini, Nicola; Persico, Raffaele; Catapano, Ilaria

    2017-04-01

    columns during a previous work carried out about thirty years ago and whose memory documentation was lost. Both the GPR surveys were carried out by using the K2-RIS IDS system equipped with a high frequency antenna, working at the central frequency of 2GHz. Moreover, the imaging results have been obtained by processing the raw data by means of the end-user friendly software interface designed at the Institute for Electromagnetic Sensing of the Environment - National Research Council of Italy. This interface was some years ago to make possible a simple management of 2D and 3D microwave tomographic approaches based on the Born approximation [4-6].The GPR surveys have confirmed the presence of metallic elements inside few of the investigated columns. [1] Masini N., Nuzzo L., Rizzo E. 2007, GPR investigations for the study and the restoration of the Rose Window of Troia Cathedral (Southern Italy), Near Surface Geophysics, 5 (5), pp. 287-300, doi: 10.3997/1873-0604.2007010 [2] Leucci G., Masini N., Persico R., Soldovieri F. 2011. GPR and sonic tomography for structural restoration: the case of the cathedral of Tricarico, Journal of Geophysics and Engineering, 8 (3), 76-92, doi: 10.1088/1742-2132/8/3/S08 [3] Masini N., Persico R., Rizzo E., Calia A., Giannotta M.T., Quarta G., Pagliuca A. 2010, Integrated Techniques for Analysis and Monitoring of Historical Monuments: the case of S.Giovanni al Sepolcro in Brindisi (Southern Italy), Near Surface Geophysics, 8(5), 423-432, doi:10.3997/1873-0604.2010012 [4] F. Soldovieri, J. Hugenschmidt, R. Persico, G. Leone, A linear inverse scattering algorithm for realistic GPR applications. Near Surf. Geophys. 5(1), 29-42 (2007) [5] I. Catapano, A. Affinito, G. Gennarelli, F.di Maio, A. Loperte, F. Soldovieri, "Full three-dimensional imaging via ground penetrating radar: assessment in controlled conditions and on field for archaeological prospecting", Appl. Phys. A, 2013 [6] I. Catapano, A. Affinito, F. Soldovieri, A user friendly interface

  2. High efficiency carbon nanotube thread antennas

    Science.gov (United States)

    Amram Bengio, E.; Senic, Damir; Taylor, Lauren W.; Tsentalovich, Dmitri E.; Chen, Peiyu; Holloway, Christopher L.; Babakhani, Aydin; Long, Christian J.; Novotny, David R.; Booth, James C.; Orloff, Nathan D.; Pasquali, Matteo

    2017-10-01

    Although previous research has explored the underlying theory of high-frequency behavior of carbon nanotubes (CNTs) and CNT bundles for antennas, there is a gap in the literature for direct experimental measurements of radiation efficiency. These measurements are crucial for any practical application of CNT materials in wireless communication. In this letter, we report a measurement technique to accurately characterize the radiation efficiency of λ/4 monopole antennas made from the CNT thread. We measure the highest absolute values of radiation efficiency for CNT antennas of any type, matching that of copper wire. To capture the weight savings, we propose a specific radiation efficiency metric and show that these CNT antennas exceed copper's performance by over an order of magnitude at 1 GHz and 2.4 GHz. We also report direct experimental observation that, contrary to metals, the radiation efficiency of the CNT thread improves significantly at higher frequencies. These results pave the way for practical applications of CNT thread antennas, particularly in the aerospace and wearable electronics industries where weight saving is a priority.

  3. Comparison of Growth Performance of Antibiotic-free Yorkshire Crossbreds Sired by Berkshire, Large Black, and Tamworth Breeds Raised in Hoop Structures

    Directory of Open Access Journals (Sweden)

    N. Whitley

    2012-10-01

    Full Text Available The objective of this study was to compare body weight, ADG, and feed:gain ratio of antibiotic-free pigs from Yorkshire dams and sired by Yorkshire (YY, Berkshire (BY, Large Black (LBY or Tamworth (TY boars. All the crossbred pigs in each of three trials were raised as one group from weaning to finishing in the same deep-bedded hoop, providing a comfortable environment for the animals which allowed rooting and other natural behaviors. Birth, weaning and litter weights were measured and recorded. From approximately 50 kg to market weight (125 kg, feed intake and body weights were recorded manually (body weight or using a FIRE (Feed Intake Recording Equipment, Osborne Industries Inc. Osborne, Kansas system with eight individual feeding stations. Feed intake data for 106 finishing pigs between 140 and 210 d of age and the resulting weights and feed conversion ratios were analyzed by breed type. Least square means for body weights (birth, weaning and to 240 d were estimated with Proc Mixed in SAS 9.2 for fixed effects such as crossbreed and days of age within the sire breed. The differences within fixed effects were compared using least significant differences with DIFF option. Individual birth weights and weaning weights were influenced by sire breed (p<0.05. For birth weight, BY pigs were the lightest, TY and YY pigs were the heaviest but similar to each other and LBY pigs were intermediate. For weaning weights, BY and LBY pigs were heavier than TY and YY pigs. However, litter birth and weaning weights were not influenced by sire breed, and average daily gain was also not significantly different among breed types. Tamworth sired pigs had lower overall body weight gain, and feed conversion was lower in TY and YY groups than BY and LBY groups (p<0.05, however, number of observations was somewhat limited for feed conversion and for Tamworth pigs. Overall, no convincing differences among breed types were noted for this study, but growth performance in

  4. A Novel Compact Dual-Polarized Antenna

    Directory of Open Access Journals (Sweden)

    Yong Cheng

    2016-01-01

    Full Text Available A novel compact dual-polarized antenna is proposed. The antenna has a 1.43% impedance bandwidth which is from 1801 MHz to 1827 MHz for return loss larger than 10 dB. The isolation between the two ports is above 28 dB in the bandwidth, and the gain is 6.6 dBi. The proposed antenna not only consists of a full-planar structure, but also is easy to be fabricated for its simple structure. Additionally, a section of slots and slits is cut on the radiation patch to reduce the area of it to 54% compared with the conventional square patch.

  5. Recent developments in ICRF antenna modelling

    International Nuclear Information System (INIS)

    Lamalle, P.U.; Messiaen, A.M.; Dumortier, P.; Louche, F.

    2005-01-01

    The antennas presently developed for ICRF heating of the ITER plasma consist of a tightly packed array of a large number of radiating straps, in order to deliver a high power density without exceeding radio-frequency voltage standoffs. Recently developed commercial software has enabled important progress in the coupling analysis and optimisation of such demanding systems. Approximations allowing to convincingly include a realistic plasma description in these codes are discussed. Application of the resulting numerical tools is illustrated by simulation of the existing JET A2 ICRF array, with the goal to validate simulations for future antennas. Advances in the design of realistic test bed conditions, using salted water as a means of creating plasma-relevant antenna loading, and the appropriate scaling of a mockup are also presented. (author)

  6. Sensitivity of a combined gravitational antenna

    International Nuclear Information System (INIS)

    Kulagin, V.V.; Rudenko, V.N.

    1986-01-01

    A modification of a combined optico-acoustic gravitational antenna: a long-base laser interferometer, where free masses are changed by Weber resonators, is suggested. The combined gravitational antenna can possess sensitivity h min ∼ 10 -18 without deep cooling of Weber resonators and h min ∼ 10 -19 at helium temperaure of the resonators. This antenna has the following new quantities: presence of three independent responses, that permits to a considerable extent to exclude non-gravitational effects; presence of responses of two separated Weber resonators, that permits to register the wave character of gravitational perturbation by measuring phase shift between relaxation ''tails''. It means that one may with certainty register the wave structure of gravitational radiation for perturbation of metrics h, exceeding the threshold sensitivity of the known detectors by an order

  7. Statistical monitoring of linear antenna arrays

    KAUST Repository

    Harrou, Fouzi

    2016-11-03

    The paper concerns the problem of monitoring linear antenna arrays using the generalized likelihood ratio (GLR) test. When an abnormal event (fault) affects an array of antenna elements, the radiation pattern changes and significant deviation from the desired design performance specifications can resulted. In this paper, the detection of faults is addressed from a statistical point of view as a fault detection problem. Specifically, a statistical method rested on the GLR principle is used to detect potential faults in linear arrays. To assess the strength of the GLR-based monitoring scheme, three case studies involving different types of faults were performed. Simulation results clearly shown the effectiveness of the GLR-based fault-detection method to monitor the performance of linear antenna arrays.

  8. Terahertz antenna technology for space applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book explores the terahertz antenna technology towards implementation of compact, consistent and cheap terahertz sources, as well as the high sensitivity terahertz detectors. The terahertz EM band provides a transition between the electronic and the photonic regions thus adopting important characteristics from these regimes. These characteristics, along with the progress in semiconductor technology, have enabled researchers to exploit hitherto unexplored domains including satellite communication, bio-medical imaging, and security systems. The advances in new materials and nanostructures such as graphene will be helpful in miniaturization of antenna technology while simultaneously maintaining the desired output levels. Terahertz antenna characterization of bandwidth, impedance, polarization, etc. has not yet been methodically structured and it continues to be a major research challenge. This book addresses these issues besides including the advances of terahertz technology in space applications worldwide,...

  9. A Two Element Plasma Antenna Array

    Directory of Open Access Journals (Sweden)

    F. Sadeghikia

    2013-10-01

    Full Text Available This theoretical study presents the characteristics of plasma monopole antennas in the VHF/UHF range using finite difference time domain (FDTD simulation. Results show that more broadband characteristics can be obtained by increasing the diameter of the plasma tube and that the minor lobes diminish in intensity as diameter increases. Furthermore, the nulls are replaced by low level radiation. Since the collision frequency, which is a function of gas pressure, represents the loss mechanism of plasma, decreasing its value increases the gain and radar cross section (RCS of the antenna. Theoretical modeling shows that at higher plasma frequencies with respect to the signal frequency, the gain and radar cross section of the plasma antenna are high enough and that the impedance curves are altered as the plasma frequency varies. Using these preliminary studies, mutual impedance and gain of a broadside array of two parallel side-by-side plasma elements is presented.

  10. High Gain Antenna Calibration on Three Spacecraft

    Science.gov (United States)

    Hashmall, Joseph A.

    2011-01-01

    This paper describes the alignment calibration of spacecraft High Gain Antennas (HGAs) for three missions. For two of the missions (the Lunar Reconnaissance Orbiter and the Solar Dynamics Observatory) the calibration was performed on orbit. For the third mission (the Global Precipitation Measurement core satellite) ground simulation of the calibration was performed in a calibration feasibility study. These three satellites provide a range of calibration situations-Lunar orbit transmitting to a ground antenna for LRO, geosynchronous orbit transmitting to a ground antenna fer SDO, and low Earth orbit transmitting to TDRS satellites for GPM The calibration results depend strongly on the quality and quantity of calibration data. With insufficient data the calibration Junction may give erroneous solutions. Manual intervention in the calibration allowed reliable parameters to be generated for all three missions.

  11. The fate of the Antennae galaxies

    Science.gov (United States)

    Lahén, Natalia; Johansson, Peter H.; Rantala, Antti; Naab, Thorsten; Frigo, Matteo

    2018-04-01

    We present a high-resolution smoothed particle hydrodynamic simulation of the Antennae galaxies (NGC 4038/4039) and follow the evolution 3 Gyr beyond the final coalescence. The simulation includes metallicity-dependent cooling, star formation, and both stellar feedback and chemical enrichment. The simulated best-match Antennae reproduce well both the observed morphology and the off-nuclear starburst. We also produce for the first time a simulated two-dimensional (2D) metallicity map of the Antennae and find good agreement with the observed metallicity of off-nuclear stellar clusters; however, the nuclear metallicities are overproduced by ˜0.5 dex. Using the radiative transfer code SKIRT, we produce multiwavelength observations of both the Antennae and the merger remnant. The 1-Gyr-old remnant is well fitted with a Sérsic profile of n = 7.07, and with an r-band effective radius of re = 1.6 kpc and velocity dispersion of σe = 180 km s-1 the remnant is located on the Fundamental Plane of early-type galaxies (ETGs). The initially blue Antennae remnant evolves on to the red sequence after ˜2.5 Gyr of secular evolution. The remnant would be classified as a fast rotator, as the specific angular momentum evolves from λRe ≈ 0.11 to 0.14 during its evolution. The remnant shows ordered rotation and a double peaked maximum in the mean 2D line-of-sight velocity. These kinematical features are relatively common amongst local ETGs and we specifically identify three local ETGs (NGC 3226, NGC 3379, and NGC 4494) in the atlas3D sample, whose photometric and kinematic properties most resemble the Antennae remnant.

  12. Dual-polarized feed antenna apparatus and method of use

    Science.gov (United States)

    Sarehraz, Mohammed (Inventor); Buckle, Kenneth A. (Inventor); Stefanakos, Elias (Inventor); Weller, Thomas (Inventor); Goswami, D. Yogi (Inventor)

    2009-01-01

    An antenna apparatus and method for the interception of randomly polarized electromagnetic waves utilizing a dual polarized antenna which is excited through a cross-slot aperture using two well-isolated orthogonal feeds.

  13. Design and optimization of LTE 1800 MIMO antenna.

    Science.gov (United States)

    Wong, Huey Shin; Islam, Mohammad Tariqul; Kibria, Salehin

    2014-01-01

    A multiple input and multiple output (MIMO) antenna that comprises a printed microstrip antenna and a printed double-L sleeve monopole antenna for LTE 1800 wireless application is presented. The printed double-L sleeve monopole antenna is fed by a 50 ohm coplanar waveguide (CPW). A novel T-shaped microstrip feedline printed on the other side of the PCB is used to excite the waveguide's outer shell. Isolation characteristics better than -15 dB can be obtained for the proposed MIMO antenna. The proposed antenna can operate in LTE 1800 (1710 MHz-1880 MHz). This antenna exhibits omnidirectional characteristics. The efficiency of the antenna is greater than 70% and has high gain of 2.18 dBi.

  14. On Connectivity of Wireless Sensor Networks with Directional Antennas

    Directory of Open Access Journals (Sweden)

    Qiu Wang

    2017-01-01

    Full Text Available In this paper, we investigate the network connectivity of wireless sensor networks with directional antennas. In particular, we establish a general framework to analyze the network connectivity while considering various antenna models and the channel randomness. Since existing directional antenna models have their pros and cons in the accuracy of reflecting realistic antennas and the computational complexity, we propose a new analytical directional antenna model called the iris model to balance the accuracy against the complexity. We conduct extensive simulations to evaluate the analytical framework. Our results show that our proposed analytical model on the network connectivity is accurate, and our iris antenna model can provide a better approximation to realistic directional antennas than other existing antenna models.

  15. 47 CFR 73.6025 - Antenna system and station location.

    Science.gov (United States)

    2010-10-01

    ... RADIO BROADCAST SERVICES Class A Television Broadcast Stations § 73.6025 Antenna system and station... clearly the radiation characteristics of the antenna above and below the horizontal plane. In cases where...

  16. Non-foster matching of an RFID antenna

    KAUST Repository

    Mohamed Hassan Salem, Nedime Pelin; Niver, Edip

    2011-01-01

    Novel designs of radio-frequency identification (RFID) tag antennas with better matching characteristics to achieve extended range for passive tags are investigated in ultra-high frequency (UHF) band. A microstrip dipole antenna with or without

  17. 3D Inkjet Printed Helical Antenna with Integrated Lens

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2016-01-01

    The gain of an antenna can be enhanced through the integration of a lens, although this technique has traditionally been restricted to planar antennas due to fabrication limitations of standard manufacturing processes. Here, through a unique

  18. Planar Ultrawideband Antenna with Photonically Controlled Notched Bands

    Directory of Open Access Journals (Sweden)

    Drasko Draskovic

    2013-01-01

    Full Text Available A design of a planar microstrip-fed ultrawideband (UWB printed circular monopole antenna with optically controlled notched bands is presented. The proposed antenna is composed of a circular ultrawideband patch, with an etched T-shaped slot controlled by an integrated silicon switch. The slot modifies the frequency response of the antenna suppressing 3.5–5 GHz band when the switch is in open state. The optical switch is controlled by a low-power near-infrared (808 nm laser diode, which causes the change in the frequency response of the antenna generating a frequency notch. This solution could be expanded to include several notches in the antenna frequency response achieving a fully reconfigurable UWB antenna. The antenna could be remotely controlled at large distances using optical fiber. The prototype antenna has been fully characterized to verify these design concepts.

  19. Broadband antenna for ground penetrating radar application in soil

    Science.gov (United States)

    Shebalkova, LV; Markov, MA; Romodin, VB

    2018-03-01

    The scope of the article embraces the features of design of antennas and arrays for GPR, their type and parameters and the expediency of the application of the antenna arrays in various purpose location systems of GPR.

  20. Tri-band small monopole antenna based on SRR units

    Directory of Open Access Journals (Sweden)

    Gehan Shehata

    2015-12-01

    Full Text Available In this paper a novel design for a tri-band monopole antenna coupled with metamaterial units is introduced. The proposed antenna was designed to cover WiMAX (2.5, 3.5 and WLAN (5.2 bands. In our proposal, a coplanar waveguide (CPW fed circular-disk monopole antenna is coupled with three split ring resonator (SRR units which exist on its back side. In our design a monopole antenna and SRR units are designed first to resonate at 5.2 GHz and 2.5 GHz respectively. In addition, antenna is loaded with post to force resonance at 3.5 GHz. SRR units are used for 2.5 GHz resonance to miniaturize antenna size, and our proposed antenna considered an electrically small antenna (ESA at its first resonance frequency. Simulated and measured results exhibit a good agreement that validate our design.

  1. Combline antennas for launching traveling fast waves

    International Nuclear Information System (INIS)

    Moeller, C.P.; Gould, R.W.; Phelps, D.A.; Pinsker, R.I.

    1994-01-01

    The combline structure shows promise for launching traveling fast magnetosonic waves with adjustable n parallel (3 ≤ n parallel ≤ 6) for current drive. In this paper, the dispersion and damping properties of the combline antenna with and without a Faraday shield are given. The addition of a Faraday shield which eliminates the electrostatic coupling between current straps as well as between the straps and plasma offers the advantage of eliminating the need for the lumped capacitors which are otherwise required with this structure. The results of vacuum dispersion and damping measurements on a low power model antenna are also given. (author)

  2. Frequency-agile antennas for wireless communications

    CERN Document Server

    Petosa, Aldo

    2013-01-01

    Mobile data subscriptions are expected to more than double and mobile wireless traffic to increase by more than tenfold over the next few years. Proliferation of smart phones, tablets, and other portable devices are placing greater demands for services such as web browsing, global positioning, video streaming, and video telephony. Many of the proposed solutions to deal with these demands will have a significant impact on antenna designs. Antennas with frequency agility are considered a promising technology to help implement these new solutions.This book provides readers with a sense of the cap

  3. MEMS-Reconfigurable Metamaterials and Antenna Applications

    Directory of Open Access Journals (Sweden)

    Tomislav Debogovic

    2014-01-01

    Full Text Available This paper reviews some of our contributions to reconfigurable metamaterials, where dynamic control is enabled by microelectromechanical systems (MEMS technology. First, we show reconfigurable composite right-/left-handed transmission lines (CRLH-TLs having state of the art phase velocity variation and loss, thereby enabling efficient reconfigurable phase shifters and leaky-wave antennas (LWA. Second, we present very low loss metasurface designs with reconfigurable reflection properties, applicable in reflectarrays and partially reflective surface (PRS antennas. All the presented devices have been fabricated and experimentally validated. They operate in X- and Ku-bands.

  4. A Case Study on Distributed Antenna Systems

    DEFF Research Database (Denmark)

    Sørensen, Troels Bundgaard

    2007-01-01

    Passive distributed antenna systems (DASs) consisting of distributed feeder lines or single point antennas are now often installed in large office buildings where they provide efficient coverage throughout the building. More sophisticated DASs with intelligent reuse and the ability to adapt...... is described in terms of algorithms for power allocation and access port assignment, as well as algorithms for (dynamic) channel assignment. After an outline of simulation assumptions, system capacity comparisons are given between the adaptive DAS and a system with fixed channel and access port assignment...

  5. Antenna subset selection at multi-antenna relay with adaptive modulation

    KAUST Repository

    Choi, Seyeong; Hasna, Mazen Omar; Yang, Hongchuan; Alouini, Mohamed-Slim

    2011-01-01

    In this paper, we proposed several antenna selection schemes for cooperative diversity systems with adaptive transmission. The proposed schemes were based on dual-hop relaying where a relay with multiple-antenna capabilities at reception and transmission is deployed between the source and the destination nodes. We analyzed the performance of the proposed schemes by quantifying the average spectral efficiency and the outage probability. We also investigated the trade-off of performance and complexity by comparing the average number of active antennas, path estimations, and signal-to-noise ratio comparisons of the different proposed schemes. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Antenna subset selection at multi-antenna relay with adaptive modulation

    KAUST Repository

    Choi, Seyeong

    2011-06-01

    In this paper, we proposed several antenna selection schemes for cooperative diversity systems with adaptive transmission. The proposed schemes were based on dual-hop relaying where a relay with multiple-antenna capabilities at reception and transmission is deployed between the source and the destination nodes. We analyzed the performance of the proposed schemes by quantifying the average spectral efficiency and the outage probability. We also investigated the trade-off of performance and complexity by comparing the average number of active antennas, path estimations, and signal-to-noise ratio comparisons of the different proposed schemes. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Analysis of antenna position measurements and weather station network data during the ALMA long baseline campaign of 2015

    Science.gov (United States)

    Hunter, Todd R.; Lucas, Robert; Broguière, Dominique; Fomalont, Ed B.; Dent, William R. F.; Phillips, Neil; Rabanus, David; Vlahakis, Catherine

    2016-07-01

    In a radio interferometer, the geometrical antenna positions are determined from measurements of the observed delay to each antenna from observations across the sky of many point sources whose positions are known to high accuracy. The determination of accurate antenna positions relies on accurate calibration of the dry and wet delay of the atmosphere above each antenna. For the Atacama Large Millimeter/Submillimeter Array (ALMA), with baseline lengths up to 15 kilometers, the geography of the site forces the height above mean sea level of the more distant antenna pads to be significantly lower than the central array. Thus, both the ground level meteorological values and the total water column can be quite different between antennas in the extended configurations. During 2015, a network of six additional weather stations was installed to monitor pressure, temperature, relative humidity and wind velocity, in order to test whether inclusion of these parameters could improve the repeatability of antenna position determinations in these configurations. We present an analysis of the data obtained during the ALMA Long Baseline Campaign of October through November 2015. The repeatability of antenna position measurements typically degrades as a function of antenna distance. Also, the scatter is more than three times worse in the vertical direction than in the local tangent plane, suggesting that a systematic effect is limiting the measurements. So far we have explored correcting the delay model for deviations from hydrostatic equilibrium in the measured air pressure and separating the partial pressure of water from the total pressure using water vapor radiometer (WVR) data. Correcting for these combined effects still does not provide a good match to the residual position errors in the vertical direction. One hypothesis is that the current model of water vapor may be too simple to fully remove the day-to-day variations in the wet delay. We describe possible new avenues of

  8. Non-foster matching of an RFID antenna

    KAUST Repository

    Mohamed Hassan Salem, Nedime Pelin

    2011-07-01

    Novel designs of radio-frequency identification (RFID) tag antennas with better matching characteristics to achieve extended range for passive tags are investigated in ultra-high frequency (UHF) band. A microstrip dipole antenna with or without an integrated negative impedance converter designed to cancel out the antenna\\'s input capacitance at resonance frequency was designed, simulated, constructed and measured for implementation in RFID applications. © 2011 IEEE.

  9. Multiport antenna systems for space-time communications

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki; Alrabadi, Osama; Pelosi, Mauro

    2013-01-01

    The paper presents the concept of multiport antenna systems where multiple active and passive ports are deployed. The passive ports, implemented via tunable reactance-assisted (parasitic) antennas, can alter the far-field and near-field properties of the antenna system expressed by the antenna...... efficiency, electromagnetic coupling and spatial correlation. The system can be optimized in order to enhance the spatial multiplexing performance whereas the performance gains come at no significant additional cost and hardware complexity...

  10. Reconfigurable Patch Antenna Radiations Using Plasma Faraday Shield Effect

    OpenAIRE

    Barro , Oumar Alassane; Himdi , Mohamed; Lafond , Olivier

    2016-01-01

    International audience; This letter presents a new reconfigurable antenna associated with a plasma Faraday shield effect. The Faraday shield effect is realized by using a fluorescent lamp. A patch antenna operating at 2.45 GHz is placed inside the lamp. The performance of the reconfigurable system is observed in terms of S11, gain and radiation patterns by simulation and measurement. It is shown that by switching ON the fluorescent lamp, the gain of the antenna decreases and the antenna syste...

  11. Optimized dipole antennas on photonic band gap crystals

    International Nuclear Information System (INIS)

    Cheng, S.D.; Biswas, R.; Ozbay, E.; McCalmont, S.; Tuttle, G.; Ho, K.

    1995-01-01

    Photonic band gap crystals have been used as a perfectly reflecting substrate for planar dipole antennas in the 12--15 GHz regime. The position, orientation, and driving frequency of the dipole antenna on the photonic band gap crystal surface, have been optimized for antenna performance and directionality. Virtually no radiated power is lost to the photonic crystal resulting in gains and radiation efficiencies larger than antennas on other conventional dielectric substrates. copyright 1995 American Institute of Physics

  12. Evaluation of Packed Distillation Columns I - Atmospheric Pressure

    National Research Council Canada - National Science Library

    Reynolds, Thaine

    1951-01-01

    .... Four column-packing combinations of the glass columns and four column-packing combinations of the steel columns were investigated at atmospheric pressure using a test mixture of methylcyclohexane...

  13. Oscillating water column structural model

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Guild [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jepsen, Richard Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  14. Layout and cabling considerations for a large communications antenna array

    Science.gov (United States)

    Logan, R. T., Jr.

    1993-01-01

    Layout considerations for a large deep space communications antenna array are discussed. A fractal geometry for the antenna layout is described that provides optimal packing of antenna elements, efficient cable routing, and logical division of the array into identical sub-arrays.

  15. Antenna Gain Impact on UWB Wind Turbine Blade Deflection Sensing

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Byskov, Claus

    2018-01-01

    Antenna gain impact on UWB wind turbine blade deflection sensing is studied in this paper. Simulations are applied with a 4.5-meter blade tip. The antennas with high gain (HG) and low gain (LG) in free space are simulated inside a blade. It is interesting to find that tip antennas with HG and LG...

  16. Reliable Control of Ship-mounted Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2010-01-01

    Motorized antenna is a key element in overseas satellite telecommunication. The control system directs the on-board antenna toward a chosen satellitewhile the high sea waves disturb the antenna. Certain faults (communication system malfunction or signal blocking) cause interruption in the communi...

  17. Space vehicle electromechanical system and helical antenna winding fixture

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Guenther, David; Enemark, Donald; Seitz, Daniel; Martinez, John; Storms, Steven

    2017-12-26

    A space vehicle electromechanical system may employ an architecture that enables convenient and practical testing, reset, and retesting of solar panel and antenna deployment on the ground. A helical antenna winding fixture may facilitate winding and binding of the helical antenna.

  18. Increased operational range for implantable UHF RFID antennas

    NARCIS (Netherlands)

    Dubok, A.; Smolders, A.B.

    2014-01-01

    This paper discusses the main design challenges of implantable UHF RFID antennas in lossy environments. A novel cylindrical implantable antenna concept is presented. The proposed antenna shows good performance inside lossy environments, like a human body. The RFID tag is able to work in a range up

  19. Review of Large Spacecraft Deployable Membrane Antenna Structures

    Science.gov (United States)

    Liu, Zhi-Quan; Qiu, Hui; Li, Xiao; Yang, Shu-Li

    2017-11-01

    The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.

  20. Global design of an active integrated antenna for millimeter wave

    OpenAIRE

    Marzolf, Eric; Drissi, M’hamed

    2001-01-01

    An active integrated antenna working in the millimeter wave has been realized in a monolithic process. The concept of active integrated antenna is first introduced, then the design of the integrated circuit based on a global approach, following electromagnetic and circuit simulations, is presented. The obtained performances of the active antenna are discussed and compared to a passive one.

  1. Inkjet printed circularly polarized antennas for GPS applications

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2014-01-01

    gain of 0.2 dBi at 1.575 GHz with 3-dB axial ratio bandwidth of 3.8%. The second antenna design comprises a modified monopole in the form of an inverted L and has been termed as circularly polarized inverted L antenna (CILA). The antenna shows a gain

  2. Rapid Prototyping of Electrically Small Spherical Wire Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2014-01-01

    It is shown how modern rapid prototyping technologies can be applied for quick and inexpensive, but still accurate, fabrication of electrically small wire antennas. A well known folded spherical helix antenna and a novel spherical zigzag antenna have been fabricated and tested, exhibiting...

  3. Design of cost effective antennas for instrumentation radars

    CSIR Research Space (South Africa)

    Botha, L

    2012-09-01

    Full Text Available The cost of antennas for instrumentation radars are determined by the development cost. By re-use of the reflector system cost effective antennas can be designed. The factors governing the design of such antennas are described here....

  4. Detuning effect study of High-Q Mobile Phone Antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert F.

    2015-01-01

    Number of frequency bands that have to be covered by smart phones, are ever increasing. This broadband coverage can be obtained either by using a low-Q antenna or a high-Q tunable antenna. This study investigates high-Q antennas performance when placed in proximity of the user. This study...

  5. Wide-scan dielectric dome antenna with reduced profile

    NARCIS (Netherlands)

    Gandini, E.; Silvestri, F.; Benini, A.; Gerini, G.; Martini, E.; Maci, S.; Viganò, M.C.; Toso, G.; Monni, S.

    2017-01-01

    In this contribution, a dielectric dome antenna design in Ka-band is presented. The dome antenna is based on the combination of a phased array and a dielectric lens. The goal of the combination of these structures is to enlarge the field of view of the antenna. In particular, the array is considered

  6. Electrically Small Magnetic Dipole Antennas with Magnetic Core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2010-01-01

    This work extends the theory of a spherical magnetic dipole antenna with magnetic core by numerical results for practical antenna configurations that excite higher-order modes besides the main TE10 spherical mode. The multiarm spherical helix (MSH) and the spherical split ring (SSR) antennas...

  7. Impact of Antenna Placement on Frequency Domain Adaptive Antenna Array in Hybrid FRF Cellular System

    Directory of Open Access Journals (Sweden)

    Sri Maldia Hari Asti

    2012-01-01

    Full Text Available Frequency domain adaptive antenna array (FDAAA is an effective method to suppress interference caused by frequency selective fading and multiple-access interference (MAI in single-carrier (SC transmission. However, the performance of FDAAA receiver will be affected by the antenna placement parameters such as antenna separation and spread of angle of arrival (AOA. On the other hand, hybrid frequency reuse can be adopted in cellular system to improve the cellular capacity. However, optimal frequency reuse factor (FRF depends on the channel propagation and transceiver scheme as well. In this paper, we analyze the impact of antenna separation and AOA spread on FDAAA receiver and optimize the cellular capacity by using hybrid FRF.

  8. Investigation of Diagonal Antenna-Chassis Mode in Mobile Terminal LTE MIMO Antennas for Bandwidth Enhancement

    DEFF Research Database (Denmark)

    Zhang, Shuai; Zhao, Kun; Ying, Zhinong

    2015-01-01

    mechanism of the mismatch of these three bandwidth ranges is also explained. Furthermore, the diagonal antenna-chassis mode is also studied for MIMO elements in the adjacent and diagonal corner locations. As a practical example, a wideband collocated LTE MIMO antenna is proposed and measured. It covers......A diagonal antenna-chassis mode is investigated in long-term evolution multiple-input-multiple-output (LTE MIMO) antennas. The MIMO bandwidth is defined in this paper as the overlap range of the low-envelope correlation coefficient, high total efficiency, and -6-dB impedance matching bandwidths...... the bands of 740960 and 1700-2700 MHz, where the total efficiencies are better than -3.4 and -1.8 dB, with lower than 0.5 and 0.1, respectively. The measurements agree well with the simulations. Since the proposed method only needs to modify the excitation locations of the MIMO elements on the chassis...

  9. Measurement of electric field distribution along the plasma column in Microwave jet discharges at atmospheric pressure

    International Nuclear Information System (INIS)

    Razzak, M. Abdur; Takamura, Shuichi; Tsujikawa, Takayuki; Shibata, Hideto; Hatakeyama, Yuto

    2009-01-01

    A new technique for the direct measurement of electric field distribution along the plasma column in microwave jet discharges is developed and employed. The technique is based on a servomotor-controlled reciprocating antenna moving along the nozzle axis and plasma column. The measurement technique is applied to a rectangular waveguide-based 2.45 GHz argon and helium plasma jets generated by using the modified TIAGO nozzle at atmospheric pressure with a microwave power of less than 500 W. The measurement has been done with and without igniting the plasma jet in order to investigate the standing wave propagation along the nozzle axis and plasma column. It is observed that the electric field decay occurs slowly in space with plasma ignition than that of without plasma, which indicates the surface electromagnetic wave propagation along the plasma column in order to sustain the plasma jet. This study enables one to design, determine and optimize the size and structure of launcher nozzle, which plays an important role for the stable and efficient microwave plasma generators. (author)

  10. Novel Electrically Small Spherical Electric Dipole Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    This paper introduces a novel electrically small spherical meander antenna. Horizontal sections of the meander are composed of wire loops, radii of which are chosen so that the whole structure is conformal to a sphere of radius a. To form the meander the loops are connected by wires at a meridian...

  11. Innovation in wearable and flexible antennas

    CERN Document Server

    Khaleel, Haider

    2014-01-01

    This book covers the design, numerical simulation, state of the art fabrication processes, qualitative and quantitative tests, and measurement techniques of wearable and flexible antennas of various topologies, such as: Printed Monopoles, Micropoles and Microstrips. It serves as a vital reference source for scientists and engineers in this field.

  12. Topology Optimization of Sub-Wavelength Antennas

    DEFF Research Database (Denmark)

    Erentok, Aycan; Sigmund, Ole

    2011-01-01

    We propose a topology optimization strategy for the systematic design of a three-dimensional (3D), conductor-based sub-wavelength antenna. The post-processed finite-element (FE) models of the optimized structure are shown to be self-resonant, efficient and exhibit distorted omnidirectional...

  13. Modeling and control of antennas and telescopes

    CERN Document Server

    Gawronski, Wodek

    2008-01-01

    The book shows, step-by-step, the design, implementation, and testing of the antenna/telescope control system, from the design stage (analytical model) to fine tuning of the RF beam pointing (monopulse and conscan). It includes wide use of Matlab and Simulink..

  14. Small inductor Loaded mobile phone Antenna

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2004-01-01

    In this paper a size reduction technique of the Planar Inverted F Antenna (PIFA) is presented. Using an 18 nH lumped inductor in addition to a small 0.3 cm3 PIFA located on a 5 mm thick dielectric foam above a 40 x 100 mm2 ground plane it is possible to reduce the resonant frequency by 33 % for a...

  15. Matching of Tore Supra ICRH antennas

    International Nuclear Information System (INIS)

    Ladurelle, L.; Beaumont, B.; Kuus, H.; Lombard, G.

    1994-01-01

    An automatic matching method is described for Tore Supra ICRH antennas based on impedance variations seen at their feed points. Error signals derived from directional voltage and phase measurements in the feeder allow to control the matching capacitors values for optimal power transmission. (author) 5 refs.; 9 figs

  16. Microwave Correlation Measurement Crossed-pair Antennas ...

    African Journals Online (AJOL)

    We propose here new processes, an add and square correlation radiometer and the non-resonant perturbation, which thoroughly investigated for different muscle phantom materials to define the optimum penetration depth of the electromagnetic field at fixed distance between the antennas. Keywords: Microwave correlation ...

  17. Stochastic Beamforming via Compact Antenna Arrays

    DEFF Research Database (Denmark)

    Alrabadi, Osama; Pedersen, Gert Frølund

    2012-01-01

    The paper investigates the average beamforming (BF) gain of compact antenna arrays when statistical channel knowledge is available. The optimal excitation (precoding vector) and impedance termination that maximize the average BF gain are a compromise between the ones that maximize the array...

  18. Antenna Design for Diversity and MIMO Application

    DEFF Research Database (Denmark)

    Ying, Zhinong; Chiu, Chi-Yuk; Zhao, Kun

    2015-01-01

    Recently, multiple-input multiple-output (MIMO) technology and diversity have attracted much attention both in industry and academia due to high data rate and high spectrum efficiency. By increasing the number of antennas at the transmitter and/or the receiver side of the wireless link, the diver...

  19. Antenna size reduction in microalgae mass culture

    NARCIS (Netherlands)

    Mooij, de T.

    2016-01-01

    The thesis describes the potential of microalgae with a reduced light harvesting antenna for biomass production under mass culture conditions (high biomass density, high light intensity). Theoretically, the lower chlorophyll content reduces the light harvesting capacity and with that the amount

  20. Precision Antenna Measurement System (PAMS) Engineering Services

    Science.gov (United States)

    1978-04-01

    8217) = receiving antenna gain for vertical polarization. The total direct signal power is Following Beck /narn and Spizzachino , the specular component...method may be valid for the problem. Very often, however, the physical optics 92 approach baaed on a solution of the wave equation will have to

  1. Microelectromechanical Switches for Phased Array Antennas

    Science.gov (United States)

    Ponchak, George E.; Simons, Rainee N.; Scardelletti, Maximillian; Varaljay, Nicholas C.

    2000-01-01

    Preliminary results are presented on the fabrication and testing of a MicroElectro-Mechanical (MEM) microstrip series switch. This switch is being developed for use in a K-band phased array antenna that NASA will use for communication links in its Earth orbiting satellites. Preliminary insertion loss and isolation measurements are presented.

  2. 47 CFR 101.115 - Directional antennas.

    Science.gov (United States)

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... The minimum front-to-back ratio shall be 38 dBi. 13 Mobile, except aeronautical mobile, stations need... cases of potential interference, an antenna will not be considered to meet Standard A unless the...

  3. Self Configurable Intelligent Distributed Antenna System

    DEFF Research Database (Denmark)

    Kumar, Ambuj; Mihovska, Albena Dimitrova; Prasad, Ramjee

    2016-01-01

    with their respective base stations, spectrum pooling and management at antenna end is not efficient. The situation worsens in Heterogeneous and Dense-net conditions in an Area of Interest (AoI). In this paper, we propose a DAS based intelligent architecture referred to as Self Configurable Intelligent Distributed...

  4. Heating profiles on ICRF antenna Faraday shields

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Hahs, C.L. Riemer, B.W.; Ryan, D.M.; Williamson, D.E.

    1992-01-01

    Poor definition of the heating profiles that occur during normal operation of Faraday shields for ion cyclotron resonant frequency (ICRF) antennas has complicated the mechanical design of ICRF system components. This paper reports that at Oak Ridge National Laboratory (ORNL), Faraday shield analysis is being used in defining rf heating profiles. In recent numerical analyses of proposed hardware for the Burning Plasma Experiment (BPX) and DIII-D, rf magnetic fields at Faraday shield surfaces were calculated, providing realistic predictions of the induced skin currents flowing on the shield elements and the resulting dissipated power profile. Detailed measurements on mock-ups of the Faraday shields for DIII-D and the Tokamak Fusion Test Reactor (TFTR) confirmed the predicted magnetic field distributions. A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the DIII-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed

  5. Integrated reconfigurable multiple-input–multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms

    KAUST Repository

    Hussain, Rifaqat; Sharawi, Mohammad S.

    2015-01-01

    . The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm2. The proposed sensing antenna is used to cover a wide range

  6. Restoring Low Sidelobe Antenna Patterns with Failed Elements in a Phased Array Antenna

    Science.gov (United States)

    2016-02-01

    optimum low sidelobes are demonstrated in several examples. Index Terms — Array signal processing, beams, linear algebra , phased arrays, shaped...beam antennas. I. INTRODUCTION For many phased array antenna applications , low spatial sidelobes are required, and it is desirable to maintain...represented by a linear combination of low sidelobe beamformers with no failed elements, ’s, in a neighborhood around under the constraint that the linear

  7. Picobubble enhanced column flotation of fine coal

    Energy Technology Data Exchange (ETDEWEB)

    Tao, D.; Yu, S.; Parekh, B.K. [University of Kentucky, Lexington, KY (United States). Mining Engineering

    2006-07-01

    The purpose is to study the effectiveness of picobubbles in the column flotation of -28 mesh fine coal particles. A flotation column with a picobubble generator was developed and tested for enhancing the recovery of ultrafine coal particles. The picobubble generator was designed using the hydrodynamic cavitation principle. A metallurgical and a steam coal were tested in the apparatus. The results show that the use of picobubbles in a 2in. flotation column increased the recovery of fine coal by 10 to 30%. The recovery rate varied with feed rate, collector dosage, and other column conditions. 40 refs., 8 figs., 2 tabs.

  8. Thermally stable dexsil-400 glass capillary columns

    International Nuclear Information System (INIS)

    Maskarinec, M.P.; Olerich, G.

    1980-01-01

    The factors affecting efficiency, thermal stability, and reproducibility of Dexsil-400 glass capillary columns for gas chromatography in general, and for polycyclic aromatic hydrocarbons (PAHs) in particular were investigated. Columns were drawn from Kimble KG-6 (soda-lime) glass or Kimox (borosilicate) glass. All silylation was carried out at 200 0 C. Columns were coated according to the static method. Freshly prepared, degassed solutions of Dexsil-400 in pentane or methylene chloride were used. Thermal stability of the Dexsil 400 columns with respect to gas chromatography/mass spectrometry (GC/MS) were tested. Column-to-column variability is a function of each step in the fabrication of the columns. The degree of etching, extent of silylation, and stationary phase film thickness must be carefully controlled. The variability in two Dexsil-400 capillary column prepared by etching, silylation with solution of hexa methyl disilazone (HMDS), and static coating is shown and also indicates the excellent selectivity of Dexsil-400 for the separation of alkylated aromatic compounds. The wide temperature range of Dexsil-400 and the high efficiency of the capillary columns also allow the analysis of complex mixtures with minimal prefractionation. Direct injection of a coal liquefaction product is given. Analysis by GC/MS indicated the presence of parent PAHs, alkylated PAHs, nitrogen and sulfur heterocycles, and their alkylated derivatives. 4 figures

  9. Laser surface wakefield in a plasma column

    International Nuclear Information System (INIS)

    Gorbunov, L.M.; Mora, P.; Ramazashvili, R.R.

    2003-01-01

    The structure of the wakefield in a plasma column, produced by a short intense laser pulse, propagating through a gas affected by tunneling ionization is investigated. It is shown that besides the usual plasma waves in the bulk part of the plasma column [see Andreev et al., Phys. Plasmas 9, 3999 (2002)], the laser pulse also generates electromagnetic surface waves propagating along the column boundary. The length of the surface wake wave substantially exceeds the length of the plasma wake wave and its electromagnetic field extends far outside the plasma column

  10. From antenna to antenna: lateral shift of olfactory memory recall by honeybees.

    Science.gov (United States)

    Rogers, Lesley J; Vallortigara, Giorgio

    2008-06-04

    Honeybees, Apis mellifera, readily learn to associate odours with sugar rewards and we show here that recall of the olfactory memory, as demonstrated by the bee extending its proboscis when presented with the trained odour, involves first the right and then the left antenna. At 1-2 hour after training using both antennae, recall is possible mainly when the bee uses its right antenna but by 6 hours after training a lateral shift has occurred and the memory can now be recalled mainly when the left antenna is in use. Long-term memory one day after training is also accessed mainly via the left antenna. This time-dependent shift from right to left antenna is also seen as side biases in responding to odour presented to the bee's left or right side. Hence, not only are the cellular events of memory formation similar in bees and vertebrate species but also the lateralized networks involved may be similar. These findings therefore seem to call for remarkable parallel evolution and suggest that the proper functioning of memory formation in a bilateral animal, either vertebrate or invertebrate, requires lateralization of processing.

  11. Variability of Surface Reflection Amplitudes of GPR Horn Antenna Depending on Distance between Antenna and Surface

    Directory of Open Access Journals (Sweden)

    Komačka Jozef

    2016-05-01

    Full Text Available The study focused on variability of surface reflections amplitudes of GPR horn antenna in relation to distance between an antenna and a surface is presented in the paper. The air-coupled antenna with the central frequency of 1 GHz was used in the investigation. Four types of surfaces (dry pavement, wet pavement, metal plate and composite layer from gypsum and wood were tested. The distance of antenna above the surfaces was changed in the range from 37.5 cm to 53.5 cm. The amplitudes of negative and positive peaks and their variability were analysed in relation to the distance of antenna above the surfaces. Moreover, the influence of changes in the peaks of negative and positive amplitudes on the total amplitudes was assessed. It was found out the amplitudes of negative peaks for all investigated surfaces were relatively consistent in the range from 40.5 cm to 48.5 cm and the moderate decline was identified in the case of amplitudes of positive peaks in the range of distances from 37.5 cm to 51.5 cm. This decline influences the tendency of total amplitudes. Based on the results of analysis it can be stated the distance of air-coupled antenna above the surface can influence the value of total amplitude and the differences depend on the type of surface.

  12. From antenna to antenna: lateral shift of olfactory memory recall by honeybees.

    Directory of Open Access Journals (Sweden)

    Lesley J Rogers

    Full Text Available Honeybees, Apis mellifera, readily learn to associate odours with sugar rewards and we show here that recall of the olfactory memory, as demonstrated by the bee extending its proboscis when presented with the trained odour, involves first the right and then the left antenna. At 1-2 hour after training using both antennae, recall is possible mainly when the bee uses its right antenna but by 6 hours after training a lateral shift has occurred and the memory can now be recalled mainly when the left antenna is in use. Long-term memory one day after training is also accessed mainly via the left antenna. This time-dependent shift from right to left antenna is also seen as side biases in responding to odour presented to the bee's left or right side. Hence, not only are the cellular events of memory formation similar in bees and vertebrate species but also the lateralized networks involved may be similar. These findings therefore seem to call for remarkable parallel evolution and suggest that the proper functioning of memory formation in a bilateral animal, either vertebrate or invertebrate, requires lateralization of processing.

  13. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...... of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical example in which the scan plane is finite validates the expressions for the spectrum of the GPR antenna....

  14. Full-duplex MIMO system based on antenna cancellation technique

    DEFF Research Database (Denmark)

    Foroozanfard, Ehsan; Franek, Ondrej; Tatomirescu, Alexandru

    2014-01-01

    The performance of an antenna cancellation technique for a multiple-input– multiple-output (MIMO) full-duplex system that is based on null-steering beamforming and antenna polarization diversity is investigated. A practical implementation of a symmetric antenna topology comprising three dual......-polarized patch antennas operating at 2.4 GHz is described. The measurement results show an average of 60 dB self-interference cancellation over 200 MHz bandwidth. Moreover, a decoupling level of up to 22 dB is achieved for MIMO multiplexing using antenna polarization diversity. The performance evaluation...

  15. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1995-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  16. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1996-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  17. Conformal Lightweight Antenna Structures for Aeronautical Communication Technologies

    Science.gov (United States)

    Meador, Mary Ann

    2017-01-01

    This project is to develop antennas which enable beyond line of sight (BLOS) command and control for UAVs. We will take advantage of newly assigned provisional Ku-band spectrum for UAVs and use unique antenna designs to avoid interference with ground systems. This will involve designing antennas with high isotropic effective radiated power (EIRP) and ultra-low sidelobes. The antennas will be made with polymer aerogel as a substrate to both reduce weight and improve performance, as demonstrated in an Aero Seedling. In addition, designing the antennas to be conformal to the aircraft fuselage will reduce drag.

  18. PROSPECTS FOR THE DEVELOPMENT OF PHASED ANTENNA ARRAYS

    Directory of Open Access Journals (Sweden)

    A. P. Dzuba

    2013-01-01

    Full Text Available This article describes the main achievements in the development of phased antenna arrays (par in the past decade. Provides an overview of the most famous systems based on the PAR and PAR based on MMIC technology - PAR in radar stations, PAR to control the laser and optical beams. The existing options for the design of the PAR:ferroelectric antenna array; plasma antenna with electronic scanning; reflective grating on 100-mm semiconductor wafers; wideband antenna arrays with aperture; antenna arrays with digital beam forming.

  19. Mutual Coupling Effects on Pattern Diversity Antennas for MIMO Femtocells

    Directory of Open Access Journals (Sweden)

    Yue Gao

    2010-01-01

    Full Text Available Diversity antennas play an important role in wireless communications. However, mutual coupling between multiple ports of a diversity antenna has significant effects on wireless radio links and channel capacity. In this paper, dual-port pattern diversity antennas for femtocell applications are proposed to cover GSM1800, UMTS, and WLAN frequency bands. The channel capacities of the proposed antennas and two ideal dipoles with different mutual coupling levels are investigated in an indoor environment. The relation between mutual coupling and channel capacity is observed through investigations of these antennas.

  20. Large space antenna concepts for ESGP

    Science.gov (United States)

    Love, Allan W.

    1989-01-01

    It is appropriate to note that 1988 marks the 100th anniversary of the birth of the reflector antenna. It was in 1888 that Heinrich Hertz constructed the first one, a parabolic cylinder made of sheet zinc bent to shape and supported by a wooden frame. Hertz demonstrated the existence of the electromagnetic waves that had been predicted theoretically by James Clerk Maxwell some 22 years earlier. In the 100 years since Hertz's pioneering work the field of electromagnetics has grown explosively: one of the technologies is that of remote sensing of planet Earth by means of electromagnetic waves, using both passive and active sensors located on an Earth Science Geostationary Platform (ESEP). For these purposes some exquisitely sensitive instruments were developed, capable of reaching to the fringes of the known universe, and relying on large reflector antennas to collect the minute signals and direct them to appropriate receiving devices. These antennas are electrically large, with diameters of 3000 to 10,000 wavelengths and with gains approaching 80 to 90 dB. Some of the reflector antennas proposed for ESGP are also electrically large. For example, at 220 GHz a 4-meter reflector is nearly 3000 wavelengths in diameter, and is electrically quite comparable with a number of the millimeter wave radiotelescopes that are being built around the world. Its surface must meet stringent requirements on rms smoothness, and ability to resist deformation. Here, however, the environmental forces at work are different. There are no varying forces due to wind and gravity, but inertial forces due to mechanical scanning must be reckoned with. With this form of beam scanning, minimizing momentum transfer to the space platform is a problem that demands an answer. Finally, reflector surface distortion due to thermal gradients caused by the solar flux probably represents the most challenging problem to be solved if these Large Space Antennas are to achieve the gain and resolution required of

  1. Mode Theory of Multi-Armed Spiral Antennas and Its Application to Electronic Warfare Antennas

    Science.gov (United States)

    Radway, Matthew J.

    Since their invention about 55 years ago, spiral antennas have earned a reputation for providing stable impedance and far-field patterns over multi-decade frequency ranges. For the first few decades these antennas were researched for electronic warfare receiving applications, primarily in the 2-18 GHz range. This research was often done under conditions of secrecy, and often by private contractors who did not readily share their research, and now have been defunct for decades. Even so, the body of literature on the two-armed variant of these antennas is rich, often leading non-specialists to the misconception that these antennas are completely understood. Furthermore, early work was highly experimental in nature, and was conducted before modern data collection and postprocessing capabilities were widespread, which limited the range of the studies. Recent research efforts have focused on extending the application of spirals into new areas, as well as applying exotic materials to `improve' their performance and reduce their size. While interesting results have been obtained, in most instances these were incomplete, often compromising the frequency independent nature of these antennas. This thesis expands the role of the multi-armed spiral outside of its traditional niche of receive-only monopulse direction finding. As a first step, careful study of the spiral-antenna mode theory is undertaken with particular attention paid to the concepts of mode filtering and modal decomposition. A technique for reducing the modal impedance of high arm-count spirals is introduced. The insights gained through this theoretical study are first used to improve the far-field performance of the coiled-arm spiral antenna. Specifically, expanding the number of arms on a coiled arm spiral from two to four while providing proper excitation enables dramatically improved broadside axial ratio and azimuthal pattern uniformity. The multiarming technique is then applied to the design of an antenna

  2. Computer-Automated Evolution of Spacecraft X-Band Antennas

    Science.gov (United States)

    Lohn, Jason D.; Homby, Gregory S.; Linden, Derek S.

    2010-01-01

    A document discusses the use of computer- aided evolution in arriving at a design for X-band communication antennas for NASA s three Space Technology 5 (ST5) satellites, which were launched on March 22, 2006. Two evolutionary algorithms, incorporating different representations of the antenna design and different fitness functions, were used to automatically design and optimize an X-band antenna design. A set of antenna designs satisfying initial ST5 mission requirements was evolved by use these algorithms. The two best antennas - one from each evolutionary algorithm - were built. During flight-qualification testing of these antennas, the mission requirements were changed. After minimal changes in the evolutionary algorithms - mostly in the fitness functions - new antenna designs satisfying the changed mission requirements were evolved and within one month of this change, two new antennas were designed and prototypes of the antennas were built and tested. One of these newly evolved antennas was approved for deployment on the ST5 mission, and flight-qualified versions of this design were built and installed on the spacecraft. At the time of writing the document, these antennas were the first computer-evolved hardware in outer space.

  3. Advanced Communication Technology Satellite (ACTS) multibeam antenna analysis and experiment

    Science.gov (United States)

    Acosta, Roberto J.; Lagin, Alan R.; Larko, Jeffrey M.; Narvaez, Adabelle

    1992-01-01

    One of the most important aspects of a satellite communication system design is the accurate estimation of antenna performance degradation. Pointing error, end coverage gain, peak gain degradation, etc. are the main concerns. The thermal or dynamic distortions of a reflector antenna structural system can affect the far-field antenna power distribution in a least four ways. (1) The antenna gain is reduced; (2) the main lobe of the antenna can be mispointed thus shifting the destination of the delivered power away from the desired locations; (3) the main lobe of the antenna pattern can be broadened, thus spreading the RF power over a larger area than desired; and (4) the antenna pattern sidelobes can increase, thus increasing the chances of interference among adjacent beams of multiple beam antenna system or with antenna beams of other satellites. The in-house developed NASA Lewis Research Center thermal/structural/RF analysis program was designed to accurately simulate the ACTS in-orbit thermal environment and predict the RF antenna performance. The program combines well establish computer programs (TRASYS, SINDA and NASTAN) with a dual reflector-physical optics RF analysis program. The ACTS multibeam antenna configuration is analyzed and several thermal cases are presented and compared with measurements (pre-flight).

  4. Inkjet printed circularly polarized antennas for GPS applications

    KAUST Repository

    Farooqui, Muhammad Fahad

    2014-07-01

    Two novel, inkjet printed circularly polarized antenna designs are presented for GPS applications. First antenna design comprises a planar monopole which has been made circularly polarized by the introduction of an L-shaped slit. The antenna shows a gain of 0.2 dBi at 1.575 GHz with 3-dB axial ratio bandwidth of 3.8%. The second antenna design comprises a modified monopole in the form of an inverted L and has been termed as circularly polarized inverted L antenna (CILA). The antenna shows a gain of -2 dBi at 1.575 GHz with 3-dB axial ratio bandwidth of 4.1%. Both the antenna designs are attractive for mobile applications.

  5. Plasmonic-Resonant Bowtie Antenna for Carbon Nanotube Photodetectors

    Directory of Open Access Journals (Sweden)

    Hongzhi Chen

    2012-01-01

    Full Text Available The design of bowtie antennas for carbon nanotube (CNT photodetectors has been investigated. CNT photodetectors have shown outstanding performance by using CNT as sensing element. However, detection wavelength is much larger than the diameter of the CNT, resulting in small fill factor. Bowtie antenna can confine light into a subwavelength volume based on plasmonic resonance, thus integrating a bowtie antenna to CNT photodetectors can highly improve photoresponse of the detectors. The electric field enhancement of bowtie antennas was calculated using the device geometry by considering fabrication difficulties and photodetector structure. It is shown that the electric field intensity enhancement increased exponentially with distance reduction between the CNT photodetector to the antenna. A redshift of the peak resonance wavelength is predicted due to the increase of tip angles of the bowtie antennas. Experimental results showed that photocurrent enhancement agreed well with theoretical calculations. Bowtie antennas may find wide applications in nanoscale photonic sensors.

  6. Analysis of Microstrip Line Fed Patch Antenna for Wireless Communications

    Directory of Open Access Journals (Sweden)

    Singh Ashish

    2017-11-01

    Full Text Available In this paper, theoretical analysis of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator is presented. The proposed antenna shows that the dualband operation depends on gap between parasitic element, split-ring resonator, length and width of microstrip line. It is found that antenna resonates at two distinct resonating modes i.e., 0.9 GHz and 1.8 GHz for lower and upper resonance frequencies respectively. The antenna shows dual frequency nature with frequency ratio 2.0. The characteristics of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator antenna is compared with other prototype microstrip line fed antennas. Further, the theoretical results are compared with simulated and reported experimental results, they are in close agreement.

  7. Evaluation of detectable angle of mid-infrared slot antennas

    Science.gov (United States)

    Obara, R.; Horikawa, J.; Shimakage, H.; Kawakami, A.

    2017-07-01

    For evaluations of a mid-infrared (MIR) detectors with antenna, we constructed an angular dependence measurement system of the antenna properties. The fabricated MIR detector consisted of twin slot antennas and a bolometer. The area of the slot antennas was designed to be 2.6 × 0.2 μm2 as to resonate at 61 THz, and they were located parallel and separated 1.6 μm each other. The bolometer was fabricated using by a 7.0-nm thick NbN thin film, and located at the center of the twin antennas. We measured polarization angle dependence and directivity, and showed that the MIR antennas have polarization dependence and directivity like radiofrequency antennas.

  8. Column: Factors Affecting Data Decay

    Directory of Open Access Journals (Sweden)

    Kevin Fairbanks

    2012-06-01

    Full Text Available In nuclear physics, the phrase decay rate is used to denote the rate that atoms and other particles spontaneously decompose. Uranium-235 famously decays into a variety of daughter isotopes including Thorium and Neptunium, which themselves decay to others. Decay rates are widely observed and wildly different depending on many factors, both internal and external. U-235 has a half-life of 703,800,000 years, for example, while free neutrons have a half-life of 611 seconds and neutrons in an atomic nucleus are stable.We posit that data in computer systems also experiences some kind of statistical decay process and thus also has a discernible decay rate. Like atomic decay, data decay fluctuates wildly. But unlike atomic decay, data decay rates are the result of so many different interplaying processes that we currently do not understand them well enough to come up with quantifiable numbers. Nevertheless, we believe that it is useful to discuss some of the factors that impact the data decay rate, for these factors frequently determine whether useful data about a subject can be recovered by forensic investigation.(see PDF for full column

  9. Gaseous carbon dioxide absorbing column

    International Nuclear Information System (INIS)

    Harashina, Heihachi.

    1994-01-01

    The absorbing column of the present invention comprises a cyclone to which CO 2 gas and Ca(OH) 2 are blown to form CaCO 3 , a water supply means connected to an upper portion of the cyclone for forming a thin water membrane on the inner wall thereof, and a water processing means connected to a lower portion of the cyclone for draining water incorporating CaCO 3 . If a mixed fluid of CO 2 gas and Ca(OH) 2 is blown in a state where a flowing water membrane is formed on the inner wall of the cyclone, formation of CaCO 3 is promoted also in the inside of the cyclone in addition to the formation of CaCO 3 in the course of blowing. Then, formed CaCO 3 is discharged from the lower portion of the cyclone together with downwardly flowing water. With such procedures, solid contents such as CaCO 3 separated at the inner circumferential wall are sent into the thin water membrane, adsorbed and captured, and the solid contents are successively washed out, so that a phenomenon that the solid contents deposit and grow on the inner wall of the cyclone can be prevented effectively. (T.M.)

  10. Rasch models with exchangeable rows and columns

    DEFF Research Database (Denmark)

    Lauritzen, Steffen Lilholt

    The article studies distributions of doubly infinite binary matrices with exchangeable rows and columns which satify the further property that the probability of any $m \\times n$ submatrix is a function of the row- and column sums of that matrix. We show that any such distribution is a (unique...

  11. The general packed column : an analytical solution

    NARCIS (Netherlands)

    Gielen, J.L.W.

    2000-01-01

    The transient behaviour of a packed column is considered. The column, uniformly packed on a macroscopic scale, is multi-structured on the microscopic level: the solid phase consists of particles, which may differ in incidence, shape or size, and other relevant physical properties. Transport in the

  12. Fringing-field effects in acceleration columns

    International Nuclear Information System (INIS)

    Yavor, M.I.; Weick, H.; Wollnik, H.

    1999-01-01

    Fringing-field effects in acceleration columns are investigated, based on the fringing-field integral method. Transfer matrices at the effective boundaries of the acceleration column are obtained, as well as the general transfer matrix of the region separating two homogeneous electrostatic fields with different field strengths. The accuracy of the fringing-field integral method is investigated

  13. Center column design of the PLT

    International Nuclear Information System (INIS)

    Citrolo, J.; Frankenberg, J.

    1975-01-01

    The center column of the PLT machine is a secondary support member for the toroidal field coils. Its purpose is to decrease the bending moment at the nose of the coils. The center column design was to have been a stainless steel casting with the toroidal field coils grouped around the casting at installation, trapping it in place. However, the castings developed cracks during fabrication and were unsuitable for use. Installation of the coils proceeded without the center column. It then became necessary to redesign a center column which would be capable of installation with the toroidal field coils in place. The final design consists of three A-286 forgings. This paper discusses the final center column design and the influence that new knowledge, obtained during the power tests, had on the new design

  14. Utilization of antenna arrays in HF systems

    Directory of Open Access Journals (Sweden)

    Louis Bertel

    2009-06-01

    Full Text Available

    Different applications of radio systems are based on the implementation of antenna arrays. Classically, radio direction

    finding operates with a multi channel receiving system connected to an array of receiving antennas. More

    recently, MIMO architectures have been proposed to increase the capacity of radio links by the use of antenna

    arrays at both the transmitter and receiver.

    The first part of this paper describes some novel experimental work carried out to examine the feasibility of applying

    MIMO techniques for communications within the HF radio band. A detailed correlation analysis of a variety

    of different antenna array configurations is presented. The second section of the paper also deals with HF

    MIMO communications, focusing on the problem from a modelling point of view. The third part presents a sensitivity

    analysis of different antenna array structures for HF direction finding applications. The results demonstrate

    that when modelling errors, heterogeneous antenna arrays are more robust in comparison to homogeneous structures


  15. Admittance Scanning for Whole Column Detection.

    Science.gov (United States)

    Stamos, Brian N; Dasgupta, Purnendu K; Ohira, Shin-Ichi

    2017-07-05

    Whole column detection (WCD) is as old as chromatography itself. WCD requires an ability to interrogate column contents from the outside. Other than the obvious case of optical detection through a transparent column, admittance (often termed contactless conductance) measurements can also sense changes in the column contents (especially ionic content) from the outside without galvanic contact with the solution. We propose here electromechanically scanned admittance imaging and apply this to open tubular (OT) chromatography. The detector scans across the column; the length resolution depends on the scanning velocity and the data acquisition frequency, ultimately limited by the physical step resolution (40 μm in the present setup). Precision equal to this step resolution was observed for locating an interface between two immiscible liquids inside a 21 μm capillary. Mechanically, the maximum scanning speed was 100 mm/s, but at 1 kHz sampling rate and a time constant of 25 ms, the highest practical scan speed (no peak distortion) was 28 mm/s. At scanning speeds of 0, 4, and 28 mm/s, the S/N for 180 pL (zone length of 1.9 mm in a 11 μm i.d. column) of 500 μM KCl injected into water was 6450, 3850, and 1500, respectively. To facilitate constant and reproducible contact with the column regardless of minor variations in outer diameter, a double quadrupole electrode system was developed. Columns of significant length (>1 m) can be readily scanned. We demonstrate its applicability with both OT and commercial packed columns and explore uniformity of retention along a column, increasing S/N by stopped-flow repeat scans, etc. as unique applications.

  16. The Use of Conductive Ink in Antenna Education and Design

    Science.gov (United States)

    Addison, David W.

    Conductive ink from a printer allows for the fabrication of conductive material with tight tolerances without the cost and time of chemical etching. This paper explores the use of AGIC printable conductive ink on a paper substrate as design tool for antennas as well as classroom use in antenna education. The antenna designs satisfy the requirements of a compact Global Navigation Satellite System (GNSS) antenna while showing a competitive performance within the current market. One best design is shown along with three other structures. These antennas consist of a bowtie cross-dipole over a reflective disc with conductive-ink grounded structures. In addition to the GNSS antennas, a linear elliptical dipole over a reflective disc with conductive grounded structures is presented. This elliptical antenna design attempts to find the maximum impedance bandwidth beyond the GNSS band. The inexpensive nature of conductive ink allows for its use in a classroom to demonstrate antenna behavior as part of antenna education. An inexpensive approach to the patch antenna using conductive ink is described and paired with a system made of off-the-shelf parts. The system is capable of measuring the power of the received signal. The received signal measurement is not as accurate as using a anechoic chamber but pattern details are visible. This is used to demonstrate aspects of the Friis transmission equation such as distance, polarization, radiation pattern shape, and loss.

  17. The Greenland Telescope (GLT): antenna status and future plans

    Science.gov (United States)

    Raffin, Philippe; Algaba-Marcosa, Juan Carlos; Asada, Keiichi; Blundell, Raymond; Burgos, Roberto; Chang, Chih-Cheng; Chen, Ming-Tang; Christensen, Robert; Grimes, Paul K.; Han, C. C.; Ho, Paul T. P.; Huang, Yau-De; Inoue, Makoto; Koch, Patrick M.; Kubo, Derek; Leiker, Steve; Liu, Ching-Tang; Martin-Cocher, Pierre; Matsushita, Satoki; Nakamura, Masanori; Nishioka, Hiroaki; Nystrom, George; Paine, Scott N.; Patel, Nimesh A.; Pradel, Nicolas; Pu, Hung-Yi; Shen, H.-Y.; Snow, William; Sridharan, Tirupati K.; Srinivasan, Ranjani; Tong, Edward; Wang, Jackie

    2014-07-01

    The ALMA North America Prototype Antenna was awarded to the Smithsonian Astrophysical Observatory (SAO) in 2011. SAO and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), SAO's main partner for this project, are working jointly to relocate the antenna to Greenland to carry out millimeter and submillimeter VLBI observations. This paper presents the work carried out on upgrading the antenna to enable operation in the Arctic climate by the GLT Team to make this challenging project possible, with an emphasis on the unexpected telescope components that had to be either redesigned or changed. Five-years of inactivity, with the antenna laying idle in the desert of New Mexico, coupled with the extreme weather conditions of the selected site in Greenland have it necessary to significantly refurbish the antenna. We found that many components did need to be replaced, such as the antenna support cone, the azimuth bearing, the carbon fiber quadrupod, the hexapod, the HVAC, the tiltmeters, the antenna electronic enclosures housing servo and other drive components, and the cables. We selected Vertex, the original antenna manufacturer, for the main design work, which is in progress. The next coming months will see the major antenna components and subsystems shipped to a site of the US East Coast for test-fitting the major antenna components, which have been retrofitted. The following step will be to ship the components to Greenland to carry out VLBI

  18. Accurate 3D Mapping Algorithm for Flexible Antennas

    Directory of Open Access Journals (Sweden)

    Saed Asaly

    2018-01-01

    Full Text Available This work addresses the problem of performing an accurate 3D mapping of a flexible antenna surface. Consider a high-gain satellite flexible antenna; even a submillimeter change in the antenna surface may lead to a considerable loss in the antenna gain. Using a robotic subreflector, such changes can be compensated for. Yet, in order to perform such tuning, an accurate 3D mapping of the main antenna is required. This paper presents a general method for performing an accurate 3D mapping of marked surfaces such as satellite dish antennas. Motivated by the novel technology for nanosatellites with flexible high-gain antennas, we propose a new accurate mapping framework which requires a small-sized monocamera and known patterns on the antenna surface. The experimental result shows that the presented mapping method can detect changes up to 0.1-millimeter accuracy, while the camera is located 1 meter away from the dish, allowing an RF antenna optimization for Ka and Ku frequencies. Such optimization process can improve the gain of the flexible antennas and allow an adaptive beam shaping. The presented method is currently being implemented on a nanosatellite which is scheduled to be launched at the end of 2018.

  19. Waveform Analysis of UWB GPR Antennas

    Directory of Open Access Journals (Sweden)

    Julia Armesto

    2009-03-01

    Full Text Available Ground Penetrating Radar (GPR systems fall into the category of ultra-wideband (UWB devices. Most GPR equipment covers a frequency range between an octave and a decade by using short-time pulses. Each signal recorded by a GPR gathers a temporal log of attenuated and distorted versions of these pulses (due to the effect of the propagation medium plus possible electromagnetic interferences and noise. In order to make a good interpretation of this data and extract the most possible information during processing, a deep knowledge of the wavelet emitted by the antennas is essential. Moreover, some advanced processing techniques require specific knowledge of this signal to obtain satisfactory results. In this work, we carried out a series of tests in order to determine the source wavelet emitted by a ground-coupled antenna with a 500 MHz central frequency.

  20. Simulation of photoconductive antennas for terahertz radiation

    Directory of Open Access Journals (Sweden)

    Carlos Criollo

    2015-01-01

    Full Text Available Simulation of terahertz (THz emission based on PC antennas imposes a challenge to couple the semiconductor carrier phenomena, optical transport and the THz energy transport. In this paper a Multi-physics simulation for coupling these phenomena using COMSOL Multi-physics 4.3b is introduced. The main parameters of THz photoconductive (PC antenna as THz emitter have been reviewed and discussed. The results indicate the role of each parameter in the resulting photocurrent waveform and THz frequency: The radiated THz photocurrent waveform is determined by the photoconductive gap (the separation between the metallic electrodes, the incident laser illumination and the DC excitation voltage; while the THz frequency depends on the dipole length. The optimization of these parameters could enhance the emission. The simulations extend the advance of compact and cost-effective THz emitters.

  1. Ferrite LTCC based phased array antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-02

    Two phased array antennas realized in multilayer ferrite LTCC technology are presented in this paper. The use of embedded bias windings in these designs allows the negation of external magnets which are conventionally employed with bulk ferrite medium. This reduces the required magnetostatic field strength by 90% as compared to the traditional designs. The phase shifters are implemented using the SIW technology. One of the designs is operated in the half mode waveguide topology while the other design is based on standard full mode waveguide operation. The two phase shifter designs are integrated with two element patch antenna array and slotted SIW array respectively. The array designs demonstrate a beam steering of 30° and ±19° respectively for a current excitation of 200 mA. The designs, due to their small factor can be easily integrated in modern communication systems which is not possible in the case of bulk ferrite based designs.

  2. Detection of gravitational waves with resonant antennas

    International Nuclear Information System (INIS)

    Ronga, Francesco

    2006-01-01

    The status of the 4 operating cylindrical gravitational waves resonant antenna detectors is summarized. A short review is given of the experimental results and of the next generation projects. Resonant detectors are now sensitive to the strongest potential sources of gravitational waves in our galaxy and in the local group. Recently interferometric detectors have achieved very good perfomances, but resonant detectors are still competitive particularly for what concern the very good live-time

  3. Buoyant Helical Twin-Axial Wire Antenna

    Science.gov (United States)

    2016-11-15

    February 2017 The below identified patent application is available for licensing. Requests for information should be addressed to...300169 1 of 9 BUOYANT HELICAL TWIN-AXIAL WIRE ANTENNA CROSS REFERENCE TO OTHER PATENT APPLICATIONS [0001] This application is a divisional...application and claims the benefit of the filing date of United States Patent Application No. 14/280,889; filed on May 19, 2014; and entitled “Twin-Axial

  4. Substrate optimization for integrated circuit antennas

    OpenAIRE

    Alexopoulos, N. G.; Katehi, P. B.; Rutledge, D. B.

    1982-01-01

    Imaging systems in microwaves, millimeter and submillimeter wave applications employ printed circuit antenna elements. The effect of substrate properties is analyzed in this paper by both reciprocity theorem as well as integral equation approach for infinitesimally short as well as finite length dipole and slot elements. Radiation efficiency and substrate surface wave guidance is studied for practical substrate materials as GaAs, Silicon, Quartz and Duroid.

  5. Microstrip monopulse antenna for land mobile communications

    Science.gov (United States)

    Garcia, Q.; Martin, C.; Delvalle, J. C.; Jongejans, A.; Rinous, P.; Travers, M. N.

    1993-01-01

    Low cost is one of the main requirements in a communication system suitable for mass production, as it is the case for satellite land mobile communications. Microstrip technology fulfills this requirement which must be supported by a low cost tracking system design. The tradeoff led us to a prototype antenna composed of microstrip patches based on electromechanical closed-loop principle; the design and the results obtained are described.

  6. The Japanese space gravitational wave antenna; DECIGO

    OpenAIRE

    Kawamura, Seiji; Ando, Masaki; Nakamura, Takashi; Tsubono, Kimio; Tanaka, Takahiro; Funaki, Ikkoh; Seto, Naoki; Numata, Kenji; Sato, Shuichi; Ioka, Kunihito; Kanda, Nobuyuki; Takashima, Takeshi; Agatsuma, Kazuhiro; Akutsu, Tomotada; Akutsu, Tomomi

    2008-01-01

    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry—Perot Michelson interferometer. We plan to lau...

  7. The Japanese space gravitational wave antenna - DECIGO

    OpenAIRE

    Kawamura, Seiji; Ando, Masaki; Nakamura, Takashi; Tsubono, Kimio; Tanaka, Takahiro; Funaki, Iklkoh; Seto, Naoki; Numata, Kenji; Sato, Shuichi; Ioka, Kunihito; Kanda, Nobuyuki; Takashima, Takeshi; Agatsuma, Kazuhiro; Akutsu, Tomotada; Akutsu, Tomomi

    2008-01-01

    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry—Perot Michelson interferometer. We plan to lau...

  8. Collapse of tall granular columns in fluid

    Science.gov (United States)

    Kumar, Krishna; Soga, Kenichi; Delenne, Jean-Yves

    2017-06-01

    Avalanches, landslides, and debris flows are geophysical hazards, which involve rapid mass movement of granular solids, water, and air as a multi-phase system. In order to describe the mechanism of immersed granular flows, it is important to consider both the dynamics of the solid phase and the role of the ambient fluid. In the present study, the collapse of a granular column in fluid is studied using 2D LBM - DEM. The flow kinematics are compared with the dry and buoyant granular collapse to understand the influence of hydrodynamic forces and lubrication on the run-out. In the case of tall columns, the amount of material destabilised above the failure plane is larger than that of short columns. Therefore, the surface area of the mobilised mass that interacts with the surrounding fluid in tall columns is significantly higher than the short columns. This increase in the area of soil - fluid interaction results in an increase in the formation of turbulent vortices thereby altering the deposit morphology. It is observed that the vortices result in the formation of heaps that significantly affects the distribution of mass in the flow. In order to understand the behaviour of tall columns, the run-out behaviour of a dense granular column with an initial aspect ratio of 6 is studied. The collapse behaviour is analysed for different slope angles: 0°, 2.5°, 5° and 7.5°.

  9. Field Applications of Gamma Column Scanning Technology

    International Nuclear Information System (INIS)

    Aquino, Denis D.; Mallilin, Janice P.; Nuñez, Ivy Angelica A.; Bulos, Adelina DM.

    2015-01-01

    The Isotope Techniques Section (ITS) under the Nuclear Service Division (NSD) of the Philippine Nuclear Research Institute (PNRI) conducts services, research and development on radioisotope and sealed source application in the industry. This aims to benefit the manufacturing industries such as petroleum, petrochemical, chemical, energy, waste, column treatment plant, etc. through on line inspection and troubleshooting of a process vessel, column or pipe that could optimize the process operation and increase production efficiency. One of the most common sealed source techniques for industrial applications is the gamma column scanning technology. Gamma column scanning technology is an established technique for inspection, analysis and diagnosis of industrial columns for process optimization, solving operational malfunctions and management of resources. It is a convenient non-intrusive, cost effective and cost-efficient technique to examine inner details of an industrial process vessel such as a distillation column while it is in operation. The Philippine Nuclear Research Institute (PNRI) recognize the importance and benefits of this technology and has implemented activities to make gamma column scanning locally available to benefit the Philippine industries. Continuous effort for capacity building is being pursued thru the implementation of in-house and on-the-job training abroad and upgrading of equipment. (author)

  10. High Performance Circularly Polarized Microstrip Antenna

    Science.gov (United States)

    Bondyopadhyay, Probir K. (Inventor)

    1997-01-01

    A microstrip antenna for radiating circularly polarized electromagnetic waves comprising a cluster array of at least four microstrip radiator elements, each of which is provided with dual orthogonal coplanar feeds in phase quadrature relation achieved by connection to an asymmetric T-junction power divider impedance notched at resonance. The dual fed circularly polarized reference element is positioned with its axis at a 45 deg angle with respect to the unit cell axis. The other three dual fed elements in the unit cell are positioned and fed with a coplanar feed structure with sequential rotation and phasing to enhance the axial ratio and impedance matching performance over a wide bandwidth. The centers of the radiator elements are disposed at the corners of a square with each side of a length d in the range of 0.7 to 0.9 times the free space wavelength of the antenna radiation and the radiator elements reside in a square unit cell area of sides equal to 2d and thereby permit the array to be used as a phased array antenna for electronic scanning and is realizable in a high temperature superconducting thin film material for high efficiency.

  11. Combline antenna modeling for plasma heating

    International Nuclear Information System (INIS)

    Nelson, S.D.; Kamin, G.; Van Maren, R.; Poole, B.; Moeller, C.; Phelps, D.

    1996-01-01

    The combline antenna for plasma heating, as proposed by General Atomics(1), has unique potential for solving many plasma drive problems. The benefit of the combline design is the utilization of the coupling between elements that avoids a more cumbersome multidrive system. This design is being investigated using computational EM modeling codes in the 100 endash 400 MHz band using resources at General Atomics and LLNL. Preliminary experimental results, using a combline mockup, agree well with 3D modeling efforts including resonant frequency alignment and amplitudes. These efforts have been expanded into an endeavor to optimize the combline design using both time and frequency domain codes. This analysis will include plasma coupling but to date has been limited to antenna effects. The combline antenna system is modeled in 3D using a combination of computational tools in the time domain, for temporal feature isolation purposes, and in the frequency domain, for resonant structure analysis. Both time and frequency domain modeling details include the Faraday shield elements, the strap elements, and the feed structure. copyright 1996 American Institute of Physics

  12. Coaxial antenna for lower hybrid heating

    International Nuclear Information System (INIS)

    Le Gardeur, R.J.

    1981-02-01

    A coaxial antenna for the heating of toroidal plasmas has been conceived and constructed. Being wholly metallic (stainless steel), the several coaxial ceramic passages assuring the transit of the H.F. energy into vacuum being situated far from the plasma, the use of such antennas can be envisaged in next generation machines where the environment is particularily severe. The coaxial design (having a lower internal impedance than a wave guide) reduces the electric fields present in the antenna-plasma interface, assuring, at the same time, a spatial uniformity of the fields making possible a substantial reduction in the transmitted power density. The main technological advantages (with respect to a wave guide grill structure) are: (a) simplification of the construction especially in multi-channel systems (b) quasi-elimination of the problems associated with the ceramic windows transmitting the H.F. energy (c) absence of a low frequency cut-off making possible to place launching structures in vertical chimneys where space is limited (d) an eventual reduction of certain phenomena inherent to this type of heating such as particle acceleration, space charge separation, pondemotive forces etc

  13. Comparison of Antenna Measurement Facilities with the DTU-ESA 12 GHz Validation Standard Antenna within the EU Antenna Centre of Excellence

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Pallesen, Janus Engberg; Breinbjerg, Olav

    2009-01-01

    The primary objective of many antenna measurement facilities is to provide a specified high accuracy of the measured data. The validation of an antenna measurement facility is the process of proving that such a specified accuracy can be achieved. Since this constitutes a very challenging task, an...

  14. Dynamic effects of diabatization in distillation columns

    DEFF Research Database (Denmark)

    Bisgaard, Thomas; Huusom, Jakob Kjøbsted; Abildskov, Jens

    2013-01-01

    The dynamic effects of diabatization in distillation columns are investigated in simulation emphasizing the heat-integrated distillation column (HIDiC). A generic, dynamic, first-principle model has been formulated, which is flexible enough to describe various diabatic distillation configurations....... Dynamic Relative Gain Array and Singular Value Analysis have been applied in a comparative study of a conventional distillation column and a HIDiC. The study showed increased input-output coupling due to diabatization. Feasible SISO control structures for the HIDiC were also found and control...

  15. Dynamic Effects of Diabatization in Distillation Columns

    DEFF Research Database (Denmark)

    Bisgaard, Thomas; Huusom, Jakob Kjøbsted; Abildskov, Jens

    2012-01-01

    The dynamic eects of diabatization in distillation columns are investigated in simulation with primary focus on the heat-integrated distillation column (HIDiC). A generic, dynamic, rst-principle model has been formulated, which is exible to describe various diabatic distillation congurations....... Dynamic Relative Gain Array and Singular Value Analysis have been applied in a comparative study of a conventional distillation column and a HIDiC. The study showed increased input-output coupling due to diabatization. Feasible SISO control structures for the HIDiC were also found. Control...

  16. Column-oriented database management systems

    OpenAIRE

    Možina, David

    2013-01-01

    In the following thesis I will present column-oriented database. Among other things, I will answer on a question why there is a need for a column-oriented database. In recent years there have been a lot of attention regarding a column-oriented database, even if the existence of a columnar database management systems dates back in the early seventies of the last century. I will compare both systems for a database management – a colum-oriented database system and a row-oriented database system ...

  17. Remoting alternatives for a multiple phased-array antenna network

    Science.gov (United States)

    Shi, Zan; Foshee, James J.

    2001-10-01

    Significant improvements in technology have made phased array antennas an attractive alternative to the traditional dish antenna for use on wide body airplanes. These improvements have resulted in reduced size, reduced cost, reduced losses in the transmit and receive channels (simplifying the design), a significant extension in the bandwidth capability, and an increase in the functional capability. Flush mounting (thus reduced drag) and rapid beam switching are among the evolving desirable features of phased array antennas. Beam scanning of phased array antennas is limited to +/-45 degrees at best and therefore multiple phased array antennas would need to be used to insure instantaneous communications with any ground station (stations located at different geographical locations on the ground) and with other airborne stations. The exact number of phased array antennas and the specific installation location of each antenna on the wide body airplane would need to be determined by the specific communication requirements, but it is conceivable as many as five phased array antennas may need to be used to provide the required coverage. Control and switching of these antennas would need to be accomplished at a centralized location on the airplane and since these antennas would be at different locations on the airplane an efficient scheme of remoting would need to be used. To save in cost and keep the phased array antennas as small as possible the design of the phased array antennas would need to be kept simple. A dish antenna and a blade antenna (small size) could also be used to augment the system. Generating the RF signals at the central location and then using RF cables or waveguide to get the signal to any given antenna could result in significant RF losses. This paper will evaluate a number of remoting alternatives to keep the system design simple, reduce system cost, and utilize the functional capability of networking multiple phased array antennas on a wide body

  18. Integrated reconfigurable multiple-input–multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms

    KAUST Repository

    Hussain, Rifaqat

    2015-06-18

    © The Institution of Engineering and Technology 2015. A compact, novel multi-mode, multi-band frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system, integrated with ultra-wideband (UWB) sensing antenna, is presented. The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm2. The proposed sensing antenna is used to cover a wide range of frequency bands from 710 to 3600 MHz. The frequency reconfigurable dual-element MIMO antenna is integrated with P-type, intrinsic, N-type (PIN) diodes for frequency agility. Different modes of selection are used for the MIMO antenna system reconfigurability to support different wireless system standards. The proposed MIMO antenna configuration is used to cover various frequency bands from 755 to 3450 MHz. The complete system comprising the multi-band reconfigurable MIMO antennas and UWB sensing antenna for cognitive radio applications is proposed with a compact form factor.

  19. Conformal, wearable, thin microwave antenna for sub-skin and skin surface monitoring

    Science.gov (United States)

    Converse, Mark C.; Chang, John T.; Duoss, Eric B.

    2017-05-16

    A wearable antenna is operably positioned on a wearer's skin and is operably connected the wearer's tissue. A first antenna matched to the wearer's tissue is operably positioned on the wearer's skin. A second antenna matched to the air is operably positioned on the wearer's skin. Transmission lines connect the first antenna and the second antenna.

  20. Low-cost Antenna Positioning System Designed with Axiomatic Design

    Directory of Open Access Journals (Sweden)

    Timothy Foley Joseph

    2017-01-01

    Full Text Available The Engineering Optimization and Modeling Center at Reykjavik University has been carrying out research on antenna CAD, including the simulation-driven design of novel antenna topologies. However, simulation is not enough to validate a design: a custom RF anechoic chamber has been built to quantify antenna performance, particularly in terms of field properties such as radiation patterns. Such experiments require careful positioning of the antenna in the chamber accurately in 3-axis with a short development time, challenging material constraints, and minimal funding. Axiomatic Design Theory principles were applied to develop an automated 3-axis positioner system for a reference antenna and the antenna to be calibrated. Each axis can be individually controlled with a repeatability of 1 degree. This 3000 USD device can be fabricated using easily available components and rapid prototyping tools.

  1. OPERATION MODES AND CHARACTERISTICS OF PLASMA DIPOLE ANTENNA

    Directory of Open Access Journals (Sweden)

    Nikolay Nikolaevich Bogachev

    2014-02-01

    Full Text Available Existence modes of  surface electromagnetic wave on a plasma cylinder, operating modes and characteristics of the plasma antenna were studied in this paper. Solutions of the dispersion equation of surface wave were obtained for a plasma cylinder with finite radius for different plasma density values. Operation modes of the plasma asymmetric dipole antenna with finite length and radius were researched by numerical simulation. The electric field distributions of  the plasma antenna in near antenna field and the radiation pattern were obtained. These characteristics were compared to characteristics of the similar metal antenna. Numerical models verification was carried out by comparing of the counted and measured metal antenna radiation patterns.

  2. Meandered-line antenna with integrated high-impedance surface.

    Energy Technology Data Exchange (ETDEWEB)

    Forman, Michael A.

    2010-09-01

    A reduced-volume antenna composed of a meandered-line dipole antenna over a finite-width, high-impedance surface is presented. The structure is novel in that the high-impedance surface is implemented with four Sievenpiper via-mushroom unit cells, whose area is optimized to match the meandered-line dipole antenna. The result is an antenna similar in performance to patch antenna but one fourth the area that can be deployed directly on the surface of a conductor. Simulations demonstrate a 3.5 cm ({lambda}/4) square antenna with a bandwidth of 4% and a gain of 4.8 dBi at 2.5 GHz.

  3. Advanced spherical near-field antenna measurement techniques

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Majlund; Pivnenko, Sergey; Breinbjerg, Olav

    2011-01-01

    The DTU-ESA facility has since the 1980es provided highly accurate antenna radiation pattern measurements and gain calibration by use of the probe corrected spherical nearfield technique, both for ESA (the European Space Agency) and other customers and continues to do so. Recent years activities...... and research carried out at the facility are presented in the article. Since 2004 several antenna test facility comparison campaigns were carried out between a number of European antenna measurement facilities. The first campaigns laid the foundation for the later comparisons in providing experience...... in the period 2005–2006 following a series of investigatory measurements and facility updates during 2003–2005. Antenna diagnostics by a SWE-to-PWE transformation presents a case where highly accurate antenna measurements and a plane wave back-projection enable antenna diagnostics by examination...

  4. Frequency selective surfaces based high performance microstrip antenna

    CERN Document Server

    Narayan, Shiv; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on performance enhancement of printed antennas using frequency selective surfaces (FSS) technology. The growing demand of stealth technology in strategic areas requires high-performance low-RCS (radar cross section) antennas. Such requirements may be accomplished by incorporating FSS into the antenna structure either in its ground plane or as the superstrate, due to the filter characteristics of FSS structure. In view of this, a novel approach based on FSS technology is presented in this book to enhance the performance of printed antennas including out-of-band structural RCS reduction. In this endeavor, the EM design of microstrip patch antennas (MPA) loaded with FSS-based (i) high impedance surface (HIS) ground plane, and (ii) the superstrates are discussed in detail. The EM analysis of proposed FSS-based antenna structures have been carried out using transmission line analogy, in combination with the reciprocity theorem. Further, various types of novel FSS structures are considered in desi...

  5. Investigation of Flexible Textile Antennas and AMC Reflectors

    Directory of Open Access Journals (Sweden)

    M. Mantash

    2012-01-01

    Full Text Available In this paper, two different methods for fabric characterization are presented: a single frequency method and a broadband method. Felt and denim fabrics are characterized, and patch antennas are designed using these substrates to test both methods. Prototypes of the antennas on felt and denim are manufactured using conductive textile (called electrotextile aiming to obtain fully flexible antennas. The prototypes are characterized in anechoic chamber to be compared and obtain conclusions related to the characterization methods. A new dual-band hexagonal AMC reflector combinable with antennas is also proposed to improve their performance and reduce the backward radiation to the human body. A novel broadband CPW-fed monopole antenna is designed to be combined with the AMC. The resulted prototype is characterized and compared with the performance of the CPW-fed antenna alone.

  6. Microwave RF antennas and circuits nonlinearity applications in engineering

    CERN Document Server

    Aluf, Ofer

    2017-01-01

    This book describes a new concept for analyzing RF/microwave circuits, which includes RF/microwave antennas. The book is unique in its emphasis on practical and innovative microwave RF engineering applications. The analysis is based on nonlinear dynamics and chaos models and shows comprehensive benefits and results. All conceptual RF microwave circuits and antennas are innovative and can be broadly implemented in engineering applications. Given the dynamics of RF microwave circuits and antennas, they are suitable for use in a broad range of applications. The book presents analytical methods for microwave RF antennas and circuit analysis, concrete examples, and geometric examples. The analysis is developed systematically, starting with basic differential equations and their bifurcations, and subsequently moving on to fixed point analysis, limit cycles and their bifurcations. Engineering applications include microwave RF circuits and antennas in a variety of topological structures, RFID ICs and antennas, micros...

  7. Active Surface Compensation for Large Radio Telescope Antennas

    Directory of Open Access Journals (Sweden)

    Congsi Wang

    2018-01-01

    Full Text Available With the development of radio telescope antennas with large apertures, high gain, and wide frequency bands, compensation methods, such as mechanical or electronic compensation, are obviously essential to ensure the electrical performance of antennas that work in complex environments. Since traditional compensation methods can only adjust antenna pointing but not the surface accuracy, which are limited for obtaining high surface precision and aperture efficiency, active surface adjustment has become an indispensable tool in this field. Therefore, the development process of electrical performance compensation methods for radio telescope antennas is introduced. Further, a series of analyses of the five key technologies of active surface adjustment is presented. Then, four typical large antennas that have been designed with active main reflector technology are presented and compared. Finally, future research directions and suggestions for reflector antenna compensation methods based on active surface adjustment are presented.

  8. Low-SAR metamaterial-inspired printed monopole antenna

    Science.gov (United States)

    Hossain, M. I.; Faruque, M. R. I.; Islam, M. T.; Ali, M. T.

    2017-01-01

    In this paper, a low-SAR metamaterial-embedded planar monopole antenna is introduced for a wireless communication system. A printed monopole antenna is designed for modern mobile, which operates in GSM, UMTS, LTE, WLAN, and Bluetooth frequency bands. A metamaterial structure is designed to use in the mobile handset with a multi-band printed monopole antenna. The finite integration technique of the CST microwave studio is used in this study. The measurement of antenna performances is taken in an anechoic chamber, and the SAR values are measured using COMOSAR system. The results indicate that metamaterial structure leads to reduce SAR without affecting antenna performance significantly. According to the measured results, the metamaterial attachment leads to reduce 87.7% peak SAR, 68.2% 1-g SAR, and 46.78% 10-g SAR compared to antenna without metamaterial.

  9. A Compact Flexible and Frequency Reconfigurable Antenna for Quintuple Applications

    Directory of Open Access Journals (Sweden)

    M. U. Hassan

    2017-09-01

    Full Text Available A novel, compact coplanar waveguide fed flexible antenna is presented. The proposed design uses flexible Rogers RT/duroid 5880 (0.508mm thickness as a substrate with small size of 30×28.4 mm^2. Two switches are integrated on the antenna surface to change the current distribution which consequently changes the resonance frequency under different conditions of switches, thereby making it a frequency reconfigurable antenna. The antenna design is simulated on CST®MWS®. The proposed antenna exhibits VSWR less than 2 and appreciable radiation patterns with positive gain over desired frequency bands. Good agreement exists between simulated and measured results. On the basis of results, the proposed antenna is envisioned to be deployed for the following applications; aeronautical radio navigation [4.3 GHz], AMT fixed services [4.5 GHz], WLAN [5.2 GHz], Unlicensed WiMAX [5.8 GHz] and X-band [7.5 GHz].

  10. Fractal Based Triple Band High Gain Monopole Antenna

    Science.gov (United States)

    Pandey, Shashi Kant; Pandey, Ganga Prasad; Sarun, P. M.

    2017-10-01

    A novel triple-band microstrip fed planar monopole antenna is proposed and investigated. A fractal antenna is created by iterating a narrow pulse (NP) generator model at upper side of modified ground plane, which has a rhombic patch, for enhancing the bandwidth and gain. Three iterations are carried out to study the effects of fractal geometry on the antenna performance. The proposed antenna can operate over three frequency ranges viz, 3.34-4.8 GHz, 5.5-10.6 GHz and 13-14.96 GHz suitable for WLAN 5.2/5.8 GHz, WiMAX 3.5/5.5 GHz and X band applications respectively. Simulated and measured results are in good agreements with each others. Results show that antenna provides wide/ultra wide bandwidths, monopole like radiation patterns and very high antenna gains over the operating frequency bands.

  11. Quad-Band U-Slot Antenna for Mobile Applications

    Directory of Open Access Journals (Sweden)

    R. L. Ruiz

    2006-06-01

    Full Text Available In this paper, two different planar quad-band antennas are designed, modeled, fabricated and measured. Subsequently, the antennas are redesigned using an electromagnetic band gap substrate (EBG. Those new planar antennas operate in four frequency bands: 900 MHz, 1 800 MHz (both GSM, 1 900 MHz (USA and 2 400 to 2 500 MHz (Bluetooth The antenna has four narrow U-shaped slots etched to the patch. Using software, CST Microwave Studio [1], Zeland IE3D [2], and FEMLAB [3], simulations have been carried out to investigate the antenna's performance and characteristics. The antennas designed have been also built and measured to compare the real results with those obtained from the simulations.

  12. Antenna Gain Impact on UWB Wind Turbine Blade Deflection Sensing

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Byskov, Claus

    2018-01-01

    effective (or equivalent) isotropic radiated power (EIRP), an HG tip antenna inside a blade gives stronger direct pulse amplitudes and better pulse waveforms for accurate and reliable distance estimations than the LG. Moreover, the direct pulse with the HG antenna is also closer to the blade surface, which...... in free space have similar realized gain when allocated inside blades, so that the emission power for the HG and LG antennas in blades can be the same. The antenna gain impacts on time-domain pulse waveforms and power distributions around a blade are carefully investigated (with the tip antenna inside...... a blade). Higher antenna gain enlarges both direct pulse and multipath but in different levels. To verify the simulations, time-domain measurements are performed with a full 37-meter blade. Pulse waveforms and power delay profiles are measured. From all the studies, it follows that: with the similar...

  13. A 3D printed helical antenna with integrated lens

    KAUST Repository

    Farooqui, Muhammad Fahad

    2015-10-26

    A novel antenna configuration comprising a helical antenna with an integrated lens is demonstrated in this work. The antenna is manufactured by a unique combination of 3D printing of plastic material (ABS) and inkjet printing of silver nano-particle based metallic ink. The integration of lens enhances the gain by around 7 dB giving a peak gain of about 16.4 dBi at 9.4 GHz. The helical antenna operates in the end-fire mode and radiates a left-hand circularly polarized (LHCP) pattern. The 3-dB axial ratio (AR) bandwidth of the antenna with lens is 3.2 %. Due to integration of lens and fully printed processing, this antenna configuration offers high gain performance and requires low cost for manufacturing.

  14. Family of columns isospectral to gravity-loaded columns with tip force: A discrete approach

    Science.gov (United States)

    Ramachandran, Nirmal; Ganguli, Ranjan

    2018-06-01

    A discrete model is introduced to analyze transverse vibration of straight, clamped-free (CF) columns of variable cross-sectional geometry under the influence of gravity and a constant axial force at the tip. The discrete model is used to determine critical combinations of loading parameters - a gravity parameter and a tip force parameter - that cause onset of dynamic instability in the CF column. A methodology, based on matrix-factorization, is described to transform the discrete model into a family of models corresponding to weightless and unloaded clamped-free (WUCF) columns, each with a transverse vibration spectrum isospectral to the original model. Characteristics of models in this isospectral family are dependent on three transformation parameters. A procedure is discussed to convert the isospectral discrete model description into geometric description of realistic columns i.e. from the discrete model, we construct isospectral WUCF columns with rectangular cross-sections varying in width and depth. As part of numerical studies to demonstrate efficacy of techniques presented, frequency parameters of a uniform column and three types of tapered CF columns under different combinations of loading parameters are obtained from the discrete model. Critical combinations of these parameters for a typical tapered column are derived. These results match with published results. Example CF columns, under arbitrarily-chosen combinations of loading parameters are considered and for each combination, isospectral WUCF columns are constructed. Role of transformation parameters in determining characteristics of isospectral columns is discussed and optimum values are deduced. Natural frequencies of these WUCF columns computed using Finite Element Method (FEM) match well with those of the given gravity-loaded CF column with tip force, hence confirming isospectrality.

  15. Closely Mounted Compact Wideband Diversity Antenna for Mobile Phone Applications

    Directory of Open Access Journals (Sweden)

    Bunggil Yu

    2012-01-01

    Full Text Available Here a compact wideband diversity antenna covering the PCS/UMTS/WiMAX bands with high isolation and low enveloped correlation coefficient (ECC is proposed. To widen the bandwidth, the proposed antenna uses a structure with a gap-coupled feed and an inductively shorted line that has capacitive compensation between the radiator and the ground plane. Also, a suspended line with a parasitic element is used to enhance the isolation between the two antennas.

  16. Assessment of ICRF Antenna Performance in Alcator C-Mod

    International Nuclear Information System (INIS)

    Schilling, G.; Wukitch, S.J.; Lin, Y.; Basse, N.; Bonoli, P.T.; Edlund, E.; Lin, L.; Parisot, A.; Porkolab, M.

    2004-01-01

    The Alcator C-Mod has presented a challenge to install high-power ICRF antennas in a tight space. Modifications have been made to the antenna plasma-facing surfaces and the internal current-carrying structure in order to overcome performance limitations. At the present time, the antennas have exceeded 5 MW into plasma with heating phasing, up to 2.7 MW with current-drive phasing, with good efficiency and no deleterious effects

  17. Application of Ruze Equation for Inflatable Aperture Antennas

    Science.gov (United States)

    Welch, Bryan W.

    2008-01-01

    Inflatable aperture reflector antennas are an emerging technology that NASA is investigating for potential uses in science and exploration missions. As inflatable aperture antennas have not been proven fully qualified for space missions, they must be characterized properly so that the behavior of the antennas can be known in advance. To properly characterize the inflatable aperture antenna, testing must be performed in a relevant environment, such as a vacuum chamber. Since the capability of having a radiofrequency (RF) test facility inside a vacuum chamber did not exist at NASA Glenn Research Center, a different methodology had to be utilized. The proposal to test an inflatable aperture antenna in a vacuum chamber entailed performing a photogrammetry study of the antenna surface by using laser ranging measurements. A root-mean-square (rms) error term was derived from the photogrammetry study to calculate the antenna surface loss as described by the Ruze equation. However, initial testing showed that problems existed in using the Ruze equation to calculate the loss due to errors on the antenna surface. This study utilized RF measurements obtained in a near-field antenna range and photogrammetry data taken from a laser range scanner to compare the expected performance of the test antenna (via the Ruze equation) with the actual RF patterns and directivity measurements. Results showed that the Ruze equation overstated the degradation in the directivity calculation. Therefore, when the photogrammetry study is performed on the test antennas in the vacuum chamber, a more complex equation must be used in light of the fact that the Ruze theory overstates the loss in directivity for inflatable aperture reflector antennas.

  18. Electric Dipole Antenna: A Source of Gravitational Radiation

    Directory of Open Access Journals (Sweden)

    Chifu E. N.

    2013-07-01

    Full Text Available In this article, the gravitational scalar potential due to an oscillating electric dipole antenna placed in empty space is derived. The gravitational potential obtained propagates as a wave. The gravitational waves have phase velocity equal to the speed of light in vacuum (c at the equatorial plane of the electric dipole antenna, unlike electromagnetic waves from the dipole antenna that cancel out at the equatorial plane due to charge symmetry.

  19. Unbonded Prestressed Columns for Earthquake Resistance

    Science.gov (United States)

    2012-05-01

    Modern structures are able to survive significant shaking caused by earthquakes. By implementing unbonded post-tensioned tendons in bridge columns, the damage caused by an earthquake can be significantly lower than that of a standard reinforced concr...

  20. PRTR ion exchange vault column sampling

    International Nuclear Information System (INIS)

    Cornwell, B.C.

    1995-01-01

    This report documents ion exchange column sampling and Non Destructive Assay (NDA) results from activities in 1994, for the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. The objective was to obtain sufficient information to prepare disposal documentation for the ion exchange columns found in the PRTR Ion exchange vault. This activity also allowed for the monitoring of the liquid level in the lower vault. The sampling activity contained five separate activities: (1) Sampling an ion exchange column and analyzing the ion exchange media for purpose of waste disposal; (2) Gamma and neutron NDA testing on ion exchange columns located in the upper vault; (3) Lower vault liquid level measurement; (4) Radiological survey of the upper vault; and (5) Secure the vault pending waste disposal

  1. Capacity of columns with splice imperfections

    International Nuclear Information System (INIS)

    Popov, E.P.; Stephen, R.M.

    1977-01-01

    To study the behavior of spliced columns subjected to tensile forces simulating situations which may develop in an earthquake, all of the spliced specimens were tested to failure in tension after first having been subjected to large compressive loads. The results of these tests indicate that the lack of perfect contact at compression splices of columns may not be important, provided that the gaps are shimmed and welding is used to maintain the sections in alignment

  2. Modified Vivaldi antenna with improved gain and phase center stability

    DEFF Research Database (Denmark)

    Zhang, Shuai

    2016-01-01

    A modified Vivaldi antenna is proposed with improved gain and phase centre stability. By applying a high permittivity dielectric substrate, the realized gain is enlarged while maintaining the compactness of the designed antenna. With a redistributed comb-shape corrugation the phase centre stabili...... of the antenna is significantly improved. The designed modified Vivaldi antenna covers the lower UWB band of 3.1-5 GHz with a realized gain higher than 10 dBi. A stable phase centre and radiation patterns over the operating band are realized....

  3. Novel Wideband Metallic Patch Antennas with Low Profile

    Directory of Open Access Journals (Sweden)

    Zhong-Xiang Zhang

    2017-01-01

    Full Text Available Two planar metallic patch (MP antennas with low profiles are investigated and compared in this paper. The MP of each antenna consists of metallic patch cells and it is centrally fed by a rectangular slot. Two modes with close resonance frequencies are excited, providing a quite wide bandwidth. The antenna principle is explained clearly through a parametric study. Simulated and measured results show that the MP antennas with profile of 0.06λ0 can obtain a 10 dB impedance bandwidth of ~32% and an average gain of ~10 dBi.

  4. Circularly Polarized Slotted Microstrip Patch Antenna with Finite Ground Plane

    Directory of Open Access Journals (Sweden)

    Sanyog Rawat

    2012-12-01

    Full Text Available In this paper a new geometry of circularly polarized patch antenna is proposed with improved bandwidth. The radiation performance of proposed patch antenna is investigated using IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna. The simulated return loss, axial ratio and impedance with frequency for the proposed antenna are reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slots, the impedance bandwidth can be enhanced upto 10.15% as compared to conventional rectangular patch (4.24% with an axial ratio bandwidth of 4.05%.

  5. Electrically small circularly polarized spherical antenna with air core

    DEFF Research Database (Denmark)

    Kim, O. S.

    2013-01-01

    An electrically small circularly polarized self-resonant spherical antenna with air core is presented. The antenna is a modified multiarm spherical helix exciting TM10 and TE10 spherical modes with equal radiated power, and thus yielding perfect circular polarization over the entire far......-field sphere (except the polar regions, where the radiation is low). The self-resonance is achieved by exciting higher-order TM modes, which provide the necessary electric stored energy in the near-field, while contributing negligibly to the far-field radiation of the antenna. The antenna has electrical size...

  6. On-chip antenna: Practical design and characterization considerations

    KAUST Repository

    Shamim, Atif; Salama, Khaled N.; Sedky, S.; Soliman, E. A.

    2012-01-01

    This paper highlights the challenges of an emergent field, namely, on-chip antenna design. Consistent with the RF System-on-Chip (SoC) concept, co-design strategy for circuits and on-chip antennas is described. A number of design and layout issues, arising from the highly integrated nature of this kind of systems, are discussed. The characterization difficulties related to on-chip antennas radiation properties are also highlighted. Finally, a novel on-wafer test fixture is proposed to measure the gain and radiation pattern of the on-chip antennas in the anechoic chamber.

  7. Recent Developments of Reflectarray Antennas in Dual-Reflector Configurations

    Directory of Open Access Journals (Sweden)

    Carolina Tienda

    2012-01-01

    Full Text Available Recent work on dual-reflector antennas involving reflectarrays is reviewed in this paper. Both dual-reflector antenna with a reflectarray subreflector and dual-reflectarrays antennas with flat or parabolic main reflectarray are considered. First, a general analysis technique for these two configurations is described. Second, results for beam scanning and contoured-beam applications in different frequency bands are shown and discussed. The performance and capabilities of these antennas are shown by describing some practical design cases for radar, satellite communications, and direct broadcast satellite (DBS applications.

  8. Zeroth order resonator (ZOR) based RFID antenna design

    Science.gov (United States)

    Masud, Muhammad Mubeen

    Meander-line and multi-layer antennas have been used extensively to design compact UHF radio frequency identification (RFID) tags; however the overall size reduction of meander-line antennas is limited by the amount of parasitic inductance that can be introduced by each meander-line segment, and multi-layer antennas can be too costly. In this study, a new compact antenna topology for passive UHF RFID tags based on zeroth order resonant (ZOR) design techniques is presented. The antenna consists of lossy coplanar conductors and either inter-connected inter-digital capacitor (IDC) or shunt inductor unit-cells with a ZOR frequency near the operating frequency of the antenna. Setting the ZOR frequency near the operating frequency is a key component in the design process because the unit-cells chosen for the design are inductive at the operating frequency. This makes the unit-cells very useful for antenna miniaturization. These new designs in this work have several benefits: the coplanar layout can be printed on a single layer, matching inductive loops that reduce antenna efficiency are not required and ZOR analysis can be used for the design. Finally, for validation, prototype antennas are designed, fabricated and tested.

  9. Optimum Antenna Downtilt Angles for Macrocellular WCDMA Network

    Directory of Open Access Journals (Sweden)

    Niemelä Jarno

    2005-01-01

    Full Text Available The impact of antenna downtilt on the performance of cellular WCDMA network has been studied by using a radio network planning tool. An optimum downtilt angle has been evaluated for numerous practical macrocellular site and antenna configurations for electrical and mechanical antenna downtilt concepts. The aim of this massive simulation campaign was expected to provide an answer to two questions: firstly, how to select the downtilt angle of a macrocellular base station antenna? Secondly, what is the impact of antenna downtilt on system capacity and network coverage? Optimum downtilt angles were observed to vary between – depending on the network configuration. Moreover, the corresponding downlink capacity gains varied between – . Antenna vertical beamwidth affects clearly the required optimum downtilt angle the most. On the other hand, with wider antenna vertical beamwidth, the impact of downtilt on system performance is not such imposing. In addition, antenna height together with the size of the dominance area affect the required downtilt angle. Finally, the simulation results revealed how the importance of the antenna downtilt becomes more significant in dense networks, where the capacity requirements are typically also higher.

  10. A new radiation stripline ICRF antenna design for EAST Tokamak

    International Nuclear Information System (INIS)

    Qin, C. M.; Zhao, Y. P.; Wan, B. N.; Li, J.; Zhang, X. J.; Yang, Q. X.; Yuan, S.; Braun, F.; Notedame, J.-M.; Kasahara, H.

    2014-01-01

    A new type of toroidal long Radiation Stripline Antenna (RSA) is presented, which can effectively improve antenna radiation, leading in reduction of max voltage on transmission line and decrease of the sensitivity to ELM's of the ICRF system at some frequencies. Based on the new concept, a 4-straps RSA is proposed for EAST device. Using 3-D computing simulator code (HFSS), RF current distribution, S-parameters and electromagnetic field distribution on and near the RSA ICRF antenna are analyzed and compared with present ICRF antenna on EAST

  11. High-temperature superconducting passive microwave devices, filters and antennas

    International Nuclear Information System (INIS)

    Ohshima, S.

    2000-01-01

    High-temperature superconducting (HTS) passive microwave devices, such as filters and antennas, are promising devices. In particular, HTS filters may be successfully marketed in the near future. Cross-coupled filters, ring filters, and coplanar waveguide filters are good options to reduce filter size. On the other hand, HTS patch antennas which can be cooled by a cryo-cooler are also promising devices as well, since they show higher efficiency than normal antennas. This paper examines the design process and filter properties of HTS filters as well as the gains, directivity, and cooling system of HTS patch antennas. (author)

  12. Multibeam smart antenna field trial experiments in mobile radio environments

    Science.gov (United States)

    Perini, Patrick

    1996-01-01

    Several types of high gain multibeam antennas were tested and compared to traditional sector and omni antennas in various mobile radio environments. A vehicle equipped with a mobile transmitter drove in several mobile radio environments while the received signal strength (RSS) was recorded on multiple antenna channels attached to multibeam, sector and omni directional antennas. The RSS data recorded included the fast (rayleigh) fading and was averaged into local means based on the mobile's position/speed. Description of the experiment and analysis of the gain improvement, average RSS, diversity gain are presented.

  13. Development of impedance matching technologies for ICRF antenna arrays

    International Nuclear Information System (INIS)

    Pinsker, R.I.

    1998-01-01

    All high-power ion cyclotron range of frequency (ICRF) heating systems include devices for matching the input impedance of the antenna array to the generator output impedance. For most types of antennas used, the input impedance is strongly time dependent on timescales as rapid as 10 -1 s, while the radio frequency (RF) generators used are capable of producing full power only into a stationary load impedance. Hence, the dynamic response of the matching method is of great practical importance. In this paper, world-wide developments in this field over the past decade are reviewed. These techniques may be divided into several classes. The edge plasma parameters that determine the antenna array's input impedance may be controlled to maintain a fixed load impedance. The frequency of the RF source can be feedback controlled to compensate for changes in the edge plasma conditions, or fast variable tuning elements in the transmission line between the generator output and the antenna input connections can provide the necessary time-varying impedance transformation. In 'lossy passive schemes', reflected power due to the time-varying impedance of the antenna array is diverted to a dummy load. Each of these techniques can be applied to a pre-existing antenna system. If a new antenna is to be designed, recent advances allow the antenna array to have the intrinsic property of presenting a constant load to the feeding transmission lines despite the varying load seen by each antenna in the array. (author)

  14. Numerical calculation of radiation pattern of plasma channel antenna

    International Nuclear Information System (INIS)

    Xia Xinren; Yin Chengyou

    2010-01-01

    The idea of plasma channel antenna (PCA) for high power microwave weapon is presented in this paper. The radiation pattern of PCA is calculated. The directivity functions of general antenna are derived. The near electromagnetic model of PCA is created based on physical circumstances. The electromagnetic fields of PCA and surrounding air in cylindrical coordinate are given. The dispersion equation of PCA is deduced by applying the boundary conditions of electromagnetic fields. The surface wave vector of PCA is achieved. The variations of radiation characteristic with plasma density, antenna length and antenna radius are emphatically discussed. The controllability of PCA's radiation patterns is confirmed. (authors)

  15. A Rectangular Planar Spiral Antenna for GIS Partial Discharge Detection

    Directory of Open Access Journals (Sweden)

    Xiaoxing Zhang

    2014-01-01

    Full Text Available A rectangular planar spiral antenna sensor was designed for detecting the partial discharge in gas insulation substations (GIS. It can expediently receive electromagnetic waves leaked from basin-type insulators and can effectively suppress low frequency electromagnetic interference from the surrounding environment. Certain effective techniques such as rectangular spiral structure, bow-tie loading, and back cavity structure optimization during the antenna design process can miniaturize antenna size and optimize voltage standing wave ratio (VSWR characteristics. Model calculation and experimental data measured in the laboratory show that the antenna possesses a good radiating performance and a multiband property when working in the ultrahigh frequency (UHF band. A comparative study between characteristics of the designed antenna and the existing quasi-TEM horn antenna was made. Based on the GIS defect simulation equipment in the laboratory, partial discharge signals were detected by the designed antenna, the available quasi-TEM horn antenna, and the microstrip patch antenna, and the measurement results were compared.

  16. Absorbed Power Minimization in Cellular Users with Circular Antenna Arrays

    Science.gov (United States)

    Christofilakis, Vasilis; Votis, Constantinos; Tatsis, Giorgos; Raptis, Vasilis; Kostarakis, Panos

    2010-01-01

    Nowadays electromagnetic pollution of non ionizing radiation generated by cellular phones concerns millions of people. In this paper the use of circular antenna array as a means of minimizing the absorbed power by cellular phone users is introduced. In particular, the different characteristics of radiation patterns produced by a helical conventional antenna used in mobile phones operating at 900 MHz and those produced by a circular antenna array, hypothetically used in the same mobile phones, are in detail examined. Furthermore, the percentage of decrement of the power absorbed in the head as a function of direction of arrival is estimated for the circular antenna array.

  17. Explore the Capability of ESPAR Antennas for Low Cost Communication

    DEFF Research Database (Denmark)

    Han, Bo; Kalis, A; Papadias, C.

    ESPAR antenna systems are composed of one active and several parasitic elements and by changing the characteristic of the parasitic elements on the antenna, the radiation pattern will also change. Such characteristic makes ESPAR antenna useful in many applications, e.g., single RF MIMO transmission...... and imaginary part. So a matching network is required to control the load value. This paper presents an idea of adjusting the parasitic ESPAR antenna loads with controllable passive elements. According to simulation, the control circuit consumes less than 1mW power on 64 patterns selection, which explores...

  18. A New Metasurface Superstrate Structure for Antenna Performance Enhancement.

    Science.gov (United States)

    Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Faruque, Mohammad Rashed Iqbal

    2013-07-31

    A new metasurface superstrate structure (MSS)-loaded dual band microstrip line-fed small patch antenna is presented in this paper. The proposed antenna was designed on a ceramic-filled bioplastic sandwich substrate with a high dielectric constant. The proposed 7 × 6 element, square-shaped, single-sided MSS significantly improved the bandwidth and gain of the proposed antenna. The proposed MSS incorporated a slotted patch antenna that effectively increased the measured operating bandwidth from 13.3% to 18.8% and from 14.8% to 23.2% in the lower and upper bands, respectively. Moreover, the average gain of the proposed MSS-based antenna was enhanced from 2.12 dBi to 3.02 dBi in the lower band and from 4.10 dBi to 5.28 dBi in the upper band compared to the patch antenna alone. In addition to the bandwidth and gain improvements, more directive radiation characteristics were also observed from the MSS antenna compared to the patch itself. The effects of the MSS elements and the ground plane length on the reflection coefficient of the antenna were analyzed and optimized. The overall performance makes the proposed antenna appropriate for RFID and WLAN applications.

  19. Experimental study on propagation properties of large size TEM antennas

    International Nuclear Information System (INIS)

    Zhang Guowei; Wang Haiyang; Chen Weiqing; Wang Wei; Zhu Xiangqin; Xie Linshen

    2014-01-01

    The propagation properties of large size TEM antennas were studied by experiment. The size of the TEM antennas is 60 m × 20 m × 10 m and the character Impedance is 120 Ω. A kind of dielectric foil switch is designed compactly with TEM antennas which can generate double exponential waveform with altitude of 10 kV and rise time of l.2 ns. The radiated field distribution was measured. The relationship between rise time/altitude and distance were provided, and the propagation properties of large size TEM antennas were summarized. (authors)

  20. On-chip antenna: Practical design and characterization considerations

    KAUST Repository

    Shamim, Atif

    2012-07-28

    This paper highlights the challenges of an emergent field, namely, on-chip antenna design. Consistent with the RF System-on-Chip (SoC) concept, co-design strategy for circuits and on-chip antennas is described. A number of design and layout issues, arising from the highly integrated nature of this kind of systems, are discussed. The characterization difficulties related to on-chip antennas radiation properties are also highlighted. Finally, a novel on-wafer test fixture is proposed to measure the gain and radiation pattern of the on-chip antennas in the anechoic chamber.

  1. Development of impedance matching technologies for ICRF antenna arrays

    International Nuclear Information System (INIS)

    Pinsker, R.I.

    1998-03-01

    All high power ICRF heating systems include devices for matching the input impedance of the antenna array to the generator output impedance. For most types of antennas used, the input impedance is strongly time-dependent on timescales as rapid as 10-4 s, while the rf generators used are capable of producing full power only into a stationary load impedance. Hence, the dynamic response of the matching method is of great practical importance. In this paper, world-wide developments in this field over the past decade are reviewed. These techniques may be divided into several classes. The edge plasma parameters that determine the antenna array's input impedance may be controlled to maintain a fixed load impedance. The frequency of the rf source can be feedback controlled to compensate for changes in the edge plasma conditions, or fast variable tuning elements in the transmission line between the generator output and the antenna input connections can provide the necessary time-varying impedance transformation. In lossy passive schemes, reflected power due to the time-varying impedance of the antenna array is diverted to a dummy load. Each of these techniques can be applied to a pre-existing antenna system. If a new antenna is to be designed, recent advances allow the antenna array to have the intrinsic property of presenting a constant load to the feeding transmission lines despite the varying load seen by each antenna in the array

  2. Integrated Solar-Panel Antenna Array for CubeSats

    Science.gov (United States)

    Baktur, Reyhan

    2016-01-01

    The goal of the Integrated Solar-Panel Antenna Array for CubeSats (ISAAC) project is to design and demonstrate an effective and efficien toptically transparent, high-gain, lightweight, conformal X-band antenna array that is integrated with the solar panels of a CubeSat. The targeted demonstration is for a Near Earth Network (NEN)radio at X-band, but the design can be easilyscaled to other network radios for higher frequencies. ISAAC is a less expensive and more flexible design for communication systemscompared to a deployed dish antenna or the existing integrated solar panel antenna design.

  3. Gas Chromatograph Method Optimization Trade Study for RESOLVE: 20-meter Column v. 8-meter Column

    Science.gov (United States)

    Huz, Kateryna

    2014-01-01

    RESOLVE is the payload on a Class D mission, Resource Prospector, which will prospect for water and other volatile resources at a lunar pole. The RESOLVE payload's primary scientific purpose includes determining the presence of water on the moon in the lunar regolith. In order to detect the water, a gas chromatograph (GC) will be used in conjunction with a mass spectrometer (MS). The goal of the experiment was to compare two GC column lengths and recommend which would be best for RESOLVE's purposes. Throughout the experiment, an Inficon Fusion GC and an Inficon Micro GC 3000 were used. The Fusion had a 20m long column with 0.25mm internal diameter (Id). The Micro GC 3000 had an 8m long column with a 0.32mm Id. By varying the column temperature and column pressure while holding all other parameters constant, the ideal conditions for testing with each column length in their individual instrument configurations were determined. The criteria used for determining the optimal method parameters included (in no particular order) (1) quickest run time, (2) peak sharpness, and (3) peak separation. After testing numerous combinations of temperature and pressure, the parameters for each column length that resulted in the most optimal data given my three criteria were selected. The ideal temperature and pressure for the 20m column were 95 C and 50psig. At this temperature and pressure, the peaks were separated and the retention times were shorter compared to other combinations. The Inficon Micro GC 3000 operated better at lower temperature mainly due to the shorter 8m column. The optimal column temperature and pressure were 70 C and 30psig. The Inficon Micro GC 3000 8m column had worse separation than the Inficon Fusion 20m column, but was able to separate water within a shorter run time. Therefore, the most significant tradeoff between the two column lengths was peak separation of the sample versus run time. After performing several tests, it was concluded that better

  4. The handedness of historiated spiral columns.

    Science.gov (United States)

    Couzin, Robert

    2017-09-01

    Trajan's Column in Rome (AD 113) was the model for a modest number of other spiral columns decorated with figural, narrative imagery from antiquity to the present day. Most of these wind upwards to the right, often with a congruent spiral staircase within. A brief introductory consideration of antique screw direction in mechanical devices and fluted columns suggests that the former may have been affected by the handedness of designers and the latter by a preference for symmetry. However, for the historiated columns that are the main focus of this article, the determining factor was likely script direction. The manner in which this operated is considered, as well as competing mechanisms that might explain exceptions. A related phenomenon is the reversal of the spiral in a non-trivial number of reproductions of the antique columns, from Roman coinage to Renaissance and baroque drawings and engravings. Finally, the consistent inattention in academic literature to the spiral direction of historiated columns and the repeated publication of erroneous earlier reproductions warrants further consideration.

  5. Interpretation of the lime column penetration test

    International Nuclear Information System (INIS)

    Liyanapathirana, D S; Kelly, R B

    2010-01-01

    Dry soil mix (DSM) columns are used to reduce the settlement and to improve the stability of embankments constructed on soft clays. During construction the shear strength of the columns needs to be confirmed for compliance with technical assumptions. A specialized blade shaped penetrometer known as the lime column probe, has been developed for testing DSM columns. This test can be carried out as a pull out resistance test (PORT) or a push in resistance test (PIRT). The test is considered to be more representative of average column shear strength than methods that test only a limited area of the column. Both PORT and PIRT tests require empirical correlations of measured resistance to an absolute measure of shear strength, in a similar manner to the cone penetration test. In this paper, finite element method is used to assess the probe factor, N, for the PORT test. Due to the large soil deformations around the probe, an Arbitrary Lagrangian Eulerian (ALE) based finite element formulation has been used. Variation of N with rigidity index and the friction at the probe-soil interface are investigated to establish a range for the probe factor.

  6. Mass transfer model liquid phase catalytic exchange column simulation applicable to any column composition profile

    Energy Technology Data Exchange (ETDEWEB)

    Busigin, A. [NITEK USA Inc., Ocala, FL (United States)

    2015-03-15

    Liquid Phase Catalytic Exchange (LPCE) is a key technology used in water detritiation systems. Rigorous simulation of LPCE is complicated when a column may have both hydrogen and deuterium present in significant concentrations in different sections of the column. This paper presents a general mass transfer model for a homogenous packed bed LPCE column as a set of differential equations describing composition change, and equilibrium equations to define the mass transfer driving force within the column. The model is used to show the effect of deuterium buildup in the bottom of an LPCE column from non-negligible D atom fraction in the bottom feed gas to the column. These types of calculations are important in the design of CECE (Combined Electrolysis and Catalytic Exchange) water detritiation systems.

  7. Development of spent salt treatment technology by zeolite column system. Performance evaluation of zeolite column

    International Nuclear Information System (INIS)

    Miura, Hidenori; Uozumi, Koichi

    2009-01-01

    At electrorefining process, fission products(FPs) accumulate in molten salt. To avoid influence on heating control by decay heat and enlargement of FP amount in the recovered fuel, FP elements must be removed from the spent salt of the electrorefining process. For the removal of the FPs from the spent salt, we are investigating the availability of zeolite column system. For obtaining the basic data of the column system, such as flow property and ion-exchange performance while high temperature molten salt is passing through the column, and experimental apparatus equipped with fraction collector was developed. By using this apparatus, following results were obtained. 1) We cleared up the flow parameter of column system with zeolite powder, such as flow rate control by argon pressure. 2) Zeolite 4A in the column can absorb cesium that is one of the FP elements in molten salt. From these results, we got perspective on availability of the zeolite column system. (author)

  8. Structural Decoupling and Disturbance Rejection in a Distillation Column

    DEFF Research Database (Denmark)

    Bahar, Mehrdad; Jantzen, Jan; Commault, C.

    1996-01-01

    Introduction, distillation column model, input-output decoupling, disturbance rejection, concluding remarks, references.......Introduction, distillation column model, input-output decoupling, disturbance rejection, concluding remarks, references....

  9. Effects of wafer-level packaging on millimetre-wave antennas

    KAUST Repository

    Abutarboush, Hattan; Tawfik, Hani H.; Soliman, Ezzeldin A.; Sallam, Mai O.; Shamim, Atif; Sedky, Sherif M.

    2011-01-01

    methods of packaging millimetre-wave (60 GHz) MEMS antennas. The paper first introduces the custom needs for optimum operation of the MEMS antenna and then examines the current available enabling technologies for packaging. The sensitivity of the antenna

  10. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters.

    Science.gov (United States)

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-21

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis.

  11. Planar Circularly Symmetric Electromagnetic Band-Gap Antennas for Low Cost High Performance Integrated Antennas

    NARCIS (Netherlands)

    Neto, A.; LLombart, N.; Gerini, G.; Maagt, P.J. de

    2009-01-01

    The use of Planar Circularly Symmetric (PCS) Electromagnetic Band-Gap (EBG) structures for optimizing the performances of single antenna elements and arrays is been discussed. The key advantage of using this sort of super structures is that they are planar and thus very cheap to manufacture with

  12. Planar circularly symmetric Electromagnetic Band-Gap antennas for low cost high performance integrated antennas

    NARCIS (Netherlands)

    Neto, A.; Llombart, N.; Gerini, G.; de Maagt, P.J.I.

    2009-01-01

    The use of planar circularly symmetric (PCS) electromagnetic band-gap (EBG) structures for optimizing the performances of single antenna elements and arrays is been discussed. The key advantage of using this sort of super structures is that they are planar and thus very cheap to manufacture with

  13. An active antenna for ELF magnetic fields

    Science.gov (United States)

    Sutton, John F.; Spaniol, Craig

    1994-01-01

    The work of Nikola Tesla, especially that directed toward world-wide electrical energy distribution via excitation of the earth-ionosphere cavity resonances, has stimulated interest in the study of these resonances. Not only are they important for their potential use in the transmission of intelligence and electrical power, they are important because they are an integral part of our natural environment. This paper describes the design of a sensitive, untuned, low noise active antenna which is uniquely suited to modern earth-ionosphere cavity resonance measurements employing fast-Fourier transform techniques for near-real-time data analysis. It capitalizes on a little known field-antenna interaction mechanism. Recently, the authors made preliminary measurements of the magnetic fields in the earth-ionosphere cavity. During the course of this study, the problem of designing an optimized ELF magnetic field sensor presented itself. The sensor would have to be small, light weight (for portable use), and capable of detecting the 5-50 Hz picoTesla-level signals generated by the natural excitations of the earth-ionosphere cavity resonances. A review of the literature revealed that past researchers had employed very large search coils, both tuned and untuned. Hill and Bostick, for example, used coils of 30,000 turns wound on high permeability cores of 1.83 m length, weighing 40 kg. Tuned coils are unsuitable for modern fast-Fourier transform data analysis techniques which require a broad spectrum input. 'Untuned' coils connected to high input impedance voltage amplifiers exhibit resonant responses at the resonant frequency determined by the coil inductance and the coil distributed winding capacitance. Also, considered as antennas, they have effective areas equal only to their geometrical areas.

  14. Measurement of LHCD antenna position in Aditya tokamak

    International Nuclear Information System (INIS)

    Ambulkar, K K; Sharma, P K; Virani, C G; Parmar, P R; Thakur, A L; Kulkarni, S V

    2010-01-01

    To drive plasma current non-inductively in ADITYA tokamak, 120 kW pulsed Lower Hybrid Current Drive (LHCD) system at 3.7 GHz has been designed, fabricated and installed on ADITYA tokamak. In this system, the antenna consists of a grill structure, having two rows, each row comprising of four sub-waveguides. The coupling of LHCD power to the plasma strongly depends on the plasma density near the mouth of grill antenna. Thus the grill antenna has to be precisely positioned for efficient coupling. The movement of mechanical bellow, which contracts or expands up to 50mm, governs the movement of antenna. In order to monitor the position of the antenna precisely, the reference position of the antenna with respect to the machine/plasma position has to be accurately determined. Further a mechanical system or an electronic system to measure the relative movement of the antenna with respect to the reference position is also desired. Also due to poor accessibility inside the ADITYA machine, it is impossible to measure physically the reference position of the grill antenna with respect to machine wall, taken as reference position and hence an alternative method has to be adopted to establish these measurements reliably. In this paper we report the design and development of a mechanism, using which the antenna position measurements are made. It also describes a unique method employing which the measurements of the reference position of the antenna with respect to the inner edge of the tokamak wall is carried out, which otherwise was impossible due to poor accessibility and physical constraints. The position of the antenna is monitored using an electronic scale, which is developed and installed on the bellow. Once the reference position is derived, the linear potentiometer, attached to the bellow, measures the linear distance using position transmitter. The accuracy of measurement obtained in our setup is within +/- 0.5 % and the linearity, along with repeatability is excellent.

  15. Developing novel 3D antennas using advanced additive manufacturing technology

    Science.gov (United States)

    Mirzaee, Milad

    In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.

  16. Investigating antennas as ignition aid for automotive HID lamps

    International Nuclear Information System (INIS)

    Bergner, A; Engelhardt, M; Bienholz, S; Ruhrmann, C; Hoebing, T; Groeger, S; Mentel, J; Awakowicz, P

    2015-01-01

    This paper considers the ignition of mercury-free high-intensity discharge (HID) lamps for car headlights. Due to safety reasons, these lamps need to have a fast run-up phase which is ensured, amongst other things, by a high Xe pressure of roughly 15 bar (cold) in the discharge vessel. The high Xe pressure causes an increased ignition voltage compared with former mercury-containing automotive HID lamps or low-pressure lamps used for general-lighting applications. The increase in ignition voltage can be limited if the electric field in front of the electrodes is raised by an uplifting of the electrical conductivity along the outer wall of the inner bulb either by a conductive layer on its surface or by a dielectric barrier discharge (DBD) within the outer bulb. This paper considers on the one hand conventional antennas deposited by physical vapour deposition (PVD) and on the other hand a combination of these antennas with a DBD within the outer-bulb operated in 100 mbar Ar as ignition aids. In both cases the antenna potential and antenna width are varied. Additionally, the effects of antenna thickness and antenna material are investigated. The ignition voltage, ignition current and light emission during ignition are measured on a nanosecond timescale. Furthermore, for the very first time, the ignition process is recorded in four consecutive intensified charge-coupled device images using a high-speed camera system with a time resolution in the range of nanoseconds. It was found that antennas strongly reduce the ignition voltage of automotive HID lamps. Active antennas reduce the ignition voltage significantly more than passive antennas, proportional to the conductance of the antenna. Combining conventional antennas with an outer-bulb discharge reduces the ignition voltage from 19 kV without any ignition aid to the intrinsic ignition voltage of the lamp below 10 kV, in the best case. (paper)

  17. Mechanical design of the second ICRF antenna for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.Q., E-mail: yangqx@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Song, Y.T.; Wu, S.T.; Zhao, Y.P.; Zhang, J.X.; Wang, Z.W. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The second ICRF antenna of EAST is capable of coupling higher power than the former ICRF antenna due to it has been designed with four current straps. Black-Right-Pointing-Pointer Many cooling channels have been designed for the key components of faraday shied, current strap, baffles and transmission lines, which can remove the dissipated RF loss power and incoming heat loads on them and make ICRF antenna being capable of coupling higher power in constant wave operation. Black-Right-Pointing-Pointer Extra structure via cantilever support beam has been designed to support the forepart of the ICRF antenna. Black-Right-Pointing-Pointer Numerical analysis by applying the thermo-mechanical coupling method have been applied to analyze for the key components of ICRF antenna. - Abstract: In order to satisfy the requirements of heating plasma on EAST project, 3 MW ion cyclotron range of frequency (ICRF) heating system will be available at the second stage. Based on this requirement, the second ICRF antenna, has been designed for EAST. The antenna which is planned to operate with a frequency ranging from 30 MHz to 110 MHz, comprises four poloidal current straps. The antenna has many cooling channels inside the current straps, faraday shield and baffle to remove the dissipated RF loss power and incoming plasma heat loads. The antenna is supported via a cantilever support box to the external support structure. Its assembly is plugged in the port and fixed on the support box. External slideway and bellows allow the antenna to be able to move in the radial direction. The key components of the second ICRF antenna has been designed together with structural and thermal analysis presented.

  18. A new antenna concept for satellite communications

    Science.gov (United States)

    Skahill, G.; Ciccolella, D.

    1982-01-01

    A novel antenna configuration of two reflecting surfaces and a phased array is examined for application to satellite communications and shown to be superior in every respect to earlier designs for service to the continental United States from synchronous orbit. The vignetting that afflicts other two reflector optical systems is eliminated by use of a reflecting field element. The remaining aberrations, predominantly coma, are isolated in the time delay distribution at the surface of the array and can be compensated by ordinary array techniques. The optics exhibits infinite bandwidth and the frequency range is limited only by the design of the array.

  19. New Concepts in Electromagnetic Materials and Antennas

    Science.gov (United States)

    2015-01-01

    Length 29.25mm (~3 λ @ 32GHz) Distance from the PEC to the axis of the antenna 8.635mm (0.92 λ @ 32GHz) Figure 17 A Waveguide Fed...shell configuration. Using the Ricatti-Bessel functions, we can represent the field components with Debye potentials and subsequently solve for the...all three regions into TM and TE components with respect to r̂, we can express the electric and magnetic fields in terms of the Debye potentials πe and

  20. Antenna Fabrication using 3D printing techniques

    OpenAIRE

    Elibiary, Ahmed

    2017-01-01

    This thesis focuses to explore the use of additive manufacturing (AM) techniques to fabricate various radio frequency (RF) devices. 3D printing, a term used for AM has evolved to the point where it is being introduced into various industries, one of these, discussed in this thesis is the fabrication of antennas for the aim to reduce manufacturing costs and time.\\ud The aim is to investigate the performance and reliability of a modified low-cost 3D printer to print plastic and metal simultaneo...