WorldWideScience

Sample records for honeycomb structures

  1. Freeform Honeycomb Structures

    KAUST Repository

    Jiang, Caigui

    2014-07-01

    Motivated by requirements of freeform architecture, and inspired by the geometry of hexagonal combs in beehives, this paper addresses torsion-free structures aligned with hexagonal meshes. Since repetitive geometry is a very important contribution to the reduction of production costs, we study in detail “honeycomb structures”, which are defined as torsion-free structures where the walls of cells meet at 120 degrees. Interestingly, the Gauss-Bonnet theorem is useful in deriving information on the global distribution of node axes in such honeycombs. This paper discusses the computation and modeling of honeycomb structures as well as applications, e.g. for shading systems, or for quad meshing. We consider this paper as a contribution to the wider topic of freeform patterns, polyhedral or otherwise. Such patterns require new approaches on the technical level, e.g. in the treatment of smoothness, but they also extend our view of what constitutes aesthetic freeform geometry.

  2. Spot Welding of Honeycomb Structures

    Science.gov (United States)

    Cohal, V.

    2017-08-01

    Honeycomb structures are used to prepare meals water jet cutting machines for textile. These honeycomb structures are made of stainless steel sheet thickness of 0.1-0.2 mm. Corrugated sheet metal strips are between two gears with special tooth profile. Hexagonal cells for obtaining these strips are welded points between them. Spot welding device is three electrodes in the upper part, which carries three welding points across the width of the strip of corrugated sheet metal. Spot welding device filled with press and advance mechanisms. The paper presents the values of the regime for spot welding.

  3. Active inflatable auxetic honeycomb structural concept for morphing wingtips

    International Nuclear Information System (INIS)

    Sun, Jian; Leng, Jinsong; Gao, Hongliang; Liu, Yanju; Scarpa, Fabrizio; Lira, Cristian

    2014-01-01

    This paper describes a new concept of an active honeycomb structure for morphing wingtip applications based on tubular inflatable systems and an auxetic cellular structure. A work-energy model to predict the output honeycomb displacement versus input pressure is developed together with a finite element formulation, and the results are compared with the data obtained from a small-scale example of an active honeycomb. An analysis of the hysteresis associated with multiple cyclic loading is also provided, and design considerations for a larger-scale wingtip demonstrator are made. (paper)

  4. Thermo-plastic finite element analysis for metal honeycomb structure

    Directory of Open Access Journals (Sweden)

    Ji Zhanling

    2013-01-01

    Full Text Available This paper deals with thermal-plastic analysis for the metal honeycomb structure. The heat transfer equation and thermal elastoplastic constitutive equation of a multilayer panel are established and studied numerically using ANSYS software. The paper elucidates that only the outer skin produces easily plastic deformation, and the outer skin still exists some residual stress and residual deformation after cooling. The dynamic evolution of plastic deformation and material performance degradation under high energy thermal load are revealed.

  5. Mechanical analysis of an assembly box with honeycomb structure

    International Nuclear Information System (INIS)

    Herbell, Heiko; Himmel, Steffen; Schulenberg, Thomas

    2008-01-01

    Fuel assembly concepts for supercritical water cooled reactors have often been designed with assembly and moderator boxes to provide additional moderator water in the core in case of higher coolant temperatures. The fuel assembly considered here has been designed for the High Performance Light Water Reactor (HPLWR) with three succeeding heat up steps, one evaporator and two superheater steps. The high coolant pressure drop of such a core design causes, however, a higher pressure difference across the box walls than those typically occurring in boiling water reactors. Hot, superheated steam conditions, on the other hand, require thermally insulated box walls rather than solid box walls to reduce heating of the moderator water. In this paper an innovative design for moderator- and assembly boxes is investigated which consists of an alumina filled stainless steel honeycomb structure, built as a sandwich design between two stainless steel liners. The liners in contact with the colder moderator water are perforated to lower the pressure load on the honeycomb structure. As a consequence, the alumina will be soaked with supercritical water causing stagnant flow conditions in the honeycomb cells. In comparison to solid box walls, the use of the presented design can provide the same stiffness but with a drastic reduction of structural material and thus less neutron absorption. Finite Element Analyses are used to verify the required stiffness, to identify stress concentrations, and to optimize the design. (author)

  6. Characterization of Thermal and Mechanical Impact on Aluminum Honeycomb Structures

    Science.gov (United States)

    Robinson, Christen M.

    2013-01-01

    This study supports NASA Kennedy Space Center's research in the area of intelligent thermal management systems and multifunctional thermal systems. This project addresses the evaluation of the mechanical and thermal properties of metallic cellular solid (MCS) materials; those that are lightweight; high strength, tunable, multifunctional and affordable. A portion of the work includes understanding the mechanical properties of honeycomb structured cellular solids upon impact testing under ambient, water-immersed, liquid nitrogen-cooled, and liquid nitrogen-immersed conditions. Additionally, this study will address characterization techniques of the aluminum honeycomb's ability to resist multiple high-rate loadings or impacts in varying environmental conditions, using various techniques for the quantitative and qualitative determination for commercial applicability.

  7. Flexural Behavior of Aluminum Honeycomb Core Sandwich Structure

    Science.gov (United States)

    Matta, Vidyasagar; Kumar, J. Suresh; Venkataraviteja, Duddu; Reddy, Guggulla Bharath Kumar

    2017-05-01

    This project is concerned with the fabrication and flexural testing of aluminium honey comb sandwich structure which is a special case of composite materials that is fabricated by attaching two thin but stiff skins to a light weight but thick core. The core material is normally low density material but its high thickness provide the sandwich composite with high bonding stiffness. Honeycomb core are classified into two types based on the materials and structures. Hexagonal shape has a unique properties i.e has more bonding strength and less formation time based on the cell size and sheet thickness. Sandwich structure exhibit different properties such as high load bearing capacity at low weight and has excellent thermal insulation. By considering the above properties it has tendency to minimize the structural problem. So honey comb sandwich structure is choosed. The core structure has a different applications such as aircraft, ship interiors, construction industries. As there is no proper research on strength characteristics of sandwich structure. So, we use light weight material to desire the strength. There are different parameters involved in this structure i.e cell size, sheet thickness and core height. In this project we considered 3 level of comparison among the 3 different parameters cell size of 4, 6 and 8 mm, sheet thickness of 0.3, 0.5 and 0.7 mm, and core height of 20,25 and 30 mm. In order to reduce the number of experiment we use taguchi design of experiment, and we select the L8 orthogonal array is the best array for this type of situation, which clearly identifies the parameters by independent of material weight to support this we add the minitab software, to identify the main effective plots and regression equation which involves the individual response and corresponding parameters. Aluminium material is used for the fabrication of Honeycomb sandwich structure among the various grades of aluminium we consider the AL6061 which is light weight material

  8. Monte Carlo study of the honeycomb structure of anthraquinone molecules on Cu(111)

    Science.gov (United States)

    Kim, Kwangmoo; Einstein, T. L.

    2011-06-01

    Using Monte Carlo calculations of the two-dimensional (2D) triangular lattice gas model, we demonstrate a mechanism for the spontaneous formation of honeycomb structure of anthraquinone (AQ) molecules on a Cu(111) plane. In our model long-range attractions play an important role, in addition to the long-range repulsions and short-range attractions proposed by Pawin, Wong, Kwon, and Bartels [ScienceSCIEAS0036-807510.1126/science.1129309 313, 961 (2006)]. We provide a global account of the possible combinations of long-range attractive coupling constants which lead to a honeycomb superstructure. We also provide the critical temperature of disruption of the honeycomb structure and compare the critical local coverage rate of AQ’s where the honeycomb structure starts to form with the experimental observations.

  9. Directed self-assembly of large scaffold-free multi-cellular honeycomb structures

    International Nuclear Information System (INIS)

    Tejavibulya, Nalin; Youssef, Jacquelyn; Bao, Brian; Ferruccio, Toni-Marie; Morgan, Jeffrey R

    2011-01-01

    A significant challenge to the field of biofabrication is the rapid construction of large three-dimensional (3D) living tissues and organs. Multi-cellular spheroids have been used as building blocks. In this paper, we create large multi-cellular honeycomb building blocks using directed self-assembly, whereby cell-to-cell adhesion, in the context of the shape and obstacles of a micro-mold, drives the formation of a 3D structure. Computer-aided design, rapid prototyping and replica molding were used to fabricate honeycomb-shaped micro-molds. Nonadhesive hydrogels cast from these micro-molds were equilibrated in the cell culture medium and seeded with two types of mammalian cells. The cells settled into the honeycomb recess were unable to attach to the nonadhesive hydrogel and so cell-to-cell adhesion drove the self-assembly of a large multi-cellular honeycomb within 24 h. Distinct morphological changes occurred to the honeycomb and its cells indicating the presence of significant cell-mediated tension. Unlike the spheroid, whose size is constrained by a critical diffusion distance needed to maintain cell viability, the overall size of the honeycomb is not limited. The rapid production of the honeycomb building unit, with its multiple rings of high-density cells and open lumen spaces, offers interesting new possibilities for biofabrication strategies.

  10. Design and analysis of adaptive honeycomb structure with pneumatic muscle fibers

    Science.gov (United States)

    Yin, Weilong; Tian, Dongkui; Chen, Yijin

    2012-04-01

    The adaptive honeycomb structure actuated by pneumatic muscle fibers is proposed in this paper. The FE model of adaptive honeycomb structure is developed by use of ANSYS software. The elastics modulus of the developed pneumatic muscle fibers is experimentally determined and their output force is tested. The results show that the contraction ratio of the pneumatic muscle fibers with inner diameter of 2mm could reach up to 26.8% and the force could reach to a value of 27N when the applied pressure is 0.4MPa and the contraction ratio is zero. When the adaptive honeycomb has a certain load and an effective output displacement, the applied force must be greater than a certain value. The adaptive honeycomb must be consumed extra energy when the output displacement and force are produced.

  11. Increased power to weight ratio of piezoelectric energy harvesters through integration of cellular honeycomb structures

    International Nuclear Information System (INIS)

    Chandrasekharan, N; Thompson, L L

    2016-01-01

    The limitations posed by batteries have compelled the need to investigate energy harvesting methods to power small electronic devices that require very low operational power. Vibration based energy harvesting methods with piezoelectric transduction in particular has been shown to possess potential towards energy harvesters replacing batteries. Current piezoelectric energy harvesters exhibit considerably lower power to weight ratio or specific power when compared to batteries the harvesters seek to replace. To attain the goal of battery-less self-sustainable device operation the power to weight ratio gap between piezoelectric energy harvesters and batteries need to be bridged. In this paper the potential of integrating lightweight honeycomb structures with existing piezoelectric device configurations (bimorph) towards achieving higher specific power is investigated. It is shown in this study that at low excitation frequency ranges, replacing the solid continuous substrate of conventional bimorph with honeycomb structures of the same material results in a significant increase in power to weight ratio of the piezoelectric harvester. At higher driving frequency ranges it is shown that unlike the traditional piezoelectric bimorph with solid continuous substrate, the honeycomb substrate bimorph can preserve optimum global design parameters through manipulation of honeycomb unit cell parameters. Increased operating lifetime and design flexibility of the honeycomb core piezoelectric bimorph is demonstrated as unit cell parameters of the honeycomb structures can be manipulated to alter mass and stiffness properties of the substrate, resulting in unit cell parameter significantly influencing power generation. (paper)

  12. The use of neutron imaging for the study of honeycomb structures in aircraft

    International Nuclear Information System (INIS)

    Hungler, P.C.; Bennett, L.G.I.; Lewis, W.J.; Brenizer, J.S.; Heller, A.K.

    2009-01-01

    Highly maneuverable aircraft, such as the CF188 Hornet, have several flight control surfaces on both the leading and the trailing edges of the wing surfaces. They are composed of composite panels constructed of aluminum honeycomb core usually covered with graphite epoxy skins. Although very light and structurally stiff, they are being compromised by water ingress. The trapped water degrades their structural integrity by interacting with the adhesive. Various studies are underway to understand the movement of water in the honeycomb core as well as to determine a method of removing the water. With a vertical neutron beam tube at Royal Military College (RMC), the component can be positioned horizontally and the pooled water in each honeycomb cell can be imaged. These images have been compared with those from a horizontal beam and thus vertical placement of the structure at Pennsylvania State University Radiation Science and Engineer Center's Breazeale reactor. Thereby, both the filet bond between the honeycomb and the skin as well as the node bond between the honeycomb cells can be studied to determine their contribution to the movement of water throughout the structure. Moreover, the exit path for water has been visualized as part of developing a drying procedure for these flight control surfaces.

  13. Improved Electrochromic Characteristics of a Honeycomb-Structured Film Composed of NiO.

    Science.gov (United States)

    Yang, Hyeeun; Lee, Yulhee; Kim, Dong In; Seo, Hyeon Jin; Yu, Jung-Hoon; Nam, Sang-Hun; Boo, Jin-Hyo

    2018-09-01

    Color changes controlled by electronic energies have been studied for many years in order to fabricate energy-efficient smart windows. Reduction and oxidization of nickel oxide under the appropriate voltage can change the color of a window. For a superior nickel oxide (NiO) electrochromic device (ECD), it is important to control the chemical and physical characteristics of the surface. In this study, we applied polystyrene bead templates to nickel oxide films to fabricate a honeycomb-structured electrochromic (EC) layer. We synthesized uniform polystyrene beads using the chemical wet method and placed them on substrates to create honeycomb-structured NiO films. Then, the EC characteristics of the nickel oxide films with a honeycomb structure were evaluated with UV-Visible and cyclic voltammetry. FE-SEM and AFM were used to measure the morphologies of the nanostructures and the efficiencies of the redox reactions related to the specific surface area.

  14. Radiative heat transfer in honeycomb structures-New simple analytical and numerical approaches

    International Nuclear Information System (INIS)

    Baillis, D; Coquard, R; Randrianalisoa, J

    2012-01-01

    Porous Honeycomb Structures present the interest of combining, at the same time, high thermal insulating properties, low density and sufficient mechanical resistance. However, their thermal properties remain relatively unexplored. The aim of this study is the modelling of the combined heat transfer and especially radiative heat transfer through this type of anisotropic porous material. The equivalent radiative properties of the material are determined using ray-tracing procedures inside the honeycomb porous structure. From computational ray-tracing results, simple new analytical relations have been deduced. These useful analytical relations permit to determine radiative properties such as extinction, absorption and scattering coefficients and phase function functions of cell dimensions and optical properties of cell walls. The radiative properties of honeycomb material strongly depend on the direction of propagation. From the radiative properties computed, we have estimated the radiative heat flux passing through slabs of honeycomb core materials submitted to a 1-D temperature difference between a hot and a cold plate. We have compared numerical results obtained from Discrete Ordinate Method with analytical results obtained from Rosseland-Deissler approximation. This approximation is usually used in the case of isotropic materials. We have extended it to anisotropic honeycomb materials. Indeed a mean over incident directions of Rosseland extinction coefficient is proposed. Results tend to show that Rosseland-Deissler extended approximation can be used as a first approximation. Deviation on radiative conductivity obtained from Rosseland-Deissler approximation and from the Discrete Ordinated Method are lower than 6.7% for all the cases studied.

  15. Creating "hotels" for cells by electrospinning honeycomb-like polymeric structures.

    Science.gov (United States)

    Liang, T; Mahalingam, S; Edirisinghe, M

    2013-10-01

    It is well established that three-dimensional honeycomb-like nanofibrous structures enhance cell activity. In this work, we report that electrospun polymer nanofibres self-assemble into three-dimensional honeycomb-like structures. The underlying mechanism is studied by varying the polymer solution concentration, collecting substrates and working distance. The polymer solution concentration has a significant effect on the size of the electrospun nanofibres. The collection substrate and working distance affect the electric field strength, the evaporation of solvent and the discharging of nanofibres and consequently these two had a significant influence on the self-assembly of nanofibres. © 2013.

  16. A honeycomb sandwich structure vacuum jacket for cryogenic targets

    International Nuclear Information System (INIS)

    Harada, M.; Kasai, S.; Kato, S.

    1988-11-01

    Cryogenic targets (H 2 , D 2 and 4 He) have been built for use in the study of photonuclear reactions with π sr spectrometer, TAGX at the 1.3 GeV Tokyo electron synchrotron. A new type of vacuum jacket fabricated from plastic honeycomb core and Mylar skins has been used in the target system for more than 5000 hours. The average radiation thickness and the average density of this jacket are measured to be 3.3 x 10 -3 X 0 and 0.15 g/cm 3 , respectively. (author)

  17. Compressive failure modes and parameter optimization of the trabecular structure of biomimetic fully integrated honeycomb plates.

    Science.gov (United States)

    Chen, Jinxiang; Tuo, Wanyong; Zhang, Xiaoming; He, Chenglin; Xie, Juan; Liu, Chang

    2016-12-01

    To develop lightweight biomimetic composite structures, the compressive failure and mechanical properties of fully integrated honeycomb plates were investigated experimentally and through the finite element method. The results indicated that: fracturing of the fully integrated honeycomb plates primarily occurred in the core layer, including the sealing edge structure. The morphological failures can be classified into two types, namely dislocations and compactions, and were caused primarily by the stress concentrations at the interfaces between the core layer and the upper and lower laminations and secondarily by the disordered short-fiber distribution in the material; although the fully integrated honeycomb plates manufactured in this experiment were imperfect, their mass-specific compressive strength was superior to that of similar biomimetic samples. Therefore, the proposed bio-inspired structure possesses good overall mechanical properties, and a range of parameters, such as the diameter of the transition arc, was defined for enhancing the design of fully integrated honeycomb plates and improving their compressive mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings.

    Science.gov (United States)

    Ma, Hongmin; Hao, Jingcheng

    2011-11-01

    Self-assembly is now being intensively studied in chemistry, physics, biology, and materials engineering and has become an important "bottom-up" approach to create intriguing structures for different applications. Self-assembly is not only a practical approach for creating a variety of nanostructures, but also shows great superiority in building hierarchical structures with orders on different length scales. The early work in self-assembly focused on molecular self-assembly in bulk solution, including the resultant dye aggregates, liposomes, vesicles, liquid crystals, gels and so on. Interfacial self-assembly has been a great concern over the last two decades, largely because of the unique and ingenious roles of this method for constructing materials at interfaces, such as self-assembled monolayers, Langmuir-Blodgett films, and capsules. Nanocrystal superlattices, honeycomb films and coffee rings are intriguing structural materials with more complex features and can be prepared by interfacial self-assembly on different length scales. In this critical review, we outline the recent development in the preparation and application of colloidal nanocrystal superlattices, honeycomb-patterned macroporous structures by the breath figure method, and coffee-ring-like patterns (247 references). This journal is © The Royal Society of Chemistry 2011

  19. Fabrication of metallic honeycomb panels for reusable TPS - structures

    International Nuclear Information System (INIS)

    Tabernig, B.; Thierfelder, W.; Alber, H.; Sudmeijer, K.

    2001-01-01

    The manufacturing technology with specific regard to high temperature brazing was developed to fabricate a honeycomb panel consisting of a thin-sectioned PM 2000 core material sandwiched on both sides with PM 1000 face sheets. For brazing the PM 1000 / PM 2000 panel the braze alloy PdNi was selected due to the best oxidation behavior while good mechanical properties and wetting behavior compared with other tested filler alloys. To examine the concept of a hybrid PM 1000/2000 panel as a stiffened skin panel a number of engineering test samples of sub-scale and two full-size panels were fabricated at Plansee AG and supplied to Fokker Space for testing under representative in-service conditions. Engineering tests showed that the test samples were rather insensitive to temperature gradients even at temperature differences between the face sheets of 550 o C. The engineering test samples exhibited no plastic deformation after testing at different heating rates ranging from 5 to 40 o C/s and at temperature profiles representative for two flights. The requirement for the designed application regarding impact properties at low as well as high speed were met. Impact at low speed with an energy of 8 J did not cause any cracks. Hail tests where ice bullets were fired with speeds to 208 m/s at different angles from 25 o to 90 o C against the test piece showed no damage at 25 o and caused slight indentation at 45 o and cracks at 90 o , which demonstrated a good performance for the fly through a hail cloud without any problems. In tests to determine the response of a full-size panel to a number of simulated thermo-mechanical flight load cycles the panel passed 50 cycles successfully without damage. (author)

  20. Parametric study of self-forming ZnO Nanowall network with honeycomb structure by Pulsed Laser Deposition

    KAUST Repository

    El Zein, B.; Boulfrad, Samir; Jabbour, Ghassan E.; Doghè che, Elhadj Hadj

    2014-01-01

    The successful synthesis of catalyst free zinc oxide (ZnO) Nanowall networks with honeycomb like structure by Pulsed Laser Deposition (PLD) is demonstrated in this paper. The synthesis was conducted directly on Silicon (Si) (1 0 0) and Glass

  1. Honeycomb metal panel

    International Nuclear Information System (INIS)

    1979-01-01

    Product constituted by a honeycomb metal panel that can be employed to advantage for manufacturing lagging by sandwiching it between two plane sheets, utilized in particular in the nuclear industry where lagging has to have a very long life strength. The honeycomb metal panel is made of an expanded metal extrusion previously cut so as to form, after additional drawing, a honeycomb structure with square or rectangular cells with a plane surface [fr

  2. Inserts thermal coupling analysis in hexagonal honeycomb plates used for satellite structural design

    International Nuclear Information System (INIS)

    Boudjemai, A.; Mankour, A.; Salem, H.; Amri, R.; Hocine, R.; Chouchaoui, B.

    2014-01-01

    Mechanical joints and fasteners are essential elements in joining structural components in mechanical systems. The thermal coupling effect between the adjacent inserts depends to a great extent on the thermal properties of the inserts and the clearance. In this paper the Finite-Element Method (FEM) has been employed to study the insert thermal coupling behaviour of the hexagonal honeycomb panel. Fully coupled thermal analysis was conducted in order to predict thermal coupling phenomena caused by the adjacent inserts under extreme thermal loading conditions. Detailed finite elements models for a honeycomb panel are developed in this study including the insert joints. New approach of the adhesive joint is modelled. Thermal simulations showed that the adjacent inserts cause thermal interference and the adjacent inserts are highly sensitive to the effect of high temperatures. The clearance and thermal interference between the adjacent inserts have an important influence on the satellite equipments (such as the electronics box), which can cause the satellite equipments failures. The results of the model presented in this analysis are significant in the preliminary satellites structural dimensioning which present an effective approach of development by reducing the cost and the time of analysis. - Highlights: •In this work we perform thermal analysis of honeycomb plates using finite element method. •Detailed finite elements models for honeycomb panel are developed in this study including the insert joints. •New approach of the adhesive joint is modelled. •The adjacent inserts cause the thermal interference. •We conclude that this work will help in the analysis and the design of complex satellite structures

  3. Enhancement of cell growth on honeycomb-structured polylactide surface using atmospheric-pressure plasma jet modification

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kuang-Yao; Chang, Chia-Hsing; Yang, Yi-Wei; Liao, Guo-Chun; Liu, Chih-Tung; Wu, Jong-Shinn, E-mail: chongsin@faculty.nctu.edu.tw

    2017-02-01

    Graphical abstract: Atmospheric-pressure plasma enhances cell growth on two different pore sizes of honeycomb pattern on polylactide surface. - Highlights: • Different pore sizes of honeycomb pattern on PLA film are created. • The two-step plasma treatment provided the oxygen- and nitrogen-containing functional groups that had a major impact on cell cultivation. • The plasma treatment had a significant effect for cell proliferation. • The surface structures are the main influence on cell cultivation, while plasma treatment can indeed improve the growth environment. - Abstract: In this paper, we compare the cell growth results of NIH-3T3 and Neuro-2A cells over 72 h on flat and honeycomb structured PLA films without and with a two-step atmospheric-pressure nitrogen-based plasma jet treatment. We developed a fabrication system used for forming of a uniform honeycomb structure on PLA surface, which can produce two different pore sizes, 3–4 μm and 7–8 μm, of honeycomb pattern. We applied a previously developed nitrogen-based atmospheric-pressure dielectric barrier discharge (DBD) jet system to treat the PLA film without and with honeycomb structure. NIH-3T3 and a much smaller Neuro-2A cells were cultivated on the films under various surface conditions. The results show that the two-step plasma treatment in combination with a honeycomb structure can enhance cell growth on PLA film, should the cell size be not too smaller than the pore size of honeycomb structure, e.g., NIH-3T3. Otherwise, cell growth would be better on flat PLA film, e.g., Neuro-2A.

  4. Classification of defects in honeycomb composite structure of helicopter rotor blades

    International Nuclear Information System (INIS)

    Balasko, M.; Svab, E.; Molnar, Gy.; Veres, I.

    2005-01-01

    The use of non-destructive testing methods to qualify the state of rotor blades with respect to their expected flight hours, with the aim to extend their lifetime without any risk of breakdown, is an important financial demand. In order to detect the possible defects in the composite structure of Mi-8 and Mi-24 type helicopter rotor blades used by the Hungarian Army, we have performed combined neutron- and X-ray radiography measurements at the Budapest Research Reactor. Several types of defects were detected, analysed and typified. Among the most frequent and important defects observed were cavities, holes and or cracks in the sealing elements on the interface of the honeycomb structure and the section boarders. Inhomogeneities of the resin materials (resin-rich or starved areas) at the core-honeycomb surfaces proved to be an other important point. Defects were detected at the adhesive filling, and water percolation was visualized at the sealing interfaces of the honeycomb sections. Corrosion effects, and metal inclusions have also been detected

  5. Classification of defects in honeycomb composite structure of helicopter rotor blades

    Science.gov (United States)

    Balaskó, M.; Sváb, E.; Molnár, Gy.; Veres, I.

    2005-04-01

    The use of non-destructive testing methods to qualify the state of rotor blades with respect to their expected flight hours, with the aim to extend their lifetime without any risk of breakdown, is an important financial demand. In order to detect the possible defects in the composite structure of Mi-8 and Mi-24 type helicopter rotor blades used by the Hungarian Army, we have performed combined neutron- and X-ray radiography measurements at the Budapest Research Reactor. Several types of defects were detected, analysed and typified. Among the most frequent and important defects observed were cavities, holes and/or cracks in the sealing elements on the interface of the honeycomb structure and the section boarders. Inhomogeneities of the resin materials (resin-rich or starved areas) at the core-honeycomb surfaces proved to be an other important point. Defects were detected at the adhesive filling, and water percolation was visualized at the sealing interfaces of the honeycomb sections. Corrosion effects, and metal inclusions have also been detected.

  6. PREFACE: Ultrathin layers of graphene, h-BN and other honeycomb structures Ultrathin layers of graphene, h-BN and other honeycomb structures

    Science.gov (United States)

    Geber, Thomas; Oshima, Chuhei

    2012-08-01

    nanometer scale. This special section contains interesting papers on graphene, h-BN and related 'honeycomb' compounds on solid surfaces, which are currently in development. Interfacial interaction strongly modifies the electronic and atomic structures of these overlayer systems and substrate surfaces. In addition, one can recognize a variety of growth phenomena by changing the surface and growth conditions, which are promising as regards fabricating those noble nanosystems. We have great pleasure in acknowledging the enthusiastic response and participation of our invited authors and their diligent preparation of the manuscripts. Ultrathin layers of graphene, h-BN and other honeycomb structures contents Ultrathin layers of graphene, h-BN and other honeycomb structuresThomas Geber and Chuhei Oshima Templating of arrays of Ru nanoclusters by monolayer graphene/Ru Moirés with different periodicitiesEli Sutter, Bin Wang, Peter Albrecht, Jayeeta Lahiri, Marie-Laure Bocquet and Peter Sutter Controllable p-doping of graphene on Ir(111) by chlorination with FeCl3N A Vinogradov, K A Simonov, A V Generalov, A S Vinogradov, D V Vyalikh, C Laubschat, N Mårtensson and A B Preobrajenski Optimizing long-range order, band gap, and group velocities for graphene on close-packed metal surfacesF D Natterer, S Rusponi, M Papagno, C Carbone and H Brune Epitaxial growth of graphene on transition metal surfaces: chemical vapor deposition versus liquid phase depositionSamuel Grandthyll, Stefan Gsell, Michael Weinl, Matthias Schreck, Stefan Hüfner and Frank Müller High-yield boron nitride nanosheets from 'chemical blowing': towards practical applications in polymer compositesXuebin Wang, Amir Pakdel, Chunyi Zhi, Kentaro Watanabe, Takashi Sekiguchi, Dmitri Golberg and Yoshio Bando BCx layers with honeycomb lattices on an NbB2(0001) surfaceChuhei Oshima Epitaxial growth of boron-doped graphene by thermal decomposition of B4CWataru Norimatsu, Koichiro Hirata, Yuta Yamamoto, Shigeo Arai and Michiko

  7. Controlled Bulk Properties of Composite Polymeric Solutions for Extensive Structural Order of Honeycomb Polysulfone Membranes.

    Science.gov (United States)

    Gugliuzza, Annarosa; Perrotta, Maria Luisa; Drioli, Enrico

    2016-05-16

    This work provides additional insights into the identification of operating conditions necessary to overcome a current limitation to the scale-up of the breath figure method, which is regarded as an outstanding manufacturing approach for structurally ordered porous films. The major restriction concerns, indeed, uncontrolled touching droplets at the boundary. Herein, the bulk of polymeric solutions are properly managed to generate honeycomb membranes with a long-range structurally ordered texture. Water uptake and dynamics are explored as chemical environments are changed with the intent to modify the hydrophilic/hydrophobic balance and local water floatation. In this context, a model surfactant such as the polyoxyethylene sorbitan monolaurate is used in combination with alcohols at different chain length extents and a traditional polymer such as the polyethersufone. Changes in the interfacial tension and kinematic viscosity taking place in the bulk of composite solutions are explored and examined in relation to competitive droplet nucleation and growth rate. As a result, extensive structurally ordered honeycomb textures are obtained with the rising content of the surfactant while a broad range of well-sized pores is targeted as a function of the hydrophilic-hydrophobic balance and viscosity of the composite polymeric mixture. The experimental findings confirm the consistency of the approach and are expected to give propulsion to the commercially production of breath figures films shortly.

  8. Controlled Bulk Properties of Composite Polymeric Solutions for Extensive Structural Order of Honeycomb Polysulfone Membranes

    Directory of Open Access Journals (Sweden)

    Annarosa Gugliuzza

    2016-05-01

    Full Text Available This work provides additional insights into the identification of operating conditions necessary to overcome a current limitation to the scale-up of the breath figure method, which is regarded as an outstanding manufacturing approach for structurally ordered porous films. The major restriction concerns, indeed, uncontrolled touching droplets at the boundary. Herein, the bulk of polymeric solutions are properly managed to generate honeycomb membranes with a long-range structurally ordered texture. Water uptake and dynamics are explored as chemical environments are changed with the intent to modify the hydrophilic/hydrophobic balance and local water floatation. In this context, a model surfactant such as the polyoxyethylene sorbitan monolaurate is used in combination with alcohols at different chain length extents and a traditional polymer such as the polyethersufone. Changes in the interfacial tension and kinematic viscosity taking place in the bulk of composite solutions are explored and examined in relation to competitive droplet nucleation and growth rate. As a result, extensive structurally ordered honeycomb textures are obtained with the rising content of the surfactant while a broad range of well-sized pores is targeted as a function of the hydrophilic-hydrophobic balance and viscosity of the composite polymeric mixture. The experimental findings confirm the consistency of the approach and are expected to give propulsion to the commercially production of breath figures films shortly.

  9. Preparation and Application of Conductive Textile Coatings Filled with Honeycomb Structured Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Filip Govaert

    2014-01-01

    Full Text Available Electrical conductive textile coatings with variable amounts of carbon nanotubes (CNTs are presented. Formulations of textile coatings were prepared with up to 15 wt % of CNT, based on the solid weight of the binder. The binders are water based polyacrylate dispersions. The CNTs were mixed into the binder dispersion starting from a commercially available aqueous CNT dispersion that is compatible with the binder dispersion. Coating formulations with variable CNT concentrations were applied on polyester and cotton woven and knitted fabrics by different textile coating techniques: direct coating, transfer coating, and screen printing. The coatings showed increasing electrical conductivity with increasing CNT concentration. The coatings can be regarded to be electrically conductive (sheet resistivity<103 Ohm/sq starting at 3 wt% CNT. The degree of dispersion of the carbon nanotubes particles inside the coating was visualized by scanning electron microscopy. The CNT particles form honeycomb structured networks in the coatings, proving a high degree of dispersion. This honeycomb structure of CNT particles is forming a conductive network in the coating leading to low resistivity values.

  10. Quantum Monte Carlo methods and strongly correlated electrons on honeycomb structures

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Thomas C.

    2010-12-16

    In this thesis we apply recently developed, as well as sophisticated quantum Monte Carlo methods to numerically investigate models of strongly correlated electron systems on honeycomb structures. The latter are of particular interest owing to their unique properties when simulating electrons on them, like the relativistic dispersion, strong quantum fluctuations and their resistance against instabilities. This work covers several projects including the advancement of the weak-coupling continuous time quantum Monte Carlo and its application to zero temperature and phonons, quantum phase transitions of valence bond solids in spin-1/2 Heisenberg systems using projector quantum Monte Carlo in the valence bond basis, and the magnetic field induced transition to a canted antiferromagnet of the Hubbard model on the honeycomb lattice. The emphasis lies on two projects investigating the phase diagram of the SU(2) and the SU(N)-symmetric Hubbard model on the hexagonal lattice. At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. Previously elusive in experimentally relevant microscopic two-dimensional models, we show by means of large-scale quantum Monte Carlo simulations of the SU(2) Hubbard model on the honeycomb lattice, that a quantum spin-liquid emerges between the state described by massless Dirac fermions and an antiferromagnetically ordered Mott insulator. This unexpected quantum-disordered state is found to be a short-range resonating valence bond liquid, akin to the one proposed for high temperature superconductors. Inspired by the rich phase diagrams of SU(N) models we study the SU(N)-symmetric Hubbard Heisenberg quantum antiferromagnet on the honeycomb lattice to investigate the reliability of 1/N corrections to large-N results by means of numerically exact QMC simulations. We study the melting of phases

  11. Analysis on the geometrical shape of T-honeycomb structure by finite element method (FEM)

    Science.gov (United States)

    Zain, Fitri; Rosli, Muhamad Farizuan; Effendi, M. S. M.; Abdullah, Mohamad Hariri

    2017-09-01

    Geometric in design is much related with our life. Each of the geometrical structure interacts with each other. The overall shape of an object contains other shape inside, and there shapes create a relationship between each other in space. Besides that, how geometry relates to the function of the object have to be considerate. In this project, the main purpose was to design the geometrical shape of modular furniture with the shrinking of Polyethylene Terephthalate (PET) jointing system that has good strength when applied load on it. But, the goal of this paper is focusing on the analysis of Static Cases by FEM of the hexagonal structure to obtain the strength when load apply on it. The review from the existing product has many information and very helpful to finish this paper. This project focuses on hexagonal shape that distributed to become a shelf inspired by honeycomb structure. It is very natural look and simple in shape and its modular structure more easily to separate and combine. The method discusses on chapter methodology are the method used to analysis the strength when the load applied to the structure. The software used to analysis the structure is Finite Element Method from CATIA V5R21 software. Bending test is done on the jointing part between the edges of the hexagonal shape by using Universal Tensile Machine (UTM). The data obtained have been calculate by bending test formulae and sketch the graph between flexural strains versus flexural stress. The material selection of the furniture is focused on wood. There are three different types of wood such as balsa, pine and oak, while the properties of jointing also be mentioned in this thesis. Hence, the design structural for honeycomb shape already have in the market but this design has main objective which has a good strength that can withstand maximum load and offers more potentials in the form of furniture.

  12. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-06-01

    A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO{sub 2} film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.

  13. Automated laser-based barely visible impact damage detection in honeycomb sandwich composite structures

    International Nuclear Information System (INIS)

    Girolamo, D.; Yuan, F. G.; Girolamo, L.

    2015-01-01

    Nondestructive evaluation (NDE) for detection and quantification of damage in composite materials is fundamental in the assessment of the overall structural integrity of modern aerospace systems. Conventional NDE systems have been extensively used to detect the location and size of damages by propagating ultrasonic waves normal to the surface. However they usually require physical contact with the structure and are time consuming and labor intensive. An automated, contactless laser ultrasonic imaging system for barely visible impact damage (BVID) detection in advanced composite structures has been developed to overcome these limitations. Lamb waves are generated by a Q-switched Nd:YAG laser, raster scanned by a set of galvano-mirrors over the damaged area. The out-of-plane vibrations are measured through a laser Doppler Vibrometer (LDV) that is stationary at a point on the corner of the grid. The ultrasonic wave field of the scanned area is reconstructed in polar coordinates and analyzed for high resolution characterization of impact damage in the composite honeycomb panel. Two methodologies are used for ultrasonic wave-field analysis: scattered wave field analysis (SWA) and standing wave energy analysis (SWEA) in the frequency domain. The SWA is employed for processing the wave field and estimate spatially dependent wavenumber values, related to discontinuities in the structural domain. The SWEA algorithm extracts standing waves trapped within damaged areas and, by studying the spectrum of the standing wave field, returns high fidelity damage imaging. While the SWA can be used to locate the impact damage in the honeycomb panel, the SWEA produces damage images in good agreement with X-ray computed tomographic (X-ray CT) scans. The results obtained prove that the laser-based nondestructive system is an effective alternative to overcome limitations of conventional NDI technologies

  14. Performance of a novel type of electrolyte-supported solid oxide fuel cell with honeycomb structure

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Morales, Juan Carlos; Savvin, Stanislav N.; Nunez, Pedro [Departmento de Quimica Inorganica, Universidad de La Laguna, 38200 Tenerife (Spain); Marrero-Lopez, David [Departamento de Fisica Aplicada I, Universidad de Malaga, 29071 Malaga (Spain); Pena-Martinez, Juan; Canales-Vazquez, Jesus [Instituto de Energias Renovables-Universidad de Castilla la Mancha, 02006 Albacete (Spain); Roa, Joan Josep; Segarra, Merce [DIOPMA, Departamento de Ciencia de los Materiales e Ing. Metalurgica, 08028 Barcelona (Spain)

    2010-01-15

    A novel design, alternative to the conventional electrolyte-supported solid oxide fuel cell (SOFC) is presented. In this new design, a honeycomb-electrolyte is fabricated from hexagonal cells, providing high mechanical strength to the whole structure and supporting the thin layer used as electrolyte of a SOFC. This new design allows a reduction of {proportional_to}70% of the electrolyte material and it renders modest performances over 320 mW cm{sup -2} but high volumetric power densities, i.e. 1.22 W cm{sup -3} under pure CH{sub 4} at 900 C, with a high OCV of 1.13 V, using the standard Ni-YSZ cermet as anode, Pt as cathode material and air as the oxidant gas. (author)

  15. Electronic structure and simulated STM images of non-honeycomb phosphorene allotropes

    Science.gov (United States)

    Kaur, Sumandeep; Kumar, Ashok; Srivastava, Sunita; Tankeshwar, K.

    2018-04-01

    We have investigated the electronic structure and simulated STM images of various non-honeycomb allotropes of phosphorene namely ɛ - P, ζ - P, η - P and θ - P, within combined density functional theory and Tersoff-Hamman approach. All these allotropes are found to be energetically stable and electronically semiconductingwith bandgap ranging between 0.5-1.2 eV. Simulated STM images show distinctly different features in terms of the topography. Different maximas in the distance-height profile indicates the difference in buckling of atoms in these allotropes. Distinctly different images obtained in this study may be useful to differentiate various allotropes that can serve as fingerprints to identify various allotropes during the synthesis of phosphorene.

  16. Bifurcations of edge states—topologically protected and non-protected—in continuous 2D honeycomb structures

    International Nuclear Information System (INIS)

    Fefferman, C L; Lee-Thorp, J P; Weinstein, M I

    2016-01-01

    Edge states are time-harmonic solutions to energy-conserving wave equations, which are propagating parallel to a line-defect or ‘edge’ and are localized transverse to it. This paper summarizes and extends the authors’ work on the bifurcation of topologically protected edge states in continuous two-dimensional (2D) honeycomb structures. We consider a family of Schrödinger Hamiltonians consisting of a bulk honeycomb potential and a perturbing edge potential. The edge potential interpolates between two different periodic structures via a domain wall. We begin by reviewing our recent bifurcation theory of edge states for continuous 2D honeycomb structures (http://arxiv.org/abs/1506.06111). The topologically protected edge state bifurcation is seeded by the zero-energy eigenstate of a one-dimensional Dirac operator. We contrast these protected bifurcations with (more common) non-protected bifurcations from spectral band edges, which are induced by bound states of an effective Schrödinger operator. Numerical simulations for honeycomb structures of varying contrasts and ‘rational edges’ (zigzag, armchair and others), support the following scenario: (a) for low contrast, under a sign condition on a distinguished Fourier coefficient of the bulk honeycomb potential, there exist topologically protected edge states localized transverse to zigzag edges. Otherwise, and for general edges, we expect long lived edge quasi-modes which slowly leak energy into the bulk. (b) For an arbitrary rational edge, there is a threshold in the medium-contrast (depending on the choice of edge) above which there exist topologically protected edge states. In the special case of the armchair edge, there are two families of protected edge states; for each parallel quasimomentum (the quantum number associated with translation invariance) there are edge states which propagate in opposite directions along the armchair edge. (paper)

  17. Bifurcations of edge states—topologically protected and non-protected—in continuous 2D honeycomb structures

    Science.gov (United States)

    Fefferman, C. L.; Lee-Thorp, J. P.; Weinstein, M. I.

    2016-03-01

    Edge states are time-harmonic solutions to energy-conserving wave equations, which are propagating parallel to a line-defect or ‘edge’ and are localized transverse to it. This paper summarizes and extends the authors’ work on the bifurcation of topologically protected edge states in continuous two-dimensional (2D) honeycomb structures. We consider a family of Schrödinger Hamiltonians consisting of a bulk honeycomb potential and a perturbing edge potential. The edge potential interpolates between two different periodic structures via a domain wall. We begin by reviewing our recent bifurcation theory of edge states for continuous 2D honeycomb structures (http://arxiv.org/abs/1506.06111). The topologically protected edge state bifurcation is seeded by the zero-energy eigenstate of a one-dimensional Dirac operator. We contrast these protected bifurcations with (more common) non-protected bifurcations from spectral band edges, which are induced by bound states of an effective Schrödinger operator. Numerical simulations for honeycomb structures of varying contrasts and ‘rational edges’ (zigzag, armchair and others), support the following scenario: (a) for low contrast, under a sign condition on a distinguished Fourier coefficient of the bulk honeycomb potential, there exist topologically protected edge states localized transverse to zigzag edges. Otherwise, and for general edges, we expect long lived edge quasi-modes which slowly leak energy into the bulk. (b) For an arbitrary rational edge, there is a threshold in the medium-contrast (depending on the choice of edge) above which there exist topologically protected edge states. In the special case of the armchair edge, there are two families of protected edge states; for each parallel quasimomentum (the quantum number associated with translation invariance) there are edge states which propagate in opposite directions along the armchair edge.

  18. Experimental research and use of finite elements method on mechanical behaviors of honeycomb structures assembled with epoxy-based adhesives reinforced with nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Akkus, Harun [Technical Sciences Vocational School, Amasya University, Amasya (Turkmenistan); Duzcukoglu, Hayrettin; Sahin, Omer Sinan [Mechanical Engineering Department, Selcuk University, Selcuk (Turkmenistan)

    2017-01-15

    This study utilized experimental and finite element methods to investigate the mechanical behavior of aluminum honeycomb structures under compression. Aluminum honeycomb composite structures were subjected to pressing experiments according to the standard ASTM C365. Resistive forces in response to compression and maximum compressive force values were measured. Structural damage was observed. In the honeycomb structure, the cell width decreased as the compressive force increased. Results obtained with finite element models generated using ANSYS Workbench 15 were validated. Experimental results paralleled the finite element modeling results. The ANSYS results were approximately 85 % reliable.

  19. Modulation of the photonic band structure topology of a honeycomb lattice in an atomic vapor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiqi, E-mail: zhangyiqi@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Xing [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Belić, Milivoj R., E-mail: milivoj.belic@qatar.tamu.edu [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Wu, Zhenkun [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-12-15

    In an atomic vapor, a honeycomb lattice can be constructed by utilizing the three-beam interference method. In the method, the interference of the three beams splits the dressed energy level periodically, forming a periodic refractive index modulation with the honeycomb profile. The energy band topology of the honeycomb lattice can be modulated by frequency detunings, thereby affecting the appearance (and disappearance) of Dirac points and cones in the momentum space. This effect can be usefully exploited for the generation and manipulation of topological insulators.

  20. Parametric study of self-forming ZnO Nanowall network with honeycomb structure by Pulsed Laser Deposition

    KAUST Repository

    El Zein, B.

    2014-02-01

    The successful synthesis of catalyst free zinc oxide (ZnO) Nanowall networks with honeycomb like structure by Pulsed Laser Deposition (PLD) is demonstrated in this paper. The synthesis was conducted directly on Silicon (Si) (1 0 0) and Glass-ITO substrates without the intermediate of metal catalyst, template or chemical etching. Kinetic of growth and effects of gas pressure and substrate temperature were studied by depositing ZnO films on P type Si (1 0 0) substrates with different deposition parameters. The optimized growth parameters were found as: 10 mTorr oxygen pressure, 600 C substrate temperature, and deposition duration equal or higher than 10 min. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Photoluminescence (PL) measurements were used to investigate structural, microstructural and optical properties of ZnO Nanowall networks produced. They exhibit a non-uniform size high quality honeycomb structure with low deep level defects. © 2013 Elsevier B.V.

  1. Mechanical properties of additively manufactured octagonal honeycombs

    Energy Technology Data Exchange (ETDEWEB)

    Hedayati, R., E-mail: rezahedayati@gmail.com [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran (Iran, Islamic Republic of); Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Sadighi, M.; Mohammadi-Aghdam, M. [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran (Iran, Islamic Republic of); Zadpoor, A.A. [Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2016-12-01

    Honeycomb structures have found numerous applications as structural and biomedical materials due to their favourable properties such as low weight, high stiffness, and porosity. Application of additive manufacturing and 3D printing techniques allows for manufacturing of honeycombs with arbitrary shape and wall thickness, opening the way for optimizing the mechanical and physical properties for specific applications. In this study, the mechanical properties of honeycomb structures with a new geometry, called octagonal honeycomb, were investigated using analytical, numerical, and experimental approaches. An additive manufacturing technique, namely fused deposition modelling, was used to fabricate the honeycomb from polylactic acid (PLA). The honeycombs structures were then mechanically tested under compression and the mechanical properties of the structures were determined. In addition, the Euler-Bernoulli and Timoshenko beam theories were used for deriving analytical relationships for elastic modulus, yield stress, Poisson's ratio, and buckling stress of this new design of honeycomb structures. Finite element models were also created to analyse the mechanical behaviour of the honeycombs computationally. The analytical solutions obtained using Timoshenko beam theory were close to computational results in terms of elastic modulus, Poisson's ratio and yield stress, especially for relative densities smaller than 25%. The analytical solutions based on the Timoshenko analytical solution and the computational results were in good agreement with experimental observations. Finally, the elastic properties of the proposed honeycomb structure were compared to those of other honeycomb structures such as square, triangular, hexagonal, mixed, diamond, and Kagome. The octagonal honeycomb showed yield stress and elastic modulus values very close to those of regular hexagonal honeycombs and lower than the other considered honeycombs. - Highlights: • The octagonal

  2. Silicene on metal substrates: A first-principles study on the emergence of a hierarchy of honeycomb structures

    International Nuclear Information System (INIS)

    Kaltsas, D.; Tsetseris, L.; Dimoulas, A.

    2014-01-01

    Experimental studies have reported several types of Si monolayer structures that are formed on metal surfaces. These structures typically show the topology of a honeycomb bonding network, but differ in terms of corrugation and surface coverage. Using first-principles calculations, we identify atomic-scale mechanisms that underlie the appearance of different configurations as coverage increases during Si deposition on silver. The key point is that any extra Si adatoms that land on preformed silicene films can be incorporated in the honeycomb network and form bonds with underlying Ag atoms. As a result, the corrugation profile changes, giving rise to varying overlayer geometries. We also show that the same set of mechanisms control the appearance of silicene films on an iridium substrate. The results address available experimental data, but also probe the stability and properties of silicene wetting films that have not been observed yet.

  3. The quantum group, Harper equation and structure of Bloch eigenstates on a honeycomb lattice

    International Nuclear Information System (INIS)

    Eliashvili, M; Tsitsishvili, G; Japaridze, G I

    2012-01-01

    The tight-binding model of quantum particles on a honeycomb lattice is investigated in the presence of a homogeneous magnetic field. Provided the magnetic flux per unit hexagon is a rational of the elementary flux, the one-particle Hamiltonian is expressed in terms of the generators of the quantum group U q (sl 2 ). Employing the functional representation of the quantum group U q (sl 2 ), the Harper equation is rewritten as a system of two coupled functional equations in the complex plane. For the special values of quasi-momentum, the entangled system admits solutions in terms of polynomials. The system is shown to exhibit a certain symmetry allowing us to resolve the entanglement, and a basic single equation determining the eigenvalues and eigenstates (polynomials) is obtained. Equations specifying the locations of the roots of polynomials in the complex plane are found. Employing numerical analysis, the roots of polynomials corresponding to different eigenstates are solved and diagrams exhibiting the ordered structure of one-particle eigenstates are depicted. (paper)

  4. Mechanical properties of additively manufactured thick honeycombs

    NARCIS (Netherlands)

    Hedayati, R.; Sadighi, M.; Mohammadi-Aghdam, M; Zadpoor, A.A.

    2016-01-01

    Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding

  5. Quasi-particle energies and optical excitations of ZnS monolayer honeycomb structure

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhi, Masoud, E-mail: shahrokhimasoud37@gmail.com

    2016-12-30

    Highlights: • The electronic and optical properties of ZnS honeycomb sheet are investigated. • The electronic properties were analyzed at three levels of GW approach. • The optical properties of these materials are investigated using the BSE approach. • Optical properties of ZnS sheet strongly dominated by excitonic effects. • Spectrum is dominated by strongly bound Frenkel excitons. - Abstract: Using ab-initio density functional theory calculations combined with many-body perturbation formalism we carried out the electronic structure and optical properties of 2D graphene-like ZnS structure. The electronic properties were analyzed at three levels of many-body GW approach (G{sub 0}W{sub 0}, GW{sub 0} and GW) constructed over a Generalized Gradient Approximation functional. Our results indicate that ZnS sheet has a direct band gap at the Γ-point. Also it is seen that inclusion of electron–electron interaction does not change the sort of direct semiconducting band gap in ZnS sheet. The optical properties and excitonic effects of these materials are investigated using the Bethe-Salpeter equation (BSE) approach. The formation of first exciton peaks at 3.86, 4.26, and 4.57 eV with large binding energy of 0.36, 0.49 and 0.73 eV using G{sub 0}W{sub 0} + BSE, GW{sub 0} + BSE and GW + BSE, respectively, was observed. We show that the optical absorption spectrum of 2D ZnS structure is dominated by strongly bound Frenkel excitons. The enhanced excitonic effects in the ZnS monolayer sheet can be useful in designing optoelectronic applications.

  6. The Honeycomb Strip Chamber

    International Nuclear Information System (INIS)

    Graaf, Harry van der; Buskens, Joop; Rewiersma, Paul; Koenig, Adriaan; Wijnen, Thei

    1991-06-01

    The Honeycomb Strip Chamber (HSC) is a new position sensitive detector. It consists of a stack of folded foils, forming a rigid honeycomb structure. In the centre of each hexagonal cell a wire is strung. Conducting strips on the foils, perpendicular to the wires, pick up the induced avalanche charge. Test results of a prototype show that processing the signals form three adjacent strips nearest to the track gives a spatial resolution better than 64 μm for perpendicular incident tracks. The chamber performance is only slightly affected by a magnetic field. (author). 25 refs.; 21 figs

  7. Sound transmission properties of honeycomb panels and double-walled structures

    OpenAIRE

    Ramanathan, Sathish Kumar

    2012-01-01

    Sandwich panels with aluminium face sheets and honeycomb core material have certain advantages over panels made of wood. Some of the advantages of these constructions are low weight, good moisture properties, fire resistance and high stiffness to-weight ratio etc. As product development is carried out in a fast pace today, there is a strong need for validated prediction tools to assist during early design stages. In this thesis, tools are developed for predicting the sound transmission throug...

  8. Mechanical Analysis of an Innovative Assembly Box with Honeycomb Structures Designed for a High Performance Light Water Reactor

    International Nuclear Information System (INIS)

    Herbell, Heiko; Himmel, Steffen; Schulenberg, Thomas

    2008-01-01

    The High Performance Light Water Reactor (HPLWR) is a water cooled reactor concept of the 4. generation, operated at a pressure beyond the critical point of water. Assemblies of this innovative reactor concept need to be built with assembly and moderator boxes, like boiling water reactors, to provide enough moderator water between them to compensate the low coolant density in the core. Hot, superheated steam conditions, on the other hand, require thermally insulated box walls rather than solid box walls to reduce the heat up of the moderator water. As a new an innovative approach, this paper describes moderator- and assembly boxes built from stainless steel honeycomb sandwich structures, in which the honeycomb cells are filled with alumina for thermal insulation. In comparison to solid box walls, the use of the presented design can provide the same stiffness but allows a drastic reduction of structural material and thus less neutron absorption. Finite element analyses are used to verify the required stiffness, to identify stress concentrations and to optimize the design. (authors)

  9. Hyper thin 3D edge measurement of honeycomb core structures based on the triangular camera-projector layout & phase-based stereo matching.

    Science.gov (United States)

    Jiang, Hongzhi; Zhao, Huijie; Li, Xudong; Quan, Chenggen

    2016-03-07

    We propose a novel hyper thin 3D edge measurement technique to measure the profile of 3D outer envelope of honeycomb core structures. The width of the edges of the honeycomb core is less than 0.1 mm. We introduce a triangular layout design consisting of two cameras and one projector to measure hyper thin 3D edges and eliminate data interference from the walls. A phase-shifting algorithm and the multi-frequency heterodyne phase-unwrapping principle are applied for phase retrievals on edges. A new stereo matching method based on phase mapping and epipolar constraint is presented to solve correspondence searching on the edges and remove false matches resulting in 3D outliers. Experimental results demonstrate the effectiveness of the proposed method for measuring the 3D profile of honeycomb core structures.

  10. Structural, electronic and magnetic properties of Au-based monolayer derivatives in honeycomb structure

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Pooja, E-mail: pupooja16@gmail.com; Sharma, Munish; Ahluwalia, P. K. [Physics Department, Himachal Pradesh University, Shimla, Himachal Pradesh, India 171005 (India); Kumar, Ashok [Centre for Physical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India, 151001 (India)

    2016-05-23

    We present electronic properties of atomic layer of Au, Au{sub 2}-N, Au{sub 2}-O and Au{sub 2}-F in graphene-like structure within the framework of density functional theory (DFT). The lattice constant of derived monolayers are found to be higher than the pristine Au monolayer. Au monolayer is metallic in nature with quantum ballistic conductance calculated as 4G{sub 0}. Similarly, Au{sub 2}-N and Au{sub 2}-F monolayers show 4G{sub 0} and 2G{sub 0} quantum conductance respectively while semiconducting nature with calculated band gap of 0.28 eV has been observed for Au{sub 2}-O monolayer. Most interestingly, half metalicity has been predicted for Au{sub 2}-N and Au{sub 2}-F monolayers. Our findings may have importance for the application of these monolayers in nanoelectronic and spintronics.

  11. Silicene on Ag(1 1 1): Geometric and electronic structures of a new honeycomb material of Si

    Science.gov (United States)

    Takagi, Noriaki; Lin, Chun-Liang; Kawahara, Kazuaki; Minamitani, Emi; Tsukahara, Noriyuki; Kawai, Maki; Arafune, Ryuichi

    2015-02-01

    Silicene, a two-dimensional honeycomb sheet consisting of Si atoms, has attracted much attention as a new low-dimensional material because it gains various fascinating characteristics originating from the combination of Dirac fermion features with spin-orbit coupling. The novel properties such as the quantum spin Hall effect and the compatibility with the current Si device technologies have fueled competition to realize the silicene. This review article focuses on the geometric and electronic structures of silicene grown on Ag(1 1 1) investigated by scanning tunneling microcopy (STM), low energy electron diffraction (LEED) and density functional theory (DFT) calculations. The silicene on Ag(1 1 1) takes locally-buckled structure in which the Si atoms are displaced perpendicularly to the basal plane. As a result, several superstructures such as 4 × 4,√{ 13 } ×√{ 13 } R 13.9 °, 4 /√{ 3 } × 4 /√{ 3 } , and etc. emerge. The atomic arrangement of the 4 × 4 silicene has been determined by STM, DFT calculations and LEED dynamical analysis, while the other superstructures remain to be fully-resolved. In the 4 × 4 silicene, Si atoms are arranged to form a buckled honeycomb structure where six Si atoms of 18 Si atoms in the unit cell are displaced vertically. The displacements lead to the vertical shift of the substrate Ag atoms, indicating the non-negligible coupling at the interface between the silicene layer and the substrate. The interface coupling significantly modifies the electronic structure of the 4 × 4 silicene. No Landau level sequences were observed by scanning tunneling spectroscopy (STS) with magnetic fields applied perpendicularly to the sample surface. The DFT calculations showed that the π and π∗ bands derived from the Si 3pz are hybridized with the Ag electronic states, leading to the drastic modification in the band structure and then the absence of Dirac fermion features together with the two-dimensionality in the electronic states

  12. From two-dimensional graphene oxide to three-dimensional honeycomb-like Ni3S2@graphene oxide composite: insight into structure and electrocatalytic properties

    Science.gov (United States)

    Wei, Xinting; Li, Yueqiang; Xu, Wenli; Zhang, Kaixuan; Yin, Jie; Shi, Shaozhen; Wei, Jiazhen; Di, Fangfang; Guo, Junxue; Wang, Can; Chu, Chaofan; Sui, Ning; Chen, Baoli; Zhang, Yingtian; Hao, Hongguo; Zhang, Xianxi; Zhao, Jinsheng; Zhou, Huawei; Wang, Shuhao

    2017-12-01

    Three-dimensional (3D) graphene composites have drawn increasing attention in energy storage/conversion applications due to their unique structures and properties. Herein, we synthesized 3D honeycomb-like Ni3S2@graphene oxide composite (3D honeycomb-like Ni3S2@GO) by a one-pot hydrothermal method. We found that positive charges of Ni2+ and negative charges of NO3- in Ni(NO3)2 induced a transformation of graphene oxide with smooth surface into graphene oxide with wrinkled surface (w-GO). The w-GO in the mixing solution of Ni(NO3)2/thioacetamide/H2O evolved into 3D honeycomb-like Ni3S2@GO in solvothermal process. The GO effectively inhibited the aggregation of Ni3S2 nanoparticles. Photoelectrochemical cells based on 3D Ni3S2@GO synthesized at 60 mM l-1 Ni(NO3)2 exhibited the best energy conversion efficiency. 3D Ni3S2@GO had smaller charge transfer resistance and larger exchange current density than pure Ni3S2 for iodine reduction reaction. The cyclic stability of 3D honeycomb-like Ni3S2@GO was good in the iodine electrolyte. Results are of great interest for fundamental research and practical applications of 3D GO and its composites in solar water-splitting, artificial photoelectrochemical cells, electrocatalysts and Li-S or Na-S batteries.

  13. Metal-organophosphine and metal-organophosphonium frameworks with layered honeycomb-like structures.

    Science.gov (United States)

    Humphrey, Simon M; Allan, Phoebe K; Oungoulian, Shaunt E; Ironside, Matthew S; Wise, Erica R

    2009-04-07

    Phosphanotriylbenzenecarboxylic acid (ptbcH(3); P(C(6)H(4)-p-CO(2)H)(3)) and its methyl phosphonium iodide derivative (mptbcH(3)I; {H(3)CP(C(6)H(4)-p-CO(2)H)(3)}I) have been used as organic building blocks in reaction with Zn(ii) salts to obtain a series of related two-dimensional coordination polymers with honeycomb-like networks. The variable coordination number and oxidation states available to phosphorus have been exploited to produce a family of related phosphine coordination materials (PCMs) using a single ligand precursor. The phosphine carboxylate trianion, ptbc(3-), reacted with Zn(ii) to form 3,3-connected undulating hexagonal sheets based on tetrahedral P and Zn nodes, where Zn-ptbc = 1 : 1. When hydroxide was used as an additional framework ligand, Zn(4)(OH)(2) clusters were obtained. The clusters support 6,3-connected bilayers that consist of pairs of fused hexagonal sheets (Zn-ptbc = 2 : 1) with intra-layer pore spaces. The Zn(4)(OH)(2) clusters are also coordinated by solvent, which was preferentially displaced when the bilayer material was synthesized in the presence of ethylene diamine. Treatment of ptbc(3-) with MeI resulted in methylation of the phosphine to give the P(v) phosphonium iodide salt derivative. The formally dianionic methylphosphonium tricarboxylate building block, mptbc(2-), has the same trigonal-pyramidal bridging geometry as the parent phosphine. However, mptbc(2-) reacted with Zn(ii) on a 1 : 1 stoichiometric ratio to give an unusual trilayer sheet polymer that is based exclusively on 3-connected nodes. Solid-state (31)P NMR studies confirmed that the phosphine ligands were resistant to oxidation upon solvothermal reaction under aerobic conditions.

  14. SiC-SiC and C-SiC Honeycomb for Advanced Flight Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project builds upon the work done in Phase I with the development of a C-SiC CMC honeycomb material that was successfully tested for mechanical...

  15. Laser-direct writing by two-photon polymerization of 3D honeycomb-like structures for bone regeneration.

    Science.gov (United States)

    Paun, Irina Alexandra; Popescu, Roxana Cristina; Mustaciosu, Cosmin Catalin; Zamfirescu, Marian; Calin, Bogdan Stefanita; Mihailescu, Mona; Dinescu, Maria; Popescu, Andrei; Chioibasu, Diana; Soproniy, Mihai; Luculescu, Catalin Romeo

    2018-02-05

    A major limitation of existing 3D implantable structures for bone tissue engineering is that most of the cells rapidly attach on the outer edges of the structure, restricting the cells penetration into the inner parts and causing the formation of a necrotic core. Furthermore, these structures generally possess a random spatial arrangement and do not preserve the isotropy on the whole volume. Here, we report on the fabrication and testing of an innovative 3D hierarchical, honeycomb-like structure (HS), with reproducible and isotropic arhitecture, that allows in 'volume' migration of osteoblasts. In particular, we demonstrate the possibility to control the 3D spatial cells growth inside these complex architectures by adjusting the free spaces inside the structures. The structures were made of vertical microtubes arranged in a mulitlayered configuration, fabricated via laser direct writing by two photons polymerization of the IP-L780 photopolymer. In vitro tests performed in MG-63 osteoblast-like cells demonstrated that the cells migration inside the 3D structures is conducted by the separation space between the microtubes layers. Specifically, for layers separation between 2 and 10 μm, the cells gradually penetrated between the microtubes. Furthermore, these structures induced the strongest cells osteogenic differentiation and mineralization, with ALP activity 1.5 times stronger, amount of calcified minerals 1.3 times higher and osteocalcin secretion increased by 2.3 times compared to the other structures. On the opposite, for layers separation less than 2 μm and above 10 μm, the cells were not able to make interconnections and exhibited poor mineralization ability.

  16. Cellular Energy Absorbing TRIP-Steel/Mg-PSZ Composite: Honeycomb Structures Fabricated by a New Extrusion Powder Technology

    Directory of Open Access Journals (Sweden)

    Ulrich Martin

    2010-01-01

    Full Text Available Lightweight linear cellular composite materials on basis of austenite stainless TRIP- (TRansformation Induced Plasticity- steel as matrix with reinforcements of MgO partially stabilized zirconia (Mg-PSZ are described. Two-dimensional cellular materials for structural applications are conventionally produced by sheet expansion or corrugation processes. The presented composites are fabricated by a modified ceramic extrusion powder technology. Characterization of the microstructure in as-received and deformed conditions was carried out by optical and scanning electron microscopy. Magnetic balance measurements and electron backscatter diffraction (EBSD were used to identify the deformation-induced martensite evolution in the cell wall material. The honeycomb composite samples exhibit an increased strain hardening up to a certain engineering compressive strain and an extraordinary high specific energy absorption per unit mass and unit volume, respectively. Based on improved property-to-weight ratio such linear cellular structures will be of interest as crash absorbers or stiffened core materials for aerospace, railway, or automotive applications.

  17. Fabrication of honeycomb-structured poly(ethylene glycol)-block-poly(lactic acid) porous films and biomedical applications for cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Bingjian [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250199 (China); College of chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014 (China); Zhu, Qingzeng, E-mail: qzzhu@sdu.edu.cn [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250199 (China); Yao, Linli [Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, 250012 Jinan (China); Hao, Jingcheng [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250199 (China)

    2015-03-30

    Graphical abstract: - Highlights: • Honeycomb-structured PEG-PLA porous films were fabricated. • The organization of pores depends on molecular weight ratio of PEG-to-PLA block. • The pores in the film were internally decorated with a layer of PEG. • The honeycomb-structured PEG-PLA film was suitable as a substrate for cell growth. - Abstract: A series of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) copolymers with a hydrophobic PLA block of different molecular weights and a fixed length hydrophilic PEG were synthesized successfully and characterized. These amphiphilic block copolymers were used to fabricate honeycomb-structured porous films using the breath figure (BF) templating technique. The surface topology and composition of the highly ordered pattern film were further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. The results indicated that the PEG-to-PLA block molecular weight ratio influenced the BF film surface topology. The film with the best ordered pores was obtained with a PEG-to-PLA ratio of 2.0 × 10{sup 3}:3.0 × 10{sup 4}. The self-organization of the hydrophilic PEG chains within the pores was confirmed by XPS and fluorescence labeled PEG. A model is proposed to elucidate the stabilization process of the amphiphilic PEG-PLA aggregated architecture on the water droplet-based templates. In addition, GFP-U87 cell viability has been investigated by MTS test and the cell morphology on the honeycomb-structured PEG-PLA porous film has been evaluated using phase-contrast microscope. This porous film is shown to be suitable as a matrix for cell growth.

  18. Fabrication of honeycomb-structured poly(ethylene glycol)-block-poly(lactic acid) porous films and biomedical applications for cell growth

    International Nuclear Information System (INIS)

    Yao, Bingjian; Zhu, Qingzeng; Yao, Linli; Hao, Jingcheng

    2015-01-01

    Graphical abstract: - Highlights: • Honeycomb-structured PEG-PLA porous films were fabricated. • The organization of pores depends on molecular weight ratio of PEG-to-PLA block. • The pores in the film were internally decorated with a layer of PEG. • The honeycomb-structured PEG-PLA film was suitable as a substrate for cell growth. - Abstract: A series of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) copolymers with a hydrophobic PLA block of different molecular weights and a fixed length hydrophilic PEG were synthesized successfully and characterized. These amphiphilic block copolymers were used to fabricate honeycomb-structured porous films using the breath figure (BF) templating technique. The surface topology and composition of the highly ordered pattern film were further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. The results indicated that the PEG-to-PLA block molecular weight ratio influenced the BF film surface topology. The film with the best ordered pores was obtained with a PEG-to-PLA ratio of 2.0 × 10 3 :3.0 × 10 4 . The self-organization of the hydrophilic PEG chains within the pores was confirmed by XPS and fluorescence labeled PEG. A model is proposed to elucidate the stabilization process of the amphiphilic PEG-PLA aggregated architecture on the water droplet-based templates. In addition, GFP-U87 cell viability has been investigated by MTS test and the cell morphology on the honeycomb-structured PEG-PLA porous film has been evaluated using phase-contrast microscope. This porous film is shown to be suitable as a matrix for cell growth

  19. Mechanical Properties of Additively Manufactured Thick Honeycombs

    Directory of Open Access Journals (Sweden)

    Reza Hedayati

    2016-07-01

    Full Text Available Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from polylactic acid (PLA using fused deposition modelling, i.e., an additive manufacturing technique. The samples were mechanically tested in-plane under compression to determine their mechanical properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson’s ratio of thick honeycombs. Finite element models were also built for computational analysis of the mechanical behavior of thick honeycombs under compression. The mechanical properties obtained using our analytical relationships were compared with experimental observations and computational results as well as with analytical solutions available in the literature. It was found that the analytical solutions presented here are in good agreement with experimental and computational results even for very thick honeycombs, whereas the analytical solutions available in the literature show a large deviation from experimental observation, computational results, and our analytical solutions.

  20. Inserting Stress Analysis of Combined Hexagonal Aluminum Honeycombs

    Directory of Open Access Journals (Sweden)

    Xiangcheng Li

    2016-01-01

    Full Text Available Two kinds of hexagonal aluminum honeycombs are tested to study their out-of-plane crushing behavior. In the tests, honeycomb samples, including single hexagonal aluminum honeycomb (SHAH samples and two stack-up combined hexagonal aluminum honeycombs (CHAH samples, are compressed at a fixed quasistatic loading rate. The results show that the inserting process of CHAH can erase the initial peak stress that occurred in SHAH. Meanwhile, energy-absorbing property of combined honeycomb samples is more beneficial than the one of single honeycomb sample with the same thickness if the two types of honeycomb samples are completely crushed. Then, the applicability of the existing theoretical model for single hexagonal honeycomb is discussed, and an area equivalent method is proposed to calculate the crushing stress for nearly regular hexagonal honeycombs. Furthermore, a semiempirical formula is proposed to calculate the inserting plateau stress of two stack-up CHAH, in which structural parameters and mechanics properties of base material are concerned. The results show that the predicted stresses of three kinds of two stack-up combined honeycombs are in good agreement with the experimental data. Based on this study, stress-displacement curve of aluminum honeycombs can be designed in detail, which is very beneficial to optimize the energy-absorbing structures in engineering fields.

  1. Manufacturing method for material having honey-comb structure for use in collimater

    International Nuclear Information System (INIS)

    Goto, Yoshinori.

    1995-01-01

    The present invention concerns a collimater for scintillation which passes only radiation-rays which propagate to a predetermined direction, among radiation-rays emitted from radioactive isotopes. A lead or a lead alloy tape is continuously wound while being overlapped around the outer circumference of a core material which is made of a material more soluble than lead or the lead alloy and having a predetermined cross section, to form a composite wire material. This provides a similar structure as having double barrier walls by overlapping of the tapes, to sufficiently prevent leakage of radiation-rays. The lead or lead alloy tape and the core material of the composite wire material are bonded with each other to form an integrated composite wire, and it is finished into a shape having a desired cross section. Since a coating layer made of the lead alloy is formed by winding a lead or lead alloy tapes, they can be bonded with each other with no joining of end faces of each of the tapes. (T.M.)

  2. Research on Shock Responses of Three Types of Honeycomb Cores

    Science.gov (United States)

    Peng, Fei; Yang, Zhiguang; Jiang, Liangliang; Ren, Yanting

    2018-03-01

    The shock responses of three kinds of honeycomb cores have been investigated and analyzed based on explicit dynamics analysis. According to the real geometric configuration and the current main manufacturing methods of aluminum alloy honeycomb cores, the finite element models of honeycomb cores with three different cellular configurations (conventional hexagon honeycomb core, rectangle honeycomb core and auxetic honeycomb core with negative Poisson’s ratio) have been established through FEM parametric modeling method based on Python and Abaqus. In order to highlight the impact response characteristics of the above three honeycomb cores, a 5 mm thick panel with the same mass and material was taken as contrast. The analysis results showed that the peak values of longitudinal acceleration history curves of the three honeycomb cores were lower than those of the aluminum alloy panel in all three reference points under the loading of a longitudinal pulse pressure load with the peak value of 1 MPa and the pulse width of 1 μs. It could be concluded that due to the complex reflection and diffraction of stress wave induced by shock in honeycomb structures, the impact energy was redistributed which led to a decrease in the peak values of the longitudinal acceleration at the measuring points of honeycomb cores relative to the panel.

  3. Local spin structure of the α -RuCl3 honeycomb-lattice magnet observed via muon spin rotation/relaxation

    Science.gov (United States)

    Yamauchi, Ichihiro; Hiraishi, Masatoshi; Okabe, Hirotaka; Takeshita, Soshi; Koda, Akihiro; Kojima, Kenji M.; Kadono, Ryosuke; Tanaka, Hidekazu

    2018-04-01

    We report a muon spin rotation/relaxation (μ SR ) study of single-crystalline samples of the α -RuCl3 honeycomb magnet, which is presumed to be a model compound for the Kitaev-Heisenberg interaction. It is inferred from magnetic susceptibility and specific-heat measurements that the present samples exhibit successive magnetic transitions at different critical temperatures TN with decreasing temperature, eventually falling into the TN=7 K antiferromagnetic (7 K) phase that has been observed in only single-crystalline specimens with the least stacking fault. Via μ SR measurements conducted under a zero external field, we show that such behavior originates from a phase separation induced by the honeycomb plane stacking fault, yielding multiple domains with different TN's. We also perform μ SR measurements under a transverse field in the paramagnetic phase to identify the muon site from the muon-Ru hyperfine parameters. Based on a comparison of the experimental and calculated internal fields at the muon site for the two possible spin structures inferred from neutron diffraction data, we suggest a modulated zigzag spin structure for the 7 K phase, with the amplitude of the ordered magnetic moment being significantly reduced from that expected for the orbital quenched spin-1/2 state.

  4. Electrochemical formation of GaAs honeycomb structure using a fluoride-containing (NH{sub 4}){sub 2}SO{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Yoshitaka, E-mail: morisita@cc.tuat.ac.jp; Yamamoto, Hitoshi; Yokobori, Kuniyuki

    2014-04-01

    GaAs substrates were anodized in the (NH{sub 4}){sub 2}SO{sub 4} electrolyte with various fluoride concentrations. Scanning electron microscope (SEM) observation showed that highly regular honeycomb hollows were formed on the substrates anodized in the (NH{sub 4}){sub 2}SO{sub 4} electrolyte with a small amount of HF concentration. The regularity of hollows decreased with the increase of HF concentration. The average diameter of hollows increased with increasing anodizing voltage. The regularity of hollow diameters increased with the increase of anodizing time, irrespective of the anodizing voltage. Cross-sectional SEM image showed that the average depth of regular hollows was about 5 nm. In addition to the peak in the region of fundamental adsorption of GaAs with the peak wavelength at about 870 nm, photoluminescence spectra of samples anodized in the (NH{sub 4}){sub 2}SO{sub 4} electrolyte with HF concentration of 0.5 ml showed several peaks at about 610, 635, 670 and 720 nm. - Highlights: • We report on the electrochemical formation of GaAs honeycomb structure. • High regular hollows were formed by anodization in HF-containing (NH{sub 4}){sub 2}SO{sub 4} solution. • A thin porous layer was formed by anodization in HF-containing (NH{sub 4}){sub 2}SO{sub 4} solution. • This process is useful for preparing patterned substrate with a thin porous layer.

  5. Fermions on the low-buckled honey-comb structured lattice plane and classical Casimir-Polder force

    Science.gov (United States)

    Goswami, Partha

    2016-05-01

    We start with the well-known expression for the vacuum polarization and suitably modify it for 2+1-dimensional spin-orbit coupled (SOC) fermions on the low-buckled honey-comb structured lattice plane described by the low-energy Liu-Yao-Feng-Ezawa (LYFE) model Hamiltonian involving the Dirac matrices in the chiral representation obeying the Clifford algebra. The silicene and germanene fit this description suitably. They have the Dirac cones similar to those of graphene and SOC is much stronger. The system could be normal or ferromagnetic in nature. The silicene turns into the latter type if there is exchange field arising due to the proximity coupling to a ferromagnet (FM) such as depositing Fe atoms to the silicene surface. For the silicene, we find that the many-body effects considerably change the bare Coulomb potential by way of the dependence of the Coulomb propagator on the real-spin, iso-spin and the potential due to an electric field applied perpendicular to the silicene plane. The computation aspect of the Casimir-Polder force (CPF) needs to be investigated in this paper. An important quantity in this process is the dielectric response function (DRF) of the material. The plasmon branch was obtained by finding the zeros of DRF in the long-wavelength limit. This leads to the plasmon frequencies. We find that the collective charge excitations at zero doping, i.e., intrinsic plasmons, in this system, are absent in the Dirac limit. The valley-spin-split intrinsic plasmons, however, come into being in the case of the massive Dirac particles with characteristic frequency close to 10 THz. Our scheme to calculate the Casimir-Polder interaction (CPI) of a micro-particle with a sheet involves replacing the dielectric constant of the sample in the CPI expression obtained on the basis of the Lifshitz theory by the static DRF obtained using the expressions for the polarization function we started with. Though the approach replaces a macroscopic constant by a microscopic

  6. Synthetic magnetic fluxes on the honeycomb lattice

    Energy Technology Data Exchange (ETDEWEB)

    Gorecka, Agnieszka [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Gremaud, Benoit [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Laboratoire Kastler Brossel, Ecole Normale Superieure, CNRS, UPMC, 4 Place Jussieu, FR-75005 Paris (France); Miniatura, Christian [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Institut Non Lineaire de Nice, UMR 6618, UNS, CNRS, 1361 Route des Lucioles, FR-06560 Valbonne (France); Institute of Advanced Studies, Nanyang Technological university, 60 Nanyang View, Singapore 639673 (Singapore)

    2011-08-15

    We devise experimental schemes that are able to mimic uniform and staggered magnetic fluxes acting on ultracold two-electron atoms, such as ytterbium atoms, propagating in a honeycomb lattice. The atoms are first trapped into two independent state-selective triangular lattices and then further exposed to a suitable configuration of resonant Raman laser beams. These beams induce hops between the two triangular lattices and make atoms move in a honeycomb lattice. Atoms traveling around each unit cell of this honeycomb lattice pick up a nonzero phase. In the uniform case, the artificial magnetic flux sustained by each cell can reach about two flux quanta, thereby realizing a cold-atom analog of the Harper model with its notorious Hofstadter's butterfly structure. Different condensed-matter phenomena such as the relativistic integer and fractional quantum Hall effects, as observed in graphene samples, could be targeted with this scheme.

  7. Polystyrene-template-assisted synthesis of Li3VO4/C/rGO ternary composite with honeycomb-like structure for durable high-rate lithium ion battery anode materials

    International Nuclear Information System (INIS)

    Yang, Yang; Li, Jiaqi; Huang, Jingxin; Huang, Jianxing; Zeng, Jing; Zhao, Jinbao

    2017-01-01

    Highlights: •Li 3 VO 4 /C/rGO ternary composite with honeycomb-like structure is prepared by taking advantage of spray drying method and polystyrene (PS) soft template. •Li 3 VO 4 /C/rGO composite electrode possesses rapid Li + ions intercalation kinetics and good structure integrity. •Li 3 VO 4 /C/rGO composite exhibits outstanding high-rate performance and long cycle-life (the high reversible capacity of 312 mAh g −1 can be maintained after 1000 cycles at 10C). -- Abstract: Li 3 VO 4 /C/rGO (HC-LVO/C/G) ternary composite with honeycomb-like structure is successfully prepared through a simple spray drying method with polystyrene (PS) microspheres as soft template. In this characteristic structure, carbon-coated Li 3 VO 4 nanoparticles are well wrapped by rGO sheets and uniformly distributed within the honeycomb-like micrometer-sized clusters. The double coating layers of amorphous carbon and rGO can avoid the direct exposure of Li 3 VO 4 nanoparticles to the electrolyte and enhance the electronic conductivity. Meanwhile, the honeycomb-like structure can shorten the diffusion paths of Li + ions and favors the relaxation of the strain/stress during cycling. The resultant HC-LVO/C/G composite exhibits significantly improved high-rate performance and long cycle-life (the high reversible capacity of 312 mAh g −1 can be maintained after 1000 cycles at 10 C) compared with the contrastive Li 3 VO 4 /C composite synthesized by a typical solid-state reaction method.

  8. Effective Deffect Identifications in Honeycombs

    Directory of Open Access Journals (Sweden)

    Jarmila Dedkova

    2008-01-01

    Full Text Available The image reconstruction problem based on Electrical Impedance Tomography (EIT is an ill-posed inverse problem of finding such conductivity distribution that minimizes some optimisation criterion, which can be given by a suitable primal objective function. This paper describes new algorithms for the reconstruction of the surface conductivity distribution, which are based on stochastic methods to be used for the acquirement of more accurate reconstruction results and stable solution. The proposed methods are expected to non-destructive test of materials. There are shown examples of the identification of voids or cracks in special structures called honeycombs. Instead of the experimental data we used the phantom evaluated voltage values based on the application of finite element method. The results obtained by this new approach are compared with results from the known deterministic approach to the same image reconstruction

  9. Dirac Magnons in Honeycomb Ferromagnets

    Directory of Open Access Journals (Sweden)

    Sergey S. Pershoguba

    2018-01-01

    Full Text Available The discovery of the Dirac electron dispersion in graphene [A. H. Castro Neto, et al., The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009RMPHAT0034-686110.1103/RevModPhys.81.109] led to the question of the Dirac cone stability with respect to interactions. Coulomb interactions between electrons were shown to induce a logarithmic renormalization of the Dirac dispersion. With a rapid expansion of the list of compounds and quasiparticle bands with linear band touching [T. O. Wehling, et al., Dirac Materials, Adv. Phys. 63, 1 (2014ADPHAH0001-873210.1080/00018732.2014.927109], the concept of bosonic Dirac materials has emerged. We consider a specific case of ferromagnets consisting of van der Waals-bonded stacks of honeycomb layers, e.g., chromium trihalides CrX_{3} (X=F, Cl, Br and I, that display two spin wave modes with energy dispersion similar to that for the electrons in graphene. At the single-particle level, these materials resemble their fermionic counterparts. However, how different particle statistics and interactions affect the stability of Dirac cones has yet to be determined. To address the role of interacting Dirac magnons, we expand the theory of ferromagnets beyond the standard Dyson theory [F. J. Dyson, General Theory of Spin-Wave Interactions, Phys. Rev. 102, 1217 (1956PHRVAO0031-899X10.1103/PhysRev.102.1217, F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet, Phys. Rev. 102, 1230 (1956PHRVAO0031-899X10.1103/PhysRev.102.1230] to the case of non-Bravais honeycomb layers. We demonstrate that magnon-magnon interactions lead to a significant momentum-dependent renormalization of the bare band structure in addition to strongly momentum-dependent magnon lifetimes. We show that our theory qualitatively accounts for hitherto unexplained anomalies in nearly half-century-old magnetic neutron-scattering data for CrBr_{3} [W. B. Yelon and R. Silberglitt, Renormalization of Large-Wave-Vector Magnons in

  10. Dirac Magnons in Honeycomb Ferromagnets

    Science.gov (United States)

    Pershoguba, Sergey S.; Banerjee, Saikat; Lashley, J. C.; Park, Jihwey; Ågren, Hans; Aeppli, Gabriel; Balatsky, Alexander V.

    2018-01-01

    The discovery of the Dirac electron dispersion in graphene [A. H. Castro Neto, et al., The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009), 10.1103/RevModPhys.81.109] led to the question of the Dirac cone stability with respect to interactions. Coulomb interactions between electrons were shown to induce a logarithmic renormalization of the Dirac dispersion. With a rapid expansion of the list of compounds and quasiparticle bands with linear band touching [T. O. Wehling, et al., Dirac Materials, Adv. Phys. 63, 1 (2014), 10.1080/00018732.2014.927109], the concept of bosonic Dirac materials has emerged. We consider a specific case of ferromagnets consisting of van der Waals-bonded stacks of honeycomb layers, e.g., chromium trihalides CrX3 (X =F , Cl, Br and I), that display two spin wave modes with energy dispersion similar to that for the electrons in graphene. At the single-particle level, these materials resemble their fermionic counterparts. However, how different particle statistics and interactions affect the stability of Dirac cones has yet to be determined. To address the role of interacting Dirac magnons, we expand the theory of ferromagnets beyond the standard Dyson theory [F. J. Dyson, General Theory of Spin-Wave Interactions, Phys. Rev. 102, 1217 (1956), 10.1103/PhysRev.102.1217, F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet, Phys. Rev. 102, 1230 (1956), 10.1103/PhysRev.102.1230] to the case of non-Bravais honeycomb layers. We demonstrate that magnon-magnon interactions lead to a significant momentum-dependent renormalization of the bare band structure in addition to strongly momentum-dependent magnon lifetimes. We show that our theory qualitatively accounts for hitherto unexplained anomalies in nearly half-century-old magnetic neutron-scattering data for CrBr3 [W. B. Yelon and R. Silberglitt, Renormalization of Large-Wave-Vector Magnons in Ferromagnetic CrBr3 Studied by Inelastic Neutron Scattering: Spin-Wave Correlation

  11. A bird’s eye view on the flat and conic band world of the honeycomb and Kagome lattices: towards an understanding of 2D metal-organic frameworks electronic structure

    Science.gov (United States)

    Barreteau, C.; Ducastelle, F.; Mallah, T.

    2017-11-01

    We present a thorough tight-binding analysis of the band structure of a wide variety of lattices belonging to the class of honeycomb and Kagome systems including several mixed forms combining both lattices. The band structure of these systems are made of a combination of dispersive and flat bands. The dispersive bands possess Dirac cones (linear dispersion) at the six corners (K points) of the Brillouin zone although in peculiar cases Dirac cones at the center of the zone (Γ point) appear. The flat bands can be of different nature. Most of them are tangent to the dispersive bands at the center of the zone but some, for symmetry reasons, do not hybridize with other states. The objective of our work is to provide an analysis of a wide class of so-called ligand-decorated honeycomb Kagome lattices that are observed in a 2D metal-organic framework where the ligand occupy honeycomb sites and the metallic atoms the Kagome sites. We show that the p x -p y graphene model is relevant in these systems and there exists four types of flat bands: Kagome flat (singly degenerate) bands, two kinds of ligand-centered flat bands (A2 like and E like, respectively doubly and singly degenerate) and metal-centered (three fold degenerate) flat bands.

  12. Mechanic properties analysis of quasi-square honeycomb sandwich structure′s core

    Directory of Open Access Journals (Sweden)

    Guan TONG

    2017-12-01

    Full Text Available In order to illustrate the relationship between the quasi-square-honeycomb structure and the hexagonal honeycomb structure, after decomposing the quasi-square honeycomb sandwich structure into unique T-shaped cell, the equivalent elastic constants equations of T-shaped cell model are derived respectively by applying Euler beam theory and energy method. At the same time, the quasi-square honeycomb's characteristic structure parameters are substituted into the equivalent elastic constants equations which are derived by the classical method of a hexagonal honeycomb core, and the same results are obtained as that of the preceding both methods. It is proved that the quasi-square-honeycomb structure is an evolution of hexagonal honeycomb. The limitations and application scope of the two classical honeycomb formulas are pointed out. The research of the structural characteristics of the square-shaped honeycomb shows that the classical cellular theoretical formula are singular and inaccurate when the feature angle values equal to zero or near zero. This study has important reference value for the subsequent research and improvement of the theories about cellular structure mechanical properties.

  13. Fabrication and Performance of a Glue-Pressed Engineered Honeycomb Bamboo (GPEHB Structure with Finger-jointed Ends as a Potential Substitute for Wood Lumber

    Directory of Open Access Journals (Sweden)

    Jianbo Zhou

    2015-04-01

    Full Text Available With the increasing scarcity of wood as a natural resource, bamboo has become a popular substitute for wood. The present work developed a high-strength original state multi-reorganization material (GPEHB, without the use of a hot press or traditional assembly. The original bamboo units were polygonized into outer contours and milled into finger-joints on each ending. The GPEHB was organized and assembled under an external press, using industrial adhesives. The mechanical properties and thermal insulation of GPEHB were characterized. Moreover, the overall GPEHB unit bending strength was 73.15 MPa, and the parallel-to-grain compression was 55.22 MPa (higher than that of Pinus sylvestris lumber, though less than that of glued laminated bamboo. The GPEHB unit overall density was 0.24 g/cm³, 76% lower than that of glued laminated bamboo, and 50% lower than Pinus sylvestris lumber. The compressive strength of GPEHB (7 units was 170.5 kN, while the compressive strength of GPEHB for 14 units was 493.5 kN, which meet the requirements of GB 50005 (2003. The bending strength of GPEHB 7 units was 12 kN, while that of 14 units was 37 kN. The heat conductivity coefficient for GPEHB was 0.25 W/mK, which is better than concrete and steel. The GPEHB has taken full advantage of its honeycomb-structured material, which allows it to avoid stress concentration in the regular polygonal corners.

  14. Topology optimization of pressure adaptive honeycomb for a morphing flap

    Science.gov (United States)

    Vos, Roelof; Scheepstra, Jan; Barrett, Ron

    2011-03-01

    The paper begins with a brief historical overview of pressure adaptive materials and structures. By examining avian anatomy, it is seen that pressure-adaptive structures have been used successfully in the Natural world to hold structural positions for extended periods of time and yet allow for dynamic shape changes from one flight state to the next. More modern pneumatic actuators, including FAA certified autopilot servoactuators are frequently used by aircraft around the world. Pneumatic artificial muscles (PAM) show good promise as aircraft actuators, but follow the traditional model of load concentration and distribution commonly found in aircraft. A new system is proposed which leaves distributed loads distributed and manipulates structures through a distributed actuator. By using Pressure Adaptive Honeycomb (PAH), it is shown that large structural deformations in excess of 50% strains can be achieved while maintaining full structural integrity and enabling secondary flight control mechanisms like flaps. The successful implementation of pressure-adaptive honeycomb in the trailing edge of a wing section sparked the motivation for subsequent research into the optimal topology of the pressure adaptive honeycomb within the trailing edge of a morphing flap. As an input for the optimization two known shapes are required: a desired shape in cruise configuration and a desired shape in landing configuration. In addition, the boundary conditions and load cases (including aerodynamic loads and internal pressure loads) should be specified for each condition. Finally, a set of six design variables is specified relating to the honeycomb and upper skin topology of the morphing flap. A finite-element model of the pressure-adaptive honeycomb structure is developed specifically tailored to generate fast but reliable results for a given combination of external loading, input variables, and boundary conditions. Based on two bench tests it is shown that this model correlates well

  15. Unconventional superconductivity in honeycomb lattice

    Directory of Open Access Journals (Sweden)

    P Sahebsara

    2013-03-01

    Full Text Available   ‎ The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons ‎ . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.

  16. Mechanics and applications of pressure adaptive honeycomb

    Science.gov (United States)

    Vos, Roelof

    A novel adaptive aerostructure is presented that relies on certified aerospace materials and can therefore be applied in conventional passenger aircraft. This structure consists of a honeycomb material which' cells extend over a significant length perpendicular to the plane of the cells. Each of the cells contains an inelastic pouch (or bladder) that forms a circular tube when the cell forms a perfect hexagon. By changing the cell differential pressure (CDP) the stiffness of the honeycomb can be altered. Using an external force or the elastic force within the honeycomb material, the honeycomb can be deformed such that the cells deviate from their perfect-hexagonal shape. It can be shown that by increasing the CDP, the structure eventually returns to a perfect hexagon. By doing so, a fully embedded pneumatic actuator is created that can perform work and substitute conventional low-bandwidth flight control actuators. It is shown that two approaches can be taken to regulate the stiffness of this embedded actuator: (1) The first approach relies on the pouches having a fixed amount of air in them and stiffness is altered by a change in ambient pressure. Coupled to the ambient pressure-altitude cycle that aircraft encounter during each flight, this approach yields a true adaptive aerostructure that operates independently of pilot input and is controlled solely by the altitude the aircraft is flying at. (2) The second approach relies on a controlled constant CDP. This CDP could be supplied from one of the compressor stages of the engine as a form of bleed air. Because of the air-tight pouches there would essentially be no mass flow, meaning engine efficiency would not be significantly affected due to this application. By means of a valve system the pilot could have direct control over the pressure and, consequently, the stiffness of the structure. This allows for much higher CDPs (on the order of 1MPa) than could physically be achieved by relying on the ambient pressure

  17. Porous honeycomb structures formed from interconnected MnO2 sheets on CNT-coated substrates for flexible all-solid-state supercapacitors

    Science.gov (United States)

    Ko, Wen-Yin; Chen, You-Feng; Lu, Ke-Ming; Lin, Kuan-Jiuh

    2016-01-01

    The use of lightweight and easily-fabricated MnO2/carbon nanotube (CNT)-based flexible networks as binder-free electrodes and a polyvinyl alcohol/H2SO4 electrolyte for the formation of stretchable solid-state supercapacitors was examined. The active electrodes were fabricated from 3D honeycomb porous MnO2 assembled from cross-walled and interconnected sheet-architectural MnO2 on CNT-based plastic substrates (denoted as honeycomb MnO2/CNT textiles).These substrates were fabricated through a simple two-step procedure involving the coating of multi-walled carbon nanotubes (MWCNTs) onto commercial textiles by a dipping-drying process and subsequent electrodeposition of the interconnected MnO2 sheets onto the MWCNT-coated textile. With such unique MnO2 architectures integrated onto CNT flexible films, good performance was achieved with a specific capacitance of 324 F/g at 0.5 A/g. A maximum energy density of 7.2 Wh/kg and a power density as high as 3.3 kW/kg were exhibited by the honeycomb MnO2/CNT network device, which is comparable to the performance of other carbon-based and metal oxide/carbon-based solid-state supercapacitor devices. Specifically, the long-term cycling stability of this material is excellent, with almost no loss of its initial capacitance and good Coulombic efficiency of 82% after 5000 cycles. These impressive results identify these materials as a promising candidate for use in environmentally friendly, low-cost, and high-performance flexible energy-storage devices. PMID:26726724

  18. Study of Cylindrical Honeycomb Solar Collector

    Directory of Open Access Journals (Sweden)

    Atish Mozumder

    2014-01-01

    Full Text Available We present the results of our investigation on cylindrical honeycomb solar collector. The honeycomb has been fabricated with transparent cellulose triacetate polymer sheets. Insulation characteristics of the honeycomb were studied by varying the separation between the honeycomb and the absorber plate. The optimal value of the separation was found to be 3.3 mm for which the heat transfer coefficient is 3.06 W m−2 K−1. This supports result of previous similar experiments. Further we test the honeycomb through a field experiment conducted in Delhi (28.6°N, 77°E and found that when the incident angle of the solar radiation is within 20° then the performance of the system with the honeycomb is better than the one without the honeycomb.

  19. Simultaneous phosphate and CODcr removals for landfill leachate using modified honeycomb cinders as an adsorbent

    International Nuclear Information System (INIS)

    Yue Xiu; Li Xiaoming; Wang Dongbo; Shen Tingting; Liu Xian; Yang Qi; Zeng Guangming; Liao Dexiang

    2011-01-01

    In this study, honeycomb cinders were employed to remove phosphate and Chemical Oxygen Demand (COD cr ) simultaneously for landfill leachate treatment. Operating conditions of honeycomb cinders pretreatment, pH, temperature, honeycomb cinders dosage, reaction time, and settling time, were evaluated and optimized. The results revealed that the removal efficiencies of both phosphate and COD cr could be increased up to 99.9% and 66.7% under the optimal conditions, respectively. Moreover, the structures of raw/modified honeycomb cinders and resulting precipitates were detected by Scanning Electron Microscope (SEM), Energy Dispersive Spectrometers (EDS) analysis and X-ray Diffraction (XRD). The results suggested that the adsorption method using honeycomb cinders might be an effective strategy as a pretreatment technology for landfill leachate treatment.

  20. Simulation of the honeycomb construction process

    International Nuclear Information System (INIS)

    Zhang Yuanzhang

    2010-01-01

    The construction process of the honeycomb by bees is an astonishing process. The original structure which the bees built is nothing more than a lot of rough cylinders. But keeping the beeswax semi-flow for a certain time, those rough structures become perfect hexahedral columns. A modified, simplified particle method was used here to simulate the semi-flow state of the material. Although the parameters used here were still rather subjective, the simulation still could demonstrate some behavior of that sort of material like beeswax. And the method that the bees used to build their honey comb, could be an efficient method to imitate when we are trying to manufacture cellular materials.

  1. Negative stiffness honeycombs as tunable elastic metamaterials

    Science.gov (United States)

    Goldsberry, Benjamin M.; Haberman, Michael R.

    2018-03-01

    Acoustic and elastic metamaterials are media with a subwavelength structure that behave as effective materials displaying atypical effective dynamic properties. These material systems are of interest because the design of their sub-wavelength structure allows for direct control of macroscopic wave dispersion. One major design limitation of most metamaterial structures is that the dynamic response cannot be altered once the microstructure is manufactured. However, the ability to modify wave propagation in the metamaterial with an external stimulus is highly desirable for numerous applications and therefore remains a significant challenge in elastic metamaterials research. In this work, a honeycomb structure composed of a doubly periodic array of curved beams, known as a negative stiffness honeycomb (NSH), is analyzed as a tunable elastic metamaterial. The nonlinear static elastic response that results from large deformations of the NSH unit cell leads to a large variation in linear elastic wave dispersion associated with infinitesimal motion superposed on the externally imposed pre-strain. A finite element model is utilized to model the static deformation and subsequent linear wave motion at the pre-strained state. Analysis of the slowness surface and group velocity demonstrates that the NSH exhibits significant tunability and a high degree of anisotropy which can be used to guide wave energy depending on static pre-strain levels. In addition, it is shown that partial band gaps exist where only longitudinal waves propagate. The NSH therefore behaves as a meta-fluid, or pentamode metamaterial, which may be of use for applications of transformation elastodynamics such as cloaking and gradient index lens devices.

  2. Hierarchical honeycomb auxetic metamaterials

    Science.gov (United States)

    Mousanezhad, Davood; Babaee, Sahab; Ebrahimi, Hamid; Ghosh, Ranajay; Hamouda, Abdelmagid Salem; Bertoldi, Katia; Vaziri, Ashkan

    2015-12-01

    Most conventional materials expand in transverse directions when they are compressed uniaxially resulting in the familiar positive Poisson’s ratio. Here we develop a new class of two dimensional (2D) metamaterials with negative Poisson’s ratio that contract in transverse directions under uniaxial compressive loads leading to auxeticity. This is achieved through mechanical instabilities (i.e., buckling) introduced by structural hierarchy and retained over a wide range of applied compression. This unusual behavior is demonstrated experimentally and analyzed computationally. The work provides new insights into the role of structural organization and hierarchy in designing 2D auxetic metamaterials, and new opportunities for developing energy absorbing materials, tunable membrane filters, and acoustic dampeners.

  3. Quantitative neutron radiography using neutron absorbing honeycomb

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi; Oda, Masahiro; Takahashi, Kenji; Ohkubo, Kohei; Tasaka, Kanji; Tsuruno, Akira; Matsubayashi, Masahito.

    1993-01-01

    This investigation concerns quantitative neutron radiography and computed tomography by using a neutron absorbing honeycomb collimator. By setting the neutron absorbing honeycomb collimator between object and imaging system, neutrons scattered in the object were absorbed by the honeycomb material and eliminated before coming to the imaging system, but the neutrons which were transmitted the object without interaction could reach the imaging system. The image by purely transmitted neutrons gives the quantitative information. Two honeycombs were prepared with coating of boron nitride and gadolinium oxide and evaluated for the quantitative application. The relation between the neutron total cross section and the attenuation coefficient confirmed that they were in a fairly good agreement. Application to quantitative computed tomography was also successfully conducted. The new neutron radiography method using the neutron-absorbing honeycomb collimator for the elimination of the scattered neutrons improved remarkably the quantitativeness of the neutron radiography and computed tomography. (author)

  4. Crystal plasticity study of monocrystalline stochastic honeycombs under in-plane compression

    International Nuclear Information System (INIS)

    Ma, Duancheng; Eisenlohr, Philip; Epler, Eike; Volkert, Cynthia A.; Shanthraj, Pratheek; Diehl, Martin; Roters, Franz; Raabe, Dierk

    2016-01-01

    We present a study on the plastic deformation of single crystalline stochastic honeycombs under in-plane compression using a crystal plasticity constitutive description for face-centered cubic (fcc) materials, focusing on the very early stage of plastic deformation, and identifying the interplay between the crystallographic orientation and the cellular structure during plastic deformation. We observe that despite the stochastic structure, surprisingly, the slip system activations in the honeycombs are almost identical to their corresponding bulk single crystals at the early stage of the plastic deformation. On the other hand, however, the yield stresses of the honeycombs are nearly independent of their crystallographic orientations. Similar mechanical response is found in compression testing of nanoporous gold micro-pillars aligned with various crystallographic orientations. The macroscopic stress tensors of the honeycombs show the same anisotropy as their respective bulk single crystals. Locally, however, there is an appreciable fluctuation in the local stresses, which are even larger than for polycrystals. This explains why the Taylor/Schmid factor associated with the crystallographic orientation is less useful to estimate the yield stresses of the honeycombs than the bulk single crystals and polycrystals, and why the plastic deformation occurs at smaller strains in the honeycombs than their corresponding bulk single crystals. Besides these findings, the observations of the crystallographic reorientation suggest that conventional orientation analysis tools, such as inverse pole figure and related tools, would in general fail to study the plastic deformation mechanism of monocrystalline cellular materials.

  5. 3D Energy Absorption Diagram Construction of Paper Honeycomb Sandwich Panel

    Directory of Open Access Journals (Sweden)

    Dongmei Wang

    2018-01-01

    Full Text Available Paper honeycomb sandwich panel is an environment-sensitive material. Its cushioning property is closely related to its structural factors, the temperature and humidity, random shocks, and vibration events in the logistics environment. In order to visually characterize the cushioning property of paper honeycomb sandwich panel in different logistics conditions, the energy absorption equation of per unit volume of paper honeycomb sandwich panel was constructed by piecewise function. The three-dimensional (3D energy absorption diagram of paper honeycomb sandwich panel was constructed by connecting the inflexion of energy absorption curve. It takes into account the temperature, humidity, strain rate, and characteristics of the honeycomb structure. On the one hand, this diagram breaks through the limitation of the static compression curve of paper honeycomb sandwich panel, which depends on the test specimen and is applicable only to the standard condition. On the other hand, it breaks through the limitation of the conventional 2D energy absorption diagram which has less information. Elastic modulus was used to normalize the plateau stress and energy absorption per unit volume. This makes the 3D energy absorption diagram universal for different material sandwich panels. It provides a new theoretical basis for packaging optimized design.

  6. Prepreg effects on honeycomb composite manufacturing

    Science.gov (United States)

    Martin, Cary Joseph

    Fiber reinforced composites offer many advantages over traditional materials and are widely utilized in aerospace applications. Advantages include a high stiffness to weight ratio and excellent fatigue resistance. However, the pace of new implementation is slow. The manufacturing processes used to transform composite intermediates into final products are poorly understood and are a source of much variability. This limits new implementation and increases the manufacturing costs of existing designs. One such problem is honeycomb core crush, in which a core-stiffened structure collapses during autoclave manufacture, making the structure unusable and increasing the overall manufacturing cost through increased scrap rates. Consequently, the major goal of this research was to investigate the scaling of core crush from prepreg process-structure-property relations to commercial composite manufacture. The material dependent nature of this defect was of particular interest. A methodology and apparatus were developed to measure the frictional resistance of prepreg materials under typical processing conditions. Through a characterization of commercial and experimental prepregs, it was found that core crush behavior was the result of differences in prepreg frictional resistance. This frictional resistance was related to prepreg morphology and matrix rheology and elasticity. Resin composition and prepreg manufacturing conditions were also found to affect manufacturing behavior. Mechanical and dimensional models were developed and demonstrated utility for predicting this crushing behavior. Collectively, this work explored and identified the process-structure-property relations as they relate to the manufacture of composite materials and suggested several avenues by which manufacturing-robust materials may be developed.

  7. Accordion-like honeycombs for tissue engineering of cardiac anisotropy

    Science.gov (United States)

    Engelmayr, George C.; Cheng, Mingyu; Bettinger, Christopher J.; Borenstein, Jeffrey T.; Langer, Robert; Freed, Lisa E.

    2008-12-01

    Tissue-engineered grafts may be useful in myocardial repair; however, previous scaffolds have been structurally incompatible with recapitulating cardiac anisotropy. Here, we use microfabrication techniques to create an accordion-like honeycomb microstructure in poly(glycerol sebacate), which yields porous, elastomeric three-dimensional (3D) scaffolds with controllable stiffness and anisotropy. Accordion-like honeycomb scaffolds with cultured neonatal rat heart cells demonstrated utility through: (1) closely matched mechanical properties compared to native adult rat right ventricular myocardium, with stiffnesses controlled by polymer curing time; (2) heart cell contractility inducible by electric field stimulation with directionally dependent electrical excitation thresholds (pthe formation of grafts with aligned heart cells and mechanical properties more closely resembling native myocardium.

  8. Modal analysis and acoustic transmission through offset-core honeycomb sandwich panels

    Science.gov (United States)

    Mathias, Adam Dustin

    The work presented in this thesis is motivated by an earlier research that showed that double, offset-core honeycomb sandwich panels increased thermal resistance and, hence, decreased heat transfer through the panels. This result lead to the hypothesis that these panels could be used for acoustic insulation. Using commercial finite element modeling software, COMSOL Multiphysics, the acoustical properties, specifically the transmission loss across a variety of offset-core honeycomb sandwich panels, is studied for the case of a plane acoustic wave impacting the panel at normal incidence. The transmission loss results are compared with those of single-core honeycomb panels with the same cell sizes. The fundamental frequencies of the panels are also computed in an attempt to better understand the vibrational modes of these particular sandwich-structured panels. To ensure that the finite element analysis software is adequate for the task at hand, two relevant benchmark problems are solved and compared with theory. Results from these benchmark results compared well to those obtained from theory. Transmission loss results from the offset-core honeycomb sandwich panels show increased transmission loss, especially for large cell honeycombs when compared to single-core honeycomb panels.

  9. Low frequency acoustic properties of a honeycomb-silicone rubber acoustic metamaterial

    Science.gov (United States)

    Gao, Nansha; Hou, Hong

    2017-04-01

    In order to overcome the influence of mass law on traditional acoustic materials and obtain a lightweight thin-layer structure which can effectively isolate the low frequency noises, a honeycomb-silicone rubber acoustic metamaterial was proposed. Experimental results show that the sound transmission loss (STL) of acoustic metamaterial in this paper is greatly higher than that of monolayer silicone rubber metamaterial. Based on the band structure, modal shapes, as well as the sound transmission simulation, the sound insulation mechanism of the designed honeycomb-silicone rubber structure was analyzed from a new perspective, which had been validated experimentally. Side length of honeycomb structure and thickness of the unit structure would affect STL in damping control zone. Relevant conclusions and design method provide a new concept for engineering noise control.

  10. Honeycomb technology materials, design, manufacturing, applications and testing

    CERN Document Server

    Bitzer, Tom

    1997-01-01

    Honeycomb Technology is a guide to honeycomb cores and honeycomb sandwich panels, from the manufacturing methods by which they are produced, to the different types of design, applications for usage and methods of testing the materials. It explains the different types of honeycomb cores available and provides tabulated data of their properties. The author has been involved in the testing and design of honeycomb cores and sandwich panels for nearly 30 years. Honeycomb Technology reflects this by emphasizing a `hands-on' approach and discusses procedures for designing sandwich panels, explaining the necessary equations. Also included is a section on how to design honeycomb energy absorbers and one full chapter discussing honeycomb core and sandwich panel testing. Honeycomb Technology will be of interest to engineers in the aircraft, aerospace and building industries. It will also be of great use to engineering students interested in basic sandwich panel design.

  11. Smart Kirigami open honeycombs in shape changing actuation and dynamics

    Science.gov (United States)

    Neville, R. M.; Scarpa, F.; Leng, J.

    2017-04-01

    Kirigami is the ancient Japanese art of cutting and folding paper, widespread in Asia since the 17th century. Kirigami offers a broader set of geometries and topologies than classical fold/valleys Origami, because of the presence of cuts. Moreover, Kirigami can be readily applied to a large set of composite and smart 2D materials, and can be used to up-scaled productions with modular molding. We describe the manufacturing and testing of a topology of Kirigami cellular structures defined as Open Honeycombs. Open Honeycombs (OHs) can assume fully closed shape and be alike classical hexagonal centresymmetric honeycombs, or can vary their morphology by tuning the opening angle and rotational stiffness of the folds. We show the performance of experimental PEEK OHs with cable actuation and morphing shape characteristics, and the analogous morphing behavior of styrene SMPs under combined mechanical and thermal loading. We also show the dynamic (modal analysis) behavior of OHs configurations parameterized against their geometry characteristics, and the controllable modal density characteristics that one could obtain by tuning the topology and folding properties.

  12. Mould design and manufacturing considerations of honeycomb biocomposites with transverse fibre direction for aerospace application

    Science.gov (United States)

    Manan, N. H.; Majid, D. L.; Romli, F. I.

    2016-10-01

    Sandwich structures with honeycomb core are known to significantly improve stiffness at lower weight and possess high flexural rigidity. They have found wide applications in aerospace as part of the primary structures, as well as the interior paneling and floors. High performance aluminum and aramid are the typical materials used for the purpose of honeycomb core whereas in other industries, materials such as fibre glass, carbon fibre, Nomex and also Kevlar reinforced with polymer are used. Recently, growing interest in developing composite structures with natural fibre reinforcement has also spurred research in natural fibre honeycomb material. The majority of the researches done, however, have generally emphasized on the usage of random chopped fibre and only a few are reported on development of honeycomb structure using unidirectional fibre as the reinforcement. This is mainly due to its processing difficulties, which often involve several stages to account for the arrangement of fibres and curing. Since the use of unidirectional fibre supports greater strength compared to random chopped fibre, a single-stage process in conjunction with vacuum infusion is suggested with a mould design that supports fibre arrangement in the direction of honeycomb loading.

  13. A Maximum Entropy Approach to Assess Debonding in Honeycomb aluminum Plates

    Directory of Open Access Journals (Sweden)

    Viviana Meruane

    2014-05-01

    Full Text Available Honeycomb sandwich structures are used in a wide variety of applications. Nevertheless, due to manufacturing defects or impact loads, these structures can be subject to imperfect bonding or debonding between the skin and the honeycomb core. The presence of debonding reduces the bending stiffness of the composite panel, which causes detectable changes in its vibration characteristics. This article presents a new supervised learning algorithm to identify debonded regions in aluminum honeycomb panels. The algorithm uses a linear approximation method handled by a statistical inference model based on the maximum-entropy principle. The merits of this new approach are twofold: training is avoided and data is processed in a period of time that is comparable to the one of neural networks. The honeycomb panels are modeled with finite elements using a simplified three-layer shell model. The adhesive layer between the skin and core is modeled using linear springs, the rigidities of which are reduced in debonded sectors. The algorithm is validated using experimental data of an aluminum honeycomb panel under different damage scenarios.

  14. Half-metallicity in 2D organometallic honeycomb frameworks

    Science.gov (United States)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-01

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  15. Half-metallicity in 2D organometallic honeycomb frameworks

    International Nuclear Information System (INIS)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-01-01

    Half-metallic materials with a high Curie temperature (T C ) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d – p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. (paper)

  16. Spin Solid versus Magnetic Charge Ordered State in Artificial Honeycomb Lattice of Connected Elements

    Science.gov (United States)

    Glavic, Artur; Summers, Brock; Dahal, Ashutosh; Kline, Joseph; Van Herck, Walter; Sukhov, Alexander; Ernst, Arthur

    2018-01-01

    Abstract The nature of magnetic correlation at low temperature in two‐dimensional artificial magnetic honeycomb lattice is a strongly debated issue. While theoretical researches suggest that the system will develop a novel zero entropy spin solid state as T → 0 K, a confirmation to this effect in artificial honeycomb lattice of connected elements is lacking. This study reports on the investigation of magnetic correlation in newly designed artificial permalloy honeycomb lattice of ultrasmall elements, with a typical length of ≈12 nm, using neutron scattering measurements and temperature‐dependent micromagnetic simulations. Numerical modeling of the polarized neutron reflectometry data elucidates the temperature‐dependent evolution of spin correlation in this system. As temperature reduces to ≈7 K, the system tends to develop novel spin solid state, manifested by the alternating distribution of magnetic vortex loops of opposite chiralities. Experimental results are complemented by temperature‐dependent micromagnetic simulations that confirm the dominance of spin solid state over local magnetic charge ordered state in the artificial honeycomb lattice with connected elements. These results enable a direct investigation of novel spin solid correlation in the connected honeycomb geometry of 2D artificial structure. PMID:29721429

  17. Evidence for coexisting magnetic order in frustrated three-dimensional honeycomb iridates Li2IrO3

    Science.gov (United States)

    Breznay, Nicholas; Ruiz, Alejandro; Frano, Alex; Analytis, James

    The search for unconventional magnetism has found a fertile hunting ground in 5d iridium oxide (iridate) materials. The competition between coulomb, spin-orbit, and crystal field energy scales in honeycomb iridates leads to a quantum magnetic system with localized spin-1/2 moments communicating through spin-anisotropic Kitaev exchange interactions. Although early and ongoing work has focused on layered two-dimensional honeycomb compounds such as Na2IrO3 and a 4d analog, RuCl3, recently discovered polytypes of Li2IrO3 take on three-dimensional honeycomb structures. Bulk thermodynamic studies, as well as recent resonant x-ray diffraction and absorption spectroscopy experiments, have uncovered a rich phase diagram for these three-dimensional honeycomb iridates. Low temperature incommensurate and commensurate magnetic orders can be stabilized by tuning the applied magnetic field, displaying a delicate coexistence that signals highly frustrated magnetism.

  18. Magnonic quantum spin Hall state in the zigzag and stripe phases of the antiferromagnetic honeycomb lattice

    Science.gov (United States)

    Lee, Ki Hoon; Chung, Suk Bum; Park, Kisoo; Park, Je-Geun

    2018-05-01

    We investigated the topological property of magnon bands in the collinear magnetic orders of zigzag and stripe phases for the antiferromagnetic honeycomb lattice and identified Berry curvature and symmetry constraints on the magnon band structure. Different symmetries of both zigzag and stripe phases lead to different topological properties, in particular, the magnon bands of the stripe phase being disentangled with a finite Dzyaloshinskii-Moriya (DM) term with nonzero spin Chern number. This is corroborated by calculating the spin Nernst effect. Our study establishes the existence of a nontrivial magnon band topology for all observed collinear antiferromagnetic honeycomb lattices in the presence of the DM term.

  19. Anisotropic failure and size effects in periodic honeycomb materials: A gradient-elasticity approach

    Science.gov (United States)

    Réthoré, Julien; Dang, Thi Bach Tuyet; Kaltenbrunner, Christine

    2017-02-01

    This paper proposes a fracture mechanics model for the analysis of crack propagation in periodic honeycomb materials. The model is based on gradient-elasticity which enables us to account for the effect of the material structure at the macroscopic scale. For simulating the propagation of cracks along an arbitrary path, the numerical implementation is elaborated based on an extended finite element method with the required level of continuity. The two main features captured by the model are directionality and size effect. The numerical predictions are consistent with experimental results on honeycomb materials but also with results reported in the literature for microstructurally short cracks in metals.

  20. Iridium containing honeycomb Delafossites by topotactic cation exchange.

    Science.gov (United States)

    Roudebush, John H; Ross, K A; Cava, R J

    2016-06-07

    We report the structure and magnetic properties of two new iridium-based honeycomb Delafossite compounds, Cu3NaIr2O6 and Cu3LiIr2O6, formed by a topotactic cation exchange reaction. The starting materials Na2IrO3 and Li2IrO3, which are based on layers of IrO6 octahedra in a honeycomb lattice separated by layers of alkali ions, are transformed to the title compounds by a topotactic exchange reaction through heating with CuCl below 450 °C; higher temperature reactions cause decomposition. The new compounds display dramatically different magnetic behavior from their parent compounds - Cu3NaIr2O6 has a ferromagnetic like magnetic transition at 10 K, while Cu3LiIr2O6 retains the antiferromagnetic transition temperature of its parent compound but displays significantly stronger dominance of antiferromagnetic coupling between spins. These results reveal that a surprising difference in the magnetic interactions between the magnetic Ir ions has been induced by a change in the non-magnetic interlayer species. A combination of neutron and X-ray powder diffraction is used for the structure refinement of Cu3NaIr2O6 and both compounds are compared to their parent materials.

  1. Performance Assessment of Ordered Porous Electrospun Honeycomb Fibers for the Removal of Atmospheric Polar Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Yixin Wang

    2018-05-01

    Full Text Available This study explored a new facile method of preparing ordered porous electrospun honeycomb fibers to obtain the most promising composites for maximal adsorption of volatile organic compounds (VOCs. The self-assembly ordered porous material (OPM and polyacrylonitrile (PAN were formulated into a blend solution to prepare honeycomb fibers. SEM and TEM images showed that OPM was effectively bonded in PAN fibers because of the composite’s structure. Acetone was used as a model to assess the VOC adsorption performances of electrospun honeycomb fibers with different OPM contents. Experimental results revealed that the adsorption capacity of honeycomb fibers increased with the increase of loaded OPM within the PAN fibers. The highest adsorption capacity was 58.2 μg g−1 by the fibers containing with 60% OPM in weight. After several recycling times, the adsorption capacities of the reused honeycomb fibers were almost the same with the fresh fibers. This finding indicated that the electrospun honeycomb fibers have potential application in removing VOCs in the workplace, and promote the performance of masks for odor removal.

  2. Ultrasonic, microwave, and millimeter wave inspection techniques for adhesively bonded stacked open honeycomb core composites

    Science.gov (United States)

    Thomson, Clint D.; Cox, Ian; Ghasr, Mohammad Tayeb Ahmed; Ying, Kuang P.; Zoughi, Reza

    2015-03-01

    Honeycomb sandwich composites are used extensively in the aerospace industry to provide stiffness and thickness to lightweight structures. A common fabrication method for thick, curved sandwich structures is to stack and bond multiple honeycomb layers prior to machining core curvatures. Once bonded, each adhesive layer must be inspected for delaminations and the presence of unwanted foreign materials. From a manufacturing and cost standpoint, it can be advantageous to inspect the open core prior to face sheet closeout in order to reduce end-article scrap rates. However, by nature, these honeycomb sandwich composite structures are primarily manufactured from low permittivity and low loss materials making detection of delamination and some of the foreign materials (which also are low permittivity and low loss) quite challenging in the microwave and millimeter wave regime. Likewise, foreign materials such as release film in adhesive layers can be sufficiently thin as to not cause significant attenuation in through-transmission ultrasonic signals, making them difficult to detect. This paper presents a collaborative effort intended to explore the efficacy of different non-contact NDI techniques for detecting flaws in a stacked open fiberglass honeycomb core panel. These techniques primarily included air-coupled through-transmission ultrasonics, single-sided wideband synthetic aperture microwave and millimeter-wave imaging, and lens-focused technique. The goal of this investigation has been to not only evaluate the efficacy of these techniques, but also to determine their unique advantages and limitations for evaluating parameters such as flaw type, flaw size, and flaw depth.

  3. Mechanical properties of aluminium honeycomb impact limiters

    International Nuclear Information System (INIS)

    Maji, A.K.; Satpathi, D.; Donald, S.

    1992-01-01

    Aluminium honeycombs have been extensively used as impact limiters in nuclear waste transport casks. The mechanical behaviour of these shock absorbing materials was studied to develop an extensive experimental database. A series of tests were performed along various loading paths. Different densities of aluminium honeycombs were tested in different orientations. Static tests included uniaxial tension, uniaxial compression and torsion. Dynamic tests were conducted at different strain rates of up to 100 s -1 , to generate experimental data relevant to accident situations. Dynamic studies included the effects of specimen size and confinement. The purpose of using different loading paths was to generate an extensive experimental database which may also be used to develop constitutive models for these materials. Design charts were constructed which can be accessed by various cask designers to optimise and economise on cask development. (Author)

  4. Discrete breathers in honeycomb Fermi–Pasta–Ulam lattices

    International Nuclear Information System (INIS)

    AD Wattis, Jonathan; M James, Lauren

    2014-01-01

    We consider the two-dimensional Fermi–Pasta–Ulam lattice with hexagonal honeycomb symmetry, which is a Hamiltonian system describing the evolution of a scalar-valued quantity subject to nearest neighbour interactions. Using multiple-scale analysis we reduce the governing lattice equations to a nonlinear Schrödinger equation coupled to a second equation for an accompanying slow mode. Two cases in which the latter equation can be solved and so the system decoupled are considered in more detail: firstly, in the case of a symmetric potential, we derive the form of moving breathers. We find an ellipticity criterion for the wavenumbers of the carrier wave, together with asymptotic estimates for the breather energy. The minimum energy threshold depends on the wavenumber of the breather. We find that this threshold is locally maximized by stationary breathers. Secondly, for an asymmetric potential we find stationary breathers, which, even with a quadratic nonlinearity generate no second harmonic component in the breather. Plots of all our findings show clear hexagonal symmetry as we would expect from our lattice structure. Finally, we compare the properties of stationary breathers in the square, triangular and honeycomb lattices. (paper)

  5. Deformation behaviors of three-dimensional graphene honeycombs under out-of-plane compression: Atomistic simulations and predictive modeling

    Science.gov (United States)

    Meng, Fanchao; Chen, Cheng; Hu, Dianyin; Song, Jun

    2017-12-01

    Combining atomistic simulations and continuum modeling, a comprehensive study of the out-of-plane compressive deformation behaviors of equilateral three-dimensional (3D) graphene honeycombs was performed. It was demonstrated that under out-of-plane compression, the honeycomb exhibits two critical deformation events, i.e., elastic mechanical instability (including elastic buckling and structural transformation) and inelastic structural collapse. The above events were shown to be strongly dependent on the honeycomb cell size and affected by the local atomic bonding at the cell junction. By treating the 3D graphene honeycomb as a continuum cellular solid, and accounting for the structural heterogeneity and constraint at the junction, a set of analytical models were developed to accurately predict the threshold stresses corresponding to the onset of those deformation events. The present study elucidates key structure-property relationships of 3D graphene honeycombs under out-of-plane compression, and provides a comprehensive theoretical framework to predictively analyze their deformation responses, and more generally, offers critical new knowledge for the rational bottom-up design of 3D networks of two-dimensional nanomaterials.

  6. Topological semimetal in honeycomb lattice LnSI

    Science.gov (United States)

    Nie, Simin; Xu, Gang; Prinz, Fritz B.; Zhang, Shou-cheng

    2017-10-01

    Recognized as elementary particles in the standard model, Weyl fermions in condensed matter have received growing attention. However, most of the previously reported Weyl semimetals exhibit rather complicated electronic structures that, in turn, may have raised questions regarding the underlying physics. Here, we report promising topological phases that can be realized in specific honeycomb lattices, including ideal Weyl semimetal structures, 3D strong topological insulators, and nodal-line semimetal configurations. In particular, we highlight a semimetal featuring both Weyl nodes and nodal lines. Guided by this model, we showed that GdSI, the long-perceived ideal Weyl semimetal, has two pairs of Weyl nodes residing at the Fermi level and that LuSI (YSI) is a 3D strong topological insulator with the right-handed helical surface states. Our work provides a mechanism to study topological semimetals and proposes a platform for exploring the physics of Weyl semimetals as well as related device designs.

  7. Spin 1/2 Delafossite Honeycomb Compound Cu5SbO6

    DEFF Research Database (Denmark)

    Climent-Pascual, E.; Norby, Poul; Andersen, Niels Hessel

    2012-01-01

    Cu5SbO6 is found to have a monoclinic, Delafossite-derived structure consisting of alternating layers of O–Cu(I)–O sticks and magnetic layers of Jahn–Teller distorted Cu(II)O6 octahedra in an edge sharing honeycomb arrangement with Sb(V)O6 octahedra. This yields the structural formula Cu(I)3Cu(II...

  8. Design of flexible skin based on a mixed cruciform honeycomb

    Science.gov (United States)

    Rong, Jiaxin; Zhou, Li

    2017-04-01

    As the covering of morphing wings, flexible skin is required to provide adequate cooperation deformation, keep the smoothness of the aerodynamic configuration and bear the air load. The non-deformation direction of flexible skin is required to be restrained to keep the smoothness during morphing. This paper studies the deformation mechanisms of a cruciform honeycomb under zero Poisson's ratio constraint. The morphing capacity and in-plane modulus of the cruciform honeycomb are improved by optimizing the shape parameters of honeycomb unit. To improve the out-of-plane bending capacity, a zero Poisson's ratio mixed cruciform honeycomb is proposed by adding ribs into cruciform honeycomb, which can be used as filling material of flexible skin. The mechanical properties of the mixed honeycomb are studied by theoretical analysis and simulation. The local deformation of flexible skin under air load is also analyzed. Targeting the situation of non-uniform air load, a gradient density design scheme is referred. According to the design requirements of the variable camber trailing edge wing flexible skin, the specific design parameters and performance parameters of the skin based on the mixed honeycomb are given. The results show that the zero Poisson's ratio mixed cruciform honeycomb has a large bending rigidity itself and can have a better deformation capacity in-plane and a larger bending rigidity out-of-plane by optimizing the shape parameters. Besides, the designed skin also has advantages in driving force, deformation capacity and quality compared with conventional skin.

  9. Theoretical Predictions of Freestanding Honeycomb Sheets of Cadmium Chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jia [ORNL; Huang, Jingsong [ORNL; Sumpter, Bobby G [ORNL; Kent, Paul R [ORNL; Xie, Yu [ORNL; Terrones Maldonado, Humberto [ORNL; Smith, Sean C [ORNL

    2014-01-01

    Two-dimensional (2D) nanocrystals of CdX (X = S, Se, Te) typically grown by colloidal synthesis are coated with organic ligands. Recent experimental work on ZnSe showed that the organic ligands can be removed at elevated temperature, giving a freestanding 2D sheet of ZnSe. In this theoretical work, freestanding single- to few-layer sheets of CdX, each possessing a pseudo honeycomb lattice, are considered by cutting along all possible lattice planes of the bulk zinc blende (ZB) and wurtzite (WZ) phases. Using density functional theory, we have systematically studied their geometric structures, energetics, and electronic properties. A strong surface distortion is found to occur for all of the layered sheets, and yet all of the pseudo honeycomb lattices are preserved, giving unique types of surface corrugations and different electronic properties. The energetics, in combination with phonon mode calculations and molecular dynamics simulations, indicate that the syntheses of these freestanding 2D sheets could be selective, with the single- to few-layer WZ110, WZ100, and ZB110 sheets being favored. Through the GW approximation, it is found that all single-layer sheets have large band gaps falling into the ultraviolet range, while thicker sheets in general have reduced band gaps in the visible and ultraviolet range. On the basis of the present work and the experimental studies on freestanding double-layer sheets of ZnSe, we envision that the freestanding 2D layered sheets of CdX predicted herein are potential synthesis targets, which may offer tunable band gaps depending on their structural features including surface corrugations, stacking motifs, and number of layers.

  10. A comparison of mechanical properties of some foams and honeycombs

    Science.gov (United States)

    Bhat, Balakrishna T.; Wang, T. G.

    1990-01-01

    A comparative study is conducted of the mechanical properties of foam-core and honeycomb-core sandwich panels, using a normalizing procedure based on common properties of cellular solids and related properties of dense solids. Seven different honeycombs and closed-foam cells are discussed; of these, three are commercial Al alloy honeycombs, one is an Al-alloy foam, and two are polymeric foams. It is concluded that ideal, closed-cell foams may furnish compressive strengths which while isotropic can be fully comparable to the compressive strengths of honeycombs in the thickness direction. The shear strength of ideal closed-cell foams may be superior to the shear strength of honeycombs.

  11. Application of sandwich honeycomb carbon/glass fiber-honeycomb composite in the floor component of electric car

    Science.gov (United States)

    Sukmaji, I. C.; Wijang, W. R.; Andri, S.; Bambang, K.; Teguh, T.

    2017-01-01

    Nowadays composite is a superior material used in automotive component due to its outstanding mechanical behavior. The sandwich polypropylene honeycomb core with carbon/glass fiber composite skin (SHCG) as based material in a floor component of electric car application is investigated in the present research. In sandwich structure form, it can absorb noise better compare with the conventional material [1]. Also in present paper, Finite Element Analysis (FEA) of SHCG as based material for floor component of the electric car is analyzed. The composite sandwich is contained with a layer uniform carbon fiber and mixing non-uniform carbon-glass fiber in upper and lower skin. Between skins of SHCG are core polypropylene honeycomb that it have good flexibility to form following dies profile. The variables of volume fraction ratio of carbon/glass fiber in SHCG skin are 20/80%, 30/70%, and 50/50%. The specimen of SHCG is tested using the universal testing machine by three points bending method refers to ASTM C393 and ASTM C365. The cross point between tensile strength to the volume fraction the mixing carbon/glass line and ratio cost line are the searched material with good mechanical performance and reasonable cost. The point is 30/70 volume fraction of carbon/glass fiber. The result of the testing experiment is become input properties of model structure sandwich in FEA simulation. FEA simulation approach is conducted to find critical strength and factor of complex safety geometry against varied distributed passenger loads of a floor component the electric car. The passenger loads variable are 80, 100, 150, 200, 250 and 300 kg.

  12. Dispersion of Lamb waves in a honeycomb composite sandwich panel.

    Science.gov (United States)

    Baid, Harsh; Schaal, Christoph; Samajder, Himadri; Mal, Ajit

    2015-02-01

    Composite materials are increasingly being used in advanced aircraft and aerospace structures. Despite their many advantages, composites are often susceptible to hidden damages that may occur during manufacturing and/or service of the structure. Therefore, safe operation of composite structures requires careful monitoring of the initiation and growth of such defects. Ultrasonic methods using guided waves offer a reliable and cost effective method for defects monitoring in advanced structures due to their long propagation range and their sensitivity to defects in their propagation path. In this paper, some of the useful properties of guided Lamb type waves are investigated, using analytical, numerical and experimental methods, in an effort to provide the knowledge base required for the development of viable structural health monitoring systems for composite structures. The laboratory experiments involve a pitch-catch method in which a pair of movable transducers is placed on the outside surface of the structure for generating and recording the wave signals. The specific cases considered include an aluminum plate, a woven composite laminate and an aluminum honeycomb sandwich panel. The agreement between experimental, numerical and theoretical results are shown to be excellent in certain frequency ranges, providing a guidance for the design of effective inspection systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Bondonic effects in group-IV honeycomb nanoribbons with Stone-Wales topological defects.

    Science.gov (United States)

    Putz, Mihai V; Ori, Ottorino

    2014-04-03

    This work advances the modeling of bondonic effects on graphenic and honeycomb structures, with an original two-fold generalization: (i) by employing the fourth order path integral bondonic formalism in considering the high order derivatives of the Wiener topological potential of those 1D systems; and (ii) by modeling a class of honeycomb defective structures starting from graphene, the carbon-based reference case, and then generalizing the treatment to Si (silicene), Ge (germanene), Sn (stannene) by using the fermionic two-degenerate statistical states function in terms of electronegativity. The honeycomb nanostructures present η-sized Stone-Wales topological defects, the isomeric dislocation dipoles originally called by authors Stone-Wales wave or SWw. For these defective nanoribbons the bondonic formalism foresees a specific phase-transition whose critical behavior shows typical bondonic fast critical time and bonding energies. The quantum transition of the ideal-to-defect structural transformations is fully described by computing the caloric capacities for nanostructures triggered by η-sized topological isomerisations. Present model may be easily applied to hetero-combinations of Group-IV elements like C-Si, C-Ge, C-Sn, Si-Ge, Si-Sn, Ge-Sn.

  14. Bondonic Effects in Group-IV Honeycomb Nanoribbons with Stone-Wales Topological Defects

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2014-04-01

    Full Text Available This work advances the modeling of bondonic effects on graphenic and honeycomb structures, with an original two-fold generalization: (i by employing the fourth order path integral bondonic formalism in considering the high order derivatives of the Wiener topological potential of those 1D systems; and (ii by modeling a class of honeycomb defective structures starting from graphene, the carbon-based reference case, and then generalizing the treatment to Si (silicene, Ge (germanene, Sn (stannene by using the fermionic two-degenerate statistical states function in terms of electronegativity. The honeycomb nanostructures present η-sized Stone-Wales topological defects, the isomeric dislocation dipoles originally called by authors Stone-Wales wave or SWw. For these defective nanoribbons the bondonic formalism foresees a specific phase-transition whose critical behavior shows typical bondonic fast critical time and bonding energies. The quantum transition of the ideal-to-defect structural transformations is fully described by computing the caloric capacities for nanostructures triggered by η-sized topological isomerisations. Present model may be easily applied to hetero-combinations of Group-IV elements like C-Si, C-Ge, C-Sn, Si-Ge, Si-Sn, Ge-Sn.

  15. Honeycomb supports with high thermal conductivity for the Tischer-Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Visconti, C.G.; Rronconi, E.; Groppi, G.; Lietti, L. [Politecnico di Milano (Italy). Dipt. di Energia; Iovane, M.; Rossini, S.; Zennaro, R. [Eni S.p.A., San Donato Milanese (Italy). Div. Exploration and Production

    2011-07-01

    The potential of multitubular reactors loaded with washcoated structured catalysts having highly conductive honeycomb supports is investigated herein in the low temperature Fischer- Tropsch synthesis by means of a theoretical investigation. Simulation results indicate that extruded aluminum honeycomb monoliths, washcoated with a Co-based catalyst, are promising for the application at the industrial scale, in particular when adopting supports with high cell densities and catalysts with high activity. Limited temperature gradients within the reactor are in fact possible even at extreme process conditions, thus leading to interesting volumetric reactor yields with negligible pressure drop. This result is achieved without the need of cofeeding to the reactor large amounts of liquid hydrocarbons to remove the reaction heat, as opposite to existing industrial Fischer-Tropsch packed-bed reactors. (orig.)

  16. Absolute photonic band gap in 2D honeycomb annular photonic crystals

    International Nuclear Information System (INIS)

    Liu, Dan; Gao, Yihua; Tong, Aihong; Hu, Sen

    2015-01-01

    Highlights: • A two-dimensional honeycomb annular photonic crystal (PC) is proposed. • The absolute photonic band gap (PBG) is studied. • Annular PCs show larger PBGs than usual air-hole PCs for high refractive index. • Annular PCs with anisotropic rods show large PBGs for low refractive index. • There exist optimal parameters to open largest band gaps. - Abstract: Using the plane wave expansion method, we investigate the effects of structural parameters on absolute photonic band gap (PBG) in two-dimensional honeycomb annular photonic crystals (PCs). The results reveal that the annular PCs possess absolute PBGs that are larger than those of the conventional air-hole PCs only when the refractive index of the material from which the PC is made is equal to 4.5 or larger. If the refractive index is smaller than 4.5, utilization of anisotropic inner rods in honeycomb annular PCs can lead to the formation of larger PBGs. The optimal structural parameters that yield the largest absolute PBGs are obtained

  17. Experimental and Analytical Evaluation of a Composite Honeycomb Deployable Energy Absorber

    Science.gov (United States)

    Jackson, Karen E.; Kellas, Sotiris; Horta, Lucas G.; Annett, Martin S.; Polanco, Michael A.; Littell, Justin D.; Fasanella, Edwin L.

    2011-01-01

    In 2006, the NASA Subsonic Rotary Wing Aeronautics Program sponsored the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, which is designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar honeycomb structure to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed flat until needed for deployment. A variety of deployment options such as linear, radial, and/or hybrid methods can be used. Experimental evaluation of the DEA utilized a building block approach that included material characterization testing of its constituent, Kevlar -129 fabric/epoxy, and flexural testing of single hexagonal cells. In addition, the energy attenuation capabilities of the DEA were demonstrated through multi-cell component dynamic crush tests, and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto concrete, water, and soft soil. During each stage of the DEA evaluation process, finite element models of the test articles were developed and simulations were performed using the explicit, nonlinear transient dynamic finite element code, LS-DYNA. This report documents the results of the experimental evaluation that was conducted to assess the energy absorption capabilities of the DEA.

  18. Magnetization and vortex profiles in the honeycomb network of Pb

    International Nuclear Information System (INIS)

    Yoshikawa, Hirokazu; Noda, Hiroshi; Sato, Osamu; Kato, Masaru; Satoh, Kazuo; Yotsuya, Tsutomu; Ishida, Takekazu

    2005-01-01

    We have investigated a honeycomb microhole network of Pb film by a SQUID magnetometer and a SQUID microscope. A negative pattern of honeycomb network of photoresist has been fabricated by an electron beam lithography. A film of 200-nm thickness was prepared by the evaporation of Pb on the photoresist pattern, where the silicon substrate is 4 x 4 mm in size. The period of the network is 7.4 μm and line width is 1 μm. We found the matching effect in a M-H curve of the Pb honeycomb network by the SQUID magnetometer. The applied field ranges from -4.7 G to +4.7 G. Vortex configurations in the honeycomb network of the period 15 μm and line width 2 μm have also been observed by the SQUID microscope. We suggest that vortices form some local triangular configurations at lower temperatures

  19. Honeycomb-like graphitic ordered macroporous carbon prepared by pyrolysis of ammonium bicarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liancheng [Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100 (China); Zhang, Junhao, E-mail: jhzhang6@mail.ustc.edu.cn [Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100 (China); School of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003 (China); Xu, Liqiang; Qian, Yitai [Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100 (China)

    2011-10-15

    Graphical abstract: Honeycomb-like graphitic macroporous carbon (HGMC) with big pores centered at 1-3 {mu}m, has been prepared by controlling the reaction temperature and amount of NH{sub 4}HCO{sub 3} at 550 {sup o}C in a sealed reaction system. Possible formation processes of HGMC are discussed on the experimental results. It is believed that the in situ formed MgO microparticles play a template role during the preparation of HGMC. Highlights: {yields} Honeycomb-like graphitic carbon was synthesized at 550 {sup o}C. {yields} The honeycomb-like graphitic carbon is macroposous structures. {yields} The formed MgO microparticles play a template role during the HGMC formation. {yields} The method can be expended to synthesize other porous or hollow carbon material. -- Abstract: Honeycomb-like graphitic macroporous carbon (HGMC) was synthesized by means of pyrolysis of NH{sub 4}HCO{sub 3} using Mg powder as reductant in an autoclave at 550 {sup o}C. The characterization of structure and morphology was carried out by X-ray diffraction (XRD), Raman spectrum, field-emission scanning electron microscopy (FESEM), and (High-resolution) transmission electron microscope [(HR)TEM]. The results of nitrogen adsorption-desorption indicate that the products are macropore materials with the pore size of 1-3 {mu}m, and the Brunauer-Emett-Teller (BET) surface area was 14 m{sup 2}/g. As a typical morphology, the possible growth process of HGMC was also investigated and discussed. The experimental results show that the in situ formed MgO microparticles play a template role during the HGMC formation.

  20. Honeycomb-like graphitic ordered macroporous carbon prepared by pyrolysis of ammonium bicarbonate

    International Nuclear Information System (INIS)

    Wang, Liancheng; Zhang, Junhao; Xu, Liqiang; Qian, Yitai

    2011-01-01

    Graphical abstract: Honeycomb-like graphitic macroporous carbon (HGMC) with big pores centered at 1-3 μm, has been prepared by controlling the reaction temperature and amount of NH 4 HCO 3 at 550 o C in a sealed reaction system. Possible formation processes of HGMC are discussed on the experimental results. It is believed that the in situ formed MgO microparticles play a template role during the preparation of HGMC. Highlights: → Honeycomb-like graphitic carbon was synthesized at 550 o C. → The honeycomb-like graphitic carbon is macroposous structures. → The formed MgO microparticles play a template role during the HGMC formation. → The method can be expended to synthesize other porous or hollow carbon material. -- Abstract: Honeycomb-like graphitic macroporous carbon (HGMC) was synthesized by means of pyrolysis of NH 4 HCO 3 using Mg powder as reductant in an autoclave at 550 o C. The characterization of structure and morphology was carried out by X-ray diffraction (XRD), Raman spectrum, field-emission scanning electron microscopy (FESEM), and (High-resolution) transmission electron microscope [(HR)TEM]. The results of nitrogen adsorption-desorption indicate that the products are macropore materials with the pore size of 1-3 μm, and the Brunauer-Emett-Teller (BET) surface area was 14 m 2 /g. As a typical morphology, the possible growth process of HGMC was also investigated and discussed. The experimental results show that the in situ formed MgO microparticles play a template role during the HGMC formation.

  1. Double-Lap Shear Test For Honeycomb Core

    Science.gov (United States)

    Nettles, Alan T.; Hodge, Andrew J.

    1992-01-01

    Double-lap test measures shear strength of panel made of honeycomb core with 8-ply carbon-fiber/epoxy face sheets. Developed to overcome three principal disadvantages of prior standard single-lap shear test: specimen had to be more than 17 in. long; metal face sheets had to be used; and test introduced torque, with consequent bending and peeling of face sheets and spurious tensile or compressive loading of honeycomb.

  2. Origin of honeycombs: Testing the hydraulic and case hardening hypotheses

    Science.gov (United States)

    Bruthans, Jiří; Filippi, Michal; Slavík, Martin; Svobodová, Eliška

    2018-02-01

    Cavernous weathering (cavernous rock decay) is a global phenomenon, which occurs in porous rocks around the world. Although honeycombs and tafoni are considered to be the most common products of this complex process, their origin and evolution are as yet not fully understood. The two commonly assumed formation hypotheses - hydraulic and case hardening - were tested to elucidate the origin of honeycombs on sandstone outcrops in a humid climate. Mechanical and hydraulic properties of the lips (walls between adjacent pits) and backwalls (bottoms of pits) of the honeycombs were determined via a set of established and novel approaches. While the case hardening hypothesis was not supported by the determinations of either tensile strength, drilling resistance or porosity, the hydraulic hypothesis was clearly supported by field measurements and laboratory tests. Fluorescein dye visualization of capillary zone, vapor zone, and evaporation front upon their contact, demonstrated that the evaporation front reaches the honeycomb backwalls under low water flow rate, while the honeycomb lips remain dry. During occasional excessive water flow events, however, the evaporation front may shift to the lips, while the backwalls become moist as a part of the capillary zone. As the zone of evaporation corresponds to the zone of potential salt weathering, it is the spatial distribution of the capillary and vapor zones which dictates whether honeycombs are created or the rock surface is smoothed. A hierarchical model of factors related to the hydraulic field was introduced to obtain better insights into the process of cavernous weathering.

  3. Ballistic resistance of honeycomb sandwich panels under in-plane high-velocity impact.

    Science.gov (United States)

    Qi, Chang; Yang, Shu; Wang, Dong; Yang, Li-Jun

    2013-01-01

    The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs.

  4. Post-Buckling Analysis of Curved Honeycomb Sandwich Panels Containing Interfacial Disbonds

    Science.gov (United States)

    Pineda, Evan J.; Bednarcyk, Brett A.; Krivanek, Thomas K.

    2016-01-01

    A numerical study on the effect of facesheet-core disbonds on the post-buckling response of curved honeycomb sandwich panels is presented herein. This work was conducted as part of the development of a damage tolerance plan for the next-generation Space Launch System heavy lift launch vehicle payload fairing. As such, the study utilized full-scale fairing barrel segments as the structure of interest. The panels were composed of carbon fiber reinforced polymer facesheets and aluminum honeycomb core. The panels were analyzed numerically using the finite element method incorporating geometric nonlinearity. In a predetermined circular region, facesheet and core nodes were detached to simulate a disbond, between the outer mold line facesheet and honeycomb core, induced via low-speed impact. Surface-to-surface contact in the disbonded region was invoked to prevent interpenetration of the facesheet and core elements and obtain realistic stresses in the core. The diameter of this disbonded region was varied and the effect of the size of the disbond on the post-buckling response was observed. Significant changes in the slope of the edge load-deflection response were used to determine the onset of global buckling and corresponding buckling load. Finally, several studies were conducted to determine the sensitivity of the numerical predictions to refinement in the finite element mesh.

  5. Stripes and honeycomb lattice of quantized vortices in rotating two-component Bose-Einstein condensates

    Science.gov (United States)

    Kasamatsu, Kenichi; Sakashita, Kouhei

    2018-05-01

    We study numerically the structure of a vortex lattice in rotating two-component Bose-Einstein condensates with equal atomic masses and equal intra- and intercomponent coupling strengths. The numerical simulations of the Gross-Pitaevskii equation show that the quantized vortices in this situation form lattice configuration accompanying vortex stripes, honeycomb lattices, and their complexes. This is a result of the degeneracy of the system for the SU(2) symmetric operation, which causes a continuous transformation between the above structures. In terms of the pseudospin representation, the complex lattice structures are identified as a hexagonal lattice of doubly winding half skyrmions.

  6. Mechanics of pressure-adaptive honeycomb and its application to wing morphing

    International Nuclear Information System (INIS)

    Vos, Roelof; Barrett, Ron

    2011-01-01

    Current, highly active classes of adaptive materials have been considered for use in many different aerospace applications. From adaptive flight control surfaces to wing surfaces, shape-memory alloy (SMA), piezoelectric and electrorheological fluids are making their way into wings, stabilizers and rotor blades. Despite the benefits which can be seen in many classes of aircraft, some profound challenges are ever present, including low power and energy density, high power consumption, high development and installation costs and outright programmatic blockages due to a lack of a materials certification database on FAR 23/25 and 27/29 certified aircraft. Three years ago, a class of adaptive structure was developed to skirt these daunting challenges. This pressure-adaptive honeycomb (PAH) is capable of extremely high performance and is FAA/EASA certifiable because it employs well characterized materials arranged in ways that lend a high level of adaptivity to the structure. This study is centered on laying out the mechanics, analytical models and experimental test data describing this new form of adaptive material. A directionally biased PAH system using an external (spring) force acting on the PAH bending structure was examined. The paper discusses the mechanics of pressure adaptive honeycomb and describes a simple reduced order model that can be used to simplify the geometric model in a finite element environment. The model assumes that a variable stiffness honeycomb results in an overall deformation of the honeycomb. Strains in excess of 50% can be generated through this mechanism without encountering local material (yield) limits. It was also shown that the energy density of pressure-adaptive honeycomb is akin to that of shape-memory alloy, while exhibiting strains that are an order of magnitude greater with an energy efficiency close to 100%. Excellent correlation between theory and experiment is demonstrated in a number of tests. A proof-of-concept wing section

  7. Modeling the rubbing contact in honeycomb seals

    Science.gov (United States)

    Fischer, Tim; Welzenbach, Sarah; Meier, Felix; Werner, Ewald; kyzy, Sonun Ulan; Munz, Oliver

    2018-03-01

    Metallic honeycomb labyrinth seals are commonly used as sealing systems in gas turbine engines. Because of their capability to withstand high thermo-mechanical loads and oxidation, polycrystalline nickel-based superalloys, such as Hastelloy X and Haynes 214, are used as sealing material. In addition, these materials must exhibit a tolerance against rubbing between the rotating part and the stationary seal component. The tolerance of the sealing material against rubbing preserves the integrity of the rotating part. In this article, the rubbing behavior at the rotor-stator interface is considered numerically. A simulation model is incorporated into the commercial finite element code ABAQUS/explicit and is utilized to simulate a simplified rubbing process. A user-defined interaction routine between the contact surfaces accounts for the thermal and mechanical interfacial behavior. Furthermore, an elasto-plastic constitutive material law captures the extreme temperature conditions and the damage behavior of the alloys. To validate the model, representative quantities of the rubbing process are determined and compared with experimental data from the literature. The simulation results correctly reproduce the observations made on a test rig with a reference stainless steel material (AISI 304). A parametric study using the nickel-based superalloys reveals a clear dependency of the rubbing behavior on the sliding and incursion velocity. Compared to each other, the two superalloys studied exhibit a different rubbing behavior.

  8. Gauge field entanglement in Kitaev's honeycomb model

    Science.gov (United States)

    Dóra, Balázs; Moessner, Roderich

    2018-01-01

    A spin fractionalizes into matter and gauge fermions in Kitaev's spin liquid on the honeycomb lattice. This follows from a Jordan-Wigner mapping to fermions, allowing for the construction of a minimal entropy ground-state wave function on the cylinder. We use this to calculate the entanglement entropy by choosing several distinct partitionings. First, by partitioning an infinite cylinder into two, the -ln2 topological entanglement entropy is reconfirmed. Second, the reduced density matrix of the gauge sector on the full cylinder is obtained after tracing out the matter degrees of freedom. This allows for evaluating the gauge entanglement Hamiltonian, which contains infinitely long-range correlations along the symmetry axis of the cylinder. The matter-gauge entanglement entropy is (Ny-1 )ln2 , with Ny the circumference of the cylinder. Third, the rules for calculating the gauge sector entanglement of any partition are determined. Rather small correctly chosen gauge partitions can still account for the topological entanglement entropy in spite of long-range correlations in the gauge entanglement Hamiltonian.

  9. Composite structure of helicopter rotor blades studied by neutron- and X-ray radiography

    International Nuclear Information System (INIS)

    Balasko, M.; Veres, I.; Molnar, Gy.; Balasko, Zs.; Svab, E.

    2004-01-01

    In order to inspect the possible defects in the composite structure of helicopter rotor blades combined neutron- and X-ray radiography investigations were performed at the Budapest Research Reactor. Imperfections in the honeycomb structure, resin rich or starved areas at the core-honeycomb surfaces, inhomogeneities at the adhesive filling and water percolation at the sealing interfaces of the honeycomb sections were discovered

  10. Composite structure of helicopter rotor blades studied by neutron- and X-ray radiography

    Science.gov (United States)

    Balaskó, M.; Veres, I.; Molnár, Gy.; Balaskó, Zs.; Sváb, E.

    2004-07-01

    In order to inspect the possible defects in the composite structure of helicopter rotor blades combined neutron- and X-ray radiography investigations were performed at the Budapest Research Reactor. Imperfections in the honeycomb structure, resin rich or starved areas at the core-honeycomb surfaces, inhomogeneities at the adhesive filling and water percolation at the sealing interfaces of the honeycomb sections were discovered.

  11. Design considerations for application of metallic honeycomb as an energy absorber

    International Nuclear Information System (INIS)

    Lee, W.H.; Roemer, R.E.

    1980-01-01

    Design for postulated accidents in nuclear power plants often requires mitigation of impact to safety-related structures. Plastically designed, energy absorbing mechanisms are often used in the design of such mitigating structures. Metallic honeycomb is the most efficient, practical, energy-absorbing material currently in use. Recent tests indicate that its use in this application, however, presents some unique design and fabrication problems. The paper presents the results of static and dynamic crush tests concerned with the effect of impact velocity, material properties, cell density, loading configuration, and overall pad geometry. Specific design recommendations are made in each area, and suggestions are provided to improve fabrication techniques and minimize subsequent problems

  12. Electromechanical modeling of a honeycomb core integrated vibration energy converter with increased specific power for energy harvesting applications

    Science.gov (United States)

    Chandrasekharan, Nataraj

    Innovation in integrated circuit technology along with improved manufacturing processes has resulted in considerable reduction in power consumption of electromechanical devices. Majority of these devices are currently powered by batteries. However, the issues posed by batteries, including the need for frequent battery recharge/replacement has resulted in a compelling need for alternate energy to achieve self-sufficient device operation or to supplement battery power. Vibration based energy harvesting methods through piezoelectric transduction provides with a promising potential towards replacing or supplementing battery power source. However, current piezoelectric energy harvesters generate low specific power (power-to-weight ratio) when compared to batteries that the harvesters seek to replace or supplement. In this study, the potential of integrating lightweight cellular honeycomb structures with existing piezoelectric device configurations (bimorph) to achieve higher specific power is investigated. It is shown in this study that at low excitation frequency ranges, replacing the solid continuous substrate of a conventional piezoelectric bimorph with honeycomb structures of the same material results in a significant increase in power-to-weight ratio of the piezoelectric harvester. In order to maximize the electrical response of vibration based power harvesters, the natural frequency of these harvesters is designed to match the input driving frequency. The commonly used technique of adding a tip mass is employed to lower the natural frequency (to match driving frequency) of both, solid and honeycomb substrate bimorphs. At higher excitation frequency, the natural frequency of the traditional solid substrate bimorph can only be altered (to match driving frequency) through a change in global geometric design parameters, typically achieved by increasing the thickness of the harvester. As a result, the size of the harvester is increased and can be disadvantageous

  13. 3D FDM production and mechanical behavior of polymeric sandwich specimens embedding classical and honeycomb cores

    Science.gov (United States)

    Brischetto, Salvatore; Ferro, Carlo Giovanni; Torre, Roberto; Maggiore, Paolo

    2018-04-01

    Desktop 3D FDM (Fused Deposition Modelling) printers are usually employed for the production of nonstructural objects. In recent years, the present authors tried to use this technology also to produce structural elements employed in the construction of small UAVs (Unmanned Aerial Vehicles). Mechanical stresses are not excessive for small multirotor UAVs. Therefore, the FDM technique combined with polymers, such as the ABS (Acrylonitrile Butadiene Styrene) and the PLA(Poly Lactic Acid), can be successfully employed to produce structural components. The present new work is devoted to the production and preliminary structural analysis of sandwich configurations. These new lamination schemes could lead to an important weight reduction without significant decreases of mechanical properties. Therefore, it could be possible, for the designed application (e.g., a multifunctional small UAV produced via FDM), to have stiffener and lighter structures easy to be manufactured with a low-cost 3D printer. The new sandwich specimens here proposed are PLA sandwich specimens embedding a PLA honeycomb core produced by means of the same extruder, multilayered specimens with ABS external layers and an internal homogeneous PLA core using different extruders for the two materials, sandwich specimens with external ABS skins and an internal PLA honeycomb core using different extruders for the two materials, and sandwich specimens where two different extruders have been employed for PLA material used for skins and for the internal honeycomb core. For all the proposed configurations, a detailed description of the production activity is given.Moreover, several preliminary results about three-point bending tests, different mechanical behaviors and relative delamination problems for each sandwich configuration will be discussed in depth.

  14. A first theoretical realization of honeycomb topological magnon insulator.

    Science.gov (United States)

    Owerre, S A

    2016-09-28

    It has been recently shown that in the Heisenberg (anti)ferromagnet on the honeycomb lattice, the magnons (spin wave quasipacticles) realize a massless two-dimensional (2D) Dirac-like Hamiltonian. It was shown that the Dirac magnon Hamiltonian preserves time-reversal symmetry defined with the sublattice pseudo spins and the Dirac points are robust against magnon-magnon interactions. The Dirac points also occur at nonzero energy. In this paper, we propose a simple realization of nontrivial topology (magnon edge states) in this system. We show that the Dirac points are gapped when the inversion symmetry of the lattice is broken by introducing a next-nearest neighbour Dzyaloshinskii-Moriya (DM) interaction. Thus, the system realizes magnon edge states similar to the Haldane model for quantum anomalous Hall effect in electronic systems. However, in contrast to electronic spin current where dissipation can be very large due to Ohmic heating, noninteracting topological magnons can propagate for a long time without dissipation as magnons are uncharged particles. We observe the same magnon edge states for the XY model on the honeycomb lattice. Remarkably, in this case the model maps to interacting hardcore bosons on the honeycomb lattice. Quantum magnetic systems with nontrivial magnon edge states are called topological magnon insulators. They have been studied theoretically on the kagome lattice and recently observed experimentally on the kagome magnet Cu(1-3, bdc) with three magnon bulk bands. Our results for the honeycomb lattice suggests an experimental procedure to search for honeycomb topological magnon insulators within a class of 2D quantum magnets and ultracold atoms trapped in honeycomb optical lattices. In 3D lattices, Dirac and Weyl points were recently studied theoretically, however, the criteria that give rise to them were not well-understood. We argue that the low-energy Hamiltonian near the Weyl points should break time-reversal symmetry of the pseudo spins

  15. Role of quantum fluctuations on spin liquids and ordered phases in the Heisenberg model on the honeycomb lattice

    Science.gov (United States)

    Merino, Jaime; Ralko, Arnaud

    2018-05-01

    Motivated by the rich physics of honeycomb magnetic materials, we obtain the phase diagram and analyze magnetic properties of the spin-1 /2 and spin-1 J1-J2-J3 Heisenberg model on the honeycomb lattice. Based on the SU(2) and SU(3) symmetry representations of the Schwinger boson approach, which treats disordered spin liquids and magnetically ordered phases on an equal footing, we obtain the complete phase diagrams in the (J2,J3) plane. This is achieved using a fully unrestricted approach which does not assume any pre-defined Ansätze. For S =1 /2 , we find a quantum spin liquid (QSL) stabilized between the Néel, spiral, and collinear antiferromagnetic phases in agreement with previous theoretical work. However, by increasing S from 1 /2 to 1, the QSL is quickly destroyed due to the weakening of quantum fluctuations indicating that the model already behaves as a quasiclassical system. The dynamical structure factors and temperature dependence of the magnetic susceptibility are obtained in order to characterize all phases in the phase diagrams. Moreover, motivated by the relevance of the single-ion anisotropy, D , to various S =1 honeycomb compounds, we have analyzed the destruction of magnetic order based on an SU(3) representation of the Schwinger bosons. Our analysis provides a unified understanding of the magnetic properties of honeycomb materials realizing the J1-J2-J3 Heisenberg model from the strong quantum spin regime at S =1 /2 to the S =1 case. Neutron scattering and magnetic susceptibility experiments can be used to test the destruction of the QSL phase when replacing S =1 /2 by S =1 localized moments in certain honeycomb compounds.

  16. Mechanism for subgap optical conductivity in honeycomb Kitaev materials

    Science.gov (United States)

    Bolens, Adrien; Katsura, Hosho; Ogata, Masao; Miyashita, Seiji

    2018-04-01

    Motivated by recent terahertz absorption measurements in α -RuCl3 , we develop a theory for the electromagnetic absorption of materials described by the Kitaev model on the honeycomb lattice. We derive a mechanism for the polarization operator at second order in the nearest-neighbor hopping Hamiltonian. Using the exact results of the Kitaev honeycomb model, we then calculate the polarization dynamical correlation function corresponding to electric dipole transitions in addition to the spin dynamical correlation function corresponding to magnetic dipole transitions.

  17. Superhydrophilicity of anodic aluminum oxide films: From 'honeycomb' to 'bird's nest'

    International Nuclear Information System (INIS)

    Ye Jiaming; Yin Qiming; Zhou Yongliang

    2009-01-01

    An electrochemical method has been used to prepare different kinds of surfaces including 'honeycomb'-like and 'bird's nest'-like surfaces on anodic aluminum oxide (AAO) films. The relationship between the morphology and wettability of the AAO films was investigated by scanning electron microscopy and the measurement of water contact angles. The results show that the 'bird's nest'-like structure is necessary for superhydrophilic property, which provide direct experimental evidences for the 3D capillary theory concerning superhydrophilicity. It is expected that this investigation will be devoted to guiding the fabrication of superhydrophilic and superhydrophobic surfaces.

  18. Spin-orbit excitation energies, anisotropic exchange, and magnetic phases of honeycomb RuCl3

    OpenAIRE

    Yadav, Ravi; Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Nishimoto, Satoshi; Brink, Jeroen van den; Hozoi, Liviu

    2016-01-01

    Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d 5 honeycomb halide ?-RuCl3. From advanced electronic-structure calculations, we find that the Kitaev interaction is ferro...

  19. Phononic band gap design in honeycomb lattice with combinations of auxetic and conventional core

    International Nuclear Information System (INIS)

    Mukherjee, Sushovan; Gopalakrishnan, S; Fabrizio Scarpa

    2016-01-01

    We present a novel design of a honeycomb lattice geometry that uses a seamless combination of conventional and auxetic cores, i.e. elements showing positive and negative Poisson’s ratio. The design is aimed at tuning and improving the band structure of periodic cellular structures. The proposed cellular configurations show a significantly wide band gap at much lower frequencies compared to their pure counterparts, while still retaining their major dynamic features. Different topologies involving both auxetic inclusions in a conventional lattice and conversely hexagonal cellular inclusions in auxetic butterfly lattices are presented. For all these cases the impact of the varying degree of auxeticity on the band structure is evaluated. The proposed cellular designs may offer significant advantages in tuning high-frequency bandgap behaviour, which is relevant to phononics applications. The configurations shown in this paper may be made iso-volumetric and iso-weight to a given regular hexagonal topology, making possible to adapt the hybrid lattices to existing sandwich structures with fixed dimensions and weights. This work also features a comparative study of the wave speeds corresponding to different configurations vis-a vis those of a regular honeycomb to highlight the superior behaviour of the combined hybrid lattice. (paper)

  20. Chronic interstitial pneumonia with honeycombing in coal workers

    Energy Technology Data Exchange (ETDEWEB)

    Brichet, A.; Tonnel, A.B.; Brambilla, E.; Devouassoux, G.; Remy-Jardin, M.; Copin, M.C.; Wallaert, B. [A. Calmette Hospital, Lille (France)

    2002-10-01

    Coal worker's pneumoconiosis (CWP) results from coal mine dust inhalation. The paper reports the presence of a chronic interstitial pneumonia (CIP) with honeycombing in 38 cases of coal miners, with or without CWP. The 38 patients were selected on the basis of clinical criteria which are unusual in CWP, i.e. fine inspiratory crackles and severe dyspnea. There were 37 men and one woman; mean age was 67.5 {+-} 9.1 years. Thirty-two were smokers. Duration of exposure was 26.7 {+-} 9.9 years. All the patients had clinical examination, chest radiography, computed tomography (CT), lung function, laboratory investigations, wedged fiberoptic bronchoscopy with bronchoalveolar lavage (BAL). In eight cases, lung specimens were obtained. Seventeen out of 38 had finger clubbing. 17 had radiological signs of CWP limited to the upper lobes or diffusely distributed. CT showed honeycombing (36 cases), and/or ground glass opacities (30 cases) with traction bronchiectasis (8 cases) predominant in the lower lobes. BAL analysis demonstrated an increased percentage of neutrophils (9.4% {+-} 6). Lung function showed a restrictive pattern associated with a decreased DLCO and hypoxemia. Lung specimens demonstrated in 2 cases a homogenous interstitial fibrosis of intra-alveolar septum with an accumulation of immune and inflammatory cells without temporal variation and with obvious honeycombing. The 6 other cases showed features of usual interstitial pneumonia. These cases, should alert other clinicians to a possible association between CIP with honeycombing and coal dust exposure, with or without associated CWP.

  1. Evaluation of thermal shock resistance of cordierite honeycombs

    Indian Academy of Sciences (India)

    A comparative study on thermal shock resistance (TSR) of extruded cordierite honeycombs is presented. TSR is an important property that predicts the life of these products in thermal environments used for automobile pollution control as catalytic converter or as diesel particulate filter. TSR was experimentally studied by ...

  2. Dirac cones beyond the honeycomb lattice : a symmetry based approach

    NARCIS (Netherlands)

    Miert, G. van; de Morais Smith, Cristiane

    2016-01-01

    Recently, several new materials exhibiting massless Dirac fermions have been proposed. However, many of these do not have the typical graphene honeycomb lattice, which is often associated with Dirac cones. Here, we present a classification of these different two-dimensional Dirac systems based on

  3. Sorption characteristics of honeycomb type sorption element composed of organic sorbent; Yukikei shuchakuzai wo tofushita honeycomb jo shuchaku element nio shuchaku tokuse

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, H.; Horibe, A. [Okayama University, Okayama (Japan); Kida, T.; Kaneda, M. [Japan Exlan Co. Ltd., Osaka (Japan)

    2000-12-25

    This paper has dealt with the sorption characteristics of honeycomb shape type sorbent element composed of new organic sorbent which was composed of the bridged complex of sodium polyacrylate. The transient experiments in which the moist air was passed into the honeycomb type sorbent element were conducted under various conditions of air velocity, temperature, relative-humidity and honeycomb length. As a result, the effective mass transfer coefficient of the organic sorbent sorbing the water-vapor was non-dimensionalized as a function of Reynolds number, modified Stefan number and non-dimensional honeycomb length. (author)

  4. Investigation of shape memory alloy honeycombs by means of a micromechanical analysis

    International Nuclear Information System (INIS)

    Freed, Yuval; Aboudi, Jacob; Gilat, Rivka

    2008-01-01

    Shape memory alloy (SMA) honeycombs are promising new smart materials which may be used for light-weight structures, biomedical implants, actuators and active structures. In this study, the behavior of several SMA honeycomb structures is investigated by means of a continuum-based thermomechanically coupled micromechanical analysis. To this end, macroscopic inelastic stress–strain responses of several topologies are investigated, both for pseudoelasticity and for shape memory effect. It was found that the triangular topology exhibits the best performance. In addition, the initial transformation surfaces are presented for all possible combinations of applied in-plane stresses. A special two-phase microstructure that is capable of producing an overall negative coefficient of thermal expansion is suggested and studied. In this configuration, in which one of the phases is a SMA, residual strains are being generated upon recovery. Here, the negative coefficient of thermal expansion appears to be associated with a larger amount of residual strain upon recovery. Furthermore, a two-dimensional SMA re-entrant topology that generates a negative in-plane Poisson's ratio is analyzed, and the effect of the full thermomechanical coupling is examined. Finally, the response of a particular three-dimensional microstructure is studied

  5. Honeycombing on CT; its definition, pathologic correlation, and future direction of its diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Johkoh, Takeshi, E-mail: johkoht@aol.com [Department of Radiology, Kinki Central Hospital of Mutual Aid Association of Public School Teachers, 3-1 Kurumazuka, Itami, Hyogo, 664-8533 (Japan); Sakai, Fumikazu [Department of Diagnostic Radiology, Saitama International Medical Center, Saitama Medical University, Hidaka (Japan); Noma, Satoshi [Department of Radiology, Tenri Hospital, Tenri (Japan); Akira, Masanori [Department of Radiology, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai (Japan); Fujimoto, Kiminori [Department of Radiology and Center for Diagnostic Imaging, Kurume University School of Medicine, Kurume (Japan); Watadani, Takeyuki [Department of Radiology, University of Tokyo, Tokyo (Japan); Sugiyama, Yukihiko [Department of Internal Medicine, Jichi Medical University, Shimotsuke (Japan)

    2014-01-15

    Honeycombing on CT is the clue for the diagnosis of usual interstitial pneumonia (UIP) and its hallmark. According to the ATS-ERS-JRS-ALAT 2010 guideline, the patients with honeycombing on CT can be diagnosed as UIP without surgical biopsy. On CT scans, it is defined as clustered cystic airspaces, typically of comparable diameters of the order of 3–10 mm, which are usually subpleural and have well-defined walls. Pathologically, honeycombing consists of both collapsing of multiple fibrotic alveoli and dilation of alveolar duct and lumen Although the definition of honeycombing seems to be strict, recognition of honeycombing on CT is various among each observer Because typical honeycombing is frequently observed in the patients with UIP, we should judge clustered cysts as honeycombing when a diagnosis of UIP is suspected.

  6. A spin-orbital-entangled quantum liquid on a honeycomb lattice

    Science.gov (United States)

    Kitagawa, K.; Takayama, T.; Matsumoto, Y.; Kato, A.; Takano, R.; Kishimoto, Y.; Bette, S.; Dinnebier, R.; Jackeli, G.; Takagi, H.

    2018-02-01

    The honeycomb lattice is one of the simplest lattice structures. Electrons and spins on this simple lattice, however, often form exotic phases with non-trivial excitations. Massless Dirac fermions can emerge out of itinerant electrons, as demonstrated experimentally in graphene, and a topological quantum spin liquid with exotic quasiparticles can be realized in spin-1/2 magnets, as proposed theoretically in the Kitaev model. The quantum spin liquid is a long-sought exotic state of matter, in which interacting spins remain quantum-disordered without spontaneous symmetry breaking. The Kitaev model describes one example of a quantum spin liquid, and can be solved exactly by introducing two types of Majorana fermion. Realizing a Kitaev model in the laboratory, however, remains a challenge in materials science. Mott insulators with a honeycomb lattice of spin-orbital-entangled pseudospin-1/2 moments have been proposed, including the 5d-electron systems α-Na2IrO3 (ref. 5) and α-Li2IrO3 (ref. 6) and the 4d-electron system α-RuCl3 (ref. 7). However, these candidates were found to magnetically order rather than form a liquid at sufficiently low temperatures, owing to non-Kitaev interactions. Here we report a quantum-liquid state of pseudospin-1/2 moments in the 5d-electron honeycomb compound H3LiIr2O6. This iridate does not display magnetic ordering down to 0.05 kelvin, despite an interaction energy of about 100 kelvin. We observe signatures of low-energy fermionic excitations that originate from a small number of spin defects in the nuclear-magnetic-resonance relaxation and the specific heat. We therefore conclude that H3LiIr2O6 is a quantum spin liquid. This result opens the door to finding exotic quasiparticles in a strongly spin-orbit-coupled 5d-electron transition-metal oxide.

  7. Dirac Cones, Topological Edge States, and Nontrivial Flat Bands in Two-Dimensional Semiconductors with a Honeycomb Nanogeometry

    Directory of Open Access Journals (Sweden)

    E. Kalesaki

    2014-01-01

    Full Text Available We study theoretically two-dimensional single-crystalline sheets of semiconductors that form a honeycomb lattice with a period below 10 nm. These systems could combine the usual semiconductor properties with Dirac bands. Using atomistic tight-binding calculations, we show that both the atomic lattice and the overall geometry influence the band structure, revealing materials with unusual electronic properties. In rocksalt Pb chalcogenides, the expected Dirac-type features are clouded by a complex band structure. However, in the case of zinc-blende Cd-chalcogenide semiconductors, the honeycomb nanogeometry leads to rich band structures, including, in the conduction band, Dirac cones at two distinct energies and nontrivial flat bands and, in the valence band, topological edge states. These edge states are present in several electronic gaps opened in the valence band by the spin-orbit coupling and the quantum confinement in the honeycomb geometry. The lowest Dirac conduction band has S-orbital character and is equivalent to the π-π^{⋆} band of graphene but with renormalized couplings. The conduction bands higher in energy have no counterpart in graphene; they combine a Dirac cone and flat bands because of their P-orbital character. We show that the width of the Dirac bands varies between tens and hundreds of meV. These systems emerge as remarkable platforms for studying complex electronic phases starting from conventional semiconductors. Recent advancements in colloidal chemistry indicate that these materials can be synthesized from semiconductor nanocrystals.

  8. Elevated-Temperature Tests Under Static and Aerodynamic Conditions on Honeycomb-Core Sandwich Panels

    Science.gov (United States)

    Groen, Joseph M.; Johnson, Aldie E., Jr.

    1959-01-01

    Stainless-steel honeycomb-core sandwich panels which differed primarily in skin thicknesses were tested at elevated temperatures under static and aerodynamic conditions. The results of these tests were evaluated to determine the insulating effectiveness and structural integrity of the panels. The static radiant-heating tests were performed in front of a quartz-tube radiant heater at panel skin temperatures up to 1,5000 F. The aerodynamic tests were made in a Mach 1.4 heated blowdown wind tunnel. The tunnel temperature was augmented by additional heat supplied by a radiant heater which raised the panel surface temperature above 8000 F during air flow. Static radiant-heating tests of 2 minutes duration showed that all the panels protected the load-carrying structure about equally well. Thin-skin panels showed an advantage for this short-time test over thick-skin panels from a standpoint of weight against insulation. Permanent inelastic strains in the form of local buckles over each cell of the honeycomb core caused an increase in surface roughness. During the aero- dynamic tests all of the panels survived with little or no damage, and panel flutter did not occur.

  9. Metastable honeycomb SrTiO_3/SrIrO_3 heterostructures

    International Nuclear Information System (INIS)

    Anderson, T. J.; Ryu, S.; Podkaminer, J. P.; Ma, Y.; Eom, C. B.; Zhou, H.; Xie, L.; Irwin, J.; Rzchowski, M. S.; Pan, X. Q.

    2016-01-01

    Recent theory predictions of exotic band topologies in (111) honeycomb perovskite SrIrO_3 layers sandwiched between SrTiO_3 have garnered much attention in the condensed matter physics and materials communities. However, perovskite SrIrO_3 film growth in the (111) direction remains unreported, as efforts to synthesize pure SrIrO_3 on (111) perovskite substrates have yielded films with monoclinic symmetry rather than the perovskite structure required by theory predictions. In this study, we report the synthesis of ultra-thin metastable perovskite SrIrO_3 films capped with SrTiO_3 grown on (111) SrTiO_3 substrates by pulsed laser deposition. The atomic structure of the ultra-thin films was examined with scanning transmission electron microscopy (STEM), which suggests a perovskite layering distinct from the bulk SrIrO_3 monoclinic phase. In-plane 3-fold symmetry for the entire heterostructure was confirmed using synchrotron surface X-ray diffraction to measure symmetry equivalent crystal truncation rods. Our findings demonstrate the ability to stabilize (111) honeycomb perovskite SrIrO_3, which provides an experimental avenue to probe the phenomena predicted for this material system.

  10. Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors.

    Science.gov (United States)

    Zhu, Jiayi; He, Junhui

    2012-03-01

    Graphene-wrapped MnO(2) nanocomposites were first fabricated by coassembly between honeycomb MnO(2) nanospheres and graphene sheets via electrostatic interaction. The materials were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and thermogravimetric analysis. The novel MnO(2)/graphene hybrid materials were used for investigation of electrochemical capacitive behaviors. The hybrid materials displayed enhanced capacitive performance (210 F/g at 0.5 A/g). Additionally, over 82.4% of the initial capacitance was retained after repeating the cyclic voltammetry test for 1000 cycles. The improved electrochemical performance might be attributed to the combination of the pesudocapacitance of MnO(2) nanospheres with the honeycomb-like "opened" structure and good electrical conductivity of graphene sheets. © 2012 American Chemical Society

  11. Biomimetic plasmonic color generated by the single-layer coaxial honeycomb nanostructure arrays

    Science.gov (United States)

    Zhao, Jiancun; Gao, Bo; Li, Haoyong; Yu, Xiaochang; Yang, Xiaoming; Yu, Yiting

    2017-07-01

    We proposed a periodic coaxial honeycomb nanostructure array patterned in a silver film to realize the plasmonic structural color, which was inspired from natural honeybee hives. The spectral characteristics of the structure with variant geometrical parameters are investigated by employing a finite-difference time-domain method, and the corresponding colors are thus derived by calculating XYZ tristimulus values corresponding with the transmission spectra. The study demonstrates that the suggested structure with only a single layer has high transmission, narrow full-width at half-maximum, and wide color tunability by changing geometrical parameters. Therefore, the plasmonic colors realized possess a high color brightness, saturation, as well as a wide color gamut. In addition, the strong polarization independence makes it more attractive for practical applications. These results indicate that the recommended color-generating plasmonic structure has various potential applications in highly integrated optoelectronic devices, such as color filters and high-definition displays.

  12. Dynamic impact response of high-density square honeycombs made of TRIP steel and TRIP matrix composite material

    Directory of Open Access Journals (Sweden)

    Weigelt C.

    2012-08-01

    Full Text Available Two designs of square-celled metallic honeycomb structures fabricated by a modified extrusion technology based on a powder feedstock were investigated. The strength and ductility of these cellular materials are achieved by an austenitic CrNi (AISI 304 steel matrix particle reinforced by an MgO partially-stabilized zirconia building up their cell wall microstructure. Similar to the mechanical behaviour of the bulk materials, the strengthening mechanism and the martensitic phase transformations in the cell walls are affected by the deformation temperature and the nominal strain rate. The microstructure evolution during quasi-static and dynamic impact compression up to high strain rates of 103 1/s influences the buckling and failure behaviour of the honeycomb structures. In contrast to bending-dominated quasi-isotropic networks like open-celled metal foams, axial compressive loading to the honeycomb’s channels causes membrane stretching as well as crushing of the vertical cell node elements and cell walls. The presented honeycomb materials differ geometrically in their cell wall thickness-to-cell size-ratio. Therefore, the failure behaviour is predominantly controlled by global buckling and torsional-flexural buckling, respectively, accompanied by plastic matrix flow and strengthening of the cell wall microstructure.

  13. Honeycomb surface-plasma negative-ion source

    International Nuclear Information System (INIS)

    Bel'chenko, Yu.I.

    1983-01-01

    A honeycomb surface-plasma source (SPS) of negative hydrogen ions the cathode of which consists of a great number of cells with spherical-concave surfaces, is described. Negative ions, knocked off the cathode by cesium-hydrogen discharge fast particles are accelerated in the near-cathode potential drop layer and focused geometrically on small emission apertures in the anode. Due to this, the gas and energy efficiency of the source is increased and the power density on the cathode is decreased. The H - yield is proportional to the number of celts. A pulse beam of negative ions with current up to 4 A is obtained and accelerated to 25 kV from the cathode effective area of 10.6 cm 2 through emission ports of 0.5 cm 2 total area. The honeycomb SPSs with a greater number of cells are promising as regards obtaining negative ion-beams with the current of scores of amperes

  14. The Honeycomb illusion: Uniform textures not perceived as such

    Directory of Open Access Journals (Sweden)

    Marco Bertamini

    2016-07-01

    Full Text Available We present a series of patterns, in which texture is perceived differently at fixation in comparison to the periphery, such that a physically uniform stimulus yields a nonuniform percept. We call this the Honeycomb illusion, and we discuss it in relation to the similar Extinction illusion (Ninio & Stevens, 2000. The effect remains strong despite multiple fixations, dynamic changes, and manipulations of the size of texture elements. We discuss the phenomenon in relation to how vision achieves a detailed and stable representation of the environment despite changes in retinal spatial resolution and dramatic changes across saccades. The Honeycomb illusion complements previous related observations in suggesting that this representation is not necessarily based on multiple fixations (i.e., memory or on extrapolation from information available to central vision.

  15. The honeycomb strip chamber: A two coordinate and high precision muon detector

    International Nuclear Information System (INIS)

    Tolsma, H.P.T.

    1996-01-01

    This thesis describes the construction and performance of the Honeycomb Strip Chamber (HSC). The HSC offers several advantages with respect to classical drift chambers and drift tubes. The main features of the HSC are: -The detector offers the possibility of simultaneous readout of two orthogonal coordinates with approximately the same precision. - The HSC technology is optimised for mass production. This means that the design is modular (monolayers) and automisation of most of the production steps is possible (folding and welding machines). - The technology is flexible. The cell diameter can easily be changed from a few millimetres to at least 20 mm by changing the parameters in the computer programme of the folding machine. The number of monolayers per station can be chosen freely to the demands of the experiment. -The honeycomb structure gives the detector stiffness and makes it self supporting. This makes the technology a very transparent one in terms of radiation length which is important to prevent multiple scattering of high energetic muons. - The dimensions of the detector are defined by high precision templates. Those templates constrain for example the overall tolerance on the wire positions to 20 μm rms. Reproduction of the high precision assembly of the detector is thus guaranteed. (orig.)

  16. The honeycomb strip chamber: A two coordinate and high precision muon detector

    Energy Technology Data Exchange (ETDEWEB)

    Tolsma, H P.T.

    1996-04-19

    This thesis describes the construction and performance of the Honeycomb Strip Chamber (HSC). The HSC offers several advantages with respect to classical drift chambers and drift tubes. The main features of the HSC are: -The detector offers the possibility of simultaneous readout of two orthogonal coordinates with approximately the same precision. - The HSC technology is optimised for mass production. This means that the design is modular (monolayers) and automisation of most of the production steps is possible (folding and welding machines). - The technology is flexible. The cell diameter can easily be changed from a few millimetres to at least 20 mm by changing the parameters in the computer programme of the folding machine. The number of monolayers per station can be chosen freely to the demands of the experiment. -The honeycomb structure gives the detector stiffness and makes it self supporting. This makes the technology a very transparent one in terms of radiation length which is important to prevent multiple scattering of high energetic muons. - The dimensions of the detector are defined by high precision templates. Those templates constrain for example the overall tolerance on the wire positions to 20 {mu}m rms. Reproduction of the high precision assembly of the detector is thus guaranteed. (orig.).

  17. Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode.

    Science.gov (United States)

    Mortemard de Boisse, Benoit; Liu, Guandong; Ma, Jiangtao; Nishimura, Shin-ichi; Chung, Sai-Cheong; Kiuchi, Hisao; Harada, Yoshihisa; Kikkawa, Jun; Kobayashi, Yoshio; Okubo, Masashi; Yamada, Atsuo

    2016-04-18

    Sodium-ion batteries are attractive energy storage media owing to the abundance of sodium, but the low capacities of available cathode materials make them impractical. Sodium-excess metal oxides Na2MO3 (M: transition metal) are appealing cathode materials that may realize large capacities through additional oxygen redox reaction. However, the general strategies for enhancing the capacity of Na2MO3 are poorly established. Here using two polymorphs of Na2RuO3, we demonstrate the critical role of honeycomb-type cation ordering in Na2MO3. Ordered Na2RuO3 with honeycomb-ordered [Na(1/3)Ru(2/3)]O2 slabs delivers a capacity of 180 mAh g(-1) (1.3-electron reaction), whereas disordered Na2RuO3 only delivers 135 mAh g(-1) (1.0-electron reaction). We clarify that the large extra capacity of ordered Na2RuO3 is enabled by a spontaneously ordered intermediate Na1RuO3 phase with ilmenite O1 structure, which induces frontier orbital reorganization to trigger the oxygen redox reaction, unveiling a general requisite for the stable oxygen redox reaction in high-capacity Na2MO3 cathodes.

  18. Unidirectional edge states in topological honeycomb-lattice membrane photonic crystals.

    Science.gov (United States)

    Anderson, P Duke; Subramania, Ganapathi

    2017-09-18

    Photonic analogs of electronic systems with topologically non-trivial behavior such as unidirectional scatter-free propagation has tremendous potential for transforming photonic systems. Like in electronics topological behavior can be observed in photonics for systems either preserving time-reversal (TR) symmetry or explicitly breaking it. TR symmetry breaking requires magneto-optic photonics crystals (PC) or generation of synthetic gauge fields. For on-chip photonics that operate at optical frequencies both are quite challenging because of poor magneto-optic response of materials or substantial nanofabrication challenges in generating synthetic gauge fields. A recent work by Ma, et al. [Phys. Rev. Lett.114, 223901 (2015)] based on preserving pseudo TR symmetry offers a promising design scheme for observing unidirectional edge states in a modified honeycomb photonic crystal (PC) lattice of circular rods that offers encouraging alternatives. Here we propose through bandstructure calculations the inverse system of modified honeycomb PC of circular holes in a dielectric membrane which is more attractive from fabrication standpoint for on-chip applications. We observe trivial and non-trivial bandgaps as well as unidirectional edge states of opposite helicity propagating in opposite directions at the interface of a trivial and non-trivial PC structures. Around 1550nm operating wavelength ~55nm of bandwidth is possible for practicable values of design parameters (lattice constant, hole radii, membrane thickness, scaling factor etc.) and robust to reasonable variations in those parameters.

  19. Pd nanoparticles supported on ultrahigh surface area honeycomb-like carbon for alcohol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zaoxue; He, Guoqiang; Zhang, Guanghui; Meng, Hui; Shen, Pei Kang [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2010-04-15

    The honeycomb-like porous carbon was prepared using glucose as carbon source and solid core mesoporous shell (SCMS) silica as templates. The material was characterized by physical and electrochemical methods. The results showed that the honeycomb-like porous carbon was consisted of hollow porous carbon (HPC) which gave an ultrahigh BET surface area of 1012.97 m{sup 2} g{sup -1} and pore volume of 2.19 cm{sup 3} g{sup -1}. The porous walls of the HPC were formed in the mesoporous shells of the silica templates. The HPC was used as the support to load Pd nanoparticles (Pd/HPC) for alcohol electrooxidation. It was highly active for methanol, ethanol and isopropanol electrooxidation. The peak current density for ethanol electrooxidation on Pd/HPC electrode was five times higher than that on Pd/C electrode at the same Pd loadings. The mass activity for ethanol electrooxidation was 4000 A g{sup -1} which is much higher compared to the data reported in the literature. The highly porous structure of such HPC can be widely used as support for uniform dispersing metal nanoparticles to increase their utilization as electrocatalysts. (author)

  20. Dirac topological insulator in the dz2 manifold of a honeycomb oxide

    Science.gov (United States)

    Lado, J. L.; Pardo, V.

    2016-09-01

    We show by means of ab initio calculations and tight-binding modeling that an oxide system based on a honeycomb lattice can sustain topologically nontrivial states if a single orbital dominates the spectrum close to the Fermi level. In such a situation, the low-energy spectrum is described by two Dirac equations that become nontrivially gapped when spin-orbit coupling (SOC) is switched on. We provide one specific example but the recipe is general. We discuss a realization of this starting from a conventional spin-1/2 honeycomb antiferromagnet whose states close to the Fermi energy are dz2 orbitals. Switching off magnetism by atomic substitution and ensuring that the electronic structure becomes two-dimensional is sufficient for topologicality to arise in such a system. By deriving a tight-binding Wannier Hamiltonian, we find that the gap in such a model scales linearly with SOC, opposed to other oxide-based topological insulators, where smaller gaps tend to appear by construction of the lattice. We show that the quantum spin Hall state in this system survives in the presence of off-plane magnetism and the orbital magnetic field and we discuss its Landau level spectra, showing that our recipe provides a dz2 realization of the Kane-Mele model.

  1. Spin-orbital quantum liquid on the honeycomb lattice

    Science.gov (United States)

    Corboz, Philippe

    2013-03-01

    The symmetric Kugel-Khomskii can be seen as a minimal model describing the interactions between spin and orbital degrees of freedom in transition-metal oxides with orbital degeneracy, and it is equivalent to the SU(4) Heisenberg model of four-color fermionic atoms. We present simulation results for this model on various two-dimensional lattices obtained with infinite projected-entangled pair states (iPEPS), an efficient variational tensor-network ansatz for two dimensional wave functions in the thermodynamic limit. This approach can be seen as a two-dimensional generalization of matrix product states - the underlying ansatz of the density matrix renormalization group method. We find a rich variety of exotic phases: while on the square and checkerboard lattices the ground state exhibits dimer-Néel order and plaquette order, respectively, quantum fluctuations on the honeycomb lattice destroy any order, giving rise to a spin-orbital liquid. Our results are supported from flavor-wave theory and exact diagonalization. Furthermore, the properties of the spin-orbital liquid state on the honeycomb lattice are accurately accounted for by a projected variational wave-function based on the pi-flux state of fermions on the honeycomb lattice at 1/4-filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the ground state is an algebraic spin-orbital liquid. This model provides a good starting point to understand the recently discovered spin-orbital liquid behavior of Ba3CuSb2O9. The present results also suggest to choose optical lattices with honeycomb geometry in the search for quantum liquids in ultra-cold four-color fermionic atoms. We acknowledge the financial support from the Swiss National Science Foundation.

  2. Topological quantum error correction in the Kitaev honeycomb model

    Science.gov (United States)

    Lee, Yi-Chan; Brell, Courtney G.; Flammia, Steven T.

    2017-08-01

    The Kitaev honeycomb model is an approximate topological quantum error correcting code in the same phase as the toric code, but requiring only a 2-body Hamiltonian. As a frustrated spin model, it is well outside the commuting models of topological quantum codes that are typically studied, but its exact solubility makes it more amenable to analysis of effects arising in this noncommutative setting than a generic topologically ordered Hamiltonian. Here we study quantum error correction in the honeycomb model using both analytic and numerical techniques. We first prove explicit exponential bounds on the approximate degeneracy, local indistinguishability, and correctability of the code space. These bounds are tighter than can be achieved using known general properties of topological phases. Our proofs are specialized to the honeycomb model, but some of the methods may nonetheless be of broader interest. Following this, we numerically study noise caused by thermalization processes in the perturbative regime close to the toric code renormalization group fixed point. The appearance of non-topological excitations in this setting has no significant effect on the error correction properties of the honeycomb model in the regimes we study. Although the behavior of this model is found to be qualitatively similar to that of the standard toric code in most regimes, we find numerical evidence of an interesting effect in the low-temperature, finite-size regime where a preferred lattice direction emerges and anyon diffusion is geometrically constrained. We expect this effect to yield an improvement in the scaling of the lifetime with system size as compared to the standard toric code.

  3. Spin-Orbital Quantum Liquid on the Honeycomb Lattice

    Directory of Open Access Journals (Sweden)

    Philippe Corboz

    2012-11-01

    Full Text Available The main characteristic of Mott insulators, as compared to band insulators, is to host low-energy spin fluctuations. In addition, Mott insulators often possess orbital degrees of freedom when crystal-field levels are partially filled. While in the majority of Mott insulators, spins and orbitals develop long-range order, the possibility for the ground state to be a quantum liquid opens new perspectives. In this paper, we provide clear evidence that the spin-orbital SU(4 symmetric Kugel-Khomskii model of Mott insulators on the honeycomb lattice is a quantum spin-orbital liquid. The absence of any form of symmetry breaking—lattice or SU(N—is supported by a combination of semiclassical and numerical approaches: flavor-wave theory, tensor network algorithm, and exact diagonalizations. In addition, all properties revealed by these methods are very accurately accounted for by a projected variational wave function based on the π-flux state of fermions on the honeycomb lattice at 1/4 filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the symmetric Kugel-Khomskii model on the honeycomb lattice is an algebraic quantum spin-orbital liquid. This model provides an interesting starting point to understanding the recently discovered spin-orbital-liquid behavior of Ba_{3}CuSb_{2}O_{9}. The present results also suggest the choice of optical lattices with honeycomb geometry in the search for quantum liquids in ultracold four-color fermionic atoms.

  4. A Fully Inkjet Printed 3D Honeycomb Inspired Patch Antenna

    KAUST Repository

    McKerricher, Garret

    2015-07-16

    The ability to inkjet print three-dimensional objects with integrated conductive metal provides many opportunities for fabrication of radio frequency electronics and electronics in general. Both a plastic material and silver conductor are deposited by inkjet printing in this work. This is the first demonstration of a fully 3D Multijet printing process with integrated polymer and metal. A 2.4 GHz patch antenna is successfully fabricated with good performance proving the viability of the process. The inkjet printed plastic surface is very smooth, with less than 100 nm root mean square roughness. The printed silver nanoparticles are laser sintered to achieve adequate conductivity of 1e6 S/m while keeping the process below 80oC and avoiding damage to the polymer. The antenna is designed with a honeycomb substrate which minimizes material consumption. This reduces the weight, dielectric constant and dielectric loss which are all around beneficial. The antenna is entirely inkjet printed including the ground plane conductor and achieves an impressive 81% efficiency. The honeycomb substrate weighs twenty times less than a solid substrate. For comparison the honeycomb antenna provides an efficiency nearly 15% greater than a similarly fabricated antenna with a solid substrate.

  5. Design, fabrication and test of a liquid hydrogen titanium honeycomb cryogenic test tank for use as a reusable launch vehicle main propellant tank

    Science.gov (United States)

    Stickler, Patrick B.; Keller, Peter C.

    1998-01-01

    Reusable Launch Vehicles (RLV's) utilizing LOX\\LH2 as the propellant require lightweight durable structural systems to meet mass fraction goals and to reduce overall systems operating costs. Titanium honeycomb sandwich with flexible blanket TPS on the windward surface is potentially the lightest-weight and most operable option. Light weight is achieved in part because the honeycomb sandwich tank provides insulation to its liquid hydrogen contents, with no need for separate cryogenic insulation, and in part because the high use temperature of titanium honeycomb reduces the required surface area of re-entry thermal protection systems. System operability is increased because TPS needs to be applied only to surfaces where temperatures exceed approximately 650 K. In order to demonstrate the viability of a titanium sandwich constructed propellant tank, a technology demonstration program was conducted including the design, fabrication and testing of a propellant tank-TPS system. The tank was tested in controlled as well as ambient environments representing ground hold conditions for a RLV main propellant tank. Data collected during each test run was used to validate predictions for air liquefaction, outside wall temperature, boil-off rates, frost buildup and its insulation effects, and the effects of placing a thermal protection system blanket on the external surface. Test results indicated that titanium honeycomb, when used as a RLV propellant tank material, has great promise as a light-weight structural system.

  6. Honeycomb structured porous interfaces as templates for protein adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Hernandez, J; Munoz-Bonilla, A; Ibarboure, E; Bordege, V; Fernandez-Garcia, M, E-mail: jrodriguez@ictp.csic.es

    2010-11-01

    We prepared breath figure patterns decorated with a statistical glycopolymer, (styrene-co-2-{l_brace}[(D-glucosamin-2-N-yl)carbonyl]oxy{r_brace}ethyl methacrylate, S-HEMAGl). The preparation of the glycopolymer occurs in one single step by using styrene and S-HEMAGl. Blends of this copolymer and high molecular weight polystyrene were spin coated from THF solutions leading to the formation of surfaces with both controlled functionality and topography. AFM studies revealed that both the composition of the blend and the relative humidity play a key role on the size and distribution of the pores at the interface. The porous films shows the hydrophilic glycomonomer units are oriented towards the pore interface since upon soft annealing in water, the holes are partially swelled. The self-organization of the glycopolymer within the pores was additionally confirmed both by reaction of carbohydrate hydroxyl groups with rhodamine-isocyanate and by means of the lectin binding test using Concanavalin A (Con A).

  7. Effects of Edge on-Site Potential in a Honeycomb Topological Magnon Insulator

    Science.gov (United States)

    Pantaleón, Pierre A.; Xian, Yang

    2018-06-01

    While the deviation of the edge on-site potential from the bulk values in a magnonic topological honeycomb lattice leads to the formation of edge states in a bearded boundary, this is not the case for a zigzag termination, where no edge state is found. In a semi-infinite lattice, the intrinsic on-site interactions along the boundary sites generate an effective defect and this gives rise to Tamm-like edge states. If a nontrivial gap is induced, both Tamm-like and topologically protected edge states appear in the band structure. The effective defect can be strengthened by an external on-site potential, and the dispersion relation, velocity and magnon density of the edge states all become tunable.

  8. Edge states in a ferromagnetic honeycomb lattice with armchair boundaries

    Science.gov (United States)

    Pantaleón, Pierre A.; Xian, Y.

    2018-02-01

    We investigate the properties of magnon edge states in a ferromagnetic honeycomb lattice with armchair boundaries. In contrast with fermionic graphene, we find novel edge states due to the missing bonds along the boundary sites. After introducing an external on-site potential at the outermost sites we find that the energy spectra of the edge states are tunable. Additionally, when a non-trivial gap is induced, we find that some of the edge states are topologically protected and also tunable. Our results may explain the origin of the novel edge states recently observed in photonic lattices. We also discuss the behavior of these edge states for further experimental confirmations.

  9. Topology Design of Pressure Adaptive Honeycomb for a Morphing Fowler Flap

    NARCIS (Netherlands)

    Scheepstra, J.; Vos, R.; Barrett, R.

    2011-01-01

    A new method for designing a morphing Fowler flap based on pressure-adaptive honeycomb is detailed. Pressure adaptive honeycomb has been shown to be able to induce gross camber deformations in airfoil sections, such as a flap. However, due to the large amount of design variables the integration of

  10. Rhombohedral polytypes of the layered honeycomb delafossites with optical brilliance in the visible.

    Science.gov (United States)

    Roudebush, John H; Sahasrabudhe, Girija; Bergman, Susanna L; Cava, R J

    2015-04-06

    We report the synthesis of the Delafossite honeycomb compounds Cu3Ni2SbO6 and Cu3Co2SbO6 via a copper topotactic reaction from the layered α-NaFeO2-like precursors Na3Ni2SbO6 and Na3Co2SbO6. The low-temperature exchange reaction exclusively produces the rhombahedral 3R polytype subcell, whereas only the hexagonal 2H polytype subcell has been made by conventional synthesis. The thus-synthesized 3R variants are visually striking; they are bright lime-green (Ni variant) and terracotta-orange (Co variant), while both of the conventionally synthesized 2H variants have a burnt-red color. The new structures are characterized by powder X-ray diffraction and Rietveld analysis as well as magnetic susceptibility, X-ray photoelectron spectroscopy (XPS), and diffuse-reflectance optical spectroscopy. Using thermogravimetric analysis, we identify a second order 3R → 2H phase transition as well as a first-order structural transition associated with rearrangement of the honeycomb stacking layers. The optical absorbance spectra of the samples show discrete edges that correlate well to their visual colors. Exposing Cu3Ni2SbO6 to O2 and heat causes the sample to change color. XPS confirms the presence of Cu(2+) in these samples, which implies that the difference in color between the polytypes is due to oxygen intercalation resulting from their different synthetic routes.

  11. Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger

    International Nuclear Information System (INIS)

    Fopah-Lele, Armand; Rohde, Christian; Neumann, Karsten; Tietjen, Theo; Rönnebeck, Thomas; N'Tsoukpoe, Kokouvi Edem; Osterland, Thomas; Opel, Oliver

    2016-01-01

    A lab-scale thermochemical heat storage reactor was developed in the European project “thermal battery” to obtain information on the characteristics of a closed heat storage system, based on thermochemical reactions. The present type of storage is capable of re-using waste heat from cogeneration system to produce useful heat for space heating. The storage material used was SrBr 2 ·6H 2 O. Due to agglomeration or gel-like problems, a structural element was introduced to enhance vapour and heat transfer. Honeycomb heat exchanger was designed and tested. 13 dehydration-hydration cycles were studied under low-temperature conditions (material temperatures < 100 °C) for storage. Discharging was realized at water vapour pressure of about 42 mbar. Temperature evolution inside the reactor at different times and positions, chemical conversion, thermal power and overall efficiency were analysed for the selected cycles. Experimental system thermal capacity and efficiency of 65 kWh and 0.77 are respectively obtained with about 1 kg of SrBr 2 ·6H 2 O. Heat transfer fluid recovers heat at a short span of about 43 °C with an average of 22 °C during about 4 h, acceptable temperature for the human comfort (20 °C on day and 16 °C at night). System performances were obtained for a salt bed energy density of 213 kWh·m 3 . The overall heat transfer coefficient of the honeycomb heat exchanger has an average value of 147 W m −2  K −1 . Though promising results have been obtained, ameliorations need to be made, in order to make the closed thermochemical heat storage system competitive for space heating. - Highlights: • Lab-scale thermochemical heat storage is designed, constructed and tested. • The use of honeycomb heat exchanger as a heat and vapour process enhancement. • Closed system (1 kg SrBr 2 ·6H 2 O) able to give back 3/4 of initial thermal waste energy. • System storage capacity and thermal efficiency are respectively 65 kWh and 0.77.

  12. Simulated effect on the compressive and shear mechanical properties of bionic integrated honeycomb plates.

    Science.gov (United States)

    He, Chenglin; Chen, Jinxiang; Wu, Zhishen; Xie, Juan; Zu, Qiao; Lu, Yun

    2015-05-01

    Honeycomb plates can be applied in many fields, including furniture manufacturing, mechanical engineering, civil engineering, transportation and aerospace. In the present study, we discuss the simulated effect on the mechanical properties of bionic integrated honeycomb plates by investigating the compressive and shear failure modes and the mechanical properties of trabeculae reinforced by long or short fibers. The results indicate that the simulated effect represents approximately 80% and 70% of the compressive and shear strengths, respectively. Compared with existing bionic samples, the mass-specific strength was significantly improved. Therefore, this integrated honeycomb technology remains the most effective method for the trial manufacturing of bionic integrated honeycomb plates. The simulated effect of the compressive rigidity is approximately 85%. The short-fiber trabeculae have an advantage over the long-fiber trabeculae in terms of shear rigidity, which provides new evidence for the application of integrated bionic honeycomb plates. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Spatial confinement of ferromagnetic resonances in honeycomb antidot lattices

    International Nuclear Information System (INIS)

    Krivoruchko, V.N.; Marchenko, A.I.

    2012-01-01

    We report on a theoretical investigation of the magnetic static and dynamic properties of a thin ferromagnetic film with honeycomb lattice of circular antidots using micromagnetic simulations and analytical calculations. The theoretical model is based on the Landau–Lifshitz equations and directly accounts for the effects of the magnetic state nonuniformity. A direct calculation of local dynamic susceptibility tensor yields that the resonance spectra consist of four different quasi-uniform modes of the magnetization precession related to the confinement of magnetic domains by the hole mesh. Three of four resonant modes follow a two-fold variation with respect to the in-plane orientation of the applied magnetic field. The easy axes of these modes are mutually rotated by 60° and combine to yield the apparent six-fold configurational anisotropy. Additionally, a mode with intrinsic six-fold symmetry behavior exists, as well. Micromagnetic calculations of the local dynamic susceptibility tensor allow identifying the magnetic unit cell areas/domains responsible for each resonance mode. - Highlights: ► We study the magnetic static and dynamic properties of honeycomb antidot lattices. ► Micromagnetic simulation and analytical calculation were used. ► Four quasi-uniform precession modes exist in resonance spectra. ► The antidot unit cell areas responsible for each resonance mode were identified.

  14. Mean-field study of correlation-induced antisymmetric spin-orbit coupling in a two-orbital honeycomb model

    Science.gov (United States)

    Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi

    2018-05-01

    We investigate a two-orbital Hubbard model on a honeycomb structure, with a special focus on the antisymmetric spin-orbit coupling (ASOC) induced by symmetry breaking in the electronic degrees of freedom. By investigating the ground-state phase diagram by the mean-field approximation in addition to the analysis in the strong correlation limit, we obtain a variety of symmetry-broken phases that induce different types of effective ASOCs by breaking of spatial inversion symmetry. We find several unusual properties emergent from the ASOCs, such as a linear magnetoelectric effect in a spin-orbital ordered phase at 1/4 filling and a spin splitting in the band structure in charge ordered phases at 1/4 and 1/2 fillings. We also show that a staggered potential on the honeycomb structure leads to another type of ASOC, which gives rise to a valley splitting in the band structure at 1/2 filling. We discuss the experimental relevance of our results to candidate materials including transition metal dichalcogenides and trichalcogenides.

  15. Quantitative CT analysis of honeycombing area in idiopathic pulmonary fibrosis: Correlations with pulmonary function tests.

    Science.gov (United States)

    Nakagawa, Hiroaki; Nagatani, Yukihiro; Takahashi, Masashi; Ogawa, Emiko; Tho, Nguyen Van; Ryujin, Yasushi; Nagao, Taishi; Nakano, Yasutaka

    2016-01-01

    The 2011 official statement of idiopathic pulmonary fibrosis (IPF) mentions that the extent of honeycombing and the worsening of fibrosis on high-resolution computed tomography (HRCT) in IPF are associated with the increased risk of mortality. However, there are few reports about the quantitative computed tomography (CT) analysis of honeycombing area. In this study, we first proposed a computer-aided method for quantitative CT analysis of honeycombing area in patients with IPF. We then evaluated the correlations between honeycombing area measured by the proposed method with that estimated by radiologists or with parameters of PFTs. Chest HRCTs and pulmonary function tests (PFTs) of 36 IPF patients, who were diagnosed using HRCT alone, were retrospectively evaluated. Two thoracic radiologists independently estimated the honeycombing area as Identified Area (IA) and the percentage of honeycombing area to total lung area as Percent Area (PA) on 3 axial CT slices for each patient. We also developed a computer-aided method to measure the honeycombing area on CT images of those patients. The total honeycombing area as CT honeycombing area (HA) and the percentage of honeycombing area to total lung area as CT %honeycombing area (%HA) were derived from the computer-aided method for each patient. HA derived from three CT slices was significantly correlated with IA (ρ=0.65 for Radiologist 1 and ρ=0.68 for Radiologist 2). %HA derived from three CT slices was also significantly correlated with PA (ρ=0.68 for Radiologist 1 and ρ=0.70 for Radiologist 2). HA and %HA derived from all CT slices were significantly correlated with FVC (%pred.), DLCO (%pred.), and the composite physiologic index (CPI) (HA: ρ=-0.43, ρ=-0.56, ρ=0.63 and %HA: ρ=-0.60, ρ=-0.49, ρ=0.69, respectively). The honeycombing area measured by the proposed computer-aided method was correlated with that estimated by expert radiologists and with parameters of PFTs. This quantitative CT analysis of

  16. Study of a zero Poisson’s ratio honeycomb used for flexible skin

    Science.gov (United States)

    Rong, Jiaxin; Zhou, Li

    2017-04-01

    Flexible skin used in morphing wings is required to provide adequate cooperation deformation as well as bear the air load. Besides, according to the requirement of smoothness, the non-deformation direction of flexible skin needs to be restrained. This paper studies the mechanical properties of a cruciform honeycomb under a zero Poisson’s ratio constraint. The in-plane morphing capacity of the honeycomb is improved by optimizing the shape parameters of the honeycomb unit. To improve the out-of-plane bending capacity, a zero Poisson’s ratio mixed cruciform honeycomb with additional ribs is proposed. The mechanical properties of the mixed honeycomb are studied by theoretical analysis and simulation. Based on the design requirements of variable-camber trailing-edge flexible skin, the specific design parameters and performance parameters of the skin based on the mixed honeycomb are given. The results show that the zero Poisson’s ratio mixed cruciform honeycomb has high bending rigidity itself and can have better deformation capacity in-plane and higher bending rigidity out-of-plane by optimizing the shape parameters. The designed skin also has advantages in driving force, deformation capacity and quality over conventional skin.

  17. Formation of the honeycomb-like electrodes by the regime of pulsating overpotential in the second range

    Directory of Open Access Journals (Sweden)

    NEBOJŠA D. NIKOLIĆ

    2012-03-01

    Full Text Available In this study the honeycomb-like copper structures electrodeposited by the regime of pulsating overpotential in the second range were analyzed by the technique of scanning electron microscopy. The overpotential amplitude of 1000 mV, deposition pulse of 1 s, and pause durations of 1, 5, 10 and 15 s were selected for the production of this type of structures. The size of holes which remained upon detachment of hydrogen bubbles do not depend on the length of pause duration. On the other hand, the change in morphology of electrodeposited copper around holes from cauliflower-like agglomerates of copper grains to degenerated dendrites is observed when pause duration was increased. Effects of the application of the regime of pulsating overpotential in the second range on the formation of the honeycomb-like structures were less pronounced than the effects attained by the application of the same regime in the millisecond range. However, they were more pronounced than those attained by electrodeposition in the regime of constant potential.

  18. Design of Chern insulating phases in honeycomb lattices

    Science.gov (United States)

    Pickett, Warren E.; Lee, Kwan-Woo; Pentcheva, Rossitza

    2018-06-01

    The search for robust examples of the magnetic version of topological insulators, referred to as quantum anomalous Hall insulators or simply Chern insulators, so far lacks success. Our groups have explored two distinct possibilities based on multiorbital 3d oxide honeycomb lattices. Each has a Chern insulating phase near the ground state, but materials parameters were not appropriate to produce a viable Chern insulator. Further exploration of one of these classes, by substituting open shell 3d with 4d and 5d counterparts, has led to realistic prediction of Chern insulating ground states. Here we recount the design process, discussing the many energy scales that are active in participating (or resisting) the desired Chern insulator phase.

  19. Topological features of engineered arrays of adsorbates in honeycomb lattices

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Arraga, Luis A., E-mail: ludovici83@gmail.com [IMDEA Nanociencia, Calle de Faraday, 9, Cantoblanco, 28049 Madrid (Spain); Lado, J.L. [International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga (Portugal); Guinea, Francisco [IMDEA Nanociencia, Calle de Faraday, 9, Cantoblanco, 28049 Madrid (Spain); School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2016-09-01

    Hydrogen adatoms are one of the most the promising proposals for the functionalization of graphene. The adatoms induce narrow resonances near the Dirac energy, which lead to the formation of magnetic moments. Furthermore, they also create local lattice distortions which enhance the spin–orbit coupling. The combination of magnetism and spin–orbit coupling allows for a rich variety of phases, some of which have non-trivial topological features. We analyze the interplay between magnetism and spin–orbit coupling in ordered arrays of adsorbates on honeycomb lattice monolayers, and classify the different phases that may arise. We extend our model to consider arrays of adsorbates in graphene-like crystals with stronger intrinsic spin–orbit couplings. We also consider a regime away from half-filling in which the Fermi level is at the bottom of the conduction band, we find a Berry curvature distribution corresponding to a Valley–Hall effect.

  20. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    Science.gov (United States)

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  1. Anti-ferromagnetic Heisenberg model on bilayer honeycomb

    International Nuclear Information System (INIS)

    Shoja, M.; Shahbazi, F.

    2012-01-01

    Recent experiment on spin-3/2 bilayer honeycomb lattice antiferromagnet Bi 3 Mn 4 O 12 (NO 3 ) shows a spin liquid behavior down to very low temperatures. This behavior can be ascribed to the frustration effect due to competitions between first and second nearest neighbour's antiferromagnet interaction. Motivated by the experiment, we study J 1 -J 2 Antiferromagnet Heisenberg model, using Mean field Theory. This calculation shows highly degenerate ground state. We also calculate the effect of second nearest neighbor through z direction and show these neighbors also increase frustration in these systems. Because of these degenerate ground state in these systems, spins can't find any ground state to be freeze in low temperatures. This behavior shows a novel spin liquid state down to very low temperatures.

  2. Three-dimensional hierarchical and interconnected honeycomb-like porous carbon derived from pomelo peel for high performance supercapacitors

    Science.gov (United States)

    Liu, Jingyuan; Li, Hongpeng; Zhang, Hongsen; Liu, Qi; Li, Rumin; Li, Bin; Wang, Jun

    2018-01-01

    The urgent need for sustainable development of human society has forced material scientists to explore novel materials starting from cheap natural precursors for next-generation energy storage devices by using environmentally friendly strategies. In this work, heteroatom-functionalized porous carbonaceous materials with 3D hierarchical and interconnected honeycomb-like structure have been successfully synthesized by using waste biomass pomelo peel as raw material through the combination of hydrothermal carbonization and followed KOH activation procedure. Benefiting from the unique honeycomb-like structure and high specific surface area, the as-obtained carbon material exhibits satisfactory capacitive behavior: 374 F/g at 0.1 A/g; excellent cycling stability of 92.5% capacitance retention over continuous 5000 cycles. More importantly, the as-assembled symmetric supercapacitors based on as-prepared electrode material can deliver high gravimetric and volumetric energy density of 20 W h/kg and 18.7 W h/L in 6 M KOH, respectively, as well as outstanding cycling stability. The obtained results demonstrate the possibility for taking full advantage of sustainable and large scale advanced carbon materials by choosing waste biomass, particularly the pomelo peel as a raw material.

  3. Two Topologically Distinct Dirac-Line Semimetal Phases and Topological Phase Transitions in Rhombohedrally Stacked Honeycomb Lattices

    Science.gov (United States)

    Hyart, T.; Ojajärvi, R.; Heikkilä, T. T.

    2018-04-01

    Three-dimensional topological semimetals can support band crossings along one-dimensional curves in the momentum space (nodal lines or Dirac lines) protected by structural symmetries and topology. We consider rhombohedrally (ABC) stacked honeycomb lattices supporting Dirac lines protected by time-reversal, inversion and spin rotation symmetries. For typical band structure parameters there exists a pair of nodal lines in the momentum space extending through the whole Brillouin zone in the stacking direction. We show that these Dirac lines are topologically distinct from the usual Dirac lines which form closed loops inside the Brillouin zone. In particular, an energy gap can be opened only by first merging the Dirac lines going through the Brillouin zone in a pairwise manner so that they turn into closed loops inside the Brillouin zone, and then by shrinking these loops into points. We show that this kind of topological phase transition can occur in rhombohedrally stacked honeycomb lattices by tuning the ratio of the tunneling amplitudes in the directions perpendicular and parallel to the layers. We also discuss the properties of the surface states in the different phases of the model.

  4. Microchannel-connected SU-8 honeycombs by single-step projection photolithography for positioning cells on silicon oxide nanopillar arrays

    International Nuclear Information System (INIS)

    Larramendy, Florian; Paul, Oliver; Blatche, Marie Charline; Mazenq, Laurent; Laborde, Adrian; Temple-Boyer, Pierre

    2015-01-01

    We report on the fabrication, functionalization and testing of SU-8 microstructures for cell culture and positioning over large areas. The microstructure consists of a honeycomb arrangement of cell containers interconnected by microchannels and centered on nanopillar arrays designed for promoting cell positioning. The containers have been dimensioned to trap single cells and, with a height of 50 µm, prevent cells from escaping. The structures are fabricated using a single ultraviolet photolithography exposure with focus depth in the lower part of the SU-8 resist. With optimized process parameters, microchannels of various aspect ratios are thus produced. The cell containers and microchannels serve for the organization of axonal growth between neurons. The roughly 2 µm-high and 500 nm-wide nanopillars are made of silicon oxide structured by deep reactive ion etching. In future work, beyond their cell positioning purpose, the nanopillars could be functionalized as sensors. The proof of concept of the novel microstructure for organized cell culture is given by the successful growth of interconnected PC12 cells. Promoted by the honeycomb geometry, a dense network of interconnections between the cells has formed and the intended intimate contact of cells with the nanopillar arrays was observed by scanning electron microscopy. This proves the potential of these new devices as tools for the controlled cell growth in an interconnected container system with well-defined 3D geometry. (paper)

  5. Combining aerogels with honeycombs – a new stiff and flexible superinsulation

    OpenAIRE

    Schwan, Marina; Ratke, Lorenz; Milow, Barbara

    2014-01-01

    Saving energy is the most important issue in the 21st century. New high qualitative thermal insulation materials are of critical importance to energy-efficient building design, transportation and aircraft industry. We propose to combine aramid honeycombs with aerogels to manufacture such new types of advanced insulation materials. Aramid honeycombs produced from aramid fibers by the expansion method possess extremely high stiffness-to-weight ratio and are heat-resisting up to 550°C. Aerogels ...

  6. Doubly unusual 3D lattice honeycomb displaying simultaneous negative and zero Poisson’s ratio properties

    Science.gov (United States)

    Chen, Yu; Zheng, Bin-Bin; Fu, Ming-Hui; Lan, Lin-Hua; Zhang, Wen-Zhi

    2018-04-01

    In this paper, a novel three-dimensional (3D) lattice honeycomb is developed based on a two-dimensional (2D) accordion-like honeycomb. A combination of theoretical and numerical analysis is carried out to gain a deeper understanding of the elastic behavior of the new honeycomb and its dependence on the geometric parameters. The results show that the proposed new honeycomb can simultaneously achieve an in-plane negative Poisson’s ratio (NPR) effect and an out-of-plane zero Poisson’s ratio (ZPR) effect. This unique property may be very promising in some important fields, like aerospace, piezoelectric sensors and biomedicine engineering. The results also show that the geometric parameters, such as the slant angle, the strut thickness and the relative density, have a significant effect on the mechanical properties. Additionally, different dominant deformation models of the new honeycomb when compressed along the x (or y) and z directions are identified. This work provides a new concept for the design of honeycombs with a doubly unusual performance.

  7. Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3

    Science.gov (United States)

    Yadav, Ravi; Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Nishimoto, Satoshi; van den Brink, Jeroen; Hozoi, Liviu

    2016-11-01

    Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d5 honeycomb halide α-RuCl3. From advanced electronic-structure calculations, we find that the Kitaev interaction is ferromagnetic, as in 5d5 iridium honeycomb oxides, and indeed defines the largest superexchange energy scale. A ferromagnetic Kitaev coupling is also supported by a detailed analysis of the field-dependent magnetization. Using exact diagonalization and density-matrix renormalization group techniques for extended Kitaev-Heisenberg spin Hamiltonians, we find indications for a transition from zigzag order to a gapped spin liquid when applying magnetic field. Our results offer a unified picture on recent magnetic and spectroscopic measurements on this material and open new perspectives on the prospect of realizing quantum spin liquids in d5 halides and oxides in general.

  8. Honeycomb-Like Interconnected Network of Nickel Phosphide Heteronanoparticles with Superior Electrochemical Performance for Supercapacitors.

    Science.gov (United States)

    Liu, Shude; Sankar, Kalimuthu Vijaya; Kundu, Aniruddha; Ma, Ming; Kwon, Jang-Yeon; Jun, Seong Chan

    2017-07-05

    Transition-metal-based heteronanoparticles are attracting extensive attention in electrode material design for supercapacitors owing to their large surface-to-volume ratios and inherent synergies of individual components; however, they still suffer from limited interior capacity and cycling stability due to simple geometric configurations, low electrochemical activity of the surface, and poor structural integrity. Developing an elaborate architecture that endows a larger surface area, high conductivity, and mechanically robust structure is a pressing need to tackle the existing challenges of electrode materials. This work presents a supercapacitor electrode consisting of honeycomb-like biphasic Ni 5 P 4 -Ni 2 P (Ni x P y ) nanosheets, which are interleaved by large quantities of nanoparticles. The optimized Ni x P y delivers an ultrahigh specific capacity of 1272 C g -1 at a current density of 2 A g -1 , high rate capability, and stability. An asymmetric supercapacitor employing as-synthesized Ni x P y as the positive electrode and activated carbon as the negative electrode exhibits significantly high power and energy densities (67.2 W h kg -1 at 0.75 kW kg -1 ; 20.4 W h kg -1 at 15 kW kg -1 ). These results demonstrate that the novel nanostructured Ni x P y can be potentially applied in high-performance supercapacitors.

  9. Detecting the honeycomb sandwich composite material's moisture impregnating defects by using infrared thermography technique

    International Nuclear Information System (INIS)

    Kwon, Koo Ahn; Choi, Man Yong; Park, Jeong Hak; Choi, Won Jae; Park, Hee Sang

    2017-01-01

    Many composite materials are used in the aerospace industry because of their excellent mechanical properties. However, the nature of aviation exposes these materials to high temperature and high moisture conditions depending on climate, location, and altitude. Therefore, the molecular arrangement chemical properties, and mechanical properties of composite materials can be changed under these conditions. As a result, surface disruptions and cracks can be created. Consequently, moisture-impregnating defects can be induced due to the crack and delamination of composite materials as they are repeatedly exposed to moisture absorption moisture release, fatigue environment, temperature changes, and fluid pressure changes. This study evaluates the possibility of detecting the moisture-impregnating defects of CFRP and GFRP honeycomb structure sandwich composite materials, which are the composite materials in the aircraft structure, by using an active infrared thermography technology among non-destructive testing methods. In all experiments, it was possible to distinguish the area and a number of CFRP composite materials more clearly than those of GFRP composite material. The highest detection rate was observed in the heating duration of 50 mHz and the low detection rate was at the heating duration of over 500 mHz. The reflection method showed a higher detection rate than the transmission method

  10. Nonlinear Modeling and Identification of an Aluminum Honeycomb Panel with Multiple Bolts

    Directory of Open Access Journals (Sweden)

    Yongpeng Chu

    2016-01-01

    Full Text Available This paper focuses on the nonlinear dynamics modeling and parameter identification of an Aluminum Honeycomb Panel (AHP with multiple bolted joints. Finite element method using eight-node solid elements is exploited to model the panel and the bolted connection interface as a homogeneous, isotropic plate and as a thin layer of nonlinear elastic-plastic material, respectively. The material properties of a thin layer are defined by a bilinear elastic plastic model, which can describe the energy dissipation and softening phenomena in the bolted joints under nonlinear states. Experimental tests at low and high excitation levels are performed to reveal the dynamic characteristics of the bolted structure. In particular, the linear material parameters of the panel are identified via experimental tests at low excitation levels, whereas the nonlinear material parameters of the thin layer are updated by using the genetic algorithm to minimize the residual error between the measured and the simulation data at a high excitation level. It is demonstrated by comparing the frequency responses of the updated FEM and the experimental system that the thin layer of bilinear elastic-plastic material is very effective for modeling the nonlinear joint interface of the assembled structure with multiple bolts.

  11. Advanced honeycomb adsorbent and scaling-up technique for thermal swing adsorptive VOC concentrator; Samarusuingu kyuchakushiki VOC noshuku sochiyo hanikamu kyuchakutai no kaizen to sukeru up gijutsu ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuma, Y.; Kuwa, T.; Yamauchi, H. [Seibu Giken Co. Ltd., Fukuoka (Japan); Hirose, T. [Kumamoto Univ. (Japan). Faculty of Engineering

    1998-03-01

    On the honeycomb type adsorptive concentrator, a manufacturing method of the honeycomb adsorbent rotor, retention of mechanical strength corresponding with a large-scale processing and minimization of air leakage resulting in performance deterioration were technically examined. Honeycomb structure was formed from an alumina-silica fiber paper, and high silica-content zeolite was deposited in the fiber void of the matrix. The adsorbent rotor using sepiolite as an inorganic adhesive for honeycomb fabrication showed fracture strength of from 1.6 to 3.2 times the conventional adsorbent rotor. Two types of differently shaped fluorinated rubber seal were developed for the adsorbent rotor. Amount of air leakage from the seal between each zone as well as to outside was sufficiently small. A large-scale VOC concentrator with the 3950 mm diameter and 450 mm length was manufactured with the adsorbent rotor and seal structure in accordance with the aforementioned method. Results of the real machine operation showed same concentration performance at those of the small-scale experiment. 10 refs., 15 figs., 2 tabs.

  12. Correlated Dirac particles and superconductivity on the honeycomb lattice

    Science.gov (United States)

    Wu, Wei; Scherer, Michael M.; Honerkamp, Carsten; Le Hur, Karyn

    2013-03-01

    We investigate the properties of the nearest-neighbor singlet pairing and the emergence of d-wave superconductivity in the doped honeycomb lattice considering the limit of large interactions and the t-J1-J2 model. First, by applying a renormalized mean-field procedure as well as slave-boson theories which account for the proximity to the Mott-insulating state, we confirm the emergence of d-wave superconductivity, in agreement with earlier works. We show that a small but finite J2 spin coupling between next-nearest neighbors stabilizes d-wave symmetry compared to the extendeds-wave scenario. At small hole doping, to minimize the energy and to gap the whole Fermi surface or all the Dirac points, the superconducting ground state is characterized by a d+id singlet pairing assigned to one valley and a d-id singlet pairing to the other, which then preserves time-reversal symmetry. The slightly doped situation is distinct from the heavily doped case (around 3/8 and 5/8 filling) supporting a pure chiral d+id symmetry and breaking time-reversal symmetry. Then, we apply the functional renormalization group and study in more detail the competition between antiferromagnetism and superconductivity in the vicinity of half filling. We discuss possible applications to strongly correlated compounds with copper hexagonal planes such as In3Cu2VO9. Our findings are also relevant to the understanding of exotic superfluidity with cold atoms.

  13. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet.

    Science.gov (United States)

    Banerjee, A; Bridges, C A; Yan, J-Q; Aczel, A A; Li, L; Stone, M B; Granroth, G E; Lumsden, M D; Yiu, Y; Knolle, J; Bhattacharjee, S; Kovrizhin, D L; Moessner, R; Tennant, D A; Mandrus, D G; Nagler, S E

    2016-07-01

    Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. Whereas their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting owing to the emergence of fundamentally new excitations such as Majorana fermions. Ideal probes of these excitations are inelastic neutron scattering experiments. These we report here for a ruthenium-based material, α-RuCl3, continuing a major search (so far concentrated on iridium materials) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm the requisite strong spin-orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We find stacking faults, inherent to the highly two-dimensional nature of the material, resolve an outstanding puzzle. Crucially, dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations and Majorana fermions of the pure Kitaev model, we propose the excitation spectrum of α-RuCl3 as a prime candidate for fractionalized Kitaev physics.

  14. Monomer-dimer problem on random planar honeycomb lattice

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Haizhen [School of Mathematical Sciences, Xiamen University, Xiamen 361005, Fujian (China); Department of Mathematics, Qinghai Normal University, Xining 810008, Qinghai (China); Zhang, Fuji; Qian, Jianguo, E-mail: jqqian@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005, Fujian (China)

    2014-02-15

    We consider the monomer-dimer (MD) problem on a random planar honeycomb lattice model, namely, the random multiple chain. This is a lattice system with non-periodic boundary condition, whose generating process is inspired by the growth of single walled zigzag carbon nanotubes. By applying algebraic and combinatorial techniques we establish a calculating expression of the MD partition function for bipartite graphs, which corresponds to the permanent of a matrix. Further, by using the transfer matrix argument we show that the computing problem of the permanent of high order matrix can be converted into some lower order matrices for this family of lattices, based on which we derive an explicit recurrence formula for evaluating the MD partition function of multiple chains and random multiple chains. Finally, we analyze the expectation of the number of monomer-dimer arrangements on a random multiple chain and the asymptotic behavior of the annealed MD entropy when the multiple chain becomes infinite in width and length, respectively.

  15. Stopping dynamics of ions passing through correlated honeycomb clusters

    Science.gov (United States)

    Balzer, Karsten; Schlünzen, Niclas; Bonitz, Michael

    2016-12-01

    A combined nonequilibrium Green functions-Ehrenfest dynamics approach is developed that allows for a time-dependent study of the energy loss of a charged particle penetrating a strongly correlated system at zero and finite temperatures. Numerical results are presented for finite inhomogeneous two-dimensional Fermi-Hubbard models, where the many-electron dynamics in the target are treated fully quantum mechanically and the motion of the projectile is treated classically. The simulations are based on the solution of the two-time Dyson (Keldysh-Kadanoff-Baym) equations using the second-order Born, third-order, and T -matrix approximations of the self-energy. As application, we consider protons and helium nuclei with a kinetic energy between 1 and 500 keV/u passing through planar fragments of the two-dimensional honeycomb lattice and, in particular, examine the influence of electron-electron correlations on the energy exchange between projectile and electron system. We investigate the time dependence of the projectile's kinetic energy (stopping power), the electron density, the double occupancy, and the photoemission spectrum. Finally, we show that, for a suitable choice of the Hubbard model parameters, the results for the stopping power are in fair agreement with ab initio simulations for particle irradiation of single-layer graphene.

  16. Phase diagram and quantum order by disorder in the Kitaev K1-K2 honeycomb magnet

    Science.gov (United States)

    Rousochatzakis, Ioannis; Reuther, Johannes; Thomale, Ronny; Rachel, Stephan; Perkins, Natalia

    We show that the topological Kitaev spin liquid on the honeycomb lattice is extremely fragile against the second neighbor Kitaev coupling K2, which has been recently identified as the dominant perturbation away from the nearest neighbor model in iridate Na2IrO3, and may also play a role in α-RuCl3. This coupling explains naturally the zig-zag ordering and the special entanglement between real and spin space observed recently in Na2IrO3. The minimal K1-K2 model that we present here holds in addition the unique property that the classical and quantum phase diagrams and their respective order-by-disorder mechanisms are qualitatively different due to their fundamentally different symmetry structure. Nsf DMR-1511768; Freie Univ. Berlin Excellence Initiative of German Research Foundation; European Research Council, ERC-StG-336012; DFG-SFB 1170; DFG-SFB 1143, DFG-SPP 1666, and Helmholtz association VI-521.

  17. Superhydrophobic honeycomb-like cobalt stearate thin films on aluminum with excellent anti-corrosion properties

    Science.gov (United States)

    Xiong, Jiawei; Sarkar, D. K.; Chen, X.-Grant

    2017-06-01

    Superhydrophobic cobalt stearate thin films with excellent anti-corrosion properties were successfully fabricated on aluminum substrates via electrodeposition process. The water-repellent properties were attributed to the honeycomb-like micro-nano structure as well as low surface energy of cobalt stearate. The correlation between the surface morphology, composition as well as wetting properties and the molar ratio of inorganic cobalt salt (Co(NO3)2) and organic stearic acid (SA) abbreviated as Co/SA, in the electrolyte were studied carefully. The optimum superhydrophobic surface obtained on the electrodeposited cathodic aluminum substrate, in the mixed ethanolic solution with Co/SA molar ratio of 0.2, was found to have a maximum contact angle of 161°. The polarization resistance of superhydrophobic aluminum substrates was calculated as high as 1591 kΩ cm2, which is determined to be two orders of magnitude larger than that of the as-received aluminum substrate as 27 kΩ cm2. Electrochemical impedance spectroscopy (EIS) was also employed to evaluate the corrosion resistance properties of these samples. Furthermore, electrical equivalent circuits (EEC) have been suggested in order to better understand the corrosion phenomena on these surfaces based on the corresponding EIS data.

  18. Spin-Orbit Coupled Quantum Magnetism in the 3D-Honeycomb Iridates

    Science.gov (United States)

    Kimchi, Itamar

    In this doctoral dissertation, we consider the significance of spin-orbit coupling for the phases of matter which arise for strongly correlated electrons. We explore emergent behavior in quantum many-body systems, including symmetry-breaking orders, quantum spin liquids, and unconventional superconductivity. Our study is cemented by a particular class of Mott-insulating materials, centered around a family of two- and three-dimensional iridium oxides, whose honeycomb-like lattice structure admits peculiar magnetic interactions, the so-called Kitaev exchange. By analyzing recent experiments on these compounds, we show that this unconventional exchange is the key ingredient in describing their magnetism, and then use a combination of numerical and analytical techniques to investigate the implications for the phase diagram as well as the physics of the proximate three-dimensional quantum spin liquid phases. These long-ranged-entangled fractionalized phases should exhibit special features, including finite-temperature stability as well as unconventional high-Tc superconductivity upon charge-doping, which should aid future experimental searches for spin liquid physics. Our study explores the nature of frustration and fractionalization which can arise in quantum systems in the presence of strong spin-orbit coupling.

  19. Characteristics of Honeycomb-Type Oxygen Generator with Electrolyte Based on Doped Bismuth Oxide

    Science.gov (United States)

    Chen, Yu-Wen; Liu, Yi-Xin; Wang, Sea-Fue; Devasenathipathy, Rajkumar

    2018-03-01

    An oxygen generator using Y-doped Bi2O3 as electrolyte to transport oxygen ions has been developed, having honeycomb-type structure with dimensions of 40 mm × 35 mm × 30 mm and consisting of 13 × 12 channels. External wire circuitry for the channels arrayed using parallel, series, and hybrid connection was evaluated to achieve the best oxygen separation efficiency. It was observed that the oxygen generator with hybrid connection facilitated evolution of oxygen at maximum of 117 sccm and high purity > 99.9% at 550°C under current flow of 14 A. Addition of 5 wt.% silane and 3 wt.% glass-ceramic powder to the Ag slurry used at both electrodes not only increased the coverage of the metal electrode on the ceramic substrate during dip coating but also prevented cracking at the electrode layer of the module under stress from the electric field and temperature during high-temperature operation, thus reducing the decay rate of the oxygen generator in durability testing.

  20. Pore shape of honeycomb-patterned films: modulation and interfacial behavior.

    Science.gov (United States)

    Wan, Ling-Shu; Ke, Bei-Bei; Zhang, Jing; Xu, Zhi-Kang

    2012-01-12

    The control of the pore size of honeycomb-patterned films has been more or less involved in most work on the topic of breath figures. Modulation of the pore shape was largely ignored, although it is important to applications in replica molding, filtration, particle assembly, and cell culture. This article reports a tunable pore shape for patterned films prepared from commercially available polystyrene (PS). We investigated the effects of solvents including tetrahydrofuran (THF) and chloroform (CF) and hydrophilic additives including poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA), poly(ethylene glycol) (PEG), and poly(N-vinyl pyrrolidone) (PVP). Water droplets on/in the polymer solutions were observed and analyzed for simulating the formation and stabilization of breath figures. Interfacial tensions of the studied systems were measured and considered as a main factor to modulate the pore shape. Results indicate that the pores gradually change from near-spherical to ellipsoidal with the increase of additive content when using CF as the solvent; however, only ellipsoidal pores are formed from the THF solution. It is demonstrated that the aggregation of the additives at the water/polymer solution interface is more efficient in the THF solution than that in the CF solution. This aggregation decreases the interfacial tension, stabilizes the condensed water droplets, and shapes the pores of the films. The results may facilitate our understanding of the dynamic breath figure process and provide a new pathway to prepare patterned films with different pore structures.

  1. Granular superconductor in a honeycomb lattice as a realization of bosonic Dirac material

    Science.gov (United States)

    Banerjee, S.; Fransson, J.; Black-Schaffer, A. M.; Ågren, H.; Balatsky, A. V.

    2016-04-01

    We examine the low-energy effective theory of phase oscillations in a two-dimensional granular superconducting sheet where the grains are arranged in a honeycomb lattice structure. Using the example of graphene, we present evidence for the engineered Dirac nodes in the bosonic excitations: the spectra of the collective bosonic modes cross at the K and K' points in the Brillouin zone and form Dirac nodes. We show how two different types of collective phase oscillations are obtained and that they are analogous to the Leggett and the Bogoliubov-Anderson-Gorkov modes in a two-band superconductor. We show that the Dirac node is preserved in the presence of an intergrain interaction, despite induced changes of the qualitative features of the two collective modes. Finally, breaking the sublattice symmetry by choosing different on-site potentials for the two sublattices leads to a gap opening near the Dirac node, in analogy with fermionic Dirac materials. The Dirac node dispersion of bosonic excitations is thus expanding the discussion of the conventional Dirac cone excitations to the case of bosons. We call this case as a representative of bosonic Dirac materials (BDM), similar to the case of Fermionic Dirac materials extensively discussed in the literature.

  2. The Stability of New Single-Layer Combined Lattice Shell Based on Aluminum Alloy Honeycomb Panels

    Directory of Open Access Journals (Sweden)

    Caiqi Zhao

    2017-11-01

    Full Text Available This article proposes a new type of single-layer combined lattice shell (NSCLS; which is based on aluminum alloy honeycomb panels. Six models with initial geometric defect were designed and precision made using numerical control equipment. The stability of these models was tested. The results showed that the stable bearing capacity of NSCLS was approximately 16% higher than that of a lattice shell with the same span without a reinforcing plate. At the same time; the properties of the NSCLS were sensitive to defects. When defects were present; its stable bearing capacity was decreased by 12.3% when compared with the defect-free model. The model with random defects following a truncated Gaussian distribution could be used to simulate the distribution of defects in the NSCLS. The average difference between the results of the nonlinear analysis and the experimental results was 5.7%. By calculating and analyzing nearly 20,000 NSCLS; the suggested values of initial geometric defect were presented. The results of this paper could provide a theoretical basis for making and revising the design codes for this new combined lattice shell structure.

  3. Dimer coverings on random multiple chains of planar honeycomb lattices

    International Nuclear Information System (INIS)

    Ren, Haizhen; Zhang, Fuji; Qian, Jianguo

    2012-01-01

    We study dimer coverings on random multiple chains. A multiple chain is a planar honeycomb lattice constructed by successively fusing copies of a ‘straight’ condensed hexagonal chain at the bottom of the previous one in two possible ways. A random multiple chain is then generated by admitting the Bernoulli distribution on the two types of fusing, which describes a zeroth-order Markov process. We determine the expectation of the number of the pure dimer coverings (perfect matchings) over the ensemble of random multiple chains by the transfer matrix approach. Our result shows that, with only two exceptions, the average of the logarithm of this expectation (i.e., the annealed entropy per dimer) is asymptotically nonzero when the fusing process goes to infinity and the length of the hexagonal chain is fixed, though it is zero when the fusing process and the length of the hexagonal chain go to infinity simultaneously. Some numerical results are provided to support our conclusion, from which we can see that the asymptotic behavior fits well to the theoretical results. We also apply the transfer matrix approach to the quenched entropy and reveal that the quenched entropy of random multiple chains has a close connection with the well-known Lyapunov exponent of random matrices. Using the theory of Lyapunov exponents we show that, for some random multiple chains, the quenched entropy per dimer is strictly smaller than the annealed one when the fusing process goes to infinity. Finally, we determine the expectation of the free energy per dimer over the ensemble of the random multiple chains in which the three types of dimers in different orientations are distinguished, and specify a series of non-random multiple chains whose free energy per dimer is asymptotically equal to this expectation. (paper)

  4. Standardization principles of radiographic investigation of concrete structures

    International Nuclear Information System (INIS)

    Runkiewicz, L.

    1979-01-01

    The PN-78/B-06264 Polish Standard concerning the radiographic methods of concrete structure control is discussed. It concerns the inner structure of the building elements, dimensions and position of honeycombs and reinforcement. (author)

  5. Comparison of phase boundaries between kagomé and honeycomb superconducting wire networks

    Science.gov (United States)

    Xiao, Yi; Huse, David A.; Chaikin, Paul M.; Higgins, Mark J.; Bhattacharya, Shobo; Spencer, David

    2002-06-01

    We measure resistively the mean-field superconducting-normal phase boundaries of both kagomé and honeycomb wire networks immersed in a transverse magnetic field. In addition to their agreement with theory about the overall shapes of phase diagrams, they show striking one-to-one correspondence between the cusps in the honeycomb phase boundary and those in the kagomé curve. This correspondence is due to their geometric arrangements and agrees with Lin and Nori's recent calculation. We also find that for the frustrated honeycomb network at f=1/2, the current patterns in the superconducting phase differ between the low-temperature London regime and the higher-temperature Ginzburg-Landau regime near Tc.

  6. Detection of honeycomb cell walls from measurement data based on Harris corner detection algorithm

    Science.gov (United States)

    Qin, Yan; Dong, Zhigang; Kang, Renke; Yang, Jie; Ayinde, Babajide O.

    2018-06-01

    A honeycomb core is a discontinuous material with a thin-wall structure—a characteristic that makes accurate surface measurement difficult. This paper presents a cell wall detection method based on the Harris corner detection algorithm using laser measurement data. The vertexes of honeycomb cores are recognized with two different methods: one method is the reduction of data density, and the other is the optimization of the threshold of the Harris corner detection algorithm. Each cell wall is then identified in accordance with the neighboring relationships of its vertexes. Experiments were carried out for different types and surface shapes of honeycomb cores, where the proposed method was proved effective in dealing with noise due to burrs and/or deformation of cell walls.

  7. Squeezed Dirac and Topological Magnons in a Bosonic Honeycomb Optical Lattice.

    Science.gov (United States)

    Owerre, Solomon; Nsofini, Joachim

    2017-09-20

    Quantum information storage using charge-neutral quasiparticles are expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-$1/2$ XYZ Heisenberg model on the honeycomb lattice with discrete Z$_2$ symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z$_2$ anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators. . © 2017 IOP Publishing Ltd.

  8. Chirality-induced magnon transport in AA-stacked bilayer honeycomb chiral magnets.

    Science.gov (United States)

    Owerre, S A

    2016-11-30

    In this Letter, we study the magnetic transport in AA-stacked bilayer honeycomb chiral magnets coupled either ferromagnetically or antiferromagnetically. For both couplings, we observe chirality-induced gaps, chiral protected edge states, magnon Hall and magnon spin Nernst effects of magnetic spin excitations. For ferromagnetically coupled layers, thermal Hall and spin Nernst conductivities do not change sign as function of magnetic field or temperature similar to single-layer honeycomb ferromagnetic insulator. In contrast, for antiferromagnetically coupled layers, we observe a sign change in the thermal Hall and spin Nernst conductivities as the magnetic field is reversed. We discuss possible experimental accessible honeycomb bilayer quantum materials in which these effects can be observed.

  9. Squeezed Dirac and topological magnons in a bosonic honeycomb optical lattice

    Science.gov (United States)

    Owerre, S. A.; Nsofini, J.

    2017-11-01

    Quantum information storage using charge-neutral quasiparticles is expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-1/2 XYZ Heisenberg model on the honeycomb lattice with discrete Z2 symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z2 anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators.

  10. An examination of impact damage in glass-phenolic and aluminum honeycomb core composite panels

    Science.gov (United States)

    Nettles, A. T.; Lance, D. G.; Hodge, A. J.

    1990-01-01

    An examination of low velocity impact damage to glass-phenolic and aluminum core honeycomb sandwich panels with carbon-epoxy facesheets is presented. An instrumented drop weight impact test apparatus was utilized to inflict damage at energy ranges between 0.7 and 4.2 joules. Specimens were checked for extent of damage by cross sectional examination. The effect of core damage was assessed by subjecting impact-damaged beams to four-point bend tests. Skin-only specimens (facings not bonded to honeycomb) were also tested for comparison purposes. Results show that core buckling is the first damage mode, followed by delaminations in the facings, matrix cracking, and finally fiber breakage. The aluminum honeycomb panels exhibited a larger core damage zone and more facing delaminations than the glass-phenolic core, but could withstand more shear stress when damaged than the glass-phenolic core specimens.

  11. Thermal behavior of laboratory models of honeycomb-covered solar ponds

    Science.gov (United States)

    Lin, E. I. H.

    1983-01-01

    Laboratory experiments were conducted to provide insight into the technical feasibility of honeycomb-covered solar ponds. Cooling tests using honeycomb panels of various materials and geometries showed that a 5.7-cm-thick one-tier panel insulated as effectively as a 10-cm fiberglass slab. Heating tests demonstrated that a model pond covered with a polycarbonate panel boiled upon 16 hours of continuous exposure to a 150-W spotlight. Analysis of the experimental data indicates positively that honeycomb-covered solar ponds can be expected to perform satisfactorily, and that larger-scale outdoor tests should be conducted to provide a more realistic assessment and a more refined performance estimate.

  12. The total hemispheric emissivity of painted aluminum honeycomb at cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Tuttle, J.; Canavan, E.; DiPirro, M.; Li, X. [NASA Goddard Space Flight Center, Code 552 Greenbelt, Maryland, 20771 (United States); Knollenberg, P. [Northrop Grumman Aerospace Systems Redondo Beach, CA 90278 (United States)

    2014-01-29

    NASA uses high-emissivity surfaces on deep-space radiators and thermal radiation absorbers in test chambers. Aluminum honeycomb core material, when coated with a high-emissivity paint, provides a lightweight, mechanically robust, and relatively inexpensive black surface that retains its high emissivity down to low temperatures. At temperatures below about 100 Kelvin, this material performs much better than the paint itself. We measured the total hemispheric emissivity of various painted honeycomb configurations using an adaptation of an innovative technique developed for characterizing thin black coatings. These measurements were performed from room temperature down to 30 Kelvin. We describe the measurement technique and compare the results with predictions from a detailed thermal model of each honeycomb configuration.

  13. Cretaceous honeycomb oysters (Pycnodonte vesicularis) as palaeoseasonality records: A multi-proxy study

    Science.gov (United States)

    de Winter, Niels J.; Vellekoop, Johan; Vorsselmans, Robin; Golreihan, Asefeh; Petersen, Sierra V.; Meyer, Kyle W.; Speijer, Robert P.; Claeys, Philippe

    2017-04-01

    Pycnodonte or "honeycomb-oysters" (Bivalvia: Gryphaeidea) is an extinct genus of calcite-producing bivalves which is found in abundance in Cretaceous to Pleistocene fossil beds worldwide. As such, Pycnodonte shells could be ideal tracers of palaeoclimate through time, with the capability to reconstruct sea water conditions and palaeotemperatures in a range of palaeoenvironmental settings. Only few studies have attempted to reconstruct palaeoclimate based on Pycnodonte shells and with variable degrees of success (e.g. Videt, 2003; Huyge et al., 2015). Our study investigates the shell growth, structure and chemical characteristics of Maastrichtian Pycnodonte vesicularis from Bajada de Jaguel in Argentina and aims to rigorously test the application of multiple palaeoenvironmental proxies on the shells of several Maastrichtian Pycnodonte oysters for palaeoclimate reconstruction. The preservation state of four calcite shells was assessed by fluorescence microscopy, cathodoluminescence and micro X-Ray Fluorescence (XRF) mapping. Their shell structure was investigated using a combination of XRF mapping, high-resolution color scanning and microCT scanning. Long integration time point-by-point XRF line scanning yielded high-resolution trace element profiles through the hinge of all shells. Microdrilled samples from the same locations on the shell were analyzed for trace element composition by ICP-MS and for stable carbon and oxygen isotopes by IRMS. Preservation of the calcite microstructure was found to be of sufficient quality to allow discussion of original shell porosity, annual growth increments and pristine chemical signatures of the bivalves. The combination of fluorescence and cathodoluminescence microscopy with XRF mapping and microCT scanning sheds light on the characteristic internal "honeycomb" structure of these extinct bivalves and allows comparison with that of the related extant Neopycnodonte bivalves (Wisshak et al., 2009). Furthermore, high resolution

  14. Synthesis of honeycomb-like palladium nanostructures by using cucurbit[7]uril and their catalytic activities for reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Premkumar, Thathan [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); The University College/Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Geckeler, Kurt E., E-mail: keg@gist.ac.kr [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Department of Nanobio Materials and Electronics (WCU), Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2014-12-15

    An eco-friendly one-pot method to synthesize self-assembled palladium nanoclusters using a macrocycle, namely cucurbit[7]uril, in the alkaline medium without employing any special reducing or capping agents and/or external energy at room temperature is described. This greener approach, which utilizes water as a benign solvent and biocompatible cucurbit[7]uril as both reducing and protecting agents, can be applied to synthesize other noble metal nanoparticles such as gold, silver, and platinum. Owing to unique structural arrangement of cucurbit[7]uril, it was possible to prepare palladium nanoclusters of honeycomb-like structure irrespective of the reaction conditions. The honeycomb-like palladium nanoclusters were characterized using transmission electron microscopy (TEM), higher-resolution TEM (HR-TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV–vis, and FT-IR spectroscopy. Significantly, the synthesized palladium nanoclusters exhibited catalytic activity for the reduction reaction of 4-nitrophenol at room temperature. The approach launched here is easy, green, and user-friendly in contrast to the conventional techniques using polymers or surfactants and harsh reductants. - Highlights: • A simple and one-pot method to synthesis palladium nanostructures with honey-comb like structure. • The strategy established here does not require any harsh and toxic reducing agents. • It has a potential to be a general method for the synthesis of metal nanoparticles in water medium. • Palladium nanoclusters can be used as catalyst for the reduction reaction of 4-nitrophenol. • This system makes a novel platform for industrial and biomedical applications.

  15. Directed Self-Assembly in "Breath Figure" Templating of Melamine-Based Amphiphilic Copolymers: Effect of Hydrophilic End-Chain on Honeycomb Film Formation and Wetting.

    Science.gov (United States)

    Yin, Hongyao; Feng, Yujun; Billon, Laurent

    2018-01-09

    Amphiphilic copolymers are widely used in the fabrication of hierarchically honeycomb-structured films through a "breath figure" (BF) process because the hydrophilic block plays a key role in stabilising water templating. However, the hydrophilic monomers reported are mainly confined to acrylic acid and its derivatives, which largely limits understanding of the formation of BF arrays and the introduction of additional functions on porous films. The relationship between polymer composition, film microstructure and surface properties are also less documented. Herein, a novel melamine-based hydrophilic moiety, N-[3-({3-[(4,6-bis{[3-(dimethylamino)propyl]amino}-1,3,5-triazin-2yl)amino]propyl}(methyl)amino)propyl]methacrylamide (ANME), was incorporated into polystyrene (PS) chains by combining atom-transfer radical polymerisation and post-modification to afford three well-defined end-functionalised PS-PANME derivatives. These polymers were used to fabricate honeycomb films through the BF technique. Both inner and outer microstructures of the films were characterised by optical microscopy, AFM and SEM. Polymer hydrophilicity is enhanced upon increasing the PANME content, which results in variation of the film microstructure and porosity, and provokes a transition from Cassie-Baxter to Wenzel behaviour. Furthermore, the surface wettability of as-prepared honeycomb films and corresponding pillared films is mainly governed by film morphology, rather than by the properties of the polymers. Knowledge of the relationships between polymer composition and film structure, as well as surface wettability, is beneficial to design and prepare hierarchically porous films with desirable structures and properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Development of honeycomb type orifices for flow zoning in PFBR

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, G.K., E-mail: gkpandey@igcar.gov.in; Ramdasu, D.; Padmakumar, G.; Prakash, V.; Rajan, K.K.

    2013-09-15

    Highlights: • Cavitation free flow zoning devices are developed for reactor core in PFBR. • These devices are experimentally investigated for their hydraulic characteristics. • Pressure drop and cavitation are two main characteristics to be investigated. • Various configurations of devices utilized in different zones are discussed. • Loss coefficient for each configuration is compared and reported. -- Abstract: The prototype fast breeder reactor (PFBR) is in its advanced phase of construction at Kalpakkam, India. It is a sodium cooled, pool type reactor with two loop concept where each loop have one primary sodium pump (PSP), one secondary sodium pump (SSP) and two intermediate heat exchangers (IHX). PFBR core subassemblies (SA) are supported vertically inside the sleeves provided in the grid plate (GP). The GP acts as a coolant header through which flow is distributed among the SA to remove fission heat. Since the power profile of the reactor core is not uniform, it is necessary to distribute the coolant flow (called flow zoning) to each subassembly according to their power levels to get maximum mean outlet temperature of sodium at core outlet. To achieve this, PFBR core is divided into 15 zones such as fuel, blanket, reflector, storage, etc. according to their respective power levels. The flow zoning in the different SAs of the reactor core is achieved by installing permanent pressure dropping devices in the foot of the subassembly. Orifices having honey-comb type geometry were developed to meet the flow zoning requirements of fuel zone. These orifices being of very complex geometry requires precision methods of manufacturing to achieve the desired shape under specified tolerances. Investment casting method was optimized to manufacture this orifice plate successfully. Hydraulics of these orifices is important in achieving the required pressure drop without cavitation. The pressure drop across these orifice geometries depends mainly on geometrical

  17. Rolling Up the Sheet: Constructing Metal–Organic Lamellae and Nanotubes from a [{Mn 3 (propanediolato) 2 }(dicyanamide) 2 ] n Honeycomb Skeleton

    KAUST Repository

    Wu, Gang

    2013-12-11

    Target synthesis of metal-organic nanotubes (MONTs) through a classic "rolling-up" mechanism remains a big challenge for coordination chemists. In this work, we report three 2D lamellar compounds and one (4,0) zigzag MONT based on a common honeycomb coordination skeleton. Our synthetic strategy toward sheet/tube superstructure transformation is to asymmetrically modify the inter-layer interactions by gradually increasing the size of the amine templates. Eventually, to relieve the surface tension of individual layers and to enhance surface areas and optimize host-guest interactions to accommodate bigger guests, spontaneous rolling up to form a tubular structure was achieved. © 2013 American Chemical Society.

  18. Hierarchical Honeycomb Br-, N-Codoped TiO2 with Enhanced Visible-Light Photocatalytic H2 Production.

    Science.gov (United States)

    Zhang, Chao; Zhou, Yuming; Bao, Jiehua; Sheng, Xiaoli; Fang, Jiasheng; Zhao, Shuo; Zhang, Yiwei; Chen, Wenxia

    2018-06-06

    The halogen elements modification strategy of TiO 2 encounters a bottleneck in visible-light H 2 production. Herein, we have for the first time reported a hierarchical honeycomb Br-, N-codoped anatase TiO 2 catalyst (HM-Br,N/TiO 2 ) with enhanced visible-light photocatalytic H 2 production. During the synthesizing process, large amounts of meso-macroporous channels and TiO 2 nanosheets were fabricated in massive TiO 2 automatically, constructing the hierarchical honeycomb structure with large specific surface area (464 m 2 g -1 ). cetyl trimethylammonium bromide and melamine played a key role in constructing the meso-macroporous channels. Additionally, HM-Br,N/TiO 2 showed a high visible-light H 2 production rate of 2247 μmol h -1 g -1 , which is far more higher than single Br- or N-doped TiO 2 (0 or 63 μmol h -1 g -1 , respectively), thereby demonstrating the excellent synergistic effects of Br and N elements in H 2 evolution. In HM-Br,N/TiO 2 catalytic system, the codoped Br-N atoms could reduce the band gap of TiO 2 to 2.88 eV and the holes on acceptor levels (N acceptor) can passivate the electrons on donor levels (Br donor), thereby preventing charge carriers recombination significantly. Furthermore, the proposed HM-Br,N/TiO 2 fabrication strategy had a wide range of choices for N source (e.g., melamine, urea, and dicyandiamide) and it can be applied to other TiO 2 materials (e.g., P25) as well, thereby implying its great potential application in visible-light H 2 production. Finally, on the basis of experimental results, a possible photocatalytic H 2 production mechanism for HM-Br,N/TiO 2 was proposed.

  19. Synthesis of hierarchical porous honeycomb carbon for lithium-sulfur battery cathode with high rate capability and long cycling stability

    International Nuclear Information System (INIS)

    Qu, Yaohui; Zhang, Zhian; Zhang, Xiahui; Ren, Guodong; Wang, Xiwen; Lai, Yanqing; Liu, Yexiang; Li, Jie

    2014-01-01

    Highlights: • A novel HPHC was prepared by a simple template process. • The HPHC as matrix to load sulfur for Lithium-Sulfur battery cathodes. • S-HPHC cathode shows high rate capability and long cycling stability. • The sulfur-HPHC composite presents electrochemical stability up to 300 cycles at 1.5 C. - Abstract: Sulfur has a high specific capacity of 1675 mAh g −1 as lithium battery cathode, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a novel hierarchical porous honeycomb carbon (HPHC) for lithium-sulfur battery cathode with effective trapping of polysulfides. The HPHC was prepared by a simple template process, and a sulfur-carbon composite based on HPHC was synthesized for lithium-sulfur batteries by a melt-diffusion method. It is found that the elemental sulfur was dispersed inside the three-dimensionally hierarchical pores of HPHC based on the analyses. Electrochemical tests reveal that the sulfur-HPHC composite shows high rate capability and long cycling stability as cathode materials. The sulfur-HPHC composite with sulfur content of 66.3 wt% displays an initial discharge capacity of 923 mAh g −1 and a reversible discharge capacity of 564 mAh g −1 after 100 cycles at 2 C charge-discharge rate. In particular, the sulfur-HPHC composite presents a long term cycling stability up to 300 cycles at 1.5 C. The results illustrate that the electrochemical reaction constrained inside the interconnected macro/meso/micropores of HPHC would be the dominant factor for the excellent high rate capability and long cycling stability of the sulfur cathode, and the three-dimensionally honeycomb carbon network would be a promising carbon matrix structure for lithium-sulfur battery cathode

  20. Improved electrochemical performance of natural honeycomb templated LiSbO3 as an anode in lithium-ion battery

    International Nuclear Information System (INIS)

    Kundu, M.; Mahanty, S.; Basu, R.N.

    2011-01-01

    Highlights: → LiSbO 3 powders are synthesized by using honeycomb from natural beehive as template. → Agglomeration-free morphology with discrete cubic shaped 40-80 nm particles. → Electrochemically active anode in lithium-ion coin cells. → Improved capacity retention and rate performance in templated LiSbO 3 . - Abstract: LiSbO 3 has been synthesized by wet-chemical route using natural honeycomb as template, followed by thermal treatment at 850 deg. C. X-ray powder diffraction (XRD) confirms a single phase material having an orthorhombic crystal structure with lattice parameters of a = 4.912 A, b = 8.679 A and c = 5.089 A. Field emission scanning electron microscopy (FESEM) revealed that while conventional LiSbO 3 synthesized without using any template (C-LiSbO 3 ) consists of softly agglomerated clusters of bar-shaped multifaceted micrometer-sized grains (0.5-4.0 μm long and 0.5-1.0 μm wide), templated LiSbO 3 (T-LiSbO 3 ) consists of an agglomeration-free morphology with discrete cubic shaped particles of sizes 40-80 nm. Electrochemical investigation in 2032 type coin cells vs Li/Li + shows that Li insertion in LiSbO 3 takes place at 0.78 V while Li extraction occurs in two stages at 1.1 and 1.4 V with initial capacities of 178 and 196 mAh g -1 for C-LiSbO 3 and T-LiSbO 3 respectively. While C-LiSbO 3 shows a drastic capacity fading retaining only 28% of initial capacity after 100 cycles, T-LiSbO 3 retains ∼48% of the initial capacity due to the faceted morphology of the nanoparticles.

  1. Exploring the diversity of Listeria monocytogenes biofilm architecture by high-throughput confocal laser scanning microscopy and the predominance of the honeycomb-like morphotype.

    Science.gov (United States)

    Guilbaud, Morgan; Piveteau, Pascal; Desvaux, Mickaël; Brisse, Sylvain; Briandet, Romain

    2015-03-01

    Listeria monocytogenes is involved in food-borne illness with a high mortality rate. The persistence of the pathogen along the food chain can be associated with its ability to form biofilms on inert surfaces. While most of the phenotypes associated with biofilms are related to their spatial organization, most published data comparing biofilm formation by L. monocytogenes isolates are based on the quantitative crystal violet assay, which does not give access to structural information. Using a high-throughput confocal-imaging approach, the aim of this work was to decipher the structural diversity of biofilms formed by 96 L. monocytogenes strains isolated from various environments. Prior to large-scale analysis, an experimental design was created to improve L. monocytogenes biofilm formation in microscopic-grade microplates, with special emphasis on the growth medium composition. Microscopic analysis of biofilms formed under the selected conditions by the 96 isolates revealed only weak correlation between the genetic lineages of the isolates and the structural properties of the biofilms. However, a gradient in their geometric descriptors (biovolume, mean thickness, and roughness), ranging from flat multilayers to complex honeycomb-like structures, was shown. The dominant honeycomb-like morphotype was characterized by hollow voids hosting free-swimming cells and localized pockets containing mixtures of dead cells and extracellular DNA (eDNA). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Poly(ethylenimine)-Functionalized Monolithic Alumina Honeycomb Adsorbents for CO2 Capture from Air.

    Science.gov (United States)

    Sakwa-Novak, Miles A; Yoo, Chun-Jae; Tan, Shuai; Rashidi, Fereshteh; Jones, Christopher W

    2016-07-21

    The development of practical and effective gas-solid contactors is an important area in the development of CO2 capture technologies. Target CO2 capture applications, such as postcombustion carbon capture and sequestration (CCS) from power plant flue gases or CO2 extraction directly from ambient air (DAC), require high flow rates of gas to be processed at low cost. Extruded monolithic honeycomb structures, such as those employed in the catalytic converters of automobiles, have excellent potential as structured contactors for CO2 adsorption applications because of the low pressure drop imposed on fluid moving through the straight channels of such structures. Here, we report the impregnation of poly(ethylenimine) (PEI), an effective aminopolymer reported commonly for CO2 separation, into extruded monolithic alumina to form structured CO2 sorbents. These structured sorbents are first prepared on a small scale, characterized thoroughly, and compared with powder sorbents with a similar composition. Despite consistent differences observed in the filling of mesopores with PEI between the monolithic and powder sorbents, their performance in CO2 adsorption is similar across a range of PEI contents. A larger monolithic cylinder (1 inch diameter, 4 inch length) is evaluated under conditions closer to those that might be used in large-scale applications and shows a similar performance to the smaller monoliths and powders tested initially. This larger structure is evaluated over five cycles of CO2 adsorption and steam desorption and demonstrates a volumetric capacity of 350 molCO2  m-3monolith and an equilibration time of 350 min under a 0.4 m s(-1) linear flow velocity through the monolith channels using 400 ppm CO2 in N2 as the adsorption gas at 30 °C. This volumetric capacity surpasses that of a similar technology considered previously, which suggested that CO2 could be removed from air at an operating cost as low as $100 per ton. © 2016 WILEY-VCH Verlag

  3. Analysis on High Temperature Aging Property of Self-brazing Aluminum Honeycomb Core at Middle Temperature

    Directory of Open Access Journals (Sweden)

    ZHAO Huan

    2016-11-01

    Full Text Available Tension-shear test was carried out on middle temperature self-brazing aluminum honeycomb cores after high temperature aging by micro mechanical test system, and the microstructure and component of the joints were observed and analyzed using scanning electron microscopy and energy dispersive spectroscopy to study the relationship between brazing seam microstructure, component and high temperature aging properties. Results show that the tensile-shear strength of aluminum honeycomb core joints brazed by 1060 aluminum foil and aluminum composite brazing plate after high temperature aging(200℃/12h, 200℃/24h, 200℃/36h is similar to that of as-welded joints, and the weak part of the joint is the base metal which is near the brazing joint. The observation and analysis of the aluminum honeycomb core microstructure and component show that the component of Zn, Sn at brazing seam is not much affected and no compound phase formed after high temperature aging; therefore, the main reason for good high temperature aging performance of self-brazing aluminum honeycomb core is that no obvious change of brazing seam microstructure and component occurs.

  4. Finite Element Analysis of Aluminum Honeycombs Subjected to Dynamic Indentation and Compression Loads

    Directory of Open Access Journals (Sweden)

    A.S.M. Ayman Ashab

    2016-03-01

    Full Text Available The mechanical behavior of aluminum hexagonal honeycombs subjected to out-of-plane dynamic indentation and compression loads has been investigated numerically using ANSYS/LS-DYNA in this paper. The finite element (FE models have been verified by previous experimental results in terms of deformation pattern, stress-strain curve, and energy dissipation. The verified FE models have then been used in comprehensive numerical analysis of different aluminum honeycombs. Plateau stress, σpl, and dissipated energy (EI for indentation and EC for compression have been calculated at different strain rates ranging from 102 to 104 s−1. The effects of strain rate and t/l ratio on the plateau stress, dissipated energy, and tearing energy have been discussed. An empirical formula is proposed to describe the relationship between the tearing energy per unit fracture area, relative density, and strain rate for honeycombs. Moreover, it has been found that a generic formula can be used to describe the relationship between tearing energy per unit fracture area and relative density for both aluminum honeycombs and foams.

  5. [Study on formation process of honeycomb pattern in dielectric barrier discharge by optical emission spectrum].

    Science.gov (United States)

    Dong, Li-Fang; Zhu, Ping; Yang, Jing; Zhang, Yu

    2014-04-01

    The authors report on the first investigation of the variations in the plasma parameters in the formation process of the honeycomb pattern in a dielectric barrier discharge by optical emission spectrum in argon and air mixture. The discharge undergoes hexagonal lattice, concentric spot-ring pattern and honeycomb pattern with the applied voltage increasing. The molecular vibration temperature, electron excitation temperature and electronic density of the three kinds of patterns were investigated by the emission spectra of nitrogen band of second positive system (C3pi(u) --> B3 pi(g)), the relative intensity ratio method of spectral lines of Ar I 763.51 nm (2P(6) --> 1S(5)) and Ar I 772.42 nm (2P(2) -->1S(3)) and the broadening of spectral line 696.5 nm respectively. It was found that the molecular vibration temperature and electron excitation temperature of the honeycomb pattern are higher than those of the hexagonal lattice, but the electron density of the former is lower than that of the latter. The discharge powers of the patterns were also measured with the capacitance method. The discharge power of the honeycomb pattern is much higher than that of the hexagonal lattice. These results are of great importance to the formation mechanism of the patterns in dielectric barrier discharge.

  6. [Removal of toluene from waste gas by honeycomb adsorption rotor with modified 13X molecular sieves].

    Science.gov (United States)

    Wang, Jia-De; Zheng, Liang-Wei; Zhu, Run-Ye; Yu, Yun-Feng

    2013-12-01

    The removal of toluene from waste gas by Honeycomb Adsorption Rotor with modified 13X molecular sieves was systematically investigated. The effects of the rotor operating parameters and the feed gas parameters on the adsorption efficiency were clarified. The experimental results indicated that the honeycomb adsorption rotor had a good humidity resistance. The removal efficiency of honeycomb adsorption rotor achieved the maximal value with optimal rotor speed and optimal generation air temperature. Moreover, for an appropriate flow rate ratio the removal efficiency and energy consumption should be taken into account. When the recommended operating parameters were regeneration air temperature of 180 degrees C, rotor speed of 2.8-5 r x h(-1), flow rate ratio of 8-12, the removal efficiency kept over 90% for the toluene gas with concentration of 100 mg x m(-3) and inlet velocity of 2 m x s(-1). The research provided design experience and operating parameters for industrial application of honeycomb adsorption rotor. It showed that lower empty bed velocity, faster rotor speed and higher temperature were necessary to purify organic waste gases of higher concentrations.

  7. Numerical Investigation on Dynamic Crushing Behavior of Auxetic Honeycombs with Various Cell-Wall Angles

    Directory of Open Access Journals (Sweden)

    Xin-chun Zhang

    2015-02-01

    Full Text Available Auxetic honeycombs have proven to be an attractive advantage in actual engineering applications owing to their unique mechanical characteristic and better energy absorption ability. The in-plane dynamic crushing behaviors of the honeycombs with various cell-wall angles are studied by means of explicit dynamic finite element simulation. The influences of the cell-wall angle, the impact velocity, and the edge thickness on the macro/microdeformation behaviors, the plateau stresses, and the specific energy absorption of auxetic honeycombs are discussed in detail. Numerical results show, that except for the impact velocity and the edge thickness, the in-plane dynamic performances of auxetic honeycombs also rely on the cell-wall angle. The “> <”-mode local deformation bands form under low- or moderate-velocity impacting, which results in lateral compression shrinkage and shows negative Poisson's ratio during the crushing. For the given impact velocity, the plateau stress at the proximal end and the energy-absorbed ability can be improved by increasing the negative cell angle, the relative density, the impact velocity, and the matrix material strength. When the microcell parameters are the constant, the plateau stresses are proportional to the square of impact velocity.

  8. Inner-Resonance Conditions for Honeycomb Paperboard Cushioning Packaging System with Critical Component

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2013-01-01

    Full Text Available A dynamic model was proposed for a honeycomb paperboard cushioning packaging system with critical component. Then the coupled equations of the system were solved by the variational iteration method, from which the conditions for inner-resonance were obtained, which should be avoided in the cushioning packaging design.

  9. Supersolid-like magnetic states in a mixed honeycomb-triangular lattice system.

    Science.gov (United States)

    Garlea, Ovidiu

    Field-induced magnetic states that occur in layered triangular antiferromagnets have been of broad interest due to the emergence of new exotic phases, such as topologically ordered states and supersolids. Experimental realization of the supersolid states where spin components break simultaneously the translational and rotational symmetries remains scarce. In this context, the mixed vanadate -carbonate K2Mn3(VO4)2CO3 is a very promising system. This compound contains two types of two-dimensional layers alternately stacked along the crystallographic c-axis: one layer consists of a honeycomb web structure made of edge sharing MnO6 octahedra, while the other consists of MnO5 trigonal bipyramids linked by [CO3] triangles to form a triangular magnetic lattice. Magnetization and heat capacity measurements reveal a complex magnetic phase diagram that includes three phase transition associated with sequential long range magnetic ordering of the different sublattices. The lowest temperature state resembles a supersolid state that was predicted to occur in two-dimensional frustrated magnet with easy axis anisotropy. Such a supersolid phase is defined by a commensurate √3× √3 magnetic superlattice, where two thirds of the spins are canted away from the easy axis direction. Applied magnetic field destabilizes this ordered state and induces a cascade of new exotic magnetic ground states. The nature of these field-induced magnetic states is evaluated by using neutron scattering techniques. Work at the Oak Ridge National Laboratory was sponsored by the US Department of Energy, Office of Science, Basic Energy Sciences, Scientific User Facilities Division and Materials Sciences and Engineering Division.

  10. Exploring single-layered SnSe honeycomb polymorphs for optoelectronic and photovoltaic applications

    Science.gov (United States)

    Ul Haq, Bakhtiar; AlFaify, S.; Ahmed, R.; Butt, Faheem K.; Laref, A.; Shkir, Mohd.

    2018-02-01

    Single-layered tin selenide that shares the same structure with phosphorene and possesses intriguing optoelectronic properties has received great interest as a two-dimensional material beyond graphene and phosphorene. Herein, we explore the optoelectronic response of the newly discovered stable honeycomb derivatives (such as α , β , γ , δ , and ɛ ) of single-layered SnSe in the framework of density functional theory. The α , β , γ , and δ derivatives of a SnSe monolayer have been found to exhibit an indirect band gap, however, the dispersion of their band-gap edges demonstrates multiple direct band gaps at a relatively high energy. The ɛ -SnSe, however, features an intrinsic direct band gap at the high-symmetry Γ point. Their energy band gaps (0.53, 2.32, 1.52, 1.56, and 1.76 eV for α -, β -, γ -, δ -, and ɛ -SnSe, respectively), calculated at the level of the Tran-Blaha modified Becke-Johnson approach, mostly fall right in the visible range of the electromagnetic spectrum and are in good agreement with the available literature. The optical spectra of these two-dimensional (2D) SnSe polymorphs (besides β -SnSe) are highly anisotropic and possess strictly different optical band gaps along independent diagonal components. They show high absorption in the visible and UV ranges. Similarly, the reflectivity, refraction, and optical conductivities inherit strong anisotropy from the dielectric functions as well and are highly visible-UV polarized along the cartesian coordinates, showing them to be suitable for optical filters, polarizers, and shields against UV radiation. Our investigations suggest these single-layered SnSe allotropes as a promising 2D material for next-generation nanoscale optoelectronic and photovoltaic applications beyond graphene and phosphorene.

  11. Honeycomb-like thin films of polystyrene-block-poly(2-vinylpyridine) embedded with gold or silver nanoparticles formed at the planer liquid/liquid interface.

    Science.gov (United States)

    Wang, Di; Ma, Huihui; Chu, Chunxiao; Hao, Jingcheng; Liu, Hong-Guo

    2013-07-15

    Composite thin films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) decorated with Au or Ag nanoclusters and nanoparticles were fabricated at the interfaces of chloroform solution of PS-b-P2VP and aqueous solutions of HAuCl4 or AgNO3. Transmission electron microscopy (TEM) investigations indicated that large area of a single-layer honeycomb structure was formed, which is composed of polygons (most of them are hexagons) whose walls look like spindles with the length of several hundreds of nanometers. Large amount of Au or Ag nanoparticles are embedded in the walls and the undersides of the honeycomb structures. The formation of these novel composite structures was attributed to the adsorption of block copolymer molecules and inorganic species of AuCl4(-) and Ag(+) ions at the liquid-liquid interface, the combination of the polymer molecules and the inorganic ions, and the self-assembly of the composite molecules. After UV-light irradiation and KBH4 aqueous solution treatment, the inorganic species were reduced completely, as confirmed by UV-vis spectra and X-ray photoelectron spectra. These composite films exhibited high catalytic activities for the reduction of 4-nitrophenol (4-NP) by KBH4 in aqueous solutions. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Natural convection and radiation heat transfer in a vertical porous layer with a hexagonal honeycomb core. 2nd Report. Experiment on heat transfer; Honeycomb core de shikirareta enchoku takoshitsu sonai no shizen tairyu - fukusha fukugo netsu dentatsu. 2. Dennetsu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Y; Asako, Y [Tokyo Metropolitan Univ., Tokyo (Japan). Faculty of Technology

    1997-06-25

    The combined natural convection and radiation heat transfer characteristics in a vertical porous layer with a hexagonal honeycomb core were investigate experimentally. The temperature distributions on the honeycomb core wall and the combined heat transfer rates through the porous layer were measured. The measurements of the heat transfer were accomplished using the guarded hot plate (GHP) method. The honeycomb core wall was made of paper and large mesh foamed resins were inserted into the honeycomb enclosures. The measurements were performed while varying the radiation parameters between 0.5 to 0.65, varying the temperature ratios between 0.01 to 0.1 and varying the Darcy-Rayleigh numbers between 5 to 80, and for a fixed aspect ratio of H/L=1. The experimental results for Nusselt numbers agreed well with our available numerical results. 9 refs., 8 figs.

  13. Kitaev honeycomb model. Majorana fermion representation and disorder

    International Nuclear Information System (INIS)

    Zschocke, Fabian

    2016-01-01

    Many interesting phenomena in quantum physics arise through the quantum mechanical interaction of a large number of particles. In most cases describing the relevant physical properties is extremely difficult, because the complexity of the system increases exponentially with the number of interacting particles and solving the underlying Schroedinger equation becomes impossible. Nevertheless, our understanding of complex phenomena has progressed through some groundbreaking discoveries in the history of condensed matter physics. Examples include the development of Landau's theory of Fermi liquids, the BCS theory of superconductivity, the theory of superfluidity and the theory of the fractional quantum Hall effect. In all these cases a theoretical understanding was achieved with so-called quasi-particles. Instead of explaining a phenomenon through the behavior of fundamental particles, such as electrons, the corresponding properties can be described by the simple behavior of quasi-particles, which are themselves a result of the complex collective interaction. One of the rare examples, where a strongly correlated quantum mechanical problem can be solved analytical, is the Kitaev model. It describes interacting spins on a honeycomb lattice and exhibits a spin liquid ground state. Here the solution was achieved by means of certain quasi-particles, called Majorana fermions. However, it has not been possible to clearly identify such a spin liquid experimentally, because its defining feature is the absence of any conventional order, in particular magnetic order. In contrast, the observation of quasiparticle excitations may hint at the nature of the ground state. But also a definite detection of Majorana fermions in any kind of system remains one of the outstanding issues in modern condensed matter physics. Therefore this thesis is devoted to the question how such quasiparticles may be found experimentally. For this reason we study the influence of disorder on the states

  14. Topology optimization of pressure adaptive honeycomb for a morphing flap

    NARCIS (Netherlands)

    Vos, R.; Scheepstra, J.; Barrett, R.

    2011-01-01

    The paper begins with a brief historical overview of pressure adaptive materials and structures. By examining avian anatomy, it is seen that pressure-adaptive structures have been used successfully in the Natural world to hold structural positions for extended periods of time and yet allow for

  15. The use of paper honeycomb for prototype blade construction for small to medium-sized wind driven generators

    Science.gov (United States)

    Meyer, H.

    1973-01-01

    Paper honeycomb is used for the construction of conventional, propeller-type, windmill blades. Using fairly simple techniques and conventional power tools, it is possible to shape both simple foils and more complex foils with or without tapered plan forms and with or without varying profiles. A block of honeycomb, in its compressed form, is mounted on a wedge and run through a bandsaw with the table at an appropriate tilt angle. It is the combination of the wedge angle and the table angle that gives the tapered planform and profile shape. Next the honeycomb is expanded on the shaft and jigged to give the desired angles of attack. With the honeycomb fixed in position, the blade is covered with a fine weave fiberglass cloth. Any surface quality can then be achieved with filling and sanding.

  16. On the critical point of the fully-anisotropic quenched bond-random Potts ferromagnet in triangular and honeycomb lattices

    International Nuclear Information System (INIS)

    Tsallis, C.; Santos, R.J.V. dos

    1983-01-01

    On conjectural grounds an equation that provides a very good approximation for the critical temperature of the fully-anisotropic homogeneous quenched bond-random q-state Potts ferromagnet in triangular and honeycomb lattices is presented. Almost all the exact particular results presently known for the square, triangular and honeycomb lattices are recovered; the numerical discrepancy is quite small for the few exceptions. Some predictions that we believe to be exact are made explicite as well. (Author) [pt

  17. Aerodynamic effect of a honeycomb rotor tip shroud on a 50.8-centimeter-tip-diameter core turbine

    Science.gov (United States)

    Moffitt, T. P.; Whitney, W. J.

    1983-01-01

    A 50.8-cm-tip-diameter turbine equipped with a rotor tip shroud of hexagonal cell (or honeycomb) cross section has been tested in warm air (416 K) for a range of shroud coolant to primary flow rates. Test results were also obtained for the same turbine operated with a solid shroud for comparison. The results showed that the combined effect of the honeycomb shroud and the coolant flow was to cause a reduction of 2.8 points in efficiency at design speed, pressure ratio, and coolant flow rate. With the coolant system inactivated, the honeycomb shroud caused a decrease in efficiency of 2.3 points. These results and those obtained from a small reference turbine indicate that the dominant factor governing honeycomb tip shroud loss is the ratio of honeycomb depth to blade span. The loss results of the two shrouds could be correlated on this basis. The same honeycomb and coolant effects are expected to occur for the hot (2200 K) version of this turbine.

  18. Honeycomb Actuators Inspired by the Unfolding of Ice Plant Seed Capsules.

    Directory of Open Access Journals (Sweden)

    Lorenzo Guiducci

    Full Text Available Plant hydro-actuated systems provide a rich source of inspiration for designing autonomously morphing devices. One such example, the pentagonal ice plant seed capsule, achieves complex mechanical actuation which is critically dependent on its hierarchical organization. The functional core of this actuation system involves the controlled expansion of a highly swellable cellulosic layer, which is surrounded by a non-swellable honeycomb framework. In this work, we extract the design principles behind the unfolding of the ice plant seed capsules, and use two different approaches to develop autonomously deforming honeycomb devices as a proof of concept. By combining swelling experiments with analytical and finite element modelling, we elucidate the role of each design parameter on the actuation of the prototypes. Through these approaches, we demonstrate potential pathways to design/develop/construct autonomously morphing systems by tailoring and amplifying the initial material's response to external stimuli through simple geometric design of the system at two different length scales.

  19. Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field

    Science.gov (United States)

    Liu, Zheng-Xin; Normand, B.

    2018-05-01

    Motivated by recent experimental observations in α -RuCl3 , we study the K -Γ model on the honeycomb lattice in an external magnetic field. By a slave-particle representation and variational Monte Carlo calculations, we reproduce the phase transition from zigzag magnetic order to a field-induced disordered phase. The nature of this state depends crucially on the field orientation. For particular field directions in the honeycomb plane, we find a gapless Dirac spin liquid, in agreement with recent experiments on α -RuCl3 . For a range of out-of-plane fields, we predict the existence of a Kalmeyer-Laughlin-type chiral spin liquid, which would show an integer-quantized thermal Hall effect.

  20. Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field.

    Science.gov (United States)

    Liu, Zheng-Xin; Normand, B

    2018-05-04

    Motivated by recent experimental observations in α-RuCl_{3}, we study the K-Γ model on the honeycomb lattice in an external magnetic field. By a slave-particle representation and variational Monte Carlo calculations, we reproduce the phase transition from zigzag magnetic order to a field-induced disordered phase. The nature of this state depends crucially on the field orientation. For particular field directions in the honeycomb plane, we find a gapless Dirac spin liquid, in agreement with recent experiments on α-RuCl_{3}. For a range of out-of-plane fields, we predict the existence of a Kalmeyer-Laughlin-type chiral spin liquid, which would show an integer-quantized thermal Hall effect.

  1. Triangular and honeycomb lattices bond-diluted Ising ferromagnet: critical frontier

    International Nuclear Information System (INIS)

    Magalhaes, A.C.N. de; Schwaccheim, G.; Tsallis, C.

    1982-01-01

    Within a real space renormalization group framework (12 different procedures, all of them using star-triangle and duality-type transformations) accurate approximations for the critical frontiers associated with the quenched bond-diluted first-neighbour spin- 1 / 2 Ising ferromagnet on triangular and honeycomb lattices are calculated. All of them provide, in both pure bond percolation and pure Ising limits, the exact critical points and exact or almost exact derivatives in the p-t space (p is the bond independent occupancy probability and t tanh J/k(sub B)T). The best numerical proposals lead to the exact derivative in the pure percolation limit (p = p(sub c)) and, in what concerns the pure Ising limit (p = 1) derivative, to a 0.15% error for the triangular lattice and to a 0.96% error for the honeycomb one; in the intermediate region (p(sub c) [pt

  2. Theory of a quantum spin liquid in the hydrogen-intercalated honeycomb iridate H3LiIr2O6

    Science.gov (United States)

    Slagle, Kevin; Choi, Wonjune; Chern, Li Ern; Kim, Yong Baek

    2018-03-01

    We propose a theoretical model for a gapless spin liquid phase that may have been observed in a recent experiment on H3LiIr2O6 . Despite the insulating and nonmagnetic nature of the material, the specific heat coefficient C /T ˜1 /√{T } in zero magnetic field and C /T ˜T /B3 /2 with finite magnetic field B have been observed. In addition, the NMR relaxation rate shows 1 /(T1T ) ˜(C/T ) 2 . Motivated by the fact that the interlayer/in-plane lattice parameters are reduced/elongated by the hydrogen intercalation of the parent compound Li2IrO3 , we consider four layers of the Kitaev honeycomb lattice model with additional interlayer exchange interactions. It is shown that the resulting spin liquid excitations reside mostly in the top and bottom layers of such a layered structure and possess a quartic dispersion. In an applied magnetic field, each quartic mode is split into four Majorana cones with the velocity v ˜B3 /4 . We suggest that the spin liquid phase in these "defect" layers, placed between different stacking patterns of the honeycomb layers, can explain the major phenomenology of the experiment, which can be taken as evidence that the Kitaev interaction plays the primary role in the formation of a quantum spin liquid in this material.

  3. Synthesis of honeycomb-like mesoporous nitrogen-doped carbon nanospheres as Pt catalyst supports for methanol oxidation in alkaline media

    Science.gov (United States)

    Zhang, Yunmao; Liu, Yong; Liu, Weihua; Li, Xiying; Mao, Liqun

    2017-06-01

    This paper reports the convenient synthesis of honeycomb-like mesoporous nitrogen-doped carbon spheres (MNCS) using a self-assembly strategy that employs dopamine (DA) as a carbon and nitrogen precursor and a polystyrene-b-poly(ethylene oxide) (PS173-b-PEO170) diblock copolymer as a soft template. The MNCS have large BET surface areas of up to 554 m2 g-1 and high nitrogen contents of up to 6.9 wt%. The obtained MNCS are used as a support for Pt catalysts, which promote methanol oxidation in alkaline media. The MNCS-supported Pt (Pt/MNCS) catalyst has a larger electrochemically active surface area (ESA) (89.2 m2 g-1) than does a commercially available Vulcan XC-72R supported Pt/C catalyst. Compared to the Pt/C catalyst, Pt/MNCS displays a higher peak current density (1007 mA mg-1) and is more stable during methanol oxidation. These improvements are attributed to the honeycomb-like porous structure of the MNCS and the introduction of nitrogen to the carbon support. The MNCS effectively stabilize Pt nanoparticles and assuage the agglomeration of the nanoparticles, suggesting that MNCS are potential and promising application as electrocatalyst supports in alkaline direct methanol fuel cells.

  4. Competition between spin-orbit coupling, magnetism, and dimerization in the honeycomb iridates: α -Li2IrO3 under pressure

    Science.gov (United States)

    Hermann, V.; Altmeyer, M.; Ebad-Allah, J.; Freund, F.; Jesche, A.; Tsirlin, A. A.; Hanfland, M.; Gegenwart, P.; Mazin, I. I.; Khomskii, D. I.; Valentí, R.; Kuntscher, C. A.

    2018-02-01

    Single-crystal x-ray diffraction studies with synchrotron radiation on the honeycomb iridate α -Li2IrO3 reveal a pressure-induced structural phase transition with symmetry lowering from monoclinic to triclinic at a critical pressure of Pc=3.8 GPa. According to the evolution of the lattice parameters with pressure, the transition mainly affects the a b plane and thereby the Ir hexagon network, leading to the formation of Ir-Ir dimers. These observations are independently predicted and corroborated by our ab initio density functional theory calculations where we find that the appearance of Ir-Ir dimers at finite pressure is a consequence of a subtle interplay between magnetism, correlation, spin-orbit coupling, and covalent bonding. Our results further suggest that at Pc the system undergoes a magnetic collapse. Finally we provide a general picture of competing interactions for the honeycomb lattices A2M O3 with A =Li , Na and M =Ir , Ru.

  5. Enhanced xylene removal by photocatalytic oxidation using fiber-illuminated honeycomb reactor at ppb level

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yi-Ting [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Yu, Yi-Hui [Department of Civil Engineering, National Taiwan University, Taipei 106, Taiwan (China); Nguyen, Van-Huy [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan (China); Lu, Kung-Te [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Wu, Jeffrey Chi-Sheng, E-mail: cswu@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Luh-Maan [Department of Civil Engineering, National Taiwan University, Taipei 106, Taiwan (China); Kuo, Chi-Wen [Taiwan Semiconductor Manufacturing Company, Hsinchu 30078, Taiwan (China)

    2013-11-15

    Graphical abstract: We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. -- Highlights: • The combination of optical fiber and honeycomb significantly enhanced the performance of VOCs photodegradation. • The removal efficiency of m-xylene is enhanced to 96.5% as compared to 22.0% for UV irradiation alone. • Fiber-illuminated honeycomb reactor is the first step toward an industrial-scale technology on the removal of xylene. -- Abstract: The removal of volatile organic compounds (VOCs) at ppb level is one of the most critical challenges in clean rooms for the semiconductor industry. Photocatalytic oxidation is an innovative and promising technology for ppb-level VOCs degradation. We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. Using the FIHR with Mn-TiO{sub 2} photocatalyst not only increased the m-xylene removal efficiency, but also increased the CO{sub 2} selectivity. Interestingly, Mn-TiO{sub 2} in FIHR also showed a very good reusability, 93% removal efficiency was still achieved in 72-h in reaction. Thus, the FIHR gave very high removal efficiency for xylene at ppb level under room temperature. The FIHR has great potential application in the clean room for the air purification system in the future.

  6. Low crosstalk waveguide intersections in honeycomb lattice photonic crystals for TM-polarized light

    International Nuclear Information System (INIS)

    Ma, P; Jäckel, H

    2011-01-01

    We present the design of a low crosstalk, high throughput waveguide intersection for transverse-magnetic-polarized light. The design is based on two orthogonal photonic crystal waveguides and a resonant photonic crystal cavity in honeycomb lattice geometry. The results of our numerical simulation validate the concept of the design and demonstrate a crosstalk smaller than 0.1% and throughput transmission of more than 80% for both orthogonal waveguide branches

  7. Enhanced xylene removal by photocatalytic oxidation using fiber-illuminated honeycomb reactor at ppb level

    International Nuclear Information System (INIS)

    Wu, Yi-Ting; Yu, Yi-Hui; Nguyen, Van-Huy; Lu, Kung-Te; Wu, Jeffrey Chi-Sheng; Chang, Luh-Maan; Kuo, Chi-Wen

    2013-01-01

    Graphical abstract: We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. -- Highlights: • The combination of optical fiber and honeycomb significantly enhanced the performance of VOCs photodegradation. • The removal efficiency of m-xylene is enhanced to 96.5% as compared to 22.0% for UV irradiation alone. • Fiber-illuminated honeycomb reactor is the first step toward an industrial-scale technology on the removal of xylene. -- Abstract: The removal of volatile organic compounds (VOCs) at ppb level is one of the most critical challenges in clean rooms for the semiconductor industry. Photocatalytic oxidation is an innovative and promising technology for ppb-level VOCs degradation. We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. Using the FIHR with Mn-TiO 2 photocatalyst not only increased the m-xylene removal efficiency, but also increased the CO 2 selectivity. Interestingly, Mn-TiO 2 in FIHR also showed a very good reusability, 93% removal efficiency was still achieved in 72-h in reaction. Thus, the FIHR gave very high removal efficiency for xylene at ppb level under room temperature. The FIHR has great potential application in the clean room for the air purification system in the future

  8. Conceptual study of dry storage method for spent fuel assemblies based on honeycomb concrete overpack (COP). Phase 1

    International Nuclear Information System (INIS)

    Hida, Yoshio; Hayashi, Shigeki; Katsuyama, Yoshiaki; Hashimoto, Hirohide; Murata, Takashi

    2017-01-01

    fuel assemblies are over packed by a concrete shielding , the external shape of which is a hexagonal prism. The concrete overpacks are aligned side-by-side without gaps and placed on the ground to form honeycomb-patterned assemblies. The concrete overpack is designed to feature inside air flow paths for natural convection cooling, including one air flow path in the bottom part allows an inspection passage. To fasten the overpacks each to each creates a strong honeycomb assemblies; making the freestanding structure on the ground ensures resistance to earthquakes. This concept enables safer dry storage in a relatively small area of land, at relatively low cost, and also makes it possible to gradually expand the facility to accommodate the spent fuel generated over time. (author)

  9. Self-sustained oscillations in blood flow through a honeycomb capillary network.

    Science.gov (United States)

    Davis, J M; Pozrikidis, C

    2014-09-01

    Numerical simulations of unsteady blood flow through a honeycomb network originating at multiple inlets and terminating at multiple outlets are presented and discussed under the assumption that blood behaves as a continuum with variable constitution. Unlike a tree network, the honeycomb network exhibits both diverging and converging bifurcations between branching capillary segments. Numerical results based on a finite difference method demonstrate that as in the case of tree networks considered in previous studies, the cell partitioning law at diverging bifurcations is an important parameter in both steady and unsteady flow. Specifically, a steady flow may spontaneously develop self-sustained oscillations at critical conditions by way of a Hopf bifurcation. Contrary to tree-like networks comprised entirely of diverging bifurcations, the critical parameters for instability in honeycomb networks depend weakly on the system size. The blockage of one or more network segments due to the presence of large cells or the occurrence of capillary constriction may cause flow reversal or trigger a transition to unsteady flow.

  10. Biomimetic honeycomb-patterned surface as the tunable cell adhesion scaffold.

    Science.gov (United States)

    Chen, Shuangshuang; Lu, Xuemin; Hu, Ying; Lu, Qinghua

    2015-01-01

    Inspired by the typically adhesive behaviors of fish skin and Parthenocissus tricuspidata, two different decorations of polystyrene honeycomb membrane (PSHCM) prepared by the breath figure approach were carried out with poly(N-(3-Sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine)(polySBMA) to explore controllable bioadhesive surfaces. Casting and dip-coating were employed to graft polySBMA onto the plasma treated PSHCM. The polySBMA casted PSHCM showed a uniform covering layer on the PSHCM similar to the mucus layer of fish skin, presenting excellent antifouling properties. On the contrary, a dip-coated one showed the polySBMA aggregating on the honeycomb pore walls forming a large number of sucking disks such as the adhesive disks of the tendrils of P. tricuspidata, which remarkably boosts cell adhesion on substrates. Thus, bioadhesion could be regulated as desired by tuning the distribution of zwitterionic polymer on the honeycomb surface. The results may provide a new approach for the design of biomaterial surfaces.

  11. Topological honeycomb magnon Hall effect: A calculation of thermal Hall conductivity of magnetic spin excitations

    Energy Technology Data Exchange (ETDEWEB)

    Owerre, S. A., E-mail: solomon@aims.ac.za [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, Cape Town 7945, South Africa and Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, Ontario N2L 2Y5 (Canada)

    2016-07-28

    Quite recently, the magnon Hall effect of spin excitations has been observed experimentally on the kagome and pyrochlore lattices. The thermal Hall conductivity κ{sup xy} changes sign as a function of magnetic field or temperature on the kagome lattice, and κ{sup xy} changes sign upon reversing the sign of the magnetic field on the pyrochlore lattice. Motivated by these recent exciting experimental observations, we theoretically propose a simple realization of the magnon Hall effect in a two-band model on the honeycomb lattice. The magnon Hall effect of spin excitations arises in the usual way via the breaking of inversion symmetry of the lattice, however, by a next-nearest-neighbour Dzyaloshinsky-Moriya interaction. We find that κ{sup xy} has a fixed sign for all parameter regimes considered. These results are in contrast to the Lieb, kagome, and pyrochlore lattices. We further show that the low-temperature dependence on the magnon Hall conductivity follows a T{sup 2} law, as opposed to the kagome and pyrochlore lattices. These results suggest an experimental procedure to measure thermal Hall conductivity within a class of 2D honeycomb quantum magnets and ultracold atoms trapped in a honeycomb optical lattice.

  12. Detecting the honeycomb sandwich composite material's moisture impregnating defects by using infrared thermography technique

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Koo Ahn; Choi, Man Yong; Park, Jeong Hak; Choi, Won Jae [Safety Measurement Center, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Park, Hee Sang [R and D, Korea Research Institute of Smart Material and Structures System Association, Daejeon (Korea, Republic of)

    2017-04-15

    Many composite materials are used in the aerospace industry because of their excellent mechanical properties. However, the nature of aviation exposes these materials to high temperature and high moisture conditions depending on climate, location, and altitude. Therefore, the molecular arrangement chemical properties, and mechanical properties of composite materials can be changed under these conditions. As a result, surface disruptions and cracks can be created. Consequently, moisture-impregnating defects can be induced due to the crack and delamination of composite materials as they are repeatedly exposed to moisture absorption moisture release, fatigue environment, temperature changes, and fluid pressure changes. This study evaluates the possibility of detecting the moisture-impregnating defects of CFRP and GFRP honeycomb structure sandwich composite materials, which are the composite materials in the aircraft structure, by using an active infrared thermography technology among non-destructive testing methods. In all experiments, it was possible to distinguish the area and a number of CFRP composite materials more clearly than those of GFRP composite material. The highest detection rate was observed in the heating duration of 50 mHz and the low detection rate was at the heating duration of over 500 mHz. The reflection method showed a higher detection rate than the transmission method.

  13. Honeycomb-like Nitrogen and Sulfur Dual-Doped Hierarchical Porous Biomass-Derived Carbon for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Chen, Manfang; Jiang, Shouxin; Huang, Cheng; Wang, Xianyou; Cai, Siyu; Xiang, Kaixiong; Zhang, Yapeng; Xue, Jiaxi

    2017-04-22

    Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon/sulfur composites (NSHPC/S) are successfully fabricated for high energy density lithium-sulfur batteries. The effects of nitrogen, sulfur dual-doping on the structures and properties of the NSHPC/S composites are investigated in detail by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and charge/discharge tests. The results show that N, S dual-doping not only introduces strong chemical adsorption and provides more active sites but also significantly enhances the electronic conductivity and hydrophilic properties of hierarchical porous biomass-derived carbon, thereby significantly enhancing the utilization of sulfur and immobilizing the notorious polysulfide shuttle effect. Especially, the as-synthesized NSHPC-7/S exhibits high initial discharge capacity of 1204 mA h g -1 at 1.0 C and large reversible capacity of 952 mA h g -1 after 300 cycles at 0.5 C with an ultralow capacity fading rate of 0.08 % per cycle even at high sulfur content (85 wt %) and high active material areal mass loading (2.8 mg cm -2 ) for the application of high energy density Li-S batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Interfacial engineering of renewable metal organic framework derived honeycomb-like nanoporous aluminum hydroxide with tunable porosity.

    Science.gov (United States)

    Pan, Ye-Tang; Zhang, Lu; Zhao, Xiaomin; Wang, De-Yi

    2017-05-01

    Novel honeycomb-like mesoporous aluminum hydroxide (pATH) was synthesized via a facile one-step reaction by employing ZIF-8 as a template. This self-decomposing template was removed automatically under acidic conditions without the need for any tedious or hazardous procedures. Meanwhile, the pore size of pATH was easily modulated by tuning the dimensions of the ZIF-8 polyhedrons. Of paramount importance was the fact that the dissolved ZIF-8 in solution was regenerated upon deprotonation of the ligand under mild alkali conditions, and was reused in the preparation of pATH, thus forming a delicate synthesis cycle. The renewable template conferred cost-effective and sustainable features to the as-synthesized product. As a proof-of-concept application, the fascinating nanoporous structure enabled pATH to load more phosphorous-containing flame retardant and endowed better interaction with epoxy resin over that of commercial aluminum hydroxide. The limiting oxygen index, UL-94 vertical burning test and cone calorimeter test showed that the results of epoxy with the modified pATH rivalled those of epoxy with two times the loading amount of the commercial counterpart, while the former presented better mechanical properties. The proposed "amorphous replica method" used in this work will advance the potential for launching a vast area of research and technology development for the preparation of porous metal hydroxides for use in practical applications.

  15. Optimal locations of piezoelectric patches for supersonic flutter control of honeycomb sandwich panels, using the NSGA-II method

    International Nuclear Information System (INIS)

    Nezami, M; Gholami, B

    2016-01-01

    The active flutter control of supersonic sandwich panels with regular honeycomb interlayers under impact load excitation is studied using piezoelectric patches. A non-dominated sorting-based multi-objective evolutionary algorithm, called non-dominated sorting genetic algorithm II (NSGA-II) is suggested to find the optimal locations for different numbers of piezoelectric actuator/sensor pairs. Quasi-steady first order supersonic piston theory is employed to define aerodynamic loading and the p-method is applied to find the flutter bounds. Hamilton’s principle in conjunction with the generalized Fourier expansions and Galerkin method are used to develop the dynamical model of the structural systems in the state-space domain. The classical Runge–Kutta time integration algorithm is then used to calculate the open-loop aeroelastic response of the system. The maximum flutter velocity and minimum voltage applied to actuators are calculated according to the optimal locations of piezoelectric patches obtained using the NSGA-II and then the proportional feedback is used to actively suppress the closed loop system response. Finally the control effects, using the two different controllers, are compared. (paper)

  16. Cooling rate effects on structure of amorphous graphene

    International Nuclear Information System (INIS)

    Van Hoang, Vo

    2015-01-01

    Simple monatomic amorphous 2D models with Honeycomb structure are obtained from 2D simple monatomic liquids with Honeycomb interaction potential (Rechtsman et al., Phys. Rev. Lett. 95, 228301 (2005)) via molecular dynamics (MD) simulations. Models are observed by cooling from the melt at various cooling rates. Temperature dependence of thermodynamic and structural properties including total energy, mean ring size, mean coordination number is studied in order to show evolution of structure and thermodynamics upon cooling from the melt. Structural properties of the amorphous Honeycomb structures are studied via radial distribution function (RDF), coordination number and ring distributions together with 2D visualization of the atomic configurations. Amorphous Honeycomb structures contain a large amount of structural defects including new ones which have not been previously reported yet. Cooling rate dependence of structural properties of the obtained amorphous Honeycomb structures is analyzed. Although amorphous graphene has been proposed theoretically and/or recently obtained by the experiments, our understanding of structural properties of the system is still poor. Therefore, our simulations highlight the situation and give deeper understanding of structure and thermodynamics of the glassy state of this novel 2D material

  17. Synthesis of honeycomb MnO2 nanospheres/carbon nanoparticles/graphene composites as electrode materials for supercapacitors

    Science.gov (United States)

    Xiong, Yachao; Zhou, Min; Chen, Hao; Feng, Lei; Wang, Zhao; Yan, Xinzhu; Guan, Shiyou

    2015-12-01

    Improving the electrochemical performance of manganese dioxide (MnO2) electrodes is of great significance for supercapacitors. In this study, a novel honeycomb MnO2 nanospheres/carbon nanoparticles/graphene composites has been fabricated through freeze-drying method. The honeycomb MnO2 nanospheres are well inserted and dispersed on the graphene. Carbon nanoparticles in the composites act as spacers to effectively prevent graphene from restacking and agglomeration, construct efficient 3D conducting architecture with graphene for honeycomb MnO2 nanospheres, and alleviate the aggregation of honeycomb MnO2 nanospheres by separating them from each other. As a result, such honeycomb MnO2 nanospheres/carbon nanoparticles/graphene composites display much improved electrochemical capacitive performance of 255 F g-1 at a current density of 0.5 A g-1, outstanding rate capability (150 F g-1 remained at a current density of 20 A g-1) and good cycling stability (83% of the initial capacitance retained after 1000 charge/discharge cycles). The strategy for the synthesis of these composites is very effective.

  18. Field emission characteristics of vertically aligned carbon nanotubes with honeycomb configuration grown onto glass substrate with titanium coating

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yung-Jui [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chang, Hsin-Yueh; Chang, Hsuan-Chen [Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Shih, Yi-Ting; Su, Wei-Jhih [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Ciou, Chen-Hong [Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chen, Yi-Ling [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Honda, Shin-ichi [Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280 (Japan); Huang, Ying-Sheng [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Lee, Kuei-Yi, E-mail: kylee@mail.ntust.edu.tw [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2014-03-15

    Highlights: • We have successfully designed the honeycomb patterns on glass substrate by photolithography technique. • Honeycomb-VACNTs were synthesized successfully onto glass substrate by using thermal CVD and covered different Ti films on VACNTs by e-beam evaporation. • After coating the Ti films, the current density reached 7 mA/cm{sup 2} when the electric field was 2.5 V/μm. • The fluorescence of VACNTs with Ti 15 nm films exhibits the high brightness screen and emission uniformity. -- Abstract: Carbon nanotubes (CNTs) were grown successfully onto a glass substrate using thermal chemical vapor deposition (TCVD) with C{sub 2}H{sub 2} gas at 700 °C. The synthesized CNTs exhibited good crystallinity and a vertically aligned morphology. The vertically aligned CNTs (VACNTs) were patterned with a honeycomb configuration using photolithography and characterized using field emission (FE) applications. Owing to the electric field concentration, the FE current density of VACNTs with honeycomb configuration was higher than that of the un-patterned VACNTs. Ti was coated onto the VACNT surface utilizing the relatively lower work function property to enhance the FE current density. The FE current density reached up to 7.0 mA/cm{sup 2} at an applied electric field of 2.5 V/μm. A fluorescent screen was monitored to demonstrate uniform FE VACNTs with a honeycomb configuration. The designed field emitter provided an admirable example for FE applications.

  19. Structure and Magnetic Properties of Cu3Ni2SbO6 and Cu3Co2SbO6 Delafossites with Honeycomb Lattices

    DEFF Research Database (Denmark)

    Roudebush, J. H.; Andersen, Niels Hessel; Ramlau, R.

    2013-01-01

    -resolution electron microscopy confirms ordering, and selected-area electron diffraction patterns identify examples of the stacking polytypes. Low temperature synthetic treatments result in disordered stacking of the layers, but heating just below their melting points results in nearly fully ordered stacking variants......, approximately parallel to the stacking direction. Bulk magnetization properties are discussed in terms of their magnetic structures....

  20. Compact Radiative Control Structures for Millimeter Astronomy

    Science.gov (United States)

    Brown, Ari D.; Chuss, David T.; Chervenak, James A.; Henry, Ross M.; Moseley, s. Harvey; Wollack, Edward J.

    2010-01-01

    We have designed, fabricated, and tested compact radiative control structures, including antireflection coatings and resonant absorbers, for millimeter through submillimeter wave astronomy. The antireflection coatings consist of micromachined single crystal silicon dielectric sub-wavelength honeycombs. The effective dielectric constant of the structures is set by the honeycomb cell geometry. The resonant absorbers consist of pieces of solid single crystal silicon substrate and thin phosphorus implanted regions whose sheet resistance is tailored to maximize absorption by the structure. We present an implantation model that can be used to predict the ion energy and dose required for obtaining a target implant layer sheet resistance. A neutral density filter, a hybrid of a silicon dielectric honeycomb with an implanted region, has also been fabricated with this basic approach. These radiative control structures are scalable and compatible for use large focal plane detector arrays.

  1. Properties of 5052 Aluminum For Use as Honeycomb Core in Manned Spaceflight

    Science.gov (United States)

    Lerch, Bradley A.

    2018-01-01

    This work explains that the properties of Al 5052 material used commonly for honeycomb cores in sandwich panels are highly dependent on the tempering condition. It has not been common to specify the temper when ordering HC material nor is it common for the supplier to state what the temper is. For aerospace uses, a temper of H38 or H39 is probably recommended. This temper should be stated in the bill of material and should be verified upon receipt of the core. To this end some properties provided herein can aid as benchmark values.

  2. Fidelity susceptibility and long-range correlation in the Kitaev honeycomb model

    Science.gov (United States)

    Yang, Shuo; Gu, Shi-Jian; Sun, Chang-Pu; Lin, Hai-Qing

    2008-07-01

    We study exactly both the ground-state fidelity susceptibility and bond-bond correlation function in the Kitaev honeycomb model. Our results show that the fidelity susceptibility can be used to identify the topological phase transition from a gapped A phase with Abelian anyon excitations to a gapless B phase with non-Abelian anyon excitations. We also find that the bond-bond correlation function decays exponentially in the gapped phase, but algebraically in the gapless phase. For the former case, the correlation length is found to be 1/ξ=2sinh-1[2Jz-1/(1-Jz)] , which diverges around the critical point Jz=(1/2)+ .

  3. Reducing Urban Heat Island Effect with Thermal Comfort Housing and Honeycomb Townships

    DEFF Research Database (Denmark)

    Davis, Mohd. Peter; Reimann, Gregers Peter; Ghazali, Mazlin

    2005-01-01

    Putra Malaysia can achieve almost passive thermal comfort without air-conditioning, even on the hottest days of the year. ‘Honeycomb townships’, a recent architectural invention by one of the authors, is a new method of subdividing land which saves greatly on roads, thereby permitting larger gardens...... consequences of urbanisation and can be corrected in Malaysia and avoided by other developing countries with a sensible application of the technologies outlined in this paper which prevent the thermal mass of houses and roads from absorbing solar radiation. ‘Cool House’ technology, developed at Universiti...

  4. The buckling transition of two-dimensional elastic honeycombs: numerical simulation and Landau theory

    International Nuclear Information System (INIS)

    Jagla, E A

    2004-01-01

    I study the buckling transition under compression of a two-dimensional, hexagonal, regular elastic honeycomb. Under isotropic compression, the system buckles to a configuration consisting of a unit cell containing four of the original hexagons. This buckling pattern preserves the sixfold rotational symmetry of the original lattice but is chiral, and can be described as a combination of three different elemental distortions in directions rotated by 2π/3 from each other. Non-isotropic compression may induce patterns consisting of a single elemental distortion or a superposition of two of them. The numerical results compare very well with the outcome of a Landau theory of second-order phase transitions

  5. GA-4/GA-9 honeycomb impact limiter tests and analytical model

    International Nuclear Information System (INIS)

    Koploy, M.A.; Taylor, C.S.

    1991-01-01

    General Atomics (GA) has a test program underway to obtain data on the behavior of a honeycomb impact limiter. The program includes testing of small samples to obtain basic information, as well as testing of complete 1/4-scale impact limiters to obtain load-versus-deflection curves for different crush orientations. GA has used the test results to aid in the development of an analytical model to predict the impact limiter loads. The results also helped optimize the design of the impact limiters for the GA-4 and GA-9 Casks

  6. Method of using triaxial magnetic fields for making particle structures

    Science.gov (United States)

    Martin, James E.; Anderson, Robert A.; Williamson, Rodney L.

    2005-01-18

    A method of producing three-dimensional particle structures with enhanced magnetic susceptibility in three dimensions by applying a triaxial energetic field to a magnetic particle suspension and subsequently stabilizing said particle structure. Combinations of direct current and alternating current fields in three dimensions produce particle gel structures, honeycomb structures, and foam-like structures.

  7. Evaluation of a bi-directional aluminum honeycomb impact limiter design

    International Nuclear Information System (INIS)

    Doman, M.J.

    1995-01-01

    A 120 Ton shipping cask is being developed for the on-site shipment of dry spent fuel at the Idaho National Engineering Laboratory. Impact limiters were incorporated in the cask design to limit the inertial load of the package and its contents during the hypothetical 9-meter (30-foot) drop accident required by 10CFR71. The design process included: (1) a series of static and dynamic tests to determine the crush characteristics of the bi-directional aluminum honeycomb impact limiter material, (2) the development of an analytical model to predict the cask deceleration force as a function of impact limiter crush, and (3) a series of quarter scale model drop tests to qualify the analytical model. The scale model testing, performed at Sandia National Laboratory in Albuquerque, New Mexico, revealed several design aspects which should be considered in developing bi-directional aluminum honeycomb impact limiters and several other design aspects which should be considered for impact limiter designs in general

  8. Facile Synthesis of Hierarchical Mesoporous Honeycomb-like NiO for Aqueous Asymmetric Supercapacitors.

    Science.gov (United States)

    Ren, Xiaochuan; Guo, Chunli; Xu, Liqiang; Li, Taotao; Hou, Lifeng; Wei, Yinghui

    2015-09-16

    Three-dimensional (3D) hierarchical nanostructures have been demonstrated as one of the most ideal electrode materials in energy storage systems due to the synergistic combination of the advantages of both nanostructures and microstructures. In this study, the honeycomb-like mesoporous NiO microspheres as promising cathode materials for supercapacitors have been achieved using a hydrothermal reaction, followed by an annealing process. The electrochemical tests demonstrate the highest specific capacitance of 1250 F g(-1) at 1 A g(-1). Even at 5 A g(-1), a specific capacitance of 945 F g(-1) with 88.4% retention after 3500 cycles was obtained. In addition, the 3D porous graphene (reduced graphene oxide, rGO) has been prepared as an anode material for supercapacitors, which displays a good capacitance performance of 302 F g(-1) at 1 A g(-1). An asymmetric supercapacitor has been successfully fabricated based on the honeycomb-like NiO and rGO. The asymmetric supercapacitor achieves a remarkable performance with a specific capacitance of 74.4 F g(-1), an energy density of 23.25 Wh kg(-1), and a power density of 9.3 kW kg(-1), which is able to light up a light-emitting diode.

  9. Analytic properties for the honeycomb lattice Green function at the origin

    Science.gov (United States)

    Joyce, G. S.

    2018-05-01

    The analytic properties of the honeycomb lattice Green function are investigated, where is a complex variable which lies in a plane. This double integral defines a single-valued analytic function provided that a cut is made along the real axis from w  =  ‑3 to . In order to analyse the behaviour of along the edges of the cut it is convenient to define the limit function where . It is shown that and can be evaluated exactly for all in terms of various hypergeometric functions, where the argument function is always real-valued and rational. The second-order linear Fuchsian differential equation satisfied by is also used to derive series expansions for and which are valid in the neighbourhood of the regular singular points and . Integral representations are established for and , where with . In particular, it is proved that where J 0(z) and Y 0(z) denote Bessel functions of the first and second kind, respectively. The results derived in the paper are utilized to evaluate the associated logarithmic integral where w lies in the cut plane. A new set of orthogonal polynomials which are connected with the honeycomb lattice Green function are also briefly discussed. Finally, a link between and the theory of Pearson random walks in a plane is established.

  10. Co-Fe-Si Aerogel Catalytic Honeycombs for Low Temperature Ethanol Steam Reforming

    Directory of Open Access Journals (Sweden)

    Montserrat Domínguez

    2012-09-01

    Full Text Available Cobalt talc doped with iron (Fe/Co~0.1 and dispersed in SiO2 aerogel was prepared from silica alcogel impregnated with metal nitrates by supercritical drying. Catalytic honeycombs were prepared following the same procedure, with the alcogel synthesized directly over cordierite honeycomb pieces. The composite aerogel catalyst was characterized by X-ray diffraction, scanning electron microscopy, focus ion beam, specific surface area and X-ray photoelectron spectroscopy. The catalytic layer is about 8 µm thick and adheres well to the cordierite support. It is constituted of talc layers of about 1.5 µm × 300 nm × 50 nm which are well dispersed and anchored in a SiO2 aerogel matrix with excellent mass-transfer properties. The catalyst was tested in the ethanol steam reforming reaction, aimed at producing hydrogen for on-board, on-demand applications at moderate temperature (573–673 K and pressure (1–7 bar. Compared to non-promoted cobalt talc, the catalyst doped with iron produces less methane as byproduct, which can only be reformed at high temperature, thereby resulting in higher hydrogen yields. At 673 K and 2 bar, 1.04 NLH2·mLEtOH(l−1·min−1 are obtained at S/C = 3 and W/F = 390 g·min·molEtOH−1.

  11. Estimation of the Thermal Process in the Honeycomb Panel by a Monte Carlo Method

    Science.gov (United States)

    Gusev, S. A.; Nikolaev, V. N.

    2018-01-01

    A new Monte Carlo method for estimating the thermal state of the heat insulation containing honeycomb panels is proposed in the paper. The heat transfer in the honeycomb panel is described by a boundary value problem for a parabolic equation with discontinuous diffusion coefficient and boundary conditions of the third kind. To obtain an approximate solution, it is proposed to use the smoothing of the diffusion coefficient. After that, the obtained problem is solved on the basis of the probability representation. The probability representation is the expectation of the functional of the diffusion process corresponding to the boundary value problem. The process of solving the problem is reduced to numerical statistical modelling of a large number of trajectories of the diffusion process corresponding to the parabolic problem. It was used earlier the Euler method for this object, but that requires a large computational effort. In this paper the method is modified by using combination of the Euler and the random walk on moving spheres methods. The new approach allows us to significantly reduce the computation costs.

  12. Development of an Automatic Testing Platform for Aviator’s Night Vision Goggle Honeycomb Defect Inspection

    Directory of Open Access Journals (Sweden)

    Bo-Lin Jian

    2017-06-01

    Full Text Available Due to the direct influence of night vision equipment availability on the safety of night-time aerial reconnaissance, maintenance needs to be carried out regularly. Unfortunately, some defects are not easy to observe or are not even detectable by human eyes. As a consequence, this study proposed a novel automatic defect detection system for aviator’s night vision imaging systems AN/AVS-6(V1 and AN/AVS-6(V2. An auto-focusing process consisting of a sharpness calculation and a gradient-based variable step search method is applied to achieve an automatic detection system for honeycomb defects. This work also developed a test platform for sharpness measurement. It demonstrates that the honeycomb defects can be precisely recognized and the number of the defects can also be determined automatically during the inspection. Most importantly, the proposed approach significantly reduces the time consumption, as well as human assessment error during the night vision goggle inspection procedures.

  13. A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors

    Science.gov (United States)

    LiangThese Two Authors Are Equal Main Contributors., Qinghua; Ye, Ling; Huang, Zheng-Hong; Xu, Qiang; Bai, Yu; Kang, Feiyu; Yang, Quan-Hong

    2014-10-01

    A cost-effective approach to obtain electrode materials with excellent electrochemical performance is critical to the development of supercapacitors (SCs). Here we report the preparation of a three-dimensional (3D) honeycomb-like porous carbon (HLPC) by the simple carbonization of pomelo peel followed by KOH activation. Structural characterization indicates that the as-prepared HLPC with a high specific surface area (SSA) up to 2725 m2 g-1 is made up of interconnected microporous carbon walls. Chemical analysis shows that the HLPC is doped with nitrogen and also has oxygen-containing groups. Electrochemical measurements show that the HLPC not only exhibits a high specific capacitance of 342 F g-1 and 171 F cm-3 at 0.2 A g-1 but also shows considerable rate capability with a retention of 62% at 20 A g-1 as well as good cycling performance with 98% retention over 1000 cycles at 10 A g-1 in 6 M KOH. Furthermore, an as-fabricated HLPC-based symmetric SC device delivers a maximum energy density of ~9.4 Wh kg-1 in the KOH electrolyte. Moreover, the outstanding cycling stability (only 2% capacitance decay over 1000 cycles at 5 A g-1) of the SC device makes it promising for use in a high-performance electrochemical energy system.A cost-effective approach to obtain electrode materials with excellent electrochemical performance is critical to the development of supercapacitors (SCs). Here we report the preparation of a three-dimensional (3D) honeycomb-like porous carbon (HLPC) by the simple carbonization of pomelo peel followed by KOH activation. Structural characterization indicates that the as-prepared HLPC with a high specific surface area (SSA) up to 2725 m2 g-1 is made up of interconnected microporous carbon walls. Chemical analysis shows that the HLPC is doped with nitrogen and also has oxygen-containing groups. Electrochemical measurements show that the HLPC not only exhibits a high specific capacitance of 342 F g-1 and 171 F cm-3 at 0.2 A g-1 but also shows

  14. Extension theorems for homogenization on lattice structures

    Science.gov (United States)

    Miller, Robert E.

    1992-01-01

    When applying homogenization techniques to problems involving lattice structures, it is necessary to extend certain functions defined on a perforated domain to a simply connected domain. This paper provides general extension operators which preserve bounds on derivatives of order l. Only the special case of honeycomb structures is considered.

  15. Nuclear design analysis of square-lattice honeycomb space nuclear rocket engine

    International Nuclear Information System (INIS)

    Widargo, Reza; Anghaie, Samim

    1999-01-01

    The square-lattice honeycomb reactor is designed based on a cylindrical core that is determined to have critical diameter and length of 0.50 m and 0.50 c, respectively. A 0.10-cm thick radial graphite reflector, in addition to a 0.20-m thick axial graphite reflector are used to reduce neutron leakage from the reactor. The core is fueled with solid solution of 93% enriched (U, Zr, Nb)C, which is one of several ternary uranium carbides that are considered for this concept. The fuel is to be fabricated as 2 mm grooved (U, Zr, Nb)C wafers. The fuel wafers are used to form square-lattice honeycomb fuel assemblies, 0.10 m in length with 30% cross-sectional flow area. Five fuel assemblies are stacked up axially to form the reactor core. Based on the 30% void fraction, the width of the square flow channel is about 1.3 mm. The hydrogen propellant is passed through these flow channels and removes the heat from the reactor core. To perform nuclear design analysis, a series of neutron transport and diffusion codes are used. The preliminary results are obtained using a simple four-group cross-section model. To optimize the nuclear design, the fuel densities are varied for each assembly. Tantalum, hafnium and tungsten are considered and used as a replacement for niobium in fuel material to provide water submersion sub-criticality for the reactor. Axial and radial neutron flux and power density distributions are calculated for the core. Results of the neutronic analysis indicate that the core has a relatively fast spectrum. From the results of the thermal hydraulic analyses, eight axial temperature zones are chosen for the calculation of group average cross-sections. An iterative process is conducted to couple the neutronic calculations with the thermal hydraulics calculations. Results of the nuclear design analysis indicate that a compact core can be designed based on ternary uranium carbide square-lattice honeycomb fuel. This design provides a relatively high thrust to weight

  16. Moisture Effects and Peel Testing of Polymethacrylimide and Honeycomb Core in Sandwich/Skin Structures

    Science.gov (United States)

    1987-11-01

    cure. Nyl o"’ Yttuu" iUg\\ .. ttPI gltnds wpre then hut \\ultd 1rouM tltl’l hyu :». l nd ¥1tUPS I POlttd. Sine.~~’ 1\\otl’l h 1~~t •11 P1Uhts UUII \\hl

  17. The Kitaev honeycomb model on surfaces of genus g ≥ 2

    Science.gov (United States)

    Brennan, John; Vala, Jiří

    2018-05-01

    We present a construction of the Kitaev honeycomb lattice model on an arbitrary higher genus surface. We first generalize the exact solution of the model based on the Jordan–Wigner fermionization to a surface with genus g = 2, and then use this as a basic module to extend the solution to lattices of arbitrary genus. We demonstrate our method by calculating the ground states of the model in both the Abelian doubled {Z}}}2 phase and the non-Abelian Ising topological phase on lattices with the genus up to g = 6. We verify the expected ground state degeneracy of the system in both topological phases and further illuminate the role of fermionic parity in the Abelian phase.

  18. Numerical simulation of flow in De-NOx catalyst honeycomb with NOx reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Tanno, K.; Makino, H. [Electric Power Industry, Kanagawa (Japan). Energy Engineering Research Lab.; Kurose, R.; Komori, S. [Kyoto Univ. (Japan). Dept. of Mechanical Engineering and Science

    2013-07-01

    The effect of flow behavior in a De-NOx honeycomb with NOx reduction reaction is investigated by direct numerical simulation (DNS). As the inlet flow, fully developed turbulent or laminar flow is given. The results show that the surface reaction is strongly affected by inner flow behavior. The surface reaction rate for the turbulent flow is higher than that for the laminar flow. This is due to the difference of inner flow behavior that the diffusion of NOx in the vicinity of the wall is dominated only by molecular diffusion for the laminar flow, whereas it is enhanced by turbulent motions for the turbulent flow. Moreover, surface reaction is suppressed towards downstream even though inlet flow is turbulent. This is due to the flow transition from turbulent to laminar.

  19. Cluster state generation in one-dimensional Kitaev honeycomb model via shortcut to adiabaticity

    Science.gov (United States)

    Kyaw, Thi Ha; Kwek, Leong-Chuan

    2018-04-01

    We propose a mean to obtain computationally useful resource states also known as cluster states, for measurement-based quantum computation, via transitionless quantum driving algorithm. The idea is to cool the system to its unique ground state and tune some control parameters to arrive at computationally useful resource state, which is in one of the degenerate ground states. Even though there is set of conserved quantities already present in the model Hamiltonian, which prevents the instantaneous state to go to any other eigenstate subspaces, one cannot quench the control parameters to get the desired state. In that case, the state will not evolve. With involvement of the shortcut Hamiltonian, we obtain cluster states in fast-forward manner. We elaborate our proposal in the one-dimensional Kitaev honeycomb model, and show that the auxiliary Hamiltonian needed for the counterdiabatic driving is of M-body interaction.

  20. Fermionic quantum critical point of spinless fermions on a honeycomb lattice

    International Nuclear Information System (INIS)

    Wang, Lei; Corboz, Philippe; Troyer, Matthias

    2014-01-01

    Spinless fermions on a honeycomb lattice provide a minimal realization of lattice Dirac fermions. Repulsive interactions between nearest neighbors drive a quantum phase transition from a Dirac semimetal to a charge-density-wave state through a fermionic quantum critical point, where the coupling of the Ising order parameter to the Dirac fermions at low energy drastically affects the quantum critical behavior. Encouraged by a recent discovery (Huffman and Chandrasekharan 2014 Phys. Rev. B 89 111101) of the absence of the fermion sign problem in this model, we study the fermionic quantum critical point using the continuous-time quantum Monte Carlo method with a worm-sampling technique. We estimate the transition point V/t=1.356(1) with the critical exponents ν=0.80(3) and η=0.302(7). Compatible results for the transition point are also obtained with infinite projected entangled-pair states. (paper)

  1. Role of spin-orbit coupling in the Kugel-Khomskii model on the honeycomb lattice

    Science.gov (United States)

    Koga, Akihisa; Nakauchi, Shiryu; Nasu, Joji

    2018-03-01

    We study the effective spin-orbital model for honeycomb-layered transition metal compounds, applying the second-order perturbation theory to the three-orbital Hubbard model with the anisotropic hoppings. This model is reduced to the Kitaev model in the strong spin-orbit coupling limit. Combining the cluster mean-field approximations with the exact diagonalization, we treat the Kugel-Khomskii type superexchange interaction and spin-orbit coupling on an equal footing to discuss ground-state properties. We find that a zigzag ordered state is realized in the model within nearest-neighbor interactions. We clarify how the ordered state competes with the nonmagnetic state, which is adiabatically connected to the quantum spin liquid state realized in a strong spin-orbit coupling limit. Thermodynamic properties are also addressed. The present paper should provide another route to account for the Kitaev-based magnetic properties in candidate materials.

  2. Topological magnon bands and unconventional thermal Hall effect on the frustrated honeycomb and bilayer triangular lattice.

    Science.gov (United States)

    Owerre, S A

    2017-09-27

    In the conventional ferromagnetic systems, topological magnon bands and thermal Hall effect are due to the Dzyaloshinskii-Moriya interaction (DMI). In principle, however, the DMI is either negligible or it is not allowed by symmetry in some quantum magnets. Therefore, we expect that topological magnon features will not be present in those systems. In addition, quantum magnets on the triangular-lattice are not expected to possess topological features as the DMI or spin-chirality cancels out due to equal and opposite contributions from adjacent triangles. Here, however, we predict that the isomorphic frustrated honeycomb-lattice and bilayer triangular-lattice antiferromagnetic system will exhibit topological magnon bands and topological thermal Hall effect in the absence of an intrinsic DMI. These unconventional topological magnon features are present as a result of magnetic-field-induced non-coplanar spin configurations with nonzero scalar spin chirality. The relevance of the results to realistic bilayer triangular antiferromagnetic materials are discussed.

  3. Penetration depth and nonlocal manipulation of quantum spin hall edge states in chiral honeycomb nanoribbons.

    Science.gov (United States)

    Xu, Yong; Uddin, Salah; Wang, Jun; Wu, Jiansheng; Liu, Jun-Feng

    2017-08-08

    We have studied numerically the penetration depth of quantum spin hall edge states in chiral honeycomb nanoribbons based on the Green's function method. The changing of edge orientation from armchair to zigzag direction decreases the penetration depth drastically. The penetration depth is used to estimate the gap opened for the finite-size effect. Beside this, we also proposed a nonlocal transistor based on the zigzag-like chiral ribbons in which the current is carried at one edge and the manipulation is by the edge magnetization at the other edge. The difficulty that the edge magnetization is unstable in the presence of a ballistic current can be removed by this nonlocal manipulation.

  4. Influence of quantum phase transition on spin transport in the quantum antiferromagnet in the honeycomb lattice

    Science.gov (United States)

    Lima, L. S.

    2017-06-01

    We use the SU(3) Schwinger boson theory to study the spin transport properties of the two-dimensional anisotropic frustrated Heisenberg model in a honeycomb lattice at T = 0 with single ion anisotropy and third neighbor interactions. We have investigated the behavior of the spin conductivity for this model that presents exchange interactions J1 , J2 and J3 . We study the spin transport in the Bose-Einstein condensation regime where the bosons tz are condensed. Our results show an influence of the quantum phase transition point on the spin conductivity behavior. We also have made a diagrammatic expansion for the Green-function and did not obtain any significant change of the results.

  5. Performance evaluation of RANS-based turbulence models in simulating a honeycomb heat sink

    Science.gov (United States)

    Subasi, Abdussamet; Ozsipahi, Mustafa; Sahin, Bayram; Gunes, Hasan

    2017-07-01

    As well-known, there is not a universal turbulence model that can be used to model all engineering problems. There are specific applications for each turbulence model that make it appropriate to use, and it is vital to select an appropriate model and wall function combination that matches the physics of the problem considered. Therefore, in this study, performance of six well-known Reynolds-Averaged Navier-Stokes ( RANS) based turbulence models which are the Standard k {{-}} ɛ, the Renormalized Group k- ɛ, the Realizable k- ɛ, the Reynolds Stress Model, the k- ω and the Shear Stress Transport k- ω and accompanying wall functions which are the standard, the non-equilibrium and the enhanced are evaluated via 3D simulation of a honeycomb heat sink. The CutCell method is used to generate grid for the part including heat sink called test section while a hexahedral mesh is employed to discretize to inlet and outlet sections. A grid convergence study is conducted for verification process while experimental data and well-known correlations are used to validate the numerical results. Prediction of pressure drop along the test section, mean base plate temperature of the heat sink and temperature at the test section outlet are regarded as a measure of the performance of employed models and wall functions. The results indicate that selection of turbulence models and wall functions has a great influence on the results and, therefore, need to be selected carefully. Hydraulic and thermal characteristics of the honeycomb heat sink can be determined in a reasonable accuracy using RANS- based turbulence models provided that a suitable turbulence model and wall function combination is selected.

  6. Air Vehicle Integration and Technology Research (AVIATR). Delivery Order 0023: Predictive Capability for Hypersonic Structural Response and Life Prediction: Phase 2 - Detailed Design of Hypersonic Cruise Vehicle Hot-Structure

    Science.gov (United States)

    2012-05-01

    honeycomb sandwich tests at room and elevated temperature (900oF). The effects of processing variables, e.g., TIG welding , LID bonding, and heat...and face sheet using an in situ core H/C forming and spot welding process to make honeycomb sandwich structure. Shaping the final product is...that means that a large investment for many years will need to be performed to fully create and quantify a welding process that’s fully reliable and

  7. Lightweight Space Tug body structure

    International Nuclear Information System (INIS)

    Lager, J.R.

    1976-01-01

    Lightweight honeycomb sandwich construction using a wide variety of metal and fibrous composite faceskins was used in the design of a typical Space Tug skirt structure. Relatively low magnitude combined loading of axial compression and torsion resulted in designs using ultrathin faceskins, light-weight honeycomb cores, and thin faceskin/core adhesive bond layers. Two of the designs with metal faceskins (aluminum and titanium) and four with fibrous composite faceskins (using combinations of fiberglass, boron, and graphite) were evaluated through the fabrication and structural test of a series of small development panels. The two most promising concepts with aluminum and graphite/epoxy faceskins, were further evaluated through the fabrication and structural test of larger compression and shear panels. All panels tested exceeded design ultimate load levels, thereby, verifying the structural integrity of the selected designs. Projected skirt structural weights for the graphite/epoxy and aluminum concepts fall within original weight guidelines established for the Space Tug vehicle

  8. Building Honeycomb-Like Hollow Microsphere Architecture in a Bubble Template Reaction for High-Performance Lithium-Rich Layered Oxide Cathode Materials.

    Science.gov (United States)

    Chen, Zhaoyong; Yan, Xiaoyan; Xu, Ming; Cao, Kaifeng; Zhu, Huali; Li, Lingjun; Duan, Junfei

    2017-09-13

    In the family of high-performance cathode materials for lithium-ion batteries, lithium-rich layered oxides come out in front because of a high reversible capacity exceeding 250 mAh g -1 . However, the long-term energy retention and high energy densities for lithium-rich layered oxide cathode materials require a stable structure with large surface areas. Here we propose a "bubble template" reaction to build "honeycomb-like" hollow microsphere architecture for a Li 1.2 Mn 0.52 Ni 0.2 Co 0.08 O 2 cathode material. Our material is designed with ca. 8-μm-sized secondary particles with hollow and highly exposed porous structures that promise a large flexible volume to achieve superior structure stability and high rate capability. Our preliminary electrochemical experiments show a high capacity of 287 mAh g -1 at 0.1 C and a capacity retention of 96% after 100 cycles at 1.0 C. Furthermore, the rate capability is superior without any other modifications, reaching 197 mAh g -1 at 3.0 C with a capacity retention of 94% after 100 cycles. This approach may shed light on a new material engineering for high-performance cathode materials.

  9. Added value of prone CT in the assessment of honeycombing and classification of usual interstitial pneumonia pattern.

    Science.gov (United States)

    Kim, Minjae; Lee, Sang Min; Song, Jae-Woo; Do, Kyung-Hyun; Lee, Hyun Joo; Lim, Soyeoun; Choe, Jooae; Park, Kye Jin; Park, Hyo Jung; Kim, Hwa Jung; Seo, Joon Beom

    2017-06-01

    To retrospectively investigate whether prone CT improves identification of honeycombing and classification of UIP patterns in terms of interobserver agreement and accuracy using pathological results as a reference standard. Institutional review board approval with waiver of patients' informed consent requirement was obtained. HRCTs of 86 patients with pathologically proven UIP, NSIP and chronic HP between January 2011 and April 2015 were evaluated by 8 observers. Observers were asked to review supine only set and supine and prone combined set and determine the presence of honeycombing and UIP classification (UIP, possible UIP, inconsistent with UIP). The diagnosis was regarded as correct when UIP pattern on CT corresponded to pathological UIP. Interobserver agreement of honeycombing identification among radiologists was only fair on the supine and combined set (weighted κ=0.31 and 0.34). Additional review of prone images demonstrated a significant improvement in interobserver agreement (weighted κ) of UIP classification from 0.25 to 0.33. Prone CT conferred a significant improvement in interobserver agreement of UIP classification for trainee radiologists (from 0.10 to 0.34) while no improvement was found for board-certified radiologists (from 0.35 to 0.31). There were no significant differences in the accuracy of UIP pattern with reference to pathological results between the supine and combined set (78.8% (145/184) and 81.3% (179/220), P=0.612). Additional review of prone CT can improve overall interobserver agreement of UIP classification among radiologists with variable experiences, particularly for less experienced radiologists, while no improvement was found in honeycombing identification. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Strain-rate effect on initial crush stress of irregular honeycomb under dynamic loading and its deformation mechanism

    Science.gov (United States)

    Wang, Peng; Zheng, Zhijun; Liao, Shenfei; Yu, Jilin

    2018-02-01

    The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored. The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.

  11. Investigation of the spin-1 honeycomb antiferromagnet BaNi2V2O8 with easy-plane anisotropy

    Science.gov (United States)

    Klyushina, E. S.; Lake, B.; Islam, A. T. M. N.; Park, J. T.; Schneidewind, A.; Guidi, T.; Goremychkin, E. A.; Klemke, B.; Mânsson, M.

    2017-12-01

    The magnetic properties of the two-dimensional, S =1 honeycomb antiferromagnet BaNi2V2O8 have been comprehensively studied using dc susceptibility measurements and inelastic neutron scattering techniques. The magnetic excitation spectrum is found to be dispersionless within experimental resolution between the honeycomb layers, while it disperses strongly within the honeycomb plane where it consists of two gapped spin-wave modes. The magnetic excitations are compared to linear spin-wave theory allowing the Hamiltonian to be determined. The first- and second-neighbor magnetic exchange interactions are antiferromagnetic and lie within the ranges 10.90 meV ≤Jn≤13.35 meV and 0.85 meV ≤Jn n≤1.65 meV, respectively. The interplane coupling Jout is four orders of magnitude weaker than the intraplane interactions, confirming the highly two-dimensional magnetic behavior of this compound. The sizes of the energy gaps are used to extract the magnetic anisotropies and reveal substantial easy-plane anisotropy and a very weak in-plane easy-axis anisotropy. Together these results reveal that BaNi2V2O8 is a candidate compound for the investigation of vortex excitations and Berezinsky-Kosterliz-Thouless phenomenon.

  12. Hierarchical honeycomb-like Co3O4 pores coating on CoMoO4 nanosheets as bifunctional efficient electrocatalysts for overall water splitting

    Science.gov (United States)

    Pei, Zhihao; Xu, Li; Xu, Wei

    2018-03-01

    Efficient electrocatalytic water splitting is one of the most effective ways to solve the global energy crisis. In this paper, we report on a novel self-assembled hierarchical structure of Co3O4/CoMoO4 grown in situ on a bare nickel foam. The unique, three-dimensional honeycomb-like Co3O4 pores were constructed from one-dimensional nanowires and coated on two-dimensional CoMoO4 nanosheets structures grown on nickel foam. The synthesis involved a step-wise solvothermal method followed by an annealing treatment. Benefiting from the synergistic effect of the hierarchical nanostructures, the materials had more reaction active sites and a smaller electron transfer impedance, and they exhibited excellent electrocatalytic performances for the HER and OER of 143 and 244 mV, respectively, at 10 mA cm-2 in an alkaline solution. Furthermore, the materials remained stable during the long electrolysis period, over 10 h, presenting promising application prospects in the field of electrocatalytic water splitting.

  13. Infinite projected entangled-pair state algorithm for ruby and triangle-honeycomb lattices

    Science.gov (United States)

    Jahromi, Saeed S.; Orús, Román; Kargarian, Mehdi; Langari, Abdollah

    2018-03-01

    The infinite projected entangled-pair state (iPEPS) algorithm is one of the most efficient techniques for studying the ground-state properties of two-dimensional quantum lattice Hamiltonians in the thermodynamic limit. Here, we show how the algorithm can be adapted to explore nearest-neighbor local Hamiltonians on the ruby and triangle-honeycomb lattices, using the corner transfer matrix (CTM) renormalization group for 2D tensor network contraction. Additionally, we show how the CTM method can be used to calculate the ground-state fidelity per lattice site and the boundary density operator and entanglement entropy (EE) on an infinite cylinder. As a benchmark, we apply the iPEPS method to the ruby model with anisotropic interactions and explore the ground-state properties of the system. We further extract the phase diagram of the model in different regimes of the couplings by measuring two-point correlators, ground-state fidelity, and EE on an infinite cylinder. Our phase diagram is in agreement with previous studies of the model by exact diagonalization.

  14. Sustainability of fiber reinforced laminate and honeycomb composites in manufacturing industries

    Science.gov (United States)

    Asmatulu, Eylem; Alonayni, Abdullah; Alamir, Mohammed; Rahman, Muhammad M.

    2018-03-01

    Fiber reinforced polymer (FRP) composites provide a lot of benefits, including strength-to-weight ratio / light weight, superior mechanical properties, low maintenance, prolonged service life, as well as corrosion, fatigue and creep resistance. However, sustainability of the FRP composites have not been studied in detail in terms of long term productions in various industries, such as aerospace, wind energy, automotive and defense. Carbon fibers are relatively expensive because of the energy intensive production systems, and lack of easy production options, which forces many companies to recycle and reuse the FRP composites in the same or different manufacturing industries. This study mainly deals with two important issues, including the disposal of composite wastes generated during the manufacturing of composite parts, and the disposal of the products at the end of their useful life. It is believed that the carbon fibers in the used composites will have still high mechanical strengths to use in different composite manufacturing after its end of life. The major manufacturing costs come from the labor and raw materials, so using the recycled carbon fibers will make sustainable composite productions in other industries. This paper presents the current status and outlook of the FRP composite recycling and re-manufacturing techniques in the same or different industries. A future vision of the FRP composites will be investigated with sustainability point of views. This study will also mention about the sustainability issues in laminate and honeycomb composites, new product design and developments and potential applications in different manufacturing industries.

  15. Enhanced xylene removal by photocatalytic oxidation using fiber-illuminated honeycomb reactor at ppb level.

    Science.gov (United States)

    Wu, Yi-Ting; Yu, Yi-Hui; Nguyen, Van-Huy; Lu, Kung-Te; Wu, Jeffrey Chi-Sheng; Chang, Luh-Maan; Kuo, Chi-Wen

    2013-11-15

    The removal of volatile organic compounds (VOCs) at ppb level is one of the most critical challenges in clean rooms for the semiconductor industry. Photocatalytic oxidation is an innovative and promising technology for ppb-level VOCs degradation. We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. Using the FIHR with Mn-TiO2 photocatalyst not only increased the m-xylene removal efficiency, but also increased the CO2 selectivity. Interestingly, Mn-TiO2 in FIHR also showed a very good reusability, 93% removal efficiency was still achieved in 72-h in reaction. Thus, the FIHR gave very high removal efficiency for xylene at ppb level under room temperature. The FIHR has great potential application in the clean room for the air purification system in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Potentiometric Zinc Ion Sensor Based on Honeycomb-Like NiO Nanostructures

    Directory of Open Access Journals (Sweden)

    Magnus Willander

    2012-11-01

    Full Text Available In this study honeycomb-like NiO nanostructures were grown on nickel foam by a simple hydrothermal growth method. The NiO nanostructures were characterized by field emission electron microscopy (FESEM, high resolution transmission electron microscopy (HRTEM and X-ray diffraction (XRD techniques. The characterized NiO nanostructures were uniform, dense and polycrystalline in the crystal phase. In addition to this, the NiO nanostructures were used in the development of a zinc ion sensor electrode by functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed zinc ion sensor electrode has shown a good linear potentiometric response for a wide range of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of 36 mV/decade. The detection limit of the present zinc ion sensor was found to be 0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc ion sensor electrode has also shown good reproducibility, repeatability, storage stability and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was also used as indicator electrode in potentiometric titrations and it has demonstrated an acceptable stoichiometric relationship for the determination of zinc ion in unknown samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion in various industrial, clinical and other real samples.

  17. Detecting the BCS pairing amplitude via a sudden lattice ramp in a honeycomb lattice

    Science.gov (United States)

    Tiesinga, Eite; Nuske, Marlon; Mathey, Ludwig

    2016-05-01

    We determine the exact time evolution of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultra-cold atoms in a hexagonal optical lattice. The dynamical evolution is triggered by ramping the lattice potential up, such that the interaction strength Uf is much larger than the hopping amplitude Jf. The quench initiates collective oscillations with frequency | Uf | /(2 π) in the momentum occupation numbers and imprints an oscillating phase with the same frequency on the order parameter Δ. The latter is not reproduced by treating the time evolution in mean-field theory. The momentum density-density or noise correlation functions oscillate at frequency | Uf | /(2 π) as well as its second harmonic. For a very deep lattice, with negligible tunneling energy, the oscillations of momentum occupation numbers are undamped. Non-zero tunneling after the quench leads to dephasing of the different momentum modes and a subsequent damping of the oscillations. This occurs even for a finite-temperature initial BCS state, but not for a non-interacting Fermi gas. We therefore propose to use this dephasing to detect a BCS state. Finally, we predict that the noise correlation functions in a honeycomb lattice will develop strong anti-correlations near the Dirac point. We acknowledge funding from the National Science Foundation.

  18. Phase diagram of the Kondo-Heisenberg model on honeycomb lattice with geometrical frustration

    Science.gov (United States)

    Li, Huan; Song, Hai-Feng; Liu, Yu

    2016-11-01

    We calculated the phase diagram of the Kondo-Heisenberg model on a two-dimensional honeycomb lattice with both nearest-neighbor and next-nearest-neighbor antiferromagnetic spin exchanges, to investigate the interplay between RKKY and Kondo interactions in the presence of magnetic frustration. Within a mean-field decoupling technology in slave-fermion representation, we derived the zero-temperature phase diagram as a function of Kondo coupling J k and frustration strength Q. The geometrical frustration can destroy the magnetic order, driving the original antiferromagnetic (AF) phase to non-magnetic valence bond solids (VBS). In addition, we found two distinct VBS. As J k is increased, a phase transition from AF to Kondo paramagnetic (KP) phase occurs, without the intermediate phase coexisting AF order with Kondo screening found in square lattice systems. In the KP phase, the enhancement of frustration weakens the Kondo screening effect, resulting in a phase transition from KP to VBS. We also found a process to recover the AF order from VBS by increasing J k in a wide range of frustration strength. Our work may provide predictions for future experimental observation of new processes of quantum phase transitions in frustrated heavy-fermion compounds.

  19. Origin of the Giant Honeycomb Network of Quinones on Cu(111)

    Science.gov (United States)

    Einstein, T. L.; Kim, Kwangmoo; Wyrick, Jon; Cheng, Zhihai; Bartels, Ludwig; Berland, Kristian; Hyldgaard, Per

    2011-03-01

    We discuss the factors that lead to the amazing regular giant honeycomb network formed by quinones on Cu(111). Using a related lattice gas model with many characteristic energies, we can reproduce many experimental features. These models require a long-range attraction, which can be attributed to indirect interactions mediated by the Shockley surface state of Cu(111). However, Wyrick's preceding talk gave evidence that the network self-selects for the size of the pore rather than for the periodicity of the superstructure, suggesting that confined states are the key ingredient. We discuss this phenomenon in terms of the magic numbers of 2D quantum dots. We also report calculations of the effects of anthraquinones (AQ) in modifying the surface states by considering a superlattice of AQ chains with various separations. We discuss implications of these results for tuning the electronic states and, thence, superstructures. Supported by (TLE) NSF CHE 07-50334 & UMD MRSEC DMR 05-20471, (JW & LB) NSF CHE NSF CHE 07-49949, (KB & PH) Swedish Vetenskapsrådet VR 621-2008-4346.

  20. Fabrication and characterization of porous-core honeycomb bandgap THz fibers

    DEFF Research Database (Denmark)

    Bao, Hualong; Nielsen, Kristian; Rasmussen, Henrik K.

    We have fabricated a porous-core honeycomb fiber in the cyclic olefin copolymer (COC) Topas® by drill-draw technology [1]. A cross-sectional image of the fabricated fiber is shown in the left Panel of Fig. 1. Simulation of the electromagnetic properties of the fiber shows two wide bandgaps within......-TDS system (Picometrix T-Ray 4000). The reference pulse before coupling into the fiber is shown in Fig. 1(a) and the time trace of the THz pulse after propagation through a 5-cm long segment of fiber is shown in Fig. 1(b) (blue curve). After adding some water on the outside of the fiber surface......, the transmitted pulse experiences less pronounced oscillations at times later than 20 ps ( red curve in Fig. 1(b)). Figs. 1(c) and (d) show the short-time Fourier transforms of the two time-domain traces in Fig. 1(b), overlaid with the calculated group delay in the two bandgaps (black squares). The frequencies...

  1. Sensitivity analysis on the effective stiffness properties of 3-D orthotropic honeycomb cores

    Science.gov (United States)

    Karakoç, Alp

    2018-01-01

    The present study investigates the influences of representative volume element RVE mesh and material parameters, here cell wall elastic moduli, on the effective stiffness properties of three dimensional orthotropic honeycomb cores through strain driven computational homogenization in the finite element framework. For this purpose, case studies were carried out, for which hexagonal cellular RVEs were generated, meshed with eight node linear brick finite elements of varying numbers. Periodic boundary conditions were then implemented on the RVE boundaries by using one-to-one nodal match for the corresponding corners, edges and surfaces for the imposed macroscopic strains. As a novelty, orthotropic material properties were assigned for each cell wall by means of the transformation matrices following the cell wall orientations. Thereafter, simulations were conducted and volume averaged macroscopic stresses were obtained. Eventually, effective stiffness properties were obtained, through which RVE sensitivity analysis was carried out. The investigations indicate that there is a strong relation between number of finite elements and most of the effective stiffness parameters. In addition to this, cell wall elastic moduli also play critical role on the effective properties of the investigated materials.

  2. [Adsorption characteristics of acetone and butanone onto honeycomb ZSM-5 molecular sieve].

    Science.gov (United States)

    Du, Juan; Luan, Zhi-Qiang; Xie, Qiang; Ye, Ping-Wei; Li, Kai; Wang, Xi-Qin

    2013-12-01

    Adsorption capacity of acetone and acetone-butanone mixture onto honeycomb ZSM-5 molecular sieve was measured in this paper, and the influences of relative humidity, initial adsorbate concentration and airflow velocity on the adsorption process were investigated. Besides, adsorption performance parameters were calculated by Wheeler's equation. The results showed that relative humidity had no obvious influence on the acetone adsorption performance, which suggests that this material has good hydrophobic ability; in the low concentration range, the dynamic saturated adsorption capacity of acetone increased with the increase of initial concentration, but in the occasion of high concentration of acetone gas (more than 9 mg x L(-1)), the dynamic saturated adsorption capacity maintained at a certain level and did not vary with the increase of initial concentration; the increase of air flow velocity resulted in significant increase of acetone adsorption rate constant, at the same time the critical layer thickness of the adsorbent bed also increased significantly. In the cases of acetone-butanone mixture, the adsorption capacity of butanone onto ZSM-5 was clearly higher than that of acetone.

  3. High temperature testing of TRUPACT-I materials: Kevlar, honeycomb, rigid polyurethane foam

    International Nuclear Information System (INIS)

    Hudson, M.L.

    1985-12-01

    When the Transuranic Package Transporter Model-I (TRUPACT-I) failed to afford sufficient containment after a 35-minute JP-4 fueled open-pool fire, component tests were conducted, in conjunction with analyses, to guide and assess the redesign of TRUPACT-I. Since materials which change phase or combust are difficult to numerically analyze, the component tests determined the behavior of these materials in TRUPACT-I. The component tests approximated the behavior of Kevlar (registered trademark of DuPont), metal honeycomb, and rigid polyurethane foam, as they appear in TRUPACT-I, in an open-pool fire environment. Six series of tests were performed at Sandia's Radiant Heat Facility and one test at the wind-shielded fire test facility (LAARC Chimney). Each test facility was controlled to yield temperatures or heat fluxes equivalent to those measured in the TRUPACT-I, Unit 0, open-pool fire. This extensive series of component tests (34 runs total) provided information on the high-temperature behavior of unique materials which was not previously available or otherwise attainable. The component tests were a timely and cost-effective means of providing the data for the TRUPACT-I redesign

  4. Square lattice honeycomb tri-carbide fuels for 50 to 250 KN variable thrust NTP design

    International Nuclear Information System (INIS)

    Anghaie, Samim; Knight, Travis; Gouw, Reza; Furman, Eric

    2001-01-01

    Ultrahigh temperature solid solution of tri-carbide fuels are used to design an ultracompact nuclear thermal rocket generating 950 seconds of specific impulse with scalable thrust level in range of 50 to 250 kilo Newtons. Solid solutions of tri-carbide nuclear fuels such as uranium-zirconium-niobium carbide. UZrNbC, are processed to contain certain mixing ratio between uranium carbide and two stabilizing carbides. Zirconium or niobium in the tri-carbide could be replaced by tantalum or hafnium to provide higher chemical stability in hot hydrogen environment or to provide different nuclear design characteristics. Recent studies have demonstrated the chemical compatibility of tri-carbide fuels with hydrogen propellant for a few to tens of hours of operation at temperatures ranging from 2800 K to 3300 K, respectively. Fuel elements are fabricated from thin tri-carbide wafers that are grooved and locked into a square-lattice honeycomb (SLHC) shape. The hockey puck shaped SLHC fuel elements are stacked up in a grooved graphite tube to form a SLHC fuel assembly. A total of 18 fuel assemblies are arranged circumferentially to form two concentric rings of fuel assemblies with zirconium hydride filling the space between assemblies. For 50 to 250 kilo Newtons thrust operations, the reactor diameter and length including reflectors are 57 cm and 60 cm, respectively. Results of the nuclear design and thermal fluid analyses of the SLHC nuclear thermal propulsion system are presented

  5. Polarized-neutron investigation of magnetic ordering and spin dynamics in BaCo2(AsO4)2 frustrated honeycomb-lattice magnet.

    Science.gov (United States)

    Regnault, L-P; Boullier, C; Lorenzo, J E

    2018-01-01

    The magnetic properties of the cobaltite BaCo 2 (AsO 4 ) 2 , a good realization of the quasi two-dimensional frustrated honeycomb-lattice system with strong planar anisotropy, have been reinvestigated by means of spherical neutron polarimetry with CRYOPAD. From accurate measurements of polarization matrices both on elastic and inelastic contributions as a function of the scattering vector Q , we have been able to determine the low-temperature magnetic structure of BaCo 2 (AsO 4 ) 2 and reveal its puzzling in-plane spin dynamics. Surprisingly, the ground-state structure (described by an incommensurate propagation vector [Formula: see text], with [Formula: see text] and [Formula: see text]) appears to be a quasi-collinear structure, and not a simple helix, as previously determined. In addition, our results have revealed the existence of a non-negligible out-of-plane moment component [Formula: see text]/Co 2+ , representing about 10% of the in-plane component, as demonstrated by the presence of finite off-diagonal elements [Formula: see text] and [Formula: see text] of the polarization matrix, both on elastic and inelastic magnetic contributions. Despite a clear evidence of the existence of a slightly inelastic contribution of structural origin superimposed to the magnetic excitations at the scattering vectors [Formula: see text] and [Formula: see text] (energy transfer [Formula: see text] meV), no strong inelastic nuclear-magnetic interference terms could be detected so far, meaning that the nuclear and magnetic degrees of freedom have very weak cross-correlations. The strong inelastic [Formula: see text] and [Formula: see text] matrix elements can be understood by assuming that the magnetic excitations in BaCo 2 (AsO 4 ) 2 are spin waves associated with trivial anisotropic precessions of the magnetic moments involved in the canted incommensurate structure.

  6. Polarized-neutron investigation of magnetic ordering and spin dynamics in BaCo2(AsO42 frustrated honeycomb-lattice magnet

    Directory of Open Access Journals (Sweden)

    L.-P. Regnault

    2018-01-01

    Full Text Available The magnetic properties of the cobaltite BaCo2(AsO42, a good realization of the quasi two-dimensional frustrated honeycomb-lattice system with strong planar anisotropy, have been reinvestigated by means of spherical neutron polarimetry with CRYOPAD. From accurate measurements of polarization matrices both on elastic and inelastic contributions as a function of the scattering vector Q, we have been able to determine the low-temperature magnetic structure of BaCo2(AsO42 and reveal its puzzling in-plane spin dynamics. Surprisingly, the ground-state structure (described by an incommensurate propagation vector k1=(kx,0,kz, with kx=0.270±0.005 and kz≈−1.31 appears to be a quasi-collinear structure, and not a simple helix, as previously determined. In addition, our results have revealed the existence of a non-negligible out-of-plane moment component ≈0.25μB/Co2+, representing about 10% of the in-plane component, as demonstrated by the presence of finite off-diagonal elements Pyz and Pzy of the polarization matrix, both on elastic and inelastic magnetic contributions. Despite a clear evidence of the existence of a slightly inelastic contribution of structural origin superimposed to the magnetic excitations at the scattering vectors Q=(0.27,0,3.1 and Q=(0.73,0,0.8 (energy transfer ΔE≈2.3 meV, no strong inelastic nuclear-magnetic interference terms could be detected so far, meaning that the nuclear and magnetic degrees of freedom have very weak cross-correlations. The strong inelastic Pyz and Pzy matrix elements can be understood by assuming that the magnetic excitations in BaCo2(AsO42 are spin waves associated with trivial anisotropic precessions of the magnetic moments involved in the canted incommensurate structure.

  7. Salt or ice diapirism origin for the honeycomb terrain in Hellas basin, Mars?: Implications for the early martian climate

    Science.gov (United States)

    Weiss, David K.; Head, James W.

    2017-03-01

    The "honeycomb" terrain is a Noachian-aged cluster of ∼7 km wide linear cell-like depressions located on the northwestern floor of Hellas basin, Mars. A variety of origins have been proposed for the honeycomb terrain, including deformation rings of subglacial sediment, frozen convection cells from a Hellas impact melt sheet, a swarm of igneous batholiths, salt diapirism, and ice diapirism. Recent work has shown that the salt or ice diapirism scenarios appear to be most consistent with the morphology and morphometry of the honeycomb terrain. The salt and ice diapirism scenarios have different implications for the ancient martian climate and hydrological cycle, and so distinguishing between the two scenarios is critical. In this study, we specifically test whether the honeycomb terrain is consistent with a salt or ice diapir origin. We use thermal modeling to assess the stability limits on the thickness of an ice or salt diapir-forming layer at depth within the Hellas basin. We also apply analytical models for diapir formation to evaluate the predicted diapir wavelengths in order to compare with observations. Ice diapirism is generally predicted to reproduce the observed honeycomb wavelengths for ∼100 m to ∼1 km thick ice deposits. Gypsum and kieserite diapirism is generally predicted to reproduce the observed honeycomb wavelengths for ≥ 600-1000 m thick salt deposits, but only with a basaltic overburden. Halite diapirism generally requires approx. ≥ 1 km thick halite deposits in order to reproduce the observed honeycomb wavelengths. Hellas basin is a distinctive environment for diapirism on Mars due to its thin crust (which reduces surface heat flux), low elevation (which allows Hellas to act as a water/ice/sediment sink and increases the surface temperature), and location within the southern highlands (which may provide proximity to inflowing saline water or glacial ice). The plausibility of an ice diapir mechanism generally requires temperatures ≤ 250

  8. Two iridates, two models, and two approaches: A comparative study on magnetism in three-dimensional honeycomb materials

    Science.gov (United States)

    Lee, Eric Kin-Ho; Rau, Jeffrey G.; Kim, Yong Baek

    2016-05-01

    Two recent theoretical works studied the role of Kitaev interactions in the newly observed incommensurate magnetic order in the hyper-honeycomb (β -Li2IrO3 ) and stripy-honeycomb (γ -Li2IrO3 ) iridates. Each of these works analyzed a different model (J K Γ versus coupled zigzag chain model) using a contrasting method (classical versus soft-spin analysis). The lack of commonality between these works precludes meaningful comparisons and a proper understanding of these unusual orderings. In this study, we complete the unfinished picture initiated by these two works by solving both models with both approaches for both three-dimensional (3D) honeycomb iridates. Through comparisons between all combinations of models, techniques, and materials, we find that the bond-isotropic J K Γ model consistently predicts the experimental phase of β -Li2IrO3 regardless of the method used, while the experimental phase of γ -Li2IrO3 can be generated by the soft-spin approach with eigenmode mixing irrespective of the model used. To gain further insights, we solve a one-dimensional (1D) quantum spin-chain model related to both 3D models using the density matrix renormalization group method to form a benchmark. We discover that in the 1D model, incommensurate correlations in the classical and soft-spin analysis survive in the quantum limit only in the presence of the symmetric-off-diagonal exchange Γ found in the J K Γ model. The relevance of these results to the real materials is also discussed.

  9. Effective-field theory of the Ising model with three alternative layers on the honeycomb and square lattices

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram [Institute of Science, Erciyes University, Kayseri 38039 (Turkey); Canko, Osman [Department of Physics, Erciyes University, Kayseri 38039 (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, Kayseri 38039 (Turkey)], E-mail: keskin@erciyes.edu.tr

    2008-09-15

    The Ising model with three alternative layers on the honeycomb and square lattices is studied by using the effective-field theory with correlations. We consider that the nearest-neighbor spins of each layer are coupled ferromagnetically and the adjacent spins of the nearest-neighbor layers are coupled either ferromagnetically or anti-ferromagnetically depending on the sign of the bilinear exchange interactions. We investigate the thermal variations of the magnetizations and present the phase diagrams. The phase diagrams contain the paramagnetic, ferromagnetic and anti-ferromagnetic phases, and the system also exhibits a tricritical behavior.

  10. Effective-field theory of the Ising model with three alternative layers on the honeycomb and square lattices

    International Nuclear Information System (INIS)

    Deviren, Bayram; Canko, Osman; Keskin, Mustafa

    2008-01-01

    The Ising model with three alternative layers on the honeycomb and square lattices is studied by using the effective-field theory with correlations. We consider that the nearest-neighbor spins of each layer are coupled ferromagnetically and the adjacent spins of the nearest-neighbor layers are coupled either ferromagnetically or anti-ferromagnetically depending on the sign of the bilinear exchange interactions. We investigate the thermal variations of the magnetizations and present the phase diagrams. The phase diagrams contain the paramagnetic, ferromagnetic and anti-ferromagnetic phases, and the system also exhibits a tricritical behavior

  11. Physical properties of the spin Hamiltonian on honeycomb lattice samples with Kekulé and vacuum polarization corrections

    Science.gov (United States)

    Martins, Ricardo Spagnuolo; Konstantinova, Elena; Belich, Humberto; Helayël-Neto, José Abdalla

    2017-11-01

    Magnetic and thermodynamical properties of a system of spins in a honeycomb lattice, such as magnetization, magnetic susceptibility and specific heat, in a low-temperature regime are investigated by considering the effects of a Kekulé scalar exchange and QED vacuum polarization corrections to the interparticle potential. The spin lattice calculations are carried out by means of Monte Carlo simulations. We present a number of comparative plots of all the physical quantities we have considered and a detailed analysis is presented to illustrate the main features and the variation profiles of the properties with the applied external magnetic field and temperature.

  12. Propagation of liquid surface waves over finite graphene structured arrays of cylinders

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Based on the multiple scattering method,this paper investigates a benchmark problem of the propagation of liquid surface waves over finite graphene (or honeycomb) structured arrays of cylinders.Comparing the graphene structured array with the square structured and with triangle structured arrays,it finds that the finite graphene structure can produce more complete band gaps than the other finite structures,and the finite graphene structure has less localized ability than the other finite structures.

  13. The Effect of Face and Adhesive Types on Mechanical Properties of Sandwich Panels Made from Honeycomb Paper

    Directory of Open Access Journals (Sweden)

    Mohsen Saffari

    2013-11-01

    Full Text Available Sandwich panels are new kind of layered composites that usually are composed of three layers and their core layer's thickness is higher and the outer layers are determinative in determination of the products strength and stiffness. The core layer is commonly made of honeycomb paper, corrugated paper and polyurethane etc. In this study, effects of face and adhesive types on mechanical properties of sandwich panels made from honeycomb paper were investigated. The variables included three types; beech face, poplar face and hardboard (S2S face, veneer less and adhesive type (two types; epoxy and PVA. Out of experimental panels specimens were cut and tested according to DIN E 326-1 standard. Mechanical properties of panels, included modulus of elasticity as well as modulus of rupture at the edge and surface (based on DIN EN 310 standard and Impact Bending Strength (IBS of the panels (based on ASTM D 3499 standard were measured. The gathered data were analyzed as completely randomized factorial design. Highest mechanical properties were reported for panels glued with epoxy resin and containing fiberboard at the middle. According to results, optimum condition of producing sandwich panels was observed in uses of epoxy resin and fiberboard S2S face, veneer less at the middle.

  14. Magnetic behaviour of the honeycomb antiferromagnet BaNi{sub 2}V{sub 2}O{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Klyushina, Ekaterina; Lake, Bella [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Berlin (Germany); Islam, Nazmul; Klemke, Bastian [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Schneidewind, Astrid; Park, Jitae [Heinz Maier-Leibnitz Zentrum, TU Muenchen, Garching (Germany); Mansson, Martin [Paul Scherrer Institute (Switzerland)

    2016-07-01

    Here we present our recent investigations of a spin-1 honeycomb antiferromagnetic BaNi{sub 2}V{sub 2}O{sub 8} which is a highly 2D antiferromagnet with XY anisotropy making this compound a potential candidate for the Berezinsky-Kosterliz-Thouless topological phase transition. Single crystal inelastic neutron scattering measurements in the honeycomb plane at 4 K reveal that the magnetic excitations extend from 0.3-26 meV and consist of two anisotropy-split gapped modes with gaps of 0.3 meV and 3.3 meV arising from the anisotropy within the a-b plane and XY anisotropy respectively. The excitations agree well with simulations based on linear spin - wave theory and are completely dispersionless in the out-of-plane direction suggesting negligible interplane coupling in spite of the long range magnetic order below T{sub N} = 48 K. A detailed investigation of the order parameter and correlation length are presented and compared to various theories.

  15. Efficient decomposition of formaldehyde at room temperature over Pt/honeycomb ceramics with ultra-low Pt content.

    Science.gov (United States)

    Nie, Longhui; Zheng, Yingqiu; Yu, Jiaguo

    2014-09-14

    Pt/honeycomb ceramic (Pt/HC) catalysts with ultra-low Pt content (0.005-0.055 wt%) were for the first time prepared by an impregnation of honeycomb ceramics with Pt precursor and NaBH4-reduction combined method. The microstructures, morphologies and textural properties of the resulting samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The obtained Pt/HC catalysts were used for catalytic oxidative decomposition of formaldehyde (HCHO) at room temperature. It was found that the as-prepared Pt/HC catalysts can efficiently decompose HCHO in air into CO2 and H2O at room temperature. The catalytic activity of the Pt/HC catalysts increases with increasing the Pt loading in the range of 0.005-0.013 wt%, and the further increase of the Pt loading does not obviously improve catalytic activity. From the viewpoint of cost and catalytic performance, 0.013 wt% Pt loading is the optimal Pt loading amount, and the Pt/HC catalyst with 0.013 wt% Pt loading also exhibited good catalytic stability. Considering practical applications, this work will provide new insights into the low-cost and large-scale fabrication of advanced catalytic materials for indoor air purification.

  16. Short-range order in the quantum XXZ honeycomb lattice material BaCo2(PO4)2

    Science.gov (United States)

    Nair, Harikrishnan S.; Brown, J. M.; Coldren, E.; Hester, G.; Gelfand, M. P.; Podlesnyak, A.; Huang, Q.; Ross, K. A.

    2018-04-01

    We present observations of highly frustrated quasi-two-dimensional (2D) magnetic correlations in the honeycomb lattice layers of the Seff =1 /2 compound γ -BaCo2(PO4)2 (γ -BCPO). Specific heat shows a broad peak comprised of two weak kink features at TN 1˜6 K and TN 2˜3.5 K, the relative weights of which can be modified by sample annealing. Neutron powder diffraction measurements reveal short range quasi-2D order that is established below TN 1 and TN 2, at which two separate, incompatible, short range magnetic orders onset: commensurate antiferromagnetic correlations with correlation length ξc=60 ±2 Å (TN 1) and in quasi-2D helical domains with ξh=350 ±11 Å (TN 2). The ac magnetic susceptibility response lacks frequency dependence, ruling out spin freezing. Inelastic neutron scattering data on γ -BCPO is compared with linear spin wave theory, and two separate parameter regions of the XXZ J1-J2-J3 model with ferromagnetic nearest-neighbor exchange J1 are favored, both near regions of high classical degeneracy. High energy coherent excitations (˜10 meV) persist up to at least 40 K, suggesting strong in-plane correlations persist above TN. These data show that γ -BCPO is a rare highly frustrated, quasi-2D Seff =1 /2 honeycomb lattice material which resists long range magnetic order and spin freezing.

  17. Dip coating of air purifier ceramic honeycombs with photocatalytic TiO2 nanoparticles: A case study for occupational exposure

    DEFF Research Database (Denmark)

    Koivisto, Antti Joonas; Kling, Kirsten Inga; Fonseca, Ana Sofia

    2018-01-01

    Nanoscale TiO2 (nTiO2) is manufactured in high volumes and is of potential concern in occupational health. Here, we measured workers exposure levels while ceramic honeycombs were dip coated with liquid photoactive nanoparticle suspension and dried with an air blade. The measured nTiO2 concentrati...

  18. Fast and highly efficient SO2 capture by TMG immobilized on hierarchical micro-meso-macroporous AlPO-5/cordierite honeycomb ceramic materials.

    Science.gov (United States)

    Xu, Jin; Zha, Xiaoling; Wu, Yumei; Ke, Qingping; Yu, Weifang

    2016-05-11

    SO2 capacity of the obtained TMG-AlPO-5/cordierite honeycomb ceramic (CHC) adsorbent was measured to be 1.13 mol per mol TMG. More importantly, compared with literature reported supported ionic liquids, it is featured by a significantly improved adsorption rate (t0.9 reduced from >30 min to ∼0.1 min) and negligible pressure drop.

  19. Ionic self-assembly of surface functionalized metal-organic polyhedra nanocages and their ordered honeycomb architecture at the air/water interface.

    Science.gov (United States)

    Li, Yantao; Zhang, Daojun; Gai, Fangyuan; Zhu, Xingqi; Guo, Ya-nan; Ma, Tianliang; Liu, Yunling; Huo, Qisheng

    2012-08-18

    Metal-organic polyhedra (MOP) nanocages were successfully surface functionalized via ionic self-assembly and the ordered honeycomb architecture of the encapsulated MOP nanocages was also fabricated at the air/water surface. The results provide a novel synthetic method and membrane processing technique of amphiphilic MOP nanocages for various applications.

  20. Natural convection and radiation heat transfer in a vertical porous layer with a hexagonal honeycomb core. 1st Report. Numerical analysis; Honeycomb core de shikirareta enchoku takoshitsu sonai no shizen tairyu - fukusha fukugo netsu dentatsu. 1. Suchi kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Y; Asako, Y [Tokyo Metropolitan Univ., Tokyo (Japan). Faculty of Technology; Faghri, M [University of Rhode Island, Kingston, RI (United States)

    1997-06-25

    Combined heat transfer characteristics are obtained numerically for three-dimensional natural convection and thermal radiation in a long and wide vertical porous layer with a hexagonal honeycomb core. The porous layer is assumed to be both homogeneous and isotropic. The pure Darcy law for the fluid flow and Rosseland`s approximation for the radiation are employed. The numerical methodology is based on an algebraic coordinate transformation technique and the transformed governing equations are solved using the SIMPLE algorithm. The effect of radiation on the beat transfer characteristics is investigated in a wide range of radiation numbers and temperature ratios, for two Darcy-Rayleigh number values (Ra*=100, 1000), and for a fixed aspect ratio of H/L=1. The results are presented in the form of combined and convection heat transfer coefficients, and are compared with the corresponding values for pure natural convection. 7 refs., 12 figs., 1 tab.

  1. Pitting and Repair of the Space Shuttle's Inconel(Registered TradeMark) Honeycomb Conical Seal Panel

    Science.gov (United States)

    Zimmerman, Frank R.; Gentz, Steven J.; Miller, James B.; MacKay, Rebecca A.; Bright, Mark L.

    2006-01-01

    During return to flight servicing of the rudder speed brake (RSB) for each Space Shuttle Orbiter, inspectors discovered numerous small pits on the surface of the #4 right hand side honeycomb panel that covers the rudder speed brake actuators. Shortly after detection of the problem, concurrent investigations were initiated to determine the extent of damage, the root cause, and to develop a repair plan, since fabrication of a replacement panel is impractical for cost, schedule, and sourcing considerations. This paper describes the approach, findings, conclusions and recommendations associated with the investigation of the conical seal pitting. It documents the cause and contributing factors of the pitting, the means used to isolate each contributor, and the supporting evidence for the primary cause of the pitting. Finally, the selection, development and verification of the repair procedure used to restore the conical seal panel is described with supporting process and metallurgical rationale for selection.

  2. 3D interconnected honeycomb-like and high rate performance porous carbons from petroleum asphalt for supercapacitors

    Science.gov (United States)

    Pan, Lei; Li, Xinxin; Wang, Yixian; Liu, Jialiang; Tian, Wei; Ning, Hui; Wu, Mingbo

    2018-06-01

    In this paper, 3D interconnected honeycomb-like hierarchical porous carbons (HPCs) are prepared from petroleum asphalt via in-situ KOH activation in a molten salt medium. As symmetry two electrodes for supercapacitors, HPCs with high specific surface area of 2227 m2 g-1 show high rate performance, i.e. 265 F g-1 at 0.05 A g-1, 221 F g-1 at 20 A g-1, and superior cycle stability with 91.1% capacitance retention at 5 A g-1 after 10,000 cycles in 6 M KOH electrolyte. This facile strategy to prepare massive HPCs from cheap petroleum asphalt can provide high performance electrode materials for energy storage devices.

  3. Lightweight, Thermally Insulating Structural Panels

    Science.gov (United States)

    Eisen, Howard J.; Hickey, Gregory; Wen, Liang-Chi; Layman, William E.; Rainen, Richard A.; Birur, Gajanana C.

    1996-01-01

    Lightweight, thermally insulating panels that also serve as structural members developed. Honeycomb-core panel filled with low-thermal-conductivity, opacified silica aerogel preventing convection and minimizes internal radiation. Copper coating on face sheets reduces radiation. Overall thermal conductivities of panels smaller than state-of-art commercial non-structurally-supporting foam and fibrous insulations. On Earth, panels suitable for use in low-air-pressure environments in which lightweight, compact, structurally supporting insulation needed; for example, aboard high-altitude aircraft or in partially evacuated panels in refrigerators.

  4. Low Velocity Impact Properties of Aluminum Foam Sandwich Structural Composite

    Directory of Open Access Journals (Sweden)

    ZHAO Jin-hua

    2018-01-01

    Full Text Available Sandwich structural composites were prepared by aluminum foam as core materials with basalt fiber(BF and ultra-high molecular weight polyethylene(UHMWPE fiber composite as faceplate. The effect of factors of different fiber type faceplates, fabric layer design and the thickness of the corematerials on the impact properties and damage mode of aluminum foam sandwich structure was studied. The impact properties were also analyzed to compare with aluminum honeycomb sandwich structure. The results show that BF/aluminum foam sandwich structural composites has bigger impact damage load than UHMWPE/aluminum foam sandwich structure, but less impact displacement and energy absorption. The inter-layer hybrid fabric design of BF and UHMWPE has higher impact load and energy absorption than the overlay hybrid fabric design faceplate sandwich structure. With the increase of the thickness of aluminum foam,the impact load of the sandwich structure decreases, but the energy absorption increases. Aluminum foam sandwich structure has higher impact load than the aluminum honeycomb sandwich structure, but smaller damage energy absorption; the damage mode of aluminum foam core material is mainly the fracture at the impact area, while aluminum honeycomb core has obvious overall compression failure.

  5. Studies on solid solutions based on layered honeycomb-ordered phases P2-Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Ni, Zn)

    Energy Technology Data Exchange (ETDEWEB)

    Berthelot, Romain; Schmidt, Whitney; Sleight, A.W. [Department of Chemistry, Oregon State University, Corvallis, OR 97331 (United States); Subramanian, M.A., E-mail: mas.subramanian@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, OR 97331 (United States)

    2012-12-15

    Three complete solid solutions between the layered phases P2-Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Ni, Zn) have been prepared by conventional solid state method and investigated through X-ray diffraction, magnetism and optical measurements. All compositions are characterized by a M{sup 2+}/X{sup 6+} honeycomb ordering within the slabs and crystallize in a hexagonal unit cell. However, a structural transition based on a different stacking is observed as nickel (space group P6{sub 3}/mcm) is substituted by zinc or cobalt (space group P6{sub 3}22). All compositions exhibit a paramagnetic Curie-Weiss behavior at high temperatures; and the magnetic moment values confirm the presence of Ni{sup 2+} and/or Co{sup 2+} cations. The low-temperature antiferromagnetic order of Na{sub 2}Ni{sub 2}TeO{sub 6} and Na{sub 2}Co{sub 2}TeO{sub 6} is suppressed by zinc substitution. The color of the obtained compositions varies from pink, to light green and white when M=Co, Ni, Zn, respectively. - Graphical abstract: The comparison between the structure of Na{sub 2}Ni{sub 2}TeO{sub 6} (left) and Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Zn) (right) evidences the stacking difference with distinct atom sequences along the hexagonal c-axis. Highlights: Black-Right-Pointing-Pointer Solid solutions between lamellar phases Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Ni, Zn) are investigated. Black-Right-Pointing-Pointer A M{sup 2+}/X{sup 6+} honeycomb ordering characterized all the compositions. Black-Right-Pointing-Pointer A structural transition is shown when Ni is replaced by Co or Zn. Black-Right-Pointing-Pointer The low-temperature AFM ordering of Na{sub 2}Ni{sub 2}TeO{sub 6} and Na{sub 2}Co{sub 2}TeO{sub 6} is suppressed by zinc substitution. Black-Right-Pointing-Pointer Color changes from pink to light green and white when M=Co, Ni, Zn, respectively.

  6. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    Science.gov (United States)

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  7. Predictors of idiopathic pulmonary fibrosis in absence of radiologic honeycombing: A cross sectional analysis in ILD patients undergoing lung tissue sampling.

    Science.gov (United States)

    Salisbury, Margaret L; Xia, Meng; Murray, Susan; Bartholmai, Brian J; Kazerooni, Ella A; Meldrum, Catherine A; Martinez, Fernando J; Flaherty, Kevin R

    2016-09-01

    Idiopathic pulmonary fibrosis (IPF) can be diagnosed confidently and non-invasively when clinical and computed tomography (CT) criteria are met. Many do not meet these criteria due to absence of CT honeycombing. We investigated predictors of IPF and combinations allowing accurate diagnosis in individuals without honeycombing. We utilized prospectively collected clinical and CT data from patients enrolled in the Lung Tissue Research Consortium. Included patients had no honeycombing, no connective tissue disease, underwent diagnostic lung biopsy, and had CT pattern consistent with fibrosing ILD (n = 200). Logistic regression identified clinical and CT variables predictive of IPF. The probability of IPF was assessed at various cut-points of important clinical and CT variables. A multivariable model adjusted for age and gender found increasingly extensive reticular densities (OR 2.93, CI 95% 1.55-5.56, p = 0.001) predicted IPF, while increasing ground glass densities predicted a diagnosis other than IPF (OR 0.55, CI 95% 0.34-0.89, p = 0.02). The model-based probability of IPF was 80% or greater in patients with age at least 60 years and extent of reticular density one-third or more of total lung volume; for patients meeting or exceeding these clinical thresholds the specificity for IPF is 96% (CI 95% 91-100%) with 21 of 134 (16%) biopsies avoided. In patients with suspected fibrotic ILD and absence of CT honeycombing, extent of reticular and ground glass densities predict a diagnosis of IPF. The probability of IPF exceeds 80% in subjects over age 60 years with one-third of total lung having reticular densities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The effect of edge and impurities sites properties on their localized states in semi-infinite zigzag edged 2D honeycomb graphene sheet

    OpenAIRE

    Ahmed, Maher

    2011-01-01

    In this work, the tridiagonal method is used to distinguish between edges modes and area modes to study the edge sites properties effect on edge localized states of semi-infinite zigzag 2D honeycomb graphene sheet. The results show a realistic behavior for the dependance of edge localized states of zigzag graphene on the edge sites properties which explaining the experimental results of measured local density of states at the edge of graphene, while at the same time removing the inconsistence...

  9. Buckling Testing and Analysis of Honeycomb Sandwich Panel Arc Segments of a Full-Scale Fairing Barrel. Part 3; 8-ply Out-of-Autoclave Facesheets

    Science.gov (United States)

    Pineda, Evan J.; Myers, David E.; Kosareo, Daniel N.; Kellas, Sotiris

    2014-01-01

    Four honeycomb sandwich panels, representing 1/16th arc segments of a 10 m diameter barrel section of the heavy lift launch vehicle, were manufactured under the NASA Composites for Exploration program and the NASA Constellation Ares V program. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.000 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: inautoclave IM7/977-3 and out-of-autoclave T40-800B/5320-1. Smaller 3- by 5-ft panels were cut from the 1/16th barrel sections. These panels were tested under compressive loading at the NASA Langley Research Center. Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of the 3- by 5-ft panels. This manuscript summarizes the experimental and analytical modeling efforts pertaining to the panel composed of 8-ply, T40-800B/5320-1 facesheets (referred to as Panel C). To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear, two-dimensional (2-D) and three-dimensional (3-D), models yield good qualitative and quantitative predictions. Additionally, it was predicted correctly that the panel would fail in buckling prior to failing in strength.

  10. Buckling Testing and Analysis of Honeycomb Sandwich Panel Arc Segments of a Full-Scale Fairing Barrel: Comparison of In- and Out-of-Autoclave Facesheet Configurations

    Science.gov (United States)

    Pineda, Evan Jorge; Myers, David E.; Kosareo, Daniel N.; Zalewski, Bart F.; Kellas, Sotiris; Dixon, Genevieve D.; Krivanek, Thomas M.; Gyekenyesi, Thomas G.

    2014-01-01

    Four honeycomb sandwich panels, representing 1/16th arc segments of a 10-m diameter barrel section of the Heavy Lift Launch Vehicle, were manufactured and tested under the NASA Composites for Exploration and the NASA Constellation Ares V programs. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.0 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: in-autoclave IM7/977-3 and out-of-autoclave T40-800b/5320-1. Smaller 3 ft. by 5 ft. panels were cut from the 1/16th barrel sections and tested under compressive loading. Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of each 3 ft. by 5 ft. panel. To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear models yielded good qualitative and quantitative predictions. Additionally, it was correctly predicted that the panel would fail in buckling prior to failing in strength. Furthermore, several imperfection studies were performed to investigate the influence of geometric imperfections, fiber angle misalignments, and three-dimensional effects on the compressive response of the panel.

  11. Quantification of Honeycomb Number-Type Stacking Faults: Application to Na3Ni2BiO6 Cathodes for Na-Ion Batteries.

    Science.gov (United States)

    Liu, Jue; Yin, Liang; Wu, Lijun; Bai, Jianming; Bak, Seong-Min; Yu, Xiqian; Zhu, Yimei; Yang, Xiao-Qing; Khalifah, Peter G

    2016-09-06

    Ordered and disordered samples of honeycomb-lattice Na3Ni2BiO6 were investigated as cathodes for Na-ion batteries, and it was determined that the ordered sample exhibits better electrochemical performance, with a specific capacity of 104 mA h/g delivered at plateaus of 3.5 and 3.2 V (vs Na(+)/Na) with minimal capacity fade during extended cycling. Advanced imaging and diffraction investigations showed that the primary difference between the ordered and disordered samples is the amount of number-type stacking faults associated with the three possible centering choices for each honeycomb layer. A labeling scheme for assigning the number position of honeycomb layers is described, and it is shown that the translational shift vectors between layers provide the simplest method for classifying different repeat patterns. It is demonstrated that the number position of honeycomb layers can be directly determined in high-angle annular dark-field scanning transmission electron microscopy (STEM-HAADF) imaging studies. By the use of fault models derived from STEM studies, it is shown that both the sharp, symmetric subcell peaks and the broad, asymmetric superstructure peaks in powder diffraction patterns can be quantitatively modeled. About 20% of the layers in the ordered monoclinic sample are faulted in a nonrandom manner, while the disordered sample stacking is not fully random but instead contains about 4% monoclinic order. Furthermore, it is shown that the ordered sample has a series of higher-order superstructure peaks associated with 6-, 9-, 12-, and 15-layer periods whose existence is transiently driven by the presence of long-range strain that is an inherent consequence of the synthesis mechanism revealed through the present diffraction and imaging studies. This strain is closely associated with a monoclinic shear that can be directly calculated from cell lattice parameters and is strongly correlated with the degree of ordering in the samples. The present results are

  12. Field induced phase transition in layered honeycomb spin system α-RuCl3 studied by thermal conductivity

    Science.gov (United States)

    Leahy, Ian; Bornstein, Alex; Choi, Kwang-Yong; Lee, Minhyea

    α -RuCl3, a quasi -two-dimensional honeycomb lattice is known to be a candidate material to realize the Heisenberg-Kitaev spin model of a highly anisotropic bond-dependent exchange interaction. We investigate in-plane thermal conductivity (κ) as a function of temperature (T) and in-plane applied field (H). At H = 0 , the onset of a strong increase in κ marks the spontaneous long range ordering temperature, Tc = 6 . 5 K , corresponding to ``zigzag'' antiferromagnetic ordering. A broad peak appearing below Tc in κ was found to be suppressed significantly as H increases up to ~ 7 T , implying the system undergoes a field-induced transition from ordered to a new spin-disordered state analogous to the transverse-field Ising model. Further increasing H above 7 . 1 T , the large field seems to begin polarizing spins thus increasing the phonon mean free path, resulting in a significant rise in κ. This tendency is clearly shown in the field dependence of κ below Tc, which has a pronounced minimum at Hmin = 7 . 1 T . We will discuss our scaling analysis to characterize this field-induced phase transition and compare to the transverse-field Ising spin system. Work at the University of Colorado was supported by the US DOE Basic Energy Sciences under Award No. DE-SC0006888.

  13. Striped, honeycomb, and twisted moiré patterns in surface adsorption systems with highly degenerate commensurate ground states

    Science.gov (United States)

    Elder, K. R.; Achim, C. V.; Granato, E.; Ying, S. C.; Ala-Nissila, T.

    2017-11-01

    Atomistically thin adsorbate layers on surfaces with a lattice mismatch display complex spatial patterns and ordering due to strain-driven self-organization. In this work, a general formalism to model such ultrathin adsorption layers that properly takes into account the competition between strain and adhesion energy of the layers is presented. The model is based on the amplitude expansion of the two-dimensional phase field crystal (PFC) model, which retains atomistic length scales but allows relaxation of the layers at diffusive time scales. The specific systems considered here include cases where both the film and the adsorption potential can have either honeycomb (H) or triangular (T) symmetry. These systems include the so-called (1 ×1 ) , (√{3 }×√{3 }) R 30∘ , (2 ×2 ) , (√{7 }×√{7 }) R 19 .1∘ , and other higher order states that can contain a multitude of degenerate commensurate ground states. The relevant phase diagrams for many combinations of the H and T systems are mapped out as a function of adhesion strength and misfit strain. The coarsening patterns in some of these systems is also examined. The predictions are in good agreement with existing experimental data for selected strained ultrathin adsorption layers.

  14. Bond and flux-disorder effects on the superconductor-insulator transition of a honeycomb array of Josephson junctions

    Science.gov (United States)

    Granato, Enzo

    2018-05-01

    We study the effects of disorder on the zero-temperature quantum phase transition of a honeycomb array of Josephson junctions in a magnetic field with an average of fo flux quantum per plaquette. Bond disorder due to spatial variations in the Josephson couplings and magnetic flux disorder due to variations in the plaquette areas are considered. The model can describe the superconductor-insulator transition in ultra-thin films with a triangular pattern of nanoholes. Path integral Monte Carlo simulations of the equivalent (2 + 1)-dimensional classical model are used to study the critical behavior and estimate the universal resistivity at the transition. The results show that bond disorder leads to a rounding of the first-order phase transition for fo = 1 / 3 to a continuous transition. For integer fo, the decrease of the critical coupling parameter with flux disorder is significantly different from that of the same model defined on a square lattice. The results are compared with recent experimental observations on nanohole thin films with geometrical disorder and external magnetic field.

  15. Ground-state phases of the spin-1 J1-J2 Heisenberg antiferromagnet on the honeycomb lattice

    Science.gov (United States)

    Li, P. H. Y.; Bishop, R. F.

    2016-06-01

    We study the zero-temperature quantum phase diagram of a spin-1 Heisenberg antiferromagnet on the honeycomb lattice with both nearest-neighbor exchange coupling J1>0 and frustrating next-nearest-neighbor coupling J2≡κ J1>0 , using the coupled cluster method implemented to high orders of approximation, and based on model states with different forms of classical magnetic order. For each we calculate directly in the bulk thermodynamic limit both ground-state low-energy parameters (including the energy per spin, magnetic order parameter, spin stiffness coefficient, and zero-field uniform transverse magnetic susceptibility) and their generalized susceptibilities to various forms of valence-bond crystalline (VBC) order, as well as the energy gap to the lowest-lying spin-triplet excitation. In the range 0 κc 2=0.340 (5 ) . Two different paramagnetic phases are found to exist in the intermediate region. Over the range κc1<κ<κci=0.305 (5 ) we find a gapless phase with no discernible magnetic order, which is a strong candidate for being a quantum spin liquid, while over the range κci<κ <κc 2 we find a gapped phase, which is most likely a lattice nematic with staggered dimer VBC order that breaks the lattice rotational symmetry.

  16. Emulsion-phase synthesis of honeycomb-like Mg{sub 5}(OH){sub 2}(CO{sub 3}){sub 4}.4H{sub 2}O micro-spheres and subsequent decomposition to MgO

    Energy Technology Data Exchange (ETDEWEB)

    Gao Guo, E-mail: gaogaoguoguo@yahoo.com.c [Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Xiang Lan, E-mail: xianglan@mail.tsinghua.edu.c [Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2010-04-09

    Herein we report a simple emulsion-phase route for the synthesis of honeycomb-like basic magnesium carbonate (BMC, Mg{sub 5}(OH){sub 2}(CO{sub 3}){sub 4}.4H{sub 2}O) micro-spheres at 80 {sup o}C. Magnesium(II) salts in water are precipitated by sodium carbonate in the presence of cetyltrimethylammonium bromide (CTAB). Scanning electron microscopy shows the obtained BMC samples are composed of a lot of micro-spheres (diameter ranging from 8 to 10 {mu}m) which are interweaved by a lot of nano-sized thin sheets (thickness of 20-30 nm and length >1 {mu}m). The BMC micro-spheres prepared by this approach are porous and appear to be hollow structures. The size and shape of BMC are related to the CTAB concentration and temperature. The lower concentration of CTAB resulted in the decrease of the micro-spheres sizes. When the temperature was elevated to 110 {sup o}C, hexagonal tablets (thickness of 20 nm, length of each side varies from 400 to 600 nm) can be prepared. After the calcinations for BMC at 600 {sup o}C for 2 h, BMC are almost completely converted to MgO. Transmission electron microscopy indicates that the obtained MgO samples have a poly-crystalline feature. The possible formation mechanism of BMC micro-spheres has been discussed.

  17. Experimental identification of noise reduction properties of honeycomb panels using a small cabin

    OpenAIRE

    D'Ortona, Vittorio; Vivolo, Marianna; Pluymers, Bert; Vandepitte, Dirk; Desmet, Wim

    2013-01-01

    A procedure to identify the noise reduction properties of panels by means of a single cabin test setup is discussed. The complexity of the sound pressure field that builds up in the acoustic volume requires the support of advanced numerical techniques allowing for the evaluation of noise and vibration performances. Numerical models are used to predict the structural dynamics and the vibro-acoustic behaviour of the tested panel. Both Finite Element and Boundary Element simulations are validate...

  18. Gel Spun PAN/CNT Based Carbon Fibers with Honey-Comb Cross-Section

    Science.gov (United States)

    2013-11-13

    samples were prepared by mounting a single filament on a copper 3-post TEM grid (Omniprobe) and curing in epoxy (Gatan). The carbon fiber was then... Kevlar ® 49 [28], Zylon® [29], T300 [2], IM10 [30], M60J [31], YS-95A [32] were obtained from the data sheets of these fibers from the respective...made contained 60 vol% fibers in epoxy matrix. Fiber compressive strength may be dependent on fiber structure as well as fiber geometry. Kumar et al

  19. High-pressure versus isoelectronic doping effect on the honeycomb iridate Na2IrO3

    Science.gov (United States)

    Hermann, V.; Ebad-Allah, J.; Freund, F.; Pietsch, I. M.; Jesche, A.; Tsirlin, A. A.; Deisenhofer, J.; Hanfland, M.; Gegenwart, P.; Kuntscher, C. A.

    2017-11-01

    We study the effect of isoelectronic doping and external pressure in tuning the ground state of the honeycomb iridate Na2IrO3 by combining optical spectroscopy with synchrotron x-ray diffraction measurements on single crystals. The obtained optical conductivity of Na2IrO3 is discussed in terms of a Mott-insulating picture versus the formation of quasimolecular orbitals and in terms of Kitaev interactions. With increasing Li content x , (Na1 -xLix )2IrO3 moves deeper into the Mott-insulating regime, and there are indications that up to a doping level of 24% the compound comes closer to the Kitaev limit. The optical conductivity spectrum of single-crystalline α -Li2IrO3 does not follow the trends observed for the series up to x =0.24 . There are strong indications that α -Li2IrO3 is not as close to the Kitaev limit as Na2IrO3 and lies closer to the quasimolecular orbital picture instead. Except for the pressure-induced hardening of the phonon modes, the optical properties of Na2IrO3 seem to be robust against external pressure. Possible explanations of the unexpected evolution of the optical conductivity with isolectronic doping and the drastic change between x =0.24 and x =1 are given by comparing the pressure-induced changes of lattice parameters and the optical conductivity with the corresponding changes induced by doping.

  20. Evaluation of Material Models within LS-DYNA(Registered TradeMark) for a Kevlar/Epoxy Composite Honeycomb

    Science.gov (United States)

    Polanco, Michael A.; Kellas, Sotiris; Jackson, Karen

    2009-01-01

    The performance of material models to simulate a novel composite honeycomb Deployable Energy Absorber (DEA) was evaluated using the nonlinear explicit dynamic finite element code LS-DYNA(Registered TradeMark). Prototypes of the DEA concept were manufactured using a Kevlar/Epoxy composite material in which the fibers are oriented at +/-45 degrees with respect to the loading axis. The development of the DEA has included laboratory tests at subcomponent and component levels such as three-point bend testing of single hexagonal cells, dynamic crush testing of single multi-cell components, and impact testing of a full-scale fuselage section fitted with a system of DEA components onto multi-terrain environments. Due to the thin nature of the cell walls, the DEA was modeled using shell elements. In an attempt to simulate the dynamic response of the DEA, it was first represented using *MAT_LAMINATED_COMPOSITE_FABRIC, or *MAT_58, in LS-DYNA. Values for each parameter within the material model were generated such that an in-plane isotropic configuration for the DEA material was assumed. Analytical predictions showed that the load-deflection behavior of a single-cell during three-point bending was within the range of test data, but predicted the DEA crush response to be very stiff. In addition, a *MAT_PIECEWISE_LINEAR_PLASTICITY, or *MAT_24, material model in LS-DYNA was developed, which represented the Kevlar/Epoxy composite as an isotropic elastic-plastic material with input from +/-45 degrees tensile coupon data. The predicted crush response matched that of the test and localized folding patterns of the DEA were captured under compression, but the model failed to predict the single-cell three-point bending response.

  1. Design and analysis of compound flexible skin based on deformable honeycomb

    Science.gov (United States)

    Zou, Tingting; Zhou, Li

    2017-04-01

    In this study, we focused at the development and verification of a robust framework for surface crack detection in steel pipes using measured vibration responses; with the presence of multiple progressive damage occurring in different locations within the structure. Feature selection, dimensionality reduction, and multi-class support vector machine were established for this purpose. Nine damage cases, at different locations, orientations and length, were introduced into the pipe structure. The pipe was impacted 300 times using an impact hammer, after each damage case, the vibration data were collected using 3 PZT wafers which were installed on the outer surface of the pipe. At first, damage sensitive features were extracted using the frequency response function approach followed by recursive feature elimination for dimensionality reduction. Then, a multi-class support vector machine learning algorithm was employed to train the data and generate a statistical model. Once the model is established, decision values and distances from the hyper-plane were generated for the new collected data using the trained model. This process was repeated on the data collected from each sensor. Overall, using a single sensor for training and testing led to a very high accuracy reaching 98% in the assessment of the 9 damage cases used in this study.

  2. Chiral Spin-Density Wave, Spin-Charge-Chern Liquid, and d+id Superconductivity in 1/4-Doped Correlated Electronic Systems on the Honeycomb Lattice

    Directory of Open Access Journals (Sweden)

    Shenghan Jiang

    2014-09-01

    Full Text Available Recently, two interesting candidate quantum phases—the chiral spin-density wave state featuring anomalous quantum Hall effect and the d+id superconductor—were proposed for the Hubbard model on the honeycomb lattice at 1/4 doping. Using a combination of exact diagonalization, density matrix renormalization group, the variational Monte Carlo method, and quantum field theories, we study the quantum phase diagrams of both the Hubbard model and the t-J model on the honeycomb lattice at 1/4 doping. The main advantage of our approach is the use of symmetry quantum numbers of ground-state wave functions on finite-size systems (up to 32 sites to sharply distinguish different quantum phases. Our results show that for 1≲U/t<40 in the Hubbard model and for 0.1honeycomb lattice.

  3. Similarity between the superconductivity in the graphene with the spin transport in the two-dimensional antiferromagnet in the honeycomb lattice

    Science.gov (United States)

    Lima, L. S.

    2017-02-01

    We have used the Dirac's massless quasi-particles together with the Kubo's formula to study the spin transport by electrons in the graphene monolayer. We have calculated the electric conductivity and verified the behavior of the AC and DC currents of this system, that is a relativistic electron plasma. Our results show that the AC conductivity tends to infinity in the limit ω → 0 , similar to the behavior obtained for the spin transport in the two-dimensional frustrated antiferromagnet in the honeycomb lattice. We have made a diagrammatic expansion for the Green's function and we have not gotten significative change in the results.

  4. Analyse des structures en sandwich de type panneaux composites renforcés en nanoparticules soumises à un impact mécanique

    OpenAIRE

    RAMAKRISHNAN , Karthik Ram

    2014-01-01

    Sandwich structures are lightweight structures composed of two thin, relatively dense, high strength facesheets that are glued on either side of a thick, low density core, such as foams or honeycombs. Sandwich panels with fibre reinforced plastic skins and core of polymer foam represent an important class of lightweight structural materials in many areas of such as aeronautics and aerospace, automotive and marine structures. However, some of these sandwich structures have very limited energy ...

  5. Structuralism.

    Science.gov (United States)

    Piaget, Jean

    Provided is an overview of the analytical method known as structuralism. The first chapter discusses the three key components of the concept of a structure: the view of a system as a whole instead of so many parts; the study of the transformations in the system; and the fact that these transformations never lead beyond the system but always…

  6. Laser Control of Self-Organization Process in Microscopic Region and Fabrication of Fine Microporous Structure

    OpenAIRE

    Matsumura, Yukimasa; Inami, Wataru; Kawata, Yoshimasa

    2012-01-01

    We present a controlling technique of microporous structure by laser irradiation during self-organization process. Self-organization process is fabrication method of microstructure. Polymer solution was dropped on the substrate at high humid condition. Water in air appears dropping air temperature below the dew point. The honeycomb structure with regularly aligned pores on the film was fabricated by attaching water droplets onto the solution surface. We demonstrate that it was possible to pre...

  7. Relation between Kitaev magnetism and structure in $\\alpha$-RuCl$_3$

    OpenAIRE

    Glamazda, A.; Lemmens, P.; Do, S. -H.; Kwon, Y. S.; Choi, K. -Y.

    2017-01-01

    Raman scattering has been employed to investigate lattice and magnetic excitations of the honeycomb Kitaev material $\\alpha$-RuCl$_3$ and its Heisenberg counterpart CrCl$_3$. Our phonon Raman spectra give evidence for a first-order structural transition from a monoclinic to a rhombohedral structure for both compounds. Significantly, only $\\alpha$-RuCl$_3$ features a large thermal hysteresis, consistent with the formation of a wide phase of coexistence. In the related temperature interval of $...

  8. A honeycomb-like three-dimensional metamaterial absorber via super-wideband and wide-angle performances at millimeter wave and low THz frequencies

    Science.gov (United States)

    Vahidi, Alireza; Rajabalipanah, Hamid; Abdolali, Ali; Cheldavi, Ahmad

    2018-04-01

    Achieving wideband absorption via three-dimensional (3D) metamaterials has revealed as a new emerging innovative field of research, especially in recent years. Here, a novel 3D metamaterial absorber (MA) having a sixfold symmetry is designed which consists of periodic resistive honeycomb-like units. The proposed 3D MA exhibits a strong absorptivity above 90% in the widest bandwidth ever reported to the authors' knowledge from 50 to 460 GHz (the bandwidth ratio larger than 1:9), covering both millimeter wave and low -terahertz spectra. To understand the physical mechanism of absorption, the electric field and surface current distributions, the power loss density as well as the deteriorating effects of the high-order Floquet modes are monitored and discussed. As a distinctive feature in comparison to the similar 3D MAs, our engineered absorber provides multiple resonances, contributing to further broadening of the operating bandwidth. In addition, it is shown that the honeycomb-like MA retains its polarization-insensitive absorption in a wide range of incident wave angles and polarization angles. Due to flexibility of the design, these superior performances can be simply extended to terahertz, infrared and visible frequencies, potentially leading to many promising applications in imaging, sensing, and camouflage technology.

  9. Dirac cones in isogonal hexagonal metallic structures

    Science.gov (United States)

    Wang, Kang

    2018-03-01

    A honeycomb hexagonal metallic lattice is equivalent to a triangular atomic one and cannot create Dirac cones in its electromagnetic wave spectrum. We study in this work the low-frequency electromagnetic band structures in isogonal hexagonal metallic lattices that are directly related to the honeycomb one and show that such structures can create Dirac cones. The band formation can be described by a tight-binding model that allows investigating, in terms of correlations between local resonance modes, the condition for the Dirac cones and the consequence of the third structure tile sustaining an extra resonance mode in the unit cell that induces band shifts and thus nonlinear deformation of the Dirac cones following the wave vectors departing from the Dirac points. We show further that, under structure deformation, the deformations of the Dirac cones result from two different correlation mechanisms, both reinforced by the lattice's metallic nature, which directly affects the resonance mode correlations. The isogonal structures provide new degrees of freedom for tuning the Dirac cones, allowing adjustment of the cone shape by modulating the structure tiles at the local scale without modifying the lattice periodicity and symmetry.

  10. Electronic Structure of the Kitaev Material α-RuCl3 Probed by Photoemission and Inverse Photoemission Spectroscopies

    OpenAIRE

    Soobin Sinn; Choong Hyun Kim; Beom Hyun Kim; Kyung Dong Lee; Choong Jae Won; Ji Seop Oh; Moonsup Han; Young Jun Chang; Namjung Hur; Hitoshi Sato; Byeong-Gyu Park; Changyoung Kim; Hyeong-Do Kim; Tae Won Noh

    2016-01-01

    Recently, $\\alpha$-$\\textrm{RuCl}_3$ has attracted much attention as a possible material realization of the honeycomb Kitaev model, which may stabilize a quantum-spin-liquid state. Compared to extensive studies on its magnetic properties, there is still a lack of understanding on its electronic structure, which is strongly related with its Kitaev physics. Here, the electronic structure of $\\alpha$-$\\textrm{RuCl}_3$ is investigated by photoemission (PE) and inverse photoemission (IPE) spectros...

  11. Acute exacerbation of subclinical idiopathic pulmonary fibrosis triggered by hypofractionated stereotactic body radiotherapy in a patient with primary lung cancer and slightly focal honeycombing

    International Nuclear Information System (INIS)

    Takeda, Atsuya; Sanuki, Naoko; Enomoto, Tatsuji; Takeda, Toshiaki; Kunieda, Etsuo; Nakajima, Takeshi; Sayama, Koichi

    2008-01-01

    Hypofractionated stereotactic body radiotherapy (SBRT) for pulmonary lesions provides a high local control rate, allows completely painless ambulatory treatment, and is not associated with adverse reactions in most cases. Here we report a 70-year-old lung cancer patient with slight focal pulmonary honeycombing in whom subclinical idiopathic pulmonary fibrosis was exacerbated by SBRT. This experience has important implications for the development of selection criteria prior to SBRT for pulmonary lesions. For SBRT candidates with lung tumors, attention must be paid to the presence of co-morbid interstitial pneumonia even if findings are minimal. Such patients must be informed of potential risks, and careful decision-making must take place when SBRT is being considered. (author)

  12. Unconventional spin dynamics in the honeycomb-lattice material α -RuCl3 : High-field electron spin resonance studies

    Science.gov (United States)

    Ponomaryov, A. N.; Schulze, E.; Wosnitza, J.; Lampen-Kelley, P.; Banerjee, A.; Yan, J.-Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Kolezhuk, A. K.; Zvyagin, S. A.

    2017-12-01

    We present high-field electron spin resonance (ESR) studies of the honeycomb-lattice material α -RuCl3 , a prime candidate to exhibit Kitaev physics. Two modes of antiferromagnetic resonance were detected in the zigzag ordered phase, with magnetic field applied in the a b plane. A very rich excitation spectrum was observed in the field-induced quantum paramagnetic phase. The obtained data are compared with the results of recent numerical calculations, strongly suggesting a very unconventional multiparticle character of the spin dynamics in α -RuCl3 . The frequency-field diagram of the lowest-energy ESR mode is found consistent with the behavior of the field-induced energy gap, revealed by thermodynamic measurements.

  13. Use of LS-DYNA(Registered TradeMark) to Assess the Energy Absorption Performance of a Shell-Based Kevlar(TradeMark)/Epoxy Composite Honeycomb

    Science.gov (United States)

    Polanco, Michael

    2010-01-01

    The forward and vertical impact stability of a composite honeycomb Deployable Energy Absorber (DEA) was evaluated during a full-scale crash test of an MD-500 helicopter at NASA Langley?s Landing and Impact Research Facility. The lower skin of the helicopter was retrofitted with DEA components to protect the airframe subfloor upon impact and to mitigate loads transmitted to Anthropomorphic Test Device (ATD) occupants. To facilitate the design of the DEA for this test, an analytical study was conducted using LS-DYNA(Registered TradeMark) to evaluate the performance of a shell-based DEA incorporating different angular cell orientations as well as simultaneous vertical and forward impact conditions. By conducting this study, guidance was provided in obtaining an optimum design for the DEA that would dissipate the kinetic energy of the airframe while maintaining forward and vertical impact stability.

  14. Honeycomb development on Alexander Island, glacial history of George VI Sound and palaeoclimatic implications (Two Step Cliffs/Mars Oasis, W Antarctica)

    Science.gov (United States)

    André, Marie-Françoise; Hall, Kevin

    2005-02-01

    Analysis of three generations of glacial deposits and of a range of geomorphic features including widespread honeycombs and tafonis at Two Step Cliffs/Mars Oasis (71°52‧S, 68°15‧W) provides new insights into the geomorphological evolution of West Antarctica, with special respect to alveolar weathering. At Two Step Terrace, indicators of the inherited character of cavernous weathering were found, such as 97% non-flaking and varnished backwalls, and 80% tafoni floors that are till-covered and/or sealed by lithobiontic coatings. Based on the NE predominant aspect of the alveolized boulder faces, tafoni initiation is attributed to coastal salt spray weathering by halite coming from the George VI Sound during the 6.5 ka BP open water period. The present-day activity of these inherited cavities is restricted to roof flaking attributed to a combination of processes involving thermal stresses. This 6.5 ka BP phase of coastal alveolization is the first step of a six-stage Holocene geomorphological scenario that includes alternatively phases of glacial advance or stationing, and phases of vegetal colonization and/or rock weathering and aeolian abrasion on the deglaciated outcrops. This geomorphic scenario is tentatively correlated with the available palaeoenvironmental record in the Antarctic Peninsula region, with two potential geomorphic indicators of the Holocene Optimum being identified: (1) clusters of centimetric honeycombs facing the sound (marine optimum at 6.5 ka BP); (2) salmon-pink lithobiontic coatings preserved inside cavities and at the boulder surface (terrestrial optimum at 4 3 ka BP).

  15. Computational Modelling of the Structural Integrity following Mass-Loss in Polymeric Charred Cellular Solids

    OpenAIRE

    J. P. M. Whitty; J. Francis; J. Howe; B. Henderson

    2014-01-01

    A novel computational technique is presented for embedding mass-loss due to burning into the ANSYS finite element modelling code. The approaches employ a range of computational modelling methods in order to provide more complete theoretical treatment of thermoelasticity absent from the literature for over six decades. Techniques are employed to evaluate structural integrity (namely, elastic moduli, Poisson’s ratios, and compressive brittle strength) of honeycomb systems known to approximate t...

  16. OOA composite structures applicable in railway industry

    Directory of Open Access Journals (Sweden)

    Rusnáková Soňa

    2017-01-01

    Full Text Available Composite sandwich structures offers several advantages over conventional structural materials such as lightweight, high bending and torsional stiffness, superior thermal insulation and excellent acoustic damping. In the aerospace industry, sandwich composites are commonly manufactured using the autoclave process which is associated with high operating cost. Out-of-autoclave (OOA manufacturing has been shown to be capable of producing low cost and high performance composites. In this paper we present results of experimental testing of various sandwich materials according various standards and actual requirements in transport industry. We compared the different types of surface and paint systems, because these layers are the most important in contact with the surrounding environment and load conditions. In the experimental measurements were used various materials. For the core of the sandwich structure were selected aluminium honeycomb, aramid honeycomb and PET (Polyethylene terephthalate foam core. Support layers were chosen two kinds of predimpregnated materials. The conditions of measurements were requirements for strength and rigidity, safety - flame resistance and reflectivity resistance. The samples were tested at the 3 - point bending test according to standard EN ISO 178, by modified test to determine the force required to rapture threaded insert, by test of reflectivity according to UIC CODE 844-4 R and according to standard EN 45545-2 fire protection of railway vehicles.

  17. Development of Metal Plate with Internal Structure Utilizing the Metal Injection Molding (MIM Process

    Directory of Open Access Journals (Sweden)

    Kwangho Shin

    2013-12-01

    Full Text Available In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE simulation. PE (high density polyethylene (HDPE and low density polyethylene (LDPE and polypropylene (PP resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made.

  18. Structural Analysis and Optimization of a Composite Fan Blade for Future Aircraft Engine

    Science.gov (United States)

    Coroneos, Rula M.

    2012-01-01

    This report addresses the structural analysis and optimization of a composite fan blade sized for a large aircraft engine. An existing baseline solid metallic fan blade was used as a starting point to develop a hybrid honeycomb sandwich construction with a polymer matrix composite face sheet and honeycomb aluminum core replacing the original baseline solid metallic fan model made of titanium. The focus of this work is to design the sandwich composite blade with the optimum number of plies for the face sheet that will withstand the combined pressure and centrifugal loads while the constraints are satisfied and the baseline aerodynamic and geometric parameters are maintained. To satisfy the requirements, a sandwich construction for the blade is proposed with composite face sheets and a weak core made of honeycomb aluminum material. For aerodynamic considerations, the thickness of the core is optimized whereas the overall blade thickness is held fixed so as to not alter the original airfoil geometry. Weight is taken as the objective function to be minimized by varying the core thickness of the blade within specified upper and lower bounds. Constraints are imposed on radial displacement limitations and ply failure strength. From the optimum design, the minimum number of plies, which will not fail, is back-calculated. The ply lay-up of the blade is adjusted from the calculated number of plies and final structural analysis is performed. Analyses were carried out by utilizing the OpenMDAO Framework, developed at NASA Glenn Research Center combining optimization with structural assessment.

  19. The auxetic behavior of an expanded periodic cellular structure

    Science.gov (United States)

    Ciolan, Mihaela A.; Lache, Simona; Velea, Marian N.

    2018-02-01

    Within nowadays research, when it comes to lightweight sandwich panels, periodic cellular structures are considered real trendsetters. One of the most used type of core in producing sandwich panels is the honeycomb. However, due to its relatively high manufacturing cost, this structure has limited applications; therefore, research has been carried out in order to develop alternative solutions. An example in this sense is the ExpaAsym cellular structure, developed at the Transilvania University of Braşov; it represents a periodic cellular structure manufactured through a mechanically expansion process of a previously cut and perforated sheet material. The relative density of the structure was proven to be significantly lower than the one of the honeycomb. This gives a great advantage to the structure, due to the fact that when the internal angle A of the unit cell is 60°, after the mechanical expansion it results a hexagonal structure. The main objective of this paper is to estimate the in-plane Poisson ratios of the structure, in terms of its geometrical parameters. It is therefore analytically shown that for certain values of the geometric parameters, the in-plane Poisson ratios have negative values when the internal angle exceeds 90°, which determines its auxetic behavior.

  20. Magnetic and Crystal Structure of α-RuCl3

    Science.gov (United States)

    Sears, Jennifer

    The layered honeycomb material α-RuCl3 has been proposed as a candidate material to show significant bond-dependent Kitaev type interactions. This has prompted several recent studies of magnetism in this material that have found evidence for multiple magnetic transitions in the temperature range of 8-14 K. We will present elastic neutron scattering measurements collected using a co-aligned array of α-RuCl3 crystals, identifying zigzag magnetic order within the honeycomb planes with an ordering temperature of ~8 K. It has been reported that the ordering temperature depends on the c axis periodicity of the layered structure, with ordering temperatures of 8 and 14 K for three and two-layer periodicity respectively. While the in-plane magnetic order has been identified, it is clear that a complete understanding of magnetic ordering and interactions will depend on the three dimensional structure of the crystal. Evidence of a structural transition at ~150 K has been reported and questions remain about the structural details, in particular the stacking of the honeycomb layers. We will present x-ray diffraction measurements investigating the low and high temperature structures and stacking disorder in α-RuCl3. Finally, we will present inelastic neutron scattering measurements of magnetic excitations in this material. Work done in collaboration with K. W. Plumb (Johns Hopkins University), J. P. Clancy, Young-June Kim (University of Toronto), J. Britten (McMaster University), Yu-Sheng Chen (Argonne National Laboratory), Y. Qiu, Y. Zhao, D. Parshall, and J. W. Lynn (NCNR).

  1. Development of IR Contrast Data Analysis Application for Characterizing Delaminations in Graphite-Epoxy Structures

    Science.gov (United States)

    Havican, Marie

    2012-01-01

    Objective: Develop infrared (IR) flash thermography application based on use of a calibration standard for inspecting graphite-epoxy laminated/honeycomb structures. Background: Graphite/Epoxy composites (laminated and honeycomb) are widely used on NASA programs. Composite materials are susceptible for impact damage that is not readily detected by visual inspection. IR inspection can provide required sensitivity to detect surface damage in composites during manufacturing and during service. IR contrast analysis can provide characterization of depth, size and gap thickness of impact damage. Benefits/Payoffs: The research provides an empirical method of calibrating the flash thermography response in nondestructive evaluation. A physical calibration standard with artificial flaws such as flat bottom holes with desired diameter and depth values in a desired material is used in calibration. The research devises several probability of detection (POD) analysis approaches to enable cost effective POD study to meet program requirements.

  2. Experimental Research on the Dynamic Response of Floating Structures with Coatings Subjected to Underwater Explosion

    Directory of Open Access Journals (Sweden)

    Feng Xiao

    2014-01-01

    Full Text Available This paper presents an experimental investigation into the dynamic response of three free floating stiffened metal boxes with protective coatings subjected to underwater explosion (UNDEX. One box was kept intact while the other two were, respectively, covered with monolithic coatings and chiral honeycomb coatings. Three groups of live fire tests with different attack angles and stand-off distances were conducted. The acceleration on the stiffener and strain peak on the bottom hull were selected as the major comparative criterions. Test results show that the impulse transmitted to the structure at the initial stage can be reduced, owing to the coating flexibility and fluid-structure interaction mechanism. Consequently, the acceleration peaks induced by both shock wave and bubble pulse were reduced. The shock environment can be more effectively improved by honeycomb coating when compared with monolithic coating. Most of the strain peaks decreased to a certain extent, but some of them were notably manifested, especially for honeycomb coating. The test affirms the fact that soft coating can cause stress concentration on the shell that is in direct contact with the coating due to the impedance mismatch between the interfaces of materials. A softer rubber coating induces a greater magnitude of strain.

  3. Removal of H2S from Biogas by Iron (Fe3+ Doped MgO on Ceramic Honeycomb Catalyst using Double Packed Columns System

    Directory of Open Access Journals (Sweden)

    Juntima Chungsiriporn

    2010-03-01

    Full Text Available Hydrogen sulfide is a toxic and corrosive in nature, gas should be safely removed from the biogas streams before subjecting into the fuel cell. Fe3+ doped magnesium oxide was synthesized using sol-gel technique and dip coating process of Fe3+ doped MgO on foam ceramic honeycomb. XRD and SEM indicate that Fe3+ in Fe3+ doped MgO on foam ceramic honeycomb catalyst is finely dispersed in the MgO support. Performance of the synthesized Fe3+ doped magnesium oxide on the honeycomb catalyst was examined for hydrogen sulfide (H2S oxidation by double packed column scrubbers. The absorption column was used for H2S scrubbing from biogas by deionized water absorption and catalytic column was used as catalyst bed for degradation of absorbed H2S in scrubbing water. In the catalytic column, counter current flow of the scrubbing water and air through the catalyst pack was performed for H2S oxidation accompany with catalyst regeneration. System capacity for H2S removal from gas stream showed 98% constant along 3 hr testing time at room temperature.

  4. Honeycomb-inspired design of ultrafine SnO2@C nanospheres embedded in carbon film as anode materials for high performance lithium- and sodium-ion battery

    Science.gov (United States)

    Ao, Xiang; Jiang, Jianjun; Ruan, Yunjun; Li, Zhishan; Zhang, Yi; Sun, Jianwu; Wang, Chundong

    2017-08-01

    Tin oxide (SnO2) has been considered as one of the most promising anodes for advanced rechargeable batteries due to its advantages such as high energy density, earth abundance and environmental friendly. However, its large volume change during the Li-Sn/Na-Sn alloying and de-alloying processes will result in a fast capacity degradation over a long term cycling. To solve this issue, in this work we design and synthesize a novel honeycomb-like composite composing of carbon encapsulated SnO2 nanospheres embedded in carbon film by using dual templates of SiO2 and NaCl. Using these composites as anodes both in lithium ion batteries and sodium-ion batteries, no discernable capacity degradation is observed over hundreds of long term cycles at both low current density (100 mA g-1) and high current density (500 mA g-1). Such a good cyclic stability and high delivered capacity have been attributed to the high conductivity of the supported carbon film and hollow encapsulated carbon shells, which not only provide enough space to accommodate the volume expansion but also prevent further aggregation of SnO2 nanoparticles upon cycling. By engineering electrodes of accommodating high volume expansion, we demonstrate a prototype to achieve high performance batteries, especially high-power batteries.

  5. Development and field-scale optimization of a honeycomb zeolite rotor concentrator/recuperative oxidizer for the abatement of volatile organic carbons from semiconductor industry.

    Science.gov (United States)

    Yang, Ji; Chen, Yufeng; Cao, Limei; Guo, Yuling; Jia, Jinping

    2012-01-03

    The combined concentrator/oxidizer system has been proposed as an effective physical-chemical option and proven to be a viable solution that enables Volatile Organic Carbons (VOCs) emitters to comply with the regulations. In this work, a field scale honeycomb zeolite rotor concentrator combined with a recuperative oxidizer was developed and applied for the treatment of the VOC waste gas. The research shows the following: (1) for the adsorption rotor, zeolite is a more appropriate material than Granular Activated Carbon (GAC). The designing and operation parameters of the concentrator were discussed in detail including the size and the optimal rotation speed of rotor. Also the developed rotor performance's was evaluated in the field; (2) Direct Fired Thermal Oxidizer (DFTO), Recuperative Oxidizer (RO), Regenerative Thermal Oxidizer (RTO) and Regenerative Catalytic oxidizer (RCO) are the available incinerators and the RO was selected as the oxidizer in this work; (3) The overall performance of the developed rotor/oxidizer was explored in a field scale under varying conditions; (4) The energy saving strategy was fulfilled by reducing heat loss from the oxidizer and recovering heat from the exhaust gas. Data shows that the developed rotor/oxidizer could remove over 95% VOCs with reasonable cost and this could be helpful for similar plants when considering VOC abatement.

  6. A long-term aging study of honeycomb drift tubes for the HERA-B Outer Tracker using a circulated and purified CF$_{4}$ gas mixture

    CERN Document Server

    Capéans-Garrido, M; Hohlmann, M; Schmidt, B

    2003-01-01

    The Outer Tracker of HERA-B uses a gas mixture containing CF/sub 4/ to obtain high electron drift velocities. The high cost of this gas makes it necessary to circulate the gas mixture which must then be purified to avoid accumulation of air and pollutants. However, the usage of gas purifiers poses the danger of outgassing pollutants from the purifiers themselves into the gas stream. Purifiers could also be attacked chemically by the aggressive products from the cracking of CF/sub 4/ molecules in the plasma avalanches of the detector. This could potentially release further harmful pollutants into the gas stream. To test for such effects, a long-term irradiation study of about 3000 h was carried out with the honeycomb drift tubes that are used in the Outer Tracker. This provided a check of the long-term stability of the gas purifiers before putting them into operation for the full-size detector. We report on the experimental setup, procedures and the results obtained. (8 refs).

  7. Honeycomb-like NiCo2S4 nanosheets prepared by rapid electrodeposition as a counter electrode for dye-sensitized solar cells

    Science.gov (United States)

    Yin, Jie; Wang, Yuqiao; Meng, Wenfei; Zhou, Tianyue; Li, Baosong; Wei, Tao; Sun, Yueming

    2017-08-01

    Honeycomb-like nickel cobalt sulfide (NiCo2S4) nanosheets were directly deposited on fluorine-doped tin oxide substrate by a rapid voltammetric deposition method. The method was also controllable and feasible for preparing NiCo2S4 on flexible Ti foil without any heating processes. Compared with Pt, CoS and NiS, NiCo2S4 exhibited low charge-transfer resistances and excellent electrocatalytic activity for {{{{I}}}3}- reduction, acting as a counter electrode for a dye-sensitized solar cell. The NiCo2S4-based solar cell showed higher power conversion efficiency (7.44%) than that of Pt-based solar cell (7.09%) under simulated illumination (AM 1.5 G, 100 mW cm-2). The device based on the flexible NiCo2S4/Ti foil achieved a power conversion efficiency of 5.28% under the above illumination conditions. This work can be extended to flexible and wearable technologies due to its facile technique.

  8. Graphene: A wonder-Structure of Carbon

    International Nuclear Information System (INIS)

    Ciraci, S.

    2008-01-01

    Three-dimensional diamond and graphite; one-dimensional carbon nanotubes and carbon chains; zero dimensional bucky balls: these structures of carbon have dominated science in different periods of time. The dimensionality of these structures has played a prime rol in determining their mechanical and electronic properties. In particular, carbon nanotubes with their unusual properties depending on their diameter and chirality have been one of the most studied nanostructures in the last decade. For a long time, the missing two-dimensional structure of carbon has been considered to be unstable. Recently, the synthesis of graphene, a two-dimensional honeycomb lattice of carbon disproved the earlier theories conjecturing the instability in two-dimension. Not only the unexpected stability and very high strength, but also its unusual electronic and magnetic properties have made graphene a wonder-structure. Because of linear electron and hole bands crossing at the Fermi level the electrons in graphene have very high mobility and behave as if a massless Dirac Fermion. This behavior makes us to expect to observe the Klein paradox, it is perhaps the most unusual quantum behavior. Graphene pieces may serve as a framework for functionalized structures, such as high capacity hydrogen storage medium. Quasi-one dimensional graphene nanoribbons, which can be produced down to sub nanometer width exhibit exceptional physical properties. Depending on their chirality, graphene nanoribbons can be nonmagnetic or antiferromagnetic semiconductor. However, antiferromagnetic semiconductor by itself can be modified to be ferrimagnetic metal through periodic vacancies or to be half-metal through applied electric field. If one modulates their width in direct space, confined states are generated even with a local spin direction. Quantum structures made by nanoribbons of different width or composition exhibit a wide range of electrical and magnetic properties to be exploited in nanoelectronics and

  9. Development of pressure containment and damage tolerance technology for composite fuselage structures in large transport aircraft

    Science.gov (United States)

    Smith, P. J.; Thomson, L. W.; Wilson, R. D.

    1986-01-01

    NASA sponsored composites research and development programs were set in place to develop the critical engineering technologies in large transport aircraft structures. This NASA-Boeing program focused on the critical issues of damage tolerance and pressure containment generic to the fuselage structure of large pressurized aircraft. Skin-stringer and honeycomb sandwich composite fuselage shell designs were evaluated to resolve these issues. Analyses were developed to model the structural response of the fuselage shell designs, and a development test program evaluated the selected design configurations to appropriate load conditions.

  10. Fabrication of submicron structures in nanoparticle/polymer composite by holographic lithography and reactive ion etching

    Science.gov (United States)

    Zhang, A. Ping; He, Sailing; Kim, Kyoung Tae; Yoon, Yong-Kyu; Burzynski, Ryszard; Samoc, Marek; Prasad, Paras N.

    2008-11-01

    We report on the fabrication of nanoparticle/polymer submicron structures by combining holographic lithography and reactive ion etching. Silica nanoparticles are uniformly dispersed in a (SU8) polymer matrix at a high concentration, and in situ polymerization (cross-linking) is used to form a nanoparticle/polymer composite. Another photosensitive SU8 layer cast upon the nanoparticle/SU8 composite layer is structured through holographic lithography, whose pattern is finally transferred to the nanoparticle/SU8 layer by the reactive ion etching process. Honeycomb structures in a submicron scale are experimentally realized in the nanoparticle/SU8 composite.

  11. Electronic structure and the properties of phosphorene and few-layer black phosphorus

    International Nuclear Information System (INIS)

    Fukuoka, Shuhei; Taen, Toshihiro; Osada, Toshihito

    2015-01-01

    A single atomic layer of black phosphorus, phosphorene, was experimentally realized in 2014. It has a puckered honeycomb lattice structure and a semiconducting electronic structure. In the first part of this paper, we use a simple LCAO model, and qualitatively discuss the electronic structure of phosphorene systems under electric and magnetic fields, especially noting their midgap edge states. The next part is devoted to the review of the progress in research on phosphorene over the past one year since its realization in 2014. Phosphorene has been a typical material to study the semiconductor physics in atomic layers. (author)

  12. Synthesis and enhanced electrochemical performance of the honeycomb TiO2/LiMn2O4 cathode materials

    DEFF Research Database (Denmark)

    Zhang, J.Y.; Shen, J.X.; Wei, C.B.

    2016-01-01

    angle compare to LiMn2O4, implying that TiO2 doping induced a change of crystal structure. By performing electrochemical measurements, we observed an enhancement of specific capacity (127.28 mAhg−1) and an improvement of cycling stability in the TiO2/LiMn2O4 hybrid materials. After 100 cycles of charge...

  13. Development, characterization and evaluation of iron-coated honeycomb briquette cinders for the removal of As(V from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Tiantian Sheng

    2014-01-01

    Full Text Available The adsorptive removal of As(V from aqueous solutions using iron-coated honeycomb briquette cinder (Fe-HBC is presented. Low cost mechanical granulation process was integrated with surface amendment technology to prepare iron-oxide modified granular adsorbent for clean water production. Detailed characterizations were performed using FTIR, XRD, EDS and SEM techniques. Operating parameters including initial As(V concentration, pH, contact time, adsorbent dose, iron leaching and the effects of competing ions on As(V removal were evaluated. Results demonstrated that high amount of arsenate (961.5 μg g−1 was adsorbed at pH 7.5 in 14 h contact time. Langmuir, Freundlich and Temkin isotherm models were used to analyze the adsorption data, whereas Langmuir model was found to best represent the data with a correlation co-efficient (R2 = 0.999. Thus, As(V sorption on Fe-HBC surface suggested monolayer adsorption and indicated surface homogeneity. Moreover, the dimensionless parameter (RL value calculated to be about 0.118 that reiterated the process is favorable and spontaneous. The influences of competing ions on As(V removal decreased in the following order:PO43−>HCO3−>F−>Cl−. The profound inhibition effects ofPO43− revealed a high affinity toward iron(oxy hydroxide. Life-cycle assessment confirmed that spent HBC is non-hazardous and can be used as a promising sorbent for arsenic removal.

  14. Fe3O4 and MnO2 assembled on honeycomb briquette cinders (HBC) for arsenic removal from aqueous solutions.

    Science.gov (United States)

    Zhu, Jin; Baig, Shams Ali; Sheng, Tiantian; Lou, Zimo; Wang, Zhuoxing; Xu, Xinhua

    2015-04-09

    In this study, a novel composite adsorbent (HBC-Fe3O4-MnO2) was synthesized by combining honeycomb briquette cinders (HBC) with Fe3O4 and MnO2 through a co-precipitation process. The purpose was to make the best use of the oxidative property of MnO2 and the adsorptive ability of magnetic Fe3O4 for enhanced As(III) and As(V) removal from aqueous solutions. Experimental results showed that the adsorption capacity of As(III) was observed to be much higher than As(V). The maximum adsorption capacity (2.16 mg/g) was achieved for As(III) by using HBC-Fe3O4-MnO2 (3:2) as compared to HBC-Fe3O4-MnO2 (2:1) and HBC-Fe3O4-MnO2 (1:1). The experimental data of As(V) adsorption fitted well with the Langmuir isotherm model, whereas As(III) data was described perfectly by Freundlich model. The pseudo-second-order kinetic model was fitted well for the entire adsorption process of As(III) and As(V) suggesting that the adsorption is a rate-controlling step. Aqueous solution pH was found to greatly affect the adsorption behavior. Furthermore, co-ions including HCO3(-) and PO4(3-) exhibited greater influence on arsenic removal efficiency, whereas Cl(-), NO3(-), SO4(2-) were found to have negligible effects on arsenic removal. Five consecutive adsorption-regeneration cycles confirmed that the adsorbent could be reusable for successive arsenic treatment and can be used in real treatment applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration.

    Science.gov (United States)

    Silva, Edmundo; Vasconcellos, Luana Marotta Reis de; Rodrigues, Bruno V M; Dos Santos, Danilo Martins; Campana-Filho, Sergio P; Marciano, Fernanda Roberta; Webster, Thomas J; Lobo, Anderson Oliveira

    2017-04-01

    Herein, we developed honeycomb-like scaffolds by combining poly (d, l-lactic acid) (PDLLA) with a high amount of graphene/multi-walled carbon nanotube oxides (MWCNTO-GO, 50% w/w). From pristine multi-walled carbon nanotubes (MWCNT) powders, we produced MWCNTO-GO via oxygen plasma etching (OPE), which promoted their exfoliation and oxidation. Initially, we evaluated PDLLA and PDLLA/MWCNTO-GO scaffolds for tensile strength tests, cell adhesion and cell viability (with osteoblast-like MG-63 cells), alkaline phosphatase (ALP, a marker of osteoblast differentiation) activity and mineralized nodule formation. In vivo tests were carried out using PDLLA and PDLLA/MWCNTO-GO scaffolds as fillers for critical defects in the tibia of rats. MWCNTO-GO loading was responsible for decreasing the tensile strength and elongation-at-break of PDLLA scaffolds, although the high mechanical performance observed (~600MPa) assures their application in bone tissue regeneration. In vitro results showed that the scaffolds were not cytotoxic and allowed for osteoblast-like cell interactions and the formation of mineralized matrix nodules. Furthermore, MG-63 cells grown on PDLLA/MWCNTO-GO significantly enhanced osteoblast ALP activity compared to controls (cells alone), while the PDLLA group showed similar ALP activity when compared to controls and PDLLA/MWCNTO-GO. Most impressively, in vivo tests suggested that compared to PDLLA scaffolds, PDLLA/MWCNTO-GO had a superior influence on bone cell activity, promoting greater new bone formation. In summary, the results of this study highlighted that this novel scaffold (MWCNTO-GO, 50% w/w) is a promising alternative for bone tissue regeneration and, thus, should be further studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Sandwich Structure Risk Reduction in Support of the Payload Adapter Fitting

    Science.gov (United States)

    Nettles, A. T.; Jackson, J. R.; Guin, W. E.

    2018-01-01

    Reducing risk for utilizing honeycomb sandwich structure for the Space Launch System payload adapter fitting includes determining what parameters need to be tested for damage tolerance to ensure a safe structure. Specimen size and boundary conditions are the most practical parameters to use in damage tolerance inspection. The effect of impact over core splices and foreign object debris between the facesheet and core is assessed. Effects of enhanced damage tolerance by applying an outer layer of carbon fiber woven cloth is examined. A simple repair technique for barely visible impact damage that restores all compression strength is presented.

  17. High-order study of the quantum critical behavior of a frustrated spin-1/2 antiferromagnet on a stacked honeycomb bilayer

    Science.gov (United States)

    Bishop, R. F.; Li, P. H. Y.

    2017-12-01

    We study a frustrated spin-1/2 J1-J2-J3-J1⊥ Heisenberg antiferromagnet on an A A -stacked bilayer honeycomb lattice. In each layer we consider nearest-neighbor (NN), next-nearest-neighbor, and next-next-nearest-neighbor antiferromagnetic (AFM) exchange couplings J1,J2 , and J3, respectively. The two layers are coupled with an AFM NN exchange coupling J1⊥≡δ J1 . The model is studied for arbitrary values of δ along the line J3=J2≡α J1 that includes the most highly frustrated point at α =1/2 , where the classical ground state is macroscopically degenerate. The coupled cluster method is used at high orders of approximation to calculate the magnetic order parameter and the triplet spin gap. We are thereby able to give an accurate description of the quantum phase diagram of the model in the α δ plane in the window 0 ≤α ≤1 ,0 ≤δ ≤1 . This includes two AFM phases with Néel and striped order, and an intermediate gapped paramagnetic phase that exhibits various forms of valence-bond crystalline order. We obtain accurate estimations of the two phase boundaries, δ =δci(α) , or equivalently, α =αc i(δ ) , with i =1 (Néel) and 2 (striped). The two boundaries exhibit an "avoided crossing" behavior with both curves being re-entrant. Thus, in this α δ window, Néel order exists only for values of δ in the range δc1 (α ) , with δc1 0 for αc 1(0 ) ≈0.49 (1 ) , and striped order similarly exists only for values of δ in the range δc2 (α ) , with δc2 αc2(0) ≈0.600 (5 ) and δc2 0 for αc 2(0 ) >α >α2<≈0.56 (1 ) .

  18. Compton imaging tomography for nondestructive evaluation of large multilayer aircraft components and structures

    Science.gov (United States)

    Romanov, Volodymyr; Grubsky, Victor; Zahiri, Feraidoon

    2017-02-01

    We present a novel NDT/NDE tool for non-contact, single-sided 3D inspection of aerospace components, based on Compton Imaging Tomography (CIT) technique, which is applicable to large, non-uniform, and/or multilayer structures made of composites or lightweight metals. CIT is based on the registration of Compton-scattered X-rays, and permits the reconstruction of the full 3D (tomographic) image of the inspected objects. Unlike conventional computerized tomography (CT), CIT requires only single-sided access to objects, and therefore can be applied to large structures without their disassembly. The developed tool provides accurate detection, identification, and precise 3D localizations and measurements of any possible internal and surface defects (corrosions, cracks, voids, delaminations, porosity, and inclusions), and also disbonds, core and skin defects, and intrusion of foreign fluids (e.g., fresh and salt water, oil) inside of honeycomb sandwich structures. The NDE capabilities of the system were successfully demonstrated on various aerospace structure samples provided by several major aerospace companies. Such a CIT-based tool can detect and localize individual internal defects with dimensions about 1-2 mm3, and honeycomb disbond defects less than 6 mm by 6 mm area with the variations in the thickness of the adhesive by 100 m. Current maximum scanning speed of aircraft/spacecraft structures is about 5-8 min/ft2 (50-80 min/m2).

  19. Formation of graphene on BN substrate by vapor deposition method and size effects on its structure

    Science.gov (United States)

    Giang, Nguyen Hoang; Hanh, Tran Thi Thu; Ngoc, Le Nhu; Nga, Nguyen To; Van Hoang, Vo

    2018-04-01

    We report MD simulation of the growth of graphene by the vapor deposition on a two-dimensional hBN substrate. The systems (containing carbon vapor and hBN substrate) are relaxed at high temperature (1500 K), and then it is cooled down to room one (300 K). Carbon atoms interact with the substrate via the Lennard-Jones potential while the interaction between carbon atoms is computed via the Tersoff potential. Depending on the size of the model, different crystalline honeycomb structures have been found. Structural properties of the graphene obtained at 300 K are studied by analyzing radial distribution functions (RDFs), coordination numbers, ring statistics, interatomic distances, bond-angle distributions and 2D visualization of atomic configurations. We find that the models containing various numbers of atoms have a honeycomb structure. Besides, differences in structural properties of graphene formed by the vapor deposition on the substrate and free standing one are found. Moreover, the size effect on the structure is significant.

  20. From lattice Hamiltonians to tunable band structures by lithographic design

    Science.gov (United States)

    Tadjine, Athmane; Allan, Guy; Delerue, Christophe

    2016-08-01

    Recently, new materials exhibiting exotic band structures characterized by Dirac cones, nontrivial flat bands, and band crossing points have been proposed on the basis of effective two-dimensional lattice Hamiltonians. Here, we show using atomistic tight-binding calculations that these theoretical predictions could be experimentally realized in the conduction band of superlattices nanolithographed in III-V and II-VI semiconductor ultrathin films. The lithographed patterns consist of periodic lattices of etched cylindrical holes that form potential barriers for the electrons in the quantum well. In the case of honeycomb lattices, the conduction minibands of the resulting artificial graphene host several Dirac cones and nontrivial flat bands. Similar features, but organized in different ways, in energy or in k -space are found in kagome, distorted honeycomb, and Lieb superlattices. Dirac cones extending over tens of meV could be obtained in superlattices with reasonable sizes of the lithographic patterns, for instance in InAs/AlSb heterostructures. Bilayer artificial graphene could be also realized by lithography of a double quantum-well heterostructure. These new materials should be interesting for the experimental exploration of Dirac-based quantum systems, for both fundamental and applied physics.

  1. Structure design of primary heat-exchanger for the MHWRR

    International Nuclear Information System (INIS)

    Li Yanshui; Cao Zhibin

    1999-01-01

    Primary heat-exchanger is one of the key equipment in the Multi-application Heavy Water Research Reactor (MHWRR). Its structure design ought to meet as much possible as the demands for safety, feasibility and economy. To reduce the liquid resistance, the locating structure between inner tube and outer tube is distributed spirally. The edge of outer tube is processed in the shape of hexahedron and then splice-welded into honeycomb structure thereby the heat-exchanger has the smallest outer diameter compared with that with the same heat-exchanging area according to 'Normal Design', 'Anabasis Design' is applied to the design for parts with Safety Class I, to ensure safety of the heat-exchanger

  2. Interactive Modeling of Architectural Freeform Structures - Combining Geometry with Fabrication and Statics

    KAUST Repository

    Jiang, Caigui

    2014-09-01

    This paper builds on recent progress in computing with geometric constraints, which is particularly relevant to architectural geometry. Not only do various kinds of meshes with additional properties (like planar faces, or with equilibrium forces in their edges) become available for interactive geometric modeling, but so do other arrangements of geometric primitives, like honeycomb structures. The latter constitute an important class of geometric objects, with relations to “Lobel” meshes, and to freeform polyhedral patterns. Such patterns are particularly interesting and pose research problems which go beyond what is known for meshes, e.g. with regard to their computing, their flexibility, and the assessment of their fairness.

  3. Structural Analysis and Optimization of a Composite Fan Blade for Future Aircraft Engine

    Science.gov (United States)

    Coroneos, Rula M.; Gorla, Rama Subba Reddy

    2012-09-01

    This paper addresses the structural analysis and optimization of a composite sandwich ply lay-up of a NASA baseline solid metallic fan blade comparable to a future Boeing 737 MAX aircraft engine. Sandwich construction with a polymer matrix composite face sheet and honeycomb aluminum core replaces the original baseline solid metallic fan model made of Titanium. The focus of this work is to design the sandwich composite blade with the optimum number of plies for the face sheet that will withstand the combined pressure and centrifugal loads while the constraints are satisfied and the baseline aerodynamic and geometric parameters are maintained. To satisfy the requirements a sandwich construction for the blade is proposed with composite face sheets and a weak core made of honeycomb aluminum material. For aerodynamic considerations, the thickness of the core is optimized where as the overall blade thickness is held fixed in order not to alter the original airfoil geometry. Weight reduction is taken as the objective function by varying the core thickness of the blade within specified upper and lower bounds. Constraints are imposed on radial displacement limitations and ply failure strength. From the optimum design, the minimum number of plies, which will not fail, is back-calculated. The ply lay-up of the blade is adjusted from the calculated number of plies and final structural analysis is performed. Analyses were carried out by utilizing the OpenMDAO Framework, developed at NASA Glenn Research Center combining optimization with structural assessment.

  4. Topology optimization of structures and infill for additive manufacturing

    DEFF Research Database (Denmark)

    Sigmund, Ole; Clausen, Anders; Groen, Jeroen Peter

    Topology optimization (TO) [1] is a widely used tool for generating optimal structures for subsequent realization by additive manufacturing (AM) methods. TO is a numerical method that, based on iterated finite element analyses, gradient-based optimization algorithms and design parameterizations...... described by point clouds, delivers optimal but often rather complex topologies. As such, TO is a design method that takes full advantage of the large design freedom offered by AM technologies. Much recent effortin the TO community has been devoted to the development of algorithms that take manufacturing...... as a design gimmick to illustrate the capabilities of AM to mimic natural creations like honeycombs and bonestructure. Partly for manufacturing reasons, infill microstructure is often built as open-walled foam structures. However, as maybe unknown by many, open-walled microstructures are not optimal...

  5. Tunable porous structure of carbon nanosheets derived from puffed rice for high energy density supercapacitors

    Science.gov (United States)

    Hou, Jianhua; Jiang, Kun; Tahir, Muhammad; Wu, Xiaoge; Idrees, Faryal; Shen, Ming; Cao, Chuanbao

    2017-12-01

    The development of green and clean synthetic techniques to overcome energy requirements have motivated the researchers for the utilization of sustainable biomass. Driven by this desire we choose rice as starting materials source. After the explosion effect, the precursor is converted into puffed rice with a honeycomb-like structures composed of thin sheets. These honeycomb-like macrostructures, effectively prevent the cross-linking tendency towards the adjacent nanosheets during activation process. Furthermore, tuneable micro/mesoporous structures with ultrahigh specific surface areas (SBET) are successfully designed by KOH activation. The highest SBET of 3326 m2 g-1 with optimized proportion of small-mesopores is achieved at 850 °C. The rice-derived porous N-doped carbon nanosheets (NCS-850) are used as the active electrode materials for supercapacitors. It exhibites high specific capacitance specifically of 218 F g-1 at 80 A g-1 in 6 M KOH and a high-energy density of 104 Wh kg-1 (53 Wh L-1) in the ionic liquid electrolytes. These are the highest values among the reported biomass-derived carbon materials for the best of our knowledge. The present work demonstrates that the combination of "puffing effect" and common chemical activation can turn natural products such as rice into functional products with prospective applications in high-performance energy storage devices.

  6. Dynamical spin structure factors of α-RuCl3

    Science.gov (United States)

    Suzuki, Takafumi; Suga, Sei-ichiro

    2018-03-01

    Honeycomb-lattice magnet α-RuCl3 is considered to be a potential candidate of realizing Kitaev spin liquid, although this material undergoes a phase transition to the zigzag magnetically ordered state at T N ∼ 7 K. Quite recently, inelastic neutron-scattering experiments using single crystal α-RuCl3 have unveiled characteristic dynamical properties. We calculate dynamical spin structure factors of three ab-initio models for α-RuCl3 with an exact numerical diagonalization method. We also calculate temperature dependences of the specific heat by employing thermal pure quantum states. We compare our numerical results with the experiments and discuss characteristics obtained by using three ab-initio models.

  7. Durability properties for adhesively bonded structural aerospace applications

    International Nuclear Information System (INIS)

    Shaffer, D.K.; Davis, G.D.; McNamara, D.K.; Shah, T.K.; Desai, A.

    1992-01-01

    This paper reports on the importance of good bond durability of adhesively joined aerospace components which has been recognized for many years. Military and civilian aircraft are exposed to harsh environments in addition to severe thermal and stress cycles during their service lives. Moisture is responsible for the majority of bond failures in the field. The presence of surface contaminants (e.g., fluoride, silicones) and the non-neutral pH of poor rinse water are common causes of adhesion problems in production environments. Honeycomb panels, stringer skins, doubler plates and core cowl assemblies are bonded joint structures that are subject to environmental- or contaminant-induced debonding. The identification and characterization of the causes of such bond failures leads to improved production quality, yield and cost reduction

  8. Achieving the interfacial polarization on C/Fe3C heterojunction structures for highly efficient lightweight microwave absorption.

    Science.gov (United States)

    Zhang, Yanan; Liu, Wei; Quan, Bin; Ji, Guangbin; Ma, Jianna; Li, Daoran; Meng, Wei

    2017-12-15

    Design of dielectric/magnetic heterostructure and multiple interfaces is a challenge for the microwave absorption. Thus, in this study, a novel C/Fe 3 C nanocomposites have been fabricated by annealing the precursors obtained by the facile chemical blowing of polyvinyl pyrrolidone (PVP) and Fe(NO 3 ) 3 ·9H 2 O. By changing the content of Fe(NO 3 ) 3 ·9H 2 O, the honeycomb-like structure with scads of pores and electromagnetic parameters could be successfully tailored. When the addition of Fe(NO 3 ) 3 ·9H 2 O is ranging from 1 to 2g, honeycomb-structured nanocomposites possess high performance microwave absorption when mixed with 90wt% paraffin. The minimal reflection loss is -37.4dB at 13.6GHz and effective bandwidth can reach to 5.6GHz when the thickness is 2.0mm, indicating its great potential in microwave absorbing field. Its outstanding microwave performance is tightly related to the porous structure and substantial interface such as carbon/air and carbon/Fe 3 C, which are in favor of the impedance matching and interfacial polarization. Thus, our study may provide a good reference for the facile synthesis of light-weight carbon-based nanocomposites with effective interfacial polarization. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Hydrothermal synthesis and characteristics of 3-D hydrated bismuth oxalate coordination polymers with open-channel structure

    International Nuclear Information System (INIS)

    Chen Xinxiang; Cao Yanning; Zhang Hanhui; Chen Yiping; Chen Xuehuan; Chai Xiaochuan

    2008-01-01

    Two new 3-D porous bismuth coordination polymers, (C 5 NH 6 ) 2 [Bi 2 (H 2 O) 2 (C 2 O 4 ) 4 ].2H 2 O 1 and (NH 4 )[Bi(C 2 O 4 ) 2 ].3H 2 O 2, have been hydrothermally synthesized and characterized by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic symmetry, P2 1 /c space group with a=10.378(2) A, b=17.285(3) A, c=16.563(5) A, α=90 deg., β=119.66(2) deg., γ=90 deg., V=2581.8(10) A 3 , Z=4, R 1 =0.0355 and wR 2 =0.0658 for unique 4713 reflections I >2σ(I). Compound 2 crystallizes in the tetragonal symmetry, I4 1 /amd space group with a=11.7026(17) A, b=11.7026(17) A, c=9.2233(18) A, α=90 deg., β=90 deg., γ=90 deg., V=1263.1(4) A 3 , Z=32, R 1 =0.0208 and wR 2 =0.0518 for unique 359 reflections I> 2σ(I). Compounds 1 and 2 are 3-D open-framework structures with a 6 6 uniform net, which consist of honeycomb-like layers connected to each other by oxalate units. While different guest molecules fill in their cavities of honeycomb-like layers, study of ultrasonic treatment on 2 indicates the replacement of NH 4 + by K + on potassium ion exchange. Thermogravimetric analysis indicates that the open-channel frameworks are thermally stable up to 200 deg. C, and other characterizations are also described by elemental analysis, IR and ultraviolet-visible diffuse reflectionintegral spectrum (UV-Vis DRIS). - Graphical abstract: Two novel 3-D extended porous coordination polymers have been synthesized by hydrothermal method. Both compounds are 3-D open-framework structures with a 6 6 uniform net, which consist of honeycomb-like layers connected to each other by oxalate units. While different guest molecules fill in their cavities of honeycomb-like layers. Study of ultrasonic treatment on 2 indicates the replacement of NH 4 + by K + on potassium ion exchange

  10. Rolling Up the Sheet: Constructing Metal–Organic Lamellae and Nanotubes from a [{Mn 3 (propanediolato) 2 }(dicyanamide) 2 ] n Honeycomb Skeleton

    KAUST Repository

    Wu, Gang; Bai, Jiaquan; Jiang, Yuan; Li, Guanghua; Huang, Jian; Li, Yi; Anson, Christopher E.; Powell, Annie K.; Qiu, Shilun

    2013-01-01

    of individual layers and to enhance surface areas and optimize host-guest interactions to accommodate bigger guests, spontaneous rolling up to form a tubular structure was achieved. © 2013 American Chemical Society.

  11. Weight optimization of an aerobrake structural concept for a lunar transfer vehicle

    Science.gov (United States)

    Bush, Lance B.; Unal, Resit; Rowell, Lawrence F.; Rehder, John J.

    1992-01-01

    An aerobrake structural concept for a lunar transfer vehicle was weight optimized through the use of the Taguchi design method, finite element analyses, and element sizing routines. Six design parameters were chosen to represent the aerobrake structural configuration. The design parameters included honeycomb core thickness, diameter-depth ratio, shape, material, number of concentric ring frames, and number of radial frames. Each parameter was assigned three levels. The aerobrake structural configuration with the minimum weight was 44 percent less than the average weight of all the remaining satisfactory experimental configurations. In addition, the results of this study have served to bolster the advocacy of the Taguchi method for aerospace vehicle design. Both reduced analysis time and an optimized design demonstrated the applicability of the Taguchi method to aerospace vehicle design.

  12. Relation between Kitaev magnetism and structure in α -RuCl3

    Science.gov (United States)

    Glamazda, A.; Lemmens, P.; Do, S.-H.; Kwon, Y. S.; Choi, K.-Y.

    2017-05-01

    Raman scattering has been employed to investigate lattice and magnetic excitations of the honeycomb Kitaev material α -RuCl3 and its Heisenberg counterpart CrCl3. Our phonon Raman spectra give evidence for a first-order structural transition from a monoclinic to a rhombohedral structure for both compounds. Significantly, only α -RuCl3 features a large thermal hysteresis, consistent with the formation of a wide phase of coexistence. In the related temperature interval of 70 -170 K, we observe a hysteretic behavior of magnetic excitations as well. The stronger magnetic response in the rhombohedral compared to the monoclinic phase evidences a coupling between the crystallographic structure and low-energy magnetic response. Our results demonstrate that the Kitaev magnetism concomitant with fractionalized excitations is susceptible to small variations of bonding geometry.

  13. Structural and critical current properties in Al-doped MgB2

    International Nuclear Information System (INIS)

    Zheng, D.N.; Xiang, J.Y.; Lang, P.L.; Li, J.Q.; Che, G.C.; Zhao, Z.W.; Wen, H.H.; Tian, H.Y.; Ni, Y.M.; Zhao, Z.X.

    2004-01-01

    A series of Al-doped Mg 1-x Al x B 2 samples have been fabricated and systematic study on structure and superconducting properties have been carried out for the samples. In addition to a structural transition observed by XRD, TEM micrographs showed the existence of a superstructure of double c-axis lattice constant along the direction perpendicular to the boron honeycomb sheet. In order to investigate the effect of Al doping on flux pinning and critical current properties in MgB 2 , measurements on the superconducting transition temperature T c , irreversible field B irr and critical current density J c were performed too, for the samples with the doping levels lower than 0.15 in particular. These experimental observations were discussed in terms of Al doping induced changes in carrier concentration

  14. Structural and critical current properties in Al-doped MgB 2

    Science.gov (United States)

    Zheng, D. N.; Xiang, J. Y.; Lang, P. L.; Li, J. Q.; Che, G. C.; Zhao, Z. W.; Wen, H. H.; Tian, H. Y.; Ni, Y. M.; Zhao, Z. X.

    2004-08-01

    A series of Al-doped Mg 1- xAl xB 2 samples have been fabricated and systematic study on structure and superconducting properties have been carried out for the samples. In addition to a structural transition observed by XRD, TEM micrographs showed the existence of a superstructure of double c-axis lattice constant along the direction perpendicular to the boron honeycomb sheet. In order to investigate the effect of Al doping on flux pinning and critical current properties in MgB 2, measurements on the superconducting transition temperature Tc, irreversible field Birr and critical current density Jc were performed too, for the samples with the doping levels lower than 0.15 in particular. These experimental observations were discussed in terms of Al doping induced changes in carrier concentration.

  15. Deformation structure analysis of material at fatigue on the basis of the vector field

    Science.gov (United States)

    Kibitkin, Vladimir V.; Solodushkin, Andrey I.; Pleshanov, Vasily S.

    2017-12-01

    In the paper, spatial distributions of deformation, circulation, and shear amplitudes and shear angles are obtained from the displacement vector field measured by the DIC technique. This vector field and its characteristics of shears and vortices are given as an example of such approach. The basic formulae are also given. The experiment shows that honeycomb deformation structures can arise in the center of a macrovortex at developed plastic flow. The spatial distribution of local circulation and shears is discovered, which coincides with the deformation structure but their amplitudes are different. The analysis proves that the spatial distribution of shear angles is a result of maximum tangential and normal stresses. The anticlockwise circulation of most local vortices obeys the normal Gaussian law in the area of interest.

  16. High-Temperature Polymer Composites Tested for Hypersonic Rocket Combustor Backup Structure

    Science.gov (United States)

    Sutter, James K.; Shin, E. Eugene; Thesken, John C.; Fink, Jeffrey E.

    2005-01-01

    Significant component weight reductions are required to achieve the aggressive thrust-toweight goals for the Rocket Based Combined Cycle (RBCC) third-generation, reusable liquid propellant rocket engine, which is one possible engine for a future single-stage-toorbit vehicle. A collaboration between the NASA Glenn Research Center and Boeing Rocketdyne was formed under the Higher Operating Temperature Propulsion Components (HOTPC) program and, currently, the Ultra-Efficient Engine Technology (UEET) Project to develop carbon-fiber-reinforced high-temperature polymer matrix composites (HTPMCs). This program focused primarily on the combustor backup structure to replace all metallic support components with a much lighter polymer-matrixcomposite- (PMC-) titanium honeycomb sandwich structure.

  17. Standard Test Method for Water Absorption of Core Materials for Structural Sandwich Constructions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This test method covers the determination of the relative amount of water absorption by various types of structural core materials when immersed or in a high relative humidity environment. This test method is intended to apply to only structural core materials; honeycomb, foam, and balsa wood. 1.2 The values stated in SI units are to be regarded as the standard. The inch-pound units given may be approximate. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  18. Sound transmission through lined, composite panel structures: Transversely isotropic poro-elastic model

    Science.gov (United States)

    Kim, Jeong-Woo

    A joint experimental and analytical investigation of the sound transmission loss (STL) and two-dimensional free wave propagation in composite sandwich panels is presented here. An existing panel, a Nomex honeycomb sandwich panel, was studied in detail. For the purpose of understanding the typical behavior of sandwich panels, a composite structure comprising two aluminum sheets with a relatively soft, poro-elastic foam core was also constructed and studied. The cores of both panels were modeled using an anisotropic (transversely isotropic) poro-elastic material theory. Several estimation methods were used to obtain the material properties of the honeycomb core and the skin plates to be used in the numerical calculations. Appropriate values selected from among the estimates were used in the STL and free wave propagation models. The prediction model was then verified in two ways: first, the calculated wave speeds and STL of a single poro-elastic layer were numerically verified by comparison with the predictions of a previously developed isotropic model. Secondly, to physically validate the transversely isotropic model, the measured STL and the phase speeds of the sandwich panels were compared with their predicted values. To analyze the actual treatment of a fuselage structure, multi-layered configurations, including a honeycomb panel and several layers such as air gaps, acoustic blankets and membrane partitions, were formulated. Then, to find the optimal solution for improving the sound barrier performance of an actual fuselage system, air layer depth and glass fiber lining effects were investigated by using these multi-layer models. By using the free wave propagation model, the first anti-symmetric and symmetric modes of the sandwich panels were characterized to allow the identification of the coincidence frequencies of the sandwich panel. The behavior of the STL could then be clearly explained by comparison with the free wave propagation solutions. By performing a

  19. Numerical and Experimental Investigation on the Structural Behaviour of a Horizontal Stabilizer under Critical Aerodynamic Loading Conditions

    Directory of Open Access Journals (Sweden)

    R. Sepe

    2017-01-01

    Full Text Available The aim of the proposed research activity is to investigate the mechanical behaviour of a part of aerospace horizontal stabilizer, made of composite materials and undergoing static loads. The prototype design and manufacturing phases have been carried out in the framework of this research activity. The structural components of such stabilizer are made of composite sandwich panels (HTA 5131/RTM 6 with honeycomb core (HRH-10-1/8-4.0; the sandwich skins have been made by means of Resin Transfer Moulding (RTM process. In order to assess the mechanical strength of this stabilizer, experimental tests have been performed. In particular, the most critical inflight recorded aerodynamic load has been experimentally reproduced and applied on the stabilizer. A numerical model, based on the Finite Element Method (FEM and aimed at reducing the experimental effort, has been preliminarily developed to calibrate amplitude, direction, and distribution of an equivalent and simpler load vector to be used in the experimental test. The FEM analysis, performed by using NASTRAN code, has allowed modelling the skins of the composite sandwich plates by definition of material properties and stack orientation of each lamina, while the honeycomb core has been modelled by using an equivalent orthotropic plate. Numerical and experimental results have been compared and a good agreement has been achieved.

  20. Spherical cauliflower-like carbon dust formed by interaction between deuterium plasma and graphite target and its internal structure

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, N. [Department of Energy Engineering and Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)], E-mail: ohno@ees.nagoya-u.ac.jp; Yoshimi, M. [Department of Energy Engineering and Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Tokitani, M. [National Institute for Fusion Science, Oroshi 322-6, Toki 509-5292 (Japan); Takamura, S. [Department of Electronics, Aichi Institute of Technology, Yakusa-cho, Toyota 470-0392 (Japan); Tokunaga, K.; Yoshida, N. [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2009-06-15

    Simulated experiments to produce carbon dust particles with cauliflower structure have been performed in a liner plasma device, NAGDIS-II by exposing high density deuterium plasma to a graphite sample (IG-430U). Formation of carbon dust depends on the surface temperature and the incident ion energy. At a surface temperature 600-700 K, a lot of isolated spherical dust particles are observed on the graphite target. The internal structure of an isolated dust particle was observed with Focused Ion Beam (FIB) system and Transmission Electron Microscope (TEM) in detail. FIB analysis clearly shows there exist honey-combed cell structure with thin carbon walls in the dust particle and the dust particle grows from the graphite surface. TEM image also shows that the dust particle is made of amorphous carbon with crystallized grains with diameters of 10-50 nm.

  1. Soil exchange by means of hexagonal bung honeycombs. Selection of variants in close agreement with the development of te factory at MAN Muenchen-Allach; Bodenaustausch mithilfe von Sechseck-Spundelementen. Variantenwahl in enger Abstimmung mit der Werksentwicklung bei MAN Muenchen-Allach

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Michael; Dietl, Bernhard; Dietrich, Andreas; Royl, Martin; Wicke, Sabine; Ziebarth, Guenther; Zobel, Reinhard

    2009-07-15

    A nearly 20,000 cubic meters large, predominantly in the saturated ground zone located pollution of mineral oil had to be redeveloped in the course of measures of surface development at the location Munich-Allach of MAN Nutzfahrzeuge AG. In order to minimize conflicts with the comprehensively planned reorganization of the factory at the Osttor, Dachauer road, temporally, spatially and financially, a soil exchange by means of hexagonal bung honeycombs was planned, advertised and accomplished within a time period of six months. The redevelopment surface with an area of more than 5,000 square meters was released by the authorities of the state capital Munich for unrestricted use.

  2. Role of edges in the electronic and magnetic structures of nanographene

    International Nuclear Information System (INIS)

    Enoki, Toshiaki

    2012-01-01

    In graphene edges or nanographene, the presence of edges strongly affects the electronic structure depending on their edge shape (zigzag and armchair edges) as observed with the electron wave interference and the creation of non-bonding π-electron state (edge state). We investigate the edge-inherent electronic features and the magnetic properties of edge-sate spins in nanographene/graphene edges. Graphene nanostructures are fabricated by heat-induced conversion/fabrication of nanodiamond particles/graphite step edges; single-layer nanographene islands (mean size 10 nm) and armchair-edged nanographene ribbons (width 8 nm). Scanning tunneling microscopy (STM)/scanning tunneling spectroscopy observations demonstrate that edge states are created in zigzag edges in spite of the absence of such states in armchair edges. In addition, zigzag edges tend to be short and defective, whereas armchair edges are long and continuous in general. These findings suggest that a zigzag edge has lower aromatic stability than an armchair edge, consistent with Clar's aromatic sextet rule. The manner in which electron wave scattering takes place is different between zigzag and armchair edges. In the vicinity of an armchair edge, a honeycomb superlattice is observed in STM images together with a fine structure of threefold symmetry, in spite of the (√3×√3 )R30 o superlattice at a zigzag edge. The honeycomb lattice is a consequence of the intervalley K-K' transition that accompanies the electron wave interference taking place at the armchair edge. The Raman G-band is also affected by the interference, showing polarization angle dependence specifically at armchair edges. The magnetism of a three-dimensional disordered network of nanographene sheets is understood on the basis of the ferrimagnetic structure of the edge-state spins in individual constituent nanographene sheets. The strengthening of the inter-nanographene-sheet magnetic interaction brings about a spin glass state.

  3. Thermochemical storage for CSP via redox structured reactors/heat exchangers: The RESTRUCTURE project

    Science.gov (United States)

    Karagiannakis, George; Pagkoura, Chrysoula; Konstandopoulos, Athanasios G.; Tescari, Stefania; Singh, Abhishek; Roeb, Martin; Lange, Matthias; Marcher, Johnny; Jové, Aleix; Prieto, Cristina; Rattenbury, Michael; Chasiotis, Andreas

    2017-06-01

    The present work provides an overview of activities performed in the framework of the EU-funded collaborative project RESTRUCTURE, the main goal of which was to develop and validate a compact structured reactor/heat exchanger for thermochemical storage driven by 2-step high temperature redox metal oxide cycles. The starting point of development path included redox materials qualification via both theoretical and lab-scale experimental studies. Most favorable compositions were cobalt oxide/alumina composites. Preparation of small-scale structured bodies included various approaches, ranging from perforated pellets to more sophisticated honeycomb geometries, fabricated by extrusion and coating. Proof-of-concept of the proposed novel reactor/heat exchanger was successfully validated in small-scale structures and the next step included scaling up of redox honeycombs production. Significant challenges were identified for the case of extruded full-size bodies and the final qualified approach related to preparation of cordierite substrates coated with cobalt oxide. The successful experimental evaluation of the pilot reactor/heat exchanger system constructed motivated the preliminary techno-economic evaluation of the proposed novel thermochemical energy storage concept. Taking into account experimental results, available technologies and standard design aspects a model for a 70.5 MWe CSP plant was defined. Estimated LCOE costs were calculated to be in the range of reference values for Combined Cycle Power Plants operated by natural gas. One of main cost contributors was the storage system itself, partially due to relatively high cost of cobalt oxide. This highlighted the need to identify less costly and equally efficient to cobalt oxide redox materials.

  4. Structure and dynamics of TIP3P, TIP4P, and TIP5P water near smooth and atomistic walls of different hydroaffinity

    International Nuclear Information System (INIS)

    Harrach, Michael F.; Drossel, Barbara

    2014-01-01

    We perform molecular dynamics simulations to observe the structure and dynamics of water using different water models (TIP3P, TIP4P, TIP5P) at ambient conditions, constrained by planar walls, which are either modeled by smooth potentials or regular atomic lattices, imitating the honeycomb-structure of graphene. We implement walls of different hydroaffinity, different lattice constant, and different types of interaction with the water molecules. We find that in the hydrophobic regime the smooth wall generally represents a good abstraction of the atomically rough walls, while in the hydrophilic regime there are noticeable differences in structure and dynamics between all stages of wall roughness. For a small lattice constant however the smooth and the atomically rough wall still share a number of structural and dynamical similarities. Out of the three water models, TIP5P water shows the largest degree of tetrahedral ordering and is often the one that is least perturbed by the presence of the wall

  5. A short review of nanographenes: structures, properties and applications

    Science.gov (United States)

    Dai, Yafei; Liu, Yi; Ding, Kai; Yang, Jinlong

    2018-04-01

    Graphene has attracted great interest in the science and technology since it was exfoliated mechanically from the graphite in 2004. Although graphene has various potential applications, its practical applications are constrained enormously by its serious drawbacks, such as zero band gap, tendency of aggregation between layers and hydrophobicity, which mainly caused by the infinite planar hexagonal structure of graphene. Considering that the structural defects in the honeycomb lattice and the edges of graphene break the infinite structure and thus change the properties, which may improve the application efficiency, nanographene (NG) is proposed and attracts extensive attention. In this work, we review the structures of multifarious well-defined NGs synthesised in recent experiments. The effects of the shape, size, edges and substituents of NGs to the properties are discussed in detail and the regulation for various properties of NG is analysed. For the well-defined NGs, including planar and non-planar ones, the challenges and perspectives of their potential applications in nonlinear optical material, gas molecular detector and gas separation material, hydrogen storage material, and hole-transporting material in perovskite solar cells are envisioned.

  6. A multilayered supramolecular self-assembled structure from soybean oil by in situ polymerization and its applications.

    Science.gov (United States)

    Kavitha, Varadharajan; Gnanamani, Arumugam

    2013-05-01

    The present study emphasizes in situ transformation of soybean oil to self-assembled supramolecular multilayered biopolymer material. The said polymer material was characterized and the entrapment efficacy of both hydrophilic and hydrophobic moieties was studied. In brief, soybean oil at varying concentration was mixed with mineral medium and incubated under agitation (200 rpm) at 37 degrees C for 240 h. Physical observations were made till 240 h and the transformed biopolymer was separated and subjected to physical, chemical and functional characterization. The maximum size of the polymer material was measured as 2 cm in diameter and the cross sectional view displayed the multilayered onion rings like structures. SEM analysis illustrated the presence of multilayered honeycomb channeled structures. Thermal analysis demonstrated the thermal stability (200 degrees C) and high heat enthalpy (1999 J/g). Further, this multilayered assembly was able to entrap both hydrophilic and hydrophobic components simultaneously, suggesting the potential industrial application of this material.

  7. Computer-aided design of DNA origami structures.

    Science.gov (United States)

    Selnihhin, Denis; Andersen, Ebbe Sloth

    2015-01-01

    The DNA origami method enables the creation of complex nanoscale objects that can be used to organize molecular components and to function as reconfigurable mechanical devices. Of relevance to synthetic biology, DNA origami structures can be delivered to cells where they can perform complicated sense-and-act tasks, and can be used as scaffolds to organize enzymes for enhanced synthesis. The design of DNA origami structures is a complicated matter and is most efficiently done using dedicated software packages. This chapter describes a procedure for designing DNA origami structures using a combination of state-of-the-art software tools. First, we introduce the basic method for calculating crossover positions between DNA helices and the standard crossover patterns for flat, square, and honeycomb DNA origami lattices. Second, we provide a step-by-step tutorial for the design of a simple DNA origami biosensor device, from schematic idea to blueprint creation and to 3D modeling and animation, and explain how careful modeling can facilitate later experimentation in the laboratory.

  8. High temperature resin matrix composites for aerospace structures

    Science.gov (United States)

    Davis, J. G., Jr.

    1980-01-01

    Accomplishments and the outlook for graphite-polyimide composite structures are briefly outlined. Laminates, skin-stiffened and honeycomb sandwich panels, chopped fiber moldings, and structural components were fabricated with Celion/LARC-160 and Celion/PMR-15 composite materials. Interlaminar shear and flexure strength data obtained on as-fabricated specimens and specimens that were exposed for 125 hours at 589 K indicate that epoxy sized and polyimide sized Celion graphite fibers exhibit essentially the same behavior in a PMR-15 matrix composite. Analyses and tests of graphite-polyimide compression and shear panels indicate that utilization in moderately loaded applications offers the potential for achieving a 30 to 50 percent reduction in structural mass compared to conventional aluminum panels. Data on effects of moisture, temperature, thermal cycling, and shuttle fluids on mechanical properties indicate that both LARC-160 and PMR-15 are suitable matrix materials for a graphite-polyimide aft body flap. No technical road blocks to building a graphite-polyimide composite aft body flap are identified.

  9. Si Nanoribbons on Ag(110) Studied by Grazing-Incidence X-Ray Diffraction, Scanning Tunneling Microscopy, and Density-Functional Theory: Evidence of a Pentamer Chain Structure.

    Science.gov (United States)

    Prévot, Geoffroy; Hogan, Conor; Leoni, Thomas; Bernard, Romain; Moyen, Eric; Masson, Laurence

    2016-12-30

    We report a combined grazing incidence x-ray diffraction (GIXD), scanning tunneling microscopy (STM), and density-functional theory (DFT) study which clearly elucidates the atomic structure of the Si nanoribbons grown on the missing-row reconstructed Ag(110) surface. Our study allows us to discriminate between the theoretical models published in the literature, including the most stable atomic configurations and those based on a missing-row reconstructed Ag(110) surface. GIXD measurements unambiguously validate the pentamer model grown on the reconstructed surface, obtained from DFT. This pentamer atomistic model accurately matches the high-resolution STM images of the Si nanoribbons adsorbed on Ag(110). Our study closes the long-debated atomic structure of the Si nanoribbons grown on Ag(110) and definitively excludes a honeycomb structure similar to that of freestanding silicene.

  10. Spectrum of a Dilated Honeycomb Network

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Turek, Ondřej

    2015-01-01

    Roč. 81, č. 4 (2015), s. 535-557 ISSN 0378-620X R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : quantum graphs * Hexagon lattice * Laplace operator * Vertex delta-coupling * spectrum Subject RIV: BE - Theoretical Physics Impact factor: 0.956, year: 2015

  11. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards.

    Science.gov (United States)

    Comanns, Philipp; Effertz, Christian; Hischen, Florian; Staudt, Konrad; Böhme, Wolfgang; Baumgartner, Werner

    2011-01-01

    Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus), the Arabian toadhead agama (Phrynocephalus arabicus) and the Texas horned lizard (Phrynosoma cornutum). All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive - and for Phrynosoma directed - transport of water.

  12. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards

    Directory of Open Access Journals (Sweden)

    Philipp Comanns

    2011-04-01

    Full Text Available Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus, the Arabian toadhead agama (Phrynocephalus arabicus and the Texas horned lizard (Phrynosoma cornutum. All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive – and for Phrynosoma directed – transport of water.

  13. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards

    Science.gov (United States)

    Comanns, Philipp; Effertz, Christian; Hischen, Florian; Staudt, Konrad; Böhme, Wolfgang

    2011-01-01

    Summary Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus), the Arabian toadhead agama (Phrynocephalus arabicus) and the Texas horned lizard (Phrynosoma cornutum). All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive – and for Phrynosoma directed – transport of water. PMID:21977432

  14. Finite element analysis of CFRP reinforced silo structure design method

    Science.gov (United States)

    Yuan, Long; Xu, Xinsheng

    2017-11-01

    Because of poor construction, there is a serious problem of concrete quality in the silo project, which seriously affects the safe use of the structure. Concrete quality problems are mainly seen in three aspects: concrete strength cannot meet the design requirements, concrete cracking phenomenon is serious, and the unreasonable concrete vibration leads to a lot of honeycombs and surface voids. Silos are usually reinforced by carbon fiber cloth in order to ensure the safe use of silos. By the example of an alumina silo in a fly ash plant in Binzhou, Shandong Province, the alumina silo project was tested and examined on site. According to filed test results, the actual concrete strength was determined, and the damage causes of the silo was analysed. Then, a finite element analysis model of this silo was established, the CFRP cloth reinforcement method was adopted to strengthen the silo, and other technology like additional reinforcement, rebar planting, carbon fiber bonding technology was also expounded. The research of this paper is of great significance to the design and construction of silo structure.

  15. Internal inspection of reinforced concrete for nuclear structures using shear wave tomography

    International Nuclear Information System (INIS)

    Scott, David B.

    2013-01-01

    Highlights: • Aging of reinforced concrete used for worldwide nuclear structures is increasing and necessitating evaluation. • Nondestructive evaluation is a tool for assessing the condition of reinforced concrete of nuclear structures. • Ultrasonic shear wave tomography as a stress wave technique has begun to be utilized for investigation of concrete material. • A study using ultrasonic shear wave tomography indicates anomalies vital to the long-term operation of the structure. • The use of this technique has shown to successfully evaluate the internal state of reinforced concrete members. - Abstract: Reinforced concrete is important for nuclear related structures. Therefore, the integrity of structural members consisting of reinforced concrete is germane to the safe operation and longevity of these facilities. Many issues that reduce the likelihood of safe operation and longevity are not visible on the surface of reinforced concrete material. Therefore, an investigation of reinforced concrete material should include techniques which will allow peering into the concrete member and determining its internal state. The performance of nondestructive evaluations is pursuant to this goal. Some of the categories of nondestructive evaluations are electrochemical, magnetism, ground penetrating radar, and ultrasonic testing. A specific ultrasonic testing technique, namely ultrasonic shear wave tomography, is used to determine presence and extent of voids, honeycombs, cracks perpendicular to the surface, and/or delamination. This technique, and others similar to it, has been utilized in the nuclear industry to determine structural conditions

  16. Sandwich Structured Composites for Aeronautics: Methods of Manufacturing Affecting Some Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Aneta Krzyżak

    2016-01-01

    Full Text Available Sandwich panels are composites which consist of two thin laminate outer skins and lightweight (e.g., honeycomb thick core structure. Owing to the core structure, such composites are distinguished by stiffness. Despite the thickness of the core, sandwich composites are light and have a relatively high flexural strength. These composites have a spatial structure, which affects good thermal insulator properties. Sandwich panels are used in aeronautics, road vehicles, ships, and civil engineering. The mechanical properties of these composites are directly dependent on the properties of sandwich components and method of manufacturing. The paper presents some aspects of technology and its influence on mechanical properties of sandwich structure polymer composites. The sandwiches described in the paper were made by three different methods: hand lay-up, press method, and autoclave use. The samples of sandwiches were tested for failure caused by impact load. Sandwiches prepared in the same way were used for structural analysis of adhesive layer between panels and core. The results of research showed that the method of manufacturing, more precisely the pressure while forming sandwich panels, influences some mechanical properties of sandwich structured polymer composites such as flexural strength, impact strength, and compressive strength.

  17. Effect of Different Concentration of Sodium Hydroxide [NaOH] on Kenaf Sandwich Structures

    Science.gov (United States)

    Aziz, M.; Halim, Z.; Othman, M.

    2018-01-01

    Sandwich panels are structures that made of three layers, low-density core inserted in between thin skin layers. This structures allow the achievement of excellent mechanical performance with low weight, thus this characteristic fulfil requirement to be use in aircraft application. In recent time, sandwich structures have been studied due to it has multifunction properties and lightweight. The aim of this study is to fabricate a composite sandwich structures with biodegradable material for face sheet [skin] where the fibre being treat with different concentration of sodium hydroxide [NaOH] with 10 and 20 hours of soaking time. Kenaf fibre [treated] reinforced epoxy will be used as skins and Nomex honeycomb is chosen to perform as core for this sandwich composite structure. The mechanical properties that are evaluated such as flexural strength and impact energy of kenaf fibre-reinforced epoxy sandwich structures. For flexural test, the optimum flexural strength is 13.4 MPa and impact strength is 18.3 J.

  18. Global structural optimizations of surface systems with a genetic algorithm

    International Nuclear Information System (INIS)

    Chuang, Feng-Chuan

    2005-01-01

    Global structural optimizations with a genetic algorithm were performed for atomic cluster and surface systems including aluminum atomic clusters, Si magic clusters on the Si(111) 7 x 7 surface, silicon high-index surfaces, and Ag-induced Si(111) reconstructions. First, the global structural optimizations of neutral aluminum clusters Al n (n up to 23) were performed using a genetic algorithm coupled with a tight-binding potential. Second, a genetic algorithm in combination with tight-binding and first-principles calculations were performed to study the structures of magic clusters on the Si(111) 7 x 7 surface. Extensive calculations show that the magic cluster observed in scanning tunneling microscopy (STM) experiments consist of eight Si atoms. Simulated STM images of the Si magic cluster exhibit a ring-like feature similar to STM experiments. Third, a genetic algorithm coupled with a highly optimized empirical potential were used to determine the lowest energy structure of high-index semiconductor surfaces. The lowest energy structures of Si(105) and Si(114) were determined successfully. The results of Si(105) and Si(114) are reported within the framework of highly optimized empirical potential and first-principles calculations. Finally, a genetic algorithm coupled with Si and Ag tight-binding potentials were used to search for Ag-induced Si(111) reconstructions at various Ag and Si coverages. The optimized structural models of √3 x √3, 3 x 1, and 5 x 2 phases were reported using first-principles calculations. A novel model is found to have lower surface energy than the proposed double-honeycomb chained (DHC) model both for Au/Si(111) 5 x 2 and Ag/Si(111) 5 x 2 systems

  19. Synthesis and properties of ZnFe2O4 replica with biological hierarchical structure

    International Nuclear Information System (INIS)

    Liu, Hongyan; Guo, Yiping; Zhang, Yangyang; Wu, Fen; Liu, Yun; Zhang, Di

    2013-01-01

    Highlights: • ZFO replica with hierarchical structure was synthesized from butterfly wings. • Biotemplate has a significant impact on the properties of ZFO material. • Our method opens up new avenues for the synthesis of spinel ferrites. -- Abstract: ZnFe 2 O 4 replica with biological hierarchical structure was synthesized from Papilio paris by a sol–gel method followed by calcination. The crystallographic structure and morphology of the obtained samples were characterized by X-ray diffraction, field-emission scanning electron microscope, and transmittance electron microscope. The results showed that the hierarchical structures were retained in the ZFO replica of spinel structure. The magnetic behavior of such novel products was measured by a vibrating sample magnetometer. A superparamagnetism-like behavior was observed due to nanostructuration size effects. In addition, the ZFO replica with “quasi-honeycomb-like structure” showed a much higher specific capacitance of 279.4 F g −1 at 10 mV s −1 in comparison with ZFO powder of 137.3 F g −1 , attributing to the significantly increased surface area. These results demonstrated that ZFO replica is a promising candidate for novel magnetic devices and supercapacitors

  20. Auxetic hexachiral structures with wavy ligaments for large elasto-plastic deformation

    Science.gov (United States)

    Zhu, Yilin; Wang, Zhen-Pei; Hien Poh, Leong

    2018-05-01

    The hexachiral structure is in-plane isotropic in small deformation. When subjected to large elasto-plastic deformation, however, the hexachiral structure tends to lose its auxeticity and/or isotropy—properties which are desirable in many potential applications. The objective of this study is to improve these two mechanical properties, without significantly compromising the effective yield stress, in the regime with significant material and geometrical nonlinearity effects. It is found that the deformation mechanisms underlying the auxeticity and isotropy properties of a hexachiral structure are largely influenced by the extent of rotation of the central ring in a unit cell. To facilitate the development of this deformation mechanism, an improved design with wavy ligaments is proposed. The improved performance of the proposed hexachiral structure is demonstrated. An initial study on possible applications as a protective material is next carried out, where the improved hexachiral design is shown to exhibit higher specific energy absorption capacity compared to the original design, as well as standard honeycomb structures.

  1. The structure of mixed H2O-OH monolayer films on Ru(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Tatarkhanov, M.; Fomin, E.; Salmeron, M.; Andersson, K.; Ogasawara, H.; Pettersson, L.G.M.; Nilsson, A.; Cerda, J.I.

    2008-10-20

    Scanning tunneling microscopy (STM) and x-ray absorption spectroscopy (XAS) have been used to study the structures produced by water on Ru(0001) at temperatures above 140 K. It was found that while undissociated water layers are metastable below 140 K, heating above this temperature produces drastic transformations whereby a fraction of the water molecules partially dissociate and form mixed H{sub 2}O-OH structures. XPS and XAS revealed the presence of hydroxyl groups with their O-H bond essentially parallel to the surface. STM images show that the mixed H{sub 2}O-OH structures consist of long narrow stripes aligned with the three crystallographic directions perpendicular to the close-packed atomic rows of the Ru(0001) substrate. The internal structure of the stripes is a honeycomb network of H-bonded water and hydroxyl species. We found that the metastable low temperature molecular phase can also be converted to a mixed H{sub 2}O-OH phase through excitation by the tunneling electrons when their energy is 0.5 eV or higher above the Fermi level. Structural models based on the STM images were used for Density Functional Theory optimizations of the stripe geometry. The optimized geometry was then utilized to calculate STM images for comparison with the experiment.

  2. Structural cladding /clad structures:

    DEFF Research Database (Denmark)

    Beim, Anne

    2013-01-01

    tendencies, which can be traced in the use of materials, the structural features and the construction details of building systems in selected architectural works. With a particular focus at heavy constructions made of solid wood and masonry, and light weight constructions made of wooden frame structures...... and steel profiles, it is the intention to analyze, compare, and discuss how these various construction solutions point out strategies for development based on fundamentally different mindsets. The research questions address the following issues: How to learn from traditional construction principles: When...

  3. Structural cladding /clad structures

    DEFF Research Database (Denmark)

    Beim, Anne

    2012-01-01

    Structural Cladding /Clad Structures: Studies in Tectonic Building Practice A. Beim CINARK – Centre for Industrialized Architecture, Institute of Architectural Technology, The Royal Danish Academy of Fine Arts School of Architecture, Copenhagen, Denmark ABSTRACT: With point of departure in the pr......Structural Cladding /Clad Structures: Studies in Tectonic Building Practice A. Beim CINARK – Centre for Industrialized Architecture, Institute of Architectural Technology, The Royal Danish Academy of Fine Arts School of Architecture, Copenhagen, Denmark ABSTRACT: With point of departure...... to analyze, compare, and discuss how these various construction solutions point out strategies for development based on fundamentally different mindsets. The research questions address the following issues: How to learn from traditional construction principles: When do we see limitations of tectonic maneuver......, to ask for more restrictive building codes. As an example, in Denmark there are series of increasing demands in the current building legislations that are focused at enhancing the energy performance of buildings, which consequently foster rigid insulation standards and ask for improvement of air...

  4. Hybrid Composites for LH2 Fuel Tank Structure

    Science.gov (United States)

    Grimsley, Brian W.; Cano, Roberto J.; Johnston, Norman J.; Loos, Alfred C.; McMahon, William M.

    2001-01-01

    The application of lightweight carbon fiber reinforced plastics (CFRP) as structure for cryogenic fuel tanks is critical to the success of the next generation of Reusable Launch Vehicles (RLV). The recent failure of the X-33 composite fuel tank occurred in part due to microcracking of the polymer matrix, which allowed cryogen to permeate through the inner skin to the honeycomb core. As part of an approach to solve these problems, NASA Langley Research Center (LaRC) and Marshall Space Flight Center (MSFC) are working to develop and investigate polymer films that will act as a barrier to the permeation of LH2 through the composite laminate. In this study two commercially available films and eleven novel LaRC films were tested in an existing cryogenics laboratory at MSFC to determine the permeance of argon at room temperature. Several of these films were introduced as a layer in the composite to form an interleaved, or hybrid, composite to determine the effects on permeability. In addition, the effects of the interleaved layer thickness, number, and location on the mechanical properties of the composite laminate were investigated. In this initial screening process, several of the films were found to exhibit lower permeability to argon than the composite panels tested.

  5. Atomic structures and electronic properties of phosphorene grain boundaries

    International Nuclear Information System (INIS)

    Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun; Zhang, Junfeng

    2016-01-01

    Grain boundary (GB) is one main type of defects in two-dimensional (2D) crystals, and has significant impact on the physical properties of 2D materials. Phosphorene, a recently synthesized 2D semiconductor, possesses a puckered honeycomb lattice and outstanding electronic properties. It is very interesting to know the possible GBs present in this novel material, and how their properties differ from those in the other 2D materials. Based on first-principles calculations, we explore the atomic structure, thermodynamic stability, and electronic properties of phosphorene GBs. A total of 19 GBs are predicted and found to be energetically stable with formation energies much lower than those in graphene. These GBs do not severely affect the electronic properties of phosphorene: the band gap of perfect phosphorene is preserved, and the electron mobilities are only moderately reduced in these defective systems. Our theoretical results provide vital guidance for experimental tailoring the electronic properties of phosphorene as well as the device applications using phosphorene materials. (paper)

  6. Artificially Structured Semiconductors to Model Novel Quantum Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Pinczuk, Aron [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics; Wind, Shalom J. [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics

    2018-01-13

    Award Period: September 1st, 2013 through February 15th, 2017 Submitted to the USDOE Office of Basic Energy Sciences By Aron Pinczuk and Shalom J. Wind Department of Applied Physics and Applied Mathematics Columbia University New York, NY 10027 January 2017 Award # DE-SC0010695 ABSTRACT Research in this project seeks to design, create and study a class of tunable artificial quantum structures in order to extend the range and scope of new and exciting physical phenomena and to explore the potential for new applications. Advanced nanofabrication was used to create an external potential landscape that acts as a lattice of confinement sites for electrons (and/or holes) in a two-dimensional electron gas in a high perfection semiconductor in such a manner that quantum interactions between different sites dictate the significant physics. Our current focus is on ‘artificial graphene’ (AG) in which a set of quantum dots (or sites) are patterned in a honeycomb lattice. The combination of leading edge nanofabrication with ultra-pure semiconductor materials in this project extends the frontier for small period, low-disorder AG systems, enabling the exploration of graphene physics in a semiconductor platform. TECHNICAL DESCRIPTION Contemporary condensed matter science has entered an era of discovery of new low-dimensional materials, such as graphene and other atomically thin materials, that exhibit exciting new physical phenomena that were previously inaccessible. Concurrent with the discovery and development of these new materials are impressive advancements in nanofabrication, which offer an ever-expanding toolbox for creating a myriad of high quality patterns at nanoscale dimensions. This project started about four years ago. Among its major achievements are the realizations of very small period artificial lattices with honeycomb topology in GaAs quantum wells. In our most recent work the periods of the ‘artificial graphene’ (AG) lattices extend down to 40 nm. These

  7. Determination of the hydrogen-bond network and the ferrimagnetic structure of a rockbridgeite-type compound, {Fe^{2+Fe^{3+}_{3.2}(Mn^{2+}, Zn)_{0.8}(PO_{4})_{3}(OH)_{4.2}(HOH)_{0.8}}}

    Science.gov (United States)

    Röska, B.; Park, S.-H.; Behal, D.; Hess, K.-U.; Günther, A.; Benka, G.; Pfleiderer, C.; Hoelzel, M.; Kimura, T.

    2018-06-01

    Applying neutron powder diffraction, four unique hydrogen positions were determined in a rockbridgeite-type compound, . Its honeycomb-like H-bond network running without interruption along the crystallographic axis resembles those in alkali sulphatic and arsenatic oxyhydroxides. They provide the so-called dynamically disordered H-bond network over which protons are superconducting in a vehicle mechanism. This is indicated by dramatic increases of dielectric constant and loss factor at room temperature. The relevance of static and dynamic disorder of OH and HOH groups are explained in terms of a high number of structural defects at octahedral chains alternatingly half-occupied by cations. The structure is built up by unusual octahedral doublet, triplet, and quartet clusters of aliovalent 3d transition metal cations, predicting complicate magnetic ordering and interaction. The ferrimagnetic structure below the Curie temperature –83 K could be determined from the structure analysis with neutron diffraction data at 25 K.

  8. 2D reentrant auxetic structures of graphene/CNT networks for omnidirectionally stretchable supercapacitors.

    Science.gov (United States)

    Kim, Byoung Soo; Lee, Kangsuk; Kang, Seulki; Lee, Soyeon; Pyo, Jun Beom; Choi, In Suk; Char, Kookheon; Park, Jong Hyuk; Lee, Sang-Soo; Lee, Jonghwi; Son, Jeong Gon

    2017-09-14

    Stretchable energy storage systems are essential for the realization of implantable and epidermal electronics. However, high-performance stretchable supercapacitors have received less attention because currently available processing techniques and material structures are too limited to overcome the trade-off relationship among electrical conductivity, ion-accessible surface area, and stretchability of electrodes. Herein, we introduce novel 2D reentrant cellular structures of porous graphene/CNT networks for omnidirectionally stretchable supercapacitor electrodes. Reentrant structures, with inwardly protruded frameworks in porous networks, were fabricated by the radial compression of vertically aligned honeycomb-like rGO/CNT networks, which were prepared by a directional crystallization method. Unlike typical porous graphene structures, the reentrant structure provided structure-assisted stretchability, such as accordion and origami structures, to otherwise unstretchable materials. The 2D reentrant structures of graphene/CNT networks maintained excellent electrical conductivities under biaxial stretching conditions and showed a slightly negative or near-zero Poisson's ratio over a wide strain range because of their structural uniqueness. For practical applications, we fabricated all-solid-state supercapacitors based on 2D auxetic structures. A radial compression process up to 1/10 th densified the electrode, significantly increasing the areal and volumetric capacitances of the electrodes. Additionally, vertically aligned graphene/CNT networks provided a plentiful surface area and induced sufficient ion transport pathways for the electrodes. Therefore, they exhibited high gravimetric and areal capacitance values of 152.4 F g -1 and 2.9 F cm -2 , respectively, and had an excellent retention ratio of 88% under a biaxial strain of 100%. Auxetic cellular and vertically aligned structures provide a new strategy for the preparation of robust platforms for stretchable

  9. Improving Heat Transfer at the Bottom of Vials for Consistent Freeze Drying with Unidirectional Structured Ice.

    Science.gov (United States)

    Rosa, Mónica; Tiago, João M; Singh, Satish K; Geraldes, Vítor; Rodrigues, Miguel A

    2016-10-01

    The quality of lyophilized products is dependent of the ice structure formed during the freezing step. Herein, we evaluate the importance of the air gap at the bottom of lyophilization vials for consistent nucleation, ice structure, and cake appearance. The bottom of lyophilization vials was modified by attaching a rectified aluminum disc with an adhesive material. Freezing was studied for normal and converted vials, with different volumes of solution, varying initial solution temperature (from 5°C to 20°C) and shelf temperature (from -20°C to -40°C). The impact of the air gap on the overall heat transfer was interpreted with the assistance of a computational fluid dynamics model. Converted vials caused nucleation at the bottom and decreased the nucleation time up to one order of magnitude. The formation of ice crystals unidirectionally structured from bottom to top lead to a honeycomb-structured cake after lyophilization of a solution with 4% mannitol. The primary drying time was reduced by approximately 35%. Converted vials that were frozen radially instead of bottom-up showed similar improvements compared with normal vials but very poor cake quality. Overall, the curvature of the bottom of glass vials presents a considerable threat to consistency by delaying nucleation and causing radial ice growth. Rectifying the vials bottom with an adhesive material revealed to be a relatively simple alternative to overcome this inconsistency.

  10. Low-Velocity Impact Behavior of Sandwich Structures with Additively Manufactured Polymer Lattice Cores

    Science.gov (United States)

    Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan

    2018-05-01

    Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.

  11. Cryogenic EBSD reveals structure of directionally solidified ice–polymer composite

    International Nuclear Information System (INIS)

    Donius, Amalie E.; Obbard, Rachel W.; Burger, Joan N.; Hunger, Philipp M.; Baker, Ian; Doherty, Roger D.; Wegst, Ulrike G.K.

    2014-01-01

    Despite considerable research efforts on directionally solidified or freeze-cast materials in recent years, little fundamental knowledge has been gained that links model with experiment. In this contribution, the cryogenic characterization of directionally solidified polymer solutions illustrates, how powerful cryo-scanning electron microscopy combined with electron backscatter diffraction is for the structural characterization of ice–polymer composite materials. Under controlled sublimation, the freeze-cast polymer scaffold structure is revealed and imaged with secondary electrons. Electron backscatter diffraction fabric analysis shows that the ice crystals, which template the polymer scaffold and create the lamellar structure, have a-axes oriented parallel to the direction of solidification and the c-axes perpendicular to it. These results indicate the great potential of both cryo-scanning electron microscopy and cryo-electron backscatter diffraction in gaining fundamental knowledge of structure–property–processing correlations. - Highlights: • Cryo-SEM of freeze-cast polymer solution reveals an ice-templated structure. • Cryo-EBSD reveals the ice crystal a-axis to parallel the solidification direction. • The honeycomb-like polymer phase favors columnar ridges only on one side. • Combining cryo-SEM with EBSD links solidification theory with experiment

  12. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    Science.gov (United States)

    Ryan, S.; Ordonez, E.; Christiansen, E. L.; Lear, D. M.

    2010-01-01

    Open cell metallic foam core sandwich panel structures are of interest for application in spacecraft micrometeoroid and orbital debris shields due to their novel form and advantageous structural and thermal performance. Repeated shocking as a result of secondary impacts upon individual foam ligaments during the penetration process acts to raise the thermal state of impacting projectiles ; resulting in fragmentation, melting, and vaporization at lower velocities than with traditional shielding configurations (e.g. Whipple shield). In order to characterize the protective capability of these structures, an extensive experimental campaign was performed by the Johnson Space Center Hypervelocity Impact Technology Facility, the results of which are reported in this paper. Although not capable of competing against the protection levels achievable with leading heavy shields in use on modern high-risk vehicles (i.e. International Space Station modules), metallic foam core sandwich panels are shown to provide a substantial improvement over comparable structural panels and traditional low weight shielding alternatives such as honeycomb sandwich panels and metallic Whipple shields. A ballistic limit equation, generalized in terms of panel geometry, is derived and presented in a form suitable for application in risk assessment codes.

  13. Cryogenic EBSD reveals structure of directionally solidified ice–polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Donius, Amalie E., E-mail: amalie.donius@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Obbard, Rachel W., E-mail: Rachel.W.Obbard@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Burger, Joan N., E-mail: ridge.of.the.ancients@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Hunger, Philipp M., E-mail: philipp.m.hunger@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Baker, Ian, E-mail: Ian.Baker@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Doherty, Roger D., E-mail: dohertrd@drexel.edu [Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Wegst, Ulrike G.K., E-mail: ulrike.wegst@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States)

    2014-07-01

    Despite considerable research efforts on directionally solidified or freeze-cast materials in recent years, little fundamental knowledge has been gained that links model with experiment. In this contribution, the cryogenic characterization of directionally solidified polymer solutions illustrates, how powerful cryo-scanning electron microscopy combined with electron backscatter diffraction is for the structural characterization of ice–polymer composite materials. Under controlled sublimation, the freeze-cast polymer scaffold structure is revealed and imaged with secondary electrons. Electron backscatter diffraction fabric analysis shows that the ice crystals, which template the polymer scaffold and create the lamellar structure, have a-axes oriented parallel to the direction of solidification and the c-axes perpendicular to it. These results indicate the great potential of both cryo-scanning electron microscopy and cryo-electron backscatter diffraction in gaining fundamental knowledge of structure–property–processing correlations. - Highlights: • Cryo-SEM of freeze-cast polymer solution reveals an ice-templated structure. • Cryo-EBSD reveals the ice crystal a-axis to parallel the solidification direction. • The honeycomb-like polymer phase favors columnar ridges only on one side. • Combining cryo-SEM with EBSD links solidification theory with experiment.

  14. Low-Velocity Impact Behavior of Sandwich Structures with Additively Manufactured Polymer Lattice Cores

    Science.gov (United States)

    Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan

    2018-04-01

    Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.

  15. An Applied Method for Predicting the Load-Carrying Capacity in Compression of Thin-Wall Composite Structures with Impact Damage

    Science.gov (United States)

    Mitrofanov, O.; Pavelko, I.; Varickis, S.; Vagele, A.

    2018-03-01

    The necessity for considering both strength criteria and postbuckling effects in calculating the load-carrying capacity in compression of thin-wall composite structures with impact damage is substantiated. An original applied method ensuring solution of these problems with an accuracy sufficient for practical design tasks is developed. The main advantage of the method is its applicability in terms of computing resources and the set of initial data required. The results of application of the method to solution of the problem of compression of fragments of thin-wall honeycomb panel damaged by impacts of various energies are presented. After a comparison of calculation results with experimental data, a working algorithm for calculating the reduction in the load-carrying capacity of a composite object with impact damage is adopted.

  16. Cradle-to-Grave Monitoring of Composite Aircraft Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Aeronautics, after achieving promising results in Phase I, is proposing a simple yet powerful damage identification technique for honeycomb advanced...

  17. Structural stabilities and electronic properties of fully hydrogenated SiC sheet

    International Nuclear Information System (INIS)

    Wang, Xin-Quan; Wang, Jian-Tao

    2011-01-01

    The intriguing structural and electronic properties of fully hydrogenated SiC honeycomb sheet are studied by means of ab initio calculations. Based on structure optimization and phonon dispersion analysis, we find that both chair-like and boat-like configurations are dynamically stable, and the chair-like conformer is energetically more favored with an energy gain of 0.03 eV per C atom relative to the boat-like one. The chair-like and boat-like conformers are revealed to be nonmagnetic semiconductors with direct band gaps of 3.84 and 4.29 eV, respectively, both larger than 2.55 eV of pristine SiC sheet. The charge density distributions show that the bondings are characterized with covalency for both chair-like and boat-like conformers. -- Highlights: → Structural and electronic properties of fully hydrogenated SiC sheet are studied. → Both chair-like and boat-like configurations are dynamically stable. → While the chair-like conformer is energetically more favored. → The chair-like and boat-like conformers are nonmagnetic semiconductors. → The bondings are characterized with covalency.

  18. Mechanical and electrical strain response of a piezoelectric auxetic PZT lattice structure

    Science.gov (United States)

    Fey, Tobias; Eichhorn, Franziska; Han, Guifang; Ebert, Kathrin; Wegener, Moritz; Roosen, Andreas; Kakimoto, Ken-ichi; Greil, Peter

    2016-01-01

    A two-dimensional auxetic lattice structure was fabricated from a PZT piezoceramic. Tape casted and sintered sheets with a thickness of 530 μm were laser cut into inverted honeycomb lattice structure with re-entrant cell geometry (θ = -25°) and poling direction oriented perpendicular to the lattice plane. The in-plane strain response upon applying an uniaxial compression load as well as an electric field perpendicular to the lattice plane were analyzed by a 2D image data detection analysis. The auxetic lattice structure exhibits orthotropic deformation behavior with a negative in-plane Poisson’s ratio of -2.05. Compared to PZT bulk material the piezoelectric auxetic lattice revealed a strain amplification by a factor of 30-70. Effective transversal coupling coefficients {{d}al}31 of the PZT lattice exceeding 4 × 103 pm V-1 were determined which result in an effective hydrostatic coefficient {{d}al}h 66 times larger than that of bulk PZT.

  19. Development of integrated damage detection system for international America's Cup class yacht structures using a fiber optic distributed sensor

    Science.gov (United States)

    Akiyoshi, Shimada; Naruse, Hiroshi; Uzawa, Kyoshi; Murayama, Hideaki; Kageyama, Kazuro

    2000-06-01

    We constructed a new health monitoring system to detect damage using a fiber optic distributed sensor, namely a Brillouin optical time domain reflectometer (BOTDR), and installed it in International America's Cup Class (IACC) yachts, the Japanese entry in America's Cup 2000. IACC yachts are designed to be as fast as possible, so it is essential that they are lightweight and encounter minimum water resistance. Advanced composite sandwich structures, made with carbon fiber reinforced plastic (CFRP) skins and a honeycomb core, are used to achieve the lightweight structure. Yacht structure designs push the strength of the materials to their limit and so it is important to detect highly stressed or damaged regions that might cause a catastrophic fracture. The BOTDR measures changes in the Brillouin frequency shift caused by distributed strain along one optical fiber. We undertook two experiments: a pulling test and a four point bending test on a composite beam. The former showed that no slippage occurred between the optical fiber glass and its coating. The latter confirmed that a debonding between the skin and the core of 300 mm length could be found with the BOTDR. Next we examined the effectiveness with which this system can assess the structural integrity of IACC yachts. The results show that our system has the potential for use as a damage detection system for smart structures.

  20. Synthesis and properties of ZnFe{sub 2}O{sub 4} replica with biological hierarchical structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongyan; Guo, Yiping, E-mail: ypguo@sjtu.edu.cn; Zhang, Yangyang; Wu, Fen; Liu, Yun; Zhang, Di, E-mail: zhangdi@sjtu.edu.cn

    2013-09-20

    Highlights: • ZFO replica with hierarchical structure was synthesized from butterfly wings. • Biotemplate has a significant impact on the properties of ZFO material. • Our method opens up new avenues for the synthesis of spinel ferrites. -- Abstract: ZnFe{sub 2}O{sub 4} replica with biological hierarchical structure was synthesized from Papilio paris by a sol–gel method followed by calcination. The crystallographic structure and morphology of the obtained samples were characterized by X-ray diffraction, field-emission scanning electron microscope, and transmittance electron microscope. The results showed that the hierarchical structures were retained in the ZFO replica of spinel structure. The magnetic behavior of such novel products was measured by a vibrating sample magnetometer. A superparamagnetism-like behavior was observed due to nanostructuration size effects. In addition, the ZFO replica with “quasi-honeycomb-like structure” showed a much higher specific capacitance of 279.4 F g{sup −1} at 10 mV s{sup −1} in comparison with ZFO powder of 137.3 F g{sup −1}, attributing to the significantly increased surface area. These results demonstrated that ZFO replica is a promising candidate for novel magnetic devices and supercapacitors.

  1. Internal geometry effect of structured PLA materials manufactured by dropplet-based 3D printer on its mechanical properties

    Science.gov (United States)

    Wicaksono, Sigit T.; Ardhyananta, Hosta; Rasyida, Amaliya; Hidayat, Mas Irfan P.

    2018-04-01

    Rapid Prototyping (RP) technologies, the manufacturing technology with less time consuming including high precission and complicated structure of products, are now become high demanding technologies. Those technologies can be base on top-down or bottom-up approaches. One of the bottom-up approach of RP technology is 3D printing machine. In this research, we have succeed to apply the droplet-based 3D printer to make the structured PLA (Polylactic Acid) materials with different internal geometry structures. The internal geometry used are triangle and honeycomb structure with different size of each symmetry axis of 4.5 mm and 9 mm and the thickness varied of 1 mm and 2 mm as well. The mechanical properties of those structures including tensile and bending stregth are evaluated by using tensile and flexural test respectively. Test results show that the best performance obtained by measuring its tensile and flexural strength is the sampel with triangle geometry of 9 mm geometrical size and 2 mm of thickness. The tensile strength and flexural strength values of the specimens are 59.2996 MPa and 123 MPa respectively.

  2. Localized structures in Kagome lattices

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Avadh B [Los Alamos National Laboratory; Bishop, Alan R [Los Alamos National Laboratory; Law, K J H [UNIV OF MASSACHUSETTS; Kevrekidis, P G [UNIV OF MASSACHUSETTS

    2009-01-01

    We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.

  3. Band structure engineering for ultracold quantum gases in optical lattices

    International Nuclear Information System (INIS)

    Weinberg, Malte

    2014-01-01

    the same system maps onto a quantum spin-1/2 XY model. Owing to the quantum nature of the pseudospins, geometrical frustration leads to a highly degenerate ground state which can result in exotic valence bond spin-liquid phases. First signatures of an order-by-disorder effect emerge in this regime. A complementary approach to the manipulation of the band structure is investigated in a honeycomb potential. By rotating the quantization field of the system, the statedependent energy offset between the twofold atomic basis of the hexagonal Bravais lattice can be adjusted. This purposeful breaking of inversion symmetry enables the continuous opening of an energy gap at the Dirac points of the honeycomb band structure. In addition, a striking influence of the band gap onto the lifetimes for atoms in the first excited energy band is observed. In the last part of the thesis, both experimental manipulation techniques are discussed with respect to future applications for ultracold quantum gases in non-cubic optical lattices.

  4. Morphologies and wetting properties of copper film with 3D porous micro-nano hierarchical structure prepared by electrochemical deposition

    International Nuclear Information System (INIS)

    Wang, Hongbin; Wang, Ning; Hang, Tao; Li, Ming

    2016-01-01

    Highlights: • A 3D porous micro-nano hierarchical structure Cu films were prepared. • The evolution of morphology and wettability with deposition time was reported. • The effects of EDA on the microscopic morphology were revealed. • A high contact angle of 162.1° was measured when deposition time is 5 s. • The mechanism of super-hydrophobicity was illustrated by two classical models. - Abstract: Three-dimensional porous micro-nano hierarchical structure Cu films were prepared by electrochemical deposition with the Hydrogen bubble dynamic template. The morphologies of the deposited films characterized by Scanning Electronic Microscopy (SEM) exhibit a porous micro-nano hierarchical structure, which consists of three levels in different size scales, namely the honeycomb-like microstructure, the dendritic substructure and the nano particles. Besides, the factors which influenced the microscopic morphology were studied, including the deposition time and the additive Ethylene diamine. By measuring the water contact angle, the porous copper films were found to be super-hydrophobic. The maximum of the contact angles could reach as high as 162.1°. An empirical correlation between morphologies and wetting properties was revealed for the first time. The pore diameter increased simultaneously with the deposition time while the contact angle decreased. The mechanism was illustrated by two classical models. Such super-hydrophobic three-dimensional hierarchical micro-nano structure is expected to have practical application in industry.

  5. The direct field boundary impedance of two-dimensional periodic structures with application to high frequency vibration prediction.

    Science.gov (United States)

    Langley, Robin S; Cotoni, Vincent

    2010-04-01

    Large sections of many types of engineering construction can be considered to constitute a two-dimensional periodic structure, with examples ranging from an orthogonally stiffened shell to a honeycomb sandwich panel. In this paper, a method is presented for computing the boundary (or edge) impedance of a semi-infinite two-dimensional periodic structure, a quantity which is referred to as the direct field boundary impedance matrix. This terminology arises from the fact that none of the waves generated at the boundary (the direct field) are reflected back to the boundary in a semi-infinite system. The direct field impedance matrix can be used to calculate elastic wave transmission coefficients, and also to calculate the coupling loss factors (CLFs), which are required by the statistical energy analysis (SEA) approach to predicting high frequency vibration levels in built-up systems. The calculation of the relevant CLFs enables a two-dimensional periodic region of a structure to be modeled very efficiently as a single subsystem within SEA, and also within related methods, such as a recently developed hybrid approach, which couples the finite element method with SEA. The analysis is illustrated by various numerical examples involving stiffened plate structures.

  6. Single crystalline electronic structure and growth mechanism of aligned square graphene sheets

    Directory of Open Access Journals (Sweden)

    H. F. Yang

    2018-03-01

    Full Text Available Recently, commercially available copper foil has become an efficient and inexpensive catalytic substrate for scalable growth of large-area graphene films for fundamental research and applications. Interestingly, despite its hexagonal honeycomb lattice, graphene can be grown into large aligned square-shaped sheets on copper foils. Here, by applying angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES to study the three-dimensional electronic structures of square graphene sheets grown on copper foils, we verified the high quality of individual square graphene sheets as well as their merged regions (with aligned orientation. Furthermore, by simultaneously measuring the graphene sheets and their substrate copper foil, we not only established the (001 copper surface structure but also discovered that the square graphene sheets’ sides align with the ⟨110⟩ copper direction, suggesting an important role of copper substrate in the growth of square graphene sheets—which will help the development of effective methods to synthesize high-quality large-size regularly shaped graphene sheets for future applications. This work also demonstrates the effectiveness of micro-ARPES in exploring low-dimensional materials down to atomic thickness and sub-micron lateral size (e.g., besides graphene, it can also be applied to transition metal dichalcogenides and various van der Waals heterostructures

  7. Single crystalline electronic structure and growth mechanism of aligned square graphene sheets

    Science.gov (United States)

    Yang, H. F.; Chen, C.; Wang, H.; Liu, Z. K.; Zhang, T.; Peng, H.; Schröter, N. B. M.; Ekahana, S. A.; Jiang, J.; Yang, L. X.; Kandyba, V.; Barinov, A.; Chen, C. Y.; Avila, J.; Asensio, M. C.; Peng, H. L.; Liu, Z. F.; Chen, Y. L.

    2018-03-01

    Recently, commercially available copper foil has become an efficient and inexpensive catalytic substrate for scalable growth of large-area graphene films for fundamental research and applications. Interestingly, despite its hexagonal honeycomb lattice, graphene can be grown into large aligned square-shaped sheets on copper foils. Here, by applying angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES) to study the three-dimensional electronic structures of square graphene sheets grown on copper foils, we verified the high quality of individual square graphene sheets as well as their merged regions (with aligned orientation). Furthermore, by simultaneously measuring the graphene sheets and their substrate copper foil, we not only established the (001) copper surface structure but also discovered that the square graphene sheets' sides align with the ⟨110⟩ copper direction, suggesting an important role of copper substrate in the growth of square graphene sheets—which will help the development of effective methods to synthesize high-quality large-size regularly shaped graphene sheets for future applications. This work also demonstrates the effectiveness of micro-ARPES in exploring low-dimensional materials down to atomic thickness and sub-micron lateral size (e.g., besides graphene, it can also be applied to transition metal dichalcogenides and various van der Waals heterostructures)

  8. Characterization of internal structure of hydrated agar and gelatin matrices by cryo-SEM

    KAUST Repository

    Rahbani, Janane; Behzad, Ali Reza; Khashab, Niveen M.; Al-Ghoul, Mazen

    2012-01-01

    There has been a considerable interest in recent years in developing polymer gel matrices for many important applications such as 2DE for quantization and separation of a variety of proteins and drug delivery system to control the release of active agents. However, a well-defined knowledge of the ultrastructures of the gels has been elusive. In this study, we report the characterization of two different polymers used in 2DE: Gelatin, a naturally occurring polymer derived from collagen (protein) and agar, a polymer of polysaccharide (sugar) origin. Low-temperature SEM is used to examine the internal structure of these gels in their frozen natural hydrated states. Results of this study show that both polymers have an array of hollow cells that resembles honeycomb structures. While agar pores are almost circular, the corresponding Gaussian curve is very broad exhibiting a range of radii from nearly 370 to 700 nm. Gelatin pores are smaller and more homogeneous reflecting a narrower distribution from nearly 320 to 650 nm. Overall, these ultrastructural findings could be used to correlate with functions of the polymers. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Bosch-like method for creating high aspect ratio poly(methyl methacrylate) (PMMA) structures

    KAUST Repository

    Haiducu, Marius

    2012-02-02

    This paper presents a method for etching millimetre-deep trenches in commercial grade PMMA using deep-UV at 254 nm. The method is based on consecutive cycles of irradiation and development of the exposed areas, respectively. The exposure segment is performed using an inexpensive, in-house built irradiation box while the development part is accomplished using an isopropyl alcohol (IPA):H2O developer. The method was tested and characterized by etching various dimension square test structures in commercial grade, mirrored acrylic. The undercut of the sidewalls due to the uncollimated nature of the irradiation light was dramatically alleviated by using a honeycomb metallic grid in between the irradiation source and the acrylic substrate and by rotating the latter using a direct current (DC) motor-driven stage. By using an extremely affordable set-up and non-toxic, environmentally friendly materials and substances, this process represents an excellent alternative to microfabricating microfluidic devices in particular and high aspect ratio structures in general using PMMA as substrate. © 2012 SPIE.

  10. Characterization of internal structure of hydrated agar and gelatin matrices by cryo-SEM

    KAUST Repository

    Rahbani, Janane

    2012-12-26

    There has been a considerable interest in recent years in developing polymer gel matrices for many important applications such as 2DE for quantization and separation of a variety of proteins and drug delivery system to control the release of active agents. However, a well-defined knowledge of the ultrastructures of the gels has been elusive. In this study, we report the characterization of two different polymers used in 2DE: Gelatin, a naturally occurring polymer derived from collagen (protein) and agar, a polymer of polysaccharide (sugar) origin. Low-temperature SEM is used to examine the internal structure of these gels in their frozen natural hydrated states. Results of this study show that both polymers have an array of hollow cells that resembles honeycomb structures. While agar pores are almost circular, the corresponding Gaussian curve is very broad exhibiting a range of radii from nearly 370 to 700 nm. Gelatin pores are smaller and more homogeneous reflecting a narrower distribution from nearly 320 to 650 nm. Overall, these ultrastructural findings could be used to correlate with functions of the polymers. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Characterization of internal structure of hydrated agar and gelatin matrices by cryo-SEM.

    Science.gov (United States)

    Rahbani, Janane; Behzad, Ali R; Khashab, Niveen M; Al-Ghoul, Mazen

    2013-02-01

    There has been a considerable interest in recent years in developing polymer gel matrices for many important applications such as 2DE for quantization and separation of a variety of proteins and drug delivery system to control the release of active agents. However, a well-defined knowledge of the ultrastructures of the gels has been elusive. In this study, we report the characterization of two different polymers used in 2DE: Gelatin, a naturally occurring polymer derived from collagen (protein) and agar, a polymer of polysaccharide (sugar) origin. Low-temperature SEM is used to examine the internal structure of these gels in their frozen natural hydrated states. Results of this study show that both polymers have an array of hollow cells that resembles honeycomb structures. While agar pores are almost circular, the corresponding Gaussian curve is very broad exhibiting a range of radii from nearly 370 to 700 nm. Gelatin pores are smaller and more homogeneous reflecting a narrower distribution from nearly 320 to 650 nm. Overall, these ultrastructural findings could be used to correlate with functions of the polymers. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The beetle elytron plate: a lightweight, high-strength and buffering functional-structural bionic material.

    Science.gov (United States)

    Zhang, Xiaoming; Xie, Juan; Chen, Jinxiang; Okabe, Yoji; Pan, Longcheng; Xu, Mengye

    2017-06-30

    To investigate the characteristics of compression, buffering and energy dissipation in beetle elytron plates (BEPs), compression experiments were performed on BEPs and honeycomb plates (HPs) with the same wall thickness in different core structures and using different molding methods. The results are as follows: 1) The compressive strength and energy dissipation capacity in the BEP are 2.44 and 5.0 times those in the HP, respectively, when the plates are prepared using the full integrated method (FIM). 2) The buckling stress is directly proportional to the square of the wall thickness (t). Thus, for core structures with equal wall thicknesses, although the core volume of the BEP is 42 percent greater than that of the HP, the mechanical properties of the BEP are several times higher than those of the HP. 3) It is also proven that even when the single integrated method (SIM) is used to prepare BEPs, the properties discussed above remain superior to those of HPs by a factor of several; this finding lays the foundation for accelerating the commercialization of BEPs based on modern manufacturing processes.

  13. Crystal Structures and Physical Properties of Ag(I) Coordination Polymers with Unsymmetrical Dipyridyl Ligand

    International Nuclear Information System (INIS)

    Lee, Eunji; Ryu, Hyunsoo; Park, Kimin

    2013-01-01

    Three Ag(I) coordination polymers with the formula [Ag(L)]·(X)·(DMSO) n (X = ClO 4 (1), BF 4 (2), and PF 6 (3), and L = dipyridyl ligand) were prepared and characterized fully their structures. All three compounds are isostructures and stable 2-D honeycomb type coordination polymers, in which 1-D zigzag chains with -(Ag-L)- motif are linked by the argentophilic interactions and the π···π stacking interactions between pyridine rings. The investigation on photophysical properties of all compounds shows that the nature of emission can be attributed to the metal-to-ligand charge transfer as well as the formation of the polymeric structures with restriction of the flexibility of the free ligand. Based on the present solid state results, further investigation on the development and characterization of new coordination polymers using flexible unsymmetrical ligand is in progress. During last two decades, silver coordination polymers based on dipyridyl type ligands have attracted particular interest because of the various intriguing architectures caused by a variety of coordination geometry of Ag(I) ion as well as their potential applications as functional materials

  14. Scintillator structures

    International Nuclear Information System (INIS)

    Cusano, D.A.; Prener, J.S.

    1978-01-01

    Distributed phosphor scintillator structures providing superior optical coupling to photoelectrically responsive devices together with methods for fabricating said scintillator structures are disclosed. In accordance with one embodiment of the invention relating to scintillator structures, the phosphor is distributed in a 'layered' fashion with certain layers being optically transparent so that the visible wavelength output of the scintillator is better directed to detecting devices. In accordance with another embodiment of the invention relating to scintillator structures, the phosphor is distributed throughout a transparent matrix in a continuous fashion whereby emitted light is more readily transmitted to a photodetector. Methods for fabricating said distributed phosphor scintillator structures are also disclosed. (Auth.)

  15. Permeability and flammability study of composite sandwich structures for cryogenic applications

    Science.gov (United States)

    Bubacz, Monika

    Fiber reinforced plastics offer advantageous specific strength and stiffness compared to metals and has been identified as candidates for the reusable space transportation systems primary structures including cryogenic tanks. A number of carbon and aramid fiber reinforced plastics have been considered for the liquid hydrogen tanks. Materials selection is based upon mechanical properties and containment performance (long and short term) and upon manufacturing considerations. The liquid hydrogen tank carries shear, torque, end load, and bending moment due to gusts, maneuver, take-off, landing, lift, drag, and fuel sloshing. The tank is pressurized to about 1.5 atmosphere (14.6psi or 0.1 MPa) differential pressure and on ascent maintains the liquid hydrogen at a temperature of 20K. The objective of the research effort into lay the foundation for developing the technology required for reliable prediction of the effects of various design, manufacturing, and service parameters on the susceptibility of composite tanks to develop excessive permeability to cryogenic fuels. Efforts will be expended on developing the materials and structural concepts for the cryogenic tanks that can meet the functional requirements. This will include consideration for double wall composite sandwich structures, with inner wall to meet the cryogenic requirements. The structure will incorporate nanoparticles for properties modifications and developing barriers. The main effort will be extended to tank wall's internal skin design. The main requirements for internal composite stack are: (1) introduction of barrier film (e.g. honeycomb material paper sheet) to reduce the wall permeability to hydrogen, (2) introduction of nanoparticles into laminate resin to prevent micro-cracking or crack propagation. There is a need to characterize and analyze composite sandwich structural damage due to burning and explosion. Better understanding of the flammability and blast resistance of the composite structures

  16. Organisational Structure

    Science.gov (United States)

    National Centre for Vocational Education Research (NCVER), 2006

    2006-01-01

    An understanding of organisational structure can provide guidance for organisations that want to change and innovate. Many writers agree that this understanding allows organisations to shape how their work is done to ultimately achieve their business goals--and that too often structure is given little consideration in business strategy and…

  17. Scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.; Prener, J.S.

    1979-01-01

    A scintillator structure comprises at least one layer of transparent fused quartz with a phosphor coating on one or both sides adjacent to at least one transparent layer of epoxy resin which directs light from the phosphor to a detector. The phosphor layer may be formed from a powder optionally with a binder, a single crystal or a melt, or by evaporation or sintering. A plurality of multiple layers may be used or the structure tilted for greater absorption. The structure may be surrounded by another such structure optionally operating in cascade with the first. Many phosphors are specified. A scintillator structure comprises phosphor particles dispersed in epoxy resin or copoly imide-silicone and cast in a multi-compartment box with long sides transparent to X-rays and dividers opaque to X-rays. (UK)

  18. Building structures

    CERN Document Server

    Ambrose, James

    2011-01-01

    James Ambrose is Editor of the Parker/Ambrose Series of Simplified Design Guides. He practiced as an architect in California and Illinois and as a structural engineer in Illinois. He was a professor of architecture at the University of Southern California. Patrick Tripeny is an Associate Professor, former director of the School of Architecture, and the current Director of the Center for Teaching and Learning Excellence at the University of Utah. He is a licensed architect in California. He has been the recipient of a number of teaching awards at the local and national level for his work in teaching structures and design. With James Ambrose, he is the coauthor of Simplified Engineering for Architects and Builders, Eleventh Edition; Simplified Design of Steel Structures, Eighth Edition; Simplified Design of Concrete Structures, Eighth Edition; and Simplified Design of Wood Structures, Sixth Edition, all published by Wiley.

  19. Fracture mechanisms and fracture control in composite structures

    Science.gov (United States)

    Kim, Wone-Chul

    Four basic failure modes--delamination, delamination buckling of composite sandwich panels, first-ply failure in cross-ply laminates, and compression failure--are analyzed using linear elastic fracture mechanics (LEFM) and the J-integral method. Structural failures, including those at the micromechanical level, are investigated with the aid of the models developed, and the critical strains for crack propagation for each mode are obtained. In the structural fracture analyses area, the fracture control schemes for delamination in a composite rib stiffener and delamination buckling in composite sandwich panels subjected to in-plane compression are determined. The critical fracture strains were predicted with the aid of LEFM for delamination and the J-integral method for delamination buckling. The use of toughened matrix systems has been recommended for improved damage tolerant design for delamination crack propagation. An experimental study was conducted to determine the onset of delamination buckling in composite sandwich panel containing flaws. The critical fracture loads computed using the proposed theoretical model and a numerical computational scheme closely followed the experimental measurements made on sandwich panel specimens of graphite/epoxy faceskins and aluminum honeycomb core with varying faceskin thicknesses and core sizes. Micromechanical models of fracture in composites are explored to predict transverse cracking of cross-ply laminates and compression fracture of unidirectional composites. A modified shear lag model which takes into account the important role of interlaminar shear zones between the 0 degree and 90 degree piles in cross-ply laminate is proposed and criteria for transverse cracking have been developed. For compressive failure of unidirectional composites, pre-existing defects play an important role. Using anisotropic elasticity, the stress state around a defect under a remotely applied compressive load is obtained. The experimentally

  20. Characterizing edge and stacking structures of exfoliated graphene by photoelectron diffraction

    International Nuclear Information System (INIS)

    Matsui, Fumihiko; Ishii, Ryo; Matsuda, Hiroyuki; Morita, Makoto; Kitagawa, Satoshi; Koh, Shinji; Daimon, Hiroshi; Matsushita, Tomohiro

    2013-01-01

    The two-dimensional C 1s photoelectron intensity angular distributions (PIADs) and spectra of exfoliated graphene flakes and crystalline graphite were measured using a focused soft X-ray beam. Suitable graphene samples were selected by thickness characterization using Raman spectromicroscopy after transferring mechanically exfoliated graphene flakes onto a 90-nm-thick SiO 2 film. In every PIAD, a Kagomé interference pattern was observed, particularly clearly in the monolayer graphene PIAD. Its origin is the overlap of the diffraction rings formed by an in-plane C-C bond honeycomb lattice. Thus, the crystal orientation of each sample can be determined. In the case of bilayer graphene, PIAD was threefold-symmetric, while those of monolayer graphene and crystalline graphite were sixfold-symmetric. This is due to the stacking structure of bilayer graphene. From comparisons with the multiple scattering PIAD simulation results, the way of layer stacking as well as the termination types in the edge regions of bilayer graphene flakes were determined. Furthermore, two different C 1s core levels corresponding to the top and bottom layers of bilayer graphene were identified. A chemical shift to a higher binding energy by 0.25 eV for the bottom layer was attributed to interfacial interactions. (author)

  1. Application of scanning laser Doppler vibrometry for delamination detection in composite structures

    Science.gov (United States)

    Kudela, Pawel; Wandowski, Tomasz; Malinowski, Pawel; Ostachowicz, Wieslaw

    2017-12-01

    In this paper application of scanning laser Doppler vibrometry for delamination detection in composite structures was presented. Delamination detection was based on a guided wave propagation method. In this papers results from numerical and experimental research were presented. In the case of numerical research, the Spectral Element Method (SEM) was utilized, in which a mesh was composed of 3D spectral elements. SEM model included also a piezoelectric transducer. In the experimental research guided waves were excited using the piezoelectric transducer whereas the sensing process was conducted using scanning laser Doppler vibrometer (SLDV). Analysis of guided wave propagation and its interaction with delamination was based on a full wavefield approach. Attention was focused on interactions of guided waves with delamination manifested by A0 mode reflection, A0 mode entrapment, and S0/A0 mode conversion. Delamination was simulated by a teflon insert located between plies of composite material. Results of interaction with symmetrically and nonsymmetrical placed delamination (in respect to the composite sample thickness) were presented. Moreover, the authors investigated different size of delaminations. Damage detection was based on a new signal processing algorithm proposed by the authors. In this approach the weighted RMS was utilized selectively. It means that the summation in RMS formula was performed only for a specially selected time instances. Results for simple composite panels, panel with honeycomb core, and real stiffened composite panel from the aircraft were presented.

  2. Structural and electronic properties of silicene on MgX2 (X = Cl, Br, and I)

    KAUST Repository

    Zhu, Jiajie

    2014-07-23

    Silicene is a monolayer of Si atoms in a two-dimensional honeycomb lattice, being expected to be compatible with current Si-based nanoelectronics. The behavior of silicene is strongly influenced by the substrate. In this context, its structural and electronic properties on MgX2 (X = Cl, Br, and I) have been investigated using first-principles calculations. Different locations of the Si atoms are found to be energetically degenerate because of the weak van der Waals interaction with the substrates. The Si buckling height is below 0.55 Å, which is close to the value of free-standing silicene (0.49 Å). Importantly, the Dirac cone of silicene is well preserved on MgX2 (located slightly above the Fermi level), and the band gaps induced by the substrate are less than 0.1 eV. Application of an external electric field and stacking can be used to increase the band gap. © 2014 American Chemical Society.

  3. Improving the strength of additively manufactured objects via modified interior structure

    Science.gov (United States)

    Al, Can Mert; Yaman, Ulas

    2017-10-01

    Additive manufacturing (AM), in other words 3D printing, is becoming more common because of its crucial advantages such as geometric complexity, functional interior structures, etc. over traditional manufacturing methods. Especially, Fused Filament Fabrication (FFF) 3D printing technology is frequently used because of the fact that desktop variants of these types of printers are highly appropriate for different fields and are improving rapidly. In spite of the fact that there are significant advantages of AM, the strength of the parts fabricated with AM is still a major problem especially when plastic materials, such as Acrylonitrile butadiene styrene (ABS), Polylactic acid (PLA), Nylon, etc., are utilized. In this study, an alternative method is proposed in which the strength of AM fabricated parts is improved employing direct slicing approach. Traditional Computer Aided Manufacturing (CAM) software of 3D printers takes only the geometry as an input in triangular mesh form (stereolithography, STL file) generated by Computer Aided Design software. This file format includes data only about the outer boundaries of the geometry. Interior of the artifacts are manufactured with homogeneous infill patterns, such as diagonal, honeycomb, linear, etc. according to the paths generated in CAM software. The developed method within this study provides a way to fabricate parts with heterogeneous infill patterns by utilizing the stress field data obtained from a Finite Element Analysis software, such as ABAQUS. According to the performed tensile tests, the strength of the test specimen is improved by about 45% compared to the conventional way of 3D printing.

  4. Structural Behaviour of Reciprocal Structures

    DEFF Research Database (Denmark)

    Parigi, Dario; Kirkegaard, Poul Henning

    2013-01-01

    The present paper focuses on the comparison of several two-dimensional and three-dimensional reciprocal configurations. The goal of such comparison is to analyse the structural behaviour when changing the geometric parameters used to describe the geometry of reciprocal structures....

  5. Organizational structure

    NARCIS (Netherlands)

    Hendriks, P.H.J.; Schwartz, D.; Te'eni, D.

    2011-01-01

    For many decades, organization scientists have paid considerable attention to the link between knowledge and organization structure. An early contributor to these discussions was Max Weber (1922), who elaborated his concepts of professional bureaucracy. History shows a multitude of other

  6. Organizational Structures

    OpenAIRE

    2006-01-01

    drag Drag-and-Drop Exercise Interactive Media Element This interactive exercise gets the learner to identify various strengths and weaknesses of the functional, divisional, matrix, horizontal, modular, and hybrid organizational structures

  7. Hydraulic Structures

    Data.gov (United States)

    Department of Homeland Security — This table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the FIRM, channels containing the...

  8. Hydraulic structures

    CERN Document Server

    Chen, Sheng-Hong

    2015-01-01

    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...

  9. Structural Origami

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 5. Structural Origami - A Geodesic Dome from Five Postcards. Subramania Ranganathan. General Article ... Author Affiliations. Subramania Ranganathan1. Discovery Laboratory Indian Institute of Chemical Technology Hyderabad 500 007, India.

  10. Structural Dynamics

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.

    The present textbook has been written for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M.Sc. students in structural engineering.......The present textbook has been written for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M.Sc. students in structural engineering....

  11. Nuclear structure

    International Nuclear Information System (INIS)

    Eastham, D.A.; Joy, T.

    1986-01-01

    The paper on 'nuclear structure' is the Appendix to the Daresbury (United Kingdom) Annual Report 1985/86, and contains the research work carried out at the Nuclear Structure Facility, Daresbury, within that period. During the year a total of 74 experiments were scheduled covering the main areas of activity including: nuclear collective motion, nuclei far from stability, and nuclear collisions. The Appendix contains brief reports on these experiments and associated theory. (U.K.)

  12. Unemployment - Structural

    OpenAIRE

    Lindbeck, Assar

    1999-01-01

    Structural unemployment differs from cyclical unemployment by not disappearing in cyclical booms. In economic theory, structural unemployment is usually analysed in terms of the concept of equilibrium unemployment (the "natural unemployment rate" in Friedman’s terminology). Two elaborate concepts of equilibrium unemployment – the non-accelerating inflation rate of unemployment (the NAIRU) and the unemployment rate that induces firms and workers to accept the same real wage (the PS-WS-model) a...

  13. Structural Dynamics

    International Nuclear Information System (INIS)

    Kim, Du Gi

    2005-08-01

    This book introduces summary of structural dynamics, the reason of learning of structural dynamics, single-degree of freedom system, simple harmonic vibration and application, numerical analysis method, such as time domain and frequency domain and nonlinear system, multi-degree of freedom system random vibration over discrete distribution, continuous distribution and extreme value distribution, circumstance vibration, earth quake vibration, including input earthquake, and earthquake-resistant design and capacity spectrum method, wind oscillation wave vibration, vibration control and maintenance control.

  14. SEM studies of the structure of the gels prepared from untreated and radiation modified potato starch

    International Nuclear Information System (INIS)

    Cieśla, Krystyna; Sartowska, Bożena; Królak, Edward

    2015-01-01

    Potato starch was irradiated with a 60 Co gamma rays using doses of 5, 10, 20 and 30 kGy. Gels containing ca. 9.1% of starch were prepared by heating the starch suspensions in the heating chamber stabilized at 100 °C. Four procedures were applied for preparation of the samples in regard to SEM studies and the ability to observe the radiation effect by SEM was assessed for each method. Differences were observed between the SEM images recorded for the non-irradiated samples prepared using all the methods, and those irradiated. Images of the non-irradiated gels indicate generally a honey-comb structure, while smooth areas but with oriented fractures has appeared after irradiation. Modification of gel structure corresponds to the applied dose. The results were related to the process of gel formation (as observed by means of the hot stage microscope) to decrease in swelling power of the irradiated starch and to decreased viscosity of the resulting gels. It can be concluded that the differences in structural properties of gels shown by SEM result probably due to the better homogenization of the gels formed after radiation induced degradation. - Highlights: • Four procedures of the preservation of starch gels for SEM studies were applied. • The ability to observe the radiation effect by SEM was assessed for each method. • Dose dependent changes in the gel structure were discovered. • It was related to decrease in the swelling power and decreased viscosity of the gels. • A hot-stage microscope was applied in order to follow the gelatinization process

  15. Tailoring the structural and electronic properties of a graphene-like ZnS monolayer using biaxial strain

    International Nuclear Information System (INIS)

    Behera, Harihar; Mukhopadhyay, Gautam

    2014-01-01

    Our first-principles full-potential density functional theory calculations show that a ZnS monolayer (ML-ZnS), which is predicted to adopt a graphene-like planar honeycomb structure with a direct band gap, undergoes strain-induced modifications in its structure and band gap when subjected to in-plane homogeneous biaxial strain (δ). ML-ZnS gets buckled for compressive strain greater than 0.92% ; the buckling parameter Δ(= 0.00 Å for planar ML-ZnS) linearly increases with increasing compressive strain (Δ = 0.435 Å at δ = −5.25%). A tensile strain of 2.91% turns the direct ML-ZnS band gap into indirect. Within our considered strain values of |δ| < 6%, the band gap shows linearly decreasing (non-linearly increasing as well as decreasing) variation with tensile (compressive) strain. These predictions (based on our calculations with two atoms per unit cell) may be exploited in future for potential applications in strain sensors and other nano-devices such as nano-electromechanical systems and nano-optomechanical systems. (paper)

  16. Effect of intermolecular dipole-dipole interactions on interfacial supramolecular structures of C3-symmetric hexa-peri-hexabenzocoronene derivatives.

    Science.gov (United States)

    Mu, Zhongcheng; Shao, Qi; Ye, Jun; Zeng, Zebing; Zhao, Yang; Hng, Huey Hoon; Boey, Freddy Yin Chiang; Wu, Jishan; Chen, Xiaodong

    2011-02-15

    Two-dimensional (2D) supramolecular assemblies of a series of novel C(3)-symmetric hexa-peri-hexabenzocoronene (HBC) derivatives bearing different substituents adsorbed on highly oriented pyrolytic graphite were studied by using scanning tunneling microscopy at a solid-liquid interface. It was found that the intermolecular dipole-dipole interactions play a critical role in controlling the interfacial supramolecular assembly of these C(3)-symmetric HBC derivatives at the solid-liquid interface. The HBC molecule bearing three -CF(3) groups could form 2D honeycomb structures because of antiparallel dipole-dipole interactions, whereas HBC molecules bearing three -CN or -NO(2) groups could form hexagonal superstructures because of a special trimeric arrangement induced by dipole-dipole interactions and weak hydrogen bonding interactions ([C-H···NC-] or [C-H···O(2)N-]). Molecular mechanics and dynamics simulations were performed to reveal the physics behind the 2D structures as well as detailed functional group interactions. This work provides an example of how intermolecular dipole-dipole interactions could enable fine control over the self-assembly of disklike π-conjugated molecules.

  17. New understanding of the complex structure of knee menisci: implications for injury risk and repair potential for athletes.

    Science.gov (United States)

    Rattner, J B; Matyas, J R; Barclay, L; Holowaychuk, S; Sciore, P; Lo, I K Y; Shrive, N G; Frank, C B; Achari, Y; Hart, D A

    2011-08-01

    Menisci help maintain the structural integrity of the knee. However, the poor healing potential of the meniscus following a knee injury can not only end a career in sports but lead to osteoarthritis later in life. Complete understanding of meniscal structure is essential for evaluating its risk for injury and subsequent successful repair. This study used novel approaches to elucidate meniscal architecture. The radial and circumferential collagen fibrils in the meniscus were investigated using novel tissue-preparative techniques for light and electron microscopic studies. The results demonstrate a unique architecture based on differences in the packaging of the fundamental collagen fibrils. For radial arrays, the collagen fibrils are arranged in parallel into ∼10 μm bundles, which associate laterally to form flat sheets of varying dimensions that bifurcate and come together to form a honeycomb network within the body of the meniscus. In contrast, the circumferential arrays display a complex network of collagen fibrils arranged into ∼5 μm bundles. Interestingly, both types of architectural organization of collagen fibrils in meniscus are conserved across mammalian species and are age and sex independent. These findings imply that disruptions in meniscal architecture following an injury contribute to poor prognosis for functional repair. © 2010 John Wiley & Sons A/S.

  18. Electronic Structure of the Kitaev Material α-RuCl3 Probed by Photoemission and Inverse Photoemission Spectroscopies

    Science.gov (United States)

    Sinn, Soobin; Kim, Choong Hyun; Kim, Beom Hyun; Lee, Kyung Dong; Won, Choong Jae; Oh, Ji Seop; Han, Moonsup; Chang, Young Jun; Hur, Namjung; Sato, Hitoshi; Park, Byeong-Gyu; Kim, Changyoung; Kim, Hyeong-Do; Noh, Tae Won

    2016-12-01

    Recently, α-RuCl3 has attracted much attention as a possible material to realize the honeycomb Kitaev model of a quantum-spin-liquid state. Although the magnetic properties of α-RuCl3 have been extensively studied, its electronic structure, which is strongly related to its Kitaev physics, is poorly understood. Here, the electronic structure of α-RuCl3 was investigated by photoemission (PE) and inverse-photoemission (IPE) spectroscopies. The band gap was directly measured from the PE and IPE spectra and was found to be 1.9 eV, much larger than previously estimated values. Local density approximation (LDA) calculations showed that the on-site Coulomb interaction U could open the band gap without spin-orbit coupling (SOC). However, the SOC should also be incorporated to reproduce the proper gap size, indicating that the interplay between U and SOC plays an essential role. Several features of the PE and IPE spectra could not be explained by the results of LDA calculations. To explain such discrepancies, we performed configuration-interaction calculations for a RuCl63- cluster. The experimental data and calculations demonstrated that the 4d compound α-RuCl3 is a Jeff = 1/2 Mott insulator rather than a quasimolecular-orbital insulator. Our study also provides important physical parameters required for verifying the proposed Kitaev physics in α-RuCl3.

  19. Spin-orbit excitations and electronic structure of the putative Kitaev magnet α -RuCl3

    Science.gov (United States)

    Sandilands, Luke J.; Tian, Yao; Reijnders, Anjan A.; Kim, Heung-Sik; Plumb, K. W.; Kim, Young-June; Kee, Hae-Young; Burch, Kenneth S.

    2016-02-01

    Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4 d system α -RuCl3 has recently come into view as a candidate Kitaev system, with evidence for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations involving localized total angular momentum states of the Ru ion, implying that strong spin-orbit coupling and electron-electron interactions coexist in this material. Analysis of these features allows us to estimate the spin-orbit coupling strength, as well as other parameters describing the local electronic structure, revealing a well-defined hierarchy of energy scales within the Ru d states. By comparing our experimental results with density functional theory calculations, we also clarify the overall features of the optical response. Our results demonstrate that α -RuCl3 is an ideal material system to study spin-orbit coupled magnetism on the honeycomb lattice.

  20. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft

    Science.gov (United States)

    Starke, E. A., Jr.

    1997-01-01

    This is the final report of the study "Aluminum-Based Materials for High Speed Aircraft" which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX without Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys, and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  1. Diverter structure

    Energy Technology Data Exchange (ETDEWEB)

    Nayama, Risuke; Toyota, Masahiko; Tsujimura, Seiichi

    1995-11-21

    The present invention concerns a vacuum vessel for a tokamak-type nuclear fusion plasma experimental device, and provides a divertor structure capable of reducing a distance of a plasma facing surface of a divertor structure and an inner wall of the vacuum vessel while maintaining cooling and heat removing performance. Namely, in the divertor structure of the present invention, a compulsory cooling channel on the side receiving high temperature load is made of a highly heat conductive material such as copper. The compulsory cooling channel on the side secured to a substrate is made of a material having high mechanical strength, for example, stainless steel. With such a constitution, the compulsory cooling channel on the side receiving high temperature load transfers the heat received by an armour material from plasmas efficiently to coolants. The opposite side can be secured to the inner wall of the vacuum vessel with satisfactory mechanical strength without interposing other additional materials. As a result, the structure of the present invention can reduce the distance of the plasma facing surface of the divertor structure and the inner wall of the vacuum vessel while maintaining the cooling and heat removing performance. (I.S.).

  2. Diverter structure

    International Nuclear Information System (INIS)

    Nayama, Risuke; Toyota, Masahiko; Tsujimura, Seiichi.

    1995-01-01

    The present invention concerns a vacuum vessel for a tokamak-type nuclear fusion plasma experimental device, and provides a divertor structure capable of reducing a distance of a plasma facing surface of a divertor structure and an inner wall of the vacuum vessel while maintaining cooling and heat removing performance. Namely, in the divertor structure of the present invention, a compulsory cooling channel on the side receiving high temperature load is made of a highly heat conductive material such as copper. The compulsory cooling channel on the side secured to a substrate is made of a material having high mechanical strength, for example, stainless steel. With such a constitution, the compulsory cooling channel on the side receiving high temperature load transfers the heat received by an armour material from plasmas efficiently to coolants. The opposite side can be secured to the inner wall of the vacuum vessel with satisfactory mechanical strength without interposing other additional materials. As a result, the structure of the present invention can reduce the distance of the plasma facing surface of the divertor structure and the inner wall of the vacuum vessel while maintaining the cooling and heat removing performance. (I.S.)

  3. Microcavity structures

    International Nuclear Information System (INIS)

    Kustom, R.L.; Grudzien, D.; Feinerman, A.D.

    1994-01-01

    The feasibility of building mm-wave cavities using deep x-ray lithography techniques is being investigated. These cavities could be considered for linac accelerating structures, undulators, free electron lasers, or mm-wave amplifiers. The construction process includes making precision x-ray masks, x-ray exposure of poly-methyl-methacrylate (PMMA), removal of PMMA, and electroplating a metal. Highly precise two-dimensional features can be machined onto wafers by this technique. The challenge is to fabricate the wafers onto three-dimensional rf structures. Rectangular cavity geometry is best suited to this fabrication technique. Status of wafer manufacture, fabrication and alignment techniques using capillaries bonded in precision grooves, 2π/3 120-GHz linac structures, heat extraction analysis, and beam dynamics in a 5-meter-long 50-MeV linac will be discussed. Measurements made on 10X larger scale models that were built with conventional techniques will also be discussed

  4. Structural biophysics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Summaries of research projects conducted during 1978 and 1979 are presented. The structural biophysics group explores the high-resolution structure of biological macromolecules and cell organelles. Specific subject areas include: the basic characteristics of photosynthesis in plants; the chemical composition of individual fly ash particles at the site of their damaging action in tissues; direct analysis of frozen-hydrated biological samples by scanning electron microscopy; yeast genetics; the optical activity of DNA aggregates; measurement and characterization of lipoproteins; function of lipoproteins; and the effect of radiation and pollutants on mammalian cells

  5. Foundation Structure

    DEFF Research Database (Denmark)

    2009-01-01

    Method of installing a bucket foundation structure comprising one, two, three or more skirts, into soils in a controlled manner. The method comprises two stages: a first stage being a design phase and the second stage being an installation phase. In the first stage, design parameters are determined...... relating to the loads on the finished foundation structure; soil profile on the location; allowable installation tolerances, which parameters are used to estimate the minimum diameter and length of the skirts of the bucket. The bucket size is used to simulate load situations and penetration into foundation...

  6. Structures manual

    Science.gov (United States)

    2001-01-01

    This manual was written as a guide for use by design personnel in the Vermont Agency of Transportation Structures Section. This manual covers the design responsibilities of the Section. It does not cover other functions that are a part of the Structu...

  7. Coastal Structures

    DEFF Research Database (Denmark)

    Oumeraci, H.; Burcharth, H. F.; Rouck, J. De

    1995-01-01

    The paper attempts to present an overview of five research projects supported by the Commission of the European Communities, Directorate General XII, under the MAST 2- Programme (Marine Sciences and Technology), with the overall objective of contributing to the development of improved rational me...... methods for the design of coastal structures....

  8. Structural optimization

    CERN Document Server

    MacBain, Keith M

    2009-01-01

    Intends to supplement the engineer's box of analysis and design tools making optimization as commonplace as the finite element method in the engineering workplace. This title introduces structural optimization and the methods of nonlinear programming such as Lagrange multipliers, Kuhn-Tucker conditions, and calculus of variations.

  9. Structural region

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Structural region. The two groups had 4 substitutions similar to Yawat strain. The Yawat strain had 5 unique mutations. 3 in the E2 region and 2 in the E1 region. The mutation, I702V (E2), though different from all the recent Indian and Reunion sequences was similar ...

  10. On the collision protection of ships

    International Nuclear Information System (INIS)

    Jones, N.

    1976-01-01

    A brief survey of the literature extant on the collision protection of ships is presented herein. An examination of the characteristics of different energy-absorbing methods suggests that honeycomb structures provide an alternative to deck structures which are currently used to achieve the collision protection of ships. Various features of honeycomb panels are explored and a particular structural arrangement which utilizes both sides of a hull and incorporates honeycomb panels is proposed for the collision protection of a ship. (Auth.)

  11. Structural mechanisms of formation of adiabatic shear bands

    Directory of Open Access Journals (Sweden)

    Mikhail Sokovikov

    2016-10-01

    Full Text Available The paper focuses on the experimental and theoretical study of plastic deformation instability and localization in materials subjected to dynamic loading and high-velocity perforation. We investigate the behavior of samples dynamically loaded during Hopkinson-Kolsky pressure bar tests in a regime close to simple shear conditions. Experiments were carried out using samples of a special shape and appropriate test rigging, which allowed us to realize a plane strain state. Also, the shear-compression specimens proposed in were investigated. The lateral surface of the samples was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. Use of a transmission electron microscope for studying the surface of samples showed that in the regions of strain localization there are parts taking the shape of bands and honeycomb structure in the deformed layer. The process of target perforation involving plug formation and ejection was investigated using a high-speed infra-red camera. A specially designed ballistic set-up for studying perforation was used to test samples in different impulse loading regimes followed by plastic flow instability and plug ejection. Changes in the velocity of the rear surface at different time of plug ejection were analyzed by Doppler interferometry techniques. The microstructure of tested samples was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The subsequent processing of 3D deformation relief data enabled estimation of the distribution of plastic strain gradients at different time of plug formation and ejection. It has been found that in strain localization areas the subgrains are elongated taking the shape of bands and undergo fragmentation leading to the formation of super-microcrystalline structure, in which the

  12. Data Structures

    DEFF Research Database (Denmark)

    Davoodi, Pooya

    We study data structures for variants of range query problems. In particular, we consider (1) the range minimum problem: given a multidimensional array, find the position of the minimum element in a query rectangle; (2) the path minima problem: given a weighted tree, find the edge with minimum...... weight in a query path; (3) the range diameter problem: given a point set in the plane, find two points that are farthest away in a query rectangle. These and similar problems arise in various applications including document retrieval, genome sequence analysis, OLAP data cubes, network flows, shape......-fitting, and clustering. The three mentioned problems are considered for either static inputs or dynamic inputs. In the static setting, we investigate the space-efficiency of data structures, which is an important aspect in massive data algorithmics. We provide lower bounds on the trade-off between the query time...

  13. Terminal structure

    Science.gov (United States)

    Schmidt, Frank [Langenhagen, DE; Allais, Arnaud [Hannover, DE; Mirebeau, Pierre [Villebon sur Yvette, FR; Ganhungu, Francois [Vieux-Reng, FR; Lallouet, Nicolas [Saint Martin Boulogne, FR

    2009-10-20

    A terminal structure (2) for a superconducting cable (1) is described. It consists of a conductor (2a) and an insulator (2b) that surrounds the conductor (2a), wherein the superconducting cable (1) has a core with a superconducting conductor (5) and a layer of insulation that surrounds the conductor (5), and wherein the core is arranged in such a way that it can move longitudinally in a cryostat. The conductor (2a) of the terminal structure (2) is electrically connected with the superconducting conductor (5) or with a normal conductor (6) that is connected with the superconducting conductor (5) by means of a tubular part (7) made of an electrically conductive material, wherein the superconducting conductor (5) or the normal conductor (6) can slide in the part (7) in the direction of the superconductor.

  14. Concrete structures

    CERN Document Server

    Setareh, Mehdi

    2017-01-01

    This revised, fully updated second edition covers the analysis, design, and construction of reinforced concrete structures from a real-world perspective. It examines different reinforced concrete elements such as slabs, beams, columns, foundations, basement and retaining walls and pre-stressed concrete incorporating the most up-to-date edition of the American Concrete Institute Code (ACI 318-14) requirements for the design of concrete structures. It includes a chapter on metric system in reinforced concrete design and construction. A new chapter on the design of formworks has been added which is of great value to students in the construction engineering programs along with practicing engineers and architects. This second edition also includes a new appendix with color images illustrating various concrete construction practices, and well-designed buildings. The ACI 318-14 constitutes the most extensive reorganization of the code in the past 40 years. References to the various sections of the ACI 318-14 are pro...

  15. Galactic structure

    International Nuclear Information System (INIS)

    1989-01-01

    The occurrence of hot, apparently normal, massive stars far from the galactic plane has been a major puzzle in an understanding of galactic structure and evolution. Such stars have been discovered and studied at the South African Astronomical Observatory (SAAO) over a number of years. During 1989 further evidence has been obtained indicating that these stars are normal, massive objects. Other studies of galactic structure conducted by the SAAO have included research on: the central bulge region of our galaxy; populations of M giants in the galaxy; a faint blue object survey; a survey of the galactic plane for distant Cepheid variables; interstellar reddening, and K-type dwarfs as tracers for the gravitational force perpendicular to the galactic plane. 1 fig

  16. Nuclear structure

    International Nuclear Information System (INIS)

    Joy, T.; Price, H.G.

    1984-01-01

    The appendix to the Daresbury Annual report contains detailed summaries of experiments carried out, or in progress, for the period 1983/84, using the Nuclear Structure Facility tandem accelerator. The experimental work is carried out by University groups from the UK and abroad, and Daresbury Staff. Developments in instrumentation, and a report on the first year of scheduled operation of the Facility, are also given. (U.K.)

  17. Structural dynamics

    CERN Document Server

    Strømmen, Einar N

    2014-01-01

    This book introduces to the theory of structural dynamics, with focus on civil engineering structures that may be described by line-like beam or beam-column type of systems, or by a system of rectangular plates. Throughout this book the mathematical presentation contains a classical analytical description as well as a description in a discrete finite element format, covering the mathematical development from basic assumptions to the final equations ready for practical dynamic response predictions. Solutions are presented in time domain as well as in frequency domain. Structural Dynamics starts off at a basic level and step by step brings the reader up to a level where the necessary safety considerations to wind or horizontal ground motion induced dynamic design problems can be performed. The special theory of the tuned mass damper has been given a comprehensive treatment, as this is a theory not fully covered elsewhere. For the same reason a chapter on the problem of moving loads on beams has been included.

  18. Structural damage

    International Nuclear Information System (INIS)

    Gray, R.E.; Bruhn, R.W.

    1992-01-01

    Virtually all structures show some signs of distress due to deterioration of the building components, to changed loads, or to changed support conditions. Changed support conditions result from ground movements. In mining regions many cases of structural distress are attributed to mining without considering alternative causes. This is particularly true of coal mining since it occurs under extensive areas. Coal mining is estimated to have already undermined more than eight million acres and may eventually undermine 40 million acres in the United States. Other nonmetal and metal underground mines impact much smaller areas. Although it is sometimes difficult, even with careful study, to identify the actual cause of damage, persons responsible for underground coal mining should at least be aware of possible causes of building stress other than mine subsidence. This paper presents information on distress to structures and briefly reviews a number of causes of ground movements other than subsidence: Mass movements, dissolution, erosion, frost action, shrinking and swelling, yield into excavations and compressibility

  19. Synthesis of rare-earth selenate and selenite materials under 'sol-gel' hydrothermal conditions: crystal structures and characterizations of La(HSeO3)(SeO4) and KNd(SeO4)2

    International Nuclear Information System (INIS)

    Liu Wei; Chen Haohong; Yang Xinxin; Li Mangrong; Zhao Jingtai

    2004-01-01

    Two rare-earth compounds containing selenium atoms, La(HSeO 3 )(SeO 4 ) with a new open framework structure and KNd(SeO 4 ) 2 with a layered structure, have been synthesized under ''sol-gel'' hydrothermal conditions for the first time. Single-crystals of La(HSeO 3 )(SeO 4 ) crystallize in the monoclinic system (P2 1 , a=8.5905(17)A, b=7.2459(14)A, c=9.5691(19)A, β=104.91(3) o , Z=2, RAll=0.032). The structure contains puckered polyhedral layers made of LaO x (x=9,10) and SeO 4 groups, which are connected via SeO 3 -uints to the 3D structure. The crytal structure of KNd(SeO 4 ) 2 (monoclinc, P2 1 /c, a=8.7182(17)A, b=7.3225(15)A, c=11.045(2)A, β=91.38(3) o , Z=4, RAll=0.051) contains honeycomb-like six-ring NdO 9 polyhedra forming layers which are further decorated with SeO 4 tetrahedra. The K + ions occupy the interspaces of these layers and provide the charge balance

  20. Hydrothermal synthesis and electrochemical characterization of VO2 (B) with controlled crystal structures

    International Nuclear Information System (INIS)

    Jiang Wentao; Ni Juan; Yu Ke; Zhu Ziqiang

    2011-01-01

    Three different VO 2 (B) nanostructures, including urchin-like VO 2 (B), VO 2 (B) honeycombs and VO 2 (B) nanorods have been successfully fabricated through hydrothermal process by adjusting the concentrations of the oxalic acid. The microstructure and morphology of the VO 2 nanostructures were evaluated by using X-ray diffraction and scanning and transmission electron microscopies. Electrochemical properties measurements of urchin-like VO 2 (B) and VO 2 (B) honeycombs showed excellent cycling performance, especially the urchin-like VO 2 (B) exhibited higher discharge capacity and better capacity retention.