WorldWideScience

Sample records for honeybee learning invasive

  1. Serial position learning in honeybees.

    Directory of Open Access Journals (Sweden)

    Randolf Menzel

    Full Text Available Learning of stimulus sequences is considered as a characteristic feature of episodic memory since it contains not only a particular item but also the experience of preceding and following events. In sensorimotor tasks resembling navigational performance, the serial order of objects is intimately connected with spatial order. Mammals and birds develop episodic(-like memory in serial spatio-temporal tasks, and the honeybee learns spatio-temporal order when navigating between the nest and a food source. Here I examine the structure of the bees' memory for a combined spatio-temporal task. I ask whether discrimination and generalization are based solely on simple forms of stimulus-reward learning or whether they require sequential configurations. Animals were trained to fly either left or right in a continuous T-maze. The correct choice was signaled by the sequence of colors (blue, yellow at four positions in the access arm. If only one of the possible 4 signals is shown (either blue or yellow, the rank order of position salience is 1, 2 and 3 (numbered from T-junction. No learning is found if the signal appears at position 4. If two signals are shown, differences at positions 1 and 2 are learned best, those at position 3 at a low level, and those at position 4 not at all. If three or more signals are shown these results are corroborated. This salience rank order again appeared in transfer tests, but additional configural phenomena emerged. Most of the results can be explained with a simple model based on the assumption that the four positions are equipped with different salience scores and that these add up independently. However, deviations from the model are interpreted by assuming stimulus configuration of sequential patterns. It is concluded that, under the conditions chosen, bees rely most strongly on memories developed during simple forms of associative reward learning, but memories of configural serial patterns contribute, too.

  2. East learns from West: Asiatic honeybees can understand dance language of European honeybees.

    Directory of Open Access Journals (Sweden)

    Songkun Su

    Full Text Available The honeybee waggle dance, through which foragers advertise the existence and location of a food source to their hive mates, is acknowledged as the only known form of symbolic communication in an invertebrate. However, the suggestion, that different species of honeybee might possess distinct 'dialects' of the waggle dance, remains controversial. Furthermore, it remains unclear whether different species of honeybee can learn from and communicate with each other. This study reports experiments using a mixed-species colony that is composed of the Asiatic bee Apis cerana cerana (Acc, and the European bee Apis mellifera ligustica (Aml. Using video recordings made at an observation hive, we first confirm that Acc and Aml have significantly different dance dialects, even when made to forage in identical environments. When reared in the same colony, these two species are able to communicate with each other: Acc foragers could decode the dances of Aml to successfully locate an indicated food source. We believe that this is the first report of successful symbolic communication between two honeybee species; our study hints at the possibility of social learning between the two honeybee species, and at the existence of a learning component in the honeybee dance language.

  3. Multiple reversal olfactory learning in honeybees

    Directory of Open Access Journals (Sweden)

    Theo Mota

    2010-07-01

    Full Text Available In multiple reversal learning, animals trained to discriminate a reinforced from a non-reinforced stimulus are subjected to various, successive reversals of stimulus contingencies (e.g. A+ vs. B-, A- vs. B+, A+ vs. B-. This protocol is useful to determine whether or not animals learn to learn and solve successive discriminations faster (or with fewer errors with increasing reversal experience. Here we used the olfactory conditioning of proboscis extension reflex to study how honeybees Apis mellifera perform in a multiple reversal task. Our experiment contemplated four consecutive differential conditioning phases involving the same odors (A+ vs. B- to A- vs. B+ to A+ vs. B- to A- vs. B+. We show that bees in which the weight of reinforced or non-reinforced stimuli was similar mastered the multiple olfactory reversals. Bees which failed the task exhibited asymmetric responses to reinforced and non-reinforced stimuli, thus being unable to rapidly reverse stimulus contingencies. Efficient reversers did not improve their successive discriminations but rather tended to generalize their choice to both odors at the end of conditioning. As a consequence, both discrimination and reversal efficiency decreasedalong experimental phases. This result invalidates a learning-to-learn effect and indicates that bees do not only respond to the actual stimulus contingencies but rather combine these with an average of past experiences with the same stimuli.  

  4. Effect of flumethrin on survival and olfactory learning in honeybees.

    Directory of Open Access Journals (Sweden)

    Ken Tan

    Full Text Available Flumethrin has been widely used as an acaricide for the control of Varroa mites in commercial honeybee keeping throughout the world for many years. Here we test the mortality of the Asian honeybee Apis cerana cerana after treatment with flumethrin. We also ask (1 how bees react to the odor of flumethrin, (2 whether its odor induces an innate avoidance response, (3 whether its taste transmits an aversive reinforcing component in olfactory learning, and (4 whether its odor or taste can be associated with reward in classical conditioning. Our results show that flumethrin has a negative effect on Apis ceranàs lifespan, induces an innate avoidance response, acts as a punishing reinforcer in olfactory learning, and interferes with the association of an appetitive conditioned stimulus. Furthermore flumethrin uptake within the colony reduces olfactory learning over an extended period of time.

  5. Rapid learning dynamics in individual honeybees during classical conditioning

    Directory of Open Access Journals (Sweden)

    Evren ePamir

    2014-09-01

    Full Text Available Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3,298 animals. We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response in learners, and the high stability of the conditioned response during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla-Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled.

  6. Invasive ants carry novel viruses in their new range and form reservoirs for a honeybee pathogen.

    Science.gov (United States)

    Sébastien, Alexandra; Lester, Philip J; Hall, Richard J; Wang, Jing; Moore, Nicole E; Gruber, Monica A M

    2015-09-01

    When exotic animal species invade new environments they also bring an often unknown microbial diversity, including pathogens. We describe a novel and widely distributed virus in one of the most globally widespread, abundant and damaging invasive ants (Argentine ants, Linepithema humile). The Linepithema humile virus 1 is a dicistrovirus, a viral family including species known to cause widespread arthropod disease. It was detected in samples from Argentina, Australia and New Zealand. Argentine ants in New Zealand were also infected with a strain of Deformed wing virus common to local hymenopteran species, which is a major pathogen widely associated with honeybee mortality. Evidence for active replication of viral RNA was apparent for both viruses. Our results suggest co-introduction and exchange of pathogens within local hymenopteran communities. These viral species may contribute to the collapse of Argentine ant populations and offer new options for the control of a globally widespread invader.

  7. Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees.

    Science.gov (United States)

    Piiroinen, Saija; Goulson, Dave

    2016-04-13

    Learning and memory are crucial functions which enable insect pollinators to efficiently locate and extract floral rewards. Exposure to pesticides or infection by parasites may cause subtle but ecologically important changes in cognitive functions of pollinators. The potential interactive effects of these stressors on learning and memory have not yet been explored. Furthermore, sensitivity to stressors may differ between species, but few studies have compared responses in different species. Here, we show that chronic exposure to field-realistic levels of the neonicotinoid clothianidin impaired olfactory learning acquisition in honeybees, leading to potential impacts on colony fitness, but not in bumblebees. Infection by the microsporidian parasite Nosema ceranae slightly impaired learning in honeybees, but no interactive effects were observed. Nosema did not infect bumblebees (3% infection success). Nevertheless, Nosema-treated bumblebees had a slightly lower rate of learning than controls, but faster learning in combination with neonicotinoid exposure. This highlights the potential for complex interactive effects of stressors on learning. Our results underline that one cannot readily extrapolate findings from one bee species to others. This has important implications for regulatory risk assessments which generally use honeybees as a model for all bees.

  8. Honeybees in a virtual reality environment learn unique combinations of colour and shape.

    Science.gov (United States)

    Rusch, Claire; Roth, Eatai; Vinauger, Clément; Riffell, Jeffrey A

    2017-07-27

    Honeybees are well-known models for the study of visual learning and memory. Whereas most of our knowledge of learned responses comes from experiments using free-flying bees, a tethered preparation would allow fine-scale control of the visual stimuli as well as accurate characterization of the learned responses. Unfortunately, conditioning procedures using visual stimuli in tethered bees have been limited in their efficacy. Here in this study, using a novel virtual reality environment and a differential training protocol in tethered walking bees, we show that the majority of honeybees learn visual stimuli, and need only six paired training trials to learn the stimulus. We found that bees readily learn visual stimuli that differ in both shape and colour. However, bees learn certain components over others (colour versus shape), and visual stimuli are learned in a non-additive manner with the interaction of specific colour and shape combinations being critical for learned responses. To better understand which components of the visual stimuli the bees learned, the shape-colour association of the stimuli were reversed either during or after training. Results showed that maintaining the visual stimuli in training and testing phases was necessary to elicit visual learning, suggesting that bees learn multiple components of the visual stimuli. Together, our results demonstrate a protocol for visual learning in restrained bees that provides a powerful tool for understanding how components of a visual stimulus elicits learned responses as well as elucidating how visual information is processed in the honeybee brain. © 2017. Published by The Company of Biologists Ltd.

  9. Behavioural and neurophysiological study of olfactory perception and learning in honeybees

    Directory of Open Access Journals (Sweden)

    Jean-Christophe eSandoz

    2011-12-01

    Full Text Available The honeybee Apis mellifera has been a central insect model in the study of olfactory perception and learning for more than a century, starting with pioneer work by Karl von Frisch. Research on olfaction in honeybees has greatly benefited from the advent of a range of behavioural and neurophysiological paradigms in the Lab. Here I review major findings about how the honeybee brain detects, processes, and learns odours, based on behavioural, neuroanatomical and neurophysiological approaches. I first address the behavioural study of olfactory learning, from experiments on free-flying workers visiting artificial flowers to laboratory-based conditioning protocols on restrained individuals. I explain how the study of olfactory learning has allowed understanding the discrimination and generalization ability of the honeybee olfactory system, its capacity to grant special properties to olfactory mixtures as well as to retain individual component information. Next, based on the impressive amount of anatomical and immunochemical studies of the bee brain, I detail our knowledge of olfactory pathways. I then show how functional recordings of odour-evoked activity in the brain allow following the transformation of the olfactory message from the periphery until higher-order central structures. Data from extra- and intracellular electrophysiological approaches as well as from the most recent optical imaging developments are described. Lastly, I discuss results addressing how odour representation changes as a result of experience. This impressive ensemble of behavioural, neuroanatomical and neurophysiological data available in the bee make it an attractive model for future research aiming to understand olfactory perception and learning in an integrative fashion.

  10. Does Fine Color Discrimination Learning in Free-Flying Honeybees Change Mushroom-Body Calyx Neuroarchitecture?

    Science.gov (United States)

    Sommerlandt, Frank M J; Spaethe, Johannes; Rössler, Wolfgang; Dyer, Adrian G

    2016-01-01

    Honeybees learn color information of rewarding flowers and recall these memories in future decisions. For fine color discrimination, bees require differential conditioning with a concurrent presentation of target and distractor stimuli to form a long-term memory. Here we investigated whether the long-term storage of color information shapes the neural network of microglomeruli in the mushroom body calyces and if this depends on the type of conditioning. Free-flying honeybees were individually trained to a pair of perceptually similar colors in either absolute conditioning towards one of the colors or in differential conditioning with both colors. Subsequently, bees of either conditioning groups were tested in non-rewarded discrimination tests with the two colors. Only bees trained with differential conditioning preferred the previously learned color, whereas bees of the absolute conditioning group, and a stimuli-naïve group, chose randomly among color stimuli. All bees were then kept individually for three days in the dark to allow for complete long-term memory formation. Whole-mount immunostaining was subsequently used to quantify variation of microglomeruli number and density in the mushroom-body lip and collar. We found no significant differences among groups in neuropil volumes and total microglomeruli numbers, but learning performance was negatively correlated with microglomeruli density in the absolute conditioning group. Based on these findings we aim to promote future research approaches combining behaviorally relevant color learning tests in honeybees under free-flight conditions with neuroimaging analysis; we also discuss possible limitations of this approach.

  11. Invertebrate learning and memory: Fifty years of olfactory conditioning of the proboscis extension response in honeybees.

    Science.gov (United States)

    Giurfa, Martin; Sandoz, Jean-Christophe

    2012-02-01

    The honeybee Apis mellifera has emerged as a robust and influential model for the study of classical conditioning, thanks to the existence of a powerful Pavlovian conditioning protocol, the olfactory conditioning of the proboscis extension response (PER). In 2011, the olfactory PER conditioning protocol celebrates 50 years since it was first introduced by Kimihisa Takeda in 1961. Here, we review its origins, developments, and perspectives in order to define future research avenues and necessary methodological and conceptual evolutions. We show that olfactory PER conditioning has become a versatile tool for the study of questions in extremely diverse fields in addition to the study of learning and memory and that it has allowed behavioral characterizations, not only of honeybees, but also of other insect species, for which the protocol was adapted. We celebrate, therefore, Takeda's original work and prompt colleagues to conceive and establish further robust behavioral tools for an accurate characterization of insect learning and memory at multiple levels of analysis.

  12. Lateralization of gene expression in the honeybee brain during olfactory learning

    Science.gov (United States)

    Guo, Yu; Wang, Zilong; Li, You; Wei, Guifeng; Yuan, Jiao; Sun, Yu; Wang, Huan; Qin, Qiuhong; Zeng, Zhijiang; Zhang, Shaowu; Chen, Runsheng

    2016-01-01

    In the last decade, it has been demonstrated that brain functional asymmetry occurs not only in vertebrates but also in invertebrates. However, the mechanisms underlying functional asymmetry remain unclear. In the present study, we trained honeybees of the same parentage and age, on the proboscis extension reflex (PER) paradigm with only one antenna in use. The comparisons of gene expression between the left and right hemispheres were carried out using high throughput sequencing. Our research revealed that gene expression in the honeybee brain is also asymmetric, with more genes having higher expression in the right hemisphere than the left hemisphere. Our studies show that during olfactory learning, the left hemisphere is more responsible for long term memory and the right hemisphere is more responsible for the learning and short term memory. PMID:27703214

  13. Aversive learning in honeybees revealed by the olfactory conditioning of the sting extension reflex.

    Directory of Open Access Journals (Sweden)

    Vanina Vergoz

    Full Text Available Invertebrates have contributed greatly to our understanding of associative learning because they allow learning protocols to be combined with experimental access to the nervous system. The honeybee Apis mellifera constitutes a standard model for the study of appetitive learning and memory since it was shown, almost a century ago, that bees learn to associate different sensory cues with a reward of sugar solution. However, up to now, no study has explored aversive learning in bees in such a way that simultaneous access to its neural bases is granted. Using odorants paired with electric shocks, we conditioned the sting extension reflex, which is exhibited by harnessed bees when subjected to a noxious stimulation. We show that this response can be conditioned so that bees learn to extend their sting in response to the odorant previously punished. Bees also learn to extend the proboscis to one odorant paired with sugar solution and the sting to a different odorant paired with electric shock, thus showing that they can master both appetitive and aversive associations simultaneously. Responding to the appropriate odorant with the appropriate response is possible because two different biogenic amines, octopamine and dopamine subserve appetitive and aversive reinforcement, respectively. While octopamine has been previously shown to substitute for appetitive reinforcement, we demonstrate that blocking of dopaminergic, but not octopaminergic, receptors suppresses aversive learning. Therefore, aversive learning in honeybees can now be accessed both at the behavioral and neural levels, thus opening new research avenues for understanding basic mechanisms of learning and memory.

  14. A comparative study of relational learning capacity in honeybees (Apis mellifera and stingless bees (Melipona rufiventris.

    Directory of Open Access Journals (Sweden)

    Antonio Mauricio Moreno

    Full Text Available BACKGROUND: Learning of arbitrary relations is the capacity to acquire knowledge about associations between events or stimuli that do not share any similarities, and use this knowledge to make behavioural choices. This capacity is well documented in humans and vertebrates, and there is some evidence it exists in the honeybee (Apis mellifera. However, little is known about whether the ability for relational learning extends to other invertebrates, although many insects have been shown to possess excellent learning capacities in spite of their small brains. METHODOLOGY/PRINCIPAL FINDINGS: Using a symbolic matching-to-sample procedure, we show that the honeybee Apis mellifera rapidly learns arbitrary relations between colours and patterns, reaching 68.2% correct choice for pattern-colour relations and 73.3% for colour-pattern relations. However, Apis mellifera does not transfer this knowledge to the symmetrical relations when the stimulus order is reversed. A second bee species, the stingless bee Melipona rufiventris from Brazil, seems unable to learn the same arbitrary relations between colours and patterns, although it exhibits excellent discrimination learning. CONCLUSIONS/SIGNIFICANCE: Our results confirm that the capacity for learning arbitrary relations is not limited to vertebrates, but even insects with small brains can perform this learning task. Interestingly, it seems to be a species-specific ability. The disparity in relational learning performance between the two bee species we tested may be linked to their specific foraging and recruitment strategies, which evolved in adaptation to different environments.

  15. Duration of the Unconditioned Stimulus in Appetitive Conditioning of Honeybees Differentially Impacts Learning, Long-Term Memory Strength, and the Underlying Protein Synthesis

    Science.gov (United States)

    Marter, Kathrin; Grauel, M. Katharina; Lewa, Carmen; Morgenstern, Laura; Buckemüller, Christina; Heufelder, Karin; Ganz, Marion; Eisenhardt, Dorothea

    2014-01-01

    This study examines the role of stimulus duration in learning and memory formation of honeybees ("Apis mellifera"). In classical appetitive conditioning honeybees learn the association between an initially neutral, conditioned stimulus (CS) and the occurrence of a meaningful stimulus, the unconditioned stimulus (US). Thereby the CS…

  16. Duration of the Unconditioned Stimulus in Appetitive Conditioning of Honeybees Differentially Impacts Learning, Long-Term Memory Strength, and the Underlying Protein Synthesis

    Science.gov (United States)

    Marter, Kathrin; Grauel, M. Katharina; Lewa, Carmen; Morgenstern, Laura; Buckemüller, Christina; Heufelder, Karin; Ganz, Marion; Eisenhardt, Dorothea

    2014-01-01

    This study examines the role of stimulus duration in learning and memory formation of honeybees ("Apis mellifera"). In classical appetitive conditioning honeybees learn the association between an initially neutral, conditioned stimulus (CS) and the occurrence of a meaningful stimulus, the unconditioned stimulus (US). Thereby the CS…

  17. Associative learning during early adulthood enhances later memory retention in honeybees.

    Directory of Open Access Journals (Sweden)

    Andrés Arenas

    Full Text Available BACKGROUND: Cognitive experiences during the early stages of life play an important role in shaping the future behavior in mammals but also in insects, in which precocious learning can directly modify behaviors later in life depending on both the timing and the rearing environment. However, whether olfactory associative learning acquired early in the adult stage of insects affect memorizing of new learning events has not been studied yet. METHODOLOGY: Groups of adult honeybee workers that experienced an odor paired with a sucrose solution 5 to 8 days or 9 to 12 days after emergence were previously exposed to (i a rewarded experience through the offering of scented food, or (ii a non-rewarded experience with a pure volatile compound in the rearing environment. PRINCIPAL FINDINGS: Early rewarded experiences (either at 1-4 or 5-8 days of adult age enhanced retention performance in 9-12-day-conditioned bees when they were tested at 17 days of age. The highest retention levels at this age, which could not be improved with prior rewarded experiences, were found for memories established at 5-8 days of adult age. Associative memories acquired at 9-12 days of age showed a weak effect on retention for some pure pre-exposed volatile compounds; whereas the sole exposure of an odor at any younger age did not promote long-term effects on learning performance. CONCLUSIONS: The associative learning events that occurred a few days after adult emergence improved memorizing in middle-aged bees. In addition, both the timing and the nature of early sensory inputs interact to enhance retention of new learning events acquired later in life, an important matter in the social life of honeybees.

  18. Honeybee associative learning performance and metabolic stress resilience are positively associated.

    Directory of Open Access Journals (Sweden)

    Gro V Amdam

    Full Text Available BACKGROUND: Social-environmental influences can affect animal cognition and health. Also, human socio-economic status is a covariate factor connecting psychometric test-performance (a measure of cognitive ability, educational achievement, lifetime health, and survival. The complimentary hypothesis, that mechanisms in physiology can explain some covariance between the same traits, is disputed. Possible mechanisms involve metabolic biology affecting integrity and stability of physiological systems during development and ageing. Knowledge of these relationships is incomplete, and underlying processes are challenging to reveal in people. Model animals, however, can provide insights into connections between metabolic biology and physiological stability that may aid efforts to reduce human health and longevity disparities. RESULTS: We document a positive correlation between a measure of associative learning performance and the metabolic stress resilience of honeybees. This relationship is independent of social factors, and may provide basic insights into how central nervous system (CNS function and metabolic biology can be associated. Controlling for social environment, age, and learning motivation in each bee, we establish that learning in Pavlovian conditioning to an odour is positively correlated with individual survival time in hyperoxia. Hyperoxia induces oxidative metabolic damage, and provides a measure of metabolic stress resistance that is often related to overall lifespan in laboratory animals. The positive relationship between Pavlovian learning ability and stress resilience in the bee is not equally established in other model organisms so far, and contrasts with a genetic cost of improved associative learning found in Drosophila melanogaster. CONCLUSIONS: Similarities in the performances of different animals need not reflect common functional principles. A correlation of honeybee Pavlovian learning and metabolic stress resilience, thereby

  19. Searching for learning-dependent changes in the antennal lobe: simultaneous recording of neural activity and aversive olfactory learning in honeybees

    Directory of Open Access Journals (Sweden)

    Edith Roussel

    2010-09-01

    Full Text Available Plasticity in the honeybee brain has been studied using the appetitive olfactory conditioning of the proboscis extension reflex, in which a bee learns the association between an odor and a sucrose reward. In this framework, coupling behavioral measurements of proboscis extension and invasive recordings of neural activity has been difficult because proboscis movements usually introduce brain movements that affect physiological preparations. Here we took advantage of a new conditioning protocol, the aversive olfactory conditioning of the sting extension reflex, which does not generate this problem. We achieved the first simultaneous recordings of conditioned sting extension responses and calcium imaging of antennal lobe activity, thus revealing on-line processing of olfactory information during conditioning trials. Based on behavioral output we distinguished learners and non-learners and analyzed possible learning-dependent changes in antennal lobe activity. We did not find differences between glomerular responses to the CS+ and the CS- in learners. Unexpectedly, we found that during conditioning trials non-learners exhibited a progressive decrease in physiological responses to odors, irrespective of their valence. This effect could neither be attributed to a fitness problem nor to abnormal dye bleaching. We discuss the absence of learning-induced changes in the antennal lobe of learners and the decrease in calcium responses found in non-learners. Further studies will have to extend the search for functional plasticity related to aversive learning to other brain areas and to look on a broader range of temporal scales

  20. Quantitative trait loci associated with reversal learning and latent inhibition in honeybees (Apis mellifera).

    Science.gov (United States)

    Chandra, S B; Hunt, G J; Cobey, S; Smith, B H

    2001-05-01

    A study was conducted to identify quantitative trait loci (QTLs) that affect learning in honeybees. Two F1 supersister queens were produced from a cross between two established lines that had been selected for differences in the speed at which they reverse a learned discrimination between odors. Different families of haploid drones from two of these F1 queens were evaluated for two kinds of learning performance--reversal learning and latent inhibition--which previously showed correlated selection responses. Random amplified polymorphic DNA markers were scored from recombinant, haploid drone progeny that showed extreme manifestations of learning performance. Composite interval mapping procedures identified two QTLs for reversal learning (lrn2 and lrn3: LOD, 2.45 and 2.75, respectively) and one major QTL for latent inhibition (lrn1: LOD, 6.15). The QTL for latent inhibition did not map to either of the linkage groups that were associated with reversal learning. Identification of specific genes responsible for these kinds of QTL associations will open up new windows for better understanding of genes involved in learning and memory.

  1. An alarm pheromone modulates appetitive olfactory learning in the honeybee (Apis mellifera

    Directory of Open Access Journals (Sweden)

    Elodie Urlacher

    2010-08-01

    Full Text Available In honeybees, associative learning is embedded in a social context as bees possess a highly complex social organization in which communication among individuals is mediated by dance behavior informing about food sources, and by a high variety of pheromones that maintain the social links between individuals of a hive. Proboscis extension response (PER conditioning is a case of appetitive learning, in which harnessed bees learn to associate odor stimuli with sucrose reward in the laboratory. Despite its recurrent use as a tool for uncovering the behavioral, cellular and molecular bases underlying associative learning, the question of whether social signals (pheromones affect appetitive learning has not been addressed in this experimental framework. This situation contrasts with reports underlining that foraging activity of bees is modulated by alarm pheromones released in the presence of a potential danger. Here, we show that appetitive learning is impaired by the sting alarm pheromone (SAP which, when released by guards, recruits foragers to defend the hive. This effect is mimicked by the main component of SAP, isopentyl acetate (IPA, is dose-dependent and lasts up to 24h. Learning impairment is specific to alarm signal exposure and is independent of the odorant used for conditioning. Our results suggest that learning impairment may be a response to the biological significance of SAP as an alarm signal, which would detract bees from responding to any appetitive stimuli in a situation in which such responses would be of secondary importance.

  2. An alarm pheromone modulates appetitive olfactory learning in the honeybee (apis mellifera).

    Science.gov (United States)

    Urlacher, Elodie; Francés, Bernard; Giurfa, Martin; Devaud, Jean-Marc

    2010-01-01

    In honeybees, associative learning is embedded in a social context as bees possess a highly complex social organization in which communication among individuals is mediated by dance behavior informing about food sources, and by a high variety of pheromones that maintain the social links between individuals of a hive. Proboscis extension response conditioning is a case of appetitive learning, in which harnessed bees learn to associate odor stimuli with sucrose reward in the laboratory. Despite its recurrent use as a tool for uncovering the behavioral, cellular, and molecular bases underlying associative learning, the question of whether social signals (pheromones) affect appetitive learning has not been addressed in this experimental framework. This situation contrasts with reports underlining that foraging activity of bees is modulated by alarm pheromones released in the presence of a potential danger. Here, we show that appetitive learning is impaired by the sting alarm pheromone (SAP) which, when released by guards, recruits foragers to defend the hive. This effect is mimicked by the main component of SAP, isopentyl acetate, is dose-dependent and lasts up to 24 h. Learning impairment is specific to alarm signal exposure and is independent of the odorant used for conditioning. Our results suggest that learning impairment may be a response to the biological significance of SAP as an alarm signal, which would detract bees from responding to any appetitive stimuli in a situation in which such responses would be of secondary importance.

  3. Heritable variation for latent inhibition and its correlation with reversal learning in honeybees (Apis mellifera).

    Science.gov (United States)

    Chandra, S B; Hosler, J S; Smith, B H

    2000-03-01

    Latent inhibition (LI) in honeybees (Apis mellifera) was studied by using a proboscis extension response conditioning procedure. Individual queens, drones, and workers differed in the degree to which they revealed LI. The authors hypothesized that individual differences would have a substantial genetic basis. Two sets of progeny were established by crossing virgin queens and individual drones, both of which had been selected for differential expression of inhibition. LI was stronger in the progeny from the queens and drones that had shown greater inhibition. The expression of LI was also dependent on environmental factors that are most likely associated with age, foraging experience outside of the colony, or both. Furthermore, there was a correlated response in the speed at which progeny reversed a learned discrimination of 2 odors. These genetic analyses may reveal underlying mechanisms that these 2 learning paradigms have in common.

  4. The proboscis extension reflex to evaluate learning and memory in honeybees ( Apis mellifera): some caveats

    Science.gov (United States)

    Frost, Elisabeth H.; Shutler, Dave; Hillier, Neil Kirk

    2012-09-01

    The proboscis extension reflex (PER) is widely used in a classical conditioning (Pavlovian) context to evaluate learning and memory of a variety of insect species. The literature is particularly prodigious for honeybees ( Apis mellifera) with more than a thousand publications. Imagination appears to be the only limit to the types of challenges to which researchers subject honeybees, including all the sensory modalities and a broad diversity of environmental treatments. Accordingly, some remarkable insights have been achieved using PER. However, there are several challenges to evaluating the PER literature that warrant a careful and thorough review. We assess here variation in methods that makes interpretation of studies, even those researching the same question, tenuous. We suggest that the numerous variables that might influence experimental outcomes from PER be thoroughly detailed by researchers. Moreover, the influence of individual variables on results needs to carefully evaluated, as well as among two or more variables. Our intent is to encourage investigation of the influence of numerous variables on PER results.

  5. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees.

    Science.gov (United States)

    Williamson, Sally M; Wright, Geraldine A

    2013-05-15

    Pesticides are important agricultural tools often used in combination to avoid resistance in target pest species, but there is growing concern that their widespread use contributes to the decline of pollinator populations. Pollinators perform sophisticated behaviours while foraging that require them to learn and remember floral traits associated with food, but we know relatively little about the way that combined exposure to multiple pesticides affects neural function and behaviour. The experiments reported here show that prolonged exposure to field-realistic concentrations of the neonicotinoid imidacloprid and the organophosphate acetylcholinesterase inhibitor coumaphos and their combination impairs olfactory learning and memory formation in the honeybee. Using a method for classical conditioning of proboscis extension, honeybees were trained in either a massed or spaced conditioning protocol to examine how these pesticides affected performance during learning and short- and long-term memory tasks. We found that bees exposed to imidacloprid, coumaphos, or a combination of these compounds, were less likely to express conditioned proboscis extension towards an odor associated with reward. Bees exposed to imidacloprid were less likely to form a long-term memory, whereas bees exposed to coumaphos were only less likely to respond during the short-term memory test after massed conditioning. Imidacloprid, coumaphos and a combination of the two compounds impaired the bees' ability to differentiate the conditioned odour from a novel odour during the memory test. Our results demonstrate that exposure to sublethal doses of combined cholinergic pesticides significantly impairs important behaviours involved in foraging, implying that pollinator population decline could be the result of a failure of neural function of bees exposed to pesticides in agricultural landscapes.

  6. Aversive reinforcement improves visual discrimination learning in free-flying honeybees.

    Directory of Open Access Journals (Sweden)

    Aurore Avarguès-Weber

    Full Text Available BACKGROUND: Learning and perception of visual stimuli by free-flying honeybees has been shown to vary dramatically depending on the way insects are trained. Fine color discrimination is achieved when both a target and a distractor are present during training (differential conditioning, whilst if the same target is learnt in isolation (absolute conditioning, discrimination is coarse and limited to perceptually dissimilar alternatives. Another way to potentially enhance discrimination is to increase the penalty associated with the distractor. Here we studied whether coupling the distractor with a highly concentrated quinine solution improves color discrimination of both similar and dissimilar colors by free-flying honeybees. As we assumed that quinine acts as an aversive stimulus, we analyzed whether aversion, if any, is based on an aversive sensory input at the gustatory level or on a post-ingestional malaise following quinine feeding. METHODOLOGY/PRINCIPAL FINDINGS: We show that the presence of a highly concentrated quinine solution (60 mM acts as an aversive reinforcer promoting rejection of the target associated with it, and improving discrimination of perceptually similar stimuli but not of dissimilar stimuli. Free-flying bees did not use remote cues to detect the presence of quinine solution; the aversive effect exerted by this substance was mediated via a gustatory input, i.e. via a distasteful sensory experience, rather than via a post-ingestional malaise. CONCLUSION: The present study supports the hypothesis that aversion conditioning is important for understanding how and what animals perceive and learn. By using this form of conditioning coupled with appetitive conditioning in the framework of a differential conditioning procedure, it is possible to uncover discrimination capabilities that may remain otherwise unsuspected. We show, therefore, that visual discrimination is not an absolute phenomenon but can be modulated by experience.

  7. Single amino acids in sucrose rewards modulate feeding and associative learning in the honeybee.

    Science.gov (United States)

    Simcock, Nicola K; Gray, Helen E; Wright, Geraldine A

    2014-10-01

    Obtaining the correct balance of nutrients requires that the brain integrates information about the body's nutritional state with sensory information from food to guide feeding behaviour. Learning is a mechanism that allows animals to identify cues associated with nutrients so that they can be located quickly when required. Feedback about nutritional state is essential for nutrient balancing and could influence learning. How specific this feedback is to individual nutrients has not often been examined. Here, we tested how the honeybee's nutritional state influenced the likelihood it would feed on and learn sucrose solutions containing single amino acids. Nutritional state was manipulated by pre-feeding bees with either 1M sucrose or 1M sucrose containing 100mM of isoleucine, proline, phenylalanine, or methionine 24h prior to olfactory conditioning of the proboscis extension response. We found that bees pre-fed sucrose solution consumed less of solutions containing amino acids and were also less likely to learn to associate amino acid solutions with odours. Unexpectedly, bees pre-fed solutions containing an amino acid were also less likely to learn to associate odours with sucrose the next day. Furthermore, they consumed more of and were more likely to learn when rewarded with an amino acid solution if they were pre-fed isoleucine and proline. Our data indicate that single amino acids at relatively high concentrations inhibit feeding on sucrose solutions containing them, and they can act as appetitive reinforcers during learning. Our data also suggest that select amino acids interact with mechanisms that signal nutritional sufficiency to reduce hunger. Based on these experiments, we predict that nutrient balancing for essential amino acids during learning requires integration of information about several amino acids experienced simultaneously.

  8. Africanized honeybees are slower learners than their European counterparts

    Science.gov (United States)

    Couvillon, Margaret J.; Degrandi-Hoffman, Gloria; Gronenberg, Wulfila

    2010-02-01

    Does cognitive ability always correlate with a positive fitness consequence? Previous research in both vertebrates and invertebrates provides mixed results. Here, we compare the learning and memory abilities of Africanized honeybees ( Apis mellifera scutellata hybrid) and European honeybees ( Apis mellifera ligustica). The range of the Africanized honeybee continues to expand, superseding the European honeybee, which led us to hypothesize that they might possess greater cognitive capabilities as revealed by a classical conditioning assay. Surprisingly, we found that fewer Africanized honeybees learn to associate an odor with a reward. Additionally, fewer Africanized honeybees remembered the association a day later. While Africanized honeybees are replacing European honeybees, our results show that they do so despite displaying a relatively poorer performance on an associative learning paradigm.

  9. Optimisation of a honeybee-colony's energetics via social learning based on queuing delays

    Science.gov (United States)

    Thenius, Ronald; Schmickl, Thomas; Crailsheim, Karl

    2008-06-01

    Natural selection shaped the foraging-related processes of honeybees in such a way that a colony can react to changing environmental conditions optimally. To investigate this complex dynamic social system, we developed a multi-agent model of the nectar flow inside and outside of a honeybee colony. In a honeybee colony, a temporal caste collects nectar in the environment. These foragers bring their harvest into the colony, where they unload their nectar loads to one or more storer bees. Our model predicts that a cohort of foragers, collecting nectar from a single nectar source, is able to detect changes in quality in other food sources they have never visited, via the nectar processing system of the colony. We identified two novel pathways of forager-to-forager communication. Foragers can gain information about changes in the nectar flow in the environment via changes in their mean waiting time for unloadings and the number of experienced multiple unloadings. This way two distinct groups of foragers that forage on different nectar sources and that never communicate directly can share information via a third cohort of worker bees. We show that this noisy and loosely knotted social network allows a colony to perform collective information processing, so that a single forager has all necessary information available to be able to 'tune' its social behaviour, like dancing or dance-following. This way the net nectar gain of the colony is increased.

  10. DNA methylation adjusts the specificity of memories depending on the learning context and promotes relearning in honeybees

    Directory of Open Access Journals (Sweden)

    Stephanie D Biergans

    2016-09-01

    Full Text Available The activity of the epigenetic writers DNA methyltransferases (Dnmts after olfactory reward conditioning is important for both stimulus-specific long-term memory (LTM formation and extinction. It, however, remains unknown which components of memory formation Dnmts regulate (e.g. associative vs. non-associative and in what context (e.g. varying training conditions. Here we address these aspects in order to clarify the role of Dnmt-mediated DNA methylation in memory formation. We used a pharmacological Dnmt inhibitor and classical appetitive conditioning in the honeybee Apis mellifera, a well characterized model for classical conditioning. We quantified the effect of DNA methylation on naïve odour and sugar responses, and on responses following olfactory reward conditioning. We show that (1 Dnmts do not influence naïve odour or sugar responses, (2 Dnmts do not affect the learning of new stimuli, but (3 Dnmts influence odour-coding, i.e. 'correct' (stimulus-specific LTM formation. Particularly, Dnmts reduce memory specificity when experience is low (one-trial training, and increase memory specificity when experience is high (multiple-trial training, generating an ecologically more useful response to learning. (4 In reversal learning conditions, Dnmts are involved in regulating both excitatory (re-acquisition and inhibitory (forgetting processes.

  11. DNA Methylation Adjusts the Specificity of Memories Depending on the Learning Context and Promotes Relearning in Honeybees

    Science.gov (United States)

    Biergans, Stephanie D.; Claudianos, Charles; Reinhard, Judith; Galizia, C. G.

    2016-01-01

    The activity of the epigenetic writers DNA methyltransferases (Dnmts) after olfactory reward conditioning is important for both stimulus-specific long-term memory (LTM) formation and extinction. It, however, remains unknown which components of memory formation Dnmts regulate (e.g., associative vs. non-associative) and in what context (e.g., varying training conditions). Here, we address these aspects in order to clarify the role of Dnmt-mediated DNA methylation in memory formation. We used a pharmacological Dnmt inhibitor and classical appetitive conditioning in the honeybee Apis mellifera, a well characterized model for classical conditioning. We quantified the effect of DNA methylation on naïve odor and sugar responses, and on responses following olfactory reward conditioning. We show that (1) Dnmts do not influence naïve odor or sugar responses, (2) Dnmts do not affect the learning of new stimuli, but (3) Dnmts influence odor-coding, i.e., ‘correct’ (stimulus-specific) LTM formation. Particularly, Dnmts reduce memory specificity when experience is low (one-trial training), and increase memory specificity when experience is high (multiple-trial training), generating an ecologically more useful response to learning. (4) In reversal learning conditions, Dnmts are involved in regulating both excitatory (re-acquisition) and inhibitory (forgetting) processes. PMID:27672359

  12. Color Modulates Olfactory Learning in Honeybees by an Occasion-Setting Mechanism

    Science.gov (United States)

    Mota, Theo; Giurfa, Martin; Sandoz, Jean-Christophe

    2011-01-01

    A sophisticated form of nonelemental learning is provided by occasion setting. In this paradigm, animals learn to disambiguate an uncertain conditioned stimulus using alternative stimuli that do not enter into direct association with the unconditioned stimulus. For instance, animals may learn to discriminate odor rewarded from odor nonrewarded…

  13. Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain.

    Science.gov (United States)

    Mauelshagen, J

    1993-02-01

    conditioning procedure reveal that the effect observed for the one-trial conditioning paradigm is of an associative nature and that there might be modulations, which are specific for single and multiple trial conditioning procedures. It is hypothesized that the PE1-neuron is a possible element involved in the short-term acquisition, rather than in the long-term storage, of an associative olfactory memory in the honeybee.

  14. Applying an Activity Theory Lens to Designing Instruction for Learning about the Structure, Behavior, and Function of a Honeybee System

    Science.gov (United States)

    Danish, Joshua A.

    2014-01-01

    This article reports on a study in which activity theory was used to design, implement, and analyze a 10-week curriculum unit about how honeybees collect nectar with a particular focus on complex systems concepts. Students (n = 42) in a multi-year kindergarten and 1st-grade classroom participated in this study as part of their 10 regular classroom…

  15. Varroa destructor mite in Africanized honeybee colonies Apis mellifera L. under royal jelly or honey production

    Directory of Open Access Journals (Sweden)

    Pedro da Rosa Santos

    2015-08-01

    Full Text Available This study evaluated the level of invasion of Varroa mite into worker brood cells, the infestation rate on adult worker honeybees, total and effective reproduction rates of the mite in Africanized honeybee colonies under royal jelly or honey production. Invasion and infestation rates were not statistically different between honeybee colonies producing honey or royal jelly and the averages for these parameters were 5.79 and 8.54%, respectively. Colonies producing honey presented a higher (p < 0.05 total and effective reproduction of Varroa than colonies producing royal jelly. There was a negative correlation between levels of invasion and infestation with minimum external temperature, relative humidity and rainfall. The variables month and season influenced the development of the mite, but rates were low and within the range normally found in Brazil for Africanized honeybee colonies, which confirm the greater resistance of these honeybees to Varroa destructor than European honeybees.

  16. Virus infections of honeybees Apis Mellifera

    Directory of Open Access Journals (Sweden)

    Giuseppina Tantillo

    2015-09-01

    Full Text Available The health and vigour of honeybee colonies are threatened by numerous parasites (such as Varroa destructor and Nosema spp. and pathogens, including viruses, bacteria, protozoa. Among honeybee pathogens, viruses are one of the major threats to the health and wellbeing of honeybees and cause serious concern for researchers and beekeepers. To tone down the threats posed by these invasive organisms, a better understanding of bee viral infections will be of crucial importance in developing effective and environmentally benign disease control strategies. Here we summarize recent progress in the understanding of the morphology, genome organization, transmission, epidemiology and pathogenesis of eight honeybee viruses: Deformed wing virus (DWV and Kakugo virus (KV; Sacbrood virus (SBV; Black Queen cell virus (BQCV; Acute bee paralysis virus (ABPV; Kashmir bee virus (KBV; Israeli Acute Paralysis Virus (IAPV; Chronic bee paralysis virus (CBPV. The review has been designed to provide researchers in the field with updated information about honeybee viruses and to serve as a starting point for future research.

  17. Virus Infections of Honeybees Apis Mellifera

    Science.gov (United States)

    Tantillo, Giuseppina; Bottaro, Marilisa; Di Pinto, Angela; Martella, Vito; Di Pinto, Pietro

    2015-01-01

    The health and vigour of honeybee colonies are threatened by numerous parasites (such as Varroa destructor and Nosema spp.) and pathogens, including viruses, bacteria, protozoa. Among honeybee pathogens, viruses are one of the major threats to the health and well-being of honeybees and cause serious concern for researchers and beekeepers. To tone down the threats posed by these invasive organisms, a better understanding of bee viral infections will be of crucial importance in developing effective and environmentally benign disease control strategies. Here we summarize recent progress in the understanding of the morphology, genome organization, transmission, epidemiology and pathogenesis of eight honeybee viruses: Deformed wing virus (DWV) and Kakugo virus (KV); Sacbrood virus (SBV); Black Queen cell virus (BQCV); Acute bee paralysis virus (ABPV); Kashmir bee virus (KBV); Israeli Acute Paralysis Virus (IAPV); Chronic bee paralysis virus (CBPV). The review has been designed to provide researchers in the field with updated information about honeybee viruses and to serve as a starting point for future research. PMID:27800411

  18. A Role of Protein Degradation in Memory Consolidation after Initial Learning and Extinction Learning in the Honeybee ("Apis mellifera")

    Science.gov (United States)

    Felsenberg, Johannes; Dombrowski, Vincent; Eisenhardt, Dorothea

    2012-01-01

    Protein degradation is known to affect memory formation after extinction learning. We demonstrate here that an inhibitor of protein degradation, MG132, interferes with memory formation after extinction learning in a classical appetitive conditioning paradigm. In addition, we find an enhancement of memory formation when the same inhibitor is…

  19. A Role of Protein Degradation in Memory Consolidation after Initial Learning and Extinction Learning in the Honeybee ("Apis mellifera")

    Science.gov (United States)

    Felsenberg, Johannes; Dombrowski, Vincent; Eisenhardt, Dorothea

    2012-01-01

    Protein degradation is known to affect memory formation after extinction learning. We demonstrate here that an inhibitor of protein degradation, MG132, interferes with memory formation after extinction learning in a classical appetitive conditioning paradigm. In addition, we find an enhancement of memory formation when the same inhibitor is…

  20. Odor discrimination in classical conditioning of proboscis extension in two stingless bee species in comparison to Africanized honeybees.

    Science.gov (United States)

    Mc Cabe, S I; Hartfelder, K; Santana, W C; Farina, W M

    2007-11-01

    Learning in insects has been extensively studied using different experimental approaches. One of them, the proboscis extension response (PER) paradigm, is particularly well suited for quantitative studies of cognitive abilities of honeybees under controlled conditions. The goal of this study was to analyze the capability of three eusocial bee species to be olfactory conditioned in the PER paradigm. We worked with two Brazilian stingless bees species, Melipona quadrifasciata and Scaptotrigona aff. depilis, and with the invasive Africanized honeybee, Apis mellifera. These three species present very different recruitment strategies, which could be related with different odor-learning abilities. We evaluated their gustatory responsiveness and learning capability to discriminate floral odors. Gustatory responsiveness was similar for the three species, although S. aff. depilis workers showed fluctuations along the experimental period. Results for the learning assays revealed that M. quadrifasciata workers can be conditioned to discriminate floral odors in a classical differential conditioning protocol and that this discrimination is maintained 15 min after training. During conditioning, Africanized honeybees presented the highest discrimination, for M. quadrifasciata it was intermediate, and S. aff. depilis bees presented no discrimination. The differences found are discussed considering the putative different learning abilities and procedure effect for each species.

  1. Influence of agrochemicals fipronil and imidacloprid on the learning behavior of Apis mellifera L. honeybees - doi: 10.4025/actascianimsci.v35i4.18683

    Directory of Open Access Journals (Sweden)

    Marcela Pedraza Carrillo

    2013-10-01

    Full Text Available Agrochemicals on crop cultivated areas is a source of contamination for bees and may cause physiological and behavioral disorders and mortality. The LD50 of the pesticides fipronil and imidacloprid was determined and their effect on the learning behavior of Apis mellifera L. honeybee evaluated. LD50 was determined by the ingestion of contaminated food with different concentrations of insecticide concentrations: Fipronil (0, 0.8, 0.4, 0.2, 0.1 and 0.05 µg bee-1 and imidacloprid (0, 0.4, 0.2, 0.1, 0.05 and 0.025 µg bee-1. The method of proboscis extension reflection (PER and learning through citral odor evaluated their responses to food stimulation. LD50 obtained were 0.28 ± 0.11 and 0.10 ± 0.04 µg bee-1 for fipronil and imidacloprid, respectively. The PER test showed no significant difference (p Apis mellifera bees.  

  2. Native Prey and Invasive Predator Patterns of Foraging Activity: The Case of the Yellow-Legged Hornet Predation at European Honeybee Hives

    National Research Council Canada - National Science Library

    Monceau, Karine; Arca, Mariangela; Leprêtre, Lisa; Mougel, Florence; Bonnard, Olivier; Silvain, Jean-François; Maher, Nevile; Arnold, Gérard; Thiéry, Denis

    2013-01-01

    .... The present study, based on video recordings of two beehives at an early stage of the invasion process, intends to analyse the alien hornet hunting behaviour on the native prey, Apis mellifera...

  3. Native Prey and Invasive Predator Patterns of Foraging Activity: The Case of the Yellow-Legged Hornet Predation at European Honeybee Hives: e66492

    National Research Council Canada - National Science Library

    Karine Monceau; Mariangela Arca; Lisa Leprêtre; Florence Mougel; Olivier Bonnard; Jean-François Silvain; Nevile Maher; Gérard Arnold; Denis Thiéry

    2013-01-01

    .... The present study, based on video recordings of two beehives at an early stage of the invasion process, intends to analyse the alien hornet hunting behaviour on the native prey, Apis mellifera...

  4. Nosema Tolerant Honeybees (Apis mellifera) Escape Parasitic Manipulation of Apoptosis

    Science.gov (United States)

    Kurze, Christoph; Le Conte, Yves; Dussaubat, Claudia; Erler, Silvio; Kryger, Per; Lewkowski, Oleg; Müller, Thomas; Widder, Miriam; Moritz, Robin F. A.

    2015-01-01

    Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host’s apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera) and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap)-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion. PMID:26445372

  5. Nosema Tolerant Honeybees (Apis mellifera Escape Parasitic Manipulation of Apoptosis.

    Directory of Open Access Journals (Sweden)

    Christoph Kurze

    Full Text Available Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host's apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion.

  6. Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the honeybee brain.

    Science.gov (United States)

    Okada, Ryuichi; Rybak, Jürgen; Manz, Gisela; Menzel, Randolf

    2007-10-24

    Extracellular recording were performed from mushroom body-extrinsic neurons while the animal was exposed to differential conditioning to two odors, the forward-paired conditioned stimulus (CS+; the odor that will be or has been paired with sucrose reward) and the unpaired CS- (the odor that will be or has been specifically unpaired with sucrose reward). A single neuron, the pedunculus-extrinsic neuron number 1 (PE1), was identified on the basis of its firing pattern, and other neurons were grouped together as non-PE1 neurons. PE1 reduces its response to CS+ and does not change its response to CS- after learning. Most non-PE1 neurons do not change their responses during learning, but some decrease, and one neuron increases its response to CS+. PE1 receives inhibitory synaptic inputs, and neuroanatomical studies indicate closely attached GABA-immune reactive profiles originating at least partially from neurons of the protocerebral-calycal tract (PCT). Thus, either the associative reduction of odor responses originates within the PE1 via a long-term depression (LTD)-like mechanism, or PE1 receives stronger inhibition for the learned odor from the PCT neurons or from Kenyon cells. In any event, as the decreased firing of PE1 correlates with the increased probability of behavioral responses, our data suggest that the mushroom bodies exert general inhibition over sensory-motor connections, which relaxes selectively for learned stimuli.

  7. Perceptual and neural olfactory similarity in honeybees.

    Directory of Open Access Journals (Sweden)

    Fernando Guerrieri

    2005-04-01

    Full Text Available The question of whether or not neural activity patterns recorded in the olfactory centres of the brain correspond to olfactory perceptual measures remains unanswered. To address this question, we studied olfaction in honeybees Apis mellifera using the olfactory conditioning of the proboscis extension response. We conditioned bees to odours and tested generalisation responses to different odours. Sixteen odours were used, which varied both in their functional group (primary and secondary alcohols, aldehydes and ketones and in their carbon-chain length (from six to nine carbons. The results obtained by presentation of a total of 16 x 16 odour pairs show that (i all odorants presented could be learned, although acquisition was lower for short-chain ketones; (ii generalisation varied depending both on the functional group and the carbon-chain length of odours trained; higher generalisation was found between long-chain than between short-chain molecules and between groups such as primary and secondary alcohols; (iii for some odour pairs, cross-generalisation between odorants was asymmetric; (iv a putative olfactory space could be defined for the honeybee with functional group and carbon-chain length as inner dimensions; (v perceptual distances in such a space correlate well with physiological distances determined from optophysiological recordings of antennal lobe activity. We conclude that functional group and carbon-chain length are inner dimensions of the honeybee olfactory space and that neural activity in the antennal lobe reflects the perceptual quality of odours.

  8. Perceptual and Neural Olfactory Similarity in Honeybees

    Directory of Open Access Journals (Sweden)

    Guerrieri Fernando

    2005-01-01

    Full Text Available The question of whether or not neural activity patterns recorded in the olfactory centres of the brain correspond to olfactory perceptual measures remains unanswered. To address this question, we studied olfaction in honeybees Apis mellifera using the olfactory conditioning of the proboscis extension response. We conditioned bees to odours and tested generalisation responses to different odours. Sixteen odours were used, which varied both in their functional group (primary and secondary alcohols, aldehydes and ketones and in their carbon-chain length (from six to nine carbons.The results obtained by presentation of a total of 16 x 16 odour pairs show that (i all odorants presented could be learned, although acquisition was lower for short-chain ketones; (ii generalisation varied depending both on the functional group and the carbon-chain length of odours trained; higher generalisation was found between long-chain than between short-chain molecules and between groups such as primary and secondary alcohols; (iii for some odour pairs, cross-generalisation between odorants was asymmetric; (iv a putative olfactory space could be defined for the honeybee with functional group and carbon-chain length as inner dimensions; (v perceptual distances in such a space correlate well with physiological distances determined from optophysiological recordings of antennal lobe activity. We conclude that functional group and carbon-chain length are inner dimensions of the honeybee olfactory space and that neural activity in the antennal lobe reflects the perceptual quality of odours.

  9. The effect of essential oils of sweet fennel and pignut on mortality and learning in africanized honeybees (Apis mellifera L.) (Hymenoptera: Apidae)

    Energy Technology Data Exchange (ETDEWEB)

    Abramson, Charles I.; Michaluk, Lynnette M. [Oklahoma State University, Stillwater, OK (United States). Depts. of Psychology and Zoology. Lab. Comparative Psychology and Behavioral Biology]. E-mail: charles.abramson@okstate.edu; Wanderley, Paulo A.; Wanderley, Maria J.A.; Silva, Jose C.R. [Universidade Federal da Paraiba (UFPB), Bananeiras, PB (Brazil). Dept. de Agricultura

    2007-11-15

    It was recently discovered that exposure to small concentrations of the essential oils of sweet fennel (Foeniculum vulgare Mill) or pignut [Hyptis suaveolens (L.) Poit] can be used to control aphids. What is not known is whether these oils also influence honeybee behavior. Experiments using both harnessed and free-flying foragers at concentrations used to control aphids showed that bees readily associated the odors with a reward, discriminated between them, and were not repelled. Honeybees, however, would not consume the oils when mixed with sucrose to create an unconditioned stimulus. An experiment in which harnessed bees consumed various concentrations showed that concentrations greater than 50% were detrimental. The experiments reported here provide further evidence supporting the use of conditioning techniques to evaluate the use of essential oils on honey bee behavior. (author)

  10. Genetic reincarnation of workers as queens in the Eastern honeybee Apis cerana.

    Science.gov (United States)

    Holmes, M J; Tan, K; Wang, Z; Oldroyd, B P; Beekman, M

    2015-01-01

    Thelytokous parthenogenesis, or the asexual production of female offspring, is rare in the animal kingdom, but relatively common in social Hymenoptera. However, in honeybees, it is only known to be ubiquitous in one subspecies of Apis mellifera, the Cape honeybee, A. mellifera capensis. Here we report the appearance of queen cells in two colonies of the Eastern honeybee Apis cerana that no longer contained a queen or queen-produced brood to rear queens from. A combination of microsatellite genotyping and the timing of the appearance of these individuals excluded the possibility that they had been laid by the original queen. Based on the genotypes of these individuals, thelytokous production by natal workers is the most parsimonious explanation for their existence. Thus, we present the first example of thelytoky in a honeybee outside A. mellifera. We discuss the evolutionary and ecological consequences of thelytoky in A. cerana, in particular the role thelytoky may play in the recent invasions by populations of this species.

  11. Learning from our mistakes: minimizing problems with invasive biofuel plants

    CSIR Research Space (South Africa)

    Richardson, DM

    2011-03-01

    Full Text Available . Economic driving forces are crucial. Important lessons to be learnt from forestry for reducing problems with invasiveness of alien species for biofuel production include: the use of global databases and screening tools for identifying high-risk species...

  12. Honeybee immunity and colony losses

    Directory of Open Access Journals (Sweden)

    F. Nazzi

    2014-10-01

    Full Text Available The decline of honeybee colonies and their eventual collapse is a widespread phenomenon in the Northern hemisphere of the globe, which severely limits the beekeeping industry. This dramatic event is associated with an enhanced impact of parasites and pathogens on honeybees, which is indicative of reduced immunocompetence. The parasitic mite Varroa destructor and the vectored viral pathogens appear to play a key-role in the induction of this complex syndrome. In particular, the Deformed Wing Virus (DWV is widespread and is now considered, along with Varroa, one of the major causes of bee colony losses. Several lines of evidence indicate that this mite/DWV association severely affects the immune system of honeybees and makes them more sensitive to the action of other stress factors. The molecular mechanisms underpinning these complex interactions are currently being investigated and the emerging information has allowed the development of a new functional model, describing how different stress factors may synergistically concur in the induction of bee immune alteration and health decline. This provides a new logical framework in which to interpret the proposed multifactorial origin of bee colony losses and sets the stage for a more comprehensive and integrated analysis of the effect that multiple stress agents may have on honeybees.

  13. Honeybee odometry and scent guidance

    NARCIS (Netherlands)

    Vladusich, T; Hemmi, JM; Zeil, J

    2006-01-01

    We report on a striking asymmetry in search behaviour observed in honeybees trained to forage alternately at one of two feeder sites in a narrow tunnel. Bees were trained by periodically switching the position of a sucrose reward between relatively short and long distances in the tunnel. Search beha

  14. AN EMPIRICAL ANALYSIS OF HONEYBEE POLLINATION MARKETS

    OpenAIRE

    Rucker, Randal R.; Thurman, Walter N.; Burgett, Michael

    2001-01-01

    Pollination by honeybees plays an important role in modern agriculture. Some crops are greatly dependent on honeybees (almonds, apples, avocados, blueberries, and cherries are examples) while the yields and quality of other crops are significantly enhanced by honeybee pollination. The importance of understanding pollination markets has increased recently due to changes brought on by the twin scourges of Varroa and tracheal mites. Both are infestations of feral and domestic bees that imply gre...

  15. Olfactory attraction of the hornet Vespa velutina to honeybee colony odors and pheromones.

    Science.gov (United States)

    Couto, Antoine; Monceau, Karine; Bonnard, Olivier; Thiéry, Denis; Sandoz, Jean-Christophe

    2014-01-01

    Since the beginning of the last century, the number of biological invasions has continuously increased worldwide. Due to their environmental and economical consequences, invasive species are now a major concern. Social wasps are particularly efficient invaders because of their distinctive biology and behavior. Among them, the yellow-legged hornet, Vespa velutina, is a keen hunter of domestic honeybees. Its recent introduction to Europe may induce important beekeeping, pollination, and biodiversity problems. Hornets use olfactory cues for the long-range detection of food sources, in this case the location of honeybee colonies, but the exact nature of these cues remains unknown. Here, we studied the orientation behavior of V. velutina workers towards a range of hive products and protein sources, as well as towards prominent chemical substances emitted by these food sources. In a multiple choice test performed under controlled laboratory conditions, we found that hornets are strongly attracted to the odor of some hive products, especially pollen and honey. When testing specific compounds, the honeybee aggregation pheromone, geraniol, proved highly attractive. Pheromones produced by honeybee larvae or by the queen were also of interest to hornet workers, albeit to a lesser extent. Our results indicate that V. velutina workers are selectively attracted towards olfactory cues from hives (stored food, brood, and queen), which may signal a high prey density. This study opens new perspectives for understanding hornets' hunting behavior and paves the way for developing efficient trapping strategies against this invasive species.

  16. Olfactory attraction of the hornet Vespa velutina to honeybee colony odors and pheromones.

    Directory of Open Access Journals (Sweden)

    Antoine Couto

    Full Text Available Since the beginning of the last century, the number of biological invasions has continuously increased worldwide. Due to their environmental and economical consequences, invasive species are now a major concern. Social wasps are particularly efficient invaders because of their distinctive biology and behavior. Among them, the yellow-legged hornet, Vespa velutina, is a keen hunter of domestic honeybees. Its recent introduction to Europe may induce important beekeeping, pollination, and biodiversity problems. Hornets use olfactory cues for the long-range detection of food sources, in this case the location of honeybee colonies, but the exact nature of these cues remains unknown. Here, we studied the orientation behavior of V. velutina workers towards a range of hive products and protein sources, as well as towards prominent chemical substances emitted by these food sources. In a multiple choice test performed under controlled laboratory conditions, we found that hornets are strongly attracted to the odor of some hive products, especially pollen and honey. When testing specific compounds, the honeybee aggregation pheromone, geraniol, proved highly attractive. Pheromones produced by honeybee larvae or by the queen were also of interest to hornet workers, albeit to a lesser extent. Our results indicate that V. velutina workers are selectively attracted towards olfactory cues from hives (stored food, brood, and queen, which may signal a high prey density. This study opens new perspectives for understanding hornets' hunting behavior and paves the way for developing efficient trapping strategies against this invasive species.

  17. Short-sighted evolution of virulence in parasitic honeybee workers ( Apis mellifera capensis Esch.)

    Science.gov (United States)

    Moritz, Robin F. A.; Pirk, Christian W. W.; Hepburn, H. Randall; Neumann, Peter

    2008-06-01

    The short-sighted selection hypothesis for parasite virulence predicts that winners of within-host competition are poorer at transmission to new hosts. Social parasitism by self-replicating, female-producing workers occurs in the Cape honeybee Apis mellifera capensis, and colonies of other honeybee subspecies are susceptible hosts. We found high within-host virulence but low transmission rates in a clone of social parasitic A. m. capensis workers invading the neighbouring subspecies A. m. scutellata. In contrast, parasitic workers from the endemic range of A. m. capensis showed low within-host virulence but high transmission rates. This suggests a short-sighted selection scenario for the host-parasite co-evolution in the invasive range of the Cape honeybee, probably facilitated by beekeeping-assisted parasite transmission in apiaries.

  18. Diet effects on honeybee immunocompetence.

    Science.gov (United States)

    Alaux, Cédric; Ducloz, François; Crauser, Didier; Le Conte, Yves

    2010-08-23

    The maintenance of the immune system can be costly, and a lack of dietary protein can increase the susceptibility of organisms to disease. However, few studies have investigated the relationship between protein nutrition and immunity in insects. Here, we tested in honeybees (Apis mellifera) whether dietary protein quantity (monofloral pollen) and diet diversity (polyfloral pollen) can shape baseline immunocompetence (IC) by measuring parameters of individual immunity (haemocyte concentration, fat body content and phenoloxidase activity) and glucose oxidase (GOX) activity, which enables bees to sterilize colony and brood food, as a parameter of social immunity. Protein feeding modified both individual and social IC but increases in dietary protein quantity did not enhance IC. However, diet diversity increased IC levels. In particular, polyfloral diets induced higher GOX activity compared with monofloral diets, including protein-richer diets. These results suggest a link between protein nutrition and immunity in honeybees and underscore the critical role of resource availability on pollinator health.

  19. Brief communications: Parasitic honeybees get royal treatment

    NARCIS (Netherlands)

    Beekman, M.; Calis, J.N.M.; Boot, W.J.

    2000-01-01

    Since the human-assisted movement of the Cape honeybee Apis mellifera capensis out of its native territory, its workers have invaded colonies of the African honeybee A. m. scutellata. When this happens, their ovaries develop and they begin to reproduce, which results in the death of the scutellata q

  20. Molecular Mechanisms Underlying Formation of Long-Term Reward Memories and Extinction Memories in the Honeybee ("Apis Mellifera")

    Science.gov (United States)

    Eisenhardt, Dorothea

    2014-01-01

    The honeybee ("Apis mellifera") has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a…

  1. Molecular Mechanisms Underlying Formation of Long-Term Reward Memories and Extinction Memories in the Honeybee ("Apis Mellifera")

    Science.gov (United States)

    Eisenhardt, Dorothea

    2014-01-01

    The honeybee ("Apis mellifera") has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a…

  2. Variable Admittance Control Based on Fuzzy Reinforcement Learning for Minimally Invasive Surgery Manipulator

    OpenAIRE

    Du, Zhijiang; Wang, Wei; Yan, Zhiyuan; Dong, Wei; Wang, Weidong

    2017-01-01

    In order to get natural and intuitive physical interaction in the pose adjustment of the minimally invasive surgery manipulator, a hybrid variable admittance model based on Fuzzy Sarsa(?)-learning is proposed in this paper. The proposed model provides continuous variable virtual damping to the admittance controller to respond to human intentions, and it effectively enhances the comfort level during the task execution by modifying the generated virtual damping dynamically. A fuzzy partition de...

  3. Detection of Illicit Drugs by Trained Honeybees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Matthias Schott

    Full Text Available Illegal drugs exacerbate global social challenges such as substance addiction, mental health issues and violent crime. Police and customs officials often rely on specially-trained sniffer dogs, which act as sensitive biological detectors to find concealed illegal drugs. However, the dog "alert" is no longer sufficient evidence to allow a search without a warrant or additional probable cause because cannabis has been legalized in two US states and is decriminalized in many others. Retraining dogs to recognize a narrower spectrum of drugs is difficult and training new dogs is time consuming, yet there are no analytical devices with the portability and sensitivity necessary to detect substance-specific chemical signatures. This means there is currently no substitute for sniffer dogs. Here we describe an insect screening procedure showing that the western honeybee (Apis mellifera can sense volatiles associated with pure samples of heroin and cocaine. We developed a portable electroantennographic device for the on-site measurement of volatile perception by these insects, and found a positive correlation between honeybee antennal responses and the concentration of specific drugs in test samples. Furthermore, we tested the ability of honeybees to learn the scent of heroin and trained them to show a reliable behavioral response in the presence of a highly-diluted scent of pure heroin. Trained honeybees could therefore be used to complement or replace the role of sniffer dogs as part of an automated drug detection system. Insects are highly sensitive to volatile compounds and provide an untapped resource for the development of biosensors. Automated conditioning as presented in this study could be developed as a platform for the practical detection of illicit drugs using insect-based sensors.

  4. Interpatch foraging in honeybees-rational decision making at secondary hubs based upon time and motivation.

    Science.gov (United States)

    Najera, Daniel A; McCullough, Erin L; Jander, Rudolf

    2012-11-01

    For honeybees, Apis mellifera, the hive has been well known to function as a primary decision-making hub, a place from which foragers decide among various directions, distances, and times of day to forage efficiently. Whether foraging honeybees can make similarly complex navigational decisions from locations away from the hive is unknown. To examine whether or not such secondary decision-making hubs exist, we trained bees to forage at four different locations. Specifically, we trained honeybees to first forage to a distal site "CT" 100 m away from the hive; if food was present, they fed and then chose to go home. If food was not present, the honeybees were trained to forage to three auxiliary sites, each at a different time of the day: A in the morning, B at noon, and C in the afternoon. The foragers learned to check site CT for food first and then efficiently depart to the correct location based upon the time of day if there was no food at site CT. Thus, the honeybees were able to cognitively map motivation, time, and five different locations (Hive, CT, A, B, and C) in two spatial dimensions; these are the contents of the cognitive map used by the honeybees here. While at site CT, we verified that the honeybees could choose between 4 different directions (to A, B, C, and the Hive) and thus label it as a secondary decision-making hub. The observed decision making uncovered here is inferred to constitute genuine logical operations, involving a branched structure, based upon the premises of motivational state, and spatiotemporal knowledge.

  5. Steroid Hormone (20-Hydroxyecdysone) Modulates the Acquisition of Aversive Olfactory Memories in Pollen Forager Honeybees

    Science.gov (United States)

    Geddes, Lisa H.; McQuillan, H. James; Aiken, Alastair; Vergoz, Vanina; Mercer, Alison R.

    2013-01-01

    Here, we examine effects of the steroid hormone, 20-hydroxyecdysone (20-E), on associative olfactory learning in the honeybee, "Apis mellifera." 20-E impaired the bees' ability to associate odors with punishment during aversive conditioning, but did not interfere with their ability to associate odors with a food reward (appetitive…

  6. Variable Admittance Control Based on Fuzzy Reinforcement Learning for Minimally Invasive Surgery Manipulator.

    Science.gov (United States)

    Du, Zhijiang; Wang, Wei; Yan, Zhiyuan; Dong, Wei; Wang, Weidong

    2017-04-12

    In order to get natural and intuitive physical interaction in the pose adjustment of the minimally invasive surgery manipulator, a hybrid variable admittance model based on Fuzzy Sarsa(λ)-learning is proposed in this paper. The proposed model provides continuous variable virtual damping to the admittance controller to respond to human intentions, and it effectively enhances the comfort level during the task execution by modifying the generated virtual damping dynamically. A fuzzy partition defined over the state space is used to capture the characteristics of the operator in physical human-robot interaction. For the purpose of maximizing the performance index in the long run, according to the identification of the current state input, the virtual damping compensations are determined by a trained strategy which can be learned through the experience generated from interaction with humans, and the influence caused by humans and the changing dynamics in the robot are also considered in the learning process. To evaluate the performance of the proposed model, some comparative experiments in joint space are conducted on our experimental minimally invasive surgical manipulator.

  7. Generalization mediates sensitivity to complex odor features in the honeybee.

    Directory of Open Access Journals (Sweden)

    Geraldine A Wright

    Full Text Available Animals use odors as signals for mate, kin, and food recognition, a strategy which appears ubiquitous and successful despite the high intrinsic variability of naturally-occurring odor quantities. Stimulus generalization, or the ability to decide that two objects, though readily distinguishable, are similar enough to afford the same consequence, could help animals adjust to variation in odor signals without losing sensitivity to key inter-stimulus differences. The present study was designed to investigate whether an animal's ability to generalize learned associations to novel odors can be influenced by the nature of the associated outcome. We use a classical conditioning paradigm for studying olfactory learning in honeybees to show that honeybees conditioned on either a fixed- or variable-proportion binary odor mixture generalize learned responses to novel proportions of the same mixture even when inter-odor differences are substantial. We also show that the resulting olfactory generalization gradients depend critically on both the nature of the stimulus-reward paradigm and the intrinsic variability of the conditioned stimulus. The reward dependency we observe must be cognitive rather than perceptual in nature, and we argue that outcome-dependent generalization is necessary for maintaining sensitivity to inter-odor differences in complex olfactory scenes.

  8. Odour concentration affects odour identity in honeybees

    National Research Council Canada - National Science Library

    Geraldine A Wright; Mitchell G.A Thomson; Brian H Smith

    2005-01-01

    ... such as the molecular identity of the odorant. The experiments with honeybees reported here show a departure from odour-concentration invariance and are consistent with a lower-concentration regime in which odour concentration contributes...

  9. Long-term trends in the honeybee ‘whooping signal’ revealed by automated detection

    Science.gov (United States)

    Newton, Michael I.

    2017-01-01

    It is known that honeybees use vibrational communication pathways to transfer information. One honeybee signal that has been previously investigated is the short vibrational pulse named the ‘stop signal’, because its inhibitory effect is generally the most accepted interpretation. The present study demonstrates long term (over 9 months) automated in-situ non-invasive monitoring of a honeybee vibrational pulse with the same characteristics of what has previously been described as a stop signal using ultra-sensitive accelerometers embedded in the honeycomb located at the heart of honeybee colonies. We show that the signal is very common and highly repeatable, occurring mainly at night with a distinct decrease in instances towards midday, and that it can be elicited en masse from bees following the gentle shaking or knocking of their hive with distinct evidence of habituation. The results of our study suggest that this vibrational pulse is generated under many different circumstances, thereby unifying previous publication’s conflicting definitions, and we demonstrate that this pulse can be generated in response to a surprise stimulus. This work suggests that, using an artificial stimulus and monitoring the changes in the features of this signal could provide a sensitive tool to assess colony status. PMID:28178291

  10. Risks of neonicotinoid insecticides to honeybees.

    Science.gov (United States)

    Fairbrother, Anne; Purdy, John; Anderson, Troy; Fell, Richard

    2014-04-01

    The European honeybee, Apis mellifera, is an important pollinator of agricultural crops. Since 2006, when unexpectedly high colony losses were first reported, articles have proliferated in the popular press suggesting a range of possible causes and raising alarm over the general decline of bees. Suggested causes include pesticides, genetically modified crops, habitat fragmentation, and introduced diseases and parasites. Scientists have concluded that multiple factors in various combinations-including mites, fungi, viruses, and pesticides, as well as other factors such as reduction in forage, poor nutrition, and queen failure-are the most probable cause of elevated colony loss rates. Investigators and regulators continue to focus on the possible role that insecticides, particularly the neonicotinoids, may play in honeybee health. Neonicotinoid insecticides are insect neurotoxicants with desirable features such as broad-spectrum activity, low application rates, low mammalian toxicity, upward systemic movement in plants, and versatile application methods. Their distribution throughout the plant, including pollen, nectar, and guttation fluids, poses particular concern for exposure to pollinators. The authors describe how neonicotinoids interact with the nervous system of honeybees and affect individual honeybees in laboratory situations. Because honeybees are social insects, colony effects in semifield and field studies are discussed. The authors conclude with a review of current and proposed guidance in the United States and Europe for assessing the risks of pesticides to honeybees.

  11. Spatial memory and navigation by honeybees on the scale of the foraging range

    Science.gov (United States)

    Dyer

    1996-01-01

    Honeybees and other nesting animals face the problem of finding their way between their nest and distant feeding sites. Many studies have shown that insects can learn foraging routes in reference to both landmarks and celestial cues, but it is a major puzzle how spatial information obtained from these environmental features is encoded in memory. This paper reviews recent progress by my colleagues and me towards understanding three specific aspects of this problem in honeybees: (1) how bees learn the spatial relationships among widely separated locations in a familiar terrain; (2) how bees learn the pattern of movement of the sun over the day; and (3) whether, and if so how, bees learn the relationships between celestial cues and landmarks.

  12. A DNA barcoding approach to characterize pollen collected by honeybees.

    Directory of Open Access Journals (Sweden)

    Andrea Galimberti

    Full Text Available In the present study, we investigated DNA barcoding effectiveness to characterize honeybee pollen pellets, a food supplement largely used for human nutrition due to its therapeutic properties. We collected pollen pellets using modified beehives placed in three zones within an alpine protected area (Grigna Settentrionale Regional Park, Italy. A DNA barcoding reference database, including rbcL and trnH-psbA sequences from 693 plant species (104 sequenced in this study was assembled. The database was used to identify pollen collected from the hives. Fifty-two plant species were identified at the molecular level. Results suggested rbcL alone could not distinguish among congeneric plants; however, psbA-trnH identified most of the pollen samples at the species level. Substantial variability in pollen composition was observed between the highest elevation locality (Alpe Moconodeno, characterized by arid grasslands and a rocky substrate, and the other two sites (Cornisella and Ortanella at lower altitudes. Pollen from Ortanella and Cornisella showed the presence of typical deciduous forest species; however in samples collected at Ortanella, pollen of the invasive Lonicera japonica, and the ornamental Pelargonium x hortorum were observed. Our results indicated pollen composition was largely influenced by floristic local biodiversity, plant phenology, and the presence of alien flowering species. Therefore, pollen molecular characterization based on DNA barcoding might serve useful to beekeepers in obtaining honeybee products with specific nutritional or therapeutic characteristics desired by food market demands.

  13. A DNA barcoding approach to characterize pollen collected by honeybees.

    Science.gov (United States)

    Galimberti, Andrea; De Mattia, Fabrizio; Bruni, Ilaria; Scaccabarozzi, Daniela; Sandionigi, Anna; Barbuto, Michela; Casiraghi, Maurizio; Labra, Massimo

    2014-01-01

    In the present study, we investigated DNA barcoding effectiveness to characterize honeybee pollen pellets, a food supplement largely used for human nutrition due to its therapeutic properties. We collected pollen pellets using modified beehives placed in three zones within an alpine protected area (Grigna Settentrionale Regional Park, Italy). A DNA barcoding reference database, including rbcL and trnH-psbA sequences from 693 plant species (104 sequenced in this study) was assembled. The database was used to identify pollen collected from the hives. Fifty-two plant species were identified at the molecular level. Results suggested rbcL alone could not distinguish among congeneric plants; however, psbA-trnH identified most of the pollen samples at the species level. Substantial variability in pollen composition was observed between the highest elevation locality (Alpe Moconodeno), characterized by arid grasslands and a rocky substrate, and the other two sites (Cornisella and Ortanella) at lower altitudes. Pollen from Ortanella and Cornisella showed the presence of typical deciduous forest species; however in samples collected at Ortanella, pollen of the invasive Lonicera japonica, and the ornamental Pelargonium x hortorum were observed. Our results indicated pollen composition was largely influenced by floristic local biodiversity, plant phenology, and the presence of alien flowering species. Therefore, pollen molecular characterization based on DNA barcoding might serve useful to beekeepers in obtaining honeybee products with specific nutritional or therapeutic characteristics desired by food market demands.

  14. Two-Stage Indicators to Assess Learning Curves for Minimally Invasive Ivor Lewis Esophagectomy.

    Science.gov (United States)

    Wang, Qi; Wu, Zixiang; Chen, Gang; Zhang, Sai; Shen, Gang; Wu, Ming

    2016-10-05

    Background Minimally invasive esophagectomy (MIE) Ivor Lewis has been increasingly performed over the last two decades. To guide the implementation of this technically demanding procedure, a comprehensive assessment of MIE-Ivor Lewis learning curves should include both the general competence to accomplish the procedure and the ability to generate oncological benefits. These objectives are believed to be associated with different phases of the learning curve. Methods A retrospective review of the first 109 patients who underwent MIE-Ivor Lewis by a single qualified surgeon was conducted. Relevant variables were collected and assessed by regression analysis to identify suitable indicators for patient stratification and learning curve assessment. Thereafter, the differential analysis was performed among groups to validate the learning curve model. Results Two variables, intrathoracic gastroesophageal anastomosis time and bilateral recurrent laryngeal nerve (RLN) lymphadenectomy number, which plateaued, respectively, after the 26th and 88th cases, were selected as meaningful indicators to identify different competence levels. Therefore, 109 patients were chronologically subcategorized into three groups (the first 26 MIEs as the early group, the next 62 cases as the middle group, and 21 most recent cases as the late group). Perioperative data were compared between groups with positive results to indicate a three-phase model for a learning curve for MIE-Ivor Lewis. Conclusions An MIE-Ivor Lewis learning curve should include three discrete phases that indicate, successively, unskilled operation (general competence to accomplish, less proficiency), surgical proficiency, and oncological efficacy. Intrathoracic anastomosis time and bilateral RLN lymphadenectomy were identified as suitable indicators delineate the different stages of an MIE-Ivor Lewis learning curve.

  15. (Collection of high quality acoustical records for honeybees)

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, H.T.; Buchanan, M.E.

    1987-02-19

    High quality acoustical data records were collected for both European and Africanized honeybees under various field conditions. This data base was needed for more rigorous evaluation of a honeybee identification technique previously developed by the travelers from preliminary data sets. Laboratory-grade recording equipment was used to record sounds made by honeybees in and near their nests and during foraging flights. Recordings were obtained from European and Africanized honeybees in the same general environment. Preliminary analyses of the acoustical data base clearly support the general identification algorithm: Africanized honeybee noise has significantly higher frequency content than does European honeybee noise. As this algorithm is refined, it may result in the development of a simple field-portable device for identifying subspecies of honeybees. Further, the honeybee's acoustical signals appear to be correlated with specific colony conditions. Understanding these variations may have enormous benefit for entomologists and for the beekeeping industry.

  16. Assessment of nutritional resources quality from honeybees (Apis ...

    African Journals Online (AJOL)

    concentrations of ten essential amino acids for bees were within the optimum range of food needs for honeybees (set for ... for determining the health of honeybees in the ..... 1: Kisangani, 2: Mampu, 3: Kavwaya, F: fructose and G: glucose.

  17. Ontogeny of orientation flight in the honeybee revealed by harmonic radar.

    Science.gov (United States)

    Capaldi, E A; Smith, A D; Osborne, J L; Fahrbach, S E; Farris, S M; Reynolds, D R; Edwards, A S; Martin, A; Robinson, G E; Poppy, G M; Riley, J R

    2000-02-01

    Cognitive ethology focuses on the study of animals under natural conditions to reveal ecologically adapted modes of learning. But biologists can more easily study what an animal learns than how it learns. For example, honeybees take repeated 'orientation' flights before becoming foragers at about three weeks of age. These flights are a prerequisite for successful homing. Little is known about these flights because orienting bees rapidly fly out of the range of human observation. Using harmonic radar, we show for the first time a striking ontogeny to honeybee orientation flights. With increased experience, bees hold trip duration constant but fly faster, so later trips cover a larger area than earlier trips. In addition, each flight is typically restricted to a narrow sector around the hive. Orientation flights provide honeybees with repeated opportunities to view the hive and landscape features from different viewpoints, suggesting that bees learn the local landscape in a progressive fashion. We also show that these changes in orientation flight are related to the number of previous flights taken instead of chronological age, suggesting a learning process adapted to changes in weather conditions, flower availability and the needs of bee colonies.

  18. Learning curve of a complex surgical technique: minimally invasive transforaminal lumbar interbody fusion (MIS TLIF).

    Science.gov (United States)

    Lee, Kong Hwee; Yeo, William; Soeharno, Henry; Yue, Wai Mun

    2014-10-01

    Prospective cohort study. This study aimed to evaluate the learning curve of minimally invasive transforaminal lumbar interbody fusion (MIS TLIF). Very few studies have evaluated the learning curve of this technically demanding surgery. We intend to evaluate the learning curve of MIS TLIF with a larger sample size and assess surgical competence based not only on operative time but with perioperative variables, clinical and radiologic outcomes, incidence of complications, and patient satisfaction. From 2005 to 2009, the first 90 single-level MIS TLIF, which utilized a consistent technique and spinal instrumentation, performed by a single surgeon at our tertiary institution were studied. Variables studied included operative time, perioperative variables, clinical (Visual Analogue Scores for back and leg pain, Oswestry Disability Index, North American Spine Society Scores for neurogenic symptoms) and radiologic outcomes, incidence of complications and patient rating of expectation met, and the overall result of surgery. The asymptote of the surgeon's learning curve for MIS TLIF was achieved at the 44th case. Comparing the early group of 44 patients to the latter 46, the demographics were similar. For operative parameters, only 3 variables showed differences between the 2 groups: mean operative duration, fluoroscopy duration, and usage of patient-controlled analgesia. At the final follow-up, for clinical outcome parameters, the 2 groups were different in 3 parameters: VAS scores for back, leg pain, and neurogenic symptom scores. For radiologic outcome, both groups showed similar good fusion rates. For complications, none of the MIS TLIF cases were converted to open TLIF intraoperatively. In the early group, there were 3 complications: 1 incidental durotomy and 2 asymptomatic cage migrations; and in the latter group, there was 1 asymptomatic cage migration. In our study, technical proficiency in MIS TLIF was achieved after 44 surgeries, and the latter patients benefited

  19. Rare royal families in honeybees, Apis mellifera

    Science.gov (United States)

    Moritz, Robin F. A.; Lattorff, H. Michael G.; Neumann, Peter; Kraus, F. Bernhard; Radloff, Sarah E.; Hepburn, H. Randall

    2005-10-01

    The queen is the dominant female in the honeybee colony, Apis mellifera, and controls reproduction. Queen larvae are selected by the workers and are fed a special diet (royal jelly), which determines caste. Because queens mate with many males a large number of subfamilies coexist in the colony. As a consequence, there is a considerable potential for conflict among the subfamilies over queen rearing. Here we show that honeybee queens are not reared at random but are preferentially reared from rare “royal” subfamilies, which have extremely low frequencies in the colony's worker force but a high frequency in the queens reared.

  20. Analysis of the waggle dance motion of honeybees for the design of a biomimetic honeybee robot.

    Directory of Open Access Journals (Sweden)

    Tim Landgraf

    Full Text Available The honeybee dance "language" is one of the most popular examples of information transfer in the animal world. Today, more than 60 years after its discovery it still remains unknown how follower bees decode the information contained in the dance. In order to build a robotic honeybee that allows a deeper investigation of the communication process we have recorded hundreds of videos of waggle dances. In this paper we analyze the statistics of visually captured high-precision dance trajectories of European honeybees (Apis mellifera carnica. The trajectories were produced using a novel automatic tracking system and represent the most detailed honeybee dance motion information available. Although honeybee dances seem very variable, some properties turned out to be invariant. We use these properties as a minimal set of parameters that enables us to model the honeybee dance motion. We provide a detailed statistical description of various dance properties that have not been characterized before and discuss the role of particular dance components in the commmunication process.

  1. Analysis of the Waggle Dance Motion of Honeybees for the Design of a Biomimetic Honeybee Robot

    Science.gov (United States)

    Landgraf, Tim; Rojas, Raúl; Nguyen, Hai; Kriegel, Fabian; Stettin, Katja

    2011-01-01

    The honeybee dance “language” is one of the most popular examples of information transfer in the animal world. Today, more than 60 years after its discovery it still remains unknown how follower bees decode the information contained in the dance. In order to build a robotic honeybee that allows a deeper investigation of the communication process we have recorded hundreds of videos of waggle dances. In this paper we analyze the statistics of visually captured high-precision dance trajectories of European honeybees (Apis mellifera carnica). The trajectories were produced using a novel automatic tracking system and represent the most detailed honeybee dance motion information available. Although honeybee dances seem very variable, some properties turned out to be invariant. We use these properties as a minimal set of parameters that enables us to model the honeybee dance motion. We provide a detailed statistical description of various dance properties that have not been characterized before and discuss the role of particular dance components in the commmunication process. PMID:21857906

  2. Effects of Sublethal Doses of Imidacloprid on Young Adult Honeybee Behaviour.

    Directory of Open Access Journals (Sweden)

    Carolina Mengoni Goñalons

    Full Text Available Imidacloprid (IMI, a neonicotinoid used for its high selective toxicity to insects, is one of the most commonly used pesticides. However, its effect on beneficial insects such as the honeybee Apis mellifera L is still controversial. As young adult workers perform in-hive duties that are crucial for colony maintenance and survival, we aimed to assess the effect of sublethal IMI doses on honeybee behaviour during this period. Also, because this insecticide acts as a cholinergic-nicotinic agonist and these pathways take part in insect learning and memory processes; we used IMI to assess their role and the changes they suffer along early adulthood. We focused on appetitive behaviours based on the proboscis extension response. Laboratory reared adults of 2 to 10 days of age were exposed to sublethal IMI doses (0.25 or 0.50ng administered orally or topically prior to behavioural assessment. Modification of gustatory responsiveness and impairment of learning and memory were found as a result of IMI exposure. These outcomes differed depending on age of evaluation, type of exposure and IMI dose, being the youngest bees more sensitive and the highest oral dose more toxic. Altogether, these results imply that IMI administered at levels found in agroecosystems can reduce sensitivity to reward and impair associative learning in young honeybees. Therefore, once a nectar inflow with IMI traces is distributed within the hive, it could impair in-door duties with negative consequences on colony performance.

  3. Effects of Sublethal Doses of Imidacloprid on Young Adult Honeybee Behaviour

    Science.gov (United States)

    Mengoni Goñalons, Carolina; Farina, Walter Marcelo

    2015-01-01

    Imidacloprid (IMI), a neonicotinoid used for its high selective toxicity to insects, is one of the most commonly used pesticides. However, its effect on beneficial insects such as the honeybee Apis mellifera L is still controversial. As young adult workers perform in-hive duties that are crucial for colony maintenance and survival, we aimed to assess the effect of sublethal IMI doses on honeybee behaviour during this period. Also, because this insecticide acts as a cholinergic-nicotinic agonist and these pathways take part in insect learning and memory processes; we used IMI to assess their role and the changes they suffer along early adulthood. We focused on appetitive behaviours based on the proboscis extension response. Laboratory reared adults of 2 to 10 days of age were exposed to sublethal IMI doses (0.25 or 0.50ng) administered orally or topically prior to behavioural assessment. Modification of gustatory responsiveness and impairment of learning and memory were found as a result of IMI exposure. These outcomes differed depending on age of evaluation, type of exposure and IMI dose, being the youngest bees more sensitive and the highest oral dose more toxic. Altogether, these results imply that IMI administered at levels found in agroecosystems can reduce sensitivity to reward and impair associative learning in young honeybees. Therefore, once a nectar inflow with IMI traces is distributed within the hive, it could impair in-door duties with negative consequences on colony performance. PMID:26488410

  4. Honeybees, Butterflies, and Ladybugs: Partners to Plants

    Science.gov (United States)

    Campbell, Ashley

    2009-01-01

    Honeybees, butterflies, and ladybugs all have fascinating mutually beneficial relationships with plants and play important ecosystem roles. Children also love these creatures. But how do we teach children about these symbiotic interactions and help them appreciate their vital roles in our environment? One must is to give children direct experience…

  5. Honeybees, Butterflies, and Ladybugs: Partners to Plants

    Science.gov (United States)

    Campbell, Ashley

    2009-01-01

    Honeybees, butterflies, and ladybugs all have fascinating mutually beneficial relationships with plants and play important ecosystem roles. Children also love these creatures. But how do we teach children about these symbiotic interactions and help them appreciate their vital roles in our environment? One must is to give children direct experience…

  6. Honeybee communication: a signal for danger.

    Science.gov (United States)

    Srinivasan, Mandyam V

    2010-04-27

    Scout honeybees recruit other bees to visit a newly discovered food source through the famous 'waggle dance'. Now a new study reports that other nest mates can induce the dancer to stop advertising, if they have experienced danger at that location.

  7. Tualatin River - Urban Refuge Combating Invasive Species through Learning and Participating

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This grant is 2 pronged with a strong focus on invasive species outreach and education and a supporting focus on active field management of native/invasive species....

  8. Honeybee navigation: following routes using polarized-light cues.

    Science.gov (United States)

    Kraft, P; Evangelista, C; Dacke, M; Labhart, T; Srinivasan, M V

    2011-03-12

    While it is generally accepted that honeybees (Apis mellifera) are capable of using the pattern of polarized light in the sky to navigate to a food source, there is little or no direct behavioural evidence that they actually do so. We have examined whether bees can be trained to find their way through a maze composed of four interconnected tunnels, by using directional information provided by polarized light illumination from the ceilings of the tunnels. The results show that bees can learn this task, thus demonstrating directly, and for the first time, that bees are indeed capable of using the polarized-light information in the sky as a compass to steer their way to a food source.

  9. Conditioning procedure and color discrimination in the honeybee Apis mellifera

    Science.gov (United States)

    Giurfa, Martin

    We studied the influence of the conditioning procedure on color discrimination by free-flying honeybees. We asked whether absolute and differential conditioning result in different discrimination capabilities for the same pairs of colored targets. In absolute conditioning, bees were rewarded on a single color; in differential conditioning, bees were rewarded on the same color but an alternative, non-rewarding, similar color was also visible. In both conditioning procedures, bees learned their respective task and could also discriminate the training stimulus from a novel stimulus that was perceptually different from the trained one. Discrimination between perceptually closer stimuli was possible after differential conditioning but not after absolute conditioning. Differences in attention inculcated by these training procedures may underlie the different discrimination performances of the bees.

  10. Africanized honeybees in urban areas: a public health concern

    Directory of Open Access Journals (Sweden)

    Rodrigo Zaluski

    2014-10-01

    Full Text Available Introduction This study aimed to investigate the occurrence of Africanized honeybees in Botucatu, São Paulo, Brazil, and to implement a program to remove such swarms. Methods The occurrences of Africanized honeybee swarms between 2010 and 2012 were studied and strategies to prevent accidents were developed. Results We noted 1,164 cases of Africanized honeybee occurrences in the city, and 422 swarms were collected. The developed strategies to prevent accidents were disseminated to the population. Conclusions We contributed to reducing the risks represented by Africanized honeybee swarms in urban areas, by collecting swarms and disseminating strategic information for preventing accidents.

  11. Novel biopesticide based on a spider venom peptide shows no adverse effects on honeybees.

    Science.gov (United States)

    Nakasu, Erich Y T; Williamson, Sally M; Edwards, Martin G; Fitches, Elaine C; Gatehouse, John A; Wright, Geraldine A; Gatehouse, Angharad M R

    2014-07-22

    Evidence is accumulating that commonly used pesticides are linked to decline of pollinator populations; adverse effects of three neonicotinoids on bees have led to bans on their use across the European Union. Developing insecticides that pose negligible risks to beneficial organisms such as honeybees is desirable and timely. One strategy is to use recombinant fusion proteins containing neuroactive peptides/proteins linked to a 'carrier' protein that confers oral toxicity. Hv1a/GNA (Galanthus nivalis agglutinin), containing an insect-specific spider venom calcium channel blocker (ω-hexatoxin-Hv1a) linked to snowdrop lectin (GNA) as a 'carrier', is an effective oral biopesticide towards various insect pests. Effects of Hv1a/GNA towards a non-target species, Apis mellifera, were assessed through a thorough early-tier risk assessment. Following feeding, honeybees internalized Hv1a/GNA, which reached the brain within 1 h after exposure. However, survival was only slightly affected by ingestion (LD50>100 µg bee(-1)) or injection of fusion protein. Bees fed acute (100 µg bee(-1)) or chronic (0.35 mg ml(-1)) doses of Hv1a/GNA and trained in an olfactory learning task had similar rates of learning and memory to no-pesticide controls. Larvae were unaffected, being able to degrade Hv1a/GNA. These tests suggest that Hv1a/GNA is unlikely to cause detrimental effects on honeybees, indicating that atracotoxins targeting calcium channels are potential alternatives to conventional pesticides.

  12. Defensive behaviour of Apis mellifera against Vespa velutina in France: testing whether European honeybees can develop an effective collective defence against a new predator.

    Science.gov (United States)

    Arca, Mariangela; Papachristoforou, Alexandros; Mougel, Florence; Rortais, Agnès; Monceau, Karine; Bonnard, Olivier; Tardy, Pascal; Thiéry, Denis; Silvain, Jean-François; Arnold, Gérard

    2014-07-01

    We investigated the prey-predator interactions between the European honeybee, Apis mellifera, and the invasive yellow-legged hornet, Vespa velutina, which first invaded France in 2004 and thereafter spread to neighbouring European countries (Spain, Portugal and Italy). Our goal was to determine how successfully honeybees are able to defend their colonies against their new predator in Europe. Experiments were conducted in the southwest of France-the point of entry of the hornet in Europe-under natural and semi-controlled field conditions. We investigated a total of eight apiaries and 95 colonies subjected to either low or high levels of predation. We analyzed hornet predatory behaviour and collective response of colonies under attack. The results showed that A. mellifera in France exhibit an inefficient and unorganized defence against V. velutina, unlike in other regions of Europe and other areas around the globe where honeybees have co-evolved with their natural Vespa predators.

  13. CaMKII knockdown affects both early and late phases of olfactory long-term memory in the honeybee.

    Science.gov (United States)

    Scholl, Christina; Kübert, Natalie; Muenz, Thomas S; Rössler, Wolfgang

    2015-12-01

    Honeybees are able to solve complex learning tasks and memorize learned information for long time periods. The molecular mechanisms mediating long-term memory (LTM) in the honeybee Apis mellifera are, to a large part, still unknown. We approached this question by investigating the potential function of the calcium/calmodulin-dependent protein kinase II (CaMKII), an enzyme known as a 'molecular memory switch' in vertebrates. CaMKII is able to switch to a calcium-independent constitutively active state, providing a mechanism for a molecular memory and has further been shown to play an essential role in structural synaptic plasticity. Using a combination of knockdown by RNA interference and pharmacological manipulation, we disrupted the function of CaMKII during olfactory learning and memory formation. We found that learning, memory acquisition and mid-term memory were not affected, but all manipulations consistently resulted in an impaired LTM. Both early LTM (24 h after learning) and late LTM (72 h after learning) were significantly disrupted, indicating the necessity of CaMKII in two successive stages of LTM formation in the honeybee. © 2015. Published by The Company of Biologists Ltd.

  14. Modeling Decentralized Organizational Change in Honeybee Societies

    OpenAIRE

    Hoogendoorn, Mark; Schut, Martijn; Treur, Jan

    2006-01-01

    Multi-agent organizations in dynamic environments, need to have the ability to adapt to environmental changes to ensure a continuation of proper functioning. Such adaptations can be made through a centralized decision process or come from the individuals within the organization. In the domain of social insects, such as honeybees and wasps, organizations are known to adapt in a decentralized fashion to environmental changes. An organizational model for decentralized organizational change is pr...

  15. Harmful Effects of Biocides on Honeybees

    OpenAIRE

    GÜREL, Yasemin; Çarhan, Ahmet; KOÇ, Feride; Daş, Yavuz Kürşad

    2015-01-01

    Biocides are chemical substances which are use to fight against harmful insects around residential areas and enviroment. Furthermore, drink water disinfectans, hospital and food industry disinfectants are also included as biocidal products. Recently, biocidal products are blamed for the honeybee loss and colony collapse disorder (CCD). There are several factors have been determined for CCD in some countries (Fletcher and Barnett, 2003, Rortais and col., 2005; Underwood and vanEngelsdorp ve co...

  16. Social waves in giant honeybees repel hornets.

    Directory of Open Access Journals (Sweden)

    Gerald Kastberger

    Full Text Available Giant honeybees (Apis dorsata nest in the open and have evolved a plethora of defence behaviors. Against predatory wasps, including hornets, they display highly coordinated Mexican wave-like cascades termed 'shimmering'. Shimmering starts at distinct spots on the nest surface and then spreads across the nest within a split second whereby hundreds of individual bees flip their abdomens upwards. However, so far it is not known whether prey and predator interact and if shimmering has anti-predatory significance. This article reports on the complex spatial and temporal patterns of interaction between Giant honeybee and hornet exemplified in 450 filmed episodes of two A. dorsata colonies and hornets (Vespa sp.. Detailed frame-by-frame analysis showed that shimmering elicits an avoidance response from the hornets showing a strong temporal correlation with the time course of shimmering. In turn, the strength and the rate of the bees' shimmering are modulated by the hornets' flight speed and proximity. The findings suggest that shimmering creates a 'shelter zone' of around 50 cm that prevents predatory wasps from foraging bees directly from the nest surface. Thus shimmering appears to be a key defence strategy that supports the Giant honeybees' open-nesting life-style.

  17. Social Waves in Giant Honeybees Repel Hornets

    Science.gov (United States)

    Kastberger, Gerald; Schmelzer, Evelyn; Kranner, Ilse

    2008-01-01

    Giant honeybees (Apis dorsata) nest in the open and have evolved a plethora of defence behaviors. Against predatory wasps, including hornets, they display highly coordinated Mexican wave-like cascades termed ‘shimmering’. Shimmering starts at distinct spots on the nest surface and then spreads across the nest within a split second whereby hundreds of individual bees flip their abdomens upwards. However, so far it is not known whether prey and predator interact and if shimmering has anti-predatory significance. This article reports on the complex spatial and temporal patterns of interaction between Giant honeybee and hornet exemplified in 450 filmed episodes of two A. dorsata colonies and hornets (Vespa sp.). Detailed frame-by-frame analysis showed that shimmering elicits an avoidance response from the hornets showing a strong temporal correlation with the time course of shimmering. In turn, the strength and the rate of the bees' shimmering are modulated by the hornets' flight speed and proximity. The findings suggest that shimmering creates a ‘shelter zone’ of around 50 cm that prevents predatory wasps from foraging bees directly from the nest surface. Thus shimmering appears to be a key defence strategy that supports the Giant honeybees' open-nesting life-style. PMID:18781205

  18. Magnetoreception system in honeybees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Chin-Yuan Hsu

    Full Text Available Honeybees (Apis mellifera undergo iron biomineralization, providing the basis for magnetoreception. We showed earlier the presence of superparamagnetic magnetite in iron granules formed in honeybees, and subscribed to the notion that external magnetic fields may cause expansion or contraction of the superparamagnetic particles in an orientation-specific manner, relaying the signal via cytoskeleton (Hsu and Li 1994. In this study, we established a size-density purification procedure, with which quantitative amount of iron granules was obtained from honey bee trophocytes and characterized; the density of iron granules was determined to be 1.25 g/cm(3. While we confirmed the presence of superparamagnetic magnetite in the iron granules, we observed changes in the size of the magnetic granules in the trophycytes upon applying additional magnetic field to the cells. A concomitant release of calcium ion was observed by confocal microscope. This size fluctuation triggered the increase of intracellular Ca(+2 , which was inhibited by colchicines and latrunculin B, known to be blockers for microtubule and microfilament syntheses, respectively. The associated cytoskeleton may thus relay the magnetosignal, initiating a neural response. A model for the mechanism of magnetoreception in honeybees is proposed, which may be applicable to most, if not all, magnetotactic organisms.

  19. Collective fluid mechanics of honeybee nest ventilation

    Science.gov (United States)

    Gravish, Nick; Combes, Stacey; Wood, Robert J.; Peters, Jacob

    2014-11-01

    Honeybees thermoregulate their brood in the warm summer months by collectively fanning their wings and creating air flow through the nest. During nest ventilation workers flap their wings in close proximity in which wings continuously operate in unsteady oncoming flows (i.e. the wake of neighboring worker bees) and near the ground. The fluid mechanics of this collective aerodynamic phenomena are unstudied and may play an important role in the physiology of colony life. We have performed field and laboratory observations of the nest ventilation wing kinematics and air flow generated by individuals and groups of honeybee workers. Inspired from these field observations we describe here a robotic model system to study collective flapping wing aerodynamics. We microfabricate arrays of 1.4 cm long flapping wings and observe the air flow generated by arrays of two or more fanning robotic wings. We vary phase, frequency, and separation distance among wings and find that net output flow is enhanced when wings operate at the appropriate phase-distance relationship to catch shed vortices from neighboring wings. These results suggest that by varying position within the fanning array honeybee workers may benefit from collective aerodynamic interactions during nest ventilation.

  20. Educational outreach and impacts of white-tailed deer browse on native and invasive plants at the Crooked Creek Environmental Learning Center, Armstrong County, Pennsylvania

    Science.gov (United States)

    Lindsay, Lisa O.

    Overabundance of deer can assist the intrusion of invasive plants through browse, leading to homogenization of plant communities. Public attitudes towards native and invasive plant species and white-tailed deer browse related to personal experiences, can be changed through education focusing public awareness of ramifications of deer browse on native and invasive plants. I developed an interactive, interpretive Self-Guided Walking Tour brochure of the "You Can Trail" to provide an educational outreach program for visitors of Crooked Creek Environmental Learning Center that includes ecologically important native and invasive plants species from my investigation. This research study focuses on the overall abundance of native and invasive plant species once Odocoileus virginianus have been removed from the landscape during collection periods in June and September 2013 from exclosure and access plots that were maintained for seven years. Similarity of abundance were found in native and invasive abundance of forbs, bushes and percentage of ground cover. Differences included native bush volume being greater than invasive bush volume in the access plot in June with opposing results in the exclosure plot, being greater in invasive bush volume. However, in September, native and invasive bush volume was similar within the exclosure plot, while invasive bush volume decreased in the access plot. Invasive vines recorded in the June access plot were absent in the September collection period.

  1. Modelling the subgenual organ of the honeybee, Apis mellifera

    DEFF Research Database (Denmark)

    Storm, Jesper; Kilpinen, Ole

    1998-01-01

    In a recent study on the honeybee (Apis mellifera), the subgenual organ was observed moving inside the leg during sinusoidal vibrations of the leg (Kilpinen and Storm 1997). The subgenual organ of the honeybee is suspended in a haemolymph channel in the tibia of each leg. When the leg accelerates...

  2. Comparison of learning and memory of Apis cerana and Apis mellifera.

    Science.gov (United States)

    Qin, Qiu-Hong; He, Xu-Jiang; Tian, Liu-Qing; Zhang, Shao-Wu; Zeng, Zhi-Jiang

    2012-10-01

    The honeybee is an excellent model organism for research on learning and memory among invertebrates. Learning and memory in honeybees has intrigued neuroscientists and entomologists in the last few decades, but attention has focused almost solely on the Western honeybee, Apis mellifera. In contrast, there have been few studies on learning and memory in the Eastern honeybee, Apis cerana. Here we report comparative behavioral data of color and grating learning and memory for A. cerana and A. mellifera in China, gathered using a Y-maze apparatus. We show for the first time that the learning and memory performance of A. cerana is significantly better on both color and grating patterns than that of A. mellifera. This study provides the first evidence of a learning and memory difference between A. cerana and A. mellifera under controlled conditions, and it is an important basis for the further study of the mechanism of learning and memory in honeybees.

  3. Effects of morphine on associative memory and locomotor activity in the honeybee (Apis mellifera)

    Institute of Scientific and Technical Information of China (English)

    Yu Fu; Yanmei Chen; Tao Yao; Peng Li; Yuanye Ma; Jianhong Wang

    2013-01-01

    Morphine can modulate the processes underlying memory in vertebrates.However,studies have shown various modulations by morphine:positive,negative and even neutral.The honeybee is a potential platform for evaluating the effects of drugs,especially addictive drugs,on the nervous system.However,the involvement of morphine in learning and memory in insects or other invertebrates is poorly understood.The current work evaluated whether morphine affects memory acquisition,consolidation and retrieval in honeybees,using the proboscis extension response (PER) paradigm.We demonstrated that morphine treatment (5 μg/bee) before training decreased the percentage of correct PERs and the response latency related to aversive rather than rewarding odors when tested after 1 or 24 h.Morphine treatment after training also caused a decrease in this latency when tested after 24 h.Meanwhile,morphine treatment reduced the ambulation distance when tested after 30 min.Our findings suggest that morphine impairs the acquisition of short-and long-term associative memory and slightly disrupts the consolidation of long-term memory in honeybees.These negative effects cannot be explained by reduced locomotion but by impaired memory associated with aversion.

  4. Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics.

    Science.gov (United States)

    Srinivasan, Mandyam V

    2011-04-01

    Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles.

  5. Honeybee Kenyon cells are regulated by a tonic GABA receptor conductance.

    Science.gov (United States)

    Palmer, Mary J; Harvey, Jenni

    2014-10-15

    The higher cognitive functions of insects are dependent on their mushroom bodies (MBs), which are particularly large in social insects such as honeybees. MB Kenyon cells (KCs) receive multisensory input and are involved in associative learning and memory. In addition to receiving sensory input via excitatory nicotinic synapses, KCs receive inhibitory GABAergic input from MB feedback neurons. Cultured honeybee KCs exhibit ionotropic GABA receptor currents, but the properties of GABA-mediated inhibition in intact MBs are currently unknown. Here, using whole cell recordings from KCs in acutely isolated honeybee brain, we show that KCs exhibit a tonic current that is inhibited by picrotoxin but not by bicuculline. Bath application of GABA (5 μM) and taurine (1 mM) activate a tonic current in KCs, but l-glutamate (0.1-0.5 mM) has no effect. The tonic current is strongly potentiated by the allosteric GABAA receptor modulator pentobarbital and is reduced by inhibition of Ca(2+) channels with Cd(2+) or nifedipine. Noise analysis of the GABA-evoked current gives a single-channel conductance value for the underlying receptors of 27 ± 3 pS, similar to that of resistant to dieldrin (RDL) receptors. The amount of injected current required to evoke action potential firing in KCs is significantly lower in the presence of picrotoxin. KCs recorded in an intact honeybee head preparation similarly exhibit a tonic GABA receptor conductance that reduces neuronal excitability, a property that is likely to contribute to the sparse coding of sensory information in insect MBs.

  6. 蜜蜂大脑的分区与功能%The different functional compartments of the honeybee brain

    Institute of Scientific and Technical Information of China (English)

    赵慧霞; 郑火青; 胡福良

    2012-01-01

    蜜蜂Apis mellifera L.是神经生物学研究的重要模式生物.尽管工蜂脑的体积不足1 mm3,包含的神经元数量不到百万,但却拥有丰富的个体和社会行为,甚至还有学习、记忆、认知等高级行为.如此微小的大脑也是通过不同结构分区来实现其丰富复杂的行为.本文对蜜蜂大脑的精细解剖结构以及脑区功能研究进行了综述,为昆虫科学和神经生物学研究提供参考.%The honeybee (Apis mellifera L. ) is an important model organism for neurobiological research. Though the brain volume of worker honeybees is no more than one cubic millimeter and contains less than one million neurones, honeybees have rich behavioral repertoires including learning, memory and cognition. This mini-brain also uses different brain compartments to perform complex behaviors. Here we review progress in research on honeybee brain form and function to provide a reference for domestic entomological and neurobiological study.

  7. [New Approach to the Mitotype Classification in Black Honeybee Apis mellifera mellifera and Iberian Honeybee Apis mellifera iberiensis].

    Science.gov (United States)

    Ilyasov, R A; Poskryakov, A V; Petukhov, A V; Nikolenko, A G

    2016-03-01

    The black honeybee Apis mellifera mellifera L. is today the only subspecies of honeybee which is suitable for commercial breeding in the climatic conditions of Northern Europe with long cold winters. The main problem of the black honeybee in Russia and European countries is the preservation of the indigenous gene pool purity, which is lost as a result of hybridization with subspecies, A. m. caucasica, A. m. carnica, A. m. carpatica, and A. m. armeniaca, introduced from southern regions. Genetic identification of the subspecies will reduce the extent of hybridization and provide the gene pool conservation of the black honeybee. Modern classification of the honeybee mitotypes is mainly based on the combined use ofthe DraI restriction endonuclease recognition site polymorphism and sequence polymorphism of the mtDNA COI-COII region. We performed a comparative analysis of the mtDNA COI-COII region sequence polymorphism in the honeybees ofthe evolutionary lineage M from Ural and West European populations of black honeybee A. m. mellifera and Spanish bee A. m. iberiensis. A new approach to the classification of the honeybee M mitotypes was suggested. Using this approach and on the basis of the seven most informative SNPs of the mtDNA COI-COII region, eight honeybee mitotype groups were identified. In addition, it is suggested that this approach will simplify the previously proposed complicated mitotype classification and will make it possible to assess the level of the mitotype diversity and to identify the mitotypes that are the most valuable for the honeybee breeding and rearing.

  8. Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent

    Science.gov (United States)

    Cruz-Roa, Angel; Gilmore, Hannah; Basavanhally, Ajay; Feldman, Michael; Ganesan, Shridar; Shih, Natalie N. C.; Tomaszewski, John; González, Fabio A.; Madabhushi, Anant

    2017-04-01

    With the increasing ability to routinely and rapidly digitize whole slide images with slide scanners, there has been interest in developing computerized image analysis algorithms for automated detection of disease extent from digital pathology images. The manual identification of presence and extent of breast cancer by a pathologist is critical for patient management for tumor staging and assessing treatment response. However, this process is tedious and subject to inter- and intra-reader variability. For computerized methods to be useful as decision support tools, they need to be resilient to data acquired from different sources, different staining and cutting protocols and different scanners. The objective of this study was to evaluate the accuracy and robustness of a deep learning-based method to automatically identify the extent of invasive tumor on digitized images. Here, we present a new method that employs a convolutional neural network for detecting presence of invasive tumor on whole slide images. Our approach involves training the classifier on nearly 400 exemplars from multiple different sites, and scanners, and then independently validating on almost 200 cases from The Cancer Genome Atlas. Our approach yielded a Dice coefficient of 75.86%, a positive predictive value of 71.62% and a negative predictive value of 96.77% in terms of pixel-by-pixel evaluation compared to manually annotated regions of invasive ductal carcinoma.

  9. A comparative analysis of lactic acid bacteria isolated from honeybee gut and flowers, with focus on phylogeny and plasmid profiling

    OpenAIRE

    Linjordet, Marte S.

    2016-01-01

    Apis mellifera (honeybee) are of huge value as they are the most important pollinator worldwide. Declines in honeybee populations have made the honeybee subject to much scientific research. Lactic acid bacteria (LAB) have been discovered in the honeybee gut and are believed to be of great importance to the honeybee health, protecting them against bee pathogens. Comparing LAB communities in the honeybee gut to those found on flowers may help highlight the route and importance of floral transmi...

  10. Olfactory coding in the honeybee lateral horn.

    Science.gov (United States)

    Roussel, Edith; Carcaud, Julie; Combe, Maud; Giurfa, Martin; Sandoz, Jean-Christophe

    2014-03-03

    Olfactory systems dynamically encode odor information in the nervous system. Insects constitute a well-established model for the study of the neural processes underlying olfactory perception. In insects, odors are detected by sensory neurons located in the antennae, whose axons project to a primary processing center, the antennal lobe. There, the olfactory message is reshaped and further conveyed to higher-order centers, the mushroom bodies and the lateral horn. Previous work has intensively analyzed the principles of olfactory processing in the antennal lobe and in the mushroom bodies. However, how the lateral horn participates in olfactory coding remains comparatively more enigmatic. We studied odor representation at the input to the lateral horn of the honeybee, a social insect that relies on both floral odors for foraging and pheromones for social communication. Using in vivo calcium imaging, we show consistent neural activity in the honeybee lateral horn upon stimulation with both floral volatiles and social pheromones. Recordings reveal odor-specific maps in this brain region as stimulations with the same odorant elicit more similar spatial activity patterns than stimulations with different odorants. Odor-similarity relationships are mostly conserved between antennal lobe and lateral horn, so that odor maps recorded in the lateral horn allow predicting bees' behavioral responses to floral odorants. In addition, a clear segregation of odorants based on pheromone type is found in both structures. The lateral horn thus contains an odor-specific map with distinct representations for the different bee pheromones, a prerequisite for eliciting specific behaviors.

  11. Mathematical analysis of the honeybee waggle dance.

    Science.gov (United States)

    Okada, R; Ikeno, H; Kimura, T; Ohashi, Mizue; Aonuma, H; Ito, E

    2012-01-01

    A honeybee informs her nestmates of the location of a flower by doing a waggle dance. The waggle dance encodes both the direction of and distance to the flower from the hive. To reveal how the waggle dance benefits the colony, we created a Markov model of bee foraging behavior and performed simulation experiments by incorporating the biological parameters that we obtained from our own observations of real bees as well as from the literature. When two feeders were each placed 400 m away from the hive in different directions, a virtual colony in which honeybees danced and correctly transferred information (a normal, real bee colony) made significantly greater numbers of successful visits to the feeders compared to a colony with inaccurate information transfer. Howerer, when five feeders were each located 400 m from the hive, the inaccurate information transfer colony performed better than the normal colony. These results suggest that dancing's ability to communicate accurate information depends on the number of feeders. Furthermore, because non-dancing colonies always made significantly fewer visits than those two colonies, we concluded that dancing behavior is beneficial for hives' ability to visit food sources.

  12. Honeybee (Apis mellifera ligustica) drone embryo proteomes.

    Science.gov (United States)

    Li, Jianke; Fang, Yu; Zhang, Lan; Begna, Desalegn

    2011-03-01

    Little attention has been paid to the drone honeybee (Apis mellifera ligustica) which is a haploid individual carrying only the set of alleles that it inherits from its mother. Molecular mechanisms underlying drone embryogenesis are poorly understood. This study evaluated protein expression profiles of drone embryogenesis at embryonic ages of 24, 48 and 72h. More than 100 reproducible proteins were analyzed by mass spectrometry on 2D electrophoresis gels. Sixty-two proteins were significantly changed at the selected three experimental age points. Expression of the metabolic energy requirement-related protein peaked at the embryonic age of 48h, whereas development and metabolizing amino acid-related proteins expressed optimally at 72h. Cytoskeleton, protein folding and antioxidant-related proteins were highly expressed at 48 and 72h. Protein networks of the identified proteins were constructed and protein expressions were validated at the transcription level. This first proteomic study of drone embryogenesis in the honeybee may provide geneticists an exact timetable and candidate protein outline for further manipulations of drone stem cells.

  13. Tracking Invasive Birds: A Programme for Implementing Dynamic Open Inquiry Learning and Conservation Education

    Science.gov (United States)

    Zion, Michal; Spektor-Levy, Ornit; Orchan, Yotam; Shwartz, Assaf; Sadeh, Irit; Kark, Salit

    2011-01-01

    Among potential topics in the new science of biodiversity, understanding the characteristics and impact of invasive birds is an attractive subject to include as part of junior high school biology studies. Birds are aesthetic and raise curiosity. Curiosity about birds, combined with field observations, can stimulate students to ask authentic…

  14. Honeybee colony marketing and its implications for queen rearing ...

    African Journals Online (AJOL)

    Honeybee colony marketing and its implications for queen rearing and beekeeping ... This increased promotion is creating increasing demand for bee colonies in the ... which can cause genetic mix-up, disease transmissions and failure to

  15. Notch signalling mediates reproductive constraint in the adult worker honeybee

    Science.gov (United States)

    Duncan, Elizabeth J.; Hyink, Otto; Dearden, Peter K.

    2016-01-01

    The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen. PMID:27485026

  16. The status and future prospects of honeybee production in Africa ...

    African Journals Online (AJOL)

    The status and future prospects of honeybee production in Africa. ... The introduction of modern technologies and the improvement of the existing indigenous knowledge in beekeeping industry have shown major development ... Article Metrics.

  17. Propolis chemical composition and honeybee resistance against Varroa destructor.

    Science.gov (United States)

    Popova, M; Reyes, M; Le Conte, Y; Bankova, V

    2014-01-01

    Propolis is known as honeybee chemical defence against infections and parasites. Its chemical composition is variable and depends on the specificity of the local flora. However, there are no data concerning the relationship between propolis chemical composition and honeybee colony health. We tried to answer this question, studying the chemical composition of propolis of bee colonies from an apiary near Avignon, which are tolerant to Varroa destructor, comparing it with colonies from the same apiary which are non-tolerant to the mites. The results indicated that non-tolerant colonies collected more resin than the tolerant ones. The percentage of four biologically active compounds - caffeic acid and pentenyl caffeates - was higher in propolis from tolerant colonies. The results of this study pave the way to understanding the effect of propolis in individual and social immunity of the honeybees. Further studies are needed to clarify the relationship between propolis chemical composition and honeybee colony health.

  18. A review of African honeybees, behaviour and potential for ...

    African Journals Online (AJOL)

    Bulletin of Animal Health and Production in Africa ... to synthesize available information on African honeybee species and races and behaviour. The aim was to assess potential for options to increase beekeeping production and food security.

  19. Odor experiences during preimaginal stages cause behavioral and neural plasticity in adult honeybees

    Directory of Open Access Journals (Sweden)

    Gabriela eRamirez

    2016-06-01

    Full Text Available In eusocial insects, experiences acquired during the development have long-term consequences on mature behavior. In the honeybee that suffers profound changes associated with metamorphosis, the effect of odor experiences at larval instars on the subsequent physiological and behavioral response is still unclear. To address the impact of preimaginal experiences on the adult honeybee, colonies containing larvae were fed scented food. The effect of the preimaginal experiences with the food odor was assessed in learning performance, memory retention and generalization in 3-5- and 17-19-day-old bees, in the regulation of their expression of synaptic-related genes and in theperception and morphology of their antennae. Three-5 day old bees that experienced 1-hexanol (1-HEX as food scent responded more to the presentation of the odor during the 1-HEX conditioning than control bees (i.e. bees reared in colonies fed unscented food. Higher levels of PER to 1-HEX in this group also extent to HEXA, the most perceptually similar odor to the experienced one that we tested. These results were not observed for the group tested at older ages. In the brain of young adults, larval experiences triggered similar levels of neurexins and neuroligins expression, two proteins that have been involved in synaptic formation after associative learning. At the sensory periphery, the experience did not alter the number of the olfactory sensilla placoidea, but did reduce the electrical response of the antennae to the experienced and novel odor. Our study provides a new insight into the effects of preimaginal experiences in the honeybee and the mechanisms underlying olfactory plasticity at larval stage of holometabolous insects.

  20. Odor Experiences during Preimaginal Stages Cause Behavioral and Neural Plasticity in Adult Honeybees

    Science.gov (United States)

    Ramírez, Gabriela; Fagundez, Carol; Grosso, Juan P.; Argibay, Pablo; Arenas, Andrés; Farina, Walter M.

    2016-01-01

    In eusocial insects, experiences acquired during the development have long-term consequences on mature behavior. In the honeybee that suffers profound changes associated with metamorphosis, the effect of odor experiences at larval instars on the subsequent physiological and behavioral response is still unclear. To address the impact of preimaginal experiences on the adult honeybee, colonies containing larvae were fed scented food. The effect of the preimaginal experiences with the food odor was assessed in learning performance, memory retention and generalization in 3–5- and 17–19 day-old bees, in the regulation of their expression of synaptic-related genes and in the perception and morphology of their antennae. Three-five day old bees that experienced 1-hexanol (1-HEX) as food scent responded more to the presentation of the odor during the 1-HEX conditioning than control bees (i.e., bees reared in colonies fed unscented food). Higher levels of proboscis extension response (PER) to 1-HEX in this group also extended to HEXA, the most perceptually similar odor to the experienced one that we tested. These results were not observed for the group tested at older ages. In the brain of young adults, larval experiences triggered similar levels of neurexins (NRXs) and neuroligins (Nlgs) expression, two proteins that have been involved in synaptic formation after associative learning. At the sensory periphery, the experience did not alter the number of the olfactory sensilla placoidea, but did reduce the electrical response of the antennae to the experienced and novel odor. Our study provides a new insight into the effects of preimaginal experiences in the honeybee and the mechanisms underlying olfactory plasticity at larval stage of holometabolous insects. PMID:27375445

  1. Comparison of flight design of Asian honeybee drones

    OpenAIRE

    Radloff, Sarah; Randall Hepburn, H.; KOENIGER, Gudrun

    2003-01-01

    International audience; The excess power index (integrating body dry mass, thorax-to-body dry mass and wing surface area) was compared in drones of seven Asian Apis species. There are two statistically distinct groups of drones: drones of the dwarf honeybees form one class, all other Asian species belong to the second. Drones of dwarf honeybees have a 36% ergonomic advantage in power availability and 20% advantage in available excess power over all other drones. Comparisons of flight dimensio...

  2. Deformed wing virus implicated in overwintering honeybee colony losses.

    Science.gov (United States)

    Highfield, Andrea C; El Nagar, Aliya; Mackinder, Luke C M; Noël, Laure M-L J; Hall, Matthew J; Martin, Stephen J; Schroeder, Declan C

    2009-11-01

    The worldwide decline in honeybee colonies during the past 50 years has often been linked to the spread of the parasitic mite Varroa destructor and its interaction with certain honeybee viruses. Recently in the United States, dramatic honeybee losses (colony collapse disorder) have been reported; however, there remains no clear explanation for these colony losses, with parasitic mites, viruses, bacteria, and fungal diseases all being proposed as possible candidates. Common characteristics that most failing colonies share is a lack of overt disease symptoms and the disappearance of workers from what appears to be normally functioning colonies. In this study, we used quantitative PCR to monitor the presence of three honeybee viruses, deformed wing virus (DWV), acute bee paralysis virus (ABPV), and black queen cell virus (BQCV), during a 1-year period in 15 asymptomatic, varroa mite-positive honeybee colonies in Southern England, and 3 asymptomatic colonies confirmed to be varroa mite free. All colonies with varroa mites underwent control treatments to ensure that mite populations remained low throughout the study. Despite this, multiple virus infections were detected, yet a significant correlation was observed only between DWV viral load and overwintering colony losses. The long-held view has been that DWV is relatively harmless to the overall health status of honeybee colonies unless it is in association with severe varroa mite infestations. Our findings suggest that DWV can potentially act independently of varroa mites to bring about colony losses. Therefore, DWV may be a major factor in overwintering colony losses.

  3. Aspects of Honeybee Natural History According to the Solega

    Directory of Open Access Journals (Sweden)

    Aung Si

    2013-07-01

    Full Text Available Honeybees and their products are highly prized by many cultures around the world, and as a result, indigenous communities have come to possess rich and detailed knowledge of the biology of these important insects. In this paper, I present an in-depth investigation into some aspects of honeybee natural history, as related to me by the Solega people of southern India. The Solega recognize, name, and exploit four honeybee species, and are well aware of the geographical and temporal distributions of each one. In spite of not being beekeepers – as they only forage for wild honey – their knowledge of obscure and complex phenomena such as honeybee gender and reproduction rivals that of comparable, non-industrial beekeeping societies. Swarming, another hard-to-understand honeybee behavior, is also accurately explained by Solega consultants. I contrast this knowledge to that of European bee-keeping cultures, as evidenced by the writings of Aristotle and 18th century European beekeepers. This paper shows that the Solega have a reliable and internally consistent body of honeybee knowledge based entirely on brief encounters with these wild, migratory insects that are present in the forest for only part of the year.

  4. Quantitative comparison of caste differences in honeybee hemolymph.

    Science.gov (United States)

    Chan, Queenie W T; Howes, Charles G; Foster, Leonard J

    2006-12-01

    The honeybee, Apis mellifera, is an invaluable partner in agriculture around the world both for its production of honey and, more importantly, for its role in pollination. Honeybees are largely unexplored at the molecular level despite a long and distinguished career as a model organism for understanding social behavior. Like other eusocial insects, honeybees can be divided into several castes: the queen (fertile female), workers (sterile females), and drones (males). Each caste has different energetic and metabolic requirements, and each differs in its susceptibility to pathogens, many of which have evolved to take advantage of the close social network inside a colony. Hemolymph, arthropods' equivalent to blood, distributes nutrients throughout the bee, and the immune components contained within it form one of the primary lines of defense against invading microorganisms. In this study we have applied qualitative and quantitative proteomics to gain a better understanding of honeybee hemolymph and how it varies among the castes and during development. We found large differences in hemolymph protein composition, especially between larval and adult stage bees and between male and female castes but even between adult workers and queens. We also provide experimental evidence for the expression of several unannotated honeybee genes and for the detection of biomarkers of a viral infection. Our data provide an initial molecular picture of honeybee hemolymph, to a greater depth than previous studies in other insects, and will pave the way for future biochemical studies of innate immunity in this animal.

  5. Do honeybees shape the bacterial community composition in floral nectar?

    Directory of Open Access Journals (Sweden)

    Yana Aizenberg-Gershtein

    Full Text Available Floral nectar is considered the most important reward animal-pollinated plants offer to attract pollinators. Here we explore whether honeybees, which act as pollinators, affect the composition of bacterial communities in the nectar. Nectar and honeybees were sampled from two plant species: Amygdalus communis and Citrus paradisi. To prevent the contact of nectar with pollinators, C. paradisi flowers were covered with net bags before blooming (covered flowers. Comparative analysis of bacterial communities in the nectar and on the honeybees was performed by the 454-pyrosequencing technique. No significant differences were found among bacterial communities in honeybees captured on the two different plant species. This resemblance may be due to the presence of dominant bacterial OTUs, closely related to the Arsenophonus genus. The bacterial communities of the nectar from the covered and uncovered C. paradisi flowers differed significantly; the bacterial communities on the honeybees differed significantly from those in the covered flowers' nectar, but not from those in the uncovered flowers' nectar. We conclude that the honeybees may introduce bacteria into the nectar and/or may be contaminated by bacteria introduced into the nectar by other sources such as other pollinators and nectar thieves.

  6. Migration effects on population dynamics of the honeybee-mite interactions

    Science.gov (United States)

    Honeybees are amazing and highly beneficial insect species that play important roles in undisturbed and agricultural ecosystems. Unfortunately, honeybees are increasingly threatened by numerous factors, most notably the parasitic Varroa mite (Varroa destructor Anderson and Trueman). A recent field s...

  7. Thermoregulation and adaptation in honeybee swarms

    Science.gov (United States)

    Ocko, Samuel; Mahadevan, L.

    2012-11-01

    Swarming is an essential part of honeybee behavior, wherein thousands of bees cling onto each other to form a dense cluster that is exposed to the environment for up to several days. This cluster has the ability to maintain its core temperature actively without a central controller raising the question of mechanism. Inspired by experimental observations, we treat the swarm cluster as an active porous structure with a variable metabolism that needs to adjust to outside conditions to control heat loss and regulate its core temperature. Using a continuum model that takes the form of a set of advection-diffusion equations for heat transfer in a mobile porous medium, we show that effective thermoregulation can result from the collective behavior of individual bees in the cluster.

  8. Disease dynamics of honeybees with Varroa destructor as parasite and virus vector.

    Science.gov (United States)

    Kang, Yun; Blanco, Krystal; Davis, Talia; Wang, Ying; DeGrandi-Hoffman, Gloria

    2016-05-01

    The worldwide decline in honeybee colonies during the past 50 years has often been linked to the spread of the parasitic mite Varroa destructor and its interaction with certain honeybee viruses carried by Varroa mites. In this paper, we propose a honeybee-mite-virus model that incorporates (1) parasitic interactions between honeybees and the Varroa mites; (2) five virus transmission terms between honeybees and mites at different stages of Varroa mites: from honeybees to honeybees, from adult honeybees to the phoretic mites, from brood to the reproductive mites, from the reproductive mites to brood, and from adult honeybees to the phoretic mites; and (3) Allee effects in the honeybee population generated by its internal organization such as division of labor. We provide completed local and global analysis for the full system and its subsystems. Our analytical and numerical results allow us have a better understanding of the synergistic effects of parasitism and virus infections on honeybee population dynamics and its persistence. Interesting findings from our work include: (a) due to Allee effects experienced by the honeybee population, initial conditions are essential for the survival of the colony. (b) Low adult honeybees to brood ratios have destabilizing effects on the system which generate fluctuating dynamics that lead to a catastrophic event where both honeybees and mites suddenly become extinct. This catastrophic event could be potentially linked to Colony Collapse Disorder (CCD) of honeybee colonies. (c) Virus infections may have stabilizing effects on the system, and parasitic mites could make disease more persistent. Our model illustrates how the synergy between the parasitic mites and virus infections consequently generates rich dynamics including multiple attractors where all species can coexist or go extinct depending on initial conditions. Our findings may provide important insights on honeybee viruses and parasites and how to best control them

  9. Using Transformative Learning Theory to Explore the Mechanisms of Citizen Participation for Environmental Education on the Removal of Invasive Species: The Case of Green Island, Taiwan

    Science.gov (United States)

    Chao, Ren-Fang

    2017-01-01

    The purpose of this study is to investigate the process of participation in the transformative learning process for invasive species by community volunteers and voluntourists. The results show that children play an important role in motivating adults to accept new ideas, and for both community volunteers and voluntourists, "dialogue" has…

  10. 7 CFR 760.204 - Eligible livestock, honeybees, and farm-raised fish.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Eligible livestock, honeybees, and farm-raised fish... for Livestock, Honeybees, and Farm-Raised Fish Program § 760.204 Eligible livestock, honeybees, and farm-raised fish. (a) To be considered eligible livestock for livestock feed losses and grazing...

  11. Disease dynamics of honeybees with Varroa destructor as parasite and virus vector

    Science.gov (United States)

    The worldwide decline in honeybee colonies during the past 50 years has often been linked to the spread of the parasitic mite Varroa destructor and its interaction with certain honeybee viruses carried by Varroa mites. In this article, we propose a honeybee-mite-virus model that incorporates (1) par...

  12. Genotypic influence on aversive conditioning in honeybees, using a novel thermal reinforcement procedure.

    Science.gov (United States)

    Junca, Pierre; Carcaud, Julie; Moulin, Sibyle; Garnery, Lionel; Sandoz, Jean-Christophe

    2014-01-01

    In Pavlovian conditioning, animals learn to associate initially neutral stimuli with positive or negative outcomes, leading to appetitive and aversive learning respectively. The honeybee (Apis mellifera) is a prominent invertebrate model for studying both versions of olfactory learning and for unraveling the influence of genotype. As a queen bee mates with about 15 males, her worker offspring belong to as many, genetically-different patrilines. While the genetic dependency of appetitive learning is well established in bees, it is not the case for aversive learning, as a robust protocol was only developed recently. In the original conditioning of the sting extension response (SER), bees learn to associate an odor (conditioned stimulus - CS) with an electric shock (unconditioned stimulus - US). This US is however not a natural stimulus for bees, which may represent a potential caveat for dissecting the genetics underlying aversive learning. We thus first tested heat as a potential new US for SER conditioning. We show that thermal stimulation of several sensory structures on the bee's body triggers the SER, in a temperature-dependent manner. Moreover, heat applied to the antennae, mouthparts or legs is an efficient US for SER conditioning. Then, using microsatellite analysis, we analyzed heat sensitivity and aversive learning performances in ten worker patrilines issued from a naturally inseminated queen. We demonstrate a strong influence of genotype on aversive learning, possibly indicating the existence of a genetic determinism of this capacity. Such determinism could be instrumental for efficient task partitioning within the hive.

  13. Genotypic influence on aversive conditioning in honeybees, using a novel thermal reinforcement procedure.

    Directory of Open Access Journals (Sweden)

    Pierre Junca

    Full Text Available In Pavlovian conditioning, animals learn to associate initially neutral stimuli with positive or negative outcomes, leading to appetitive and aversive learning respectively. The honeybee (Apis mellifera is a prominent invertebrate model for studying both versions of olfactory learning and for unraveling the influence of genotype. As a queen bee mates with about 15 males, her worker offspring belong to as many, genetically-different patrilines. While the genetic dependency of appetitive learning is well established in bees, it is not the case for aversive learning, as a robust protocol was only developed recently. In the original conditioning of the sting extension response (SER, bees learn to associate an odor (conditioned stimulus - CS with an electric shock (unconditioned stimulus - US. This US is however not a natural stimulus for bees, which may represent a potential caveat for dissecting the genetics underlying aversive learning. We thus first tested heat as a potential new US for SER conditioning. We show that thermal stimulation of several sensory structures on the bee's body triggers the SER, in a temperature-dependent manner. Moreover, heat applied to the antennae, mouthparts or legs is an efficient US for SER conditioning. Then, using microsatellite analysis, we analyzed heat sensitivity and aversive learning performances in ten worker patrilines issued from a naturally inseminated queen. We demonstrate a strong influence of genotype on aversive learning, possibly indicating the existence of a genetic determinism of this capacity. Such determinism could be instrumental for efficient task partitioning within the hive.

  14. Modelling Ball Circulation in Invasion Team Sports: A Way to Promote Learning Games through Understanding

    Science.gov (United States)

    Grehaigne, Jean-Francis; Caty, Didier; Godbout, Paul

    2010-01-01

    Background: Sport Education and "Tactical decision learning model" (TDLM) are two curriculum models used by physical education teachers in France to help students in the development of a tactical intelligence of game play in the didactics of team sports. Purpose: Identify prototypic configurations of play in the sense that they represent an…

  15. Pesticide residues in honeybees, honey and bee pollen by LC-MS/MS screening: reported death incidents in honeybees.

    Science.gov (United States)

    Kasiotis, Konstantinos M; Anagnostopoulos, Chris; Anastasiadou, Pelagia; Machera, Kyriaki

    2014-07-01

    The aim of this study was to investigate reported cases of honeybee death incidents with regard to the potential interrelation to the exposure to pesticides. Thus honeybee, bee pollen and honey samples from different areas of Greece were analyzed for the presence of pesticide residues. In this context an LC-ESI-MS/MS multiresidue method of total 115 analytes of different chemical classes such as neonicotinoids, organophosphates, triazoles, carbamates, dicarboximides and dinitroanilines in honeybee bodies, honey and bee pollen was developed and validated. The method presents good linearity over the ranges assayed with correlation coefficient values r(2)≥0.99, recoveries ranging for all matrices from 59 to 117% and precision (RSD%) values ranging from 4 to 27%. LOD and LOQ values ranged - for honeybees, honey and bee pollen - from 0.03 to 23.3 ng/g matrix weight and 0.1 up to 78 ng/g matrix weight, respectively. Therefore this method is sufficient to act as a monitoring tool for the determination of pesticide residues in cases of suspected honeybee poisoning incidents. From the analysis of the samples the presence of 14 active substances was observed in all matrices with concentrations ranging for honeybees from 0.3 to 81.5 ng/g, for bee pollen from 6.1 to 1273 ng/g and for honey one sample was positive to carbendazim at 1.6 ng/g. The latter confirmed the presence of such type of compounds in honeybee body and apicultural products. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Long-term memory and response generalization in mushroom body extrinsic neurons in the honeybee Apis mellifera.

    Science.gov (United States)

    Haehnel, Melanie; Menzel, Randolf

    2012-02-01

    Honeybees learn to associate an odor with sucrose reward under conditions that allow the monitoring of neural activity by imaging Ca(2+) transients in morphologically identified neurons. Here we report such recordings from mushroom body extrinsic neurons - which belong to a recurrent tract connecting the output of the mushroom body with its input, potentially providing inhibitory feedback - and other extrinsic neurons. The neurons' responses to the learned odor and two novel control odors were measured 24 h after learning. We found that calcium responses to the learned odor and an odor that was strongly generalized with it were enhanced compared with responses to a weakly generalized control. Thus, the physiological responses measured in these extrinsic neurons accurately reflect what is observed in behavior. We conclude that the recorded recurrent neurons feed information back to the mushroom body about the features of learned odor stimuli. Other extrinsic neurons may signal information about learned odors to different brain regions.

  17. A new antigenic marker specifically labels a subpopulation of the class II Kenyon cells in the brain of the European honeybee Apis mellifera.

    Science.gov (United States)

    Watanabe, Takayuki; Kubo, Takeo

    2015-01-01

    The mushroom bodies are the higher-order integration center in the insect brain and are involved in higher brain functions such as learning and memory. In the social hymenopteran insects such as honeybees, the mushroom bodies are the prominent brain structures. The mushroom bodies are composed of lobed neuropils formed by thousands of parallel-projecting axons of intrinsic neurons, and the lobes are divided into parallel subdivisions. In the present paper, we report a new antigenic marker to label a single layer in the vertical lobes of the European honeybee Apis mellifera. In the brain of A. mellifera, a monoclonal antibody (mAb) 15C3, which was originally developed against an insect ecdysone receptor (EcR) protein, immunolabels a single layer of the vertical lobes that correspond to the most dorsal layer of the γ-lobe. The 15C3 mAb recognizes a single ~200 kDa protein expressed in the adult honeybee brain. In addition, the 15C3 mAb immunoreactivity was also observed in the lobes of the developing pupal mushroom bodies. Since γ-lobe is well known to their extensive reorganization that occurs during metamorphosis in Drosophila, the novel antigenic marker for the honeybee γ-lobe allows us to investigate morphological changes of the mushroom bodies during metamorphosis.

  18. Automatic behaviour analysis system for honeybees using computer vision

    DEFF Research Database (Denmark)

    Tu, Gang Jun; Hansen, Mikkel Kragh; Kryger, Per

    2016-01-01

    -cost embedded computer with very limited computational resources as compared to an ordinary PC. The system succeeds in counting honeybees, identifying their position and measuring their in-and-out activity. Our algorithm uses background subtraction method to segment the images. After the segmentation stage......, the methods are primarily based on statistical analysis and inference. The regression statistics (i.e. R2) of the comparisons of system predictions and manual counts are 0.987 for counting honeybees, and 0.953 and 0.888 for measuring in-activity and out-activity, respectively. The experimental results...... demonstrate that this system can be used as a tool to detect the behaviour of honeybees and assess their state in the beehive entrance. Besides, the result of the computation time show that the Raspberry Pi is a viable solution in such real-time video processing system....

  19. Pollination of a native plant changes with distance and density of invasive plants in a simulated biological invasion.

    Science.gov (United States)

    Bruckman, Daniela; Campbell, Diane R

    2016-08-01

    Effects of an exotic plant on pollination may change as the invasive increases in density. Quantity of pollinator visits to a native may increase, decrease, or change nonlinearly, while visit quality is likely to decrease with greater interspecific pollen movement. How visit quantity and quality contribute to the effect on reproductive success at each invasion stage has not been measured. We simulated four stages of invasion by Brassica nigra by manipulating the neighborhood of potted plants of the native Phacelia parryi in a field experiment. Stages were far from the invasion, near the invasion, intermixed with the invasive at low density, and intermixed at high density. We measured pollinator visitation, conspecific and invasive pollen deposition, and seed set for P. parryi at each stage. Native individuals near invasive plants and within areas of low invasive density showed greatest seed production, as expected from concurrent changes in conspecific and invasive pollen deposition. Those plants experienced facilitation of visits and received more conspecific pollen relative to plants farther from invasives. Native individuals within high invasive density also received frequent visits by many pollinators (although not honeybees), but the larger receipt of invasive pollen predicted interference with pollen tubes that matched patterns in seed set. Pollinator visitation was highest when exotic plants were nearby. Detrimental effects of heterospecific pollen deposition were highest at high exotic density. Our study quantified how reproduction benefits from near proximity to a showy invasive, but is still vulnerable when the invasive reaches high density. © 2016 Botanical Society of America.

  20. Small hive beetles survive in honeybee prisons by behavioural mimicry

    Science.gov (United States)

    Ellis, J. D.; Pirk, C. W. W.; Hepburn, H. R.; Kastberger, G.; Elzen, P. J.

    2002-05-01

    We report the results of a simple experiment to determine whether honeybees feed their small hive beetle nest parasites. Honeybees incarcerate the beetles in cells constructed of plant resins and continually guard them. The longevity of incarcerated beetles greatly exceeds their metabolic reserves. We show that survival of small hive beetles derives from behavioural mimicry by which the beetles induce the bees to feed them trophallactically. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at htpp://dx.doi.org/10.1007/s00114-002-0326-y.

  1. Mast Cells Can Enhance Resistance to Snake and Honeybee Venoms

    Science.gov (United States)

    Metz, Martin; Piliponsky, Adrian M.; Chen, Ching-Cheng; Lammel, Verena; Åbrink, Magnus; Pejler, Gunnar; Tsai, Mindy; Galli, Stephen J.

    2006-07-01

    Snake or honeybee envenomation can cause substantial morbidity and mortality, and it has been proposed that the activation of mast cells by snake or insect venoms can contribute to these effects. We show, in contrast, that mast cells can significantly reduce snake-venom-induced pathology in mice, at least in part by releasing carboxypeptidase A and possibly other proteases, which can degrade venom components. Mast cells also significantly reduced the morbidity and mortality induced by honeybee venom. These findings identify a new biological function for mast cells in enhancing resistance to the morbidity and mortality induced by animal venoms.

  2. Conservation of Bio synthetic pheromone pathways in honeybees Apis

    Science.gov (United States)

    Martin, Stephen J.; Jones, Graeme R.

    Social insects use complex chemical communication systems to govern many aspects of their life. We studied chemical changes in Dufour's gland secretions associated with ovary development in several genotypes of honeybees. We found that C28-C38 esters were associated only with cavity nesting honeybee queens, while the alcohol eicosenol was associated only with their non-laying workers. In contrast, both egg-laying anarchistic workers and all parasitic Cape workers from queenright colonies showed the typical queen pattern (i.e. esters present and eicosenol absent), while egg-laying wild-type and anarchistic workers in queenless colonies showed an intermediate pattern, producing both esters and eicosenol but at intermediate levels. Furthermore, neither esters nor eicosenol were found in aerial nesting honeybee species. Both esters and eicosenol are biosynthetically similar compounds since both are recognizable products of fatty acid biosynthesis. Therefore, we propose that in honeybees the biosynthesis of esters and eicosenol in the Dufour's gland is caste-regulated and this pathway has been conserved over evolutionary time.

  3. Genetic structure of Balearic honeybee populations based on microsatellite polymorphism

    Directory of Open Access Journals (Sweden)

    Moritz Robin FA

    2003-05-01

    Full Text Available Abstract The genetic variation of honeybee colonies collected in 22 localities on the Balearic Islands (Spain was analysed using eight polymorphic microsatellite loci. Previous studies have demonstrated that these colonies belong either to the African or west European evolutionary lineages. These populations display low variability estimated from both the number of alleles and heterozygosity values, as expected for the honeybee island populations. Although genetic differentiation within the islands is low, significant heterozygote deficiency is present, indicating a subpopulation genetic structure. According to the genetic differentiation test, the honeybee populations of the Balearic Islands cluster into two groups: Gimnesias (Mallorca and Menorca and Pitiusas (Ibiza and Formentera, which agrees with the biogeography postulated for this archipelago. The phylogenetic analysis suggests an Iberian origin of the Balearic honeybees, thus confirming the postulated evolutionary scenario for Apis mellifera in the Mediterranean basin. The microsatellite data from Formentera, Ibiza and Menorca show that ancestral populations are threatened by queen importations, indicating that adequate conservation measures should be developed for protecting Balearic bees.

  4. Biophysics of the subgenual organ of the honeybee, Apis mellifera

    DEFF Research Database (Denmark)

    Kilpinen, Ole; Storm, Jesper

    1997-01-01

    The subgenual organ of the honeybee (Apis mellifera) is suspended in a haemolymph channel in the tibia of each leg. When the leg is accelerated, inertia causes the haemolymph (and the subgenual organ) to lag behind the movement of the rest of the leg. The magnitude of this phase lag determines...

  5. Sleep Deprivation affects Extinction but Not Acquisition Memory in Honeybees

    Science.gov (United States)

    Hussaini, Syed Abid; Bogusch, Lisa; Landgraf, Tim; Menzel, Randolf

    2009-01-01

    Sleep-like behavior has been studied in honeybees before, but the relationship between sleep and memory formation has not been explored. Here we describe a new approach to address the question if sleep in bees, like in other animals, improves memory consolidation. Restrained bees were observed by a web camera, and their antennal activities were…

  6. Wax combs mediate nestmate recognition by guard honeybees

    DEFF Research Database (Denmark)

    D'Ettorre, Patrizia; Wenseleers, Tom; Dawson, Jenny

    2006-01-01

    Research has shown that the wax combs are important in the acquisition of colony odour in the honeybee, Apis mellifera. However, many of these studies were conducted in the laboratory or under artificial conditions. We investigated the role of the wax combs in nestmate recognition in the natural...

  7. Sleep Deprivation affects Extinction but Not Acquisition Memory in Honeybees

    Science.gov (United States)

    Hussaini, Syed Abid; Bogusch, Lisa; Landgraf, Tim; Menzel, Randolf

    2009-01-01

    Sleep-like behavior has been studied in honeybees before, but the relationship between sleep and memory formation has not been explored. Here we describe a new approach to address the question if sleep in bees, like in other animals, improves memory consolidation. Restrained bees were observed by a web camera, and their antennal activities were…

  8. Forward and Backward Second-Order Pavlovian Conditioning in Honeybees

    Science.gov (United States)

    Hussaini, Syed Abid; Komischke, Bernhard; Menzel, Randolf; Lachnit, Harald

    2007-01-01

    Second-order conditioning (SOC) is the association of a neutral stimulus with another stimulus that had previously been combined with an unconditioned stimulus (US). We used classical conditioning of the proboscis extension response (PER) in honeybees ("Apis mellifera") with odors (CS) and sugar (US). Previous SOC experiments in bees were…

  9. Sperm use economy of honeybee (Apis mellifera) queens

    DEFF Research Database (Denmark)

    Baer, Boris; Collins, Jason; Maalaps, Kristiina;

    2016-01-01

    the fecundity and longevity of queens and therefore colony fitness. We quantified the number of sperm that honeybee (Apis mellifera) queens use to fertilize eggs. We examined sperm use in naturally mated queens of different ages and in queens artificially inseminated with different volumes of semen. We found...

  10. Synthesis of wax in the honeybee (Apis mellifera L.)

    NARCIS (Netherlands)

    Piek, T.

    1964-01-01

    Newly emerged honeybee workers were fed during 1 or 2 weeks with sucrose containing either heavy water, sodium acetate with deuterium, sodium acetate-1-14C, or uniformly labelled glucose-14C. The various lipid fractions were isolated in order to investigate the origin of the secreted wax components.

  11. Honeybee economics: optimisation of foraging in a variable world.

    Science.gov (United States)

    Stabentheiner, Anton; Kovac, Helmut

    2016-06-20

    In honeybees fast and efficient exploitation of nectar and pollen sources is achieved by persistent endothermy throughout the foraging cycle, which means extremely high energy costs. The need for food promotes maximisation of the intake rate, and the high costs call for energetic optimisation. Experiments on how honeybees resolve this conflict have to consider that foraging takes place in a variable environment concerning microclimate and food quality and availability. Here we report, in simultaneous measurements of energy costs, gains, and intake rate and efficiency, how honeybee foragers manage this challenge in their highly variable environment. If possible, during unlimited sucrose flow, they follow an 'investment-guided' ('time is honey') economic strategy promising increased returns. They maximise net intake rate by investing both own heat production and solar heat to increase body temperature to a level which guarantees a high suction velocity. They switch to an 'economizing' ('save the honey') optimisation of energetic efficiency if the intake rate is restricted by the food source when an increased body temperature would not guarantee a high intake rate. With this flexible and graded change between economic strategies honeybees can do both maximise colony intake rate and optimise foraging efficiency in reaction to environmental variation.

  12. Stimulating natural supersedure of honeybee queens, Apis mellifera

    NARCIS (Netherlands)

    Hendriksma, H.P.; Calis, J.N.M.; Boot, W.J.

    2004-01-01

    When a honeybee queen starts to fail, she is often superseded by a young queen that takes over reproduction inside the colony. Natural supersedure in winter leads to an unfertilised young queen and colony loss. To reduce these losses we tried to stimulate supersedure of queens earlier in the season.

  13. Genetic variation in natural honeybee populations, Apis mellifera capensis

    Science.gov (United States)

    Hepburn, Randall; Neumann, Peter; Radloff, Sarah E.

    2004-09-01

    Genetic variation in honeybee, Apis mellifera, populations can be considerably influenced by breeding and commercial introductions, especially in areas with abundant beekeeping. However, in southern Africa apiculture is based on the capture of wild swarms, and queen rearing is virtually absent. Moreover, the introduction of European subspecies constantly failed in the Cape region. We therefore hypothesize a low human impact on genetic variation in populations of Cape honeybees, Apis mellifera capensis. A novel solution to studying genetic variation in honeybee populations based on thelytokous worker reproduction is applied to test this hypothesis. Environmental effects on metrical morphological characters of the phenotype are separated to obtain a genetic residual component. The genetic residuals are then re-calculated as coefficients of genetic variation. Characters measured included hair length on the abdomen, width and length of wax plate, and three wing angles. The data show for the first time that genetic variation in Cape honeybee populations is independent of beekeeping density and probably reflects naturally occurring processes such as gene flow due to topographic and climatic variation on a microscale.

  14. Study of single-electron information-processing circuit mimicking foraging behavior of honeybee swarm

    Science.gov (United States)

    Tanabe, Toshihiko; Oya, Takahide

    2017-06-01

    A new single-electron (SE) circuit mimicking the foraging behavior of a honeybee swarm is proposed. Recently, a “nature-inspired” or “biomimetic” technology has been attracting attention for developing innovative functional systems applying emerging nanoscale devices. In particular, the foraging behavior of honeybees is focused on as an architecture for a SE circuit. Honeybees show two foraging behaviors, namely, a probability search and a “waggle dance” (sharing information). By combining these behaviors, it can be considered that the foraging behavior is a unique information-processing act. For constructing a new system, a SE circuit mimicking the behavior was designed, constructed, and simulated. The SE circuit was constructed by assuming that the information that honeybees share corresponds to the operation of the circuit. The results of the simulation confirmed that the SE circuit mimics the information-sharing behavior of honeybees. Namely, the proposed honeybee-inspired SE circuit can perform functional information processing.

  15. Learning Curves in Pediatric Minimally Invasive Surgery: A Systematic Review of the Literature and a Framework for Reporting.

    Science.gov (United States)

    Macdonald, Alexander L; Haddad, Munther; Clarke, Simon A

    2016-08-01

    There exists a learning curve (LC) with the adoption of any minimally invasive surgical (MIS) technique with implications for training, implementation, and evaluation. A standardized approach to describing and analyzing LCs in pediatric MIS is lacking. We sought to determine how pediatric MIS LCs are quantified and present a framework for reporting. Systematic search of MEDLINE and EMBASE 1985-October 2015 for articles describing MIS in the pediatric population and presenting formal analysis of the LC. Articles screened by two independent reviewers. Twenty-nine articles (n = 17 general abdominal/thoracic, n = 12 urological) from an 18-year period (1997-2015) were included representing 3345 procedures (n = 3116 laparoscopic, n = 10 thoracoscopic, n = 219 robotic). Seven (24%) were prospective, three multicenter. Twenty-two (76%) presented data pertaining to >1 operating surgeon. Operative time was the most commonly employed surrogate of proficiency (n = 26 [90%] studies). Twenty (69%) described >1 LC outcome measure. Sixteen additional measures were described, including conversion (n = 12 studies); blood loss (n = 4 studies); complications (n = 10 studies); and postoperative outcomes (n = 14 studies). Three studies assessed impact of LC on trainees and one considered economic impact. LCs were presented in tabular form (n = 14 studies) and graphically (n = 19). Eleven (38%) studies undertook statistical appraisal utilizing comparative statistics (n = 8 studies) and regression analysis (n = 4 studies). Multiple outcome measures of proficiency are employed in reporting pediatric MIS experience and analysis of LCs is inconsistent. A standardized multioutcome approach to reporting should be encouraged. In addition, attempts should be made to quantify the impact on trainee involvement. We present an idealized framework for reporting.

  16. The cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) induces neuronal and behavioral changes in honeybees

    Energy Technology Data Exchange (ETDEWEB)

    Okle, Oliver, E-mail: oliver.okle@uni-konstanz.de [Human and Environmental Toxicology, University of Konstanz, Jacob-Burckhardt-Strasse 25, 78457 Konstanz (Germany); Rath, Lisa; Galizia, C. Giovanni [Zoology and Neurobiology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz (Germany); Dietrich, Daniel R., E-mail: daniel.dietrich@uni-konstanz.de [Human and Environmental Toxicology, University of Konstanz, Jacob-Burckhardt-Strasse 25, 78457 Konstanz (Germany)

    2013-07-01

    The cyanobacterially produced neurotoxin beta-N-methylamino-L-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using {sup 14}C-BMAA we demonstrated that BMAA is biologically available to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca{sup 2+} homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA. - Highlights: • Investigating of neurotoxic effects of BMAA in honeybees • BMAA impairs ALS markers (ROS, Ca{sup 2+}, learning, memory, odor) in bees. • A method for the observation of ROS development in living bees brain was established. • Honeybees are a suitable model to explore neurodegenerative processes. • Neurotoxic BMAA can be spread in bee populations by trophallaxis.

  17. Impact of Varroa destructor on honeybee (Apis mellifera scutellata) colony development in South Africa.

    Science.gov (United States)

    Strauss, Ursula; Pirk, Christian W W; Crewe, Robin M; Human, Hannelie; Dietemann, Vincent

    2015-01-01

    The devastating effects of Varroa destructor Anderson & Trueman on European honeybee colonies (Apis mellifera L.) have been well documented. Not only do these mites cause physical damage to parasitised individuals when they feed on them, they also transmit viruses and other pathogens, weaken colonies and can ultimately cause their death. Nevertheless, not all honeybee colonies are doomed once Varroa mites become established. Some populations, such as the savannah honeybee, A. m. scutellata, have become tolerant after the introduction of the parasite and are able to withstand the presence of these mites without the need for acaricides. In this study, we measured daily Varroa mite fall, Varroa infestation rates of adult honeybees and worker brood, and total Varroa population size in acaricide treated and untreated honeybee colonies. In addition, honeybee colony development was compared between these groups in order to measure the cost incurred by Varroa mites to their hosts. Daily Varroa mite fall decreased over the experimental period with different dynamics in treated and untreated colonies. Varroa infestation rates in treated adult honeybees and brood were lower than in untreated colonies, but not significantly so. Thus, indicating a minimal benefit of treatment thereby suggesting that A. m. scutellata have the ability to maintain mite populations at low levels. We obtained baseline data on Varroa population dynamics in a tolerant honeybee over the winter period. Varroa mites appeared to have a low impact on this honeybee population, given that colony development was similar in the treated and untreated colonies.

  18. Comparison of Varroa destructor and Worker Honeybee Microbiota Within Hives Indicates Shared Bacteria.

    Science.gov (United States)

    Hubert, Jan; Kamler, Martin; Nesvorna, Marta; Ledvinka, Ondrej; Kopecky, Jan; Erban, Tomas

    2016-08-01

    The ectoparasitic mite Varroa destructor is a major pest of the honeybee Apis mellifera. In a previous study, bacteria were found in the guts of mites collected from winter beehive debris and were identified using Sanger sequencing of their 16S rRNA genes. In this study, community comparison and diversity analyses were performed to examine the microbiota of honeybees and mites at the population level. The microbiota of the mites and honeybees in 26 colonies in seven apiaries in Czechia was studied. Between 10 and 50 Varroa females were collected from the bottom board, and 10 worker bees were removed from the peripheral comb of the same beehive. Both bees and mites were surface sterilized. Analysis of the 16S rRNA gene libraries revealed significant differences in the Varroa and honeybee microbiota. The Varroa microbiota was less diverse than was the honeybee microbiota, and the relative abundances of bacterial taxa in the mite and bee microbiota differed. The Varroa mites, but not the honeybees, were found to be inhabited by Diplorickettsia. The relative abundance of Arsenophonus, Morganella, Spiroplasma, Enterococcus, and Pseudomonas was higher in Varroa than in honeybees, and the Diplorickettsia symbiont detected in this study is specific to Varroa mites. The results demonstrated that there are shared bacteria between Varroa and honeybee populations but that these bacteria occur in different relative proportions in the honeybee and mite bacteriomes. These results support the suggestion of bacterial transfer via mites, although only some of the transferred bacteria may be harmful.

  19. Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae

    National Research Council Canada - National Science Library

    Derecka, Kamila; Blythe, Martin J; Malla, Sunir; Genereux, Diane P; Guffanti, Alessandro; Pavan, Paolo; Moles, Anna; Snart, Charles; Ryder, Thomas; Ortori, Catharine A; Barrett, David A; Schuster, Eugene; Stöger, Reinhard

    2013-01-01

    .... Such new, anthropogenic stressors include the neonicotinoid class of crop-protecting agents, which have been implicated in the population declines of pollinating insects, including honeybees (Apis mellifera...

  20. Evaluation of the defensive behavior of two honeybee ecotypes using a laboratory test

    Directory of Open Access Journals (Sweden)

    Andere Cecilia

    2002-01-01

    Full Text Available Honeybee defensive behavior is a useful selection criterion, especially in areas with Africanized honeybees (Apis mellifera L. In all genetic improvement programs the selected characters must be measured with precision, and because of this we evaluated a metabolic method for testing honeybee defensive behavior in the laboratory for its usefulness in distinguishing between honeybee ecotypes and selecting honeybees based on their level of defensive responses. Ten honeybee colonies were used, five having been produced by feral queens from a subtropical region supposedly colonized by Africanized honeybees and five by queens from a temperate region apparently colonized by European honeybees. We evaluate honeybee defensive behavior using a metabolic test based on oxygen consumption after stimulation with an alarm pheromone, measuring the time to the first response, time to maximum oxygen consumption, duration of activity, oxygen consumption at first response, maximum oxygen consumption and total oxygen consumption, colonies being ranked according to the values obtained for each variable. Significant (p < 0.05 differences were detected between ecotypes for each variable but for all variables the highest rankings were obtained for colonies of subtropical origin, which had faster and more intense responses. All variables were highly associated (p < 0.05. Total oxygen consumption was the best indicator of metabolic activity for defensive behavior because it combined oxygen consumption and the length of the response. This laboratory method may be useful for evaluating the defensive behavior of honey bees in genetic programs designed to select less defensive bees.

  1. More than royal food - Major royal jelly protein genes in sexuals and workers of the honeybee Apis mellifera

    National Research Council Canada - National Science Library

    Buttstedt, Anja; Moritz, Robin Fa; Erler, Silvio

    2013-01-01

    ...) have been identified on chromosome 11 in the honeybee's genome. We determined the expression of mrjp1-9 among the honeybee worker caste (nurses, foragers) and the sexuals (queens (unmated, mated) and drones...

  2. Modeling colony collapse disorder in honeybees as a contagion.

    Science.gov (United States)

    Kribs-Zaleta, Christopher M; Mitchell, Christopher

    2014-12-01

    Honeybee pollination accounts annually for over $14 billion in United States agriculture alone. Within the past decade there has been a mysterious mass die-off of honeybees, an estimated 10 million beehives and sometimes as much as 90% of an apiary. There is still no consensus on what causes this phenomenon, called Colony Collapse Disorder, or CCD. Several mathematical models have studied CCD by only focusing on infection dynamics. We created a model to account for both healthy hive dynamics and hive extinction due to CCD, modeling CCD via a transmissible infection brought to the hive by foragers. The system of three ordinary differential equations accounts for multiple hive population behaviors including Allee effects and colony collapse. Numerical analysis leads to critical hive sizes for multiple scenarios and highlights the role of accelerated forager recruitment in emptying hives during colony collapse.

  3. Vibration transmission characteristics of the legs of freely standing honeybees

    DEFF Research Database (Denmark)

    Rohrseitz, Kristin; Kilpinen, Ole

    1997-01-01

    The leg vibrations of honeybees standing on a vibrating substrate were measured with laser Doppler vibrometry, both in freely standing bees and in bees attached to a holder. In both cases, no resonances were found. In the fixed bee preparation, the legs moved with approximately the same amplitude...... as the stimulator. This was also the case in freely standing honeybees, except around 400 Hz, where an average attenuation of approximately 6 dB was observed. In the fixed bee preparation, the vertical movements of the legs were also measured during horizontal stimulation. The vertical vibration amplitude...... of the legs was 15-20 dB lower than the horizontal stimulation amplitude. The electrophysiologically and behaviourally determined thresholds for vibration stimulation increased by approximately 10 dB, when the stimulus direction was changed from vertical to horizontal. These observations support the notion...

  4. Vision and air flow combine to streamline flying honeybees.

    Science.gov (United States)

    Taylor, Gavin J; Luu, Tien; Ball, David; Srinivasan, Mandyam V

    2013-01-01

    Insects face the challenge of integrating multi-sensory information to control their flight. Here we study a 'streamlining' response in honeybees, whereby honeybees raise their abdomen to reduce drag. We find that this response, which was recently reported to be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a head wind. The Johnston's organs in the antennae were found to play a role in the measurement of the air speed that is used to control the streamlining response. The response to a combination of visual motion and wind is complex and can be explained by a model that incorporates a non-linear combination of the two stimuli. The use of visual and mechanosensory cues increases the strength of the streamlining response when the stimuli are present concurrently. We propose this multisensory integration will make the response more robust to transient disturbances in either modality.

  5. Investigating Invasives

    Science.gov (United States)

    Lightbody, Mary

    2008-01-01

    Invasive species, commonly known as "invasives," are nonnative plants, animals, and microbes that completely take over and change an established ecosystem. The consequences of invasives' spread are significant. In fact, many of the species that appear on the Endangered Species list are threatened by invasives. Therefore, the topic of invasive…

  6. Genetic characterization of Lithuanian honeybee lines based on ISSR polymorphism

    OpenAIRE

    Ceksteryte, Violeta; Paplauskiene, Vanda; Tamasauskiene, Diana; Pasakinskiene, Izolda; Mazeikiene, Ingrida

    2012-01-01

    International audience; This study presents the first results from the selection and evaluation of inter-simple sequence repeat markers for the genetic assessment of honeybee lines developed in Lithuania and introduced subspecies. Two Lithuania-bred lines of Apis mellifera carnica were compared to those introduced from Czech Republic and Slovenia and also to a subspecies introduced from the Caucasus (Apis mellifera caucasica) and local Buckfast hybrids. The genetic constitution was assayed wi...

  7. Behavioral and neural plasticity caused by early social experiences: the case of the honeybee

    Directory of Open Access Journals (Sweden)

    Andrés eArenas

    2013-08-01

    Full Text Available Cognitive experiences during the early stages of life play an important role in shaping future behavior. Behavioral and neural long-term changes after early sensory and associative experiences have been recently reported in the honeybee. This invertebrate is an excellent model for assessing the role of precocious experiences on later behavior due to its extraordinarily tuned division of labor based on age polyethism. These studies are mainly focused on the role and importance of experiences occurred during the first days of the adult lifespan, their impact on foraging decisions and their contribution to coordinate food gathering. Odor-rewarded experiences during the first days of honeybee adulthood alter the responsiveness to sucrose, making young hive bees more sensitive to assess gustatory features about the nectar brought back to the hive and affecting the dynamic of the food transfers and the propagation of food-related information within the colony as well. Early olfactory experiences lead to stable and long-term associative memories that can be successfully recalled after many days, even at foraging ages. Also they improve memorizing of new associative learning events later in life. The establishment of early memories promotes stable reorganization of the olfactory circuits inducing structural and functional changes in the antennal lobe. Early rewarded experiences have relevant consequences at the social level too, biasing dance and trophallaxis partner choice and affecting recruitment. Here, we revised recent results in bees´ physiology, behavior and sociobiology to depict how the early experiences affect their cognition abilities and neural-related circuits.

  8. Reproduction, social behavior, and aging trajectories in honeybee workers.

    Science.gov (United States)

    Dixon, Luke; Kuster, Ryan; Rueppell, Olav

    2014-02-01

    While a negative correlation between reproduction and life span is commonly observed, specialized reproductive individuals outlive their non-reproductive nestmates in all eusocial species, including the honeybee, Apis mellifera (L). The consequences of reproduction for individual life expectancy can be studied directly by comparing reproductive and non-reproductive workers. We quantified the life span consequences of reproduction in honeybee workers by removal of the queen to trigger worker reproduction. Furthermore, we observed the social behavior of large cohorts of workers under experimental and control conditions to test for associations with individual life expectancy. Worker life expectancy was moderately increased by queen removal. Queenless colonies contained a few long-lived workers, and oviposition behavior was associated with a strong reduction in mortality risk, indicating that a reproductive role confers a significant survival advantage. This finding is further substantiated by an association between brood care behavior and worker longevity that depends on the social environment. In contrast, other in-hive activities, such as fanning, trophallaxis, and allogrooming did not consistently affect worker life expectancy. The influence of foraging varied among replicates. An earlier age of transitioning from in-hive tasks to outside foraging was always associated with shorter life spans, in accordance with previous studies. In sum, our studies quantify how individual mortality is affected by particular social roles and colony environments and demonstrate interactions between the two. The exceptional, positive association between reproduction and longevity in honeybees extends to within-caste plasticity, which may be exploited for mechanistic studies.

  9. Proteomic analysis of honeybee worker (Apis mellifera hypopharyngeal gland development

    Directory of Open Access Journals (Sweden)

    Li Jianke

    2009-12-01

    Full Text Available Abstract Background Hypopharyngeal glands (HG of honeybee workers play an important role in honeybee nutrition and caste differentiation. Previous research mainly focused on age-dependent morphological, physiological, biochemical and genomic characters of the HG. Here proteomics and biochemical network analysis were used to follow protein changes during the HG development. Results A total of 87, 76, 85, 74, 71, and 55 proteins were unambiguously identified on day 1, 3, 6, 12, 15 and 20, respectively. These proteins were major royal jelly proteins (MRJPs, metabolism of carbohydrates, lipids and proteins, cytoskeleton, development regulation, antioxidant, molecule transporter, regulation of transcription/translation, proteins with folding functions. The most interesting is that MRJP's that have been detected in the HG of the newly emerged worker bees. The MRJP's expression is at peak level from 6-12 days, was validated by western blot analysis of MRJP1, 2 and 3. Moreover, 35 key node proteins were found in the biochemical networks of the HG. Conclusions HG secretes RJ at peak level within 6-12 days, but the worker bee can secrete royal jelly (RJ since birth, which is a new finding. Several key node proteins play an important role in the biochemical networks of the developing HG. This provides us some target proteins when genetically manipulating honeybees.

  10. Ocellar structure and neural innervation in the honeybee

    Directory of Open Access Journals (Sweden)

    Yu-Shan eHung

    2014-02-01

    Full Text Available Honeybees have a visual system composed of three ocelli (simple eyes located on the top of the head, in addition to two large compound eyes. Although experiments have been conducted to investigate the role of the ocelli within the visual system, their optical characteristics, and function remain controversial. In this study, we created three-dimensional (3-D reconstructions of the honeybee ocelli, conducted optical measurements and filled ocellar descending neurons to assist in determining the role of ocelli in honeybees. In both the median and lateral ocelli, the ocellar retinas can be divided into dorsal and ventral parts. Using the 3-D model we were able to assess the viewing angles of the retinas. The dorsal retinas view the horizon while the ventral retinas view the sky, suggesting quite different roles in attitude control. We used the hanging drop technique to assess the spatial resolution of each retina. The lateral ocelli have considerably higher spatial resolution compared to the median ocellus. Moreover, in both types of ocellus the dorsal retina has a higher spatial resolution than the ventral retina. In addition, we established which ocellar retinas provide the input to five pairs of large ocellar descending neurons. We found that four of the neuron pairs had their dendritic fields in the dorsal retinas of the lateral ocelli, while the fifth had fine dendrites in the ventral retina. One of the neuron pairs also sent very fine dendrites into the border region between the dorsal and ventral retinas of the median ocellus.

  11. Mating flights select for symmetry in honeybee drones (Apis mellifera).

    Science.gov (United States)

    Jaffé, Rodolfo; Moritz, Robin F A

    2010-03-01

    Males of the honeybee (Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen's visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.

  12. Mating flights select for symmetry in honeybee drones ( Apis mellifera)

    Science.gov (United States)

    Jaffé, Rodolfo; Moritz, Robin F. A.

    2010-03-01

    Males of the honeybee ( Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen’s visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.

  13. Parasitic Cape honeybee workers, Apis mellifera capensis, evade policing

    Science.gov (United States)

    Martin, Stephen J.; Beekman, Madeleine; Wossler, Theresa C.; Ratnieks, Francis L. W.

    2002-01-01

    Relocation of the Cape honeybee, Apis mellifera capensis, by bee-keepers from southern to northern South Africa in 1990 has caused widespread death of managed African honeybee, A. m. scutellata, colonies. Apis mellifera capensis worker bees are able to lay diploid, female eggs without mating by means of automictic thelytoky (meiosis followed by fusion of two meiotic products to restore egg diploidy), whereas workers of other honeybee subspecies are able to lay only haploid, male eggs. The A. m. capensis workers, which are parasitizing and killing A. m. scutellata colonies in northern South Africa, are the asexual offspring of a single, original worker in which the small amount of genetic variation observed is due to crossing over during meiosis (P. Kryger, personal communication). Here we elucidate two principal mechanisms underlying this parasitism. Parasitic A. m. capensis workers activate their ovaries in host colonies that have a queen present (queenright colonies), and they lay eggs that evade being killed by other workers (worker policing)-the normal fate of worker-laid eggs in colonies with a queen. This unique parasitism by workers is an instance in which a society is unable to control the selfish actions of its members.

  14. How do honeybees attract nestmates using waggle dances in dark and noisy hives?

    Directory of Open Access Journals (Sweden)

    Yuji Hasegawa

    Full Text Available It is well known that honeybees share information related to food sources with nestmates using a dance language that is representative of symbolic communication among non-primates. Some honeybee species engage in visually apparent behavior, walking in a figure-eight pattern inside their dark hives. It has been suggested that sounds play an important role in this dance language, even though a variety of wing vibration sounds are produced by honeybee behaviors in hives. It has been shown that dances emit sounds primarily at about 250-300 Hz, which is in the same frequency range as honeybees' flight sounds. Thus the exact mechanism whereby honeybees attract nestmates using waggle dances in such a dark and noisy hive is as yet unclear. In this study, we used a flight simulator in which honeybees were attached to a torque meter in order to analyze the component of bees' orienting response caused only by sounds, and not by odor or by vibrations sensed by their legs. We showed using single sound localization that honeybees preferred sounds around 265 Hz. Furthermore, according to sound discrimination tests using sounds of the same frequency, honeybees preferred rhythmic sounds. Our results demonstrate that frequency and rhythmic components play a complementary role in localizing dance sounds. Dance sounds were presumably developed to share information in a dark and noisy environment.

  15. Risk indicators affecting honeybee colony survival in Europe: one year of surveillance

    DEFF Research Database (Denmark)

    Jacques, Antoine; Laurent, Marion; Bougeard, Stéphanie

    2016-01-01

    The first pan-European harmonized active epidemiological surveillance program on honeybee colony mortality (EPILOBEE) was set up across 17 European Member States to estimate honeybee colony mortality over winter and during the beekeeping season. In nine Member States, overwinter losses were higher...

  16. Spatial and temporal variation of metal concentrations in adult honeybees (Apis mellifera L.)

    NARCIS (Netherlands)

    Steen, van der J.J.M.; Kraker, J.; Grotenhuis, J.T.C.

    2012-01-01

    Honeybees (Apis mellifera L.) have great potential for detecting and monitoring environmental pollution, given their wide-ranging foraging behaviour. Previous studies have demonstrated that concentrations of metals in adult honeybees were significantly higher at polluted than at control locations. T

  17. Characterization of secreted proteases of Paenibacillus larvae, potential virulence factors in honeybee larval infection

    Science.gov (United States)

    Paenibacillus larvae is the causative agent of American Foulbrood (AFB), the most severe bacterial disease that affects honeybee larvae. AFB causes a significant decrease in the honeybee population affecting the beekeeping industry and agricultural production. After infection of larvae, P. larvae se...

  18. A selective sweep in a microsporidian parasite Nosema-tolerant honeybee population, Apis mellifera

    DEFF Research Database (Denmark)

    Huang, Q.; Lattorff, H. M. G.; Kryger, P.;

    2014-01-01

    Nosema is a microsporidian parasite of the honeybee, which infects the epithelial cells of the gut. In Denmark, honeybee colonies have been selectively bred for the absence of Nosema over decades, resulting in a breeding line that is tolerant toward Nosema infections. As the tolerance toward the ...

  19. Bee bread increases honeybee haemolymph protein and promote better survival despite of causing higher Nosema ceranae abundance in honeybees.

    Science.gov (United States)

    Basualdo, Marina; Barragán, Sergio; Antúnez, Karina

    2014-08-01

    Adequate protein nutrition supports healthy honeybees and reduces the susceptibility to disease. However little is known concerning the effect of the diet on Nosema ceranae development, an obligate intracellular parasite that disturbs the protein metabolism of honeybees (Apis mellifera). Here we tested the effect of natural (bee bread) and non-natural protein diets (substitute) on haemolymph proteins titers of honeybee and N. ceranae spore production. The natural diet induced higher levels of protein and parasite development, but the survival of bees was also higher than with non-natural diets. The data showed that the administration of an artificially high nutritious diet in terms of crude protein content is not sufficient to promote healthy bees; rather the protein ingested should be efficiently assimilated. The overall results support the idea that the physiological condition of the bees is linked to protein levels in the haemolymph, which affects the tolerance to parasite; consequently the negative impact of the parasite on host fitness is not associated only with the level of infection.

  20. Detection of viral sequences in semen of honeybees (Apis mellifera): evidence for vertical transmission of viruses through drones.

    Science.gov (United States)

    Yue, Constanze; Schröder, Marion; Bienefeld, Kaspar; Genersch, Elke

    2006-06-01

    Honeybees (Apis mellifera) can be attacked by many eukaryotic parasites, and bacterial as well as viral pathogens. Especially in combination with the ectoparasitic mite Varroa destructor, viral honeybee diseases are becoming a major problem in apiculture, causing economic losses worldwide. Several horizontal transmission routes are described for some honeybee viruses. Here, we report for the first time the detection of viral sequences in semen of honeybee drones suggesting mating as another horizontal and/or vertical route of virus transmission. Since artificial insemination and controlled mating is widely used in honeybee breeding, the impact of our findings for disease transmission is discussed.

  1. Are commercial probiotics and prebiotics effective in the treatment and prevention of honeybee nosemosis C?

    Science.gov (United States)

    Ptaszyńska, Aneta A; Borsuk, Grzegorz; Zdybicka-Barabas, Agnieszka; Cytryńska, Małgorzata; Małek, Wanda

    2016-01-01

    The study was conducted to investigate the effect of Lactobacillus rhamnosus (a commercial probiotic) and inulin (a prebiotic) on the survival rates of honeybees infected and uninfected with Nosema ceranae, the level of phenoloxidase (PO) activity, the course of nosemosis, and the effect on the prevention of nosemosis development in bees. The cells of L. rhamnosus exhibited a high rate of survival in 56.56 % sugar syrup, which was used to feed the honeybees. Surprisingly, honeybees fed with sugar syrup supplemented with a commercial probiotic and a probiotic + prebiotic were more susceptible to N. ceranae infection, and their lifespan was much shorter. The number of microsporidian spores in the honeybees fed for 9 days prior to N. ceranae infection with a sugar syrup supplemented with a commercial probiotic was 25 times higher (970 million spores per one honeybee) than in a control group fed with pure sucrose syrup (38 million spores per one honeybee). PO activity reached its highest level in the hemolymph of this honeybee control group uninfected with N. ceranae. The addition of probiotics or both probiotics and prebiotics to the food of uninfected bees led to the ~2-fold decrease in the PO activity. The infection of honeybees with N. ceranae accompanied an almost 20-fold decrease in the PO level. The inulin supplemented solely at a concentration of 2 μg/mL was the only administrated factor which did not significantly affect honeybees' survival, the PO activity, or the nosemosis infection level. In conclusion, the supplementation of honeybees' diet with improperly selected probiotics or both probiotics and prebiotics does not prevent nosemosis development, can de-regulate insect immune systems, and may significantly increase bee mortality.

  2. Reinstatement in Honeybees Is Context-Dependent

    Science.gov (United States)

    Plath, Jenny Aino; Felsenberg, Johannes; Eisenhardt, Dorothea

    2012-01-01

    During extinction animals experience that the previously learned association between a conditioned stimulus (CS) and an unconditioned stimulus (US) no longer holds true. Accordingly, the conditioned response (CR) to the CS decreases. This decrease of the CR can be reversed by presentation of the US alone following extinction, a phenomenon termed…

  3. Effects of pesticides on honeybee behaviours%农药对蜜蜂行为的影响

    Institute of Scientific and Technical Information of China (English)

    代平礼; 王强; 孙继虎; 周婷; 刘锋; 吴艳艳; 罗其花; 徐书法

    2009-01-01

    农药对蜜蜂的安全性评价包括在实验室以及更高层次的半大田和大田水平上的研究.蜜蜂行为是蜜蜂机体是否正常的直接表现,因此也是安全性评价的重要指标.文章概述农药对蜜蜂行为的影响,包括蜂王产卵行为,工蜂分工、采集行为、同群和外群工蜂辨别、学习行为和农药对蜜蜂的驱避性.%Risk assessment of pesticides on honeybee includes laboratory, semi-field and field studies. Bee behaviour is one of the most important indexes for risk assessment. This paper reviews the effects of pesticides on honeybee behaviours which include oviposition behaviour, division of labour, foraging behaviour, nestmate recognition, learning behaviour and repellency.

  4. Invasive Species

    Science.gov (United States)

    Invasive species have significantly changed the Great Lakes ecosystem. An invasive species is a plant or animal that is not native to an ecosystem, and whose introduction is likely to cause economic, human health, or environmental damage.

  5. Conservative versus invasive stable ischemic heart disease management strategies: what do we plan to learn from the ISCHEMIA trial?

    Science.gov (United States)

    Cheng-Torres, Kathleen A; Desai, Karan P; Sidhu, Mandeep S; Maron, David J; Boden, William E

    2016-01-01

    Over the past decade, landmark randomized clinical trials comparing initial management strategies in stable ischemic heart disease (SIHD) have demonstrated no significant reduction in 'hard' end points (all-cause mortality, cardiac death or myocardial infarction) with one strategy versus another. The main advantage derived from early revascularization is improved short-term quality of life. Nonetheless, questions remain regarding how best to manage SIHD patients, such as whether a high-risk subgroup can be identified that may experience a survival or myocardial infarction benefit from early revascularization, and if not, when should diagnostic catheterization and revascularization be performed. The International Study of Comparative Health Effectiveness with Medical and Invasive Approaches trial is designed to address these questions by randomizing SIHD patients with at least moderate ischemia to an initial conservative strategy of optimal medical therapy or an initial invasive strategy of optimal medical therapy plus cardiac catheterization and revascularization.

  6. Pitfalls in the Diagnosis and Management of Invasive Pneumococcal Meningoencephalitis – What We Can Learn From a Case

    Directory of Open Access Journals (Sweden)

    Pascale S Grzonka

    2017-08-01

    Full Text Available Invasive pneumococcal meningitis is a life-threatening infectious disease affecting the central nervous system. It continues to be the most common type of community-acquired acute bacterial meningitides. Despite advances in neuro-critical care, the case fatality rate remains high. Rapid diagnosis and initiation of antibiotic therapy precludes mortality and long-term neurological sequelae in survivors. However, not all cases are easily recognised, and unanticipated complications may impede optimal course and outcome. Here, we describe a case of invasive pneumococcal meningoencephalitis in a 65-year-old man with an unusual initial presentation and pitfalls in the course of the disease. We highlight the importance of early diagnosis and treatment as well as recognition and management of complications.

  7. Perioperative Surgical Complications and Learning Curve Associated with Minimally Invasive Transforaminal Lumbar Interbody Fusion: A Single-Institute Experience

    OpenAIRE

    Park, Yung; Lee, Soo Bin; Seok, Sang Ok; Jo, Byung Woo; Ha, Joong Won

    2015-01-01

    Background As surgical complications tend to occur more frequently in the beginning stages of a surgeon's career, knowledge of perioperative complications is important to perform a safe procedure, especially if the surgeon is a novice. We sought to identify and describe perioperative complications and their management in connection with minimally invasive transforaminal lumbar interbody fusion (TLIF). Methods We performed a retrospective chart review of our first 124 patients who underwent mi...

  8. Neonicotinoid-Coated Zea mays Seeds Indirectly Affect Honeybee Performance and Pathogen Susceptibility in Field Trials.

    Directory of Open Access Journals (Sweden)

    Mohamed Alburaki

    Full Text Available Thirty-two honeybee (Apis mellifera colonies were studied in order to detect and measure potential in vivo effects of neonicotinoid pesticides used in cornfields (Zea mays spp on honeybee health. Honeybee colonies were randomly split on four different agricultural cornfield areas located near Quebec City, Canada. Two locations contained cornfields treated with a seed-coated systemic neonicotinoid insecticide while the two others were organic cornfields used as control treatments. Hives were extensively monitored for their performance and health traits over a period of two years. Honeybee viruses (brood queen cell virus BQCV, deformed wing virus DWV, and Israeli acute paralysis virus IAPV and the brain specific expression of a biomarker of host physiological stress, the Acetylcholinesterase gene AChE, were investigated using RT-qPCR. Liquid chromatography-mass spectrometry (LC-MS was performed to detect pesticide residues in adult bees, honey, pollen, and corn flowers collected from the studied hives in each location. In addition, general hive conditions were assessed by monitoring colony weight and brood development. Neonicotinoids were only identified in corn flowers at low concentrations. However, honeybee colonies located in neonicotinoid treated cornfields expressed significantly higher pathogen infection than those located in untreated cornfields. AChE levels showed elevated levels among honeybees that collected corn pollen from treated fields. Positive correlations were recorded between pathogens and the treated locations. Our data suggests that neonicotinoids indirectly weaken honeybee health by inducing physiological stress and increasing pathogen loads.

  9. Neonicotinoid-Coated Zea mays Seeds Indirectly Affect Honeybee Performance and Pathogen Susceptibility in Field Trials

    Science.gov (United States)

    Alburaki, Mohamed; Boutin, Sébastien; Mercier, Pierre-Luc; Loublier, Yves; Chagnon, Madeleine; Derome, Nicolas

    2015-01-01

    Thirty-two honeybee (Apis mellifera) colonies were studied in order to detect and measure potential in vivo effects of neonicotinoid pesticides used in cornfields (Zea mays spp) on honeybee health. Honeybee colonies were randomly split on four different agricultural cornfield areas located near Quebec City, Canada. Two locations contained cornfields treated with a seed-coated systemic neonicotinoid insecticide while the two others were organic cornfields used as control treatments. Hives were extensively monitored for their performance and health traits over a period of two years. Honeybee viruses (brood queen cell virus BQCV, deformed wing virus DWV, and Israeli acute paralysis virus IAPV) and the brain specific expression of a biomarker of host physiological stress, the Acetylcholinesterase gene AChE, were investigated using RT-qPCR. Liquid chromatography-mass spectrometry (LC-MS) was performed to detect pesticide residues in adult bees, honey, pollen, and corn flowers collected from the studied hives in each location. In addition, general hive conditions were assessed by monitoring colony weight and brood development. Neonicotinoids were only identified in corn flowers at low concentrations. However, honeybee colonies located in neonicotinoid treated cornfields expressed significantly higher pathogen infection than those located in untreated cornfields. AChE levels showed elevated levels among honeybees that collected corn pollen from treated fields. Positive correlations were recorded between pathogens and the treated locations. Our data suggests that neonicotinoids indirectly weaken honeybee health by inducing physiological stress and increasing pathogen loads. PMID:25993642

  10. Brevibacillus laterosporus isolated from the digestive tract of honeybees has high antimicrobial activity and promotes growth and productivity of honeybee's colonies.

    Science.gov (United States)

    Khaled, Jamal M; Al-Mekhlafi, Fahd A; Mothana, Ramzi A; Alharbi, Naiyf S; Alzaharni, Khalid E; Sharafaddin, Anwar H; Kadaikunnan, Shine; Alobaidi, Ahmed S; Bayaqoob, Noofal I; Govindarajan, Marimuthu; Benelli, Giovanni

    2017-09-09

    The development of novel antimicrobial drugs, as well as the discovery of novel compounds able to promote honeybee's growth, represents major challenges for modern entomology. The main aim of this study was to investigate whether Brevibacillus laterosporus isolated from the digestive tract of Saudi honeybees, Apis mellifera, was able to stimulate colony strength parameters of honeybees and to evaluate its ability to produce antimicrobial agents. Honeybees were collected in Dirab, Riyadh Region, Saudi Arabia, and microorganisms were isolated and identified by 16S ribosomal RNA analysis. Microscopic identification of the microorganism in its native state was facilitated by atomic force microscopy at high-resolution imaging. Active biological compounds were produced by submerged fermentation with B. laterosporus. The fermented broth was subjected to extraction and purification, and then semi-pure compounds were analyzed by gas chromatography-mass spectrometry. The effectiveness of the crude extract and semi-pure compounds as antimicrobial agents was evaluated by susceptibility assays. More than 22% of the microorganisms isolated from the digestive tract of healthy honeybees have been identified as B. laterosporus, this kind of species has a unique shape and morphological structure. The cyclic dipeptide cyclo(Leu-Pro) produced by B. laterosporus showed biological activity against several pathogenic microorganisms. Furthermore, the total counts of workers, closed brood, and open brood, as well as the production of bee pollen and honey, were better in honeybees treated with a B. laterosporus suspension. The data indicated that the B. laterosporus strain isolated from a healthy honeybee might be a novel probiotic and a producer of important biological compounds.

  11. Selective Behaviour of Honeybees in Acquiring European Propolis Plant Precursors.

    Science.gov (United States)

    Isidorov, Valery A; Bakier, Sławomir; Pirożnikow, Ewa; Zambrzycka, Monika; Swiecicka, Izabela

    2016-06-01

    Honey bees harvest resins from various plant species and use them in the hive as propolis. While there have been a number of studies concerning the chemical composition of this antimicrobial product, little is known about selective behavior and bee preference when different potential plant sources of resin are available. The main objective of this paper was to investigate some aspects of behavioral patterns of honeybees in the context of resin acquisition. Samples of propolis originating from temperate zones of Europe and the supposed botanical precursors of the product were analyzed. Taxonomical markers of bud resins of two white birch species, aspen, black poplar, horse-chestnut, black alder, and Scots pine were determined through GC-MS analysis. All these trees have been reported as sources of propolis, but comparisons of the chemical composition of their bud resins with the compositions of propolis samples from seven European countries have demonstrated the presence of taxonomical markers only from black poplar, aspen, and one species of birch. This suggests selective behavior during the collection of bud resins by honeybees. To examine the causes of such selectivity, the antimicrobial properties of bud resins were determined. Horse-chestnut resins had lower antimicrobial activity than the other resins which did not differ significantly.

  12. Genetic variation in virulence among chalkbrood strains infecting honeybees.

    Directory of Open Access Journals (Sweden)

    Svjetlana Vojvodic

    Full Text Available Ascosphaera apis causes chalkbrood in honeybees, a chronic disease that reduces the number of viable offspring in the nest. Although lethal for larvae, the disease normally has relatively low virulence at the colony level. A recent study showed that there is genetic variation for host susceptibility, but whether Ascosphaera apis strains differ in virulence is unknown. We exploited a recently modified in vitro rearing technique to infect honeybee larvae from three colonies with naturally mated queens under strictly controlled laboratory conditions, using four strains from two distinct A. apis clades. We found that both strain and colony of larval origin affected mortality rates. The strains from one clade caused 12-14% mortality while those from the other clade induced 71-92% mortality. Larvae from one colony showed significantly higher susceptibility to chalkbrood infection than larvae from the other two colonies, confirming the existence of genetic variation in susceptibility across colonies. Our results are consistent with antagonistic coevolution between a specialized fungal pathogen and its host, and suggest that beekeeping industries would benefit from more systematic monitoring of this chronic stress factor of their colonies.

  13. Breeding the Mite-Resistant Honeybee by Nutritional Crossbreed Technology

    Institute of Scientific and Technical Information of China (English)

    XIE Xian-bing; PENG Wen-jun; ZENG Zhi-jiang

    2008-01-01

    Mite (Varroa destructor) is one of the most serious parasite threats to the honey bee (Apis mellifera) reared in China. The beekeepers mainly use the drug to control and kill the mite in the past years, but the honey products may be contaminated and the mite is becoming drug-resistant. The main idea of this paper is to research the possibility of mite-resistant honeybee rearing by nutritional crossbreed. The larvae (Apis mellifera ligustica) are bred with the royal jelly of Apis carana carana, and then the morphological index of the worker generation, genotypic frequency and gene frequency of the MDH Ⅱ, genetic resemblance, and mite resistance are measured. The results show that: compared to the parent workers, the proboscis length, anterior wing area, the total length of the third and fourth dorsal plate of the abdomen, the length of the fourth dorsal plate of the tuberculum, the area of the sixth abdominal segment, and the area of wax mirrors are significantly different, but the differences in the brachium index, dactylus index, and wing claw are not significant. Moreover, there are some mutations in the genotypic frequency and gene frequency of the MDH Ⅱ. The mite resistance of the nutritional crossbreed worker is significantly higher. The morphological, physical, and biochemical characters, genetic resemblance, and the mite-resistant ability of the worker generation can be changed by nutritional crossbreeding. Nutritional crossbreeding can be a new way to breed the honeybee.

  14. Climate rather than geography separates two European honeybee subspecies.

    Science.gov (United States)

    Coroian, Cristian O; Muñoz, Irene; Schlüns, Ellen A; Paniti-Teleky, Orsolya R; Erler, Silvio; Furdui, Emilia M; Mărghitaş, Liviu A; Dezmirean, Daniel S; Schlüns, Helge; de la Rúa, Pilar; Moritz, Robin F A

    2014-05-01

    Both climatic and geographical factors play an important role for the biogeographical distribution of species. The Carpathian mountain ridge has been suggested as a natural geographical divide between the two honeybee subspecies Apis mellifera carnica and A. m. macedonica. We sampled one worker from one colony each at 138 traditional apiaries located across the Carpathians spanning from the Hungarian plains to the Danube delta. All samples were sequenced at the mitochondrial tRNA(Leu)-cox2 intergenic region and genotyped at twelve microsatellite loci. The Carpathians had only limited impact on the biogeography because both subspecies were abundant on either side of the mountain ridge. In contrast, subspecies differentiation strongly correlated with the various temperature zones in Romania. A. m. carnica is more abundant in regions with the mean average temperature below 9 °C, whereas A. m. macedonica honeybees are more frequent in regions with mean temperatures above 9 °C. This range selection may have impact on the future biogeography in the light of anticipated global climatic changes.

  15. Interspecific utilisation of wax in comb building by honeybees

    Science.gov (United States)

    Hepburn, H. Randall; Radloff, Sarah E.; Duangphakdee, Orawan; Phaincharoen, Mananya

    2009-06-01

    Beeswaxes of honeybee species share some homologous neutral lipids; but species-specific differences remain. We analysed behavioural variation for wax choice in honeybees, calculated the Euclidean distances for different beeswaxes and assessed the relationship of Euclidean distances to wax choice. We tested the beeswaxes of Apis mellifera capensis, Apis florea, Apis cerana and Apis dorsata and the plant and mineral waxes Japan, candelilla, bayberry and ozokerite as sheets placed in colonies of A. m. capensis, A. florea and A. cerana. A. m. capensis accepted the four beeswaxes but removed Japan and bayberry wax and ignored candelilla and ozokerite. A. cerana colonies accepted the wax of A. cerana, A. florea and A. dorsata but rejected or ignored that of A. m. capensis, the plant and mineral waxes. A. florea colonies accepted A. cerana, A. dorsata and A. florea wax but rejected that of A. m. capensis. The Euclidean distances for the beeswaxes are consistent with currently prevailing phylogenies for Apis. Despite post-speciation chemical differences in the beeswaxes, they remain largely acceptable interspecifically while the plant and mineral waxes are not chemically close enough to beeswax for their acceptance.

  16. Relationship between honeybee nutrition and their microbial communities.

    Science.gov (United States)

    Saraiva, Miriane Acosta; Zemolin, Ana Paula Pegoraro; Franco, Jeferson Luis; Boldo, Juliano Tomazzoni; Stefenon, Valdir Marcos; Triplett, Eric W; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Wurdig

    2015-04-01

    The microbiota and the functional genes actively involved in the process of breakdown and utilization of pollen grains in beebread and bee guts are not yet understood. The aim of this work was to assess the diversity and community structure of bacteria and archaea in Africanized honeybee guts and beebread as well as to predict the genes involved in the microbial bioprocessing of pollen using state of the art 'post-light' based sequencing technology. A total of 11 bacterial phyla were found within bee guts and 10 bacterial phyla were found within beebread. Although the phylum level comparison shows most phyla in common, a deeper phylogenetic analysis showed greater variation of taxonomic composition. The families Enterobacteriaceae, Ricketsiaceae, Spiroplasmataceae and Bacillaceae, were the main groups responsible for the specificity of the bee gut while the main families responsible for the specificity of the beebread were Neisseriaceae, Flavobacteriaceae, Acetobacteraceae and Lactobacillaceae. In terms of microbial community structure, the analysis showed that the communities from the two environments were quite different from each other with only 7 % of species-level taxa shared between bee gut and beebread. The results indicated the presence of a highly specialized and well-adapted microbiota within each bee gut and beebread. The beebread community included a greater relative abundance of genes related to amino acid, carbohydrate, and lipid metabolism, suggesting that pollen biodegradation predominantly occurs in the beebread. These results suggests a complex and important relationship between honeybee nutrition and their microbial communities.

  17. From where did the Western honeybee (Apis mellifera) originate?

    Science.gov (United States)

    Han, Fan; Wallberg, Andreas; Webster, Matthew T

    2012-08-01

    The native range of the honeybee Apis mellifera encompasses Europe, Africa, and the Middle East, whereas the nine other species of Apis are found exclusively in Asia. It is therefore commonly assumed that A. mellifera arose in Asia and expanded into Europe and Africa. However, other hypotheses for the origin of A. mellifera have also been proposed based on phylogenetic trees constructed from genetic markers. In particular, an analysis based on >1000 single-nucleotide polymorphism markers placed the root of the tree of A. mellifera subspecies among samples from Africa, suggestive of an out-of-Africa expansion. Here, we re-evaluate the evidence for this and other hypotheses by testing the robustness of the tree topology to different tree-building methods and by removing specimens with a potentially hybrid background. These analyses do not unequivocally place the root of the tree of A. mellifera subspecies within Africa, and are potentially consistent with a variety of hypotheses for honeybee evolution, including an expansion out of Asia. Our analyses also support high divergence between western and eastern European populations of A. mellifera, suggesting they are likely derived from two distinct colonization routes, although the sources of these expansions are still unclear.

  18. Do honeybees, Apis mellifera scutellata, regulate humidity in their nest?

    Science.gov (United States)

    Human, Hannelie; Nicolson, Sue W.; Dietemann, Vincent

    2006-08-01

    Honeybees are highly efficient at regulating the biophysical parameters of their hive according to colony needs. Thermoregulation has been the most extensively studied aspect of nest homeostasis. In contrast, little is known about how humidity is regulated in beehives, if at all. Although high humidity is necessary for brood development, regulation of this parameter by honeybee workers has not yet been demonstrated. In the past, humidity was measured too crudely for a regulation mechanism to be identified. We reassess this issue, using miniaturised data loggers that allow humidity measurements in natural situations and at several places in the nest. We present evidence that workers influence humidity in the hive. However, there are constraints on potential regulation mechanisms because humidity optima may vary in different locations of the nest. Humidity could also depend on variable external factors, such as water availability, which further impair the regulation. Moreover, there are trade-offs with the regulation of temperature and respiratory gas exchanges that can disrupt the establishment of optimal humidity levels. As a result, we argue that workers can only adjust humidity within sub-optimal limits.

  19. Variable induction of vitellogenin genes in the varroa mite, Varroa destructor (Anderson & Trueman), by the honeybee, Apis mellifera L, host and its environment.

    Science.gov (United States)

    Cabrera Cordon, A R; Shirk, P D; Duehl, A J; Evans, J D; Teal, P E A

    2013-02-01

    Transcript levels of vitellogenins (Vgs) in the varroa mite, Varroa destructor (Anderson & Trueman), were variably induced by interactions between the developing honeybee, Apis mellifera L, as a food source and the capped honeybee cell environment. Transcripts for two Vgs of varroa mites were sequenced and putative Vg protein products characterized. Sequence analysis of VdVg1 and VdVg2 proteins showed that each had greater similarity with Vg1 and Vg2 proteins from ticks, respectively, than between themselves and were grouped separately by phylogenetic analyses. This suggests there was a duplication of the ancestral acarine Vg gene prior to the divergence of the mites and ticks. Low levels of transcript were detected in immature mites, males and phoretic females. Following cell invasion by phoretic females, VdVg1 and VdVg2 transcript levels were up-regulated after cell capping to a maximum at the time of partial cocoon formation by the honeybee. During oviposition the two transcripts were differentially expressed with higher levels of VdVg2 being observed. A bioassay based on assessing the transcript levels was established. Increases in VdVg1 and VdVg2 transcripts were induced experimentally in phoretic females when they were placed inside a cell containing an early metamorphosing last instar bee but not when exposed to the metamorphosing bee alone. The variable response of Vg expression to the food source as well as environmental cues within the capped cell demonstrates that perturbation of host-parasite interactions may provide avenues to disrupt the reproductive cycle of the varroa mites and prevent varroasis.

  20. Bay laurel (Laurus nobilis) as potential antiviral treatment in naturally BQCV infected honeybees.

    Science.gov (United States)

    Aurori, Adriana C; Bobiş, Otilia; Dezmirean, Daniel S; Mărghitaş, Liviu A; Erler, Silvio

    2016-08-15

    Viral diseases are one of the multiple factors associated with honeybee colony losses. Apart from their innate immune system, including the RNAi machinery, honeybees can use secondary plant metabolites to reduce or fully cure pathogen infections. Here, we tested the antiviral potential of Laurus nobilis leaf ethanolic extracts on forager honeybees naturally infected with BQCV (Black queen cell virus). Total viral loads were reduced even at the lowest concentration tested (1mg/ml). Higher extract concentrations (≥5mg/ml) significantly reduced virus replication. Measuring vitellogenin gene expression as an indicator for transcript homeostasis revealed constant RNA levels before and after treatment, suggesting that its expression was not impacted by the L. nobilis treatment. In conclusion, plant secondary metabolites can reduce virus loads and virus replication in naturally infected honeybees.

  1. Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera.

    Science.gov (United States)

    Di Prisco, Gennaro; Pennacchio, Francesco; Caprio, Emilio; Boncristiani, Humberto F; Evans, Jay D; Chen, Yanping

    2011-01-01

    The Israeli acute paralysis virus (IAPV) is a significant marker of honeybee colony collapse disorder (CCD). In the present work, we provide the first evidence that Varroa destructor is IAPV replication-competent and capable of vectoring IAPV in honeybees. The honeybees became infected with IAPV after exposure to Varroa mites that carried the virus. The copy number of IAPV in bees was positively correlated with the density of Varroa mites and time period of exposure to Varroa mites. Further, we showed that the mite-virus association could possibly reduce host immunity and therefore promote elevated levels of virus replication. This study defines an active role of Varroa mites in IAPV transmission and sheds light on the epidemiology of IAPV infection in honeybees.

  2. Biphasic responses of the honeybee heart to nanomolar concentrations of amitraz.

    Science.gov (United States)

    Papaefthimiou, Chrisovalantis; Papachristoforou, Alexandros; Theophilidis, George

    2013-09-01

    Amitraz is a pesticide targeting the octopaminergic receptors. In a previous study, octopamine, a biogenic amine, was found to induce a biphasic effect on the honeybee heart, inhibition at low concentrations and excitation at high concentrations. Furthermore, the honeybee heart was found to be far more sensitive to octopamine compared to other insect hearts. The objective of the present study was to investigate the effects of amitraz on the electrical and mechanical properties of the honeybee heart ex vivo and on the heart rate in vivo. In ex vivo conditions, amitraz at 10(-12) M caused a significant inhibition in the mechanical (pamitraz per bee induced a persistent increase of 134.28±4.07% (pamitraz, which is nevertheless still used inside beehives, ostensibly to "protect" the honeybees against their main parasite, Varroa destructor. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. From honeybees to robots and back: division of labour based on partitioning social inhibition.

    Science.gov (United States)

    Zahadat, Payam; Hahshold, Sibylle; Thenius, Ronald; Crailsheim, Karl; Schmickl, Thomas

    2015-10-26

    In this paper, a distributed adaptive partitioning algorithm inspired by division of labor in honeybees is investigated for its applicability in a swarm of underwater robots in one hand and is qualitatively compared with the behavior of honeybee colonies on the other hand. The algorithm, partitioning social inhibition (PSI), is based on local interactions and uses a simple logic inspired from age-polyethism and task allocation in honeybee colonies. The algorithm is analyzed in simulation and is successfully applied here to partition a swarm of underwater robots into groups demonstrating its adaptivity to changes and applicability in real world systems. In a turn towards the inspiration origins of the algorithm, three honeybee colonies are then studied for age-polyethism behaviors and the results are contrasted with a simulated swarm running the PSI algorithm. Similar effects are detected in both the biological and simulated swarms suggesting biological plausibility of the mechanisms employed by the artificial system.

  4. Mushroom body extrinsic neurons in the honeybee (Apis mellifera) brain integrate context and cue values upon attentional stimulus selection.

    Science.gov (United States)

    Filla, Ina; Menzel, Randolf

    2015-09-01

    Multimodal GABA-immunoreactive feedback neurons in the honeybee brain connecting the output region of the mushroom body with its input are expected to tune the input to the mushroom body in an experience-dependent way. These neurons are known to change their rate responses to learned olfactory stimuli. In this work we ask whether these neurons also transmit learned attentional effects during multisensory integration. We find that a visual context and an olfactory cue change the rate responses of these neurons after learning according to the associated values of both context and cue. The learned visual context promotes attentional response selection by enhancing olfactory stimulus valuation at both the behavioral and the neural level. During a rewarded visual context, bees reacted faster and more reliably to a rewarded odor. We interpreted this as the result of the observed enhanced neural discharge toward the odor. An unrewarded context reduced already low rate responses to the unrewarded odor. In addition to stimulus valuation, these feedback neurons generate a neural error signal after an incorrect behavioral response. This might act as a learning signal in feedback neurons. All of these effects were exclusively found in trials in which the animal prepares for a motor response that happens during attentional stimulus selection. We discuss possible implications of the results for the feedback connections of the mushroom body.

  5. Functional Role of Native and Invasive Filter-Feeders, and the Effect of Parasites: Learning from Hypersaline Ecosystems

    Science.gov (United States)

    Green, Andy J.

    2016-01-01

    Filter-feeding organisms are often keystone species with a major influence on the dynamics of aquatic ecosystems. Studies of filtering rates in such taxa are therefore vital in order to understand ecosystem functioning and the impact of natural and anthropogenic stressors such as parasites, climate warming and invasive species. Brine shrimps Artemia spp. are the dominant grazers in hypersaline systems and are a good example of such keystone taxa. Hypersaline ecosystems are relatively simplified environments compared with much more complex freshwater and marine ecosystems, making them suitable model systems to address these questions. The aim of this study was to compare feeding rates at different salinities and temperatures between clonal A. parthenogenetica (native to Eurasia and Africa) and the invasive American brine shrimp A. franciscana, which is excluding native Artemia from many localities. We considered how differences observed in laboratory experiments upscale at the ecosystem level across both spatial and temporal scales (as indicated by chlorophyll-a concentration and turbidity). In laboratory experiments, feeding rates increased at higher temperatures and salinities in both Artemia species and sexes, whilst A. franciscana consistently fed at higher rates. A field study of temporal dynamics revealed significantly higher concentrations of chlorophyll-a in sites occupied by A. parthenogenetica, supporting our experimental findings. Artemia parthenogenetica density and biomass were negatively correlated with chlorophyll-a concentration at the spatial scale. We also tested the effect of cestode parasites, which are highly prevalent in native Artemia but much rarer in the invasive species. The cestodes Flamingolepis liguloides and Anomotaenia tringae decreased feeding rates in native Artemia, whilst Confluaria podicipina had no significant effect. Total parasite prevalence was positively correlated with turbidity. Overall, parasites are likely to reduce

  6. Mouthpart grooming behavior in honeybees: Kinematics and sectionalized friction between foreleg tarsi and proboscises.

    Science.gov (United States)

    Linghu, Zelin; Wu, Jianing; Wang, Changlong; Yan, Shaoze

    2015-11-01

    The mouthpart of a honeybee is prone to contamination by granular particles such as pollen or dirt from the field. To clean the contaminated mouthparts, a honeybee swings its foreleg tarsi forward and backward to brush the proboscis continuously, sweeping the contaminant from the surfaces of the labial palpi, galeae, and bushy haired tongue (glossa). This grooming behavior has been documented but the dynamic characteristics therein have not been investigated yet. We quantified the grooming behavior of a honeybee from the perspective of kinematic and tribological properties. We captured high-speed videos that recorded the mouthpart grooming patterns of honeybees from the front and side views and measured the friction on the grooming surfaces using a precision dynamometer. During grooming, a honeybee first positions the mouthpart and then places a pair of foreleg tarsi to the tubular-folded galea. The tarsi press the galea and labial palpi and slide downward while keeping close contact with the galea. Then, the hairy glossa stretches out of the temporary tube with the glossa setae erected. The tarsi slowly slide down when grooming the glossa. In the return stroke of grooming, the foreleg tarsi detach from the mouthpart and retreat swiftly. Friction analysis shows that the honeybees can coordinate the velocity of the foreleg tarsi to the sectionalized tribological property of the tarsus-mouthpart interface. The specific grooming pattern enables honeybees to save energy and resist wear, resulting in a possible highly evolved grooming strategy. These findings lead to further understanding of the honeybee's grooming behavior facilitated by the special motion kinematics and friction characteristics.

  7. [Mortality related to honey-bee stings in Mexico from 1988 to 2009].

    Science.gov (United States)

    Becerril-Ángeles, Martìn; Núñez-Velázquez, Marco; Arias-Martìnez, María Isabel

    2013-01-01

    Honeybee stings can cause toxic and allergic reactions that may lead to severe symptoms, and sometimes to death. Mexico is the third worldës honey country exporter and sixth producer. Due to the arrival of Africanized bees into Mexico in 1986, the National Program for Control of Africanized Bee (NPCAB) was created, in order to reduce the socioeconomic and sanitary impact from the new bee species. To report deaths related to honey-bee sting in Mexico, from 1988 to 2009. Reports gathered from offices of the National Program for the Control of Africanized Honey-Bee throughout the country, were used to show the number of deaths related to honey-bee stings which occurred in Mexico from 1988 to 2009. People suffering from multiple honey-bee stings were reported in all the states of the country. Between 1988 and 1998 there were 360 honey-bee related accidents, involving over 5000 people. From 1988 to 2009 there were 480 demised persons with an annual average of 21.8. Regarding age, people over 50 years were the most affected ones. The largest number of fatal cases, 340, occurred from 1990 to 1999, with an annual average of 34, and between 2000 and 2009, the number of cases decreased to 118. There was an average of 21 annual death cases related to honey-bee stings from 1988 to 2009. Toxic reactions caused by multiple stings are the most likely cause of death in the majority of cases. Fatal cases occurred mainly in people older than 50 years. There was a decrease in the mortality rate associated to honey-bee stings in the last decade.

  8. Use of oxalic acid to control Varroa destructor in honeybee (Apis mellifera L.) colonies

    OpenAIRE

    Akyol, Ethem; YENİNAR, Halil

    2009-01-01

    This study was carried out to determine the effects of oxalic acid (OA) on reducing Varroa mite (Varroa destructor) populations in honeybee (Apis mellifera L.) colonies in the fall. Twenty honeybee colonies, in wooden Langstroth hives, were used in this experiment. Average Varroa infestation levels (%) of the OA and control groups were 25.87% and 24.57% on adult workers before the treatments. The OA treatments were applied twice, on 3 November and 13 November 2006. Average Varroa infestation ...

  9. Drag reduction effects facilitated by microridges inside the mouthparts of honeybee workers and drones.

    Science.gov (United States)

    Li, Chu-Chu; Wu, Jia-Ning; Yang, Yun-Qiang; Zhu, Ren-Gao; Yan, Shao-Ze

    2016-01-21

    The mouthpart of a honeybee is a natural well-designed micropump that uses a reciprocating glossa through a temporary tube comprising a pair of galeae and labial palpi for loading nectar. The shapes and sizes of mouthparts differ among castes of honeybees, but the diversities of the functional microstructures inside the mouthparts of honeybee workers and drones remain poorly understood. Through scanning electron microscopy, we found the dimensional difference of uniformly distributed microridges on the inner galeae walls of Apis mellifera ligustica workers and drones. Subsequently, we recorded the feeding process of live honeybees by using a specially designed high-speed camera system. Considering the microridges and kinematics of the glossa, we constructed a hydrodynamic model to calculate the friction coefficient of the mouthpart. In addition, we test the drag reduction through the dimensional variations of the microridges on the inner walls of mouthparts. Theoretical estimations of the friction coefficient with respect to dipping frequency show that inner microridges can reduce friction during the feeding process of honeybees. The effects of drag reduction regulated by specific microridges were then compared. The friction coefficients of the workers and drones were found to be 0.011±0.007 (mean±s.d.) and 0.045±0.010, respectively. These results indicate that the mouthparts of workers are more capable of drag reduction compared with those of drones. The difference was analyzed by comparing the foraging behavior of the workers and drones. Workers are equipped with well-developed hypopharyngeal, and their dipping frequency is higher than that of drones. Our research establishes a critical link between microridge dimensions and drag reduction capability during the nectar feeding of honeybees. Our results reveal that microridges inside the mouthparts of honeybee workers and drones reflect the caste-related life cycles of honeybees.

  10. Exploring poisonous mechanism of honeybee, Apis mellifera ligustica Spinola, caused by pyrethroids.

    Science.gov (United States)

    Wang, Qiang; Diao, Qingyun; Dai, Pingli; Chu, Yanna; Wu, Yanyan; Zhou, Ting; Cai, Qingnian

    2017-01-01

    As the important intracellular secondary messengers, calcium channel is the target of many neurotoxic pesticides as calcium homeostasis in the neuroplasm play important role in neuronal functions and behavior in insects. This study investigated the effect of deltamethrin (DM) on calcium channel in the brain nerve cells of adult workers of Apis mellifera ligustica Spinola that were cultured in vitro. The results showed that the intracellular calcium concentration was significantly elevated even with a very low concentration of the DM (3.125×10(-2)mg/L). Further testing revealed that T-type voltage-gated calcium channels (VGCCs), except for sodium channels, was one of the target of DM on toxicity of Apis mellifera, while DM has no significant effect on the L-type VGCCs, N-methyl-d-aspartate receptor-gated calcium channels and calcium store. These results suggesting that the DM may act on T-type VGCCs in brain cells of honeybees and result in behavioral abnormalities including swarming, feeding, learning, and acquisition.

  11. Quantitative Neuropeptidome Analysis Reveals Neuropeptides Are Correlated with Social Behavior Regulation of the Honeybee Workers.

    Science.gov (United States)

    Han, Bin; Fang, Yu; Feng, Mao; Hu, Han; Qi, Yuping; Huo, Xinmei; Meng, Lifeng; Wu, Bin; Li, Jianke

    2015-10-01

    Neuropeptides play vital roles in orchestrating neural communication and physiological modulation in organisms, acting as neurotransmitters, neuromodulators, and neurohormones. The highly evolved social structure of honeybees is a good system for understanding how neuropeptides regulate social behaviors; however, much knowledge on neuropeptidomic variation in the age-related division of labor remains unknown. An in-depth comparison of the brain neuropeptidomic dynamics over four time points of age-related polyethism was performed on two strains of honeybees, the Italian bee (Apis mellifera ligustica, ITb) and the high royal jelly producing bee (RJb, selected for increasing royal jelly production for almost four decades from the ITb in China). Among the 158 identified nonredundant neuropeptides, 77 were previously unreported, significantly expanding the coverage of the honeybee neuropeptidome. The fact that 14 identical neuropeptide precursors changed their expression levels during the division of labor in both the ITb and RJb indicates they are highly related to task transition of honeybee workers. These observations further suggest the two lines of bees employ a similar neuropeptidome modification to tune their respective physiology of age polyethism via regulating excretory system, circadian clock system, and so forth. Noticeably, the enhanced level of neuropeptides implicated in regulating water homeostasis, brood pheromone recognition, foraging capacity, and pollen collection in RJb signify the fact that neuropeptides are also involved in the regulation of RJ secretion. These findings gain novel understanding of honeybee neuropeptidome correlated with social behavior regulation, which is potentially important in neurobiology for honeybees and other insects.

  12. GC-MS investigation of the chemical composition of honeybee drone and queen larvae homogenate

    Directory of Open Access Journals (Sweden)

    Isidorov Valery A.

    2016-06-01

    Full Text Available Honeybee larva homogenate appears to be underrated and insufficiently explored but this homogenate is an exceptionally valuable honeybee product. Drone larva homogenate is very nutritional due to its high content of proteins, free amino acids, lipids, and carbohydrates. Moreover, the biological characteristics of honeybee larvae indicate the presence of chemical substances that may be pharmacologically active. In spite of the above, the chemical composition of honeybee larva has not gained as much attention as that of other bee products. In this study, the chemical composition of honeybee brood homogenate has been investigated using gas chromatography/mass spectrometry. As a result, it was possible to isolate as many as 115 extractive organic compounds from 6 samples of crude queen and 9 samples of drone homogenate. The main groups of substances extracted from either type of homogenate were composed of free amino acids and carbohydrates. The relative content of amino acids in queen homogenate as well as the share of essential amino acids were found to be higher than in the drone homogenate. Disaccharide trehalose was the dominant sugar in the queen larvae, whilst glucose prevailed in the drone larvae. Comparative chemical analyses of honeybee queen and drone larva homogenates have allowed us to make a preliminary inference about a higher overall value of the former.

  13. Antennal proteome comparison of sexually mature drone and forager honeybees.

    Science.gov (United States)

    Feng, Mao; Song, Feifei; Aleku, Dereje Woltedji; Han, Bin; Fang, Yu; Li, Jianke

    2011-07-01

    Honeybees have evolved an intricate system of chemical communication to regulate their complex social interactions. Specific proteins involved in odorant detection most likely supported this chemical communication. Odorant reception takes place mainly in the antennae within hairlike structures called olfactory sensilla. Antennal proteomes of sexually mature drone and forager worker bees (an age group of bees assigned to perform field tasks) were compared using two-dimensional electrophoresis, mass spectrometry, quantitative real-time polymerase chain reaction, and bioinformatics. Sixty-one differentially expressed proteins were identified in which 67% were highly upregulated in the drones' antennae whereas only 33% upregulated in the worker bees' antennae. The antennae of the worker bees strongly expressed carbohydrate and energy metabolism and molecular transporters signifying a strong demand for metabolic energy and odorant binding proteins for their foraging activities and other olfactory responses, while proteins related to fatty acid metabolism, antioxidation, and protein folding were strongly upregulated in the drones' antennae as an indication of the importance for the detection and degradation of sex pheromones during queen identification for mating. On the basis of both groups of altered antenna proteins, carbohydrate metabolism and energy production and molecular transporters comprised more than 80% of the functional enrichment analysis and 45% of the constructed biological interaction networks (BIN), respectively. This suggests these two protein families play crucial roles in the antennal olfactory function of sexually mature drone and forager worker bees. Several key node proteins in the BIN were validated at the transcript level. This first global proteomic comparative analysis of antennae reveals sex-biased protein expression in both bees, indicating that odorant response mechanisms are sex-specific because of natural selection for different olfactory

  14. Pheromonal contest between honeybee workers ( Apis mellifera capensis)

    Science.gov (United States)

    Moritz, R. F. A.; Simon, U. E.; Crewe, R. M.

    2000-10-01

    Queenless workers of the Cape honeybee ( Apis mellifera capensis) can develop into reproductives termed pseudoqueens. Although they morphologically remain workers they become physiologically queenlike, produce offspring, and secrete mandibular gland pheromones similar to those of true queens. However, after queen loss only very few workers gain pseudoqueen status. A strong intracolonial selection governs which workers start oviposition and which remain sterile. The "queen substance", 9-keto-2(E)-decenoic acid (9-ODA), the dominant compound of the queen's mandibular gland pheromones, suppresses the secretion of queenlike mandibular gland pheromones in workers. It may act as an important signal in pseudoqueen selection. By analysing the mandibular gland pheromones of workers kept in pairs, we found that A. m. capensis workers compete to produce the strongest queen-like signal.

  15. Sperm use economy of honeybee (Apis mellifera) queens

    DEFF Research Database (Denmark)

    Baer, Boris; Collins, Jason; Maalaps, Kristiina

    2016-01-01

    The queens of eusocial ants, bees, and wasps only mate during a very brief period early in life to acquire and store a lifetime supply of sperm. As sperm cannot be replenished, queens have to be highly economic when using stored sperm to fertilize eggs, especially in species with large and long......-lived colonies. However, queen fertility has not been studied in detail, so that we have little understanding of how economic sperm use is in different species, and whether queens are able to influence their sperm use. This is surprising given that sperm use is a key factor of eusocial life, as it determines...... the fecundity and longevity of queens and therefore colony fitness. We quantified the number of sperm that honeybee (Apis mellifera) queens use to fertilize eggs. We examined sperm use in naturally mated queens of different ages and in queens artificially inseminated with different volumes of semen. We found...

  16. Social waves in giant honeybees (Apis dorsata) elicit nest vibrations.

    Science.gov (United States)

    Kastberger, Gerald; Weihmann, Frank; Hoetzl, Thomas

    2013-07-01

    Giant honeybees (Apis dorsata) nest in the open and have developed a wide array of strategies for colony defence, including the Mexican wave-like shimmering behaviour. In this collective response, the colony members perform upward flipping of their abdomens in coordinated cascades across the nest surface. The time-space properties of these emergent waves are response patterns which have become of adaptive significance for repelling enemies in the visual domain. We report for the first time that the mechanical impulse patterns provoked by these social waves and measured by laser Doppler vibrometry generate vibrations at the central comb of the nest at the basic (='natural') frequency of 2.156 ± 0.042 Hz which is more than double the average repetition rate of the driving shimmering waves. Analysis of the Fourier spectra of the comb vibrations under quiescence and arousal conditions provoked by mass flight activity and shimmering waves gives rise to the proposal of two possible models for the compound physical system of the bee nest: According to the elastic oscillatory plate model, the comb vibrations deliver supra-threshold cues preferentially to those colony members positioned close to the comb. The mechanical pendulum model predicts that the comb vibrations are sensed by the members of the bee curtain in general, enabling mechanoreceptive signalling across the nest, also through the comb itself. The findings show that weak and stochastic forces, such as general quiescence or diffuse mass flight activity, cause a harmonic frequency spectrum of the comb, driving the comb as an elastic plate. However, shimmering waves provide sufficiently strong forces to move the nest as a mechanical pendulum. This vibratory behaviour may support the colony-intrinsic information hypothesis herein that the mechanical vibrations of the comb provoked by shimmering do have the potential to facilitate immediate communication of the momentary defensive state of the honeybee nest to

  17. Reproductive interference between honeybee species in artificial sympatry.

    Science.gov (United States)

    Remnant, Emily J; Koetz, Anna; Tan, Ken; Hinson, Eloise; Beekman, Madeleine; Oldroyd, Benjamin P

    2014-03-01

    Reproductive isolation between closely related species is often incomplete. The Western honeybee, Apis mellifera, and the Eastern hive bee, Apis cerana, have been allopatric for millions of years, but are nonetheless similar in morphology and behaviour. During the last century, the two species were brought into contact anthropogenically, providing potential opportunities for interspecific matings. Hybrids between A. mellifera and A. cerana are inviable, so natural interspecific matings are of concern because they may reduce the viability of A. cerana and A. mellifera populations - two of the world's most important pollinators. We examined the mating behaviour of A. mellifera and A. cerana queens and drones from Caoba Basin, China and Cairns, Australia. Drone mating flight times overlap in both areas. Analysis of the spermathecal contents of queens with species-specific genetic markers indicated that in Caoba Basin, 14% of A. mellifera queens mated with at least one A. cerana male, but we detected no A. cerana queens that had mated with A. mellifera males. Similarly, in Cairns, no A. cerana queens carried A. mellifera sperm, but one-third of A. mellifera queens had mated with at least one A. cerana male. No hybrid embryos were detected in eggs laid by interspecifically mated A. mellifera queens in either location. However, A. mellifera queens artificially inseminated with A. cerana sperm produced inviable hybrid eggs or unfertilized drones. This suggests that reproductive interference will impact the viability of honeybee populations wherever A. cerana and A. mellifera are in contact.

  18. Widespread exploitation of the honeybee by early Neolithic farmers.

    Science.gov (United States)

    Roffet-Salque, Mélanie; Regert, Martine; Evershed, Richard P; Outram, Alan K; Cramp, Lucy J E; Decavallas, Orestes; Dunne, Julie; Gerbault, Pascale; Mileto, Simona; Mirabaud, Sigrid; Pääkkönen, Mirva; Smyth, Jessica; Šoberl, Lucija; Whelton, Helen L; Alday-Ruiz, Alfonso; Asplund, Henrik; Bartkowiak, Marta; Bayer-Niemeier, Eva; Belhouchet, Lotfi; Bernardini, Federico; Budja, Mihael; Cooney, Gabriel; Cubas, Miriam; Danaher, Ed M; Diniz, Mariana; Domboróczki, László; Fabbri, Cristina; González-Urquijo, Jesus E; Guilaine, Jean; Hachi, Slimane; Hartwell, Barrie N; Hofmann, Daniela; Hohle, Isabel; Ibáñez, Juan J; Karul, Necmi; Kherbouche, Farid; Kiely, Jacinta; Kotsakis, Kostas; Lueth, Friedrich; Mallory, James P; Manen, Claire; Marciniak, Arkadiusz; Maurice-Chabard, Brigitte; Mc Gonigle, Martin A; Mulazzani, Simone; Özdoğan, Mehmet; Perić, Olga S; Perić, Slaviša R; Petrasch, Jörg; Pétrequin, Anne-Marie; Pétrequin, Pierre; Poensgen, Ulrike; Pollard, C Joshua; Poplin, François; Radi, Giovanna; Stadler, Peter; Stäuble, Harald; Tasić, Nenad; Urem-Kotsou, Dushka; Vuković, Jasna B; Walsh, Fintan; Whittle, Alasdair; Wolfram, Sabine; Zapata-Peña, Lydia; Zoughlami, Jamel

    2015-11-12

    The pressures on honeybee (Apis mellifera) populations, resulting from threats by modern pesticides, parasites, predators and diseases, have raised awareness of the economic importance and critical role this insect plays in agricultural societies across the globe. However, the association of humans with A. mellifera predates post-industrial-revolution agriculture, as evidenced by the widespread presence of ancient Egyptian bee iconography dating to the Old Kingdom (approximately 2400 BC). There are also indications of Stone Age people harvesting bee products; for example, honey hunting is interpreted from rock art in a prehistoric Holocene context and a beeswax find in a pre-agriculturalist site. However, when and where the regular association of A. mellifera with agriculturalists emerged is unknown. One of the major products of A. mellifera is beeswax, which is composed of a complex suite of lipids including n-alkanes, n-alkanoic acids and fatty acyl wax esters. The composition is highly constant as it is determined genetically through the insect's biochemistry. Thus, the chemical 'fingerprint' of beeswax provides a reliable basis for detecting this commodity in organic residues preserved at archaeological sites, which we now use to trace the exploitation by humans of A. mellifera temporally and spatially. Here we present secure identifications of beeswax in lipid residues preserved in pottery vessels of Neolithic Old World farmers. The geographical range of bee product exploitation is traced in Neolithic Europe, the Near East and North Africa, providing the palaeoecological range of honeybees during prehistory. Temporally, we demonstrate that bee products were exploited continuously, and probably extensively in some regions, at least from the seventh millennium cal BC, likely fulfilling a variety of technological and cultural functions. The close association of A. mellifera with Neolithic farming communities dates to the early onset of agriculture and may provide

  19. PROTEINS OF THE INTEGUMENTARY SYSTEM OF THE HONEYBEE, Apis mellifera.

    Science.gov (United States)

    Micas, André Fernando Ditondo; Ferreira, Germano Aguiar; Laure, Helen Julie; Rosa, José Cesar; Bitondi, Márcia Maria Gentile

    2016-09-01

    The integument of insects and other arthropods is composed of an inner basal lamina coated by the epidermis, which secretes the bulk of the outer integument layer, the cuticle. The genome sequencing of several insect species has allowed predicting classes of proteins integrating the cuticle. However, only a small proportion of them, as well as other proteins in the integumentary system, have been validated. Using two-dimensional gel electrophoresis coupled with mass spectrometry, we identified 45 different proteins in a total of 112 selected gel spots derived from thoracic integument samples of developing honeybee workers, including 14 cuticular proteins (AmelCPR 3, AmelCPR 12, AmelCPR 16, AmelCPR 27, apidermin 2, apidermin 3, endocuticle structural glycoprotein SgAbd-8-like, LOC100577363, LOC408365, LOC413679, LOC725454, LOC100576916, LOC725838, and peritrophin 3-C analogous). Gene ontology functional analysis revealed that the higher proportions of the identified proteins have molecular functions related to catalytic and structural molecule activities, are involved in metabolic biological processes, and pertain to the protein class of structural or cytoskeletal proteins and hydrolases. It is noteworthy that 26.7% of the identified proteins, including five cuticular proteins, were revealed as protein species resulting from allelic isoforms or derived from posttranslational modifications. Also, 66.7% of the identified cuticular proteins were expressed in more than one developmental phase, thus indicating that they are part of the larval, pupal, and adult cuticle. Our data provide experimental support for predicted honeybee gene products and new information on proteins expressed in the developing integument. © 2016 Wiley Periodicals, Inc.

  20. Identification of kakusei, a nuclear non-coding RNA, as an immediate early gene from the honeybee, and its application for neuroethological study

    OpenAIRE

    Taketoshi Kiya; Atsushi Ugajin; Takekazu Kunieda; Takeo Kubo

    2012-01-01

    The honeybee is a social insect that exhibits various social behaviors. To elucidate the neural basis of honeybee behavior, we detected neural activity in freely-moving honeybee workers using an immediate early gene (IEG) that is expressed in a neural activity-dependent manner. In European honeybees (Apis mellifera), we identified a novel nuclear non-coding RNA, termed kakusei, as the first insect IEG, and revealed the neural activity pattern in foragers. In addition, we isolated a homologue ...

  1. Invasive species

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a summary of management activities and research related to invasive species on Neal Smith National Wildlife Refuge between 1992 and 2009. As part of the...

  2. Early calcium increase triggers the formation of olfactory long-term memory in honeybees

    Directory of Open Access Journals (Sweden)

    Matsumoto Yukihisa

    2009-06-01

    Full Text Available Abstract Background Synaptic plasticity associated with an important wave of gene transcription and protein synthesis underlies long-term memory processes. Calcium (Ca2+ plays an important role in a variety of neuronal functions and indirect evidence suggests that it may be involved in synaptic plasticity and in the regulation of gene expression correlated to long-term memory formation. The aim of this study was to determine whether Ca2+ is necessary and sufficient for inducing long-term memory formation. A suitable model to address this question is the Pavlovian appetitive conditioning of the proboscis extension reflex in the honeybee Apis mellifera, in which animals learn to associate an odor with a sucrose reward. Results By modulating the intracellular Ca2+ concentration ([Ca2+]i in the brain, we show that: (i blocking [Ca2+]i increase during multiple-trial conditioning selectively impairs long-term memory performance; (ii conversely, increasing [Ca2+]i during single-trial conditioning triggers long-term memory formation; and finally, (iii as was the case for long-term memory produced by multiple-trial conditioning, enhancement of long-term memory performance induced by a [Ca2+]i increase depends on de novo protein synthesis. Conclusion Altogether our data suggest that during olfactory conditioning Ca2+ is both a necessary and a sufficient signal for the formation of protein-dependent long-term memory. Ca2+ therefore appears to act as a switch between short- and long-term storage of learned information.

  3. Sensory regulation of neuroligins and neurexin I in the honeybee brain.

    Directory of Open Access Journals (Sweden)

    Sunita Biswas

    Full Text Available BACKGROUND: Neurexins and neuroligins, which have recently been associated with neurological disorders such as autism in humans, are highly conserved adhesive proteins found on synaptic membranes of neurons. These binding partners produce a trans-synaptic bridge that facilitates maturation and specification of synapses. It is believed that there exists an optimal spatio-temporal code of neurexin and neuroligin interactions that guide synapse formation in the postnatal developing brain. Therefore, we investigated whether neuroligins and neurexin are differentially regulated by sensory input using a behavioural model system with an advanced capacity for sensory processing, learning and memory, the honeybee. METHODOLOGY/PRINCIPAL FINDINGS: Whole brain expression levels of neuroligin 1-5 (NLG1-5 and neurexin I (NrxI were estimated by qRT-PCR analysis in three different behavioural paradigms: sensory deprivation, associative scent learning, and lateralised sensory input. Sensory deprived bees had a lower level of NLG1 expression, but a generally increased level of NLG2-5 and NrxI expression compared to hive bees. Bees that had undergone associative scent training had significantly increased levels of NrxI, NLG1 and NLG3 expression compared to untrained control bees. Bees that had lateralised sensory input after antennal amputation showed a specific increase in NLG1 expression compared to control bees, which only happened over time. CONCLUSIONS/SIGNIFICANCE: Our results suggest that (1 there is a lack of synaptic pruning during sensory deprivation; (2 NLG1 expression increases with sensory stimulation; (3 concomitant changes in gene expression suggests NrxI interacts with all neuroligins; (4 there is evidence for synaptic compensation after lateralised injury.

  4. The Standardization of the Honeybee Colonies Evaluation Methodology, with Application in Honeybee Breeding Programs, in Romanian Conditions

    Directory of Open Access Journals (Sweden)

    Eliza Cauia

    2010-10-01

    Full Text Available It is well known that breeding is based on phenotypic and behavioural performance assessed at the level of each honeybee colony. By selection, the genes responsible for the desired characters have to be favoured, by evaluation and classification of all colonies involved in a breeding program. Generally, in the beekeeping practice, the most applied method of selection is the mass selection regarding the main objective- honey production. Some more elaborated programs use selection simultaneous selection on several characters. Until now, a standard method for honey bees evaluation and selection on several characters could not be generalized, every breeder establishing the selection method depending on proposed goals which could be different especially when we speak about different races and environmental conditions. Taking into account the selection objectives in Romania it was conceived a standardized methodology for the selection on several characters in Romanian condition.

  5. CaMKII is differentially localized in synaptic regions of Kenyon cells within the mushroom bodies of the honeybee brain.

    Science.gov (United States)

    Pasch, Elisabeth; Muenz, Thomas Sebastian; Rössler, Wolfgang

    2011-12-15

    Calcium/calmodulin-dependent protein kinase II (CaMKII) has been linked to neuronal plasticity associated with long-term potentiation as well as structural synaptic plasticity. Previous work in adult honeybees has shown that a single CaMKII gene is strongly expressed in the mushroom bodies (MBs), brain centers associated with sensory integration, and learning and memory formation. To study a potential role of CaMKII in synaptic plasticity, the cellular and subcellular distribution of activated (phosphorylated) pCaMKII protein was investigated at various life stages of the honeybee using immunocytochemistry, confocal microscopy, and western blot analyses. Whereas at pupal stages 3-4 most parts of the brain showed high levels of pCaMKII immunoreactivity, the protein was predominantly concentrated in the MBs in the adult brain. The results show that pCaMKII is present in a specific subpopulation of Kenyon cells, the noncompact cells. Within the olfactory (lip) and visual (collar) subregion of the MB calyx neuropil pCaMKII was colocalized with f-actin in postsynaptic compartments of microglomeruli, indicating that it is enriched in Kenyon cell dendritic spines. This suggests a potential role of CaMKII in Kenyon cell dendritic plasticity. Interestingly, pCaMKII protein was absent in two other types of Kenyon cells, the inner compact cells associated with the multimodal basal ring and the outer compact cells. During adult behavioral maturation from nurse bees to foragers, pCaMKII distribution remained essentially similar at the qualitative level, suggesting a potential role in dendritic plasticity of Kenyon cells throughout the entire life span of a worker bee.

  6. Scaling down from species to individuals: a flower-visitation network between individual honeybees and thistle plants

    DEFF Research Database (Denmark)

    Dupont, Yoko; Nielsen, Kristian T.; Olesen, Jens Mogens

    2011-01-01

    the sociology of larger animals have investigated networks at the level of the individual. Here, we analyse the structure of a flower–visitation network of individual thistles Cirsium arvense and honeybees Apis mellifera in a small meadow patch in Denmark. We marked and numbered 62 honeybees and 32 thistle...

  7. Beehold : the colony of the honeybee (Apis mellifera L) as a bio-sampler for pollutants and plant pathogens

    NARCIS (Netherlands)

    Steen, van der J.J.M.

    2016-01-01

    Bio-sampling is a function of bio-indication. Bio-indication with honeybee colonies (Apis mellifera L) is where the research fields of environmental technology and apiculture overlap. The honeybees are samplers of the environment by collecting unintentionally and simultaneously, along with nectar,

  8. Beehold : the colony of the honeybee (Apis mellifera L) as a bio-sampler for pollutants and plant pathogens

    NARCIS (Netherlands)

    Steen, van der J.J.M.

    2016-01-01

    Bio-sampling is a function of bio-indication. Bio-indication with honeybee colonies (Apis mellifera L) is where the research fields of environmental technology and apiculture overlap. The honeybees are samplers of the environment by collecting unintentionally and simultaneously, along with nectar, p

  9. Beehold : the colony of the honeybee (Apis mellifera L) as a bio-sampler for pollutants and plant pathogens

    NARCIS (Netherlands)

    Steen, van der J.J.M.

    2016-01-01

    Bio-sampling is a function of bio-indication. Bio-indication with honeybee colonies (Apis mellifera L) is where the research fields of environmental technology and apiculture overlap. The honeybees are samplers of the environment by collecting unintentionally and simultaneously, along with nectar, p

  10. Low doses of neonicotinoid pesticides in food rewards impair short-term olfactory memory in foraging-age honeybees.

    Science.gov (United States)

    Wright, Geraldine A; Softley, Samantha; Earnshaw, Helen

    2015-10-19

    Neonicotinoids are often applied as systemic seed treatments to crops and have reported negative impact on pollinators when they appear in floral nectar and pollen. Recently, we found that bees in a two-choice assay prefer to consume solutions containing field-relevant doses of the neonicotinoid pesticides, imidacloprid (IMD) and thiamethoxam (TMX), to sucrose alone. This suggests that neonicotinoids enhance the rewarding properties of sucrose and that low, acute doses could improve learning and memory in bees. To test this, we trained foraging-age honeybees to learn to associate floral scent with a reward containing nectar-relevant concentrations of IMD and TMX and tested their short (STM) and long-term (LTM) olfactory memories. Contrary to our predictions, we found that none of the solutions enhanced the rate of olfactory learning and some of them impaired it. In particular, the effect of 10 nM IMD was observed by the second conditioning trial and persisted 24 h later. In most other groups, exposure to IMD and TMX affected STM but not LTM. Our data show that negative impacts of low doses of IMD and TMX do not require long-term exposure and suggest that impacts of neonicotinoids on olfaction are greater than their effects on rewarding memories.

  11. Short term hydrothermal scheduling via improved honey-bee mating optimization algorithm

    Directory of Open Access Journals (Sweden)

    hamed baradaran tavakoli

    2012-11-01

    Full Text Available In this paper, a new approach for solving short term hydrothermal scheduling problem is suggested, to minimize the total production cost and to produce electrical energy in an optimized way, by using honey-bee mating optimization algorithm. In the proposed method, lots of the hydrothermal system constraints such as power balance, water balance, time delay between reservoirs, volume limits and the operation limits of hydro and thermal plants, are considered. Therefore, the problem of short term hydrothermal scheduling becomes a complicated and nonlinear problem. In this paper, in addition to implementing the honey-bee mating optimization on a sample system, the improved honey-bee mating optimization algorithm has also been tested and analyzed. With regard to the simulation results, it is apparent that the improved honey-bee mating optimization has far higher convergence speed and takes less time, and less total cost in comparison with honey-bee mating optimization algorithm, genetic algorithm, particle swarm optimization algorithm and other optimization methods.

  12. Neural organization and visual processing in the anterior optic tubercle of the honeybee brain.

    Science.gov (United States)

    Mota, Theo; Yamagata, Nobuhiro; Giurfa, Martin; Gronenberg, Wulfila; Sandoz, Jean-Christophe

    2011-08-10

    The honeybee Apis mellifera represents a valuable model for studying the neural segregation and integration of visual information. Vision in honeybees has been extensively studied at the behavioral level and, to a lesser degree, at the physiological level using intracellular electrophysiological recordings of single neurons. However, our knowledge of visual processing in honeybees is still limited by the lack of functional studies of visual processing at the circuit level. Here we contribute to filling this gap by providing a neuroanatomical and neurophysiological characterization at the circuit level of a practically unstudied visual area of the bee brain, the anterior optic tubercle (AOTu). First, we analyzed the internal organization and neuronal connections of the AOTu. Second, we established a novel protocol for performing optophysiological recordings of visual circuit activity in the honeybee brain and studied the responses of AOTu interneurons during stimulation of distinct eye regions. Our neuroanatomical data show an intricate compartmentalization and connectivity of the AOTu, revealing a dorsoventral segregation of the visual input to the AOTu. Light stimuli presented in different parts of the visual field (dorsal, lateral, or ventral) induce distinct patterns of activation in AOTu output interneurons, retaining to some extent the dorsoventral input segregation revealed by our neuroanatomical data. In particular, activity patterns evoked by dorsal and ventral eye stimulation are clearly segregated into distinct AOTu subunits. Our results therefore suggest an involvement of the AOTu in the processing of dorsoventrally segregated visual information in the honeybee brain.

  13. Pesticide Poisoning of Honeybees: A Review of Symptoms, Incident Classification, and Causes of Poisoning

    Directory of Open Access Journals (Sweden)

    Kiljanek Tomasz

    2016-12-01

    Full Text Available During the 2000s, the problem of pesticide poisoning of honeybees seemed to be almost solved. The number of cases has decreased in comparison to the 1970s. The problem of acute honeybee poisoning, however, has not disappeared, but instead has transformed into a problem of poisoning from ‘traditional’ pesticides like organophosphorus pesticides or pyrethroids, to poisoning from additional sources of ‘modern’ systemic neonicotinoids and fipronil. In this article, the biological activity of pesticides was reviewed. The poisoning symptoms, incident definitions, and monitoring systems, as well as the interpretation of the analytical results, were also reviewed. The range of pesticides, and the detected concentrations of pesticides in poisoned honeybee samples, were reviewed. And, for the first time, cases of poisoning related to neonicotinoids were reviewed. The latter especially is of practical importance and could be helpful to analysts and investigators of honeybee poisoning incidents. It is assumed that secondary poisoning induced by plant collected materials contaminated with systemic pesticides occurs. Food stored in a hive and contaminated with systemic pesticides consumed continuously by the same generation of winter bees, may result in sub-lethal intoxication. This leads to abnormal behaviour identified during acute intoxication. The final result is that the bees discontinue their social role in the honeybee colony super organism, and colony collapse disorder (CCD takes place. The process described above refers primarily to robust and strong colonies that were able to collect plenty of food due to effective plant protection.

  14. Pollination of Rapeseed (Brassica napus by Africanized Honeybees (Hymenoptera: Apidae on Two Sowing Dates

    Directory of Open Access Journals (Sweden)

    EMERSON D. CHAMBÓ

    2014-12-01

    Full Text Available In this study, performed in the western part of the state of Paraná, Brazil, two self-fertile hybrid commercial rapeseed genotypes were evaluated for yield components and physiological quality using three pollination tests and spanning two sowing dates. The treatments consisted of combinations of two rapeseed genotypes (Hyola 61 and Hyola 433, three pollination tests (uncovered area, covered area without insects and covered area containing a single colony of Africanized Apis mellifera honeybees and two sowing dates (May 25th, 2011 and June 25th, 2011. The presence of Africanized honeybees during flowering time increased the productivity of the rapeseed. Losses in the productivity of the hybrids caused by weather conditions unfavorable for rapeseed development were mitigated through cross-pollination performed by the Africanized honeybees. Weather conditions may limit the foraging activity of Africanized honeybees, causing decreased cross-pollination by potential pollinators, especially the Africanized A. mellifera honeybee. The rapeseed hybrids respond differently depending on the sowing date, and the short-cycle Hyola 433 hybrid is the most suitable hybrid for sowing under less favorable weather conditions.

  15. Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection.

    Science.gov (United States)

    Dyer, Adrian G; Spaethe, Johannes; Prack, Sabina

    2008-07-01

    Bumblebee (Bombus terrestris) discrimination of targets with broadband reflectance spectra was tested using simultaneous viewing conditions, enabling an accurate determination of the perceptual limit of colour discrimination excluding confounds from memory coding (experiment 1). The level of colour discrimination in bumblebees, and honeybees (Apis mellifera) (based upon previous observations), exceeds predictions of models considering receptor noise in the honeybee. Bumblebee and honeybee photoreceptors are similar in spectral shape and spacing, but bumblebees exhibit significantly poorer colour discrimination in behavioural tests, suggesting possible differences in spatial or temporal signal processing. Detection of stimuli in a Y-maze was evaluated for bumblebees (experiment 2) and honeybees (experiment 3). Honeybees detected stimuli containing both green-receptor-contrast and colour contrast at a visual angle of approximately 5 degrees , whilst stimuli that contained only colour contrast were only detected at a visual angle of 15 degrees . Bumblebees were able to detect these stimuli at a visual angle of 2.3 degrees and 2.7 degrees , respectively. A comparison of the experiments suggests a tradeoff between colour discrimination and colour detection in these two species, limited by the need to pool colour signals to overcome receptor noise. We discuss the colour processing differences and possible adaptations to specific ecological habitats.

  16. Characterization of honeybee venom by MALDI-TOF and nanoESI-QqTOF mass spectrometry.

    Science.gov (United States)

    Matysiak, Jan; Schmelzer, Christian E H; Neubert, Reinhard H H; Kokot, Zenon J

    2011-01-25

    The aim of the study was to comprehensively characterize different honeybee venom samples applying two complementary mass spectrometry methods. 41 honeybee venom samples of different bee strains, country of origin (Poland, Georgia, and Estonia), year and season of the venom collection were analyzed using MALDI-TOF and nanoESI-QqTOF-MS. It was possible to obtain semi-quantitative data for 12 different components in selected honeybee venom samples using MALDI-TOF method without further sophisticated and time consuming sample pretreatment. Statistical analysis (ANOVA) has shown that there are qualitative and quantitative differences in the composition between honeybee venom samples collected over different years. It has also been demonstrated that MALDI-TOF spectra can be used as a "protein fingerprint" of honeybee venom in order to confirm the identity of the product. NanoESI-QqTOF-MS was applied especially for identification purposes. Using this technique 16 peptide sequences were identified, including melittin (12 different breakdown products and precursors), apamine, mast cell degranulating peptide and secapin. Moreover, the significant achievement of this study is the fact that the new peptide (HTGAVLAGV+Amidated (C-term), M(r)=822.53Da) has been discovered in bee venom for the first time.

  17. Temperature dependent virulence of obligate and facultative fungal pathogens of honeybee brood.

    Science.gov (United States)

    Vojvodic, S; Jensen, A B; James, R R; Boomsma, J J; Eilenberg, J

    2011-04-21

    Chalkbrood (Ascosphaera apis) and stonebrood (Aspergillus flavus) are well known fungal brood diseases of honeybees (Apis mellifera), but they have hardly been systematically studied because the difficulty of rearing larvae in vitro has precluded controlled experimentation. Chalkbrood is a chronic honeybee-specific disease that can persist in colonies for years, reducing both brood and honey production, whereas stonebrood is a rare facultative pathogen that also affects hosts other than honeybees and can likely survive outside insect hosts. Hive infection trials have indicated that accidental drops in comb temperature increase the prevalence of chalkbrood, but it has remained unclear whether virulence is directly temperature-dependent. We used a newly established in vitro rearing technique for honeybee larvae to test whether there are systematic temperature effects on mortality induced by controlled infections, and whether such effects differed between the two fungal pathogens. We found that increasing spore dosage at infection had a more dramatic effect on mortality from stonebrood compared to chalkbrood. In addition, a 24h cooling period after inoculation increased larval mortality from chalkbrood infection, whereas such a cooling period decreased mortality after stonebrood infection. These results raise interesting questions about honeybee defenses against obligate and facultative pathogens and about the extent to which stress factors in the host (dis)favor pathogens with lesser degrees of specialization. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Transcriptome analyses of the honeybee response to Nosema ceranae and insecticides.

    Directory of Open Access Journals (Sweden)

    Julie Aufauvre

    Full Text Available Honeybees (Apis mellifera are constantly exposed to a wide variety of environmental stressors such as parasites and pesticides. Among them, Nosema ceranae and neurotoxic insecticides might act in combination and lead to a higher honeybee mortality. We investigated the molecular response of honeybees exposed to N. ceranae, to insecticides (fipronil or imidacloprid, and to a combination of both stressors. Midgut transcriptional changes induced by these stressors were measured in two independent experiments combining a global RNA-Seq transcriptomic approach with the screening of the expression of selected genes by quantitative RT-PCR. Although N. ceranae-insecticide combinations induced a significant increase in honeybee mortality, we observed that they did not lead to a synergistic effect. According to gene expression profiles, chronic exposure to insecticides had no significant impact on detoxifying genes but repressed the expression of immunity-related genes. Honeybees treated with N. ceranae, alone or in combination with an insecticide, showed a strong alteration of midgut immunity together with modifications affecting cuticle coatings and trehalose metabolism. An increasing impact of treatments on gene expression profiles with time was identified suggesting an absence of stress recovery which could be linked to the higher mortality rates observed.

  19. Pollination of rapeseed (Brassica napus) by Africanized honeybees (Hymenoptera: Apidae) on two sowing dates.

    Science.gov (United States)

    Chambó, Emerson D; De Oliveira, Newton T E; Garcia, Regina C; Duarte-Júnior, José B; Ruvolo-Takasusuki, Maria Claudia C; Toledo, Vagner A

    2014-12-01

    In this study, performed in the western part of the state of Paraná, Brazil, two self-fertile hybrid commercial rapeseed genotypes were evaluated for yield components and physiological quality using three pollination tests and spanning two sowing dates. The treatments consisted of combinations of two rapeseed genotypes (Hyola 61 and Hyola 433), three pollination tests (uncovered area, covered area without insects and covered area containing a single colony of Africanized Apis mellifera honeybees) and two sowing dates (May 25th, 2011 and June 25th, 2011). The presence of Africanized honeybees during flowering time increased the productivity of the rapeseed. Losses in the productivity of the hybrids caused by weather conditions unfavorable for rapeseed development were mitigated through cross-pollination performed by the Africanized honeybees. Weather conditions may limit the foraging activity of Africanized honeybees, causing decreased cross-pollination by potential pollinators, especially the Africanized A. mellifera honeybee. The rapeseed hybrids respond differently depending on the sowing date, and the short-cycle Hyola 433 hybrid is the most suitable hybrid for sowing under less favorable weather conditions.

  20. Strategies of the honeybee Apis mellifera during visual search for vertical targets presented at various heights: a role for spatial attention? [v1; ref status: indexed, http://f1000r.es/3yb

    Directory of Open Access Journals (Sweden)

    Linde Morawetz

    2014-07-01

    Full Text Available When honeybees are presented with a colour discrimination task, they tend to choose swiftly and accurately when objects are presented in the ventral part of their frontal visual field. In contrast, poor performance is observed when objects appear in the dorsal part. Here we investigate if this asymmetry is caused by fixed search patterns or if bees can use alternative search mechanisms such as spatial attention, which allows flexible focusing on different areas of the visual field. We asked individual honeybees to choose an orange rewarded target among blue distractors. Target and distractors were presented in the ventral visual field, the dorsal field or both. Bees presented with targets in the ventral visual field consistently had the highest search efficiency, with rapid decisions, high accuracy and direct flight paths. In contrast, search performance for dorsally located targets was inaccurate and slow at the beginning of the test phase, but bees increased their search performance significantly after a few learning trials: they found the target faster, made fewer errors and flew in a straight line towards the target. However, bees needed thrice as long to improve the search for a dorsally located target when the target’s position changed randomly between the ventral and the dorsal visual field. We propose that honeybees form expectations of the location of the target’s appearance and adapt their search strategy accordingly. Different possible mechanisms of this behavioural adaptation are discussed.

  1. [New SNP markers of the honeybee vitellogenin gene (Vg) used for identification of subspecies Apis mellifera mellifera L].

    Science.gov (United States)

    Ilyasov, R A; Poskryakov, A V; Nikolenko, A G

    2015-02-01

    Preservation of the gene pool of honeybee subspecies Apis mellifera mellifera is of vital importance for successful beekeeping development in the northern regions of Eurasia. An effective method of genotyping honeybee colonies used in modern science is the mapping of sites of single nucleotide polymorphism (SNP). The honeybee vitellogenin gene (Vg) encodes a protein that affects reproductive function, behavior, immunity, longevity, and social organization in the honeybee Apis mellifera and is therefore a topical research subject. The results of comparative analysis of honeybee Vg sequences show that there are 26 SNP sites that differentiate M and C evolutionary branches and can be used as markers in selective breeding, DNA-barcoding, and the creation of genetic passports for A. m. mellifera colonies.

  2. Identification of kakusei, a Nuclear Non-Coding RNA, as an Immediate Early Gene from the Honeybee, and Its Application for Neuroethological Study

    Directory of Open Access Journals (Sweden)

    Taketoshi Kiya

    2012-11-01

    Full Text Available The honeybee is a social insect that exhibits various social behaviors. To elucidate the neural basis of honeybee behavior, we detected neural activity in freely-moving honeybee workers using an immediate early gene (IEG that is expressed in a neural activity-dependent manner. In European honeybees (Apis mellifera, we identified a novel nuclear non-coding RNA, termed kakusei, as the first insect IEG, and revealed the neural activity pattern in foragers. In addition, we isolated a homologue of kakusei, termed Acks, from the Japanese honeybee (Apis cerana, and detected active neurons in workers fighting with the giant hornet.

  3. Identification of kakusei, a nuclear non-coding RNA, as an immediate early gene from the honeybee, and its application for neuroethological study.

    Science.gov (United States)

    Kiya, Taketoshi; Ugajin, Atsushi; Kunieda, Takekazu; Kubo, Takeo

    2012-11-22

    The honeybee is a social insect that exhibits various social behaviors. To elucidate the neural basis of honeybee behavior, we detected neural activity in freely-moving honeybee workers using an immediate early gene (IEG) that is expressed in a neural activity-dependent manner. In European honeybees (Apis mellifera), we identified a novel nuclear non-coding RNA, termed kakusei, as the first insect IEG, and revealed the neural activity pattern in foragers. In addition, we isolated a homologue of kakusei, termed Acks, from the Japanese honeybee (Apis cerana), and detected active neurons in workers fighting with the giant hornet.

  4. Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae.

    Directory of Open Access Journals (Sweden)

    Cyril Vidau

    Full Text Available BACKGROUND: The honeybee, Apis mellifera, is undergoing a worldwide decline whose origin is still in debate. Studies performed for twenty years suggest that this decline may involve both infectious diseases and exposure to pesticides. Joint action of pathogens and chemicals are known to threaten several organisms but the combined effects of these stressors were poorly investigated in honeybees. Our study was designed to explore the effect of Nosema ceranae infection on honeybee sensitivity to sublethal doses of the insecticides fipronil and thiacloprid. METHODOLOGY/FINDING: Five days after their emergence, honeybees were divided in 6 experimental groups: (i uninfected controls, (ii infected with N. ceranae, (iii uninfected and exposed to fipronil, (iv uninfected and exposed to thiacloprid, (v infected with N. ceranae and exposed 10 days post-infection (p.i. to fipronil, and (vi infected with N. ceranae and exposed 10 days p.i. to thiacloprid. Honeybee mortality and insecticide consumption were analyzed daily and the intestinal spore content was evaluated 20 days after infection. A significant increase in honeybee mortality was observed when N. ceranae-infected honeybees were exposed to sublethal doses of insecticides. Surprisingly, exposures to fipronil and thiacloprid had opposite effects on microsporidian spore production. Analysis of the honeybee detoxification system 10 days p.i. showed that N. ceranae infection induced an increase in glutathione-S-transferase activity in midgut and fat body but not in 7-ethoxycoumarin-O-deethylase activity. CONCLUSIONS/SIGNIFICANCE: After exposure to sublethal doses of fipronil or thiacloprid a higher mortality was observed in N. ceranae-infected honeybees than in uninfected ones. The synergistic effect of N. ceranae and insecticide on honeybee mortality, however, did not appear strongly linked to a decrease of the insect detoxification system. These data support the hypothesis that the combination of the

  5. From honeybees to Internet servers: biomimicry for distributed management of Internet hosting centers.

    Science.gov (United States)

    Nakrani, Sunil; Tovey, Craig

    2007-12-01

    An Internet hosting center hosts services on its server ensemble. The center must allocate servers dynamically amongst services to maximize revenue earned from hosting fees. The finite server ensemble, unpredictable request arrival behavior and server reallocation cost make server allocation optimization difficult. Server allocation closely resembles honeybee forager allocation amongst flower patches to optimize nectar influx. The resemblance inspires a honeybee biomimetic algorithm. This paper describes details of the honeybee self-organizing model in terms of information flow and feedback, analyzes the homology between the two problems and derives the resulting biomimetic algorithm for hosting centers. The algorithm is assessed for effectiveness and adaptiveness by comparative testing against benchmark and conventional algorithms. Computational results indicate that the new algorithm is highly adaptive to widely varying external environments and quite competitive against benchmark assessment algorithms. Other swarm intelligence applications are briefly surveyed, and some general speculations are offered regarding their various degrees of success.

  6. Gene expression of ecdysteroid-regulated gene E74 of the honeybee in ovary and brain.

    Science.gov (United States)

    Paul, R K; Takeuchi, H; Matsuo, Y; Kubo, T

    2005-01-01

    To facilitate studies of hormonal control in the honeybee (Apis mellifera L.), a cDNA for a honeybee homologue of the ecdysteroid-regulated gene E74 (AmE74) was isolated and its expression was analysed. Northern blot analysis indicated strong expression in the adult queen abdomen, and no significant expression in the adult drone and worker abdomens. In situ hybridization demonstrated that this gene was expressed selectively in the ovary and gut in the queen abdomen. Furthermore, this gene was also expressed selectively in subsets of mushroom body interneurones in the brain of the adult worker bees. These findings suggest that AmE74 is involved in neural function as well as in reproduction in adult honeybees.

  7. Biologic Activities of Honeybee Products Obtained From Different Phytogeographical Regions of Turkey

    Directory of Open Access Journals (Sweden)

    Hamide Doğan

    2014-06-01

    Full Text Available Honeybee products are rich in phenolic compounds, which effect as natural antioxidants. These compounds may be attached as indicators in studies into the floral and geographical origin of the natural bee products. In this study, we aimed to determine average total antioxidant capacity, average total oxidant capacity and average oxidative stress index of natural bee products obtained from different regions of Turkey. Collected honeybee samples were kept at +4o C until extracted. Natural bee products were extracted with specific methods and antioxidant capacities were defined with in vitro analyses and data were compared. As a result, the highest average total antioxidant capacities were observed in propolis and pollen samples. Total antioxidant capacities of honeybee products collected from various regions demonstrated differences (P<0.05 because of different phytogeographical characteristics of regions of Turkey.

  8. Agricultural Policies Exacerbate Honeybee Pollination Service Supply-Demand Mismatches Across Europe

    Science.gov (United States)

    Breeze, Tom D.; Vaissière, Bernard E.; Bommarco, Riccardo; Petanidou, Theodora; Seraphides, Nicos; Kozák, Lajos; Scheper, Jeroen; Biesmeijer, Jacobus C.; Kleijn, David; Gyldenkærne, Steen; Moretti, Marco; Holzschuh, Andrea; Steffan-Dewenter, Ingolf; Stout, Jane C.; Pärtel, Meelis; Zobel, Martin; Potts, Simon G.

    2014-01-01

    Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from 41 European countries, this study demonstrates that the recommended number of honeybees required to provide crop pollination across Europe has risen 4.9 times as fast as honeybee stocks between 2005 and 2010. Consequently, honeybee stocks were insufficient to supply >90% of demands in 22 countries studied. These findings raise concerns about the capacity of many countries to cope with major losses of wild pollinators and highlight numerous critical gaps in current understanding of pollination service supplies and demands, pointing to a pressing need for further research into this issue. PMID:24421873

  9. Honeybees and honey as monitors for heavy metal contamination near thermal power plants in Mugla, Turkey.

    Science.gov (United States)

    Silici, Sibel; Uluozlu, Ozgur Dogan; Tuzen, Mustafa; Soylak, Mustafa

    2016-03-01

    In the present work, 6 honeydew samples of known geographical and botanical origins and 11 honeybee samples were analyzed to detect possible contamination by the thermoelectric power plants in Mugla, Turkey. The contents of trace elements were determined by atomic absorption spectrometry after application of microwave digestion. The samples from the thermal power plants, which were 10-22 km away from the hives, that did not cause pollution in honeydew honeys were also analyzed. The levels of copper, cadmium (Cd), lead (Pb), zinc, manganese, iron, chromium, nickel, and aluminum were similar to the values found in other recent studies in literature. However, it was found that the contamination levels of the toxic elements such as Pb and Cd in honeybee samples measured relatively higher than that of honey samples. The study concludes that honeybees may be better bioindicators of heavy metal pollution than honey.

  10. Chemical Composition of Different Botanical Origin Honeys Produced by Sicilian Black Honeybees (Apis mellifera ssp. sicula).

    Science.gov (United States)

    Mannina, Luisa; Sobolev, Anatoly P; Di Lorenzo, Arianna; Vista, Silvia; Tenore, Gian Carlo; Daglia, Maria

    2015-07-01

    In 2008 a Slow Food Presidium was launched in Sicily (Italy) for an early warning of the risk of extinction of the Sicilian native breed of black honeybee (Apis mellifera L. ssp sicula). Today, the honey produced by these honeybees is the only Sicilian honey produced entirely by the black honeybees. In view of few available data regarding the chemical composition of A. mellifera ssp. sicula honeys, in the present investigation the chemical compositions of sulla honey (Hedysarum coronarium L.) and dill honey (Anethum graveolens L.) were studied with a multimethodological approach, which consists of HPLC-PDA-ESI-MSn and NMR spectroscopy. Moreover, three unifloral honeys (lemon honey (obtained from Citrus limon (L.) Osbeck), orange honey (Citrus arantium L.), and medlar honey (Eriobotrya japonica (Thunb.) Lindl)), with known phenol and polyphenol compositions, were studied with NMR spectroscopy to deepen the knowledge about sugar and amino acid compositions.

  11. Impact of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure.

    Directory of Open Access Journals (Sweden)

    Christoph Sandrock

    Full Text Available BACKGROUND: Honeybees provide economically and ecologically vital pollination services to crops and wild plants. During the last decade elevated colony losses have been documented in Europe and North America. Despite growing consensus on the involvement of multiple causal factors, the underlying interactions impacting on honeybee health and colony failure are not fully resolved. Parasites and pathogens are among the main candidates, but sublethal exposure to widespread agricultural pesticides may also affect bees. METHODOLOGY/PRINCIPAL FINDINGS: To investigate effects of sublethal dietary neonicotinoid exposure on honeybee colony performance, a fully crossed experimental design was implemented using 24 colonies, including sister-queens from two different strains, and experimental in-hive pollen feeding with or without environmentally relevant concentrations of thiamethoxam and clothianidin. Honeybee colonies chronically exposed to both neonicotinoids over two brood cycles exhibited decreased performance in the short-term resulting in declining numbers of adult bees (-28% and brood (-13%, as well as a reduction in honey production (-29% and pollen collections (-19%, but colonies recovered in the medium-term and overwintered successfully. However, significantly decelerated growth of neonicotinoid-exposed colonies during the following spring was associated with queen failure, revealing previously undocumented long-term impacts of neonicotinoids: queen supersedure was observed for 60% of the neonicotinoid-exposed colonies within a one year period, but not for control colonies. Linked to this, neonicotinoid exposure was significantly associated with a reduced propensity to swarm during the next spring. Both short-term and long-term effects of neonicotinoids on colony performance were significantly influenced by the honeybees' genetic background. CONCLUSIONS/SIGNIFICANCE: Sublethal neonicotinoid exposure did not provoke increased winter losses. Yet

  12. Transcriptome Analysis of Honeybee (Apis Mellifera) Haploid and Diploid Embryos Reveals Early Zygotic Transcription during Cleavage

    Science.gov (United States)

    Pires, Camilla Valente; Freitas, Flávia Cristina de Paula; Cristino, Alexandre S.; Dearden, Peter K.; Simões, Zilá Luz Paulino

    2016-01-01

    In honeybees, the haplodiploid sex determination system promotes a unique embryogenesis process wherein females develop from fertilized eggs and males develop from unfertilized eggs. However, the developmental strategies of honeybees during early embryogenesis are virtually unknown. Similar to most animals, the honeybee oocytes are supplied with proteins and regulatory elements that support early embryogenesis. As the embryo develops, the zygotic genome is activated and zygotic products gradually replace the preloaded maternal material. The analysis of small RNA and mRNA libraries of mature oocytes and embryos originated from fertilized and unfertilized eggs has allowed us to explore the gene expression dynamics in the first steps of development and during the maternal-to-zygotic transition (MZT). We localized a short sequence motif identified as TAGteam motif and hypothesized to play a similar role in honeybees as in fruit flies, which includes the timing of early zygotic expression (MZT), a function sustained by the presence of the zelda ortholog, which is the main regulator of genome activation. Predicted microRNA (miRNA)-target interactions indicated that there were specific regulators of haploid and diploid embryonic development and an overlap of maternal and zygotic gene expression during the early steps of embryogenesis. Although a number of functions are highly conserved during the early steps of honeybee embryogenesis, the results showed that zygotic genome activation occurs earlier in honeybees than in Drosophila based on the presence of three primary miRNAs (pri-miRNAs) (ame-mir-375, ame-mir-34 and ame-mir-263b) during the cleavage stage in haploid and diploid embryonic development. PMID:26751956

  13. The prevalence of parasites and pathogens in Asian honeybees Apis cerana in China.

    Directory of Open Access Journals (Sweden)

    Jilian Li

    Full Text Available Pathogens and parasites represent significant threats to the health and well-being of honeybee species that are key pollinators of agricultural crops and flowers worldwide. We conducted a nationwide survey to determine the occurrence and prevalence of pathogens and parasites in Asian honeybees, Apis cerana, in China. Our study provides evidence of infections of A. cerana by pathogenic Deformed wing virus (DWV, Black queen cell virus (BQCV, Nosema ceranae, and C. bombi species that have been linked to population declines of European honeybees, A. mellifera, and bumble bees. However, the prevalence of DWV, a virus that causes widespread infection in A. mellifera, was low, arguably a result of the greater ability of A. cerana to resist the ectoprasitic mite Varroa destructor, an efficient vector of DWV. Analyses of microbial communities from the A. cerana digestive tract showed that Nosema infection could have detrimental effects on the gut microbiota. Workers infected by N. ceranae tended to have lower bacterial quantities, with these differences being significant for the Bifidobacterium and Pasteurellaceae bacteria groups. The results of this nationwide screen show that parasites and pathogens that have caused serious problems in European honeybees can be found in native honeybee species kept in Asia. Environmental changes due to new agricultural practices and globalization may facilitate the spread of pathogens into new geographic areas. The foraging behavior of pollinators that are in close geographic proximity likely have played an important role in spreading of parasites and pathogens over to new hosts. Phylogenetic analyses provide insights into the movement and population structure of these parasites, suggesting a bidirectional flow of parasites among pollinators. The presence of these parasites and pathogens may have considerable implications for an observed population decline of Asian honeybees.

  14. Honeybees' speed depends on dorsal as well as lateral, ventral and frontal optic flows.

    Directory of Open Access Journals (Sweden)

    Geoffrey Portelli

    Full Text Available Flying insects use the optic flow to navigate safely in unfamiliar environments, especially by adjusting their speed and their clearance from surrounding objects. It has not yet been established, however, which specific parts of the optical flow field insects use to control their speed. With a view to answering this question, freely flying honeybees were trained to fly along a specially designed tunnel including two successive tapering parts: the first part was tapered in the vertical plane and the second one, in the horizontal plane. The honeybees were found to adjust their speed on the basis of the optic flow they perceived not only in the lateral and ventral parts of their visual field, but also in the dorsal part. More specifically, the honeybees' speed varied monotonically, depending on the minimum cross-section of the tunnel, regardless of whether the narrowing occurred in the horizontal or vertical plane. The honeybees' speed decreased or increased whenever the minimum cross-section decreased or increased. In other words, the larger sum of the two opposite optic flows in the horizontal and vertical planes was kept practically constant thanks to the speed control performed by the honeybees upon encountering a narrowing of the tunnel. The previously described ALIS ("AutopiLot using an Insect-based vision System" model nicely matches the present behavioral findings. The ALIS model is based on a feedback control scheme that explains how honeybees may keep their speed proportional to the minimum local cross-section of a tunnel, based solely on optic flow processing, without any need for speedometers or rangefinders. The present behavioral findings suggest how flying insects may succeed in adjusting their speed in their complex foraging environments, while at the same time adjusting their distance not only from lateral and ventral objects but also from those located in their dorsal visual field.

  15. Contribution of honeybee drones of different age to colonial thermoregulation*

    Science.gov (United States)

    Kovac, Helmut; Stabentheiner, Anton; Brodschneider, Robert

    2011-01-01

    In addition to honeybee workers, drones also contribute to colonial thermoregulation. We show the drones’ contribution to thermoregulation at 5 different experimental temperatures ranging from 15–34 °C. The frequency and the degree of endothermy depended on the drones’ local ambient temperature and age. Location on brood or non-brood areas had no influence. The frequency of endothermic drones and the intensity of endothermy increased with decreasing temperature. 30% of drones of 8 days and older heated their thorax by more than 1 °C above the abdomen. The youngest drones (0–2 days) did not exceed this level of endothermy. Though young drones were less often engaged in active heat production, their contribution to brood warming was not insignificant because their abundance on the brood nest was 3.5 times higher than that of the oldest drones (≥13 days). Results suggest that the stimulus for the drones’ increased frequency of heating at low experimental temperatures was their low local ambient air and/or comb temperature. PMID:22140282

  16. 'Special agents' trigger social waves in giant honeybees (Apis dorsata).

    Science.gov (United States)

    Schmelzer, Evelyn; Kastberger, Gerald

    2009-12-01

    Giant honeybees (Apis dorsata) nest in the open and have therefore evolved a variety of defence strategies. Against predatory wasps, they produce highly coordinated Mexican wavelike cascades termed 'shimmering', whereby hundreds of bees flip their abdomens upwards. Although it is well known that shimmering commences at distinct spots on the nest surface, it is still unclear how shimmering is generated. In this study, colonies were exposed to living tethered wasps that were moved in front of the experimental nest. Temporal and spatial patterns of shimmering were investigated in and after the presence of the wasp. The numbers and locations of bees that participated in the shimmering were assessed, and those bees that triggered the waves were identified. The findings reveal that the position of identified trigger cohorts did not reflect the experimental path of the tethered wasp. Instead, the trigger centres were primarily arranged in the close periphery of the mouth zone of the nest, around those parts where the main locomotory activity occurs. This favours the 'special-agents' hypothesis that suggest that groups of specialized bees initiate the shimmering.

  17. Investigation of span-chordwise bending anisotropy of honeybee forewings

    Directory of Open Access Journals (Sweden)

    JianGuo Ning

    2017-05-01

    Full Text Available In this study, the spanwise and chordwise bending stiffness EI of honeybee forewings were measured by a cantilevered bending test. The test results indicate that the spanwise EI of the forewing is two orders of magnitude larger than the chordwise EI. Three structural aspects result in this span-chordwise bending anisotropy: the distribution of resilin patches, the corrugation along the span and the leading edge vein of the venation. It was found that flexion lines formed by resilin patches revealed through fluorescence microscopy promoted the chordwise bending of the forewing during flapping flight. Furthermore, the corrugation of the wing and leading edge veins of the venation, revealed by micro-computed tomography, determines the relatively greater spanwise EI of the forewing. The span-chordwise anisotropy exerts positive structural and aerodynamic influences on the wing. In summary, this study potentially assists researchers in understanding the bending characteristics of insect wings and might be an important reference for the design and manufacture of bio-inspired wings for flapping micro aerial vehicles.

  18. Radioprotection: mechanism and radioprotective agents including honeybee venom

    Energy Technology Data Exchange (ETDEWEB)

    Varanda, E.A.; Tavares, D.C. [UNESP, Araraquara, SP (Brazil). Escola de Ciencias Farmaceuticas. Dept. de Ciencias Biologicas

    1998-07-01

    Since 1949, a great deal of research has been carried on the radioprotective action of chemical substances. These substances have shown to reduce mortality when administered to animals prior to exposure to a lethal dose of radiation. This fact is of considerable importance since it permits reduction of radiation-induced damage and provides prophylactic treatment for the damaging effects produced by radiotherapy. The following radioprotection mechanisms were proposed: free radical scavenger, repair by hydrogen donation to target molecules formation of mixed disulfides, delay of cellular division and induction of hypoxia in the tissues. Radioprotective agents have been divided into four major groups: the thiol compounds, other sulfur compounds, pharmacological agents (anesthetic drugs, analgesics, tranquilizers, etc.) and other radioprotective agents (WR-1065, WR-2721, vitamins C and E, glutathione, etc.). Several studies revealed the radioprotective action of Apis mellifera honeybee venom as well as that of its components mellitin and histamine. Radioprotective activity of bee venom involves mainly the stimulation of the hematopoietic system. In addition, release of histamine and reduction in oxygen tension also contribute to the radioprotective action of bee venom. (author)

  19. Honeybee workers use cues other than egg viability for policing

    Science.gov (United States)

    Beekman, Madeleine; Oldroyd, Benjamin P

    2005-01-01

    Worker policing, wherein social insect workers prevent their sisters from reproducing by eating worker-laid eggs, is recognized as a textbook example of kin selection in action. However, the evolutionary basis of policing was recently challenged in a study that suggested that police-workers remove worker-laid eggs not because rearing workers' sons reduces worker fitness, but merely because worker-laid eggs have low viability. Here, we refute Pirk et al.'s conclusions. First, we confirm earlier work that showed equal viability of eggs laid by queens and workers. Second, a statistical analysis of the data of Pirk et al. reveals that their own data do not support the conclusion that worker-laid eggs are policed merely because of their low viability. Third, we present data that unequivocally show that police-workers cannot discriminate between dead and live eggs. Hence, our study seriously weakens the challenge to the kin-selected basis of policing in honeybees. PMID:17148146

  20. Error in the honeybee waggle dance improves foraging flexibility.

    Science.gov (United States)

    Okada, Ryuichi; Ikeno, Hidetoshi; Kimura, Toshifumi; Ohashi, Mizue; Aonuma, Hitoshi; Ito, Etsuro

    2014-02-26

    The honeybee waggle dance communicates the location of profitable food sources, usually with a certain degree of error in the directional information ranging from 10-15° at the lower margin. We simulated one-day colonial foraging to address the biological significance of information error in the waggle dance. When the error was 30° or larger, the waggle dance was not beneficial. If the error was 15°, the waggle dance was beneficial when the food sources were scarce. When the error was 10° or smaller, the waggle dance was beneficial under all the conditions tested. Our simulation also showed that precise information (0-5° error) yielded great success in finding feeders, but also caused failures at finding new feeders, i.e., a high-risk high-return strategy. The observation that actual bees perform the waggle dance with an error of 10-15° might reflect, at least in part, the maintenance of a successful yet risky foraging trade-off.

  1. Biochemical response of the Africanized honeybee exposed to fipronil.

    Science.gov (United States)

    Roat, Thaisa C; Carvalho, Stephan M; Palma, Mário S; Malaspina, Osmar

    2017-06-01

    Bees are recognized worldwide for their social, economic, and environmental value. In recent decades they have been seriously threatened by diseases and high levels of pesticide use. The susceptibility of bees to insecticides makes them an important terrestrial model for assessing environmental quality, and various biomarkers have been developed for such assessments. The present study aimed to evaluate the activity of the enzymes acetylcholinesterase (AChE), carboxylesterase (CaE), and glutathione-S-transferase (GST) in Africanized honeybees exposed to fipronil. The results showed that fipronil at a sublethal dose (0.01 ng/bee) modulates the activity of CaE in all isoforms analyzed (CaE-1, CaE-2, and CaE-3) in both newly emerged and aged bees, and does not affect the activity of AChE or GST. The recovery of the bees after fipronil exposure was also investigated, and these results demonstrated that even the cessation of fipronil ingestion might not lead to complete recovery of individual bees. Even at low doses, fipronil was shown to cause changes in the activity of key enzymes in bees. The possible consequences of these changes are discussed. Environ Toxicol Chem 2017;36:1652-1660. © 2016 SETAC. © 2016 SETAC.

  2. Worker honeybee hemolymph lipid composition and synodic lunar cycle periodicities

    Directory of Open Access Journals (Sweden)

    M. Mikulecky

    1997-02-01

    Full Text Available The aim of the present investigation was to extend a previous study, showing a correlation of the variations of hemolymph carbohydrates with synodic lunar-like cycle and its circaseptan harmonics to worker honeybee hemolymph lipids. Hemolymph lipid concentrations of emerging worker imagos were analyzed in terms of one ideal synodic lunar cycle and processed by the cosinor method testing the null hypothesis versus the presence of 29.5-, 14.8- or 7.4-day periods in the data. A rhythmicity statistically compatible with a 29.5-day rhythm was observed for triacylglycerols and steroids as well as for body weight. A circadiseptan rhythm was determined for 1,3 diacylglycerols, while fatty acids and phospholipids exhibited a circaseptan rhythm. An agreement of peaks for triacylglycerols, steroids and body weight at the new moon, but not at the full moon, was noted with respect to trehalose and glucose circadiseptan rhythms. The latter moon-phase timing of peaks and nadirs, compared with that previously determined for trehalose and glucose, appeared to be identical to the circadiseptan rhythm and reciprocal for the circaseptan rhythms of 1,3 diacylglycerols. Reciprocal tendencies in circaseptans of trehalose and glucose on the one hand, and fatty acids and phospholipids on the other are indicated. The underlying causal nexus of these relationships is unknown

  3. Energetic feedings influence beeswax production by Apis mellifera L. honeybees

    Directory of Open Access Journals (Sweden)

    Marcela Pedraza Carrillo

    2015-02-01

    Full Text Available The effect of different types of energy feeding (sugar syrup, inverted sugar and juice of sugar-cane on beeswax production and its economic feasibility are evaluated. Twenty beehives of Africanized Apis mellifera were selected, and five were used for each type of feeding. The treatments were T1 (sugar-cane juice, T2 (sugar syrup and T3 (inverted sugar. Feedings was provided by Boardman feeders and the amount was adjusted according to consumption. A layer of beeswax was manually set up into the honeybee nest and beeswax built area was measured weekly. Total reducing sugar, calorimetry, dry matter and ashes of all feedings were analyzed. Data were analyzed by analysis of variance with Tukey’s test to determine differences among averages. The average consumption of inverted sugar was significantly lower than that of other treatments. The highest beeswax production average occurred in the sugar syrup treatment. The highest average of ashes, dry matter and reducing sugar occurred, respectively, in sugar-cane juice, inverted sugar and sugar syrup. Sugar syrup may be an alternative energy source for beeswax production, although sugar-cane juice may be more profitable.

  4. Contribution of honeybee drones of different age to colonial thermoregulation.

    Science.gov (United States)

    Kovac, Helmut; Stabentheiner, Anton; Brodschneider, Robert

    2009-01-01

    In addition to honeybee workers, drones also contribute to colonial thermoregulation. We show the drones' contribution to thermoregulation at 5 different experimental temperatures ranging from 15-34 °C. The frequency and the degree of endothermy depended on the drones' local ambient temperature and age. Location on brood or non-brood areas had no influence. The frequency of endothermic drones and the intensity of endothermy increased with decreasing temperature. 30% of drones of 8 days and older heated their thorax by more than 1 °C above the abdomen. The youngest drones (0-2 days) did not exceed this level of endothermy. Though young drones were less often engaged in active heat production, their contribution to brood warming was not insignificant because their abundance on the brood nest was 3.5 times higher than that of the oldest drones (≥13 days). Results suggest that the stimulus for the drones' increased frequency of heating at low experimental temperatures was their low local ambient air and/or comb temperature.

  5. The Design and Implementation of Middleware for Application Development within Honeybee Computing Environment

    Directory of Open Access Journals (Sweden)

    Nur Husna Azizul

    2016-12-01

    Full Text Available Computing technology is now moving from ubiquitous computing into advanced ubiquitous computing environment. An advanced ubiquitous environment is an extension of ubiquitous environment that improve connectivity between devices. This computing environment has five major characteristics, namely: large number of heterogeneous devices; new communication technology; mobile ad hoc network (MANET; peer-to-peer communication; and Internet of Things. Honeybee computing is a concept based on advanced ubiquitous computing technology to support Smart City Smart Village (SCSV initiatives, which is a project initiated within Digital Malaysia. This paper describes the design and implementation of a middleware to support application development within Honeybee computing environment.

  6. Oriental orchid (Cymbidium pumilum) attracts drones of the Japanese honeybee (Apis cerana japonica) as pollinators.

    Science.gov (United States)

    Sasaki, M; Ono, M; Asada, S; Yoshida, T

    1991-12-01

    The discovery that drones of the Japanese honeybee (Apis cerana japonica) pollinate the oriental orchid (Cymbidium pumilum) is reported. Drones are attracted to the orchid flower aroma mainly during their mating flights in April through May. Some drones cluster on the flower racemes and others insert their heads deep into the flowers. Drones with pollinia on their scutellum visit other orchids, which facilitates pollination. Individual workers and swarming colonies are also strongly attracted by the flower aroma, but the allopatric western honeybee (Apis mellifera) is not attracted.

  7. Resistance rather than tolerance explains survival of savannah honeybees (Apis mellifera scutellata) to infestation by the parasitic mite Varroa destructor.

    Science.gov (United States)

    Strauss, Ursula; Dietemann, Vincent; Human, Hannelie; Crewe, Robin M; Pirk, Christian W W

    2016-03-01

    Varroa destructor is considered the most damaging parasite affecting honeybees (Apis mellifera L.). However, some honeybee populations such as the savannah honeybee (Apis mellifera scutellata) can survive mite infestation without treatment. It is unclear if survival is due to resistance mechanisms decreasing parasite reproduction or to tolerance mechanisms decreasing the detrimental effects of mites on the host. This study investigates both aspects by quantifying the reproductive output of V. destructor and its physiological costs at the individual host level. Costs measured were not consistently lower when compared with susceptible honeybee populations, indicating a lack of tolerance. In contrast, reproduction of V. destructor mites was distinctly lower than in susceptible populations. There was higher proportion of infertile individuals and the reproductive success of fertile mites was lower than measured to date, even in surviving populations. Our results suggest that survival of savannah honeybees is based on resistance rather than tolerance to this parasite. We identified traits that may be useful for breeding programmes aimed at increasing the survival of susceptible populations. African honeybees may have benefited from a lack of human interference, allowing natural selection to shape a population of honeybees that is more resistant to Varroa mite infestation.

  8. Minimally Invasive Dentistry

    Science.gov (United States)

    ... to your desktop! more... What Is Minimally Invasive Dentistry? Article Chapters What Is Minimally Invasive Dentistry? Minimally ... techniques. Reviewed: January 2012 Related Articles: Minimally Invasive Dentistry Minimally Invasive Veneers Dramatically Change Smiles What Patients ...

  9. The mathematics behind biological invasions

    CERN Document Server

    Lewis, Mark A; Potts, Jonathan R

    2016-01-01

    This book investigates the mathematical analysis of biological invasions. Unlike purely qualitative treatments of ecology, it draws on mathematical theory and methods, equipping the reader with sharp tools and rigorous methodology. Subjects include invasion dynamics, species interactions, population spread, long-distance dispersal, stochastic effects, risk analysis, and optimal responses to invaders. While based on the theory of dynamical systems, including partial differential equations and integrodifference equations, the book also draws on information theory, machine learning, Monte Carlo methods, optimal control, statistics, and stochastic processes. Applications to real biological invasions are included throughout. Ultimately, the book imparts a powerful principle: that by bringing ecology and mathematics together, researchers can uncover new understanding of, and effective response strategies to, biological invasions. It is suitable for graduate students and established researchers in mathematical ecolo...

  10. Invasive forest species

    Science.gov (United States)

    Barbara L. Illman

    2006-01-01

    Nonnative organisms that cause a major change to native ecosystems-once called foreign species, biological invasions, alien invasives, exotics, or biohazards–are now generally referred to as invasive species or invasives. invasive species of insects, fungi, plants, fish, and other organisms present a rising threat to natural forest ecosystems worldwide. Invasive...

  11. A successful new approach to honeybee semen cryopreservation.

    Science.gov (United States)

    Wegener, Jakob; May, Tanja; Kamp, Günter; Bienefeld, Kaspar

    2014-10-01

    Honeybee biodiversity is under massive threat, and improved methods for gamete cryopreservation could be a precious tool for both the in situ- and ex situ-conservation of subspecies and ecotypes. Recent cryoprotocols for drone semen have improved the viability and fertility of frozen-thawed semen by using increased diluent:semen-ratios, but there is still much room for progress. As semen cryopreserved after dilution often appeared hyperactive, we speculated that the disruption of sperm-sperm interactions during dilution and cryopreservation could reduce the fertile lifespan of the cells. We therefore developed protocols to reduce admixture, or abolish it altogether by dialyzing semen against a hypertonic solution of cryoprotectant. Additionally, we tested methods to reduce the cryoprotectant concentration after thawing. Insemination of queens with semen cryopreserved after dialysis yielded 49%, 59% and 79% female (= stemming from fertilized eggs) pupae in three separate experiments, and the numbers of sperm found in the spermathecae of the queens were significantly higher than those previously reported. Post-thaw dilution and reconcentration of semen for cryoprotectant removal reduced fertility, but sizeable proportions of female brood were still produced. Workers stemming from cryopreserved semen did not differ from bees stemming from untreated semen with regard to indicators of fluctuating asymmetry, but were slightly heavier. Cryopreservation after dialysis tended to increase the proportion of cells with DNA-nicks, as measured by the TUNEL-assay, but this increase appears small when compared to the baseline variations of this indicator. Overall, we conclude that cryoprotectant-addition through dialysis can improve the quality of cryopreserved drone semen. Testing of offspring for vitality and genetic integrity should continue.

  12. Roles of individual honeybee workers and drones in colonial thermogenesis.

    Science.gov (United States)

    Harrison, J M

    1987-05-01

    The individual roles of honeybee workers and drones in heat regulation were investigated using single combs of bees and brood (about 1,000 individuals) placed in boxes at 15 degrees C. After 1 h and before cluster formation, I measured the elevation of bee thoracic surface temperature (Tths) above local ambient temperature (Ta). Bees were then left overnight at 15 degrees C. During the preclustering period, the density of bees over the brood slowly increased. In the clusters left overnight, bees in the innermost layer were significantly younger than bees in the outermost layer. One-day-old bees and drones were always located in the innermost cluster layer. 89% of all workers measured had Tths - Ta greater than or equal to 2 degrees C, indicating that most workers contribute to colonial thermogenesis. Average Tths - Ta was 4.1 degrees C. Drones measured had the same average Tths - Ta as unmarked workers. Tths - Ta did not differ among bees 2 days of age and older. Location on or off the brood did not affect Tths - Ta. Cooling constants of dead bees placed near the comb in the box averaged 1.036 min-1 and were independent of location on the comb. Calculated average thoracic conductance was 0.829 cal g-1 degree C-1 min-1. Average calculated heat production per worker was 0.095 cal min-1, less than 15% of the maximal oxygen consumption of 4-day-old bees. Calculations indicate that the larger drones contribute more heat per bee than do the workers.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Re-evaluation of honeybees and wind on pollination of avocado

    Science.gov (United States)

    Avocado (Persea americana Mill) flowers, with their synchronously dichogamous behavior, are considered to be pollinated by honeybees, despite the lack of any direct evidence. Results in south Florida showed that avocado pollen was transferable by wind and dispersed over a brief period of time (15-60...

  14. PRELIMINARY RESEARCHES REGARDING THE GENETIC AND MORPHOMETRIC CHARACTERIZATION OF HONEYBEES (A. MELLIFERA L. FROM ROMANIA

    Directory of Open Access Journals (Sweden)

    ELIZA CAUIA

    2013-12-01

    Full Text Available The international investigations regarding the honeybees’ diversity carried out until now have revealed a certain degree of genetic pollution in different countries from Europe, because of the import of more productive honeybees’ races or of some interracial honeybees’ hybrids. This fact might have a negative impact on the success adaptability of honeybees at the ecosystem. Although, the Romanian honeybees (Apis mellifera carpathica are well adapted to the local conditions and express a good resistance to diseases, the introgression (genetic pollution of different honeybees’ races could be an imminent event. So that, starting from 2007, by a cooperation between the Institute for Beekeeping Research and Development from Bucharest and the Institute of Genetics of the University of Bucharest, we have initiated different investigations in order to obtain a more accurate state of the Romanian honeybees’ diversity. We have performed specific molecular analyses, using mtDNA (the COI-COII test extracted from 32 different honeybees samples collected from several regions from Romania. For a better and detailed characterization of the collected honeybee’s samples we have also carried out some morphometric measurements of their wings. Our data have shown that the Romanian population of honeybees is almost homogenous from the genetic and the morphometric points of views. These types of investigations represent a premiere for Romania.

  15. Insights into social insects from the genome of the honeybee Apis mellifera

    DEFF Research Database (Denmark)

    Hauser, Frank; Cazzamali, Giuseppe; Williamson, Michael

    2006-01-01

    Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves mo...

  16. Alfalfa (Medicago sativa L.) seed yield in relation to phosphorus fertilization and honeybee pollination.

    Science.gov (United States)

    Al-Kahtani, Saad Naser; Taha, El-Kazafy Abdou; Al-Abdulsalam, Mohammed

    2017-07-01

    This investigation was conducted at the Agricultural and Veterinary Training and Research Station, King Faisal University, Al-Ahsa, Saudi Arabia, during the alfalfa growing season in 2014. The study aimed to evaluate the impact of phosphorus fertilization and honeybee pollination on alfalfa seed production. The experiment was divided into 9 treatments of open pollination, honeybee pollination, and non-pollination with three different levels (0, 300 or 600 kg P2O5/ha/year) of triple super phosphate. All vegetative growth attributes of Hassawi alfalfa were significantly higher in the non-insect pollination plots, while the yield and yield component traits were significantly higher with either open pollination or honeybee pollination in parallel with the increasing level of phosphorus fertilizer up to 600 kg P2O5/ha/year in light salt-affected loamy sand soils. There was no seed yield in Hassawi alfalfa without insect pollination. Therefore, placing honeybee colonies near the fields of Hassawi alfalfa and adding 600 kg P2O5/ha/year can increase seed production.

  17. Alfalfa (Medicago sativa L. seed yield in relation to phosphorus fertilization and honeybee pollination

    Directory of Open Access Journals (Sweden)

    Saad Naser Al-Kahtani

    2017-07-01

    Full Text Available This investigation was conducted at the Agricultural and Veterinary Training and Research Station, King Faisal University, Al-Ahsa, Saudi Arabia, during the alfalfa growing season in 2014. The study aimed to evaluate the impact of phosphorus fertilization and honeybee pollination on alfalfa seed production. The experiment was divided into 9 treatments of open pollination, honeybee pollination, and non-pollination with three different levels (0, 300 or 600 kg P2O5/ha/year of triple super phosphate. All vegetative growth attributes of Hassawi alfalfa were significantly higher in the non-insect pollination plots, while the yield and yield component traits were significantly higher with either open pollination or honeybee pollination in parallel with the increasing level of phosphorus fertilizer up to 600 kg P2O5/ha/year in light salt-affected loamy sand soils. There was no seed yield in Hassawi alfalfa without insect pollination. Therefore, placing honeybee colonies near the fields of Hassawi alfalfa and adding 600 kg P2O5/ha/year can increase seed production.

  18. Honeybees prefer warmer nectar and less viscous nectar, regardless of sugar concentration.

    Science.gov (United States)

    Nicolson, Susan W; de Veer, Leo; Köhler, Angela; Pirk, Christian W W

    2013-09-22

    The internal temperature of flowers may be higher than air temperature, and warmer nectar could offer energetic advantages for honeybee thermoregulation, as well as being easier to drink owing to its lower viscosity. We investigated the responses of Apis mellifera scutellata (10 colonies) to warmed 10% w/w sucrose solutions, maintained at 20-35°C, independent of low air temperatures, and to 20% w/w sucrose solutions with the viscosity increased by the addition of the inert polysaccharide Tylose (up to the equivalent of 34.5% sucrose). Honeybee crop loads increased with nectar temperature, as did the total consumption of sucrose solutions over 2 h by all bees visiting the feeders. In addition, the preference of marked honeybees shifted towards higher nectar temperatures with successive feeder visits. Crop loads were inversely proportional to the viscosity of the artificial nectar, as was the total consumption of sucrose solutions over 2 h. Marked honeybees avoided higher nectar viscosities with successive feeder visits. Bees thus showed strong preferences for both warmer and less viscous nectar, independent of changes in its sugar concentration. Bees may benefit from foraging on nectars that are warmer than air temperature for two reasons that are not mutually exclusive: reduced thermoregulatory costs and faster ingestion times due to the lower viscosity.

  19. Functional Morphology of the Divided Compound Eye of the Honeybee Drone (Apis mellifera)

    NARCIS (Netherlands)

    Menzel, J.G.; Wunderer, H.; Stavenga, D.G.

    1991-01-01

    Using different approaches, the functional morphology of the compound eye of the honeybee drone was examined. The drone exhibits an extended acute zone in the dorsal part of its eye. The following specializations were found here: enlarged facet diameters; smaller interommatidial angles; red-leaky sc

  20. Weight watching and the effect of landscape on honeybee colony productivity

    DEFF Research Database (Denmark)

    Lecocq, Antoine; Kryger, Per; Vejsnæs, Flemming;

    2015-01-01

    sites can give valuable insight on the influence of landscape on their productivity and might point towards future directions for modernized beekeeping practices. Using data on honeybee colony weights provided by electronic scales spread across Denmark, we investigated the effect of the immediate...

  1. Appetitive but Not Aversive Olfactory Conditioning Modifies Antennal Movements in Honeybees

    Science.gov (United States)

    Cholé, Hanna; Junca, Pierre; Sandoz, Jean-Christophe

    2015-01-01

    In honeybees, two olfactory conditioning protocols allow the study of appetitive and aversive Pavlovian associations. Appetitive conditioning of the proboscis extension response (PER) involves associating an odor, the conditioned stimulus (CS) with a sucrose solution, the unconditioned stimulus (US). Conversely, aversive conditioning of the sting…

  2. Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies.

    Directory of Open Access Journals (Sweden)

    Francesco Nazzi

    Full Text Available The health of the honeybee and, indirectly, global crop production are threatened by several biotic and abiotic factors, which play a poorly defined role in the induction of widespread colony losses. Recent descriptive studies suggest that colony losses are often related to the interaction between pathogens and other stress factors, including parasites. Through an integrated analysis of the population and molecular changes associated with the collapse of honeybee colonies infested by the parasitic mite Varroa destructor, we show that this parasite can de-stabilise the within-host dynamics of Deformed wing virus (DWV, transforming a cryptic and vertically transmitted virus into a rapidly replicating killer, which attains lethal levels late in the season. The de-stabilisation of DWV infection is associated with an immunosuppression syndrome, characterized by a strong down-regulation of the transcription factor NF-κB. The centrality of NF-κB in host responses to a range of environmental challenges suggests that this transcription factor can act as a common currency underlying colony collapse that may be triggered by different causes. Our results offer an integrated account for the multifactorial origin of honeybee losses and a new framework for assessing, and possibly mitigating, the impact of environmental challenges on honeybee health.

  3. Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies.

    Science.gov (United States)

    Nazzi, Francesco; Brown, Sam P; Annoscia, Desiderato; Del Piccolo, Fabio; Di Prisco, Gennaro; Varricchio, Paola; Della Vedova, Giorgio; Cattonaro, Federica; Caprio, Emilio; Pennacchio, Francesco

    2012-01-01

    The health of the honeybee and, indirectly, global crop production are threatened by several biotic and abiotic factors, which play a poorly defined role in the induction of widespread colony losses. Recent descriptive studies suggest that colony losses are often related to the interaction between pathogens and other stress factors, including parasites. Through an integrated analysis of the population and molecular changes associated with the collapse of honeybee colonies infested by the parasitic mite Varroa destructor, we show that this parasite can de-stabilise the within-host dynamics of Deformed wing virus (DWV), transforming a cryptic and vertically transmitted virus into a rapidly replicating killer, which attains lethal levels late in the season. The de-stabilisation of DWV infection is associated with an immunosuppression syndrome, characterized by a strong down-regulation of the transcription factor NF-κB. The centrality of NF-κB in host responses to a range of environmental challenges suggests that this transcription factor can act as a common currency underlying colony collapse that may be triggered by different causes. Our results offer an integrated account for the multifactorial origin of honeybee losses and a new framework for assessing, and possibly mitigating, the impact of environmental challenges on honeybee health.

  4. The Acute Oral Toxicity of Commonly Used Pesticides in Iran, to Honeybees (Apis Mellifera Meda

    Directory of Open Access Journals (Sweden)

    Rasuli Farhang

    2015-06-01

    Full Text Available The honey bee is credited with approximately 85% of the pollinating activity necessary to supply about one-third of the world’s food supply. Well over 50 major crops depend on these insects for pollination. The crops produce more abundantly when honey bees are plentiful. Worker bees are the ones primarily affected by pesticides. Poisoning symptoms can vary depending on the developmental stage of the individual bee, and the kind of chemical employed. The oral toxicity of these insecticides: (phosalone and pirimicarb, acaricide (propargite, insecticide and acaricide (fenpropathrin, fungicides, and bactericides (copper oxychloride and the Bordeaux mixture, were evaluated for the purposes of this research. The results showed that fenpropathrin had high acute oral toxicity (LC50-24h and LC50-48 were 0.54 and 0.3 ppm, respectively. Propargite had 7785 ppm (active ingredient for LC50-24h and 6736 ppm (active ingredient for LC50-48h in honeybees and is therefore, non-toxic to Apis mellifera. On the other hand, copper oxychloride had minimum acute oral toxicity to honeybees (LC50-24h and LC50-48 were 4591.5 and 5407.9 ppm, respectively and was therefore considered non-toxic. Also, the Bordeaux mixture was safe to use around honeybees. Phosalone and primicarb were considered highly and moderately toxic to honeybees, respectively.

  5. Parasites and Pathogens of the Honeybee (Apis mellifera and Their Influence on Inter-Colonial Transmission.

    Directory of Open Access Journals (Sweden)

    Nadège Forfert

    Full Text Available Pathogens and parasites may facilitate their transmission by manipulating host behavior. Honeybee pathogens and pests need to be transferred from one colony to another if they are to maintain themselves in a host population. Inter-colony transmission occurs typically through honeybee workers not returning to their home colony but entering a foreign colony ("drifting". Pathogens might enhance drifting to enhance transmission to new colonies. We here report on the effects infection by ten honeybee viruses and Nosema spp., and Varroa mite infestation on honeybee drifting. Genotyping of workers collected from colonies allowed us to identify genuine drifted workers as well as source colonies sending out drifters in addition to sink colonies accepting them. We then used network analysis to determine patterns of drifting. Distance between colonies in the apiary was the major factor explaining 79% of drifting. None of the tested viruses or Nosema spp. were associated with the frequency of drifting. Only colony infestation with Varroa was associated with significantly enhanced drifting. More specifically, colonies with high Varroa infestation had a significantly enhanced acceptance of drifters, although they did not send out more drifting workers. Since Varroa-infested colonies show an enhanced attraction of drifting workers, and not only those infected with Varroa and its associated pathogens, infestation by Varroa may also facilitate the uptake of other pests and parasites.

  6. Honeybees increase fruit set in native plant species important for wildlife conservation.

    Science.gov (United States)

    Cayuela, Luis; Ruiz-Arriaga, Sarah; Ozers, Christian P

    2011-11-01

    Honeybee colonies are declining in some parts of the world. This may have important consequences for the pollination of crops and native plant species. In Spain, as in other parts of Europe, land abandonment has led to a decrease in the number of non professional beekeepers, which aggravates the problem of honeybee decline as a result of bee diseases In this study, we investigated the effects of honeybees on the pollination of three native plant species in northern Spain, namely wildcherry Prunus avium L., hawthorn Crataegus monogyna Jacq., and bilberry Vaccinium myrtillus L. We quantified fruit set of individuals from the target species along transects established from an apiary outwards. Half the samples were bagged in a nylon mesh to avoid insect pollination. Mixed-effects models were used to test the effect of distance to the apiary on fruit set in non-bagged samples. The results showed a negative significant effect of distance from the apiary on fruit set for hawthorn and bilberry, but no significant effects were detected for wild cherry. This suggests that the use of honeybees under traditional farming practices might be a good instrument to increase fruit production of some native plants. This may have important consequences for wildlife conservation, since fruits, and bilberries in particular, constitute an important feeding resource for endangered species, such as the brown bear Ursus arctos L. or the capercaillie Tetrao urogallus cantabricus L.

  7. Assessment of heavy metal pollution in Córdoba (Spain) by biomonitoring foraging honeybee

    NARCIS (Netherlands)

    Gutiérrez, Miriam; Molero, Rafael; Gaju, Miquel; Steen, van der Sjef; Porrini, Claudio; Ruiz, José Antonio

    2015-01-01

    Due to features that make them outstanding environmental bioindicator, colonies of Apis mellifera are being used to study environmental pollution. The primary objective of this research was to use honeybee colonies to identify heavy metals and determine their utility for environmental management.

  8. Two Waves of Transcription Are Required for Long-Term Memory in the Honeybee

    Science.gov (United States)

    Lefer, Damien; Perisse, Emmanuel; Hourcade, Benoit; Sandoz, JeanChristophe; Devaud, Jean-Marc

    2013-01-01

    Storage of information into long-term memory (LTM) usually requires at least two waves of transcription in many species. However, there is no clear evidence of this phenomenon in insects, which are influential models for memory studies. We measured retention in honeybees after injecting a transcription inhibitor at different times before and after…

  9. Germ cell development in the Honeybee (Apis mellifera; Vasa and Nanos expression

    Directory of Open Access Journals (Sweden)

    Dearden Peter K

    2006-02-01

    Full Text Available Abstract Background Studies of specification of germ-cells in insect embryos has indicated that in many taxa the germ cells form early in development, and their formation is associated with pole plasm, germ plasm or an organelle called the oosome. None of these morphological features associated with germ cell formation have been identified in the Honeybee Apis mellifera. In this study I report the cloning and expression analysis of Honeybee homologues of vasa and nanos, germ cell markers in insects and other animals. Results Apis vasa and nanos RNAs are present in early honeybee embryos, but the RNAs clear rapidly, without any cells expressing these germ cell markers past stage 2. These genes are then only expressed in a line of cells in the abdomen from stage 9 onwards. These cells are the developing germ cells that are moved dorsally by dorsal closure and are placed in the genital ridge. Conclusion This study of the expression of germ cell markers in the honeybee implies that in this species either germ cells are formed by an inductive event, late in embryogenesis, or they are formed early in development in the absence of vasa and nanos expression. This contrasts with germ cell development in other members of the Hymenoptera, Diptera and Lepidoptera.

  10. Insights into social insects from the genome of the honeybee Apis mellifera

    DEFF Research Database (Denmark)

    Hauser, Frank; Cazzamali, Giuseppe; Williamson, Michael

    2006-01-01

    Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves more...

  11. Functional Morphology of the Divided Compound Eye of the Honeybee Drone (Apis mellifera)

    NARCIS (Netherlands)

    Menzel, J.G.; Wunderer, H.; Stavenga, D.G.

    1991-01-01

    Using different approaches, the functional morphology of the compound eye of the honeybee drone was examined. The drone exhibits an extended acute zone in the dorsal part of its eye. The following specializations were found here: enlarged facet diameters; smaller interommatidial angles; red-leaky sc

  12. Survival rate of honeybee (Apis mellifera) workers after exposure to sublethal concentrations of imidacloprid

    NARCIS (Netherlands)

    Blacquiere, T.

    2010-01-01

    Imidacloprid is a commonly used systemic insecticide which can induce several sublethal effects. Previous research has not shown any increased mortality in bees that were fed with sublethal doses. However, there is very little research conducted with the focus on survival rate of honeybees in the fi

  13. Two Waves of Transcription Are Required for Long-Term Memory in the Honeybee

    Science.gov (United States)

    Lefer, Damien; Perisse, Emmanuel; Hourcade, Benoit; Sandoz, JeanChristophe; Devaud, Jean-Marc

    2013-01-01

    Storage of information into long-term memory (LTM) usually requires at least two waves of transcription in many species. However, there is no clear evidence of this phenomenon in insects, which are influential models for memory studies. We measured retention in honeybees after injecting a transcription inhibitor at different times before and after…

  14. Modelling collective foraging by means of individual behaviour rules in honey-bees

    NARCIS (Netherlands)

    de Vries, H; Biesmeijer, JC

    1998-01-01

    An individual-oriented model is constructed which simulates the collective foraging behaviour of a colony of honey-bees, Apis mellifera. Each bee follows the same set of behavioural rules. Each rule consists of a set of conditions followed by the behavioural act to be performed if the conditions are

  15. Brood temperature, task division and colony survival in honeybees : A model

    NARCIS (Netherlands)

    Becher, Matthias A.; Hildenbrandt, Hanno; Hemelrijk, Charlotte K.; Moritz, Robin F. A.

    2010-01-01

    One of the mechanisms by which honeybees regulate division of labour among their colony members is age polyethism. Here the younger bees perform in-hive tasks such as heating and the older ones carry out tasks outside the hive such as foraging. Recently it has been shown that the higher developmenta

  16. Assessment of heavy metal pollution in Córdoba (Spain) by biomonitoring foraging honeybee

    NARCIS (Netherlands)

    Gutiérrez, Miriam; Molero, Rafael; Gaju, Miquel; Steen, van der Sjef; Porrini, Claudio; Ruiz, José Antonio

    2015-01-01

    Due to features that make them outstanding environmental bioindicator, colonies of Apis mellifera are being used to study environmental pollution. The primary objective of this research was to use honeybee colonies to identify heavy metals and determine their utility for environmental management.

  17. Long-term effect of temperature on honey yield and honeybee phenology

    Science.gov (United States)

    Langowska, Aleksandra; Zawilak, Michał; Sparks, Tim H.; Glazaczow, Adam; Tomkins, Peter W.; Tryjanowski, Piotr

    2016-12-01

    There is growing concern about declines in pollinator species, and more recently reservations have been expressed about mismatch in plant-pollinator synchrony as a consequence of phenological change caused by rising temperatures. Long-term changes in honeybee Apis mellifera phenology may have major consequences for agriculture, especially the pollinator market, as well as for honey production. To date, these aspects have received only modest attention. In the current study, we examine honeybee and beekeeping activity in southern Poland for the period 1965-2010, supplemented by hive yields from a beekeeper in southern UK in the same period. We show that despite negative reports on honeybee condition, and documented climate change, the studied apiary managed to show a marked increase in honey production over the 46 year study period, as did that from the UK. The proportion of the annual yield originating from the first harvest decreased during the study period and was associated with rising temperatures in summer. Honeybee spring phenology showed strong negative relationships with temperature but no overall change through time because temperatures of key early spring months had not increased significantly. In contrast, increasing yields and an increased number of harvests (and hence a later final harvest and longer season) were detected and were related to rising temperatures in late spring and in summer.

  18. Patterns of chromatic information processing in the lobula of the honeybee, Apis mellifera L.

    Science.gov (United States)

    Yang, En-Cheng; Lin, Hsiao-Chun; Hung, Yu-Shan

    2004-10-01

    The honeybee, Apis mellifera L., is one of the living creatures that has its colour vision proven through behavioural tests. Previous studies of honeybee colour vision has emphasized the relationship between the spectral sensitivities of photoreceptors and colour discrimination behaviour. The current understanding of the neural mechanisms of bee colour vision is, however, rather limited. The present study surveyed the patterns of chromatic information processing of visual neurons in the lobula of the honeybee, using intracellular recording stimulated by three light-emitting diodes, whose emission spectra approximately match the spectral sensitivity peaks of the honeybee. The recorded visual neurons can be divided into two groups: non-colour opponent cells and colour opponent cells. The non-colour opponent cells comprise six types of broad-band neurons and four response types of narrow-band neurons. The former might detect brightness of the environment or function as chromatic input channels, and the latter might supply specific chromatic input. Amongst the colour opponent cells, the principal neural mechanism of colour vision, eight response types were recorded. The receptive fields of these neurons were not centre surround as observed in primates. Some recorded neurons with tonic post-stimulus responses were observed, however, suggesting temporal defined spectral opponency may be part of the colour-coding mechanisms.

  19. Interactions of visual odometry and landmark guidance during food search in honeybees

    NARCIS (Netherlands)

    Vladusich, T; Hemmi, JM; Srinivasan, MV; Zeil, J

    2005-01-01

    How do honeybees use visual odometry and goal-defining landmarks to guide food search? In one experiment, bees were trained to forage in an optic-flow-rich tunnel with a landmark positioned directly above the feeder. Subsequent food-search tests indicated that bees searched much more accurately when

  20. Functional Morphology of the Divided Compound Eye of the Honeybee Drone (Apis mellifera)

    NARCIS (Netherlands)

    Menzel, J.G.; Wunderer, H.; Stavenga, D.G.

    1991-01-01

    Using different approaches, the functional morphology of the compound eye of the honeybee drone was examined. The drone exhibits an extended acute zone in the dorsal part of its eye. The following specializations were found here: enlarged facet diameters; smaller interommatidial angles; red-leaky

  1. Honeybees Increase Fruit Set in Native Plant Species Important for Wildlife Conservation

    Science.gov (United States)

    Cayuela, Luis; Ruiz-Arriaga, Sarah; Ozers, Christian P.

    2011-11-01

    Honeybee colonies are declining in some parts of the world. This may have important consequences for the pollination of crops and native plant species. In Spain, as in other parts of Europe, land abandonment has led to a decrease in the number of non professional beekeepers, which aggravates the problem of honeybee decline as a result of bee diseases In this study, we investigated the effects of honeybees on the pollination of three native plant species in northern Spain, namely wildcherry Prunus avium L., hawthorn Crataegus monogyna Jacq., and bilberry Vaccinium myrtillus L. We quantified fruit set of individuals from the target species along transects established from an apiary outwards. Half the samples were bagged in a nylon mesh to avoid insect pollination. Mixed-effects models were used to test the effect of distance to the apiary on fruit set in non-bagged samples. The results showed a negative significant effect of distance from the apiary on fruit set for hawthorn and bilberry, but no significant effects were detected for wildcherry. This suggests that the use of honeybees under traditional farming practices might be a good instrument to increase fruit production of some native plants. This may have important consequences for wildlife conservation, since fruits, and bilberries in particular, constitute an important feeding resource for endangered species, such as the brown bear Ursus arctos L. or the capercaillie Tetrao urogallus cantabricus L.

  2. Sperm use economy of honeybee (Apis mellifera) queens

    DEFF Research Database (Denmark)

    Baer, Boris; Collins, Jason; Maalaps, Kristiina;

    2016-01-01

    the fecundity and longevity of queens and therefore colony fitness. We quantified the number of sperm that honeybee (Apis mellifera) queens use to fertilize eggs. We examined sperm use in naturally mated queens of different ages and in queens artificially inseminated with different volumes of semen. We found...

  3. Draft Genome of Chilean Honeybee (Apis mellifera) Gut Strain Lactobacillus kunkeei MP2

    Science.gov (United States)

    Olmos, Alejandro; Henríquez-Piskulich, Patricia; Sanchez, Carolina; Rojas-Herrera, Marcelo; Moreno-Pino, Mario; Gómez, Marcela; Rodríguez Da Silva, Rafael; Maracaja-Coutinho, Vinicius; Aldea, Patricia

    2014-01-01

    Here, we report the first draft genome sequence of Lactobacillus kunkeei strain MP2, isolated from a Chilean honeybee gut. The sequenced genome has a total size of 1.58 Mb distributed into 44 contigs and 1,356 protein-coding sequences. PMID:25301653

  4. Dead or alive: deformed wing virus and Varroa destructor reduce the life span of winter honeybees.

    Science.gov (United States)

    Dainat, Benjamin; Evans, Jay D; Chen, Yan Ping; Gauthier, Laurent; Neumann, Peter

    2012-02-01

    Elevated winter losses of managed honeybee colonies are a major concern, but the underlying mechanisms remain controversial. Among the suspects are the parasitic mite Varroa destructor, the microsporidian Nosema ceranae, and associated viruses. Here we hypothesize that pathogens reduce the life expectancy of winter bees, thereby constituting a proximate mechanism for colony losses. A monitoring of colonies was performed over 6 months in Switzerland from summer 2007 to winter 2007/2008. Individual dead workers were collected daily and quantitatively analyzed for deformed wing virus (DWV), acute bee paralysis virus (ABPV), N. ceranae, and expression levels of the vitellogenin gene as a biomarker for honeybee longevity. Workers from colonies that failed to survive winter had a reduced life span beginning in late fall, were more likely to be infected with DWV, and had higher DWV loads. Colony levels of infection with the parasitic mite Varroa destructor and individual infections with DWV were also associated with reduced honeybee life expectancy. In sharp contrast, the level of N. ceranae infection was not correlated with longevity. In addition, vitellogenin gene expression was significantly positively correlated with ABPV and N. ceranae loads. The findings strongly suggest that V. destructor and DWV (but neither N. ceranae nor ABPV) reduce the life span of winter bees, thereby constituting a parsimonious possible mechanism for honeybee colony losses.

  5. Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway

    DEFF Research Database (Denmark)

    Gempe, Tanja; Hasselmann, Martin; Schiøtt, Morten;

    2009-01-01

    Organisms have evolved a bewildering diversity of mechanisms to generate the two sexes. The honeybee (Apis mellifera) employs an interesting system in which sex is determined by heterozygosity at a single locus (the Sex Determination Locus) harbouring the complementary sex determiner (csd) gene...

  6. Involvement of Phosphorylated "Apis Mellifera" CREB in Gating a Honeybee's Behavioral Response to an External Stimulus

    Science.gov (United States)

    Gehring, Katrin B.; Heufelder, Karin; Feige, Janina; Bauer, Paul; Dyck, Yan; Ehrhardt, Lea; Kühnemund, Johannes; Bergmann, Anja; Göbel, Josefine; Isecke, Marlene; Eisenhardt, Dorothea

    2016-01-01

    The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees ("Apis mellifera") we recently demonstrated a particular high…

  7. [Assessment of hypersensitivity to honey-bee venom in beekeepers by skin tests].

    Science.gov (United States)

    Becerril-Ángeles, Martín; Núñez-Velázquez, Marco; Marín-Martínez, Javier

    2013-01-01

    Beekeepers are exposed to frequent honey-bee stings, and have the risk to develop hypersensitivity to bee venom, but long-term exposure can induce immune tolerance in them. Up to 30% of beekeepers show positive skin tests with honey-bee venom. The prevalence of systemic reactions to bee stings in beekeepers is from 14% to 42%. To know the prevalence of hypersensitivity to honeybee venom in Mexican beekeepers and non-beekeepers by the use of skin tests. A group of 139 beekeepers and a group of 60 non-beekeeper volunteers had a history and physical related to age, sex, family and personal atopic history and time of exposure to bee stings. Both groups received intradermal skin tests with honey-bee venom, 0.1 mcg/mL and 1 mcg/mL, and histamine sulphate 0.1 mg/mL and Evans solution as controls. The skin tests results of both groups were compared by chi-squared test. Of the group of beekeepers, 116 were men (83%) and 23 women, average age was 39.3 years, had atopic family history 28% and personal atopy 13%, average time of exposure to bee stings was 10.9 years, skin tests with honey-bee venom were positive in 16.5% and 11% at 1 mcg/mL and 0.1 mcg/mL, respectively. In the non-beekeepers group venom skin tests were positive in 13.3% and 6.7% at 1 mcg/mL and 0.1 mcg/mL. We did not find significant differences between the two venom concentrations tested in both groups, neither in the number of positive skin tests between the two groups. We found hypersensivity to honey-bee venom slightly higher in the beekeepers than in the group apparently not exposed. Both honey-bee venom concentrations used did not show difference in the results of the skin tests. The similarity of skin tests positivity between both groups could be explained by immune tolerance due to continued exposure of beekeepers.

  8. Evaluating exposure and potential effects on honeybee brood (Apis mellifera) development using glyphosate as an example.

    Science.gov (United States)

    Thompson, Helen M; Levine, Steven L; Doering, Janine; Norman, Steve; Manson, Philip; Sutton, Peter; von Mérey, Georg

    2014-07-01

    This study aimed to develop an approach to evaluate potential effects of plant protection products on honeybee brood with colonies at realistic worst-case exposure rates. The approach comprised 2 stages. In the first stage, honeybee colonies were exposed to a commercial formulation of glyphosate applied to flowering Phacelia tanacetifolia with glyphosate residues quantified in relevant matrices (pollen and nectar) collected by foraging bees on days 1, 2, 3, 4, and 7 postapplication and glyphosate levels in larvae were measured on days 4 and 7. Glyphosate levels in pollen were approximately 10 times higher than in nectar and glyphosate demonstrated rapid decline in both matrices. Residue data along with foraging rates and food requirements of the colony were then used to set dose rates in the effects study. In the second stage, the toxicity of technical glyphosate to developing honeybee larvae and pupae, and residues in larvae, were then determined by feeding treated sucrose directly to honeybee colonies at dose rates that reflect worst-case exposure scenarios. There were no significant effects from glyphosate observed in brood survival, development, and mean pupal weight. Additionally, there were no biologically significant levels of adult mortality observed in any glyphosate treatment group. Significant effects were observed only in the fenoxycarb toxic reference group and included increased brood mortality and a decline in the numbers of bees and brood. Mean glyphosate residues in larvae were comparable at 4 days after spray application in the exposure study and also following dosing at a level calculated from the mean measured levels in pollen and nectar, showing the applicability and robustness of the approach for dose setting with honeybee brood studies. This study has developed a versatile and predictive approach for use in higher tier honeybee toxicity studies. It can be used to realistically quantify exposure of colonies to pesticides to allow the

  9. Honeybee colony disorder in crop areas: the role of pesticides and viruses.

    Directory of Open Access Journals (Sweden)

    Noa Simon-Delso

    Full Text Available As in many other locations in the world, honeybee colony losses and disorders have increased in Belgium. Some of the symptoms observed rest unspecific and their causes remain unknown. The present study aims to determine the role of both pesticide exposure and virus load on the appraisal of unexplained honeybee colony disorders in field conditions. From July 2011 to May 2012, 330 colonies were monitored. Honeybees, wax, beebread and honey samples were collected. Morbidity and mortality information provided by beekeepers, colony clinical visits and availability of analytical matrix were used to form 2 groups: healthy colonies and colonies with disorders (n = 29, n = 25, respectively. Disorders included: (1 dead colonies or colonies in which part of the colony appeared dead, or had disappeared; (2 weak colonies; (3 queen loss; (4 problems linked to brood and not related to any known disease. Five common viruses and 99 pesticides (41 fungicides, 39 insecticides and synergist, 14 herbicides, 5 acaricides and metabolites were quantified in the samples.The main symptoms observed in the group with disorders are linked to brood and queens. The viruses most frequently found are Black Queen Cell Virus, Sac Brood Virus, Deformed Wing Virus. No significant difference in virus load was observed between the two groups. Three acaricides, 5 insecticides and 13 fungicides were detected in the analysed samples. A significant correlation was found between the presence of fungicide residues and honeybee colony disorders. A significant positive link could also be established between the observation of disorder and the abundance of crop surface around the beehive. According to our results, the role of fungicides as a potential stressor for honeybee colonies should be further studied, either by their direct and/or indirect impacts on bees and bee colonies.

  10. Chemical composition and antimicrobial activity of honeybee ( Apis mellifera ligustica) propolis from subtropical eastern Australia

    Science.gov (United States)

    Massaro, Carmelina Flavia; Simpson, Jack Bruce; Powell, Daniel; Brooks, Peter

    2015-12-01

    Propolis is a material manufactured by bees and contains beeswax, bee salivary secretions and plant resins. Propolis preparations have been used for millennia by humans in food, cosmetics and medicines due to its antibacterial effects. Within the hive, propolis plays an important role in bees' health, with much of its bioactivity largely dependent on the plant resins the bees select for its production. Few chemical studies are available on the chemistry of propolis produced by Australian honeybees ( Apis mellifera, Apidae). This study aimed to determine the chemical composition as well as in vitro antimicrobial effects of propolis harvested from honeybees in subtropical eastern Australia. Honeybee propolis was produced using plastic frames and multiple beehives in two subtropical sites in eastern Australia. Methanolic extracts of propolis were analysed by liquid chromatography with ultraviolet detection and high-resolution mass spectrometry (ultra-high-pressure liquid chromatography (UHPLC)-UV-high-resolution tandem mass spectrometry (HR-MS/MS)) and by gas chromatography mass spectrometry (GC-MS). The resulting chemical data were dereplicated for compound characterisation. The two crude extracts in abs. ethanol were tested in vitro by the agar diffusion and broth dilution methods, using a phenol standard solution as the positive control and abs. ethanol as the negative control. Chemical constituents were identified to be pentacyclic triterpenoids and C-prenylated flavonoids, including Abyssinoflavanone VII, Propolin C and Nymphaeol C. The two propolis crude extracts showed bactericidal effects at the minimal inhibitory concentrations of 0.37-2.04 mg mL-1 against Staphylococcus aureus ATCC 25923. However, the extracts were inactive against Klebsiella pneumoniae ATCC 13883 and Candida albicans ATCC 10231. The antistaphylococcal potential of propolis was discussed, also in relation to honeybees' health, as it warrants further investigations on the social and

  11. Improvement of identification methods for honeybee specific Lactic Acid Bacteria; future approaches

    Science.gov (United States)

    Hu, Yue O. O.; Olofsson, Tobias C.; Andersson, Anders F.; Forsgren, Eva; Vásquez, Alejandra

    2017-01-01

    Honeybees face many parasites and pathogens and consequently rely on a diverse set of individual and group-level defenses to prevent disease. The crop microbiota of Apis mellifera, composed of 13 Lactic Acid Bacterial (LAB) species within the genera Lactobacillus and Bifidobacterium, form a beneficial symbiotic relationship with each other and the honeybee to protect their niche and their host. Possibly playing a vital role in honeybee health, it is important that these honeybee specific Lactic Acid Bacterial (hbs-LAB) symbionts can be correctly identified, isolated and cultured, to further investigate their health promoting properties. We have previously reported successful identification to the strain level by culture-dependent methods and we recently sequenced and annotated the genomes of the 13 hbs-LAB. However, the hitherto applied techniques are unfortunately very time consuming, expensive and not ideal when analyzing a vast quantity of samples. In addition, other researchers have constantly failed to identify the 13 hbs-LAB from honeybee samples by using inadequate media and/or molecular techniques based on 16S rRNA gene sequencing with insufficient discriminatory power. The aim of this study was to develop better and more suitable methods for the identification and cultivation of hbs-LAB. We compared currently used bacterial cultivation media and could for the first time demonstrate a significant variation in the hbs-LAB basic requirements for optimal growth. We also present a new bacterial identification approach based on amplicon sequencing of a region of the 16S rRNA gene using the Illumina platform and an error correction software that can be used to successfully differentiate and rapidly identify the 13 hbs-LAB to the strain level. PMID:28346815

  12. The bite of the honeybee: 2-heptanone secreted from honeybee mandibles during a bite acts as a local anaesthetic in insects and mammals.

    Directory of Open Access Journals (Sweden)

    Alexandros Papachristoforou

    Full Text Available Honeybees secrete 2-heptanone (2-H from their mandibular glands when they bite. Researchers have identified several possible functions: 2-H could act as an alarm pheromone to recruit guards and soldiers, it could act as a chemical marker, or it could have some other function. The actual role of 2-H in honeybee behaviour remains unresolved. In this study, we show that 2-H acts as an anaesthetic in small arthropods, such as wax moth larva (WML and Varroa mites, which are paralysed after a honeybee bite. We demonstrated that honeybee mandibles can penetrate the cuticle of WML, introducing less than one nanolitre of 2-H into the WML open circulatory system and causing instantaneous anaesthetization that lasts for a few minutes. The first indication that 2-H acts as a local anaesthetic was that its effect on larval response, inhibition and recovery is very similar to that of lidocaine. We compared the inhibitory effects of 2-H and lidocaine on voltage-gated sodium channels. Although both compounds blocked the hNav1.6 and hNav1.2 channels, lidocaine was slightly more effective, 2.82 times, on hNav.6. In contrast, when the two compounds were tested using an ex vivo preparation-the isolated rat sciatic nerve-the function of the two compounds was so similar that we were able to definitively classify 2-H as a local anaesthetic. Using the same method, we showed that 2-H has the fastest inhibitory effect of all alkyl-ketones tested, including the isomers 3- and 4-heptanone. This suggests that natural selection may have favoured 2-H over other, similar compounds because of the associated fitness advantages it confers. Our results reveal a previously unknown role of 2-H in honeybee defensive behaviour and due to its minor neurotoxicity show potential for developing a new local anaesthetic from a natural product, which could be used in human and veterinary medicine.

  13. Biological invasions, ecological resilience and adaptive governance.

    Science.gov (United States)

    Chaffin, Brian C; Garmestani, Ahjond S; Angeler, David G; Herrmann, Dustin L; Stow, Craig A; Nyström, Magnus; Sendzimir, Jan; Hopton, Matthew E; Kolasa, Jurek; Allen, Craig R

    2016-12-01

    In a world of increasing interconnections in global trade as well as rapid change in climate and land cover, the accelerating introduction and spread of invasive species is a critical concern due to associated negative social and ecological impacts, both real and perceived. Much of the societal response to invasive species to date has been associated with negative economic consequences of invasions. This response has shaped a war-like approach to addressing invasions, one with an agenda of eradications and intense ecological restoration efforts towards prior or more desirable ecological regimes. This trajectory often ignores the concept of ecological resilience and associated approaches of resilience-based governance. We argue that the relationship between ecological resilience and invasive species has been understudied to the detriment of attempts to govern invasions, and that most management actions fail, primarily because they do not incorporate adaptive, learning-based approaches. Invasive species can decrease resilience by reducing the biodiversity that underpins ecological functions and processes, making ecosystems more prone to regime shifts. However, invasions do not always result in a shift to an alternative regime; invasions can also increase resilience by introducing novelty, replacing lost ecological functions or adding redundancy that strengthens already existing structures and processes in an ecosystem. This paper examines the potential impacts of species invasions on the resilience of ecosystems and suggests that resilience-based approaches can inform policy by linking the governance of biological invasions to the negotiation of tradeoffs between ecosystem services.

  14. Biological invasions, ecological resilience and adaptive governance

    Science.gov (United States)

    Chaffin, Brian C.; Garmestani, Ahjond S.; Angeler, David G.; Herrmann, Dustin L.; Stow, Craig A.; Nystrom, Magnus; Sendzimir, Jan; Hopton, Matthew E.; Kolasa, Jurek; Allen, Craig R.

    2016-01-01

    In a world of increasing interconnections in global trade as well as rapid change in climate and land cover, the accelerating introduction and spread of invasive species is a critical concern due to associated negative social and ecological impacts, both real and perceived. Much of the societal response to invasive species to date has been associated with negative economic consequences of invasions. This response has shaped a war-like approach to addressing invasions, one with an agenda of eradications and intense ecological restoration efforts towards prior or more desirable ecological regimes. This trajectory often ignores the concept of ecological resilience and associated approaches of resilience-based governance. We argue that the relationship between ecological resilience and invasive species has been understudied to the detriment of attempts to govern invasions, and that most management actions fail, primarily because they do not incorporate adaptive, learning-based approaches. Invasive species can decrease resilience by reducing the biodiversity that underpins ecological functions and processes, making ecosystems more prone to regime shifts. However, invasions do not always result in a shift to an alternative regime; invasions can also increase resilience by introducing novelty, replacing lost ecological functions or adding redundancy that strengthens already existing structures and processes in an ecosystem. This paper examines the potential impacts of species invasions on the resilience of ecosystems and suggests that resilience-based approaches can inform policy by linking the governance of biological invasions to the negotiation of tradeoffs between ecosystem services.

  15. Light exposure leads to reorganization of microglomeruli in the mushroom bodies and influences juvenile hormone levels in the honeybee

    National Research Council Canada - National Science Library

    Scholl, Christina; Wang, Ying; Krischke, Markus; Mueller, Martin J; Amdam, Gro V; Rössler, Wolfgang

    2014-01-01

    .... This plasticity is important for age‐related division of labor in honeybee colonies. The behavioral transition is associated with significant volume and synaptic changes in the mushroom bodies (MBs...

  16. Insect Bio-inspired Neural Network Provides New Evidence on How Simple Feature Detectors Can Enable Complex Visual Generalization and Stimulus Location Invariance in the Miniature Brain of Honeybees.

    Science.gov (United States)

    Roper, Mark; Fernando, Chrisantha; Chittka, Lars

    2017-02-01

    The ability to generalize over naturally occurring variation in cues indicating food or predation risk is highly useful for efficient decision-making in many animals. Honeybees have remarkable visual cognitive abilities, allowing them to classify visual patterns by common features despite having a relatively miniature brain. Here we ask the question whether generalization requires complex visual recognition or whether it can also be achieved with relatively simple neuronal mechanisms. We produced several simple models inspired by the known anatomical structures and neuronal responses within the bee brain and subsequently compared their ability to generalize achromatic patterns to the observed behavioural performance of honeybees on these cues. Neural networks with just eight large-field orientation-sensitive input neurons from the optic ganglia and a single layer of simple neuronal connectivity within the mushroom bodies (learning centres) show performances remarkably similar to a large proportion of the empirical results without requiring any form of learning, or fine-tuning of neuronal parameters to replicate these results. Indeed, a model simply combining sensory input from both eyes onto single mushroom body neurons returned correct discriminations even with partial occlusion of the patterns and an impressive invariance to the location of the test patterns on the eyes. This model also replicated surprising failures of bees to discriminate certain seemingly highly different patterns, providing novel and useful insights into the inner workings facilitating and limiting the utilisation of visual cues in honeybees. Our results reveal that reliable generalization of visual information can be achieved through simple neuronal circuitry that is biologically plausible and can easily be accommodated in a tiny insect brain.

  17. Insect Bio-inspired Neural Network Provides New Evidence on How Simple Feature Detectors Can Enable Complex Visual Generalization and Stimulus Location Invariance in the Miniature Brain of Honeybees

    Science.gov (United States)

    Fernando, Chrisantha

    2017-01-01

    The ability to generalize over naturally occurring variation in cues indicating food or predation risk is highly useful for efficient decision-making in many animals. Honeybees have remarkable visual cognitive abilities, allowing them to classify visual patterns by common features despite having a relatively miniature brain. Here we ask the question whether generalization requires complex visual recognition or whether it can also be achieved with relatively simple neuronal mechanisms. We produced several simple models inspired by the known anatomical structures and neuronal responses within the bee brain and subsequently compared their ability to generalize achromatic patterns to the observed behavioural performance of honeybees on these cues. Neural networks with just eight large-field orientation-sensitive input neurons from the optic ganglia and a single layer of simple neuronal connectivity within the mushroom bodies (learning centres) show performances remarkably similar to a large proportion of the empirical results without requiring any form of learning, or fine-tuning of neuronal parameters to replicate these results. Indeed, a model simply combining sensory input from both eyes onto single mushroom body neurons returned correct discriminations even with partial occlusion of the patterns and an impressive invariance to the location of the test patterns on the eyes. This model also replicated surprising failures of bees to discriminate certain seemingly highly different patterns, providing novel and useful insights into the inner workings facilitating and limiting the utilisation of visual cues in honeybees. Our results reveal that reliable generalization of visual information can be achieved through simple neuronal circuitry that is biologically plausible and can easily be accommodated in a tiny insect brain. PMID:28158189

  18. Beehold : the colony of the honeybee (Apis mellifera L) as a bio-sampler for pollutants and plant pathogens

    OpenAIRE

    2016-01-01

    Bio-sampling is a function of bio-indication. Bio-indication with honeybee colonies (Apis mellifera L) is where the research fields of environmental technology and apiculture overlap. The honeybees are samplers of the environment by collecting unintentionally and simultaneously, along with nectar, pollen, water and honeydew from the flowers or on the leaves, other matter (in bio-indication terms: target matter) and accumulating this in the colony. Collected target matter, in this thesis heavy...

  19. Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses.

    Science.gov (United States)

    Jaffé, Rodolfo; Dietemann, Vincent; Allsopp, Mike H; Costa, Cecilia; Crewe, Robin M; Dall'olio, Raffaele; DE LA Rúa, Pilar; El-Niweiri, Mogbel A A; Fries, Ingemar; Kezic, Nikola; Meusel, Michael S; Paxton, Robert J; Shaibi, Taher; Stolle, Eckart; Moritz, Robin F A

    2010-04-01

    Although pollinator declines are a global biodiversity threat, the demography of the western honeybee (Apis mellifera) has not been considered by conservationists because it is biased by the activity of beekeepers. To fill this gap in pollinator decline censuses and to provide a broad picture of the current status of honeybees across their natural range, we used microsatellite genetic markers to estimate colony densities and genetic diversity at different locations in Europe, Africa, and central Asia that had different patterns of land use. Genetic diversity and colony densities were highest in South Africa and lowest in Northern Europe and were correlated with mean annual temperature. Confounding factors not related to climate, however, are also likely to influence genetic diversity and colony densities in honeybee populations. Land use showed a significantly negative influence over genetic diversity and the density of honeybee colonies over all sampling locations. In Europe honeybees sampled in nature reserves had genetic diversity and colony densities similar to those sampled in agricultural landscapes, which suggests that the former are not wild but may have come from managed hives. Other results also support this idea: putative wild bees were rare in our European samples, and the mean estimated density of honeybee colonies on the continent closely resembled the reported mean number of managed hives. Current densities of European honeybee populations are in the same range as those found in the adverse climatic conditions of the Kalahari and Saharan deserts, which suggests that beekeeping activities do not compensate for the loss of wild colonies. Our findings highlight the importance of reconsidering the conservation status of honeybees in Europe and of regarding beekeeping not only as a profitable business for producing honey, but also as an essential component of biodiversity conservation.

  20. The cyanobacterial neurotoxin β-N-methylamino-l-alanine (BMAA) induces neuronal and behavioral changes in honeybees.

    Science.gov (United States)

    Okle, Oliver; Rath, Lisa; Galizia, C Giovanni; Dietrich, Daniel R

    2013-07-01

    The cyanobacterially produced neurotoxin beta-N-methylamino-l-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using (14)C-BMAA we demonstrated that BMAA is biologically available to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca(2+) homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA.

  1. Detection of Neural Activity in the Brains of Japanese Honeybee Workers during the Formation of a “Hot Defensive Bee Ball”

    OpenAIRE

    Atsushi Ugajin; Taketoshi Kiya; Takekazu Kunieda; Masato Ono; Tadaharu Yoshida; Takeo Kubo

    2012-01-01

    Anti-predator behaviors are essential to survival for most animals. The neural bases of such behaviors, however, remain largely unknown. Although honeybees commonly use their stingers to counterattack predators, the Japanese honeybee (Apis cerana japonica) uses a different strategy to fight against the giant hornet (Vespa mandarinia japonica). Instead of stinging the hornet, Japanese honeybees form a “hot defensive bee ball” by surrounding the hornet en masse, killing it with heat. The Europe...

  2. Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera.

    Science.gov (United States)

    Olofsson, Tobias C; Vásquez, Alejandra

    2008-10-01

    This investigation concerned the question of whether honeybees collect bacteria that are beneficial for humans from the flowers that contribute to formation of their honey. Bacteria originating from the types of flowers involved, and found in different anatomic parts of the bees, in larvae, and in honey of different types, were sampled during a 2-year period. 16S rRNA sequencing of isolates and clones was employed. A novel bacterial flora composed of lactic acid bacteria (LAB) of the genera Lactobacillus and Bifidobacterium, which originated in the honey stomach of the honeybee, was discovered. It varied with the sources of nectar and the presence of other bacterial genera within the honeybee and ended up eventually in the honey. It appeared that honeybees and the novel LAB flora may have evolved in mutual dependence on one another. It was suggested that honey be considered a fermented food product because of the LAB involved in honey production. The findings are seen as having clear implications for future research in the area, as providing a better understanding the health of honeybees and of their production and storage of honey, and as having clear relevance for future honeybee and human probiotics.

  3. MtDNA COI-COII marker and drone congregation area: an efficient method to establish and monitor honeybee (Apis mellifera L.) conservation centres.

    Science.gov (United States)

    Bertrand, Bénédicte; Alburaki, Mohamed; Legout, Hélène; Moulin, Sibyle; Mougel, Florence; Garnery, Lionel

    2015-05-01

    Honeybee subspecies have been affected by human activities in Europe over the past few decades. One such example is the importation of nonlocal subspecies of bees which has had an adverse impact on the geographical repartition and subsequently on the genetic diversity of the black honeybee Apis mellifera mellifera. To restore the original diversity of this local honeybee subspecies, different conservation centres were set up in Europe. In this study, we established a black honeybee conservation centre Conservatoire de l'Abeille Noire d'Ile de France (CANIF) in the region of Ile-de-France, France. CANIF's honeybee colonies were intensively studied over a 3-year period. This study included a drone congregation area (DCA) located in the conservation centre. MtDNA COI-COII marker was used to evaluate the genetic diversity of CANIF's honeybee populations and the drones found and collected from the DCA. The same marker (mtDNA) was used to estimate the interactions and the haplotype frequency between CANIF's honeybee populations and 10 surrounding honeybee apiaries located outside of the CANIF. Our results indicate that the colonies of the conservation centre and the drones of the DCA show similar stable profiles compared to the surrounding populations with lower level of introgression. The mtDNA marker used on both DCA and colonies of the conservation centre seems to be an efficient approach to monitor and maintain the genetic diversity of the protected honeybee populations.

  4. Olfactory learning and memory in the bumblebee Bombus occidentalis

    Science.gov (United States)

    Riveros, Andre J.; Gronenberg, Wulfila

    2009-07-01

    In many respects, the behavior of bumblebees is similar to that of the closely related honeybees, a long-standing model system for learning and memory research. Living in smaller and less regulated colonies, bumblebees are physiologically more robust and thus have advantages in particular for indoor experiments. Here, we report results on Pavlovian odor conditioning of bumblebees using the proboscis extension reflex (PER) that has been successfully used in honeybee learning research. We examine the effect of age, body size, and experience on learning and memory performance. We find that age does not affect learning and memory ability, while body size positively correlates with memory performance. Foraging experience seems not to be necessary for learning to occur, but it may contribute to learning performance as bumblebees with more foraging experience on average were better learners. The PER represents a reliable tool for learning and memory research in bumblebees and allows examining interspecific similarities and differences of honeybee and bumblebee behavior, which we discuss in the context of social organization.

  5. Virion Structure of Black Queen Cell Virus, a Common Honeybee Pathogen

    Science.gov (United States)

    Spurny, Radovan; Přidal, Antonín; Pálková, Lenka; Kiem, Hoa Khanh Tran; de Miranda, Joachim R.

    2017-01-01

    ABSTRACT Viral diseases are a major threat to honeybee (Apis mellifera) populations worldwide and therefore an important factor in reliable crop pollination and food security. Black queen cell virus (BQCV) is the etiological agent of a fatal disease of honeybee queen larvae and pupae. The virus belongs to the genus Triatovirus from the family Dicistroviridae, which is part of the order Picornavirales. Here we present a crystal structure of BQCV determined to a resolution of 3.4 Å. The virion is formed by 60 copies of each of the major capsid proteins VP1, VP2, and VP3; however, there is no density corresponding to a 75-residue-long minor capsid protein VP4 encoded by the BQCV genome. We show that the VP4 subunits are present in the crystallized virions that are infectious. This aspect of the BQCV virion is similar to that of the previously characterized triatoma virus and supports the recent establishment of the separate genus Triatovirus within the family Dicistroviridae. The C terminus of VP1 and CD loops of capsid proteins VP1 and VP3 of BQCV form 34-Å-tall finger-like protrusions at the virion surface. The protrusions are larger than those of related dicistroviruses. IMPORTANCE The western honeybee is the most important pollinator of all, and it is required to sustain the agricultural production and biodiversity of wild flowering plants. However, honeybee populations worldwide are suffering from virus infections that cause colony losses. One of the most common, and least known, honeybee pathogens is black queen cell virus (BQCV), which at high titers causes queen larvae and pupae to turn black and die. Here we present the three-dimensional virion structure of BQCV, determined by X-ray crystallography. The structure of BQCV reveals large protrusions on the virion surface. Capsid protein VP1 of BQCV does not contain a hydrophobic pocket. Therefore, the BQCV virion structure provides evidence that capsid-binding antiviral compounds that can prevent the

  6. In-depth phosphoproteomic analysis of royal jelly derived from western and eastern honeybee species.

    Science.gov (United States)

    Han, Bin; Fang, Yu; Feng, Mao; Lu, Xiaoshan; Huo, Xinmei; Meng, Lifeng; Wu, Bin; Li, Jianke

    2014-12-01

    The proteins in royal jelly (RJ) play a pivotal role in the nutrition, immune defense, and cast determination of honeybee larvae and have a wide range of pharmacological and health-promoting functions for humans as well. Although the importance of post-translational modifications (PTMs) in protein function is known, investigation of protein phosphorylation of RJ proteins is still very limited. To this end, two complementary phosphopeptide enrichment materials (Ti(4+)-IMAC and TiO2) and high-sensitivity mass spectrometry were applied to establish a detailed phosphoproteome map and to qualitatively and quantitatively compare the phosphoproteomes of RJ produced by Apis mellifera ligustica (Aml) and Apis cerana cerana (Acc). In total, 16 phosphoproteins carrying 67 phosphorylation sites were identified in RJ derived from western bees, and nine proteins phosphorylated on 71 sites were found in RJ produced by eastern honeybees. Of which, eight phosphorylated proteins were common to both RJ samples, and the same motif ([S-x-E]) was extracted, suggesting that the function of major RJ proteins as nutrients and immune agents is evolutionary preserved in both of these honeybee species. All eight overlapping phosphoproteins showed significantly higher abundance in Acc-RJ than in Aml-RJ, and the phosphorylation of Jelleine-II (an antimicrobial peptide, TPFKLSLHL) at S(6) in Acc-RJ had stronger antimicrobial properties than that at T(1) in Aml-RJ even though the overall antimicrobial activity of Jelleine-II was found to decrease after phosphorylation. The differences in phosphosites, peptide abundance, and antimicrobial activity of the phosphorylated RJ proteins indicate that the two major honeybee species employ distinct phosphorylation strategies that align with their different biological characteristics shaped by evolution. The phosphorylation of RJ proteins are potentially driven by the activity of extracellular serine/threonine protein kinase FAM20C-like protein (FAM20C

  7. Western honeybee drones and workers (Apis mellifera ligustica) have different olfactory mechanisms than eastern honeybees (Apis cerana cerana).

    Science.gov (United States)

    Woltedji, Dereje; Song, Feifei; Zhang, Lan; Gala, Alemayehu; Han, Bin; Feng, Mao; Fang, Yu; Li, Jianke

    2012-09-07

    The honeybees Apis mellifera ligustica (Aml) and Apis cerana cerana (Acc) are two different western and eastern bee species that evolved in distinct ecologies and developed specific antennal olfactory systems for their survival. Knowledge of how their antennal olfactory systems function in regards to the success of each respective bee species is scarce. We compared the antennal morphology and proteome between respective sexually mature drones and foraging workers of both species using a scanning electron microscope, two-dimensional electrophoresis, mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction. Despite the general similarities in antennal morphology of the drone and worker bees between the two species, a total of 106 and 100 proteins altered their expression in the drones' and the workers' antennae, respectively. This suggests that the differences in the olfactory function of each respective bee are supported by the change of their proteome. Of the 106 proteins that altered their expression in the drones, 72 (68%) and 34 (32%) were overexpressed in the drones of Aml and Acc, respectively. The antennae of the Aml drones were built up by the highly expressed proteins that were involved in carbohydrate metabolism and energy production, molecular transporters, antioxidation, and fatty acid metabolism in contrast to the Acc drones. This is believed to enhance the antennal olfactory functions of the Aml drones as compared to the Acc drones during their mating flight. Likewise, of the 100 proteins with expression changes between the worker bees of the two species, 67% were expressed in higher levels in the antennae of Aml worker contrasting to 33% in the Acc worker. The overall higher expressions of proteins related to carbohydrate metabolism and energy production, molecular transporters, and antioxidation in the Aml workers compared with the Acc workers indicate the Aml workers require more antennal proteins for their olfactory

  8. Oviposition by small hive beetles elicits hygienic responses from Cape honeybees.

    Science.gov (United States)

    Ellis, J D; Richards, C S; Hepburn, H R; Elzen, P J

    2003-11-01

    Two novel behaviours, both adaptations of small hive beetles ( Aethina tumida Murray) and Cape honeybees ( Apis mellifera capensis Esch.), are described. Beetles puncture the sides of empty cells and oviposit under the pupae in adjoining cells. However, bees detect this ruse and remove infested brood (hygienic behaviour), even under such well-disguised conditions. Indeed, bees removed 91% of treatment brood (brood cells with punctured walls caused by beetles) but only 2% of control brood (brood not exposed to beetles). Only 91% of treatment brood actually contained beetle eggs; the data therefore suggest that bees remove only that brood containing beetle eggs and leave uninfected brood alone, even if beetles have accessed (but not oviposited on) the brood. Although this unique oviposition strategy by beetles appears both elusive and adaptive, Cape honeybees are able to detect and remove virtually all of the infested brood.

  9. Development and evolution of caste dimorphism in honeybees - a modeling approach.

    Science.gov (United States)

    Leimar, Olof; Hartfelder, Klaus; Laubichler, Manfred D; Page, Robert E

    2012-12-01

    The difference in phenotypes of queens and workers is a hallmark of the highly eusocial insects. The caste dimorphism is often described as a switch-controlled polyphenism, in which environmental conditions decide an individual's caste. Using theoretical modeling and empirical data from honeybees, we show that there is no discrete larval developmental switch. Instead, a combination of larval developmental plasticity and nurse worker feeding behavior make up a colony-level social and physiological system that regulates development and produces the caste dimorphism. Discrete queen and worker phenotypes are the result of discrete feeding regimes imposed by nurses, whereas a range of experimental feeding regimes produces a continuous range of phenotypes. Worker ovariole numbers are reduced through feeding-regime-mediated reduction in juvenile hormone titers, involving reduced sugar in the larval food. Based on the mechanisms identified in our analysis, we propose a scenario of the evolutionary history of honeybee development and feeding regimes.

  10. Experimental Wing Damage Affects Foraging Effort and Foraging Distance in Honeybees Apis mellifera

    Directory of Open Access Journals (Sweden)

    Andrew D. Higginson

    2011-01-01

    Full Text Available Bees acquire wing damage as they age, and loss of wing area affects longevity and behaviour. This may influence colony performance via effects on worker behaviour. The effects of experimental wing damage were studied in worker honeybees in observation hives by recording survivorship, how often and for how long bees foraged, and by decoding waggle dances. Mortality rate increased with both age and wing damage. Damaged bees carried out shorter and/or less frequent foraging trips, foraged closer to the hive, and reported the profitability of flower patches to be lower than did controls. These results suggest that wing damage caused a reduction in foraging ability, and that damaged bees adjusted their foraging behaviour accordingly. Furthermore, the results suggest that wing damage affects the profitability of nectar sources. These results have implications for the colony dynamics and foraging efficiency in honeybees.

  11. Quality of royal jelly produced by Africanized honeybees fed a supplemented diet

    Directory of Open Access Journals (Sweden)

    Maria Josiane Sereia

    2013-06-01

    Full Text Available This study was carried out to evaluate the effect of artificial supplements prepared with soybean protein isolate, brewer's yeast, mixture of soybean protein isolate with brewer's yeast, linseed oil, palm oil, and a mixture of linseed oil with palm oil on the physicochemical and microbiological composition of royal jelly produced by Africanized honey bee colonies. Considering these results, providing supplements for Africanized honeybee colonies subjected to royal jelly production can help and strengthen the technological development of the Brazilian beekeeping industry increasing its consumption in the national market. This research presents values of royal jelly a little different from those established by the Brazilian legislation. This fact shows that is important to discuss or change the official method for royal jelly analysis. The characterization of physicochemical and microbiological parameters is important in order to standardize fresh, frozen, and lyophilized royal jelly produced by Africanized honeybees.

  12. RNA-sequence analysis of gene expression from honeybees (Apis mellifera) infected with Nosema ceranae.

    Science.gov (United States)

    Badaoui, Bouabid; Fougeroux, André; Petit, Fabien; Anselmo, Anna; Gorni, Chiara; Cucurachi, Marco; Cersini, Antonella; Granato, Anna; Cardeti, Giusy; Formato, Giovanni; Mutinelli, Franco; Giuffra, Elisabetta; Williams, John L; Botti, Sara

    2017-01-01

    Honeybees (Apis mellifera) are constantly subjected to many biotic stressors including parasites. This study examined honeybees infected with Nosema ceranae (N. ceranae). N. ceranae infection increases the bees energy requirements and may contribute to their decreased survival. RNA-seq was used to investigate gene expression at days 5, 10 and 15 Post Infection (P.I) with N. ceranae. The expression levels of genes, isoforms, alternative transcription start sites (TSS) and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation suggesting that bees use a range of tactics to cope with the stress of N. ceranae infection. N. ceranae infection may cause reduced immune function in the bees by: (i)disturbing the host amino acids metabolism (ii) down-regulating expression of antimicrobial peptides (iii) down-regulation of cuticle coatings and (iv) down-regulation of odorant binding proteins.

  13. Distribution of sulfathiazole in honey, beeswax, and honeybees and the persistence of residues in treated hives.

    Science.gov (United States)

    Martinello, Marianna; Baggio, Alessandra; Gallina, Albino; Mutinelli, Franco

    2013-09-25

    This study was performed to evaluate the distribution and depletion of sulfathiazole in different beehive matrices: honey, honeybees, "pre-existing" honeycomb, "new" honeycomb, and capping wax. Sulfathiazole was dissolved in sugar syrup or directly powdered on the combs, the matrices were sampled at different time points, and sulfathiazole residues were quantified by high-performance liquid chromatography with fluorescence detection. In honey, the higher concentration of sulfathiazole (180 mg kg(-1)) occurred 2 weeks after the last treatment in syrup. In beeswax, drug concentration was higher than in honey, particularly with powder administration, with a maximum level (340 mg kg(-1)) 3 days following the last treatment. The strongest contamination in honeybees (28 mg kg(-1)) was achieved with sulfathiazole administered in powder 3 days after the second treatment. The high persistence of sulfathiazole in the different beehive matrices suggests that it could be a reliable marker of previous treatments performed by beekeepers.

  14. Comparative proteomic analysis reveals mite (Varroa destructor) resistance-related proteins in Eastern honeybees (Apis cerana).

    Science.gov (United States)

    Ji, T; Shen, F; Liu, Z; Yin, L; Shen, J; Liang, Q; Luo, Y X

    2015-08-21

    The mite (Varroa destructor) has become the greatest threat to apiculture worldwide. As the original host of the mite, Apis cerana can effectively resist the mite. An increased understanding of the resistance mechanisms of Eastern honeybees against V. destructor may help researchers to protect other species against these parasites. In this study, the proteomes of 4 Apis cerana colonies were analyzed using an isobaric tag for relative and absolute quantitation technology. We determined the differences in gene and protein expression between susceptible and resistant colonies that were either unchallenged or challenged by V. destructor. The results showed that a total of 1532 proteins were identified. Gene Ontology enrichment analysis suggested that the transcription factors and basic metabolic and respiratory processes were efficient and feasible factors controlling this resistance, and 12 differentially expressed proteins were identified in Venn analysis. The results were validated by quantitative polymerase chain reaction. This study may provide insight into the genetic mechanisms underlying the resistance of honeybee to mites.

  15. RNA-sequence analysis of gene expression from honeybees (Apis mellifera) infected with Nosema ceranae

    Science.gov (United States)

    Fougeroux, André; Petit, Fabien; Anselmo, Anna; Gorni, Chiara; Cucurachi, Marco; Cersini, Antonella; Granato, Anna; Cardeti, Giusy; Formato, Giovanni; Mutinelli, Franco; Giuffra, Elisabetta; Williams, John L.; Botti, Sara

    2017-01-01

    Honeybees (Apis mellifera) are constantly subjected to many biotic stressors including parasites. This study examined honeybees infected with Nosema ceranae (N. ceranae). N. ceranae infection increases the bees energy requirements and may contribute to their decreased survival. RNA-seq was used to investigate gene expression at days 5, 10 and 15 Post Infection (P.I) with N. ceranae. The expression levels of genes, isoforms, alternative transcription start sites (TSS) and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation suggesting that bees use a range of tactics to cope with the stress of N. ceranae infection. N. ceranae infection may cause reduced immune function in the bees by: (i)disturbing the host amino acids metabolism (ii) down-regulating expression of antimicrobial peptides (iii) down-regulation of cuticle coatings and (iv) down-regulation of odorant binding proteins. PMID:28350872

  16. 蜜蜂蛋白质组研究进展%Advanced Research on Honeybee Proteome

    Institute of Scientific and Technical Information of China (English)

    李建科; 冯毛; 郑爱娟

    2011-01-01

    蜜蜂在自然界和人类社会中具有举足轻重的作用.蜜蜂授粉不但能够提高农作物的产量和质量,而且对维持自然界生物多样性具有重要贡献,同时蜜蜂提供给人类的蜂产品也具有较高的营养和保健功能.随着基因组测序工作的完成,作为模式生物,蜜蜂蛋白质组学研究进入了一个新的阶段.目前对蜜蜂蛋白质组的研究比较常用的是双向电泳结合质谱的研究方法,包括不同品系蜜蜂卵、幼虫、蛹、级型分化、咽下腺等发育相关蛋白质组及差异蛋白质组研究,蜜蜂毒腺、头部、胸部、血淋巴、精液、受精囊、附腺等器官和组织的蛋白质组分析,以及蜂王浆、蜂花粉、蜂毒等部分蜂产品的蛋白质组等.本文综述了近年来蜜蜂相关蛋白质组研究进展,对其今后在蜂业科学的研究应用进行了展望,以期对蜜蜂研究有所借鉴.%Honeybee plays an important role for the nature and the human. It is crucial for agriculture as a facilitator of pollination and indispensable to maintain the biological diversity of the ecological system. Also, bee products are widely used for their nutrition and health care functions to the mankind. The proteomic researches on honeybee have been ushered into a new stage since the completion of the honeybee genome sequencing project. And the combination of two-dimensional electrophoresis and mass spectrometry is the most popular method in honeybee proteome investigations. This paper reviewed the advances in honeybee proteomics concerning the development of honeybee egg, larva, pupa, hypopharyngeal gland and caste differentiation, the comparison between nurses and foragers, the analysis of some tissues and organs such as honeybee head, thorax, hemolymph, venom gland, queen spermathecal gland, male accessory gland and sperm, the studies on royal jelly, pollen, honeybee venom and so on, hoping to provide some clues for future studies.

  17. FLIGHT RANGE OF AFRICANIZED HONEYBEES, Apis mellifera L. 1758 (Hymenoptera: Apidae IN AN APPLE GROVE

    Directory of Open Access Journals (Sweden)

    PARANHOS B.A.J

    1997-01-01

    Full Text Available Africanized honeybees from five colonies were marked with P-32 and taken to an apple grove for a flight behavior study. The method used to determine the flight range was to put out an array of tagged trees in a cross pattern with the colonies arranged in the center point of a 0.8 ha test area. The tagged trees were located 10 meters apart in the 4 rows of 50 meters each, arranged according to the North, South, East, and West directions. Bees were collected while visiting the tagged tree flowers twice a day, during a ten-day period. The number of honeybees marked decreased in relation to the distance from the hives. Analysis of variance showed that a linear regression was highly significant to describe the process. Geographic directions did not affect the activity of the bees.

  18. Lower disease infections in honeybee (Apis mellifera) colonies headed by polyandrous vs monandrous queens

    Science.gov (United States)

    Tarpy, David R.; Seeley, Thomas D.

    2006-04-01

    We studied the relationship between genetic diversity and disease susceptibility in honeybee colonies living under natural conditions. To do so, we created colonies in which each queen was artificially inseminated with sperm from either one or ten drones. Of the 20 colonies studied, 80% showed at least one brood disease. We found strong differences between the two types of colonies in the infection intensity of chalkbrood and in the total intensity of all brood diseases (chalkbrood, sacbrood, American foulbrood, and European foulbrood) with both variables lower for the colonies with higher genetic diversity. Our findings demonstrate that disease can be an important factor in the ecology of honeybee colonies and they provide strong support for the disease hypothesis for the evolution of polyandry by social insect queens.

  19. Exposure to acetylcholinesterase inhibitors alters the physiology and motor function of honeybees

    Directory of Open Access Journals (Sweden)

    Sally M Williamson

    2013-02-01

    Full Text Available Cholinergic signalling is fundamental to neuro-muscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signalling can alter the behaviour of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioural sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony health. Here, we investigate the behavioural effects on honeybees of exposure to a selection of pesticides that target cholinergic signalling by inhibiting acetylcholinesterase (AChE. To examine how continued exposure to AChE inhibitors affected motor function, we fed adult foraging worker honeybees sub-lethal concentrations of these compounds in sucrose solution for 24 h. Using an assay for locomotion in bees, we scored walking, stopped, grooming, and upside down behaviour continuously for 15 min. At a 10nM concentration, all the AChE inhibitors caused similar effects on behaviour, notably increased grooming activity and changes in the frequency of bouts of behaviour such as head grooming. Coumaphos caused dose-dependent effects on locomotion as well as grooming behaviour, and a 1µM concentration of coumaphos induced symptoms of malaise such as abdomen grooming and defecation. Biochemical assays confirmed that the 4 compounds we assayed (coumaphos, aldicarb, chlorpyrifos, and donepezil or their metabolites acted as AChE inhibitors in bees. Furthermore, we show that transcript expression levels of two honeybee acetylcholinesterase inhibitors were selectively upregulated in the brain and in gut tissues in response to AChE inhibitor exposure. The results of our study imply that the effects of pesticides that rely on this mode of action have subtle yet profound effects on physiological effects on behaviour that could lead to reduced survival.

  20. Extreme recombination frequencies shape genome variation and evolution in the honeybee, Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Andreas Wallberg

    2015-04-01

    Full Text Available Meiotic recombination is a fundamental cellular process, with important consequences for evolution and genome integrity. However, we know little about how recombination rates vary across the genomes of most species and the molecular and evolutionary determinants of this variation. The honeybee, Apis mellifera, has extremely high rates of meiotic recombination, although the evolutionary causes and consequences of this are unclear. Here we use patterns of linkage disequilibrium in whole genome resequencing data from 30 diploid honeybees to construct a fine-scale map of rates of crossing over in the genome. We find that, in contrast to vertebrate genomes, the recombination landscape is not strongly punctate. Crossover rates strongly correlate with levels of genetic variation, but not divergence, which indicates a pervasive impact of selection on the genome. Germ-line methylated genes have reduced crossover rate, which could indicate a role of methylation in suppressing recombination. Controlling for the effects of methylation, we do not infer a strong association between gene expression patterns and recombination. The site frequency spectrum is strongly skewed from neutral expectations in honeybees: rare variants are dominated by AT-biased mutations, whereas GC-biased mutations are found at higher frequencies, indicative of a major influence of GC-biased gene conversion (gBGC, which we infer to generate an allele fixation bias 5 - 50 times the genomic average estimated in humans. We uncover further evidence that this repair bias specifically affects transitions and favours fixation of CpG sites. Recombination, via gBGC, therefore appears to have profound consequences on genome evolution in honeybees and interferes with the process of natural selection. These findings have important implications for our understanding of the forces driving molecular evolution.

  1. Physiological state influences the social interactions of two honeybee nest mates.

    Directory of Open Access Journals (Sweden)

    Geraldine A Wright

    Full Text Available Physiological state profoundly influences the expression of the behaviour of individuals and can affect social interactions between animals. How physiological state influences food sharing and social behaviour in social insects is poorly understood. Here, we examined the social interactions and food sharing behaviour of honeybees with the aim of developing the honeybee as a model for understanding how an individual's state influences its social interactions. The state of individual honeybees was manipulated by either starving donor bees or feeding them sucrose or low doses of ethanol to examine how a change in hunger or inebriation state affected the social behaviours exhibited by two closely-related nestmates. Using a lab-based assay for measuring individual motor behaviour and social behaviour, we found that behaviours such as antennation, willingness to engage in trophallaxis, and mandible opening were affected by both hunger and ethanol intoxication. Inebriated bees were more likely to exhibit mandible opening, which may represent a form of aggression, than bees fed sucrose alone. However, intoxicated bees were as willing to engage in trophallaxis as the sucrose-fed bees. The effects of ethanol on social behaviors were dose-dependent, with higher doses of ethanol producing larger effects on behaviour. Hungry donor bees, on the other hand, were more likely to engage in begging for food and less likely to antennate and to display mandible opening. We also found that when nestmates received food from donors previously fed ethanol, they began to display evidence of inebriation, indicating that ethanol can be retained in the crop for several hours and that it can be transferred between honeybee nestmates during trophallaxis.

  2. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach.

    Science.gov (United States)

    Danneels, Ellen L; Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C

    2015-10-30

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings.

  3. Fighting Off Wound Pathogens in Horses with Honeybee Lactic Acid Bacteria

    OpenAIRE

    Olofsson, Tobias C.; Butler, Éile; Lindholm, Christina; Nilson, Bo; Michanek, Per; Vásquez, Alejandra

    2016-01-01

    In the global perspective of antibiotic resistance, it is urgent to find potent topical antibiotics for the use in human and animal infection. Healing of equine wounds, particularly in the limbs, is difficult due to hydrostatic factors and exposure to environmental contaminants, which can lead to heavy bio-burden/biofilm formation and sometimes to infection. Therefore, antibiotics are often prescribed. Recent studies have shown that honeybee-specific lactic acid bacteria (LAB), involved in ho...

  4. Wing morphometry of Slovak lines of Apis mellifera carnica honeybee population

    OpenAIRE

    Robert Chlebo; Jozef Čápek

    2016-01-01

    Samples of honeybee workers and drones forewings from 16 hives belonging to various lines of Slovak Carniolan bee kept by queen breeders in Slovakia were taken in year 2013 to perform wing morphometry measurements. The Dawino, complex wing morphometry method, has been applied for workers samples and measurements of Cubital index for drones samples. Worker bees samples showed similarity to Carniolan bee standard from 50 to 84 % in 15 cases, on sample was out of standard. Cubital index of dron...

  5. The Changes of Gene Expression in Honeybee (Apis mellifera) Brains Associated with Ages(Behavior Biology)

    OpenAIRE

    Mayumi, Tsuchimoto; Makoto, AOKI; Mamoru, Takada; Yoshinori, Kanou; Hiromi, Sasagawa; Yasuo, Kitagawa; Tatsuhiko, Kadowaki; Department of Applied Biological Sciences School of Agricultural Sciences, Nagoya University Chikusa; Tokyo Metropolitan Institute for Neuroscience; Graduate Program for Regulation of Biological Signals Graduate School of Bioagricultural Sciences, Nagoya University Chikusa

    2004-01-01

    Honeybee (Apis mellifera) worker bees (workers) are known to perform wide variety of tasks depending on their ages. The worker's brains also show the activity and behavior-dependent chemical and structural plasticity. To test if there are any changes of gene expression associated with different ages in the worker brains, we compared the gene expression patterns between the brains of newly emerged bees and old foraging workers (foragers) by macroarray analysis. The expression of genes encoding...

  6. Spider Movement, UV Reflectance and Size, but Not Spider Crypsis, Affect the Response of Honeybees to Australian Crab Spiders

    Science.gov (United States)

    Llandres, Ana L.; Rodríguez-Gironés, Miguel A.

    2011-01-01

    According to the crypsis hypothesis, the ability of female crab spiders to change body colour and match the colour of flowers has been selected because flower visitors are less likely to detect spiders that match the colour of the flowers used as hunting platform. However, recent findings suggest that spider crypsis plays a minor role in predator detection and some studies even showed that pollinators can become attracted to flowers harbouring Australian crab spider when the UV contrast between spider and flower increases. Here we studied the response of Apis mellifera honeybees to the presence of white or yellow Thomisus spectabilis Australian crab spiders sitting on Bidens alba inflorescences and also the response of honeybees to crab spiders that we made easily detectable painting blue their forelimbs or abdomen. To account for the visual systems of crab spider's prey, we measured the reflectance properties of the spiders and inflorescences used for the experiments. We found that honeybees did not respond to the degree of matching between spiders and inflorescences (either chromatic or achromatic contrast): they responded similarly to white and yellow spiders, to control and painted spiders. However spider UV reflection, spider size and spider movement determined honeybee behaviour: the probability that honeybees landed on spider-harbouring inflorescences was greatest when the spiders were large and had high UV reflectance or when spiders were small and reflected little UV, and honeybees were more likely to reject inflorescences if spiders moved as the bee approached the inflorescence. Our study suggests that only the large, but not the small Australian crab spiders deceive their preys by reflecting UV light, and highlights the importance of other cues that elicited an anti-predator response in honeybees. PMID:21359183

  7. Heat and carbon dioxide generated by honeybees jointly act to kill hornets

    Science.gov (United States)

    Sugahara, Michio; Sakamoto, Fumio

    2009-09-01

    We have found that giant hornets ( Vespa mandarinia japonica) are killed in less than 10 min when they are trapped in a bee ball created by the Japanese honeybees Apis cerana japonica, but their death cannot be solely accounted for by the elevated temperature in the bee ball. In controlled experiments, hornets can survive for 10 min at the temperature up to 47°C, whereas the temperature inside the bee balls does not rise higher than 45.9°C. We have found here that the CO2 concentration inside the bee ball also reaches a maximum (3.6 ± 0.2%) in the initial 0-5 min phase after bee ball formation. The lethal temperature of the hornet (45-46°C) under conditions of CO2 concentration (3.7 ± 0.44%) produced using human expiratory air is almost the same as that in the bee ball. The lethal temperature of the honeybee is 50-51°C under the same air conditions. We concluded that CO2 produced inside the bee ball by honeybees is a major factor together with the temperature involved in defense against giant hornets.

  8. Laurel leaf extracts for honeybee pest and disease management: antimicrobial, microsporicidal, and acaricidal activity.

    Science.gov (United States)

    Damiani, Natalia; Fernández, Natalia J; Porrini, Martín P; Gende, Liesel B; Álvarez, Estefanía; Buffa, Franco; Brasesco, Constanza; Maggi, Matías D; Marcangeli, Jorge A; Eguaras, Martín J

    2014-02-01

    A diverse set of parasites and pathogens affects productivity and survival of Apis mellifera honeybees. In beekeeping, traditional control by antibiotics and molecules of synthesis has caused problems with contamination and resistant pathogens. In this research, different Laurus nobilis extracts are tested against the main honeybee pests through an integrated point of view. In vivo effects on bee survival are also evaluated. The ethanol extract showed minimal inhibitory concentration (MIC) values of 208 to 416 μg/mL, having the best antimicrobial effect on Paenibacillus larvae among all substances tested. Similarly, this leaf extract showed a significant antiparasitic activity on Varroa destructor, killing 50 % of mites 24 h after a 30-s exposure, and on Nosema ceranae, inhibiting the spore development in the midgut of adult bees ingesting 1 × 10(4) μg/mL of extract solution. Both ethanol extract and volatile extracts (essential oil, hydrolate, and its main component) did not cause lethal effects on adult honeybees. Thus, the absence of topical and oral toxicity of the ethanol extract on bees and the strong antimicrobial, microsporicidal, and miticidal effects registered in this study place this laurel extract as a promising integrated treatment of bee diseases and stimulates the search for other bioactive phytochemicals from plants.

  9. Diversity of honey stores and their impact on pathogenic bacteria of the honeybee, Apis mellifera.

    Science.gov (United States)

    Erler, Silvio; Denner, Andreas; Bobiş, Otilia; Forsgren, Eva; Moritz, Robin F A

    2014-10-01

    Honeybee colonies offer an excellent environment for microbial pathogen development. The highest virulent, colony killing, bacterial agents are Paenibacillus larvae causing American foulbrood (AFB), and European foulbrood (EFB) associated bacteria. Besides the innate immune defense, honeybees evolved behavioral defenses to combat infections. Foraging of antimicrobial plant compounds plays a key role for this "social immunity" behavior. Secondary plant metabolites in floral nectar are known for their antimicrobial effects. Yet, these compounds are highly plant specific, and the effects on bee health will depend on the floral origin of the honey produced. As worker bees not only feed themselves, but also the larvae and other colony members, honey is a prime candidate acting as self-medication agent in honeybee colonies to prevent or decrease infections. Here, we test eight AFB and EFB bacterial strains and the growth inhibitory activity of three honey types. Using a high-throughput cell growth assay, we show that all honeys have high growth inhibitory activity and the two monofloral honeys appeared to be strain specific. The specificity of the monofloral honeys and the strong antimicrobial potential of the polyfloral honey suggest that the diversity of honeys in the honey stores of a colony may be highly adaptive for its "social immunity" against the highly diverse suite of pathogens encountered in nature. This ecological diversity may therefore operate similar to the well-known effects of host genetic variance in the arms race between host and parasite.

  10. MALDI imaging analysis of neuropeptides in the Africanized honeybee (Apis mellifera) brain: effect of ontogeny.

    Science.gov (United States)

    Pratavieira, Marcel; da Silva Menegasso, Anally Ribeiro; Garcia, Ana Maria Caviquioli; Dos Santos, Diego Simões; Gomes, Paulo Cesar; Malaspina, Osmar; Palma, Mario Sergio

    2014-06-01

    The occurrence and spatial distribution of the neuropeptides AmTRP-5 and AST-1 in the honeybee brain were monitored via MALDI spectral imaging according to the ontogeny of Africanized Apis mellifera. The levels of these peptides increased in the brains of 0-15 day old honeybees, and this increase was accompanied by an increase in the number of in-hive activities performed by the nurse bees, followed by a decrease in the period from 15 to 25 days of age, in which the workers began to perform activities outside the nest (guarding and foraging). The results obtained in the present investigation suggest that AmTRP-5 acts in the upper region of both pedunculi of young workers, possibly regulating the cell cleaning and brood capping activities. Meanwhile, the localized occurrence of AmTRP-5 and AST-1 in the antennal lobes, subesophageal ganglion, upper region of the medulla, both lobula, and α- and β-lobes of both brain hemispheres in 20 to 25 day old workers suggest that the action of both neuropeptides in these regions may be related to their localized actions in these regions, regulating foraging and guarding activities. Thus, these neuropeptides appear to have some functions in the honeybee brain that are specifically related to the age-related division of labor.

  11. Increased neural activity of a mushroom body neuron subtype in the brains of forager honeybees.

    Directory of Open Access Journals (Sweden)

    Taketoshi Kiya

    Full Text Available Honeybees organize a sophisticated society, and the workers transmit information about the location of food sources using a symbolic dance, known as 'dance communication'. Recent studies indicate that workers integrate sensory information during foraging flight for dance communication. The neural mechanisms that account for this remarkable ability are, however, unknown. In the present study, we established a novel method to visualize neural activity in the honeybee brain using a novel immediate early gene, kakusei, as a marker of neural activity. The kakusei transcript was localized in the nuclei of brain neurons and did not encode an open reading frame, suggesting that it functions as a non-coding nuclear RNA. Using this method, we show that neural activity of a mushroom body neuron subtype, the small-type Kenyon cells, is prominently increased in the brains of dancer and forager honeybees. In contrast, the neural activity of the two mushroom body neuron subtypes, the small-and large-type Kenyon cells, is increased in the brains of re-orienting workers, which memorize their hive location during re-orienting flights. These findings demonstrate that the small-type Kenyon cell-preferential activity is associated with foraging behavior, suggesting its involvement in information integration during foraging flight, which is an essential basis for dance communication.

  12. Effects of a honeybee sting on the serum free amino acid profile in humans.

    Directory of Open Access Journals (Sweden)

    Jan Matysiak

    Full Text Available The aim of this study was to assess the response to a honeybee venom by analyzing serum levels of 34 free amino acids. Another goal of this study was to apply complex analytic-bioinformatic-clinical strategy based on up-to-date achievements of mass spectrometry in metabolomic profiling. The amino acid profiles were determined using hybrid triple quadrupole/linear ion trap mass spectrometer coupled with a liquid chromatography instrument. Serum samples were collected from 27 beekeepers within 3 hours after they were stung and after a minimum of 6 weeks following the last sting. The differences in amino acid profiles were evaluated using MetaboAnalyst and ROCCET web portals. Chemometric tests showed statistically significant differences in the levels of L-glutamine (Gln, L-glutamic acid (Glu, L-methionine (Met and 3-methyl-L-histidine (3MHis between the two analyzed groups of serum samples. Gln and Glu appeared to be the most important metabolites for distinguishing the beekeepers tested shortly after a bee sting from those tested at least 6 weeks later. The role of some amino acids in the response of an organism to the honeybee sting was also discussed. This study indicated that proposed methodology may allow to identify the individuals just after the sting and those who were stung at least 6 weeks earlier. The results we obtained will contribute to better understanding of the human body response to the honeybee sting.

  13. Plant origin of Okinawan propolis: honeybee behavior observation and phytochemical analysis

    Science.gov (United States)

    Kumazawa, Shigenori; Nakamura, Jun; Murase, Masayo; Miyagawa, Mariko; Ahn, Mok-Ryeon; Fukumoto, Shuichi

    2008-08-01

    Propolis is a natural resinous product collected by honeybees from certain plants. It has gained popularity as a food and alternative medicine. Poplar and Baccharis are well known as the source plants of European and Brazilian propolis, respectively. However, the propolis from Okinawa, Japan, contains some prenylflavonoids not seen in other regions such as Europe and Brazil, suggesting that the plant origin of Okinawan propolis is a particular plant that grows in Okinawa. To identify the plant origin of Okinawan propolis, we observed the behavior of honeybees as they collected material from plants and caulked it inside the hive. Honeybees scraped resinous material from the surface of plant fruits of Macaranga tanarius and brought it back to their hive to use it as propolis. We collected samples of the plant and propolis, and compared their constituents by high-performance liquid chromatography with a photo-diode array detector. We also compared their 1,1-diphenyl-2-picryl-hydrazyl radical scavenging activity. The chemical constituents and biological activity of the ethanol extracts of the plant did not differ from those of propolis. This indicates directly that the plant origin of Okinawan propolis is M. tanarius.

  14. The worker honeybee fat body proteome is extensively remodeled preceding a major life-history transition.

    Directory of Open Access Journals (Sweden)

    Queenie W T Chan

    Full Text Available Honeybee workers are essentially sterile female helpers that make up the majority of individuals in a colony. Workers display a marked change in physiology when they transition from in-nest tasks to foraging. Recent technological advances have made it possible to unravel the metabolic modifications associated with this transition. Previous studies have revealed extensive remodeling of brain, thorax, and hypopharyngeal gland biochemistry. However, data on changes in the abdomen is scarce. To narrow this gap we investigated the proteomic composition of abdominal tissue in the days typically preceding the onset of foraging in honeybee workers. In order to get a broader representation of possible protein dynamics, we used workers of two genotypes with differences in the age at which they initiate foraging. This approach was combined with RNA interference-mediated downregulation of an insulin/insulin-like signaling component that is central to foraging behavior, the insulin receptor substrate (irs, and with measurements of glucose and lipid levels. Our data provide new insight into the molecular underpinnings of phenotypic plasticity in the honeybee, invoke parallels with vertebrate metabolism, and support an integrated and irs-dependent association of carbohydrate and lipid metabolism with the transition from in-nest tasks to foraging.

  15. Establishment of a bacterial infection model using the European honeybee, Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Kenichi Ishii

    Full Text Available Injection of human pathogenic bacteria (Pseudomonas aeruginosa, Serratia marcescens, Salmonella enterica, Staphylococcus aureus, and Listeria monocytogenes into the hemocoel of honeybee (Apis mellifera L. workers kills the infected bees. The bee-killing effects of the pathogens were affected by temperature, and the LD₅₀ values at 37°C were more than 100-fold lower than those at 15°C. Gene-disrupted S. aureus mutants of virulence genes such as agrA, saeS, arlR, srtA, hla, and hlb had attenuated bee-killing ability. Nurse bees were less susceptible than foragers and drones to S. aureus infection. Injection of antibiotics clinically used for humans had therapeutic effects against S. aureus infections of bees, and the ED₅₀ values of these antibiotics were comparable with those determined in mammalian models. Moreover, the effectiveness of orally administered antibiotics was consistent between honeybees and mammals. These findings suggest that the honeybee could be a useful model for assessing the pathogenesis of human-infecting bacteria and the effectiveness of antibiotics.

  16. Symbionts as major modulators of insect health: lactic acid bacteria and honeybees.

    Directory of Open Access Journals (Sweden)

    Alejandra Vásquez

    Full Text Available Lactic acid bacteria (LAB are well recognized beneficial host-associated members of the microbiota of humans and animals. Yet LAB-associations of invertebrates have been poorly characterized and their functions remain obscure. Here we show that honeybees possess an abundant, diverse and ancient LAB microbiota in their honey crop with beneficial effects for bee health, defending them against microbial threats. Our studies of LAB in all extant honeybee species plus related apid bees reveal one of the largest collections of novel species from the genera Lactobacillus and Bifidobacterium ever discovered within a single insect and suggest a long (>80 mya history of association. Bee associated microbiotas highlight Lactobacillus kunkeei as the dominant LAB member. Those showing potent antimicrobial properties are acquired by callow honey bee workers from nestmates and maintained within the crop in biofilms, though beekeeping management practices can negatively impact this microbiota. Prophylactic practices that enhance LAB, or supplementary feeding of LAB, may serve in integrated approaches to sustainable pollinator service provision. We anticipate this microbiota will become central to studies on honeybee health, including colony collapse disorder, and act as an exemplar case of insect-microbe symbiosis.

  17. Impact of honeybee (Apis mellifera L. density on wild bee foraging behaviour

    Directory of Open Access Journals (Sweden)

    Goras Georgios

    2016-06-01

    Full Text Available Honey bees are globally regarded as important crop pollinators and are also valued for their honey production. They have been introduced on an almost worldwide scale. During recent years, however, several studies argue their possible competition with unmanaged pollinators. Here we examine the possible effects of honey bees on the foraging behaviour of wild bees on Cistus creticus flowers in Northern Greece. We gradually introduced one, five, and eight honey-bee hives per site, each containing ca. 20,000 workers. The visitation frequency and visit duration of wild bees before and after the beehive introductions were measured by flower observation. While the visitation frequencies of wild bees were unaffected, the average time wild bees spent on C. creticus increased with the introduction of the honey-bee hives. Although competition between honey bees and wild bees is often expected, we did not find any clear evidence for significant effects even in honey-bee densities much higher than the European-wide average of 3.1 colonies/km2.

  18. Efficacy of two fungus-based biopesticide against the honeybee ectoparasitic mite, Varroa destructor.

    Science.gov (United States)

    Ahmed, Abdelaal A; Abd-Elhady, Hany K

    2013-08-15

    The varroa mite, Varroa destructor (Anderson and Trueman) (Acari: Varroidae), is known as the most serious ectoparasitic mite on honeybee, Apis mellifera (Hymenoptera: Apidae) in the world. Based on the spores of entomopathogenic fungi, two commercial preparations; Bioranza (Metarhizium anisopliae) and Biovar (Beauveria bassiana) were evaluated through application into the hives against varroa mite. Data showed significant differences between treatments with Bioranza and Biovar, the results were significant after 7 and 14 days post-treatment. Mean a daily fallen mite individual was significantly different between the hives before and after the applications of the two biopesticides and wheat flour. Also, mites' mortality was, significantly, different between the hives before and after treatments. There were significant differences between treatments with the two biopesticides in worker's body weight. Bioranza and Biovar did not infect the honeybee in larval, prepupal, pupal and adult stages. Scanning and transmission electron microscopy images showed spores and hyphae penetration through stigma and wounds on varroa. The results suggest that Bioranza and Biovar are potentially are effective biopesticides against V. destructor in honeybee colonies.

  19. Honeybees and beehives are rich sources for fructophilic lactic acid bacteria.

    Science.gov (United States)

    Endo, Akihito; Salminen, Seppo

    2013-09-01

    Fructophilic lactic acid bacteria (FLAB) are a specific group of lactic acid bacteria (LAB) characterized and described only recently. They prefer fructose as growth substrate and inhabit only fructose-rich niches. Honeybees are high-fructose-consuming insects and important pollinators in nature, but reported to be decreasing in the wild. In the present study, we analyzed FLAB microbiota in honeybees, larvae, fresh honey and bee pollen. A total of 66 strains of LAB were isolated from samples using a selective isolation technique for FLAB. Surprisingly, all strains showed fructophilic characteristics. The 66 strains and ten FLAB strains isolated from flowers in a separate study were genotypically separated into six groups, four of which being identified as Lactobacillus kunkeei and two as Fructobacillus fructosus. One of the L. kunkeei isolates showed antibacterial activity against Melissococcus plutonius, a causative pathogen of European foulbrood, this protection being attributable to production of an antibacterial peptide or protein. Culture-independent analysis suggested that bee products and larvae contained simple Lactobacillus-group microbiota, dominated by L. kunkeei, although adult bees carried a more complex microbiota. The findings clearly demonstrate that honeybees and their products are rich sources of FLAB, and FLAB are potential candidates for future bee probiotics.

  20. Genetic parameters for five traits in Africanized honeybees using Bayesian inference

    Science.gov (United States)

    Padilha, Alessandro Haiduck; Sattler, Aroni; Cobuci, Jaime Araújo; McManus, Concepta Margaret

    2013-01-01

    Heritability and genetic correlations for honey (HP) and propolis production (PP), hygienic behavior (HB), syrup-collection rate (SCR) and percentage of mites on adult bees (PMAB) of a population of Africanized honeybees were estimated. Data from 110 queen bees over three generations were evaluated. Single and multi-trait models were analyzed by Bayesian Inference using MTGSAM. The localization of the hive was significant for SCR and HB and highly significant for PP. Season-year was highly significant only for SCR. The number of frames with bees was significant for HP and PP, including SCR. The heritability estimates were 0.16 for HP, 0.23 for SCR, 0.52 for HB, 0.66 for PP, and 0.13 for PMAB. The genetic correlations were positive among productive traits (PP, HP and SCR) and negative between productive traits and HB, except between PP and HB. Genetic correlations between PMAB and other traits, in general, were negative, except with PP. The study permitted to identify honeybees for improved propolis and honey production. Hygienic behavior may be improved as a consequence of selecting for improved propolis production. The rate of syrup consumption and propolis production may be included in a selection index to enhance honeybee traits. PMID:23885203

  1. Giant honeybees ( Apis dorsata) mob wasps away from the nest by directed visual patterns

    Science.gov (United States)

    Kastberger, Gerald; Weihmann, Frank; Zierler, Martina; Hötzl, Thomas

    2014-11-01

    The open nesting behaviour of giant honeybees ( Apis dorsata) accounts for the evolution of a series of defence strategies to protect the colonies from predation. In particular, the concerted action of shimmering behaviour is known to effectively confuse and repel predators. In shimmering, bees on the nest surface flip their abdomens in a highly coordinated manner to generate Mexican wave-like patterns. The paper documents a further-going capacity of this kind of collective defence: the visual patterns of shimmering waves align regarding their directional characteristics with the projected flight manoeuvres of the wasps when preying in front of the bees' nest. The honeybees take here advantage of a threefold asymmetry intrinsic to the prey-predator interaction: (a) the visual patterns of shimmering turn faster than the wasps on their flight path, (b) they "follow" the wasps more persistently (up to 100 ms) than the wasps "follow" the shimmering patterns (up to 40 ms) and (c) the shimmering patterns align with the wasps' flight in all directions at the same strength, whereas the wasps have some preference for horizontal correspondence. The findings give evidence that shimmering honeybees utilize directional alignment to enforce their repelling power against preying wasps. This phenomenon can be identified as predator driving which is generally associated with mobbing behaviour (particularly known in selfish herds of vertebrate species), which is, until now, not reported in insects.

  2. Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age.

    Science.gov (United States)

    Paoli, Pier P; Donley, Dion; Stabler, Daniel; Saseendranath, Anumodh; Nicolson, Susan W; Simpson, Stephen J; Wright, Geraldine A

    2014-06-01

    Dietary sources of essential amino acids (EAAs) are used for growth, somatic maintenance and reproduction. Eusocial insect workers such as honeybees are sterile, and unlike other animals, their nutritional needs should be largely dictated by somatic demands that arise from their role within the colony. Here, we investigated the extent to which the dietary requirements of adult worker honeybees for EAAs and carbohydrates are affected by behavioural caste using the Geometric Framework for nutrition. The nutritional optimum, or intake target (IT), was determined by confining cohorts of 20 young bees or foragers to liquid diets composed of specific proportions of EAAs and sucrose. The IT of young, queenless bees shifted from a proportion of EAAs-to-carbohydrates (EAA:C) of 1:50 towards 1:75 over a 2-week period, accompanied by a reduced lifespan on diets high in EAAs. Foragers required a diet high in carbohydrates (1:250) and also had low survival on diets high in EAA. Workers exposed to queen mandibular pheromone lived longer on diets high in EAA, even when those diets contained 5× their dietary requirements. Our data show that worker honeybees prioritize their intake of carbohydrates over dietary EAAs, even when overeating EAAs to obtain sufficient carbohydrates results in a shorter lifespan. Thus, our data demonstrate that even when young bees are not nursing brood and foragers are not flying, their nutritional needs shift towards a diet largely composed of carbohydrates when they make the transition from within-hive duties to foraging.

  3. Detection of Methyl Salicylate Transforted by Honeybees (Apis mellifera) Using Solid Phase Microextration (SPME) Fibers

    Energy Technology Data Exchange (ETDEWEB)

    BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; BARNETT, JAMES L.; BENDER, GARY L.

    2001-12-01

    The ultimate goal of many environmental measurements is to determine the risk posed to humans or ecosystems by various contaminants. Conventional environmental monitoring typically requires extensive sampling grids covering several media including air, water, soil and vegetation. A far more efficient, innovative and inexpensive tactic has been found using honeybees as sampling mechanisms. Members from a single bee colony forage over large areas ({approx}2 x 10{sup 6} m{sup 2}), making tens of thousands of trips per day, and return to a fixed location where sampling can be conveniently conducted. The bees are in direct contact with the air, water, soil and vegetation where they encounter and collect any contaminants that are present in gaseous, liquid and particulate form. The monitoring of honeybees when they return to the hive provides a rapid method to assess chemical distributions and impacts (1). The primary goal of this technology is to evaluate the efficiency of the transport mechanism (honeybees) to the hive using preconcentrators to collect samples. Once the extent and nature of the contaminant exposure has been characterized, resources can be distributed and environmental monitoring designs efficiently directed to the most appropriate locations. Methyl salicylate, a chemical agent surrogate was used as the target compound in this study.

  4. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee.

    Science.gov (United States)

    Tajabadi, Naser; Mardan, Makhdzir; Saari, Nazamid; Mustafa, Shuhaimi; Bahreini, Rasoul; Manap, Mohd Yazid Abdul

    2013-01-01

    This study aimed to isolate and identify Lactobacillus in the honey stomach of honeybee Apis dorsata. Samples of honeybee were collected from A. dorsata colonies in different bee trees and Lactobacillus bacteria isolated from honey stomachs. Ninety two isolates were Gram-stained and tested for catalase reaction. By using bacterial universal primers, the 16S rDNA gene from DNA of bacterial colonies amplified with polymerase chain reaction (PCR). Forty-nine bacterial 16S rDNA gene were sequenced and entrusted in GenBank. Phylogenetic analysis showed they were different phylotypes of Lactobacillus. Two of them were most closely relevant to the previously described species Lactobacillus plantarum. Other two phylotypes were identified to be closely related to Lactobacillus pentosus. However, only one phylotype was found to be distantly linked to the Lactobacillus fermentum. The outcomes of the present study indicated that L. plantarum, L. pentosus, and L. fermentum were the dominant lactobacilli in the honey stomach of honeybee A. dorsata collected during the dry season from Malaysia forest area - specifically "Melaleuca in Terengganu".

  5. Bacterial community associated with worker honeybees (Apis mellifera affected by European foulbrood

    Directory of Open Access Journals (Sweden)

    Tomas Erban

    2017-09-01

    Full Text Available Background Melissococcus plutonius is an entomopathogenic bacterium that causes European foulbrood (EFB, a honeybee (Apis mellifera L. disease that necessitates quarantine in some countries. In Czechia, positive evidence of EFB was absent for almost 40 years, until an outbreak in the Krkonose Mountains National Park in 2015. This occurrence of EFB gave us the opportunity to study the epizootiology of EFB by focusing on the microbiome of honeybee workers, which act as vectors of honeybee diseases within and between colonies. Methods The study included worker bees collected from brood combs of colonies (i with no signs of EFB (EFB0, (ii without clinical symptoms but located at an apiary showing clinical signs of EFB (EFB1, and (iii with clinical symptoms of EFB (EFB2. In total, 49 samples from 27 honeybee colonies were included in the dataset evaluated in this study. Each biological sample consisted of 10 surface-sterilized worker bees processed for DNA extraction. All subjects were analyzed using conventional PCR and by metabarcoding analysis based on the 16S rRNA gene V1–V3 region, as performed through Illumina MiSeq amplicon sequencing. Results The bees from EFB2 colonies with clinical symptoms exhibited a 75-fold-higher incidence of M. plutonius than those from EFB1 asymptomatic colonies. Melissococcus plutonius was identified in all EFB1 colonies as well as in some of the control colonies. The proportions of Fructobacillus fructosus, Lactobacillus kunkeei, Gilliamella apicola, Frischella perrara, and Bifidobacterium coryneforme were higher in EFB2 than in EFB1, whereas Lactobacillus mellis was significantly higher in EFB2 than in EFB0. Snodgrassella alvi and L. melliventris, L. helsingborgensis and, L. kullabergensis exhibited higher proportion in EFB1 than in EFB2 and EFB0. The occurrence of Bartonella apis and Commensalibacter intestini were higher in EFB0 than in EFB2 and EFB1. Enterococcus faecalis incidence was highest in EFB2

  6. Prevalence of the microsporidian Nosema ceranae in honeybee (Apis mellifera apiaries in Central Italy

    Directory of Open Access Journals (Sweden)

    Roberto Papini

    2017-07-01

    Full Text Available Nosema ceranae and Nosema apis are microsporidia which play an important role in the epidemiology of honeybee microsporidiosis worldwide. Nosemiasis reduces honeybee population size and causes significant losses in honey production. To the best of our knowledge, limited information is available about the prevalence of nosemiasis in Italy. In this research, we determined the occurrence of Nosema infection in Central Italy. Thirty-eight seemingly healthy apiaries (2 to 4 hives each were randomly selected and screened from April to September 2014 (n = 11 or from May to September 2015 (n = 27. The apiaries were located in six areas of Central Italy, including Lucca (n = 11, Massa Carrara (n = 9, Pisa (n = 9, Leghorn (n = 7, Florence (n = 1, and Prato (n = 1 provinces. Light microscopy was carried out according to current OIE recommendations to screen the presence of microsporidiosis in adult worker honeybees. Since the morphological characteristics of N. ceranae and N. apis spores are similar and can hardly be distinguished by optical microscopy, all samples were also screened by multiplex polymerase chain reaction (M-PCR assay based on 16S rRNA-gene-targeted species-specific primers to differentiate N. ceranae from N. apis. Furthermore, PCR-positive samples were also sequenced to confirm the species of amplified Nosema DNA. Notably, Nosema spores were detected in samples from 24 out of 38 (63.2%, 95% CI: 47.8–78.5% apiaries. Positivity rates in single provinces were 10/11, 8/9, 3/9, 1/7, or 1/1 (n = 2. A full agreement (Cohen's Kappa = 1 was assessed between microscopy and M-PCR. Based on M-PCR and DNA sequencing results, only N. ceranae was found. Overall, our results highlighted that N. ceranae infection occurs frequently in the cohort of honeybee populations that was examined despite the lack of clinical signs. These findings suggest that colony disease outbreaks might result from environmental factors that lead to higher

  7. Characterization of the honeybee AmNaV1 channel and tools to assess the toxicity of insecticides.

    Science.gov (United States)

    Gosselin-Badaroudine, Pascal; Moreau, Adrien; Delemotte, Lucie; Cens, Thierry; Collet, Claude; Rousset, Matthieu; Charnet, Pierre; Klein, Michael L; Chahine, Mohamed

    2015-07-23

    Pollination is important for both agriculture and biodiversity. For a significant number of plants, this process is highly, and sometimes exclusively, dependent on the pollination activity of honeybees. The large numbers of honeybee colony losses reported in recent years have been attributed to colony collapse disorder. Various hypotheses, including pesticide overuse, have been suggested to explain the disorder. Using the Xenopus oocytes expression system and two microelectrode voltage-clamp, we report the functional expression and the molecular, biophysical, and pharmacological characterization of the western honeybee's sodium channel (Apis Mellifera NaV1). The NaV1 channel is the primary target for pyrethroid insecticides in insect pests. We further report that the honeybee's channel is also sensitive to permethrin and fenvalerate, respectively type I and type II pyrethroid insecticides. Molecular docking of these insecticides revealed a binding site that is similar to sites previously identified in other insects. We describe in vitro and in silico tools that can be used to test chemical compounds. Our findings could be used to assess the risks that current and next generation pesticides pose to honeybee populations.

  8. Insights into the molecular basis of long-term storage and survival of sperm in the honeybee (Apis mellifera)

    Science.gov (United States)

    Paynter, Ellen; Millar, A. Harvey; Welch, Mat; Baer-Imhoof, Barbara; Cao, Danyang; Baer, Boris

    2017-01-01

    Honeybee males produce ejaculates consisting of large numbers of high quality sperm. Because queens never re-mate after a single mating episode early in life, sperm are stored in a specialised organ for years but the proximate mechanisms underlying this key physiological adaptation are unknown. We quantified energy metabolism in honeybee sperm and show that the glycolytic metabolite glyceraldehyde-3-phosphate (GA3P) is a key substrate for honeybee sperm survival and energy production. This reliance on non-aerobic energy metabolism in stored sperm was further supported by our findings of very low levels of oxygen inside the spermatheca. Expression of GA3P dehydrogenase (GAPDH), the enzyme involved in catabolism of GA3P, was significantly higher in stored compared to ejaculated sperm. Therefore, long-term sperm storage seems facilitated by the maintenance of non-aerobic energy production, the need for only the ATP-producing steps of glycolysis and by avoiding sperm damage resulting from ROS production. We also confirm that honeybee sperm is capable of aerobic metabolism, which predominates in ejaculated sperm while they compete for access to the spermatheca, but is suppressed during storage. Consequently, the remarkable reproductive traits of honeybees are proximately achieved by differential usage of energy production pathways to maximise competitiveness and minimise damage of sperm. PMID:28091518

  9. Evaluating exposure and potential effects on honeybee brood (Apis mellifera) development using glyphosate as an example

    Science.gov (United States)

    Thompson, Helen M; Levine, Steven L; Doering, Janine; Norman, Steve; Manson, Philip; Sutton, Peter; von Mérey, Georg

    2014-01-01

    This study aimed to develop an approach to evaluate potential effects of plant protection products on honeybee brood with colonies at realistic worst-case exposure rates. The approach comprised 2 stages. In the first stage, honeybee colonies were exposed to a commercial formulation of glyphosate applied to flowering Phacelia tanacetifolia with glyphosate residues quantified in relevant matrices (pollen and nectar) collected by foraging bees on days 1, 2, 3, 4, and 7 postapplication and glyphosate levels in larvae were measured on days 4 and 7. Glyphosate levels in pollen were approximately 10 times higher than in nectar and glyphosate demonstrated rapid decline in both matrices. Residue data along with foraging rates and food requirements of the colony were then used to set dose rates in the effects study. In the second stage, the toxicity of technical glyphosate to developing honeybee larvae and pupae, and residues in larvae, were then determined by feeding treated sucrose directly to honeybee colonies at dose rates that reflect worst-case exposure scenarios. There were no significant effects from glyphosate observed in brood survival, development, and mean pupal weight. Additionally, there were no biologically significant levels of adult mortality observed in any glyphosate treatment group. Significant effects were observed only in the fenoxycarb toxic reference group and included increased brood mortality and a decline in the numbers of bees and brood. Mean glyphosate residues in larvae were comparable at 4 days after spray application in the exposure study and also following dosing at a level calculated from the mean measured levels in pollen and nectar, showing the applicability and robustness of the approach for dose setting with honeybee brood studies. This study has developed a versatile and predictive approach for use in higher tier honeybee toxicity studies. It can be used to realistically quantify exposure of colonies to pesticides to allow the

  10. Detection of neural activity in the brains of Japanese honeybee workers during the formation of a "hot defensive bee ball".

    Science.gov (United States)

    Ugajin, Atsushi; Kiya, Taketoshi; Kunieda, Takekazu; Ono, Masato; Yoshida, Tadaharu; Kubo, Takeo

    2012-01-01

    Anti-predator behaviors are essential to survival for most animals. The neural bases of such behaviors, however, remain largely unknown. Although honeybees commonly use their stingers to counterattack predators, the Japanese honeybee (Apis cerana japonica) uses a different strategy to fight against the giant hornet (Vespa mandarinia japonica). Instead of stinging the hornet, Japanese honeybees form a "hot defensive bee ball" by surrounding the hornet en masse, killing it with heat. The European honeybee (A. mellifera ligustica), on the other hand, does not exhibit this behavior, and their colonies are often destroyed by a hornet attack. In the present study, we attempted to analyze the neural basis of this behavior by mapping the active brain regions of Japanese honeybee workers during the formation of a hot defensive bee ball. First, we identified an A. cerana homolog (Acks = Apis cerana kakusei) of kakusei, an immediate early gene that we previously identified from A. mellifera, and showed that Acks has characteristics similar to kakusei and can be used to visualize active brain regions in A. cerana. Using Acks as a neural activity marker, we demonstrated that neural activity in the mushroom bodies, especially in Class II Kenyon cells, one subtype of mushroom body intrinsic neurons, and a restricted area between the dorsal lobes and the optic lobes was increased in the brains of Japanese honeybee workers involved in the formation of a hot defensive bee ball. In addition, workers exposed to 46°C heat also exhibited Acks expression patterns similar to those observed in the brains of workers involved in the formation of a hot defensive bee ball, suggesting that the neural activity observed in the brains of workers involved in the hot defensive bee ball mainly reflects thermal stimuli processing.

  11. The inhibition of kallikrein-bradykinin pathway may be useful in the reduction of allergic reactions during honeybee venom immunotherapy

    Directory of Open Access Journals (Sweden)

    Ervin Ç. Mingomataj

    2009-05-01

    Full Text Available "nVenom immunotherapy (VIT protects patients with hymenoptera venom anaphylaxis from subsequent potentially life-threatening reactions. The most important side effects during VIT are systemic anaphylactic reactions (SAR, which are more prevalent during honeybee VIT. Despite the demonstrated diversity with regard to venom compounds, previous publications did not mention the plausible reason that can justify the difference of SAR frequency between honeybee and wasps. On the other hand, pre-treatment with H1-blocking antihistamines reduces the frequency and intensity of local and mild systemic anaphylactic reactions during VIT, but not appropriately moderate adverse reactions such as abdominal pain or angioedematous reactions, which can occur more prevalently also during honeybee VIT. In contrast to hymenoptera venom (HV anaphylaxis, these symptoms are very common during hereditary angioedema (HAE. In addition, in some patients who repeatedly experienced anaphylactic reactions during hyposensitization with HV are reported significantly lower renin, angiotensinogen I, and angiotensinogen II plasma levels. These facts may indicate that during honeybee VIT could be occurred a defective implication of renin-angiotensin system. This may be possible, because among hymenoptera, only the HV contains the antigen melittin, a potent kallikrein activator. These effects during honeybee VIT are similar to the HAE, because melittin-induced kallikrein activation on the first hand, as well as the implication of complement classical pathway during HAE on the second one, can lead both to increased bradykinin (BK secretion, plasma extravasation, and therefore to the occurrence of angioedema and abdominal symptoms. Consequently, the clinical effectiveness of BK receptor and generator blockers such as icatibant, ecallantide or NPC 18884, shown recently during the treatment of HAE attacks and acetic acid-induced abdominal constrictions in mice, may lead to the hypothesis

  12. Detection of neural activity in the brains of Japanese honeybee workers during the formation of a "hot defensive bee ball".

    Directory of Open Access Journals (Sweden)

    Atsushi Ugajin

    Full Text Available Anti-predator behaviors are essential to survival for most animals. The neural bases of such behaviors, however, remain largely unknown. Although honeybees commonly use their stingers to counterattack predators, the Japanese honeybee (Apis cerana japonica uses a different strategy to fight against the giant hornet (Vespa mandarinia japonica. Instead of stinging the hornet, Japanese honeybees form a "hot defensive bee ball" by surrounding the hornet en masse, killing it with heat. The European honeybee (A. mellifera ligustica, on the other hand, does not exhibit this behavior, and their colonies are often destroyed by a hornet attack. In the present study, we attempted to analyze the neural basis of this behavior by mapping the active brain regions of Japanese honeybee workers during the formation of a hot defensive bee ball. First, we identified an A. cerana homolog (Acks = Apis cerana kakusei of kakusei, an immediate early gene that we previously identified from A. mellifera, and showed that Acks has characteristics similar to kakusei and can be used to visualize active brain regions in A. cerana. Using Acks as a neural activity marker, we demonstrated that neural activity in the mushroom bodies, especially in Class II Kenyon cells, one subtype of mushroom body intrinsic neurons, and a restricted area between the dorsal lobes and the optic lobes was increased in the brains of Japanese honeybee workers involved in the formation of a hot defensive bee ball. In addition, workers exposed to 46°C heat also exhibited Acks expression patterns similar to those observed in the brains of workers involved in the formation of a hot defensive bee ball, suggesting that the neural activity observed in the brains of workers involved in the hot defensive bee ball mainly reflects thermal stimuli processing.

  13. Attacking invasive grasses

    Science.gov (United States)

    Keeley, Jon E.

    2015-01-01

    In grasslands fire may play a role in the plant invasion process, both by creating disturbances that potentially favour non-native invasions and as a possible tool for controlling alien invasions. Havill et al. (Applied Vegetation Science, 18, 2015, this issue) determine how native and non-native species respond to different fire regimes as a first step in understanding the potential control of invasive grasses.

  14. Thiamethoxam: Assessing flight activity of honeybees foraging on treated oilseed rape using radio frequency identification technology.

    Science.gov (United States)

    Thompson, Helen; Coulson, Mike; Ruddle, Natalie; Wilkins, Selwyn; Harkin, Sarah

    2016-02-01

    The present study was designed to assess homing behavior of bees foraging on winter oilseed rape grown from seed treated with thiamethoxam (as Cruiser OSR), with 1 field drilled with thiamethoxam-treated seed and 2 control fields drilled with fungicide-only-treated seed. Twelve honeybee colonies were used per treatment group, 4 each located at the field edge (on-field site), at approximately 500 m and 1000 m from the field. A total of nearly 300 newly emerged bees per colony were fitted (tagged) with Mic3 radio frequency identification (RFID) transponders and introduced into each of the 36 study hives. The RFID readers fitted to the entrances of the test colonies were used to monitor the activity of the tagged bees for the duration of the 5-wk flowering period of the crop. These activity data were analyzed to assess any impact on flight activity of bees foraging on the treated compared with untreated crops. Honeybees were seen to be actively foraging within all 3 treatment groups during the exposure period. The data for the more than 3000 RFID-tagged bees and more than 90 000 foraging flights monitored throughout the exposure phase for the study follow the same trends across the treatment and controls and at each of the 3 apiary distances, indicating that there were no effects from foraging on the treated crop. Under the experimental conditions, there was no effect of foraging on thiamethoxam-treated oilseed rape on honeybee flight activity or on their ability to return to the hive. © 2015 SETAC.

  15. Genome-wide analysis of alternative reproductive phenotypes in honeybee workers.

    Science.gov (United States)

    Cardoen, Dries; Wenseleers, Tom; Ernst, Ulrich R; Danneels, Ellen L; Laget, Dries; DE Graaf, Dirk C; Schoofs, Liliane; Verleyen, Peter

    2011-10-01

    A defining feature of social insects is the reproductive division of labour, in which workers usually forego all reproduction to help their mother queen to reproduce. However, little is known about the molecular basis of this spectacular form of altruism. Here, we compared gene expression patterns between nonreproductive, altruistic workers and reproductive, non-altruistic workers in queenless honeybee colonies using a whole-genome microarray analysis. Our results demonstrate massive differences in gene expression patterns between these two sets of workers, with a total of 1292 genes being differentially expressed. In nonreproductive workers, genes associated with energy metabolism and respiration, flight and foraging behaviour, detection of visible light, flight and heart muscle contraction and synaptic transmission were overexpressed relative to reproductive workers. This implies they probably had a higher whole-body energy metabolism and activity rate and were most likely actively foraging, whereas same-aged reproductive workers were not. This pattern is predicted from evolutionary theory, given that reproductive workers should be less willing to compromise their reproductive futures by carrying out high-risk tasks such as foraging or other energetically expensive tasks. By contrast, reproductive workers mainly overexpressed oogenesis-related genes compared to nonreproductive ones. With respect to key switches for ovary activation, several genes involved in steroid biosynthesis were upregulated in reproductive workers, as well as genes known to respond to queen and brood pheromones, genes involved in TOR and insulin signalling pathways and genes located within quantitative trait loci associated with reproductive capacity in honeybees. Overall, our results provide unique insight into the molecular mechanisms underlying alternative reproductive phenotypes in honeybee workers. © 2011 Blackwell Publishing Ltd.

  16. Cryopreservation of Queen Honeybee(Apis mellifera camica)Born Worker Eggs by Vitrification

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-yong; XUE Yun-bo; WANG Zhi; LI Xing-an

    2010-01-01

    Many species of insect egg can be targeted individually or(and)collectively for cryopreservation by vitrification.However,there has been no report on cryopreservation of honeybee eggs by vitrification.In an attempt to define a preliminary procedure of cryopreservation of honeybee eggs by vitrification,queen honeybee born worker eggs(worker eggs)were stored through vitrification in liquid nitrogen up to 1 h,and then post-vitrification survival of the vitrified worker eggs in vitro and their hatching rates during maturation in vivo were observed using microscopic and close visual inspections.The procedure of cryopreservation by vitrification included dechorionation with sodium hypochlorite and permeabilization with isopropyl alcohol; equilibration by addition of loading solution(i.e.,25% vitrification storage solution)and dehydration by gradual replacement of loading solution with vitrification storage solution; cooling in liquid nitrogen vapor right before droplet vitrification in liquid nitrogen; and recovery in liquid nitrogen vapor right after storage in liquid nitrogen,thawing at temperature of thawing medium(5% sucrose in TC 100-insect medium)and rehydration by gradual replacement of vitrification storage solution with rehydration solution(5% fetal bovine serum in TC 100-insect medium).It was found that among the worker eggs experiencing cyropreservation by vitrification,1.25% of them were successfully passed through the four life stages,viz.,egg,larva,pupa,and adult.In summary,it can be inferred that although a majority of worker eggs were dead after cyroprescrvation by vitrification,a few of them were developed into larvae,pupae,and finally emerged as adults.

  17. Dynamics of collective decision making of honeybees in complex temperature fields.

    Science.gov (United States)

    Szopek, Martina; Schmickl, Thomas; Thenius, Ronald; Radspieler, Gerald; Crailsheim, Karl

    2013-01-01

    Endothermic heat production is a crucial evolutionary adaptation that is, amongst others, responsible for the great success of honeybees. Endothermy ensures the survival of the colonies in harsh environments and is involved in the maintenance of the brood nest temperature, which is fundamental for the breeding and further development of healthy individuals and thus the foraging and reproduction success of this species. Freshly emerged honeybees are not yet able to produce heat endothermically and thus developed behavioural patterns that result in the location of these young bees within the warm brood nest where they further develop and perform tasks for the colony. Previous studies showed that groups of young ectothermic honeybees exposed to a temperature gradient collectively aggregate at the optimal place with their preferred temperature of 36 °C but most single bees do not locate themselves at the optimum. In this work we further investigate the behavioural patterns that lead to this collective thermotaxis. We tested single and groups of young bees concerning their ability to discriminate a local from a global temperature optimum and, for groups of bees, analysed the speed of the decision making process as well as density dependent effects by varying group sizes. We found that the majority of tested single bees do not locate themselves at the optimum whereas sufficiently large groups of bees are able to collectively discriminate a suboptimal temperature spot and aggregate at 36 °C. Larger groups decide faster than smaller ones, but in larger groups a higher percentage of bees may switch to the sub-optimum due to crowding effects. We show that the collective thermotaxis is a simple but well evolved, scalable and robust social behaviour that enables the collective of bees to perform complex tasks despite the limited abilities of each individual.

  18. Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway.

    Science.gov (United States)

    Gempe, Tanja; Hasselmann, Martin; Schiøtt, Morten; Hause, Gerd; Otte, Marianne; Beye, Martin

    2009-10-01

    Organisms have evolved a bewildering diversity of mechanisms to generate the two sexes. The honeybee (Apis mellifera) employs an interesting system in which sex is determined by heterozygosity at a single locus (the Sex Determination Locus) harbouring the complementary sex determiner (csd) gene. Bees heterozygous at Sex Determination Locus are females, whereas bees homozygous or hemizygous are males. Little is known, however, about the regulation that links sex determination to sexual differentiation. To investigate the control of sexual development in honeybees, we analyzed the functions and the regulatory interactions of genes involved in the sex determination pathway. We show that heterozygous csd is only required to induce the female pathway, while the feminizer (fem) gene maintains this decision throughout development. By RNAi induced knockdown we show that the fem gene is essential for entire female development and that the csd gene exclusively processes the heterozygous state. Fem activity is also required to maintain the female determined pathway throughout development, which we show by mosaic structures in fem-repressed intersexuals. We use expression of Fem protein in males to demonstrate that the female maintenance mechanism is controlled by a positive feedback splicing loop in which Fem proteins mediate their own synthesis by directing female fem mRNA splicing. The csd gene is only necessary to induce this positive feedback loop in early embryogenesis by directing splicing of fem mRNAs. Finally, fem also controls the splicing of Am-doublesex transcripts encoding conserved male- and female-specific transcription factors involved in sexual differentiation. Our findings reveal how the sex determination process is realized in honeybees differing from Drosophila melanogaster.

  19. Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway.

    Directory of Open Access Journals (Sweden)

    Tanja Gempe

    2009-10-01

    Full Text Available Organisms have evolved a bewildering diversity of mechanisms to generate the two sexes. The honeybee (Apis mellifera employs an interesting system in which sex is determined by heterozygosity at a single locus (the Sex Determination Locus harbouring the complementary sex determiner (csd gene. Bees heterozygous at Sex Determination Locus are females, whereas bees homozygous or hemizygous are males. Little is known, however, about the regulation that links sex determination to sexual differentiation. To investigate the control of sexual development in honeybees, we analyzed the functions and the regulatory interactions of genes involved in the sex determination pathway. We show that heterozygous csd is only required to induce the female pathway, while the feminizer (fem gene maintains this decision throughout development. By RNAi induced knockdown we show that the fem gene is essential for entire female development and that the csd gene exclusively processes the heterozygous state. Fem activity is also required to maintain the female determined pathway throughout development, which we show by mosaic structures in fem-repressed intersexuals. We use expression of Fem protein in males to demonstrate that the female maintenance mechanism is controlled by a positive feedback splicing loop in which Fem proteins mediate their own synthesis by directing female fem mRNA splicing. The csd gene is only necessary to induce this positive feedback loop in early embryogenesis by directing splicing of fem mRNAs. Finally, fem also controls the splicing of Am-doublesex transcripts encoding conserved male- and female-specific transcription factors involved in sexual differentiation. Our findings reveal how the sex determination process is realized in honeybees differing from Drosophila melanogaster.

  20. Aging and demographic plasticity in response to experimental age structures in honeybees (Apis mellifera L).

    Science.gov (United States)

    Rueppell, Olav; Linford, Robyn; Gardner, Preston; Coleman, Jennifer; Fine, Kari

    2008-08-01

    Honeybee colonies are highly integrated functional units characterized by a pronounced division of labor. Division of labor among workers is mainly age-based, with younger individuals focusing on in-hive tasks and older workers performing the more hazardous foraging activities. Thus, experimental disruption of the age composition of the worker hive population is expected to have profound consequences for colony function. Adaptive demography theory predicts that the natural hive age composition represents a colony-level adaptation and thus results in optimal hive performance. Alternatively, the hive age composition may be an epiphenomenon, resulting from individual life history optimization. We addressed these predictions by comparing individual worker longevity and brood production in hives that were composed of a single age cohort, two distinct age cohorts, and hives that had a continuous, natural age distribution. Four experimental replicates showed that colonies with a natural age composition did not consistently have a higher life expectancy and/or brood production than the single cohort or double cohort hives. Instead, a complex interplay of age structure, environmental conditions, colony size, brood production, and individual mortality emerged. A general trade-off between worker life expectancy and colony productivity was apparent, and the transition from in-hive tasks to foraging was the most significant predictor of worker lifespan irrespective of the colony age structure. We conclude that the natural age structure of honeybee hives is not a colony-level adaptation. Furthermore, our results show that honeybees exhibit pronounced demographic plasticity in addition to behavioral plasticity to react to demographic disturbances of their societies.

  1. A selective sweep in a Varroa destructor resistant honeybee (Apis mellifera) population.

    Science.gov (United States)

    Lattorff, H Michael G; Buchholz, Josephine; Fries, Ingemar; Moritz, Robin F A

    2015-04-01

    The mite Varroa destructor is one of the most dangerous parasites of the Western honeybee (Apis mellifera) causing enormous colony losses worldwide. Various chemical treatments for the control of the Varroa mite are currently in use, which, however, lead to residues in bee products and often to resistance in mites. This facilitated the exploration of alternative treatment methods and breeding for mite resistant honeybees has been in focus for breeders in many parts of the world with variable results. Another approach has been applied to a honeybee population on Gotland (Sweden) that was exposed to natural selection and survived Varroa-infestation for more than 10years without treatment. Eventually this population became resistant to the parasite by suppressing the reproduction of the mite. A previous QTL mapping study had identified a region on chromosome 7 with major loci contributing to the mite resistance. Here, a microsatellite scan of the significant candidate QTL regions was used to investigate potential footprints of selection in the original population by comparing the study population on Gotland before (2000) and after selection (2007). Genetic drift had caused an extreme loss of genetic diversity in the 2007 population for all genetic markers tested. In addition to this overall reduction of heterozygosity, two loci on chromosome 7 showed an even stronger and significant reduction in diversity than expected from genetic drift alone. Within the selective sweep eleven genes are annotated, one of them being a putative candidate to interfere with reduced mite reproduction. A glucose-methanol-choline oxidoreductase (GMCOX18) might be involved in changing volatiles emitted by bee larvae that might be essential to trigger oogenesis in Varroa.

  2. Multi-residue method for the determination of pesticides and pesticide metabolites in honeybees by liquid and gas chromatography coupled with tandem mass spectrometry--Honeybee poisoning incidents.

    Science.gov (United States)

    Kiljanek, Tomasz; Niewiadowska, Alicja; Semeniuk, Stanisław; Gaweł, Marta; Borzęcka, Milena; Posyniak, Andrzej

    2016-02-26

    A method for the determination of 200 pesticides and pesticide metabolites in honeybee samples has been developed and validated. Almost 98% of compounds included in this method are approved to use within European Union, as active substances of plant protection products or veterinary medicinal products used by beekeepers to control mites Varroa destructor in hives. Many significant metabolites, like metabolites of imidacloprid, thiacloprid, fipronil, methiocarb and amitraz, are also possible to detect. The sample preparation was based on the buffered QuEChERS method. Samples of bees were extracted with acetonitrile containing 1% acetic acid and then subjected to clean-up by dispersive solid phase extraction (dSPE) using a new Z-Sep+ sorbent and PSA. The majority of pesticides, including neonicotionoids and their metabolites, were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) but some of pesticides, especially pyrethroid insecticides, were analyzed by gas chromatography tandem mass spectrometry (GC-MS/MS). The procedure was validated according to the Guidance document SANCO/12571/2013 at four concentration levels: 1, 5, 10 and 100 ng/g bees and verified in the international proficiency test. The analysis of bee samples spiked at the limit of quantification (LOQ) showed about 98% mean recovery value (trueness) and 97% of analytes showed recovery in the required range of 70-120% and RSDr (precision) below 20%. Linearity and matrix effects were also established. The LOQs of pesticides were in the range of 1-100 ng/g. The developed method allows determination of insecticides at concentrations of 10 ng/g or less, except abamectin and tebufenozide. LOQ values are lower than the median lethal doses LD50 for bees. The method was used to investigate more than 70 honeybee poisoning incidents. Data about detected pesticides and their metabolites are included.

  3. Honeybee glucose oxidase—its expression in honeybee workers and comparative analyses of its content and H2O2-mediated antibacterial activity in natural honeys

    Science.gov (United States)

    Bucekova, Marcela; Valachova, Ivana; Kohutova, Lenka; Prochazka, Emanuel; Klaudiny, Jaroslav; Majtan, Juraj

    2014-08-01

    Antibacterial properties of honey largely depend on the accumulation of hydrogen peroxide (H2O2), which is generated by glucose oxidase (GOX)-mediated conversion of glucose in diluted honey. However, honeys exhibit considerable variation in their antibacterial activity. Therefore, the aim of the study was to identify the mechanism behind the variation in this activity and in the H2O2 content in honeys associated with the role of GOX in this process. Immunoblots and in situ hybridization analyses demonstrated that gox is solely expressed in the hypopharyngeal glands of worker bees performing various tasks and not in other glands or tissues. Real-time PCR with reference genes selected for worker heads shows that the gox expression progressively increases with ageing of the youngest bees and nurses and reached the highest values in processor bees. Immunoblot analysis of honey samples revealed that GOX is a regular honey component but its content significantly varied among honeys. Neither botanical source nor geographical origin of honeys affected the level of GOX suggesting that some other factors such as honeybee nutrition and/or genetic/epigenetic factors may take part in the observed variation. A strong correlation was found between the content of GOX and the level of generated H2O2 in honeys except honeydew honeys. Total antibacterial activity of most honey samples against Pseudomonas aeruginosa isolate significantly correlated with the H2O2 content. These results demonstrate that the level of GOX can significantly affect the total antibacterial activity of honey. They also support an idea that breeding of novel honeybee lines expressing higher amounts of GOX could help to increase the antibacterial efficacy of the hypopharyngeal gland secretion that could have positive influence on a resistance of colonies against bacterial pathogens.

  4. Honeybee glucose oxidase--its expression in honeybee workers and comparative analyses of its content and H2O2-mediated antibacterial activity in natural honeys.

    Science.gov (United States)

    Bucekova, Marcela; Valachova, Ivana; Kohutova, Lenka; Prochazka, Emanuel; Klaudiny, Jaroslav; Majtan, Juraj

    2014-08-01

    Antibacterial properties of honey largely depend on the accumulation of hydrogen peroxide (H2O2), which is generated by glucose oxidase (GOX)-mediated conversion of glucose in diluted honey. However, honeys exhibit considerable variation in their antibacterial activity. Therefore, the aim of the study was to identify the mechanism behind the variation in this activity and in the H2O2 content in honeys associated with the role of GOX in this process. Immunoblots and in situ hybridization analyses demonstrated that gox is solely expressed in the hypopharyngeal glands of worker bees performing various tasks and not in other glands or tissues. Real-time PCR with reference genes selected for worker heads shows that the gox expression progressively increases with ageing of the youngest bees and nurses and reached the highest values in processor bees. Immunoblot analysis of honey samples revealed that GOX is a regular honey component but its content significantly varied among honeys. Neither botanical source nor geographical origin of honeys affected the level of GOX suggesting that some other factors such as honeybee nutrition and/or genetic/epigenetic factors may take part in the observed variation. A strong correlation was found between the content of GOX and the level of generated H2O2 in honeys except honeydew honeys. Total antibacterial activity of most honey samples against Pseudomonas aeruginosa isolate significantly correlated with the H2O2 content. These results demonstrate that the level of GOX can significantly affect the total antibacterial activity of honey. They also support an idea that breeding of novel honeybee lines expressing higher amounts of GOX could help to increase the antibacterial efficacy of the hypopharyngeal gland secretion that could have positive influence on a resistance of colonies against bacterial pathogens.

  5. Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle.

    Directory of Open Access Journals (Sweden)

    Martin Bencsik

    Full Text Available Insect pollination is of great importance to crop production worldwide and honey bees are amongst its chief facilitators. Because of the decline of managed colonies, the use of sensor technology is growing in popularity and it is of interest to develop new methods which can more accurately and less invasively assess honey bee colony status. Our approach is to use accelerometers to measure vibrations in order to provide information on colony activity and development. The accelerometers provide amplitude and frequency information which is recorded every three minutes and analysed for night time only. Vibrational data were validated by comparison to visual inspection data, particularly the brood development. We show a strong correlation between vibrational amplitude data and the brood cycle in the vicinity of the sensor. We have further explored the minimum data that is required, when frequency information is also included, to accurately predict the current point in the brood cycle. Such a technique should enable beekeepers to reduce the frequency with which visual inspections are required, reducing the stress this places on the colony and saving the beekeeper time.

  6. Social encapsulation of beetle parasites by Cape honeybee colonies (Apis mellifera capensis Esch.)

    Science.gov (United States)

    Neumann, P.; Pirk, C. W. W.; Hepburn, H. R.; Solbrig, A. J.; Ratnieks, F. L. W.; Elzen, P. J.; Baxter, J. R.

    2001-05-01

    Worker honeybees (Apis mellifera capensis) encapsulate the small hive beetle (Aethina tumida), a nest parasite, in propolis (tree resin collected by the bees). The encapsulation process lasts 1-4 days and the bees have a sophisticated guarding strategy for limiting the escape of beetles during encapsulation. Some encapsulated beetles died (4.9%) and a few escaped (1.6%). Encapsulation has probably evolved because the small hive beetle cannot easily be killed by the bees due to its hard exoskeleton and defensive behaviour.

  7. Honeybees prefer warmer nectar and less viscous nectar, regardless of sugar concentration

    OpenAIRE

    Nicolson, Susan W.; de Veer, Leo; Köhler, Angela; Pirk, Christian W.W.

    2013-01-01

    The internal temperature of flowers may be higher than air temperature, and warmer nectar could offer energetic advantages for honeybee thermoregulation, as well as being easier to drink owing to its lower viscosity. We investigated the responses of Apis mellifera scutellata (10 colonies) to warmed 10% w/w sucrose solutions, maintained at 20–35°C, independent of low air temperatures, and to 20% w/w sucrose solutions with the viscosity increased by the addition of the inert polysaccharide Tylo...

  8. Sperm numbers in drone honeybees (Apis mellifera) depend on body size

    OpenAIRE

    Schlüns, Helge; Schlüns, Ellen; Van Praagh, Job; Moritz, Robin

    2003-01-01

    International audience; The effect of drone honeybee's body size on semen production was evaluated. In the same colonies, drones were either reared in drone cells (large drones) or in worker cells (small drones). Wing lengths (size indicator) and sperm numbers of small and large drones were compared. Small drones (~13% reduced wing size) produce significantly fewer spermatozoa ($7.5 \\pm 0.5$ million) than normally sized drones ($11.9 \\pm 1.0$ million spermatozoa). There is a significant posit...

  9. Alternative sources of supplements for Africanized honeybees submitted to royal jelly production

    OpenAIRE

    Sereia, Maria Josiane; Toledo,Vagner de Alencar Arnaut de; Furlan,Antonio Claudio; Faquinello,Patrícia; Maia,Fabiana Martins Costa; Wielewski,Priscila

    2013-01-01

    This study was carried out to evaluate the effect of supplements with isolated soy protein, brewer's yeast, a mixture of isolated soy protein with brewer's yeast, linseed oil, palm oil and mixture of linseed oil with palm oil in the production of royal jelly by Africanized honeybee colonies. Total royal jelly production was higher (p < 0.05) in colonies fed with isolated soy protein and brewer's yeast (11.68 g colony-1), followed by linseed oil and palm oil (11.30 g colony-1) and palm oil (9....

  10. Method for training honeybees to respond to olfactory stimuli and enhancement of memory retention therein

    Energy Technology Data Exchange (ETDEWEB)

    McCade, Kirsten J.; Wingo, Robert M.; Haarmann, Timothy K.; Sutherland, Andrew; Gubler, Walter D.

    2015-12-15

    A specialized conditioning protocol for honeybees that is designed for use within a complex agricultural ecosystem. This method ensures that the conditioned bees will be less likely to exhibit a conditioned response to uninfected plants, a false positive response that would render such a biological sensor unreliable for agricultural decision support. Also described is a superboosting training regime that allows training without the aid of expensive equipment and protocols for training in out in the field. Also described is a memory enhancing cocktail that aids in long term memory retention of a vapor signature. This allows the bees to be used in the field for longer durations and with fewer bees trained overall.

  11. Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway

    DEFF Research Database (Denmark)

    Gempe, Tanja; Hasselmann, Martin; Schiøtt, Morten;

    2009-01-01

    . Bees heterozygous at Sex Determination Locus are females, whereas bees homozygous or hemizygous are males. Little is known, however, about the regulation that links sex determination to sexual differentiation. To investigate the control of sexual development in honeybees, we analyzed the functions...... female development and that the csd gene exclusively processes the heterozygous state. Fem activity is also required to maintain the female determined pathway throughout development, which we show by mosaic structures in fem-repressed intersexuals. We use expression of Fem protein in males to demonstrate...

  12. On the front line: quantitative virus dynamics in honeybee (Apis mellifera L. colonies along a new expansion front of the parasite Varroa destructor.

    Directory of Open Access Journals (Sweden)

    Fanny Mondet

    2014-08-01

    Full Text Available Over the past fifty years, annual honeybee (Apis mellifera colony losses have been steadily increasing worldwide. These losses have occurred in parallel with the global spread of the honeybee parasite Varroa destructor. Indeed, Varroa mite infestations are considered to be a key explanatory factor for the widespread increase in annual honeybee colony mortality. The host-parasite relationship between honeybees and Varroa is complicated by the mite's close association with a range of honeybee viral pathogens. The 10-year history of the expanding front of Varroa infestation in New Zealand offered a rare opportunity to assess the dynamic quantitative and qualitative changes in honeybee viral landscapes in response to the arrival, spread and level of Varroa infestation. We studied the impact of de novo infestation of bee colonies by Varroa on the prevalence and titres of seven well-characterised honeybee viruses in both bees and mites, using a large-scale molecular ecology approach. We also examined the effect of the number of years since Varroa arrival on honeybee and mite viral titres. The dynamic shifts in the viral titres of black queen cell virus and Kashmir bee virus mirrored the patterns of change in Varroa infestation rates along the Varroa expansion front. The deformed wing virus (DWV titres in bees continued to increase with Varroa infestation history, despite dropping infestation rates, which could be linked to increasing DWV titres in the mites. This suggests that the DWV titres in mites, perhaps boosted by virus replication, may be a major factor in maintaining the DWV epidemic after initial establishment. Both positive and negative associations were identified for several pairs of viruses, in response to the arrival of Varroa. These findings provide important new insights into the role of the parasitic mite Varroa destructor in influencing the viral landscape that affects honeybee colonies.

  13. On the front line: quantitative virus dynamics in honeybee (Apis mellifera L.) colonies along a new expansion front of the parasite Varroa destructor.

    Science.gov (United States)

    Mondet, Fanny; de Miranda, Joachim R; Kretzschmar, Andre; Le Conte, Yves; Mercer, Alison R

    2014-08-01

    Over the past fifty years, annual honeybee (Apis mellifera) colony losses have been steadily increasing worldwide. These losses have occurred in parallel with the global spread of the honeybee parasite Varroa destructor. Indeed, Varroa mite infestations are considered to be a key explanatory factor for the widespread increase in annual honeybee colony mortality. The host-parasite relationship between honeybees and Varroa is complicated by the mite's close association with a range of honeybee viral pathogens. The 10-year history of the expanding front of Varroa infestation in New Zealand offered a rare opportunity to assess the dynamic quantitative and qualitative changes in honeybee viral landscapes in response to the arrival, spread and level of Varroa infestation. We studied the impact of de novo infestation of bee colonies by Varroa on the prevalence and titres of seven well-characterised honeybee viruses in both bees and mites, using a large-scale molecular ecology approach. We also examined the effect of the number of years since Varroa arrival on honeybee and mite viral titres. The dynamic shifts in the viral titres of black queen cell virus and Kashmir bee virus mirrored the patterns of change in Varroa infestation rates along the Varroa expansion front. The deformed wing virus (DWV) titres in bees continued to increase with Varroa infestation history, despite dropping infestation rates, which could be linked to increasing DWV titres in the mites. This suggests that the DWV titres in mites, perhaps boosted by virus replication, may be a major factor in maintaining the DWV epidemic after initial establishment. Both positive and negative associations were identified for several pairs of viruses, in response to the arrival of Varroa. These findings provide important new insights into the role of the parasitic mite Varroa destructor in influencing the viral landscape that affects honeybee colonies.

  14. Determining the Need for Simulated Training of Invasive Procedures

    Science.gov (United States)

    Greene, Arin K.; Zurakowski, David; Puder, Mark; Thompson, Kweli

    2006-01-01

    Unlike the airline industry, where pilots first learn to fly on simulators before navigating planes, physicians practice invasive procedures on real patients. To determine the need for the simulated training of invasive procedures prior to working on patients, we studied the views of physicians-in-training. Five hundred medical students,…

  15. Differences in heat sensitivity between Japanese honeybees and hornets under high carbon dioxide and humidity conditions inside bee balls.

    Science.gov (United States)

    Sugahara, Michio; Nishimura, Yasuichiro; Sakamoto, Fumio

    2012-01-01

    Upon capture in a bee ball (i.e., a dense cluster of Japanese honeybees forms in response to a predatory attack), an Asian giant hornet causes a rapid increase in temperature, carbon dioxide (CO₂), and humidity. Within five min after capture, the temperature reaches 46°C, and the CO₂ concentration reaches 4%. Relative humidity gradually rises to 90% or above in 3 to 4 min. The hornet dies within 10 min of its capture in the bee ball. To investigate the effect of temperature, CO₂, and humidity on hornet mortality, we determined the lethal temperature of hornets exposed for 10 min to different humidity and CO₂/O₂ (oxygen) levels. In expiratory air (3.7% CO₂), the lethal temperature was ≥ 2° lower than that in normal air. The four hornet species used in this experiment died at 44-46°C under these conditions. Hornet death at low temperatures results from an increase in CO₂ level in bee balls. Japanese honeybees generate heat by intense respiration, as an overwintering strategy, which produces a high CO₂ and humidity environment and maintains a tighter bee ball. European honeybees are usually killed in the habitat of hornets. In contrast, Japanese honeybees kill hornets without sacrificing themselves by using heat and respiration by-products and forming tight bee balls.

  16. What is the main driver of ageing in long-lived winter honeybees: antioxidant enzymes, innate immunity, or vitellogenin?

    Science.gov (United States)

    Aurori, Cristian M; Buttstedt, Anja; Dezmirean, Daniel S; Mărghitaş, Liviu A; Moritz, Robin F A; Erler, Silvio

    2014-06-01

    To date five different theories compete in explaining the biological mechanisms of senescence or ageing in invertebrates. Physiological, genetical, and environmental mechanisms form the image of ageing in individuals and groups. Social insects, especially the honeybee Apis mellifera, present exceptional model systems to study developmentally related ageing. The extremely high phenotypic plasticity for life expectancy resulting from the female caste system provides a most useful system to study open questions with respect to ageing. Here, we used long-lived winter worker honeybees and measured transcriptional changes of 14 antioxidative enzyme, immunity, and ageing-related (insulin/insulin-like growth factor signaling pathway) genes at two time points during hibernation. Additionally, worker bees were challenged with a bacterial infection to test ageing- and infection-associated immunity changes. Gene expression levels for each group of target genes revealed that ageing had a much higher impact than the bacterial challenge, notably for immunity-related genes. Antimicrobial peptide and antioxidative enzyme genes were significantly upregulated in aged worker honeybees independent of bacterial infections. The known ageing markers vitellogenin and IlP-1 were opposed regulated with decreasing vitellogenin levels during ageing. The increased antioxidative enzyme and antimicrobial peptide gene expression may contribute to a retardation of senescence in long-lived hibernating worker honeybees.

  17. Aspects of the use of honeybees and bumblebees as vector of antagonistic micro-organisms in plant diseas control

    NARCIS (Netherlands)

    Steen, van der J.J.M.; Langerak, C.J.; Tongeren, van C.A.M.; Dik, A.J.

    2003-01-01

    Honeybees (Apis mellifera L.) and bumblebees (Bombus terrestris L.) are used for pollination in agriculture and horticulture. The morphological and behavioural characteristics of bees make them good pollinators. Thanks to this, bees may also be used as vector of antagonistic micro-organisms for plan

  18. The effect of antagonistic micro-organisms on the brood of honeybees (Apis mellifera) and bumblebees (Bombus terrestris) 2003

    NARCIS (Netherlands)

    Steen, van der J.J.M.; Dik, A.J.

    2002-01-01

    Several plant pathogenic fungi enter the plant trough open flowers. Spores of antagonistic micro-organisms present on the flowers can successfully compete with the possible pathogens. Honeybees and bumblebees can be used for transporting these antagonistic micro-organisms from the hive into flowers

  19. Assessing honeybee and wasp thermoregulation and energetics-New insights by combination of flow-through respirometry with infrared thermography.

    Science.gov (United States)

    Stabentheiner, Anton; Kovac, Helmut; Hetz, Stefan K; Käfer, Helmut; Stabentheiner, Gabriel

    2012-04-20

    Endothermic insects like honeybees and some wasps have to cope with an enormous heat loss during foraging because of their small body size in comparison to endotherms like mammals and birds. The enormous costs of thermoregulation call for optimisation. Honeybees and wasps differ in their critical thermal maximum, which enables the bees to kill the wasps by heat. We here demonstrate the benefits of a combined use of body temperature measurement with infrared thermography, and respiratory measurements of energy turnover (O(2) consumption or CO(2) production via flow-through respirometry) to answer questions of insect ecophysiological research, and we describe calibrations to receive accurate results.To assess the question of what foraging honeybees optimise, their body temperature was compared with their energy turnover. Honeybees foraging from an artificial flower with unlimited sucrose flow increased body surface temperature and energy turnover with profitability of foraging (sucrose content of the food; 0.5 or 1.5 mol/L). Costs of thermoregulation, however, were rather independent of ambient temperature (13-30 °C). External heat gain by solar radiation was used to increase body temperature. This optimised foraging energetics by increasing suction speed.In determinations of insect respiratory critical thermal limits, the combined use of respiratory measurements and thermography made possible a more conclusive interpretation of respiratory traces.

  20. Assessing honeybee and wasp thermoregulation and energetics—New insights by combination of flow-through respirometry with infrared thermography

    Science.gov (United States)

    Stabentheiner, Anton; Kovac, Helmut; Hetz, Stefan K.; Käfer, Helmut; Stabentheiner, Gabriel

    2012-01-01

    Endothermic insects like honeybees and some wasps have to cope with an enormous heat loss during foraging because of their small body size in comparison to endotherms like mammals and birds. The enormous costs of thermoregulation call for optimisation. Honeybees and wasps differ in their critical thermal maximum, which enables the bees to kill the wasps by heat. We here demonstrate the benefits of a combined use of body temperature measurement with infrared thermography, and respiratory measurements of energy turnover (O2 consumption or CO2 production via flow-through respirometry) to answer questions of insect ecophysiological research, and we describe calibrations to receive accurate results. To assess the question of what foraging honeybees optimise, their body temperature was compared with their energy turnover. Honeybees foraging from an artificial flower with unlimited sucrose flow increased body surface temperature and energy turnover with profitability of foraging (sucrose content of the food; 0.5 or 1.5 mol/L). Costs of thermoregulation, however, were rather independent of ambient temperature (13–30 °C). External heat gain by solar radiation was used to increase body temperature. This optimised foraging energetics by increasing suction speed. In determinations of insect respiratory critical thermal limits, the combined use of respiratory measurements and thermography made possible a more conclusive interpretation of respiratory traces. PMID:22723718

  1. Nosema Tolerant Honeybees (Apis mellifera) Escape Parasitic Manipulation of Apoptosis

    DEFF Research Database (Denmark)

    Kurze, Christoph; Le Conte, Yves; Dussaubat, Claudia;

    2015-01-01

    apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing...

  2. Larval Exposure to the Juvenile Hormone Analog Pyriproxyfen Disrupts Acceptance of and Social Behavior Performance in Adult Honeybees.

    Directory of Open Access Journals (Sweden)

    Julie Fourrier

    Full Text Available Juvenile hormone (JH plays an important role in honeybee development and the regulation of age-related division of labor. However, honeybees can be exposed to insect growth regulators (IGRs, such as JH analogs developed for insect pest and vector control. Although their side effects as endocrine disruptors on honeybee larval or adult stages have been studied, little is known about the subsequent effects on adults of a sublethal larval exposure. We therefore studied the impact of the JH analog pyriproxyfen on larvae and resulting adults within a colony under semi-field conditions by combining recent laboratory larval tests with chemical analysis and behavioral observations. Oral and chronic larval exposure at cumulative doses of 23 or 57 ng per larva were tested.Pyriproxyfen-treated bees emerged earlier than control bees and the highest dose led to a significant rate of malformed adults (atrophied wings. Young pyriproxyfen-treated bees were more frequently rejected by nestmates from the colony, inducing a shorter life span. This could be linked to differences in cuticular hydrocarbon (CHC profiles between control and pyriproxyfen-treated bees. Finally, pyriproxyfen-treated bees exhibited fewer social behaviors (ventilation, brood care, contacts with nestmates or food stocks than control bees.Larval exposure to sublethal doses of pyriproxyfen affected several life history traits of the honeybees. Our results especially showed changes in social integration (acceptance by nestmates and social behaviors performance that could potentially affect population growth and balance of the colony.

  3. Recombinants between Deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies.

    Science.gov (United States)

    Moore, Jonathan; Jironkin, Aleksey; Chandler, David; Burroughs, Nigel; Evans, David J; Ryabov, Eugene V

    2011-01-01

    We have used high-throughput Illumina sequencing to identify novel recombinants between Deformed wing virus (DWV) and Varroa destructor virus-1 (VDV-1), which accumulate to higher levels than DWV in both honeybees and Varroa destructor mites. The recombinants, VDV-1(VVD) and VDV-1(DVD), exhibit crossovers between the 5'-UTR and the regions encoding the structural (capsid) and non-structural viral proteins. This implies that the genomes are modular and that each region may evolve independently, as demonstrated in human enteroviruses. Individual honeybee pupae were infected with a mixture of observed recombinants and DWV. A strong correlation was observed between VDV-1(DVD) levels in honeybee pupae and associated mites, suggesting that this recombinant, with a DWV-derived 5'-UTR and non-structural protein region flanking a VDV-1-derived capsid-encoding region, is better adapted to transmission between V. destructor and honeybees than the parental DWV or a recombinant bearing the VDV-1-derived 5'-UTR (VDV-1(VVD)).

  4. The research progress of ovary activation in honeybee (Apis)%蜜蜂卵巢激活研究进展

    Institute of Scientific and Technical Information of China (English)

    牛德芳; 陈璇; 胡福良

    2012-01-01

    As an eusocial insects, the honeybee Apis, is characterized by the extreme reproductive division of labor. Ovary activation is an important factor for the honeybee reproductive capacity. Factors affecting ovary activation, gene expression involved in ovary activation and the possible role of microRNA in ovary activation of the honeybee were introduced in this paper. It will provide a basis for the study on the molecular mechanism of the honeybee caste differentiation and reproductive division of labor.%蜜蜂Apis作为典型的社会性昆虫,最重要的特征就是生殖劳动分工.卵巢激活是蜜蜂发挥生殖能力的重要影响因素.本文对蜜蜂卵巢激活的影响因素、蜜蜂卵巢激活相关的基因表达及microRNA在蜜蜂卵巢激活过程中的可能作用进行了介绍,为研究蜜蜂级型分化和生殖劳动分工的分子机制提供依据.

  5. Assessment of the Potential of Honeybees (Apis mellifera L.) in Biomonitoring of Air Pollution by Cadmium, Lead and Vanadium

    NARCIS (Netherlands)

    Steen, van der J.J.M.; Kraker, de J.; Grotenhuis, J.T.C.

    2015-01-01

    The aim of our study was to explore whether honeybees (Apis mellifera L.) could be used as a reliable alternative to the standard mechanical devices for monitoring of air quality, in particular with respect to the concentration of the heavy metals cadmium (Cd), lead (Pb) and vanadium (V). We therefo

  6. A critical number of workers in a honeybee colony triggers investment in reproduction.

    Science.gov (United States)

    Smith, Michael L; Ostwald, Madeleine M; Loftus, J Carter; Seeley, Thomas D

    2014-10-01

    Social insect colonies, like individual organisms, must decide as they develop how to allocate optimally their resources among survival, growth, and reproduction. Only when colonies reach a certain state do they switch from investing purely in survival and growth to investing also in reproduction. But how do worker bees within a colony detect that their colony has reached the state where it is adaptive to begin investing in reproduction? Previous work has shown that larger honeybee colonies invest more in reproduction (i.e., the production of drones and queens), however, the term 'larger' encompasses multiple colony parameters including number of adult workers, size of the nest, amount of brood, and size of the honey stores. These colony parameters were independently increased in this study to test which one(s) would increase a colony's investment in reproduction via males. This was assayed by measuring the construction of drone comb, the special type of comb in which drones are reared. Only an increase in the number of workers stimulated construction of drone comb. Colonies with over 4,000 workers began building drone comb, independent of the other colony parameters. These results show that attaining a critical number of workers is the key parameter for honeybee colonies to start to shift resources towards reproduction. These findings are relevant to other social systems in which a group's members must adjust their behavior as a function of the group's size.

  7. Simultaneous stressors: interactive effects of an immune challenge and dietary toxin can be detrimental to honeybees.

    Science.gov (United States)

    Köhler, Angela; Pirk, Christian W W; Nicolson, Susan W

    2012-07-01

    Recent large-scale mortality of honeybee colonies is believed to be caused by multiple interactions between diseases, parasites, pesticide exposure, and other stress factors. To test whether a dual challenge has an additive effect in reducing survival, we experimentally stimulated the immune system of caged Apis mellifera scutellata workers from six colonies by injecting saline or Escherichia coli lipopolysaccharides (LPS), and additionally fed them the alkaloid nicotine (0 μM, 3 μM and 300 μM in 0.63 M sucrose). Workers did not increase their sucrose intake to compensate for the immune system activation, and those injected with E. coli LPS decreased their intake on the highest nicotine concentration. In the single challenges, injection and high nicotine doses negatively affected survival. All injected worker groups showed reduced survival. Without nicotine, survival of the saline and E. coli LPS worker groups was similar, but survival of E. coli LPS-challenged workers dropped below that of the saline groups when additionally challenged by nicotine, with bees dying earlier at higher nicotine concentrations. In the dual challenge of saline injection and dietary nicotine, a reduced effect on survival was observed, with lower mortality than expected from the summed mortalities due to the single challenges. However, additive and synergistic effects on survival were observed in workers simultaneously challenged by E. coli LPS and nicotine, indicating that interactive effects of simultaneous pathogen exposure and dietary toxin are detrimental to honeybee fitness. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Linking Genes and Brain Development of Honeybee Workers: A Whole-Transcriptome Approach

    Science.gov (United States)

    Vleurinck, Christina; Raub, Stephan; Sturgill, David; Oliver, Brian; Beye, Martin

    2016-01-01

    Honeybees live in complex societies whose capabilities far exceed those of the sum of their single members. This social synergism is achieved mainly by the worker bees, which form a female caste. The worker bees display diverse collaborative behaviors and engage in different behavioral tasks, which are controlled by the central nervous system (CNS). The development of the worker brain is determined by the female sex and the worker caste determination signal. Here, we report on genes that are controlled by sex or by caste during differentiation of the worker’s pupal brain. We sequenced and compared transcriptomes from the pupal brains of honeybee workers, queens and drones. We detected 333 genes that are differently expressed and 519 genes that are differentially spliced between the sexes, and 1760 genes that are differentially expressed and 692 genes that are differentially spliced between castes. We further found that 403 genes are differentially regulated by both the sex and caste signals, providing evidence of the integration of both signals through differential gene regulation. In this gene set, we found that the molecular processes of restructuring the cell shape and cell-to-cell signaling are overrepresented. Our approach identified candidate genes that may be involved in brain differentiation that ensures the various social worker behaviors. PMID:27490820

  9. Agrochemical synergism imposes higher risk to Neotropical bees than to honeybees

    Science.gov (United States)

    Tomé, Hudson V. V.; Ramos, Gabryele S.; Araújo, Micaele F.; Santana, Weyder C.; Santos, Gil R.; Guedes, Raul Narciso C.; Maciel, Carlos D.; Newland, Philip L.

    2017-01-01

    Bees are key pollinators whose population numbers are declining, in part, owing to the effects of different stressors such as insecticides and fungicides. We have analysed the susceptibility of the Africanized honeybee, Apis mellifera, and the stingless bee, Partamona helleri, to commercial formulations of the insecticides deltamethrin and imidacloprid. The toxicity of fungicides based on thiophanate-methyl and chlorothalonil were investigated individually and in combination, and with the insecticides. Results showed that stingless bees were more susceptible to insecticides than honeybees. The commercial fungicides thiophanate-methyl or chlorothalonil caused low mortality, regardless of concentration; however, their combination was as toxic as imidacloprid to both species, and over 400-fold more toxic than deltamethrin for A. mellifera. There were highly synergistic effects on mortality caused by interactions in the mixture of imidacloprid and the fungicides thiophanate-methyl, chlorothalonil and the combined fungicide formulation in A. mellifera, and also to a lesser extent in P. helleri. By contrast, mixtures of the deltamethrin and the combined fungicide formulation induced high synergy in P. helleri, but had little effect on the mortality of A. mellifera. Differences in physiology and modes of action of agrochemicals are discussed as key factors underlying the differences in susceptibility to agrochemicals. PMID:28280585

  10. Differences in the sleep architecture of forager and young honeybees (Apis mellifera).

    Science.gov (United States)

    Eban-Rothschild, Ada D; Bloch, Guy

    2008-08-01

    Honeybee (Apis mellifera) foragers are among the first invertebrates for which sleep behavior has been described. Foragers (typically older than 21 days) have strong circadian rhythms; they are active during the day, and sleep during the night. We explored whether young bees (approximately 3 days of age), which are typically active around-the-clock with no circadian rhythms, also exhibit sleep behavior. We combined 24-hour video recordings, detailed behavioral observations, and analyses of response thresholds to a light pulse for individually housed bees in various arousal states. We characterized three sleep stages in foragers on the basis of differences in body posture, bout duration, antennae movements and response threshold. Young bees exhibited sleep behavior consisting of the same three stages as observed in foragers. Sleep was interrupted by brief awakenings, which were as frequent in young bees as in foragers. Beyond these similarities, we found differences in the sleep architecture of young bees and foragers. Young bees passed more frequently between the three sleep stages, and stayed longer in the lightest sleep stage than foragers. These differences in sleep architecture may represent developmental and/or environmentally induced variations in the neuronal network underlying sleep in honeybees. To the best of our knowledge, this is the first evidence for plasticity in sleep behavior in insects.

  11. Killing and replacing queen-laid eggs: low cost of worker policing in the honeybee.

    Science.gov (United States)

    Kärcher, Martin H; Ratnieks, Francis L W

    2014-07-01

    Worker honeybees, Apis mellifera, police each other's reproduction by killing worker-laid eggs. Previous experiments demonstrated that worker policing is effective, killing most (∼98%) worker-laid eggs. However, many queen-laid eggs were also killed (∼50%) suggesting that effective policing may have high costs. In these previous experiments, eggs were transferred using forceps into test cells, mostly into unrelated discriminator colonies. We measured both the survival of unmanipulated queen-laid eggs and the proportion of removal errors that were rectified by the queen laying a new egg. Across 2 days of the 3-day egg stage, only 9.6% of the queen-laid eggs in drone cells and 4.1% in worker cells were removed in error. When queen-laid eggs were removed from cells, 85% from drone cells and 61% from worker cells were replaced within 3 days. Worker policing in the honeybee has a high benefit to policing workers because workers are more related to the queen's sons (brothers, r = 0.25) than sister workers' sons (0.15). This study shows that worker policing also has a low cost in terms of the killing of queen-laid eggs, as only a small proportion of queen-laid eggs are killed, most of which are rapidly replaced.

  12. Effects of Honeybee Venom Acupuncture Therapy on the Poststroke Hemiplegic Shoulder Pain

    Directory of Open Access Journals (Sweden)

    Yin, Chang-Shik

    2000-12-01

    Full Text Available Hemiplegic shoulder pain(HSP is one of the most frequent and difficult problems affecting poststroke hemiplegic patients. Honeybee venom acupuncture therapy(BVAT is known for its pain relieving effects in arthralgia. To evaluate the effectiveness of BVAT on HSP, 24 patients were sequential1y allocated into BVA T treatment group and control group and monitored for 4 weeks at time interval of initial(T0, 1 week(T1, 2 weeks(T2 and 4 weeks(T4. In treatment group, 1:10000 honeybee venom solution 0.2㎖ was injected into acupoint(s following Deqi three times a week. Kyonu(LI15 was used in the first week. Thereafter Kyonu(LI15 and Nosu(SI10 were used. Visual analogue scale of pain severity showed significant decrease in treatment group compared to control group at T2 and T4 evaluation. Painless passive range of motion of shoulder external rotation showed significant increase in treatment group compared to control group at T4 evaluation. Fugl-Meyer Motor Assessment of upper limb motor function and Modified Ashworth scale of the spasticity of upper limb showed no difference between two groups. BVAT showed as an effective therapy in HSP and further extensive clinical studies are expected.

  13. Interaction between Varroa destructor and imidacloprid reduces flight capacity of honeybees.

    Science.gov (United States)

    Blanken, Lisa J; van Langevelde, Frank; van Dooremalen, Coby

    2015-12-01

    Current high losses of honeybees seriously threaten crop pollination. Whereas parasite exposure is acknowledged as an important cause of these losses, the role of insecticides is controversial. Parasites and neonicotinoid insecticides reduce homing success of foragers (e.g. by reduced orientation), but it is unknown whether they negatively affect flight capacity. We investigated how exposing colonies to the parasitic mite Varroa destructor and the neonicotinoid insecticide imidacloprid affect flight capacity of foragers. Flight distance, time and speed of foragers were measured in flight mills to assess the relative and interactive effects of high V. destructor load and a field-realistic, chronic sub-lethal dose of imidacloprid. Foragers from colonies exposed to high levels of V. destructor flew shorter distances, with a larger effect when also exposed to imidacloprid. Bee body mass partly explained our results as bees were heavier when exposed to these stressors, possibly due to an earlier onset of foraging. Our findings contribute to understanding of interacting stressors that can explain colony losses. Reduced flight capacity decreases the food-collecting ability of honeybees and may hamper the use of precocious foraging as a coping mechanism during colony (nutritional) stress. Ineffective coping mechanisms may lead to destructive cascading effects and subsequent colony collapse.

  14. So near and yet so far: harmonic radar reveals reduced homing ability of Nosema infected honeybees.

    Directory of Open Access Journals (Sweden)

    Stephan Wolf

    Full Text Available Pathogens may gain a fitness advantage through manipulation of the behaviour of their hosts. Likewise, host behavioural changes can be a defence mechanism, counteracting the impact of pathogens on host fitness. We apply harmonic radar technology to characterize the impact of an emerging pathogen--Nosema ceranae (Microsporidia--on honeybee (Apis mellifera flight and orientation performance in the field. Honeybees are the most important commercial pollinators. Emerging diseases have been proposed to play a prominent role in colony decline, partly through sub-lethal behavioural manipulation of their hosts. We found that homing success was significantly reduced in diseased (65.8% versus healthy foragers (92.5%. Although lost bees had significantly reduced continuous flight times and prolonged resting times, other flight characteristics and navigational abilities showed no significant difference between infected and non-infected bees. Our results suggest that infected bees express normal flight characteristics but are constrained in their homing ability, potentially compromising the colony by reducing its resource inputs, but also counteracting the intra-colony spread of infection. We provide the first high-resolution analysis of sub-lethal effects of an emerging disease on insect flight behaviour. The potential causes and the implications for both host and parasite are discussed.

  15. Host Specificity in the Honeybee Parasitic Mite, Varroa spp. in Apis mellifera and Apis cerana.

    Directory of Open Access Journals (Sweden)

    Alexis L Beaurepaire

    Full Text Available The ectoparasitic mite Varroa destructor is a major global threat to the Western honeybee Apis mellifera. This mite was originally a parasite of A. cerana in Asia but managed to spill over into colonies of A. mellifera which had been introduced to this continent for honey production. To date, only two almost clonal types of V. destructor from Korea and Japan have been detected in A. mellifera colonies. However, since both A. mellifera and A. cerana colonies are kept in close proximity throughout Asia, not only new spill overs but also spill backs of highly virulent types may be possible, with unpredictable consequences for both honeybee species. We studied the dispersal and hybridisation potential of Varroa from sympatric colonies of the two hosts in Northern Vietnam and the Philippines using mitochondrial and microsatellite DNA markers. We found a very distinct mtDNA haplotype equally invading both A. mellifera and A. cerana in the Philippines. In contrast, we observed a complete reproductive isolation of various Vietnamese Varroa populations in A. mellifera and A. cerana colonies even if kept in the same apiaries. In light of this variance in host specificity, the adaptation of the mite to its hosts seems to have generated much more genetic diversity than previously recognised and the Varroa species complex may include substantial cryptic speciation.

  16. Bigger is better: honeybee colonies as distributed information-gathering systems.

    Science.gov (United States)

    Donaldson-Matasci, Matina C; DeGrandi-Hoffman, Gloria; Dornhaus, Anna

    2013-03-01

    In collectively foraging groups, communication about food resources can play an important role in the organization of the group's activity. For example, the honeybee dance communication system allows colonies to selectively allocate foragers among different floral resources according to their quality. Because larger groups can potentially collect more information than smaller groups, they might benefit more from communication because it allows them to integrate and use that information to coordinate forager activity. Larger groups might also benefit more from communication because it allows them to dominate high-value resources by recruiting large numbers of foragers. By manipulating both colony size and the ability to communicate location information in the dance, we show that larger colonies of honeybees benefit more from communication than do smaller colonies. In fact, colony size and dance communication worked together to improve foraging performance; the estimated net gain per foraging trip was highest in larger colonies with unimpaired communication. These colonies also had the earliest peaks in foraging activity, but not the highest ones. This suggests they may find and recruit to resources more quickly, but not more heavily. The benefits of communication we observed in larger colonies are thus likely a result of more effective informationgathering due to massive parallel search rather than increased competitive ability due to heavy recruitment.

  17. [Study on foraging behaviors of honeybee Apis mellifera based on RFID technology].

    Science.gov (United States)

    Tian, Liu-Qing; He, Xu-Jiang; Wu, Xiao-Bo; Gan, Hai-Yan; Han, Xu; Liu, Hao; Zeng, Zhi-Jiang

    2014-03-01

    Honeybee foragers can flexibly adjust their out-hive activities to ensure growth and reproduction of the colony. In order to explore the characteristics of honey bees foraging behaviors, in this study, their flight activities were monitored 24 hours per day for a duration of 38 days, using an radio frequency identification (RFID) system designed and manufactured by the Honeybee Research Institute of Jiangxi Agricultural University in cooperation with the Guangzhou Invengo Information Technology Co., Ltd. Our results indicated that 63.4% and 64.5% of foragers were found rotating more than one day off during the foraging period in two colonies, and 22.5% and 26.4% of the total foraging days were used for rest respectively. Further, although the total foraging time between rotating day-off foragers and continuously working foragers was equal, the former had a significant longer lifespan than the latter. Additionally, the lifespan of the early developed foragers was significantly lower than that of the normally developed foragers. This study enriched the content of foraging behaviors of honey bees, and it could be used as the basis for the further explorations on evolutionary mechanism of foraging behaviors of eusocial insects.

  18. High-resolution linkage map for two honeybee chromosomes: the hotspot quest.

    Science.gov (United States)

    Mougel, Florence; Poursat, Marie-Anne; Beaume, Nicolas; Vautrin, Dominique; Solignac, Michel

    2014-02-01

    Meiotic recombination is a fundamental process ensuring proper disjunction of homologous chromosomes and allele shuffling in successive generations. In many species, this cellular mechanism occurs heterogeneously along chromosomes and mostly concentrates in tiny fragments called recombination hotspots. Specific DNA motifs have been shown to initiate recombination in these hotspots in mammals, fission yeast and drosophila. The aim of this study was to check whether recombination also occurs in a heterogeneous fashion in the highly recombinogenic honeybee genome and whether this heterogeneity can be connected with specific DNA motifs. We completed a previous picture drawn from a routine genetic map built with an average resolution of 93 kb. We focused on the two smallest honeybee chromosomes to increase the resolution and even zoomed at very high resolution (3.6 kb) on a fragment of 300 kb. Recombination rates measured in these fragments were placed in relation with occurrence of 30 previously described motifs through a Poisson regression model. A selection procedure suitable for correlated variables was applied to keep significant motifs. These fine and ultra-fine mappings show that recombination rate is significantly heterogeneous although poorly contrasted between high and low recombination rate, contrarily to most model species. We show that recombination rate is probably associated with the DNA methylation state. Moreover, three motifs (CGCA, GCCGC and CCAAT) are good candidates of signals promoting recombination. Their influence is however moderate, doubling at most the recombination rate. This discovery extends the way to recombination dissection in insects.

  19. Bee-hawking by the wasp, Vespa velutina, on the honeybees Apis cerana and A. mellifera.

    Science.gov (United States)

    Tan, K; Radloff, S E; Li, J J; Hepburn, H R; Yang, M X; Zhang, L J; Neumann, P

    2007-06-01

    The vespine wasps, Vespa velutina, specialise in hawking honeybee foragers returning to their nests. We studied their behaviour in China using native Apis cerana and introduced A. mellifera colonies. When the wasps are hawking, A. cerana recruits threefold more guard bees to stave off predation than A. mellifera. The former also utilises wing shimmering as a visual pattern disruption mechanism, which is not shown by A. mellifera. A. cerana foragers halve the time of normal flight needed to dart into the nest entrance, while A. mellifera actually slows down in sashaying flight manoeuvres. V. velutina preferentially hawks A. mellifera foragers when both A. mellifera and A. cerana occur in the same apiary. The pace of wasp-hawking was highest in mid-summer but the frequency of hawking wasps was three times higher at A. mellifera colonies than at the A. cerana colonies. The wasps were taking A. mellifera foragers at a frequency eightfold greater than A. cerana foragers. The final hawking success rates of the wasps were about three times higher for A. mellifera foragers than for A. cerana. The relative success of native A. cerana over European A. mellifera in thwarting predation by the wasp V. velutina is interpreted as the result of co-evolution between the Asian wasp and honeybee, respectively.

  20. Genetic structure of drone congregation areas of Africanized honeybees in southern Brazil

    Directory of Open Access Journals (Sweden)

    Thais Collet

    2009-01-01

    Full Text Available As yet, certain aspects of the Africanization process are not well understood, for example, the reproductive behavior of African and European honeybees and how the first Africanized swarms were formed and spread. Drone congregation areas (DCAs are the ideal place to study honeybee reproduction under natural conditions since hundreds of drones from various colonies gather together in the same geographical area for mating. In the present study, we assessed the genetic structure of seven drone congregations and four commercial European-derived and Africanized apiaries in southern Brazil, employing seven microsatellite loci for this purpose. We also estimated the number of mother-colonies that drones of a specific DCA originated from. Pairwise comparison failed to reveal any population sub-structuring among the DCAs, thus indicating low mutual genetic differentiation. We also observed high genetic similarity between colonies of commercial apiaries and DCAs, besides a slight contribution from a European-derived apiary to a DCA formed nearby. Africanized DCAs seem to have a somewhat different genetic structure when compared to the European.

  1. Differential antennal proteome comparison of adult honeybee drone, worker and queen (Apis mellifera L.).

    Science.gov (United States)

    Fang, Yu; Song, Feifei; Zhang, Lan; Aleku, Dereje Woltedji; Han, Bin; Feng, Mao; Li, Jianke

    2012-01-04

    To understand the olfactory mechanism of honeybee antennae in detecting specific volatile compounds in the atmosphere, antennal proteome differences of drone, worker and queen were compared using 2-DE, mass spectrometry and bioinformatics. Therefore, 107 proteins were altered their expressions in the antennae of drone, worker and queen bees. There were 54, 21 and 32 up-regulated proteins in the antennae of drone, worker and queen, respectively. Proteins upregulated in the drone antennae were involved in fatty acid metabolism, antioxidation, carbohydrate metabolism and energy production, protein folding and cytoskeleton. Proteins upregulated in the antennae of worker and queen bees were related to carbohydrate metabolism and energy production while molecular transporters were upregulated in the queen antennae. Our results explain the role played by the antennae of drone is to aid in perceiving the queen sexual pheromones, in the worker antennae to assist for food search and social communication and in the queen antennae to help pheromone communication with the worker and the drone during the mating flight. This first proteomic study significantly extends our understanding of honeybee olfactory activities and the possible mechanisms played by the antennae in response to various environmental, social, biological and biochemical signals.

  2. Genetic structure of drone congregation areas of Africanized honeybees in southern Brazil.

    Science.gov (United States)

    Collet, Thais; Cristino, Alexandre Santos; Quiroga, Carlos Fernando Prada; Soares, Ademilson Espencer Egea; Del Lama, Marco Antônio

    2009-10-01

    As yet, certain aspects of the Africanization process are not well understood, for example, the reproductive behavior of African and European honeybees and how the first Africanized swarms were formed and spread. Drone congregation areas (DCAs) are the ideal place to study honeybee reproduction under natural conditions since hundreds of drones from various colonies gather together in the same geographical area for mating. In the present study, we assessed the genetic structure of seven drone congregations and four commercial European-derived and Africanized apiaries in southern Brazil, employing seven microsatellite loci for this purpose. We also estimated the number of mother-colonies that drones of a specific DCA originated from. Pairwise comparison failed to reveal any population sub-structuring among the DCAs, thus indicating low mutual genetic differentiation. We also observed high genetic similarity between colonies of commercial apiaries and DCAs, besides a slight contribution from a European-derived apiary to a DCA formed nearby. Africanized DCAs seem to have a somewhat different genetic structure when compared to the European.

  3. Industrial apiculture in the Jordan valley during Biblical times with Anatolian honeybees.

    Science.gov (United States)

    Bloch, Guy; Francoy, Tiago M; Wachtel, Ido; Panitz-Cohen, Nava; Fuchs, Stefan; Mazar, Amihai

    2010-06-22

    Although texts and wall paintings suggest that bees were kept in the Ancient Near East for the production of precious wax and honey, archaeological evidence for beekeeping has never been found. The Biblical term "honey" commonly was interpreted as the sweet product of fruits, such as dates and figs. The recent discovery of unfired clay cylinders similar to traditional hives still used in the Near East at the site of Tel Re ov in the Jordan valley in northern Israel suggests that a large-scale apiary was located inside the town, dating to the 10th-early 9th centuries B.C.E. This paper reports the discovery of remains of honeybee workers, drones, pupae, and larvae inside these hives. The exceptional preservation of these remains provides unequivocal identification of the clay cylinders as the most ancient beehives yet found. Morphometric analyses indicate that these bees differ from the local subspecies Apis mellifera syriaca and from all subspecies other than A. m. anatoliaca, which presently resides in parts of Turkey. This finding suggests either that the Western honeybee subspecies distribution has undergone rapid change during the last 3,000 years or that the ancient inhabitants of Tel Re ov imported bees superior to the local bees in terms of their milder temper and improved honey yield.

  4. The Circuitry of Olfactory Projection Neurons in the Brain of the Honeybee, Apis mellifera

    Science.gov (United States)

    Zwaka, Hanna; Münch, Daniel; Manz, Gisela; Menzel, Randolf; Rybak, Jürgen

    2016-01-01

    In the honeybee brain, two prominent tracts – the medial and the lateral antennal lobe tract – project from the primary olfactory center, the antennal lobes (ALs), to the central brain, the mushroom bodies (MBs), and the protocerebral lobe (PL). Intracellularly stained uniglomerular projection neurons were reconstructed, registered to the 3D honeybee standard brain atlas, and then used to derive the spatial properties and quantitative morphology of the neurons of both tracts. We evaluated putative synaptic contacts of projection neurons (PNs) using confocal microscopy. Analysis of the patterns of axon terminals revealed a domain-like innervation within the MB lip neuropil. PNs of the lateral tract arborized more sparsely within the lips and exhibited fewer synaptic boutons, while medial tract neurons occupied broader regions in the MB calyces and the PL. Our data show that uPNs from the medial and lateral tract innervate both the core and the cortex of the ipsilateral MB lip but differ in their innervation patterns in these regions. In the mushroombody neuropil collar we found evidence for ALT boutons suggesting the collar as a multi modal input site including olfactory input similar to lip and basal ring. In addition, our data support the conclusion drawn in previous studies that reciprocal synapses exist between PNs, octopaminergic-, and GABAergic cells in the MB calyces. For the first time, we found evidence for connections between both tracts within the AL. PMID:27746723

  5. The circuitry of olfactory projection neurons in the brain of the honeybee, Apis mellifera

    Directory of Open Access Journals (Sweden)

    Hanna Zwaka

    2016-09-01

    Full Text Available In the honeybee brain, two prominent tracts - the medial and the lateral antennal lobe tract - project from the primary olfactory center, the antennal lobes, to the central brain, the mushroom bodies, and the protocerebral lobe. Intracellularly stained uniglomerular projection neurons (uPN were reconstructed, registered to the 3D honeybee standard brain atlas, and then used to derive the spatial properties and quantitative morphology of the neurons of both tracts. We evaluated putative synaptic contacts of projection neurons using confocal microscopy. Analysis of the patterns of axon terminals revealed a domain-like innervation within the mushroom body lip neuropil. Projection neurons of the lateral tract arborized more sparsely within the lips and exhibited fewer synaptic boutons, while medial tract neurons occupied broader regions in the mushroom body calyces and the protocerebral lobe. Our data show that uPNs from the medial and lateral tract innervate both the core and the cortex of the ipsilateral mushroom body lip but differ in their innervation patterns in these regions. In the mushroombody neuropil collar we found evidence for ALT boutons suggesting the collar as a multi modal input site including olfactory input similar to lip and basal ring. In addition, our data support the conclusion drawn in previous studies that reciprocal synapses exist between projection neurons, octopaminergic-, and GABAergic cells in the mushroom body calyces. For the first time, we found evidence for connections between both tracts within the antennal lobe.

  6. A critical number of workers in a honeybee colony triggers investment in reproduction

    Science.gov (United States)

    Smith, Michael L.; Ostwald, Madeleine M.; Loftus, J. Carter; Seeley, Thomas D.

    2014-10-01

    Social insect colonies, like individual organisms, must decide as they develop how to allocate optimally their resources among survival, growth, and reproduction. Only when colonies reach a certain state do they switch from investing purely in survival and growth to investing also in reproduction. But how do worker bees within a colony detect that their colony has reached the state where it is adaptive to begin investing in reproduction? Previous work has shown that larger honeybee colonies invest more in reproduction (i.e., the production of drones and queens), however, the term `larger' encompasses multiple colony parameters including number of adult workers, size of the nest, amount of brood, and size of the honey stores. These colony parameters were independently increased in this study to test which one(s) would increase a colony's investment in reproduction via males. This was assayed by measuring the construction of drone comb, the special type of comb in which drones are reared. Only an increase in the number of workers stimulated construction of drone comb. Colonies with over 4,000 workers began building drone comb, independent of the other colony parameters. These results show that attaining a critical number of workers is the key parameter for honeybee colonies to start to shift resources towards reproduction. These findings are relevant to other social systems in which a group's members must adjust their behavior as a function of the group's size.

  7. Spiroplasma apis, a new species from the honey-bee Apis mellifera.

    Science.gov (United States)

    Mouches, C; Bové, J M; Tully, J G; Rose, D L; McCoy, R E; Carle-Junca, P; Garnier, M; Saillard, C

    1983-01-01

    Two spiroplasma strains (B31 and B39) recovered from diseased honey-bees (Apis mellifera) in southwestern France were similar in biochemical, serological and pathological properties. The organisms grew at 30 degrees C, required cholesterol for growth, fermented glucose, catabolized arginine and produced a film and spot reaction. The two spiroplasmas were serologically indistinguishable but were related to serogroup IV spiroplasmas, which had been previously isolated from flower surfaces and from insects. The isolates were distinct from the three previously established species of Spiroplasma and from other presently known serogroups. The G + C content of the DNA from strain B31 was 30 +/- 1 mol %. Both B31 and B39 strains were associated with a lethal infection ("May disease") of the honey-bee. On the basis of the characterization presented here, it is proposed that these spiroplasmal pathogens of bees and allied strains be classified as a new species, Spiroplasma apis, the type strain of which is B31 (ATCC 33834).

  8. Optimization of Power Utilization in Multimobile Robot Foraging Behavior Inspired by Honeybees System

    Directory of Open Access Journals (Sweden)

    Faisul Arif Ahmad

    2014-01-01

    Full Text Available Deploying large numbers of mobile robots which can interact with each other produces swarm intelligent behavior. However, mobile robots are normally running with finite energy resource, supplied from finite battery. The limitation of energy resource required human intervention for recharging the batteries. The sharing information among the mobile robots would be one of the potentials to overcome the limitation on previously recharging system. A new approach is proposed based on integrated intelligent system inspired by foraging of honeybees applied to multimobile robot scenario. This integrated approach caters for both working and foraging stages for known/unknown power station locations. Swarm mobile robot inspired by honeybee is simulated to explore and identify the power station for battery recharging. The mobile robots will share the location information of the power station with each other. The result showed that mobile robots consume less energy and less time when they are cooperating with each other for foraging process. The optimizing of foraging behavior would result in the mobile robots spending more time to do real work.

  9. The pheromones of laying workers in two honeybee sister species: Apis cerana and Apis mellifera.

    Science.gov (United States)

    Tan, Ken; Yang, Mingxian; Wang, Zhengwei; Radloff, Sarah E; Pirk, Christian W W

    2012-04-01

    When a honeybee colony loses its queen, workers activate their ovaries and begin to lay eggs. This is accompanied by a shift in their pheromonal bouquet, which becomes more queen like. Workers of the Asian hive bee Apis cerana show unusually high levels of ovary activation and this can be interpreted as evidence for a recent evolutionary arms race between queens and workers over worker reproduction in this species. To further explore this, we compared the rate of pheromonal bouquet change between two honeybee sister species of Apis cerana and Apis mellifera under queenright and queenless conditions. We show that in both species, the pheromonal components HOB, 9-ODA, HVA, 9-HDA, 10-HDAA and 10-HDA have significantly higher amounts in laying workers than in non-laying workers. In the queenright colonies of A. mellifera and A. cerana, the ratios (9-ODA)/(9-ODA + 9-HDA + 10-HDAA + 10-HDA) are not significantly different between the two species, but in queenless A. cerana colonies the ratio is significant higher than in A. mellifera, suggesting that in A. cerana, the workers' pheromonal bouquet is dominated by the queen compound, 9-ODA. The amount of 9-ODA in laying A. cerana workers increased by over 585% compared with the non-laying workers, that is 6.75 times higher than in A. mellifera where laying workers only had 86% more 9-ODA compared with non-laying workers.

  10. Host Specificity in the Honeybee Parasitic Mite, Varroa spp. in Apis mellifera and Apis cerana.

    Science.gov (United States)

    Beaurepaire, Alexis L; Truong, Tuan A; Fajardo, Alejandro C; Dinh, Tam Q; Cervancia, Cleofas; Moritz, Robin F A

    2015-01-01

    The ectoparasitic mite Varroa destructor is a major global threat to the Western honeybee Apis mellifera. This mite was originally a parasite of A. cerana in Asia but managed to spill over into colonies of A. mellifera which had been introduced to this continent for honey production. To date, only two almost clonal types of V. destructor from Korea and Japan have been detected in A. mellifera colonies. However, since both A. mellifera and A. cerana colonies are kept in close proximity throughout Asia, not only new spill overs but also spill backs of highly virulent types may be possible, with unpredictable consequences for both honeybee species. We studied the dispersal and hybridisation potential of Varroa from sympatric colonies of the two hosts in Northern Vietnam and the Philippines using mitochondrial and microsatellite DNA markers. We found a very distinct mtDNA haplotype equally invading both A. mellifera and A. cerana in the Philippines. In contrast, we observed a complete reproductive isolation of various Vietnamese Varroa populations in A. mellifera and A. cerana colonies even if kept in the same apiaries. In light of this variance in host specificity, the adaptation of the mite to its hosts seems to have generated much more genetic diversity than previously recognised and the Varroa species complex may include substantial cryptic speciation.

  11. Mitochondrial genome of the Levant Region honeybee, Apis mellifera syriaca (Hymenoptera: Apidae).

    Science.gov (United States)

    Haddad, Nizar Jamal

    2016-11-01

    The mitochondrial genome sequence of Levant Region honeybee, Apis mellifera syriaca, is analyzed and presented for the public for the first time. The genome of this honeybee is 15,428 bp in its length, containing 13 protein-coding genes, 22 transfer RNA genes and 2 ribosomal RNA genes. The overall base composition is A (42.88%), C (9.97%), G (5.85%), and T (41.3%), the percentage of A and T being higher than that of G and C. Percentage of non-ATGC characters is 0.007. All the genes are encoded on H-strand, except for four subunit genes (ND1, ND4, ND4L, and ND5), two rRNA genes and eight tRNA genes. The publication of the mitochondrial genome sequence will play a vital role in the conservation genetic projects of A. mellifera, in general, and Apis mellifera syriaca, in particular; moreover, it will be useful for further phylogenetic analysis.

  12. Bee-hawking by the wasp, Vespa velutina, on the honeybees Apis cerana and A. mellifera

    Science.gov (United States)

    Tan, K.; Radloff, S. E.; Li, J. J.; Hepburn, H. R.; Yang, M. X.; Zhang, L. J.; Neumann, P.

    2007-06-01

    The vespine wasps, Vespa velutina, specialise in hawking honeybee foragers returning to their nests. We studied their behaviour in China using native Apis cerana and introduced A. mellifera colonies. When the wasps are hawking, A. cerana recruits threefold more guard bees to stave off predation than A. mellifera. The former also utilises wing shimmering as a visual pattern disruption mechanism, which is not shown by A. mellifera. A. cerana foragers halve the time of normal flight needed to dart into the nest entrance, while A. mellifera actually slows down in sashaying flight manoeuvres. V. velutina preferentially hawks A. mellifera foragers when both A. mellifera and A. cerana occur in the same apiary. The pace of wasp-hawking was highest in mid-summer but the frequency of hawking wasps was three times higher at A. mellifera colonies than at the A. cerana colonies. The wasps were taking A. mellifera foragers at a frequency eightfold greater than A. cerana foragers. The final hawking success rates of the wasps were about three times higher for A. mellifera foragers than for A. cerana. The relative success of native A. cerana over European A. mellifera in thwarting predation by the wasp V. velutina is interpreted as the result of co-evolution between the Asian wasp and honeybee, respectively.

  13. Evaluation of Apis mellifera syriaca Levant region honeybee conservation using comparative genome hybridization.

    Science.gov (United States)

    Haddad, Nizar Jamal; Batainh, Ahmed; Saini, Deepti; Migdadi, Osama; Aiyaz, Mohamed; Manchiganti, Rushiraj; Krishnamurthy, Venkatesh; Al-Shagour, Banan; Brake, Mohammad; Bourgeois, Lelania; De Guzman, Lilia; Rinderer, Thomas; Hamouri, Zayed Mahoud

    2016-06-01

    Apis mellifera syriaca is the native honeybee subspecies of Jordan and much of the Levant region. It expresses behavioral adaptations to a regional climate with very high temperatures, nectar dearth in summer, attacks of the Oriental wasp and is resistant to Varroa mites. The A. m. syriaca control reference sample (CRS) in this study was originally collected and stored since 2001 from "Wadi Ben Hammad", a remote valley in the southern region of Jordan. Morphometric and mitochondrial DNA markers of these honeybees had shown highest similarity to reference A. m. syriaca samples collected in 1952 by Brother Adam of samples collected from the Middle East. Samples 1-5 were collected from the National Center for Agricultural Research and Extension breeding apiary which was established for the conservation of A. m. syriaca. Our objective was to determine the success of an A. m. syriaca honey bee conservation program using genomic information from an array-based comparative genomic hybridization platform to evaluate genetic similarities to a historic reference collection (CRS). Our results had shown insignificant genomic differences between the current population in the conservation program and the CRS indicated that program is successfully conserving A. m. syriaca. Functional genomic variations were identified which are useful for conservation monitoring and may be useful for breeding programs designed to improve locally adapted strains of A. m. syriaca.

  14. Effects of honeybee (Apis mellifera venom on keratinocyte migration in vitro

    Directory of Open Access Journals (Sweden)

    Sang Mi Han

    2013-01-01

    Full Text Available Background: Since the ancient times the skin aging application of honeybee venom (BV is practiced and persisted until nowadays. The present study evaluated the effect of the honeybee venom (BV on keratinocyte migration in wound healing model in vitro. Objective: To access BV further as a cosmetic ingredient and a potential external application for topical uses, we performed studies to investigate the biologic effect of BV treatment on keratinocyte proliferation and migration in vitro. Material and Methods: BV cytotoxicity was assessed by using a 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl tetrazolium bromide (MTT assay over 24 h. To assess BV genotoxicity, damage to human epidermal keratinocyte (HEK was evaluated using the Comet assay. HEK migration was evaluated using a commercial wound healing kit. The skin pro-inflammatory cytokines interleukin (IL-8 and tumor necrosis factor (TNF-α were examined to evaluate the pro-inflammatory response to BV. Results: It was found that BV (<100 μg/ml was not cytotoxic and stimulated more HEK proliferation and migration compared to negative control, and did not induce DNA damage. There were also decreases in IL-8 and TNF-α expression levels in HEK at all time points. Conclusion: These findings highlight the potential of topical application of BV for promoting cell regeneration and wound treatment.

  15. Using Errors by Guard Honeybees (Apis mellifera) to Gain New Insights into Nestmate Recognition Signals.

    Science.gov (United States)

    Pradella, Duccio; Martin, Stephen J; Dani, Francesca R

    2015-11-01

    Although the honeybee (Apis mellifera) is one of the world most studied insects, the chemical compounds used in nestmate recognition, remains an open question. By exploiting the error prone recognition system of the honeybee, coupled with genotyping, we studied the correlation between cuticular hydrocarbon (CHC) profile of returning foragers and acceptance or rejection behavior by guards. We revealed an average recognition error rate of 14% across 3 study colonies, that is, allowing a non-nestmate colony entry, or preventing a nestmate from entry, which is lower than reported in previous studies. By analyzing CHCs, we found that CHC profile of returning foragers correlates with acceptance or rejection by guarding bees. Although several CHC were identified as potential recognition cues, only a subset of 4 differed consistently for their relative amount between accepted and rejected individuals in the 3 studied colonies. These include a unique group of 2 positional alkene isomers (Z-8 and Z-10), which are almost exclusively produced by the bees Bombus and Apis spp, and may be candidate compounds for further study.

  16. Effects of abamectin and deltamethrin to the foragers honeybee workers of Apis mellifera jemenatica (Hymenoptera: Apidae under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Dalal Musleh Aljedani

    2017-07-01

    Full Text Available This study aimed at evaluating the toxicity of some insecticides (abamectin and deltamethrin on the lethal time (LT50 and midgut of foragers honeybee workers of Apis mellifera jemenatica were studied under laboratory conditions. The bees were provided with water, food, natural protein and sugar solution with insecticide (concentration: 2.50 ppm deltamethrin and 0.1 ppm abamectin. The control group was not treated with any kind of insecticides. The mortality was assessed at 1, 2, 4, 6, 12, 24, 48, and 72 hour (h after insecticides treatment and period to calculate the value of lethal time (LT50. But the samples the histology study of midgut collected after 24 h were conducted by Scanning Electron Microscope. The results showed the effects of insecticides on the current results show that abamectin has an adverse effect on honeybees, there is a clear impact on the lethal time (LT50 was the abamectin faster in the death of honeybee workers compared to deltamethrin. Where have reached to abamectin (LT50 = 21.026 h, deltamethrin (LT50 = 72.011 h. However, abamectin also effects on cytotoxic midgut cells that may cause digestive disorders in the midgut, epithelial tissue is formed during morphological alterations when digestive cells die. The extends into the internal cavity, and at the top, there is epithelial cell striated border that has many holes and curves, abamectin seems to have crushed the layers of muscle. Through the current results can say abamectin most toxicity on honeybees colony health and vitality, especially foragers honeybee workers.

  17. Interactive effects of large- and small-scale sources of feral honey-bees for sunflower in the Argentine Pampas.

    Directory of Open Access Journals (Sweden)

    Agustín Sáez

    Full Text Available Pollinators for animal pollinated crops can be provided by natural and semi-natural habitats, ranging from large vegetation remnants to small areas of non-crop land in an otherwise highly modified landscape. It is unknown, however, how different small- and large-scale habitat patches interact as pollinator sources. In the intensively managed Argentine Pampas, we studied the additive and interactive effects of large expanses (up to 2200 ha of natural habitat, represented by untilled isolated "sierras", and narrow (3-7 m wide strips of semi-natural habitat, represented by field margins, as pollinator sources for sunflower (Helianthus annus. We estimated visitation rates by feral honey-bees, Apis mellifera, and native flower visitors (as a group at 1, 5, 25, 50 and 100 m from a field margin in 17 sunflower fields 0-10 km distant from the nearest sierra. Honey-bees dominated the pollinator assemblage accounting for >90% of all visits to sunflower inflorescences. Honey-bee visitation was strongly affected by proximity to the sierras decreasing by about 70% in the most isolated fields. There was also a decline in honey-bee visitation with distance from the field margin, which was apparent with increasing field isolation, but undetected in fields nearby large expanses of natural habitat. The probability of observing a native visitor decreased with isolation from the sierras, but in other respects visitation by flower visitors other than honey-bees was mostly unaffected by the habitat factors assessed in this study. Overall, we found strong hierarchical and interactive effects between the study large and small-scale pollinator sources. These results emphasize the importance of preserving natural habitats and managing actively field verges in the absence of large remnants of natural habitat for improving pollinator services.

  18. Somatic maintenance resources in the honeybee worker fat body are distributed to withstand the most life-threatening challenges at each life stage

    National Research Council Canada - National Science Library

    Seehuus, Siri-Christine; Taylor, Simon; Petersen, Kjell; Aamodt, Randi M

    2013-01-01

    In a global transcriptome analysis of three natural and three manipulated honeybee worker phenotypes at different ages, we have investigated the distribution of investment in somatic maintenance of the fat body...

  19. Somatic Maintenance Resources in the Honeybee Worker Fat Body Are Distributed to Withstand the Most Life-Threatening Challenges at Each Life Stage: e69870

    National Research Council Canada - National Science Library

    Siri-Christine Seehuus; Simon Taylor; Kjell Petersen; Randi M Aamodt

    2013-01-01

      In a global transcriptome analysis of three natural and three manipulated honeybee worker phenotypes at different ages, we have investigated the distribution of investment in somatic maintenance of the fat body...

  20. Species richness of wild bees, but not the use of managed honeybees, increases fruit set of a pollinator‐dependent crop

    National Research Council Canada - National Science Library

    Mallinger, Rachel E; Gratton, Claudio; Diekötter, Tim

    2015-01-01

    .... Therefore, at the farm scale, we examined the pollination contribution of both native, wild bees and managed honeybees to apples and assessed the relative importance of bee abundance vs. species richness...

  1. Determination of Pesticide Residues in Honeybees using Modified QUEChERS Sample Work-Up and Liquid Chromatography-Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Żaneta Bargańska

    2014-03-01

    Full Text Available Increasing emissions of chemical compounds to the environment, especially of pesticides, is one of factors that may explain present honeybee colony losses. In this work, an analytical method employing liquid chromatography-tandem mass spectrometry (LC-MS/MS was optimized for the simultaneous screening of 19 pesticides which have not been yet determined in honeybee samples from northern Poland (Pomerania. The sample preparation, based on the QuEChERS method combining salting-out liquid-liquid extraction to acetonitrile and a dispersive-SPE clean-up, was adjusted to honeybee samples by adding a small amount of hexane to eliminate beeswax. The recovery of analytes ranged from 70% to 120% with relative standard deviation ≤20%. The limits of detection were in the range of 0.91–25 ng/g. A total of 19 samples of honeybees from suspected pesticide poisoning incidents were analyzed, in which 19 different pesticides were determined.

  2. Learning

    Directory of Open Access Journals (Sweden)

    Mohsen Laabidi

    2014-01-01

    Full Text Available Nowadays learning technologies transformed educational systems with impressive progress of Information and Communication Technologies (ICT. Furthermore, when these technologies are available, affordable and accessible, they represent more than a transformation for people with disabilities. They represent real opportunities with access to an inclusive education and help to overcome the obstacles they met in classical educational systems. In this paper, we will cover basic concepts of e-accessibility, universal design and assistive technologies, with a special focus on accessible e-learning systems. Then, we will present recent research works conducted in our research Laboratory LaTICE toward the development of an accessible online learning environment for persons with disabilities from the design and specification step to the implementation. We will present, in particular, the accessible version “MoodleAcc+” of the well known e-learning platform Moodle as well as new elaborated generic models and a range of tools for authoring and evaluating accessible educational content.

  3. Expression analysis of Egr-1 ortholog in metamorphic brain of honeybee (Apis mellifera L.): Possible evolutionary conservation of roles of Egr in eye development in vertebrates and insects.

    Science.gov (United States)

    Ugajin, Atsushi; Watanabe, Takayuki; Uchiyama, Hironobu; Sasaki, Tetsuhiko; Yajima, Shunsuke; Ono, Masato

    2016-09-16

    Specific genes quickly transcribed after extracellular stimuli without de novo protein synthesis are known as immediate early genes (IEGs) and are thought to contribute to learning and memory processes in the mature nervous system of vertebrates. A recent study revealed that the homolog of Early growth response protein-1 (Egr-1), which is one of the best-characterized vertebrate IEGs, shared similar properties as a neural activity-dependent gene in the adult brain of insects. With regard to the roles of vertebrate Egr-1 in neural development, the contribution to the development and growth of visual systems has been reported. However, in insects, the expression dynamics of the Egr-1 homologous gene during neural development remains poorly understood. Our expression analysis demonstrated that AmEgr, a honeybee homolog of Egr-1, was transiently upregulated in the developing brain during the early to mid pupal stages. In situ hybridization and 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry revealed that AmEgr was mainly expressed in post-mitotic cells in optic lobes, the primary visual center of the insect brain. These findings suggest the evolutionarily conserved role of Egr homologs in the development of visual systems in vertebrates and insects. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Floral biology and behavior of Africanized honeybees Apis mellifera in soybean (Glycine max L. Merril

    Directory of Open Access Journals (Sweden)

    Wainer César Chiari

    2005-05-01

    Full Text Available This research was carried out to evaluate the pollination by Africanized honeybees Apis mellifera, the floral biology and to observe the hoarding behavior in the soybean flowers (Glycine max Merril, var. BRS-133. The treatments were constituted of demarcated areas for free visitation of insects, covered areas by cages with a honeybee colony (A. mellifera and also covered areas by cage without insects visitation. All areas had 24 m² (4m x 6m. The soybean flowers stayed open for a larger time (82.82 ± 3.48 hours in covered area without honeybees. The stigma of the flowers was also more receptive (P=0.0021 in covered area without honeybees (87.3 ± 33.0% and at 10:42 o'clock was the schedule of greater receptivity. The pollen stayed viable in all treatments, the average was 99.60 ± 0.02%, which did not present differences among treatments. The percentage of abortion of the flowers was 82.91% in covered area without honeybees, this result was superior (P=0.0002 to the 52.66% and 53.95% of the treatments uncovered and covered with honeybees, respectively. Honeybees were responsible for 87.7% of the pollination accomplished by the insects. The medium amounts of total sugar and glucose measured in the nectar of the flowers were, 14.33 ± 0.96 mg/flower and 3.61 ± 0.36 mg/ flower, respectively, not showing differences (PEste experimento teve como objetivos avaliar a polinização realizada por abelhas Apis mellifera, estudar a biologia floral e observar o comportamento de coleta nas flores de soja (Glycine max L. Merril, variedade BRS-133 plantadas na região de Maringá-PR. Os tratamentos constituíram de áreas demarcadas de livre visitação por insetos, áreas cobertas por gaiolas, com uma colônia de abelhas (A. mellifera no seu interior e plantas também cobertas por gaiola que impedia a visitação por insetos. Todas as áreas possuíam 24 m² (4 m x 6 m. As flores de soja permaneceram abertas por um tempo maior (82,82 ± 3,48 horas no

  5. [Invasive and minimally invasive hemodynamic monitoring].

    Science.gov (United States)

    Hansen, Matthias

    2016-10-01

    Advanced hemodynamic monitoring is necessary for adequate management of high-risk patients or patients with derangement of circulation. Studies demonstrate a benefit of early goal directed therapy in unstable cardiopulmonary situations. In these days we have different possibilities of minimally invasive or invasive hemodynamic monitoring. Minimally invasive measurements like pulse conture analysis or pulse wave analysis being less accurate under some circumstances, however only an artery catheter is needed for cardiac output monitoring. Pulmonary artery, transpulmonary thermodilution and lithium dilution technology have acceptable accuracy in cardiac output measurement. For therapy of unstable circulation there are additionally parameters to obtain. The pulmonary artery catheter is the device with the largest rate of complications, used by a trained crew and with a correct indication, his use is unchained justified.

  6. Prostate resection - minimally invasive

    Science.gov (United States)

    ... invasive URL of this page: //medlineplus.gov/ency/article/007415.htm Prostate resection - minimally invasive To use ... into your bladder instead of out through the urethra ( retrograde ... on New Developments in Prostate Cancer and Prostate Diseases. Evaluation and treatment of lower ...

  7. Rules and mechanisms of punishment learning in honey bees: the aversive conditioning of the sting extension response.

    Science.gov (United States)

    Tedjakumala, Stevanus Rio; Giurfa, Martin

    2013-08-15

    Honeybees constitute established model organisms for the study of appetitive learning and memory. In recent years, the establishment of the technique of olfactory conditioning of the sting extension response (SER) has yielded new insights into the rules and mechanisms of aversive learning in insects. In olfactory SER conditioning, a harnessed bee learns to associate an olfactory stimulus as the conditioned stimulus with the noxious stimulation of an electric shock as the unconditioned stimulus. Here, we review the multiple aspects of honeybee aversive learning that have been uncovered using Pavlovian conditioning of the SER. From its behavioral principles and sensory variants to its cellular bases and implications for understanding social organization, we present the latest advancements in the study of punishment learning in bees and discuss its perspectives in order to define future research avenues and necessary improvements. The studies presented here underline the importance of studying honeybee learning not only from an appetitive but also from an aversive perspective, in order to uncover behavioral and cellular mechanisms of individual and social plasticity.

  8. Depression of brain dopamine and its metabolite after mating in European honeybee (Apis mellifera) queens

    Science.gov (United States)

    Harano, Ken-Ichi; Sasaki, Ken; Nagao, Takashi

    2005-07-01

    To explore neuro-endocrinal changes in the brain of European honeybee (Apis mellifera) queens before and after mating, we measured the amount of several biogenic amines, including dopamine and its metabolite in the brain of 6- and 12-day-old virgins and 12-day-old mated queens. Twelve-day-old mated queens showed significantly lower amounts of dopamine and its metabolite (N-acetyldopamine) than both 6- and 12-day-old virgin queens, whereas significant differences in the amounts of these amines were not detected between 6- and 12-day-old virgin queens. These results are explained by down-regulation of both synthesis and secretion of brain dopamine after mating. It is speculated that higher amounts of brain dopamine in virgin queens might be involved in activation of ovarian follicles arrested in previtellogenic stages, as well as regulation of their characteristic behaviors.

  9. Definitive identification of magnetite nanoparticles in the abdomen of the honeybee Apis mellifera

    Energy Technology Data Exchange (ETDEWEB)

    Desoil, M [Biological Physics Department, University of Mons-Hainaut (Belgium); Gillis, P [Biological Physics Department, University of Mons-Hainaut (Belgium); Gossuin, Y [Biological Physics Department, University of Mons-Hainaut (Belgium); Pankhurst, Q A [London Centre for Nanotechnology, University College London, London WC1E 7HN (United Kingdom); Hautot, D [London Centre for Nanotechnology, University College London, London WC1E 7HN (United Kingdom); Institute for Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-en-Trent, ST4 7QB (United Kingdom)

    2005-01-01

    The biogenic magnetic properties of the honeybee Apis mellifera were investigated with a view to understanding the bee's physiological response to magnetic fields. The magnetisations of bee abdomens on one hand, and heads and thoraxes on the other hand, were measured separately as functions of temperature and field. Both the antiferromagnetic responses of the ferrihydrite cores of the iron storage protein ferritin, and the ferrimagnetic responses of nanoscale magnetite (Fe{sub 3}O{sub 4}) particles, were observed. Relatively large magnetite particles (ca. 30 nm or more), capable of retaining a remanent magnetisation at room temperature, were found in the abdomens, but were absent in the heads and thoraxes. In both samples, more than 98% of the iron atoms were due to ferritin.

  10. Effects of the muscarinic antagonists atropine and pirenzepine on olfactory conditioning in the honeybee.

    Science.gov (United States)

    Cano Lozano, V; Gauthier, M

    1998-04-01

    One-trial conditioning of the proboscis extension reflex (PER) in honeybees was used to examine the qualitative effects of two muscarinic antagonists, atropine and pirenzepine, on the acquisition and retrieval of memory following intracranial injection. The main result of this study is that atropine, at a relatively high concentration of 10(-2) M, impairs memory retrieval but not acquisition of memory after a single olfactory conditioning trial (at this concentration, there is no effect of atropine on the sensorimotor components of the PER). This result is in agreement with the effects of scopolamine, reported in a previously published article. Pirenzepine, at the same concentration as atropine, had no effect on either acquisition or retrieval of memory. These results suggest that blockade of muscarinic-like receptors, except those that bind to pirenzepine, induces solely an impairment of memory retrieval.

  11. Stop signals provide cross inhibition in collective decision-making by honeybee swarms.

    Science.gov (United States)

    Seeley, Thomas D; Visscher, P Kirk; Schlegel, Thomas; Hogan, Patrick M; Franks, Nigel R; Marshall, James A R

    2012-01-01

    Honeybee swarms and complex brains show many parallels in how they make decisions. In both, separate populations of units (bees or neurons) integrate noisy evidence for alternatives, and, when one population exceeds a threshold, the alternative it represents is chosen. We show that a key feature of a brain--cross inhibition between the evidence-accumulating populations--also exists in a swarm as it chooses its nesting site. Nest-site scouts send inhibitory stop signals to other scouts producing waggle dances, causing them to cease dancing, and each scout targets scouts' reporting sites other than her own. An analytic model shows that cross inhibition between populations of scout bees increases the reliability of swarm decision-making by solving the problem of deadlock over equal sites.

  12. Ethnomedicinal Uses of Honeybee Products in Lithuania: The First Analysis of Archival Sources.

    Science.gov (United States)

    Pranskuniene, Zivile; Bernatoniene, Jurga; Simaitiene, Zenona; Pranskunas, Andrius; Mekas, Tauras

    2016-01-01

    Lithuania has old ethnomedicine traditions, consisting of many recipes with herbal, animal, and mineral original ingredients. All these findings were mostly collected in Lithuanian language, often in local community's dialects, and stored only in archives. We analyzed archival sources about honeybee and its products used for medicinal purposes dated from 1886 till 1992 in different parts of Lithuania. We systematized and presented the most important information about bees and their products: indication for usage, ingredients used in the recipe, their preparation techniques, and application for therapeutic purposes. Researchers in Lithuania are now looking for new evidence based indications and preparation and standardization methods of bee products. Archival sources are a foundation for studies in Lithuania. The results can be integrated into scientifically approved folk medicine practices into today's healthcare.

  13. A PCR detection method for rapid identification of Melissococcus pluton in honeybee larvae.

    Science.gov (United States)

    Govan, V A; Brözel, V; Allsopp, M H; Davison, S

    1998-05-01

    Melissococcus pluton is the causative agent of European foulbrood, a disease of honeybee larvae. This bacterium is particularly difficult to isolate because of its stringent growth requirements and competition from other bacteria. PCR was used selectively to amplify specific rRNA gene sequences of M. pluton from pure culture, from crude cell lysates, and directly from infected bee larvae. The PCR primers were designed from M. pluton 16S rRNA sequence data. The PCR products were visualized by agarose gel electrophoresis and confirmed as originating from M. pluton by sequencing in both directions. Detection was highly specific, and the probes did not hybridize with DNA from other bacterial species tested. This method enabled the rapid and specific detection and identification of M. pluton from pure cultures and infected bee larvae.

  14. Cleavage of honeybee prepromelittin by an endoprotease from rat liver microsomes: identification of intact signal peptide.

    Science.gov (United States)

    Mollay, C; Vilas, U; Kreil, G

    1982-01-01

    It has previously been shown that rat liver microsomes contain a proteolytic enzyme that cleaves honeybee prepromelittin to yield promelittin. This enzyme has now been further purified by centrifugation on a sucrose-deoxycholate gradient and then reconstituted into phospholipid vesicles. Incubation of prepromelittin with vesicles in the presence of melittin yields, in addition to promelittin, a hydrophobic peptide. The latter could be isolated by extraction with l-butanol and paper electrophoresis in 30% formic acid and was shown to be intact signal peptide by analysis of peptic fragments and automated Edman degradation. The microsomal enzyme is thus an endoprotease that hydrolyzes prepromelittin exclusively at the pre-pro junction. The precision of this cleavage of an insect preprotein by a rat liver enzyme indicates that we are dealing with the ubiquitous eukaryotic signal peptidase. PMID:7048315

  15. Weight watching and the effect of landscape on honeybee colony productivity

    DEFF Research Database (Denmark)

    Lecocq, Antoine; Kryger, Per; Vejsnæs, Flemming

    2015-01-01

    sites can give valuable insight on the influence of landscape on their productivity and might point towards future directions for modernized beekeeping practices. Using data on honeybee colony weights provided by electronic scales spread across Denmark, we investigated the effect of the immediate...... landscape on colony productivity. In order to extract meaningful information, data manipulation was necessary prior to analysis as a result of different management regimes or scales malfunction. Once this was carried out, we were able to show that colonies situated in landscapes composed of more than 50......% urban areas were significantly more productive than colonies situated in those with more than 50% agricultural areas or those in mixed areas. As well as exploring some of the potential reasons for the observed differences, we discuss the value of weight monitoring of colonies on a large scale...

  16. Lethal infection thresholds of Paenibacillus larvae for honeybee drone and worker larvae (Apis mellifera).

    Science.gov (United States)

    Behrens, Dieter; Forsgren, Eva; Fries, Ingemar; Moritz, Robin F A

    2010-10-01

    We compared the mortality of honeybee (Apis mellifera) drone and worker larvae from a single queen under controlled in vitro conditions following infection with Paenibacillus larvae, a bacterium causing the brood disease American Foulbrood (AFB). We also determined absolute P. larvae cell numbers and lethal titres in deceased individuals of both sexes up to 8 days post infection using quantitative real-time PCR (qPCR). Our results show that in drones the onset of infection induced mortality is delayed by 1 day, the cumulative mortality is reduced by 10% and P. larvae cell numbers are higher than in worker larvae. Since differences in bacterial cell titres between sexes can be explained by differences in body size, larval size appears to be a key parameter for a lethal threshold in AFB tolerance. Both means and variances for lethal thresholds are similar for drone and worker larvae suggesting that drone resistance phenotypes resemble those of related workers.

  17. Temporal genetic structure of a drone congregation area of the giant Asian honeybee (Apis dorsata).

    Science.gov (United States)

    Kraus, F B; Koeniger, N; Tingek, S; Moritz, R F A

    2005-12-01

    The giant Asian honeybee (Apis dorsata), like all other members of the genus Apis, has a complex mating system in which the queens and males (drones) mate at spatially defined drone congregation areas (DCAs). Here, we studied the temporal genetic structure of a DCA of A. dorsata over an 8-day time window by the genotyping of sampled drones with microsatellite markers. Analysis of the genotypic data revealed a significant genetic differentiation between 3 sampling days and indicated that the DCA was used by at least two subpopulations at all days in varying proportions. The estimation of the number of colonies which used the DCA ranged between 20 and 40 colonies per subpopulation, depending on the estimation procedure and population. The overall effective population size was estimated as high as N (e)=140. The DCA seems to counteract known tendencies of A. dorsata for inbreeding within colony aggregations by facilitating gene flow among subpopulations and increasing the effective population size.

  18. Short communication. Presence, quantification and phylogeny of Israeli acute paralysis virus of honeybees in Andalusia (Spain

    Directory of Open Access Journals (Sweden)

    M. Vicente-Rubiano

    2013-07-01

    Full Text Available This study aimed to assess the possible relationship between the presence of Israeli acute paralysis virus (IAPV of honeybees and disease symptoms development at the colony level, to describe the IAPV load in field colonies and to illustrate phylogenetic relationships between IAPV isolates in Andalusia (Spain. Presence and load of IAPV was studied in 96 colonies from all provinces in Andalusia. Epidemiological surveys were performed in all the colonies to assess their sanitary status. IAPV was found in 13.5% of the sampled colonies, and no association was observed between the presence of IAPV and disease symptoms at the colony level. An average IAPV load was established in 4.9•105 genome equivalent copies per bee. Phylogenetic analysis revealed that Andalusian isolates belong to a different lineage to a previously described isolate found in Valencia (2010. The results of this study will help us understand the epidemiology and effect of IAPV on Spanish colonies.

  19. Wing morphometry of Slovak lines of Apis mellifera carnica honeybee population

    Directory of Open Access Journals (Sweden)

    Robert Chlebo

    2016-05-01

    Full Text Available Samples of honeybee workers and drones forewings from 16 hives belonging to various lines of Slovak Carniolan bee kept by queen breeders in Slovakia were taken in year 2013 to perform wing morphometry measurements. The Dawino, complex wing morphometry method, has been applied for workers samples and measurements of Cubital index for drones samples. Worker bees samples showed similarity to Carniolan bee standard from 50 to 84 % in 15 cases, on sample was out of standard. Cubital index of drones samples comply with a carnica bee standard in 14 cases, 2 samples were out of the range. The future of use wing morphometry for detection of hybridization in A. m. carnica populations is discussed.

  20. Characterisation of the RNA interference response against the long-wavelength receptor of the honeybee.

    Science.gov (United States)

    Leboulle, Gérard; Niggebrügge, Claudia; Roessler, Reinhard; Briscoe, Adriana D; Menzel, Randolf; Hempel de Ibarra, Natalie

    2013-10-01

    Targeted knock-down is the method of choice to advance the study of sensory and brain functions in the honeybee by using molecular techniques. Here we report the results of a first attempt to interfere with the function of a visual receptor, the long-wavelength-sensitive (L-) photoreceptor. RNA interference to inhibit this receptor led to a reduction of the respective mRNA and protein. The interference effect was limited in time and space, and its induction depended on the time of the day most probably because of natural daily variations in opsin levels. The inhibition did not effectively change the physiological properties of the retina. Possible constraints and implications of this method for the study of the bee's visual system are discussed. Overall this study underpins the usefulness and feasibility of RNA interference as manipulation tool in insect brain research.

  1. Foraging reactivation in the honeybee Apis mellifera L.: factors affecting the return to known nectar sources

    Science.gov (United States)

    Gil, Mariana; Farina, Walter Marcelo

    2002-05-01

    This paper addresses, what determines that experienced forager honeybees return to places where they have previously exploited nectar. Although there was already some evidence that dance and trophallaxis can cause bees to return to feed, the fraction of unemployed foragers that follow dance or receive food from employed foragers before revisiting the feeder was unknown. We found that 27% of the experienced foragers had no contact with the returning foragers inside the hive. The most common interactions were dance following (64%) and trophallaxis (21%). The great variability found in the amount of interactions suggests that individual bees require different stimulation before changing to the foraging mode. This broad disparity negatively correlated with the number of days after marking at the feeder, a variable that is closely related to the foraging experience, suggesting that a temporal variable might affect the decision-making in reactivated foragers.

  2. Complete mitochondrial genome of the Algerian honeybee, Apis mellifera intermissa (Hymenoptera: Apidae).

    Science.gov (United States)

    Hu, Peng; Lu, Zhi-Xiang; Haddad, Nizar; Noureddine, Adjlane; Loucif-Ayad, Wahida; Wang, Yong-Zhi; Zhao, Ren-Bin; Zhang, Ai-Ling; Guan, Xin; Zhang, Hai-Xi; Niu, Hua

    2016-05-01

    In this study, the complete mitochondrial genome sequence of Algerian honeybee, Apis mellifera intermissa, is analyzed for the first time. The results show that this genome is 16,336 bp in length, and contains 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 control region (D-loop). The overall base composition is A (43.2%), C (9.8%), G (5.6%), and T (41.4%), so the percentage of A and T (84.6%) is considerably higher than that of G and C. All the genes are encoded on H-strand, except for four subunit genes (ND1, ND4, ND4L, and ND5), two rRNA genes (12S and 16S rRNA), and eight tRNA genes. The complete mitochondrial genome sequence reported here would be useful for further phylogenetic analysis and conservation genetic studies in A. m. intermissa.

  3. Reassessing the role of the honeybee (Apis mellifera) Dufour's gland in egg marking

    Science.gov (United States)

    Martin, Stephen; Jones, Graeme; Châline, Nicolas; Middleton, Helen; Ratnieks, Francis

    2002-10-01

    Dufour's gland secretion may allow worker honeybees to discriminate between queen-laid and worker-laid eggs. To investigate this, we combined the chemical analysis of individually treated eggs with an egg removal bioassay. We partitioned queen Dufour's gland into hydrocarbon and ester fractions. The bioassay showed that worker-laid eggs treated with either whole gland extract, ester fraction or synthetic gland esters were removed more slowly than untreated worker-laid eggs. However, the effect only lasted up to 20 h. Worker-laid eggs treated with the hydrocarbon fraction were removed at the same rate as untreated eggs. The amount of ester which reduced the egg removal rate was far higher than that naturally found on queen-laid or worker-laid eggs, and at natural ester levels no effect was found. Our results indicate that esters or hydrocarbons probably do not function as the signal by which eggs can be discriminated.

  4. Definitive identification of magnetite nanoparticles in the abdomen of the honeybee Apis mellifera

    Science.gov (United States)

    Desoil, M.; Gillis, P.; Gossuin, Y.; Pankhurst, Q. A.; Hautot, D.

    2005-01-01

    The biogenic magnetic properties of the honeybee Apis mellifera were investigated with a view to understanding the bee's physiological response to magnetic fields. The magnetisations of bee abdomens on one hand, and heads and thoraxes on the other hand, were measured separately as functions of temperature and field. Both the antiferromagnetic responses of the ferrihydrite cores of the iron storage protein ferritin, and the ferrimagnetic responses of nanoscale magnetite (Fe3O4) particles, were observed. Relatively large magnetite particles (ca. 30 nm or more), capable of retaining a remanent magnetisation at room temperature, were found in the abdomens, but were absent in the heads and thoraxes. In both samples, more than 98% of the iron atoms were due to ferritin.

  5. Three-dimensional model of the honeybee venom allergen Api m 7: structural and functional insights.

    Science.gov (United States)

    Georgieva, Dessislava; Greunke, Kerstin; Betzel, Christian

    2010-06-01

    Api m 7 is one of the major protease allergens of the honeybee venom. It consists of a serine protease-like (SPL) and a CUB domain. The knowledge about the structure and function of Api m 7 is limited mainly to its amino acid sequence. Three-dimensional models of the two structural domains were constructed using their amino acid sequences and the crystallographic coordinates of prophenoloxidase-activating factor (PPAF-II) as a template for the SPL domain and the coordinates of porcine spermadhesin PSP-II for the CUB domain. The structural organization of Api m 7 suggests that the CUB domain is involved in interactions with natural substrates while the SPL domain probably activates zymogens. IgE epitopes and antigenic sites were predicted. Api m 7 shows structural and functional similarity to the members of the PPAF-II family. Possible substrates, function and evolution of the enzyme are discussed in the paper.

  6. Invasion of the Zebra Mussels: A Mock Trial Activity

    Science.gov (United States)

    Beck, Judy A.; Czerniak, Charlene M.

    2005-01-01

    In this activity, students learn about the important topic of invasive species, specifically Zebra Mussels. Students role-play different characters in a real-life situation: the trial of the Zebra Mussel for unlawful disruption of the Great Lakes ecosystem. Students will also learn about jurisprudential inquiry by examining the trial process. This…

  7. Sex and caste-specific variation in compound eye morphology of five honeybee species.

    Directory of Open Access Journals (Sweden)

    Martin Streinzer

    Full Text Available Ranging from dwarfs to giants, the species of honeybees show remarkable differences in body size that have placed evolutionary constrains on the size of sensory organs and the brain. Colonies comprise three adult phenotypes, drones and two female castes, the reproductive queen and sterile workers. The phenotypes differ with respect to tasks and thus selection pressures which additionally constrain the shape of sensory systems. In a first step to explore the variability and interaction between species size-limitations and sex and caste-specific selection pressures in sensory and neural structures in honeybees, we compared eye size, ommatidia number and distribution of facet lens diameters in drones, queens and workers of five species (Apis andreniformis, A. florea, A. dorsata, A. mellifera, A. cerana. In these species, male and female eyes show a consistent sex-specific organization with respect to eye size and regional specialization of facet diameters. Drones possess distinctly enlarged eyes with large dorsal facets. Aside from these general patterns, we found signs of unique adaptations in eyes of A. florea and A. dorsata drones. In both species, drone eyes are disproportionately enlarged. In A. dorsata the increased eye size results from enlarged facets, a likely adaptation to crepuscular mating flights. In contrast, the relative enlargement of A. florea drone eyes results from an increase in ommatidia number, suggesting strong selection for high spatial resolution. Comparison of eye morphology and published mating flight times indicates a correlation between overall light sensitivity and species-specific mating flight times. The correlation suggests an important role of ambient light intensities in the regulation of species-specific mating flight times and the evolution of the visual system. Our study further deepens insights into visual adaptations within the genus Apis and opens up future perspectives for research to better understand the

  8. Sex and caste-specific variation in compound eye morphology of five honeybee species.

    Science.gov (United States)

    Streinzer, Martin; Brockmann, Axel; Nagaraja, Narayanappa; Spaethe, Johannes

    2013-01-01

    Ranging from dwarfs to giants, the species of honeybees show remarkable differences in body size that have placed evolutionary constrains on the size of sensory organs and the brain. Colonies comprise three adult phenotypes, drones and two female castes, the reproductive queen and sterile workers. The phenotypes differ with respect to tasks and thus selection pressures which additionally constrain the shape of sensory systems. In a first step to explore the variability and interaction between species size-limitations and sex and caste-specific selection pressures in sensory and neural structures in honeybees, we compared eye size, ommatidia number and distribution of facet lens diameters in drones, queens and workers of five species (Apis andreniformis, A. florea, A. dorsata, A. mellifera, A. cerana). In these species, male and female eyes show a consistent sex-specific organization with respect to eye size and regional specialization of facet diameters. Drones possess distinctly enlarged eyes with large dorsal facets. Aside from these general patterns, we found signs of unique adaptations in eyes of A. florea and A. dorsata drones. In both species, drone eyes are disproportionately enlarged. In A. dorsata the increased eye size results from enlarged facets, a likely adaptation to crepuscular mating flights. In contrast, the relative enlargement of A. florea drone eyes results from an increase in ommatidia number, suggesting strong selection for high spatial resolution. Comparison of eye morphology and published mating flight times indicates a correlation between overall light sensitivity and species-specific mating flight times. The correlation suggests an important role of ambient light intensities in the regulation of species-specific mating flight times and the evolution of the visual system. Our study further deepens insights into visual adaptations within the genus Apis and opens up future perspectives for research to better understand the timing mechanisms

  9. Hox gene expression leads to differential hind leg development between honeybee castes.

    Directory of Open Access Journals (Sweden)

    Ana Durvalina Bomtorin

    Full Text Available Beyond the physiological and behavioural, differences in appendage morphology between the workers and queens of Apis mellifera are pre-eminent. The hind legs of workers, which are highly specialized pollinators, deserve special attention. The hind tibia of worker has an expanded bristle-free region used for carrying pollen and propolis, the corbicula. In queens this structure is absent. Although the morphological differences are well characterized, the genetic inputs driving the development of this alternative morphology remain unknown. Leg phenotype determination takes place between the fourth and fifth larval instar and herein we show that the morphogenesis is completed at brown-eyed pupa. Using results from the hybridization of whole genome-based oligonucleotide arrays with RNA samples from hind leg imaginal discs of pre-pupal honeybees of both castes we present a list of 200 differentially expressed genes. Notably, there are castes preferentially expressed cuticular protein genes and members of the P450 family. We also provide results of qPCR analyses determining the developmental transcription profiles of eight selected genes, including abdominal-A, distal-less and ultrabithorax (Ubx, whose roles in leg development have been previously demonstrated in other insect models. Ubx expression in workers hind leg is approximately 25 times higher than in queens. Finally, immunohistochemistry assays show that Ubx localization during hind leg development resembles the bristles localization in the tibia/basitarsus of the adult legs in both castes. Our data strongly indicate that the development of the hind legs diphenism characteristic of this corbiculate species is driven by a set of caste-preferentially expressed genes, such as those encoding cuticular protein genes, P450 and Hox proteins, in response to the naturally different diets offered to honeybees during the larval period.

  10. Think regionally, act locally: metals in honeybee workers in the Netherlands (surveillance study 2008).

    Science.gov (United States)

    van der Steen, J J M; Cornelissen, B; Blacquière, T; Pijnenburg, J E M L; Severijnen, M

    2016-08-01

    In June 2008, a surveillance study for metals in honeybees was performed in the Netherlands. Randomly, 150 apiaries were selected. In each apiary, five colonies were sampled. Per apiary, the hive samples were pooled. The apiary sample was analysed for Al, As, Ba, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Sb, Se, Sn, Sr, Ti, V and Zn. All metals could be detected in all apiaries. As, Li, Sb, Sn and V were detected in part of the apiaries. The overall picture showed a regional pattern. In apiaries in the east of the Netherlands, Al, Ba, Cr, Mn, Mo, Ni, Se and Ti are found in higher concentrations compared to the west. In-region variation was demonstrated, indicating local effects. The vicinity of the apiaries was mapped afterwards and characterised as land uses of >50 % agricultural area, >50 % wooded area, >50 % urban area and mixed land use within a circle of 28 km(2) around the apiary. The results indicated that in apiaries located in >50 % wooded areas, significantly higher concentrations of Al, Ba, Cd, Cr, Cu, Li, Mn, Mo, Ni, Sb, Sr, Ti and Zn were found compared to agricultural, urban and mixed land use areas. We conclude that (1) the ratio between metal concentrations varies per region, demonstrating spatial differences, and (2) there is in-region local variation per metal. The results indicate the impact of land use on metal concentrations in honeybees. For qualitative bioindication studies, regional, local and land use effects should be taken into account.

  11. Assessment of heavy metal pollution in Córdoba (Spain) by biomonitoring foraging honeybee.

    Science.gov (United States)

    Gutiérrez, Miriam; Molero, Rafael; Gaju, Miquel; van der Steen, Josef; Porrini, Claudio; Ruiz, José Antonio

    2015-10-01

    Due to features that make them outstanding environmental bioindicator, colonies of Apis mellifera are being used to study environmental pollution. The primary objective of this research was to use honeybee colonies to identify heavy metals and determine their utility for environmental management. Five stations each with two A. mellifera hives were strategically located in urban, industrial, agricultural and forested areas within the municipality of Córdoba (Spain), and foraging bees were collected from April to December in 2007, 2009 and 2010 to analyse spatial and temporal variation in Pb, Cr, Ni and Cd pollution. Metal concentrations, in milligram per kilogram of honeybee, were determined by inductively coupled plasma-atomic emission spectrometry and graphite furnace atomic absorption spectrophotometry. Significant differences in concentrations were found among the various locations and periods. The highest number of values exceeding the upper reference thresholds proposed for this study (Pb, 0.7 mg/kg; Cr, 0.12 mg/kg; Ni, 0.3 mg/kg; and Cd, 0.1 mg/kg) was observed for Pb and Cr (6.25% respectively), station S4 (13.22%), year 2007 (20.83%) and in months of May and July (11.90% each). Regarding the Cd, which was analysed only in 2010, the highest number of values exceeding the upper reference thresholds was 40%. Biomonitoring with colonies of A. mellifera could contribute to improved surveillance and control systems for atmospheric pollution by integrating qualitative and quantitative assessments, thus facilitating prevention and readiness in the event of environmental crises.

  12. Economics of comb wax salvage by the red dwarf honeybee, Apis florea.

    Science.gov (United States)

    Pirk, Christian W W; Crous, Kendall L; Duangphakdee, Orawan; Radloff, Sarah E; Hepburn, Randall

    2011-04-01

    Colonies of Apis florea, which only abscond a short distance, usually return to salvage old nest wax; but, those colonies, and all other honeybee species which go considerably further, do not. Wax salvage would clearly be counter-productive unless the energy input/energy yield threshold was a profitable one. There are two possible trade-offs in this scenario, the trade-off between the energy expended to recover the wax (recovering hypothesis) as against that of replacing the wax by new secretion (replacing hypothesis). In order to compare the two hypotheses, the fuel costs involved in salvaging wax on one return trip, the average flower handling time, flight time and relative values for substituting the salvaged wax with nectar were calculated. Moreover, the energy value of the wax was determined. Net energy gains for salvaged wax were calculated. The energy value of the salvaged wax was 42.7 J/mg, thus too high to be the limiting factor since salvaging costs are only 642.76 mJ/mg (recovering hypothesis). The recovery costs (642.76 mJ/mg) only fall below the replacement costs for absconding distance below 115 m thus supporting the replacing hypothesis. This energetic trade-off between replacing and recycling plus the small absconding range of A. florea might explain why A. florea is probably the only honeybee species known to salvage wax and it parsimoniously explains the underlying reasons why A. florea only salvages wax from the old nest if the new nesting site is less than 100-200 m away-energetically, it pays off to recycle.

  13. Seasonal Variation of Honeybee Pathogens and its Association with Pollen Diversity in Uruguay.

    Science.gov (United States)

    Antúnez, Karina; Anido, Matilde; Branchiccela, Belén; Harriet, Jorge; Campa, Juan; Invernizzi, Ciro; Santos, Estela; Higes, Mariano; Martín-Hernández, Raquel; Zunino, Pablo

    2015-08-01

    Honeybees are susceptible to a wide range of pathogens, which have been related to the occurrence of colony loss episodes reported mainly in north hemisphere countries. Their ability to resist those infections is compromised if they are malnourished or exposed to pesticides. The aim of the present study was to carry out an epidemiological study in Uruguay, South America, in order to evaluate the dynamics and interaction of honeybee pathogens and evaluate their association with the presence of external stress factors such as restricted pollen diversity and presence of agrochemicals. We monitored 40 colonies in two apiaries over 24 months, regularly quantifying colony strength, parasite and pathogen status, and pollen diversity. Chlorinated pesticides, phosphorus, pyrethroid, fipronil, or sulfas were not found in stored pollen in any colony or season. Varroa destructor was widespread in March (end of summer-beginning of autumn), decreasing after acaricide treatments. Viruses ABPV, DWV, and SBV presented a similar trend, while IAPV and KBV were not detected. Nosema ceranae was detected along the year while Nosema apis was detected only in one sample. Fifteen percent of the colonies died, being associated to high V. destructor mite load in March and high N. ceranae spore loads in September. Although similar results have been reported in north hemisphere countries, this is the first study of these characteristics in Uruguay, highlighting the regional importance. On the other side, colonies with pollen of diverse botanical origins showed reduced viral infection levels, suggesting that an adequate nutrition is important for the development of healthy colonies.

  14. Androgenic effect of honeybee drone milk in castrated rats: roles of methyl palmitate and methyl oleate.

    Science.gov (United States)

    Seres, A B; Ducza, E; Báthori, M; Hunyadi, A; Béni, Z; Dékány, M; Hajagos-Tóth, J; Verli, J; Gáspár, Róbert

    2014-04-28

    Numerous honeybee (Apis mellifera) products have been used in traditional medicine to treat infertility and to increase vitality in both men and women. Drone milk (DM) is a relatively little-known honeybee product with a putative sexual hormone effect. The oestrogenic effect of a fraction of DM has recently been reported in rats. However, no information is available on the androgenic effects of DM. The purpose of the present study was to determine the androgen-like effect of DM in male rats and to identify effective compounds. A modified Hershberger assay was used to investigate the androgenic effect of crude DM, and the plasma level of testosterone was measured. The prostatic mRNA and protein expression of Spot14-like androgen-inducible protein (SLAP) were also examined with real-time PCR and Western blot techniques. GC-MS and NMR spectroscopic investigations were performed to identify the active components gained by bioactivity-guided fractionation. The crude DM increased the relative weights of the androgen-dependent organs and the plasma testosterone level in castrated rats and these actions were flutamide-sensitive. DM increased the tissue mRNA and protein level of SLAP, providing further evidence of its androgen-like character. After bioactivity-guided fractionation, two fatty acid esters, methyl palmitate (MP) and methyl oleate (MO), were identified as active compounds. MP alone showed an androgenic effect, whereas MO increased the weight of androgen-sensitive tissues and the plasma testosterone level only in combination. The experimental data of DM and its active compounds (MO and MP) show androgenic activity confirming the traditional usage of DM. DM or MP or/and MO treatments may project a natural mode for the therapy of male infertility. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Honeybee drones are attracted by groups of consexuals in a walking simulator.

    Science.gov (United States)

    Brandstaetter, Andreas Simon; Bastin, Florian; Sandoz, Jean-Christophe

    2014-04-15

    During the mating season, honeybee males, the drones, gather in congregation areas 10-40 m above ground. When a receptive female, a queen, enters the congregation, drones are attracted to her by queen-produced pheromones and visual cues and attempt to mate with the queen in mid-air. It is still unclear how drones and queens find the congregations. Visual cues on the horizon are most probably used for long-range orientation. For shorter-range orientation, however, attraction by a drone-produced aggregation pheromone has been proposed, yet so far its existence has not been confirmed conclusively. The low accessibility of congregation areas high up in the air is a major hurdle and precise control of experimental conditions often remains unsatisfactory in field studies. Here, we used a locomotion compensator-based walking simulator to investigate drones' innate odor preferences under controlled laboratory conditions. We tested behavioral responses of drones to 9-oxo-2-decenoic acid (9-ODA), the major queen-produced sexual attractant, and to queen mandibular pheromone (QMP), an artificial blend of 9-ODA and several other queen-derived components. While 9-ODA strongly dominates the odor bouquet of virgin queens, QMP rather resembles the bouquet of mated queens. In our assay, drones were attracted by 9-ODA, but not by QMP. We also investigated the potential attractiveness of male-derived odors by testing drones' orientation responses to the odor bouquet of groups of 10 living drones or workers. Our results demonstrate that honeybee drones are attracted by groups of other drones (but not by workers), which may indicate a role of drone-emitted cues for the formation of congregations.

  16. Energetic optimisation of foraging honeybees: flexible change of strategies in response to environmental challenges.

    Science.gov (United States)

    Stabentheiner, Anton; Kovac, Helmut

    2014-01-01

    Heterothermic insects like honeybees, foraging in a variable environment, face the challenge of keeping their body temperature high to enable immediate flight and to promote fast exploitation of resources. Because of their small size they have to cope with an enormous heat loss and, therefore, high costs of thermoregulation. This calls for energetic optimisation which may be achieved by different strategies. An 'economizing' strategy would be to reduce energetic investment whenever possible, for example by using external heat from the sun for thermoregulation. An 'investment-guided' strategy, by contrast, would be to invest additional heat production or external heat gain to optimize physiological parameters like body temperature which promise increased energetic returns. Here we show how honeybees balance these strategies in response to changes of their local microclimate. In a novel approach of simultaneous measurement of respiration and body temperature foragers displayed a flexible strategy of thermoregulatory and energetic management. While foraging in shade on an artificial flower they did not save energy with increasing ambient temperature as expected but acted according to an 'investment-guided' strategy, keeping the energy turnover at a high level (∼56-69 mW). This increased thorax temperature and speeded up foraging as ambient temperature increased. Solar heat was invested to increase thorax temperature at low ambient temperature ('investment-guided' strategy) but to save energy at high temperature ('economizing' strategy), leading to energy savings per stay of ∼18-76% in sunshine. This flexible economic strategy minimized costs of foraging, and optimized energetic efficiency in response to broad variation of environmental conditions.

  17. Hox gene expression leads to differential hind leg development between honeybee castes.

    Science.gov (United States)

    Bomtorin, Ana Durvalina; Barchuk, Angel Roberto; Moda, Livia Maria; Simoes, Zila Luz Paulino

    2012-01-01

    Beyond the physiological and behavioural, differences in appendage morphology between the workers and queens of Apis mellifera are pre-eminent. The hind legs of workers, which are highly specialized pollinators, deserve special attention. The hind tibia of worker has an expanded bristle-free region used for carrying pollen and propolis, the corbicula. In queens this structure is absent. Although the morphological differences are well characterized, the genetic inputs driving the development of this alternative morphology remain unknown. Leg phenotype determination takes place between the fourth and fifth larval instar and herein we show that the morphogenesis is completed at brown-eyed pupa. Using results from the hybridization of whole genome-based oligonucleotide arrays with RNA samples from hind leg imaginal discs of pre-pupal honeybees of both castes we present a list of 200 differentially expressed genes. Notably, there are castes preferentially expressed cuticular protein genes and members of the P450 family. We also provide results of qPCR analyses determining the developmental transcription profiles of eight selected genes, including abdominal-A, distal-less and ultrabithorax (Ubx), whose roles in leg development have been previously demonstrated in other insect models. Ubx expression in workers hind leg is approximately 25 times higher than in queens. Finally, immunohistochemistry assays show that Ubx localization during hind leg development resembles the bristles localization in the tibia/basitarsus of the adult legs in both castes. Our data strongly indicate that the development of the hind legs diphenism characteristic of this corbiculate species is driven by a set of caste-preferentially expressed genes, such as those encoding cuticular protein genes, P450 and Hox proteins, in response to the naturally different diets offered to honeybees during the larval period.

  18. Best practices for minimally invasive procedures.

    Science.gov (United States)

    Ulmer, Brenda C

    2010-05-01

    Techniques and instrumentation for minimally invasive surgical procedures originated in gynecologic surgery, but the benefits of surgery with small incisions or no incisions at all have prompted the expansion of these techniques into numerous specialties. Technologies such as robotic assistance, single-incision laparoscopic surgery, natural orifice transluminal endoscopic surgery, and video-assisted thoracoscopic surgery have led to the continued expansion of minimally invasive surgery into new specialties. With this expansion, perioperative nurses and other members of the surgical team are required to continue to learn about new technology and instrumentation, as well as the techniques and challenges involved in using new technology, to help ensure the safety of their patients. This article explores the development of minimally invasive procedures and offers suggestions for increasing patient safety.

  19. Assessing the health status of managed honeybee colonies (HEALTHY-B): a toolbox to facilitate harmonised data collection

    DEFF Research Database (Denmark)

    Nielsen, Søren Saxmose

    2016-01-01

    is very important when assessing its health status, but tools are currently lacking that could be used at apiary level in field surveys across the EU. Data on ‘beekeeping management practices’ and ‘environmental drivers’ can be collected via questionnaires and available databases, respectively......Tools are provided to assess the health status of managed honeybee colonies by facilitating further harmonisation of data collection and reporting, design of field surveys across the European Union (EU) and analysis of data on bee health. The toolbox is based on characteristics of a healthy managed....... Integrating multiple attributes of honeybee health, for instance, via a Health Status Index, is required to support a holistic assessment. Examples are provided on how the toolbox could be used by different stakeholders. Continued interaction between the Member State organisations, the EU Reference Laboratory...

  20. Assessing honeybee and wasp thermoregulation and energetics-New insights by combination of flow-through respirometry with infrared thermography

    Energy Technology Data Exchange (ETDEWEB)

    Stabentheiner, Anton, E-mail: anton.stabentheiner@uni-graz.at [Institut fuer Zoologie, Karl-Franzens-Universitaet Graz, Universitaetsplatz 2, A-8010 Graz (Austria); Kovac, Helmut, E-mail: he.kovac@uni-graz.at [Institut fuer Zoologie, Karl-Franzens-Universitaet Graz, Universitaetsplatz 2, A-8010 Graz (Austria); Hetz, Stefan K. [Department of Animal Physiology/Systems Neurobiology and Neural Computation, Philippstrasse 13-Leonor Michaelis Haus, Humboldt-Universitaet zu Berlin, 10115 Berlin (Germany); Kaefer, Helmut; Stabentheiner, Gabriel [Institut fuer Zoologie, Karl-Franzens-Universitaet Graz, Universitaetsplatz 2, A-8010 Graz (Austria)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We demonstrate the benefits of a combined use of infrared thermography with respiratory measurements in insect ecophysiological research. Black-Right-Pointing-Pointer Infrared thermography enables repeated investigation of behaviour and thermoregulation without behavioural impairment. Black-Right-Pointing-Pointer Comparison with respirometry brings new insights into the mechanisms of energetic optimisation of bee and wasp foraging. Black-Right-Pointing-Pointer Combination of methods improves interpretation of respiratory traces in determinations of insect critical thermal limits. - Abstract: Endothermic insects like honeybees and some wasps have to cope with an enormous heat loss during foraging because of their small body size in comparison to endotherms like mammals and birds. The enormous costs of thermoregulation call for optimisation. Honeybees and wasps differ in their critical thermal maximum, which enables the bees to kill the wasps by heat. We here demonstrate the benefits of a combined use of body temperature measurement with infrared thermography, and respiratory measurements of energy turnover (O{sub 2} consumption or CO{sub 2} production via flow-through respirometry) to answer questions of insect ecophysiological research, and we describe calibrations to receive accurate results. To assess the question of what foraging honeybees optimise, their body temperature was compared with their energy turnover. Honeybees foraging from an artificial flower with unlimited sucrose flow increased body surface temperature and energy turnover with profitability of foraging (sucrose content of the food; 0.5 or 1.5 mol/L). Costs of thermoregulation, however, were rather independent of ambient temperature (13-30 Degree-Sign C). External heat gain by solar radiation was used to increase body temperature. This optimised foraging energetics by increasing suction speed. In determinations of insect respiratory critical thermal limits

  1. Oxidative Stress and Anti-Oxidant Enzyme Activities in the Trophocytes and Fat Cells of Queen Honeybees (Apis mellifera)

    OpenAIRE

    Hsieh, Yu-Shan; Hsu, Chin-Yuan

    2013-01-01

    Trophocytes and fat cells of queen honeybees have been used for delayed cellular senescence studies, but their oxidative stress and anti-oxidant enzyme activities with advancing age are unknown. In this study, we assayed reactive oxygen species (ROS) and anti-oxidant enzymes in the trophocytes and fat cells of young and old queens. Young queens had lower ROS levels, lower superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, and higher thioredoxin reductase ...

  2. General principles in motion vision: color blindness of object motion depends on pattern velocity in honeybee and goldfish.

    Science.gov (United States)

    Stojcev, Maja; Radtke, Nils; D'Amaro, Daniele; Dyer, Adrian G; Neumeyer, Christa

    2011-07-01

    Visual systems can undergo striking adaptations to specific visual environments during evolution, but they can also be very "conservative." This seems to be the case in motion vision, which is surprisingly similar in species as distant as honeybee and goldfish. In both visual systems, motion vision measured with the optomotor response is color blind and mediated by one photoreceptor type only. Here, we ask whether this is also the case if the moving stimulus is restricted to a small part of the visual field, and test what influence velocity may have on chromatic motion perception. Honeybees were trained to discriminate between clockwise- and counterclockwise-rotating sector disks. Six types of disk stimuli differing in green receptor contrast were tested using three different rotational velocities. When green receptor contrast was at a minimum, bees were able to discriminate rotation directions with all colored disks at slow velocities of 6 and 12 Hz contrast frequency but not with a relatively high velocity of 24 Hz. In the goldfish experiment, the animals were trained to detect a moving red or blue disk presented in a green surround. Discrimination ability between this stimulus and a homogenous green background was poor when the M-cone type was not or only slightly modulated considering high stimulus velocity (7 cm/s). However, discrimination was improved with slower stimulus velocities (4 and 2 cm/s). These behavioral results indicate that there is potentially an object motion system in both honeybee and goldfish, which is able to incorporate color information at relatively low velocities but is color blind with higher speed. We thus propose that both honeybees and goldfish have multiple subsystems of object motion, which include achromatic as well as chromatic processing.

  3. Ferritin in iron containing granules from the fat body of the honeybees Apis mellifera and Scaptotrigona postica.

    Science.gov (United States)

    Keim, C N; Cruz-Landim, C; Carneiro, F G; Farina, M

    2002-01-01

    It is already known that the behaviour of the honeybee Apis mellifera is influenced by the Earth's magnetic field. Recently it has been proposed that iron-rich granules found inside the fat body cells of this honeybee had small magnetite crystals that were responsible for this behaviour. In the present work, we studied the iron containing granules from queens of two species of honeybees (A. mellifera and Scaptotrigona postica) by electron microscopy methods in order to clarify this point. The granules were found inside rough endoplasmic reticulum cisternae. Energy dispersive X-ray analysis of granules from A. mellifera showed the presence of iron, phosphorus and calcium. The same analysis performed on the granules of S. postica also indicated the presence of these elements along with the additional element magnesium. The granules of A. mellifera were composed of apoferritin-like particles in the periphery while in the core, clusters of organised particles resembling holoferritin were seen. The larger and more mineralised granules of S. postica presented structures resembling ferritin cores in the periphery, and smaller electron dense particles inside the bulk. Electron spectroscopic images of the granules from A. mellifera showed that iron, oxygen and phosphorus were co-localised in the ferritin-like deposits. These results indicate that the iron-rich granules of these honeybees are formed by accumulation of ferritin and its degraded forms together with elements present inside the rough endoplasmic reticulum, such as phosphorus, calcium and magnesium. It is suggested that the high level of phosphate in the milieu would prevent the crystallisation of iron oxides in these structures, making very unlikely their participation in magnetoreception mechanisms. They are most probably involved in iron homeostasis.

  4. Abundance of phosphorylated Apis mellifera CREB in the honeybee's mushroom body inner compact cells varies with age.

    Science.gov (United States)

    Gehring, Katrin B; Heufelder, Karin; Kersting, Isabella; Eisenhardt, Dorothea

    2016-04-15

    Hymenopteran eusociality has been proposed to be associated with the activity of the transcription factor CREB (cAMP-response element binding protein). The honeybee (Apis mellifera) is a eusocial insect displaying a pronounced age-dependent division of labor. In honeybee brains, CREB-dependent genes are regulated in an age-dependent manner, indicating that there might be a role for neuronal honeybee CREB (Apis mellifera CREB, or AmCREB) in the bee's division of labor. In this study, we further explore this hypothesis by asking where in the honeybee brain AmCREB-dependent processes might take place and whether they vary with age in these brain regions. CREB is activated following phosphorylation at a conserved serine residue. An increase of phosphorylated CREB is therefore regarded as an indicator of CREB-dependent transcriptional activation. Thus, we here examine the localization of phosphorylated AmCREB (pAmCREB) in the brain and its age-dependent variability. We report prominent pAmCREB staining in a subpopulation of intrinsic neurons of the mushroom bodies. In these neurons, the inner compact cells (IC), pAmCREB is located in the nuclei, axons, and dendrites. In the central bee brain, the IC somata and their dendritic region, we observed an age-dependent increase of pAmCREB. Our results demonstrate the IC to be candidate neurons involved in age-dependent division of labor. We hypothesize that the IC display a high level of CREB-dependent transcription that might be related to neuronal and behavioral plasticity underlying a bee's foraging behavior.

  5. Evaluation of different glycoforms of honeybee venom major allergen phospholipase A2 (Api m 1) produced in insect cells

    DEFF Research Database (Denmark)

    Blank, Simon; Seismann, Henning; Plum, Melanie;

    2011-01-01

    Allergic reactions to hymenoptera stings are one of the major reasons for IgE-mediated anaphylaxis. However, proper diagnosis using venom extracts is severely affected by molecular cross-reactivity. In this study recombinant honeybee venom major allergen phospholipase A2 (Api m 1) was produced......-derived recombinant Api m 1 with defined CCD phenotypes might provide further insights into hymenoptera venom IgE reactivities and contribute to an improved diagnosis of hymenoptera venom allergy....

  6. Whole-genome resequencing of honeybee drones to detect genomic selection in a population managed for royal jelly

    Science.gov (United States)

    Wragg, David; Marti-Marimon, Maria; Basso, Benjamin; Bidanel, Jean-Pierre; Labarthe, Emmanuelle; Bouchez, Olivier; Le Conte, Yves; Vignal, Alain

    2016-01-01

    Four main evolutionary lineages of A. mellifera have been described including eastern Europe (C) and western and northern Europe (M). Many apiculturists prefer bees from the C lineage due to their docility and high productivity. In France, the routine importation of bees from the C lineage has resulted in the widespread admixture of bees from the M lineage. The haplodiploid nature of the honeybee Apis mellifera, and its small genome size, permits affordable and extensive genomics studies. As a pilot study of a larger project to characterise French honeybee populations, we sequenced 60 drones sampled from two commercial populations managed for the production of honey and royal jelly. Results indicate a C lineage origin, whilst mitochondrial analysis suggests two drones originated from the O lineage. Analysis of heterozygous SNPs identified potential copy number variants near to genes encoding odorant binding proteins and several cytochrome P450 genes. Signatures of selection were detected using the hapFLK haplotype-based method, revealing several regions under putative selection for royal jelly production. The framework developed during this study will be applied to a broader sampling regime, allowing the genetic diversity of French honeybees to be characterised in detail. PMID:27255426

  7. Honeybee locomotion is impaired by Am-CaV3 low voltage-activated Ca(2+) channel antagonist.

    Science.gov (United States)

    Rousset, M; Collet, C; Cens, T; Bastin, F; Raymond, V; Massou, I; Menard, C; Thibaud, J-B; Charreton, M; Vignes, M; Chahine, M; Sandoz, J C; Charnet, P

    2017-02-01

    Voltage-gated Ca(2+) channels are key transducers of cellular excitability and participate in several crucial physiological responses. In vertebrates, 10 Ca(2+) channel genes, grouped in 3 families (CaV1, CaV2 and CaV3), have been described and characterized. Insects possess only one member of each family. These genes have been isolated in a limited number of species and very few have been characterized although, in addition to their crucial role, they may represent a collateral target for neurotoxic insecticides. We have isolated the 3 genes coding for the 3 Ca(2+) channels expressed in Apis mellifera. This work provides the first detailed characterization of the honeybee T-type CaV3 Ca(2+) channel and demonstrates the low toxicity of inhibiting this channel. Comparing Ca(2+) currents recorded in bee neurons and myocytes with Ca(2+) currents recorded in Xenopus oocytes expressing the honeybee CaV3 gene suggests native expression in bee muscle cells only. High-voltage activated Ca(2+) channels could be recorded in the somata of different cultured bee neurons. These functional data were confirmed by in situ hybridization, immunolocalization and in vivo analysis of the effects of a CaV3 inhibitor. The biophysical and pharmacological characterization and the tissue distribution of CaV3 suggest a role in honeybee muscle function.

  8. Expert explanations of honeybee losses in areas of extensive agriculture in France: Gaucho compared with other supposed causal factors

    Energy Technology Data Exchange (ETDEWEB)

    Maxim, L [Institut des Sciences de la Communication, CNRS UPS 3088, 27 Rue Damesme, 75013 Paris (France); Van der Sluijs, J P, E-mail: laura.maxim@iscc.cnrs.f, E-mail: J.P.vanderSluijs@uu.n [Copernicus Institute for Sustainable Development and Innovation, Department of Science, Technology and Society, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands)

    2010-01-15

    Debates on causality are at the core of controversies as regards environmental changes. The present paper presents a new method for analyzing controversies on causality in a context of social debate and the results of its empirical testing. The case study used is the controversy as regards the role played by the insecticide Gaucho, compared with other supposed causal factors, in the substantial honeybee (Apis mellifera L.) losses reported to have occurred in France between 1994 and 2004. The method makes use of expert elicitation of the perceived strength of evidence regarding each of Bradford Hill's causality criteria, as regards the link between each of eight possible causal factors identified in attempts to explain each of five signs observed in honeybee colonies. These judgments are elicited from stakeholders and experts involved in the debate, i.e., representatives of Bayer Cropscience, of the Ministry of Agriculture, of the French Food Safety Authority, of beekeepers and of public scientists. We show that the intense controversy observed in confused and passionate public discourses is much less salient when the various arguments are structured using causation criteria. The contradictions between the different expert views have a triple origin: (1) the lack of shared definition and quantification of the signs observed in colonies; (2) the lack of specialist knowledge on honeybees; and (3) the strategic discursive practices associated with the lack of trust between experts representing stakeholders having diverging stakes in the case.

  9. Side-effects of thiamethoxam on the brain andmidgut of the africanized honeybee Apis mellifera (Hymenopptera: Apidae).

    Science.gov (United States)

    Oliveira, Regiane Alves; Roat, Thaisa Cristina; Carvalho, Stephan Malfitano; Malaspina, Osmar

    2014-10-01

    The development of agricultural activities coincides with the increased use of pesticides to control pests, which can also be harmful to nontarget insects such as bees. Thus, the goal of this work was assess the toxic effects of thiamethoxam on newly emerged worker bees of Apis mellifera (africanized honeybee-AHB). Initially, we determined that the lethal concentration 50 (LC50 ) of thiamethoxam was 4.28 ng a.i./μL of diet. To determine the lethal time 50 (LT50 ), a survival assay was conducted using diets containing sublethal doses of thiamethoxam equal to 1/10 and 1/100 of the LC50. The group of bees exposed to 1/10 of the LC50 had a 41.2% reduction of lifespan. When AHB samples were analyzed by morphological technique we found the presence of condensed cells in the mushroom bodies and optical lobes in exposed honeybees. Through Xylidine Ponceau technique, we found cells which stained more intensely in groups exposed to thiamethoxam. The digestive and regenerative cells of the midgut from exposed bees also showed morphological and histochemical alterations, like cytoplasm vacuolization, increased apocrine secretion and increased cell elimination. Thus, intoxication with a sublethal doses of thiamethoxam can cause impairment in the brain and midgut of AHB and contribute to the honeybee lifespan reduction.

  10. New insights on the genetic diversity of the honeybee parasite Nosema ceranae based on multilocus sequence analysis.

    Science.gov (United States)

    Roudel, Mathieu; Aufauvre, Julie; Corbara, Bruno; Delbac, Frederic; Blot, Nicolas

    2013-09-01

    The microsporidian parasite Nosema ceranae is a common pathogen of the Western honeybee (Apis mellifera) whose variable virulence could be related to its genetic polymorphism and/or its polyphenism responding to environmental cues. Since the genotyping of N. ceranae based on unique marker sequences had been unsuccessful, we tested whether a multilocus approach, assessing the diversity of ten genetic markers – encoding nine proteins and the small ribosomal RNA subunit – allowed the discrimination between N. ceranae variants isolated from single A. mellifera individuals in four distant locations. High nucleotide diversity and allele content were observed for all genes. Most importantly, the diversity was mainly present within parasite populations isolated from single honeybee individuals. In contrast the absence of isolate differentiation precluded any taxa discrimination, even through a multilocus approach, but suggested that similar populations of parasites seem to infect honeybees in distant locations. As statistical evolutionary analyses showed that the allele frequency is under selective pressure, we discuss the origin and consequences of N. ceranae heterozygosity in a single host and lack of population divergence in the context of the parasite natural and evolutionary history.

  11. Functions of Pollen Lipids in Honeybee Feeding%蜂花粉中脂类对蜜蜂的作用

    Institute of Scientific and Technical Information of China (English)

    马兰婷; 王颖; 胥保华

    2012-01-01

    As the honeybee' s major diet source, pollen plays an important role in honeybee nutrition. The pollen lipids are rich in fatty acids and sterols, which have influence on bee feed intake, antibacterial and longevity , et al. This article analyzed the lipids in the pollen, expounded functions of lipids on nutrition, attractant and antibacterial effects in the bees, and also discussed the lipid nutritional needs for honeybees. [Chinese Journal of Animal Nutrition, 2012, 24(9) .1643-1646]%蜂花粉是蜜蜂主要的饲粮来源,对蜜蜂具有重要的营养作用.蜂花粉中脂肪酸、甾醇等脂类物质丰富,对蜜蜂采食、抗菌、寿命等均有影响.本文对蜂花粉中的脂类进行了分析,并就脂类对蜜蜂的营养、诱食和抗菌等作用,以及蜜蜂对脂类的营养需要进行阐述.

  12. Whole-genome resequencing of honeybee drones to detect genomic selection in a population managed for royal jelly.

    Science.gov (United States)

    Wragg, David; Marti-Marimon, Maria; Basso, Benjamin; Bidanel, Jean-Pierre; Labarthe, Emmanuelle; Bouchez, Olivier; Le Conte, Yves; Vignal, Alain

    2016-06-03

    Four main evolutionary lineages of A. mellifera have been described including eastern Europe (C) and western and northern Europe (M). Many apiculturists prefer bees from the C lineage due to their docility and high productivity. In France, the routine importation of bees from the C lineage has resulted in the widespread admixture of bees from the M lineage. The haplodiploid nature of the honeybee Apis mellifera, and its small genome size, permits affordable and extensive genomics studies. As a pilot study of a larger project to characterise French honeybee populations, we sequenced 60 drones sampled from two commercial populations managed for the production of honey and royal jelly. Results indicate a C lineage origin, whilst mitochondrial analysis suggests two drones originated from the O lineage. Analysis of heterozygous SNPs identified potential copy number variants near to genes encoding odorant binding proteins and several cytochrome P450 genes. Signatures of selection were detected using the hapFLK haplotype-based method, revealing several regions under putative selection for royal jelly production. The framework developed during this study will be applied to a broader sampling regime, allowing the genetic diversity of French honeybees to be characterised in detail.

  13. Honeybee locomotion is impaired by Am-CaV3 low voltage-activated Ca2+ channel antagonist

    Science.gov (United States)

    Rousset, M.; Collet, C.; Cens, T.; Bastin, F.; Raymond, V.; Massou, I.; Menard, C.; Thibaud, J.-B.; Charreton, M.; Vignes, M.; Chahine, M.; Sandoz, J. C.; Charnet, P.

    2017-01-01

    Voltage‐gated Ca2+ channels are key transducers of cellular excitability and participate in several crucial physiological responses. In vertebrates, 10 Ca2+ channel genes, grouped in 3 families (CaV1, CaV2 and CaV3), have been described and characterized. Insects possess only one member of each family. These genes have been isolated in a limited number of species and very few have been characterized although, in addition to their crucial role, they may represent a collateral target for neurotoxic insecticides. We have isolated the 3 genes coding for the 3 Ca2+ channels expressed in Apis mellifera. This work provides the first detailed characterization of the honeybee T-type CaV3 Ca2+ channel and demonstrates the low toxicity of inhibiting this channel. Comparing Ca2+ currents recorded in bee neurons and myocytes with Ca2+ currents recorded in Xenopus oocytes expressing the honeybee CaV3 gene suggests native expression in bee muscle cells only. High‐voltage activated Ca2+ channels could be recorded in the somata of different cultured bee neurons. These functional data were confirmed by in situ hybridization, immunolocalization and in vivo analysis of the effects of a CaV3 inhibitor. The biophysical and pharmacological characterization and the tissue distribution of CaV3 suggest a role in honeybee muscle function. PMID:28145504

  14. Non-invasive neural stimulation

    Science.gov (United States)

    Tyler, William J.; Sanguinetti, Joseph L.; Fini, Maria; Hool, Nicholas

    2017-05-01

    Neurotechnologies for non-invasively interfacing with neural circuits have been evolving from those capable of sensing neural activity to those capable of restoring and enhancing human brain function. Generally referred to as non-invasive neural stimulation (NINS) methods, these neuromodulation approaches rely on electrical, magnetic, photonic, and acoustic or ultrasonic energy to influence nervous system activity, brain function, and behavior. Evidence that has been surmounting for decades shows that advanced neural engineering of NINS technologies will indeed transform the way humans treat diseases, interact with information, communicate, and learn. The physics underlying the ability of various NINS methods to modulate nervous system activity can be quite different from one another depending on the energy modality used as we briefly discuss. For members of commercial and defense industry sectors that have not traditionally engaged in neuroscience research and development, the science, engineering and technology required to advance NINS methods beyond the state-of-the-art presents tremendous opportunities. Within the past few years alone there have been large increases in global investments made by federal agencies, foundations, private investors and multinational corporations to develop advanced applications of NINS technologies. Driven by these efforts NINS methods and devices have recently been introduced to mass markets via the consumer electronics industry. Further, NINS continues to be explored in a growing number of defense applications focused on enhancing human dimensions. The present paper provides a brief introduction to the field of non-invasive neural stimulation by highlighting some of the more common methods in use or under current development today.

  15. Parasites and marine invasions

    Science.gov (United States)

    Torchin, M.E.; Lafferty, K.D.; Kuris, A.M.

    2002-01-01

    Introduced marine species are a major environmental and economic problem. The rate of these biological invasions has substantially increased in recent years due to the globalization of the world's economies. The damage caused by invasive species is often a result of the higher densities and larger sizes they attain compared to where they are native. A prominent hypothesis explaining the success of introduced species is that they are relatively free of the effects of natural enemies. Most notably, they may encounter fewer parasites in their introduced range compared to their native range. Parasites are ubiquitous and pervasive in marine systems, yet their role in marine invasions is relatively unexplored. Although data on parasites of marine organisms exist, the extent to which parasites can mediate marine invasions, or the extent to which invasive parasites and pathogens are responsible for infecting or potentially decimating native marine species have not been examined. In this review, we present a theoretical framework to model invasion success and examine the evidence for a relationship between parasite presence and the success of introduced marine species. For this, we compare the prevalence and species richness of parasites in several introduced populations of marine species with populations where they are native. We also discuss the potential impacts of introduced marine parasites on native ecosystems.

  16. A potential link among biogenic amines-based pesticides, learning and memory, and colony collapse disorder: a unique hypothesis.

    Science.gov (United States)

    Farooqui, Tahira

    2013-01-01

    Pesticides are substances that have been widely used throughout the world to kill, repel, or control organisms such as certain forms of plants or animals considered as pests. Depending on their type, dose, and persistence in the environment, they can have impact even on non-target species such as beneficial insects (honeybees) in different ways, including reduction in their survival rate and interference with their reproduction process. Honeybee Apis mellifera is a major pollinator and has substantial economical and ecological values. Colony collapse disorder (CCD) is a mysterious phenomenon in which adult honeybee workers suddenly abandon from their hives, leaving behind food, brood, and queen. It is lately drawing a lot of attention due to pollination crisis as well as global agriculture and medical demands. If the problem of CCD is not resolved soon enough, this could have a major impact on food industry affecting world's economy a big time. Causes of CCD are not known. In this overview, I discuss CCD, biogenic amines-based-pesticides (neonicotinoids and formamidines), and their disruptive effects on biogenic amine signaling causing olfactory dysfunction in honeybees. According to my hypothesis, chronic exposure of biogenic amines-based-pesticides to honeybee foragers in hives and agricultural fields can disrupt neural cholinergic and octopaminergic signaling. Abnormality in biogenic amines-mediated neuronal signaling impairs their olfactory learning and memory, therefore foragers do not return to their hive - a possible cause of CCD. This overview is an attempt to discuss a hypothetical link among biogenic amines-based pesticides, olfactory learning and memory, and CCD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera

    Science.gov (United States)

    Charreton, Mercédès; Decourtye, Axel; Henry, Mickaël; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude

    2015-01-01

    The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee’s locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case

  18. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Mercédès Charreton

    Full Text Available The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee's locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…, before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence since (i few studies are available on locomotion at this stage and (ii in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48 h, three pyrethroids, namely cypermethrin (2.5 ng/bee, tetramethrin (70 ng/bee, tau-fluvalinate (33 ng/bee and the neonicotinoid thiamethoxam (3.8 ng/bee caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field

  19. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera.

    Science.gov (United States)

    Charreton, Mercédès; Decourtye, Axel; Henry, Mickaël; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude

    2015-01-01

    The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee's locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48 h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case of

  20. Phenology of Migration and Decline in Colony Numbers and Crop Hosts of Giant Honeybee (Apis dorsata F. in Semiarid Environment of Northwest India

    Directory of Open Access Journals (Sweden)

    Ram Chander Sihag

    2014-01-01

    Full Text Available The colonies of the giant honeybee (Apis dorsata immigrate in the semiarid environment of Northwest India in October-November with the onset of flowering on pigeon pea (Cajanus cajan/toria (Brassica campestris var. toria, stay here during the rich pollen and nectar flow period from December to mid-May, and emigrate in late May/early June when floral dearth is witnessed. This honeybee was free from any conspicuous viral, bacterial, and fungal diseases and also did not have any serious predators and enemies. However, about 20 percent of the old colonies were infested with Tropilaelaps clareae and 100 percent of the old colonies with Galleria mellonella; none of the swarm colonies had these pests. While the migration schedule of this honeybee remained similar year after year, the number of colonies immigrating in this region declined markedly over the years; the number in 2012 was even less than half of that recorded in 1984. During its stay in this region, this honeybee acted as an important pollinator of more than 30 crop plants of this region. The causes of seasonal migration and decline in the number of colonies of this honeybee and its importance in crop pollination have been discussed.