WorldWideScience

Sample records for honeybee associative learning

  1. Association of Amine-Receptor DNA Sequence Variants with Associative Learning in the Honeybee.

    Science.gov (United States)

    Lagisz, Malgorzata; Mercer, Alison R; de Mouzon, Charlotte; Santos, Luana L S; Nakagawa, Shinichi

    2016-03-01

    Octopamine- and dopamine-based neuromodulatory systems play a critical role in learning and learning-related behaviour in insects. To further our understanding of these systems and resulting phenotypes, we quantified DNA sequence variations at six loci coding octopamine-and dopamine-receptors and their association with aversive and appetitive learning traits in a population of honeybees. We identified 79 polymorphic sequence markers (mostly SNPs and a few insertions/deletions) located within or close to six candidate genes. Intriguingly, we found that levels of sequence variation in the protein-coding regions studied were low, indicating that sequence variation in the coding regions of receptor genes critical to learning and memory is strongly selected against. Non-coding and upstream regions of the same genes, however, were less conserved and sequence variations in these regions were weakly associated with between-individual differences in learning-related traits. While these associations do not directly imply a specific molecular mechanism, they suggest that the cross-talk between dopamine and octopamine signalling pathways may influence olfactory learning and memory in the honeybee.

  2. Associative Learning during Early Adulthood Enhances Later Memory Retention in Honeybees

    Science.gov (United States)

    Arenas, Andrés; Fernández, Vanesa M.; Farina, Walter M.

    2009-01-01

    Background Cognitive experiences during the early stages of life play an important role in shaping the future behavior in mammals but also in insects, in which precocious learning can directly modify behaviors later in life depending on both the timing and the rearing environment. However, whether olfactory associative learning acquired early in the adult stage of insects affect memorizing of new learning events has not been studied yet. Methodology Groups of adult honeybee workers that experienced an odor paired with a sucrose solution 5 to 8 days or 9 to 12 days after emergence were previously exposed to (i) a rewarded experience through the offering of scented food, or (ii) a non-rewarded experience with a pure volatile compound in the rearing environment. Principal Findings Early rewarded experiences (either at 1–4 or 5–8 days of adult age) enhanced retention performance in 9–12-day-conditioned bees when they were tested at 17 days of age. The highest retention levels at this age, which could not be improved with prior rewarded experiences, were found for memories established at 5–8 days of adult age. Associative memories acquired at 9–12 days of age showed a weak effect on retention for some pure pre-exposed volatile compounds; whereas the sole exposure of an odor at any younger age did not promote long-term effects on learning performance. Conclusions The associative learning events that occurred a few days after adult emergence improved memorizing in middle-aged bees. In addition, both the timing and the nature of early sensory inputs interact to enhance retention of new learning events acquired later in life, an important matter in the social life of honeybees. PMID:19956575

  3. Associative learning during early adulthood enhances later memory retention in honeybees.

    Directory of Open Access Journals (Sweden)

    Andrés Arenas

    Full Text Available BACKGROUND: Cognitive experiences during the early stages of life play an important role in shaping the future behavior in mammals but also in insects, in which precocious learning can directly modify behaviors later in life depending on both the timing and the rearing environment. However, whether olfactory associative learning acquired early in the adult stage of insects affect memorizing of new learning events has not been studied yet. METHODOLOGY: Groups of adult honeybee workers that experienced an odor paired with a sucrose solution 5 to 8 days or 9 to 12 days after emergence were previously exposed to (i a rewarded experience through the offering of scented food, or (ii a non-rewarded experience with a pure volatile compound in the rearing environment. PRINCIPAL FINDINGS: Early rewarded experiences (either at 1-4 or 5-8 days of adult age enhanced retention performance in 9-12-day-conditioned bees when they were tested at 17 days of age. The highest retention levels at this age, which could not be improved with prior rewarded experiences, were found for memories established at 5-8 days of adult age. Associative memories acquired at 9-12 days of age showed a weak effect on retention for some pure pre-exposed volatile compounds; whereas the sole exposure of an odor at any younger age did not promote long-term effects on learning performance. CONCLUSIONS: The associative learning events that occurred a few days after adult emergence improved memorizing in middle-aged bees. In addition, both the timing and the nature of early sensory inputs interact to enhance retention of new learning events acquired later in life, an important matter in the social life of honeybees.

  4. Serial position learning in honeybees.

    Directory of Open Access Journals (Sweden)

    Randolf Menzel

    Full Text Available Learning of stimulus sequences is considered as a characteristic feature of episodic memory since it contains not only a particular item but also the experience of preceding and following events. In sensorimotor tasks resembling navigational performance, the serial order of objects is intimately connected with spatial order. Mammals and birds develop episodic(-like memory in serial spatio-temporal tasks, and the honeybee learns spatio-temporal order when navigating between the nest and a food source. Here I examine the structure of the bees' memory for a combined spatio-temporal task. I ask whether discrimination and generalization are based solely on simple forms of stimulus-reward learning or whether they require sequential configurations. Animals were trained to fly either left or right in a continuous T-maze. The correct choice was signaled by the sequence of colors (blue, yellow at four positions in the access arm. If only one of the possible 4 signals is shown (either blue or yellow, the rank order of position salience is 1, 2 and 3 (numbered from T-junction. No learning is found if the signal appears at position 4. If two signals are shown, differences at positions 1 and 2 are learned best, those at position 3 at a low level, and those at position 4 not at all. If three or more signals are shown these results are corroborated. This salience rank order again appeared in transfer tests, but additional configural phenomena emerged. Most of the results can be explained with a simple model based on the assumption that the four positions are equipped with different salience scores and that these add up independently. However, deviations from the model are interpreted by assuming stimulus configuration of sequential patterns. It is concluded that, under the conditions chosen, bees rely most strongly on memories developed during simple forms of associative reward learning, but memories of configural serial patterns contribute, too.

  5. Lateralization of visual learning in the honeybee

    OpenAIRE

    Letzkus, Pinar; Boeddeker, Norbert; Wood, Jeff T; Zhang, Shao-Wu; Srinivasan, Mandyam V

    2007-01-01

    Lateralization is a well-described phenomenon in humans and other vertebrates and there are interesting parallels across a variety of different vertebrate species. However, there are only a few studies of lateralization in invertebrates. In a recent report, we showed lateralization of olfactory learning in the honeybee (Apis mellifera). Here, we investigate lateralization of another sensory modality, vision. By training honeybees on a modified version of a visual proboscis extension reflex ta...

  6. Lateralization of visual learning in the honeybee.

    Science.gov (United States)

    Letzkus, Pinar; Boeddeker, Norbert; Wood, Jeff T; Zhang, Shao-Wu; Srinivasan, Mandyam V

    2008-02-23

    Lateralization is a well-described phenomenon in humans and other vertebrates and there are interesting parallels across a variety of different vertebrate species. However, there are only a few studies of lateralization in invertebrates. In a recent report, we showed lateralization of olfactory learning in the honeybee (Apis mellifera). Here, we investigate lateralization of another sensory modality, vision. By training honeybees on a modified version of a visual proboscis extension reflex task, we find that bees learn a colour stimulus better with their right eye.

  7. Multiple reversal olfactory learning in honeybees

    Directory of Open Access Journals (Sweden)

    Theo Mota

    2010-07-01

    Full Text Available In multiple reversal learning, animals trained to discriminate a reinforced from a non-reinforced stimulus are subjected to various, successive reversals of stimulus contingencies (e.g. A+ vs. B-, A- vs. B+, A+ vs. B-. This protocol is useful to determine whether or not animals learn to learn and solve successive discriminations faster (or with fewer errors with increasing reversal experience. Here we used the olfactory conditioning of proboscis extension reflex to study how honeybees Apis mellifera perform in a multiple reversal task. Our experiment contemplated four consecutive differential conditioning phases involving the same odors (A+ vs. B- to A- vs. B+ to A+ vs. B- to A- vs. B+. We show that bees in which the weight of reinforced or non-reinforced stimuli was similar mastered the multiple olfactory reversals. Bees which failed the task exhibited asymmetric responses to reinforced and non-reinforced stimuli, thus being unable to rapidly reverse stimulus contingencies. Efficient reversers did not improve their successive discriminations but rather tended to generalize their choice to both odors at the end of conditioning. As a consequence, both discrimination and reversal efficiency decreasedalong experimental phases. This result invalidates a learning-to-learn effect and indicates that bees do not only respond to the actual stimulus contingencies but rather combine these with an average of past experiences with the same stimuli.  

  8. Rapid learning dynamics in individual honeybees during classical conditioning

    Directory of Open Access Journals (Sweden)

    Evren ePamir

    2014-09-01

    Full Text Available Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3,298 animals. We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response in learners, and the high stability of the conditioned response during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla-Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled.

  9. Rapid learning dynamics in individual honeybees during classical conditioning.

    Science.gov (United States)

    Pamir, Evren; Szyszka, Paul; Scheiner, Ricarda; Nawrot, Martin P

    2014-01-01

    Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3298 animals). We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response (CR) in learners, and the high stability of the CR during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24 h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla-Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled.

  10. Duration of the Unconditioned Stimulus in Appetitive Conditioning of Honeybees Differentially Impacts Learning, Long-Term Memory Strength, and the Underlying Protein Synthesis

    Science.gov (United States)

    Marter, Kathrin; Grauel, M. Katharina; Lewa, Carmen; Morgenstern, Laura; Buckemüller, Christina; Heufelder, Karin; Ganz, Marion; Eisenhardt, Dorothea

    2014-01-01

    This study examines the role of stimulus duration in learning and memory formation of honeybees ("Apis mellifera"). In classical appetitive conditioning honeybees learn the association between an initially neutral, conditioned stimulus (CS) and the occurrence of a meaningful stimulus, the unconditioned stimulus (US). Thereby the CS…

  11. Memory formation in reversal learning of the honeybee

    Directory of Open Access Journals (Sweden)

    Ravit Hadar

    2010-12-01

    Full Text Available In reversal learning animals are first trained with a differential learning protocol, where they learn to respond to a reinforced odor (CS+ and not to respond to a nonreinforced odor (CS-. Once they respond correctly to this rule, the contingencies of the conditioned stimuli are reversed, and animals learn to adjust their response to the new rule. This study investigated the effect of a protein synthesis inhibitor (emetine on the memory formed after reversal learning in the honeybee Apis mellifera. Two groups of bees were studied: summer bees and winter bees, each yielded different results. Blocking protein synthesis in summer bees inhibits consolidation of the excitatory learning following reversal learning whereas it blocked the consolidation of the inhibitory learning in winter bees. These findings suggest that excitatory and inhibitory learning may involve different molecular processes in bees, which are seasonally dependent.

  12. Honeybees in a virtual reality environment learn unique combinations of colour and shape.

    Science.gov (United States)

    Rusch, Claire; Roth, Eatai; Vinauger, Clément; Riffell, Jeffrey A

    2017-10-01

    Honeybees are well-known models for the study of visual learning and memory. Whereas most of our knowledge of learned responses comes from experiments using free-flying bees, a tethered preparation would allow fine-scale control of the visual stimuli as well as accurate characterization of the learned responses. Unfortunately, conditioning procedures using visual stimuli in tethered bees have been limited in their efficacy. In this study, using a novel virtual reality environment and a differential training protocol in tethered walking bees, we show that the majority of honeybees learn visual stimuli, and need only six paired training trials to learn the stimulus. We found that bees readily learn visual stimuli that differ in both shape and colour. However, bees learn certain components over others (colour versus shape), and visual stimuli are learned in a non-additive manner with the interaction of specific colour and shape combinations being crucial for learned responses. To better understand which components of the visual stimuli the bees learned, the shape-colour association of the stimuli was reversed either during or after training. Results showed that maintaining the visual stimuli in training and testing phases was necessary to elicit visual learning, suggesting that bees learn multiple components of the visual stimuli. Together, our results demonstrate a protocol for visual learning in restrained bees that provides a powerful tool for understanding how components of a visual stimulus elicit learned responses as well as elucidating how visual information is processed in the honeybee brain. © 2017. Published by The Company of Biologists Ltd.

  13. Africanized honeybees are slower learners than their European counterparts

    Science.gov (United States)

    Couvillon, Margaret J.; Degrandi-Hoffman, Gloria; Gronenberg, Wulfila

    2010-02-01

    Does cognitive ability always correlate with a positive fitness consequence? Previous research in both vertebrates and invertebrates provides mixed results. Here, we compare the learning and memory abilities of Africanized honeybees ( Apis mellifera scutellata hybrid) and European honeybees ( Apis mellifera ligustica). The range of the Africanized honeybee continues to expand, superseding the European honeybee, which led us to hypothesize that they might possess greater cognitive capabilities as revealed by a classical conditioning assay. Surprisingly, we found that fewer Africanized honeybees learn to associate an odor with a reward. Additionally, fewer Africanized honeybees remembered the association a day later. While Africanized honeybees are replacing European honeybees, our results show that they do so despite displaying a relatively poorer performance on an associative learning paradigm.

  14. A Comparative Study of Relational Learning Capacity in Honeybees (Apis mellifera) and Stingless Bees (Melipona rufiventris)

    Science.gov (United States)

    Moreno, Antonio Mauricio; de Souza, Deisy das Graças; Reinhard, Judith

    2012-01-01

    Background Learning of arbitrary relations is the capacity to acquire knowledge about associations between events or stimuli that do not share any similarities, and use this knowledge to make behavioural choices. This capacity is well documented in humans and vertebrates, and there is some evidence it exists in the honeybee (Apis mellifera). However, little is known about whether the ability for relational learning extends to other invertebrates, although many insects have been shown to possess excellent learning capacities in spite of their small brains. Methodology/Principal Findings Using a symbolic matching-to-sample procedure, we show that the honeybee Apis mellifera rapidly learns arbitrary relations between colours and patterns, reaching 68.2% correct choice for pattern-colour relations and 73.3% for colour-pattern relations. However, Apis mellifera does not transfer this knowledge to the symmetrical relations when the stimulus order is reversed. A second bee species, the stingless bee Melipona rufiventris from Brazil, seems unable to learn the same arbitrary relations between colours and patterns, although it exhibits excellent discrimination learning. Conclusions/Significance Our results confirm that the capacity for learning arbitrary relations is not limited to vertebrates, but even insects with small brains can perform this learning task. Interestingly, it seems to be a species-specific ability. The disparity in relational learning performance between the two bee species we tested may be linked to their specific foraging and recruitment strategies, which evolved in adaptation to different environments. PMID:23251542

  15. A comparative study of relational learning capacity in honeybees (Apis mellifera and stingless bees (Melipona rufiventris.

    Directory of Open Access Journals (Sweden)

    Antonio Mauricio Moreno

    Full Text Available BACKGROUND: Learning of arbitrary relations is the capacity to acquire knowledge about associations between events or stimuli that do not share any similarities, and use this knowledge to make behavioural choices. This capacity is well documented in humans and vertebrates, and there is some evidence it exists in the honeybee (Apis mellifera. However, little is known about whether the ability for relational learning extends to other invertebrates, although many insects have been shown to possess excellent learning capacities in spite of their small brains. METHODOLOGY/PRINCIPAL FINDINGS: Using a symbolic matching-to-sample procedure, we show that the honeybee Apis mellifera rapidly learns arbitrary relations between colours and patterns, reaching 68.2% correct choice for pattern-colour relations and 73.3% for colour-pattern relations. However, Apis mellifera does not transfer this knowledge to the symmetrical relations when the stimulus order is reversed. A second bee species, the stingless bee Melipona rufiventris from Brazil, seems unable to learn the same arbitrary relations between colours and patterns, although it exhibits excellent discrimination learning. CONCLUSIONS/SIGNIFICANCE: Our results confirm that the capacity for learning arbitrary relations is not limited to vertebrates, but even insects with small brains can perform this learning task. Interestingly, it seems to be a species-specific ability. The disparity in relational learning performance between the two bee species we tested may be linked to their specific foraging and recruitment strategies, which evolved in adaptation to different environments.

  16. A comparative study of relational learning capacity in honeybees (Apis mellifera) and stingless bees (Melipona rufiventris).

    Science.gov (United States)

    Moreno, Antonio Mauricio; de Souza, Deisy das Graças; Reinhard, Judith

    2012-01-01

    Learning of arbitrary relations is the capacity to acquire knowledge about associations between events or stimuli that do not share any similarities, and use this knowledge to make behavioural choices. This capacity is well documented in humans and vertebrates, and there is some evidence it exists in the honeybee (Apis mellifera). However, little is known about whether the ability for relational learning extends to other invertebrates, although many insects have been shown to possess excellent learning capacities in spite of their small brains. Using a symbolic matching-to-sample procedure, we show that the honeybee Apis mellifera rapidly learns arbitrary relations between colours and patterns, reaching 68.2% correct choice for pattern-colour relations and 73.3% for colour-pattern relations. However, Apis mellifera does not transfer this knowledge to the symmetrical relations when the stimulus order is reversed. A second bee species, the stingless bee Melipona rufiventris from Brazil, seems unable to learn the same arbitrary relations between colours and patterns, although it exhibits excellent discrimination learning. Our results confirm that the capacity for learning arbitrary relations is not limited to vertebrates, but even insects with small brains can perform this learning task. Interestingly, it seems to be a species-specific ability. The disparity in relational learning performance between the two bee species we tested may be linked to their specific foraging and recruitment strategies, which evolved in adaptation to different environments.

  17. Antennal tactile learning in the honeybee: effect of nicotinic antagonists on memory dynamics.

    Science.gov (United States)

    Dacher, M; Lagarrigue, A; Gauthier, M

    2005-01-01

    Restrained worker honeybees (Apis mellifera L.) are able to learn to associate antennal-scanning of a metal plate with a sucrose reinforcement delivered to the mouthparts. Learning occurs reliably in a single association of the two sensory stimuli. The involvement of nicotinic pathways in memory formation and retrieval processes was tested by injecting, into the whole brain through the median ocellus, either mecamylamine (0.6 microg per bee) or alpha-bungarotoxin (2.4 ng per bee). Saline served as a control. Mecamylamine injected 10 min before the retrieval test impairs the retention level tested 3 h and 24 h after single- or multi-trial learning. Retrieval tests performed at various times after the injection show that the blocking effect of mecamylamine lasts about 1 h. The drug has no effect on the reconsolidation or extinction processes. Mecamylamine injected 10 min before conditioning impairs single-trial learning but has no effect on five-trial learning and on the consolidation process. By contrast, alpha-bungarotoxin only impairs the formation of long-term memory (24 h) induced by the five-trial learning and has no effect on medium-term memory (3 h), on single-trial learning or on the retrieval process. Hence, owing to previous data, at least two kinds of nicotinic receptors seem to be involved in honeybee memory, an alpha-bungarotoxin-sensitive and an alpha-bungarotoxin-insensitive receptor. Our results extend to antennal mechanosensory conditioning the role of the cholinergic system that we had previously described for olfactory conditioning in the honeybee. Moreover, we describe here in this insect a pharmacological dissociation between alpha-bungarotoxin sensitive long-term memory and alpha-bungarotoxin insensitive medium-term memory, the last one being affected by mecamylamine.

  18. Floral odor learning within the hive affects honeybees' foraging decisions

    Science.gov (United States)

    Arenas, Andrés; Fernández, Vanesa M.; Farina, Walter M.

    2007-03-01

    Honeybees learn odor cues quickly and efficiently when visiting rewarding flowers. Memorization of these cues facilitates the localization and recognition of food sources during foraging flights. Bees can also use information gained inside the hive during social interactions with successful foragers. An important information cue that can be learned during these interactions is food odor. However, little is known about how floral odors learned in the hive affect later decisions of foragers in the field. We studied the effect of food scent on foraging preferences when this learning is acquired directly inside the hive. By using in-hive feeders that were removed 24 h before the test, we showed that foragers use the odor information acquired during a 3-day stimulation period with a scented solution during a food-choice situation outside the nest. This bias in food preference is maintained even 24 h after the replacement of all the hive combs. Thus, without being previously collected outside by foragers, food odors learned within the hive can be used during short-range foraging flights. Moreover, correct landings at a dual-choice device after replacing the storing combs suggests that long-term memories formed within the colony can be retrieved while bees search for food in the field.

  19. Altitude control in honeybees: joint vision-based learning and guidance.

    Science.gov (United States)

    Portelli, Geoffrey; Serres, Julien R; Ruffier, Franck

    2017-08-23

    Studies on insects' visual guidance systems have shed little light on how learning contributes to insects' altitude control system. In this study, honeybees were trained to fly along a double-roofed tunnel after entering it near either the ceiling or the floor of the tunnel. The honeybees trained to hug the ceiling therefore encountered a sudden change in the tunnel configuration midways: i.e. a "dorsal ditch". Thus, the trained honeybees met a sudden increase in the distance to the ceiling, corresponding to a sudden strong change in the visual cues available in their dorsal field of view. Honeybees reacted by rising quickly and hugging the new, higher ceiling, keeping a similar forward speed, distance to the ceiling and dorsal optic flow to those observed during the training step; whereas bees trained to follow the floor kept on following the floor regardless of the change in the ceiling height. When trained honeybees entered the tunnel via the other entry (the lower or upper entry) to that used during the training step, they quickly changed their altitude and hugged the surface they had previously learned to follow. These findings clearly show that trained honeybees control their altitude based on visual cues memorized during training. The memorized visual cues generated by the surfaces followed form a complex optic flow pattern: trained honeybees may attempt to match the visual cues they perceive with this memorized optic flow pattern by controlling their altitude.

  20. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees.

    Science.gov (United States)

    Williamson, Sally M; Wright, Geraldine A

    2013-05-15

    Pesticides are important agricultural tools often used in combination to avoid resistance in target pest species, but there is growing concern that their widespread use contributes to the decline of pollinator populations. Pollinators perform sophisticated behaviours while foraging that require them to learn and remember floral traits associated with food, but we know relatively little about the way that combined exposure to multiple pesticides affects neural function and behaviour. The experiments reported here show that prolonged exposure to field-realistic concentrations of the neonicotinoid imidacloprid and the organophosphate acetylcholinesterase inhibitor coumaphos and their combination impairs olfactory learning and memory formation in the honeybee. Using a method for classical conditioning of proboscis extension, honeybees were trained in either a massed or spaced conditioning protocol to examine how these pesticides affected performance during learning and short- and long-term memory tasks. We found that bees exposed to imidacloprid, coumaphos, or a combination of these compounds, were less likely to express conditioned proboscis extension towards an odor associated with reward. Bees exposed to imidacloprid were less likely to form a long-term memory, whereas bees exposed to coumaphos were only less likely to respond during the short-term memory test after massed conditioning. Imidacloprid, coumaphos and a combination of the two compounds impaired the bees' ability to differentiate the conditioned odour from a novel odour during the memory test. Our results demonstrate that exposure to sublethal doses of combined cholinergic pesticides significantly impairs important behaviours involved in foraging, implying that pollinator population decline could be the result of a failure of neural function of bees exposed to pesticides in agricultural landscapes.

  1. Aversive reinforcement improves visual discrimination learning in free-flying honeybees.

    Directory of Open Access Journals (Sweden)

    Aurore Avarguès-Weber

    Full Text Available BACKGROUND: Learning and perception of visual stimuli by free-flying honeybees has been shown to vary dramatically depending on the way insects are trained. Fine color discrimination is achieved when both a target and a distractor are present during training (differential conditioning, whilst if the same target is learnt in isolation (absolute conditioning, discrimination is coarse and limited to perceptually dissimilar alternatives. Another way to potentially enhance discrimination is to increase the penalty associated with the distractor. Here we studied whether coupling the distractor with a highly concentrated quinine solution improves color discrimination of both similar and dissimilar colors by free-flying honeybees. As we assumed that quinine acts as an aversive stimulus, we analyzed whether aversion, if any, is based on an aversive sensory input at the gustatory level or on a post-ingestional malaise following quinine feeding. METHODOLOGY/PRINCIPAL FINDINGS: We show that the presence of a highly concentrated quinine solution (60 mM acts as an aversive reinforcer promoting rejection of the target associated with it, and improving discrimination of perceptually similar stimuli but not of dissimilar stimuli. Free-flying bees did not use remote cues to detect the presence of quinine solution; the aversive effect exerted by this substance was mediated via a gustatory input, i.e. via a distasteful sensory experience, rather than via a post-ingestional malaise. CONCLUSION: The present study supports the hypothesis that aversion conditioning is important for understanding how and what animals perceive and learn. By using this form of conditioning coupled with appetitive conditioning in the framework of a differential conditioning procedure, it is possible to uncover discrimination capabilities that may remain otherwise unsuspected. We show, therefore, that visual discrimination is not an absolute phenomenon but can be modulated by experience.

  2. Walking patterns induced by learned odors in the honeybee, Apis mellifera L.

    Science.gov (United States)

    Yamashita, Toshiya; Haupt, S Shuichi; Ikeno, Hidetoshi; Ai, Hiroyuki

    2016-01-01

    The odor localization strategy induced by odors learned via differential conditioning of the proboscis extension response was investigated in honeybees. In response to reward-associated but not non-reward-associated odors, learners walked longer paths than non-learners and control bees. When orange odor reward association was learned, the path length and the body turn angles were small during odor stimulation and greatly increased after stimulation ceased. In response to orange odor, bees walked locally with alternate left and right turns during odor stimulation to search for the reward-associated odor source. After odor stimulation, bees walked long paths with large turn angles to explore the odor plume. For clove odor, learning-related modulations of locomotion were less pronounced, presumably due to a spontaneous preference for orange in the tested population of bees. This study is the first to describe how an odor-reward association modulates odor-induced walking in bees. © 2016. Published by The Company of Biologists Ltd.

  3. Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees

    Science.gov (United States)

    2016-01-01

    Learning and memory are crucial functions which enable insect pollinators to efficiently locate and extract floral rewards. Exposure to pesticides or infection by parasites may cause subtle but ecologically important changes in cognitive functions of pollinators. The potential interactive effects of these stressors on learning and memory have not yet been explored. Furthermore, sensitivity to stressors may differ between species, but few studies have compared responses in different species. Here, we show that chronic exposure to field-realistic levels of the neonicotinoid clothianidin impaired olfactory learning acquisition in honeybees, leading to potential impacts on colony fitness, but not in bumblebees. Infection by the microsporidian parasite Nosema ceranae slightly impaired learning in honeybees, but no interactive effects were observed. Nosema did not infect bumblebees (3% infection success). Nevertheless, Nosema-treated bumblebees had a slightly lower rate of learning than controls, but faster learning in combination with neonicotinoid exposure. This highlights the potential for complex interactive effects of stressors on learning. Our results underline that one cannot readily extrapolate findings from one bee species to others. This has important implications for regulatory risk assessments which generally use honeybees as a model for all bees. PMID:27053744

  4. Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees.

    Science.gov (United States)

    Piiroinen, Saija; Goulson, Dave

    2016-04-13

    Learning and memory are crucial functions which enable insect pollinators to efficiently locate and extract floral rewards. Exposure to pesticides or infection by parasites may cause subtle but ecologically important changes in cognitive functions of pollinators. The potential interactive effects of these stressors on learning and memory have not yet been explored. Furthermore, sensitivity to stressors may differ between species, but few studies have compared responses in different species. Here, we show that chronic exposure to field-realistic levels of the neonicotinoid clothianidin impaired olfactory learning acquisition in honeybees, leading to potential impacts on colony fitness, but not in bumblebees. Infection by the microsporidian parasite Nosema ceranae slightly impaired learning in honeybees, but no interactive effects were observed. Nosema did not infect bumblebees (3% infection success). Nevertheless, Nosema-treated bumblebees had a slightly lower rate of learning than controls, but faster learning in combination with neonicotinoid exposure. This highlights the potential for complex interactive effects of stressors on learning. Our results underline that one cannot readily extrapolate findings from one bee species to others. This has important implications for regulatory risk assessments which generally use honeybees as a model for all bees. © 2016 The Author(s).

  5. Honeybees learn floral odors while receiving nectar from foragers within the hive

    Science.gov (United States)

    Farina, Walter M.; Grüter, Christoph; Acosta, Luis; Mc Cabe, Sofía

    2007-01-01

    Recent studies showed that nectar odors brought back by honeybee foragers can be learned associatively inside the hive. In the present study, we focused on the learning abilities of bees, which directly interact via trophallaxis with the incoming nectar foragers: the workers that perform nectar-receiving tasks inside the hive. Workers that have received food directly from foragers coming back from a feeder offering either unscented or scented sugar solution [phenylacetaldehyde (PHE) or nonanal diluted] were captured from two observational hives, and their olfactory memories were tested using the proboscis extension response paradigm. Bees that have received scented solution from incoming foragers showed significantly increased response frequencies for the corresponding solution odor in comparison with those that have received unscented solution. No differences in the response frequencies were found between food odors and colonies. The results indicate that first-order receivers learn via trophallaxis the association between the scent and the sugar solution transferred by incoming foragers. The implications of these results should be considered at three levels: the operational cohesion of bees involved in foraging-related tasks, the information propagation inside the hive related to the floral type exploited, and the putative effect of these memories on future preferences for resources.

  6. Behavioural and neurophysiological study of olfactory perception and learning in honeybees

    Directory of Open Access Journals (Sweden)

    Jean-Christophe eSandoz

    2011-12-01

    Full Text Available The honeybee Apis mellifera has been a central insect model in the study of olfactory perception and learning for more than a century, starting with pioneer work by Karl von Frisch. Research on olfaction in honeybees has greatly benefited from the advent of a range of behavioural and neurophysiological paradigms in the Lab. Here I review major findings about how the honeybee brain detects, processes, and learns odours, based on behavioural, neuroanatomical and neurophysiological approaches. I first address the behavioural study of olfactory learning, from experiments on free-flying workers visiting artificial flowers to laboratory-based conditioning protocols on restrained individuals. I explain how the study of olfactory learning has allowed understanding the discrimination and generalization ability of the honeybee olfactory system, its capacity to grant special properties to olfactory mixtures as well as to retain individual component information. Next, based on the impressive amount of anatomical and immunochemical studies of the bee brain, I detail our knowledge of olfactory pathways. I then show how functional recordings of odour-evoked activity in the brain allow following the transformation of the olfactory message from the periphery until higher-order central structures. Data from extra- and intracellular electrophysiological approaches as well as from the most recent optical imaging developments are described. Lastly, I discuss results addressing how odour representation changes as a result of experience. This impressive ensemble of behavioural, neuroanatomical and neurophysiological data available in the bee make it an attractive model for future research aiming to understand olfactory perception and learning in an integrative fashion.

  7. Does Fine Color Discrimination Learning in Free-Flying Honeybees Change Mushroom-Body Calyx Neuroarchitecture?

    Science.gov (United States)

    Sommerlandt, Frank M J; Spaethe, Johannes; Rössler, Wolfgang; Dyer, Adrian G

    2016-01-01

    Honeybees learn color information of rewarding flowers and recall these memories in future decisions. For fine color discrimination, bees require differential conditioning with a concurrent presentation of target and distractor stimuli to form a long-term memory. Here we investigated whether the long-term storage of color information shapes the neural network of microglomeruli in the mushroom body calyces and if this depends on the type of conditioning. Free-flying honeybees were individually trained to a pair of perceptually similar colors in either absolute conditioning towards one of the colors or in differential conditioning with both colors. Subsequently, bees of either conditioning groups were tested in non-rewarded discrimination tests with the two colors. Only bees trained with differential conditioning preferred the previously learned color, whereas bees of the absolute conditioning group, and a stimuli-naïve group, chose randomly among color stimuli. All bees were then kept individually for three days in the dark to allow for complete long-term memory formation. Whole-mount immunostaining was subsequently used to quantify variation of microglomeruli number and density in the mushroom-body lip and collar. We found no significant differences among groups in neuropil volumes and total microglomeruli numbers, but learning performance was negatively correlated with microglomeruli density in the absolute conditioning group. Based on these findings we aim to promote future research approaches combining behaviorally relevant color learning tests in honeybees under free-flight conditions with neuroimaging analysis; we also discuss possible limitations of this approach.

  8. Impaired Olfactory Associative Behavior of Honeybee Workers Due to Contamination of Imidacloprid in the Larval Stage

    Science.gov (United States)

    Yang, En-Cheng; Chang, Hui-Chun; Wu, Wen-Yen; Chen, Yu-Wen

    2012-01-01

    The residue of imidacloprid in the nectar and pollens of the plants is toxic not only to adult honeybees but also the larvae. Our understanding of the risk of imidacloprid to larvae of the honeybees is still in a very early stage. In this study, the capped-brood, pupation and eclosion rates of the honeybee larvae were recorded after treating them directly in the hive with different dosages of imidacloprid. The brood-capped rates of the larvae decreased significantly when the dosages increased from 24 to 8000 ng/larva. However, there were no significant effects of DMSO or 0.4 ng of imidacloprid per larva on the brood-capped, pupation and eclosion rates. Although the sublethal dosage of imidacloprid had no effect on the eclosion rate, we found that the olfactory associative behavior of the adult bees was impaired if they had been treated with 0.04 ng/larva imidacloprid in the larval stage. These results demonstrate that a sublethal dosage of imidacloprid given to the larvae affects the subsequent associative ability of the adult honeybee workers. Thus, a low dose of imidacloprid may affect the survival condition of the entire colony, even though the larvae survive to adulthood. PMID:23166680

  9. Blue colour preference in honeybees distracts visual attention for learning closed shapes.

    Science.gov (United States)

    Morawetz, Linde; Svoboda, Alexander; Spaethe, Johannes; Dyer, Adrian G

    2013-10-01

    Spatial vision is an important cue for how honeybees (Apis mellifera) find flowers, and previous work has suggested that spatial learning in free-flying bees is exclusively mediated by achromatic input to the green photoreceptor channel. However, some data suggested that bees may be able to use alternative channels for shape processing, and recent work shows conditioning type and training length can significantly influence bee learning and cue use. We thus tested the honeybees' ability to discriminate between two closed shapes considering either absolute or differential conditioning, and using eight stimuli differing in their spectral characteristics. Consistent with previous work, green contrast enabled reliable shape learning for both types of conditioning, but surprisingly, we found that bees trained with appetitive-aversive differential conditioning could additionally use colour and/or UV contrast to enable shape discrimination. Interestingly, we found that a high blue contrast initially interferes with bee shape learning, probably due to the bees innate preference for blue colours, but with increasing experience bees can learn a variety of spectral and/or colour cues to facilitate spatial learning. Thus, the relationship between bee pollinators and the spatial and spectral cues that they use to find rewarding flowers appears to be a more rich visual environment than previously thought.

  10. Does Fine Color Discrimination Learning in Free-Flying Honeybees Change Mushroom-Body Calyx Neuroarchitecture?

    Directory of Open Access Journals (Sweden)

    Frank M J Sommerlandt

    Full Text Available Honeybees learn color information of rewarding flowers and recall these memories in future decisions. For fine color discrimination, bees require differential conditioning with a concurrent presentation of target and distractor stimuli to form a long-term memory. Here we investigated whether the long-term storage of color information shapes the neural network of microglomeruli in the mushroom body calyces and if this depends on the type of conditioning. Free-flying honeybees were individually trained to a pair of perceptually similar colors in either absolute conditioning towards one of the colors or in differential conditioning with both colors. Subsequently, bees of either conditioning groups were tested in non-rewarded discrimination tests with the two colors. Only bees trained with differential conditioning preferred the previously learned color, whereas bees of the absolute conditioning group, and a stimuli-naïve group, chose randomly among color stimuli. All bees were then kept individually for three days in the dark to allow for complete long-term memory formation. Whole-mount immunostaining was subsequently used to quantify variation of microglomeruli number and density in the mushroom-body lip and collar. We found no significant differences among groups in neuropil volumes and total microglomeruli numbers, but learning performance was negatively correlated with microglomeruli density in the absolute conditioning group. Based on these findings we aim to promote future research approaches combining behaviorally relevant color learning tests in honeybees under free-flight conditions with neuroimaging analysis; we also discuss possible limitations of this approach.

  11. Olfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities.

    Science.gov (United States)

    MaBouDi, HaDi; Shimazaki, Hideaki; Giurfa, Martin; Chittka, Lars

    2017-06-01

    The honeybee olfactory system is a well-established model for understanding functional mechanisms of learning and memory. Olfactory stimuli are first processed in the antennal lobe, and then transferred to the mushroom body and lateral horn through dual pathways termed medial and lateral antennal lobe tracts (m-ALT and l-ALT). Recent studies reported that honeybees can perform elemental learning by associating an odour with a reward signal even after lesions in m-ALT or blocking the mushroom bodies. To test the hypothesis that the lateral pathway (l-ALT) is sufficient for elemental learning, we modelled local computation within glomeruli in antennal lobes with axons of projection neurons connecting to a decision neuron (LHN) in the lateral horn. We show that inhibitory spike-timing dependent plasticity (modelling non-associative plasticity by exposure to different stimuli) in the synapses from local neurons to projection neurons decorrelates the projection neurons' outputs. The strength of the decorrelations is regulated by global inhibitory feedback within antennal lobes to the projection neurons. By additionally modelling octopaminergic modification of synaptic plasticity among local neurons in the antennal lobes and projection neurons to LHN connections, the model can discriminate and generalize olfactory stimuli. Although positive patterning can be accounted for by the l-ALT model, negative patterning requires further processing and mushroom body circuits. Thus, our model explains several-but not all-types of associative olfactory learning and generalization by a few neural layers of odour processing in the l-ALT. As an outcome of the combination between non-associative and associative learning, the modelling approach allows us to link changes in structural organization of honeybees' antennal lobes with their behavioural performances over the course of their life.

  12. Identification of Multiple Loci Associated with Social Parasitism in Honeybees.

    Science.gov (United States)

    Wallberg, Andreas; Pirk, Christian W; Allsopp, Mike H; Webster, Matthew T

    2016-06-01

    In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis.

  13. Identification of Multiple Loci Associated with Social Parasitism in Honeybees.

    Directory of Open Access Journals (Sweden)

    Andreas Wallberg

    2016-06-01

    Full Text Available In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis, worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis.

  14. The proboscis extension reflex to evaluate learning and memory in honeybees ( Apis mellifera): some caveats

    Science.gov (United States)

    Frost, Elisabeth H.; Shutler, Dave; Hillier, Neil Kirk

    2012-09-01

    The proboscis extension reflex (PER) is widely used in a classical conditioning (Pavlovian) context to evaluate learning and memory of a variety of insect species. The literature is particularly prodigious for honeybees ( Apis mellifera) with more than a thousand publications. Imagination appears to be the only limit to the types of challenges to which researchers subject honeybees, including all the sensory modalities and a broad diversity of environmental treatments. Accordingly, some remarkable insights have been achieved using PER. However, there are several challenges to evaluating the PER literature that warrant a careful and thorough review. We assess here variation in methods that makes interpretation of studies, even those researching the same question, tenuous. We suggest that the numerous variables that might influence experimental outcomes from PER be thoroughly detailed by researchers. Moreover, the influence of individual variables on results needs to carefully evaluated, as well as among two or more variables. Our intent is to encourage investigation of the influence of numerous variables on PER results.

  15. DNA Methylation Adjusts the Specificity of Memories Depending on the Learning Context and Promotes Relearning in Honeybees.

    Science.gov (United States)

    Biergans, Stephanie D; Claudianos, Charles; Reinhard, Judith; Galizia, C G

    2016-01-01

    The activity of the epigenetic writers DNA methyltransferases (Dnmts) after olfactory reward conditioning is important for both stimulus-specific long-term memory (LTM) formation and extinction. It, however, remains unknown which components of memory formation Dnmts regulate (e.g., associative vs. non-associative) and in what context (e.g., varying training conditions). Here, we address these aspects in order to clarify the role of Dnmt-mediated DNA methylation in memory formation. We used a pharmacological Dnmt inhibitor and classical appetitive conditioning in the honeybee Apis mellifera, a well characterized model for classical conditioning. We quantified the effect of DNA methylation on naïve odor and sugar responses, and on responses following olfactory reward conditioning. We show that (1) Dnmts do not influence naïve odor or sugar responses, (2) Dnmts do not affect the learning of new stimuli, but (3) Dnmts influence odor-coding, i.e., 'correct' (stimulus-specific) LTM formation. Particularly, Dnmts reduce memory specificity when experience is low (one-trial training), and increase memory specificity when experience is high (multiple-trial training), generating an ecologically more useful response to learning. (4) In reversal learning conditions, Dnmts are involved in regulating both excitatory (re-acquisition) and inhibitory (forgetting) processes.

  16. Acute exposure to a sublethal dose of imidacloprid and coumaphos enhances olfactory learning and memory in the honeybee Apis mellifera.

    Science.gov (United States)

    Williamson, Sally M; Baker, Daniel D; Wright, Geraldine A

    2013-06-01

    The decline of honeybees and other pollinating insects is a current cause for concern. A major factor implicated in their decline is exposure to agricultural chemicals, in particular the neonicotinoid insecticides such as imidacloprid. Honeybees are also subjected to additional chemical exposure when beekeepers treat hives with acaricides to combat the mite Varroa destructor. Here, we assess the effects of acute sublethal doses of the neonicotinoid imidacloprid, and the organophosphate acaricide coumaphos, on honey bee learning and memory. Imidacloprid had little effect on performance in a six-trial olfactory conditioning assay, while coumaphos caused a modest impairment. We report a surprising lack of additive adverse effects when both compounds were administered simultaneously, which instead produced a modest improvement in learning and memory.

  17. Age-associated increase of the active zone protein Bruchpilot within the honeybee mushroom body.

    Directory of Open Access Journals (Sweden)

    Katrin B Gehring

    Full Text Available In honeybees, age-associated structural modifications can be observed in the mushroom bodies. Prominent examples are the synaptic complexes (microglomeruli, MG in the mushroom body calyces, which were shown to alter their size and density with age. It is not known whether the amount of intracellular synaptic proteins in the MG is altered as well. The presynaptic protein Bruchpilot (BRP is localized at active zones and is involved in regulating the probability of neurotransmitter release in the fruit fly, Drosophila melanogaster. Here, we explored the localization of the honeybee BRP (Apis mellifera BRP, AmBRP in the bee brain and examined age-related changes in the AmBRP abundance in the central bee brain and in microglomeruli of the mushroom body calyces. We report predominant AmBRP localization near the membrane of presynaptic boutons within the mushroom body MG. The relative amount of AmBRP was increased in the central brain of two-week old bees whereas the amount of Synapsin, another presynaptic protein involved in the regulation of neurotransmitter release, shows an increase during the first two weeks followed by a decrease. In addition, we demonstrate an age-associated modulation of AmBRP located near the membrane of presynaptic boutons within MG located in mushroom body calyces where sensory input is conveyed to mushroom body intrinsic neurons. We discuss that the observed age-associated AmBRP modulation might be related to maturation processes or to homeostatic mechanisms that might help to maintain synaptic functionality in old animals.

  18. Searching for learning-dependent changes in the antennal lobe: simultaneous recording of neural activity and aversive olfactory learning in honeybees

    Directory of Open Access Journals (Sweden)

    Edith Roussel

    2010-09-01

    Full Text Available Plasticity in the honeybee brain has been studied using the appetitive olfactory conditioning of the proboscis extension reflex, in which a bee learns the association between an odor and a sucrose reward. In this framework, coupling behavioral measurements of proboscis extension and invasive recordings of neural activity has been difficult because proboscis movements usually introduce brain movements that affect physiological preparations. Here we took advantage of a new conditioning protocol, the aversive olfactory conditioning of the sting extension reflex, which does not generate this problem. We achieved the first simultaneous recordings of conditioned sting extension responses and calcium imaging of antennal lobe activity, thus revealing on-line processing of olfactory information during conditioning trials. Based on behavioral output we distinguished learners and non-learners and analyzed possible learning-dependent changes in antennal lobe activity. We did not find differences between glomerular responses to the CS+ and the CS- in learners. Unexpectedly, we found that during conditioning trials non-learners exhibited a progressive decrease in physiological responses to odors, irrespective of their valence. This effect could neither be attributed to a fitness problem nor to abnormal dye bleaching. We discuss the absence of learning-induced changes in the antennal lobe of learners and the decrease in calcium responses found in non-learners. Further studies will have to extend the search for functional plasticity related to aversive learning to other brain areas and to look on a broader range of temporal scales

  19. Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera)

    Science.gov (United States)

    2014-01-01

    The honeybee (Apis mellifera) has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a flower's characteristic features with a reward in a way that resembles olfactory appetitive classical conditioning, a learning paradigm that is used to study mechanisms underlying learning and memory formation in the honeybee. Due to a plethora of studies on appetitive classical conditioning and phenomena related to it, the honeybee is one of the best characterized invertebrate model organisms from a learning psychological point of view. Moreover, classical conditioning and associated behavioral phenomena are surprisingly similar in honeybees and vertebrates, suggesting a convergence of underlying neuronal processes, including the molecular mechanisms that contribute to them. Here I review current thinking on the molecular mechanisms underlying long-term memory (LTM) formation in honeybees following classical conditioning and extinction, demonstrating that an in-depth analysis of the molecular mechanisms of classical conditioning in honeybees might add to our understanding of associative learning in honeybees and vertebrates. PMID:25225299

  20. Development of molecular tools for honeybee virus research: the ...

    African Journals Online (AJOL)

    Increasing knowledge of the association of honeybee viruses with other honeybee parasites, primarily the ectoparasitic mite Varroa destructor, and their implication in the mass mortality of honeybee colonies, has resulted in increasing awareness and interest in honeybee viruses. In addition the identification, monitoring and ...

  1. Color Modulates Olfactory Learning in Honeybees by an Occasion-Setting Mechanism

    Science.gov (United States)

    Mota, Theo; Giurfa, Martin; Sandoz, Jean-Christophe

    2011-01-01

    A sophisticated form of nonelemental learning is provided by occasion setting. In this paradigm, animals learn to disambiguate an uncertain conditioned stimulus using alternative stimuli that do not enter into direct association with the unconditioned stimulus. For instance, animals may learn to discriminate odor rewarded from odor nonrewarded…

  2. Associative and non-associative plasticity in Kenyon cells of the honeybee mushroom body

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available The insect mushroom bodies are higher-order brain centers and critical for odor learning. We investigated experience dependent plasticity of their intrinsic neurons, the Kenyon cells. Using calcium imaging, we recorded Kenyon cell responses and investigated non-associative plasticity by applying repeated odor stimuli. Associative plasticity was examined by performing appetitive odor learning experiments. Olfactory, gustatory and tactile antennal stimuli evoked phasic calcium transients in sparse ensembles of responding Kenyon cells. Repeated stimulation with an odor led to a decrease in Kenyon cells’ response strength. The pairing of an odor (CS with a sucrose reward (US induced a prolongation of Kenyon cell responses. After conditioning, Kenyon cell responses to a rewarded odor (CS+ recovered from repetition-induced decrease, while the responses to a non-rewarded odor (CS- decreased further. The spatio-temporal pattern of activated Kenyon cells changed for both odors when compared with the response before conditioning but the change was stronger for the CS-. These results demonstrate that Kenyon cell responses are subject to non-associative plasticity during odor repetition and undergo associative plasticity after appetitive odor learning.

  3. Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain.

    Science.gov (United States)

    Mauelshagen, J

    1993-02-01

    conditioning procedure reveal that the effect observed for the one-trial conditioning paradigm is of an associative nature and that there might be modulations, which are specific for single and multiple trial conditioning procedures. It is hypothesized that the PE1-neuron is a possible element involved in the short-term acquisition, rather than in the long-term storage, of an associative olfactory memory in the honeybee.

  4. Steroid Hormone (20-Hydroxyecdysone) Modulates the Acquisition of Aversive Olfactory Memories in Pollen Forager Honeybees

    Science.gov (United States)

    Geddes, Lisa H.; McQuillan, H. James; Aiken, Alastair; Vergoz, Vanina; Mercer, Alison R.

    2013-01-01

    Here, we examine effects of the steroid hormone, 20-hydroxyecdysone (20-E), on associative olfactory learning in the honeybee, "Apis mellifera." 20-E impaired the bees' ability to associate odors with punishment during aversive conditioning, but did not interfere with their ability to associate odors with a food reward (appetitive…

  5. Molecular Mechanisms Underlying Formation of Long-Term Reward Memories and Extinction Memories in the Honeybee ("Apis Mellifera")

    Science.gov (United States)

    Eisenhardt, Dorothea

    2014-01-01

    The honeybee ("Apis mellifera") has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a…

  6. The effect of essential oils of sweet fennel and pignut on mortality and learning in africanized honeybees (Apis mellifera L.) (Hymenoptera: Apidae)

    Energy Technology Data Exchange (ETDEWEB)

    Abramson, Charles I.; Michaluk, Lynnette M. [Oklahoma State University, Stillwater, OK (United States). Depts. of Psychology and Zoology. Lab. Comparative Psychology and Behavioral Biology]. E-mail: charles.abramson@okstate.edu; Wanderley, Paulo A.; Wanderley, Maria J.A.; Silva, Jose C.R. [Universidade Federal da Paraiba (UFPB), Bananeiras, PB (Brazil). Dept. de Agricultura

    2007-11-15

    It was recently discovered that exposure to small concentrations of the essential oils of sweet fennel (Foeniculum vulgare Mill) or pignut [Hyptis suaveolens (L.) Poit] can be used to control aphids. What is not known is whether these oils also influence honeybee behavior. Experiments using both harnessed and free-flying foragers at concentrations used to control aphids showed that bees readily associated the odors with a reward, discriminated between them, and were not repelled. Honeybees, however, would not consume the oils when mixed with sucrose to create an unconditioned stimulus. An experiment in which harnessed bees consumed various concentrations showed that concentrations greater than 50% were detrimental. The experiments reported here provide further evidence supporting the use of conditioning techniques to evaluate the use of essential oils on honey bee behavior. (author)

  7. The effect of essential oils of sweet fennel and pignut on mortality and learning in africanized honeybees (Apis mellifera L.) (Hymenoptera: Apidae)

    International Nuclear Information System (INIS)

    Abramson, Charles I.; Michaluk, Lynnette M.; Wanderley, Paulo A.; Wanderley, Maria J.A.; Silva, Jose C.R.

    2007-01-01

    It was recently discovered that exposure to small concentrations of the essential oils of sweet fennel (Foeniculum vulgare Mill) or pignut [Hyptis suaveolens (L.) Poit] can be used to control aphids. What is not known is whether these oils also influence honeybee behavior. Experiments using both harnessed and free-flying foragers at concentrations used to control aphids showed that bees readily associated the odors with a reward, discriminated between them, and were not repelled. Honeybees, however, would not consume the oils when mixed with sucrose to create an unconditioned stimulus. An experiment in which harnessed bees consumed various concentrations showed that concentrations greater than 50% were detrimental. The experiments reported here provide further evidence supporting the use of conditioning techniques to evaluate the use of essential oils on honey bee behavior. (author)

  8. The transcriptomic changes associated with the development of social parasitism in the honeybee Apis mellifera capensis

    Science.gov (United States)

    Aumer, Denise; Mumoki, Fiona N.; Pirk, Christian W. W.; Moritz, Robin F. A.

    2018-04-01

    Social insects are characterized by the division of labor. Queens usually dominate reproduction, whereas workers fulfill non-reproductive age-dependent tasks to maintain the colony. Although workers are typically sterile, they can activate their ovaries to produce their own offspring. In the extreme, worker reproduction can turn into social parasitism as in Apis mellifera capensis. These intraspecific parasites occupy a host colony, kill the resident queen, and take over the reproductive monopoly. Because they exhibit a queenlike behavior and are also treated like queens by the fellow workers, they are so-called pseudoqueens. Here, we compare the development of parasitic pseudoqueens and social workers at different time points using fat body transcriptome data. Two complementary analysis methods—a principal component analysis and a time course analysis—led to the identification of a core set of genes involved in the transition from a social worker into a highly fecund parasitic pseudoqueen. Comparing our results on pseudoqueens with gene expression data of honeybee queens revealed many similarities. In addition, there was a set of specific transcriptomic changes in the parasitic pseudoqueens that differed from both, queens and social workers, which may be typical for the development of the social parasitism in A. m. capensis.

  9. Honeybee immunity and colony losses

    Directory of Open Access Journals (Sweden)

    F. Nazzi

    2014-10-01

    Full Text Available The decline of honeybee colonies and their eventual collapse is a widespread phenomenon in the Northern hemisphere of the globe, which severely limits the beekeeping industry. This dramatic event is associated with an enhanced impact of parasites and pathogens on honeybees, which is indicative of reduced immunocompetence. The parasitic mite Varroa destructor and the vectored viral pathogens appear to play a key-role in the induction of this complex syndrome. In particular, the Deformed Wing Virus (DWV is widespread and is now considered, along with Varroa, one of the major causes of bee colony losses. Several lines of evidence indicate that this mite/DWV association severely affects the immune system of honeybees and makes them more sensitive to the action of other stress factors. The molecular mechanisms underpinning these complex interactions are currently being investigated and the emerging information has allowed the development of a new functional model, describing how different stress factors may synergistically concur in the induction of bee immune alteration and health decline. This provides a new logical framework in which to interpret the proposed multifactorial origin of bee colony losses and sets the stage for a more comprehensive and integrated analysis of the effect that multiple stress agents may have on honeybees.

  10. Sensory Responsiveness and the Effects of Equal Subjective Rewards on Tactile Learning and Memory of Honeybees

    Science.gov (United States)

    Scheiner, Ricarda; Kuritz-Kaiser, Anthea; Menzel, Randolf; Erber, Joachim

    2005-01-01

    In tactile learning, sucrose is the unconditioned stimulus and reward, which is usually applied to the antenna to elicit proboscis extension and which the bee can drink when it is subsequently applied to the extended proboscis. The conditioned stimulus is a tactile object that the bee can scan with its antennae. In this paper we describe the…

  11. Side-Specific Reward Memories in Honeybees

    Science.gov (United States)

    Gil, Mariana; Menzel, Randolf; De Marco, Rodrigo J.

    2009-01-01

    We report a hitherto unknown form of side-specific learning in honeybees. We trained bees individually by coupling gustatory and mechanical stimulation of each antenna with either increasing or decreasing volumes of sucrose solution offered to the animal's proboscis along successive learning trials. Next, we examined their proboscis extension…

  12. 19 CFR 12.32 - Honeybees and honeybee semen.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Honeybees and honeybee semen. 12.32 Section 12.32... semen. (a) Honeybees from any country may be imported into the U.S. by the Department of Agriculture for.... (b) Honeybee semen may be imported into the U.S. only from countries determined by the Secretary of...

  13. Four quantitative trait loci associated with low Nosema ceranae (Microsporidia) spore load in the honeybee Apis mellifera

    DEFF Research Database (Denmark)

    Huang, Qiang; Kryger, Per; Le Conte, Yves

    2014-01-01

    Nosema ceranae has been recently introduced into the honeybee Apis mellifera as a novel microsporidian gut parasite. To locate the genetic region involved in N. ceranae infection tolerance, we fed N. ceranae spores to haploid drones of a F1 hybrid queen produced from a cross between a queen...

  14. Focal Uncaging of GABA Reveals a Temporally Defined Role for GABAergic Inhibition during Appetitive Associative Olfactory Conditioning in Honeybees

    Science.gov (United States)

    Raccuglia, Davide; Mueller, Uli

    2013-01-01

    Throughout the animal kingdom, the inhibitory neurotransmitter ?-aminobutyric acid (GABA) is a key modulator of physiological processes including learning. With respect to associative learning, the exact time in which GABA interferes with the molecular events of learning has not yet been clearly defined. To address this issue, we used two…

  15. Effect of juvenile hormone on short-term olfactory memory in young honeybees (Apis mellifera).

    Science.gov (United States)

    Maleszka, R; Helliwell, P

    2001-11-01

    Reliable retention of olfactory learning following a 1-trial classical conditioning of the proboscis extension reflex (PER) is not achieved in honeybees until they are 6-7 days old. Here we show that treatment of newly emerged honeybees with juvenile hormone (JH) has a profound effect on the maturation of short-term olfactory memory. JH-treated individuals display excellent short-term (1 h) memory of associative learning at times as early as 3 days of age and perform consistently better than untreated bees for at least the first week of their lives. By contrast, the retention of long-term (24 h) memory following a 3-trial conditioning of the PER is not significantly improved in JH-treated bees. Our study also shows that experience and (or) chemosensory activation are not essential to improve learning performance in olfactory tasks. The lack of accelerated development of long-term retention of olfactory memories in JH-treated honeybees is discussed in the context of neural circuits suspected to mediate memory formation and retrieval in the honeybee brain. Copyright 2001 Academic Press.

  16. Dance type and flight parameters are associated with different mushroom body neural activities in worker honeybee brains.

    Directory of Open Access Journals (Sweden)

    Taketoshi Kiya

    Full Text Available BACKGROUND: Honeybee foragers can transmit the information concerning the location of food sources to their nestmates using dance communication. We previously used a novel immediate early gene, termed kakusei, to demonstrate that the neural activity of a specific mushroom body (MB neuron subtype is preferentially enhanced in the forager brain. The sensory information related to this MB neuron activity, however, remained unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here, we used kakusei to analyze the relationship between MB neuron activity and types of foraging behavior. The number of kakusei-positive MB neurons was higher in the round dancers that had flown a short distance than in the waggle dancers that had flown a long distance. Furthermore, the amount of kakusei transcript in the MBs inversely related to the waggle-phase duration of the waggle dance, which correlates with the flight distance. Using a narrow tunnel whose inside was vertically or axially lined, we manipulated the pattern of visual input, which is received by the foragers during flight, and analysed kakusei expression. The amount of kakusei transcript in the MBs was related to the foraging frequency but not to the tunnel pattern. In contrast, the number of kakusei-positive MB neurons was affected by the tunnel patterns, but not related to foraging frequency. CONCLUSIONS/SIGNIFICANCE: These results suggest that the MB neuron activity depends on the foraging frequency, whereas the number of active MB neurons is related to the pattern of visual input received during foraging flight. Our results suggest that the foraging frequency and visual experience during foraging are associated with different MB neural activities.

  17. A Role of Protein Degradation in Memory Consolidation after Initial Learning and Extinction Learning in the Honeybee ("Apis mellifera")

    Science.gov (United States)

    Felsenberg, Johannes; Dombrowski, Vincent; Eisenhardt, Dorothea

    2012-01-01

    Protein degradation is known to affect memory formation after extinction learning. We demonstrate here that an inhibitor of protein degradation, MG132, interferes with memory formation after extinction learning in a classical appetitive conditioning paradigm. In addition, we find an enhancement of memory formation when the same inhibitor is…

  18. Detection of Illicit Drugs by Trained Honeybees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Matthias Schott

    Full Text Available Illegal drugs exacerbate global social challenges such as substance addiction, mental health issues and violent crime. Police and customs officials often rely on specially-trained sniffer dogs, which act as sensitive biological detectors to find concealed illegal drugs. However, the dog "alert" is no longer sufficient evidence to allow a search without a warrant or additional probable cause because cannabis has been legalized in two US states and is decriminalized in many others. Retraining dogs to recognize a narrower spectrum of drugs is difficult and training new dogs is time consuming, yet there are no analytical devices with the portability and sensitivity necessary to detect substance-specific chemical signatures. This means there is currently no substitute for sniffer dogs. Here we describe an insect screening procedure showing that the western honeybee (Apis mellifera can sense volatiles associated with pure samples of heroin and cocaine. We developed a portable electroantennographic device for the on-site measurement of volatile perception by these insects, and found a positive correlation between honeybee antennal responses and the concentration of specific drugs in test samples. Furthermore, we tested the ability of honeybees to learn the scent of heroin and trained them to show a reliable behavioral response in the presence of a highly-diluted scent of pure heroin. Trained honeybees could therefore be used to complement or replace the role of sniffer dogs as part of an automated drug detection system. Insects are highly sensitive to volatile compounds and provide an untapped resource for the development of biosensors. Automated conditioning as presented in this study could be developed as a platform for the practical detection of illicit drugs using insect-based sensors.

  19. Detection of Illicit Drugs by Trained Honeybees (Apis mellifera).

    Science.gov (United States)

    Schott, Matthias; Klein, Birgit; Vilcinskas, Andreas

    2015-01-01

    Illegal drugs exacerbate global social challenges such as substance addiction, mental health issues and violent crime. Police and customs officials often rely on specially-trained sniffer dogs, which act as sensitive biological detectors to find concealed illegal drugs. However, the dog "alert" is no longer sufficient evidence to allow a search without a warrant or additional probable cause because cannabis has been legalized in two US states and is decriminalized in many others. Retraining dogs to recognize a narrower spectrum of drugs is difficult and training new dogs is time consuming, yet there are no analytical devices with the portability and sensitivity necessary to detect substance-specific chemical signatures. This means there is currently no substitute for sniffer dogs. Here we describe an insect screening procedure showing that the western honeybee (Apis mellifera) can sense volatiles associated with pure samples of heroin and cocaine. We developed a portable electroantennographic device for the on-site measurement of volatile perception by these insects, and found a positive correlation between honeybee antennal responses and the concentration of specific drugs in test samples. Furthermore, we tested the ability of honeybees to learn the scent of heroin and trained them to show a reliable behavioral response in the presence of a highly-diluted scent of pure heroin. Trained honeybees could therefore be used to complement or replace the role of sniffer dogs as part of an automated drug detection system. Insects are highly sensitive to volatile compounds and provide an untapped resource for the development of biosensors. Automated conditioning as presented in this study could be developed as a platform for the practical detection of illicit drugs using insect-based sensors.

  20. Visual discrimination transfer and modulation by biogenic amines in honeybees.

    Science.gov (United States)

    Vieira, Amanda Rodrigues; Salles, Nayara; Borges, Marco; Mota, Theo

    2018-05-10

    For more than a century, visual learning and memory have been studied in the honeybee Apis mellifera using operant appetitive conditioning. Although honeybees show impressive visual learning capacities in this well-established protocol, operant training of free-flying animals cannot be combined with invasive protocols for studying the neurobiological basis of visual learning. In view of this, different attempts have been made to develop new classical conditioning protocols for studying visual learning in harnessed honeybees, though learning performance remains considerably poorer than that for free-flying animals. Here, we investigated the ability of honeybees to use visual information acquired during classical conditioning in a new operant context. We performed differential visual conditioning of the proboscis extension reflex (PER) followed by visual orientation tests in a Y-maze. Classical conditioning and Y-maze retention tests were performed using the same pair of perceptually isoluminant chromatic stimuli, to avoid the influence of phototaxis during free-flying orientation. Visual discrimination transfer was clearly observed, with pre-trained honeybees significantly orienting their flights towards the former positive conditioned stimulus (CS+), thus showing that visual memories acquired by honeybees are resistant to context changes between conditioning and the retention test. We combined this visual discrimination approach with selective pharmacological injections to evaluate the effect of dopamine and octopamine in appetitive visual learning. Both octopaminergic and dopaminergic antagonists impaired visual discrimination performance, suggesting that both these biogenic amines modulate appetitive visual learning in honeybees. Our study brings new insight into cognitive and neurobiological mechanisms underlying visual learning in honeybees. © 2018. Published by The Company of Biologists Ltd.

  1. Preparation of Single-cohort Colonies and Hormone Treatment of Worker Honeybees to Analyze Physiology Associated with Role and/or Endocrine System.

    Science.gov (United States)

    Ueno, Takayuki; Kawasaki, Kiyoshi; Kubo, Takeo

    2016-09-06

    Honeybee workers are engaged in various tasks related to maintaining colony activity. The tasks of the workers change according to their age (age-related division of labor). Young workers are engaged in nursing the brood (nurse bees), while older workers are engaged in foraging for nectar and pollen (foragers). The physiology of the workers changes in association with this role shift. For example, the main function of the hypopharyngeal glands (HPGs) changes from the secretion of major royal jelly proteins (MRJPs) to the secretion of carbohydrate-metabolizing enzymes. Because worker tasks change as the workers age in typical colonies, it is difficult to discriminate the physiological changes that occur with aging from those that occur with the role shift. To study the physiological changes in worker tissues, including the HPGs, in association with the role shift, it would be useful to manipulate the honeybee colony population by preparing single-cohort colonies in which workers of almost the same age perform different tasks. Here we describe a detailed protocol for preparing single-cohort colonies for this analysis. Six to eight days after single-cohort colony preparation, precocious foragers that perform foraging tasks earlier than usual appear in the colony. Representative results indicated role-associated changes in HPG gene expression, suggesting role-associated HPG function. In addition to manipulating the colony population, analysis of the endocrine system is important for investigating role-associated physiology. Here, we also describe a detailed protocol for treating workers with 20-hydroxyecdysone (20E), an active form of ecdysone, and methoprene, a juvenile hormone analogue. The survival rate of treated bees was sufficient to examine gene expression in the HPGs. Gene expression changes were observed in response to 20E- and/or methoprene-treatment, suggesting that hormone treatments induce physiological changes of the HPGs. The protocol for hormone

  2. Influence of agrochemicals fipronil and imidacloprid on the learning behavior of Apis mellifera L. honeybees - doi: 10.4025/actascianimsci.v35i4.18683

    Directory of Open Access Journals (Sweden)

    Marcela Pedraza Carrillo

    2013-10-01

    Full Text Available Agrochemicals on crop cultivated areas is a source of contamination for bees and may cause physiological and behavioral disorders and mortality. The LD50 of the pesticides fipronil and imidacloprid was determined and their effect on the learning behavior of Apis mellifera L. honeybee evaluated. LD50 was determined by the ingestion of contaminated food with different concentrations of insecticide concentrations: Fipronil (0, 0.8, 0.4, 0.2, 0.1 and 0.05 µg bee-1 and imidacloprid (0, 0.4, 0.2, 0.1, 0.05 and 0.025 µg bee-1. The method of proboscis extension reflection (PER and learning through citral odor evaluated their responses to food stimulation. LD50 obtained were 0.28 ± 0.11 and 0.10 ± 0.04 µg bee-1 for fipronil and imidacloprid, respectively. The PER test showed no significant difference (p Apis mellifera bees.  

  3. Time and Associative Learning.

    Science.gov (United States)

    Balsam, Peter D; Drew, Michael R; Gallistel, C R

    2010-01-01

    In a basic associative learning paradigm, learning is said to have occurred when the conditioned stimulus evokes an anticipatory response. This learning is widely believed to depend on the contiguous presentation of conditioned and unconditioned stimulus. However, what it means to be contiguous has not been rigorously defined. Here we examine the empirical bases for these beliefs and suggest an alternative view based on the hypothesis that learning about the temporal relationships between events determines the speed of emergence, vigor and form of conditioned behavior. This temporal learning occurs very rapidly and prior to the appearance of the anticipatory response. The temporal relations are learned even when no anticipatory response is evoked. The speed with which an anticipatory response emerges is proportional to the informativeness of the predictive cue (CS) regarding the rate of occurrence of the predicted event (US). This analysis gives an account of what we mean by "temporal pairing" and is in accord with the data on speed of acquisition and basic findings in the cue competition literature. In this account, learning depends on perceiving and encoding temporal regularities rather than stimulus contiguities.

  4. Vultures and honeybees

    African Journals Online (AJOL)

    ZeldaH

    in the Ganab area of the Namib-Naukluft. Park, Namibia, we came across an unusual occurrence: When we reached the chick in the nest, we found honeybees Apis mellifera, crowded over and covering the eyes of the young vulture. The Namib-Naukluft Park (NNP),. 49,785 km², is the largest conservation area in Namibia ...

  5. Associative Learning in Invertebrates

    Science.gov (United States)

    Hawkins, Robert D.; Byrne, John H.

    2015-01-01

    This work reviews research on neural mechanisms of two types of associative learning in the marine mollusk Aplysia, classical conditioning of the gill- and siphon-withdrawal reflex and operant conditioning of feeding behavior. Basic classical conditioning is caused in part by activity-dependent facilitation at sensory neuron–motor neuron (SN–MN) synapses and involves a hybrid combination of activity-dependent presynaptic facilitation and Hebbian potentiation, which are coordinated by trans-synaptic signaling. Classical conditioning also shows several higher-order features, which might be explained by the known circuit connections in Aplysia. Operant conditioning is caused in part by a different type of mechanism, an intrinsic increase in excitability of an identified neuron in the central pattern generator (CPG) for feeding. However, for both classical and operant conditioning, adenylyl cyclase is a molecular site of convergence of the two signals that are associated. Learning in other invertebrate preparations also involves many of the same mechanisms, which may contribute to learning in vertebrates as well. PMID:25877219

  6. Response competition associated with right-left antennal asymmetries of new and old olfactory memory traces in honeybees.

    Science.gov (United States)

    Frasnelli, Elisa; Vallortigara, Giorgio; Rogers, Lesley J

    2010-05-01

    Lateralized recall of olfactory memory in honeybees was tested, following conditioning of the proboscis extension reflex (PER), at 1 or 6h after training. After training with lemon (+)/vanilla (-) or cineol (+)/eugenol (-) recall at 1h was better when the odour was presented to the right side of the bee than when it was presented to the left side. In contrast, recall at 6h was better when the odour was presented to the left than to the right side. This confirmed previous evidence of shorter-term recall via the right antenna and long-term memory recall via the left antenna. However, when trained with either a familiar appetitive odour (rose) as a negative stimulus, or with a naturally aversive odour (isoamyl acetate, IAA) as a positive stimulus, bees showed suppression of the response from both the right and the left side at 1h after training (likely due to retroactive inhibition) and at 6h responded to both odours on both sides. We argued that at 6h, when access to memory has completed the shift from the right to the left side, memory of these familiar odours in the left side of the brain would be present as both positive (rose)/negative (IAA) (as a result of long-term memory either biologically encoded or acquired well before testing) and negative (rose)/positive (IAA) (as a result of the long-term memory of training) stimuli, thus producing response competition. As a direct test of this hypothesis, bees were first trained with unfamiliar lemon (+)/vanilla (-) and then (16h later) re-trained with vanilla (+)/lemon (-); as predicted, 6h after re-training bees responded to both odours on both the left and right side.

  7. Conditional withholding of proboscis extension in honeybees (Apis mellifera) during discriminative punishment.

    Science.gov (United States)

    Smith, B H; Abramson, C I; Tobin, T R

    1991-12-01

    Proboscis extension conditioning of honeybee workers was used to test the ability of bees to respond to appetitive and aversive stimuli while restrained in a harness that allows subjects to move their antennae and mouthparts (Kuwabara, 1957; Menzel, Erber, & Masuhr, 1974). Subjects were conditioned to discriminate between two odors, one associated with sucrose feeding and the other associated with a 10 V AC shock if they responded to the sucrose unconditioned stimulus (US) in the context of that odor. Most Ss readily learned to respond to the odor followed by sucrose feeding and not to the odor associated with sucrose stimulation plus shock. Furthermore, in the context of the odor associated with shock, significantly more subjects withheld or delayed proboscis extension on stimulation with the sucrose US than they did in the context of the odor associated with feeding. Thus, restrained honeybees can readily learn to avoid shock according to an odor context by withholding proboscis extension to a normally powerful releaser. Analysis of individual learning curves revealed that subjects differed markedly in performance on this task. Some learn the discrimination quickly, whereas others show different kinds of response patterns.

  8. Proteomic analysis of honeybee (Apis mellifera L. pupae head development.

    Directory of Open Access Journals (Sweden)

    Aijuan Zheng

    Full Text Available The honeybee pupae development influences its future adult condition as well as honey and royal jelly productions. However, the molecular mechanism that regulates honeybee pupae head metamorphosis is still poorly understood. To further our understand of the associated molecular mechanism, we investigated the protein change of the honeybee pupae head at 5 time-points using 2-D electrophoresis, mass spectrometry, bioinformatics, quantitative real-time polymerase chain reaction and Western blot analysis. Accordingly, 58 protein spots altered their expression across the 5 time points (13-20 days, of which 36 proteins involved in the head organogenesis were upregulated during early stages (13-17 days. However, 22 proteins involved in regulating the pupae head neuron and gland development were upregulated at later developmental stages (19-20 days. Also, the functional enrichment analysis further suggests that proteins related to carbohydrate metabolism and energy production, development, cytoskeleton and protein folding were highly involved in the generation of organs and development of honeybee pupal head. Furthermore, the constructed protein interaction network predicted 33 proteins acting as key nodes of honeybee pupae head growth of which 9 and 4 proteins were validated at gene and protein levels, respectively. In this study, we uncovered potential protein species involved in the formation of honeybee pupae head development along with their specific temporal requirements. This first proteomic result allows deeper understanding of the proteome profile changes during honeybee pupae head development and provides important potential candidate proteins for future reverse genetic research on honeybee pupae head development to improve the performance of related organs.

  9. THE HONEYBEE ACROSS THE CURRICULUM

    African Journals Online (AJOL)

    completed by pupils, followed by questions relating to the anatomy of the honeybee. Chapter Four: The Honeybee at Home. After the swarm1ng, the bu1ld1ng of the nest, the establish- ment of a new community and the mating of the queen and drones, we observe the development of the queen, drone and worker from egg ...

  10. Evaluation of the defensive behavior of two honeybee ecotypes using a laboratory test

    Directory of Open Access Journals (Sweden)

    Cecilia Andere

    2002-01-01

    Full Text Available Honeybee defensive behavior is a useful selection criterion, especially in areas with Africanized honeybees (Apis mellifera L. In all genetic improvement programs the selected characters must be measured with precision, and because of this we evaluated a metabolic method for testing honeybee defensive behavior in the laboratory for its usefulness in distinguishing between honeybee ecotypes and selecting honeybees based on their level of defensive responses. Ten honeybee colonies were used, five having been produced by feral queens from a subtropical region supposedly colonized by Africanized honeybees and five by queens from a temperate region apparently colonized by European honeybees. We evaluate honeybee defensive behavior using a metabolic test based on oxygen consumption after stimulation with an alarm pheromone, measuring the time to the first response, time to maximum oxygen consumption, duration of activity, oxygen consumption at first response, maximum oxygen consumption and total oxygen consumption, colonies being ranked according to the values obtained for each variable. Significant (p < 0.05 differences were detected between ecotypes for each variable but for all variables the highest rankings were obtained for colonies of subtropical origin, which had faster and more intense responses. All variables were highly associated (p < 0.05. Total oxygen consumption was the best indicator of metabolic activity for defensive behavior because it combined oxygen consumption and the length of the response. This laboratory method may be useful for evaluating the defensive behavior of honey bees in genetic programs designed to select less defensive bees.

  11. Learning: from association to cognition.

    Science.gov (United States)

    Shanks, David R

    2010-01-01

    Since the very earliest experimental investigations of learning, tension has existed between association-based and cognitive theories. Associationism accounts for the phenomena of both conditioning and "higher" forms of learning via concepts such as excitation, inhibition, and reinforcement, whereas cognitive theories assume that learning depends on hypothesis testing, cognitive models, and propositional reasoning. Cognitive theories have received considerable impetus in regard to both human and animal learning from recent research suggesting that the key illustration of cue selection in learning, blocking, often arises from inferential reasoning. At the same time, a dichotomous view that separates noncognitive, unconscious (implicit) learning from cognitive, conscious (explicit) learning has gained favor. This review selectively describes key findings from this research, evaluates evidence for and against associative and cognitive explanatory constructs, and critically examines both the dichotomous view of learning as well as the claim that learning can occur unconsciously.

  12. THE HONEYBEE ACROSS THE CURRICULUM

    African Journals Online (AJOL)

    This paper describes a teacher aid progra11111e on the honeybee, which is considered ... environment, and to create job opportunities. • generate a ... skill in architectural design and home building ... three interlinking, yet separate, units: 1.

  13. Changes in the Gene Expression Profiles of the Hypopharyngeal Gland of Worker Honeybees in Association with Worker Behavior and Hormonal Factors.

    Directory of Open Access Journals (Sweden)

    Takayuki Ueno

    Full Text Available The hypopharyngeal glands (HPGs of worker honeybees undergo physiological changes along with the age-dependent role change from nursing to foraging: nurse bee HPGs secrete mainly major royal jelly proteins, whereas forager HPGs secrete mainly α-glucosidase III, which converts the sucrose in the nectar into glucose and fructose. We previously identified two other genes, Apis mellifera buffy (Ambuffy and Apis mellifera matrix metalloproteinase 1 (AmMMP1, with enriched expression in nurse bee and forager HPGs, respectively. In the present study, to clarify the molecular mechanisms that coordinate HPG physiology with worker behavior, we first analyzed whether Ambuffy, AmMMP1, mrjp2 (a gene encoding one of major royal jelly protein isoforms, and Hbg3 (a gene encoding α-glucosidase III expression, is associated with worker behavior in 'single-cohort colonies' where workers of almost the same age perform different tasks. Expression of these genes correlated with the worker's role, while controlling for age, indicating their regulation associated with the worker's behavior. Associated gene expression suggested the possible involvement of some hormonal factors in its regulation. We therefore examined the relationship between ecdysone- and juvenile hormone (JH-signaling, and the expression profiles of these 'indicator' genes (nurse bee HPG-selective genes: mrjp2 and Ambuffy, and forager HPG-selective genes: Hbg3 and AmMMP1. Expression of both ecdysone-regulated genes (ecdysone receptor, mushroom body large type Kenyon cell specific protein-1, and E74 and JH-regulated genes (Methoprene tolerant and Krüppel homolog 1 was higher in the forager HPGs than in the nurse bee HPGs, suggesting the possible roles of ecdysone- and JH-regulated genes in worker HPGs. Furthermore, 20-hydroxyecdysone-treatment repressed both nurse bee- and forager-selective gene expression, whereas methoprene-treatment enhanced the expression of forager-selective genes and repressed

  14. Associative learning and animal cognition.

    Science.gov (United States)

    Dickinson, Anthony

    2012-10-05

    Associative learning plays a variety of roles in the study of animal cognition from a core theoretical component to a null hypothesis against which the contribution of cognitive processes is assessed. Two developments in contemporary associative learning have enhanced its relevance to animal cognition. The first concerns the role of associatively activated representations, whereas the second is the development of hybrid theories in which learning is determined by prediction errors, both directly and indirectly through associability processes. However, it remains unclear whether these developments allow associative theory to capture the psychological rationality of cognition. I argue that embodying associative processes within specific processing architectures provides mechanisms that can mediate psychological rationality and illustrate such embodiment by discussing the relationship between practical reasoning and the associative-cybernetic model of goal-directed action.

  15. Odor experiences during preimaginal stages cause behavioral and neural plasticity in adult honeybees

    Directory of Open Access Journals (Sweden)

    Gabriela eRamirez

    2016-06-01

    Full Text Available In eusocial insects, experiences acquired during the development have long-term consequences on mature behavior. In the honeybee that suffers profound changes associated with metamorphosis, the effect of odor experiences at larval instars on the subsequent physiological and behavioral response is still unclear. To address the impact of preimaginal experiences on the adult honeybee, colonies containing larvae were fed scented food. The effect of the preimaginal experiences with the food odor was assessed in learning performance, memory retention and generalization in 3-5- and 17-19-day-old bees, in the regulation of their expression of synaptic-related genes and in theperception and morphology of their antennae. Three-5 day old bees that experienced 1-hexanol (1-HEX as food scent responded more to the presentation of the odor during the 1-HEX conditioning than control bees (i.e. bees reared in colonies fed unscented food. Higher levels of PER to 1-HEX in this group also extent to HEXA, the most perceptually similar odor to the experienced one that we tested. These results were not observed for the group tested at older ages. In the brain of young adults, larval experiences triggered similar levels of neurexins and neuroligins expression, two proteins that have been involved in synaptic formation after associative learning. At the sensory periphery, the experience did not alter the number of the olfactory sensilla placoidea, but did reduce the electrical response of the antennae to the experienced and novel odor. Our study provides a new insight into the effects of preimaginal experiences in the honeybee and the mechanisms underlying olfactory plasticity at larval stage of holometabolous insects.

  16. Patients with massive honeybee stings: report of four cases

    Directory of Open Access Journals (Sweden)

    Shahidi Sh

    2008-11-01

    Full Text Available "nBackground: Insect stings can cause local or systemic reactions that range from mild to fatal, and are among the most common causes of anaphylaxis. The major allergens of honeybee venom are phospholipase A2, hyaluronidase, acid phosphatase, allergen C and melitin. Phospholipase and melitin induce hemolysis, rhabdomyolysis and liver damage due to cell membrane breakdown, damage of the vascular endothelium and activation of the inflammatory response. Rhabdomyolysis has been implicated as the cause of acute renal failure in approximately 5-7% of cases. However, bee stings are a rare cause of rhabdomyolysis, and are usually associated with 50 or more stings. It has been reported that more than 250 bee stings are capable of causing death in humans. "nCase report: We report two cases of massive honeybee stings (>2000 with rhabdomyolysis, hemolysis and acute renal failure who survived with full recovery, and two cases of >500 honeybee stings who survived without significant complications.

  17. ERP correlates of associative learning.

    Science.gov (United States)

    Rose, M; Verleger, R; Wascher, E

    2001-05-01

    We examined changes of event-related potentials (ERPs) while participants learned stimulus-to-stimulus relations in an S1-S2 task. The design allowed for separating processes of associative learning from nonspecific effects. Participants had to respond to S2 by a left or right key-press dependent on S2 identity (letter W or M). Preparation for S2 could be improved by using the associative information given by S1. The S1 was an arrow pointing to the left or right. In combination with its color, arrow direction was informative about location and identity of S2, but participants were not informed about the relevance of color. Arrows in two of the colors were fully predictive for the S2 whereas the third color gave no valid information. This third stimulus controlled for habituation and procedural learning. Six blocks with 200 trials each and all three S1 colors in random order were presented. Behavioral and ERP differences in each block between "learning" and control trials were used to identify processes of associative learning. Several effects of associative learning were identified indicating the involvement of specific stages of information processing: a continuous increase of P3 amplitude evoked by S1 was accompanied by a decrease of P3 evoked by S2. These changes reflected the modifications of stimulus weights for response selection and the strengthened association between the two stimulus complexes in the time course of learning. The related motor preparation benefited from learning too, expressed in a decrease of CNV amplitude and an increase of LRP amplitude. Finally a decrease of N1 amplitude evoked by S2 indicated the reduced need to allocate spatial attention to the S2 location according to the learned meaning of S1.

  18. Inhibitory neurotransmission and olfactory memory in honeybees.

    Science.gov (United States)

    El Hassani, Abdessalam Kacimi; Giurfa, Martin; Gauthier, Monique; Armengaud, Catherine

    2008-11-01

    In insects, gamma-aminobutyric acid (GABA) and glutamate mediate fast inhibitory neurotransmission through ligand-gated chloride channel receptors. Both GABA and glutamate have been identified in the olfactory circuit of the honeybee. Here we investigated the role of inhibitory transmission mediated by GABA and glutamate-gated chloride channels (GluCls) in olfactory learning and memory in honeybees. We combined olfactory conditioning with injection of ivermectin, an agonist of GluCl receptors. We also injected a blocker of glutamate transporters (L-trans-PDC) or a GABA analog (TACA). We measured acquisition and retention 1, 24 and 48 h after the last acquisition trial. A low dose of ivermectin (0.01 ng/bee) impaired long-term olfactory memory (48 h) while a higher dose (0.05 ng/bee) had no effect. Double injections of ivermectin and L-trans-PDC or TACA had different effects on memory retention, depending on the doses and agents combined. When the low dose of ivermectin was injected after Ringer, long-term memory was again impaired (48 h). Such an effect was rescued by injection of both TACA and L-trans-PDC. A combination of the higher dose of ivermectin and TACA decreased retention at 48 h. We interpret these results as reflecting the involvement of both GluCl and GABA receptors in the impairment of olfactory long-term memory induced by ivermectin. These results illustrate the diversity of inhibitory transmission and its implication in long-term olfactory memory in honeybees.

  19. Associative Learning Through Acquired Salience.

    Science.gov (United States)

    Treviño, Mario

    2015-01-01

    Most associative learning studies describe the salience of stimuli as a fixed learning-rate parameter. Presumptive saliency signals, however, have also been linked to motivational and attentional processes. An interesting possibility, therefore, is that discriminative stimuli could also acquire salience as they become powerful predictors of outcomes. To explore this idea, we first characterized and extracted the learning curves from mice trained with discriminative images offering varying degrees of structural similarity. Next, we fitted a linear model of associative learning coupled to a series of mathematical representations for stimulus salience. We found that the best prediction, from the set of tested models, was one in which the visual salience depended on stimulus similarity and a non-linear function of the associative strength. Therefore, these analytic results support the idea that the net salience of a stimulus depends both on the items' effective salience and the motivational state of the subject that learns about it. Moreover, this dual salience model can explain why learning about a stimulus not only depends on the effective salience during acquisition but also on the specific learning trajectory that was used to reach this state. Our mathematical description could be instrumental for understanding aberrant salience acquisition under stressful situations and in neuropsychiatric disorders like schizophrenia, obsessive-compulsive disorder, and addiction.

  20. Associative visual learning by tethered bees in a controlled visual environment.

    Science.gov (United States)

    Buatois, Alexis; Pichot, Cécile; Schultheiss, Patrick; Sandoz, Jean-Christophe; Lazzari, Claudio R; Chittka, Lars; Avarguès-Weber, Aurore; Giurfa, Martin

    2017-10-10

    Free-flying honeybees exhibit remarkable cognitive capacities but the neural underpinnings of these capacities cannot be studied in flying insects. Conversely, immobilized bees are accessible to neurobiological investigation but display poor visual learning. To overcome this limitation, we aimed at establishing a controlled visual environment in which tethered bees walking on a spherical treadmill learn to discriminate visual stimuli video projected in front of them. Freely flying bees trained to walk into a miniature Y-maze displaying these stimuli in a dark environment learned the visual discrimination efficiently when one of them (CS+) was paired with sucrose and the other with quinine solution (CS-). Adapting this discrimination to the treadmill paradigm with a tethered, walking bee was successful as bees exhibited robust discrimination and preferred the CS+ to the CS- after training. As learning was better in the maze, movement freedom, active vision and behavioral context might be important for visual learning. The nature of the punishment associated with the CS- also affects learning as quinine and distilled water enhanced the proportion of learners. Thus, visual learning is amenable to a controlled environment in which tethered bees learn visual stimuli, a result that is important for future neurobiological studies in virtual reality.

  1. Evidence of trapline foraging in honeybees.

    Science.gov (United States)

    Buatois, Alexis; Lihoreau, Mathieu

    2016-08-15

    Central-place foragers exploiting floral resources often use multi-destination routes (traplines) to maximise their foraging efficiency. Recent studies on bumblebees have showed how solitary foragers can learn traplines, minimising travel costs between multiple replenishing feeding locations. Here we demonstrate a similar routing strategy in the honeybee (Apis mellifera), a major pollinator known to recruit nestmates to discovered food resources. Individual honeybees trained to collect sucrose solution from four artificial flowers arranged within 10 m of the hive location developed repeatable visitation sequences both in the laboratory and in the field. A 10-fold increase of between-flower distances considerably intensified this routing behaviour, with bees establishing more stable and more efficient routes at larger spatial scales. In these advanced social insects, trapline foraging may complement cooperative foraging for exploiting food resources near the hive (where dance recruitment is not used) or when resources are not large enough to sustain multiple foragers at once. © 2016. Published by The Company of Biologists Ltd.

  2. Genotypic Influence on Aversive Conditioning in Honeybees, Using a Novel Thermal Reinforcement Procedure

    Science.gov (United States)

    Junca, Pierre; Carcaud, Julie; Moulin, Sibyle; Garnery, Lionel; Sandoz, Jean-Christophe

    2014-01-01

    In Pavlovian conditioning, animals learn to associate initially neutral stimuli with positive or negative outcomes, leading to appetitive and aversive learning respectively. The honeybee (Apis mellifera) is a prominent invertebrate model for studying both versions of olfactory learning and for unraveling the influence of genotype. As a queen bee mates with about 15 males, her worker offspring belong to as many, genetically-different patrilines. While the genetic dependency of appetitive learning is well established in bees, it is not the case for aversive learning, as a robust protocol was only developed recently. In the original conditioning of the sting extension response (SER), bees learn to associate an odor (conditioned stimulus - CS) with an electric shock (unconditioned stimulus - US). This US is however not a natural stimulus for bees, which may represent a potential caveat for dissecting the genetics underlying aversive learning. We thus first tested heat as a potential new US for SER conditioning. We show that thermal stimulation of several sensory structures on the bee’s body triggers the SER, in a temperature-dependent manner. Moreover, heat applied to the antennae, mouthparts or legs is an efficient US for SER conditioning. Then, using microsatellite analysis, we analyzed heat sensitivity and aversive learning performances in ten worker patrilines issued from a naturally inseminated queen. We demonstrate a strong influence of genotype on aversive learning, possibly indicating the existence of a genetic determinism of this capacity. Such determinism could be instrumental for efficient task partitioning within the hive. PMID:24828422

  3. Honeybee odometry and scent guidance

    NARCIS (Netherlands)

    Vladusich, T; Hemmi, JM; Zeil, J

    2006-01-01

    We report on a striking asymmetry in search behaviour observed in honeybees trained to forage alternately at one of two feeder sites in a narrow tunnel. Bees were trained by periodically switching the position of a sucrose reward between relatively short and long distances in the tunnel. Search

  4. Hygienic and grooming behaviors in African and European honeybees-New damage categories in Varroa destructor.

    Science.gov (United States)

    Nganso, Beatrice T; Fombong, Ayuka T; Yusuf, Abdullahi A; Pirk, Christian W W; Stuhl, Charles; Torto, Baldwyn

    2017-01-01

    Varroa destructor is an ectoparasitic pest of honeybees, and a threat to the survival of the apiculture industry. Several studies have shown that unlike European honeybees, African honeybee populations appear to be minimally affected when attacked by this mite. However, little is known about the underlying drivers contributing to survival of African honeybee populations against the mite. We hypothesized that resistant behavioral defenses are responsible for the survival of African honeybees against the ectoparasite. We tested this hypothesis by comparing grooming and hygienic behaviors in the African savannah honeybee Apis mellifera scutellata in Kenya and A. mellifera hybrids of European origin in Florida, USA against the mite. Grooming behavior was assessed by determining adult mite infestation levels, daily mite fall per colony and percentage mite damage (as an indicator of adult grooming rate), while hygienic behavior was assessed by determining the brood removal rate after freeze killing a section of the brood. Our results identified two additional undescribed damaged mite categories along with the six previously known damage categories associated with the grooming behavior of both honeybee subspecies. Adult mite infestation level was approximately three-fold higher in A. mellifera hybrids of European origin than in A. m. scutellata, however, brood removal rate, adult grooming rate and daily natural mite fall were similar in both honeybee subspecies. Unlike A. mellifera hybrids of European origin, adult grooming rate and brood removal rate did not correlate with mite infestation levels on adult worker honeybee of A. m. scutellata though they were more aggressive towards the mites than their European counterparts. Our results provide valuable insights into the tolerance mechanisms that contribute to the survival of A. m. scutellata against the mite.

  5. Mirror Neurons from Associative Learning

    OpenAIRE

    Catmur, Caroline; Press, Clare; Heyes, Cecilia

    2016-01-01

    Mirror neurons fire both when executing actions and observing others perform similar actions. Their sensorimotor matching properties have generally been considered a genetic adaptation for social cognition; however, in the present chapter we argue that the evidence in favor of this account is not compelling. Instead we present evidence supporting an alternative account: that mirror neurons’ matching properties arise from associative learning during individual development. Notably, this proces...

  6. Bay laurel (Laurus nobilis) as potential antiviral treatment in naturally BQCV infected honeybees.

    Science.gov (United States)

    Aurori, Adriana C; Bobiş, Otilia; Dezmirean, Daniel S; Mărghitaş, Liviu A; Erler, Silvio

    2016-08-15

    Viral diseases are one of the multiple factors associated with honeybee colony losses. Apart from their innate immune system, including the RNAi machinery, honeybees can use secondary plant metabolites to reduce or fully cure pathogen infections. Here, we tested the antiviral potential of Laurus nobilis leaf ethanolic extracts on forager honeybees naturally infected with BQCV (Black queen cell virus). Total viral loads were reduced even at the lowest concentration tested (1mg/ml). Higher extract concentrations (≥5mg/ml) significantly reduced virus replication. Measuring vitellogenin gene expression as an indicator for transcript homeostasis revealed constant RNA levels before and after treatment, suggesting that its expression was not impacted by the L. nobilis treatment. In conclusion, plant secondary metabolites can reduce virus loads and virus replication in naturally infected honeybees. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Barbs facilitate the helical penetration of honeybee (Apis mellifera ligustica stingers.

    Directory of Open Access Journals (Sweden)

    Jianing Wu

    Full Text Available The stinger is a very small and efficient device that allows honeybees to perform two main physiological activities: repelling enemies and laying eggs for reproduction. In this study, we explored the specific characteristics of stinger penetration, where we focused on its movements and the effects of it microstructure. The stingers of Italian honeybees (Apis mellifera ligustica were grouped and fixed onto four types of cubic substrates, before pressing into different substrates. The morphological characteristics of the stinger cross-sections were analyzed before and after penetration by microscopy. Our findings suggest that the honeybee stinger undergoes helical and clockwise rotation during penetration. We also found that the helical penetration of the stinger is associated directly with the spiral distribution of the barbs, thereby confirming that stinger penetration involves an advanced microstructure rather than a simple needle-like apparatus. These results provide new insights into the mechanism of honeybee stinger penetration.

  8. Barbs facilitate the helical penetration of honeybee (Apis mellifera ligustica) stingers.

    Science.gov (United States)

    Wu, Jianing; Yan, Shaoze; Zhao, Jieliang; Ye, Yuying

    2014-01-01

    The stinger is a very small and efficient device that allows honeybees to perform two main physiological activities: repelling enemies and laying eggs for reproduction. In this study, we explored the specific characteristics of stinger penetration, where we focused on its movements and the effects of it microstructure. The stingers of Italian honeybees (Apis mellifera ligustica) were grouped and fixed onto four types of cubic substrates, before pressing into different substrates. The morphological characteristics of the stinger cross-sections were analyzed before and after penetration by microscopy. Our findings suggest that the honeybee stinger undergoes helical and clockwise rotation during penetration. We also found that the helical penetration of the stinger is associated directly with the spiral distribution of the barbs, thereby confirming that stinger penetration involves an advanced microstructure rather than a simple needle-like apparatus. These results provide new insights into the mechanism of honeybee stinger penetration.

  9. Honeybee health in South America

    OpenAIRE

    Maggi , Matías; Antúnez , Karina; Invernizzi , Ciro; Aldea , Patricia; Vargas , Marisol; Negri , Pedro; Brasesco , Constanza; De Jong , David; Message , Dejair; Teixeira , Erica Weinstein; Principal , Judith; Barrios , Carlos; Ruffinengo , Sergio; Da Silva , Rafael Rodríguez; Eguaras , Martín

    2016-01-01

    International audience; AbstractHoneybees are essential components to modern agriculture and economy. However, a continuous increase in cases of colony losses and colony depopulation are being reported worldwide. This critical situation has put the fragile equilibrium between bees and plants on the edge. As a consequence, several scientists have begun to focus their lines of research on this issue. Most researchers agree that there is no single explanation for the observed colony losses. Inst...

  10. Interpatch foraging in honeybees-rational decision making at secondary hubs based upon time and motivation.

    Science.gov (United States)

    Najera, Daniel A; McCullough, Erin L; Jander, Rudolf

    2012-11-01

    For honeybees, Apis mellifera, the hive has been well known to function as a primary decision-making hub, a place from which foragers decide among various directions, distances, and times of day to forage efficiently. Whether foraging honeybees can make similarly complex navigational decisions from locations away from the hive is unknown. To examine whether or not such secondary decision-making hubs exist, we trained bees to forage at four different locations. Specifically, we trained honeybees to first forage to a distal site "CT" 100 m away from the hive; if food was present, they fed and then chose to go home. If food was not present, the honeybees were trained to forage to three auxiliary sites, each at a different time of the day: A in the morning, B at noon, and C in the afternoon. The foragers learned to check site CT for food first and then efficiently depart to the correct location based upon the time of day if there was no food at site CT. Thus, the honeybees were able to cognitively map motivation, time, and five different locations (Hive, CT, A, B, and C) in two spatial dimensions; these are the contents of the cognitive map used by the honeybees here. While at site CT, we verified that the honeybees could choose between 4 different directions (to A, B, C, and the Hive) and thus label it as a secondary decision-making hub. The observed decision making uncovered here is inferred to constitute genuine logical operations, involving a branched structure, based upon the premises of motivational state, and spatiotemporal knowledge.

  11. Learning Disabilities Association of America

    Science.gov (United States)

    ... provides the most current information on research, practice, theory, issues, and trends to broaden understanding and improve ... These services make LDA the leading resource for information on learning disabilities. Learn more about: Auditory Processing ... Processing Disorder ...

  12. An instance theory of associative learning.

    Science.gov (United States)

    Jamieson, Randall K; Crump, Matthew J C; Hannah, Samuel D

    2012-03-01

    We present and test an instance model of associative learning. The model, Minerva-AL, treats associative learning as cued recall. Memory preserves the events of individual trials in separate traces. A probe presented to memory contacts all traces in parallel and retrieves a weighted sum of the traces, a structure called the echo. Learning of a cue-outcome relationship is measured by the cue's ability to retrieve a target outcome. The theory predicts a number of associative learning phenomena, including acquisition, extinction, reacquisition, conditioned inhibition, external inhibition, latent inhibition, discrimination, generalization, blocking, overshadowing, overexpectation, superconditioning, recovery from blocking, recovery from overshadowing, recovery from overexpectation, backward blocking, backward conditioned inhibition, and second-order retrospective revaluation. We argue that associative learning is consistent with an instance-based approach to learning and memory.

  13. Behavioral and neural plasticity caused by early social experiences: the case of the honeybee

    Directory of Open Access Journals (Sweden)

    Andrés eArenas

    2013-08-01

    Full Text Available Cognitive experiences during the early stages of life play an important role in shaping future behavior. Behavioral and neural long-term changes after early sensory and associative experiences have been recently reported in the honeybee. This invertebrate is an excellent model for assessing the role of precocious experiences on later behavior due to its extraordinarily tuned division of labor based on age polyethism. These studies are mainly focused on the role and importance of experiences occurred during the first days of the adult lifespan, their impact on foraging decisions and their contribution to coordinate food gathering. Odor-rewarded experiences during the first days of honeybee adulthood alter the responsiveness to sucrose, making young hive bees more sensitive to assess gustatory features about the nectar brought back to the hive and affecting the dynamic of the food transfers and the propagation of food-related information within the colony as well. Early olfactory experiences lead to stable and long-term associative memories that can be successfully recalled after many days, even at foraging ages. Also they improve memorizing of new associative learning events later in life. The establishment of early memories promotes stable reorganization of the olfactory circuits inducing structural and functional changes in the antennal lobe. Early rewarded experiences have relevant consequences at the social level too, biasing dance and trophallaxis partner choice and affecting recruitment. Here, we revised recent results in bees´ physiology, behavior and sociobiology to depict how the early experiences affect their cognition abilities and neural-related circuits.

  14. Pharmacologic inhibition of phospholipase C in the brain attenuates early memory formation in the honeybee (Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Shota Suenami

    2018-01-01

    Full Text Available Although the molecular mechanisms involved in learning and memory in insects have been studied intensively, the intracellular signaling mechanisms involved in early memory formation are not fully understood. We previously demonstrated that phospholipase C epsilon (PLCe, whose product is involved in calcium signaling, is almost selectively expressed in the mushroom bodies, a brain structure important for learning and memory in the honeybee. Here, we pharmacologically examined the role of phospholipase C (PLC in learning and memory in the honeybee. First, we identified four genes for PLC subtypes in the honeybee genome database. Quantitative reverse transcription-polymerase chain reaction revealed that, among these four genes, three, including PLCe, were expressed higher in the brain than in sensory organs in worker honeybees, suggesting their main roles in the brain. Edelfosine and neomycin, pan-PLC inhibitors, significantly decreased PLC activities in homogenates of the brain tissues. These drugs injected into the head of foragers significantly attenuated memory acquisition in comparison with the control groups, whereas memory retention was not affected. These findings suggest that PLC in the brain is involved in early memory formation in the honeybee. To our knowledge, this is the first report of a role for PLC in learning and memory in an insect.

  15. On the honeybee resistance to gamma radiation

    International Nuclear Information System (INIS)

    Courtois, G.; Lecomte, J.

    1960-01-01

    The honeybee, when irradiated by gamma radiations from a cobalt-60 source can stand a 18000 r dose without any apparent harm. Noticeable harm is observed for 90000 r. while immediate death of 100% of the individuals is obtained with a 200000 r dose. The physiological condition of the honeybee plays an important role in its resistance to gamma radiation. Reprint of a paper published in Annales de l'abeille, IV, 1959, p. 285-290 [fr

  16. Context odor presentation during sleep enhances memory in honeybees.

    Science.gov (United States)

    Zwaka, Hanna; Bartels, Ruth; Gora, Jacob; Franck, Vivien; Culo, Ana; Götsch, Moritz; Menzel, Randolf

    2015-11-02

    Sleep plays an important role in stabilizing new memory traces after learning [1-3]. Here we investigate whether sleep's role in memory processing is similar in evolutionarily distant species and demonstrate that a context trigger during deep-sleep phases improves memory in invertebrates, as it does in humans. We show that in honeybees (Apis mellifera), exposure to an odor during deep sleep that has been present during learning improves memory performance the following day. Presentation of the context odor during wake phases or novel odors during sleep does not enhance memory. In humans, memory consolidation can be triggered by presentation of a context odor during slow-wave sleep that had been present during learning [3-5]. Our results reveal that deep-sleep phases in honeybees have the potential to prompt memory consolidation, just as they do in humans. This study provides strong evidence for a conserved role of sleep-and how it affects memory processes-from insects to mammals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Nosema spp. infections cause no energetic stress in tolerant honeybees

    DEFF Research Database (Denmark)

    Kurze, Christoph; Mayack, Christopher; Hirche, Frank

    2016-01-01

    closely related and highly host dependent intracellular gut pathogens, Nosema apis and Nosema ceranae, on the energetic state in Nosema tolerant and sensitive honeybees facing the infection. We quantified the three major haemolymph carbohydrates fructose, glucose, and trehalose using high......-performance liquid chromatography (HPLC) as a measure for host energetic state. Trehalose levels in the haemolymph were negatively associated with N. apis infection intensity and with N. ceranae infection regardless of the infection intensity in sensitive honeybees. Nevertheless, there was no such association...

  18. Proteomics Improves the New Understanding of Honeybee Biology.

    Science.gov (United States)

    Hora, Zewdu Ararso; Altaye, Solomon Zewdu; Wubie, Abebe Jemberie; Li, Jianke

    2018-04-11

    The honeybee is one of the most valuable insect pollinators, playing a key role in pollinating wild vegetation and agricultural crops, with significant contribution to the world's food production. Although honeybees have long been studied as model for social evolution, honeybee biology at the molecular level remained poorly understood until the year 2006. With the availability of the honeybee genome sequence and technological advancements in protein separation, mass spectrometry, and bioinformatics, aspects of honeybee biology such as developmental biology, physiology, behavior, neurobiology, and immunology have been explored to new depths at molecular and biochemical levels. This Review comprehensively summarizes the recent progress in honeybee biology using proteomics to study developmental physiology, task transition, and physiological changes in some of the organs, tissues, and cells based on achievements from the authors' laboratory in this field. The research advances of honeybee proteomics provide new insights for understanding of honeybee biology and future research directions.

  19. Prefrontal Dopamine in Associative Learning and Memory

    Science.gov (United States)

    Puig, M. Victoria; Antzoulatos, Evan G.; Miller, Earl K.

    2014-01-01

    Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulate associative learning and memory processes in frontostriatal systems. PMID:25241063

  20. Prefrontal dopamine in associative learning and memory.

    Science.gov (United States)

    Puig, M V; Antzoulatos, E G; Miller, E K

    2014-12-12

    Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulates associative learning and memory processes in frontostriatal systems. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Appetitive but Not Aversive Olfactory Conditioning Modifies Antennal Movements in Honeybees

    Science.gov (United States)

    Cholé, Hanna; Junca, Pierre; Sandoz, Jean-Christophe

    2015-01-01

    In honeybees, two olfactory conditioning protocols allow the study of appetitive and aversive Pavlovian associations. Appetitive conditioning of the proboscis extension response (PER) involves associating an odor, the conditioned stimulus (CS) with a sucrose solution, the unconditioned stimulus (US). Conversely, aversive conditioning of the sting…

  2. Automatic behaviour analysis system for honeybees using computer vision

    DEFF Research Database (Denmark)

    Tu, Gang Jun; Hansen, Mikkel Kragh; Kryger, Per

    2016-01-01

    We present a fully automatic online video system, which is able to detect the behaviour of honeybees at the beehive entrance. Our monitoring system focuses on observing the honeybees as naturally as possible (i.e. without disturbing the honeybees). It is based on the Raspberry Pi that is a low...

  3. Transcriptome differences in the hypopharyngeal gland between Western Honeybees (Apis mellifera) and Eastern Honeybees (Apis cerana).

    Science.gov (United States)

    Liu, Hao; Wang, Zi-Long; Tian, Liu-Qing; Qin, Qiu-Hong; Wu, Xiao-Bo; Yan, Wei-Yu; Zeng, Zhi-Jiang

    2014-08-30

    Apis mellifera and Apis cerana are two sibling species of Apidae. Apis cerana is adept at collecting sporadic nectar in mountain and forest region and exhibits stiffer hardiness and acarid resistance as a result of natural selection, whereas Apis mellifera has the advantage of producing royal jelly. To identify differentially expressed genes (DEGs) that affect the development of hypopharyngeal gland (HG) and/or the secretion of royal jelly between these two honeybee species, we performed a digital gene expression (DGE) analysis of the HGs of these two species at three developmental stages (newly emerged worker, nurse and forager). Twelve DGE-tag libraries were constructed and sequenced using the total RNA extracted from the HGs of newly emerged workers, nurses, and foragers of Apis mellifera and Apis cerana. Finally, a total of 1482 genes in Apis mellifera and 1313 in Apis cerana were found to exhibit an expression difference among the three developmental stages. A total of 1417 DEGs were identified between these two species. Of these, 623, 1072, and 462 genes showed an expression difference at the newly emerged worker, nurse, and forager stages, respectively. The nurse stage exhibited the highest number of DEGs between these two species and most of these were found to be up-regulated in Apis mellifera. These results suggest that the higher yield of royal jelly in Apis mellifera may be due to the higher expression level of these DEGs. In this study, we investigated the DEGs between the HGs of two sibling honeybee species (Apis mellifera and Apis cerana). Our results indicated that the gene expression difference was associated with the difference in the royal jelly yield between these two species. These results provide an important clue for clarifying the mechanisms underlying hypopharyngeal gland development and the production of royal jelly.

  4. Associative learning for a robot intelligence

    CERN Document Server

    Andreae, John H

    1998-01-01

    The explanation of brain functioning in terms of the association of ideas has been popular since the 17th century. Recently, however, the process of association has been dismissed as computationally inadequate by prominent cognitive scientists. In this book, a sharper definition of the term "association" is used to revive the process by showing that associative learning can indeed be computationally powerful. Within an appropriate organization, associative learning can be embodied in a robot to realize a human-like intelligence, which sets its own goals, exhibits unique unformalizable behaviou

  5. Flight, orientation, and homing abilities of honeybees following exposure to 2.45-GHz CW microwaves.

    Science.gov (United States)

    Gary, N E; Westerdahl, B B

    1981-01-01

    Foraging-experienced honeybees retained normal flight, orientation, and memory functions after 30 minutes' exposure to 2.45-GHz CW microwaves at power densities from 3 to 50 mW/cm2. These experiments were conducted at power densities approximating and exceeding those that would be present above receiving antennas of the proposed solar power satellite (SPS) energy transmission system and for a duration exceeding that which honeybees living outside a rectenna might be expected to spend within the rectenna on individual foraging trips. There was no evidence that airborne invertebrates would be significantly affected during transient passage through microwaves associated with SPS ground-based microwave receiving stations.

  6. Impact of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure.

    Directory of Open Access Journals (Sweden)

    Christoph Sandrock

    Full Text Available BACKGROUND: Honeybees provide economically and ecologically vital pollination services to crops and wild plants. During the last decade elevated colony losses have been documented in Europe and North America. Despite growing consensus on the involvement of multiple causal factors, the underlying interactions impacting on honeybee health and colony failure are not fully resolved. Parasites and pathogens are among the main candidates, but sublethal exposure to widespread agricultural pesticides may also affect bees. METHODOLOGY/PRINCIPAL FINDINGS: To investigate effects of sublethal dietary neonicotinoid exposure on honeybee colony performance, a fully crossed experimental design was implemented using 24 colonies, including sister-queens from two different strains, and experimental in-hive pollen feeding with or without environmentally relevant concentrations of thiamethoxam and clothianidin. Honeybee colonies chronically exposed to both neonicotinoids over two brood cycles exhibited decreased performance in the short-term resulting in declining numbers of adult bees (-28% and brood (-13%, as well as a reduction in honey production (-29% and pollen collections (-19%, but colonies recovered in the medium-term and overwintered successfully. However, significantly decelerated growth of neonicotinoid-exposed colonies during the following spring was associated with queen failure, revealing previously undocumented long-term impacts of neonicotinoids: queen supersedure was observed for 60% of the neonicotinoid-exposed colonies within a one year period, but not for control colonies. Linked to this, neonicotinoid exposure was significantly associated with a reduced propensity to swarm during the next spring. Both short-term and long-term effects of neonicotinoids on colony performance were significantly influenced by the honeybees' genetic background. CONCLUSIONS/SIGNIFICANCE: Sublethal neonicotinoid exposure did not provoke increased winter losses. Yet

  7. Associative Cognitive CREED for Successful Grammar Learning

    Directory of Open Access Journals (Sweden)

    Andrias Tri Susanto

    2016-06-01

    Full Text Available This research article reports a qualitative study which was conducted to investigate ways successful EFL learners learned English grammar. The subjects of this research were eight successful EFL learners from six different countries in Asia: China, Indonesia, Japan, South Korea, Thailand, and Vietnam. The data was collected by interviewing each subject in person individually at an agreed time and place. The result showed that all the grammar learning processes described by the subjects were closely linked to the framework of Associative Cognitive CREED. There were also some contributing factors that could be integrally combined salient to the overall grammar learning process. However, interestingly, each subject emphasized different aspects of learning.

  8. Visual attention to features by associative learning.

    Science.gov (United States)

    Gozli, Davood G; Moskowitz, Joshua B; Pratt, Jay

    2014-11-01

    Expecting a particular stimulus can facilitate processing of that stimulus over others, but what is the fate of other stimuli that are known to co-occur with the expected stimulus? This study examined the impact of learned association on feature-based attention. The findings show that the effectiveness of an uninformative color transient in orienting attention can change by learned associations between colors and the expected target shape. In an initial acquisition phase, participants learned two distinct sequences of stimulus-response-outcome, where stimuli were defined by shape ('S' vs. 'H'), responses were localized key-presses (left vs. right), and outcomes were colors (red vs. green). Next, in a test phase, while expecting a target shape (80% probable), participants showed reliable attentional orienting to the color transient associated with the target shape, and showed no attentional orienting with the color associated with the alternative target shape. This bias seemed to be driven by learned association between shapes and colors, and not modulated by the response. In addition, the bias seemed to depend on observing target-color conjunctions, since encountering the two features disjunctively (without spatiotemporal overlap) did not replicate the findings. We conclude that associative learning - likely mediated by mechanisms underlying visual object representation - can extend the impact of goal-driven attention to features associated with a target stimulus. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Rare royal families in honeybees, Apis mellifera

    Science.gov (United States)

    Moritz, Robin F. A.; Lattorff, H. Michael G.; Neumann, Peter; Kraus, F. Bernhard; Radloff, Sarah E.; Hepburn, H. Randall

    2005-10-01

    The queen is the dominant female in the honeybee colony, Apis mellifera, and controls reproduction. Queen larvae are selected by the workers and are fed a special diet (royal jelly), which determines caste. Because queens mate with many males a large number of subfamilies coexist in the colony. As a consequence, there is a considerable potential for conflict among the subfamilies over queen rearing. Here we show that honeybee queens are not reared at random but are preferentially reared from rare “royal” subfamilies, which have extremely low frequencies in the colony's worker force but a high frequency in the queens reared.

  10. Cognitive Aspects of Comb-Building in the Honeybee?

    Directory of Open Access Journals (Sweden)

    Vincent Gallo

    2018-06-01

    Full Text Available The wax-made comb of the honeybee is a masterpiece of animal architecture. The highly regular, double-sided hexagonal structure is a near-optimal solution to storing food and housing larvae, economizing on building materials and space. Elaborate though they may seem, such animal constructions are often viewed as the result of ‘just instinct,’ governed by inflexible, pre-programmed, innate behavior routines. An inspection of the literature on honeybee comb construction, however, reveals a different picture. Workers have to learn, at least in part, certain elements of the technique, and there is considerable flexibility in terms of how the shape of the comb and its gradual manufacture is tailored to the circumstances, especially the available space. Moreover, we explore the 2-century old and now largely forgotten work by François Huber, where glass screens were placed between an expanding comb construction and the intended target wall. Bees took corrective action before reaching the glass obstacle, and altered the ongoing construction so as to reach the nearest wooden wall. Though further experiments will be necessary, these results suggest a form of spatial planning skills. We discuss these findings in the context of what is now known about insect cognition, and ask if it is possible that the production of hexagonal wax combs is the result of behavioral heuristics where a complex structure emerges as the result of simple behavioral rules applied by each individual, or whether prospective cognition might be involved.

  11. Accounting for individual differences in human associative learning

    OpenAIRE

    Byrom, Nicola C.

    2013-01-01

    Associative learning has provided fundamental insights to understanding psychopathology. However, psychopathology occurs along a continuum and as such, identification of disruptions in processes of associative learning associated with aspects of psychopathology illustrates a general flexibility in human associative learning. A handful of studies have looked specifically at individual differences in human associative learning, but while much work has concentrated on accounting for flexibility ...

  12. Learned Interval Time Facilitates Associate Memory Retrieval

    Science.gov (United States)

    van de Ven, Vincent; Kochs, Sarah; Smulders, Fren; De Weerd, Peter

    2017-01-01

    The extent to which time is represented in memory remains underinvestigated. We designed a time paired associate task (TPAT) in which participants implicitly learned cue-time-target associations between cue-target pairs and specific cue-target intervals. During subsequent memory testing, participants showed increased accuracy of identifying…

  13. Temporal maps and informativeness in associative learning.

    Science.gov (United States)

    Balsam, Peter D; Gallistel, C Randy

    2009-02-01

    Neurobiological research on learning assumes that temporal contiguity is essential for association formation, but what constitutes temporal contiguity has never been specified. We review evidence that learning depends, instead, on learning a temporal map. Temporal relations between events are encoded even from single experiences. The speed with which an anticipatory response emerges is proportional to the informativeness of the encoded relation between a predictive stimulus or event and the event it predicts. This principle yields a quantitative account of the heretofore undefined, but theoretically crucial, concept of temporal pairing, an account in quantitative accord with surprising experimental findings. The same principle explains the basic results in the cue competition literature, which motivated the Rescorla-Wagner model and most other contemporary models of associative learning. The essential feature of a memory mechanism in this account is its ability to encode quantitative information.

  14. Parasites and Pathogens of the Honeybee (Apis mellifera and Their Influence on Inter-Colonial Transmission.

    Directory of Open Access Journals (Sweden)

    Nadège Forfert

    Full Text Available Pathogens and parasites may facilitate their transmission by manipulating host behavior. Honeybee pathogens and pests need to be transferred from one colony to another if they are to maintain themselves in a host population. Inter-colony transmission occurs typically through honeybee workers not returning to their home colony but entering a foreign colony ("drifting". Pathogens might enhance drifting to enhance transmission to new colonies. We here report on the effects infection by ten honeybee viruses and Nosema spp., and Varroa mite infestation on honeybee drifting. Genotyping of workers collected from colonies allowed us to identify genuine drifted workers as well as source colonies sending out drifters in addition to sink colonies accepting them. We then used network analysis to determine patterns of drifting. Distance between colonies in the apiary was the major factor explaining 79% of drifting. None of the tested viruses or Nosema spp. were associated with the frequency of drifting. Only colony infestation with Varroa was associated with significantly enhanced drifting. More specifically, colonies with high Varroa infestation had a significantly enhanced acceptance of drifters, although they did not send out more drifting workers. Since Varroa-infested colonies show an enhanced attraction of drifting workers, and not only those infected with Varroa and its associated pathogens, infestation by Varroa may also facilitate the uptake of other pests and parasites.

  15. A fifth major genetic group among honeybees revealed in Syria.

    Science.gov (United States)

    Alburaki, Mohamed; Bertrand, Bénédicte; Legout, Hélène; Moulin, Sibyle; Alburaki, Ali; Sheppard, Walter Steven; Garnery, Lionel

    2013-12-06

    Apiculture has been practiced in North Africa and the Middle-East from antiquity. Several thousand years of selective breeding have left a mosaic of Apis mellifera subspecies in the Middle-East, many uniquely adapted and survived to local environmental conditions. In this study we explore the genetic diversity of A. mellifera from Syria (n = 1258), Lebanon (n = 169) and Iraq (n = 35) based on 14 short tandem repeat (STR) loci in the context of reference populations from throughout the Old World (n = 732). Our data suggest that the Syrian honeybee Apis mellifera syriaca occurs in both Syrian and Lebanese territories, with no significant genetic variability between respective populations from Syria and Lebanon. All studied populations clustered within a new fifth independent nuclear cluster, congruent with an mtDNA Z haplotype identified in a previous study. Syrian honeybee populations are not associated with Oriental lineage O, except for sporadic introgression into some populations close to the Turkish and Iraqi borders. Southern Syrian and Lebanese populations demonstrated high levels of genetic diversity compared to the northern populations. This study revealed the effects of foreign queen importations on Syrian bee populations, especially for the region of Tartus, where extensive introgression of A. m. anatolica and/or A. m. caucasica alleles were identified. The policy of creating genetic conservation centers for the Syrian subspecies should take into consideration the influence of the oriental lineage O from the northern Syrian border and the large population of genetically divergent indigenous honeybees located in southern Syria.

  16. Analysis of the waggle dance motion of honeybees for the design of a biomimetic honeybee robot.

    Directory of Open Access Journals (Sweden)

    Tim Landgraf

    Full Text Available The honeybee dance "language" is one of the most popular examples of information transfer in the animal world. Today, more than 60 years after its discovery it still remains unknown how follower bees decode the information contained in the dance. In order to build a robotic honeybee that allows a deeper investigation of the communication process we have recorded hundreds of videos of waggle dances. In this paper we analyze the statistics of visually captured high-precision dance trajectories of European honeybees (Apis mellifera carnica. The trajectories were produced using a novel automatic tracking system and represent the most detailed honeybee dance motion information available. Although honeybee dances seem very variable, some properties turned out to be invariant. We use these properties as a minimal set of parameters that enables us to model the honeybee dance motion. We provide a detailed statistical description of various dance properties that have not been characterized before and discuss the role of particular dance components in the commmunication process.

  17. Understanding the logics of pheromone processing in the honeybee brain: from labeled-lines to across-fiber patterns

    Directory of Open Access Journals (Sweden)

    Nina Deisig

    2007-12-01

    Full Text Available Honeybees employ a very rich repertoire of pheromones to ensure intraspecific communication in a wide range of behavioral contexts. This communication can be complex, since the same compounds can have a variety of physiological and behavioral effects depending on the receiver. Honeybees constitute an ideal model to study the neurobiological basis of pheromonal processing, as they are already one of the most infl uential animal models for the study of general odor processing and learning at behavioral, cellular and molecular levels. Accordingly, the anatomy of the bee brain is well characterized and electro- and opto-physiological recording techniques at different stages of the olfactory circuit are possible in the laboratory. Here we review pheromone communication in honeybees and analyze the different stages of olfactory processing in the honeybee brain, focusing on available data on pheromone detection, processing and representation at these different stages. In particular, we argue that the traditional distinction between labeled-line and across-fi ber pattern processing, attributed to pheromone and general odors respectively, may not be so clear in the case of honeybees, especially for social-pheromones. We propose new research avenues for stimulating future work in this area.

  18. Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies.

    Directory of Open Access Journals (Sweden)

    Francesco Nazzi

    Full Text Available The health of the honeybee and, indirectly, global crop production are threatened by several biotic and abiotic factors, which play a poorly defined role in the induction of widespread colony losses. Recent descriptive studies suggest that colony losses are often related to the interaction between pathogens and other stress factors, including parasites. Through an integrated analysis of the population and molecular changes associated with the collapse of honeybee colonies infested by the parasitic mite Varroa destructor, we show that this parasite can de-stabilise the within-host dynamics of Deformed wing virus (DWV, transforming a cryptic and vertically transmitted virus into a rapidly replicating killer, which attains lethal levels late in the season. The de-stabilisation of DWV infection is associated with an immunosuppression syndrome, characterized by a strong down-regulation of the transcription factor NF-κB. The centrality of NF-κB in host responses to a range of environmental challenges suggests that this transcription factor can act as a common currency underlying colony collapse that may be triggered by different causes. Our results offer an integrated account for the multifactorial origin of honeybee losses and a new framework for assessing, and possibly mitigating, the impact of environmental challenges on honeybee health.

  19. Germ cell development in the Honeybee (Apis mellifera; Vasa and Nanos expression

    Directory of Open Access Journals (Sweden)

    Dearden Peter K

    2006-02-01

    Full Text Available Abstract Background Studies of specification of germ-cells in insect embryos has indicated that in many taxa the germ cells form early in development, and their formation is associated with pole plasm, germ plasm or an organelle called the oosome. None of these morphological features associated with germ cell formation have been identified in the Honeybee Apis mellifera. In this study I report the cloning and expression analysis of Honeybee homologues of vasa and nanos, germ cell markers in insects and other animals. Results Apis vasa and nanos RNAs are present in early honeybee embryos, but the RNAs clear rapidly, without any cells expressing these germ cell markers past stage 2. These genes are then only expressed in a line of cells in the abdomen from stage 9 onwards. These cells are the developing germ cells that are moved dorsally by dorsal closure and are placed in the genital ridge. Conclusion This study of the expression of germ cell markers in the honeybee implies that in this species either germ cells are formed by an inductive event, late in embryogenesis, or they are formed early in development in the absence of vasa and nanos expression. This contrasts with germ cell development in other members of the Hymenoptera, Diptera and Lepidoptera.

  20. Neuroscience: Intelligence in the Honeybee Mushroom Body

    OpenAIRE

    Caron, Sophie; Abbott, Larry F.

    2017-01-01

    Intelligence, in most people’s conception, involves combining pieces of evidence to reach non-obvious conclusions. A recent theoretical study shows that intelligence-like brain functions can emerge from simple neural circuits, in this case the honeybee mushroom body.

  1. Honeybees, Butterflies, and Ladybugs: Partners to Plants

    Science.gov (United States)

    Campbell, Ashley

    2009-01-01

    Honeybees, butterflies, and ladybugs all have fascinating mutually beneficial relationships with plants and play important ecosystem roles. Children also love these creatures. But how do we teach children about these symbiotic interactions and help them appreciate their vital roles in our environment? One must is to give children direct experience…

  2. Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Markus Thamm

    Full Text Available BACKGROUND: Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera, serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. METHODS: Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca(2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. RESULTS: The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca(2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. CONCLUSIONS: This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors.

  3. Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera).

    Science.gov (United States)

    Thamm, Markus; Rolke, Daniel; Jordan, Nadine; Balfanz, Sabine; Schiffer, Christian; Baumann, Arnd; Blenau, Wolfgang

    2013-01-01

    Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca(2+) imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca(2+) concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors.

  4. Neuroimaging of Fear-Associated Learning

    Science.gov (United States)

    Greco, John A; Liberzon, Israel

    2016-01-01

    Fear conditioning has been commonly used as a model of emotional learning in animals and, with the introduction of functional neuroimaging techniques, has proven useful in establishing the neurocircuitry of emotional learning in humans. Studies of fear acquisition suggest that regions such as amygdala, insula, anterior cingulate cortex, and hippocampus play an important role in acquisition of fear, whereas studies of fear extinction suggest that the amygdala is also crucial for safety learning. Extinction retention testing points to the ventromedial prefrontal cortex as an essential region in the recall of the safety trace, and explicit learning of fear and safety associations recruits additional cortical and subcortical regions. Importantly, many of these findings have implications in our understanding of the pathophysiology of psychiatric disease. Recent studies using clinical populations have lent insight into the changes in regional activity in specific disorders, and treatment studies have shown how pharmaceutical and other therapeutic interventions modulate brain activation during emotional learning. Finally, research investigating individual differences in neurotransmitter receptor genotypes has highlighted the contribution of these systems in fear-associated learning. PMID:26294108

  5. Awake, Offline Processing during Associative Learning.

    Science.gov (United States)

    Bursley, James K; Nestor, Adrian; Tarr, Michael J; Creswell, J David

    2016-01-01

    Offline processing has been shown to strengthen memory traces and enhance learning in the absence of conscious rehearsal or awareness. Here we evaluate whether a brief, two-minute offline processing period can boost associative learning and test a memory reactivation account for these offline processing effects. After encoding paired associates, subjects either completed a distractor task for two minutes or were immediately tested for memory of the pairs in a counterbalanced, within-subjects functional magnetic resonance imaging study. Results showed that brief, awake, offline processing improves memory for associate pairs. Moreover, multi-voxel pattern analysis of the neuroimaging data suggested reactivation of encoded memory representations in dorsolateral prefrontal cortex during offline processing. These results signify the first demonstration of awake, active, offline enhancement of associative memory and suggest that such enhancement is accompanied by the offline reactivation of encoded memory representations.

  6. Awake, Offline Processing during Associative Learning.

    Directory of Open Access Journals (Sweden)

    James K Bursley

    Full Text Available Offline processing has been shown to strengthen memory traces and enhance learning in the absence of conscious rehearsal or awareness. Here we evaluate whether a brief, two-minute offline processing period can boost associative learning and test a memory reactivation account for these offline processing effects. After encoding paired associates, subjects either completed a distractor task for two minutes or were immediately tested for memory of the pairs in a counterbalanced, within-subjects functional magnetic resonance imaging study. Results showed that brief, awake, offline processing improves memory for associate pairs. Moreover, multi-voxel pattern analysis of the neuroimaging data suggested reactivation of encoded memory representations in dorsolateral prefrontal cortex during offline processing. These results signify the first demonstration of awake, active, offline enhancement of associative memory and suggest that such enhancement is accompanied by the offline reactivation of encoded memory representations.

  7. Inside Honeybee Hives: Impact of Natural Propolis on the Ectoparasitic Mite Varroa destructor and Viruses.

    Science.gov (United States)

    Drescher, Nora; Klein, Alexandra-Maria; Neumann, Peter; Yañez, Orlando; Leonhardt, Sara D

    2017-02-06

    Social immunity is a key factor for honeybee health, including behavioral defense strategies such as the collective use of antimicrobial plant resins (propolis). While laboratory data repeatedly show significant propolis effects, field data are scarce, especially at the colony level. Here, we investigated whether propolis, as naturally deposited in the nests, can protect honeybees against ectoparasitic mites Varroa destructor and associated viruses, which are currently considered the most serious biological threat to European honeybee subspecies, Apis mellifera , globally. Propolis intake of 10 field colonies was manipulated by either reducing or adding freshly collected propolis. Mite infestations, titers of deformed wing virus (DWV) and sacbrood virus (SBV), resin intake, as well as colony strength were recorded monthly from July to September 2013. We additionally examined the effect of raw propolis volatiles on mite survival in laboratory assays. Our results showed no significant effects of adding or removing propolis on mite survival and infestation levels. However, in relation to V. destructor , DWV titers increased significantly less in colonies with added propolis than in propolis-removed colonies, whereas SBV titers were similar. Colonies with added propolis were also significantly stronger than propolis-removed colonies. These findings indicate that propolis may interfere with the dynamics of V. destructor -transmitted viruses, thereby further emphasizing the importance of propolis for honeybee health.

  8. Inside Honeybee Hives: Impact of Natural Propolis on the Ectoparasitic Mite Varroa destructor and Viruses

    Science.gov (United States)

    Drescher, Nora; Klein, Alexandra-Maria; Neumann, Peter; Yañez, Orlando; Leonhardt, Sara D.

    2017-01-01

    Social immunity is a key factor for honeybee health, including behavioral defense strategies such as the collective use of antimicrobial plant resins (propolis). While laboratory data repeatedly show significant propolis effects, field data are scarce, especially at the colony level. Here, we investigated whether propolis, as naturally deposited in the nests, can protect honeybees against ectoparasitic mites Varroa destructor and associated viruses, which are currently considered the most serious biological threat to European honeybee subspecies, Apis mellifera, globally. Propolis intake of 10 field colonies was manipulated by either reducing or adding freshly collected propolis. Mite infestations, titers of deformed wing virus (DWV) and sacbrood virus (SBV), resin intake, as well as colony strength were recorded monthly from July to September 2013. We additionally examined the effect of raw propolis volatiles on mite survival in laboratory assays. Our results showed no significant effects of adding or removing propolis on mite survival and infestation levels. However, in relation to V. destructor, DWV titers increased significantly less in colonies with added propolis than in propolis-removed colonies, whereas SBV titers were similar. Colonies with added propolis were also significantly stronger than propolis-removed colonies. These findings indicate that propolis may interfere with the dynamics of V. destructor-transmitted viruses, thereby further emphasizing the importance of propolis for honeybee health. PMID:28178181

  9. Conditioning procedure and color discrimination in the honeybee Apis mellifera

    Science.gov (United States)

    Giurfa, Martin

    We studied the influence of the conditioning procedure on color discrimination by free-flying honeybees. We asked whether absolute and differential conditioning result in different discrimination capabilities for the same pairs of colored targets. In absolute conditioning, bees were rewarded on a single color; in differential conditioning, bees were rewarded on the same color but an alternative, non-rewarding, similar color was also visible. In both conditioning procedures, bees learned their respective task and could also discriminate the training stimulus from a novel stimulus that was perceptually different from the trained one. Discrimination between perceptually closer stimuli was possible after differential conditioning but not after absolute conditioning. Differences in attention inculcated by these training procedures may underlie the different discrimination performances of the bees.

  10. A model of olfactory associative learning

    Science.gov (United States)

    Tavoni, Gaia; Balasubramanian, Vijay

    We propose a mechanism, rooted in the known anatomy and physiology of the vertebrate olfactory system, by which presentations of rewarded and unrewarded odors lead to formation of odor-valence associations between piriform cortex (PC) and anterior olfactory nucleus (AON) which, in concert with neuromodulators release in the bulb, entrains a direct feedback from the AON representation of valence to a group of mitral cells (MCs). The model makes several predictions concerning MC activity during and after associative learning: (a) AON feedback produces synchronous divergent responses in a localized subset of MCs; (b) such divergence propagates to other MCs by lateral inhibition; (c) after learning, MC responses reconverge; (d) recall of the newly formed associations in the PC increases feedback inhibition in the MCs. These predictions have been confirmed in disparate experiments which we now explain in a unified framework. For cortex, our model further predicts that the response divergence developed during learning reshapes odor representations in the PC, with the effects of (a) decorrelating PC representations of odors with different valences, (b) increasing the size and reliability of those representations, and enabling recall correction and redundancy reduction after learning. Simons Foundation for Mathematical Modeling of Living Systems.

  11. Color Difference and Memory Recall in Free-Flying Honeybees: Forget the Hard Problem

    Directory of Open Access Journals (Sweden)

    Adrian G. Dyer

    2014-07-01

    Full Text Available Free-flying honeybees acquire color information differently depending upon whether a target color is learnt in isolation (absolute conditioning, or in relation to a perceptually similar color (differential conditioning. Absolute conditioning allows for rapid learning, but color discrimination is coarse. Differential conditioning requires more learning trials, but enables fine discriminations. Currently it is unknown whether differential conditioning to similar colors in honeybees forms a long-term memory, and the stability of memory in a biologically relevant scenario considering similar or saliently different color stimuli. Individual free-flying honeybees (N = 6 were trained to similar color stimuli separated by 0.06 hexagon units for 60 trials and mean accuracy was 81.7% ± 12.2% s.d. Bees retested on subsequent days showed a reduction in the number of correct choices with increasing time from the initial training, and for four of the bees this reduction was significant from chance expectation considering binomially distributed logistic regression models. In contrast, an independent group of 6 bees trained to saliently different colors (>0.14 hexagon units did not experience any decay in memory retention with increasing time. This suggests that whilst the bees’ visual system can permit fine discriminations, flowers producing saliently different colors are more easily remembered by foraging bees over several days.

  12. Queen promiscuity lowers disease within honeybee colonies

    Science.gov (United States)

    Seeley, Thomas D; Tarpy, David R

    2006-01-01

    Most species of social insects have singly mated queens, but in some species each queen mates with numerous males to create a colony with a genetically diverse worker force. The adaptive significance of polyandry by social insect queens remains an evolutionary puzzle. Using the honeybee (Apis mellifera), we tested the hypothesis that polyandry improves a colony's resistance to disease. We established colonies headed by queens that had been artificially inseminated by either one or 10 drones. Later, we inoculated these colonies with spores of Paenibacillus larvae, the bacterium that causes a highly virulent disease of honeybee larvae (American foulbrood). We found that, on average, colonies headed by multiple-drone inseminated queens had markedly lower disease intensity and higher colony strength at the end of the summer relative to colonies headed by single-drone inseminated queens. These findings support the hypothesis that polyandry by social insect queens is an adaptation to counter disease within their colonies. PMID:17015336

  13. Hybrid origins of Australian honeybees (Apis mellifera)

    OpenAIRE

    Chapman , Nadine C.; Harpur , Brock A.; Lim , Julianne; Rinderer , Thomas E.; Allsopp , Michael H.; Zayed , Amro; Oldroyd , Benjamin P.

    2016-01-01

    International audience; Abstract With increased globalisation and homogenisation, the maintenance of genetic integrity in local populations of agriculturally important species is of increasing concern. The western honeybee (Apis mellifera) provides an interesting perspective as it is both managed and wild, with a large native range and much larger introduced range. We employed a newly created 95 single nucleotide polymorphism (SNP) test to characterise the genetic ancestry of the Australian c...

  14. Queen promiscuity lowers disease within honeybee colonies

    OpenAIRE

    Seeley, Thomas D; Tarpy, David R

    2006-01-01

    Most species of social insects have singly mated queens, but in some species each queen mates with numerous males to create a colony with a genetically diverse worker force. The adaptive significance of polyandry by social insect queens remains an evolutionary puzzle. Using the honeybee (Apis mellifera), we tested the hypothesis that polyandry improves a colony's resistance to disease. We established colonies headed by queens that had been artificially inseminated by either one or 10 drones. ...

  15. Collective fluid mechanics of honeybee nest ventilation

    Science.gov (United States)

    Gravish, Nick; Combes, Stacey; Wood, Robert J.; Peters, Jacob

    2014-11-01

    Honeybees thermoregulate their brood in the warm summer months by collectively fanning their wings and creating air flow through the nest. During nest ventilation workers flap their wings in close proximity in which wings continuously operate in unsteady oncoming flows (i.e. the wake of neighboring worker bees) and near the ground. The fluid mechanics of this collective aerodynamic phenomena are unstudied and may play an important role in the physiology of colony life. We have performed field and laboratory observations of the nest ventilation wing kinematics and air flow generated by individuals and groups of honeybee workers. Inspired from these field observations we describe here a robotic model system to study collective flapping wing aerodynamics. We microfabricate arrays of 1.4 cm long flapping wings and observe the air flow generated by arrays of two or more fanning robotic wings. We vary phase, frequency, and separation distance among wings and find that net output flow is enhanced when wings operate at the appropriate phase-distance relationship to catch shed vortices from neighboring wings. These results suggest that by varying position within the fanning array honeybee workers may benefit from collective aerodynamic interactions during nest ventilation.

  16. From antenna to antenna: lateral shift of olfactory memory recall by honeybees.

    Science.gov (United States)

    Rogers, Lesley J; Vallortigara, Giorgio

    2008-06-04

    Honeybees, Apis mellifera, readily learn to associate odours with sugar rewards and we show here that recall of the olfactory memory, as demonstrated by the bee extending its proboscis when presented with the trained odour, involves first the right and then the left antenna. At 1-2 hour after training using both antennae, recall is possible mainly when the bee uses its right antenna but by 6 hours after training a lateral shift has occurred and the memory can now be recalled mainly when the left antenna is in use. Long-term memory one day after training is also accessed mainly via the left antenna. This time-dependent shift from right to left antenna is also seen as side biases in responding to odour presented to the bee's left or right side. Hence, not only are the cellular events of memory formation similar in bees and vertebrate species but also the lateralized networks involved may be similar. These findings therefore seem to call for remarkable parallel evolution and suggest that the proper functioning of memory formation in a bilateral animal, either vertebrate or invertebrate, requires lateralization of processing.

  17. It Takes Two – Coincidence coding within the dual olfactory pathway of the honeybee

    Directory of Open Access Journals (Sweden)

    Martin F. Brill

    2015-07-01

    Full Text Available To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g. in the visual system, increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrateinformation from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g. in auditory delay lines. Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs that transfer information from the primary olfactory centers, the antennal lobe (AL, to a multimodal integration center, the mushroom body (MB. PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code.

  18. It takes two-coincidence coding within the dual olfactory pathway of the honeybee.

    Science.gov (United States)

    Brill, Martin F; Meyer, Anneke; Rössler, Wolfgang

    2015-01-01

    To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g., in auditory delay lines). Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs) that transfer information from the primary olfactory centers, the antennal lobe (AL), to a multimodal integration center, the mushroom body (MB). PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code).

  19. Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera).

    Science.gov (United States)

    Oxley, Peter R; Spivak, Marla; Oldroyd, Benjamin P

    2010-04-01

    Honeybee hygienic behaviour provides colonies with protection from many pathogens and is an important model system of the genetics of a complex behaviour. It is a textbook example of complex behaviour under simple genetic control: hygienic behaviour consists of two components--uncapping a diseased brood cell, followed by removal of the contents--each of which are thought to be modulated independently by a few loci of medium to large effect. A worker's genetic propensity to engage in hygienic tasks affects the intensity of the stimulus required before she initiates the behaviour. Genetic diversity within colonies leads to task specialization among workers, with a minority of workers performing the majority of nest-cleaning tasks. We identify three quantitative trait loci that influence the likelihood that workers will engage in hygienic behaviour and account for up to 30% of the phenotypic variability in hygienic behaviour in our population. Furthermore, we identify two loci that influence the likelihood that a worker will perform uncapping behaviour only, and one locus that influences removal behaviour. We report the first candidate genes associated with engaging in hygienic behaviour, including four genes involved in olfaction, learning and social behaviour, and one gene involved in circadian locomotion. These candidates will allow molecular characterization of this distinctive behavioural mode of disease resistance, as well as providing the opportunity for marker-assisted selection for this commercially significant trait.

  20. From antenna to antenna: lateral shift of olfactory memory recall by honeybees.

    Directory of Open Access Journals (Sweden)

    Lesley J Rogers

    Full Text Available Honeybees, Apis mellifera, readily learn to associate odours with sugar rewards and we show here that recall of the olfactory memory, as demonstrated by the bee extending its proboscis when presented with the trained odour, involves first the right and then the left antenna. At 1-2 hour after training using both antennae, recall is possible mainly when the bee uses its right antenna but by 6 hours after training a lateral shift has occurred and the memory can now be recalled mainly when the left antenna is in use. Long-term memory one day after training is also accessed mainly via the left antenna. This time-dependent shift from right to left antenna is also seen as side biases in responding to odour presented to the bee's left or right side. Hence, not only are the cellular events of memory formation similar in bees and vertebrate species but also the lateralized networks involved may be similar. These findings therefore seem to call for remarkable parallel evolution and suggest that the proper functioning of memory formation in a bilateral animal, either vertebrate or invertebrate, requires lateralization of processing.

  1. Effects of honeybee ( Apis mellifera ) pollination on seed set in ...

    African Journals Online (AJOL)

    This study was carried out to determine the efficiency of pollination with honeybee (Apis mellifera) on sunflower hybrid seed production under different types of pollination during 2005 and 2006 in Mustafakemalpasa-Bursa, Turkey. Three pollination types (1) in cages with honeybees, (2) hand pollination (in cages) and (3) in ...

  2. Comparison of nectar foraging efficiency in the Cape honeybee ...

    African Journals Online (AJOL)

    1987-03-17

    Mar 17, 1987 ... Comparison of nectar foraging efficiency in the Cape honeybee, Apis mellifera capensis Escholtz, and the African honeybee, Apis mellifera adansonii Latreille,. , in the western Cape Province. P.V. W-Worswick*. Department of Zoology, University of Cape Town, Rondebosch 7700 Republic of South Africa.

  3. Protein pattern of the honeybee venoms of Egypt | Zalat | Egyptian ...

    African Journals Online (AJOL)

    The venom composition of the Egyptian honeybee Apis mellifera lamarckii, the Carniolan honeybee Apis mellifera carnica and a hybrid with unknown origin were analyzed using electrophoresis (SDS-PAGE). All venoms shared six bands with molecular weights of 97.400, 67.400, 49.000, 45.000, 43.000 and 14.000D.

  4. Infections of Nosema ceranae in four different honeybee species.

    Science.gov (United States)

    Chaimanee, Veeranan; Warrit, Natapot; Chantawannakul, Panuwan

    2010-10-01

    The microsporidium Nosema ceranae is detected in honeybees in Thailand for the first time. This endoparasite has recently been reported to infect most Apis mellifera honeybee colonies in Europe, the US, and parts of Asia, and is suspected to have displaced the endemic endoparasite species, Nosema apis, from the western A. mellifera. We collected and identified species of microsporidia from the European honeybee (A. mellifera), the cavity nesting Asian honeybee (Apis cerana), the dwarf Asian honeybee (Apis florea) and the giant Asian honeybee (Apis dorsata) from colonies in Northern Thailand. We used multiplex PCR technique with two pairs of primers to differentiate N. ceranae from N. apis. From 80 A. mellifera samples, 62 (77.5%) were positively identified for the presence of the N. ceranae. Amongst 46 feral colonies of Asian honeybees (A. cerana, A. florea and A. dorsata) examined for Nosema infections, only N. ceranae could be detected. No N. apis was found in our samples. N. ceranae is found to be the only microsporidium infesting honeybees in Thailand. Moreover, we found the frequencies of N. ceranae infection in native bees to be less than that of A. mellifera. Copyright 2010 Elsevier Inc. All rights reserved.

  5. A review of African honeybees, behaviour and potential for ...

    African Journals Online (AJOL)

    African honeybees have a higher tendency to swarm, abscond and migrate than their counterparts in Europe and elsewhere, thus making it more difficult to maintain African honeybee colonies over years. They are also labeled as overly defensive, with a high propensity to sting, making their management a challenge.

  6. Honeybee forage, bee visitation counts and the properties of honey ...

    African Journals Online (AJOL)

    The aim of the survey was to document honeybee forage plants and asses honeybee visitation counts on different forage plants and properties of honey from selected agro-ecological zones of Uganda. In order to achieve the objectives of the study, a survey of the apiaries and beekeepers was done by selecting fifteen bee ...

  7. Genetic diversity and population structure of Chinese honeybees ...

    African Journals Online (AJOL)

    Genetic diversity and population structure of Chinese honeybees (Apis cerana) under microsatellite markers. T Ji, L Yin, G Chen. Abstract. Using 21 microsatellite markers and PCR method, the polymorphisms of 20 Apis cerana honeybee populations across China was investigated and the genetic structure and diversity of ...

  8. Modelling the subgenual organ of the honeybee, Apis mellifera

    DEFF Research Database (Denmark)

    Storm, Jesper; Kilpinen, Ole

    1998-01-01

    In a recent study on the honeybee (Apis mellifera), the subgenual organ was observed moving inside the leg during sinusoidal vibrations of the leg (Kilpinen and Storm 1997). The subgenual organ of the honeybee is suspended in a haemolymph channel in the tibia of each leg. When the leg accelerates...

  9. Nosema Tolerant Honeybees (Apis mellifera) Escape Parasitic Manipulation of Apoptosis

    DEFF Research Database (Denmark)

    Kurze, Christoph; Le Conte, Yves; Dussaubat, Claudia

    2015-01-01

    conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera) and other bee pollinators, in sensitive and tolerant honeybees. To explore...

  10. CaMKII knockdown affects both early and late phases of olfactory long-term memory in the honeybee.

    Science.gov (United States)

    Scholl, Christina; Kübert, Natalie; Muenz, Thomas S; Rössler, Wolfgang

    2015-12-01

    Honeybees are able to solve complex learning tasks and memorize learned information for long time periods. The molecular mechanisms mediating long-term memory (LTM) in the honeybee Apis mellifera are, to a large part, still unknown. We approached this question by investigating the potential function of the calcium/calmodulin-dependent protein kinase II (CaMKII), an enzyme known as a 'molecular memory switch' in vertebrates. CaMKII is able to switch to a calcium-independent constitutively active state, providing a mechanism for a molecular memory and has further been shown to play an essential role in structural synaptic plasticity. Using a combination of knockdown by RNA interference and pharmacological manipulation, we disrupted the function of CaMKII during olfactory learning and memory formation. We found that learning, memory acquisition and mid-term memory were not affected, but all manipulations consistently resulted in an impaired LTM. Both early LTM (24 h after learning) and late LTM (72 h after learning) were significantly disrupted, indicating the necessity of CaMKII in two successive stages of LTM formation in the honeybee. © 2015. Published by The Company of Biologists Ltd.

  11. Learned reward association improves visual working memory.

    Science.gov (United States)

    Gong, Mengyuan; Li, Sheng

    2014-04-01

    Statistical regularities in the natural environment play a central role in adaptive behavior. Among other regularities, reward association is potentially the most prominent factor that influences our daily life. Recent studies have suggested that pre-established reward association yields strong influence on the spatial allocation of attention. Here we show that reward association can also improve visual working memory (VWM) performance when the reward-associated feature is task-irrelevant. We established the reward association during a visual search training session, and investigated the representation of reward-associated features in VWM by the application of a change detection task before and after the training. The results showed that the improvement in VWM was significantly greater for items in the color associated with high reward than for those in low reward-associated or nonrewarded colors. In particular, the results from control experiments demonstrate that the observed reward effect in VWM could not be sufficiently accounted for by attentional capture toward the high reward-associated item. This was further confirmed when the effect of attentional capture was minimized by presenting the items in the sample and test displays of the change detection task with the same color. The results showed significantly larger improvement in VWM performance when the items in a display were in the high reward-associated color than those in the low reward-associated or nonrewarded colors. Our findings suggest that, apart from inducing space-based attentional capture, the learned reward association could also facilitate the perceptual representation of high reward-associated items through feature-based attentional modulation.

  12. Cortical plasticity associated with Braille learning.

    Science.gov (United States)

    Hamilton, R H; Pascual-Leone, A

    1998-05-01

    Blind subjects who learn to read Braille must acquire the ability to extract spatial information from subtle tactile stimuli. In order to accomplish this, neuroplastic changes appear to take place. During Braille learning, the sensorimotor cortical area devoted to the representation of the reading finger enlarges. This enlargement follows a two-step process that can be demonstrated with transcranial magnetic stimulation mapping and suggests initial unmasking of existing connections and eventual establishment of more stable structural changes. In addition, Braille learning appears to be associated with the recruitment of parts of the occipital, formerly `visual', cortex (V1 and V2) for tactile information processing. In blind, proficient Braille readers, the occipital cortex can be shown not only to be associated with tactile Braille reading but also to be critical for reading accuracy. Recent studies suggest the possibility of applying non-invasive neurophysiological techniques to guide and improve functional outcomes of these plastic changes. Such interventions might provide a means of accelerating functional adjustment to blindness.

  13. Widespread exploitation of the honeybee by early Neolithic farmers.

    Science.gov (United States)

    Roffet-Salque, Mélanie; Regert, Martine; Evershed, Richard P; Outram, Alan K; Cramp, Lucy J E; Decavallas, Orestes; Dunne, Julie; Gerbault, Pascale; Mileto, Simona; Mirabaud, Sigrid; Pääkkönen, Mirva; Smyth, Jessica; Šoberl, Lucija; Whelton, Helen L; Alday-Ruiz, Alfonso; Asplund, Henrik; Bartkowiak, Marta; Bayer-Niemeier, Eva; Belhouchet, Lotfi; Bernardini, Federico; Budja, Mihael; Cooney, Gabriel; Cubas, Miriam; Danaher, Ed M; Diniz, Mariana; Domboróczki, László; Fabbri, Cristina; González-Urquijo, Jesus E; Guilaine, Jean; Hachi, Slimane; Hartwell, Barrie N; Hofmann, Daniela; Hohle, Isabel; Ibáñez, Juan J; Karul, Necmi; Kherbouche, Farid; Kiely, Jacinta; Kotsakis, Kostas; Lueth, Friedrich; Mallory, James P; Manen, Claire; Marciniak, Arkadiusz; Maurice-Chabard, Brigitte; Mc Gonigle, Martin A; Mulazzani, Simone; Özdoğan, Mehmet; Perić, Olga S; Perić, Slaviša R; Petrasch, Jörg; Pétrequin, Anne-Marie; Pétrequin, Pierre; Poensgen, Ulrike; Pollard, C Joshua; Poplin, François; Radi, Giovanna; Stadler, Peter; Stäuble, Harald; Tasić, Nenad; Urem-Kotsou, Dushka; Vuković, Jasna B; Walsh, Fintan; Whittle, Alasdair; Wolfram, Sabine; Zapata-Peña, Lydia; Zoughlami, Jamel

    2015-11-12

    The pressures on honeybee (Apis mellifera) populations, resulting from threats by modern pesticides, parasites, predators and diseases, have raised awareness of the economic importance and critical role this insect plays in agricultural societies across the globe. However, the association of humans with A. mellifera predates post-industrial-revolution agriculture, as evidenced by the widespread presence of ancient Egyptian bee iconography dating to the Old Kingdom (approximately 2400 BC). There are also indications of Stone Age people harvesting bee products; for example, honey hunting is interpreted from rock art in a prehistoric Holocene context and a beeswax find in a pre-agriculturalist site. However, when and where the regular association of A. mellifera with agriculturalists emerged is unknown. One of the major products of A. mellifera is beeswax, which is composed of a complex suite of lipids including n-alkanes, n-alkanoic acids and fatty acyl wax esters. The composition is highly constant as it is determined genetically through the insect's biochemistry. Thus, the chemical 'fingerprint' of beeswax provides a reliable basis for detecting this commodity in organic residues preserved at archaeological sites, which we now use to trace the exploitation by humans of A. mellifera temporally and spatially. Here we present secure identifications of beeswax in lipid residues preserved in pottery vessels of Neolithic Old World farmers. The geographical range of bee product exploitation is traced in Neolithic Europe, the Near East and North Africa, providing the palaeoecological range of honeybees during prehistory. Temporally, we demonstrate that bee products were exploited continuously, and probably extensively in some regions, at least from the seventh millennium cal BC, likely fulfilling a variety of technological and cultural functions. The close association of A. mellifera with Neolithic farming communities dates to the early onset of agriculture and may provide

  14. Fertility and reproductive rate of Varroa mite, Varroa destructor, in native and exotic honeybee, Apis mellifera L., colonies under Saudi Arabia conditions

    Directory of Open Access Journals (Sweden)

    Yehya Alattal

    2017-07-01

    Full Text Available Varroa mite is the most destructive pest to bee colonies worldwide. In Saudi Arabia, preliminary data indicated high infestation levels in the exotic honeybee colonies; such as Apis mellifera carnica and Apis mellifera ligustica, compared to native honeybee subspecies Apis mellifera jemenitica, which may imply higher tolerance to Varroasis. In this study, fertility and reproductive rate of Varroa mite, Varroa destructor, in capped brood cells of the native honeybee subspecies were investigated and compared with an exotic honeybee subspecies, A. m. carnica. Mite fertility was almost alike (87.5% and 89.4% in the native and craniolan colonies respectively. Similarly, results did not show significant differences in reproduction rate between both subspecies (F = 0.66, Pr > F = 0.42. Number of adult Varroa daughters per fertile mother mite was 2.0 and 2.1 for native and craniolan honeybee subspecies respectively. This may indicate that mechanisms of keeping low infestation rates in the native honeybee colonies are not associated with Varroa reproduction. Therefore, potential factors of keeping lower Varroa infestation rates in native honey bee subspecies should be further investigated.

  15. Sensory regulation of neuroligins and neurexin I in the honeybee brain.

    Directory of Open Access Journals (Sweden)

    Sunita Biswas

    2010-02-01

    Full Text Available Neurexins and neuroligins, which have recently been associated with neurological disorders such as autism in humans, are highly conserved adhesive proteins found on synaptic membranes of neurons. These binding partners produce a trans-synaptic bridge that facilitates maturation and specification of synapses. It is believed that there exists an optimal spatio-temporal code of neurexin and neuroligin interactions that guide synapse formation in the postnatal developing brain. Therefore, we investigated whether neuroligins and neurexin are differentially regulated by sensory input using a behavioural model system with an advanced capacity for sensory processing, learning and memory, the honeybee.Whole brain expression levels of neuroligin 1-5 (NLG1-5 and neurexin I (NrxI were estimated by qRT-PCR analysis in three different behavioural paradigms: sensory deprivation, associative scent learning, and lateralised sensory input. Sensory deprived bees had a lower level of NLG1 expression, but a generally increased level of NLG2-5 and NrxI expression compared to hive bees. Bees that had undergone associative scent training had significantly increased levels of NrxI, NLG1 and NLG3 expression compared to untrained control bees. Bees that had lateralised sensory input after antennal amputation showed a specific increase in NLG1 expression compared to control bees, which only happened over time.Our results suggest that (1 there is a lack of synaptic pruning during sensory deprivation; (2 NLG1 expression increases with sensory stimulation; (3 concomitant changes in gene expression suggests NrxI interacts with all neuroligins; (4 there is evidence for synaptic compensation after lateralised injury.

  16. Improved Cholinergic Transmission is Detrimental to Behavioural Plasticity in Honeybees (Apis mellifera

    Directory of Open Access Journals (Sweden)

    Shao-Wu Zhang

    2012-10-01

    Full Text Available Unravelling the role of neuromessenger processes in learning and memory has long interested researchers. We investigated the effects of an acetylcholinesterase blocker, Methyl Parathion (MeP, on honeybee learning. We used visual and olfactory tasks to test whether MeP had a detrimental effect on the acquisition of new knowledge when this new knowledge contradicts previously acquired one. Our results indicate that treatment with MeP prior to conditioning was significantly detrimental to the acquisition of incongruous (but not irrelevant or congruous new knowledge due to improved recall. The neurobiological and ecotoxicological consequences of these results are discussed.

  17. Accounting for individual differences in human associative learning.

    Science.gov (United States)

    Byrom, Nicola C

    2013-09-04

    Associative learning has provided fundamental insights to understanding psychopathology. However, psychopathology occurs along a continuum and as such, identification of disruptions in processes of associative learning associated with aspects of psychopathology illustrates a general flexibility in human associative learning. A handful of studies have looked specifically at individual differences in human associative learning, but while much work has concentrated on accounting for flexibility in learning caused by external factors, there has been limited work considering how to model the influence of dispositional factors. This review looks at the range of individual differences in human associative learning that have been explored and the attempts to account for, and model, this flexibility. To fully understand human associative learning, further research needs to attend to the causes of variation in human learning.

  18. Accounting for Individual Differences in Human Associative Learning.

    Directory of Open Access Journals (Sweden)

    Nicola C Byrom

    2013-09-01

    Full Text Available Associative learning has provided fundamental insights to understanding psychopathology. However, psychopathology occurs along a continuum and as such, identification of disruptions in processes of associative learning associated with aspects of psychopathology illustrates a general flexibility in human associative learning. A handful of studies have looked specifically at individual differences in human associative learning, but while much work has concentrated on accounting for flexibility in learning caused by external factors, there has been limited work considering how to model the influence of dispositional factors. This review looks at the range of individual differences in human associative learning that have been explored and the attempts to account for, and model, this flexibility. To fully understand human associative learning, further research needs to attend to the causes of variation in human learning.

  19. Low doses of neonicotinoid pesticides in food rewards impair short-term olfactory memory in foraging-age honeybees.

    Science.gov (United States)

    Wright, Geraldine A; Softley, Samantha; Earnshaw, Helen

    2015-10-19

    Neonicotinoids are often applied as systemic seed treatments to crops and have reported negative impact on pollinators when they appear in floral nectar and pollen. Recently, we found that bees in a two-choice assay prefer to consume solutions containing field-relevant doses of the neonicotinoid pesticides, imidacloprid (IMD) and thiamethoxam (TMX), to sucrose alone. This suggests that neonicotinoids enhance the rewarding properties of sucrose and that low, acute doses could improve learning and memory in bees. To test this, we trained foraging-age honeybees to learn to associate floral scent with a reward containing nectar-relevant concentrations of IMD and TMX and tested their short (STM) and long-term (LTM) olfactory memories. Contrary to our predictions, we found that none of the solutions enhanced the rate of olfactory learning and some of them impaired it. In particular, the effect of 10 nM IMD was observed by the second conditioning trial and persisted 24 h later. In most other groups, exposure to IMD and TMX affected STM but not LTM. Our data show that negative impacts of low doses of IMD and TMX do not require long-term exposure and suggest that impacts of neonicotinoids on olfaction are greater than their effects on rewarding memories.

  20. Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics.

    Science.gov (United States)

    Srinivasan, Mandyam V

    2011-04-01

    Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles.

  1. Exploration of Learning Strategies Associated With Aha Learning Moments.

    Science.gov (United States)

    Pilcher, Jobeth W

    2016-01-01

    Educators recognize aha moments as powerful aspects of learning. Yet limited research has been performed regarding how to promote these learning moments. This article describes an exploratory study of aha learning moments as experienced and described by participants. Findings showed use of visuals, scenarios, storytelling, Socratic questions, and expert explanation led to aha learning moments. The findings provide guidance regarding the types of learning strategies that can be used to promote aha moments.

  2. Resolution and sensitivity of the eyes of the Asian honeybees Apis florea, Apis cerana and Apis dorsata.

    Science.gov (United States)

    Somanathan, Hema; Warrant, Eric J; Borges, Renee M; Wallén, Rita; Kelber, Almut

    2009-08-01

    Bees of the genus Apis are important foragers of nectar and pollen resources. Although the European honeybee, Apis mellifera, has been well studied with respect to its sensory abilities, learning behaviour and role as pollinators, much less is known about the other Apis species. We studied the anatomical spatial resolution and absolute sensitivity of the eyes of three sympatric species of Asian honeybees, Apis cerana, Apis florea and Apis dorsata and compared them with the eyes of A. mellifera. Of these four species, the giant honeybee A. dorsata (which forages during moonlit nights) has the lowest spatial resolution and the most sensitive eyes, followed by A. mellifera, A. cerana and the dwarf honeybee, A. florea (which has the smallest acceptance angles and the least sensitive eyes). Moreover, unlike the strictly diurnal A. cerana and A. florea, A. dorsata possess large ocelli, a feature that it shares with all dim-light bees. However, the eyes of the facultatively nocturnal A. dorsata are much less sensitive than those of known obligately nocturnal bees such as Megalopta genalis in Panama and Xylocopa tranquebarica in India. The differences in sensitivity between the eyes of A. dorsata and other strictly diurnal Apis species cannot alone explain why the former is able to fly, orient and forage at half-moon light levels. We assume that additional neuronal adaptations, as has been proposed for A. mellifera, M. genalis and X. tranquebarica, might exist in A. dorsata.

  3. Acute psychophysiological stress impairs human associative learning.

    Science.gov (United States)

    Ehlers, M R; Todd, R M

    2017-11-01

    Addiction is increasingly discussed asa disorder of associative learning processes, with both operant and classical conditioning contributing to the development of maladaptive habits. Stress has long been known to promote drug taking and relapse and has further been shown to shift behavior from goal-directed actions towards more habitual ones. However, it remains to be investigated how acute stress may influence simple associative learning processes that occur before a habit can be established. In the present study, healthy young adults were exposed to either acute stress or a control condition half an hour before performing simple classical and operant conditioning tasks. Psychophysiological measures confirmed successful stress induction. Results of the operant conditioning task revealed reduced instrumental responding under delayed acute stress that resembled behavioral responses to lower levels of reward. The classical conditioning experiment revealed successful conditioning in both experimental groups; however, explicit knowledge of conditioning as indicated by stimulus ratings differentiated the stress and control groups. These findings suggest that operant and classical conditioning are differentially influenced by the delayed effects of acute stress with important implications for the understanding of how new habitual behaviors are initially established. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A Functional Genomic Analysis of NF1-Associated Learning Disabilities

    National Research Council Canada - National Science Library

    Tang, Shao-Jun

    2008-01-01

    Learning disabilities severely deteriorate the life of many NF1 patients. However, the pathogenic process for NF1-associated learning disabilities has not been fully understood and an effective therapy is not available...

  5. A Functional Genomic Analysis of NF1-Associated Learning Disabilities

    National Research Council Canada - National Science Library

    Tang, Shao-Jun

    2007-01-01

    Learning disabilities severely deteriorate the life of many NF1 patients. However, the pathogenic process for NF1-associated learning disabilities has not been fully understood and an effective therapy is not available...

  6. A Functional Genomic Analysis of NF1-Associated Learning Disabilities

    National Research Council Canada - National Science Library

    Tang, Shao-Jun

    2006-01-01

    Learning disabilities severely deteriorate the life of many NFI patients. However, the pathogenic process for NFI-associated learning disabilities has not been fully understood and an effective therapy is not available...

  7. Honeybees tolerate cyanogenic glucosides from clover nectar and flowers

    DEFF Research Database (Denmark)

    Lecocq, Antoine; Green, Amelia Ann; Pinheiro de Castro, Érika Cristina

    2018-01-01

    Honeybees (Apis mellifera) pollinate flowers and collect nectar from many important crops. White clover (Trifolium repens) is widely grown as a temperate forage crop, and requires honeybee pollination for seed set. In this study, using a quantitative LC-MS (Liquid Chromatography-Mass Spectrometry...... indicates that plant secondary metabolites found in nectar may protect pollinators from disease or predators. In a laboratory survival study with chronic feeding of secondary metabolites, we show that honeybees can ingest the cyanogenic glucosides linamarin and amygdalin at naturally occurring...

  8. Audiovisual Association Learning in the Absence of Primary Visual Cortex

    OpenAIRE

    Seirafi, Mehrdad; De Weerd, Peter; Pegna, Alan J.; de Gelder, Beatrice

    2016-01-01

    Learning audiovisual associations is mediated by the primary cortical areas; however, recent animal studies suggest that such learning can take place even in the absence of the primary visual cortex. Other studies have demonstrated the involvement of extra-geniculate pathways and especially the superior colliculus (SC) in audiovisual association learning. Here, we investigated such learning in a rare human patient with complete loss of the bilateral striate cortex. We carried out an implicit ...

  9. Honeybee (Apis mellifera ligustica) drone embryo proteomes.

    Science.gov (United States)

    Li, Jianke; Fang, Yu; Zhang, Lan; Begna, Desalegn

    2011-03-01

    Little attention has been paid to the drone honeybee (Apis mellifera ligustica) which is a haploid individual carrying only the set of alleles that it inherits from its mother. Molecular mechanisms underlying drone embryogenesis are poorly understood. This study evaluated protein expression profiles of drone embryogenesis at embryonic ages of 24, 48 and 72h. More than 100 reproducible proteins were analyzed by mass spectrometry on 2D electrophoresis gels. Sixty-two proteins were significantly changed at the selected three experimental age points. Expression of the metabolic energy requirement-related protein peaked at the embryonic age of 48h, whereas development and metabolizing amino acid-related proteins expressed optimally at 72h. Cytoskeleton, protein folding and antioxidant-related proteins were highly expressed at 48 and 72h. Protein networks of the identified proteins were constructed and protein expressions were validated at the transcription level. This first proteomic study of drone embryogenesis in the honeybee may provide geneticists an exact timetable and candidate protein outline for further manipulations of drone stem cells. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  10. Extreme Recombination Frequencies Shape Genome Variation and Evolution in the Honeybee, Apis mellifera

    Science.gov (United States)

    Wallberg, Andreas; Glémin, Sylvain; Webster, Matthew T.

    2015-01-01

    Meiotic recombination is a fundamental cellular process, with important consequences for evolution and genome integrity. However, we know little about how recombination rates vary across the genomes of most species and the molecular and evolutionary determinants of this variation. The honeybee, Apis mellifera, has extremely high rates of meiotic recombination, although the evolutionary causes and consequences of this are unclear. Here we use patterns of linkage disequilibrium in whole genome resequencing data from 30 diploid honeybees to construct a fine-scale map of rates of crossing over in the genome. We find that, in contrast to vertebrate genomes, the recombination landscape is not strongly punctate. Crossover rates strongly correlate with levels of genetic variation, but not divergence, which indicates a pervasive impact of selection on the genome. Germ-line methylated genes have reduced crossover rate, which could indicate a role of methylation in suppressing recombination. Controlling for the effects of methylation, we do not infer a strong association between gene expression patterns and recombination. The site frequency spectrum is strongly skewed from neutral expectations in honeybees: rare variants are dominated by AT-biased mutations, whereas GC-biased mutations are found at higher frequencies, indicative of a major influence of GC-biased gene conversion (gBGC), which we infer to generate an allele fixation bias 5 – 50 times the genomic average estimated in humans. We uncover further evidence that this repair bias specifically affects transitions and favours fixation of CpG sites. Recombination, via gBGC, therefore appears to have profound consequences on genome evolution in honeybees and interferes with the process of natural selection. These findings have important implications for our understanding of the forces driving molecular evolution. PMID:25902173

  11. Genetics of reproduction and regulation of honeybee (Apis mellifera L.) social behavior.

    Science.gov (United States)

    Page, Robert E; Rueppell, Olav; Amdam, Gro V

    2012-01-01

    Honeybees form complex societies with a division of labor for reproduction, nutrition, nest construction and maintenance, and defense. How does it evolve? Tasks performed by worker honeybees are distributed in time and space. There is no central control over behavior and there is no central genome on which selection can act and effect adaptive change. For 22 years, we have been addressing these questions by selecting on a single social trait associated with nutrition: the amount of surplus pollen (a source of protein) that is stored in the combs of the nest. Forty-two generations of selection have revealed changes at biological levels extending from the society down to the level of the gene. We show how we constructed this vertical understanding of social evolution using behavioral and anatomical analyses, physiology, genetic mapping, and gene knockdowns. We map out the phenotypic and genetic architectures of food storage and foraging behavior and show how they are linked through broad epistasis and pleiotropy affecting a reproductive regulatory network that influences foraging behavior. This is remarkable because worker honeybees have reduced reproductive organs and are normally sterile; however, the reproductive regulatory network has been co-opted for behavioral division of labor.

  12. Giant honeybees ( Apis dorsata) mob wasps away from the nest by directed visual patterns

    Science.gov (United States)

    Kastberger, Gerald; Weihmann, Frank; Zierler, Martina; Hötzl, Thomas

    2014-11-01

    The open nesting behaviour of giant honeybees ( Apis dorsata) accounts for the evolution of a series of defence strategies to protect the colonies from predation. In particular, the concerted action of shimmering behaviour is known to effectively confuse and repel predators. In shimmering, bees on the nest surface flip their abdomens in a highly coordinated manner to generate Mexican wave-like patterns. The paper documents a further-going capacity of this kind of collective defence: the visual patterns of shimmering waves align regarding their directional characteristics with the projected flight manoeuvres of the wasps when preying in front of the bees' nest. The honeybees take here advantage of a threefold asymmetry intrinsic to the prey-predator interaction: (a) the visual patterns of shimmering turn faster than the wasps on their flight path, (b) they "follow" the wasps more persistently (up to 100 ms) than the wasps "follow" the shimmering patterns (up to 40 ms) and (c) the shimmering patterns align with the wasps' flight in all directions at the same strength, whereas the wasps have some preference for horizontal correspondence. The findings give evidence that shimmering honeybees utilize directional alignment to enforce their repelling power against preying wasps. This phenomenon can be identified as predator driving which is generally associated with mobbing behaviour (particularly known in selfish herds of vertebrate species), which is, until now, not reported in insects.

  13. Genetic diversity and population structure of Chinese honeybees ...

    African Journals Online (AJOL)

    user

    2011-02-28

    Feb 28, 2011 ... honeybees (Apis cerana) under microsatellite markers. Ting Ji, Ling Yin and ... from Apis mellifera introduced into China since 1896 (Yang, 2005). With the ..... Commercial and Feral Honey Bees in Western Australia. J. Econ.

  14. Notch signalling mediates reproductive constraint in the adult worker honeybee

    Science.gov (United States)

    Duncan, Elizabeth J.; Hyink, Otto; Dearden, Peter K.

    2016-01-01

    The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen. PMID:27485026

  15. CRISPR-Cas9 gene editing in honeybee and pig

    DEFF Research Database (Denmark)

    Pen, Anja

    2018-01-01

    Creating animal models by using genome modification has gotten significantly more accessible thanks to the CRISPR-Cas9 technique. In this study, we aimed to the implement the CRISPR-Cas9 methodology in the European honeybee (Apis mellifera) and pig (Sus scrofa) for generation of animal models. We...... want to use these animal models to study the development of honeybees and the pathology of amyotrophic lateral sclerosis (ALS) in a pig model of human disease. In order to simplify the production of these animal models, we test the use of sperm mediated gene transfer (SMGT) in combination with CRISPR...... mechanisms of honeybee development using genome modification will aid in uncovering these complex genetic regulatory systems. In honeybees, we have attempted to induce genome modification in the cinnabar gene through microinjection and feeding of CRISPR-Cas9 components to larvae. Additionally, we tested...

  16. Honeybee colony marketing and its implications for queen rearing ...

    African Journals Online (AJOL)

    Honeybee colony marketing and its implications for queen rearing and beekeeping development in Werieleke ... Thus, colony marketing is an important venture in Werieleke district of Tigray region. ... EMAIL FULL TEXT EMAIL FULL TEXT

  17. Reinstatement in Honeybees Is Context-Dependent

    Science.gov (United States)

    Plath, Jenny Aino; Felsenberg, Johannes; Eisenhardt, Dorothea

    2012-01-01

    During extinction animals experience that the previously learned association between a conditioned stimulus (CS) and an unconditioned stimulus (US) no longer holds true. Accordingly, the conditioned response (CR) to the CS decreases. This decrease of the CR can be reversed by presentation of the US alone following extinction, a phenomenon termed…

  18. What is the main driver of ageing in long-lived winter honeybees: antioxidant enzymes, innate immunity, or vitellogenin?

    Science.gov (United States)

    Aurori, Cristian M; Buttstedt, Anja; Dezmirean, Daniel S; Mărghitaş, Liviu A; Moritz, Robin F A; Erler, Silvio

    2014-06-01

    To date five different theories compete in explaining the biological mechanisms of senescence or ageing in invertebrates. Physiological, genetical, and environmental mechanisms form the image of ageing in individuals and groups. Social insects, especially the honeybee Apis mellifera, present exceptional model systems to study developmentally related ageing. The extremely high phenotypic plasticity for life expectancy resulting from the female caste system provides a most useful system to study open questions with respect to ageing. Here, we used long-lived winter worker honeybees and measured transcriptional changes of 14 antioxidative enzyme, immunity, and ageing-related (insulin/insulin-like growth factor signaling pathway) genes at two time points during hibernation. Additionally, worker bees were challenged with a bacterial infection to test ageing- and infection-associated immunity changes. Gene expression levels for each group of target genes revealed that ageing had a much higher impact than the bacterial challenge, notably for immunity-related genes. Antimicrobial peptide and antioxidative enzyme genes were significantly upregulated in aged worker honeybees independent of bacterial infections. The known ageing markers vitellogenin and IlP-1 were opposed regulated with decreasing vitellogenin levels during ageing. The increased antioxidative enzyme and antimicrobial peptide gene expression may contribute to a retardation of senescence in long-lived hibernating worker honeybees. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Do Honeybees Shape the Bacterial Community Composition in Floral Nectar?

    Science.gov (United States)

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Halpern, Malka

    2013-01-01

    Floral nectar is considered the most important reward animal-pollinated plants offer to attract pollinators. Here we explore whether honeybees, which act as pollinators, affect the composition of bacterial communities in the nectar. Nectar and honeybees were sampled from two plant species: Amygdalus communis and Citrus paradisi. To prevent the contact of nectar with pollinators, C. paradisi flowers were covered with net bags before blooming (covered flowers). Comparative analysis of bacterial communities in the nectar and on the honeybees was performed by the 454-pyrosequencing technique. No significant differences were found among bacterial communities in honeybees captured on the two different plant species. This resemblance may be due to the presence of dominant bacterial OTUs, closely related to the Arsenophonus genus. The bacterial communities of the nectar from the covered and uncovered C. paradisi flowers differed significantly; the bacterial communities on the honeybees differed significantly from those in the covered flowers’ nectar, but not from those in the uncovered flowers’ nectar. We conclude that the honeybees may introduce bacteria into the nectar and/or may be contaminated by bacteria introduced into the nectar by other sources such as other pollinators and nectar thieves. PMID:23844027

  20. Aspects of Honeybee Natural History According to the Solega

    Directory of Open Access Journals (Sweden)

    Aung Si

    2013-07-01

    Full Text Available Honeybees and their products are highly prized by many cultures around the world, and as a result, indigenous communities have come to possess rich and detailed knowledge of the biology of these important insects. In this paper, I present an in-depth investigation into some aspects of honeybee natural history, as related to me by the Solega people of southern India. The Solega recognize, name, and exploit four honeybee species, and are well aware of the geographical and temporal distributions of each one. In spite of not being beekeepers – as they only forage for wild honey – their knowledge of obscure and complex phenomena such as honeybee gender and reproduction rivals that of comparable, non-industrial beekeeping societies. Swarming, another hard-to-understand honeybee behavior, is also accurately explained by Solega consultants. I contrast this knowledge to that of European bee-keeping cultures, as evidenced by the writings of Aristotle and 18th century European beekeepers. This paper shows that the Solega have a reliable and internally consistent body of honeybee knowledge based entirely on brief encounters with these wild, migratory insects that are present in the forest for only part of the year.

  1. Associative learning and the control of human dietary behavior.

    Science.gov (United States)

    Brunstrom, Jeffrey M

    2007-07-01

    Most of our food likes and disliked are learned. Relevant forms of associative learning have been identified in animals. However, observations of the same associative processes are relatively scarce in humans. The first section of this paper outlines reasons why this might be the case. Emphasis is placed on recent research exploring individual differences and the importance or otherwise of hunger and contingency awareness. The second section briefly considers the effect of learning on meal size, and the author revisits the question of how learned associations might come to influence energy intake in humans.

  2. The Development of Associate Learning in School Age Children

    Science.gov (United States)

    Harel, Brian T.; Pietrzak, Robert H.; Snyder, Peter J.; Thomas, Elizabeth; Mayes, Linda C.; Maruff, Paul

    2014-01-01

    Associate learning is fundamental to the acquisition of knowledge and plays a critical role in the everyday functioning of the developing child, though the developmental course is still unclear. This study investigated the development of visual associate learning in 125 school age children using the Continuous Paired Associate Learning task. As hypothesized, younger children made more errors than older children across all memory loads and evidenced decreased learning efficiency as memory load increased. Results suggest that age-related differences in performance largely reflect continued development of executive function in the context of relatively developed memory processes. PMID:25014755

  3. The development of associate learning in school age children.

    Directory of Open Access Journals (Sweden)

    Brian T Harel

    Full Text Available Associate learning is fundamental to the acquisition of knowledge and plays a critical role in the everyday functioning of the developing child, though the developmental course is still unclear. This study investigated the development of visual associate learning in 125 school age children using the Continuous Paired Associate Learning task. As hypothesized, younger children made more errors than older children across all memory loads and evidenced decreased learning efficiency as memory load increased. Results suggest that age-related differences in performance largely reflect continued development of executive function in the context of relatively developed memory processes.

  4. Field-relevant doses of the systemic insecticide fipronil and fungicide pyraclostrobin impair mandibular and hypopharyngeal glands in nurse honeybees (Apis mellifera).

    Science.gov (United States)

    Zaluski, Rodrigo; Justulin, Luis Antonio; Orsi, Ricardo de Oliveira

    2017-11-09

    Global decreases in bee populations emphasize the importance of assessing how environmental stressors affect colony maintenance, especially considering the extreme task specialization observed in honeybee societies. Royal jelly, a protein secretion essential to colony nutrition, is produced by nurse honeybees, and development of bee mandibular glands, which comprise a reservoir surrounded by secretory cells and hypopharyngeal glands that are shaped by acini, is directly associated with production of this secretion. Here, we examined individual and combined effects of the systemic fungicide pyraclostrobin and insecticide fipronil in field-relevant doses (850 and 2.5 ppb, respectively) on mandibular and hypopharyngeal glands in nurse honeybees. Six days of pesticide treatment decreased secretory cell height in mandibular glands. When pyraclostrobin and fipronil were combined, the reservoir volume in mandibular glands also decreased. The total number of acini in hypopharyngeal glands was not affected, but pesticide treatment reduced the number of larger acini while increasing smaller acini. These morphological impairments appeared to reduce royal jelly secretion by nurse honeybees and consequently hampered colony maintenance. Overall, pesticide exposure in doses close to those experienced by bees in the field impaired brood-food glands in nurse honeybees, a change that could negatively influence development, survival, and colony maintenance.

  5. Migration effects on population dynamics of the honeybee-mite interactions

    Science.gov (United States)

    Honeybees are amazing and highly beneficial insect species that play important roles in undisturbed and agricultural ecosystems. Unfortunately, honeybees are increasingly threatened by numerous factors, most notably the parasitic Varroa mite (Varroa destructor Anderson and Trueman). A recent field s...

  6. Normal brain activation in schizophrenia patients during associative emotional learning

    NARCIS (Netherlands)

    Swart, Marte; Liemburg, Edith Jantine; Kortekaas, Rudie; Wiersma, Durk; Bruggeman, Richard; Aleman, Andre

    2013-01-01

    Emotional deficits are among the core features of schizophrenia and both associative emotional learning and the related ability to verbalize emotions can be reduced. We investigated whether schizophrenia patients demonstrated impaired function of limbic and prefrontal areas during associative

  7. Challenges Associated with Teaching and Learning of English ...

    African Journals Online (AJOL)

    Challenges Associated with Teaching and Learning of English Grammar in Nigerian Secondary Schools. ... Abstract. This paper discussed the challenges which are associated with the teaching and ... AJOL African Journals Online. HOW TO ...

  8. Two Ways of Learning Brand Associations

    NARCIS (Netherlands)

    S.M.J. van Osselaer (Stijn); C. Janiszewski (Chris)

    2001-01-01

    textabstractFour studies show that consumers have not one but two distinct learning processes that allow them to use brand names and other product features to predict consumption benefits. The first learning process is a relatively unfocused process in which all stimulus elements get

  9. Spontaneous Recovery After Extinction of the Conditioned Proboscis Extension Response in the Honeybee

    Science.gov (United States)

    Sandoz, Jean-Christophe; Pham-Delègue, Minh-Hà

    2004-01-01

    In honeybees, the proboscis extension response (PER) can be conditioned by associating an odor stimulus (CS) to a sucrose reward (US). Conditioned responses to the CS, which are acquired by most bees after a single CS-US pairing, disappear after repeated unrewarded presentations of the CS, a process called extinction. Extinction is usually thought to be based either on (1) the disruption of the stored CS-US association, or (2) the formation of an inhibitory “CS-no US” association that is better retrieved than the initial CS-US association. The observation of spontaneous recovery, i.e., the reappearance of responses to the CS after time passes following extinction, is traditionally interpreted as a proof for the formation of a transient inhibitory association. To provide a better understanding of extinction in honeybees, we examined whether time intervals during training and extinction or the number of conditioning and extinction trials have an effect on the occurrence of spontaneous recovery. We found that spontaneous recovery mostly occurs when conditioning and testing took place in a massed fashion (1-min intertrial intervals). Moreover, spontaneous recovery depended on the time elapsed since extinction, 1 h being an optimum. Increasing the number of conditioning trials improved the spontaneous recovery level, whereas increasing the number of extinction trials reduced it. Lastly, we show that after single-trial conditioning, spontaneous recovery appears only once after extinction. These elements suggest that in honeybees extinction of the PER actually reflects the impairment of the CS-US association, but that depending on training parameters different memory substrates are affected. PMID:15466313

  10. The endocannabinoid system and associative learning and memory in zebrafish.

    Science.gov (United States)

    Ruhl, Tim; Moesbauer, Kirstin; Oellers, Nadine; von der Emde, Gerhard

    2015-09-01

    In zebrafish the medial pallium of the dorsal telencephalon represents an amygdala homolog structure, which is crucially involved in emotional associative learning and memory. Similar to the mammalian amygdala, the medial pallium contains a high density of endocannabinoid receptor CB1. To elucidate the role of the zebrafish endocannabinoid system in associative learning, we tested the influence of acute and chronic administration of receptor agonists (THC, WIN55,212-2) and antagonists (Rimonabant, AM-281) on two different learning paradigms. In an appetitively motivated two-alternative choice paradigm, animals learned to associate a certain color with a food reward. In a second set-up, a fish shuttle-box, animals associated the onset of a light stimulus with the occurrence of a subsequent electric shock (avoidance conditioning). Once fish successfully had learned to solve these behavioral tasks, acute receptor activation or inactivation had no effect on memory retrieval, suggesting that established associative memories were stable and not alterable by the endocannabinoid system. In both learning tasks, chronic treatment with receptor antagonists improved acquisition learning, and additionally facilitated reversal learning during color discrimination. In contrast, chronic CB1 activation prevented aversively motivated acquisition learning, while different effects were found on appetitively motivated acquisition learning. While THC significantly improved behavioral performance, WIN55,212-2 significantly impaired color association. Our findings suggest that the zebrafish endocannabinoid system can modulate associative learning and memory. Stimulation of the CB1 receptor might play a more specific role in acquisition and storage of aversive learning and memory, while CB1 blocking induces general enhancement of cognitive functions. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Working memory and reward association learning impairments in obesity.

    Science.gov (United States)

    Coppin, Géraldine; Nolan-Poupart, Sarah; Jones-Gotman, Marilyn; Small, Dana M

    2014-12-01

    Obesity has been associated with impaired executive functions including working memory. Less explored is the influence of obesity on learning and memory. In the current study we assessed stimulus reward association learning, explicit learning and memory and working memory in healthy weight, overweight and obese individuals. Explicit learning and memory did not differ as a function of group. In contrast, working memory was significantly and similarly impaired in both overweight and obese individuals compared to the healthy weight group. In the first reward association learning task the obese, but not healthy weight or overweight participants consistently formed paradoxical preferences for a pattern associated with a negative outcome (fewer food rewards). To determine if the deficit was specific to food reward a second experiment was conducted using money. Consistent with Experiment 1, obese individuals selected the pattern associated with a negative outcome (fewer monetary rewards) more frequently than healthy weight individuals and thus failed to develop a significant preference for the most rewarded patterns as was observed in the healthy weight group. Finally, on a probabilistic learning task, obese compared to healthy weight individuals showed deficits in negative, but not positive outcome learning. Taken together, our results demonstrate deficits in working memory and stimulus reward learning in obesity and suggest that obese individuals are impaired in learning to avoid negative outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Active Learning Not Associated with Student Learning in a Random Sample of College Biology Courses

    Science.gov (United States)

    Andrews, T. M.; Leonard, M. J.; Colgrove, C. A.; Kalinowski, S. T.

    2011-01-01

    Previous research has suggested that adding active learning to traditional college science lectures substantially improves student learning. However, this research predominantly studied courses taught by science education researchers, who are likely to have exceptional teaching expertise. The present study investigated introductory biology courses randomly selected from a list of prominent colleges and universities to include instructors representing a broader population. We examined the relationship between active learning and student learning in the subject area of natural selection. We found no association between student learning gains and the use of active-learning instruction. Although active learning has the potential to substantially improve student learning, this research suggests that active learning, as used by typical college biology instructors, is not associated with greater learning gains. We contend that most instructors lack the rich and nuanced understanding of teaching and learning that science education researchers have developed. Therefore, active learning as designed and implemented by typical college biology instructors may superficially resemble active learning used by education researchers, but lacks the constructivist elements necessary for improving learning. PMID:22135373

  13. Audiovisual Association Learning in the Absence of Primary Visual Cortex.

    Science.gov (United States)

    Seirafi, Mehrdad; De Weerd, Peter; Pegna, Alan J; de Gelder, Beatrice

    2015-01-01

    Learning audiovisual associations is mediated by the primary cortical areas; however, recent animal studies suggest that such learning can take place even in the absence of the primary visual cortex. Other studies have demonstrated the involvement of extra-geniculate pathways and especially the superior colliculus (SC) in audiovisual association learning. Here, we investigated such learning in a rare human patient with complete loss of the bilateral striate cortex. We carried out an implicit audiovisual association learning task with two different colors of red and purple (the latter color known to minimally activate the extra-genicular pathway). Interestingly, the patient learned the association between an auditory cue and a visual stimulus only when the unseen visual stimulus was red, but not when it was purple. The current study presents the first evidence showing the possibility of audiovisual association learning in humans with lesioned striate cortex. Furthermore, in line with animal studies, it supports an important role for the SC in audiovisual associative learning.

  14. Impaired associative learning with food rewards in obese women.

    Science.gov (United States)

    Zhang, Zhihao; Manson, Kirk F; Schiller, Daniela; Levy, Ifat

    2014-08-04

    Obesity is a major epidemic in many parts of the world. One of the main factors contributing to obesity is overconsumption of high-fat and high-calorie food, which is driven by the rewarding properties of these types of food. Previous studies have suggested that dysfunction in reward circuits may be associated with overeating and obesity. The nature of this dysfunction, however, is still unknown. Here, we demonstrate impairment in reward-based associative learning specific to food in obese women. Normal-weight and obese participants performed an appetitive reversal learning task in which they had to learn and modify cue-reward associations. To test whether any learning deficits were specific to food reward or were more general, we used a between-subject design in which half of the participants received food reward and the other half received money reward. Our results reveal a marked difference in associative learning between normal-weight and obese women when food was used as reward. Importantly, no learning deficits were observed with money reward. Multiple regression analyses also established a robust negative association between body mass index and learning performance in the food domain in female participants. Interestingly, such impairment was not observed in obese men. These findings suggest that obesity may be linked to impaired reward-based associative learning and that this impairment may be specific to the food domain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Pesticide residues in honeybees, honey and bee pollen by LC-MS/MS screening: reported death incidents in honeybees.

    Science.gov (United States)

    Kasiotis, Konstantinos M; Anagnostopoulos, Chris; Anastasiadou, Pelagia; Machera, Kyriaki

    2014-07-01

    The aim of this study was to investigate reported cases of honeybee death incidents with regard to the potential interrelation to the exposure to pesticides. Thus honeybee, bee pollen and honey samples from different areas of Greece were analyzed for the presence of pesticide residues. In this context an LC-ESI-MS/MS multiresidue method of total 115 analytes of different chemical classes such as neonicotinoids, organophosphates, triazoles, carbamates, dicarboximides and dinitroanilines in honeybee bodies, honey and bee pollen was developed and validated. The method presents good linearity over the ranges assayed with correlation coefficient values r(2)≥0.99, recoveries ranging for all matrices from 59 to 117% and precision (RSD%) values ranging from 4 to 27%. LOD and LOQ values ranged - for honeybees, honey and bee pollen - from 0.03 to 23.3 ng/g matrix weight and 0.1 up to 78 ng/g matrix weight, respectively. Therefore this method is sufficient to act as a monitoring tool for the determination of pesticide residues in cases of suspected honeybee poisoning incidents. From the analysis of the samples the presence of 14 active substances was observed in all matrices with concentrations ranging for honeybees from 0.3 to 81.5 ng/g, for bee pollen from 6.1 to 1273 ng/g and for honey one sample was positive to carbendazim at 1.6 ng/g. The latter confirmed the presence of such type of compounds in honeybee body and apicultural products. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Erratum to: The blocking effect in associative learning involves learned biases in rapid attentional capture.

    Science.gov (United States)

    2018-04-01

    Luque, D., Vadillo, M, A., Gutiérrez-Cobo, M, J., Le Pelley, M, E. (2018). The blocking effect in associative learning involves learned biases in rapid attentional capture. Quarterly Journal of Experimental Psychology, 71, 522-544. doi: 10.1080/17470218.2016.1262435. The above article is part of the Special Issue on Associative Learning (in honour of Nick Mackintosh) and was inadvertently published in the February 2018 issue of Quarterly Journal of Experimental Psychology. After publication of the Special Issue, an online collection on Associative Learning will be created on SAGE Journals and this paper will be included in that collection. The Publisher apologises for this error.

  17. A robotic system for researching social integration in honeybees.

    Directory of Open Access Journals (Sweden)

    Karlo Griparić

    Full Text Available In this paper, we present a novel robotic system developed for researching collective social mechanisms in a biohybrid society of robots and honeybees. The potential for distributed coordination, as observed in nature in many different animal species, has caused an increased interest in collective behaviour research in recent years because of its applicability to a broad spectrum of technical systems requiring robust multi-agent control. One of the main problems is understanding the mechanisms driving the emergence of collective behaviour of social animals. With the aim of deepening the knowledge in this field, we have designed a multi-robot system capable of interacting with honeybees within an experimental arena. The final product, stationary autonomous robot units, designed by specificaly considering the physical, sensorimotor and behavioral characteristics of the honeybees (lat. Apis mallifera, are equipped with sensing, actuating, computation, and communication capabilities that enable the measurement of relevant environmental states, such as honeybee presence, and adequate response to the measurements by generating heat, vibration and airflow. The coordination among robots in the developed system is established using distributed controllers. The cooperation between the two different types of collective systems is realized by means of a consensus algorithm, enabling the honeybees and the robots to achieve a common objective. Presented results, obtained within ASSISIbf project, show successful cooperation indicating its potential for future applications.

  18. A robotic system for researching social integration in honeybees.

    Science.gov (United States)

    Griparić, Karlo; Haus, Tomislav; Miklić, Damjan; Polić, Marsela; Bogdan, Stjepan

    2017-01-01

    In this paper, we present a novel robotic system developed for researching collective social mechanisms in a biohybrid society of robots and honeybees. The potential for distributed coordination, as observed in nature in many different animal species, has caused an increased interest in collective behaviour research in recent years because of its applicability to a broad spectrum of technical systems requiring robust multi-agent control. One of the main problems is understanding the mechanisms driving the emergence of collective behaviour of social animals. With the aim of deepening the knowledge in this field, we have designed a multi-robot system capable of interacting with honeybees within an experimental arena. The final product, stationary autonomous robot units, designed by specificaly considering the physical, sensorimotor and behavioral characteristics of the honeybees (lat. Apis mallifera), are equipped with sensing, actuating, computation, and communication capabilities that enable the measurement of relevant environmental states, such as honeybee presence, and adequate response to the measurements by generating heat, vibration and airflow. The coordination among robots in the developed system is established using distributed controllers. The cooperation between the two different types of collective systems is realized by means of a consensus algorithm, enabling the honeybees and the robots to achieve a common objective. Presented results, obtained within ASSISIbf project, show successful cooperation indicating its potential for future applications.

  19. [Factors associated with self-directed learning among medical students].

    Science.gov (United States)

    Spormann R, Camila; Pérez V, Cristhian; Fasce H, Eduardo; Ortega B, Javiera; Bastías V, Nancy; Bustamante D, Carolina; Ibáñez G, Pilar

    2015-03-01

    Self-directed learning is a skill that must be taught and evaluated in future physicians. To analyze the association between self-directed learning, self-esteem, self-efficacy, time management and academic commitment among medical students. The self-directed learning, Rosemberg self-esteem, general self- efficacy, time management and Utrecht work engagement scales were applied to 297 first year medical students. A multiple regression analysis showed a significant association between self-efficacy, time management and academic commitment with self-directed learning. Self-esteem and satisfaction with studies did not enter in the model. self-esteem, academic commitment and a good time management were associated with self-directed learning in these students.

  20. An associative account of the development of word learning.

    Science.gov (United States)

    Sloutsky, Vladimir M; Yim, Hyungwook; Yao, Xin; Dennis, Simon

    2017-09-01

    Word learning is a notoriously difficult induction problem because meaning is underdetermined by positive examples. How do children solve this problem? Some have argued that word learning is achieved by means of inference: young word learners rely on a number of assumptions that reduce the overall hypothesis space by favoring some meanings over others. However, these approaches have difficulty explaining how words are learned from conversations or text, without pointing or explicit instruction. In this research, we propose an associative mechanism that can account for such learning. In a series of experiments, 4-year-olds and adults were presented with sets of words that included a single nonsense word (e.g. dax). Some lists were taxonomic (i.,e., all items were members of a given category), some were associative (i.e., all items were associates of a given category, but not members), and some were mixed. Participants were asked to indicate whether the nonsense word was an animal or an artifact. Adults exhibited evidence of learning when lists consisted of either associatively or taxonomically related items. In contrast, children exhibited evidence of word learning only when lists consisted of associatively related items. These results present challenges to several extant models of word learning, and a new model based on the distinction between syntagmatic and paradigmatic associations is proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. [Associative Learning between Orientation and Color in Early Visual Areas].

    Science.gov (United States)

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2017-08-01

    Associative learning is an essential neural phenomenon where the contingency of different items increases after training. Although associative learning has been found to occur in many brain regions, there is no clear evidence that associative learning of visual features occurs in early visual areas. Here, we developed an associative decoded functional magnetic resonance imaging (fMRI) neurofeedback (A-DecNef) to determine whether associative learning of color and orientation can be induced in early visual areas. During the three days' training, A-DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was simultaneously, physically presented to participants. Consequently, participants' perception of "red" was significantly more frequently than that of "green" in an achromatic vertical grating. This effect was also observed 3 to 5 months after training. These results suggest that long-term associative learning of two different visual features such as color and orientation, was induced most likely in early visual areas. This newly extended technique that induces associative learning may be used as an important tool for understanding and modifying brain function, since associations are fundamental and ubiquitous with respect to brain function.

  2. I. P. PAVLOV: 100 YEARS OF RESERACH ON ASSOCIATIVE LEARNING

    Directory of Open Access Journals (Sweden)

    GERMÁN GUTIÉRREZ

    2005-07-01

    Full Text Available A biographical summary of Ivan Pavlov is presented, emphasizing his academic formation and achievements, and hiscontributions to general science and psychology. His main findings on associative learning are described and three areasof current development in this area are discussed: the study of behavioral mechanisms, the study of neurobiologicalmechanisms and the functional role of learning.

  3. Differential Recruitment of Distinct Amygdalar Nuclei across Appetitive Associative Learning

    Science.gov (United States)

    Cole, Sindy; Powell, Daniel J.; Petrovich, Gorica D.

    2013-01-01

    The amygdala is important for reward-associated learning, but how distinct cell groups within this heterogeneous structure are recruited during appetitive learning is unclear. Here we used Fos induction to map the functional amygdalar circuitry recruited during early and late training sessions of Pavlovian appetitive conditioning. We found that a…

  4. Detection of chronic bee paralysis virus and acute bee paralysis virus in Uruguayan honeybees.

    Science.gov (United States)

    Antúnez, Karina; D' Alessandro, Bruno; Corbella, Eduardo; Zunino, Pablo

    2005-09-01

    Chronic bee paralysis virus (CBPV) causes a disease characterized by trembling, flightless, and crawling bees, while Acute bee paralysis virus (ABPV) is commonly detected in apparently healthy colonies, usually associated to Varroa destructor. Both viruses had been detected in most regions of the world, except in South America. In this work, we detected CBPV and ABPV in samples of Uruguayan honeybees by RT-PCR. The detection of both viruses in different provinces and the fact that most of the analyzed samples were infected, suggest that, they are widely spread in the region. This is the first record of the presence of CBPV and ABPV in Uruguay and South America.

  5. Scouts behave as streakers in honeybee swarms

    Science.gov (United States)

    Greggers, Uwe; Schöning, Caspar; Degen, Jacqueline; Menzel, Randolf

    2013-08-01

    Harmonic radar tracking was used to record the flights of scout bees during takeoff and initial flight path of two honeybee swarms. One swarm remained intact and performed a full flight to a destination beyond the range of the harmonic radar, while a second swarm disintegrated within the range of the radar and most of the bees returned to the queen. The initial stretch of the full flight is characterized by accelerating speed, whereas the disintegrating swarm flew steadily at low speed. The two scouts in the swarm displaying full flight performed characteristic flight maneuvers. They flew at high speed when traveling in the direction of their destination and slowed down or returned over short stretches at low speed. Scouts in the disintegrating swarm did not exhibit the same kind of characteristic flight performance. Our data support the streaker bee hypothesis proposing that scout bees guide the swarm by traveling at high speed in the direction of the new nest site for short stretches of flight and slowing down when reversing flight direction.

  6. Biologically Predisposed Learning and Selective Associations in Amygdalar Neurons

    Science.gov (United States)

    Chung, Ain; Barot, Sabiha K.; Kim, Jeansok J.; Bernstein, Ilene L.

    2011-01-01

    Modern views on learning and memory accept the notion of biological constraints--that the formation of association is not uniform across all stimuli. Yet cellular evidence of the encoding of selective associations is lacking. Here, conditioned stimuli (CSs) and unconditioned stimuli (USs) commonly employed in two basic associative learning…

  7. Role of the Varroa mite in honeybee (Apis mellifera) colony loss: A case study for adverse outcome pathway development with a nonchemical stressor

    Science.gov (United States)

    Significant honeybee colony losses have been reported across North America and Europe in recent years. A number of factors, both chemical and nonchemical, have been associated with such losses. Adverse outcome pathways (AOPs) provide a conceptual framework to describe and evalu...

  8. [Determination of 10-HDA in honeybee body by HPLC].

    Science.gov (United States)

    Fan, H; He, C; Han, H

    1999-05-01

    In the present work we found that in the honeybee body there exists an unsaturated fatty acid, trans-10-hydroxy-2-decenoic acid (10-HDA), which was known only to be present in royal jelly. We established the analytical method of 10-HDA in honeybee body by HPLC and simplified the extraction method of 10-HDA. In the optimum conditions the linear range of detection was 10-1,000 ng, the correlation coefficient was 0.9998, the recovery was 96.5%-99.2% and the detectable limit was 0.53 microgram/g.

  9. Mast Cells Can Enhance Resistance to Snake and Honeybee Venoms

    Science.gov (United States)

    Metz, Martin; Piliponsky, Adrian M.; Chen, Ching-Cheng; Lammel, Verena; Åbrink, Magnus; Pejler, Gunnar; Tsai, Mindy; Galli, Stephen J.

    2006-07-01

    Snake or honeybee envenomation can cause substantial morbidity and mortality, and it has been proposed that the activation of mast cells by snake or insect venoms can contribute to these effects. We show, in contrast, that mast cells can significantly reduce snake-venom-induced pathology in mice, at least in part by releasing carboxypeptidase A and possibly other proteases, which can degrade venom components. Mast cells also significantly reduced the morbidity and mortality induced by honeybee venom. These findings identify a new biological function for mast cells in enhancing resistance to the morbidity and mortality induced by animal venoms.

  10. Involvement of phosphorylated Apis mellifera CREB in gating a honeybee's behavioral response to an external stimulus

    Science.gov (United States)

    Gehring, Katrin B.; Heufelder, Karin; Feige, Janina; Bauer, Paul; Dyck, Yan; Ehrhardt, Lea; Kühnemund, Johannes; Bergmann, Anja; Göbel, Josefine; Isecke, Marlene

    2016-01-01

    The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees (Apis mellifera) we recently demonstrated a particular high abundance of the phosphorylated honeybee CREB homolog (pAmCREB) in the central brain and in a subpopulation of mushroom body neurons. We hypothesize that these high pAmCREB levels are related to learning and memory formation. Here, we tested this hypothesis by analyzing brain pAmCREB levels in classically conditioned bees and bees experiencing unpaired presentations of conditioned stimulus (CS) and unconditioned stimulus (US). We demonstrate that both behavioral protocols display differences in memory formation but do not alter the level of pAmCREB in bee brains directly after training. Nevertheless, we report that bees responding to the CS during unpaired stimulus presentations exhibit higher levels of pAmCREB than nonresponding bees. In addition, Trichostatin A, a histone deacetylase inhibitor that is thought to enhance histone acetylation by CREB-binding protein, increases the bees’ CS responsiveness. We conclude that pAmCREB is involved in gating a bee's behavioral response driven by an external stimulus. PMID:27084927

  11. Optical implementations of associative networks with versatile adaptive learning capabilities.

    Science.gov (United States)

    Fisher, A D; Lippincott, W L; Lee, J N

    1987-12-01

    Optical associative, parallel-processing architectures are being developed using a multimodule approach, where a number of smaller, adaptive, associative modules are nonlinearly interconnected and cascaded under the guidance of a variety of organizational principles to structure larger architectures for solving specific problems. A number of novel optical implementations with versatile adaptive learning capabilities are presented for the individual associative modules, including holographic configurations and five specific electrooptic configurations. The practical issues involved in real optical architectures are analyzed, and actual laboratory optical implementations of associative modules based on Hebbian and Widrow-Hoff learning rules are discussed, including successful experimental demonstrations of their operation.

  12. Incidental Learning of Rewarded Associations Bolsters Learning on an Associative Task

    Science.gov (United States)

    Freedberg, Michael; Schacherer, Jonathan; Hazeltine, Eliot

    2016-01-01

    Reward has been shown to change behavior as a result of incentive learning (by motivating the individual to increase their effort) and instrumental learning (by increasing the frequency of a particular behavior). However, Palminteri et al. (2011) demonstrated that reward can also improve the incidental learning of a motor skill even when…

  13. Phenotypic transformation affects associative learning in the desert locust.

    Science.gov (United States)

    Simões, Patrício M V; Niven, Jeremy E; Ott, Swidbert R

    2013-12-02

    In desert locusts, increased population densities drive phenotypic transformation from the solitarious to the gregarious phase within a generation [1-4]. Here we show that when presented with odor-food associations, the two extreme phases differ in aversive but not appetitive associative learning, with solitarious locusts showing a conditioned aversion more quickly than gregarious locusts. The acquisition of new learned aversions was blocked entirely in acutely crowded solitarious (transiens) locusts, whereas appetitive learning and prior learned associations were unaffected. These differences in aversive learning support phase-specific feeding strategies. Associative training with hyoscyamine, a plant alkaloid found in the locusts' habitat [5, 6], elicits a phase-dependent odor preference: solitarious locusts avoid an odor associated with hyoscyamine, whereas gregarious locusts do not. Remarkably, when solitarious locusts are crowded and then reconditioned with the odor-hyoscyamine pairing as transiens, the specific blockade of aversive acquisition enables them to override their prior aversive memory with an appetitive one. Under fierce food competition, as occurs during crowding in the field, this provides a neuroecological mechanism enabling locusts to reassign an appetitive value to an odor that they learned previously to avoid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Associative (not Hebbian) learning and the mirror neuron system.

    Science.gov (United States)

    Cooper, Richard P; Cook, Richard; Dickinson, Anthony; Heyes, Cecilia M

    2013-04-12

    The associative sequence learning (ASL) hypothesis suggests that sensorimotor experience plays an inductive role in the development of the mirror neuron system, and that it can play this crucial role because its effects are mediated by learning that is sensitive to both contingency and contiguity. The Hebbian hypothesis proposes that sensorimotor experience plays a facilitative role, and that its effects are mediated by learning that is sensitive only to contiguity. We tested the associative and Hebbian accounts by computational modelling of automatic imitation data indicating that MNS responsivity is reduced more by contingent and signalled than by non-contingent sensorimotor training (Cook et al. [7]). Supporting the associative account, we found that the reduction in automatic imitation could be reproduced by an existing interactive activation model of imitative compatibility when augmented with Rescorla-Wagner learning, but not with Hebbian or quasi-Hebbian learning. The work argues for an associative, but against a Hebbian, account of the effect of sensorimotor training on automatic imitation. We argue, by extension, that associative learning is potentially sufficient for MNS development. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Olfactory Perceptual Learning Requires Action of Noradrenaline in the Olfactory Bulb: Comparison with Olfactory Associative Learning

    Science.gov (United States)

    Vinera, Jennifer; Kermen, Florence; Sacquet, Joëlle; Didier, Anne; Mandairon, Nathalie; Richard, Marion

    2015-01-01

    Noradrenaline contributes to olfactory-guided behaviors but its role in olfactory learning during adulthood is poorly documented. We investigated its implication in olfactory associative and perceptual learning using local infusion of mixed a1-ß adrenergic receptor antagonist (labetalol) in the adult mouse olfactory bulb. We reported that…

  16. Social learning of an associative foraging task in zebrafish

    Science.gov (United States)

    Zala, Sarah M.; Määttänen, Ilmari

    2013-05-01

    The zebrafish ( Danio rerio) is increasingly becoming an important model species for studies on the genetic and neural mechanisms controlling behaviour and cognition. Here, we utilized a conditioned place preference (CPP) paradigm to study social learning in zebrafish. We tested whether social interactions with conditioned demonstrators enhance the ability of focal naïve individuals to learn an associative foraging task. We found that the presence of conditioned demonstrators improved focal fish foraging behaviour through the process of social transmission, whereas the presence of inexperienced demonstrators interfered with the learning of the control focal fish. Our results indicate that zebrafish use social learning for finding food and that this CPP paradigm is an efficient assay to study social learning and memory in zebrafish.

  17. Morphofunctional Experience-Dependent Plasticity in the Honeybee Brain

    Science.gov (United States)

    Andrione, Mara; Timberlake, Benjamin F.; Vallortigara, Giorgio; Antolini, Renzo; Haase, Albrecht

    2017-01-01

    Repeated or prolonged exposure to an odorant without any positive or negative reinforcement produces experience-dependent plasticity, which results in habituation and latent inhibition. In the honeybee ("Apis mellifera"), it has been demonstrated that, even if the absolute neural representation of an odor in the primary olfactory center,…

  18. Abscisic acid enhances cold tolerance in honeybee larvae

    Science.gov (United States)

    Sturla, Laura; Guida, Lucrezia; Vigliarolo, Tiziana; Maggi, Matías; Eguaras, Martín; Zocchi, Elena; Lamattina, Lorenzo

    2017-01-01

    The natural composition of nutrients present in food is a key factor determining the immune function and stress responses in the honeybee (Apis mellifera). We previously demonstrated that a supplement of abscisic acid (ABA), a natural component of nectar, pollen, and honey, increases honeybee colony survival overwinter. Here we further explored the role of ABA in in vitro-reared larvae exposed to low temperatures. Four-day-old larvae (L4) exposed to 25°C for 3 days showed lower survival rates and delayed development compared to individuals growing at a standard temperature (34°C). Cold-stressed larvae maintained higher levels of ABA for longer than do larvae reared at 34°C, suggesting a biological significance for ABA. Larvae fed with an ABA-supplemented diet completely prevent the low survival rate due to cold stress and accelerate adult emergence. ABA modulates the expression of genes involved in metabolic adjustments and stress responses: Hexamerin 70b, Insulin Receptor Substrate, Vitellogenin, and Heat Shock Proteins 70. AmLANCL2, the honeybee ABA receptor, is also regulated by cold stress and ABA. These results support a role for ABA increasing the tolerance of honeybee larvae to low temperatures through priming effects. PMID:28381619

  19. Stimulating natural supersedure of honeybee queens, Apis mellifera

    NARCIS (Netherlands)

    Hendriksma, H.P.; Calis, J.N.M.; Boot, W.J.

    2004-01-01

    When a honeybee queen starts to fail, she is often superseded by a young queen that takes over reproduction inside the colony. Natural supersedure in winter leads to an unfertilised young queen and colony loss. To reduce these losses we tried to stimulate supersedure of queens earlier in the season.

  20. Genetic structure of Balearic honeybee populations based on microsatellite polymorphism

    Directory of Open Access Journals (Sweden)

    Moritz Robin FA

    2003-05-01

    Full Text Available Abstract The genetic variation of honeybee colonies collected in 22 localities on the Balearic Islands (Spain was analysed using eight polymorphic microsatellite loci. Previous studies have demonstrated that these colonies belong either to the African or west European evolutionary lineages. These populations display low variability estimated from both the number of alleles and heterozygosity values, as expected for the honeybee island populations. Although genetic differentiation within the islands is low, significant heterozygote deficiency is present, indicating a subpopulation genetic structure. According to the genetic differentiation test, the honeybee populations of the Balearic Islands cluster into two groups: Gimnesias (Mallorca and Menorca and Pitiusas (Ibiza and Formentera, which agrees with the biogeography postulated for this archipelago. The phylogenetic analysis suggests an Iberian origin of the Balearic honeybees, thus confirming the postulated evolutionary scenario for Apis mellifera in the Mediterranean basin. The microsatellite data from Formentera, Ibiza and Menorca show that ancestral populations are threatened by queen importations, indicating that adequate conservation measures should be developed for protecting Balearic bees.

  1. Wax combs mediate nestmate recognition by guard honeybees

    DEFF Research Database (Denmark)

    D'Ettorre, Patrizia; Wenseleers, Tom; Dawson, Jenny

    2006-01-01

    Research has shown that the wax combs are important in the acquisition of colony odour in the honeybee, Apis mellifera. However, many of these studies were conducted in the laboratory or under artificial conditions. We investigated the role of the wax combs in nestmate recognition in the natural...

  2. Immune and clinical response to honeybee venom in beekeepers

    Directory of Open Access Journals (Sweden)

    Jan Matysiak

    2016-03-01

    The differences in the immune response to a bee sting between the beekeepers and individuals not exposed to bees were probably due to the high exposure of the beekeepers to honeybee venom allergens. This may suggest a different approach to the bee venom allergy diagnostic tests in this occupational group.

  3. Abscisic acid enhances cold tolerance in honeybee larvae.

    Science.gov (United States)

    Ramirez, Leonor; Negri, Pedro; Sturla, Laura; Guida, Lucrezia; Vigliarolo, Tiziana; Maggi, Matías; Eguaras, Martín; Zocchi, Elena; Lamattina, Lorenzo

    2017-04-12

    The natural composition of nutrients present in food is a key factor determining the immune function and stress responses in the honeybee ( Apis mellifera ). We previously demonstrated that a supplement of abscisic acid (ABA), a natural component of nectar, pollen, and honey, increases honeybee colony survival overwinter. Here we further explored the role of ABA in in vitro -reared larvae exposed to low temperatures. Four-day-old larvae (L4) exposed to 25°C for 3 days showed lower survival rates and delayed development compared to individuals growing at a standard temperature (34°C). Cold-stressed larvae maintained higher levels of ABA for longer than do larvae reared at 34°C, suggesting a biological significance for ABA. Larvae fed with an ABA-supplemented diet completely prevent the low survival rate due to cold stress and accelerate adult emergence. ABA modulates the expression of genes involved in metabolic adjustments and stress responses: Hexamerin 70b, Insulin Receptor Substrate, Vitellogenin , and Heat Shock Proteins 70. AmLANCL2, the honeybee ABA receptor, is also regulated by cold stress and ABA. These results support a role for ABA increasing the tolerance of honeybee larvae to low temperatures through priming effects. © 2017 The Author(s).

  4. Studies on the life cycle and morphometrics of honeybees, Apis ...

    African Journals Online (AJOL)

    The life cycle of the honeybee, Apis mellifera adansonii, was studied in mangrove area by monitoring the developmental stages and morphology of the castes. It was observed that the fate of the eggs were predetermined at the onset leading to drones, queens or workers. It was also established that the three different castes ...

  5. Genetic variation in natural honeybee populations, Apis mellifera capensis

    Science.gov (United States)

    Hepburn, Randall; Neumann, Peter; Radloff, Sarah E.

    2004-09-01

    Genetic variation in honeybee, Apis mellifera, populations can be considerably influenced by breeding and commercial introductions, especially in areas with abundant beekeeping. However, in southern Africa apiculture is based on the capture of wild swarms, and queen rearing is virtually absent. Moreover, the introduction of European subspecies constantly failed in the Cape region. We therefore hypothesize a low human impact on genetic variation in populations of Cape honeybees, Apis mellifera capensis. A novel solution to studying genetic variation in honeybee populations based on thelytokous worker reproduction is applied to test this hypothesis. Environmental effects on metrical morphological characters of the phenotype are separated to obtain a genetic residual component. The genetic residuals are then re-calculated as coefficients of genetic variation. Characters measured included hair length on the abdomen, width and length of wax plate, and three wing angles. The data show for the first time that genetic variation in Cape honeybee populations is independent of beekeeping density and probably reflects naturally occurring processes such as gene flow due to topographic and climatic variation on a microscale.

  6. Nursing protects honeybee larvae from secondary metabolites of pollen.

    Science.gov (United States)

    Lucchetti, Matteo A; Kilchenmann, Verena; Glauser, Gaetan; Praz, Christophe; Kast, Christina

    2018-03-28

    The pollen of many plants contains toxic secondary compounds, sometimes in concentrations higher than those found in the flowers or leaves. The ecological significance of these compounds remains unclear, and their impact on bees is largely unexplored. Here, we studied the impact of pyrrolizidine alkaloids (PAs) found in the pollen of Echium vulgare on honeybee adults and larvae. Echimidine, a PA present in E. vulgare pollen, was isolated and added to the honeybee diets in order to perform toxicity bioassays. While adult bees showed relatively high tolerance to PAs, larvae were much more sensitive. In contrast to other bees, the honeybee larval diet typically contains only traces of pollen and consists predominantly of hypopharyngeal and mandibular secretions produced by nurse bees, which feed on large quantities of pollen-containing bee bread. We quantified the transfer of PAs to nursing secretions produced by bees that had previously consumed bee bread supplemented with PAs. The PA concentration in these secretions was reduced by three orders of magnitude as compared to the PA content in the nurse diet and was well below the toxicity threshold for larvae. Our results suggest that larval nursing protects honeybee larvae from the toxic effect of secondary metabolites of pollen. © 2018 The Authors.

  7. Sperm use economy of honeybee (Apis mellifera) queens

    DEFF Research Database (Denmark)

    Baer, Boris; Collins, Jason; Maalaps, Kristiina

    2016-01-01

    the fecundity and longevity of queens and therefore colony fitness. We quantified the number of sperm that honeybee (Apis mellifera) queens use to fertilize eggs. We examined sperm use in naturally mated queens of different ages and in queens artificially inseminated with different volumes of semen. We found...

  8. Biophysics of the subgenual organ of the honeybee, Apis mellifera

    DEFF Research Database (Denmark)

    Kilpinen, Ole; Storm, Jesper

    1997-01-01

    The subgenual organ of the honeybee (Apis mellifera) is suspended in a haemolymph channel in the tibia of each leg. When the leg is accelerated, inertia causes the haemolymph (and the subgenual organ) to lag behind the movement of the rest of the leg. The magnitude of this phase lag determines...

  9. Nursing protects honeybee larvae from secondary metabolites of pollen

    Science.gov (United States)

    Lucchetti, Matteo A.; Kilchenmann, Verena; Glauser, Gaetan; Praz, Christophe

    2018-01-01

    The pollen of many plants contains toxic secondary compounds, sometimes in concentrations higher than those found in the flowers or leaves. The ecological significance of these compounds remains unclear, and their impact on bees is largely unexplored. Here, we studied the impact of pyrrolizidine alkaloids (PAs) found in the pollen of Echium vulgare on honeybee adults and larvae. Echimidine, a PA present in E. vulgare pollen, was isolated and added to the honeybee diets in order to perform toxicity bioassays. While adult bees showed relatively high tolerance to PAs, larvae were much more sensitive. In contrast to other bees, the honeybee larval diet typically contains only traces of pollen and consists predominantly of hypopharyngeal and mandibular secretions produced by nurse bees, which feed on large quantities of pollen-containing bee bread. We quantified the transfer of PAs to nursing secretions produced by bees that had previously consumed bee bread supplemented with PAs. The PA concentration in these secretions was reduced by three orders of magnitude as compared to the PA content in the nurse diet and was well below the toxicity threshold for larvae. Our results suggest that larval nursing protects honeybee larvae from the toxic effect of secondary metabolites of pollen. PMID:29563265

  10. Sleep Deprivation affects Extinction but Not Acquisition Memory in Honeybees

    Science.gov (United States)

    Hussaini, Syed Abid; Bogusch, Lisa; Landgraf, Tim; Menzel, Randolf

    2009-01-01

    Sleep-like behavior has been studied in honeybees before, but the relationship between sleep and memory formation has not been explored. Here we describe a new approach to address the question if sleep in bees, like in other animals, improves memory consolidation. Restrained bees were observed by a web camera, and their antennal activities were…

  11. Semantic and associative factors in probability learning with words.

    Science.gov (United States)

    Schipper, L M; Hanson, B L; Taylor, G; Thorpe, J A

    1973-09-01

    Using a probability-learning technique with a single word as the cue and with the probability of a given event following this word fixed at .80, it was found (1) that neither high nor low associates to the original word and (2) that neither synonyms nor antonyms showed differential learning curves subsequent to original learning when the probability for the following event was shifted to .20. In a second study when feedback, in the form of knowledge of results, was withheld, there was a clear-cut similarity of predictions to the originally trained word and the synonyms of both high and low association value and a dissimilarity of these words to a set of antonyms of both high and low association value. Two additional studies confirmed the importance of the semantic dimension as compared with association value as traditionally measured.

  12. Critical evidence for the prediction error theory in associative learning.

    Science.gov (United States)

    Terao, Kanta; Matsumoto, Yukihisa; Mizunami, Makoto

    2015-03-10

    In associative learning in mammals, it is widely accepted that the discrepancy, or error, between actual and predicted reward determines whether learning occurs. Complete evidence for the prediction error theory, however, has not been obtained in any learning systems: Prediction error theory stems from the finding of a blocking phenomenon, but blocking can also be accounted for by other theories, such as the attentional theory. We demonstrated blocking in classical conditioning in crickets and obtained evidence to reject the attentional theory. To obtain further evidence supporting the prediction error theory and rejecting alternative theories, we constructed a neural model to match the prediction error theory, by modifying our previous model of learning in crickets, and we tested a prediction from the model: the model predicts that pharmacological intervention of octopaminergic transmission during appetitive conditioning impairs learning but not formation of reward prediction itself, and it thus predicts no learning in subsequent training. We observed such an "auto-blocking", which could be accounted for by the prediction error theory but not by other competitive theories to account for blocking. This study unambiguously demonstrates validity of the prediction error theory in associative learning.

  13. Aversive learning of odor-heat associations in ants.

    Science.gov (United States)

    Desmedt, Lucie; Baracchi, David; Devaud, Jean-Marc; Giurfa, Martin; d'Ettorre, Patrizia

    2017-12-15

    Ants have recently emerged as useful models for the study of olfactory learning. In this framework, the development of a protocol for the appetitive conditioning of the maxilla-labium extension response (MaLER) provided the possibility of studying Pavlovian odor-food learning in a controlled environment. Here we extend these studies by introducing the first Pavlovian aversive learning protocol for harnessed ants in the laboratory. We worked with carpenter ants Camponotus aethiops and first determined the capacity of different temperatures applied to the body surface to elicit the typical aversive mandible opening response (MOR). We determined that 75°C is the optimal temperature to induce MOR and chose the hind legs as the stimulated body region because of their high sensitivity. We then studied the ability of ants to learn and remember odor-heat associations using 75°C as the unconditioned stimulus. We studied learning and short-term retention after absolute (one odor paired with heat) and differential conditioning (a punished odor versus an unpunished odor). Our results show that ants successfully learn the odor-heat association under a differential-conditioning regime and thus exhibit a conditioned MOR to the punished odor. Yet, their performance under an absolute-conditioning regime is poor. These results demonstrate that ants are capable of aversive learning and confirm previous findings about the different attentional resources solicited by differential and absolute conditioning in general. © 2017. Published by The Company of Biologists Ltd.

  14. Functional characterization of transmembrane adenylyl cyclases from the honeybee brain.

    Science.gov (United States)

    Balfanz, Sabine; Ehling, Petra; Wachten, Sebastian; Jordan, Nadine; Erber, Joachim; Mujagic, Samir; Baumann, Arnd

    2012-06-01

    The second messenger cAMP has a pivotal role in animals' physiology and behavior. Intracellular concentrations of cAMP are balanced by cAMP-synthesizing adenylyl cyclases (ACs) and cAMP-cleaving phosphodiesterases. Knowledge about ACs in the honeybee (Apis mellifera) is rather limited and only an ortholog of the vertebrate AC3 isoform has been functionally characterized, so far. Employing bioinformatics and functional expression we characterized two additional honeybee genes encoding membrane-bound (tm)ACs. The proteins were designated AmAC2t and AmAC8. Unlike the common structure of tmACs, AmAC2t lacks the first transmembrane domain. Despite this unusual topography, AmAC2t-activity could be stimulated by norepinephrine and NKH477 with EC(50s) of 0.07 μM and 3 μM. Both ligands stimulated AmAC8 with EC(50s) of 0.24 μM and 3.1 μM. In brain cryosections, intensive staining of mushroom bodies was observed with specific antibodies against AmAC8, an expression pattern highly reminiscent of the Drosophila rutabaga AC. In a current release of the honeybee genome database we identified three additional tmAC- and one soluble AC-encoding gene. These results suggest that (1) the AC-gene family in honeybees is comparably large as in other species, and (2) based on the restricted expression of AmAC8 in mushroom bodies, this enzyme might serve important functions in honeybee behavior. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Expert explanations of honeybee losses in areas of extensive agriculture in France: Gaucho compared with other supposed causal factors

    Energy Technology Data Exchange (ETDEWEB)

    Maxim, L [Institut des Sciences de la Communication, CNRS UPS 3088, 27 Rue Damesme, 75013 Paris (France); Van der Sluijs, J P, E-mail: laura.maxim@iscc.cnrs.f, E-mail: J.P.vanderSluijs@uu.n [Copernicus Institute for Sustainable Development and Innovation, Department of Science, Technology and Society, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands)

    2010-01-15

    Debates on causality are at the core of controversies as regards environmental changes. The present paper presents a new method for analyzing controversies on causality in a context of social debate and the results of its empirical testing. The case study used is the controversy as regards the role played by the insecticide Gaucho, compared with other supposed causal factors, in the substantial honeybee (Apis mellifera L.) losses reported to have occurred in France between 1994 and 2004. The method makes use of expert elicitation of the perceived strength of evidence regarding each of Bradford Hill's causality criteria, as regards the link between each of eight possible causal factors identified in attempts to explain each of five signs observed in honeybee colonies. These judgments are elicited from stakeholders and experts involved in the debate, i.e., representatives of Bayer Cropscience, of the Ministry of Agriculture, of the French Food Safety Authority, of beekeepers and of public scientists. We show that the intense controversy observed in confused and passionate public discourses is much less salient when the various arguments are structured using causation criteria. The contradictions between the different expert views have a triple origin: (1) the lack of shared definition and quantification of the signs observed in colonies; (2) the lack of specialist knowledge on honeybees; and (3) the strategic discursive practices associated with the lack of trust between experts representing stakeholders having diverging stakes in the case.

  16. Expert explanations of honeybee losses in areas of extensive agriculture in France: Gaucho compared with other supposed causal factors

    International Nuclear Information System (INIS)

    Maxim, L; Van der Sluijs, J P

    2010-01-01

    Debates on causality are at the core of controversies as regards environmental changes. The present paper presents a new method for analyzing controversies on causality in a context of social debate and the results of its empirical testing. The case study used is the controversy as regards the role played by the insecticide Gaucho, compared with other supposed causal factors, in the substantial honeybee (Apis mellifera L.) losses reported to have occurred in France between 1994 and 2004. The method makes use of expert elicitation of the perceived strength of evidence regarding each of Bradford Hill's causality criteria, as regards the link between each of eight possible causal factors identified in attempts to explain each of five signs observed in honeybee colonies. These judgments are elicited from stakeholders and experts involved in the debate, i.e., representatives of Bayer Cropscience, of the Ministry of Agriculture, of the French Food Safety Authority, of beekeepers and of public scientists. We show that the intense controversy observed in confused and passionate public discourses is much less salient when the various arguments are structured using causation criteria. The contradictions between the different expert views have a triple origin: (1) the lack of shared definition and quantification of the signs observed in colonies; (2) the lack of specialist knowledge on honeybees; and (3) the strategic discursive practices associated with the lack of trust between experts representing stakeholders having diverging stakes in the case.

  17. Word learning emerges from the interaction of online referent selection and slow associative learning

    Science.gov (United States)

    McMurray, Bob; Horst, Jessica S.; Samuelson, Larissa K.

    2013-01-01

    Classic approaches to word learning emphasize the problem of referential ambiguity: in any naming situation the referent of a novel word must be selected from many possible objects, properties, actions, etc. To solve this problem, researchers have posited numerous constraints, and inference strategies, but assume that determining the referent of a novel word is isomorphic to learning. We present an alternative model in which referent selection is an online process that is independent of long-term learning. This two timescale approach creates significant power in the developing system. We illustrate this with a dynamic associative model in which referent selection is simulated as dynamic competition between competing referents, and learning is simulated using associative (Hebbian) learning. This model can account for a range of findings including the delay in expressive vocabulary relative to receptive vocabulary, learning under high degrees of referential ambiguity using cross-situational statistics, accelerating (vocabulary explosion) and decelerating (power-law) learning rates, fast-mapping by mutual exclusivity (and differences in bilinguals), improvements in familiar word recognition with development, and correlations between individual differences in speed of processing and learning. Five theoretical points are illustrated. 1) Word learning does not require specialized processes – general association learning buttressed by dynamic competition can account for much of the literature. 2) The processes of recognizing familiar words are not different than those that support novel words (e.g., fast-mapping). 3) Online competition may allow the network (or child) to leverage information available in the task to augment performance or behavior despite what might be relatively slow learning or poor representations. 4) Even associative learning is more complex than previously thought – a major contributor to performance is the pruning of incorrect associations

  18. Early onset marijuana use is associated with learning inefficiencies.

    Science.gov (United States)

    Schuster, Randi Melissa; Hoeppner, Susanne S; Evins, A Eden; Gilman, Jodi M

    2016-05-01

    Verbal memory difficulties are the most widely reported and persistent cognitive deficit associated with early onset marijuana use. Yet, it is not known what memory stages are most impaired in those with early marijuana use. Forty-eight young adults, aged 18-25, who used marijuana at least once per week and 48 matched nonusing controls (CON) completed the California Verbal Learning Test, Second Edition (CVLT-II). Marijuana users were stratified by age of initial use: early onset users (EMJ), who started using marijuana at or before age 16 (n = 27), and late onset marijuana user group (LMJ), who started using marijuana after age 16 (n = 21). Outcome variables included trial immediate recall, total learning, clustering strategies (semantic clustering, serial clustering, ratio of semantic to serial clustering, and total number of strategies used), delayed recall, and percent retention. Learning improved with repetition, with no group effect on the learning slope. EMJ learned fewer words overall than LMJ or CON. There was no difference between LMJ and CON in total number of words learned. Reduced overall learning mediated the effect on reduced delayed recall among EMJ, but not CON or LMJ. Learning improved with greater use of semantic versus serial encoding, but this did not vary between groups. EMJ was not related to delayed recall after adjusting for encoding. Young adults reporting early onset marijuana use had learning weaknesses, which accounted for the association between early onset marijuana use and delayed recall. No amnestic effect of marijuana use was observed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Varroa destructor mite in Africanized honeybee colonies Apis mellifera L. under royal jelly or honey production

    Directory of Open Access Journals (Sweden)

    Pedro da Rosa Santos

    2015-08-01

    Full Text Available This study evaluated the level of invasion of Varroa mite into worker brood cells, the infestation rate on adult worker honeybees, total and effective reproduction rates of the mite in Africanized honeybee colonies under royal jelly or honey production. Invasion and infestation rates were not statistically different between honeybee colonies producing honey or royal jelly and the averages for these parameters were 5.79 and 8.54%, respectively. Colonies producing honey presented a higher (p < 0.05 total and effective reproduction of Varroa than colonies producing royal jelly. There was a negative correlation between levels of invasion and infestation with minimum external temperature, relative humidity and rainfall. The variables month and season influenced the development of the mite, but rates were low and within the range normally found in Brazil for Africanized honeybee colonies, which confirm the greater resistance of these honeybees to Varroa destructor than European honeybees.

  20. Neural dynamics of learning sound-action associations.

    Directory of Open Access Journals (Sweden)

    Adam McNamara

    Full Text Available A motor component is pre-requisite to any communicative act as one must inherently move to communicate. To learn to make a communicative act, the brain must be able to dynamically associate arbitrary percepts to the neural substrate underlying the pre-requisite motor activity. We aimed to investigate whether brain regions involved in complex gestures (ventral pre-motor cortex, Brodmann Area 44 were involved in mediating association between novel abstract auditory stimuli and novel gestural movements. In a functional resonance imaging (fMRI study we asked participants to learn associations between previously unrelated novel sounds and meaningless gestures inside the scanner. We use functional connectivity analysis to eliminate the often present confound of 'strategic covert naming' when dealing with BA44 and to rule out effects of non-specific reductions in signal. Brodmann Area 44, a region incorporating Broca's region showed strong, bilateral, negative correlation of BOLD (blood oxygen level dependent response with learning of sound-action associations during data acquisition. Left-inferior-parietal-lobule (l-IPL and bilateral loci in and around visual area V5, right-orbital-frontal-gyrus, right-hippocampus, left-para-hippocampus, right-head-of-caudate, right-insula and left-lingual-gyrus also showed decreases in BOLD response with learning. Concurrent with these decreases in BOLD response, an increasing connectivity between areas of the imaged network as well as the right-middle-frontal-gyrus with rising learning performance was revealed by a psychophysiological interaction (PPI analysis. The increasing connectivity therefore occurs within an increasingly energy efficient network as learning proceeds. Strongest learning related connectivity between regions was found when analysing BA44 and l-IPL seeds. The results clearly show that BA44 and l-IPL is dynamically involved in linking gesture and sound and therefore provides evidence that one of

  1. No association of the BDNF val66met polymorphism with implicit associative vocabulary and motor learning.

    Directory of Open Access Journals (Sweden)

    Nils Freundlieb

    Full Text Available Brain-derived neurotrophic factor (BDNF has been suggested to play a major role in plasticity, neurogenesis and learning in the adult brain. The BDNF gene contains a common val66met polymorphism associated with decreased activity-dependent excretion of BDNF and a potential influence on behaviour, more specifically, on motor learning. The objective of this study was to determine the influence of the BDNF val66met polymorphism on short-term implicit associative learning and whether its influence is cognitive domain-specific (motor vs. language. A sample of 38 young healthy participants was genotyped, screened for background and neuropsychological differences, and tested with two associative implicit learning paradigms in two different cognitive domains, i.e., motor and vocabulary learning. Subjects performed the serial reaction time task (SRTT to determine implicit motor learning and a recently established associative vocabulary learning task (AVL for implicit learning of action and object words. To determine the influence of the BDNF polymorphism on domain-specific implicit learning, behavioural improvements in the two tasks were compared between val/val (n = 22 and met carriers (val/met: n = 15 and met/met: n = 1. There was no evidence for an impact of the BDNF val66met polymorphism on the behavioural outcome in implicit short-term learning paradigms in young healthy subjects. Whether this polymorphism plays a relevant role in long-term training paradigms or in subjects with impaired neuronal plasticity or reduced learning capacity, such as aged individuals, demented patients or patients with brain lesions, has to be determined in future studies.

  2. [THE REGULATING EFFECT OF DIPEPTIDES ON CELL PROLIFERATION IN NERVE TISSUE CULTURE IN MAMMALS AND ON ASSOCIATIVE LEARNING IN INSECTS].

    Science.gov (United States)

    Chalisova, N I; Zachepilo, T G; Kamyshev, N G; Lopatina, N G

    2015-01-01

    The effect of dipeptides AspPro and AspSer and of their composing amino acids (asparagine acid--Asp, proline--Pro, serin--Ser) on the proliferative activity in the explants of cortex and subcortical structures of the rat brain and on the functional activity of CNS of the honeybee was studied. The square index defined as a proportion of the whole explant square to the square of its central zone was determined. The number of bees responded with the conditional reaction (proboscis extension in the direction to aromatized solution) after 1 min (short-term memory) and 180 min (long-term memory) was detected after single learning procedure. Both dipeptides, as well as the asparagine acid, stimulated an increase of the growth zone of the subcortical structure explants in rats and of the number of honeybees with retention of conditional reaction in the short-term/long-term memory independently of the effect of the second member of the dipeptide. The unidirectionality of the effect suggests the existence of common mechanisms of reception and signal transduction established during evolution that require the further study.

  3. The cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) induces neuronal and behavioral changes in honeybees

    Energy Technology Data Exchange (ETDEWEB)

    Okle, Oliver, E-mail: oliver.okle@uni-konstanz.de [Human and Environmental Toxicology, University of Konstanz, Jacob-Burckhardt-Strasse 25, 78457 Konstanz (Germany); Rath, Lisa; Galizia, C. Giovanni [Zoology and Neurobiology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz (Germany); Dietrich, Daniel R., E-mail: daniel.dietrich@uni-konstanz.de [Human and Environmental Toxicology, University of Konstanz, Jacob-Burckhardt-Strasse 25, 78457 Konstanz (Germany)

    2013-07-01

    The cyanobacterially produced neurotoxin beta-N-methylamino-L-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using {sup 14}C-BMAA we demonstrated that BMAA is biologically available to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca{sup 2+} homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA. - Highlights: • Investigating of neurotoxic effects of BMAA in honeybees • BMAA impairs ALS markers (ROS, Ca{sup 2+}, learning, memory, odor) in bees. • A method for the observation of ROS development in living bees brain was established. • Honeybees are a suitable model to explore neurodegenerative processes. • Neurotoxic BMAA can be spread in bee populations by trophallaxis.

  4. The cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) induces neuronal and behavioral changes in honeybees

    International Nuclear Information System (INIS)

    Okle, Oliver; Rath, Lisa; Galizia, C. Giovanni; Dietrich, Daniel R.

    2013-01-01

    The cyanobacterially produced neurotoxin beta-N-methylamino-L-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using 14 C-BMAA we demonstrated that BMAA is biologically available to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca 2+ homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA. - Highlights: • Investigating of neurotoxic effects of BMAA in honeybees • BMAA impairs ALS markers (ROS, Ca 2+ , learning, memory, odor) in bees. • A method for the observation of ROS development in living bees brain was established. • Honeybees are a suitable model to explore neurodegenerative processes. • Neurotoxic BMAA can be spread in bee populations by trophallaxis

  5. The clinical associate curriculum . the learning theory underpinning ...

    African Journals Online (AJOL)

    The Bachelor of Clinical Medical Practice (BCMP) is a new degree at the University of Pretoria (UP), designed to create a new category of mid-level medical workers, namely clinical associates. UP produced its first 44 graduates in 2011. The BCMP created the opportunity to innovate learning and teaching through ...

  6. Motivated strategies for learning and their association with academic ...

    African Journals Online (AJOL)

    Background. Most instruments, including the well-known Motivated Strategies for Learning Questionnaire (MSLQ), have been designed in western homogeneous settings. Use of the MSLQ in health professions education is limited. Objective. To assess the MSLQ and its association with the academic performance of a ...

  7. Honeybee glucose oxidase—its expression in honeybee workers and comparative analyses of its content and H2O2-mediated antibacterial activity in natural honeys

    Science.gov (United States)

    Bucekova, Marcela; Valachova, Ivana; Kohutova, Lenka; Prochazka, Emanuel; Klaudiny, Jaroslav; Majtan, Juraj

    2014-08-01

    Antibacterial properties of honey largely depend on the accumulation of hydrogen peroxide (H2O2), which is generated by glucose oxidase (GOX)-mediated conversion of glucose in diluted honey. However, honeys exhibit considerable variation in their antibacterial activity. Therefore, the aim of the study was to identify the mechanism behind the variation in this activity and in the H2O2 content in honeys associated with the role of GOX in this process. Immunoblots and in situ hybridization analyses demonstrated that gox is solely expressed in the hypopharyngeal glands of worker bees performing various tasks and not in other glands or tissues. Real-time PCR with reference genes selected for worker heads shows that the gox expression progressively increases with ageing of the youngest bees and nurses and reached the highest values in processor bees. Immunoblot analysis of honey samples revealed that GOX is a regular honey component but its content significantly varied among honeys. Neither botanical source nor geographical origin of honeys affected the level of GOX suggesting that some other factors such as honeybee nutrition and/or genetic/epigenetic factors may take part in the observed variation. A strong correlation was found between the content of GOX and the level of generated H2O2 in honeys except honeydew honeys. Total antibacterial activity of most honey samples against Pseudomonas aeruginosa isolate significantly correlated with the H2O2 content. These results demonstrate that the level of GOX can significantly affect the total antibacterial activity of honey. They also support an idea that breeding of novel honeybee lines expressing higher amounts of GOX could help to increase the antibacterial efficacy of the hypopharyngeal gland secretion that could have positive influence on a resistance of colonies against bacterial pathogens.

  8. Immunosuppression in Honeybee Queens by the Neonicotinoids Thiacloprid and Clothianidin.

    Science.gov (United States)

    Brandt, Annely; Grikscheit, Katharina; Siede, Reinhold; Grosse, Robert; Meixner, Marina Doris; Büchler, Ralph

    2017-07-05

    Queen health is crucial to colony survival of honeybees, since reproduction and colony growth rely solely on the queen. Queen failure is considered a relevant cause of colony losses, yet few data exist concerning effects of environmental stressors on queens. Here we demonstrate for the first time that exposure to field-realistic concentrations of neonicotinoid pesticides can severely affect the immunocompetence of queens of western honeybees (Apis mellifera L.). In young queens exposed to thiacloprid (200 µg/l or 2000 µg/l) or clothianidin (10 µg/l or 50 µg/l), the total hemocyte number and the proportion of active, differentiated hemocytes was significantly reduced. Moreover, functional aspects of the immune defence namely the wound healing/melanisation response, as well as the antimicrobial activity of the hemolymph were impaired. Our results demonstrate that neonicotinoid insecticides can negatively affect the immunocompetence of queens, possibly leading to an impaired disease resistance capacity.

  9. Evolutionary Pseudo-Relaxation Learning Algorithm for Bidirectional Associative Memory

    Institute of Scientific and Technical Information of China (English)

    Sheng-Zhi Du; Zeng-Qiang Chen; Zhu-Zhi Yuan

    2005-01-01

    This paper analyzes the sensitivity to noise in BAM (Bidirectional Associative Memory), and then proves the noise immunity of BAM relates not only to the minimum absolute value of net inputs (MAV) but also to the variance of weights associated with synapse connections. In fact, it is a positive monotonically increasing function of the quotient of MAV divided by the variance of weights. Besides, the performance of pseudo-relaxation method depends on learning parameters (λ and ζ), but the relation of them is not linear. So it is hard to find a best combination of λ and ζ which leads to the best BAM performance. And it is obvious that pseudo-relaxation is a kind of local optimization method, so it cannot guarantee to get the global optimal solution. In this paper, a novel learning algorithm EPRBAM (evolutionary psendo-relaxation learning algorithm for bidirectional association memory) employing genetic algorithm and pseudo-relaxation method is proposed to get feasible solution of BAM weight matrix. This algorithm uses the quotient as the fitness of each individual and employs pseudo-relaxation method to adjust individual solution when it does not satisfy constraining condition any more after genetic operation. Experimental results show this algorithm improves noise immunity of BAM greatly. At the same time, EPRBAM does not depend on learning parameters and can get global optimal solution.

  10. Protection of carniolan bee - preserve breed or race of honeybee?

    OpenAIRE

    Božič, Janko

    2015-01-01

    Slovenia protects authentic breed of carniolan bee based on zootechnical legislation. Different varieties of honeybee around the Earth are usually described with the term races and not breeds. Foundations for such nomenclature are in evolution of bee races with natural selection without considerable influence of the men. Acceptance of carniolan bee as a race determines environmental-protection approach in preservation of authentic carniolan bee population. Slovenia is locus typicus of the rac...

  11. Ocellar structure and neural innervation in the honeybee

    Directory of Open Access Journals (Sweden)

    Yu-Shan eHung

    2014-02-01

    Full Text Available Honeybees have a visual system composed of three ocelli (simple eyes located on the top of the head, in addition to two large compound eyes. Although experiments have been conducted to investigate the role of the ocelli within the visual system, their optical characteristics, and function remain controversial. In this study, we created three-dimensional (3-D reconstructions of the honeybee ocelli, conducted optical measurements and filled ocellar descending neurons to assist in determining the role of ocelli in honeybees. In both the median and lateral ocelli, the ocellar retinas can be divided into dorsal and ventral parts. Using the 3-D model we were able to assess the viewing angles of the retinas. The dorsal retinas view the horizon while the ventral retinas view the sky, suggesting quite different roles in attitude control. We used the hanging drop technique to assess the spatial resolution of each retina. The lateral ocelli have considerably higher spatial resolution compared to the median ocellus. Moreover, in both types of ocellus the dorsal retina has a higher spatial resolution than the ventral retina. In addition, we established which ocellar retinas provide the input to five pairs of large ocellar descending neurons. We found that four of the neuron pairs had their dendritic fields in the dorsal retinas of the lateral ocelli, while the fifth had fine dendrites in the ventral retina. One of the neuron pairs also sent very fine dendrites into the border region between the dorsal and ventral retinas of the median ocellus.

  12. Impact of bifenthrin on honeybees and Culex quinquefasciatus.

    Science.gov (United States)

    Qualls, Whitney A; Xue, Rui-De; Zhong, He

    2010-06-01

    The impact of bifenthrin on honeybees, Apis mellifera (Hymenoptera: Apidae) was evaluated in both laboratory and semifield assays. Ten serial dilutions of bifenthrin and an acetone control using the bottle bioassay protocol were used in the laboratory to determine killing time after 15-, 30-, and 60-min honeybee exposure. Both dose and exposure time significantly affected honeybee mortality (df = 6, F = 10.9, P Bifenthrin was applied at 9.7 ml/liter, 19.5 ml/liter, and 29.5 ml/liter of water to common landscape vegetation, Melampodium paludosum Melanie (show star) and Duranta erecta L. (golden dewdrop); a water control was also used. Bee mortality was significantly higher (P < 0.05, df = 2, F = 20.8) at 29.5 ml/liter compared to the mortality at 19.5-ml/liter and 9.7-ml/liter application rates after 24-h exposure to the treated vegetation. Mortality of Culex quinquefasciatus exposed to treated vegetation was significantly (P < 0.05, df = 10, F = 114) different by week and by application rate.

  13. Parasitic Cape honeybee workers, Apis mellifera capensis, evade policing

    Science.gov (United States)

    Martin, Stephen J.; Beekman, Madeleine; Wossler, Theresa C.; Ratnieks, Francis L. W.

    2002-01-01

    Relocation of the Cape honeybee, Apis mellifera capensis, by bee-keepers from southern to northern South Africa in 1990 has caused widespread death of managed African honeybee, A. m. scutellata, colonies. Apis mellifera capensis worker bees are able to lay diploid, female eggs without mating by means of automictic thelytoky (meiosis followed by fusion of two meiotic products to restore egg diploidy), whereas workers of other honeybee subspecies are able to lay only haploid, male eggs. The A. m. capensis workers, which are parasitizing and killing A. m. scutellata colonies in northern South Africa, are the asexual offspring of a single, original worker in which the small amount of genetic variation observed is due to crossing over during meiosis (P. Kryger, personal communication). Here we elucidate two principal mechanisms underlying this parasitism. Parasitic A. m. capensis workers activate their ovaries in host colonies that have a queen present (queenright colonies), and they lay eggs that evade being killed by other workers (worker policing)-the normal fate of worker-laid eggs in colonies with a queen. This unique parasitism by workers is an instance in which a society is unable to control the selfish actions of its members.

  14. Modelling the spread of American foulbrood in honeybees

    Science.gov (United States)

    Datta, Samik; Bull, James C.; Budge, Giles E.; Keeling, Matt J.

    2013-01-01

    We investigate the spread of American foulbrood (AFB), a disease caused by the bacterium Paenibacillus larvae, that affects bees and can be extremely damaging to beehives. Our dataset comes from an inspection period carried out during an AFB epidemic of honeybee colonies on the island of Jersey during the summer of 2010. The data include the number of hives of honeybees, location and owner of honeybee apiaries across the island. We use a spatial SIR model with an underlying owner network to simulate the epidemic and characterize the epidemic using a Markov chain Monte Carlo (MCMC) scheme to determine model parameters and infection times (including undetected ‘occult’ infections). Likely methods of infection spread can be inferred from the analysis, with both distance- and owner-based transmissions being found to contribute to the spread of AFB. The results of the MCMC are corroborated by simulating the epidemic using a stochastic SIR model, resulting in aggregate levels of infection that are comparable to the data. We use this stochastic SIR model to simulate the impact of different control strategies on controlling the epidemic. It is found that earlier inspections result in smaller epidemics and a higher likelihood of AFB extinction. PMID:24026473

  15. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products.

    Science.gov (United States)

    Cornara, Laura; Biagi, Marco; Xiao, Jianbo; Burlando, Bruno

    2017-01-01

    Honeybees produce honey, royal jelly, propolis, bee venom, bee pollen, and beeswax, which potentially benefit to humans due to the bioactives in them. Clinical standardization of these products is hindered by chemical variability depending on honeybee and botanical sources, but different molecules have been isolated and pharmacologically characterized. Major honey bioactives include phenolics, methylglyoxal, royal jelly proteins (MRJPs), and oligosaccharides. In royal jelly there are antimicrobial jelleins and royalisin peptides, MRJPs, and hydroxy-decenoic acid derivatives, notably 10-hydroxy-2-decenoic acid (10-HDA), with antimicrobial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome preventing, and anti-aging activities. Propolis contains caffeic acid phenethyl ester and artepillin C, specific of Brazilian propolis, with antiviral, immunomodulatory, anti-inflammatory and anticancer effects. Bee venom consists of toxic peptides like pain-inducing melittin, SK channel blocking apamin, and allergenic phospholipase A2. Bee pollen is vitaminic, contains antioxidant and anti-inflammatory plant phenolics, as well as antiatherosclerotic, antidiabetic, and hypoglycemic flavonoids, unsaturated fatty acids, and sterols. Beeswax is widely used in cosmetics and makeup. Given the importance of drug discovery from natural sources, this review is aimed at providing an exhaustive screening of the bioactive compounds detected in honeybee products and of their curative or adverse biological effects.

  16. Mating flights select for symmetry in honeybee drones ( Apis mellifera)

    Science.gov (United States)

    Jaffé, Rodolfo; Moritz, Robin F. A.

    2010-03-01

    Males of the honeybee ( Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen’s visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.

  17. Proteomic analysis of honeybee worker (Apis mellifera hypopharyngeal gland development

    Directory of Open Access Journals (Sweden)

    Li Jianke

    2009-12-01

    Full Text Available Abstract Background Hypopharyngeal glands (HG of honeybee workers play an important role in honeybee nutrition and caste differentiation. Previous research mainly focused on age-dependent morphological, physiological, biochemical and genomic characters of the HG. Here proteomics and biochemical network analysis were used to follow protein changes during the HG development. Results A total of 87, 76, 85, 74, 71, and 55 proteins were unambiguously identified on day 1, 3, 6, 12, 15 and 20, respectively. These proteins were major royal jelly proteins (MRJPs, metabolism of carbohydrates, lipids and proteins, cytoskeleton, development regulation, antioxidant, molecule transporter, regulation of transcription/translation, proteins with folding functions. The most interesting is that MRJP's that have been detected in the HG of the newly emerged worker bees. The MRJP's expression is at peak level from 6-12 days, was validated by western blot analysis of MRJP1, 2 and 3. Moreover, 35 key node proteins were found in the biochemical networks of the HG. Conclusions HG secretes RJ at peak level within 6-12 days, but the worker bee can secrete royal jelly (RJ since birth, which is a new finding. Several key node proteins play an important role in the biochemical networks of the developing HG. This provides us some target proteins when genetically manipulating honeybees.

  18. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products

    Directory of Open Access Journals (Sweden)

    Laura Cornara

    2017-06-01

    Full Text Available Honeybees produce honey, royal jelly, propolis, bee venom, bee pollen, and beeswax, which potentially benefit to humans due to the bioactives in them. Clinical standardization of these products is hindered by chemical variability depending on honeybee and botanical sources, but different molecules have been isolated and pharmacologically characterized. Major honey bioactives include phenolics, methylglyoxal, royal jelly proteins (MRJPs, and oligosaccharides. In royal jelly there are antimicrobial jelleins and royalisin peptides, MRJPs, and hydroxy-decenoic acid derivatives, notably 10-hydroxy-2-decenoic acid (10-HDA, with antimicrobial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome preventing, and anti-aging activities. Propolis contains caffeic acid phenethyl ester and artepillin C, specific of Brazilian propolis, with antiviral, immunomodulatory, anti-inflammatory and anticancer effects. Bee venom consists of toxic peptides like pain-inducing melittin, SK channel blocking apamin, and allergenic phospholipase A2. Bee pollen is vitaminic, contains antioxidant and anti-inflammatory plant phenolics, as well as antiatherosclerotic, antidiabetic, and hypoglycemic flavonoids, unsaturated fatty acids, and sterols. Beeswax is widely used in cosmetics and makeup. Given the importance of drug discovery from natural sources, this review is aimed at providing an exhaustive screening of the bioactive compounds detected in honeybee products and of their curative or adverse biological effects.

  19. Mating flights select for symmetry in honeybee drones (Apis mellifera).

    Science.gov (United States)

    Jaffé, Rodolfo; Moritz, Robin F A

    2010-03-01

    Males of the honeybee (Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen's visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.

  20. Adaptive memory: animacy effects persist in paired-associate learning.

    Science.gov (United States)

    VanArsdall, Joshua E; Nairne, James S; Pandeirada, Josefa N S; Cogdill, Mindi

    2015-01-01

    Recent evidence suggests that animate stimuli are remembered better than matched inanimate stimuli. Two experiments tested whether this animacy effect persists in paired-associate learning of foreign words. Experiment 1 randomly paired Swahili words with matched animate and inanimate English words. Participants were told simply to learn the English "translations" for a later test. Replicating earlier findings using free recall, a strong animacy advantage was found in this cued-recall task. Concerned that the effect might be due to enhanced accessibility of the individual responses (e.g., animates represent a more accessible category), Experiment 2 selected animate and inanimate English words from two more constrained categories (four-legged animals and furniture). Once again, an advantage was found for pairs using animate targets. These results argue against organisational accounts of the animacy effect and potentially have implications for foreign language vocabulary learning.

  1. No trade-off between learning speed and associative flexibility in bumblebees: a reversal learning test with multiple colonies.

    Directory of Open Access Journals (Sweden)

    Nigel E Raine

    Full Text Available Potential trade-offs between learning speed and memory-related performance could be important factors in the evolution of learning. Here, we test whether rapid learning interferes with the acquisition of new information using a reversal learning paradigm. Bumblebees (Bombus terrestris were trained to associate yellow with a floral reward. Subsequently the association between colour and reward was reversed, meaning bees then had to learn to visit blue flowers. We demonstrate that individuals that were fast to learn yellow as a predictor of reward were also quick to reverse this association. Furthermore, overnight memory retention tests suggest that faster learning individuals are also better at retaining previously learned information. There is also an effect of relatedness: colonies whose workers were fast to learn the association between yellow and reward also reversed this association rapidly. These results are inconsistent with a trade-off between learning speed and the reversal of a previously made association. On the contrary, they suggest that differences in learning performance and cognitive (behavioural flexibility could reflect more general differences in colony learning ability. Hence, this study provides additional evidence to support the idea that rapid learning and behavioural flexibility have adaptive value.

  2. The Adult Learning Open University Determinants (ALOUD) study: Biological and psychological factors associated with learning performance in adult distance education

    NARCIS (Netherlands)

    Neroni, Joyce; Gijselaers, Jérôme; Kirschner, Paul A.; De Groot, Renate

    2017-01-01

    Learning is crucial for everyone. The association between biological (eg, sleep, nutrition) and psychological factors (eg, test anxiety, goal orientation) and learning performance has been well established for children, adolescents and college students in traditional education. Evidence for these

  3. Predicting Spatial Distribution of Key Honeybee Pests in Kenya Using Remotely Sensed and Bioclimatic Variables: Key Honeybee Pests Distribution Models

    Directory of Open Access Journals (Sweden)

    David M. Makori

    2017-02-01

    Full Text Available Bee keeping is indispensable to global food production. It is an alternate income source, especially in rural underdeveloped African settlements, and an important forest conservation incentive. However, dwindling honeybee colonies around the world are attributed to pests and diseases whose spatial distribution and influences are not well established. In this study, we used remotely sensed data to improve the reliability of pest ecological niche (EN models to attain reliable pest distribution maps. Occurrence data on four pests (Aethina tumida, Galleria mellonella, Oplostomus haroldi and Varroa destructor were collected from apiaries within four main agro-ecological regions responsible for over 80% of Kenya’s bee keeping. Africlim bioclimatic and derived normalized difference vegetation index (NDVI variables were used to model their ecological niches using Maximum Entropy (MaxEnt. Combined precipitation variables had a high positive logit influence on all remotely sensed and biotic models’ performance. Remotely sensed vegetation variables had a substantial effect on the model, contributing up to 40.8% for G. mellonella and regions with high rainfall seasonality were predicted to be high-risk areas. Projections (to 2055 indicated that, with the current climate change trend, these regions will experience increased honeybee pest risk. We conclude that honeybee pests could be modelled using bioclimatic data and remotely sensed variables in MaxEnt. Although the bioclimatic data were most relevant in all model results, incorporating vegetation seasonality variables to improve mapping the ‘actual’ habitat of key honeybee pests and to identify risk and containment zones needs to be further investigated.

  4. The Standardization of the Honeybee Colonies Evaluation Methodology, with Application in Honeybee Breeding Programs, in Romanian Conditions

    OpenAIRE

    Eliza Cauia; Adrian Siceanu; Silvia Patruica; Marian Bura; Agripina Sapcaliu; Maria Magdici

    2010-01-01

    It is well known that breeding is based on phenotypic and behavioural performance assessed at the level of each honeybee colony. By selection, the genes responsible for the desired characters have to be favoured, by evaluation and classification of all colonies involved in a breeding program. Generally, in the beekeeping practice, the most applied method of selection is the mass selection regarding the main objective- honey production. Some more elaborated programs use selection simultaneous ...

  5. Implicit versus explicit associative learning and experimentally induced placebo hypoalgesia

    Directory of Open Access Journals (Sweden)

    Andrea L Martin-Pichora

    2011-03-01

    Full Text Available Andrea L Martin-Pichora1,2, Tsipora D. Mankovsky-Arnold3, Joel Katz11Department of Psychology, York University, Toronto, ON, Canada; 2Centre for Student Development and Counseling, Ryerson University, Toronto, ON, Canada; 3Department of Psychology, McGill University, Montreal, QC, CanadaAbstract: The present study examined whether 1 placebo hypoalgesia can be generated through implicit associative learning (ie, conditioning in the absence of conscious awareness and 2 the magnitude of placebo hypoalgesia changes when expectations about pain are made explicit. The temperature of heat pain stimuli was surreptitiously lowered during conditioning trials for the placebo cream and the magnitude of the placebo effect was assessed during a subsequent set of trials when the temperature was the same for both placebo and control conditions. To assess whether placebo hypoalgesia could be generated from an implicit tactile stimulus, a 2 × 2 design was used with direction of cream application as one factor and verbal information about which cream was being applied as the second factor. A significant placebo effect was observed when participants received verbal information about which cream was being applied but not following implicit conditioning alone. However, 87.5% of those who showed a placebo response as the result of implicit conditioning were able to accurately guess the order of cream application during the final trial, despite a lack of awareness about the sensory manipulation and low confidence in their ratings, suggesting implicit learning in some participants. In summary, implicit associative learning was evident in some participants but it was not sufficient to produce a placebo effect suggesting some level of explicit expectation or cognitive mediation may be necessary. Notably, the placebo response was abolished when expectations were made explicit, suggesting a delicate interplay between attention and expectation.Keywords: placebo hypoalgesia

  6. 76 FR 54072 - Emergency Assistance for Livestock, Honeybees, and Farm-Raised Fish Program, Livestock Indemnity...

    Science.gov (United States)

    2011-08-31

    ... for Livestock, Honeybees, and Farm-Raised Fish Program, Livestock Indemnity Program, and General... clarifying amendments and corrections to the regulations for the Emergency Assistance for Livestock, Honeybees, and Farm-Raised Fish Program (ELAP) and the Livestock Indemnity Program (LIP) to clarify when...

  7. A selective sweep in a microsporidian parasite Nosema-tolerant honeybee population, Apis mellifera

    DEFF Research Database (Denmark)

    Huang, Q.; Lattorff, H. M. G.; Kryger, P.

    2014-01-01

    Nosema is a microsporidian parasite of the honeybee, which infects the epithelial cells of the gut. In Denmark, honeybee colonies have been selectively bred for the absence of Nosema over decades, resulting in a breeding line that is tolerant toward Nosema infections. As the tolerance toward the ...

  8. Reconciling genetic evolution and the associative learning account of mirror neurons through data-acquisition mechanisms.

    Science.gov (United States)

    Lotem, Arnon; Kolodny, Oren

    2014-04-01

    An associative learning account of mirror neurons should not preclude genetic evolution of its underlying mechanisms. On the contrary, an associative learning framework for cognitive development should seek heritable variation in the learning rules and in the data-acquisition mechanisms that construct associative networks, demonstrating how small genetic modifications of associative elements can give rise to the evolution of complex cognition.

  9. Sampling capacity underlies individual differences in human associative learning.

    Science.gov (United States)

    Byrom, Nicola C; Murphy, Robin A

    2014-04-01

    Though much work has studied how external factors, such as stimulus properties, influence generalization of associative strength, there has been limited exploration of the influence that internal dispositions may contribute to stimulus processing. Here we report 2 studies using a modified negative patterning discrimination to test the relationship between global processing and generalization. Global processing was associated with stronger negative patterning discrimination, indicative of limited generalization between distinct stimulus compounds and their constituent elements. In Experiment 2, participants pretrained to adopt global processing similarly showed strong negative patterning discrimination. These results demonstrate considerable individual difference in capacity to engage in negative patterning discrimination and suggest that the tendency toward global processing may be one factor explaining this variability. The need for models of learning to account for this variability in learning is discussed.

  10. Deciphering mirror neurons: rational decision versus associative learning.

    Science.gov (United States)

    Khalil, Elias L

    2014-04-01

    The rational-decision approach is superior to the associative-learning approach of Cook et al. at explaining why mirror neurons fire or do not fire - even when the stimulus is the same. The rational-decision approach is superior because it starts with the analysis of the intention of the organism, that is, with the identification of the specific objective or goal that the organism is trying to maximize.

  11. Finding Influential Users in Social Media Using Association Rule Learning

    Directory of Open Access Journals (Sweden)

    Fredrik Erlandsson

    2016-04-01

    Full Text Available Influential users play an important role in online social networks since users tend to have an impact on one other. Therefore, the proposed work analyzes users and their behavior in order to identify influential users and predict user participation. Normally, the success of a social media site is dependent on the activity level of the participating users. For both online social networking sites and individual users, it is of interest to find out if a topic will be interesting or not. In this article, we propose association learning to detect relationships between users. In order to verify the findings, several experiments were executed based on social network analysis, in which the most influential users identified from association rule learning were compared to the results from Degree Centrality and Page Rank Centrality. The results clearly indicate that it is possible to identify the most influential users using association rule learning. In addition, the results also indicate a lower execution time compared to state-of-the-art methods.

  12. Associations among smoking, anhedonia, and reward learning in depression.

    Science.gov (United States)

    Liverant, Gabrielle I; Sloan, Denise M; Pizzagalli, Diego A; Harte, Christopher B; Kamholz, Barbara W; Rosebrock, Laina E; Cohen, Andrew L; Fava, Maurizio; Kaplan, Gary B

    2014-09-01

    Depression and cigarette smoking co-occur at high rates. However, the etiological mechanisms that contribute to this relationship remain unclear. Anhedonia and associated impairments in reward learning are key features of depression, which also have been linked to the onset and maintenance of cigarette smoking. However, few studies have investigated differences in anhedonia and reward learning among depressed smokers and depressed nonsmokers. The goal of this study was to examine putative differences in anhedonia and reward learning in depressed smokers (n=36) and depressed nonsmokers (n=44). To this end, participants completed self-report measures of anhedonia and behavioral activation (BAS reward responsiveness scores) and as well as a probabilistic reward task rooted in signal detection theory, which measures reward learning (Pizzagalli, Jahn, & O'Shea, 2005). When considering self-report measures, depressed smokers reported higher trait anhedonia and reduced BAS reward responsiveness scores compared to depressed nonsmokers. In contrast to self-report measures, nicotine-satiated depressed smokers demonstrated greater acquisition of reward-based learning compared to depressed nonsmokers as indexed by the probabilistic reward task. Findings may point to a potential mechanism underlying the frequent co-occurrence of smoking and depression. These results highlight the importance of continued investigation of the role of anhedonia and reward system functioning in the co-occurrence of depression and nicotine abuse. Results also may support the use of treatments targeting reward learning (e.g., behavioral activation) to enhance smoking cessation among individuals with depression. Copyright © 2014. Published by Elsevier Ltd.

  13. Genetic dissection of memory for associative and non-associative learning in Caenorhabditis elegans.

    Science.gov (United States)

    Lau, H L; Timbers, T A; Mahmoud, R; Rankin, C H

    2013-03-01

    The distinction between non-associative and associative forms of learning has historically been based on the behavioral training paradigm. Through discovering the molecular mechanisms that mediate learning, we can develop a deeper understanding of the relationships between different forms of learning. Here, we genetically dissect short- and long-term memory for a non-associative form of learning, habituation and an associative form of learning, context conditioning for habituation, in the nematode Caenorhabditis elegans. In short-term chemosensory context conditioning for habituation, worms trained and tested in the presence of either a taste (sodium acetate) or smell (diacetyl) context cue show greater retention of habituation to tap stimuli when compared with animals trained and tested without a salient cue. Long-term memory for olfactory context conditioning was observed 24 h after a training procedure that does not normally induce 24 h memory. Like long-term habituation, this long-term memory was dependent on the transcription factor cyclic AMP-response element-binding protein. Worms with mutations in glr-1 [a non-N-methyl-d-aspartate (NMDA)-type glutamate receptor subunit] showed short-term but not long-term habituation or short- or long-term context conditioning. Worms with mutations in nmr-1 (an NMDA-receptor subunit) showed normal short- and long-term memory for habituation but did not show either short- or long-term context conditioning. Rescue of nmr-1 in the RIM interneurons rescued short- and long-term olfactory context conditioning leading to the hypothesis that these interneurons function to integrate information from chemosensory and mechanosensory systems for associative learning. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  14. LEAP: biomarker inference through learning and evaluating association patterns.

    Science.gov (United States)

    Jiang, Xia; Neapolitan, Richard E

    2015-03-01

    Single nucleotide polymorphism (SNP) high-dimensional datasets are available from Genome Wide Association Studies (GWAS). Such data provide researchers opportunities to investigate the complex genetic basis of diseases. Much of genetic risk might be due to undiscovered epistatic interactions, which are interactions in which combination of several genes affect disease. Research aimed at discovering interacting SNPs from GWAS datasets proceeded in two directions. First, tools were developed to evaluate candidate interactions. Second, algorithms were developed to search over the space of candidate interactions. Another problem when learning interacting SNPs, which has not received much attention, is evaluating how likely it is that the learned SNPs are associated with the disease. A complete system should provide this information as well. We develop such a system. Our system, called LEAP, includes a new heuristic search algorithm for learning interacting SNPs, and a Bayesian network based algorithm for computing the probability of their association. We evaluated the performance of LEAP using 100 1,000-SNP simulated datasets, each of which contains 15 SNPs involved in interactions. When learning interacting SNPs from these datasets, LEAP outperformed seven others methods. Furthermore, only SNPs involved in interactions were found to be probable. We also used LEAP to analyze real Alzheimer's disease and breast cancer GWAS datasets. We obtained interesting and new results from the Alzheimer's dataset, but limited results from the breast cancer dataset. We conclude that our results support that LEAP is a useful tool for extracting candidate interacting SNPs from high-dimensional datasets and determining their probability. © 2015 The Authors. *Genetic Epidemiology published by Wiley Periodicals, Inc.

  15. Genome-wide scans between two honeybee populations reveal putative signatures of human-mediated selection.

    Science.gov (United States)

    Parejo, M; Wragg, D; Henriques, D; Vignal, A; Neuditschko, M

    2017-12-01

    Human-mediated selection has left signatures in the genomes of many domesticated animals, including the European dark honeybee, Apis mellifera mellifera, which has been selected by apiculturists for centuries. Using whole-genome sequence information, we investigated selection signatures in spatially separated honeybee subpopulations (Switzerland, n = 39 and France, n = 17). Three different test statistics were calculated in windows of 2 kb (fixation index, cross-population extended haplotype homozygosity and cross-population composite likelihood ratio) and combined into a recently developed composite selection score. Applying a stringent false discovery rate of 0.01, we identified six significant selective sweeps distributed across five chromosomes covering eight genes. These genes are associated with multiple molecular and biological functions, including regulation of transcription, receptor binding and signal transduction. Of particular interest is a selection signature on chromosome 1, which corresponds to the WNT4 gene, the family of which is conserved across the animal kingdom with a variety of functions. In Drosophila melanogaster, WNT4 alleles have been associated with differential wing, cross vein and abdominal phenotypes. Defining phenotypic characteristics of different Apis mellifera ssp., which are typically used as selection criteria, include colour and wing venation pattern. This signal is therefore likely to be a good candidate for human mediated-selection arising from different applied breeding practices in the two managed populations. © 2017 The Authors. Animal Genetics published by John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics.

  16. Proteome Analysis of the Hemolymph, Mushroom Body, and Antenna Provides Novel Insight into Honeybee Resistance against Varroa Infestation.

    Science.gov (United States)

    Hu, Han; Bienefeld, Kaspar; Wegener, Jakob; Zautke, Fred; Hao, Yue; Feng, Mao; Han, Bin; Fang, Yu; Wubie, Abebe Jenberie; Li, Jianke

    2016-08-05

    Varroa destructor has been identified as a major culprit responsible for the losses of millions of honeybee colonies. Varroa sensitive hygiene (VSH) is a suite of behaviors from adult bees to suppress mite reproduction by uncapping and/or removing mite infested pupae from a sealed brood. Despite the efforts to elucidate the molecular underpinnings of VSH, they remain largely unknown. We investigated the proteome of mushroom bodies (MBs) and antennae of adult bees with and without VSH from a stock selected for VSH based on their response to artificially Varroa-infected brood cells by near-infrared camera observation. The pupal hemolymph proteome was also compared between the VSH-line and the line that was not selected for VSH. The identified 8609 proteins in the hemolymph, MBs, and antennae represent the most depth coverage of the honeybee proteome (>55%) to date. In the hemolymph, the VSH-line adapts a unique strategy to boost the social immunity and drive pupal organogenesis by enhancing energy metabolism and protein biosynthesis. In MBs, the up-regulated proteins implicated in neuronal sensitivity suggest their roles to promote the execution of VSH by activation of synaptic vesicles and calcium channel activities. In antennae, the highly expressed proteins associated with sensitivity of olfactory senses and signal transmissions signify their roles by inputting a strong signal to the MBs for initiating VSH. These observations illustrate that the enhanced social immunities and olfactory and neuronal sensitivity play key roles in the combat against Varroa infestation. The identified candidate markers may be useful for accelerating marker-associated selection for VSH to aid in resistance to a parasite responsible for decline in honeybee health.

  17. Changes of motor-cortical oscillations associated with motor learning.

    Science.gov (United States)

    Pollok, B; Latz, D; Krause, V; Butz, M; Schnitzler, A

    2014-09-05

    Motor learning results from practice but also between practice sessions. After skill acquisition early consolidation results in less interference with other motor tasks and even improved performance of the newly learned skill. A specific significance of the primary motor cortex (M1) for early consolidation has been suggested. Since synchronized oscillatory activity is assumed to facilitate neuronal plasticity, we here investigate alterations of motor-cortical oscillations by means of event-related desynchronization (ERD) at alpha (8-12 Hz) and beta (13-30 Hz) frequencies in healthy humans. Neuromagnetic activity was recorded using a 306-channel whole-head magnetoencephalography (MEG) system. ERD was investigated in 15 subjects during training on a serial reaction time task and 10 min after initial training. The data were compared with performance during a randomly varying sequence serving as control condition. The data reveal a stepwise decline of alpha-band ERD associated with faster reaction times replicating previous findings. The amount of beta-band suppression was significantly correlated with reduction of reaction times. While changes of alpha power have been related to lower cognitive control after initial skill acquisition, the present data suggest that the amount of beta suppression represents a neurophysiological marker of early cortical reorganization associated with motor learning. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Mini-review: Prediction errors, attention and associative learning.

    Science.gov (United States)

    Holland, Peter C; Schiffino, Felipe L

    2016-05-01

    Most modern theories of associative learning emphasize a critical role for prediction error (PE, the difference between received and expected events). One class of theories, exemplified by the Rescorla-Wagner (1972) model, asserts that PE determines the effectiveness of the reinforcer or unconditioned stimulus (US): surprising reinforcers are more effective than expected ones. A second class, represented by the Pearce-Hall (1980) model, argues that PE determines the associability of conditioned stimuli (CSs), the rate at which they may enter into new learning: the surprising delivery or omission of a reinforcer enhances subsequent processing of the CSs that were present when PE was induced. In this mini-review we describe evidence, mostly from our laboratory, for PE-induced changes in the associability of both CSs and USs, and the brain systems involved in the coding, storage and retrieval of these altered associability values. This evidence favors a number of modifications to behavioral models of how PE influences event processing, and suggests the involvement of widespread brain systems in animals' responses to PE. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Prefrontal control of cerebellum-dependent associative motor learning.

    Science.gov (United States)

    Chen, Hao; Yang, Li; Xu, Yan; Wu, Guang-yan; Yao, Juan; Zhang, Jun; Zhu, Zhi-ru; Hu, Zhi-an; Sui, Jian-feng; Hu, Bo

    2014-02-01

    Behavioral studies have demonstrated that both medial prefrontal cortex (mPFC) and cerebellum play critical roles in trace eyeblink conditioning. However, little is known regarding the mechanism by which the two brain regions interact. By use of electrical stimulation of the caudal mPFC as a conditioned stimulus, we show evidence that persistent outputs from the mPFC to cerebellum are necessary and sufficient for the acquisition and expression of a trace conditioned response (CR)-like response. Specifically, the persistent outputs of caudal mPFC are relayed to the cerebellum via the rostral part of lateral pontine nuclei. Moreover, interfering with persistent activity by blockade of the muscarinic Ach receptor in the caudal mPFC impairs the expression of learned trace CRs. These results suggest an important way for the caudal mPFC to interact with the cerebellum during associative motor learning.

  20. Differential involvement of glutamate-gated chloride channel splice variants in the olfactory memory processes of the honeybee Apis mellifera.

    Science.gov (United States)

    Démares, Fabien; Drouard, Florian; Massou, Isabelle; Crattelet, Cindy; Lœuillet, Aurore; Bettiol, Célia; Raymond, Valérie; Armengaud, Catherine

    2014-09-01

    Glutamate-gated chloride channels (GluCl) belong to the cys-loop ligand-gated ion channel superfamily and their expression had been described in several invertebrate nervous systems. In the honeybee, a unique gene amel_glucl encodes two alternatively spliced subunits, Amel_GluCl A and Amel_GluCl B. The expression and differential localization of those variants in the honeybee brain had been previously reported. Here we characterized the involvement of each variant in olfactory learning and memory processes, using specific small-interfering RNA (siRNA) targeting each variant. Firstly, the efficacy of the two siRNAs to decrease their targets' expression was tested, both at mRNA and protein levels. The two proteins showed a decrease of their respective expression 24h after injection. Secondly, each siRNA was injected into the brain to test whether or not it affected olfactory memory by using a classical paradigm of conditioning the proboscis extension reflex (PER). Amel_GluCl A was found to be involved only in retrieval of 1-nonanol, whereas Amel_GluCl B was involved in the PER response to 2-hexanol used as a conditioned stimulus or as new odorant. Here for the first time, a differential behavioral involvement of two highly similar GluCl subunits has been characterized in an invertebrate species. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Effect of a thymol application on olfactory memory and gene expression levels in the brain of the honeybee Apis mellifera.

    Science.gov (United States)

    Bonnafé, Elsa; Drouard, Florian; Hotier, Lucie; Carayon, Jean-Luc; Marty, Pierre; Treilhou, Michel; Armengaud, Catherine

    2015-06-01

    Essential oils are used by beekeepers to control the Varroa mites that infest honeybee colonies. So, bees can be exposed to thymol formulations in the hive. The effects of the monoterpenoid thymol were explored on olfactory memory and gene expression in the brain of the honeybee. In bees previously exposed to thymol (10 or 100 ng/bee), the specificity of the response to the conditioned stimulus (CS) was lost 24 h after learning. Besides, the octopamine receptor OA1 gene Amoa1 showed a significant decrease of expression 3 h after exposure with 10 or 100 ng/bee of thymol. With the same doses, expression of Rdl gene, coding for a GABA receptor subunit, was not significantly modified but the trpl gene was upregulated 1 and 24 h after exposure to thymol. These data indicated that the genes coding for the cellular targets of thymol could be rapidly regulated after exposure to this molecule. Memory and sensory processes should be investigated in bees after chronic exposure in the hive to thymol-based preparations.

  2. Vibration transmission characteristics of the legs of freely standing honeybees

    DEFF Research Database (Denmark)

    Rohrseitz, Kristin; Kilpinen, Ole

    1997-01-01

    as the stimulator. This was also the case in freely standing honeybees, except around 400 Hz, where an average attenuation of approximately 6 dB was observed. In the fixed bee preparation, the vertical movements of the legs were also measured during horizontal stimulation. The vertical vibration amplitude...... of the legs was 15-20 dB lower than the horizontal stimulation amplitude. The electrophysiologically and behaviourally determined thresholds for vibration stimulation increased by approximately 10 dB, when the stimulus direction was changed from vertical to horizontal. These observations support the notion...

  3. Effect of Temperature on the Biotic Potential of Honeybee Microsporidia▿

    Science.gov (United States)

    Martín-Hernández, Raquel; Meana, Aránzazu; García-Palencia, Pilar; Marín, Pilar; Botías, Cristina; Garrido-Bailón, Encarna; Barrios, Laura; Higes, Mariano

    2009-01-01

    The biological cycle of Nosema spp. in honeybees depends on temperature. When expressed as total spore counts per day after infection, the biotic potentials of Nosema apis and N. ceranae at 33°C were similar, but a higher proportion of immature stages of N. ceranae than of N. apis were seen. At 25 and 37°C, the biotic potential of N. ceranae was higher than that of N. apis. The better adaptation of N. ceranae to complete its endogenous cycle at different temperatures clearly supports the observation of the different epidemiological patterns. PMID:19233948

  4. A primary report on honeybee space-flight breeding

    International Nuclear Information System (INIS)

    Guo Jun; Shi Wei; Ding Guiling; Lv Liping; Liu Zhiguang

    2009-01-01

    The semen of honeybees (Apis mellifera ligustica and Apis mellifera carnica) was carried by the recoverable satellite for a spaceflight and was inseminated instrumentally to the virgin queens after returning to the earth. The preliminary results showed that both the vitality of the sperm and the survival rate of SP 1 queen were lower than those of the control. Obvious variations in morphology appeared on the progeny workers of queens in SP 2 and in SP 3 generations, but most of variation were unfavorable. Mutants with desirable characters were not found after the space fight. (authors)

  5. Neonicotinoid-Coated Zea mays Seeds Indirectly Affect Honeybee Performance and Pathogen Susceptibility in Field Trials.

    Directory of Open Access Journals (Sweden)

    Mohamed Alburaki

    Full Text Available Thirty-two honeybee (Apis mellifera colonies were studied in order to detect and measure potential in vivo effects of neonicotinoid pesticides used in cornfields (Zea mays spp on honeybee health. Honeybee colonies were randomly split on four different agricultural cornfield areas located near Quebec City, Canada. Two locations contained cornfields treated with a seed-coated systemic neonicotinoid insecticide while the two others were organic cornfields used as control treatments. Hives were extensively monitored for their performance and health traits over a period of two years. Honeybee viruses (brood queen cell virus BQCV, deformed wing virus DWV, and Israeli acute paralysis virus IAPV and the brain specific expression of a biomarker of host physiological stress, the Acetylcholinesterase gene AChE, were investigated using RT-qPCR. Liquid chromatography-mass spectrometry (LC-MS was performed to detect pesticide residues in adult bees, honey, pollen, and corn flowers collected from the studied hives in each location. In addition, general hive conditions were assessed by monitoring colony weight and brood development. Neonicotinoids were only identified in corn flowers at low concentrations. However, honeybee colonies located in neonicotinoid treated cornfields expressed significantly higher pathogen infection than those located in untreated cornfields. AChE levels showed elevated levels among honeybees that collected corn pollen from treated fields. Positive correlations were recorded between pathogens and the treated locations. Our data suggests that neonicotinoids indirectly weaken honeybee health by inducing physiological stress and increasing pathogen loads.

  6. Age-related changes in contextual associative learning.

    Science.gov (United States)

    Luu, Trinh T; Pirogovsky, Eva; Gilbert, Paul E

    2008-01-01

    The hippocampus plays a critical role in processing contextual information. Although age-related changes in the hippocampus are well documented in humans, nonhuman primates, and rodents, few studies have examined contextual learning deficits in old rats. The present study investigated age-related differences in contextual associative learning in young (6 mo) and old (24 mo) rats using olfactory stimuli. Stimuli consisted of common odors mixed in sand and placed in clear plastic cups. Testing was conducted in two boxes that represented two different contexts (Context 1 and Context 2). The contexts varied based on environmental features of the box such as color (black vs. white), visual cues on the walls of the box, and flooring texture. Each rat was simultaneously presented with two cups, one filled with Odor A and one filled with Odor B in each context. In Context 1, the rat received a food reward for digging in the cup containing Odor A, but did not receive a food reward for digging in the cup containing Odor B. In Context 2, the rat was rewarded for digging in the cup containing Odor B, but did receive a reward for digging in the cup containing Odor A. Therefore, the rat learned to associate Context 1 with Odor A and Context 2 with Odor B. The rat was tested for eight days using the same odor problem throughout all days of testing. The results showed no significant difference between young and old rats on the first two days of testing; however, young rats significantly outperformed old rats on Day 3. Young rats continued to maintain superior performance compared to old rats on Days 4-8. The results suggest that aging results in functional impairments in brain regions that support memory for associations between specific cues and their respective context.

  7. Neonicotinoids interfere with specific components of navigation in honeybees.

    Directory of Open Access Journals (Sweden)

    Johannes Fischer

    Full Text Available Three neonicotinoids, imidacloprid, clothianidin and thiacloprid, agonists of the nicotinic acetylcholine receptor in the central brain of insects, were applied at non-lethal doses in order to test their effects on honeybee navigation. A catch-and-release experimental design was applied in which feeder trained bees were caught when arriving at the feeder, treated with one of the neonicotinoids, and released 1.5 hours later at a remote site. The flight paths of individual bees were tracked with harmonic radar. The initial flight phase controlled by the recently acquired navigation memory (vector memory was less compromised than the second phase that leads the animal back to the hive (homing flight. The rate of successful return was significantly lower in treated bees, the probability of a correct turn at a salient landscape structure was reduced, and less directed flights during homing flights were performed. Since the homing phase in catch-and-release experiments documents the ability of a foraging honeybee to activate a remote memory acquired during its exploratory orientation flights, we conclude that non-lethal doses of the three neonicotinoids tested either block the retrieval of exploratory navigation memory or alter this form of navigation memory. These findings are discussed in the context of the application of neonicotinoids in plant protection.

  8. Neonicotinoids Interfere with Specific Components of Navigation in Honeybees

    Science.gov (United States)

    Fischer, Johannes; Müller, Teresa; Spatz, Anne-Kathrin; Greggers, Uwe; Grünewald, Bernd; Menzel, Randolf

    2014-01-01

    Three neonicotinoids, imidacloprid, clothianidin and thiacloprid, agonists of the nicotinic acetylcholine receptor in the central brain of insects, were applied at non-lethal doses in order to test their effects on honeybee navigation. A catch-and-release experimental design was applied in which feeder trained bees were caught when arriving at the feeder, treated with one of the neonicotinoids, and released 1.5 hours later at a remote site. The flight paths of individual bees were tracked with harmonic radar. The initial flight phase controlled by the recently acquired navigation memory (vector memory) was less compromised than the second phase that leads the animal back to the hive (homing flight). The rate of successful return was significantly lower in treated bees, the probability of a correct turn at a salient landscape structure was reduced, and less directed flights during homing flights were performed. Since the homing phase in catch-and-release experiments documents the ability of a foraging honeybee to activate a remote memory acquired during its exploratory orientation flights, we conclude that non-lethal doses of the three neonicotinoids tested either block the retrieval of exploratory navigation memory or alter this form of navigation memory. These findings are discussed in the context of the application of neonicotinoids in plant protection. PMID:24646521

  9. Combating Varroa destructor in Honeybee Colonies Using Flumethrin or Fluvalinate

    Directory of Open Access Journals (Sweden)

    A. Gregorc

    2007-01-01

    Full Text Available Mite mortality in two apiaries, one with 32 and the other with 15 honeybee (Apis mellifera carnica colonies, was recorded prior to and after flumethrin or fluvalinate treatments and after a control, oxalic-acid application. During the 42- and 51-day pre-treatment periods, the average daily natural mite drop was 0.04 (± 0.04 and 2.82 (± 2.19, respectively, which represents 1.09% (± 1.06 and 3.84% (± 3.04 of the total number of mites found during the experiment. The flumethrin or fluvalinate applications resulted in an average mite mortality at the two apiaries of 214.46 (± 260.02 and 4,098.64 (± 2,508.31. The treatments resulted in a 19.11% (± 14.62 and a 39.28% (± 10.47 reduction in the number of mites in slightly infested colonies and 94.30% (± 4.26 and 96.24% (± 3.14 in highly infested colonies. The difference in treatment efficacy between both apiaries was significant (P < 0.001 and indicates that fluvalinate and flumethrin are highly efficacious in dealing with highly infested honeybee colonies with sealed brood. The importance of effective mite control in colonies with a high level of natural mite mortality is discussed in this study.

  10. A DNA barcoding approach to characterize pollen collected by honeybees.

    Directory of Open Access Journals (Sweden)

    Andrea Galimberti

    Full Text Available In the present study, we investigated DNA barcoding effectiveness to characterize honeybee pollen pellets, a food supplement largely used for human nutrition due to its therapeutic properties. We collected pollen pellets using modified beehives placed in three zones within an alpine protected area (Grigna Settentrionale Regional Park, Italy. A DNA barcoding reference database, including rbcL and trnH-psbA sequences from 693 plant species (104 sequenced in this study was assembled. The database was used to identify pollen collected from the hives. Fifty-two plant species were identified at the molecular level. Results suggested rbcL alone could not distinguish among congeneric plants; however, psbA-trnH identified most of the pollen samples at the species level. Substantial variability in pollen composition was observed between the highest elevation locality (Alpe Moconodeno, characterized by arid grasslands and a rocky substrate, and the other two sites (Cornisella and Ortanella at lower altitudes. Pollen from Ortanella and Cornisella showed the presence of typical deciduous forest species; however in samples collected at Ortanella, pollen of the invasive Lonicera japonica, and the ornamental Pelargonium x hortorum were observed. Our results indicated pollen composition was largely influenced by floristic local biodiversity, plant phenology, and the presence of alien flowering species. Therefore, pollen molecular characterization based on DNA barcoding might serve useful to beekeepers in obtaining honeybee products with specific nutritional or therapeutic characteristics desired by food market demands.

  11. Do honeybees, Apis mellifera scutellata, regulate humidity in their nest?

    Science.gov (United States)

    Human, Hannelie; Nicolson, Sue W.; Dietemann, Vincent

    2006-08-01

    Honeybees are highly efficient at regulating the biophysical parameters of their hive according to colony needs. Thermoregulation has been the most extensively studied aspect of nest homeostasis. In contrast, little is known about how humidity is regulated in beehives, if at all. Although high humidity is necessary for brood development, regulation of this parameter by honeybee workers has not yet been demonstrated. In the past, humidity was measured too crudely for a regulation mechanism to be identified. We reassess this issue, using miniaturised data loggers that allow humidity measurements in natural situations and at several places in the nest. We present evidence that workers influence humidity in the hive. However, there are constraints on potential regulation mechanisms because humidity optima may vary in different locations of the nest. Humidity could also depend on variable external factors, such as water availability, which further impair the regulation. Moreover, there are trade-offs with the regulation of temperature and respiratory gas exchanges that can disrupt the establishment of optimal humidity levels. As a result, we argue that workers can only adjust humidity within sub-optimal limits.

  12. The organization of honeybee ocelli: Regional specializations and rhabdom arrangements.

    Science.gov (United States)

    Ribi, Willi; Warrant, Eric; Zeil, Jochen

    2011-11-01

    We have re-investigated the organization of ocelli in honeybee workers and drones. Ocellar lenses are divided into a dorsal and a ventral part by a cusp-shaped indentation. The retina is also divided, with a ventral retina looking skywards and a dorsal retina looking at the horizon. The focal plane of lenses lies behind the retina in lateral ocelli, but within the dorsal retina in the median ocellus of both workers and drones. Ventral retinula cells are ca. 25μm long with dense screening pigments. Dorsal retinula cells are ca. 60μm long with sparse pigmentation mainly restricted to their proximal parts. Pairs of retinula cells form flat, non-twisting rhabdom sheets with elongated, straight, rectangular cross-sections, on average 8.7μm long and 1μm wide. Honeybee ocellar rhabdoms have shorter and straighter cross-sections than those recently described in the night-active bee Megalopta genalis. Across the retina, rhabdoms form a fan-shaped pattern of orientations. In each ocellus, ventral and dorsal retinula cell axons project into two separate neuropils, converging on few large neurons in the dorsal, and on many small neurons in the ventral neuropil. The divided nature of the ocelli, together with the particular construction and arrangement of rhabdoms, suggest that ocelli are not only involved in attitude control, but might also provide skylight polarization compass information. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Sensory coding of nest-site value in honeybee swarms.

    Science.gov (United States)

    Seeley, Thomas D; Visscher, P Kirk

    2008-12-01

    This study investigates the first stage of the decision-making process of a honeybee swarm as it chooses a nest site: how a scout bee codes the value of a potential nest site in the waggle dances she produces to represent this site. We presented honeybee swarms with a two-alternative choice between a high-value site and a medium-value site and recorded the behavior of individually identifiable scout bees as they reported on these two alternatives. We found that bees performed equally lengthy inspections at the two sites, but that, on the swarm cluster, they performed more dance circuits per bee for the high-value site. We also found that there was much individual-level noise in the coding of site value, but that there were clear population-level differences in total dance circuits produced for the two sites. The first bee to find a site had a high probability of reporting the site with a waggle dance, regardless of its value. This discoverer-should-dance phenomenon may help ensure that a swarm gives attention to all discovered sites. There was rapid decay in the dance response; the number of dance circuits produced by a bee after visiting a site decreased linearly over sequential visits, and eventually each bee ceased visiting her site. This decay, or ;leakage', in the accumulation of bees at a site improves a swarm's decision-making ability by helping a swarm avoid making fast-decision errors.

  14. Word, nonword and visual paired associate learning in Dutch dyslexic children

    NARCIS (Netherlands)

    Messbauer, V.C.S.; de Jong, P.F.

    2003-01-01

    Verbal and non-verbal learning were investigated in 21 8-11-year-old dyslexic children and chronological-age controls, and in 21 7-9-year-old reading-age controls. Tasks involved the paired associate learning of words, nonwords, or symbols with pictures. Both learning and retention of associations

  15. Paired-Associate and Feedback-Based Weather Prediction Tasks Support Multiple Category Learning Systems

    OpenAIRE

    Li, Kaiyun; Fu, Qiufang; Sun, Xunwei; Zhou, Xiaoyan; Fu, Xiaolan

    2016-01-01

    It remains unclear whether probabilistic category learning in the feedback-based weather prediction task (FB-WPT) can be mediated by a non-declarative or procedural learning system. To address this issue, we compared the effects of training time and verbal working memory, which influence the declarative learning system but not the non-declarative learning system, in the FB and paired-associate (PA) WPTs, as the PA task recruits a declarative learning system. The results of Experiment 1 showed...

  16. Perception of collaborative learning in associate degree students in Hong Kong.

    Science.gov (United States)

    Shek, Daniel T L; Shek, Moses M W

    2013-01-01

    Although collaborative learning has been widely researched in Western contexts, no study has been carried out to understand how associate degree students look at collaborative learning in Hong Kong. In this study, perceptions of and attitudes to collaborative learning among associate degree students were studied. A total of 44 associate degree students completed an online questionnaire including measures of perceived benefits and attitudes to collaborative learning, and social-emotional competence. Results showed that there were no significant differences between male and female students on perceived benefits of and attitudes towards collaborative learning. Social-emotional competence was related to perceived benefits of and attitudes to collaborative learning. Attitudes were also related to perceived benefits of collaborative learning. This paper is the first known study looking at the relationships among perceived benefits and attitudes to collaborative learning and social-emotional competence in Chinese associate degree students in different Chinese contexts.

  17. Learning the association between a context and a target location in infancy

    NARCIS (Netherlands)

    Bertels, Julie; San Anton, Estibaliz; Gebuis, Titia; Destrebecqz, Arnaud

    2017-01-01

    Extracting the statistical regularities present in the environment is a central learning mechanism in infancy. For instance, infants are able to learn the associations between simultaneously or successively presented visual objects (Fiser & Aslin,; Kirkham, Slemmer & Johnson,). The present study

  18. Genetic reincarnation of workers as queens in the Eastern honeybee Apis cerana.

    Science.gov (United States)

    Holmes, M J; Tan, K; Wang, Z; Oldroyd, B P; Beekman, M

    2015-01-01

    Thelytokous parthenogenesis, or the asexual production of female offspring, is rare in the animal kingdom, but relatively common in social Hymenoptera. However, in honeybees, it is only known to be ubiquitous in one subspecies of Apis mellifera, the Cape honeybee, A. mellifera capensis. Here we report the appearance of queen cells in two colonies of the Eastern honeybee Apis cerana that no longer contained a queen or queen-produced brood to rear queens from. A combination of microsatellite genotyping and the timing of the appearance of these individuals excluded the possibility that they had been laid by the original queen. Based on the genotypes of these individuals, thelytokous production by natal workers is the most parsimonious explanation for their existence. Thus, we present the first example of thelytoky in a honeybee outside A. mellifera. We discuss the evolutionary and ecological consequences of thelytoky in A. cerana, in particular the role thelytoky may play in the recent invasions by populations of this species.

  19. The power of associative learning and the ontogeny of optimal behaviour.

    Science.gov (United States)

    Enquist, Magnus; Lind, Johan; Ghirlanda, Stefano

    2016-11-01

    Behaving efficiently (optimally or near-optimally) is central to animals' adaptation to their environment. Much evolutionary biology assumes, implicitly or explicitly, that optimal behavioural strategies are genetically inherited, yet the behaviour of many animals depends crucially on learning. The question of how learning contributes to optimal behaviour is largely open. Here we propose an associative learning model that can learn optimal behaviour in a wide variety of ecologically relevant circumstances. The model learns through chaining, a term introduced by Skinner to indicate learning of behaviour sequences by linking together shorter sequences or single behaviours. Our model formalizes the concept of conditioned reinforcement (the learning process that underlies chaining) and is closely related to optimization algorithms from machine learning. Our analysis dispels the common belief that associative learning is too limited to produce 'intelligent' behaviour such as tool use, social learning, self-control or expectations of the future. Furthermore, the model readily accounts for both instinctual and learned aspects of behaviour, clarifying how genetic evolution and individual learning complement each other, and bridging a long-standing divide between ethology and psychology. We conclude that associative learning, supported by genetic predispositions and including the oft-neglected phenomenon of conditioned reinforcement, may suffice to explain the ontogeny of optimal behaviour in most, if not all, non-human animals. Our results establish associative learning as a more powerful optimizing mechanism than acknowledged by current opinion.

  20. The power of associative learning and the ontogeny of optimal behaviour

    Science.gov (United States)

    Enquist, Magnus; Lind, Johan

    2016-01-01

    Behaving efficiently (optimally or near-optimally) is central to animals' adaptation to their environment. Much evolutionary biology assumes, implicitly or explicitly, that optimal behavioural strategies are genetically inherited, yet the behaviour of many animals depends crucially on learning. The question of how learning contributes to optimal behaviour is largely open. Here we propose an associative learning model that can learn optimal behaviour in a wide variety of ecologically relevant circumstances. The model learns through chaining, a term introduced by Skinner to indicate learning of behaviour sequences by linking together shorter sequences or single behaviours. Our model formalizes the concept of conditioned reinforcement (the learning process that underlies chaining) and is closely related to optimization algorithms from machine learning. Our analysis dispels the common belief that associative learning is too limited to produce ‘intelligent’ behaviour such as tool use, social learning, self-control or expectations of the future. Furthermore, the model readily accounts for both instinctual and learned aspects of behaviour, clarifying how genetic evolution and individual learning complement each other, and bridging a long-standing divide between ethology and psychology. We conclude that associative learning, supported by genetic predispositions and including the oft-neglected phenomenon of conditioned reinforcement, may suffice to explain the ontogeny of optimal behaviour in most, if not all, non-human animals. Our results establish associative learning as a more powerful optimizing mechanism than acknowledged by current opinion. PMID:28018662

  1. Learning Recruits Neurons Representing Previously Established Associations in the Corvid Endbrain.

    Science.gov (United States)

    Veit, Lena; Pidpruzhnykova, Galyna; Nieder, Andreas

    2017-10-01

    Crows quickly learn arbitrary associations. As a neuronal correlate of this behavior, single neurons in the corvid endbrain area nidopallium caudolaterale (NCL) change their response properties during association learning. In crows performing a delayed association task that required them to map both familiar and novel sample pictures to the same two choice pictures, NCL neurons established a common, prospective code for associations. Here, we report that neuronal tuning changes during learning were not distributed equally in the recorded population of NCL neurons. Instead, such learning-related changes relied almost exclusively on neurons which were already encoding familiar associations. Only in such neurons did behavioral improvements during learning of novel associations coincide with increasing selectivity over the learning process. The size and direction of selectivity for familiar and newly learned associations were highly correlated. These increases in selectivity for novel associations occurred only late in the delay period. Moreover, NCL neurons discriminated correct from erroneous trial outcome based on feedback signals at the end of the trial, particularly in newly learned associations. Our results indicate that task-relevant changes during association learning are not distributed within the population of corvid NCL neurons but rather are restricted to a specific group of association-selective neurons. Such association neurons in the multimodal cognitive integration area NCL likely play an important role during highly flexible behavior in corvids.

  2. Function of insulin in snail brain in associative learning.

    Science.gov (United States)

    Kojima, S; Sunada, H; Mita, K; Sakakibara, M; Lukowiak, K; Ito, E

    2015-10-01

    Insulin is well known as a hormone regulating glucose homeostasis across phyla. Although there are insulin-independent mechanisms for glucose uptake in the mammalian brain, which had contributed to a perception of the brain as an insulin-insensitive organ for decades, the finding of insulin and its receptors in the brain revolutionized the concept of insulin signaling in the brain. However, insulin's role in brain functions, such as cognition, attention, and memory, remains unknown. Studies using invertebrates with their open blood-vascular system have the promise of promoting a better understanding of the role played by insulin in mediating/modulating cognitive functions. In this review, the relationship between insulin and its impact on long-term memory (LTM) is discussed particularly in snails. The pond snail Lymnaea stagnalis has the ability to undergo conditioned taste aversion (CTA), that is, it associatively learns and forms LTM not to respond with a feeding response to a food that normally elicits a robust feeding response. We show that molluscan insulin-related peptides are up-regulated in snails exhibiting CTA-LTM and play a key role in the causal neural basis of CTA-LTM. We also survey the relevant literature of the roles played by insulin in learning and memory in other phyla.

  3. Distinguishing feral and managed honeybees (Apis mellifera) using stable carbon isotopes

    OpenAIRE

    Anderson , Lucy; Dynes , Travis; Berry , Jennifer; Delaplane , Keith; McCormick , Lydia; Brosi , Berry

    2014-01-01

    International audience; The ability to distinguish feral and managed honeybees (Apis mellifera) has applications in studies of population genetics, parasite transmission, pollination, interspecific interactions, and bee breeding. We evaluated a diagnostic test based on theoretical differences in stable carbon isotope ratios generated by supplemental feeding. We evaluated (1) if carbon isotope ratios can distinguish feral and managed honeybees and (2) the temporal persistence of the signal aft...

  4. Towards a systems approach for understanding honeybee decline: a stocktaking and synthesis of existing models.

    Science.gov (United States)

    Becher, Matthias A; Osborne, Juliet L; Thorbek, Pernille; Kennedy, Peter J; Grimm, Volker

    2013-08-01

    The health of managed and wild honeybee colonies appears to have declined substantially in Europe and the United States over the last decade. Sustainability of honeybee colonies is important not only for honey production, but also for pollination of crops and wild plants alongside other insect pollinators. A combination of causal factors, including parasites, pathogens, land use changes and pesticide usage, are cited as responsible for the increased colony mortality.However, despite detailed knowledge of the behaviour of honeybees and their colonies, there are no suitable tools to explore the resilience mechanisms of this complex system under stress. Empirically testing all combinations of stressors in a systematic fashion is not feasible. We therefore suggest a cross-level systems approach, based on mechanistic modelling, to investigate the impacts of (and interactions between) colony and land management.We review existing honeybee models that are relevant to examining the effects of different stressors on colony growth and survival. Most of these models describe honeybee colony dynamics, foraging behaviour or honeybee - varroa mite - virus interactions.We found that many, but not all, processes within honeybee colonies, epidemiology and foraging are well understood and described in the models, but there is no model that couples in-hive dynamics and pathology with foraging dynamics in realistic landscapes. Synthesis and applications . We describe how a new integrated model could be built to simulate multifactorial impacts on the honeybee colony system, using building blocks from the reviewed models. The development of such a tool would not only highlight empirical research priorities but also provide an important forecasting tool for policy makers and beekeepers, and we list examples of relevant applications to bee disease and landscape management decisions.

  5. Temporal pattern of africanization in a feral honeybee population from Texas inferred from mitochondrial DNA

    OpenAIRE

    Pinto, M. Alice; Rubink, William L.; Coulson, Robert N.; Patton, John C.; Johnston, J. Spencer

    2004-01-01

    The invasion of Africanized honeybees (Apis mellifera L.) in the Americas provides a window of opportunity to study the dynamics of secondary contact of subspecies of bees that evolved in allopatry in ecologically distinctive habitats of the Old World. We report here the results of an 11-year mitochondrial DNA survey of a feral honeybee population from southern United States (Texas). The mitochondrial haplotype (mitotype) frequencies changed radically during the 11-year study peri...

  6. Barbs Facilitate the Helical Penetration of Honeybee (Apis mellifera ligustica) Stingers

    OpenAIRE

    Wu, Jianing; Yan, Shaoze; Zhao, Jieliang; Ye, Yuying

    2014-01-01

    The stinger is a very small and efficient device that allows honeybees to perform two main physiological activities: repelling enemies and laying eggs for reproduction. In this study, we explored the specific characteristics of stinger penetration, where we focused on its movements and the effects of it microstructure. The stingers of Italian honeybees (Apis mellifera ligustica) were grouped and fixed onto four types of cubic substrates, before pressing into different substrates. The morpholo...

  7. Drag reduction effects facilitated by microridges inside the mouthparts of honeybee workers and drones.

    Science.gov (United States)

    Li, Chu-Chu; Wu, Jia-Ning; Yang, Yun-Qiang; Zhu, Ren-Gao; Yan, Shao-Ze

    2016-01-21

    The mouthpart of a honeybee is a natural well-designed micropump that uses a reciprocating glossa through a temporary tube comprising a pair of galeae and labial palpi for loading nectar. The shapes and sizes of mouthparts differ among castes of honeybees, but the diversities of the functional microstructures inside the mouthparts of honeybee workers and drones remain poorly understood. Through scanning electron microscopy, we found the dimensional difference of uniformly distributed microridges on the inner galeae walls of Apis mellifera ligustica workers and drones. Subsequently, we recorded the feeding process of live honeybees by using a specially designed high-speed camera system. Considering the microridges and kinematics of the glossa, we constructed a hydrodynamic model to calculate the friction coefficient of the mouthpart. In addition, we test the drag reduction through the dimensional variations of the microridges on the inner walls of mouthparts. Theoretical estimations of the friction coefficient with respect to dipping frequency show that inner microridges can reduce friction during the feeding process of honeybees. The effects of drag reduction regulated by specific microridges were then compared. The friction coefficients of the workers and drones were found to be 0.011±0.007 (mean±s.d.) and 0.045±0.010, respectively. These results indicate that the mouthparts of workers are more capable of drag reduction compared with those of drones. The difference was analyzed by comparing the foraging behavior of the workers and drones. Workers are equipped with well-developed hypopharyngeal, and their dipping frequency is higher than that of drones. Our research establishes a critical link between microridge dimensions and drag reduction capability during the nectar feeding of honeybees. Our results reveal that microridges inside the mouthparts of honeybee workers and drones reflect the caste-related life cycles of honeybees. Copyright © 2015 Elsevier Ltd

  8. Mouthpart grooming behavior in honeybees: Kinematics and sectionalized friction between foreleg tarsi and proboscises.

    Science.gov (United States)

    Linghu, Zelin; Wu, Jianing; Wang, Changlong; Yan, Shaoze

    2015-11-01

    The mouthpart of a honeybee is prone to contamination by granular particles such as pollen or dirt from the field. To clean the contaminated mouthparts, a honeybee swings its foreleg tarsi forward and backward to brush the proboscis continuously, sweeping the contaminant from the surfaces of the labial palpi, galeae, and bushy haired tongue (glossa). This grooming behavior has been documented but the dynamic characteristics therein have not been investigated yet. We quantified the grooming behavior of a honeybee from the perspective of kinematic and tribological properties. We captured high-speed videos that recorded the mouthpart grooming patterns of honeybees from the front and side views and measured the friction on the grooming surfaces using a precision dynamometer. During grooming, a honeybee first positions the mouthpart and then places a pair of foreleg tarsi to the tubular-folded galea. The tarsi press the galea and labial palpi and slide downward while keeping close contact with the galea. Then, the hairy glossa stretches out of the temporary tube with the glossa setae erected. The tarsi slowly slide down when grooming the glossa. In the return stroke of grooming, the foreleg tarsi detach from the mouthpart and retreat swiftly. Friction analysis shows that the honeybees can coordinate the velocity of the foreleg tarsi to the sectionalized tribological property of the tarsus-mouthpart interface. The specific grooming pattern enables honeybees to save energy and resist wear, resulting in a possible highly evolved grooming strategy. These findings lead to further understanding of the honeybee's grooming behavior facilitated by the special motion kinematics and friction characteristics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Persistence of subclinical deformed wing virus infections in honeybees following Varroa mite removal and a bee population turnover.

    Directory of Open Access Journals (Sweden)

    Barbara Locke

    Full Text Available Deformed wing virus (DWV is a lethal virus of honeybees (Apis mellifera implicated in elevated colony mortality rates worldwide and facilitated through vector transmission by the ectoparasitic mite Varroa destructor. Clinical, symptomatic DWV infections are almost exclusively associated with high virus titres during pupal development, usually acquired through feeding by Varroa mites when reproducing on bee pupae. Control of the mite population, generally through acaricide treatment, is essential for breaking the DWV epidemic and minimizing colony losses. In this study, we evaluated the effectiveness of remedial mite control on clearing DWV from a colony. DWV titres in adult bees and pupae were monitored at 2 week intervals through summer and autumn in acaricide-treated and untreated colonies. The DWV titres in Apistan treated colonies was reduced 1000-fold relative to untreated colonies, which coincided with both the removal of mites and also a turnover of the bee population in the colony. This adult bee population turnover is probably more critical than previously realized for effective clearing of DWV infections. After this initial reduction, subclinical DWV titres persisted and even increased again gradually during autumn, demonstrating that alternative non-Varroa transmission routes can maintain the DWV titres at significant subclinical levels even after mite removal. The implications of these results for practical recommendations to mitigate deleterious subclinical DWV infections and improving honeybee health management are discussed.

  10. Imidacloprid intensifies its impact on honeybee and bumblebee cellular immune response when challenged with LPS (lippopolysacharide) of Escherichia coli.

    Science.gov (United States)

    Walderdorff, Louise; Laval-Gilly, Philippe; Bonnefoy, Antoine; Falla-Angel, Jaïro

    2018-05-16

    Insect hemocytes play an important role in insects' defense against environmental stressors as they are entirely dependent on their innate immune system for pathogen defense. In recent years a dramatic decline of pollinators has been reported in many countries. The drivers of this declines appear to be associated with pathogen infections like viruses, bacteria or fungi in combination with pesticide exposure. The aim of this study was thus to investigate the impact of imidacloprid, a neonicotinoid insecticide, on the cellular immune response of two pollinators (Apis mellifera and Bombus terrestris) during simultaneous immune activation with LPS (lipopolysaccharide) of Escherichia coli. For this purpose the phagocytosis capacity as well as the production of H 2 O 2 and NO of larval hemocytes, exposed to five different imidacloprid concentrations in vitro, was measured. All used pesticide concentrations showed a weakening effect on phagocytosis with but also without LPS activation. Imidacloprid decreased H 2 O 2 and increased NO production in honeybees. Immune activation by LPS clearly reinforced the effect of imidacloprid on the immune response of hemocytes in all three immune parameters tested. Bumblebee hemocytes appeared more sensitive to imidacloprid during phagocytosis assays while imidacloprid showed a greater impact on honeybee hemocytes during H 2 O 2 and NO production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Learning to Associate Orientation with Color in Early Visual Areas by Associative Decoded fMRI Neurofeedback.

    Science.gov (United States)

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-07-25

    Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded fMRI neurofeedback termed "DecNef" [9], we tested whether associative learning of orientation and color can be created in early visual areas. During 3 days of training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive "red" significantly more frequently than "green" in an achromatic vertical grating. This effect was also observed 3-5 months after the training. These results suggest that long-term associative learning of two different visual features such as orientation and color was created, most likely in early visual areas. This newly extended technique that induces associative learning is called "A-DecNef," and it may be used as an important tool for understanding and modifying brain functions because associations are fundamental and ubiquitous functions in the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Learning to associate orientation with color in early visual areas by associative decoded fMRI neurofeedback

    Science.gov (United States)

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-01-01

    Summary Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded functional magnetic resonance imaging (fMRI) neurofeedback, termed “DecNef” [9], we tested whether associative learning of color and orientation can be created in early visual areas. During three days' training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive “red” significantly more frequently than “green” in an achromatic vertical grating. This effect was also observed 3 to 5 months after the training. These results suggest that long-term associative learning of the two different visual features such as color and orientation was created most likely in early visual areas. This newly extended technique that induces associative learning is called “A(ssociative)-DecNef” and may be used as an important tool for understanding and modifying brain functions, since associations are fundamental and ubiquitous functions in the brain. PMID:27374335

  13. Antennal proteome comparison of sexually mature drone and forager honeybees.

    Science.gov (United States)

    Feng, Mao; Song, Feifei; Aleku, Dereje Woltedji; Han, Bin; Fang, Yu; Li, Jianke

    2011-07-01

    Honeybees have evolved an intricate system of chemical communication to regulate their complex social interactions. Specific proteins involved in odorant detection most likely supported this chemical communication. Odorant reception takes place mainly in the antennae within hairlike structures called olfactory sensilla. Antennal proteomes of sexually mature drone and forager worker bees (an age group of bees assigned to perform field tasks) were compared using two-dimensional electrophoresis, mass spectrometry, quantitative real-time polymerase chain reaction, and bioinformatics. Sixty-one differentially expressed proteins were identified in which 67% were highly upregulated in the drones' antennae whereas only 33% upregulated in the worker bees' antennae. The antennae of the worker bees strongly expressed carbohydrate and energy metabolism and molecular transporters signifying a strong demand for metabolic energy and odorant binding proteins for their foraging activities and other olfactory responses, while proteins related to fatty acid metabolism, antioxidation, and protein folding were strongly upregulated in the drones' antennae as an indication of the importance for the detection and degradation of sex pheromones during queen identification for mating. On the basis of both groups of altered antenna proteins, carbohydrate metabolism and energy production and molecular transporters comprised more than 80% of the functional enrichment analysis and 45% of the constructed biological interaction networks (BIN), respectively. This suggests these two protein families play crucial roles in the antennal olfactory function of sexually mature drone and forager worker bees. Several key node proteins in the BIN were validated at the transcript level. This first global proteomic comparative analysis of antennae reveals sex-biased protein expression in both bees, indicating that odorant response mechanisms are sex-specific because of natural selection for different olfactory

  14. Africanization in the United States: Replacement of Feral European Honeybees (Apis mellifera L.) by an African Hybrid Swarm

    OpenAIRE

    Pinto, M. Alice; Rubink, William L.; Patton, John C.; Coulson, Robert N.; Johnston, J. Spencer

    2005-01-01

    The expansion of Africanized honeybees from South America to the southwestern United States in 50 years is considered one of the most spectacular biological invasions yet documented. In the American tropics, it has been shown that during their expansion Africanized honeybees have low levels of introgressed alleles from resident European populations. In the United States, it has been speculated, but not shown, that Africanized honeybees would hybridize extensively with European ho...

  15. Conserving genetic diversity in the honeybee: comments on Harpur et al. (2012).

    Science.gov (United States)

    De la Rúa, Pilar; Jaffé, Rodolfo; Muñoz, Irene; Serrano, José; Moritz, Robin F A; Kraus, F Bernhard

    2013-06-01

    The article by Harpur et al. (2012) 'Management increases genetic diversity of honey bees via admixture' concludes that '…honey bees do not suffer from reduced genetic diversity caused by management and, consequently, that reduced genetic diversity is probably not contributing to declines of managed Apis mellifera populations'. In the light of current honeybee and beekeeping declines and their consequences for honeybee conservation and the pollination services they provide, we would like to express our concern about the conclusions drawn from the results of Harpur et al. (2012). While many honeybee management practices do not imply admixture, we are convinced that the large-scale genetic homogenization of admixed populations could drive the loss of valuable local adaptations. We also point out that the authors did not account for the extensive gene flow that occurs between managed and wild/feral honeybee populations and raise concerns about the data set used. Finally, we caution against underestimating the importance of genetic diversity for honeybee colonies and highlight the importance of promoting the use of endemic honeybee subspecies in apiculture. © 2013 John Wiley & Sons Ltd.

  16. You see what you have learned. Evidence for an interrelation of associative learning and visual selective attention.

    Science.gov (United States)

    Feldmann-Wüstefeld, Tobias; Uengoer, Metin; Schubö, Anna

    2015-11-01

    Besides visual salience and observers' current intention, prior learning experience may influence deployment of visual attention. Associative learning models postulate that observers pay more attention to stimuli previously experienced as reliable predictors of specific outcomes. To investigate the impact of learning experience on deployment of attention, we combined an associative learning task with a visual search task and measured event-related potentials of the EEG as neural markers of attention deployment. In the learning task, participants categorized stimuli varying in color/shape with only one dimension being predictive of category membership. In the search task, participants searched a shape target while disregarding irrelevant color distractors. Behavioral results showed that color distractors impaired performance to a greater degree when color rather than shape was predictive in the learning task. Neurophysiological results show that the amplified distraction was due to differential attention deployment (N2pc). Experiment 2 showed that when color was predictive for learning, color distractors captured more attention in the search task (ND component) and more suppression of color distractor was required (PD component). The present results thus demonstrate that priority in visual attention is biased toward predictive stimuli, which allows learning experience to shape selection. We also show that learning experience can overrule strong top-down control (blocked tasks, Experiment 3) and that learning experience has a longer-term effect on attention deployment (tasks on two successive days, Experiment 4). © 2015 Society for Psychophysiological Research.

  17. PROTEINS OF THE INTEGUMENTARY SYSTEM OF THE HONEYBEE, Apis mellifera.

    Science.gov (United States)

    Micas, André Fernando Ditondo; Ferreira, Germano Aguiar; Laure, Helen Julie; Rosa, José Cesar; Bitondi, Márcia Maria Gentile

    2016-09-01

    The integument of insects and other arthropods is composed of an inner basal lamina coated by the epidermis, which secretes the bulk of the outer integument layer, the cuticle. The genome sequencing of several insect species has allowed predicting classes of proteins integrating the cuticle. However, only a small proportion of them, as well as other proteins in the integumentary system, have been validated. Using two-dimensional gel electrophoresis coupled with mass spectrometry, we identified 45 different proteins in a total of 112 selected gel spots derived from thoracic integument samples of developing honeybee workers, including 14 cuticular proteins (AmelCPR 3, AmelCPR 12, AmelCPR 16, AmelCPR 27, apidermin 2, apidermin 3, endocuticle structural glycoprotein SgAbd-8-like, LOC100577363, LOC408365, LOC413679, LOC725454, LOC100576916, LOC725838, and peritrophin 3-C analogous). Gene ontology functional analysis revealed that the higher proportions of the identified proteins have molecular functions related to catalytic and structural molecule activities, are involved in metabolic biological processes, and pertain to the protein class of structural or cytoskeletal proteins and hydrolases. It is noteworthy that 26.7% of the identified proteins, including five cuticular proteins, were revealed as protein species resulting from allelic isoforms or derived from posttranslational modifications. Also, 66.7% of the identified cuticular proteins were expressed in more than one developmental phase, thus indicating that they are part of the larval, pupal, and adult cuticle. Our data provide experimental support for predicted honeybee gene products and new information on proteins expressed in the developing integument. © 2016 Wiley Periodicals, Inc.

  18. Vibration-processing interneurons in the honeybee brain

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ai

    2010-01-01

    Full Text Available The afferents of the Johnston’s organ (JO in the honeybee brain send their axons to three distinct areas, the dorsal lobe, the dorsal subesophageal ganglion (DL-dSEG, and the posterior protocerebral lobe (PPL, suggesting that vibratory signals detected by the JO are processed differentially in these primary sensory centers. The morphological and physiological characteristics of interneurons arborizing in these areas were studied by intracellular recording and staining. DL-Int-1 and DL-Int-2 have dense arborizations in the DL-dSEG and respond to vibratory stimulation applied to the JO in either tonic excitatory, on-off-phasic excitatory, or tonic inhibitory patterns. PPL-D-1 has dense arborizations in the PPL, sends axons into the ventral nerve cord (VNC, and responds to vibratory stimulation and olfactory stimulation simultaneously applied to the antennae in long-lasting excitatory pattern. These results show that there are at least two parallel pathways for vibration processing through the DL-dSEG and the PPL. In this study, Honeybee Standard Brain was used as the common reference, and the morphology of two types of interneurons (DL-Int-1 and DL-Int-2 and JO afferents was merged into the standard brain based on the boundary of several neuropiles, greatly supporting the understanding of the spatial relationship between these identified neurons and JO afferents. The visualization of the region where the JO afferents are closely appositioned to these DL interneurons demonstrated the difference in putative synaptic regions between the JO afferents and these DL interneurons (DL-Int-1 and DL-Int-2 in the DL. The neural circuits related to the vibration-processing interneurons are discussed.

  19. Social waves in giant honeybees (Apis dorsata) elicit nest vibrations.

    Science.gov (United States)

    Kastberger, Gerald; Weihmann, Frank; Hoetzl, Thomas

    2013-07-01

    Giant honeybees (Apis dorsata) nest in the open and have developed a wide array of strategies for colony defence, including the Mexican wave-like shimmering behaviour. In this collective response, the colony members perform upward flipping of their abdomens in coordinated cascades across the nest surface. The time-space properties of these emergent waves are response patterns which have become of adaptive significance for repelling enemies in the visual domain. We report for the first time that the mechanical impulse patterns provoked by these social waves and measured by laser Doppler vibrometry generate vibrations at the central comb of the nest at the basic (='natural') frequency of 2.156 ± 0.042 Hz which is more than double the average repetition rate of the driving shimmering waves. Analysis of the Fourier spectra of the comb vibrations under quiescence and arousal conditions provoked by mass flight activity and shimmering waves gives rise to the proposal of two possible models for the compound physical system of the bee nest: According to the elastic oscillatory plate model, the comb vibrations deliver supra-threshold cues preferentially to those colony members positioned close to the comb. The mechanical pendulum model predicts that the comb vibrations are sensed by the members of the bee curtain in general, enabling mechanoreceptive signalling across the nest, also through the comb itself. The findings show that weak and stochastic forces, such as general quiescence or diffuse mass flight activity, cause a harmonic frequency spectrum of the comb, driving the comb as an elastic plate. However, shimmering waves provide sufficiently strong forces to move the nest as a mechanical pendulum. This vibratory behaviour may support the colony-intrinsic information hypothesis herein that the mechanical vibrations of the comb provoked by shimmering do have the potential to facilitate immediate communication of the momentary defensive state of the honeybee nest to

  20. Social waves in giant honeybees ( Apis dorsata) elicit nest vibrations

    Science.gov (United States)

    Kastberger, Gerald; Weihmann, Frank; Hoetzl, Thomas

    2013-07-01

    Giant honeybees ( Apis dorsata) nest in the open and have developed a wide array of strategies for colony defence, including the Mexican wave-like shimmering behaviour. In this collective response, the colony members perform upward flipping of their abdomens in coordinated cascades across the nest surface. The time-space properties of these emergent waves are response patterns which have become of adaptive significance for repelling enemies in the visual domain. We report for the first time that the mechanical impulse patterns provoked by these social waves and measured by laser Doppler vibrometry generate vibrations at the central comb of the nest at the basic (=`natural') frequency of 2.156 ± 0.042 Hz which is more than double the average repetition rate of the driving shimmering waves. Analysis of the Fourier spectra of the comb vibrations under quiescence and arousal conditions provoked by mass flight activity and shimmering waves gives rise to the proposal of two possible models for the compound physical system of the bee nest: According to the elastic oscillatory plate model, the comb vibrations deliver supra-threshold cues preferentially to those colony members positioned close to the comb. The mechanical pendulum model predicts that the comb vibrations are sensed by the members of the bee curtain in general, enabling mechanoreceptive signalling across the nest, also through the comb itself. The findings show that weak and stochastic forces, such as general quiescence or diffuse mass flight activity, cause a harmonic frequency spectrum of the comb, driving the comb as an elastic plate. However, shimmering waves provide sufficiently strong forces to move the nest as a mechanical pendulum. This vibratory behaviour may support the colony-intrinsic information hypothesis herein that the mechanical vibrations of the comb provoked by shimmering do have the potential to facilitate immediate communication of the momentary defensive state of the honeybee nest to the

  1. Parietal lesion effects on cued recall following pair associate learning.

    Science.gov (United States)

    Ben-Zvi, Shir; Soroker, Nachum; Levy, Daniel A

    2015-07-01

    We investigated the involvement of the posterior parietal cortex in episodic memory in a lesion-effects study of cued recall following pair-associate learning. Groups of patients who had experienced first-incident stroke, generally in middle cerebral artery territory, and exhibited damage that included lateral posterior parietal regions, were tested within an early post-stroke time window. In three experiments, patients and matched healthy comparison groups executed repeated study and cued recall test blocks of pairs of words (Experiment 1), pairs of object pictures (Experiment 2), or pairs of object pictures and environmental sounds (Experiment 3). Patients' brain CT scans were subjected to quantitative analysis of lesion volumes. Behavioral and lesion data were used to compute correlations between area lesion extent and memory deficits, and to conduct voxel-based lesion-symptom mapping. These analyses implicated lateral ventral parietal cortex, especially the angular gyrus, in cued recall deficits, most pronouncedly in the cross-modal picture-sound pairs task, though significant parietal lesion effects were also found in the unimodal word pairs and picture pairs tasks. In contrast to an earlier study in which comparable parietal lesions did not cause deficits in item recognition, these results indicate that lateral posterior parietal areas make a substantive contribution to demanding forms of recollective retrieval as represented by cued recall, especially for complex associative representations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Recommendation System Based On Association Rules For Distributed E-Learning Management Systems

    Science.gov (United States)

    Mihai, Gabroveanu

    2015-09-01

    Traditional Learning Management Systems are installed on a single server where learning materials and user data are kept. To increase its performance, the Learning Management System can be installed on multiple servers; learning materials and user data could be distributed across these servers obtaining a Distributed Learning Management System. In this paper is proposed the prototype of a recommendation system based on association rules for Distributed Learning Management System. Information from LMS databases is analyzed using distributed data mining algorithms in order to extract the association rules. Then the extracted rules are used as inference rules to provide personalized recommendations. The quality of provided recommendations is improved because the rules used to make the inferences are more accurate, since these rules aggregate knowledge from all e-Learning systems included in Distributed Learning Management System.

  3. The power of associative learning and the ontogeny of optimal behaviour

    OpenAIRE

    Enquist, Magnus; Lind, Johan; Ghirlanda, Stefano

    2016-01-01

    Behaving efficiently (optimally or near-optimally) is central to animals' adaptation to their environment. Much evolutionary biology assumes, implicitly or explicitly, that optimal behavioural strategies are genetically inherited, yet the behaviour of many animals depends crucially on learning. The question of how learning contributes to optimal behaviour is largely open. Here we propose an associative learning model that can learn optimal behaviour in a wide variety of ecologically relevant ...

  4. Massive attack of honeybee on macaws (Ara ararauna and Ara chloropterus) in Brazil - A case report.

    Science.gov (United States)

    Milbradt, Elisane Lenita; Silva, Tarcísio Macedo; Hataka, Alessandre; Teixeira, Carlos Roberto; Okamoto, Adriano Sakai; Andreatti Filho, Raphael Lucio

    2017-09-15

    Three adult birds of the species Ara chloropterus and five of the species Ara ararauna from a conservation breeding facility suffered a massive attack by honeybees. The A. chloropterus birds presented swollen puncture lesions with stingers (mainly in the facial regions without feathers), swelling of the eyelids and subcutaneous tissue, and respiratory distress, and they were treated with intramuscular injections of 1.67 mg/kg of promethazine and 10 mg/kg of hydrocortisone followed by removal of the stingers. Complete remission of the clinical signs occurred 48 hours after start of treatment. The five A. ararauna birds died before they arrived at the veterinary hospital, and the necropsies found stingers in the areas of the face without feathers and the subcutaneous tissue, which were associated with erythema, bruising, and swelling. Food content from the crop was found in the oral cavity and the tracheal lumen, and marked congestion was observed in the heart, liver, spleen, lungs, kidneys, brain, and cerebellum. Among the histopathological findings, significant swelling of the myocytes in the endocardium and vascular dilation with erythroid repletion were observed, and there were multifocal areas of centrilobular necrosis associated with severe congestion and hemorrhaging in the hepatic tissue. Severe acute tubular necrosis and hydropic-vacuolar degeneration were observed in the kidneys. The clinical signs and pathological findings suggest envenomation due to a massive bee attack, the first such report for Psittacidae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Factors associated with learning management in Mexican micro-entrepreneurs

    Directory of Open Access Journals (Sweden)

    Alejandro Mungaray Lagarda

    2016-10-01

    Full Text Available The learning capacity of social based Mexican micro-entrepreneurs to generate new knowledge and incorporate it to its products and services is evaluated. The above is done through a confirmatory factor analysis and structural linear equation system, and the presence of static and dynamic dimensions in learning capacity, which are represented by individual stocks and flows of knowledge. The positive relationship between them demonstrates the presence of learning processes that impact positively their economic performance.

  6. Contingencies: Learning Numerical and Emotional Associations in an Uncertain World

    OpenAIRE

    Langhe, Bart

    2011-01-01

    textabstractThe ability to learn about the relation or covariation between events happening in the world is probably the most critical aspect of human cognition. This dissertation examines how the human mind learns numerical and emotional relations and explores consequences for managerial and consumer decision making. First, we study how uncertainty in the environment affects covariation learning and explore the consequences for consumers’ price-quality inferences and product valuation. Secon...

  7. Sleep directly following learning benefits consolidation of spatial associative memory.

    Science.gov (United States)

    Talamini, Lucia M; Nieuwenhuis, Ingrid L C; Takashima, Atsuko; Jensen, Ole

    2008-04-01

    The last decade has brought forth convincing evidence for a role of sleep in non-declarative memory. A similar function of sleep in episodic memory is supported by various correlational studies, but direct evidence is limited. Here we show that cued recall of face-location associations is significantly higher following a 12-h retention interval containing sleep than following an equally long period of waking. Furthermore, retention is significantly higher over a 24-h sleep-wake interval than over an equally long wake-sleep interval. This difference occurs because retention during sleep was significantly better when sleep followed learning directly, rather than after a day of waking. These data demonstrate a beneficial effect of sleep on memory that cannot be explained solely as a consequence of reduced interference. Rather, our findings suggest a competitive consolidation process, in which the fate of a memory depends, at least in part, on its relative stability at sleep onset: Strong memories tend to be preserved, while weaker memories erode still further. An important aspect of memory consolidation may thus result from the removal of irrelevant memory "debris."

  8. The Influence of Gustatory and Olfactory Experiences on Responsiveness to Reward in the Honeybee

    Science.gov (United States)

    Ramírez, Gabriela P.; Martínez, Andrés S.; Fernández, Vanesa M.; Corti Bielsa, Gonzalo; Farina, Walter M.

    2010-01-01

    Background Honeybees (Apis mellifera) exhibit an extraordinarily tuned division of labor that depends on age polyethism. This adjustment is generally associated with the fact that individuals of different ages display different response thresholds to given stimuli, which determine specific behaviors. For instance, the sucrose-response threshold (SRT) which largely depends on genetic factors may also be affected by the nectar sugar content. However, it remains unknown whether SRTs in workers of different ages and tasks can differ depending on gustatory and olfactory experiences. Methodology Groups of worker bees reared either in an artificial environment or else in a queen-right colony, were exposed to different reward conditions at different adult ages. Gustatory response scores (GRSs) and odor-memory retrieval were measured in bees that were previously exposed to changes in food characteristics. Principal Findings Results show that the gustatory responses of pre-foraging-aged bees are affected by changes in sucrose solution concentration and also to the presence of an odor provided it is presented as scented sucrose solution. In contrast no differences in worker responses were observed when presented with odor only in the rearing environment. Fast modulation of GRSs was observed in older bees (12–16 days of age) which are commonly involved in food processing tasks within the hive, while slower modulation times were observed in younger bees (commonly nurse bees, 6–9 days of age). This suggests that older food-processing bees have a higher plasticity when responding to fluctuations in resource information than younger hive bees. Adjustments in the number of trophallaxis events were also found when scented food circulated inside the nest, and this was positively correlated with the differences in timing observed in gustatory responsiveness and memory retention for hive bees of different age classes. Conclusions This work demonstrates the accessibility of

  9. Associative and sensorimotor learning for parenting involves mirror neurons under the influence of oxytocin.

    Science.gov (United States)

    Ho, S Shaun; Macdonald, Adam; Swain, James E

    2014-04-01

    Mirror neuron-based associative learning may be understood according to associative learning theories, in addition to sensorimotor learning theories. This is important for a comprehensive understanding of the role of mirror neurons and related hormone modulators, such as oxytocin, in complex social interactions such as among parent-infant dyads and in examples of mirror neuron function that involve abnormal motor systems such as depression.

  10. Associative and sensorimotor learning for parenting involves mirror neurons under the influence of oxytocin

    OpenAIRE

    Ho, S. Shaun; MacDonald, Adam; Swain, James E.

    2014-01-01

    Mirror neuron–based associative learning may be understood according to associative learning theories, in addition to sensorimotor learning theories. This is important for a comprehensive understanding of the role of mirror neurons and related hormone modulators, such as oxytocin, in complex social interactions such as among parent–infant dyads and in examples of mirror neuron function that involve abnormal motor systems such as depression.

  11. A Strong Immune Response in Young Adult Honeybees Masks Their Increased Susceptibility to Infection Compared to Older Bees

    Science.gov (United States)

    Bull, James C.; Ryabov, Eugene V.; Prince, Gill; Mead, Andrew; Zhang, Cunjin; Baxter, Laura A.; Pell, Judith K.; Osborne, Juliet L.; Chandler, Dave

    2012-01-01

    Honeybees, Apis mellifera, show age-related division of labor in which young adults perform maintenance (“housekeeping”) tasks inside the colony before switching to outside foraging at approximately 23 days old. Disease resistance is an important feature of honeybee biology, but little is known about the interaction of pathogens and age-related division of labor. We tested a hypothesis that older forager bees and younger “house” bees differ in susceptibility to infection. We coupled an infection bioassay with a functional analysis of gene expression in individual bees using a whole genome microarray. Forager bees treated with the entomopathogenic fungus Metarhizium anisopliae s.l. survived for significantly longer than house bees. This was concomitant with substantial differences in gene expression including genes associated with immune function. In house bees, infection was associated with differential expression of 35 candidate immune genes contrasted with differential expression of only two candidate immune genes in forager bees. For control bees (i.e. not treated with M. anisopliae) the development from the house to the forager stage was associated with differential expression of 49 candidate immune genes, including up-regulation of the antimicrobial peptide gene abaecin, plus major components of the Toll pathway, serine proteases, and serpins. We infer that reduced pathogen susceptibility in forager bees was associated with age-related activation of specific immune system pathways. Our findings contrast with the view that the immunocompetence in social insects declines with the onset of foraging as a result of a trade-off in the allocation of resources for foraging. The up-regulation of immune-related genes in young adult bees in response to M. anisopliae infection was an indicator of disease susceptibility; this also challenges previous research in social insects, in which an elevated immune status has been used as a marker of increased disease

  12. Rapid Association Learning in the Primate Prefrontal Cortex in the Absence of Behavioral Reversals

    Science.gov (United States)

    Cromer, Jason A.; Machon, Michelle; Miller, Earl K.

    2011-01-01

    The PFC plays a central role in our ability to learn arbitrary rules, such as "green means go." Previous experiments from our laboratory have used conditional association learning to show that slow, gradual changes in PFC neural activity mirror monkeys' slow acquisition of associations. These previous experiments required monkeys to repeatedly…

  13. Psychosocial and Adaptive Deficits Associated with Learning Disability Subtypes

    Science.gov (United States)

    Backenson, Erica M.; Holland, Sara C.; Kubas, Hanna A.; Fitzer, Kim R.; Wilcox, Gabrielle; Carmichael, Jessica A.; Fraccaro, Rebecca L.; Smith, Amanda D.; Macoun, Sarah J.; Harrison, Gina L.; Hale, James B.

    2015-01-01

    Children with specific learning disabilities (SLD) have deficits in the basic psychological processes that interfere with learning and academic achievement, and for some SLD subtypes, these deficits can also lead to emotional and/or behavior problems. This study examined psychosocial functioning in 123 students, aged 6 to 11, who underwent…

  14. Contingencies: Learning Numerical and Emotional Associations in an Uncertain World

    NARCIS (Netherlands)

    B. de Langhe (Bart)

    2011-01-01

    textabstractThe ability to learn about the relation or covariation between events happening in the world is probably the most critical aspect of human cognition. This dissertation examines how the human mind learns numerical and emotional relations and explores consequences for managerial and

  15. Beehold : the colony of the honeybee (Apis mellifera L) as a bio-sampler for pollutants and plant pathogens

    NARCIS (Netherlands)

    Steen, van der J.J.M.

    2016-01-01

    Bio-sampling is a function of bio-indication. Bio-indication with honeybee colonies (Apis mellifera L) is where the research fields of environmental technology and apiculture overlap. The honeybees are samplers of the environment by collecting unintentionally and simultaneously, along

  16. Experimental evidence that honeybees depress wild insect densities in a flowering crop.

    Science.gov (United States)

    Lindström, Sandra A M; Herbertsson, Lina; Rundlöf, Maj; Bommarco, Riccardo; Smith, Henrik G

    2016-11-30

    While addition of managed honeybees (Apis mellifera) improves pollination of many entomophilous crops, it is unknown if it simultaneously suppresses the densities of wild insects through competition. To investigate this, we added 624 honeybee hives to 23 fields of oilseed rape (Brassica napus L.) over 2 years and made sure that the areas around 21 other fields were free from honeybee hives. We demonstrate that honeybee addition depresses the densities of wild insects (bumblebees, solitary bees, hoverflies, marchflies, other flies, and other flying and flower-visiting insects) even in a massive flower resource such as oilseed rape. The effect was independent of the complexity of the surrounding landscape, but increased with the size of the crop field, which suggests that the effect was caused by spatial displacement of wild insects. Our results have potential implications both for the pollination of crops (if displacement of wild pollinators offsets benefits achieved by adding honeybees) and for conservation of wild insects (if displacement results in negative fitness consequences). © 2016 The Author(s).

  17. Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection.

    Science.gov (United States)

    Dyer, Adrian G; Spaethe, Johannes; Prack, Sabina

    2008-07-01

    Bumblebee (Bombus terrestris) discrimination of targets with broadband reflectance spectra was tested using simultaneous viewing conditions, enabling an accurate determination of the perceptual limit of colour discrimination excluding confounds from memory coding (experiment 1). The level of colour discrimination in bumblebees, and honeybees (Apis mellifera) (based upon previous observations), exceeds predictions of models considering receptor noise in the honeybee. Bumblebee and honeybee photoreceptors are similar in spectral shape and spacing, but bumblebees exhibit significantly poorer colour discrimination in behavioural tests, suggesting possible differences in spatial or temporal signal processing. Detection of stimuli in a Y-maze was evaluated for bumblebees (experiment 2) and honeybees (experiment 3). Honeybees detected stimuli containing both green-receptor-contrast and colour contrast at a visual angle of approximately 5 degrees , whilst stimuli that contained only colour contrast were only detected at a visual angle of 15 degrees . Bumblebees were able to detect these stimuli at a visual angle of 2.3 degrees and 2.7 degrees , respectively. A comparison of the experiments suggests a tradeoff between colour discrimination and colour detection in these two species, limited by the need to pool colour signals to overcome receptor noise. We discuss the colour processing differences and possible adaptations to specific ecological habitats.

  18. Preexposure effects in spatial learning: From gestaltic to associative and attentional cognitive maps

    Directory of Open Access Journals (Sweden)

    Edward S. Redhead

    2002-01-01

    Full Text Available In this paper a series of studies and theoretical proposals about how preexposure to environmental cues affects subsequent spatial learning are reviewed. Traditionally, spatial learning had been thought to depend on gestaltic non-associative processes, and well established phenomena such as latent learning or instantaneous transfer have been taken to provide evidence for this sort of cognitive mapping. However, reviewing the literature examining these effects reveals that there is no need to advocate for gestaltic processes since standard associative learning theory provides an adequate framework for accounting for navigation skills. Recent studies reveal that attentional processes play a role in spatial learning. The need for an integrated attentional and associative approach to explain spatial learning is discussed.

  19. Comparative brain transcriptomic analyses of scouting across distinct behavioural and ecological contexts in honeybees

    Science.gov (United States)

    Liang, Zhengzheng S.; Mattila, Heather R.; Rodriguez-Zas, Sandra L.; Southey, Bruce R.; Seeley, Thomas D.; Robinson, Gene E.

    2014-01-01

    Individual differences in behaviour are often consistent across time and contexts, but it is not clear whether such consistency is reflected at the molecular level. We explored this issue by studying scouting in honeybees in two different behavioural and ecological contexts: finding new sources of floral food resources and finding a new nest site. Brain gene expression profiles in food-source and nest-site scouts showed a significant overlap, despite large expression differences associated with the two different contexts. Class prediction and ‘leave-one-out’ cross-validation analyses revealed that a bee's role as a scout in either context could be predicted with 92.5% success using 89 genes at minimum. We also found that genes related to four neurotransmitter systems were part of a shared brain molecular signature in both types of scouts, and the two types of scouts were more similar for genes related to glutamate and GABA than catecholamine or acetylcholine signalling. These results indicate that consistent behavioural tendencies across different ecological contexts involve a mixture of similarities and differences in brain gene expression. PMID:25355476

  20. Short communication: Lactic acid bacteria from the honeybee inhibit the in vitro growth of mastitis pathogens.

    Science.gov (United States)

    Piccart, K; Vásquez, A; Piepers, S; De Vliegher, S; Olofsson, T C

    2016-04-01

    Despite the increasing knowledge of prevention and control strategies, bovine mastitis remains one of the most challenging diseases in the dairy industry. This study investigated the antimicrobial activity of 13 species of lactic acid bacteria (LAB), previously isolated from the honey crop of the honeybee, on several mastitis pathogens. The viable LAB were first reintroduced into a sterilized heather honey matrix. More than 20 different bovine mastitis isolates were tested against the mixture of the 13 LAB species in the honey medium using a dual-culture overlay assay. The mastitis isolates were identified through bacteriological culturing, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Additionally, the mastitis isolates were subjected to antimicrobial susceptibility testing through disk diffusion. Growth of all tested mastitis pathogens, including the ones displaying antimicrobial resistance to one or more antimicrobial compounds, were inhibited to some extent by the honey and LAB combination. The antibacterial effect of these LAB opens up new perspectives on alternative treatment and prevention of bovine mastitis. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. The Association between Students' Style of Learning Preferences, Social Presence, Collaborative Learning and Learning Outcomes

    Science.gov (United States)

    Chen, Clement; Jones, Keith T.; Xu, Shawn

    2018-01-01

    Differences in styles of learning have become important considerations at all levels of education over the last several years. Examining college students' preferred style of learning is useful for course design and effective instructional methods. Using the Felder-Silverman Index of Learning Styles (ILS), we investigate how students' styles of…

  2. Component-resolved evaluation of the content of major allergens in therapeutic extracts for specific immunotherapy of honeybee venom allergy

    DEFF Research Database (Denmark)

    Blank, Simon; Etzold, Stefanie; Darsow, Ulf

    2017-01-01

    Allergen-specific immunotherapy is the only curative treatment of honeybee venom (HBV) allergy, which is able to protect against further anaphylactic sting reactions. Recent analyses on a molecular level have demonstrated that HBV represents a complex allergen source that contains more relevant...... major allergens than formerly anticipated. Moreover, allergic patients show very diverse sensitization profiles with the different allergens. HBV-specific immunotherapy is conducted with HBV extracts which are derived from pure venom. The allergen content of these therapeutic extracts might differ due...... to natural variations of the source material or different down-stream processing strategies of the manufacturers. Since variations of the allergen content of therapeutic HBV extracts might be associated with therapeutic failure, we adressed the component-resolved allergen composition of different therapeutic...

  3. Exposure to Sublethal Doses of Fipronil and Thiacloprid Highly Increases Mortality of Honeybees Previously Infected by Nosema ceranae

    Science.gov (United States)

    Vidau, Cyril; Diogon, Marie; Aufauvre, Julie; Fontbonne, Régis; Viguès, Bernard; Brunet, Jean-Luc; Texier, Catherine; Biron, David G.; Blot, Nicolas; El Alaoui, Hicham; Belzunces, Luc P.; Delbac, Frédéric

    2011-01-01

    Background The honeybee, Apis mellifera, is undergoing a worldwide decline whose origin is still in debate. Studies performed for twenty years suggest that this decline may involve both infectious diseases and exposure to pesticides. Joint action of pathogens and chemicals are known to threaten several organisms but the combined effects of these stressors were poorly investigated in honeybees. Our study was designed to explore the effect of Nosema ceranae infection on honeybee sensitivity to sublethal doses of the insecticides fipronil and thiacloprid. Methodology/Finding Five days after their emergence, honeybees were divided in 6 experimental groups: (i) uninfected controls, (ii) infected with N. ceranae, (iii) uninfected and exposed to fipronil, (iv) uninfected and exposed to thiacloprid, (v) infected with N. ceranae and exposed 10 days post-infection (p.i.) to fipronil, and (vi) infected with N. ceranae and exposed 10 days p.i. to thiacloprid. Honeybee mortality and insecticide consumption were analyzed daily and the intestinal spore content was evaluated 20 days after infection. A significant increase in honeybee mortality was observed when N. ceranae-infected honeybees were exposed to sublethal doses of insecticides. Surprisingly, exposures to fipronil and thiacloprid had opposite effects on microsporidian spore production. Analysis of the honeybee detoxification system 10 days p.i. showed that N. ceranae infection induced an increase in glutathione-S-transferase activity in midgut and fat body but not in 7-ethoxycoumarin-O-deethylase activity. Conclusions/Significance After exposure to sublethal doses of fipronil or thiacloprid a higher mortality was observed in N. ceranae-infected honeybees than in uninfected ones. The synergistic effect of N. ceranae and insecticide on honeybee mortality, however, did not appear strongly linked to a decrease of the insect detoxification system. These data support the hypothesis that the combination of the increasing

  4. Reduced autobiographical memory specificity is associated with impaired discrimination learning in anxiety disorder patients

    Science.gov (United States)

    Lenaert, Bert; Boddez, Yannick; Vervliet, Bram; Schruers, Koen; Hermans, Dirk

    2015-01-01

    Associative learning plays an important role in the development of anxiety disorders, but a thorough understanding of the variables that impact such learning is still lacking. We investigated whether individual differences in autobiographical memory specificity are related to discrimination learning and generalization. In an associative learning task, participants learned the association between two pictures of female faces and a non-aversive outcome. Subsequently, six morphed pictures functioning as generalization stimuli (GSs) were introduced. In a sample of healthy participants (Study 1), we did not find evidence for differences in discrimination learning as a function of memory specificity. In a sample of anxiety disorder patients (Study 2), individuals who were characterized by low memory specificity showed deficient discrimination learning relative to high specific individuals. In contrast to previous findings, results revealed no effect of memory specificity on generalization. These results indicate that impaired discrimination learning, previously shown in patients suffering from an anxiety disorder, may be—in part—due to limited memory specificity. Together, these studies emphasize the importance of incorporating cognitive variables in associative learning theories and their implications for the development of anxiety disorders. In addition, re-analyses of the data (Study 3) showed that patients suffering from panic disorder showed higher outcome expectancies in the presence of the stimulus that was never followed by an outcome during discrimination training, relative to patients suffering from other anxiety disorders and healthy participants. Because we used a neutral, non-aversive outcome (i.e., drawing of a lightning bolt), these data suggest that learning abnormalities in panic disorder may not be restricted to fear learning, but rather reflect a more general associative learning deficit that also manifests in fear irrelevant contexts. PMID

  5. From honeybees to Internet servers: biomimicry for distributed management of Internet hosting centers.

    Science.gov (United States)

    Nakrani, Sunil; Tovey, Craig

    2007-12-01

    An Internet hosting center hosts services on its server ensemble. The center must allocate servers dynamically amongst services to maximize revenue earned from hosting fees. The finite server ensemble, unpredictable request arrival behavior and server reallocation cost make server allocation optimization difficult. Server allocation closely resembles honeybee forager allocation amongst flower patches to optimize nectar influx. The resemblance inspires a honeybee biomimetic algorithm. This paper describes details of the honeybee self-organizing model in terms of information flow and feedback, analyzes the homology between the two problems and derives the resulting biomimetic algorithm for hosting centers. The algorithm is assessed for effectiveness and adaptiveness by comparative testing against benchmark and conventional algorithms. Computational results indicate that the new algorithm is highly adaptive to widely varying external environments and quite competitive against benchmark assessment algorithms. Other swarm intelligence applications are briefly surveyed, and some general speculations are offered regarding their various degrees of success.

  6. Short-sighted evolution of virulence in parasitic honeybee workers ( Apis mellifera capensis Esch.)

    Science.gov (United States)

    Moritz, Robin F. A.; Pirk, Christian W. W.; Hepburn, H. Randall; Neumann, Peter

    2008-06-01

    The short-sighted selection hypothesis for parasite virulence predicts that winners of within-host competition are poorer at transmission to new hosts. Social parasitism by self-replicating, female-producing workers occurs in the Cape honeybee Apis mellifera capensis, and colonies of other honeybee subspecies are susceptible hosts. We found high within-host virulence but low transmission rates in a clone of social parasitic A. m. capensis workers invading the neighbouring subspecies A. m. scutellata. In contrast, parasitic workers from the endemic range of A. m. capensis showed low within-host virulence but high transmission rates. This suggests a short-sighted selection scenario for the host-parasite co-evolution in the invasive range of the Cape honeybee, probably facilitated by beekeeping-assisted parasite transmission in apiaries.

  7. Chemical Composition of Different Botanical Origin Honeys Produced by Sicilian Black Honeybees (Apis mellifera ssp. sicula).

    Science.gov (United States)

    Mannina, Luisa; Sobolev, Anatoly P; Di Lorenzo, Arianna; Vista, Silvia; Tenore, Gian Carlo; Daglia, Maria

    2015-07-01

    In 2008 a Slow Food Presidium was launched in Sicily (Italy) for an early warning of the risk of extinction of the Sicilian native breed of black honeybee (Apis mellifera L. ssp sicula). Today, the honey produced by these honeybees is the only Sicilian honey produced entirely by the black honeybees. In view of few available data regarding the chemical composition of A. mellifera ssp. sicula honeys, in the present investigation the chemical compositions of sulla honey (Hedysarum coronarium L.) and dill honey (Anethum graveolens L.) were studied with a multimethodological approach, which consists of HPLC-PDA-ESI-MSn and NMR spectroscopy. Moreover, three unifloral honeys (lemon honey (obtained from Citrus limon (L.) Osbeck), orange honey (Citrus arantium L.), and medlar honey (Eriobotrya japonica (Thunb.) Lindl)), with known phenol and polyphenol compositions, were studied with NMR spectroscopy to deepen the knowledge about sugar and amino acid compositions.

  8. Predicting performance on the Raven’s Matrices: The roles of associative learning and retrieval efficiency

    OpenAIRE

    Lilienthal, Lindsey; Tamez, Elaine; Myerson, Joel; Hale, Sandra

    2013-01-01

    Previous studies have shown that performance on Williams and Pearlberg’s (2006) complex associative learning task is a good predictor of fluid intelligence. This task is similar in structure to that used in studying the fan effect (Anderson, 1974), as both tasks involve forming multiple associations and require retrieval in the face of interference. The purpose of the present study was to investigate the relations among complex associative learning, working memory, and fluid in...

  9. Novel design of honeybee-inspired needles for percutaneous procedure.

    Science.gov (United States)

    Sahlabadi, Mohammad; Hutapea, Parsaoran

    2018-04-18

    The focus of this paper is to present new designs of innovative bioinspired needles to be used during percutaneous procedures. Insect stingers have been known to easily penetrate soft tissues. Bioinspired needles mimicking the barbs in a honeybee stinger were developed for a smaller insertion force, which can provide a less invasive procedure. Decreasing the insertion force will decrease the tissue deformation, which is essential for more accurate targeting. In this study, some design parameters, in particular, barb shape and geometry (i.e. front angle, back angle, and height) were defined, and their effects on the insertion force were investigated. Three-dimensional printing technology was used to manufacture bioinspired needles. A specially-designed insertion test setup using tissue mimicking polyvinyl chloride (PVC) gels was developed to measure the insertion and extraction forces. The barb design parameters were then experimentally modified through detailed experimental procedures to further reduce the insertion force. Different scales of the barbed needles were designed and used to explore the size-scale effect on the insertion force. To further investigate the efficacy of the proposed needle design in real surgeries, preliminary ex vivo insertion tests into bovine liver tissue were performed. Our results show that the insertion force of the needles in different scales decreased by 21-35% in PVC gel insertion tests, and by 46% in bovine liver tissue insertion tests.

  10. Radioprotection: mechanism and radioprotective agents including honeybee venom

    Energy Technology Data Exchange (ETDEWEB)

    Varanda, E.A.; Tavares, D.C. [UNESP, Araraquara, SP (Brazil). Escola de Ciencias Farmaceuticas. Dept. de Ciencias Biologicas

    1998-07-01

    Since 1949, a great deal of research has been carried on the radioprotective action of chemical substances. These substances have shown to reduce mortality when administered to animals prior to exposure to a lethal dose of radiation. This fact is of considerable importance since it permits reduction of radiation-induced damage and provides prophylactic treatment for the damaging effects produced by radiotherapy. The following radioprotection mechanisms were proposed: free radical scavenger, repair by hydrogen donation to target molecules formation of mixed disulfides, delay of cellular division and induction of hypoxia in the tissues. Radioprotective agents have been divided into four major groups: the thiol compounds, other sulfur compounds, pharmacological agents (anesthetic drugs, analgesics, tranquilizers, etc.) and other radioprotective agents (WR-1065, WR-2721, vitamins C and E, glutathione, etc.). Several studies revealed the radioprotective action of Apis mellifera honeybee venom as well as that of its components mellitin and histamine. Radioprotective activity of bee venom involves mainly the stimulation of the hematopoietic system. In addition, release of histamine and reduction in oxygen tension also contribute to the radioprotective action of bee venom. (author)

  11. The connection between landscapes and the solar ephemeris in honeybees.

    Science.gov (United States)

    Towne, William F; Moscrip, Heather

    2008-12-01

    Honeybees connect the sun's daily pattern of azimuthal movement to some aspect of the landscape around their nests. In the present study, we ask what aspect of the landscape is used in this context--the entire landscape panorama or only sectors seen along familiar flight routes. Previous studies of the solar ephemeris memory in bees have generally used bees that had experience flying a specific route, usually along a treeline, to a feeder. When such bees were moved to a differently oriented treeline on overcast days, the bees oriented their communicative dances as if they were still at the first treeline, based on a memory of the sun's course in relation to some aspect of the site, possibly the familiar route along the treeline or possibly the entire landscape or skyline panorama. Our results show that bees lacking specific flight-route training can nonetheless recall the sun's compass bearing relative to novel flight routes in their natal landscape. Specifically, we moved a hive from one landscape to a differently oriented twin landscape, and only after transplantation under overcast skies did we move a feeder away from the hive. These bees nonetheless danced accurately by memory of the sun's course in relation to their natal landscape. The bees' knowledge of the relationship between the sun and landscape, therefore, is not limited to familiar flight routes and so may encompass, at least functionally, the entire panorama. Further evidence suggests that the skyline in particular may be the bees' preferred reference in this context.

  12. The depth of the honeybee's backup sun-compass systems.

    Science.gov (United States)

    Dovey, Katelyn M; Kemfort, Jordan R; Towne, William F

    2013-06-01

    Honeybees have at least three compass mechanisms: a magnetic compass; a celestial or sun compass, based on the daily rotation of the sun and sun-linked skylight patterns; and a backup celestial compass based on a memory of the sun's movements over time in relation to the landscape. The interactions of these compass systems have yet to be fully elucidated, but the celestial compass is primary in most contexts, the magnetic compass is a backup in certain contexts, and the bees' memory of the sun's course in relation to the landscape is a backup system for cloudy days. Here we ask whether bees have any further compass systems, for example a memory of the sun's movements over time in relation to the magnetic field. To test this, we challenged bees to locate the sun when their known celestial compass systems were unavailable, that is, under overcast skies in unfamiliar landscapes. We measured the bees' knowledge of the sun's location by observing their waggle dances, by which foragers indicate the directions toward food sources in relation to the sun's compass bearing. We found that bees have no celestial compass systems beyond those already known: under overcast skies in unfamiliar landscapes, bees attempt to use their landscape-based backup system to locate the sun, matching the landscapes or skylines at the test sites with those at their natal sites as best they can, even if the matches are poor and yield weak or inconsistent orientation.

  13. Neonicotinoid pesticides can reduce honeybee colony genetic diversity.

    Directory of Open Access Journals (Sweden)

    Nadège Forfert

    Full Text Available Neonicotinoid insecticides can cause a variety of adverse sub-lethal effects in bees. In social species such as the honeybee, Apis mellifera, queens are essential for reproduction and colony functioning. Therefore, any negative effect of these agricultural chemicals on the mating success of queens may have serious consequences for the fitness of the entire colony. Queens were exposed to the common neonicotinoid pesticides thiamethoxam and clothianidin during their developmental stage. After mating, their spermathecae were dissected to count the number of stored spermatozoa. Furthermore, their worker offspring were genotyped with DNA microsatellites to determine the number of matings and the genotypic composition of the colony. Colonies providing the male mating partners were also inferred. Both neonicotinoid and control queens mated with drones originating from the same drone source colonies, and stored similar number of spermatozoa. However, queens reared in colonies exposed to both neonicotinoids experienced fewer matings. This resulted in a reduction of the genetic diversity in their colonies (i.e. higher intracolonial relatedness. As decreased genetic diversity among worker bees is known to negatively affect colony vitality, neonicotinoids may have a cryptic effect on colony health by reducing the mating frequency of queens.

  14. Factors of honeybee colony performances on sunflower at apiary scale

    Directory of Open Access Journals (Sweden)

    Kretzschmar André

    2017-11-01

    Full Text Available An observatory of honeybee colonies (Apis mellifera, consisting of at least 200 colonies, divided into 10 apiaries of 20 colonies, was monitored for three years on sunflower honeyflow (2015–2017. The purpose of this observatory is to understand which factors control colony performance during sunflower honeyflow in south-western France. From the temporal dynamics of weight gain, statistical analysis reveals a hierarchy of factors. First, variability in apiary scale performance is an image of the effect of resource variability. But, in addition to this primordial factor, two other factors contribute very significantly to performance. On the one hand, the amount of capped brood and the number of bees at the time of the installation of the apiary: these two elements testify to the vitality of the colony. The second remarkable factor is the Varroa load, which strongly penalizes performance beyond a certain threshold. The negative effect of the Varroa load on the colony performance is minimized in case of abondant sunflower honey flow.

  15. Radioprotection: mechanism and radioprotective agents including honeybee venom

    International Nuclear Information System (INIS)

    Varanda, E.A.; Tavares, D.C.

    1998-01-01

    Since 1949, a great deal of research has been carried on the radioprotective action of chemical substances. These substances have shown to reduce mortality when administered to animals prior to exposure to a lethal dose of radiation. This fact is of considerable importance since it permits reduction of radiation-induced damage and provides prophylactic treatment for the damaging effects produced by radiotherapy. The following radioprotection mechanisms were proposed: free radical scavenger, repair by hydrogen donation to target molecules formation of mixed disulfides, delay of cellular division and induction of hypoxia in the tissues. Radioprotective agents have been divided into four major groups: the thiol compounds, other sulfur compounds, pharmacological agents (anesthetic drugs, analgesics, tranquilizers, etc.) and other radioprotective agents (WR-1065, WR-2721, vitamins C and E, glutathione, etc.). Several studies revealed the radioprotective action of Apis mellifera honeybee venom as well as that of its components mellitin and histamine. Radioprotective activity of bee venom involves mainly the stimulation of the hematopoietic system. In addition, release of histamine and reduction in oxygen tension also contribute to the radioprotective action of bee venom. (author)

  16. Contribution of honeybee drones of different age to colonial thermoregulation.

    Science.gov (United States)

    Kovac, Helmut; Stabentheiner, Anton; Brodschneider, Robert

    2009-01-01

    In addition to honeybee workers, drones also contribute to colonial thermoregulation. We show the drones' contribution to thermoregulation at 5 different experimental temperatures ranging from 15-34 °C. The frequency and the degree of endothermy depended on the drones' local ambient temperature and age. Location on brood or non-brood areas had no influence. The frequency of endothermic drones and the intensity of endothermy increased with decreasing temperature. 30% of drones of 8 days and older heated their thorax by more than 1 °C above the abdomen. The youngest drones (0-2 days) did not exceed this level of endothermy. Though young drones were less often engaged in active heat production, their contribution to brood warming was not insignificant because their abundance on the brood nest was 3.5 times higher than that of the oldest drones (≥13 days). Results suggest that the stimulus for the drones' increased frequency of heating at low experimental temperatures was their low local ambient air and/or comb temperature.

  17. Contribution of honeybee drones of different age to colonial thermoregulation*

    Science.gov (United States)

    Kovac, Helmut; Stabentheiner, Anton; Brodschneider, Robert

    2011-01-01

    In addition to honeybee workers, drones also contribute to colonial thermoregulation. We show the drones’ contribution to thermoregulation at 5 different experimental temperatures ranging from 15–34 °C. The frequency and the degree of endothermy depended on the drones’ local ambient temperature and age. Location on brood or non-brood areas had no influence. The frequency of endothermic drones and the intensity of endothermy increased with decreasing temperature. 30% of drones of 8 days and older heated their thorax by more than 1 °C above the abdomen. The youngest drones (0–2 days) did not exceed this level of endothermy. Though young drones were less often engaged in active heat production, their contribution to brood warming was not insignificant because their abundance on the brood nest was 3.5 times higher than that of the oldest drones (≥13 days). Results suggest that the stimulus for the drones’ increased frequency of heating at low experimental temperatures was their low local ambient air and/or comb temperature. PMID:22140282

  18. `Special agents' trigger social waves in giant honeybees ( Apis dorsata)

    Science.gov (United States)

    Schmelzer, Evelyn; Kastberger, Gerald

    2009-12-01

    Giant honeybees ( Apis dorsata) nest in the open and have therefore evolved a variety of defence strategies. Against predatory wasps, they produce highly coordinated Mexican wavelike cascades termed ‘shimmering’, whereby hundreds of bees flip their abdomens upwards. Although it is well known that shimmering commences at distinct spots on the nest surface, it is still unclear how shimmering is generated. In this study, colonies were exposed to living tethered wasps that were moved in front of the experimental nest. Temporal and spatial patterns of shimmering were investigated in and after the presence of the wasp. The numbers and locations of bees that participated in the shimmering were assessed, and those bees that triggered the waves were identified. The findings reveal that the position of identified trigger cohorts did not reflect the experimental path of the tethered wasp. Instead, the trigger centres were primarily arranged in the close periphery of the mouth zone of the nest, around those parts where the main locomotory activity occurs. This favours the ‘special-agents’ hypothesis that suggest that groups of specialized bees initiate the shimmering.

  19. Visual and olfactory associative learning in the malaria vector Anopheles gambiae sensu stricto

    Directory of Open Access Journals (Sweden)

    Chilaka Nora

    2012-01-01

    Full Text Available Abstract Background Memory and learning are critical aspects of the ecology of insect vectors of human pathogens because of their potential effects on contacts between vectors and their hosts. Despite this epidemiological importance, there have been only a limited number of studies investigating associative learning in insect vector species and none on Anopheline mosquitoes. Methods A simple behavioural assays was developed to study visual and olfactory associative learning in Anopheles gambiae, the main vector of malaria in Africa. Two contrasted membrane qualities or levels of blood palatability were used as reinforcing stimuli for bi-directional conditioning during blood feeding. Results Under such experimental conditions An. gambiae females learned very rapidly to associate visual (chequered and white patterns and olfactory cues (presence and absence of cheese or Citronella smell with the reinforcing stimuli (bloodmeal quality and remembered the association for up to three days. Associative learning significantly increased with the strength of the conditioning stimuli used. Importantly, learning sometimes occurred faster when a positive reinforcing stimulus (palatable blood was associated with an innately preferred cue (such as a darker visual pattern. However, the use of too attractive a cue (e.g. Shropshire cheese smell was counter-productive and decreased learning success. Conclusions The results address an important knowledge gap in mosquito ecology and emphasize the role of associative memory for An. gambiae's host finding and blood-feeding behaviour with important potential implications for vector control.

  20. Use of the Learning together technique associated to the theory of significative learning

    Directory of Open Access Journals (Sweden)

    Ester López Donoso

    2008-09-01

    Full Text Available This article deals with an experimental research, regarding a qualitative and quantitative design, applied to a group of students of General Physics course during the first semester of the university career of Engineering. Historically, students of this course present learning difficulties that directly affect their performance, conceptualization and permanence in the university. The present methodology integrates the collaborative learning, denominated Learning Together", with the theory of significant learning to avoid the above-written difficulties. Results of this research show that the proposed methodology works properly, especially to improve the conceptualization.

  1. Attention Cueing and Activity Equally Reduce False Alarm Rate in Visual-Auditory Associative Learning through Improving Memory.

    Science.gov (United States)

    Nikouei Mahani, Mohammad-Ali; Haghgoo, Hojjat Allah; Azizi, Solmaz; Nili Ahmadabadi, Majid

    2016-01-01

    In our daily life, we continually exploit already learned multisensory associations and form new ones when facing novel situations. Improving our associative learning results in higher cognitive capabilities. We experimentally and computationally studied the learning performance of healthy subjects in a visual-auditory sensory associative learning task across active learning, attention cueing learning, and passive learning modes. According to our results, the learning mode had no significant effect on learning association of congruent pairs. In addition, subjects' performance in learning congruent samples was not correlated with their vigilance score. Nevertheless, vigilance score was significantly correlated with the learning performance of the non-congruent pairs. Moreover, in the last block of the passive learning mode, subjects significantly made more mistakes in taking non-congruent pairs as associated and consciously reported lower confidence. These results indicate that attention and activity equally enhanced visual-auditory associative learning for non-congruent pairs, while false alarm rate in the passive learning mode did not decrease after the second block. We investigated the cause of higher false alarm rate in the passive learning mode by using a computational model, composed of a reinforcement learning module and a memory-decay module. The results suggest that the higher rate of memory decay is the source of making more mistakes and reporting lower confidence in non-congruent pairs in the passive learning mode.

  2. MALDI Imaging Analysis of Neuropeptides in Africanized Honeybee (Apis mellifera) Brain: Effect of Aggressiveness.

    Science.gov (United States)

    Pratavieira, Marcel; Menegasso, Anally Ribeiro da Silva; Esteves, Franciele Grego; Sato, Kenny Umino; Malaspina, Osmar; Palma, Mario Sérgio

    2018-05-18

    The aggressiveness in honeybees seems to be regulated by multiple genes, under the influence of different factors, such as polyethism of workers, environmental factors, and response to alarm pheromones, creating a series of behavioral responses. It is suspected that neuropeptides seem to be involved with the regulation of the aggressive behavior. The role of allatostatin and tachykinin-related neuropeptides in honeybee brain during the aggressive behavior is unknown; thus, worker honeybees were stimulated to attack and to sting leather targets hanged in front of the colonies. The aggressive individuals were collected and immediately frozen in liquid nitrogen; the heads were removed, and sliced at sagittal plan. The brain slices were submitted to MALDI-Spectral-Imaging analysis, and the results of the present study reported the processing of the precursors proteins into mature forms of the neuropeptides AmAST A (59-76) (AYTYVSEYKRLPVYNFGL-NH2), AmAST A (69-76) (LPVYNFGL-NH2), AmTRP (88 - 96) (APMGFQGMR-NH2), and AmTRP (254 - 262) (ARMGFHGMR-NH2), which apparently acted in different neuropils of honeybee brain, during the aggressive behavior, possibly playing the neuromodulation of different aspects of this complex behavior. These results were biologically validated performing aggressiveness-related behavioral assays, using young honeybee workers that received 1 ng of AmAST A (69-76) or AmTRP (88 - 96) via hemocele. The young workers that were not expected to be aggressive individuals, presented a complete series of the aggressive behaviors, in presence of the neuropeptides, corroborating the hypothesis that correlates the presence of mature AmASTs A and AmTRPs in honeybee brain with the aggressiveness of this insect.

  3. Honeybees' speed depends on dorsal as well as lateral, ventral and frontal optic flows.

    Directory of Open Access Journals (Sweden)

    Geoffrey Portelli

    Full Text Available Flying insects use the optic flow to navigate safely in unfamiliar environments, especially by adjusting their speed and their clearance from surrounding objects. It has not yet been established, however, which specific parts of the optical flow field insects use to control their speed. With a view to answering this question, freely flying honeybees were trained to fly along a specially designed tunnel including two successive tapering parts: the first part was tapered in the vertical plane and the second one, in the horizontal plane. The honeybees were found to adjust their speed on the basis of the optic flow they perceived not only in the lateral and ventral parts of their visual field, but also in the dorsal part. More specifically, the honeybees' speed varied monotonically, depending on the minimum cross-section of the tunnel, regardless of whether the narrowing occurred in the horizontal or vertical plane. The honeybees' speed decreased or increased whenever the minimum cross-section decreased or increased. In other words, the larger sum of the two opposite optic flows in the horizontal and vertical planes was kept practically constant thanks to the speed control performed by the honeybees upon encountering a narrowing of the tunnel. The previously described ALIS ("AutopiLot using an Insect-based vision System" model nicely matches the present behavioral findings. The ALIS model is based on a feedback control scheme that explains how honeybees may keep their speed proportional to the minimum local cross-section of a tunnel, based solely on optic flow processing, without any need for speedometers or rangefinders. The present behavioral findings suggest how flying insects may succeed in adjusting their speed in their complex foraging environments, while at the same time adjusting their distance not only from lateral and ventral objects but also from those located in their dorsal visual field.

  4. Risk indicators affecting honeybee colony survival in Europe: one year of surveillance

    DEFF Research Database (Denmark)

    Jacques, Antoine; Laurent, Marion; Bougeard, Stéphanie

    2016-01-01

    The first pan-European harmonized active epidemiological surveillance program on honeybee colony mortality (EPILOBEE) was set up across 17 European Member States to estimate honeybee colony mortality over winter and during the beekeeping season. In nine Member States, overwinter losses were higher...... and statistically different from the empirical level of 10 % under which the level of overwinter mortality was considered as acceptable with usual beekeeping conditions. In four other countries, these losses were lower. Using multivariable Poisson regression models, it was showed that the size of the operation...

  5. Associative memory for online learning in noisy environments using self-organizing incremental neural network.

    Science.gov (United States)

    Sudo, Akihito; Sato, Akihiro; Hasegawa, Osamu

    2009-06-01

    Associative memory operating in a real environment must perform well in online incremental learning and be robust to noisy data because noisy associative patterns are presented sequentially in a real environment. We propose a novel associative memory that satisfies these requirements. Using the proposed method, new associative pairs that are presented sequentially can be learned accurately without forgetting previously learned patterns. The memory size of the proposed method increases adaptively with learning patterns. Therefore, it suffers neither redundancy nor insufficiency of memory size, even in an environment in which the maximum number of associative pairs to be presented is unknown before learning. Noisy inputs in real environments are classifiable into two types: noise-added original patterns and faultily presented random patterns. The proposed method deals with two types of noise. To our knowledge, no conventional associative memory addresses noise of both types. The proposed associative memory performs as a bidirectional one-to-many or many-to-one associative memory and deals not only with bipolar data, but also with real-valued data. Results demonstrate that the proposed method's features are important for application to an intelligent robot operating in a real environment. The originality of our work consists of two points: employing a growing self-organizing network for an associative memory, and discussing what features are necessary for an associative memory for an intelligent robot and proposing an associative memory that satisfies those requirements.

  6. Probabilistic Category Learning in Developmental Dyslexia: Evidence from Feedback and Paired-Associate Weather Prediction Tasks

    Science.gov (United States)

    Gabay, Yafit; Vakil, Eli; Schiff, Rachel; Holt, Lori L.

    2015-01-01

    Objective Developmental dyslexia is presumed to arise from specific phonological impairments. However, an emerging theoretical framework suggests that phonological impairments may be symptoms stemming from an underlying dysfunction of procedural learning. Method We tested procedural learning in adults with dyslexia (n=15) and matched-controls (n=15) using two versions of the Weather Prediction Task: Feedback (FB) and Paired-associate (PA). In the FB-based task, participants learned associations between cues and outcomes initially by guessing and subsequently through feedback indicating the correctness of response. In the PA-based learning task, participants viewed the cue and its associated outcome simultaneously without overt response or feedback. In both versions, participants trained across 150 trials. Learning was assessed in a subsequent test without presentation of the outcome, or corrective feedback. Results The Dyslexia group exhibited impaired learning compared with the Control group on both the FB and PA versions of the weather prediction task. Conclusions The results indicate that the ability to learn by feedback is not selectively impaired in dyslexia. Rather it seems that the probabilistic nature of the task, shared by the FB and PA versions of the weather prediction task, hampers learning in those with dyslexia. Results are discussed in light of procedural learning impairments among participants with dyslexia. PMID:25730732

  7. Learning by Helping? Undergraduate Communication Outcomes Associated with Training or Service-Learning Experiences

    Science.gov (United States)

    Katz, Jennifer; DuBois, Melinda; Wigderson, Sara

    2014-01-01

    This study investigated communication outcomes after training or applied service-learning experiences. Pre-practicum trainees learned active listening skills over 10 weeks. Practicum students were successful trainees who staffed a helpline. Community interns were trained and supervised at community agencies. Undergraduate students in psychology…

  8. Mechanism of action of recombinant acc-royalisin from royal jelly of Asian honeybee against gram-positive bacteria.

    Directory of Open Access Journals (Sweden)

    Lirong Shen

    Full Text Available The antibacterial activity of royalisin, an antimicrobial peptide from the royal jelly produced by honeybees, has been addressed extensively. However, its mechanism of action remains unclear. In this study, a recombinant royalisin, RAcc-royalisin from the royal jelly of Asian honeybee Apis cerana cerana, was expressed by fusing with glutathione S-transferase (GST in Escherichia coli BL21, isolated and purified. The agar dilution assays with inhibition zone showed that RAcc-royalisin, similar to nisin, inhibits the growth of Gram-positive bacteria. The antibacterial activity of RAcc-royalisin was associated with its concentration, and was weakened by heat treatment ranging from 55°C to 85°C for 15 min. Both RAcc-royalisin and nisin exhibited the minimum inhibitory concentrations (MIC of 62.5 µg/ml, 125 µg/ml, and 250 µg/ml against Gram-positive bacterial strains, Bacillus subtilis and Micrococcus flavus and Staphyloccocus aureus in the microplate assay, respectively. However, RAcc-royalisin did not show antimicrobial activity against tested Gram-negative bacterial and fungal strains. The antibacterial activity of RAcc-royalisin agrees well with the decrease in bacterial cell hydrophobicity, the leakage of 260-nm absorbing materials, and the observation by transmission electron microscopy, all indicating that RAcc-royalisin induced the disruption and dysfunction of cell walls and membranes. This is the first report detailing the antibacterial mechanism of royalisin against Gram-positive bacteria, and provides insight into the application of recombinant royalisin in food and pharmaceutical industries as an antimicrobial agent.

  9. University of Central Florida and the American Association of State Colleges and Universities: Blended Learning Toolkit

    Science.gov (United States)

    EDUCAUSE, 2014

    2014-01-01

    The Blended Learning Toolkit supports the course redesign approach, and interest in its openly available clearinghouse of online tools, strategies, curricula, and other materials to support the adoption of blended learning continues to grow. When the resource originally launched in July 2011, 20 AASCU [American Association of State Colleges and…

  10. Comfort and experience with online learning: trends over nine years and associations with knowledge.

    Science.gov (United States)

    Cook, David A; Thompson, Warren G

    2014-07-01

    Some evidence suggests that attitude toward computer-based instruction is an important determinant of success in online learning. We sought to determine how comfort using computers and perceptions of prior online learning experiences have changed over the past decade, and how these associate with learning outcomes. Each year from 2003-2011 we conducted a prospective trial of online learning. As part of each year's study, we asked medicine residents about their comfort using computers and if their previous experiences with online learning were favorable. We assessed knowledge using a multiple-choice test. We used regression to analyze associations and changes over time. 371 internal medicine and family medicine residents participated. Neither comfort with computers nor perceptions of prior online learning experiences showed a significant change across years (p > 0.61), with mean comfort rating 3.96 (maximum 5 = very comfortable) and mean experience rating 4.42 (maximum 6 = strongly agree [favorable]). Comfort showed no significant association with knowledge scores (p = 0.39) but perceptions of prior experiences did, with a 1.56% rise in knowledge score for a 1-point rise in experience score (p = 0.02). Correlations among comfort, perceptions of prior experiences, and number of prior experiences were all small and not statistically significant. Comfort with computers and perceptions of prior experience with online learning remained stable over nine years. Prior good experiences (but not comfort with computers) demonstrated a modest association with knowledge outcomes, suggesting that prior course satisfaction may influence subsequent learning.

  11. Effects of Learning Experience on Forgetting Rates of Item and Associative Memories

    Science.gov (United States)

    Yang, Jiongjiong; Zhan, Lexia; Wang, Yingying; Du, Xiaoya; Zhou, Wenxi; Ning, Xueling; Sun, Qing; Moscovitch, Morris

    2016-01-01

    Are associative memories forgotten more quickly than item memories, and does the level of original learning differentially influence forgetting rates? In this study, we addressed these questions by having participants learn single words and word pairs once (Experiment 1), three times (Experiment 2), and six times (Experiment 3) in a massed…

  12. Tailor-made memory: natural differences in associative olfactory learning in two closely related wasp species

    NARCIS (Netherlands)

    Berg, van den M.

    2009-01-01

    Learning and memory formation are often seen as traits that are purely beneficial, but they are associated with metabolic costs as well. Since costs and gains of learning and memory are expected to vary between species, the ease and speed with which stable (consolidated) long-term memory (LTM) is

  13. Business Models Associated with Distance Learning in Higher Education

    Science.gov (United States)

    Wang, Shouhong; Wang, Hai

    2017-01-01

    Textbook prices are continuously rising in higher education. This paper analyzes a business model which makes commercial textbooks more expensive, and explains why this issue tends to be more severe in the field of distance learning in higher education. It reports a case of adoption of open educational resources (OER) textbook for an online course…

  14. Greater mindful eating practice is associated with better reversal learning

    NARCIS (Netherlands)

    Janssen, Lieneke K.; Duif, Iris; Loon, Van Ilke; Vries, De Jeanne H.M.; Speckens, Anne E.M.; Cools, Roshan; Aarts, Esther

    2018-01-01

    Mindfulness-based interventions are thought to reduce compulsive behavior such as overeating by promoting behavioral flexibility. Here the main aim was to provide support for mindfulness-mediated improvements in reversal learning, a direct measure of behavioral flexibility. We investigated

  15. Question presentation methods for paired-associate learning

    NARCIS (Netherlands)

    Engel, F.L.; Geerings, M.P.W.

    1988-01-01

    Four different methods of question presentation, in interactive computeraided learning of Dutch-English word pairs are evaluated experimentally. These methods are: 1) the 'open-question method', 2) the 'multiple-choice method', 3) the 'sequential method' and 4) the 'true/ false method'. When

  16. A confrontation with reality - Proceedings of the 19th Association for Learning Technology Conference

    NARCIS (Netherlands)

    Hawkridge, David; Verjans, Steven; Wilson, Gail

    2012-01-01

    Hawkridge, D., Verjans, S., & Wilson, G. (Eds.) (2012). A confrontation with reality - Proceedings of the 19th Association for Learning Technology Conference (ALT-C 2012). September, 11-14, 2012, Manchester, UK.

  17. The role of within-compound associations in learning about absent cues.

    Science.gov (United States)

    Witnauer, James E; Miller, Ralph R

    2011-05-01

    When two cues are reinforced together (in compound), most associative models assume that animals learn an associative network that includes direct cue-outcome associations and a within-compound association. All models of associative learning subscribe to the importance of cue-outcome associations, but most models assume that within-compound associations are irrelevant to each cue's subsequent behavioral control. In the present article, we present an extension of Van Hamme and Wasserman's (Learning and Motivation 25:127-151, 1994) model of retrospective revaluation based on learning about absent cues that are retrieved through within-compound associations. The model was compared with a model lacking retrieval through within-compound associations. Simulations showed that within-compound associations are necessary for the model to explain higher-order retrospective revaluation and the observed greater retrospective revaluation after partial reinforcement than after continuous reinforcement alone. These simulations suggest that the associability of an absent stimulus is determined by the extent to which the stimulus is activated through the within-compound association.

  18. The Smart Gut: Tracking Affective Associative Learning with Measures of "Liking", Facial Electromyography, and Preferential Looking

    Science.gov (United States)

    Armel, K. Carrie; Pulido, Carmen; Wixted, John T.; Chiba, Andrea A.

    2009-01-01

    We demonstrate here that initially neutral items can acquire "specific" value based on their associated outcomes, and that responses of physiological systems to such previously meaningless stimuli can rapidly reflect this associative history. Each participant participated in an associative learning task in which four neutral abstract pictures were…

  19. Honeybee navigation: critically examining the role of the polarization compass.

    Science.gov (United States)

    Evangelista, C; Kraft, P; Dacke, M; Labhart, T; Srinivasan, M V

    2014-01-01

    Although it is widely accepted that honeybees use the polarized-light pattern of the sky as a compass for navigation, there is little direct evidence that this information is actually sensed during flight. Here, we ask whether flying bees can obtain compass cues derived purely from polarized light, and communicate this information to their nest-mates through the 'waggle dance'. Bees, from an observation hive with vertically oriented honeycombs, were trained to fly to a food source at the end of a tunnel, which provided overhead illumination that was polarized either parallel to the axis of the tunnel, or perpendicular to it. When the illumination was transversely polarized, bees danced in a predominantly vertical direction with waggles occurring equally frequently in the upward or the downward direction. They were thus using the polarized-light information to signal the two possible directions in which they could have flown in natural outdoor flight: either directly towards the sun, or directly away from it. When the illumination was axially polarized, the bees danced in a predominantly horizontal direction with waggles directed either to the left or the right, indicating that they could have flown in an azimuthal direction that was 90° to the right or to the left of the sun, respectively. When the first half of the tunnel provided axial illumination and the second half transverse illumination, bees danced along all of the four principal diagonal directions, which represent four equally likely locations of the food source based on the polarized-light information that they had acquired during their journey. We conclude that flying bees are capable of obtaining and signalling compass information that is derived purely from polarized light. Furthermore, they deal with the directional ambiguity that is inherent in polarized light by signalling all of the possible locations of the food source in their dances, thus maximizing the chances of recruitment to it.

  20. The amygdala complex: multiple roles in associative learning and attention.

    OpenAIRE

    Gallagher, M; Holland, P C

    1994-01-01

    Although certain neurophysiological functions of the amygdala complex in learning seem well established, the purpose of this review is to propose that an additional conceptualization of amygdala function is now needed. The research we review provides evidence that a subsystem within the amygdala provides a coordinated regulation of attentional processes. An important aspect of this additional neuropsychology of the amygdala is that it may aid in understanding the importance of connections bet...

  1. Africanization in the United States: replacement of feral European honeybees (Apis mellifera L.) by an African hybrid swarm.

    Science.gov (United States)

    Pinto, M Alice; Rubink, William L; Patton, John C; Coulson, Robert N; Johnston, J Spencer

    2005-08-01

    The expansion of Africanized honeybees from South America to the southwestern United States in feral population from the southern United States undergoing Africanization. Our microsatellite data showed that (1) the process of Africanization involved both maternal and paternal bidirectional gene flow between European and Africanized honeybees and (2) the panmitic European population was replaced by panmitic mixtures of A. m. scutellata and European genes within 5 years after Africanization. The post-Africanization gene pool (1998-2001) was composed of a diverse array of recombinant classes with a substantial European genetic contribution (mean 25-37%). Therefore, the resulting feral honeybee population of south Texas was best viewed as a hybrid swarm.

  2. Using an improved association rules mining optimization algorithm in web-based mobile-learning system

    Science.gov (United States)

    Huang, Yin; Chen, Jianhua; Xiong, Shaojun

    2009-07-01

    Mobile-Learning (M-learning) makes many learners get the advantages of both traditional learning and E-learning. Currently, Web-based Mobile-Learning Systems have created many new ways and defined new relationships between educators and learners. Association rule mining is one of the most important fields in data mining and knowledge discovery in databases. Rules explosion is a serious problem which causes great concerns, as conventional mining algorithms often produce too many rules for decision makers to digest. Since Web-based Mobile-Learning System collects vast amounts of student profile data, data mining and knowledge discovery techniques can be applied to find interesting relationships between attributes of learners, assessments, the solution strategies adopted by learners and so on. Therefore ,this paper focus on a new data-mining algorithm, combined with the advantages of genetic algorithm and simulated annealing algorithm , called ARGSA(Association rules based on an improved Genetic Simulated Annealing Algorithm), to mine the association rules. This paper first takes advantage of the Parallel Genetic Algorithm and Simulated Algorithm designed specifically for discovering association rules. Moreover, the analysis and experiment are also made to show the proposed method is superior to the Apriori algorithm in this Mobile-Learning system.

  3. Theta synchronization between medial prefrontal cortex and cerebellum is associated with adaptive performance of associative learning behavior

    Science.gov (United States)

    Chen, Hao; Wang, Yi-jie; Yang, Li; Sui, Jian-feng; Hu, Zhi-an; Hu, Bo

    2016-01-01

    Associative learning is thought to require coordinated activities among distributed brain regions. For example, to direct behavior appropriately, the medial prefrontal cortex (mPFC) must encode and maintain sensory information and then interact with the cerebellum during trace eyeblink conditioning (TEBC), a commonly-used associative learning model. However, the mechanisms by which these two distant areas interact remain elusive. By simultaneously recording local field potential (LFP) signals from the mPFC and the cerebellum in guinea pigs undergoing TEBC, we found that theta-frequency (5.0–12.0 Hz) oscillations in the mPFC and the cerebellum became strongly synchronized following presentation of auditory conditioned stimulus. Intriguingly, the conditioned eyeblink response (CR) with adaptive timing occurred preferentially in the trials where mPFC-cerebellum theta coherence was stronger. Moreover, both the mPFC-cerebellum theta coherence and the adaptive CR performance were impaired after the disruption of endogenous orexins in the cerebellum. Finally, association of the mPFC -cerebellum theta coherence with adaptive CR performance was time-limited occurring in the early stage of associative learning. These findings suggest that the mPFC and the cerebellum may act together to contribute to the adaptive performance of associative learning behavior by means of theta synchronization. PMID:26879632

  4. Interactions of visual odometry and landmark guidance during food search in honeybees

    NARCIS (Netherlands)

    Vladusich, T; Hemmi, JM; Srinivasan, MV; Zeil, J

    How do honeybees use visual odometry and goal-defining landmarks to guide food search? In one experiment, bees were trained to forage in an optic-flow-rich tunnel with a landmark positioned directly above the feeder. Subsequent food-search tests indicated that bees searched much more accurately when

  5. The Acute Oral Toxicity of Commonly Used Pesticides in Iran, to Honeybees (Apis Mellifera Meda

    Directory of Open Access Journals (Sweden)

    Rasuli Farhang

    2015-06-01

    Full Text Available The honey bee is credited with approximately 85% of the pollinating activity necessary to supply about one-third of the world’s food supply. Well over 50 major crops depend on these insects for pollination. The crops produce more abundantly when honey bees are plentiful. Worker bees are the ones primarily affected by pesticides. Poisoning symptoms can vary depending on the developmental stage of the individual bee, and the kind of chemical employed. The oral toxicity of these insecticides: (phosalone and pirimicarb, acaricide (propargite, insecticide and acaricide (fenpropathrin, fungicides, and bactericides (copper oxychloride and the Bordeaux mixture, were evaluated for the purposes of this research. The results showed that fenpropathrin had high acute oral toxicity (LC50-24h and LC50-48 were 0.54 and 0.3 ppm, respectively. Propargite had 7785 ppm (active ingredient for LC50-24h and 6736 ppm (active ingredient for LC50-48h in honeybees and is therefore, non-toxic to Apis mellifera. On the other hand, copper oxychloride had minimum acute oral toxicity to honeybees (LC50-24h and LC50-48 were 4591.5 and 5407.9 ppm, respectively and was therefore considered non-toxic. Also, the Bordeaux mixture was safe to use around honeybees. Phosalone and primicarb were considered highly and moderately toxic to honeybees, respectively.

  6. Functional Morphology of the Divided Compound Eye of the Honeybee Drone (Apis mellifera)

    NARCIS (Netherlands)

    Menzel, J.G.; Wunderer, H.; Stavenga, D.G.

    1991-01-01

    Using different approaches, the functional morphology of the compound eye of the honeybee drone was examined. The drone exhibits an extended acute zone in the dorsal part of its eye. The following specializations were found here: enlarged facet diameters; smaller interommatidial angles; red-leaky

  7. Involvement of Phosphorylated "Apis Mellifera" CREB in Gating a Honeybee's Behavioral Response to an External Stimulus

    Science.gov (United States)

    Gehring, Katrin B.; Heufelder, Karin; Feige, Janina; Bauer, Paul; Dyck, Yan; Ehrhardt, Lea; Kühnemund, Johannes; Bergmann, Anja; Göbel, Josefine; Isecke, Marlene; Eisenhardt, Dorothea

    2016-01-01

    The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees ("Apis mellifera") we recently demonstrated a particular high…

  8. An abbreviated SNP panel for ancestry assignment of honeybees (Apis mellifera)

    Science.gov (United States)

    This paper examines whether an abbreviated panel of 37 single nucleotide polymorphisms (SNPs) has the same power as a larger and more expensive panel of 95 SNPs to assign ancestry of honeybees (Apis mellifera) to three ancestral lineages. We selected 37 SNPs from the original 95 SNP panel using alle...

  9. Assessment of heavy metal pollution in Córdoba (Spain) by biomonitoring foraging honeybee

    NARCIS (Netherlands)

    Gutiérrez, Miriam; Molero, Rafael; Gaju, Miquel; Steen, van der Sjef; Porrini, Claudio; Ruiz, José Antonio

    2015-01-01

    Due to features that make them outstanding environmental bioindicator, colonies of Apis mellifera are being used to study environmental pollution. The primary objective of this research was to use honeybee colonies to identify heavy metals and determine their utility for environmental management.

  10. Alternative splicing of a single transcription factor drives selfish reproductive behavior in honeybee workers (Apis mellifera).

    Science.gov (United States)

    Jarosch, Antje; Stolle, Eckart; Crewe, Robin M; Moritz, Robin F A

    2011-09-13

    In eusocial insects the production of daughters is generally restricted to mated queens, and unmated workers are functionally sterile. The evolution of this worker sterility has been plausibly explained by kin selection theory [Hamilton W (1964) J Theor Biol 7:1-52], and many traits have evolved to prevent conflict over reproduction among the females in an insect colony. In honeybees (Apis mellifera), worker reproduction is regulated by the queen, brood pheromones, and worker policing. However, workers of the Cape honeybee, Apis mellifera capensis, can evade this control and establish themselves as social parasites by activating their ovaries, parthenogenetically producing diploid female offspring (thelytoky) and producing queen-like amounts of queen pheromones. All these traits have been shown to be strongly influenced by a single locus on chromosome 13 [Lattorff HMG, et al. (2007) Biol Lett 3:292-295]. We screened this region for candidate genes and found that alternative splicing of a gene homologous to the gemini transcription factor of Drosophila controls worker sterility. Knocking out the critical exon in a series of RNAi experiments resulted in rapid worker ovary activation-one of the traits characteristic of the social parasites. This genetic switch may be controlled by a short intronic splice enhancer motif of nine nucleotides attached to the alternative splice site. The lack of this motif in parasitic Cape honeybee clones suggests that the removal of nine nucleotides from the altruistic worker genome may be sufficient to turn a honeybee from an altruistic worker into a parasite.

  11. PRELIMINARY RESEARCHES REGARDING THE GENETIC AND MORPHOMETRIC CHARACTERIZATION OF HONEYBEES (A. MELLIFERA L. FROM ROMANIA

    Directory of Open Access Journals (Sweden)

    ELIZA CAUIA

    2008-10-01

    Full Text Available The international investigations regarding the honeybees’ diversity carried out until now have revealed a certain degree of genetic pollution in different countries from Europe, because of the import of more productive honeybees’ races or of some interracial honeybees’ hybrids. This fact might have a negative impact on the success adaptability of honeybees at the ecosystem. Although, the Romanian honeybees (Apis mellifera carpathica are well adapted to the local conditions and express a good resistance to diseases, the introgression (genetic pollution of different honeybees’ races could be an imminent event. So that, starting from 2007, by a cooperation between the Institute for Beekeeping Research and Development from Bucharest and the Institute of Genetics of the University of Bucharest, we have initiated different investigations in order to obtain a more accurate state of the Romanian honeybees’ diversity. We have performed specific molecular analyses, using mtDNA (the COI-COII test extracted from 32 different honeybees samples collected from several regions from Romania. For a better and detailed characterization of the collected honeybee’s samples we have also carried out some morphometric measurements of their wings. Our data have shown that the Romanian population of honeybees is almost homogenous from the genetic and the morphometric points of views. These types of investigations represent a premiere for Romania.

  12. Weight watching and the effect of landscape on honeybee colony productivity

    DEFF Research Database (Denmark)

    Lecocq, Antoine; Kryger, Per; Vejsnæs, Flemming

    2015-01-01

    sites can give valuable insight on the influence of landscape on their productivity and might point towards future directions for modernized beekeeping practices. Using data on honeybee colony weights provided by electronic scales spread across Denmark, we investigated the effect of the immediate...

  13. Survival rate of honeybee (Apis mellifera) workers after exposure to sublethal concentrations of imidacloprid

    NARCIS (Netherlands)

    Blacquiere, T.

    2010-01-01

    Imidacloprid is a commonly used systemic insecticide which can induce several sublethal effects. Previous research has not shown any increased mortality in bees that were fed with sublethal doses. However, there is very little research conducted with the focus on survival rate of honeybees in the

  14. Two Waves of Transcription Are Required for Long-Term Memory in the Honeybee

    Science.gov (United States)

    Lefer, Damien; Perisse, Emmanuel; Hourcade, Benoit; Sandoz, JeanChristophe; Devaud, Jean-Marc

    2013-01-01

    Storage of information into long-term memory (LTM) usually requires at least two waves of transcription in many species. However, there is no clear evidence of this phenomenon in insects, which are influential models for memory studies. We measured retention in honeybees after injecting a transcription inhibitor at different times before and after…

  15. Localization of deformed wing virus (DWV) in the brains of the honeybee, Apis mellifera Linnaeus.

    Science.gov (United States)

    Shah, Karan S; Evans, Elizabeth C; Pizzorno, Marie C

    2009-10-30

    Deformed wing virus (DWV) is a positive-strand RNA virus that infects European honeybees (Apis mellifera L.) and has been isolated from the brains of aggressive bees in Japan. DWV is known to be transmitted both vertically and horizontally between bees in a colony and can lead to both symptomatic and asymptomatic infections in bees. In environmentally stressful conditions, DWV can contribute to the demise of a honeybee colony. The purpose of the current study is to identify regions within the brains of honeybees where DWV replicates using in-situ hybridization. In-situ hybridizations were conducted with both sense and antisense probes on the brains of honeybees that were positive for DWV as measured by real-time RT-PCR. The visual neuropils demonstrated detectable levels of the DWV positive-strand genome. The mushroom bodies and antenna lobe neuropils also showed the presence of the viral genome. Weaker staining with the sense probe in the same regions demonstrates that the antigenome is also present and that the virus is actively replicating in these regions of the brain. These results demonstrate that in bees infected with DWV the virus is replicating in critical regions of the brain, including the neuropils responsible for vision and olfaction. Therefore DWV infection of the brain could adversely affect critical sensory functions and alter normal bee behavior.

  16. Localization of deformed wing virus (DWV in the brains of the honeybee, Apis mellifera Linnaeus

    Directory of Open Access Journals (Sweden)

    Evans Elizabeth C

    2009-10-01

    Full Text Available Abstract Background Deformed wing virus (DWV is a positive-strand RNA virus that infects European honeybees (Apis mellifera L. and has been isolated from the brains of aggressive bees in Japan. DWV is known to be transmitted both vertically and horizontally between bees in a colony and can lead to both symptomatic and asymptomatic infections in bees. In environmentally stressful conditions, DWV can contribute to the demise of a honeybee colony. The purpose of the current study is to identify regions within the brains of honeybees where DWV replicates using in-situ hybridization. Results In-situ hybridizations were conducted with both sense and antisense probes on the brains of honeybees that were positive for DWV as measured by real-time RT-PCR. The visual neuropils demonstrated detectable levels of the DWV positive-strand genome. The mushroom bodies and antenna lobe neuropils also showed the presence of the viral genome. Weaker staining with the sense probe in the same regions demonstrates that the antigenome is also present and that the virus is actively replicating in these regions of the brain. Conclusion These results demonstrate that in bees infected with DWV the virus is replicating in critical regions of the brain, including the neuropils responsible for vision and olfaction. Therefore DWV infection of the brain could adversely affect critical sensory functions and alter normal bee behavior.

  17. Honeybees Increase Fruit Set in Native Plant Species Important for Wildlife Conservation

    Science.gov (United States)

    Cayuela, Luis; Ruiz-Arriaga, Sarah; Ozers, Christian P.

    2011-11-01

    Honeybee colonies are declining in some parts of the world. This may have important consequences for the pollination of crops and native plant species. In Spain, as in other parts of Europe, land abandonment has led to a decrease in the number of non professional beekeepers, which aggravates the problem of honeybee decline as a result of bee diseases In this study, we investigated the effects of honeybees on the pollination of three native plant species in northern Spain, namely wildcherry Prunus avium L., hawthorn Crataegus monogyna Jacq., and bilberry Vaccinium myrtillus L. We quantified fruit set of individuals from the target species along transects established from an apiary outwards. Half the samples were bagged in a nylon mesh to avoid insect pollination. Mixed-effects models were used to test the effect of distance to the apiary on fruit set in non-bagged samples. The results showed a negative significant effect of distance from the apiary on fruit set for hawthorn and bilberry, but no significant effects were detected for wildcherry. This suggests that the use of honeybees under traditional farming practices might be a good instrument to increase fruit production of some native plants. This may have important consequences for wildlife conservation, since fruits, and bilberries in particular, constitute an important feeding resource for endangered species, such as the brown bear Ursus arctos L. or the capercaillie Tetrao urogallus cantabricus L.

  18. Temporal pattern of africanization in a feral honeybee population from Texas inferred from mitochondrial DNA.

    Science.gov (United States)

    Pinto, M Alice; Rubink, William L; Coulson, Robert N; Patton, John C; Johnston, J Spencer

    2004-05-01

    The invasion of Africanized honeybees (Apis mellifera L.) in the Americas provides a window of opportunity to study the dynamics of secondary contact of subspecies of bees that evolved in allopatry in ecologically distinctive habitats of the Old World. We report here the results of an 11-year mitochondrial DNA survey of a feral honeybee population from southern United States (Texas). The mitochondrial haplotype (mitotype) frequencies changed radically during the 11-year study period. Prior to immigration of Africanized honeybees, the resident population was essentially of eastern and western European maternal ancestry. Three years after detection of the first Africanized swarm there was a mitotype turnover in the population from predominantly eastern European to predominantly A. m. scutellata (ancestor of Africanized honeybees). This remarkable change in the mitotype composition coincided with arrival of the parasitic mite Varroa destructor, which was likely responsible for severe losses experienced by colonies of European ancestry. From 1997 onward the population stabilized with most colonies of A. m. scutellata maternal origin.

  19. Interaction between Varroa destructor and imidacloprid reduces flight capacity of honeybees

    NARCIS (Netherlands)

    Blanken, Lisa; Langevelde, van F.; Dooremalen, van J.A.

    2015-01-01

    Current high losses of honeybees seriously threaten crop pollination. Whereas parasite exposure is acknowledged as an important cause of these losses, the role of insecticides is controversial. Parasites and neonicotinoid insecticides reduce homing success of foragers (e.g. by reduced orientation),

  20. Amtyr1: characterization of a gene from honeybee (Apis mellifera) brain encoding a functional tyramine receptor.

    Science.gov (United States)

    Blenau, W; Balfanz, S; Baumann, A

    2000-03-01

    Biogenic amine receptors are involved in the regulation and modulation of various physiological and behavioral processes in both vertebrates and invertebrates. We have cloned a member of this gene family from the CNS of the honeybee, Apis mellifera. The deduced amino acid sequence is homologous to tyramine receptors cloned from Locusta migratoria and Drosophila melanogaster as well as to an octopamine receptor cloned from Heliothis virescens. Functional properties of the honeybee receptor were studied in stably transfected human embryonic kidney 293 cells. Tyramine reduced forskolin-induced cyclic AMP production in a dose-dependent manner with an EC50 of approximately 130 nM. A similar effect of tyramine was observed in membrane homogenates of honeybee brains. Octopamine also reduced cyclic AMP production in the transfected cell line but was both less potent (EC50 of approximately 3 microM) and less efficacious than tyramine. Receptor-encoding mRNA has a wide-spread distribution in the brain and subesophageal ganglion of the honeybee, suggesting that this tyramine receptor is involved in sensory signal processing as well as in higher-order brain functions.

  1. Modelling collective foraging by means of individual behaviour rules in honey-bees

    NARCIS (Netherlands)

    Vries, Han de; Biesmeijer, J.C.

    1998-01-01

    An individual-oriented model is constructed which simulates the collective foraging behaviour of a colony of honey-bees, Apis mellifera. Each bee follows the same set of behavioural rules. Each rule consists of a set of conditions followed by the behavioural act to be performed if the

  2. Modelling collective foraging by means of individual behaviour rules in honey-bees

    NARCIS (Netherlands)

    de Vries, H; Biesmeijer, JC

    1998-01-01

    An individual-oriented model is constructed which simulates the collective foraging behaviour of a colony of honey-bees, Apis mellifera. Each bee follows the same set of behavioural rules. Each rule consists of a set of conditions followed by the behavioural act to be performed if the conditions are

  3. Resilience of honeybee colonies via common stomach: A model of self-regulation of foraging.

    Directory of Open Access Journals (Sweden)

    Thomas Schmickl

    Full Text Available We propose a new regulation mechanism based on the idea of the "common stomach" to explain several aspects of the resilience and homeostatic regulation of honeybee colonies. This mechanism exploits shared pools of substances (pollen, nectar, workers, brood that modulate recruitment, abandonment and allocation patterns at the colony-level and enable bees to perform several survival strategies to cope with difficult circumstances: Lack of proteins leads to reduced feeding of young brood, to early capping of old brood and to regaining of already spent proteins through brood cannibalism. We modeled this system by linear interaction terms and mass-action law. To test the predictive power of the model of this regulatory mechanism we compared our model predictions to experimental data of several studies. These comparisons show that the proposed regulation mechanism can explain a variety of colony level behaviors. Detailed analysis of the model revealed that these mechanisms could explain the resilience, stability and self-regulation observed in honeybee colonies. We found that manipulation of material flow and applying sudden perturbations to colony stocks are quickly compensated by a resulting counter-acting shift in task selection. Selective analysis of feedback loops allowed us to discriminate the importance of different feedback loops in self-regulation of honeybee colonies. We stress that a network of simple proximate mechanisms can explain significant colony-level abilities that can also be seen as ultimate reasoning of the evolutionary trajectory of honeybees.

  4. Brood temperature, task division and colony survival in honeybees : A model

    NARCIS (Netherlands)

    Becher, Matthias A.; Hildenbrandt, Hanno; Hemelrijk, Charlotte K.; Moritz, Robin F. A.

    2010-01-01

    One of the mechanisms by which honeybees regulate division of labour among their colony members is age polyethism. Here the younger bees perform in-hive tasks such as heating and the older ones carry out tasks outside the hive such as foraging. Recently it has been shown that the higher

  5. Associations of learning style with cultural values and demographics in nursing students in Iran and Malaysia

    Directory of Open Access Journals (Sweden)

    Abdolghani Abdollahimohammad

    2015-08-01

    Full Text Available Purpose: The goal of the current study was to identify associations between the learning style of nursing students and their cultural values and demographic characteristics. Methods: A non-probability purposive sampling method was used to gather data from two populations. All 156 participants were female, Muslim, and full-time degree students. Data were collected from April to June 2010 using two reliable and validated questionnaires: the Learning Style Scales and the Values Survey Module 2008 (VSM 08. A simple linear regression was run for each predictor before conducting multiple linear regression analysis. The forward selection method was used for variable selection. P-values ≤0.05 and ≤0.1 were considered to indicate significance and marginal significance, respectively. Moreover, multi-group confirmatory factor analysis was performed to determine the invariance of the Farsi and English versions of the VSM 08. Results: The perceptive learning style was found to have a significant negative relationship with the power distance and monumentalism indices of the VSM 08. Moreover, a significant negative association was observed between the solitary learning style and the power distance index. However, no significant association was found between the analytic, competitive, and imaginative learning styles and cultural values (P>0.05. Likewise, no significant associations were observed between learning style, including the perceptive, solitary, analytic, competitive, and imaginative learning styles, and year of study or age (P>0.05. Conclusion: Students who reported low values on the power distance and monumentalism indices are more likely to prefer perceptive and solitary learning styles. Within each group of students in our study sample from the same school the year of study and age did not show any significant associations with learning style.

  6. Associations of learning style with cultural values and demographics in nursing students in Iran and Malaysia.

    Science.gov (United States)

    Abdollahimohammad, Abdolghani; Ja'afar, Rogayah

    2015-01-01

    The goal of the current study was to identify associations between the learning style of nursing students and their cultural values and demographic characteristics. A non-probability purposive sampling method was used to gather data from two populations. All 156 participants were female, Muslim, and full-time degree students. Data were collected from April to June 2010 using two reliable and validated questionnaires: the Learning Style Scales and the Values Survey Module 2008 (VSM 08). A simple linear regression was run for each predictor before conducting multiple linear regression analysis. The forward selection method was used for variable selection. P-values ≤0.05 and ≤0.1 were considered to indicate significance and marginal significance, respectively. Moreover, multi-group confirmatory factor analysis was performed to determine the invariance of the Farsi and English versions of the VSM 08. The perceptive learning style was found to have a significant negative relationship with the power distance and monumentalism indices of the VSM 08. Moreover, a significant negative association was observed between the solitary learning style and the power distance index. However, no significant association was found between the analytic, competitive, and imaginative learning styles and cultural values (P>0.05). Likewise, no significant associations were observed between learning style, including the perceptive, solitary, analytic, competitive, and imaginative learning styles, and year of study or age (P>0.05). Students who reported low values on the power distance and monumentalism indices are more likely to prefer perceptive and solitary learning styles. Within each group of students in our study sample from the same school the year of study and age did not show any significant associations with learning style.

  7. [Assessment of hypersensitivity to honey-bee venom in beekeepers by skin tests].

    Science.gov (United States)

    Becerril-Ángeles, Martín; Núñez-Velázquez, Marco; Marín-Martínez, Javier

    2013-01-01

    Beekeepers are exposed to frequent honey-bee stings, and have the risk to develop hypersensitivity to bee venom, but long-term exposure can induce immune tolerance in them. Up to 30% of beekeepers show positive skin tests with honey-bee venom. The prevalence of systemic reactions to bee stings in beekeepers is from 14% to 42%. To know the prevalence of hypersensitivity to honeybee venom in Mexican beekeepers and non-beekeepers by the use of skin tests. A group of 139 beekeepers and a group of 60 non-beekeeper volunteers had a history and physical related to age, sex, family and personal atopic history and time of exposure to bee stings. Both groups received intradermal skin tests with honey-bee venom, 0.1 mcg/mL and 1 mcg/mL, and histamine sulphate 0.1 mg/mL and Evans solution as controls. The skin tests results of both groups were compared by chi-squared test. Of the group of beekeepers, 116 were men (83%) and 23 women, average age was 39.3 years, had atopic family history 28% and personal atopy 13%, average time of exposure to bee stings was 10.9 years, skin tests with honey-bee venom were positive in 16.5% and 11% at 1 mcg/mL and 0.1 mcg/mL, respectively. In the non-beekeepers group venom skin tests were positive in 13.3% and 6.7% at 1 mcg/mL and 0.1 mcg/mL. We did not find significant differences between the two venom concentrations tested in both groups, neither in the number of positive skin tests between the two groups. We found hypersensivity to honey-bee venom slightly higher in the beekeepers than in the group apparently not exposed. Both honey-bee venom concentrations used did not show difference in the results of the skin tests. The similarity of skin tests positivity between both groups could be explained by immune tolerance due to continued exposure of beekeepers.

  8. Associative learning of odor with food- or blood-meal by Culex quinquefasciatus Say (Diptera: Culicidae)

    Science.gov (United States)

    Tomberlin, Jeffery K.; Rains, Glen C.; Allan, Sandy A.; Sanford, Michelle R.; Lewis, W. Joe

    2006-11-01

    The ability of many insects to learn has been documented. However, a limited number of studies examining associative learning in medically important arthropods has been published. Investigations into the associative learning capabilities of Culex quinquefasciatus Say were conducted by adapting methods commonly used in experiments involving Hymenoptera. Male and female mosquitoes were able to learn a conditioned stimulus that consisted of an odor not normally encountered in nature (synthetic strawberry or vanilla extracts) in association with an unconditioned stimulus consisting of either a sugar (males and females) or blood (females) meal. Such information could lead to a better understanding of the ability of mosquitoes to locate and select host and food resources in nature.

  9. Neuronal representations of stimulus associations develop in the temporal lobe during learning.

    Science.gov (United States)

    Messinger, A; Squire, L R; Zola, S M; Albright, T D

    2001-10-09

    Visual stimuli that are frequently seen together become associated in long-term memory, such that the sight of one stimulus readily brings to mind the thought or image of the other. It has been hypothesized that acquisition of such long-term associative memories proceeds via the strengthening of connections between neurons representing the associated stimuli, such that a neuron initially responding only to one stimulus of an associated pair eventually comes to respond to both. Consistent with this hypothesis, studies have demonstrated that individual neurons in the primate inferior temporal cortex tend to exhibit similar responses to pairs of visual stimuli that have become behaviorally associated. In the present study, we investigated the role of these areas in the formation of conditional visual associations by monitoring the responses of individual neurons during the learning of new stimulus pairs. We found that many neurons in both area TE and perirhinal cortex came to elicit more similar neuronal responses to paired stimuli as learning proceeded. Moreover, these neuronal response changes were learning-dependent and proceeded with an average time course that paralleled learning. This experience-dependent plasticity of sensory representations in the cerebral cortex may underlie the learning of associations between objects.

  10. A BCM theory of meta-plasticity for online self-reorganizing fuzzy-associative learning.

    Science.gov (United States)

    Tan, Javan; Quek, Chai

    2010-06-01

    Self-organizing neurofuzzy approaches have matured in their online learning of fuzzy-associative structures under time-invariant conditions. To maximize their operative value for online reasoning, these self-sustaining mechanisms must also be able to reorganize fuzzy-associative knowledge in real-time dynamic environments. Hence, it is critical to recognize that they would require self-reorganizational skills to rebuild fluid associative structures when their existing organizations fail to respond well to changing circumstances. In this light, while Hebbian theory (Hebb, 1949) is the basic computational framework for associative learning, it is less attractive for time-variant online learning because it suffers from stability limitations that impedes unlearning. Instead, this paper adopts the Bienenstock-Cooper-Munro (BCM) theory of neurological learning via meta-plasticity principles (Bienenstock et al., 1982) that provides for both online associative and dissociative learning. For almost three decades, BCM theory has been shown to effectively brace physiological evidence of synaptic potentiation (association) and depression (dissociation) into a sound mathematical framework for computational learning. This paper proposes an interpretation of the BCM theory of meta-plasticity for an online self-reorganizing fuzzy-associative learning system to realize online-reasoning capabilities. Experimental findings are twofold: 1) the analysis using S&P-500 stock index illustrated that the self-reorganizing approach could follow the trajectory shifts in the time-variant S&P-500 index for about 60 years, and 2) the benchmark profiles showed that the fuzzy-associative approach yielded comparable results with other fuzzy-precision models with similar online objectives.

  11. Learning the association between a context and a target location in infancy.

    Science.gov (United States)

    Bertels, Julie; San Anton, Estibaliz; Gebuis, Titia; Destrebecqz, Arnaud

    2017-07-01

    Extracting the statistical regularities present in the environment is a central learning mechanism in infancy. For instance, infants are able to learn the associations between simultaneously or successively presented visual objects (Fiser & Aslin, ; Kirkham, Slemmer & Johnson, ). The present study extends these results by investigating whether infants can learn the association between a target location and the context in which it is presented. With this aim, we used a visual associative learning procedure inspired by the contextual cuing paradigm, with infants from 8 to 12 months of age. In two experiments, in which we varied the complexity of the stimuli, we first habituated infants to several scenes where the location of a target (a cartoon character) was consistently associated with a context, namely a specific configuration of geometrical shapes. Second, we examined whether infants learned the covariation between the target location and the context by measuring looking times at scenes that either respected or violated the association. In both experiments, results showed that infants learned the target-context associations, as they looked longer at the familiar scenes than at the novel ones. In particular, infants selected clusters of co-occurring contextual shapes and learned the covariation between the target location and this subset. These results support the existence of a powerful and versatile statistical learning mechanism that may influence the orientation of infants' visual attention toward areas of interest in their environment during early developmental stages. A video abstract of this article can be viewed at: https://www.youtube.com/watch?v=9Hm1unyLBn0. © 2016 John Wiley & Sons Ltd.

  12. Molecular recognition of floral volatile with two olfactory related proteins in the Eastern honeybee (Apis cerana).

    Science.gov (United States)

    Li, Hongliang; Zhang, Linya; Ni, Cuixia; Shang, Hanwu; Zhuang, Shulin; Li, Jianke

    2013-05-01

    The honeybee relies on its sensitive olfaction to perform the foraging activities in the field. In the antennal chemoreception system of honeybee, odorant-binding proteins (OBPs) and chemosensory protein (CSPs) are major two protein families capable of binding with some plant volatiles and chemical ligands. However, the chemical binding interaction of plant odors with OBPs and CSPs in the honeybee olfactory system is still not clear yet. Hence, complex fluorescent spectra, ultraviolet absorption spectra, circular dichroism spectra and molecular docking were used to investigate the binding property of AcerASP2 (an OBP of Apis cerana) and AcerASP3 (a CSP of Apis cerana) with β-ionone, one of ordinary floral volatiles in botanical flower. As a result, β-ionone had a strong capability to quench the fluorescence that the two proteins produced, and their interaction was a dynamic process that was mainly driven by a hydrophobic force. AcerASP2 had a larger hydrophobic cavity than that of AcerASP3 and the conformation of AcerASP2 was changed less than AcerASP3 when binding with β-ionone. Our data suggests that OBPs like AcerASP2 might make a large contribution toward assisting the honeybee in sensing and foraging flowers, and A. cerana has evolved a good circadian rhythm to perceive a flower's odor following the fluctuation of temperature in the olfactory system. This significantly extends our knowledge on how to strengthen the honeybees' pollination service via manipulation of target proteins in the olfactory system. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Chemical composition and antimicrobial activity of honeybee ( Apis mellifera ligustica) propolis from subtropical eastern Australia

    Science.gov (United States)

    Massaro, Carmelina Flavia; Simpson, Jack Bruce; Powell, Daniel; Brooks, Peter

    2015-12-01

    Propolis is a material manufactured by bees and contains beeswax, bee salivary secretions and plant resins. Propolis preparations have been used for millennia by humans in food, cosmetics and medicines due to its antibacterial effects. Within the hive, propolis plays an important role in bees' health, with much of its bioactivity largely dependent on the plant resins the bees select for its production. Few chemical studies are available on the chemistry of propolis produced by Australian honeybees ( Apis mellifera, Apidae). This study aimed to determine the chemical composition as well as in vitro antimicrobial effects of propolis harvested from honeybees in subtropical eastern Australia. Honeybee propolis was produced using plastic frames and multiple beehives in two subtropical sites in eastern Australia. Methanolic extracts of propolis were analysed by liquid chromatography with ultraviolet detection and high-resolution mass spectrometry (ultra-high-pressure liquid chromatography (UHPLC)-UV-high-resolution tandem mass spectrometry (HR-MS/MS)) and by gas chromatography mass spectrometry (GC-MS). The resulting chemical data were dereplicated for compound characterisation. The two crude extracts in abs. ethanol were tested in vitro by the agar diffusion and broth dilution methods, using a phenol standard solution as the positive control and abs. ethanol as the negative control. Chemical constituents were identified to be pentacyclic triterpenoids and C-prenylated flavonoids, including Abyssinoflavanone VII, Propolin C and Nymphaeol C. The two propolis crude extracts showed bactericidal effects at the minimal inhibitory concentrations of 0.37-2.04 mg mL-1 against Staphylococcus aureus ATCC 25923. However, the extracts were inactive against Klebsiella pneumoniae ATCC 13883 and Candida albicans ATCC 10231. The antistaphylococcal potential of propolis was discussed, also in relation to honeybees' health, as it warrants further investigations on the social and

  14. Molecular, pharmacological, and signaling properties of octopamine receptors from honeybee (Apis mellifera) brain.

    Science.gov (United States)

    Balfanz, Sabine; Jordan, Nadine; Langenstück, Teresa; Breuer, Johanna; Bergmeier, Vera; Baumann, Arnd

    2014-04-01

    G protein-coupled receptors are important regulators of cellular signaling processes. Within the large family of rhodopsin-like receptors, those binding to biogenic amines form a discrete subgroup. Activation of biogenic amine receptors leads to transient changes of intracellular Ca²⁺-([Ca²⁺](i)) or 3',5'-cyclic adenosine monophosphate ([cAMP](i)) concentrations. Both second messengers modulate cellular signaling processes and thereby contribute to long-lasting behavioral effects in an organism. In vivo pharmacology has helped to reveal the functional effects of different biogenic amines in honeybees. The phenolamine octopamine is an important modulator of behavior. Binding of octopamine to its receptors causes elevation of [Ca²⁺](i) or [cAMP](i). To date, only one honeybee octopamine receptor that induces Ca²⁺ signals has been molecularly and pharmacologically characterized. Here, we examined the pharmacological properties of four additional honeybee octopamine receptors. When heterologously expressed, all receptors induced cAMP production after binding to octopamine with EC₅₀(s) in the nanomolar range. Receptor activity was most efficiently blocked by mianserin, a substance with antidepressant activity in vertebrates. The rank order of inhibitory potency for potential receptor antagonists was very similar on all four honeybee receptors with mianserin > cyproheptadine > metoclopramide > chlorpromazine > phentolamine. The subroot of octopamine receptors activating adenylyl cyclases is the largest that has so far been characterized in arthropods, and it should now be possible to unravel the contribution of individual receptors to the physiology and behavior of honeybees. © 2013 International Society for Neurochemistry.

  15. Fuzzy OLAP association rules mining-based modular reinforcement learning approach for multiagent systems.

    Science.gov (United States)

    Kaya, Mehmet; Alhajj, Reda

    2005-04-01

    Multiagent systems and data mining have recently attracted considerable attention in the field of computing. Reinforcement learning is the most commonly used learning process for multiagent systems. However, it still has some drawbacks, including modeling other learning agents present in the domain as part of the state of the environment, and some states are experienced much less than others, or some state-action pairs are never visited during the learning phase. Further, before completing the learning process, an agent cannot exhibit a certain behavior in some states that may be experienced sufficiently. In this study, we propose a novel multiagent learning approach to handle these problems. Our approach is based on utilizing the mining process for modular cooperative learning systems. It incorporates fuzziness and online analytical processing (OLAP) based mining to effectively process the information reported by agents. First, we describe a fuzzy data cube OLAP architecture which facilitates effective storage and processing of the state information reported by agents. This way, the action of the other agent, not even in the visual environment. of the agent under consideration, can simply be predicted by extracting online association rules, a well-known data mining technique, from the constructed data cube. Second, we present a new action selection model, which is also based on association rules mining. Finally, we generalize not sufficiently experienced states, by mining multilevel association rules from the proposed fuzzy data cube. Experimental results obtained on two different versions of a well-known pursuit domain show the robustness and effectiveness of the proposed fuzzy OLAP mining based modular learning approach. Finally, we tested the scalability of the approach presented in this paper and compared it with our previous work on modular-fuzzy Q-learning and ordinary Q-learning.

  16. Second Language Idiom Learning in a Paired-Associate Paradigm: Effects of Direction of Learning, Direction of Testing, Idiom Imageability, and Idiom Transparency

    Science.gov (United States)

    Steinel, Margarita P.; Hulstijn, Jan H.; Steinel, Wolfgang

    2007-01-01

    In a paired-associate learning (PAL) task, Dutch university students (n = 129) learned 20 English second language (L2) idioms either receptively or productively (i.e., L2-first language [L1] or L1-L2) and were tested in two directions (i.e., recognition or production) immediately after learning and 3 weeks later. Receptive and productive…

  17. Strain diversity and host specificity in a specialized gut symbiont of honeybees and bumblebees.

    Science.gov (United States)

    Powell, Elijah; Ratnayeke, Nalin; Moran, Nancy A

    2016-09-01

    Host-restricted lineages of gut bacteria often include many closely related strains, but this fine-scale diversity is rarely investigated. The specialized gut symbiont Snodgrassella alvi has codiversified with honeybees (Apis mellifera) and bumblebees (Bombus) for millions of years. Snodgrassella alvi strains are nearly identical for 16S rRNA gene sequences but have distinct gene repertoires potentially affecting host biology and community interactions. We examined S. alvi strain diversity within and between hosts using deep sequencing both of a single-copy coding gene (minD) and of the V4 region of the 16S rRNA gene. We sampled workers from domestic and feral A. mellifera colonies and wild-caught Bombus representing 14 species. Conventional analyses of community profiles, based on the V4 region of the 16S rRNA gene, failed to expose most strain variation. In contrast, the minD analysis revealed extensive strain variation within and between host species and individuals. Snodgrassella alvi strain diversity is significantly higher in A. mellifera than in Bombus, supporting the hypothesis that colony founding by swarms of workers enables retention of more diversity than colony founding by a single queen. Most Bombus individuals (72%) are dominated by a single S. alvi strain, whereas most A. mellifera (86%) possess multiple strains. No S. alvi strains are shared between A. mellifera and Bombus, indicating some host specificity. Among Bombus-restricted strains, some are restricted to a single host species or subgenus, while others occur in multiple subgenera. Findings demonstrate that strains diversify both within and between host species and can be highly specific or relatively generalized in their host associations. © 2016 John Wiley & Sons Ltd.

  18. Failing to learn from negative prediction errors: Obesity is associated with alterations in a fundamental neural learning mechanism.

    Science.gov (United States)

    Mathar, David; Neumann, Jane; Villringer, Arno; Horstmann, Annette

    2017-10-01

    Prediction errors (PEs) encode the difference between expected and actual action outcomes in the brain via dopaminergic modulation. Integration of these learning signals ensures efficient behavioral adaptation. Obesity has recently been linked to altered dopaminergic fronto-striatal circuits, thus implying impairments in cognitive domains that rely on its integrity. 28 obese and 30 lean human participants performed an implicit stimulus-response learning paradigm inside an fMRI scanner. Computational modeling and psycho-physiological interaction (PPI) analysis was utilized for assessing PE-related learning and associated functional connectivity. We show that human obesity is associated with insufficient incorporation of negative PEs into behavioral adaptation even in a non-food context, suggesting differences in a fundamental neural learning mechanism. Obese subjects were less efficient in using negative PEs to improve implicit learning performance, despite proper coding of PEs in striatum. We further observed lower functional coupling between ventral striatum and supplementary motor area in obese subjects subsequent to negative PEs. Importantly, strength of functional coupling predicted task performance and negative PE utilization. These findings show that obesity is linked to insufficient behavioral adaptation specifically in response to negative PEs, and to associated alterations in function and connectivity within the fronto-striatal system. Recognition of neural differences as a central characteristic of obesity hopefully paves the way to rethink established intervention strategies: Differential behavioral sensitivity to negative and positive PEs should be considered when designing intervention programs. Measures relying on penalization of unwanted behavior may prove less effective in obese subjects than alternative approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Analysis of European honeybee (Apis mellifera) wings using ATR-FTIR and Raman spectroscopy: A pilot study

    Czech Academy of Sciences Publication Activity Database

    Machovič, Vladimír; Lapčák, L.; Havelcová, Martina; Borecká, Lenka; Novotná, M.; Novotná, M.; Javůrková, I.; Langrová, I.; Hájková, Š.; Brožová, A.; Titěra, D.

    2017-01-01

    Roč. 48, č. 1 (2017), s. 22-29 ISSN 1211-3174 Institutional support: RVO:67985891 Keywords : honeybee wings * ATR-FTIR * Raman spectroscopy * protein * lipid * chitin Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry

  20. Canadian Association of Neurosciences Review: learning at a snail's pace.

    Science.gov (United States)

    Parvez, Kashif; Rosenegger, David; Martens, Kara; Orr, Michael; Lukowiak, Ken

    2006-11-01

    While learning and memory are related, they are distinct processes each with different forms of expression and underlying molecular mechanisms. An invertebrate model system, Lymnaea stagnalis, is used to study memory formation of a non-declarative memory. We have done so because: (1) We have discovered the neural circuit that mediates an interesting and tractable behaviour; (2) This behaviour can be operantly conditioned and intermediate-term and long-term memory can be demonstrated; and (3) It is possible to demonstrate that a single neuron in the model system is a necessary site of memory formation. This article reviews how Lymnaea has been used in the study of behavioural and molecular mechanisms underlying consolidation, reconsolidation, extinction and forgetting.

  1. Population structure and morphometric variance of the Apis mellifera scutellata group of honeybees in Africa

    Directory of Open Access Journals (Sweden)

    Sarah Radloff

    2000-06-01

    Full Text Available The honeybee populations of Africa classified as Apis mellifera scutellata Lepeletier were analysed morphometrically using multivariate statistical techniques. The collection consisted of nearly 15,000 worker honeybees from 825 individual colonies at 193 localities in east Africa, extending from South Africa to Ethiopia. Factor analysis established one primary cluster, designated as A. m. scutellata. Morphocluster formation and inclusivity (correct classification are highly sensitive to sampling distance intervals. Within the A. m. scutellata region are larger bees associated with high altitudes of mountain systems which are traditionally classified as A. m. monticola Smith, but it is evident that these bees do not form a uniform group. Variance characteristics of the morphometric measurements show domains of significantly different local populations. These high variance populations mostly occur at transitional edges of major climatic and vegetational zones, and sometimes with more localised discontinuities in temperature. It is also now evident that those A. m. scutellata introduced nearly fifty years ago into the Neotropics were a particularly homogenous sample, which exhibited all the traits expected in a founder effect or bottleneck population.Populações africanas de abelhas comuns classificadas como Apis mellifera scutellata Lepeletier foram analisadas morfometricamente usando-se técnicas estatísticas multivariadas. A população consistia de aproximadamente 15.000 abelhas operárias provenientes de 825 colônias individuais de 193 localidades do leste da África, estendendo-se da África do Sul até a Etiópia. A análise de fatores estabeleceu um agrupamento primário designado A. m. scutellata. A formação de agrupamento morfológico e a inclusividade (classificação correta são altamente sensíveis aos intervalos de distância da amostragem. Dentro da região de A. m. scutellata há abelhas maiores associadas às altas altitudes

  2. The Acquisition of Simple Associations as Observed in Color-Word Contingency Learning

    Science.gov (United States)

    Lin, Olivia Y.-H.; MacLeod, Colin M.

    2018-01-01

    Three experiments investigated the learning of simple associations in a color-word contingency task. Participants responded manually to the print colors of 3 words, with each word associated strongly to 1 of the 3 colors and weakly to the other 2 colors. Despite the words being irrelevant, response times to high-contingency stimuli and to…

  3. Learning Curve Characteristics for Caesarean Section Among Associate Clinicians : A Prospective Study from Sierra Leone

    NARCIS (Netherlands)

    Waalewijn, B.P.; van Duinen, A.; Koroma, A. P.; Rijken, M. J.; Elhassein, M.; Bolkan, H. A.

    2017-01-01

    Background: In response to the high maternal mortality ratio, Sierra Leone has adopted an associate clinician postgraduate surgical task-sharing training programme. Little is known about learning curve characteristics for caesarean sections among associate clinicians. The aim of this study is to

  4. Is problem-based learning associated with students’ motivation? A quantitative and qualitative study

    NARCIS (Netherlands)

    M. Wijnen (Marit); S.M.M. Loyens (Sofie); L. Wijnia (Lisette); G. Smeets (Guus); M.J. Kroeze (Maarten); H.T. van der Molen (Henk)

    2017-01-01

    textabstractIn this study, a mixed-method design was employed to investigate the association between a student-centred, problem-based learning (PBL) method and law students’ motivation. Self-determination theory (SDT) states that autonomous motivation, which is associated with higher academic

  5. Motivating Students' Learning Using Word Association Test and Concept Maps

    Directory of Open Access Journals (Sweden)

    Z. Kostova

    2010-06-01

    Full Text Available The paper presents the effect of a free word association test, content analysis and concept mapping on students’ achievements in human biology. The free word association test was used for revealing the scientific conceptual structures of 8th grade and 12th grade students, around a stimulus word – human being – and for motivating them to study human biology. The stimulus word retrieved a cluster of associations most of which were based on science education and experience. Associations with the stimulus word were analyzed and classified according to predetermined criteria and structured by means of a concept map. The stimulus word ‘human being’ was quantitatively assessed in order to find out the balance between the associations with its different aspects. On the basis of the results some connections between biology and other sciences studying the human being, were worked out. Each new topic in human biology was studied by using content analysis of the textbook and concept mapping as study tools and thus maintaining students’ motivation. Achievements of students were assessed by means of tests, observation and concept maps evaluation. The obtained data was also valuable in clarifying the complex nature of the human being, and confirming the statement that biology cannot answer all questions, concerning human nature. Inferences were made about the word association test combined with content analysis and concept map construction as an educational strategy.

  6. The virulent, emerging genotype B of Deformed wing virus is closely linked to overwinter honeybee worker loss

    DEFF Research Database (Denmark)

    Natsopoulou, Myrsini Eirini; McMahon, Dino P.; Doublet, Vincent

    2017-01-01

    Bees are considered to be threatened globally, with severe overwinter losses of the most important commercial pollinator, the Western honeybee, a major concern in the Northern Hemisphere. Emerging infectious diseases have risen to prominence due to their temporal correlation with colony losses...... of elevated overwinter honeybee loss. Its potential emergence in naïve populations of bees may have far-reaching ecological and economic impacts....

  7. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera

    OpenAIRE

    Charreton, Merc?d?s; Decourtye, Axel; Henry, Micka?l; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude

    2015-01-01

    The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along...

  8. Factors influencing the prevalence and infestation levels of Varroa destructor in honeybee colonies in two highland agro-ecological zones of Uganda.

    Science.gov (United States)

    Chemurot, Moses; Akol, Anne M; Masembe, Charles; de Smet, Lina; Descamps, Tine; de Graaf, Dirk C

    2016-04-01

    Varroa mites are ecto-parasites of honeybees and are a threat to the beekeeping industry. We identified the haplotype of Varroa mites and evaluated potential factors that influence their prevalence and infestation levels in the eastern and western highland agro-ecological zones of Uganda. This was done by collecting samples of adult worker bees between December 2014 and September 2015 in two sampling moments. Samples of bees were screened for Varroa using the ethanol wash method and the mites were identified by molecular techniques. All DNA sequences obtained from sampled mite populations in the two zones were 100 % identical to the Korean Haplotype (AF106899). Mean mite prevalence in the apiaries was 40 and 53 % for the western and eastern zones, respectively, during the first sampling. Over the second sampling, mean mite prevalence increased considerably in the western (59 %) but not in the eastern (51 %) zone. Factors that were associated with Varroa mite infestation levels include altitude, nature of apiary slope and apiary management practices during the first sampling. Our results further showed that Varroa mites were spreading from lower to higher elevations. Feral colonies were also infested with Varroa mites at infestation levels not significantly different from those in managed colonies. Colony productivity and strength were not correlated to mite infestation levels. We recommend a long-term Varroa mite monitoring strategy in areas of varying landscape and land use factors for a clear understanding of possible changes in mite infestation levels among African honeybees for informed decision making.

  9. Observational Word Learning: Beyond Propose-But-Verify and Associative Bean Counting.

    Science.gov (United States)

    Roembke, Tanja; McMurray, Bob

    2016-04-01

    Learning new words is difficult. In any naming situation, there are multiple possible interpretations of a novel word. Recent approaches suggest that learners may solve this problem by tracking co-occurrence statistics between words and referents across multiple naming situations (e.g. Yu & Smith, 2007), overcoming the ambiguity in any one situation. Yet, there remains debate around the underlying mechanisms. We conducted two experiments in which learners acquired eight word-object mappings using cross-situational statistics while eye-movements were tracked. These addressed four unresolved questions regarding the learning mechanism. First, eye-movements during learning showed evidence that listeners maintain multiple hypotheses for a given word and bring them all to bear in the moment of naming. Second, trial-by-trial analyses of accuracy suggested that listeners accumulate continuous statistics about word/object mappings, over and above prior hypotheses they have about a word. Third, consistent, probabilistic context can impede learning, as false associations between words and highly co-occurring referents are formed. Finally, a number of factors not previously considered in prior analysis impact observational word learning: knowledge of the foils, spatial consistency of the target object, and the number of trials between presentations of the same word. This evidence suggests that observational word learning may derive from a combination of gradual statistical or associative learning mechanisms and more rapid real-time processes such as competition, mutual exclusivity and even inference or hypothesis testing.

  10. Nicotine disrupts safety learning by enhancing fear associated with a safety cue via the dorsal hippocampus.

    Science.gov (United States)

    Connor, David A; Kutlu, Munir G; Gould, Thomas J

    2017-07-01

    Learned safety, a learning process in which a cue becomes associated with the absence of threat, is disrupted in individuals with post-traumatic stress disorder (PTSD). A bi-directional relationship exists between smoking and PTSD and one potential explanation is that nicotine-associated changes in cognition facilitate PTSD emotional dysregulation by disrupting safety associations. Therefore, we investigated whether nicotine would disrupt learned safety by enhancing fear associated with a safety cue. In the present study, C57BL/6 mice were administered acute or chronic nicotine and trained over three days in a differential backward trace conditioning paradigm consisting of five trials of a forward conditioned stimulus (CS)+ (Light) co-terminating with a footshock unconditioned stimulus followed by a backward CS- (Tone) presented 20 s after cessation of the unconditioned stimulus. Summation testing found that acute nicotine disrupted learned safety, but chronic nicotine had no effect. Another group of animals administered acute nicotine showed fear when presented with the backward CS (Light) alone, indicating the formation of a maladaptive fear association with the backward CS. Finally, we investigated the brain regions involved by administering nicotine directly into the dorsal hippocampus, ventral hippocampus, and prelimbic cortex. Infusion of nicotine into the dorsal hippocampus disrupted safety learning.

  11. Contribution Of Brain Tissue Oxidative Damage In Hypothyroidism-associated Learning and Memory Impairments

    Directory of Open Access Journals (Sweden)

    Yousef Baghcheghi

    2017-01-01

    Full Text Available The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments.

  12. SPAN: spike pattern association neuron for learning spatio-temporal sequences

    OpenAIRE

    Mohemmed, A; Schliebs, S; Matsuda, S; Kasabov, N

    2012-01-01

    Spiking Neural Networks (SNN) were shown to be suitable tools for the processing of spatio-temporal information. However, due to their inherent complexity, the formulation of efficient supervised learning algorithms for SNN is difficult and remains an important problem in the research area. This article presents SPAN — a spiking neuron that is able to learn associations of arbitrary spike trains in a supervised fashion allowing the processing of spatio-temporal information encoded in the prec...

  13. Fusing Data Mining, Machine Learning and Traditional Statistics to Detect Biomarkers Associated with Depression

    OpenAIRE

    Dipnall, Joanna F.; Pasco, Julie A.; Berk, Michael; Williams, Lana J.; Dodd, Seetal; Jacka, Felice N.; Meyer, Denny

    2016-01-01

    Background Atheoretical large-scale data mining techniques using machine learning algorithms have promise in the analysis of large epidemiological datasets. This study illustrates the use of a hybrid methodology for variable selection that took account of missing data and complex survey design to identify key biomarkers associated with depression from a large epidemiological study. Methods The study used a three-step methodology amalgamating multiple imputation, a machine learning boosted reg...

  14. Association between classroom ventilation mode and learning outcome in Danish schools

    DEFF Research Database (Denmark)

    Toftum, Jørn; Kjeldsen, Birthe Uldahl; Wargocki, Pawel

    2015-01-01

    Associations between learning, ventilation mode, and other classroom characteristics were investigated with data from a Danish test scheme and two widespread cross-sectional studies examining air quality in Danish schools. An academic achievement indicator as a measure of the learning outcome...... concentrations and temperatures in 820 classrooms in 389 schools were available. In 56% and 66% of the classrooms included in the two studies, the measured CO2 concentration was higher than 1000ppm. The findings of this study add to the growing evidence that insufficient classroom ventilation have impacts...... on learning outcomes....

  15. The "proactive" model of learning: Integrative framework for model-free and model-based reinforcement learning utilizing the associative learning-based proactive brain concept.

    Science.gov (United States)

    Zsuga, Judit; Biro, Klara; Papp, Csaba; Tajti, Gabor; Gesztelyi, Rudolf

    2016-02-01

    Reinforcement learning (RL) is a powerful concept underlying forms of associative learning governed by the use of a scalar reward signal, with learning taking place if expectations are violated. RL may be assessed using model-based and model-free approaches. Model-based reinforcement learning involves the amygdala, the hippocampus, and the orbitofrontal cortex (OFC). The model-free system involves the pedunculopontine-tegmental nucleus (PPTgN), the ventral tegmental area (VTA) and the ventral striatum (VS). Based on the functional connectivity of VS, model-free and model based RL systems center on the VS that by integrating model-free signals (received as reward prediction error) and model-based reward related input computes value. Using the concept of reinforcement learning agent we propose that the VS serves as the value function component of the RL agent. Regarding the model utilized for model-based computations we turned to the proactive brain concept, which offers an ubiquitous function for the default network based on its great functional overlap with contextual associative areas. Hence, by means of the default network the brain continuously organizes its environment into context frames enabling the formulation of analogy-based association that are turned into predictions of what to expect. The OFC integrates reward-related information into context frames upon computing reward expectation by compiling stimulus-reward and context-reward information offered by the amygdala and hippocampus, respectively. Furthermore we suggest that the integration of model-based expectations regarding reward into the value signal is further supported by the efferent of the OFC that reach structures canonical for model-free learning (e.g., the PPTgN, VTA, and VS). (c) 2016 APA, all rights reserved).

  16. Proboscis conditioning experiments with honeybees, Apis mellifera caucasica, with butyric acid and DEET mixture as conditioned and unconditioned stimuli.

    Science.gov (United States)

    Abramson, Charles I; Giray, Tugrul; Mixson, T Andrew; Nolf, Sondra L; Wells, Harrington; Kence, Aykut; Kence, Meral

    2010-01-01

    Three experiments are described investigating whether olfactory repellents DEET and butyric acid can support the classical conditioning of proboscis extension in the honeybee, Apis mellifera caucasica (Hymenoptera: Apidae). In the first experiment DEET and butyric acid readily led to standard acquisition and extinction effects, which are comparable to the use of cinnamon as a conditioned stimulus. These results demonstrate that the odor of DEET or butyric acid is not intrinsically repellent to honey bees. In a second experiment, with DEET and butyric acid mixed with sucrose as an unconditioned stimulus, proboscis conditioning was not established. After several trials, few animals responded to the unconditioned stimulus. These results demonstrate that these chemicals are gustatory repellents when in direct contact. In the last experiment a conditioned suppression paradigm was used. Exposing animals to butyric acid or DEET when the proboscis was extended by direct sucrose stimulation or by learning revealed that retraction of the proboscis was similar to another novel odor, lavender, and in all cases greatest when the animal was not permitted to feed. These results again demonstrate that DEET or butyric acid are not olfactory repellents, and in addition, conditioned suppression is influenced by feeding state of the bee.

  17. Fast But Fleeting: Adaptive Motor Learning Processes Associated with Aging and Cognitive Decline

    Science.gov (United States)

    Trewartha, Kevin M.; Garcia, Angeles; Wolpert, Daniel M.

    2014-01-01

    Motor learning has been shown to depend on multiple interacting learning processes. For example, learning to adapt when moving grasped objects with novel dynamics involves a fast process that adapts and decays quickly—and that has been linked to explicit memory—and a slower process that adapts and decays more gradually. Each process is characterized by a learning rate that controls how strongly motor memory is updated based on experienced errors and a retention factor determining the movement-to-movement decay in motor memory. Here we examined whether fast and slow motor learning processes involved in learning novel dynamics differ between younger and older adults. In addition, we investigated how age-related decline in explicit memory performance influences learning and retention parameters. Although the groups adapted equally well, they did so with markedly different underlying processes. Whereas the groups had similar fast processes, they had different slow processes. Specifically, the older adults exhibited decreased retention in their slow process compared with younger adults. Within the older group, who exhibited considerable variation in explicit memory performance, we found that poor explicit memory was associated with reduced retention in the fast process, as well as the slow process. These findings suggest that explicit memory resources are a determining factor in impairments in the both the fast and slow processes for motor learning but that aging effects on the slow process are independent of explicit memory declines. PMID:25274819

  18. Fast but fleeting: adaptive motor learning processes associated with aging and cognitive decline.

    Science.gov (United States)

    Trewartha, Kevin M; Garcia, Angeles; Wolpert, Daniel M; Flanagan, J Randall

    2014-10-01

    Motor learning has been shown to depend on multiple interacting learning processes. For example, learning to adapt when moving grasped objects with novel dynamics involves a fast process that adapts and decays quickly-and that has been linked to explicit memory-and a slower process that adapts and decays more gradually. Each process is characterized by a learning rate that controls how strongly motor memory is updated based on experienced errors and a retention factor determining the movement-to-movement decay in motor memory. Here we examined whether fast and slow motor learning processes involved in learning novel dynamics differ between younger and older adults. In addition, we investigated how age-related decline in explicit memory performance influences learning and retention parameters. Although the groups adapted equally well, they did so with markedly different underlying processes. Whereas the groups had similar fast processes, they had different slow processes. Specifically, the older adults exhibited decreased retention in their slow process compared with younger adults. Within the older group, who exhibited considerable variation in explicit memory performance, we found that poor explicit memory was associated with reduced retention in the fast process, as well as the slow process. These findings suggest that explicit memory resources are a determining factor in impairments in the both the fast and slow processes for motor learning but that aging effects on the slow process are independent of explicit memory declines. Copyright © 2014 the authors 0270-6474/14/3413411-11$15.00/0.

  19. Functionally segregated neural substrates for arbitrary audiovisual paired-association learning.

    Science.gov (United States)

    Tanabe, Hiroki C; Honda, Manabu; Sadato, Norihiro

    2005-07-06

    To clarify the neural substrates and their dynamics during crossmodal association learning, we conducted functional magnetic resonance imaging (MRI) during audiovisual paired-association learning of delayed matching-to-sample tasks. Thirty subjects were involved in the study; 15 performed an audiovisual paired-association learning task, and the remainder completed a control visuo-visual task. Each trial consisted of the successive presentation of a pair of stimuli. Subjects were asked to identify predefined audiovisual or visuo-visual pairs by trial and error. Feedback for each trial was given regardless of whether the response was correct or incorrect. During the delay period, several areas showed an increase in the MRI signal as learning proceeded: crossmodal activity increased in unimodal areas corresponding to visual or auditory areas, and polymodal responses increased in the occipitotemporal junction and parahippocampal gyrus. This pattern was not observed in the visuo-visual intramodal paired-association learning task, suggesting that crossmodal associations might be formed by binding unimodal sensory areas via polymodal regions. In both the audiovisual and visuo-visual tasks, the MRI signal in the superior temporal sulcus (STS) in response to the second stimulus and feedback peaked during the early phase of learning and then decreased, indicating that the STS might be key to the creation of paired associations, regardless of stimulus type. In contrast to the activity changes in the regions discussed above, there was constant activity in the frontoparietal circuit during the delay period in both tasks, implying that the neural substrates for the formation and storage of paired associates are distinct from working memory circuits.

  20. Sleep directly following learning benefits consolidation of spatial associative memory

    NARCIS (Netherlands)

    Talamini, L.M.; Nieuwenhuis, I.L.C.; Takashima, A.

    2008-01-01

    The last decade has brought forth convincing evidence for a role of sleep in non-declarative memory. A similar function of sleep in episodic memory is supported by various correlational studies, but direct evidence is limited. Here we show that cued recall of face–location associations is

  1. Sleep directly following learning benefits consolidation of spatial associative memory

    NARCIS (Netherlands)

    Talamini, L.M.; Nieuwenhuis, I.L.C.; Takashima, A.; Jensen, O.

    2008-01-01

    The last decade has brought forth convincing evidence for a role of sleep in non-declarative memory. A similar function of sleep in episodic memory is supported by various correlational studies, but direct evidence is limited. Here we show that cued recall of face-location associations is

  2. Western honeybee drones and workers (Apis mellifera ligustica) have different olfactory mechanisms than eastern honeybees (Apis cerana cerana).

    Science.gov (United States)

    Woltedji, Dereje; Song, Feifei; Zhang, Lan; Gala, Alemayehu; Han, Bin; Feng, Mao; Fang, Yu; Li, Jianke

    2012-09-07

    The honeybees Apis mellifera ligustica (Aml) and Apis cerana cerana (Acc) are two different western and eastern bee species that evolved in distinct ecologies and developed specific antennal olfactory systems for their survival. Knowledge of how their antennal olfactory systems function in regards to the success of each respective bee species is scarce. We compared the antennal morphology and proteome between respective sexually mature drones and foraging workers of both species using a scanning electron microscope, two-dimensional electrophoresis, mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction. Despite the general similarities in antennal morphology of the drone and worker bees between the two species, a total of 106 and 100 proteins altered their expression in the drones' and the workers' antennae, respectively. This suggests that the differences in the olfactory function of each respective bee are supported by the change of their proteome. Of the 106 proteins that altered their expression in the drones, 72 (68%) and 34 (32%) were overexpressed in the drones of Aml and Acc, respectively. The antennae of the Aml drones were built up by the highly expressed proteins that were involved in carbohydrate metabolism and energy production, molecular transporters, antioxidation, and fatty acid metabolism in contrast to the Acc drones. This is believed to enhance the antennal olfactory functions of the Aml drones as compared to the Acc drones during their mating flight. Likewise, of the 100 proteins with expression changes between the worker bees of the two species, 67% were expressed in higher levels in the antennae of Aml worker contrasting to 33% in the Acc worker. The overall higher expressions of proteins related to carbohydrate metabolism and energy production, molecular transporters, and antioxidation in the Aml workers compared with the Acc workers indicate the Aml workers require more antennal proteins for their olfactory

  3. MtDNA COI-COII marker and drone congregation area: an efficient method to establish and monitor honeybee (Apis mellifera L.) conservation centres.

    Science.gov (United States)

    Bertrand, Bénédicte; Alburaki, Mohamed; Legout, Hélène; Moulin, Sibyle; Mougel, Florence; Garnery, Lionel

    2015-05-01

    Honeybee subspecies have been affected by human activities in Europe over the past few decades. One such example is the importation of nonlocal subspecies of bees which has had an adverse impact on the geographical repartition and subsequently on the genetic diversity of the black honeybee Apis mellifera mellifera. To restore the original diversity of this local honeybee subspecies, different conservation centres were set up in Europe. In this study, we established a black honeybee conservation centre Conservatoire de l'Abeille Noire d'Ile de France (CANIF) in the region of Ile-de-France, France. CANIF's honeybee colonies were intensively studied over a 3-year period. This study included a drone congregation area (DCA) located in the conservation centre. MtDNA COI-COII marker was used to evaluate the genetic diversity of CANIF's honeybee populations and the drones found and collected from the DCA. The same marker (mtDNA) was used to estimate the interactions and the haplotype frequency between CANIF's honeybee populations and 10 surrounding honeybee apiaries located outside of the CANIF. Our results indicate that the colonies of the conservation centre and the drones of the DCA show similar stable profiles compared to the surrounding populations with lower level of introgression. The mtDNA marker used on both DCA and colonies of the conservation centre seems to be an efficient approach to monitor and maintain the genetic diversity of the protected honeybee populations. © 2014 John Wiley & Sons Ltd.

  4. Networks of Learning : Professional Association and the Continuing Education of Teachers of Mathematics in Pakistan

    DEFF Research Database (Denmark)

    Baber, Sikunder Ali

    " and shows how a number of professional associations have become as networks of learning to encourage the continuing professional education of both pre-service and in-service teachers in the context of Pakistan. A case of the Mathematics Association of Pakistan (MAP) as a Network of Learning is presented....... The formation and growth of this network can be viewed as developing insights into the improvement of mathematics education in the developing world. The contributions of the association may also add value to the learning of teacher colleagues in other parts of the world. This sharing of the experience may......Importance of the professional development of teachers has been recognized and research has contributed greatly in terms of proposing variety of approaches for the development of teachers,both pre-service and in-service. Among them, networking among teachers, teacher educators,curriculum developers...

  5. Elemental representation and configural mappings: combining elemental and configural theories of associative learning.

    Science.gov (United States)

    McLaren, I P L; Forrest, C L; McLaren, R P

    2012-09-01

    In this article, we present our first attempt at combining an elemental theory designed to model representation development in an associative system (based on McLaren, Kaye, & Mackintosh, 1989) with a configural theory that models associative learning and memory (McLaren, 1993). After considering the possible advantages of such a combination (and some possible pitfalls), we offer a hybrid model that allows both components to produce the phenomena that they are capable of without introducing unwanted interactions. We then successfully apply the model to a range of phenomena, including latent inhibition, perceptual learning, the Espinet effect, and first- and second-order retrospective revaluation. In some cases, we present new data for comparison with our model's predictions. In all cases, the model replicates the pattern observed in our experimental results. We conclude that this line of development is a promising one for arriving at general theories of associative learning and memory.

  6. Chronological age and its impact on associative learning proficiency and brain structure in middle adulthood.

    Science.gov (United States)

    Diwadkar, Vaibhav A; Bellani, Marcella; Ahmed, Rizwan; Dusi, Nicola; Rambaldelli, Gianluca; Perlini, Cinzia; Marinelli, Veronica; Ramaseshan, Karthik; Ruggeri, Mirella; Bambilla, Paolo

    2016-01-15

    The rate of biological change in middle-adulthood is relatively under-studied. Here, we used behavioral testing in conjunction with structural magnetic resonance imaging to examine the effects of chronological age on associative learning proficiency and on brain regions that previous functional MRI studies have closely related to the domain of associative learning. Participants (n=66) completed a previously established associative learning paradigm, and consented to be scanned using structural magnetic resonance imaging. Age-related effects were investigated both across sub-groups in the sample (younger vs. older) and across the entire sample (using regression approaches). Chronological age had substantial effects on learning proficiency (independent of IQ and Education Level), with older adults showing a decrement compared to younger adults. In addition, decreases in estimated gray matter volume were observed in multiple brain regions including the hippocampus and the dorsal prefrontal cortex, both of which are strongly implicated in associative learning. The results suggest that middle adulthood may be a more dynamic period of life-span change than previously believed. The conjunctive application of narrowly focused tasks, with conjointly acquired structural MRI data may allow us to enrich the search for, and the interpretation of, age-related changes in cross-sectional samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. BDNF Val66Met Polymorphism Influences Visuomotor Associative Learning and the Sensitivity to Action Observation

    Science.gov (United States)

    Taschereau-Dumouchel, Vincent; Hétu, Sébastien; Michon, Pierre-Emmanuel; Vachon-Presseau, Etienne; Massicotte, Elsa; De Beaumont, Louis; Fecteau, Shirley; Poirier, Judes; Mercier, Catherine; Chagnon, Yvon C.; Jackson, Philip L.

    2016-01-01

    Motor representations in the human mirror neuron system are tuned to respond to specific observed actions. This ability is widely believed to be influenced by genetic factors, but no study has reported a genetic variant affecting this system so far. One possibility is that genetic variants might interact with visuomotor associative learning to configure the system to respond to novel observed actions. In this perspective, we conducted a candidate gene study on the Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, a genetic variant linked to motor learning in regions of the mirror neuron system, and tested the effect of this polymorphism on motor facilitation and visuomotor associative learning. In a single-pulse TMS study carried on 16 Met (Val/Met and Met/Met) and 16 Val/Val participants selected from a large pool of healthy volunteers, Met participants showed significantly less muscle-specific corticospinal sensitivity during action observation, as well as reduced visuomotor associative learning, compared to Val homozygotes. These results are the first evidence of a genetic variant tuning sensitivity to action observation and bring to light the importance of considering the intricate relation between genetics and associative learning in order to further understand the origin and function of the human mirror neuron system. PMID:27703276

  8. Attentional control of associative learning--a possible role of the central cholinergic system.

    Science.gov (United States)

    Pauli, Wolfgang M; O'Reilly, Randall C

    2008-04-02

    How does attention interact with learning? Kruschke [Kruschke, J.K. (2001). Toward a unified Model of Attention in Associative Learning. J. Math. Psychol. 45, 812-863.] proposed a model (EXIT) that captures Mackintosh's [Mackintosh, N.J. (1975). A theory of attention: Variations in the associability of stimuli with reinforcement. Psychological Review, 82(4), 276-298.] framework for attentional modulation of associative learning. We developed a computational model that showed analogous interactions between selective attention and associative learning, but is significantly simplified and, in contrast to EXIT, is motivated by neurophysiological findings. Competition among input representations in the internal representation layer, which increases the contrast between stimuli, is critical for simulating these interactions in human behavior. Furthermore, this competition is modulated in a way that might be consistent with the phasic activation of the central cholinergic system, which modulates activity in sensory cortices. Specifically, phasic increases in acetylcholine can cause increased excitability of both pyramidal excitatory neurons in cortical layers II/III and cortical GABAergic inhibitory interneurons targeting the same pyramidal neurons. These effects result in increased attentional contrast in our model. This model thus represents an initial attempt to link human attentional learning data with underlying neural substrates.

  9. The time course of ethanol tolerance: associative learning

    Directory of Open Access Journals (Sweden)

    J.L.O. Bueno

    2007-11-01

    Full Text Available The effect of different contextual stimuli on different ethanol-induced internal states was investigated during the time course of both the hypothermic effect of the drug and of drug tolerance. Minimitters were surgically implanted in 16 Wistar rats to assess changes in their body temperature under the effect of ethanol. Rat groups were submitted to ethanol or saline trials every other day. The animals were divided into two groups, one receiving a constant dose (CD of ethanol injected intraperitoneally, and the other receiving increasing doses (ID during the 10 training sessions. During the ethanol training sessions, conditioned stimuli A (tone and B (buzzer were presented at "state +" (35 min after drug injection and "state -" (170 min after drug injection, respectively. Conditioned stimuli C (bip and D (white noise were presented at moments equivalent to stimuli A and B, respectively, but during the saline training sessions. All stimuli lasted 15 min. The CD group, but not the ID group, developed tolerance to the hypothermic effect of ethanol. Stimulus A (associated with drug "state +" induced hyperthermia with saline injection in the ID group. Stimulus B (associated with drug "state -" reduced ethanol tolerance in the CD group and modulated the hypothermic effect of the drug in the ID group. These results indicate that contextual stimuli acquire modulatory conditioned properties that are associated with the time course of both the action of the drug and the development of drug tolerance.

  10. Dynamically stable associative learning: a neurobiologically based ANN and its applications

    Science.gov (United States)

    Vogl, Thomas P.; Blackwell, Kim L.; Barbour, Garth; Alkon, Daniel L.

    1992-07-01

    Most currently popular artificial neural networks (ANN) are based on conceptions of neuronal properties that date back to the 1940s and 50s, i.e., to the ideas of McCullough, Pitts, and Hebb. Dystal is an ANN based on current knowledge of neurobiology at the cellular and subcellular level. Networks based on these neurobiological insights exhibit the following advantageous properties: (1) A theoretical storage capacity of bN non-orthogonal memories, where N is the number of output neurons sharing common inputs and b is the number of distinguishable (gray shade) levels. (2) The ability to learn, store, and recall associations among noisy, arbitrary patterns. (3) A local synaptic learning rule (learning depends neither on the output of the post-synaptic neuron nor on a global error term), some of whose consequences are: (4) Feed-forward, lateral, and feed-back connections (as well as time-sensitive connections) are possible without alteration of the learning algorithm; (5) Storage allocation (patch creation) proceeds dynamically as associations are learned (self- organizing); (6) The number of training set presentations required for learning is small (different expressions and/or corrupted by noise, and on reading hand-written digits (98% accuracy) and hand-printed Japanese Kanji (90% accuracy) is demonstrated.

  11. Does academic performance or personal growth share a stronger association with learning environment perception?

    Science.gov (United States)

    Tackett, Sean; Wright, Scott M.; Shochet, Robert S.

    2016-01-01

    Objectives This study was conducted to characterize the relative strength of associations of learning environment perception with academic performance and with personal growth. Methods In 2012-2014 second and third year students at Johns Hopkins University School of Medicine completed a learning environment survey and personal growth scale. Hierarchical linear regression analysis was employed to determine if the proportion of variance in learning environment scores accounted for by personal growth was significantly larger than the proportion accounted for by academic performance (course/clerkship grades). Results The proportion of variance in learning environment scores accounted for by personal growth was larger than the proportion accounted for by academic performance in year 2 [R2Δ of 0.09, F(1,175) = 14.99,  p environment scores shared a small amount of variance with academic performance in years 2 and 3.  The amount of variance between learning environment scores and personal growth was small in year 2 and large in year 3. Conclusions Since supportive learning environments are essential for medical education, future work must determine if enhancing personal growth prior to and during the clerkship year will increase learning environment perception. PMID:27570912

  12. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems

    Directory of Open Access Journals (Sweden)

    Martine Baars

    2017-08-01

    Full Text Available Self-regulated learning (SRL skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale, motivation (i.e., autonomous and controlled motivation, mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels. In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.

  13. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems.

    Science.gov (United States)

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.

  14. Paired-Associate and Feedback-Based Weather Prediction Tasks Support Multiple Category Learning Systems.

    Science.gov (United States)

    Li, Kaiyun; Fu, Qiufang; Sun, Xunwei; Zhou, Xiaoyan; Fu, Xiaolan

    2016-01-01

    It remains unclear whether probabilistic category learning in the feedback-based weather prediction task (FB-WPT) can be mediated by a non-declarative or procedural learning system. To address this issue, we compared the effects of training time and verbal working memory, which influence the declarative learning system but not the non-declarative learning system, in the FB and paired-associate (PA) WPTs, as the PA task recruits a declarative learning system. The results of Experiment 1 showed that the optimal accuracy in the PA condition was significantly decreased when the training time was reduced from 7 to 3 s, but this did not occur in the FB condition, although shortened training time impaired the acquisition of explicit knowledge in both conditions. The results of Experiment 2 showed that the concurrent working memory task impaired the optimal accuracy and the acquisition of explicit knowledge in the PA condition but did not influence the optimal accuracy or the acquisition of self-insight knowledge in the FB condition. The apparent dissociation results between the FB and PA conditions suggested that a non-declarative or procedural learning system is involved in the FB-WPT and provided new evidence for the multiple-systems theory of human category learning.

  15. Powerful Tests for Multi-Marker Association Analysis Using Ensemble Learning.

    Directory of Open Access Journals (Sweden)

    Badri Padhukasahasram

    Full Text Available Multi-marker approaches have received a lot of attention recently in genome wide association studies and can enhance power to detect new associations under certain conditions. Gene-, gene-set- and pathway-based association tests are increasingly being viewed as useful supplements to the more widely used single marker association analysis which have successfully uncovered numerous disease variants. A major drawback of single-marker based methods is that they do not look at the joint effects of multiple genetic variants which individually may have weak or moderate signals. Here, we describe novel tests for multi-marker association analyses that are based on phenotype predictions obtained from machine learning algorithms. Instead of assuming a linear or logistic regression model, we propose the use of ensembles of diverse machine learning algorithms for prediction. We show that phenotype predictions obtained from ensemble learning algorithms provide a new framework for multi-marker association analysis. They can be used for constructing tests for the joint association of multiple variants, adjusting for covariates and testing for the presence of interactions. To demonstrate the power and utility of this new approach, we first apply our method to simulated SNP datasets. We show that the proposed method has the correct Type-1 error rates and can be considerably more powerful than alternative approaches in some situations. Then, we apply our method to previously studied asthma-related genes in 2 independent asthma cohorts to conduct association tests.

  16. Associative learning changes cross-modal representations in the gustatory cortex.

    Science.gov (United States)

    Vincis, Roberto; Fontanini, Alfredo

    2016-08-30

    A growing body of literature has demonstrated that primary sensory cortices are not exclusively unimodal, but can respond to stimuli of different sensory modalities. However, several questions concerning the neural representation of cross-modal stimuli remain open. Indeed, it is poorly understood if cross-modal stimuli evoke unique or overlapping representations in a primary sensory cortex and whether learning can modulate these representations. Here we recorded single unit responses to auditory, visual, somatosensory, and olfactory stimuli in the gustatory cortex (GC) of alert rats before and after associative learning. We found that, in untrained rats, the majority of GC neurons were modulated by a single modality. Upon learning, both prevalence of cross-modal responsive neurons and their breadth of tuning increased, leading to a greater overlap of representations. Altogether, our results show that the gustatory cortex represents cross-modal stimuli according to their sensory identity, and that learning changes the overlap of cross-modal representations.

  17. FLIGHT RANGE OF AFRICANIZED HONEYBEES, Apis mellifera L. 1758 (Hymenoptera: Apidae IN AN APPLE GROVE

    Directory of Open Access Journals (Sweden)

    PARANHOS B.A.J

    1997-01-01

    Full Text Available Africanized honeybees from five colonies were marked with P-32 and taken to an apple grove for a flight behavior study. The method used to determine the flight range was to put out an array of tagged trees in a cross pattern with the colonies arranged in the center point of a 0.8 ha test area. The tagged trees were located 10 meters apart in the 4 rows of 50 meters each, arranged according to the North, South, East, and West directions. Bees were collected while visiting the tagged tree flowers twice a day, during a ten-day period. The number of honeybees marked decreased in relation to the distance from the hives. Analysis of variance showed that a linear regression was highly significant to describe the process. Geographic directions did not affect the activity of the bees.

  18. RNA-sequence analysis of gene expression from honeybees (Apis mellifera) infected with Nosema ceranae

    Science.gov (United States)

    Fougeroux, André; Petit, Fabien; Anselmo, Anna; Gorni, Chiara; Cucurachi, Marco; Cersini, Antonella; Granato, Anna; Cardeti, Giusy; Formato, Giovanni; Mutinelli, Franco; Giuffra, Elisabetta; Williams, John L.; Botti, Sara

    2017-01-01

    Honeybees (Apis mellifera) are constantly subjected to many biotic stressors including parasites. This study examined honeybees infected with Nosema ceranae (N. ceranae). N. ceranae infection increases the bees energy requirements and may contribute to their decreased survival. RNA-seq was used to investigate gene expression at days 5, 10 and 15 Post Infection (P.I) with N. ceranae. The expression levels of genes, isoforms, alternative transcription start sites (TSS) and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation suggesting that bees use a range of tactics to cope with the stress of N. ceranae infection. N. ceranae infection may cause reduced immune function in the bees by: (i)disturbing the host amino acids metabolism (ii) down-regulating expression of antimicrobial peptides (iii) down-regulation of cuticle coatings and (iv) down-regulation of odorant binding proteins. PMID:28350872

  19. A Foreign Body Granuloma of the Buccal Mucosa Induced by Honeybee Sting

    Directory of Open Access Journals (Sweden)

    Kazuhiko Yamamoto

    2017-01-01

    Full Text Available A foreign body granuloma of the buccal mucosa induced by honeybee sting was reported. The patient was an 82-year-old female who presented with a submucous mass at the right buccal mucosa. The mass was 20 mm in diameter, elastically firm, partly mobile without pain or tenderness, and covered with almost normal mucosa. MR image did not delineate the lesion clearly. Under clinical diagnosis of a benign tumor, the lesion was excised under local anesthesia. The excised lesion was 14×11×9 mm in size and solid and yellowish in cut surface. Histologically, the lesion consisted of granulomatous tissue with a few narrow, curved, eosinophilic structures compatible with decomposed fragments of a honeybee sting and was diagnosed as a foreign body granuloma, although the patient did not recall being stung.

  20. Quality of royal jelly produced by Africanized honeybees fed a supplemented diet

    Directory of Open Access Journals (Sweden)

    Maria Josiane Sereia

    2013-06-01

    Full Text Available This study was carried out to evaluate the effect of artificial supplements prepared with soybean protein isolate, brewer's yeast, mixture of soybean protein isolate with brewer's yeast, linseed oil, palm oil, and a mixture of linseed oil with palm oil on the physicochemical and microbiological composition of royal jelly produced by Africanized honey bee colonies. Considering these results, providing supplements for Africanized honeybee colonies subjected to royal jelly production can help and strengthen the technological development of the Brazilian beekeeping industry increasing its consumption in the national market. This research presents values of royal jelly a little different from those established by the Brazilian legislation. This fact shows that is important to discuss or change the official method for royal jelly analysis. The characterization of physicochemical and microbiological parameters is important in order to standardize fresh, frozen, and lyophilized royal jelly produced by Africanized honeybees.

  1. Sensing the intruder: a quantitative threshold for recognition cues perception in honeybees

    Science.gov (United States)

    Cappa, Federico; Bruschini, Claudia; Cipollini, Maria; Pieraccini, Giuseppe; Cervo, Rita

    2014-02-01

    The ability to discriminate among nestmates and non-nestmate is essential to defend social insect colonies from intruders. Over the years, nestmate recognition has been extensively studied in the honeybee Apis mellifera; nevertheless, the quantitative perceptual aspects at the basis of the recognition system represent an unexplored subject in this species. To test the existence of a cuticular hydrocarbons' quantitative perception threshold for nestmate recognition cues, we conducted behavioural assays by presenting different amounts of a foreign forager's chemical profile to honeybees at the entrance of their colonies. We found an increase in the explorative and aggressive responses as the amount of cues increased based on a threshold mechanism, highlighting the importance of the quantitative perceptual features for the recognition processes in A. mellifera.

  2. Cooperative random Levy flight searches and the flight patterns of honeybees

    International Nuclear Information System (INIS)

    Reynolds, A.M.

    2006-01-01

    The most efficient Levy flight (scale-free) searching strategy for N independent searchers to adopt when target sites are randomly and sparsely distributed is identified. For N=1, it is well known that the optimal searching strategy is attained when μ=2, where the exponent μ characterizes the Levy distribution, P(l)=l -μ , of flight-lengths. For N>1, the optimal searching strategy is attained as μ->1. It is suggested that the orientation flights of honeybees can be understood within the context of such an optimal cooperative random Levy flight searching strategy. Upon returning to their hive after surveying a landscape honeybees can exchange information about the locations of target sites through the waggle dance. In accordance with observations it is predicted that the waggle dance can be disrupted without noticeable influence on a hive's ability to maintain weight when forage is plentiful

  3. Survey of diseases and parasites of honeybees (Apis mellifera L.) in Sudan

    International Nuclear Information System (INIS)

    El-Niweiri, M. A.; El-Sarrag, M. S. A.; Satti, A. A.

    2009-01-01

    A survey of the honeybee diseases and parasites including questionnaires were carried out in eight bee areas in Sudan during the season 2002/03. About 117 local colonies and 324 packages of imported colonies of Apis mellifera were inspected, in addition to 25 colonies of Apis florea. All areas were found to be free of most bacterial brood diseases and fungal diseases, except the bacterial brood disease (Serratia marcescens) which was merely detected in 2.6% of Khartoum colonies. However, non infective dysentery was the only adult disease found during this study infecting 18.2% of Kordofan colonies. On the other hand, the parasitic mite (Varroa jacobsoni) was reported as first record in Sudan, detected only in Khartoum State infecting about 75% of colonies in apiaries and 27% of wild colonies. Sudanese honeybees were found to be characterized by hygienic behaviour of colonies which resist most pests and diseases, and no chemicals were used for control.(Author)

  4. Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway

    DEFF Research Database (Denmark)

    Gempe, Tanja; Hasselmann, Martin; Schiøtt, Morten

    2009-01-01

    Organisms have evolved a bewildering diversity of mechanisms to generate the two sexes. The honeybee (Apis mellifera) employs an interesting system in which sex is determined by heterozygosity at a single locus (the Sex Determination Locus) harbouring the complementary sex determiner (csd) gene....... Bees heterozygous at Sex Determination Locus are females, whereas bees homozygous or hemizygous are males. Little is known, however, about the regulation that links sex determination to sexual differentiation. To investigate the control of sexual development in honeybees, we analyzed the functions...... and the regulatory interactions of genes involved in the sex determination pathway. We show that heterozygous csd is only required to induce the female pathway, while the feminizer (fem) gene maintains this decision throughout development. By RNAi induced knockdown we show that the fem gene is essential for entire...

  5. Lower disease infections in honeybee (Apis mellifera) colonies headed by polyandrous vs monandrous queens

    Science.gov (United States)

    Tarpy, David R.; Seeley, Thomas D.

    2006-04-01

    We studied the relationship between genetic diversity and disease susceptibility in honeybee colonies living under natural conditions. To do so, we created colonies in which each queen was artificially inseminated with sperm from either one or ten drones. Of the 20 colonies studied, 80% showed at least one brood disease. We found strong differences between the two types of colonies in the infection intensity of chalkbrood and in the total intensity of all brood diseases (chalkbrood, sacbrood, American foulbrood, and European foulbrood) with both variables lower for the colonies with higher genetic diversity. Our findings demonstrate that disease can be an important factor in the ecology of honeybee colonies and they provide strong support for the disease hypothesis for the evolution of polyandry by social insect queens.

  6. Genetic underpinnings of division of labor in the honeybee (Apis mellifera).

    Science.gov (United States)

    Lattorff, H Michael G; Moritz, Robin F A

    2013-11-01

    Honeybees have been studied for centuries, starting with Aristotle, who wrote the first book about bee breeding. More than 2000 years later, the honeybee entered the genomic era as the first social insect whose genome was sequenced, leading to significant insight into the molecular mechanisms underlying social behavior. In addition, gene expression studies and knockdown using RNAi have extended the understanding of social interactions. Much of the work has focused on caste determination - the mechanism that results in reproductive division of labor, division of labor within the worker caste, and worker reproduction - an essential process underlying eusociality. Here we review the molecular factors involved in caste determination and the differential regulation of caste-specific genes. Recent findings suggest that division of labor is influenced by a small number of loci showing high levels of pleiotropy, suggesting that changes in a small number of genes lead to large changes in the phenotype. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Consumption rate of some proteinic diets affecting hypopharyngeal glands development in honeybee workers

    Science.gov (United States)

    Al-Ghamdi, Ahmad AlKazim; Al-Khaibari, Abeer M.; Omar, Mohamed O.

    2010-01-01

    The experiment was carried out under laboratory condition to study the consumption of some proteinic diets and their effect on hypopharyngeal glands (HPG) development during nursing period. The results showed that the bee bread and the pollen loads mixture with sugar (1:1) were more consumed by honeybee workers followed by Nectapol® and Yeast-Gluten mixture. The lowest consumption amount was recorded with traditional substitute. Clear differences were found in HPG development under feeding with different diets. The maximum development degree was observed when fed with bee bread followed by pollen loads and mixture from Yeast, Gluten and sugar (1:1:2). The acinal surface of HPG showed clear difference under feeding with difference diets. The largest area was recorded when honeybee workers fed on bee bread followed by Yeast-Gluten-sugar mixture (diet,4) and pollen loads(diet,2). PMID:23961106

  8. Bayesian methods for addressing long-standing problems in associative learning: The case of PREE.

    Science.gov (United States)

    Blanco, Fernando; Moris, Joaquín

    2017-07-20

    Most associative models typically assume that learning can be understood as a gradual change in associative strength that captures the situation into one single parameter, or representational state. We will call this view single-state learning. However, there is ample evidence showing that under many circumstances different relationships that share features can be learned independently, and animals can quickly switch between expressing one or another. We will call this multiple-state learning. Theoretically, it is understudied because it needs a different data analysis approach from those usually employed. In this paper, we present a Bayesian model of the Partial Reinforcement Extinction Effect (PREE) that can test the predictions of the multiple-state view. This implies estimating the moment of change in the responses (from the acquisition to the extinction performance), both at the individual and at the group levels. We used this model to analyze data from a PREE experiment with three levels of reinforcement during acquisition (100%, 75% and 50%). We found differences in the estimated moment of switch between states during extinction, so that it was delayed after leaner partial reinforcement schedules. The finding is compatible with the multiple-state view. It is the first time, to our knowledge, that the predictions from the multiple-state view are tested directly. The paper also aims to show the benefits that Bayesian methods can bring to the associative learning field.

  9. Distinct roles of the RasGAP family proteins in C. elegans associative learning and memory.

    Science.gov (United States)

    Gyurkó, M Dávid; Csermely, Péter; Sőti, Csaba; Steták, Attila

    2015-10-15

    The Ras GTPase activating proteins (RasGAPs) are regulators of the conserved Ras/MAPK pathway. Various roles of some of the RasGAPs in learning and memory have been reported in different model systems, yet, there is no comprehensive study to characterize all gap genes in any organism. Here, using reverse genetics and neurobehavioural tests, we studied the role of all known genes of the rasgap family in C. elegans in associative learning and memory. We demonstrated that their proteins are implicated in different parts of the learning and memory processes. We show that gap-1 contribute redundantly with gap-3 to the chemosensation of volatile compounds, gap-1 plays a major role in associative learning, while gap-2 and gap-3 are predominantly required for short- and long-term associative memory. Our results also suggest that the C. elegans Ras orthologue let-60 is involved in multiple processes during learning and memory. Thus, we show that the different classes of RasGAP proteins are all involved in cognitive function and their complex interplay ensures the proper formation and storage of novel information in C. elegans.

  10. Dental Students' Study Habits in Flipped/Blended Classrooms and Their Association with Active Learning Practices.

    Science.gov (United States)

    Gadbury-Amyot, Cynthia C; Redford, Gloria J; Bohaty, Brenda S

    2017-12-01

    In recognition of the importance for dental education programs to take a student-centered approach in which students are encouraged to take responsibility for their learning, a pediatric dentistry course redesign aimed at promoting greater active and self-directed learning was implemented at one U.S. dental school. The aim of this study was to examine the association between the students' self-reported study habits and active learning practices necessary for meaningful learning in the flipped/blended classroom. A convenience sample of two classes of second-year dental students in spring 2014 (SP14, n=106) and spring 2015 (SP15, n=106) was invited to participate in the study. Of the SP14 students, 84 participated, for a response rate of 79%; of the SP15 students, 94 participated, for a response rate of 87%. Students' self-reported responses to questions about study strategies with the prerecorded lecture materials and assigned reading materials were examined. Non-parametric analyses resulted in a cohort effect, so data are reported by class. In the SP15 class, 72% reported watching all/more than half of the prerecorded lectures versus 62% of the SP14 class, with a majority watching more than one lecture per week. In the SP15 cohort, 68% used active learning strategies when watching the lectures versus 58.3% of the SP14 cohort. The time of day preferred by the majority of both cohorts for interacting with course materials was 7-11 pm. Both SP14 and SP15 students reported being unlikely to read assigned materials prior to coming to class. Overall, the course redesign appeared to engage students in self-directed active learning. However, the degree to which active learning practices were taking place to achieve meaningful learning was questionable given students' self-reported study strategies. More work is needed to examine strategies for promoting study practices that will lead to meaningful learning.

  11. Linking Genes and Brain Development of Honeybee Workers: A Whole-Transcriptome Approach

    OpenAIRE

    Vleurinck, Christina; Raub, Stephan; Sturgill, David; Oliver, Brian; Beye, Martin

    2016-01-01

    Honeybees live in complex societies whose capabilities far exceed those of the sum of their single members. This social synergism is achieved mainly by the worker bees, which form a female caste. The worker bees display diverse collaborative behaviors and engage in different behavioral tasks, which are controlled by the central nervous system (CNS). The development of the worker brain is determined by the female sex and the worker caste determination signal. Here, we report on genes that are ...

  12. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach.

    Science.gov (United States)

    Danneels, Ellen L; Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C

    2015-10-30

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings.

  13. Honeybee Venom Proteome Profile of Queens and Winter Bees as Determined by a Mass Spectrometric Approach

    Science.gov (United States)

    Danneels, Ellen L.; Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C.

    2015-01-01

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings. PMID:26529016

  14. Imprecision in waggle dances of the honeybee (Apis mellifera) for nearby food sources : error or adaptation?

    OpenAIRE

    Weidenmüller, Anja; Seeley, Thomas

    1999-01-01

    A curious feature of the honeybee's waggle dance is the imprecision in the direction indication for nearby food sources. One hypothesis for the function of this imprecision is that it serves to spread recruits over a certain area and thus is an adaptation to the typical spatial configuration of the bees' food sources, i.e., flowers in sizable patches. We report an experiment that tests this tuned-error hypothesis. We measured the precision of direction indication in waggle dances advertising ...

  15. AmTAR2: Functional characterization of a honeybee tyramine receptor stimulating adenylyl cyclase activity.

    Science.gov (United States)

    Reim, Tina; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang; Thamm, Markus; Scheiner, Ricarda

    2017-01-01

    The biogenic monoamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. Insects such as honeybees do not synthesize these neuroactive substances. Instead, they employ octopamine and tyramine for comparable physiological functions. These biogenic amines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Based on pharmacological data obtained on heterologously expressed receptors, α- and β-adrenergic-like octopamine receptors are better activated by octopamine than by tyramine. Conversely, GPCRs forming the type 1 tyramine receptor clade (synonymous to octopamine/tyramine receptors) are better activated by tyramine than by octopamine. More recently, receptors were characterized which are almost exclusively activated by tyramine, thus forming an independent type 2 tyramine receptor clade. Functionally, type 1 tyramine receptors inhibit adenylyl cyclase activity, leading to a decrease in intracellular cAMP concentration ([cAMP] i ). Type 2 tyramine receptors can mediate Ca 2+ signals or both Ca 2+ signals and effects on [cAMP] i . We here provide evidence that the honeybee tyramine receptor 2 (AmTAR2), when heterologously expressed in flpTM cells, exclusively causes an increase in [cAMP] i . The receptor displays a pronounced preference for tyramine over octopamine. Its activity can be blocked by a series of established antagonists, of which mianserin and yohimbine are most efficient. The functional characterization of two tyramine receptors from the honeybee, AmTAR1 (previously named AmTYR1) and AmTAR2, which respond to tyramine by changing cAMP levels in opposite direction, is an important step towards understanding the actions of tyramine in honeybee behavior and physiology, particularly in comparison to the effects of octopamine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Quantum-Inspired Multidirectional Associative Memory With a Self-Convergent Iterative Learning.

    Science.gov (United States)

    Masuyama, Naoki; Loo, Chu Kiong; Seera, Manjeevan; Kubota, Naoyuki

    2018-04-01

    Quantum-inspired computing is an emerging research area, which has significantly improved the capabilities of conventional algorithms. In general, quantum-inspired hopfield associative memory (QHAM) has demonstrated quantum information processing in neural structures. This has resulted in an exponential increase in storage capacity while explaining the extensive memory, and it has the potential to illustrate the dynamics of neurons in the human brain when viewed from quantum mechanics perspective although the application of QHAM is limited as an autoassociation. We introduce a quantum-inspired multidirectional associative memory (QMAM) with a one-shot learning model, and QMAM with a self-convergent iterative learning model (IQMAM) based on QHAM in this paper. The self-convergent iterative learning enables the network to progressively develop a resonance state, from inputs to outputs. The simulation experiments demonstrate the advantages of QMAM and IQMAM, especially the stability to recall reliability.

  17. Electrophysiological CNS-processes related to associative learning in humans.

    Science.gov (United States)

    Christoffersen, Gert R J; Schachtman, Todd R

    2016-01-01

    The neurophysiology of human associative memory has been studied with electroencephalographic techniques since the 1930s. This research has revealed that different types of electrophysiological processes in the human brain can be modified by conditioning: sensory evoked potentials, sensory induced gamma-band activity, periods of frequency-specific waves (alpha and beta waves, the sensorimotor rhythm and the mu-rhythm) and slow cortical potentials. Conditioning of these processes has been studied in experiments that either use operant conditioning or repeated contingent pairings of conditioned and unconditioned stimuli (classical conditioning). In operant conditioning, the appearance of a specific brain process is paired with an external stimulus (neurofeedback) and the feedback enables subjects to obtain varying degrees of control of the CNS-process. Such acquired self-regulation of brain activity has found practical uses for instance in the amelioration of epileptic seizures, Autism Spectrum Disorders (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). It has also provided communicative means of assistance for tetraplegic patients through the use of brain computer interfaces. Both extra and intracortically recorded signals have been coupled with contingent external feedback. It is the aim for this review to summarize essential results on all types of electromagnetic brain processes that have been modified by classical or operant conditioning. The results are organized according to type of conditioned EEG-process, type of conditioning, and sensory modalities of the conditioning stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Spider Movement, UV Reflectance and Size, but Not Spider Crypsis, Affect the Response of Honeybees to Australian Crab Spiders

    Science.gov (United States)

    Llandres, Ana L.; Rodríguez-Gironés, Miguel A.

    2011-01-01

    According to the crypsis hypothesis, the ability of female crab spiders to change body colour and match the colour of flowers has been selected because flower visitors are less likely to detect spiders that match the colour of the flowers used as hunting platform. However, recent findings suggest that spider crypsis plays a minor role in predator detection and some studies even showed that pollinators can become attracted to flowers harbouring Australian crab spider when the UV contrast between spider and flower increases. Here we studied the response of Apis mellifera honeybees to the presence of white or yellow Thomisus spectabilis Australian crab spiders sitting on Bidens alba inflorescences and also the response of honeybees to crab spiders that we made easily detectable painting blue their forelimbs or abdomen. To account for the visual systems of crab spider's prey, we measured the reflectance properties of the spiders and inflorescences used for the experiments. We found that honeybees did not respond to the degree of matching between spiders and inflorescences (either chromatic or achromatic contrast): they responded similarly to white and yellow spiders, to control and painted spiders. However spider UV reflection, spider size and spider movement determined honeybee behaviour: the probability that honeybees landed on spider-harbouring inflorescences was greatest when the spiders were large and had high UV reflectance or when spiders were small and reflected little UV, and honeybees were more likely to reject inflorescences if spiders moved as the bee approached the inflorescence. Our study suggests that only the large, but not the small Australian crab spiders deceive their preys by reflecting UV light, and highlights the importance of other cues that elicited an anti-predator response in honeybees. PMID:21359183

  19. Spider movement, UV reflectance and size, but not spider crypsis, affect the response of honeybees to Australian crab spiders.

    Science.gov (United States)

    Llandres, Ana L; Rodríguez-Gironés, Miguel A

    2011-02-16

    According to the crypsis hypothesis, the ability of female crab spiders to change body colour and match the colour of flowers has been selected because flower visitors are less likely to detect spiders that match the colour of the flowers used as hunting platform. However, recent findings suggest that spider crypsis plays a minor role in predator detection and some studies even showed that pollinators can become attracted to flowers harbouring Australian crab spider when the UV contrast between spider and flower increases. Here we studied the response of Apis mellifera honeybees to the presence of white or yellow Thomisus spectabilis Australian crab spiders sitting on Bidens alba inflorescences and also the response of honeybees to crab spiders that we made easily detectable painting blue their forelimbs or abdomen. To account for the visual systems of crab spider's prey, we measured the reflectance properties of the spiders and inflorescences used for the experiments. We found that honeybees did not respond to the degree of matching between spiders and inflorescences (either chromatic or achromatic contrast): they responded similarly to white and yellow spiders, to control and painted spiders. However spider UV reflection, spider size and spider movement determined honeybee behaviour: the probability that honeybees landed on spider-harbouring inflorescences was greatest when the spiders were large and had high UV reflectance or when spiders were small and reflected little UV, and honeybees were more likely to reject inflorescences if spiders moved as the bee approached the inflorescence. Our study suggests that only the large, but not the small Australian crab spiders deceive their preys by reflecting UV light, and highlights the importance of other cues that elicited an anti-predator response in honeybees.

  20. Learning Styles.

    Science.gov (United States)

    Missouri Univ., Columbia. Coll. of Education.

    Information is provided regarding major learning styles and other factors important to student learning. Several typically asked questions are presented regarding different learning styles (visual, auditory, tactile and kinesthetic, and multisensory learning), associated considerations, determining individuals' learning styles, and appropriate…

  1. Plant microRNAs in larval food regulate honeybee caste development.

    Science.gov (United States)

    Zhu, Kegan; Liu, Minghui; Fu, Zheng; Zhou, Zhen; Kong, Yan; Liang, Hongwei; Lin, Zheguang; Luo, Jun; Zheng, Huoqing; Wan, Ping; Zhang, Junfeng; Zen, Ke; Chen, Jiong; Hu, Fuliang; Zhang, Chen-Yu; Ren, Jie; Chen, Xi

    2017-08-01

    The major environmental determinants of honeybee caste development come from larval nutrients: royal jelly stimulates the differentiation of larvae into queens, whereas beebread leads to worker bee fate. However, these determinants are not fully characterized. Here we report that plant RNAs, particularly miRNAs, which are more enriched in beebread than in royal jelly, delay development and decrease body and ovary size in honeybees, thereby preventing larval differentiation into queens and inducing development into worker bees. Mechanistic studies reveal that amTOR, a stimulatory gene in caste differentiation, is the direct target of miR162a. Interestingly, the same effect also exists in non-social Drosophila. When such plant RNAs and miRNAs are fed to Drosophila larvae, they cause extended developmental times and reductions in body weight and length, ovary size and fecundity. This study identifies an uncharacterized function of plant miRNAs that fine-tunes honeybee caste development, offering hints for understanding cross-kingdom interaction and co-evolution.

  2. Plant origin of Okinawan propolis: honeybee behavior observation and phytochemical analysis

    Science.gov (United States)

    Kumazawa, Shigenori; Nakamura, Jun; Murase, Masayo; Miyagawa, Mariko; Ahn, Mok-Ryeon; Fukumoto, Shuichi

    2008-08-01

    Propolis is a natural resinous product collected by honeybees from certain plants. It has gained popularity as a food and alternative medicine. Poplar and Baccharis are well known as the source plants of European and Brazilian propolis, respectively. However, the propolis from Okinawa, Japan, contains some prenylflavonoids not seen in other regions such as Europe and Brazil, suggesting that the plant origin of Okinawan propolis is a particular plant that grows in Okinawa. To identify the plant origin of Okinawan propolis, we observed the behavior of honeybees as they collected material from plants and caulked it inside the hive. Honeybees scraped resinous material from the surface of plant fruits of Macaranga tanarius and brought it back to their hive to use it as propolis. We collected samples of the plant and propolis, and compared their constituents by high-performance liquid chromatography with a photo-diode array detector. We also compared their 1,1-diphenyl-2-picryl-hydrazyl radical scavenging activity. The chemical constituents and biological activity of the ethanol extracts of the plant did not differ from those of propolis. This indicates directly that the plant origin of Okinawan propolis is M. tanarius.

  3. Laurel leaf extracts for honeybee pest and disease management: antimicrobial, microsporicidal, and acaricidal activity.

    Science.gov (United States)

    Damiani, Natalia; Fernández, Natalia J; Porrini, Martín P; Gende, Liesel B; Álvarez, Estefanía; Buffa, Franco; Brasesco, Constanza; Maggi, Matías D; Marcangeli, Jorge A; Eguaras, Martín J

    2014-02-01

    A diverse set of parasites and pathogens affects productivity and survival of Apis mellifera honeybees. In beekeeping, traditional control by antibiotics and molecules of synthesis has caused problems with contamination and resistant pathogens. In this research, different Laurus nobilis extracts are tested against the main honeybee pests through an integrated point of view. In vivo effects on bee survival are also evaluated. The ethanol extract showed minimal inhibitory concentration (MIC) values of 208 to 416 μg/mL, having the best antimicrobial effect on Paenibacillus larvae among all substances tested. Similarly, this leaf extract showed a significant antiparasitic activity on Varroa destructor, killing 50 % of mites 24 h after a 30-s exposure, and on Nosema ceranae, inhibiting the spore development in the midgut of adult bees ingesting 1 × 10(4) μg/mL of extract solution. Both ethanol extract and volatile extracts (essential oil, hydrolate, and its main component) did not cause lethal effects on adult honeybees. Thus, the absence of topical and oral toxicity of the ethanol extract on bees and the strong antimicrobial, microsporicidal, and miticidal effects registered in this study place this laurel extract as a promising integrated treatment of bee diseases and stimulates the search for other bioactive phytochemicals from plants.

  4. Effects of erectable glossal hairs on a honeybee's nectar-drinking strategy

    Science.gov (United States)

    Yang, Heng; Wu, Jianing; Yan, Shaoze

    2014-06-01

    With the use of a scanning electron microscope, we observe specific microstructures of the mouthpart of the Italian bee (Apis mellifera ligustica), especially the distribution and dimensions of hairs on its glossa. Considering the erection of glossal hairs for trapping nectar modifies the viscous dipping model in analyzing the drinking strategy of a honeybee. Theoretical estimations of volume intake rates with respect to sucrose solutions of different concentrations agree with experimental data, which indicates that erectable hairs can significantly increase the ability of a bee to acquire nectar efficiently. The comparison with experimental results also indicates that a honeybee may continuously augment its pumping power, rather than keep it constant, to drink nectar with sharply increasing viscosity. Under the modified assumption of increasing working power, we introduce the rate at which working power increases with viscosity and discuss the nature-preferred nectar concentration of 35% by theoretically calculating optimal concentration maximizing energetic intake rates under varying increasing rates. Finally, the ability of the mouthparts of the honeybee to transfer viscous nectar may inspire a concept for transporting microfluidics with a wide range of viscosities.

  5. Impact of honeybee (Apis mellifera L. density on wild bee foraging behaviour

    Directory of Open Access Journals (Sweden)

    Goras Georgios

    2016-06-01

    Full Text Available Honey bees are globally regarded as important crop pollinators and are also valued for their honey production. They have been introduced on an almost worldwide scale. During recent years, however, several studies argue their possible competition with unmanaged pollinators. Here we examine the possible effects of honey bees on the foraging behaviour of wild bees on Cistus creticus flowers in Northern Greece. We gradually introduced one, five, and eight honey-bee hives per site, each containing ca. 20,000 workers. The visitation frequency and visit duration of wild bees before and after the beehive introductions were measured by flower observation. While the visitation frequencies of wild bees were unaffected, the average time wild bees spent on C. creticus increased with the introduction of the honey-bee hives. Although competition between honey bees and wild bees is often expected, we did not find any clear evidence for significant effects even in honey-bee densities much higher than the European-wide average of 3.1 colonies/km2.

  6. Detection of Methyl Salicylate Transforted by Honeybees (Apis mellifera) Using Solid Phase Microextration (SPME) Fibers; TOPICAL

    International Nuclear Information System (INIS)

    BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; BARNETT, JAMES L.; BENDER, GARY L.

    2001-01-01

    The ultimate goal of many environmental measurements is to determine the risk posed to humans or ecosystems by various contaminants. Conventional environmental monitoring typically requires extensive sampling grids covering several media including air, water, soil and vegetation. A far more efficient, innovative and inexpensive tactic has been found using honeybees as sampling mechanisms. Members from a single bee colony forage over large areas ((approx)2 x 10(sup 6) m(sup 2)), making tens of thousands of trips per day, and return to a fixed location where sampling can be conveniently conducted. The bees are in direct contact with the air, water, soil and vegetation where they encounter and collect any contaminants that are present in gaseous, liquid and particulate form. The monitoring of honeybees when they return to the hive provides a rapid method to assess chemical distributions and impacts (1). The primary goal of this technology is to evaluate the efficiency of the transport mechanism (honeybees) to the hive using preconcentrators to collect samples. Once the extent and nature of the contaminant exposure has been characterized, resources can be distributed and environmental monitoring designs efficiently directed to the most appropriate locations. Methyl salicylate, a chemical agent surrogate was used as the target compound in this study

  7. Detection of Methyl Salicylate Transforted by Honeybees (Apis mellifera) Using Solid Phase Microextration (SPME) Fibers

    Energy Technology Data Exchange (ETDEWEB)

    BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; BARNETT, JAMES L.; BENDER, GARY L.

    2001-12-01

    The ultimate goal of many environmental measurements is to determine the risk posed to humans or ecosystems by various contaminants. Conventional environmental monitoring typically requires extensive sampling grids covering several media including air, water, soil and vegetation. A far more efficient, innovative and inexpensive tactic has been found using honeybees as sampling mechanisms. Members from a single bee colony forage over large areas ({approx}2 x 10{sup 6} m{sup 2}), making tens of thousands of trips per day, and return to a fixed location where sampling can be conveniently conducted. The bees are in direct contact with the air, water, soil and vegetation where they encounter and collect any contaminants that are present in gaseous, liquid and particulate form. The monitoring of honeybees when they return to the hive provides a rapid method to assess chemical distributions and impacts (1). The primary goal of this technology is to evaluate the efficiency of the transport mechanism (honeybees) to the hive using preconcentrators to collect samples. Once the extent and nature of the contaminant exposure has been characterized, resources can be distributed and environmental monitoring designs efficiently directed to the most appropriate locations. Methyl salicylate, a chemical agent surrogate was used as the target compound in this study.

  8. Effects of a honeybee sting on the serum free amino acid profile in humans.

    Directory of Open Access Journals (Sweden)

    Jan Matysiak

    Full Text Available The aim of this study was to assess the response to a honeybee venom by analyzing serum levels of 34 free amino acids. Another goal of this study was to apply complex analytic-bioinformatic-clinical strategy based on up-to-date achievements of mass spectrometry in metabolomic profiling. The amino acid profiles were determined using hybrid triple quadrupole/linear ion trap mass spectrometer coupled with a liquid chromatography instrument. Serum samples were collected from 27 beekeepers within 3 hours after they were stung and after a minimum of 6 weeks following the last sting. The differences in amino acid profiles were evaluated using MetaboAnalyst and ROCCET web portals. Chemometric tests showed statistically significant differences in the levels of L-glutamine (Gln, L-glutamic acid (Glu, L-methionine (Met and 3-methyl-L-histidine (3MHis between the two analyzed groups of serum samples. Gln and Glu appeared to be the most important metabolites for distinguishing the beekeepers tested shortly after a bee sting from those tested at least 6 weeks later. The role of some amino acids in the response of an organism to the honeybee sting was also discussed. This study indicated that proposed methodology may allow to identify the individuals just after the sting and those who were stung at least 6 weeks earlier. The results we obtained will contribute to better understanding of the human body response to the honeybee sting.

  9. Educational Experiences Associated with International Students' Learning, Development, and Positive Perceptions of Campus Climate

    Science.gov (United States)

    Glass, Chris R.

    2012-01-01

    This research project uses the constructive-developmental tradition, in the self-authorship framework of intercultural maturity (King & Baxter Magolda, 2005), to examine the extent to which 12 specific educational experiences may be associated with international undergraduates' learning, development, and perception of campus climate. The study…

  10. Children Learn Spurious Associations in Their Math Textbooks: Examples from Fraction Arithmetic

    Science.gov (United States)

    Braithwaite, David W.; Siegler, Robert S.

    2018-01-01

    Fraction arithmetic is among the most important and difficult topics children encounter in elementary and middle school mathematics. Braithwaite, Pyke, and Siegler (2017) hypothesized that difficulties learning fraction arithmetic often reflect reliance on associative knowledge--rather than understanding of mathematical concepts and procedures--to…

  11. Do Psychology Department Mission Statements Reflect the American Psychological Association Undergraduate Learning Goals?

    Science.gov (United States)

    Warchal, Judith R.; Ruiz, Ana I.; You, Di

    2017-01-01

    This study focuses on the inclusion of the American Psychological Association's learning goals in the mission statements of undergraduate psychology programs across the US. We reviewed the mission statements available on websites for 1336 psychology programs listed in the Carnegie classification. Results of a content analysis revealed that of the…

  12. Are Approaches to Learning in Kindergarten Associated with Academic and Social Competence Similarly?

    Science.gov (United States)

    Razza, Rachel A.; Martin, Anne; Brooks-Gunn, Jeanne

    2015-01-01

    Background: Approaches to learning (ATL) is a key domain of school readiness with important implications for children's academic trajectories. Interestingly, however, the impact of early ATL on children's social competence has not been examined. Objective: This study examines associations between children's ATL at age 5 and academic achievement…

  13. A World of Learning: Practical Manual. Enhancing the Multiplier Effect of the Associated Schools Project.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    This manual presents the major lessons learned about how national authorities, individual institutions, and individual educators can work to increase the impact of the Associated Schools Project (ASP) schools and spread it to other parts of the educational system. ASP is a project of the United Nations Educational, Scientific and Cultural…

  14. Functional contributions and interactions between the human hippocampus and subregions of the striatum during arbitrary associative learning and memory

    Science.gov (United States)

    Mattfeld, Aaron T.; Stark, Craig E. L.

    2015-01-01

    The hippocampus and striatum are thought to have different functional roles in learning and memory. It is unknown under what experimental conditions their contributions are dissimilar or converge, and the extent to which they interact over the course of learning. In order to evaluate both the functional contributions of as well as the interactions between the human hippocampus and striatum, the present study used high-resolution functional magnetic resonance imaging (fMRI) and variations of a conditional visuomotor associative learning task that either taxed arbitrary associative learning (Experiment 1) or stimulus-response learning (Experiment 2). In the first experiment we observed changes in activity in the hippocampus and anterior caudate that reflect differences between the two regions consistent with distinct computational principles. In the second experiment we observed activity in the putamen that reflected content specific representations during the learning of arbitrary conditional visuomotor associations. In both experiments the hippocampus and ventral striatum demonstrated dynamic functional coupling during the learning of new arbitrary associations, but not during retrieval of well-learned arbitrary associations using control variants of the tasks that did not preferentially tax one system versus the other. These findings suggest that both the hippocampus and subregions of the dorsal striatum contribute uniquely to the learning of arbitrary associations while the hippocampus and ventral striatum interact over the course of learning. PMID:25560298

  15. Retrospective analysis of the learning curve associated with laparoscopic ovariectomy in dogs and associated perioperative complication rates.

    Science.gov (United States)

    Pope, Juliet Frances Anne; Knowles, Toby Grahame

    2014-08-01

    To assess the learning curve associated with laparoscopic ovariectomy (LOE) in 618 dogs and to report perioperative complication rates. Case series. Dogs (n = 618). Data retrieved from the medical records of bitches admitted for LOE over 42 months included date of surgery, breed, weight (kg), age (months), surgeon, suture material used, intraoperative complications and postoperative complications. Each LOE was defined as "successful" or "unsuccessful" by the absence or presence of an intraoperative complication and "failure" rate described using a CUSUM technique. Follow-up time ranged from 152 to 1,435 days (median, 737 days). Intraoperative complications occurred in 10 dogs (1.6%) and included: splenic laceration (6 dogs; 1%), urinary bladder perforation (3 dogs; 0.5%), and subcutaneous emphysema (1 dog; 0.2%). Postoperative complications occurred in 99 dogs (16%) and included: incisional inflammation treated with antibiotics (87 dogs [14%]; 96/1,854 incisions; 5.1%), incisional seroma (5 dogs [0.8%]; 5/1,854 incisions, 0.3%), incisional hernia (4 dogs [0.6%]; 4/1,854 incisions, 0.2%), and ovarian remnant syndrome (3 dogs; 0.5%). CUSUM charts indicated an initial "learning curve" of ∼80 LOE. LOE is a technique with an initial learning curve but once surgical proficiency is reached after ∼80 procedures then intraoperative complication rates associated with the procedure can be low. © Copyright 2014 by The American College of Veterinary Surgeons.

  16. Nicotinic modulation of hippocampal cell signaling and associated effects on learning and memory.

    Science.gov (United States)

    Kutlu, Munir Gunes; Gould, Thomas J

    2016-03-01

    The hippocampus is a key brain structure involved in synaptic plasticity associated with long-term declarative memory formation. Importantly, nicotine and activation of nicotinic acetylcholine receptors (nAChRs) can alter hippocampal plasticity and these changes may occur through modulation of hippocampal kinases and transcription factors. Hippocampal kinases such as cAMP-dependent protein kinase (PKA), calcium/calmodulin-dependent protein kinases (CAMKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-jun N-terminal kinase 1 (JNK1), and the transcription factor cAMP-response element-binding protein (CREB) that are activated either directly or indirectly by nicotine may modulate hippocampal plasticity and in parallel hippocampus-dependent learning and memory. Evidence suggests that nicotine may alter hippocampus-dependent learning by changing the time and magnitude of activation of kinases and transcription factors normally involved in learning and by recruiting additional cell signaling molecules. Understanding how nicotine alters learning and memory will advance basic understanding of the neural substrates of learning and aid in understanding mental disorders that involve cognitive and learning deficits. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Rapid Associative Learning and Stable Long-Term Memory in the Squid Euprymna scolopes.

    Science.gov (United States)

    Zepeda, Emily A; Veline, Robert J; Crook, Robyn J

    2017-06-01

    Learning and memory in cephalopod molluscs have received intensive study because of cephalopods' complex behavioral repertoire and relatively accessible nervous systems. While most of this research has been conducted using octopus and cuttlefish species, there has been relatively little work on squid. Euprymna scolopes Berry, 1913, a sepiolid squid, is a promising model for further exploration of cephalopod cognition. These small squid have been studied in detail for their symbiotic relationship with bioluminescent bacteria, and their short generation time and successful captive breeding through multiple generations make them appealing models for neurobiological research. However, little is known about their behavior or cognitive ability. Using the well-established "prawn-in-the-tube" assay of learning and memory, we show that within a single 10-min trial E. scolopes learns to inhibit its predatory behavior, and after three trials it can retain this memory for at least 12 d. Rapid learning and very long-term retention were apparent under two different training schedules. To our knowledge, this study is the first demonstration of learning and memory in this species as well as the first demonstration of associative learning in any squid.

  18. Factors associated with student learning processes in primary health care units: a questionnaire study.

    Science.gov (United States)

    Bos, Elisabeth; Alinaghizadeh, Hassan; Saarikoski, Mikko; Kaila, Päivi

    2015-01-01

    Clinical placement plays a key role in education intended to develop nursing and caregiving skills. Studies of nursing students' clinical learning experiences show that these dimensions affect learning processes: (i) supervisory relationship, (ii) pedagogical atmosphere, (iii) management leadership style, (iv) premises of nursing care on the ward, and (v) nursing teachers' roles. Few empirical studies address the probability of an association between these dimensions and factors such as student (a) motivation, (b) satisfaction with clinical placement, and (c) experiences with professional role models. The study aimed to investigate factors associated with the five dimensions in clinical learning environments within primary health care units. The Swedish version of Clinical Learning Environment, Supervision and Teacher, a validated evaluation scale, was administered to 356 graduating nursing students after four or five weeks clinical placement in primary health care units. Response rate was 84%. Multivariate analysis of variance is determined if the five dimensions are associated with factors a, b, and c above. The analysis revealed a statistically significant association with the five dimensions and two factors: students' motivation and experiences with professional role models. The satisfaction factor had a statistically significant association (effect size was high) with all dimensions; this clearly indicates that students experienced satisfaction. These questionnaire results show that a good clinical learning experience constitutes a complex whole (totality) that involves several interacting factors. Supervisory relationship and pedagogical atmosphere particularly influenced students' satisfaction and motivation. These results provide valuable decision-support material for clinical education planning, implementation, and management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. C. elegans positive butanone learning, short-term, and long-term associative memory assays.

    Science.gov (United States)

    Kauffman, Amanda; Parsons, Lance; Stein, Geneva; Wills, Airon; Kaletsky, Rachel; Murphy, Coleen

    2011-03-11

    The memory of experiences and learned information is critical for organisms to make choices that aid their survival. C. elegans navigates its environment through neuron-specific detection of food and chemical odors, and can associate nutritive states with chemical odors, temperature, and the pathogenicity of a food source. Here, we describe assays of C. elegans associative learning and short- and long-term associative memory. We modified an aversive olfactory learning paradigm to instead produce a positive response; the assay involves starving ~400 worms, then feeding the worms in the presence of the AWC neuron-sensed volatile chemoattractant butanone at a concentration that elicits a low chemotactic index (similar to Toroyama et al.). A standard population chemotaxis assay1 tests the worms' attraction to the odorant immediately or minutes to hours after conditioning. After conditioning, wild-type animals' chemotaxis to butanone increases ~0.6 Chemotaxis Index units, its "Learning Index". Associative learning is dependent on the presence of both food and butanone during training. Pairing food and butanone for a single conditioning period ("massed training") produces short-term associative memory that lasts ~2 hours. Multiple conditioning periods with rest periods between ("spaced training") yields long-term associative memory (long-term memory across species. Our protocol also includes image analysis methods for quick and accurate determination of chemotaxis indices. High-contrast images of animals on chemotaxis assay plates are captured and analyzed by worm counting software in MatLab. The software corrects for uneven background using a morphological tophat transformation. Otsu's method is then used to determine a threshold to separate worms from the background. Very small particles are removed automatically and larger non-worm regions (plate edges or agar punches) are removed by manual selection. The software then estimates the size of single worm by ignoring

  20. Olfactory learning and memory in the bumblebee Bombus occidentalis

    Science.gov (United States)

    Riveros, Andre J.; Gronenberg, Wulfila

    2009-07-01

    In many respects, the behavior of bumblebees is similar to that of the closely related honeybees, a long-standing model system for learning and memory research. Living in smaller and less regulated colonies, bumblebees are physiologically more robust and thus have advantages in particular for indoor experiments. Here, we report results on Pavlovian odor conditioning of bumblebees using the proboscis extension reflex (PER) that has been successfully used in honeybee learning research. We examine the effect of age, body size, and experience on learning and memory performance. We find that age does not affect learning and memory ability, while body size positively correlates with memory performance. Foraging experience seems not to be necessary for learning to occur, but it may contribute to learning performance as bumblebees with more foraging experience on average were better learners. The PER represents a reliable tool for learning and memory research in bumblebees and allows examining interspecific similarities and differences of honeybee and bumblebee behavior, which we discuss in the context of social organization.