WorldWideScience

Sample records for honey bee colonies

  1. HONEY BEE COLONY PHEROMONES

    Directory of Open Access Journals (Sweden)

    M Dražić

    2001-09-01

    Full Text Available ABSTRACT Pheromones are chemicals produced as liquids by specialised cells or glands and transmitted into the environment as liquids or gases. In contrary to hormones, which are excreted in organism and have effect exclusively on organism that produced them, pheromones are excreted outside organism and effect on different individuals of the same species. Pheromones mediate nearly all aspects of honeybee colony life including social defence, brood care, mating, orientation, foraging and reproduction. Pheromone investigation has high economic importance. With use of pheromones it is possible to manipulate with pest insects on crops or to direct honeybees during pollination on target plants.

  2. Recent Honey Bee Colony Declines

    Science.gov (United States)

    2007-06-20

    podcasts.psu.edu/taxonomy/term/62]. Staple crops such as wheat , corn, and rice do not rely on insect pollination and are mostly wind pollinated...are interacting to weaken bee colonies and are allowing stress-related pathogens, such as fungi , thus causing a final collapse.27 Others note the...possible role of miticide resistance in bees. High levels of bacteria, viruses, and fungi have been found in the guts of the recoverable dead bees

  3. Metatranscriptomic analyses of honey bee colonies.

    Science.gov (United States)

    Tozkar, Cansu Ö; Kence, Meral; Kence, Aykut; Huang, Qiang; Evans, Jay D

    2015-01-01

    Honey bees face numerous biotic threats from viruses to bacteria, fungi, protists, and mites. Here we describe a thorough analysis of microbes harbored by worker honey bees collected from field colonies in geographically distinct regions of Turkey. Turkey is one of the World's most important centers of apiculture, harboring five subspecies of Apis mellifera L., approximately 20% of the honey bee subspecies in the world. We use deep ILLUMINA-based RNA sequencing to capture RNA species for the honey bee and a sampling of all non-endogenous species carried by bees. After trimming and mapping these reads to the honey bee genome, approximately 10% of the sequences (9-10 million reads per library) remained. These were then mapped to a curated set of public sequences containing ca. Sixty megabase-pairs of sequence representing known microbial species associated with honey bees. Levels of key honey bee pathogens were confirmed using quantitative PCR screens. We contrast microbial matches across different sites in Turkey, showing new country recordings of Lake Sinai virus, two Spiroplasma bacterium species, symbionts Candidatus Schmidhempelia bombi, Frischella perrara, Snodgrassella alvi, Gilliamella apicola, Lactobacillus spp.), neogregarines, and a trypanosome species. By using metagenomic analysis, this study also reveals deep molecular evidence for the presence of bacterial pathogens (Melissococcus plutonius, Paenibacillus larvae), Varroa destructor-1 virus, Sacbrood virus, and fungi. Despite this effort we did not detect KBV, SBPV, Tobacco ringspot virus, VdMLV (Varroa Macula like virus), Acarapis spp., Tropilaeleps spp. and Apocephalus (phorid fly). We discuss possible impacts of management practices and honey bee subspecies on microbial retinues. The described workflow and curated microbial database will be generally useful for microbial surveys of healthy and declining honey bees.

  4. Occurrence of Nosema species in honey bee colonies in Kenya ...

    African Journals Online (AJOL)

    While honey bee colonies in North America and Europe are in decline due to parasites and ... Infections levels were higher in the coastal region than in the interior. ... of the impact of this pathogen to the Kenyan honey bee colonies with a view of ... Senegal (6); Sierra Leone (1); South Africa (96); South Sudan (1); Sudan (3) ...

  5. Genetic diversity affects colony survivorship in commercial honey bee colonies

    Science.gov (United States)

    Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S.

    2013-08-01

    Honey bee ( Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency ( m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  6. Iridovirus and microsporidian linked to honey bee colony decline.

    Science.gov (United States)

    Bromenshenk, Jerry J; Henderson, Colin B; Wick, Charles H; Stanford, Michael F; Zulich, Alan W; Jabbour, Rabih E; Deshpande, Samir V; McCubbin, Patrick E; Seccomb, Robert A; Welch, Phillip M; Williams, Trevor; Firth, David R; Skowronski, Evan; Lehmann, Margaret M; Bilimoria, Shan L; Gress, Joanna; Wanner, Kevin W; Cramer, Robert A

    2010-10-06

    In 2010 Colony Collapse Disorder (CCD), again devastated honey bee colonies in the USA, indicating that the problem is neither diminishing nor has it been resolved. Many CCD investigations, using sensitive genome-based methods, have found small RNA bee viruses and the microsporidia, Nosema apis and N. ceranae in healthy and collapsing colonies alike with no single pathogen firmly linked to honey bee losses. We used Mass spectrometry-based proteomics (MSP) to identify and quantify thousands of proteins from healthy and collapsing bee colonies. MSP revealed two unreported RNA viruses in North American honey bees, Varroa destructor-1 virus and Kakugo virus, and identified an invertebrate iridescent virus (IIV) (Iridoviridae) associated with CCD colonies. Prevalence of IIV significantly discriminated among strong, failing, and collapsed colonies. In addition, bees in failing colonies contained not only IIV, but also Nosema. Co-occurrence of these microbes consistently marked CCD in (1) bees from commercial apiaries sampled across the U.S. in 2006-2007, (2) bees sequentially sampled as the disorder progressed in an observation hive colony in 2008, and (3) bees from a recurrence of CCD in Florida in 2009. The pathogen pairing was not observed in samples from colonies with no history of CCD, namely bees from Australia and a large, non-migratory beekeeping business in Montana. Laboratory cage trials with a strain of IIV type 6 and Nosema ceranae confirmed that co-infection with these two pathogens was more lethal to bees than either pathogen alone. These findings implicate co-infection by IIV and Nosema with honey bee colony decline, giving credence to older research pointing to IIV, interacting with Nosema and mites, as probable cause of bee losses in the USA, Europe, and Asia. We next need to characterize the IIV and Nosema that we detected and develop management practices to reduce honey bee losses.

  7. Varroa-Virus Interaction in Collapsing Honey Bee Colonies

    DEFF Research Database (Denmark)

    Francis, Roy Mathew; Nielsen, Steen L.; Kryger, Per

    2013-01-01

    Varroa mites and viruses are the currently the high-profile suspects in collapsing bee colonies. Therefore, seasonal variation in varroa load and viruses (Acute-Kashmir-Israeli complex (AKI) and Deformed Wing Virus (DWV)) were monitored in a year-long study. We investigated the viral titres...... in honey bees and varroa mites from 23 colonies (15 apiaries) under three treatment conditions: Organic acids (11 colonies), pyrethroid (9 colonies) and untreated (3 colonies). Approximately 200 bees were sampled every month from April 2011 to October 2011, and April 2012. The 200 bees were split to 10...... subsamples of 20 bees and analysed separately, which allows us to determine the prevalence of virus-infected bees. The treatment efficacy was often low for both treatments. In colonies where varroa treatment reduced the mite load, colonies overwintered successfully, allowing the mites and viruses...

  8. Honey Bee Colonies Remote Monitoring System

    Directory of Open Access Journals (Sweden)

    Sergio Gil-Lebrero

    2016-12-01

    Full Text Available Bees are very important for terrestrial ecosystems and, above all, for the subsistence of many crops, due to their ability to pollinate flowers. Currently, the honey bee populations are decreasing due to colony collapse disorder (CCD. The reasons for CCD are not fully known, and as a result, it is essential to obtain all possible information on the environmental conditions surrounding the beehives. On the other hand, it is important to carry out such information gathering as non-intrusively as possible to avoid modifying the bees’ work conditions and to obtain more reliable data. We designed a wireless-sensor networks meet these requirements. We designed a remote monitoring system (called WBee based on a hierarchical three-level model formed by the wireless node, a local data server, and a cloud data server. WBee is a low-cost, fully scalable, easily deployable system with regard to the number and types of sensors and the number of hives and their geographical distribution. WBee saves the data in each of the levels if there are failures in communication. In addition, the nodes include a backup battery, which allows for further data acquisition and storage in the event of a power outage. Unlike other systems that monitor a single point of a hive, the system we present monitors and stores the temperature and relative humidity of the beehive in three different spots. Additionally, the hive is continuously weighed on a weighing scale. Real-time weight measurement is an innovation in wireless beehive—monitoring systems. We designed an adaptation board to facilitate the connection of the sensors to the node. Through the Internet, researchers and beekeepers can access the cloud data server to find out the condition of their hives in real time.

  9. Winter Survival of Individual Honey Bees and Honey Bee Colonies Depends on Level of Varroa destructor Infestation

    NARCIS (Netherlands)

    Dooremalen, van C.; Gerritsen, L.J.M.; Cornelissen, B.; Steen, van der J.J.M.; Langevelde, van F.; Blacquiere, T.

    2012-01-01

    Background: Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to

  10. Sensitivity analyses for simulating pesticide impacts on honey bee colonies

    Science.gov (United States)

    We employ Monte Carlo simulation and sensitivity analysis techniques to describe the population dynamics of pesticide exposure to a honey bee colony using the VarroaPop + Pesticide model. Simulations are performed of hive population trajectories with and without pesti...

  11. Sensitivity analysis for simulating pesticide impacts on honey bee colonies

    Science.gov (United States)

    Background/Question/Methods Regulatory agencies assess risks to honey bees from pesticides through a tiered process that includes predictive modeling with empirical toxicity and chemical data of pesticides as a line of evidence. We evaluate the Varroapop colony model, proposed by...

  12. Winter Survival of Individual Honey Bees and Honey Bee Colonies Depends on Level of Varroa destructor Infestation

    Science.gov (United States)

    van Dooremalen, Coby; Gerritsen, Lonne; Cornelissen, Bram; van der Steen, Jozef J. M.; van Langevelde, Frank; Blacquière, Tjeerd

    2012-01-01

    Background Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to survive until the next spring. We investigated in two subsequent years the effects of different levels of V. destructor infestation during the transition from short-lived summer bees to long-lived winter bees on the lifespan of individual bees and the survival of bee colonies during winter. Colonies treated earlier in the season to reduce V. destructor infestation during the development of winter bees were expected to have longer bee lifespan and higher colony survival after winter. Methodology/Principal Findings Mite infestation was reduced using acaricide treatments during different months (July, August, September, or not treated). We found that the number of capped brood cells decreased drastically between August and November, while at the same time, the lifespan of the bees (marked cohorts) increased indicating the transition to winter bees. Low V. destructor infestation levels before and during the transition to winter bees resulted in an increase in lifespan of bees and higher colony survival compared to colonies that were not treated and that had higher infestation levels. A variety of stress-related factors could have contributed to the variation in longevity and winter survival that we found between years. Conclusions/Significance This study contributes to theory about the multiple causes for the recent elevated colony losses in honey bees. Our study shows the correlation between long lifespan of winter bees and colony loss in spring. Moreover, we show that colonies treated earlier in the season had reduced V. destructor infestation during the development of winter bees resulting in longer bee lifespan and higher colony survival after winter. PMID:22558421

  13. Influence of feeding bee colonies on colony strenght and honey authenticity

    Directory of Open Access Journals (Sweden)

    Andreja KANDOLF BOROVŠAK

    2015-12-01

    Full Text Available For the natural development of bee colonies, there is the need for appropriate nutrition. Lack of natural honey flow must be supplemented by feeding bee colonies with sugar syrups or candy paste. This supplementary feeding encourages brood breeding and forage activity, whereby stronger colonies collect more honey. Sugar syrups can cause honey adulteration, which is more frequent with the reversing of the brood combs with the bee food, with the combs moved from the brood chamber to the upper chamber. Authentication of honey from the standpoint of the presence of sugar syrup is very complex, because there is no single method by which honey adulteration can be reliably confirmed. Feeding the colonies in spring should result in stronger colonies and hence the collection of more honey in the brood chambers. The objective of the present study was to determine whether this has effects also on honey authenticity, and to discover a simple method for detection of honey adulteration. The colonies were fed with candy paste that had added yeast and blue dye, to provide markers for detection of honey adulteration. The strength of the colonies and quantity of honey in the brood chambers were monitored. The results of the analysis of stable isotope and activity of foreign enzymes were compared with the results of yeast quantity and colour of the honey (absorbance, L*, a*, b* parameters. Detection of yeast in the honey samples and presence of colour as a consequence of added dye appear to be appropriate methods to follow honey adulteration, and further studies are ongoing.

  14. Detection of Spiroplasma melliferum in honey bee colonies in the US.

    Science.gov (United States)

    Zheng, Huo-Qing; Chen, Yan Ping

    2014-06-01

    Spiroplasma infections in honey bees have been reported in Europe and Asia quite recently, due to intensive studies on the epidemiology of honey bee diseases. The situation in the US is less well analyzed. Here, we examined the honey bee colonies in Beltsville, MD, where Spiroplasmamelliferum was originally reported and found S. melliferum infection in honey bees. Our data showed high variation of S. melliferum infection in honey bees with a peak prevalence in May during the course of one-year study period. The colony prevalence increased from 5% in February to 68% in May and then decreased to 25% in June and 22% in July. Despite that pathogenicity of spiroplasmas in honey bee colonies remains to be determined, our results indicated that spiroplasma infections need to be included for the consideration of the impacts on honey bee health. Published by Elsevier Inc.

  15. Territorial biodiversity and consequences on physico-chemical characteristics of pollen collected by honey bee colonies

    OpenAIRE

    Odoux, Jean Francois; Feuillet, Dalila; Aupinel, Pierrick; Loublier, Yves; Tasei, Jean Noel; Mateescu, Cristina

    2012-01-01

    International audience; Pollen resources may become a constraint for the honey bee in cereal farming agrosystems and thus influence honey bee colony development. This survey intended to increase knowledge on bee ecology in order to understand how farming systems can provide bee forage throughout the year. We conducted a 1-year study to investigate the flower range exploited in an agrarian environment in western France, the physico-chemical composition of honey bee-collected pollen, the territ...

  16. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology.

    Science.gov (United States)

    vanEngelsdorp, Dennis; Traynor, Kirsten S; Andree, Michael; Lichtenberg, Elinor M; Chen, Yanping; Saegerman, Claude; Cox-Foster, Diana L

    2017-01-01

    Honey bee (Apis mellifera) colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD) and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions), and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees), we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence) and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and factors

  17. Colony Collapse Disorder (CCD and bee age impact honey bee pathophysiology.

    Directory of Open Access Journals (Sweden)

    Dennis vanEngelsdorp

    Full Text Available Honey bee (Apis mellifera colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions, and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees, we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and

  18. Wintering Map for Honey Bee Colonies in El-Behera Governorate ...

    African Journals Online (AJOL)

    The geographical information system (GIS) has been used successfully in many studies to solve apicultural problems. The winter season is considered as a challenge for honey bee colonies due to the cold weather which cause the forfeiture of many colonies. The good wintering of honey bee colonies depends mainly on ...

  19. The neglected bee trees: European beech forests as a home for feral honey bee colonies

    Directory of Open Access Journals (Sweden)

    Patrick Laurenz Kohl

    2018-04-01

    Full Text Available It is a common belief that feral honey bee colonies (Apis mellifera L. were eradicated in Europe through the loss of habitats, domestication by man and spread of pathogens and parasites. Interestingly, no scientific data are available, neither about the past nor the present status of naturally nesting honeybee colonies. We expected near-natural beech (Fagus sylvatica L. forests to provide enough suitable nest sites to be a home for feral honey bee colonies in Europe. Here, we made a first assessment of their occurrence and density in two German woodland areas based on two methods, the tracing of nest sites based on forager flight routes (beelining technique, and the direct inspection of potential cavity trees. Further, we established experimental swarms at forest edges and decoded dances for nest sites performed by scout bees in order to study how far swarms from beekeeper-managed hives would potentially move into a forest. We found that feral honey bee colonies regularly inhabit tree cavities in near-natural beech forests at densities of at least 0.11–0.14 colonies/km2. Colonies were not confined to the forest edges; they were also living deep inside the forests. We estimated a median distance of 2,600 m from the bee trees to the next apiaries, while scout bees in experimental swarms communicated nest sites in close distances (median: 470 m. We extrapolate that there are several thousand feral honey bee colonies in German woodlands. These have to be taken in account when assessing the role of forest areas in providing pollination services to the surrounding land, and their occurrence has implications for the species’ perception among researchers, beekeepers and conservationists. This study provides a starting point for investigating the life-histories and the ecological interactions of honey bees in temperate European forest environments.

  20. The neglected bee trees: European beech forests as a home for feral honey bee colonies.

    Science.gov (United States)

    Kohl, Patrick Laurenz; Rutschmann, Benjamin

    2018-01-01

    It is a common belief that feral honey bee colonies ( Apis mellifera L.) were eradicated in Europe through the loss of habitats, domestication by man and spread of pathogens and parasites. Interestingly, no scientific data are available, neither about the past nor the present status of naturally nesting honeybee colonies. We expected near-natural beech ( Fagus sylvatica L.) forests to provide enough suitable nest sites to be a home for feral honey bee colonies in Europe. Here, we made a first assessment of their occurrence and density in two German woodland areas based on two methods, the tracing of nest sites based on forager flight routes (beelining technique), and the direct inspection of potential cavity trees. Further, we established experimental swarms at forest edges and decoded dances for nest sites performed by scout bees in order to study how far swarms from beekeeper-managed hives would potentially move into a forest. We found that feral honey bee colonies regularly inhabit tree cavities in near-natural beech forests at densities of at least 0.11-0.14 colonies/km 2 . Colonies were not confined to the forest edges; they were also living deep inside the forests. We estimated a median distance of 2,600 m from the bee trees to the next apiaries, while scout bees in experimental swarms communicated nest sites in close distances (median: 470 m). We extrapolate that there are several thousand feral honey bee colonies in German woodlands. These have to be taken in account when assessing the role of forest areas in providing pollination services to the surrounding land, and their occurrence has implications for the species' perception among researchers, beekeepers and conservationists. This study provides a starting point for investigating the life-histories and the ecological interactions of honey bees in temperate European forest environments.

  1. Queen introduction into the queenright honey bee colony

    Directory of Open Access Journals (Sweden)

    Antonín Přidal

    2010-01-01

    Full Text Available One of the actual elementary biologic principles of the introduction of queen is that the recipient co­lo­ny has to be queenless. We accidentally found that a queen can be accepted also in queenright co­lo­ny with using of the queen excluder. Therefore, we conducted two experiments with the introduction of queen in queenright colony.Under defined conditions of the experiment and with application of the queen excluder as a separator of queens we successfully introduced queen in the queenright colony. This result is discussed in relation to the general principle that a queen should be introduced only in a queenless colony. It is possible that there are some exceptions advert to the existence of some unknown biologic patterns in the honey bee biology and pheromones.

  2. Sudden deaths and colony population decline in Greek honey bee colonies.

    Science.gov (United States)

    Bacandritsos, N; Granato, A; Budge, G; Papanastasiou, I; Roinioti, E; Caldon, M; Falcaro, C; Gallina, A; Mutinelli, F

    2010-11-01

    During June and July of 2009, sudden deaths, tremulous movements and population declines of adult honey bees were reported by the beekeepers in the region of Peloponnesus (Mt. Mainalo), Greece. A preliminary study was carried out to investigate these unexplained phenomena in this region. In total, 37 bee samples, two brood frames containing honey bee brood of various ages, eight sugar samples and four sugar patties were collected from the affected colonies. The samples were tested for a range of pests, pathogens and pesticides. Symptomatic adult honey bees tested positive for Varroa destructor, Nosema ceranae, Chronic bee paralysis virus (CBPV), Acute paralysis virus (ABPV), Deformed wing virus (DWV), Sacbrood virus (SBV) and Black queen cell virus (BQCV), but negative for Acarapis woodi. American Foulbrood was absent from the brood samples. Chemical analysis revealed that amitraz, thiametoxan, clothianidin and acetamiprid were all absent from symptomatic adult bees, sugar and sugar patty samples. However, some bee samples, were contaminated with imidacloprid in concentrations between 14 ng/g and 39 ng/g tissue. We present: the infection of Greek honey bees by multiple viruses; the presence of N. ceranae in Greek honey bees and the first record of imidacloprid (neonicotonoid) residues in Greek honey bee tissues. The presence of multiple pathogens and pesticides made it difficult to associate a single specific cause to the depopulation phenomena observed in Greece, although we believe that viruses and N. ceranae synergistically played the most important role. A follow-up in-depth survey across all Greek regions is required to provide context to these preliminary findings. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Chasing your honey: Worldwide diaspora of the small hive beetle, a parasite of honey bee colonies

    Science.gov (United States)

    Endemic to sub-Saharan Africa, small hive beetles (Aethina tumida) are now an invasive pest of honey bee colonies in Australia and North America. Knowledge on the introduction(s) from Africa into and between the current ranges will shed light on pest populations, invasion pathways and contribute to ...

  4. Comparative testing of different methods for evaluation of Varroa destructor infestation of honey bee colonies

    Directory of Open Access Journals (Sweden)

    Nikolay D. Dobrynin

    2011-09-01

    Full Text Available Different methods for evaluation of the degree of Varroa destructor infestation of honey bee colonies were tested. The methods using in vivo evaluation were the most sparing for the bees but less precise. The methods using evaluation with the killing of the bees or brood were the most precise but less sparing for bees.

  5. Researches on the Influence of Some Apicol Stimulators Use in the Supplemental Feeding of Honey Bee Colonies

    Directory of Open Access Journals (Sweden)

    Silvia Patruica

    2013-05-01

    Full Text Available This paper presents the results of supplemental feedings use applied to honey bee colonies in autumn. The experiments were carried out between August 20th 2011 and July 2012, in Berini locality, Timiș County (Romania, on 32 Apis meliffera honey bee colonies, divided into four experimental variants. Honey bee families were fed in order to supplement the honey food reserves with sugar syrup containing medicinal plants, or with APIMERA product. During the experimental period, there were being studied the number of brood combs after hibernation, the quantity of broods at the beginning of spring, as well as the quantity of honey and pollen obtained by the studied bee colonies. The best results regarding the development of honey bee colonies in spring were obtained in honey bee colonies for which food reserves have been supplemented with honey combs, followed by the bee colonies fed with sugar syrup containing medicinal plants supplements.

  6. No intracolonial nepotism during colony fissioning in honey bees

    Science.gov (United States)

    Rangel, Juliana; Mattila, Heather R.; Seeley, Thomas D.

    2009-01-01

    Most species of social insects have singly mated queens, but in some species each queen mates with numerous males to create a colony whose workers belong to multiple patrilines. This colony genetic structure creates a potential for intracolonial nepotism. One context with great potential for such nepotism arises in species, like honey bees, whose colonies reproduce by fissioning. During fissioning, workers might nepotistically choose between serving a young (sister) queen or the old (mother) queen, preferring the former if she is a full-sister but the latter if the young queen is only a half-sister. We examined three honeybee colonies that swarmed, and performed paternity analyses on the young (immature) queens and samples of workers who either stayed with the young queens in the nest or left with the mother queen in the swarm. For each colony, we checked whether patrilines represented by immature queens had higher proportions of staying workers than patrilines not represented by immature queens. We found no evidence of this. The absence of intracolonial nepotism during colony fissioning could be because the workers cannot discriminate between full-sister and half-sister queens when they are immature, or because the costs of behaving nepotistically outweigh the benefits. PMID:19692398

  7. Differential gene expression of two extreme honey bee (Apis mellifera) colonies showing varroa tolerance and susceptibility.

    Science.gov (United States)

    Jiang, S; Robertson, T; Mostajeran, M; Robertson, A J; Qiu, X

    2016-06-01

    Varroa destructor, an ectoparasitic mite of honey bees (Apis mellifera), is the most serious pest threatening the apiculture industry. In our honey bee breeding programme, two honey bee colonies showing extreme phenotypes for varroa tolerance/resistance (S88) and susceptibility (G4) were identified by natural selection from a large gene pool over a 6-year period. To investigate potential defence mechanisms for honey bee tolerance to varroa infestation, we employed DNA microarray and real time quantitative (PCR) analyses to identify differentially expressed genes in the tolerant and susceptible colonies at pupa and adult stages. Our results showed that more differentially expressed genes were identified in the tolerant bees than in bees from the susceptible colony, indicating that the tolerant colony showed an increased genetic capacity to respond to varroa mite infestation. In both colonies, there were more differentially expressed genes identified at the pupa stage than at the adult stage, indicating that pupa bees are more responsive to varroa infestation than adult bees. Genes showing differential expression in the colony phenotypes were categorized into several groups based on their molecular functions, such as olfactory signalling, detoxification processes, exoskeleton formation, protein degradation and long-chain fatty acid metabolism, suggesting that these biological processes play roles in conferring varroa tolerance to naturally selected colonies. Identification of differentially expressed genes between the two colony phenotypes provides potential molecular markers for selecting and breeding varroa-tolerant honey bees. © 2016 The Royal Entomological Society.

  8. Pathogen prevalence and abundance in honey bee colonies involved in almond pollination.

    Science.gov (United States)

    Cavigli, Ian; Daughenbaugh, Katie F; Martin, Madison; Lerch, Michael; Banner, Katie; Garcia, Emma; Brutscher, Laura M; Flenniken, Michelle L

    Honey bees are important pollinators of agricultural crops. Since 2006, US beekeepers have experienced high annual honey bee colony losses, which may be attributed to multiple abiotic and biotic factors, including pathogens. However, the relative importance of these factors has not been fully elucidated. To identify the most prevalent pathogens and investigate the relationship between colony strength and health, we assessed pathogen occurrence, prevalence, and abundance in Western US honey bee colonies involved in almond pollination. The most prevalent pathogens were Black queen cell virus (BQCV), Lake Sinai virus 2 (LSV2), Sacbrood virus (SBV), Nosema ceranae , and trypanosomatids. Our results indicated that pathogen prevalence and abundance were associated with both sampling date and beekeeping operation, that prevalence was highest in honey bee samples obtained immediately after almond pollination, and that weak colonies had a greater mean pathogen prevalence than strong colonies.

  9. Nutritional aspects of honey bee-collected pollen and constraints on colony development in the eastern Mediterranean

    OpenAIRE

    Shafir, S.; Avni, D.; Hendriksma, H.; Dag, A.; Uni, Z.; Avni, Dorit; Hendriksma, Harmen; Dag, Arnon; Uni, Zehava; Shafir, Sharoni

    2014-01-01

    Pollen is the main protein and lipid source for honey bees (Apis mellifera), and nutritionally impoverished landscapes pose a threat to colony development. To determine colony nutritional demands, we analyzed a yearly cycle of bee-collected pollen from colonies in the field and compared it to colony worker production and honey bee body composition, for the first time in social insects. We monitored monthly bee production in ten colonies at each of seven sites throughout Israel, and trapped po...

  10. Availability of environmental radioactivity to honey bee colonies at Los Alamos

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Bostick, K.V.

    1976-01-01

    Data are presented on the availability of tritium, cesium 137, and plutonium to honey bee colonies foraging in the environment surrounding the Los Alamos Scientific Laboratory. Sources of these radionuclides in the laboratory environs include liquid and atmospheric effluents and buried solid waste. Honey bee colonies were placed in three canyon liquid waste disposal areas and were sampled frequently, along with honey, surface water, and surrounding vegetation, to qualitatively determine the availability of these radionuclides to bees (Apis mellifera) and to identify potential food chain sources of the elements. Tritium concentrations in bee and honey samples from the canyons increased rapidly from initial values of 137 Cs in the environs. The existence of at least three radionuclide sources in the Los Alamos Scientific Laboratory (LASL) environs complicates the interpretation of the data. However, it is apparent that honey bees can acquire 3 H, 137 Cs, and Pu from multiple sources in the environs

  11. Wintering Map for Honey Bee Colonies in El-Behera Governorate

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    www.bioline.org.br/ja. Wintering Map for Honey Bee Colonies in El-Behera Governorate, Egypt by using ... F. ABOU-SHAARA. Plant Protection Department, Faculty of Agriculture, Damanhour University, Egypt. ..... Architecture of automatized ...

  12. The fraction haemolymph vitellogenin of a honey bee colony, derived from a pooled haemolymph sample, a colony vitality parameter

    NARCIS (Netherlands)

    Steen, van der J.J.M.; Martel, Anne Claire; Hendrickx, Patrick

    2015-01-01

    The number of bees, amount of brood and haemolymph vitellogenin titre are parameters to establish the vitality of a honey bee colony. Increasing numbers of bees during summer until autumn; increasing amounts of brood in spring towards summer followed by a decrease; and low haemolymph vitellogenin

  13. Distribution of Paenibacillus larvae spores inside honey bee colonies and its relevance for diagnosis.

    Science.gov (United States)

    Gillard, M; Charriere, J D; Belloy, L

    2008-09-01

    One of the most important factors affecting the development of honey bee colonies is infectious diseases such as American foulbrood (AFB) caused by the spore forming Gram-positive bacterium Paenibacillus larvae. Colony inspections for AFB clinical symptoms are time consuming. Moreover, diseased cells in the early stages of the infection may easily be overlooked. In this study, we investigated whether it is possible to determine the sanitary status of a colony based on analyses of different materials collected from the hive. We analysed 237 bee samples and 67 honey samples originating from 71 colonies situated in 13 apiaries with clinical AFB occurrences. We tested whether a difference in spore load among bees inside the whole hive exists and which sample material related to its location inside the hive was the most appropriate for an early AFB diagnosis based on the culture method. Results indicated that diagnostics based on analysis of honey samples and bees collected at the hive entrance are of limited value as only 86% and 83%, respectively, of samples from AFB-symptomatic colonies were positive. Analysis of bee samples collected from the brood nest, honey chamber, and edge frame allowed the detection of all colonies showing AFB clinical symptoms. Microbiological analysis showed that more than one quarter of samples collected from colonies without AFB clinical symptoms were positive for P. larvae. Based on these results, we recommend investigating colonies by testing bee samples from the brood nest, edge frame or honey chamber for P. larvae spores.

  14. Protein levels and colony development of Africanized and European honey bees fed natural and artificial diets

    OpenAIRE

    Morais, Michelle Manfrini [UNIFESP; Turcatto, Aline Patricia; Pereira, Rogerio Aparecido; Francoy, Tiago Mauricio; Guidugli-Lazzarini, Karina Rosa; Goncalves, Lionel Segui; Almeida, Joyce Mayra Volpini de; Ellis, J. D.; De Jong, David

    2013-01-01

    Pollen substitute diets are a valuable resource for maintaining strong and health honey bee colonies. Specific diets may be useful in one region or country and inadequate or economically unviable in others. We compared two artificial protein diets that had been formulated from locally-available ingredients in Brazil with bee bread and a non-protein sucrose diet. Groups of 100 newly-emerged, adult workers of Africanized honey bees in Brazil and European honey bees in the USA were confined in s...

  15. Effect of a home-made pollen substitute on honey bee colony development

    NARCIS (Netherlands)

    Steen, van der J.J.M.

    2007-01-01

    In 2001 and 2002, studies were conducted on a pollen substitute formulated for easy home preparation. Tests were done with free flying honey bee colonies. In 2001, pollen supply was restricted with pollen traps in 9 experimental colonies. Colonies were then equally divided among three treatments:

  16. Colony Level Prevalence and Intensity of Nosema ceranae in Honey Bees (Apis mellifera L.)

    Science.gov (United States)

    Lucas, Hannah M.; Webster, Thomas C.; Sagili, Ramesh R.

    2016-01-01

    Nosema ceranae is a widely prevalent microsporidian parasite in the western honey bee. There is considerable uncertainty regarding infection dynamics of this important pathogen in honey bee colonies. Understanding the infection dynamics at the colony level may aid in development of a reliable sampling protocol for N. ceranae diagnosis, and provide insights into efficient treatment strategies. The primary objective of this study was to characterize the prevalence (proportion of the sampled bees found infected) and intensity (number of spores per bee) of N. ceranae infection in bees from various age cohorts in a colony. We examined N. ceranae infection in both overwintered colonies that were naturally infected with N. ceranae and in quadruple cohort nucleus colonies that were established and artificially inoculated with N. ceranae. We also examined and quantified effects of N. ceranae infection on hypopharyngeal gland protein content and gut pH. There was no correlation between the prevalence and intensity of N. ceranae infection in composite samples (pooled bee samples used for analysis). Our results indicated that the prevalence and intensity of N. ceranae infection is significantly influenced by honey bee age. The N. ceranae infection prevalence values from composite samples of background bees (unmarked bees collected from four different locations in a colony) were not significantly different from those pertaining to marked-bee age cohorts specific to each sampling date. The foraging-aged bees had a higher prevalence of N. ceranae infection when compared to nurse-aged bees. N. ceranae did not have a significant effect on hypopharyngeal gland protein content. Further, there was no significant difference in mean gut pH of N. ceranae infected bees and non-infected bees. This study provides comprehensive insights into N. ceranae infection dynamics at the colony level, and also demonstrates the effects of N. ceranae infection on hypopharyngeal gland protein content and

  17. Colony Level Prevalence and Intensity of Nosema ceranae in Honey Bees (Apis mellifera L..

    Directory of Open Access Journals (Sweden)

    Cameron J Jack

    Full Text Available Nosema ceranae is a widely prevalent microsporidian parasite in the western honey bee. There is considerable uncertainty regarding infection dynamics of this important pathogen in honey bee colonies. Understanding the infection dynamics at the colony level may aid in development of a reliable sampling protocol for N. ceranae diagnosis, and provide insights into efficient treatment strategies. The primary objective of this study was to characterize the prevalence (proportion of the sampled bees found infected and intensity (number of spores per bee of N. ceranae infection in bees from various age cohorts in a colony. We examined N. ceranae infection in both overwintered colonies that were naturally infected with N. ceranae and in quadruple cohort nucleus colonies that were established and artificially inoculated with N. ceranae. We also examined and quantified effects of N. ceranae infection on hypopharyngeal gland protein content and gut pH. There was no correlation between the prevalence and intensity of N. ceranae infection in composite samples (pooled bee samples used for analysis. Our results indicated that the prevalence and intensity of N. ceranae infection is significantly influenced by honey bee age. The N. ceranae infection prevalence values from composite samples of background bees (unmarked bees collected from four different locations in a colony were not significantly different from those pertaining to marked-bee age cohorts specific to each sampling date. The foraging-aged bees had a higher prevalence of N. ceranae infection when compared to nurse-aged bees. N. ceranae did not have a significant effect on hypopharyngeal gland protein content. Further, there was no significant difference in mean gut pH of N. ceranae infected bees and non-infected bees. This study provides comprehensive insights into N. ceranae infection dynamics at the colony level, and also demonstrates the effects of N. ceranae infection on hypopharyngeal gland

  18. Bee++: An Object-Oriented, Agent-Based Simulator for Honey Bee Colonies

    Directory of Open Access Journals (Sweden)

    Matthew Betti

    2017-03-01

    Full Text Available We present a model and associated simulation package (www.beeplusplus.ca to capture the natural dynamics of a honey bee colony in a spatially-explicit landscape, with temporally-variable, weather-dependent parameters. The simulation tracks bees of different ages and castes, food stores within the colony, pollen and nectar sources and the spatial position of individual foragers outside the hive. We track explicitly the intake of pesticides in individual bees and their ability to metabolize these toxins, such that the impact of sub-lethal doses of pesticides can be explored. Moreover, pathogen populations (in particular, Nosema apis, Nosema cerenae and Varroa mites have been included in the model and may be introduced at any time or location. The ability to study interactions among pesticides, climate, biodiversity and pathogens in this predictive framework should prove useful to a wide range of researchers studying honey bee populations. To this end, the simulation package is written in open source, object-oriented code (C++ and can be easily modified by the user. Here, we demonstrate the use of the model by exploring the effects of sub-lethal pesticide exposure on the flight behaviour of foragers.

  19. Monitoring colony-level effects of sublethal pesticide exposure on honey bees

    Science.gov (United States)

    The effects of sublethal pesticide exposure to honey bee colonies may be significant but difficult to detect in the field using standard visual assessment methods. Here we describe methods to measure the quantities of adult bees, brood and food resources by weighing hives and hive parts, by photogra...

  20. First report of sacbrood virus in honey bee (Apis mellifera) colonies in Brazil.

    Science.gov (United States)

    Freiberg, M; De Jong, D; Message, D; Cox-Foster, D

    2012-09-13

    Sacbrood disease, an affliction of honey bees (Apis mellifera) characterized by brood that fails to pupate and subsequently dies, is an important threat to honey bee health. The disease is caused by the sacbrood virus (SBV), a positive-, single-stranded RNA virus in the order Picornavirales. Because of the economic importance of honey bees for both pollination and honey production, it is vital to understand and monitor the spread of viruses such as SBV. This virus has been found in many places across the globe, including recently in some South American countries, and it is likely that it will continue to spread. We performed a preliminary study to search for SBV in two apiaries of Africanized honey bees in the State of São Paulo, Brazil, using RT-PCR and Sanger sequencing and found the first evidence of SBV in honey bee colonies in Brazil. The virus was detected in larvae, foraging and nurse bees from two colonies, one of which had symptoms of sacbrood disease, at the beginning of the winter season in June 2011. No SBV was found in samples from nine other nearby colonies.

  1. Pathogenesis of varroosis at the level of the honey bee (Apis mellifera) colony.

    Science.gov (United States)

    Wegener, J; Ruhnke, H; Scheller, K; Mispagel, S; Knollmann, U; Kamp, G; Bienefeld, K

    2016-01-01

    The parasitic mite Varroa destructor, in interaction with different viruses, is the main cause of honey bee colony mortality in most parts of the world. Here we studied how effects of individual-level parasitization are reflected by the bee colony as a whole. We measured disease progression in an apiary of 24 hives with differing degree of mite infestation, and investigated its relationship to 28 biometrical, physiological and biochemical indicators. In early summer, when the most heavily infested colonies already showed reduced growth, an elevated ratio of brood to bees, as well as a strong presence of phenoloxidase/prophenoloxidase in hive bees were found to be predictors of the time of colony collapse. One month later, the learning performance of worker bees as well as the activity of glucose oxidase measured from head extracts were significantly linked to the timing of colony collapse. Colonies at the brink of collapse were characterized by reduced weight of winter bees and a strong increase in their relative body water content. Our data confirm the importance of the immune system, known from studies of individually-infested bees, for the pathogenesis of varroosis at colony level. However, they also show that single-bee effects cannot always be extrapolated to the colony as a whole. This fact, together with the prominent role of colony-level factors like the ratio between brood and bees for disease progression, stress the importance of the superorganismal dimension of Varroa research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Viral prevalence increases with regional colony abundance in honey bee drones (Apis mellifera L).

    Science.gov (United States)

    Forfert, Nadège; Natsopoulou, Myrsini E; Paxton, Robert J; Moritz, Robin F A

    2016-10-01

    Transmission among colonies is a central feature for the epidemiology of honey bee pathogens. High colony abundance may promote transmission among colonies independently of apiary layout, making colony abundance a potentially important parameter determining pathogen prevalence in populations of honey bees. To test this idea, we sampled male honey bees (drones) from seven distinct drone congregation areas (DCA), and used their genotypes to estimate colony abundance at each site. A multiplex ligation dependent probe amplification assay (MLPA) was used to assess the prevalence of ten viruses, using five common viral targets, in individual drones. There was a significant positive association between colony abundance and number of viral infections. This result highlights the potential importance of high colony abundance for pathogen prevalence, possibly because high population density facilitates pathogen transmission. Pathogen prevalence in drones collected from DCAs may be a useful means of estimating the disease status of a population of honey bees during the mating season, especially for localities with a large number of wild or feral colonies. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Social immunity and the superorganism: Behavioral defenses protecting honey bee colonies from pathogens and parasites

    Science.gov (United States)

    Honey bees (Apis mellifera) have a number of traits that effectively reduce the spread of pathogens and parasites throughout the colony. These mechanisms of social immunity are often analogous to the individual immune system. As such social immune defences function to protect the colony or superorga...

  4. Naturally selected honey bee (Apis mellifera) colonies resistant to Varroa destructor do not groom more intensively

    NARCIS (Netherlands)

    Kruitwagen, Astrid; Langevelde, van Frank; Dooremalen, van Coby; Blacquière, Tjeerd

    2017-01-01

    The ectoparasitic mite Varroa destructor is an important cause of high colony losses of the honey bee Apis mellifera. In The Netherlands, two resistant A. mellifera populations developed naturally after ceasing varroa control. As a result, mite infestation levels of the colonies of these populations

  5. Protein levels and colony development of Africanized and European honey bees fed natural and artificial diets.

    Science.gov (United States)

    Morais, M M; Turcatto, A P; Pereira, R A; Francoy, T M; Guidugli-Lazzarini, K R; Gonçalves, L S; de Almeida, J M V; Ellis, J D; De Jong, D

    2013-12-19

    Pollen substitute diets are a valuable resource for maintaining strong and health honey bee colonies. Specific diets may be useful in one region or country and inadequate or economically unviable in others. We compared two artificial protein diets that had been formulated from locally-available ingredients in Brazil with bee bread and a non-protein sucrose diet. Groups of 100 newly-emerged, adult workers of Africanized honey bees in Brazil and European honey bees in the USA were confined in small cages and fed on one of four diets for seven days. The artificial diets included a high protein diet made of soy milk powder and albumin, and a lower protein level diet consisting of soy milk powder, brewer's yeast and rice bran. The initial protein levels in newly emerged bees were approximately 18-21 µg/µL hemolymph. After feeding on the diets for seven days, the protein levels in the hemolymph were similar among the protein diet groups (~37-49 µg/µL after seven days), although Africanized bees acquired higher protein levels, increasing 145 and 100% on diets D1 and D2, respectively, versus 83 and 60% in the European bees. All the protein diets resulted in significantly higher levels of protein than sucrose solution alone. In the field, the two pollen substitute diets were tested during periods of low pollen availability in the field in two regions of Brazil. Food consumption, population development, colony weight, and honey production were evaluated to determine the impact of the diets on colony strength parameters. The colonies fed artificial diets had a significant improvement in all parameters, while control colonies dwindled during the dearth period. We conclude that these two artificial protein diets have good potential as pollen substitutes during dearth periods and that Africanized bees more efficiently utilize artificial protein diets than do European honey bees.

  6. Longitudinal effects of supplemental forage on the honey bee (Apis 1 mellifera) microbiota and inter- and intra-colony variability

    Science.gov (United States)

    Honey bee colonies obtain much of their gut bacteria (gut microbiota) from fresh nectar and pollen collected from flowering plants (forage). Honey bee colonies often go for long periods of time without fresh forage during winter and early spring. We examined the effects of mid-winter supplemental fo...

  7. Honey bee (Apis mellifera) colony health and pathogen composition in migratory beekeeping operations involved in California almond pollination.

    Science.gov (United States)

    Glenny, William; Cavigli, Ian; Daughenbaugh, Katie F; Radford, Rosemarie; Kegley, Susan E; Flenniken, Michelle L

    2017-01-01

    Honey bees are important pollinators of agricultural crops. Pathogens and other factors have been implicated in high annual losses of honey bee colonies in North America and some European countries. To further investigate the relationship between multiple factors, including pathogen prevalence and abundance and colony health, we monitored commercially managed migratory honey bee colonies involved in California almond pollination in 2014. At each sampling event, honey bee colony health was assessed, using colony population size as a proxy for health, and the prevalence and abundance of seven honey bee pathogens was evaluated using PCR and quantitative PCR, respectively. In this sample cohort, pathogen prevalence and abundance did not correlate with colony health, but did correlate with the date of sampling. In general, pathogen prevalence (i.e., the number of specific pathogens harbored within a colony) was lower early in the year (January-March) and was greater in the summer, with peak prevalence occurring in June. Pathogen abundance in individual honey bee colonies varied throughout the year and was strongly associated with the sampling date, and was influenced by beekeeping operation, colony health, and mite infestation level. Together, data from this and other observational cohort studies that monitor individual honey bee colonies and precisely account for sampling date (i.e., day of year) will lead to a better understanding of the influence of pathogens on colony mortality and the effects of other factors on these associations.

  8. Honey bee (Apis mellifera colony health and pathogen composition in migratory beekeeping operations involved in California almond pollination.

    Directory of Open Access Journals (Sweden)

    William Glenny

    Full Text Available Honey bees are important pollinators of agricultural crops. Pathogens and other factors have been implicated in high annual losses of honey bee colonies in North America and some European countries. To further investigate the relationship between multiple factors, including pathogen prevalence and abundance and colony health, we monitored commercially managed migratory honey bee colonies involved in California almond pollination in 2014. At each sampling event, honey bee colony health was assessed, using colony population size as a proxy for health, and the prevalence and abundance of seven honey bee pathogens was evaluated using PCR and quantitative PCR, respectively. In this sample cohort, pathogen prevalence and abundance did not correlate with colony health, but did correlate with the date of sampling. In general, pathogen prevalence (i.e., the number of specific pathogens harbored within a colony was lower early in the year (January-March and was greater in the summer, with peak prevalence occurring in June. Pathogen abundance in individual honey bee colonies varied throughout the year and was strongly associated with the sampling date, and was influenced by beekeeping operation, colony health, and mite infestation level. Together, data from this and other observational cohort studies that monitor individual honey bee colonies and precisely account for sampling date (i.e., day of year will lead to a better understanding of the influence of pathogens on colony mortality and the effects of other factors on these associations.

  9. Planting of neonicotinoid-coated corn raises honey bee mortality and sets back colony development

    Directory of Open Access Journals (Sweden)

    Olivier Samson-Robert

    2017-08-01

    Full Text Available Worldwide occurrences of honey bee colony losses have raised concerns about bee health and the sustainability of pollination-dependent crops. While multiple causal factors have been identified, seed coating with insecticides of the neonicotinoid family has been the focus of much discussion and research. Nonetheless, few studies have investigated the impacts of these insecticides under field conditions or in commercial beekeeping operations. Given that corn-seed coating constitutes the largest single use of neonicotinoid, our study compared honey bee mortality from commercial apiaries located in two different agricultural settings, i.e. corn-dominated areas and corn-free environments, during the corn planting season. Data was collected in 2012 and 2013 from 26 bee yards. Dead honey bees from five hives in each apiary were counted and collected, and samples were analyzed using a multi-residue LC-MS/MS method. Long-term effects on colony development were simulated based on a honey bee population dynamic model. Mortality survey showed that colonies located in a corn-dominated area had daily mortality counts 3.51 times those of colonies from corn crop-free sites. Chemical analyses revealed that honey bees were exposed to various agricultural pesticides during the corn planting season, but were primarily subjected to neonicotinoid compounds (54% of analysed samples contained clothianidin, and 31% contained both clothianidin and thiamethoxam. Performance development simulations performed on hive populations’ show that increased mortality during the corn planting season sets back colony development and bears contributions to collapse risk but, most of all, reduces the effectiveness and value of colonies for pollination services. Our results also have implications for the numerous large-scale and worldwide-cultivated crops that currently rely on pre-emptive use of neonicotinoid seed treatments.

  10. Late winter feeding stimulates rapid spring development of carniolan honey bee colonies (Apis mellifera carnica

    Directory of Open Access Journals (Sweden)

    Zlatko Puškadija

    2017-01-01

    Full Text Available Unfavourable weather conditions after the queen starts with intensive oviposition during early spring may cause an imbalance in the division of tasks among worker bees in the bee colony. This can lead to slow spring development and poor exploitation of the main spring nectar flows. In order to accelerate the spring development, it is necessary, as a technological measure, to feed supplemental candy to bee colonies. In this research, the necessity of supplemental feeding, as well as the composition of candy (pollen and protein substitute were analysed. Three groups of ten bee colonies each were formed - the control, unfed group, pollen candy fed and protein substitute candy fed. In the period from 22/02/2016 and 04/04/2016 three control measurements were performed during which the number of bees, the number of brood cells and weight of the bee colonies were determined. The research has shown that supplemental feeding of the bee colony in late winter in order to encourage the rapid spring development is justified. Namely, at the final measurements in April, the results showed differences between groups. The treated colonies had higher net hive weight, a greater number of bees and statistically significantly more brood cells. The results of this study confirm that the technological measure of supplemental feeding in late winter should be performed on all commercial apiaries for the production of honey, pollen, royal jelly, queen bees and bee venom.

  11. Toxicity of Selected Acaricides to Honey Bees (Apis mellifera) and Varroa (Varroa destructor Anderson and Trueman) and Their Use in Controlling Varroa within Honey Bee Colonies.

    Science.gov (United States)

    Gregorc, Aleš; Alburaki, Mohamed; Sampson, Blair; Knight, Patricia R; Adamczyk, John

    2018-05-10

    The efficacies of various acaricides in order to control a parasitic mite, the Varroa mite, Varroa destructor , of honey bees, were measured in two different settings, namely, in laboratory caged honey bees and in queen-right honey bee colonies. The Varroa infestation levels before, during, and after the acaricide treatments were determined in two ways, namely: (1) using the sugar shake protocol to count mites on bees and (2) directly counting the dead mites on the hive bottom inserts. The acaricides that were evaluated were coumaphos, tau-fluvalinate, amitraz, thymol, and natural plant compounds (hop acids), which were the active ingredients. The acaricide efficacies in the colonies were evaluated in conjunction with the final coumaphos applications. All of the tested acaricides significantly increased the overall Varroa mortality in the laboratory experiment. Their highest efficiencies were recorded at 6 h post-treatment, except for coumaphos and thymol, which exhibited longer and more consistent activity. In the honey bee colonies, a higher Varroa mortality was recorded in all of the treatments, compared with the natural Varroa mortality during the pretreatment period. The acaricide toxicity to the Varroa mites was consistent in both the caged adult honey bees and workers in the queen-right colonies, although, two of these acaricides, coumaphos at the highest doses and hop acids, were comparatively more toxic to the worker bees.

  12. Causes and Scale of Winter Flights in Honey Bee (Apis Mellifera Carnica Colonies

    Directory of Open Access Journals (Sweden)

    Węgrzynowicz Paweł

    2014-06-01

    Full Text Available Winter honey bee losses were evaluated during the two overwintering periods of 2009/2010 and 2010/2011. The research included dead bee workers that fell on the hive bottom board (debris and the ones that flew out of the hive. Differences were observed in the number of bees fallen as debris between the two periods, whereas the number of bees flying out was similar in both years. No differences were found between the numbers of dead bees in strong and weak colonies. The percentage of bees flying out of the colony increased in the presence of Nosema spores, Varroa infestation, increased average air temperature, and insolation during the day. In addition, both the presence of Nosema and insolation during the day had an impact on the number of bees that died and fell on the hive board.

  13. The effect of Agaricus brasiliensis extract supplementation on honey bee colonies

    Directory of Open Access Journals (Sweden)

    JEVROSIMA STEVANOVIC

    2018-02-01

    Full Text Available ABSTRACT This study was done to discover any beneficial effect of a medicinal mushroom Agaricus brasiliensis extract on the honey bee. Firstly, a laboratory experiment was conducted on 640 bees reared in 32 single-use plastic rearing cups. A. brasiliensis extract proved safe in all doses tested (50, 100 and 150 mg/kg/day irrespective of feeding mode (sugar syrup or candy. Secondly, a three-year field experiment was conducted on 26 colonies treated with a single dose of A. brasiliensis extract (100 mg/kg/day added to syrup. Each year the colonies were treated once in autumn and twice in spring. The treatments significantly increased colony strength parameters: brood rearing improvement and adult population growth were noticed more often than the increase in honey production and pollen reserves. These positive effects were mainly observed in April. In conclusion, A. brasiliensis extract is safe for the bees and helps maintaining strong colonies, especially in spring.

  14. The effect of Agaricus brasiliensis extract supplementation on honey bee colonies.

    Science.gov (United States)

    Stevanovic, Jevrosima; Stanimirovic, Zoran; Simeunovic, Predrag; Lakic, Nada; Radovic, Ivica; Sokovic, Marina; Griensven, Leo J L D VAN

    2018-01-01

    This study was done to discover any beneficial effect of a medicinal mushroom Agaricus brasiliensis extract on the honey bee. Firstly, a laboratory experiment was conducted on 640 bees reared in 32 single-use plastic rearing cups. A. brasiliensis extract proved safe in all doses tested (50, 100 and 150 mg/kg/day) irrespective of feeding mode (sugar syrup or candy). Secondly, a three-year field experiment was conducted on 26 colonies treated with a single dose of A. brasiliensis extract (100 mg/kg/day) added to syrup. Each year the colonies were treated once in autumn and twice in spring. The treatments significantly increased colony strength parameters: brood rearing improvement and adult population growth were noticed more often than the increase in honey production and pollen reserves. These positive effects were mainly observed in April. In conclusion, A. brasiliensis extract is safe for the bees and helps maintaining strong colonies, especially in spring.

  15. Manipulation of colony environment modulates honey bee aggression and brain gene expression.

    Science.gov (United States)

    Rittschof, C C; Robinson, G E

    2013-11-01

    The social environment plays an essential role in shaping behavior for most animals. Social effects on behavior are often linked to changes in brain gene expression. In the honey bee (Apis mellifera L.), social modulation of individual aggression allows colonies to adjust the intensity with which they defend their hive in response to predation threat. Previous research has showed social effects on both aggression and aggression-related brain gene expression in honey bees, caused by alarm pheromone and unknown factors related to colony genotype. For example, some bees from less aggressive genetic stock reared in colonies with genetic predispositions toward increased aggression show both increased aggression and more aggressive-like brain gene expression profiles. We tested the hypothesis that exposure to a colony environment influenced by high levels of predation threat results in increased aggression and aggressive-like gene expression patterns in individual bees. We assessed gene expression using four marker genes. Experimentally induced predation threats modified behavior, but the effect was opposite of our predictions: disturbed colonies showed decreased aggression. Disturbed colonies also decreased foraging activity, suggesting that they did not habituate to threats; other explanations for this finding are discussed. Bees in disturbed colonies also showed changes in brain gene expression, some of which paralleled behavioral findings. These results show that bee aggression and associated molecular processes are subject to complex social influences. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  16. Nutritional Effect of Alpha-Linolenic Acid on Honey Bee Colony Development (Apis Mellifera L.

    Directory of Open Access Journals (Sweden)

    Ma Lanting

    2015-12-01

    Full Text Available Alpha-linolenic acid (ALA, which is an n-3 polyunsaturated fatty acid (PUFA, influences honey bee feed intake and longevity. The objective of this study was to research the effect of six dietary ALA levels on the growth and development of Apis mellifera ligustica colonies. In the early spring, a total of 36 honey bee colonies of equal size and queen quality were randomly allocated into 6 groups. The six groups of honey bees were fed a basal diet with supplementation of ALA levels at 0 (group A, 2 (group B, 4 (group C, 6 (group D, 8 (group E, and 10% (group F. In this study, there were significant effects of pollen substitute ALA levels on the feeding amounts of the bee colony, colony population, sealed brood amount, and weight of newly emerged workers (P<0.05. The workers’ midgut Lipase (LPS activity of group C was significantly lower than that of the other groups (P<0.01. The worker bees in groups B, C, and D had significantly longer lifespans than those in the other groups (P<0.05. However, when the diets had ALA concentrations of more than 6%, the mortality of the honey bees increased (P<0.01. These results indicate that ALA levels of 2 ~ 4% of the pollen substitute were optimal for maintaining the highest reproductive performance and the digestion and absorption of fatty acids in honey bees during the period of spring multiplication. Additionally, ALA levels of 2 ~ 6% of the pollen substitute, improved worker bee longevity.

  17. Queen rearing and selection practices and their impact on the genetic diversity and fitness of honey bee colonies

    OpenAIRE

    Bouga, Maria; Arnold, Gerard; Bienkowska, Malgorzata; Büchler, Ralph; Garnery, Lionel; Ivanova, Evgeniya; De Jong, David; De la Rúa, Pilar; Kence, Meral; Kezic, Nikola; Kryger, Per; Murilhas, António; Oldroyd, Benjamin; Oliver, Randy; Palacio, María

    2011-01-01

    The Apimondia working group on honey bee diversity and fitness (AWG 7) was created on October 25, 2010 as a Scientific Working Group of Apimondia. The aim of this AWG is to collect information on honey bee queen rearing practices, and examine their impact on the genetic variability and general health of honey bee colonies. The AWG consists of 23 members from 16 different countries. The world wide survey being conducted by this AWG is focused on gathering information on how selection methods, ...

  18. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies

    Science.gov (United States)

    Jara, Laura; Muñoz, Irene; Cepero, Almudena; Martín-Hernández, Raquel; Serrano, José; Higes, Mariano; De la Rúa, Pilar

    2015-10-01

    In the last decades, the rapid spread of diseases, such as varroosis and nosemosis, associated with massive honey bee colonies mortality around the world has significantly decreased the number and size of honey bee populations and possibly their genetic diversity. Here, we compare the genetic diversity of Iberian honey bee colonies in two samplings performed in 2006 and 2010 in relation to the presence of the pathogenic agents Nosema apis, Nosema ceranae, and Varroa destructor in order to determine whether parasite and pathogen spread in honey bee colonies reflects changes in genetic diversity. We found that the genetic diversity remained similar, while the incidence of N. ceranae increased and the incidence of N. apis and V. destructor decreased slightly. These results indicate that the genetic diversity was not affected by the presence of these pathogenic agents in the analyzed period. However, the two groups of colonies with and without Nosema/Varroa detected showed significant genetic differentiation (G test). A detailed analysis of the allelic segregation of microsatellite loci in Nosema/Varroa-negative colonies and parasitized ones revealed two outlier loci related to genes involved in immune response.

  19. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies.

    Science.gov (United States)

    Jara, Laura; Muñoz, Irene; Cepero, Almudena; Martín-Hernández, Raquel; Serrano, José; Higes, Mariano; De la Rúa, Pilar

    2015-10-01

    In the last decades, the rapid spread of diseases, such as varroosis and nosemosis, associated with massive honey bee colonies mortality around the world has significantly decreased the number and size of honey bee populations and possibly their genetic diversity. Here, we compare the genetic diversity of Iberian honey bee colonies in two samplings performed in 2006 and 2010 in relation to the presence of the pathogenic agents Nosema apis, Nosema ceranae, and Varroa destructor in order to determine whether parasite and pathogen spread in honey bee colonies reflects changes in genetic diversity. We found that the genetic diversity remained similar, while the incidence of N. ceranae increased and the incidence of N. apis and V. destructor decreased slightly. These results indicate that the genetic diversity was not affected by the presence of these pathogenic agents in the analyzed period. However, the two groups of colonies with and without Nosema/Varroa detected showed significant genetic differentiation (G test). A detailed analysis of the allelic segregation of microsatellite loci in Nosema/Varroa-negative colonies and parasitized ones revealed two outlier loci related to genes involved in immune response.

  20. Pathogens as Predictors of Honey Bee Colony Strength in England and Wales.

    Science.gov (United States)

    Budge, Giles E; Pietravalle, Stéphane; Brown, Mike; Laurenson, Lynn; Jones, Ben; Tomkies, Victoria; Delaplane, Keith S

    2015-01-01

    Inspectors with the UK National Bee Unit were asked for 2007-2008 to target problem apiaries in England and Wales for pathogen screening and colony strength measures. Healthy colonies were included in the sampling to provide a continuum of health conditions. A total of 406 adult bee samples was screened and yielded 7 viral, 1 bacterial, and 2 microsporidial pathogens and 1 ectoparasite (Acarapis woodi). In addition, 108 samples of brood were screened and yielded 4 honey bee viruses. Virus prevalence varied from common (deformed wing virus, black queen cell virus) to complete absence (Israeli acute paralysis virus). When colonies were forced into one of two classes, strong or weak, the weak colonies contained more pathogens in adult bees. Among observed pathogens, only deformed wing virus was able to predict colony strength. The effect was negative such that colonies testing positive for deformed wing virus were likely to have fewer combs of bees or brood. This study constitutes the first record for Nosema ceranae in Great Britain. These results contribute to the growing body of evidence linking pathogens to poor honey bee health.

  1. Pathogens as Predictors of Honey Bee Colony Strength in England and Wales.

    Directory of Open Access Journals (Sweden)

    Giles E Budge

    Full Text Available Inspectors with the UK National Bee Unit were asked for 2007-2008 to target problem apiaries in England and Wales for pathogen screening and colony strength measures. Healthy colonies were included in the sampling to provide a continuum of health conditions. A total of 406 adult bee samples was screened and yielded 7 viral, 1 bacterial, and 2 microsporidial pathogens and 1 ectoparasite (Acarapis woodi. In addition, 108 samples of brood were screened and yielded 4 honey bee viruses. Virus prevalence varied from common (deformed wing virus, black queen cell virus to complete absence (Israeli acute paralysis virus. When colonies were forced into one of two classes, strong or weak, the weak colonies contained more pathogens in adult bees. Among observed pathogens, only deformed wing virus was able to predict colony strength. The effect was negative such that colonies testing positive for deformed wing virus were likely to have fewer combs of bees or brood. This study constitutes the first record for Nosema ceranae in Great Britain. These results contribute to the growing body of evidence linking pathogens to poor honey bee health.

  2. Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse.

    Directory of Open Access Journals (Sweden)

    Heather R Mattila

    Full Text Available Recent losses of honey bee colonies have led to increased interest in the microbial communities that are associated with these important pollinators. A critical function that bacteria perform for their honey bee hosts, but one that is poorly understood, is the transformation of worker-collected pollen into bee bread, a nutritious food product that can be stored for long periods in colonies. We used 16S rRNA pyrosequencing to comprehensively characterize in genetically diverse and genetically uniform colonies the active bacterial communities that are found on honey bees, in their digestive tracts, and in bee bread. This method provided insights that have not been revealed by past studies into the content and benefits of honey bee-associated microbial communities. Colony microbiotas differed substantially between sampling environments and were dominated by several anaerobic bacterial genera never before associated with honey bees, but renowned for their use by humans to ferment food. Colonies with genetically diverse populations of workers, a result of the highly promiscuous mating behavior of queens, benefited from greater microbial diversity, reduced pathogen loads, and increased abundance of putatively helpful bacteria, particularly species from the potentially probiotic genus Bifidobacterium. Across all colonies, Bifidobacterium activity was negatively correlated with the activity of genera that include pathogenic microbes; this relationship suggests a possible target for understanding whether microbes provide protective benefits to honey bees. Within-colony diversity shapes microbiotas associated with honey bees in ways that may have important repercussions for colony function and health. Our findings illuminate the importance of honey bee-bacteria symbioses and examine their intersection with nutrition, pathogen load, and genetic diversity, factors that are considered key to understanding honey bee decline.

  3. Integrated varroa control in honey bee colonies (Apis mellifera carnica) with or without brood

    Science.gov (United States)

    Studies were conducted in two apiaries in order to assess the comparative efficacy of oxalic acid (OA), formic acid (FA) and Thymovar against varroa mites in honey bee colonies. Treatments were performed using 85% FA and OA consisted of 2.9% oxalic acid dihydrate and 31.9% sugar in water. Consecutiv...

  4. Swarm prevention and spring treatment against Varroa destructor in honey bee colonies (Apis mellifera)

    NARCIS (Netherlands)

    Cornelissen, B.; Gerritsen, L.J.M.

    2006-01-01

    In 2004 and 2005 experiments were carried out to test the efficacy and efficiency of Varroa control combined with swarm prevention methods in spring. Honey bee colonies were split in an artificial swarm and a brood carrier. Hereafter the swarms were treated with oxalic acid and the brood carriers

  5. Assessment of chronic sublethal effects of imidacloprid on honey bee colony health

    Science.gov (United States)

    Here we present results of a three-year study to determine the fate of imidacloprid residues in hive matrices and to assess chronic sublethal effects on whole honey bee colonies fed supplemental pollen diet containing imidacloprid at 5, 20 and 100 µg/kg over multiple brood cycles. Various endpoints ...

  6. Using within-day hive weight changes to measure environmental effects on honey bee colonies

    Science.gov (United States)

    Patterns in within-day hive weight data from two independent datasets in Arizona and California were modeled using piecewise regression, and analyzed with respect to honey bee colony behavior and landscape effects. The regression analysis yielded information on the start and finish of a colony’s dai...

  7. The distribution of Paenibacillus larvae spores in adult bees and honey and larval mortality, following the addition of American foulbrood diseased brood or spore-contaminated honey in honey bee (Apis mellifera) colonies.

    Science.gov (United States)

    Lindström, Anders; Korpela, Seppo; Fries, Ingemar

    2008-09-01

    Within colony transmission of Paenibacillus larvae spores was studied by giving spore-contaminated honey comb or comb containing 100 larvae killed by American foulbrood to five experimental colonies respectively. We registered the impact of the two treatments on P. larvae spore loads in adult bees and honey and on larval mortality by culturing for spores in samples of adult bees and honey, respectively, and by measuring larval survival. The results demonstrate a direct effect of treatment on spore levels in adult bees and honey as well as on larval mortality. Colonies treated with dead larvae showed immediate high spore levels in adult bee samples, while the colonies treated with contaminated honey showed a comparable spore load but the effect was delayed until the bees started to utilize the honey at the end of the flight season. During the winter there was a build up of spores in the adult bees, which may increase the risk for infection in spring. The results confirm that contaminated honey can act as an environmental reservoir of P. larvae spores and suggest that less spores may be needed in honey, compared to in diseased brood, to produce clinically diseased colonies. The spore load in adult bee samples was significantly related to larval mortality but the spore load of honey samples was not.

  8. Statistical methods to quantify the effect of mite parasitism on the probability of death in honey bee colonies

    Science.gov (United States)

    Varroa destructor is a mite parasite of European honey bees, Apis mellifera, that weakens the population, can lead to the death of an entire honey bee colony, and is believed to be the parasite with the most economic impact on beekeeping. The purpose of this study was to estimate the probability of ...

  9. Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse

    NARCIS (Netherlands)

    Mattila, H.R.; Rios, D.; Walker-Sperling, V.E.; Roeselers, G.; Newton, I.L.G.

    2012-01-01

    Recent losses of honey bee colonies have led to increased interest in the microbial communities that are associated with these important pollinators. A critical function that bacteria perform for their honey bee hosts, but one that is poorly understood, is the transformation of worker-collected

  10. Phenotypic and genetic analyses of the varroa sensitive hygienic trait in Russian honey bee (Hymenoptera: Apidae) colonies

    OpenAIRE

    Kirrane, Maria J.; de Guzman, Lilia I.; Holloway, Beth; Frake, Amanda M.; Rinderer, Thomas E.; Whelan, Padraig M.

    2015-01-01

    Varroa destructorcontinues to threaten colonies of European honey bees. General hygiene, and more specific Varroa Sensitive Hygiene (VSH), provide resistance towards the Varroa mite in a number of stocks. In this study, 32 Russian (RHB) and 14 Italian honey bee colonies were assessed for the VSH trait using two different assays. Firstly, colonies were assessed using the standard VSH behavioural assay of the change in infestation of a highly infested donor comb after a one-week exposure. Secon...

  11. Honey bees as indicators of radionuclide contamination: exploring colony variability and temporal contaminant accumulation

    International Nuclear Information System (INIS)

    Haarmann, T.K.

    1997-01-01

    Two aspects of using honey bees, Apis mellifera, as indicators of environmental radionuclide contamination were investigated: colony variability and temporal contaminant accumulation. Two separate field experiments were conducted in areas with bioavailable radionuclide contamination. Bees were collected from colonies, analysed for concentrations of radionuclides, and the results were compared using graphical and statistical methods. The first experiment indicates that generally a low variability exists between samples collected within the same colony. A higher variability exists between samples collected from adjacent colonies. Levels of tritium and sodium-22 found in samples taken from similar colonies were inconsistent, while levels of cobalt-57, cobalt-60 and manganese-54 were consistent. A second experiment investigated the accumulation of radionuclides over time by comparing colonies that had been in the study area for different periods of time. This experiment demonstrated that there is indeed a significant accumulation of radionuclides within colonies

  12. Screening alternative therapies to control Nosemosis type C in honey bee (Apis mellifera iberiensis) colonies.

    Science.gov (United States)

    Botías, Cristina; Martín-Hernández, Raquel; Meana, Aránzazu; Higes, Mariano

    2013-12-01

    Nosemosis type C caused by the microsporidium Nosema ceranae is one of the most widespread of the adult honey bee diseases, and due to its detrimental effects on both strength and productivity of honey bee colonies, an appropriate control of this disease is advisable. Fumagillin is the only veterinary medicament recommended by the World Organization for Animal Health (OIE) to suppress infections by Nosema, but the use of this antibiotic is prohibited in the European Union and few alternatives are available at present to control the disease. In the present study three therapeutic agents (Nosestat®, Phenyl salicylate and Vitafeed Gold®) have been tested to control N. ceranae infection in honey bee colonies, and have been compared to the use of fumagillin. None of the products tested was effective against Nosema under our experimental conditions. Low consumption of the different doses of treatments may have had a strong influence on the results obtained, highlighting the importance of this issue and emphasizing that this should be evaluated in studies to test therapeutic treatments of honey bee colonies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Longitudinal Effects of Supplemental Forage on the Honey Bee (Apis mellifera) Microbiota and Inter- and Intra-Colony Variability.

    Science.gov (United States)

    Rothman, Jason A; Carroll, Mark J; Meikle, William G; Anderson, Kirk E; McFrederick, Quinn S

    2018-02-03

    Honey bees (Apis mellifera) provide vital pollination services for a variety of agricultural crops around the world and are known to host a consistent core bacterial microbiome. This symbiotic microbial community is essential to many facets of bee health, including likely nutrient acquisition, disease prevention and optimal physiological function. Being that the bee microbiome is likely involved in the digestion of nutrients, we either provided or excluded honey bee colonies from supplemental floral forage before being used for almond pollination. We then used 16S rRNA gene sequencing to examine the effects of forage treatment on the bees' microbial gut communities over four months. In agreement with previous studies, we found that the honey bee gut microbiota is quite stable over time. Similarly, we compared the gut communities of bees from separate colonies and sisters sampled from within the same hive over four months. Surprisingly, we found that the gut microbial communities of individual sisters from the same colony can exhibit as much variation as bees from different colonies. Supplemental floral forage had a subtle effect on the composition of the microbiome during the month of March only, with strains of Gilliamella apicola, Lactobacillus, and Bartonella being less proportionally abundant in bees exposed to forage in the winter. Collectively, our findings show that there is unexpected longitudinal variation within the gut microbial communities of sister honey bees and that supplemental floral forage can subtly alter the microbiome of managed honey bees.

  14. Risk factors associated with honey bee colony loss in apiaries in Galicia, NW Spain

    Directory of Open Access Journals (Sweden)

    Aranzazu Meana

    2017-04-01

    Full Text Available A cross-sectional study was carried out in Galicia, NW Spain, in order to estimate the magnitude of honey bee colony losses and to identify potential risk factors involved. A total of 99 samples from 99 apiaries were collected in spring using simple random sampling. According to international guidelines, the apiaries were classified as affected by colony loss or asymptomatic. Each sample consisted of worker bees, brood and comb-stored pollen. All worker bees and brood samples were analysed individually in order to detect the main honey bee pathogens. Moreover, the presence of residues of the most prevalent agrotoxic insecticides and acaricides was assessed in comb-stored pollen. The general characteristics of the apiaries and sanitary information regarding previous years was evaluated through questionnaires, while the vegetation surrounding the apiaries sampled was assessed by palynological analysis of comb-stored pollen. The colony loss prevalence was 53.5% (CI95%=43.2-63.9 and Nosema ceranae was found to be the only risk factor strongly associated with colony loss. The decision tree also pointed out the impact of the Varroa mite presence while variables such as apiary size, the incorrect application of Varroa mite treatments, and the presence of Acarapis woodi and Kashmir bee virus (KBV were identified as possible co-factors.

  15. Within-Colony Variation in the Immunocompetency of Managed and Feral Honey Bees (Apis mellifera L.) in Different Urban Landscapes

    OpenAIRE

    Appler, R.; Frank, Steven; Tarpy, David

    2015-01-01

    Urbanization has the potential to dramatically affect insect populations worldwide, although its effects on pollinator populations are just beginning to be understood. We compared the immunocompetency of honey bees sampled from feral (wild-living) and managed (beekeeper-owned) honey bee colonies. We sampled foragers from feral and managed colonies in rural, suburban, and urban landscapes in and around Raleigh, NC, USA. We then analyzed adult workers using two standard bioassays for insect imm...

  16. Mating Frequencies of Honey Bee Queens (Apis mellifera L.) in a Population of Feral Colonies in the Northeastern United States

    OpenAIRE

    Tarpy, David R.; Delaney, Deborah A.; Seeley, Thomas D.

    2015-01-01

    Across their introduced range in North America, populations of feral honey bee (Apis mellifera L.) colonies have supposedly declined in recent decades as a result of exotic parasites, most notably the ectoparasitic mite Varroa destructor. Nonetheless, recent studies have documented several wild populations of colonies that have persisted. The extreme polyandry of honey bee queens-and the increased intracolony genetic diversity it confers-has been attributed, in part, to improved disease resis...

  17. Safety assessment of sugar dusting treatments by analysis of hygienic behavior in honey bee colonies

    Directory of Open Access Journals (Sweden)

    Stevanovic Jevrosima

    2011-01-01

    Full Text Available The hygienic behavior in honey bees is a dominant natural defense mechanism against brood diseases. In this study, the influence of sugar dusting treatments on hygienic behavior was evaluated in 44 strong honey bee colonies. Three doses of pulverized sugar, 20, 30 and 40 g, each applied at three-, seven- and fourteen-day intervals were tested. The percentage of cleaned cells (PCC in the total number of those with pin-killed brood served as a measure of the hygienic potential. The effect was dependent on the frequency of treatments: all doses applied every third and seventh day significantly (p<0.001 decreased the PCC in comparison with the untreated control colonies. Nevertheless, sugar did not threaten the hygienic potential, as PPC values remained above 94% following all treatments. Thus, it can be concluded that the tested sugar treatments are safe and can be justifiably implemented into integrated pest management strategies to control Varroa destructor.

  18. A Europe-wide experiment for assessing the impact of genotype-environment interactions on the vitality and performance of honey bee colonies

    DEFF Research Database (Denmark)

    Costa, Cecilia; Büchler, Ralph; Berg, Stefan

    2012-01-01

    An international experiment to estimate the importance of genotype-environment interactions on vitality and performance of honey bees and on colony losses was run between July 2009 and March 2012. Altogether 621 bee colonies, involving 16 different genetic origins of European honey bees, were...

  19. Dynamics of the Presence of Israeli Acute Paralysis Virus in Honey Bee Colonies with Colony Collapse Disorder

    Directory of Open Access Journals (Sweden)

    Chunsheng Hou

    2014-05-01

    Full Text Available The determinants of Colony Collapse Disorder (CCD, a particular case of collapse of honey bee colonies, are still unresolved. Viruses including the Israeli acute paralysis virus (IAPV were associated with CCD. We found an apiary with colonies showing typical CCD characteristics that bore high loads of IAPV, recovered some colonies from collapse and tested the hypothesis if IAPV was actively replicating in them and infectious to healthy bees. We found that IAPV was the dominant pathogen and it replicated actively in the colonies: viral titers decreased from April to September and increased from September to December. IAPV extracted from infected bees was highly infectious to healthy pupae: they showed several-fold amplification of the viral genome and synthesis of the virion protein VP3. The health of recovered colonies was seriously compromised. Interestingly, a rise of IAPV genomic copies in two colonies coincided with their subsequent collapse. Our results do not imply IAPV as the cause of CCD but indicate that once acquired and induced to replication it acts as an infectious factor that affects the health of the colonies and may determine their survival. This is the first follow up outside the US of CCD-colonies bearing IAPV under natural conditions.

  20. Four Categories of Viral Infection Describe the Health Status of Honey Bee Colonies.

    Directory of Open Access Journals (Sweden)

    Esmaeil Amiri

    Full Text Available Honey bee virus prevalence data are an essential prerequisite for managing epidemic events in a population. A survey study was carried out for seven viruses in colonies representing a healthy Danish honey bee population. In addition, colonies from apiaries with high level Varroa infestation or high level of winter mortality were also surveyed. Results from RT-qPCR showed a considerable difference of virus levels between healthy and sick colonies. In the group of healthy colonies, no virus was detected in 36% of cases, while at least one virus was found in each of the sick colonies. Virus titers varied among the samples, and multiple virus infections were common in both groups with a high prevalence of Sacbrood virus (SBV, Black queen cell virus (BQCV and Deformed wing virus (DWV. Based on the distribution of virus titers, we established four categories of infection: samples free of virus (C = 0, samples with low virus titer (estimated number of virus copies 0 < C < 103, samples with medium virus titer (103 ≤ C < 107 and samples with high virus titer (C ≥ 107. This allowed us to statistically compare virus levels in healthy and sick colonies. Using categories to communicate virus diagnosis results to beekeepers may help them to reach an informed decision on management strategies to prevent further spread of viruses among colonies.

  1. Division of labor associated with brood rearing in the honey bee: how does it translate to colony fitness?

    Directory of Open Access Journals (Sweden)

    Ramesh R Sagili

    2011-02-01

    Full Text Available Division of labor is a striking feature observed in honey bees and many other social insects. Division of labor has been claimed to benefit fitness. In honey bees, the adult work force may be viewed as divided between non-foraging hive bees that rear brood and maintain the nest, and foragers that collect food outside the nest. Honey bee brood pheromone is a larval pheromone that serves as an excellent empirical tool to manipulate foraging behaviors and thus division of labor in the honey bee. Here we use two different doses of brood pheromone to alter the foraging stimulus environment, thus changing demographics of colony division of labor, to demonstrate how division of labor associated with brood rearing affects colony growth rate. We examine the effects of these different doses of brood pheromone on individual foraging ontogeny and specialization, colony level foraging behavior, and individual glandular protein synthesis. Low brood pheromone treatment colonies exhibited significantly higher foraging population, decreased age of first foraging and greater foraging effort, resulting in greater colony growth compared to other treatments. This study demonstrates how division of labor associated with brood rearing affects honey bee colony growth rate, a token of fitness.

  2. Assessment of Chronic Sublethal Effects of Imidacloprid on Honey Bee Colony Health

    Science.gov (United States)

    Dively, Galen P.; Embrey, Michael S.; Kamel, Alaa; Hawthorne, David J.; Pettis, Jeffery S.

    2015-01-01

    Here we present results of a three-year study to determine the fate of imidacloprid residues in hive matrices and to assess chronic sublethal effects on whole honey bee colonies fed supplemental pollen diet containing imidacloprid at 5, 20 and 100 μg/kg over multiple brood cycles. Various endpoints of colony performance and foraging behavior were measured during and after exposure, including winter survival. Imidacloprid residues became diluted or non-detectable within colonies due to the processing of beebread and honey and the rapid metabolism of the chemical. Imidacloprid exposure doses up to 100 μg/kg had no significant effects on foraging activity or other colony performance indicators during and shortly after exposure. Diseases and pest species did not affect colony health but infestations of Varroa mites were significantly higher in exposed colonies. Honey stores indicated that exposed colonies may have avoided the contaminated food. Imidacloprid dose effects was delayed later in the summer, when colonies exposed to 20 and 100 μg/kg experienced higher rates of queen failure and broodless periods, which led to weaker colonies going into the winter. Pooled over two years, winter survival of colonies averaged 85.7, 72.4, 61.2 and 59.2% in the control, 5, 20 and 100 μg/kg treatment groups, respectively. Analysis of colony survival data showed a significant dose effect, and all contrast tests comparing survival between control and treatment groups were significant, except for colonies exposed to 5 μg/kg. Given the weight of evidence, chronic exposure to imidacloprid at the higher range of field doses (20 to 100 μg/kg) in pollen of certain treated crops could cause negative impacts on honey bee colony health and reduced overwintering success, but the most likely encountered high range of field doses relevant for seed-treated crops (5 μg/kg) had negligible effects on colony health and are unlikely a sole cause of colony declines. PMID:25786127

  3. Performance of honey bee colonies under a long-lasting dietary exposure to sublethal concentrations of the neonicotinoid insecticide thiacloprid.

    Science.gov (United States)

    Siede, Reinhold; Faust, Lena; Meixner, Marina D; Maus, Christian; Grünewald, Bernd; Büchler, Ralph

    2017-07-01

    Substantial honey bee colony losses have occurred periodically in the last decades. The drivers for these losses are not fully understood. The influence of pests and pathogens are beyond dispute, but in addition, chronic exposure to sublethal concentrations of pesticides has been suggested to affect the performance of honey bee colonies. This study aims to elucidate the potential effects of a chronic exposure to sublethal concentrations (one realistic worst-case concentration) of the neonicotinoid thiacloprid to honey bee colonies in a three year replicated colony feeding study. Thiacloprid did not significantly affect the colony strength. No differences between treatment and control were observed for the mortality of bees, the infestation with the parasitic mite Varroa destructor and the infection levels of viruses. No colony losses occurred during the overwintering seasons. Furthermore, thiacloprid did not influence the constitutive expression of the immunity-related hymenoptaecin gene. However, upregulation of hymenoptaecin expression as a response to bacterial challenge was less pronounced in exposed bees than in control bees. Under field conditions, bee colonies are not adversely affected by a long-lasting exposure to sublethal concentrations of thiacloprid. No indications were found that field-realistic and higher doses exerted a biologically significant effect on colony performance. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  4. Glucose oxidase production does not increase after colony infection: Testing its role in honey bee social immunity

    Science.gov (United States)

    Honey bees rely on a variety of defense mechanisms to reduce disease infection and spread throughout the colony. Hygienic behavior, resin collection, and antimicrobial peptide production are some examples of defenses that bees use against parasites (Evans & Spivak, 2010 J Invertebr Pathol 103:S62). ...

  5. The effect of drone comb on a honey bee colony's production of honey

    OpenAIRE

    Seeley , Thomas

    2002-01-01

    International audience; This study examined the impact on a colony's honey production of providing it with a natural amount (20%) of drone comb. Over 3 summers, for the period mid May to late August, I measured the weight gains of 10 colonies, 5 with drone comb and 5 without it. Colonies with drone comb gained only 25.2 $\\pm$ 16.0 kg whereas those without drone comb gained 48.8 $\\pm$ 14.8 kg. Colonies with drone comb also had a higher mean rate of drone flights and a lower incidence of drone ...

  6. Organophosphorus insecticides in honey, pollen and bees (Apis mellifera L.) and their potential hazard to bee colonies in Egypt.

    Science.gov (United States)

    Al Naggar, Yahya; Codling, Garry; Vogt, Anja; Naiem, Elsaied; Mona, Mohamed; Seif, Amal; Giesy, John P

    2015-04-01

    There is no clear single factor to date that explains colony loss in bees, but one factor proposed is the wide-spread application of agrochemicals. Concentrations of 14 organophosphorous insecticides (OPs) in honey bees (Apis mellifera) and hive matrices (honey and pollen) were measured to assess their hazard to honey bees. Samples were collected during spring and summer of 2013, from 5 provinces in the middle delta of Egypt. LC/MS-MS was used to identify and quantify individual OPs by use of a modified Quick Easy Cheap Effective Rugged Safe (QuEChERS) method. Pesticides were detected more frequently in samples collected during summer. Pollen contained the greatest concentrations of OPs. Profenofos, chlorpyrifos, malation and diazinon were the most frequently detected OPs. In contrast, ethoprop, phorate, coumaphos and chlorpyrifos-oxon were not detected. A toxic units approach, with lethality as the endpoint was used in an additive model to assess the cumulative potential for adverse effects posed by OPs. Hazard quotients (HQs) in honey and pollen ranged from 0.01-0.05 during spring and from 0.02-0.08 during summer, respectively. HQs based on lethality due to direct exposure of adult worker bees to OPs during spring and summer ranged from 0.04 to 0.1 for best and worst case respectively. It is concluded that direct exposure and/or dietary exposure to OPs in honey and pollen pose little threat due to lethality of bees in Egypt. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Chronic exposure of a honey bee colony to 2.45 GHz continuous wave microwaves

    Science.gov (United States)

    Westerdahl, B. B.; Gary, N. E.

    1981-01-01

    A honey bee colony (Apis mellifera L.) was exposed 28 days to 2.45 GHz continuous wave microwaves at a power density (1 mW/sq cm) expected to be associated with rectennae in the solar power satellite power transmission system. Differences found between the control and microwave-treated colonies were not large, and were in the range of normal variation among similar colonies. Thus, there is an indication that microwave treatment had little, if any, effect on (1) flight and pollen foraging activity, (2) maintenance of internal colony temperature, (3) brood rearing activity, (4) food collection and storage, (5) colony weight, and (6) adult populations. Additional experiments are necessary before firm conclusions can be made.

  8. An observation study on the effects of queen age on some characteristics of honey bee colonies

    Directory of Open Access Journals (Sweden)

    Ibrahim Çakmak

    2010-01-01

    Full Text Available This study was conducted to determine the effects of the queen’s age on performance of the honeybee (A. mellifera anatoliaca colonies at nomad beekeeping conditions. Performances of the colonies, which had 0, 1, 2 and 3 year-old queens, were compared. The number of combs, brood areas, wintering ability survival rate and honey yield were determined as performance criteria. The average number of combs with bees throughout the experiment in Group I, Group II, Group III and Group IV was 10.92±0.78, 14.68±0.55, 10.10±0.60, 7.88±0.45 number combs/colony; the average of brood areas was 3078±372.5 cm2, 3668±460.3 cm2, 2215±294.0 cm2, 1665.38±241.8 cm2; the average of wintering ability was 84.3±2.9%, 88.0±3.7%, 46.6±19.0%, 26.8±16.5%; the survival rate was 100%, 100%, 60%, 40%; and the average of honey yields was 31.4±1.89 kg, 41.5±1.05 kg, 20.4±2.62 kg and 12.0±1.41 kg per colony, respectively. A significant and negative correlation between queen age and brood production (r=-80.2, colony strength (r=-62.5, wintering ability (r=-66 and honey yield (r=-75.6 were calculated (P<0.01. The colonies headed by young queens had more brood areas, longer worker colony population, better wintering ability and greater honey yield in comparison to colonies headed by old queens.

  9. Linking Measures of Colony and Individual Honey Bee Health to Survival among Apiaries Exposed to Varying Agricultural Land Use.

    Science.gov (United States)

    Smart, Matthew; Pettis, Jeff; Rice, Nathan; Browning, Zac; Spivak, Marla

    2016-01-01

    We previously characterized and quantified the influence of land use on survival and productivity of colonies positioned in six apiaries and found that colonies in apiaries surrounded by more land in uncultivated forage experienced greater annual survival, and generally more honey production. Here, detailed metrics of honey bee health were assessed over three years in colonies positioned in the same six apiaries. The colonies were located in North Dakota during the summer months and were transported to California for almond pollination every winter. Our aim was to identify relationships among measures of colony and individual bee health that impacted and predicted overwintering survival of colonies. We tested the hypothesis that colonies in apiaries surrounded by more favorable land use conditions would experience improved health. We modeled colony and individual bee health indices at a critical time point (autumn, prior to overwintering) and related them to eventual spring survival for California almond pollination. Colony measures that predicted overwintering apiary survival included the amount of pollen collected, brood production, and Varroa destructor mite levels. At the individual bee level, expression of vitellogenin, defensin1, and lysozyme2 were important markers of overwinter survival. This study is a novel first step toward identifying pertinent physiological responses in honey bees that result from their positioning near varying landscape features in intensive agricultural environments.

  10. Linking Measures of Colony and Individual Honey Bee Health to Survival among Apiaries Exposed to Varying Agricultural Land Use

    Science.gov (United States)

    Smart, Matthew; Pettis, Jeff; Rice, Nathan; Browning, Zac; Spivak, Marla

    2016-01-01

    We previously characterized and quantified the influence of land use on survival and productivity of colonies positioned in six apiaries and found that colonies in apiaries surrounded by more land in uncultivated forage experienced greater annual survival, and generally more honey production. Here, detailed metrics of honey bee health were assessed over three years in colonies positioned in the same six apiaries. The colonies were located in North Dakota during the summer months and were transported to California for almond pollination every winter. Our aim was to identify relationships among measures of colony and individual bee health that impacted and predicted overwintering survival of colonies. We tested the hypothesis that colonies in apiaries surrounded by more favorable land use conditions would experience improved health. We modeled colony and individual bee health indices at a critical time point (autumn, prior to overwintering) and related them to eventual spring survival for California almond pollination. Colony measures that predicted overwintering apiary survival included the amount of pollen collected, brood production, and Varroa destructor mite levels. At the individual bee level, expression of vitellogenin, defensin1, and lysozyme2 were important markers of overwinter survival. This study is a novel first step toward identifying pertinent physiological responses in honey bees that result from their positioning near varying landscape features in intensive agricultural environments. PMID:27027871

  11. Linking Measures of Colony and Individual Honey Bee Health to Survival among Apiaries Exposed to Varying Agricultural Land Use.

    Directory of Open Access Journals (Sweden)

    Matthew Smart

    Full Text Available We previously characterized and quantified the influence of land use on survival and productivity of colonies positioned in six apiaries and found that colonies in apiaries surrounded by more land in uncultivated forage experienced greater annual survival, and generally more honey production. Here, detailed metrics of honey bee health were assessed over three years in colonies positioned in the same six apiaries. The colonies were located in North Dakota during the summer months and were transported to California for almond pollination every winter. Our aim was to identify relationships among measures of colony and individual bee health that impacted and predicted overwintering survival of colonies. We tested the hypothesis that colonies in apiaries surrounded by more favorable land use conditions would experience improved health. We modeled colony and individual bee health indices at a critical time point (autumn, prior to overwintering and related them to eventual spring survival for California almond pollination. Colony measures that predicted overwintering apiary survival included the amount of pollen collected, brood production, and Varroa destructor mite levels. At the individual bee level, expression of vitellogenin, defensin1, and lysozyme2 were important markers of overwinter survival. This study is a novel first step toward identifying pertinent physiological responses in honey bees that result from their positioning near varying landscape features in intensive agricultural environments.

  12. An Observational Study of Honey Bee Colony Winter Losses and Their Association with Varroa destructor, Neonicotinoids and Other Risk Factors

    NARCIS (Netherlands)

    Zee, van der R.; Gray, A.; Rijk, de T.C.

    2015-01-01

    This article presents results of an analysis of honey bee losses over the winter of 2011-2012 in the Netherlands, from a sample of 86 colonies, located at 43 apiaries. The apiaries were selected using spatially stratified random sampling. Colony winter loss data were collected and related to various

  13. Nest initiation in three North American bumble bees (Bombus): gyne number and presence of honey bee workers influence establishment success and colony size.

    Science.gov (United States)

    Strange, James P

    2010-01-01

    Three species of bumble bees, Bombus appositus Cresson, Bombus bifarius, Cresson and Bombus centralis Cresson (Hymenoptera: Apidae) were evaluated for nest initiation success under three sets of initial conditions. In the spring, gynes of each species were caught in the wild and introduced to nest boxes in one of three ways. Gynes were either introduced in conspecific pairs, singly with two honey bees, Apis mellifera L. (Hymenoptera: Apidae) workers, or alone. Nesting success and colony growth parameters were measured to understand the effects of the various treatments on nest establishment. Colonies initiated from pairs of conspecific gynes were most successful in producing worker bees (59.1%), less successful were colonies initiated with honey bee workers (33.3%), and least successful were bumble bee gynes initiating colonies alone (16.7%). There was a negative correlation between the numbers of days to the emergence of the first worker in a colony to the attainment of ultimate colony size, indicating that gynes that have not commenced oviposition in 21 days are unlikely to result in colonies exceeding 50 workers. B. appositus had the highest rate of nest establishment followed by B. bifarius and B. centralis. Nest establishment rates in three western bumble bee species can be increased dramatically by the addition of either honey bee workers or a second gyne to nesting boxes at colony initiation.

  14. Viral diseases in honey bee queens

    DEFF Research Database (Denmark)

    Francis, Roy Mathew

    Honey bees are important insects for human welfare, due to pollination as well as honey production. Viral diseases strongly impact honey bee health, especially since the spread of varroa mites. This dissertation deals with the interactions between honey bees, viruses and varroa mites. A new tool...... was developed to diagnose three viruses in honey bees. Quantitative PCR was used to investigate the distribution of two popular viruses in five different tissues of 86 honey bee queens. Seasonal variation of viral infection in honey bee workers and varroa mites were determined by sampling 23 colonies under...

  15. Effects of brood pheromone (SuperBoost) on consumption of protein supplement and growth of honey bee (Hymenoptera: Apidae) colonies during fall in a northern temperate climate.

    Science.gov (United States)

    Sagili, Ramesh R; Breece, Carolyn R

    2012-08-01

    Honey bee, Apis mellifera L. (Hymenoptera: Apidae), nutrition is vital for colony growth and maintenance of a robust immune system. Brood rearing in honey bee colonies is highly dependent on protein availability. Beekeepers in general provide protein supplement to colonies during periods of pollen dearth. Honey bee brood pheromone is a blend of methyl and ethyl fatty acid esters extractable from cuticle of honey bee larvae that communicates the presence of larvae in a colony. Honey bee brood pheromone has been shown to increase protein supplement consumption and growth of honey bee colonies in a subtropical winter climate. Here, we tested the hypothesis that synthetic brood pheromone (SuperBoost) has the potential to increase protein supplement consumption during fall in a temperate climate and thus increase colony growth. The experiments were conducted in two locations in Oregon during September and October 2009. In both the experiments, colonies receiving brood pheromone treatment consumed significantly higher protein supplement and had greater brood area and adult bees than controls. Results from this study suggest that synthetic brood pheromone may be used to stimulate honey bee colony growth by stimulating protein supplement consumption during fall in a northern temperate climate, when majority of the beekeepers feed protein supplement to their colonies.

  16. Correlations between land covers and honey bee colony losses in a country with industrialized and rural regions.

    Science.gov (United States)

    Clermont, Antoine; Eickermann, Michael; Kraus, François; Hoffmann, Lucien; Beyer, Marco

    2015-11-01

    High levels of honey bee colony losses were recently reported from Canada, China, Europe, Israel, Turkey and the United States, raising concerns of a global pollinator decline and questioning current land use practices, in particular intense agricultural cropping systems. Sixty-seven crops (data from the years 2010-2012) and 66 mid-term stable land cover classes (data from 2007) were analysed for statistical relationships with the honey bee colony losses experienced over the winters 2010/11-2012/13 in Luxembourg (Western Europe). The area covered by each land cover class, the shortest distance between each land cover class and the respective apiary, the number of plots covered by each land use class and the size of the biggest plot of each land cover class within radii of 2 km and 5 km around 166 apiaries (2010), 184 apiaries (2011) and 188 apiaries (2012) were tested for correlations with honey bee colony losses (% per apiary) experienced in the winter following the season when the crops were grown. Artificial water bodies, open urban areas, large industrial facilities including heavy industry, railways and associated installations, buildings and installations with socio-cultural purpose, camping-, sports-, playgrounds, golf courts, oilseed crops other than oilseed rape like sunflower or linseed, some spring cereals and former forest clearcuts or windthrows were the land cover classes most frequently associated with high honey bee colony losses. Grain maize, mixed forest and mixed coniferous forest were the land cover classes most frequently associated with low honey bee colony losses. The present data suggest that land covers related to transport, industry and leisure may have made a more substantial contribution to winter honey bee colony losses in developed countries than anticipated so far. Recommendations for the positioning of apiaries are discussed. Copyright © 2015. Published by Elsevier B.V.

  17. Managed European-Derived Honey Bee, Apis mellifera sspp, Colonies Reduce African-Matriline Honey Bee, A. m. scutellata, Drones at Regional Mating Congregations.

    Science.gov (United States)

    Mortensen, Ashley N; Ellis, James D

    2016-01-01

    African honey bees (Apis mellifera scutellata) dramatically changed the South American beekeeping industry as they rapidly spread through the Americas following their introduction into Brazil. In the present study, we aimed to determine if the management of European-derived honey bees (A. mellifera sspp.) could reduce the relative abundance of African-matriline drones at regional mating sites known as drone congregation areas (DCAs). We collected 2,400 drones at six DCAs either 0.25 km or >2.8 km from managed European-derived honey bee apiaries. The maternal ancestry of each drone was determined by Bgl II enzyme digestion of an amplified portion of the mitochondrial Cytochrome b gene. Furthermore, sibship reconstruction via nuclear microsatellites was conducted for a subset of 1,200 drones to estimate the number of colonies contributing drones to each DCA. Results indicate that DCAs distant to managed European apiaries (>2.8 km) had significantly more African-matriline drones (34.33% of the collected drones had African mitochondrial DNA) than did DCAs close (0.25 km) to managed European apiaries (1.83% of the collected drones had African mitochondrial DNA). Furthermore, nuclear sibship reconstruction demonstrated that the reduction in the proportion of African matriline drones at DCAs near apiaries was not simply an increase in the number of European matriline drones at the DCAs but also the result of fewer African matriline colonies contributing drones to the DCAs. Our data demonstrate that the management of European honey bee colonies can dramatically influence the proportion of drones with African matrilines at nearby drone congregation areas, and would likely decreasing the probability that virgin European queens will mate with African drones at those drone congregation areas.

  18. Managed European-Derived Honey Bee, Apis mellifera sspp, Colonies Reduce African-Matriline Honey Bee, A. m. scutellata, Drones at Regional Mating Congregations

    Science.gov (United States)

    Mortensen, Ashley N.; Ellis, James D.

    2016-01-01

    African honey bees (Apis mellifera scutellata) dramatically changed the South American beekeeping industry as they rapidly spread through the Americas following their introduction into Brazil. In the present study, we aimed to determine if the management of European-derived honey bees (A. mellifera sspp.) could reduce the relative abundance of African-matriline drones at regional mating sites known as drone congregation areas (DCAs). We collected 2,400 drones at six DCAs either 0.25 km or >2.8 km from managed European-derived honey bee apiaries. The maternal ancestry of each drone was determined by Bgl II enzyme digestion of an amplified portion of the mitochondrial Cytochrome b gene. Furthermore, sibship reconstruction via nuclear microsatellites was conducted for a subset of 1,200 drones to estimate the number of colonies contributing drones to each DCA. Results indicate that DCAs distant to managed European apiaries (>2.8 km) had significantly more African−matriline drones (34.33% of the collected drones had African mitochondrial DNA) than did DCAs close (0.25 km) to managed European apiaries (1.83% of the collected drones had African mitochondrial DNA). Furthermore, nuclear sibship reconstruction demonstrated that the reduction in the proportion of African matriline drones at DCAs near apiaries was not simply an increase in the number of European matriline drones at the DCAs but also the result of fewer African matriline colonies contributing drones to the DCAs. Our data demonstrate that the management of European honey bee colonies can dramatically influence the proportion of drones with African matrilines at nearby drone congregation areas, and would likely decreasing the probability that virgin European queens will mate with African drones at those drone congregation areas. PMID:27518068

  19. Land use in the Northern Great Plains region of the U.S. influences the survival and productivity of honey bee colonies

    Science.gov (United States)

    Smart, Matthew; Pettis, Jeff S.; Euliss, Ned H. Jr.; Spivak, Marla S.

    2016-01-01

    The Northern Great Plains region of the US annually hosts a large portion of commercially managed U.S. honey bee colonies each summer. Changing land use patterns over the last several decades have contributed to declines in the availability of bee forage across the region, and the future sustainability of the region to support honey bee colonies is unclear. We examined the influence of varying land use on the survivorship and productivity of honey bee colonies located in six apiaries within the Northern Great Plains state of North Dakota, an area of intensive agriculture and high density of beekeeping operations. Land use surrounding the apiaries was quantified over three years, 2010–2012, and survival and productivity of honey bee colonies were determined in response to the amount of bee forage land within a 3.2-km radius of each apiary. The area of uncultivated forage land (including pasture, USDA conservation program fields, fallow land, flowering woody plants, grassland, hay land, and roadside ditches) exerted a positive impact on annual apiary survival and honey production. Taxonomic diversity of bee-collected pollen and pesticide residues contained therein varied seasonally among apiaries, but overall were not correlated to large-scale land use patterns or survival and honey production. The predominant flowering plants utilized by honey bee colonies for pollen were volunteer species present in unmanaged (for honey bees), and often ephemeral, lands; thus placing honey bee colonies in a precarious situation for acquiring forage and nutrients over the entire growing season. We discuss the implications for land management, conservation, and beekeeper site selection in the Northern Great Plains to adequately support honey bee colonies and insure long term security for pollinator-dependent crops across the entire country.

  20. A pan-European epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control.

    Directory of Open Access Journals (Sweden)

    Antoine Jacques

    Full Text Available Reports of honey bee population decline has spurred many national efforts to understand the extent of the problem and to identify causative or associated factors. However, our collective understanding of the factors has been hampered by a lack of joined up trans-national effort. Moreover, the impacts of beekeeper knowledge and beekeeping management practices have often been overlooked, despite honey bees being a managed pollinator. Here, we established a standardised active monitoring network for 5 798 apiaries over two consecutive years to quantify honey bee colony mortality across 17 European countries. Our data demonstrate that overwinter losses ranged between 2% and 32%, and that high summer losses were likely to follow high winter losses. Multivariate Poisson regression models revealed that hobbyist beekeepers with small apiaries and little experience in beekeeping had double the winter mortality rate when compared to professional beekeepers. Furthermore, honey bees kept by professional beekeepers never showed signs of disease, unlike apiaries from hobbyist beekeepers that had symptoms of bacterial infection and heavy Varroa infestation. Our data highlight beekeeper background and apicultural practices as major drivers of honey bee colony losses. The benefits of conducting trans-national monitoring schemes and improving beekeeper training are discussed.

  1. Effects of Wintering Environment and Parasite-Pathogen Interactions on Honey Bee Colony Loss in North Temperate Regions.

    Directory of Open Access Journals (Sweden)

    Suresh D Desai

    Full Text Available Extreme winter losses of honey bee colonies are a major threat to beekeeping but the combinations of factors underlying colony loss remain debatable. We monitored colonies in two environments (colonies wintered indoors or outdoors and characterized the effects of two parasitic mites, seven viruses, and Nosema on honey bee colony mortality and population loss over winter. Samples were collected from two locations within hives in fall, mid-winter and spring of 2009/2010. Although fall parasite and pathogen loads were similar in outdoor and indoor-wintered colonies, the outdoor-wintered colonies had greater relative reductions in bee population score over winter. Seasonal patterns in deformed wing virus (DWV, black queen cell virus (BQCV, and Nosema level also differed with the wintering environment. DWV and Nosema levels decreased over winter for indoor-wintered colonies but BQCV did not. Both BQCV and Nosema concentration increased over winter in outdoor-wintered colonies. The mean abundance of Varroa decreased and concentration of Sacbrood virus (SBV, Kashmir bee virus (KBV, and Chronic bee paralysis virus (CBPV increased over winter but seasonal patterns were not affected by wintering method. For most viruses, either entrance or brood area samples were reasonable predictors of colony virus load but there were significant season*sample location interactions for Nosema and BQCV, indicating that care must be taken when selecting samples from a single location. For Nosema spp., the fall entrance samples were better predictors of future infestation levels than were fall brood area samples. For indoor-wintered colonies, Israeli acute paralysis virus IAPV concentration was negatively correlated with spring population size. For outdoor-wintered hives, spring Varroa abundance and DWV concentration were positively correlated with bee loss and negatively correlated with spring population size. Multivariate analyses for fall collected samples indicated

  2. Inducible versus constitutive immunity: Examining effects of colony infection on glucose oxidase and Defensin-1 production in honey bees

    Science.gov (United States)

    Honey bees use a variety of defense mechanisms to reduce disease infection and spread throughout the colony. Many of these defenses rely on the collective action of multiple individuals to prevent, reduce or eradicate pathogens—often referred as 'social immunity'. Glucose oxidase (GOX) and some anti...

  3. Transcriptional signatures of parasitization and markers of colony decline in Varroa-infested honey bees (Apis mellifera).

    Science.gov (United States)

    Zanni, Virginia; Galbraith, David A; Annoscia, Desiderato; Grozinger, Christina M; Nazzi, Francesco

    2017-08-01

    Extensive annual losses of honey bee colonies (Apis mellifera L.) reported in the northern hemisphere represent a global problem for agriculture and biodiversity. The parasitic mite Varroa destructor, in association with deformed wing virus (DWV), plays a key role in this phenomenon, but the underlying mechanisms are still unclear. To elucidate these mechanisms, we analyzed the gene expression profile of uninfested and mite infested bees, under laboratory and field conditions, highlighting the effects of parasitization on the bee's transcriptome under a variety of conditions and scenarios. Parasitization was significantly correlated with higher viral loads. Honey bees exposed to mite infestation exhibited an altered expression of genes related to stress response, immunity, nervous system function, metabolism and behavioural maturation. Additionally, mite infested young bees showed a gene expression profile resembling that of forager bees. To identify potential molecular markers of colony decline, the expression of genes that were commonly regulated across the experiments were subsequently assessed in colonies experiencing increasing mite infestation levels. These studies suggest that PGRP-2, hymenoptaecin, a glucan recognition protein, UNC93 and a p450 cytocrome maybe suitable general biomarkers of Varroa-induced colony decline. Furthermore, the reliability of vitellogenin, a yolk protein previously identified as a good marker of colony survival, was confirmed here. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Honey bee pathology: current threats to honey bees and beekeeping.

    Science.gov (United States)

    Genersch, Elke

    2010-06-01

    Managed honey bees are the most important commercial pollinators of those crops which depend on animal pollination for reproduction and which account for 35% of the global food production. Hence, they are vital for an economic, sustainable agriculture and for food security. In addition, honey bees also pollinate a variety of wild flowers and, therefore, contribute to the biodiversity of many ecosystems. Honey and other hive products are, at least economically and ecologically rather, by-products of beekeeping. Due to this outstanding role of honey bees, severe and inexplicable honey bee colony losses, which have been reported recently to be steadily increasing, have attracted much attention and stimulated many research activities. Although the phenomenon "decline of honey bees" is far from being finally solved, consensus exists that pests and pathogens are the single most important cause of otherwise inexplicable colony losses. This review will focus on selected bee pathogens and parasites which have been demonstrated to be involved in colony losses in different regions of the world and which, therefore, are considered current threats to honey bees and beekeeping.

  5. Population growth of Varroa destructor (Acari: Varroidae) in colonies of Russian and unselected honey bee (Hymenoptera: Apidae) stock as related to numbers of foragers with mites

    Science.gov (United States)

    Varroa mites are an external parasite of honey bees and a leading cause of colony losses worldwide. Varroa populations can be controlled with miticides, but mite resistant stocks such as the Russian honey bee (RHB) also are available. RHB and other mite resistant stock limit Varroa population growth...

  6. Mating frequencies of honey bee queens (Apis mellifera L.) in a population of feral colonies in the Northeastern United States.

    Science.gov (United States)

    Tarpy, David R; Delaney, Deborah A; Seeley, Thomas D

    2015-01-01

    Across their introduced range in North America, populations of feral honey bee (Apis mellifera L.) colonies have supposedly declined in recent decades as a result of exotic parasites, most notably the ectoparasitic mite Varroa destructor. Nonetheless, recent studies have documented several wild populations of colonies that have persisted. The extreme polyandry of honey bee queens-and the increased intracolony genetic diversity it confers-has been attributed, in part, to improved disease resistance and may be a factor in the survival of these populations of feral colonies. We estimated the mating frequencies of queens in feral colonies in the Arnot Forest in New York State to determine if the level of polyandry of these queens is especially high and so might contribute to their survival success. We genotyped the worker offspring from 10 feral colonies in the Arnot Forest of upstate New York, as well as those from 20 managed colonies closest to this forest. We found no significant differences in mean mating frequency between the feral and managed queens, suggesting that queens in the remote, low-density population of colonies in the Arnot Forest are neither mate-limited nor adapted to mate at an especially high frequency. These findings support the hypothesis that the hyperpolyandry of honey bees has been shaped on an evolutionary timescale rather than on an ecological one.

  7. Mating frequencies of honey bee queens (Apis mellifera L. in a population of feral colonies in the Northeastern United States.

    Directory of Open Access Journals (Sweden)

    David R Tarpy

    Full Text Available Across their introduced range in North America, populations of feral honey bee (Apis mellifera L. colonies have supposedly declined in recent decades as a result of exotic parasites, most notably the ectoparasitic mite Varroa destructor. Nonetheless, recent studies have documented several wild populations of colonies that have persisted. The extreme polyandry of honey bee queens-and the increased intracolony genetic diversity it confers-has been attributed, in part, to improved disease resistance and may be a factor in the survival of these populations of feral colonies. We estimated the mating frequencies of queens in feral colonies in the Arnot Forest in New York State to determine if the level of polyandry of these queens is especially high and so might contribute to their survival success. We genotyped the worker offspring from 10 feral colonies in the Arnot Forest of upstate New York, as well as those from 20 managed colonies closest to this forest. We found no significant differences in mean mating frequency between the feral and managed queens, suggesting that queens in the remote, low-density population of colonies in the Arnot Forest are neither mate-limited nor adapted to mate at an especially high frequency. These findings support the hypothesis that the hyperpolyandry of honey bees has been shaped on an evolutionary timescale rather than on an ecological one.

  8. Mating Frequencies of Honey Bee Queens (Apis mellifera L.) in a Population of Feral Colonies in the Northeastern United States

    Science.gov (United States)

    Tarpy, David R.; Delaney, Deborah A.; Seeley, Thomas D.

    2015-01-01

    Across their introduced range in North America, populations of feral honey bee (Apis mellifera L.) colonies have supposedly declined in recent decades as a result of exotic parasites, most notably the ectoparasitic mite Varroa destructor. Nonetheless, recent studies have documented several wild populations of colonies that have persisted. The extreme polyandry of honey bee queens—and the increased intracolony genetic diversity it confers—has been attributed, in part, to improved disease resistance and may be a factor in the survival of these populations of feral colonies. We estimated the mating frequencies of queens in feral colonies in the Arnot Forest in New York State to determine if the level of polyandry of these queens is especially high and so might contribute to their survival success. We genotyped the worker offspring from 10 feral colonies in the Arnot Forest of upstate New York, as well as those from 20 managed colonies closest to this forest. We found no significant differences in mean mating frequency between the feral and managed queens, suggesting that queens in the remote, low-density population of colonies in the Arnot Forest are neither mate-limited nor adapted to mate at an especially high frequency. These findings support the hypothesis that the hyperpolyandry of honey bees has been shaped on an evolutionary timescale rather than on an ecological one. PMID:25775410

  9. Honey bee colonies act as reservoirs for two Spiroplasma facultative symbionts and incur complex, multiyear infection dynamics

    Science.gov (United States)

    Schwarz, Ryan S; Teixeira, Érica Weinstein; Tauber, James P; Birke, Juliane M; Martins, Marta Fonseca; Fonseca, Isabela; Evans, Jay D

    2014-01-01

    Two species of Spiroplasma (Mollicutes) bacteria were isolated from and described as pathogens of the European honey bee, Apis mellifera, ∼30 years ago but recent information on them is lacking despite global concern to understand bee population declines. Here we provide a comprehensive survey for the prevalence of these two Spiroplasma species in current populations of honey bees using improved molecular diagnostic techniques to assay multiyear colony samples from North America (U.S.A.) and South America (Brazil). Significant annual and seasonal fluctuations of Spiroplasma apis and Spiroplasma melliferum prevalence in colonies from the U.S.A. (n = 616) and Brazil (n = 139) occurred during surveys from 2011 through 2013. Overall, 33% of U.S.A. colonies and 54% of Brazil colonies were infected by Spiroplasma spp., where S. melliferum predominated over S. apis in both countries (25% vs. 14% and 44% vs. 38% frequency, respectively). Colonies were co-infected by both species more frequently than expected in both countries and at a much higher rate in Brazil (52%) compared to the U.S.A. (16.5%). U.S.A. samples showed that both species were prevalent not only during spring, as expected from prior research, but also during other seasons. These findings demonstrate that the model of honey bee spiroplasmas as springtime-restricted pathogens needs to be broadened and their role as occasional pathogens considered in current contexts. PMID:24771723

  10. Sublethal Effects of Imidacloprid on Honey Bee Colony Growth and Activity at Three Sites in the U.S.

    Science.gov (United States)

    Meikle, William G; Adamczyk, John J; Weiss, Milagra; Gregorc, Ales; Johnson, Don R; Stewart, Scott D; Zawislak, Jon; Carroll, Mark J; Lorenz, Gus M

    2016-01-01

    Imidacloprid is a neonicotinoid pesticide heavily used by the agricultural industry and shown to have negative impacts on honey bees above certain concentrations. We evaluated the effects of different imidacloprid concentrations in sugar syrup using cage and field studies, and across different environments. Honey bee colonies fed sublethal concentrations of imidicloprid (0, 5, 20 and 100 ppb) over 6 weeks in field trials at a desert site (Arizona), a site near intensive agriculture (Arkansas) and a site with little nearby agriculture but abundant natural forage (Mississippi) were monitored with respect to colony metrics, such as adult bee and brood population sizes, as well as pesticide residues. Hive weight and internal hive temperature were monitored continuously over two trials in Arizona. Colonies fed 100 ppb imidacloprid in Arizona had significantly lower adult bee populations, brood surface areas and average frame weights, and reduced temperature control, compared to colonies in one or more of the other treatment groups, and consumption rates of those colonies were lower compared to other colonies in Arizona and Arkansas, although no differences in capped brood or average frame weight were observed among treatments in Arkansas. At the Mississippi site, also rich in alternative forage, colonies fed 5 ppb imidacloprid had less capped brood than control colonies, but contamination of control colonies was detected. In contrast, significantly higher daily hive weight variability among colonies fed 5 ppb imidacloprid in Arizona suggested greater foraging activity during a nectar flow post treatment, than any other treatment group. Imidacloprid concentrations in stored honey corresponded well with the respective syrup concentrations fed to the colonies and remained stable within the hive for at least 7 months after the end of treatment.

  11. An Observational Study of Honey Bee Colony Winter Losses and Their Association with Varroa destructor, Neonicotinoids and Other Risk Factors

    Science.gov (United States)

    van der Zee, Romée; Gray, Alison; Pisa, Lennard; de Rijk, Theo

    2015-01-01

    This article presents results of an analysis of honey bee losses over the winter of 2011-2012 in the Netherlands, from a sample of 86 colonies, located at 43 apiaries. The apiaries were selected using spatially stratified random sampling. Colony winter loss data were collected and related to various measures of colony strength recorded in summer, as well as data from laboratory analysis of sample material taken from two selected colonies in each of the 43 apiaries. The logistic regression model which best explained the risk of winter loss included, in order of statistical importance, the variables (1) Varroa destructor mite infestation rate in October 2011, (2) presence of the cyano-substituted neonicotinoids acetamiprid or thiacloprid in the first 2 weeks of August 2011 in at least one of the honey bee matrices honey, bees or bee bread (pollen), (3) presence of Brassica napus (oilseed rape) or Sinapis arvensis (wild mustard) pollen in bee bread in early August 2011, and (4) a measure of the unexplained winter losses for the postal code area where the colonies were located, obtained from a different dataset. We consider in the discussion that reduced opportunities for foraging in July and August because of bad weather may have added substantially to the adverse effects of acetamiprid and thiacloprid. A novel feature of this work is its use of postal code random effects from two other independent datasets collected in the annual national monitoring by questionnaires of winter losses of honey bees in the Netherlands. These were used to plan the sample selection and also in the model fitting of the data in this study. It should however be noted that the results of the present pilot study are based on limited data, which may consequently reveal strong factors but fail to demonstrate possible interaction effects. PMID:26154346

  12. An Observational Study of Honey Bee Colony Winter Losses and Their Association with Varroa destructor, Neonicotinoids and Other Risk Factors.

    Directory of Open Access Journals (Sweden)

    Romée van der Zee

    Full Text Available This article presents results of an analysis of honey bee losses over the winter of 2011-2012 in the Netherlands, from a sample of 86 colonies, located at 43 apiaries. The apiaries were selected using spatially stratified random sampling. Colony winter loss data were collected and related to various measures of colony strength recorded in summer, as well as data from laboratory analysis of sample material taken from two selected colonies in each of the 43 apiaries. The logistic regression model which best explained the risk of winter loss included, in order of statistical importance, the variables (1 Varroa destructor mite infestation rate in October 2011, (2 presence of the cyano-substituted neonicotinoids acetamiprid or thiacloprid in the first 2 weeks of August 2011 in at least one of the honey bee matrices honey, bees or bee bread (pollen, (3 presence of Brassica napus (oilseed rape or Sinapis arvensis (wild mustard pollen in bee bread in early August 2011, and (4 a measure of the unexplained winter losses for the postal code area where the colonies were located, obtained from a different dataset. We consider in the discussion that reduced opportunities for foraging in July and August because of bad weather may have added substantially to the adverse effects of acetamiprid and thiacloprid. A novel feature of this work is its use of postal code random effects from two other independent datasets collected in the annual national monitoring by questionnaires of winter losses of honey bees in the Netherlands. These were used to plan the sample selection and also in the model fitting of the data in this study. It should however be noted that the results of the present pilot study are based on limited data, which may consequently reveal strong factors but fail to demonstrate possible interaction effects.

  13. An Observational Study of Honey Bee Colony Winter Losses and Their Association with Varroa destructor, Neonicotinoids and Other Risk Factors.

    Science.gov (United States)

    van der Zee, Romée; Gray, Alison; Pisa, Lennard; de Rijk, Theo

    2015-01-01

    This article presents results of an analysis of honey bee losses over the winter of 2011-2012 in the Netherlands, from a sample of 86 colonies, located at 43 apiaries. The apiaries were selected using spatially stratified random sampling. Colony winter loss data were collected and related to various measures of colony strength recorded in summer, as well as data from laboratory analysis of sample material taken from two selected colonies in each of the 43 apiaries. The logistic regression model which best explained the risk of winter loss included, in order of statistical importance, the variables (1) Varroa destructor mite infestation rate in October 2011, (2) presence of the cyano-substituted neonicotinoids acetamiprid or thiacloprid in the first 2 weeks of August 2011 in at least one of the honey bee matrices honey, bees or bee bread (pollen), (3) presence of Brassica napus (oilseed rape) or Sinapis arvensis (wild mustard) pollen in bee bread in early August 2011, and (4) a measure of the unexplained winter losses for the postal code area where the colonies were located, obtained from a different dataset. We consider in the discussion that reduced opportunities for foraging in July and August because of bad weather may have added substantially to the adverse effects of acetamiprid and thiacloprid. A novel feature of this work is its use of postal code random effects from two other independent datasets collected in the annual national monitoring by questionnaires of winter losses of honey bees in the Netherlands. These were used to plan the sample selection and also in the model fitting of the data in this study. It should however be noted that the results of the present pilot study are based on limited data, which may consequently reveal strong factors but fail to demonstrate possible interaction effects.

  14. How Honey Bee Colonies Survive in the Wild: Testing the Importance of Small Nests and Frequent Swarming.

    Directory of Open Access Journals (Sweden)

    J Carter Loftus

    Full Text Available The ectoparasitic mite, Varroa destructor, and the viruses that it transmits, kill the colonies of European honey bees (Apis mellifera kept by beekeepers unless the bees are treated with miticides. Nevertheless, there exist populations of wild colonies of European honey bees that are persisting without being treated with miticides. We hypothesized that the persistence of these wild colonies is due in part to their habits of nesting in small cavities and swarming frequently. We tested this hypothesis by establishing two groups of colonies living either in small hives (42 L without swarm-control treatments or in large hives (up to 168 L with swarm-control treatments. We followed the colonies for two years and compared the two groups with respect to swarming frequency, Varroa infesttion rate, disease incidence, and colony survival. Colonies in small hives swarmed more often, had lower Varroa infestation rates, had less disease, and had higher survival compared to colonies in large hives. These results indicate that the smaller nest cavities and more frequent swarming of wild colonies contribute to their persistence without mite treatments.

  15. How Honey Bee Colonies Survive in the Wild: Testing the Importance of Small Nests and Frequent Swarming

    Science.gov (United States)

    Loftus, J. Carter; Smith, Michael L.; Seeley, Thomas D.

    2016-01-01

    The ectoparasitic mite, Varroa destructor, and the viruses that it transmits, kill the colonies of European honey bees (Apis mellifera) kept by beekeepers unless the bees are treated with miticides. Nevertheless, there exist populations of wild colonies of European honey bees that are persisting without being treated with miticides. We hypothesized that the persistence of these wild colonies is due in part to their habits of nesting in small cavities and swarming frequently. We tested this hypothesis by establishing two groups of colonies living either in small hives (42 L) without swarm-control treatments or in large hives (up to 168 L) with swarm-control treatments. We followed the colonies for two years and compared the two groups with respect to swarming frequency, Varroa infesttion rate, disease incidence, and colony survival. Colonies in small hives swarmed more often, had lower Varroa infestation rates, had less disease, and had higher survival compared to colonies in large hives. These results indicate that the smaller nest cavities and more frequent swarming of wild colonies contribute to their persistence without mite treatments. PMID:26968000

  16. Pheromone-modulated behavioral suites influence colony growth in the honey bee (Apis mellifera)

    Science.gov (United States)

    Pankiw, Tanya; Roman, Roman; Sagili, Ramesh R.; Zhu-Salzman, Keyan

    2004-12-01

    The success of a species depends on its ability to assess its environment and to decide accordingly which behaviors are most appropriate. Many animal species, from bacteria to mammals, are able to communicate using interspecies chemicals called pheromones. In addition to exerting physiological effects on individuals, for social species, pheromones communicate group social structure. Communication of social structure is important to social insects for the allocation of its working members into coordinated suites of behaviors. We tested effects of long-term treatment with brood pheromone on suites of honey bee brood rearing and foraging behaviors. Pheromone-treated colonies reared significantly greater brood areas and more adults than controls, while amounts of stored pollen and honey remained statistically similar. Brood pheromone increased the number of pollen foragers and the pollen load weights they returned. It appeared that the pheromone-induced increase in pollen intake was directly canalized into more brood rearing. A two-way pheromone priming effect was observed, such that some workers from the same age cohorts showed an increased and extended capacity to rear larvae, while others were recruited at significantly younger ages into pollen-specific foraging. Brood pheromone affected suites of nursing and foraging behaviors allocating worker and pollen resources associated with an important fitness trait, colony growth.

  17. Within-Colony Variation in the Immunocompetency of Managed and Feral Honey Bees (Apis mellifera L. in Different Urban Landscapes

    Directory of Open Access Journals (Sweden)

    R. Holden Appler

    2015-10-01

    Full Text Available Urbanization has the potential to dramatically affect insect populations worldwide, although its effects on pollinator populations are just beginning to be understood. We compared the immunocompetency of honey bees sampled from feral (wild-living and managed (beekeeper-owned honey bee colonies. We sampled foragers from feral and managed colonies in rural, suburban, and urban landscapes in and around Raleigh, NC, USA. We then analyzed adult workers using two standard bioassays for insect immune function (encapsulation response and phenoloxidase activity. We found that there was far more variation within colonies for encapsulation response or phenoloxidase activity than among rural to urban landscapes, and we did not observe any significant difference in immune response between feral and managed bees. These findings suggest that social pollinators, like honey bees, may be sufficiently robust or variable in their immune responses to obscure any subtle effects of urbanization. Additional studies of immune physiology and disease ecology of social and solitary bees in urban, suburban, and natural ecosystems will provide insights into the relative effects of changing urban environments on several important factors that influence pollinator productivity and health.

  18. Within-Colony Variation in the Immunocompetency of Managed and Feral Honey Bees (Apis mellifera L.) in Different Urban Landscapes.

    Science.gov (United States)

    Appler, R Holden; Frank, Steven D; Tarpy, David R

    2015-10-29

    Urbanization has the potential to dramatically affect insect populations worldwide, although its effects on pollinator populations are just beginning to be understood. We compared the immunocompetency of honey bees sampled from feral (wild-living) and managed (beekeeper-owned) honey bee colonies. We sampled foragers from feral and managed colonies in rural, suburban, and urban landscapes in and around Raleigh, NC, USA. We then analyzed adult workers using two standard bioassays for insect immune function (encapsulation response and phenoloxidase activity). We found that there was far more variation within colonies for encapsulation response or phenoloxidase activity than among rural to urban landscapes, and we did not observe any significant difference in immune response between feral and managed bees. These findings suggest that social pollinators, like honey bees, may be sufficiently robust or variable in their immune responses to obscure any subtle effects of urbanization. Additional studies of immune physiology and disease ecology of social and solitary bees in urban, suburban, and natural ecosystems will provide insights into the relative effects of changing urban environments on several important factors that influence pollinator productivity and health.

  19. Using Colony Monitoring Devices to Evaluate the Impacts of Land Use and Nutritional Value of Forage on Honey Bee Health

    Directory of Open Access Journals (Sweden)

    Matthew Smart

    2017-12-01

    Full Text Available Colony monitoring devices used to track and assess the health status of honey bees are becoming more widely available and used by both beekeepers and researchers. These devices monitor parameters relevant to colony health at frequent intervals, often approximating real time. The fine-scale record of hive condition can be further related to static or dynamic features of the landscape, such as weather, climate, colony density, land use, pesticide use, vegetation class, and forage quality. In this study, we fit commercial honey bee colonies in two apiaries with pollen traps and digital scales to monitor floral resource use, pollen quality, and honey production. One apiary was situated in low-intensity agriculture; the other in high-intensity agriculture. Pollen traps were open for 72 h every two weeks while scales recorded weight every 15 min throughout the growing season. From collected pollen, we determined forage quantity per day, species identity using DNA sequencing, pesticide residues, amino acid content, and total protein content. From scales, we determined the accumulated hive weight change over the growing season, relating to honey production and final colony weight going into winter. Hive scales may also be used to identify the occurrence of environmental pollen and nectar dearth, and track phenological changes in plant communities. We provide comparisons of device-derived data between two apiaries over the growing season and discuss the potential for employing apiary monitoring devices to infer colony health in the context of divergent agricultural land use conditions.

  20. Using colony monitoring devices to evaluate the impacts of land use and nutritional value of forage on honey bee health

    Science.gov (United States)

    Smart, Matthew; Otto, Clint R.; Cornman, Robert S.; Iwanowicz, Deborah

    2018-01-01

    Colony monitoring devices used to track and assess the health status of honey bees are becoming more widely available and used by both beekeepers and researchers. These devices monitor parameters relevant to colony health at frequent intervals, often approximating real time. The fine-scale record of hive condition can be further related to static or dynamic features of the landscape, such as weather, climate, colony density, land use, pesticide use, vegetation class, and forage quality. In this study, we fit commercial honey bee colonies in two apiaries with pollen traps and digital scales to monitor floral resource use, pollen quality, and honey production. One apiary was situated in low-intensity agriculture; the other in high-intensity agriculture. Pollen traps were open for 72 h every two weeks while scales recorded weight every 15 min throughout the growing season. From collected pollen, we determined forage quantity per day, species identity using DNA sequencing, pesticide residues, amino acid content, and total protein content. From scales, we determined the accumulated hive weight change over the growing season, relating to honey production and final colony weight going into winter. Hive scales may also be used to identify the occurrence of environmental pollen and nectar dearth, and track phenological changes in plant communities. We provide comparisons of device-derived data between two apiaries over the growing season and discuss the potential for employing apiary monitoring devices to infer colony health in the context of divergent agricultural land use conditions.

  1. Optimizing Drone Fertility With Spring Nutritional Supplements to Honey Bee (Hymenoptera: Apidae) Colonies.

    Science.gov (United States)

    Rousseau, Andrée; Giovenazzo, Pierre

    2016-03-27

    Supplemental feeding of honey bee (Apis melliferaL., Hymenoptera: Apidae) colonies in spring is essential for colony buildup in northern apicultural regions. The impact of pollen and syrup feeding on drone production and sperm quality is not well-documented, but may improve fecundation of early-bred queens. We measured the impact of feeding sucrose syrup, and protein supplements to colonies in early spring in eastern Canada. Drones were reared under different nutritional regimes, and mature individuals were then assessed in regard to size, weight, and semen quality (semen volume, sperm count, and viability). Results showed significant increases in drone weight and abdomen size when colonies were fed sucrose and a protein supplement. Colonies receiving no additional nourishment had significantly less semen volume per drone and lower sperm viability. Our study demonstrates that feeding honey bee colonies in spring with sucrose syrup and a protein supplement is important to enhance drone reproductive quality. RÉSUMÉ: L'administration de suppléments alimentaires aux colonies de l'abeille domestique (Apis melliferaL., Hymenoptera: Apidae) au printemps est essentielle pour le bon développement des colonies dans les régions apicoles nordiques. L'impact de la supplémentation des colonies en pollen et en sirop sur la production des faux-bourdons et la qualité du sperme demeure peu documenté mais pourrait résulter en une meilleure fécondation des reines produites tôt en saison. Nous avons mesuré l'impact de la supplémentation en sirop et/ou en supplément de pollen sur les colonies d'abeilles tôt au printemps dans l'est du Canada. Les faux-bourdons ont été élevé sous différents régimes alimentaires et les individus matures ont ensuite été évalués pour leur taille, leur poids ainsi que la qualité de leur sperme (volume de sperme, nombre et viabilité des spermatozoïdes. Les résultats montrent une augmentation significative du poids et de la taille

  2. Towards integrated control of varroa: effect of variation in hygienic behaviour among honey bee colonies on mite population increase and deformed wing virus incidence

    DEFF Research Database (Denmark)

    Toufailia, Hasan M Al; Amiri, Esmaeil; Scandian, Luciano

    2014-01-01

    by varroa. We treated 42 broodless honey bee colonies with oxalic acid in early January 2013 to reduce varroa populations to low levels, which we quantified by extracting mites from a sample of worker bees. We quantified varroa levels, again when the colonies were broodless, 48 weeks later. During...

  3. Weight of evidence evaluation of a network of adverse outcome pathways linking activaiton of the nicotinic acetylcholine receptor in honey bees to colony death

    Data.gov (United States)

    U.S. Environmental Protection Agency — Ongoing honey bee colony losses are of significant international concern because of the essential role these insects play in pollinating many high nutrient crops,...

  4. The effect of queen pheromone status on Varroa mite removal from honey bee colonies with different grooming ability.

    Science.gov (United States)

    Bahreini, Rassol; Currie, Robert W

    2015-07-01

    The objective of this study was to assess the effects of honey bees (Apis mellifera L.) with different grooming ability and queen pheromone status on mortality rates of Varroa mites (Varroa destructor Anderson and Trueman), mite damage, and mortality rates of honey bees. Twenty-four small queenless colonies containing either stock selected for high rates of mite removal (n = 12) or unselected stock (n = 12) were maintained under constant darkness at 5 °C. Colonies were randomly assigned to be treated with one of three queen pheromone status treatments: (1) caged, mated queen, (2) a synthetic queen mandibular pheromone lure (QMP), or (3) queenless with no queen substitute. The results showed overall mite mortality rate was greater in stock selected for grooming than in unselected stock. There was a short term transitory increase in bee mortality rates in selected stock when compared to unselected stock. The presence of queen pheromone from either caged, mated queens or QMP enhanced mite removal from clusters of bees relative to queenless colonies over short periods of time and increased the variation in mite mortality over time relative to colonies without queen pheromone, but did not affect the proportion of damaged mites. The effects of source of bees on mite damage varied with time but damage to mites was not reliably related to mite mortality. In conclusion, this study showed differential mite removal of different stocks was possible under low temperature. Queen status should be considered when designing experiments using bioassays for grooming response.

  5. Neonicotinoid insecticides in pollen, honey and adult bees in colonies of the European honey bee (Apis mellifera L.) in Egypt.

    Science.gov (United States)

    Codling, Garry; Naggar, Yahya Al; Giesy, John P; Robertson, Albert J

    2018-03-01

    Honeybee losses have been attributed to multiple stressors and factors including the neonicotinoid insecticides (NIs). Much of the study of hive contamination has been focused upon temperate regions such as Europe, Canada and the United States. This study looks for the first time at honey, pollen and bees collected from across the Nile Delta in Egypt in both the spring and summer planting season of 2013. There is limited information upon the frequency of use of NIs in Egypt but the ratio of positive identification and concentrations of NIs are comparable to other regions. Metabolites of NIs were also monitored but given the low detection frequency, no link between matrices was possible in the study. Using a simple hazard assessment based upon published LD 50 values for individual neonicotinoids upon the foraging and brood workers it was found that there was a potential risk to brood workers if the lowest reported LD 50 was compared to the sum of the maximum NI concentrations. For non-lethal exposure there was significant risk at the worst case to brood bees but actual exposure effects are dependant upon the genetics and conditions of the Egyptian honeybee subspecies that remain to be determined.

  6. Mitochondrial DNA diversity of honey bees (Apis mellifera) from unmanaged colonies and swarms in the United States.

    Science.gov (United States)

    Magnus, Roxane M; Tripodi, Amber D; Szalanski, Allen L

    2014-06-01

    To study the genetic diversity of honey bees (Apis mellifera L.) from unmanaged colonies in the United States, we sequenced a portion of the mitochondrial DNA COI-COII region. From the 530 to 1,230 bp amplicon, we observed 23 haplotypes from 247 samples collected from 12 states, representing three of the four A. mellifera lineages known to have been imported into the United States (C, M, and O). Six of the 13 C lineage haplotypes were not found in previous queen breeder studies in the United States. The O lineage accounted for 9% of unmanaged colonies which have not yet been reported in queen breeder studies. The M lineage accounted for a larger portion of unmanaged samples (7%) than queen breeder samples (3%). Based on our mitochondrial DNA data, the genetic diversity of unmanaged honey bees in the United States differs significantly from that of queen breeder populations (p < 0.00001). The detection of genetically distinct maternal lineages of unmanaged honey bees suggests that these haplotypes may have existed outside the managed honey bee population for a long period.

  7. A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008.

    Directory of Open Access Journals (Sweden)

    Dennis van Engelsdorp

    Full Text Available BACKGROUND: Honey bees are an essential component of modern agriculture. A recently recognized ailment, Colony Collapse Disorder (CCD, devastates colonies, leaving hives with a complete lack of bees, dead or alive. Up to now, estimates of honey bee population decline have not included losses occurring during the wintering period, thus underestimating actual colony mortality. Our survey quantifies the extent of colony losses in the United States over the winter of 2007-2008. METHODOLOGY/PRINCIPAL FINDINGS: Surveys were conducted to quantify and identify management factors (e.g. operation size, hive migration that contribute to high colony losses in general and CCD symptoms in particular. Over 19% of the country's estimated 2.44 million colonies were surveyed. A total loss of 35.8% of colonies was recorded; an increase of 11.4% compared to last year. Operations that pollinated almonds lost, on average, the same number of colonies as those that did not. The 37.9% of operations that reported having at least some of their colonies die with a complete lack of bees had a total loss of 40.8% of colonies compared to the 17.1% loss reported by beekeepers without this symptom. Large operations were more likely to have this symptom suggesting that a contagious condition may be a causal factor. Sixty percent of all colonies that were reported dead in this survey died without dead bees, and thus possibly suffered from CCD. In PA, losses varied with region, indicating that ambient temperature over winter may be an important factor. CONCLUSIONS/SIGNIFICANCE: Of utmost importance to understanding the recent losses and CCD is keeping track of losses over time and on a large geographic scale. Given that our surveys are representative of the losses across all beekeeping operations, between 0.75 and 1.00 million honey bee colonies are estimated to have died in the United States over the winter of 2007-2008. This article is an extensive survey of U.S. beekeepers

  8. A large-scale field study examining effects of exposure to clothianidin seed-treated canola on honey bee colony health, development, and overwintering success

    OpenAIRE

    Cutler, G. Christopher; Scott-Dupree, Cynthia D.; Sultan, Maryam; McFarlane, Andrew D.; Brewer, Larry

    2014-01-01

    In summer 2012, we initiated a large-scale field experiment in southern Ontario, Canada, to determine whether exposure to clothianidin seed-treated canola (oil seed rape) has any adverse impacts on honey bees. Colonies were placed in clothianidin seed-treated or control canola fields during bloom, and thereafter were moved to an apiary with no surrounding crops grown from seeds treated with neonicotinoids. Colony weight gain, honey production, pest incidence, bee mortality, number of adults, ...

  9. Phenotypic and genetic analyses of the varroa sensitive hygienic trait in Russian honey bee (hymenoptera: apidae) colonies.

    Science.gov (United States)

    Kirrane, Maria J; de Guzman, Lilia I; Holloway, Beth; Frake, Amanda M; Rinderer, Thomas E; Whelan, Pádraig M

    2014-01-01

    Varroa destructor continues to threaten colonies of European honey bees. General hygiene, and more specific Varroa Sensitive Hygiene (VSH), provide resistance towards the Varroa mite in a number of stocks. In this study, 32 Russian (RHB) and 14 Italian honey bee colonies were assessed for the VSH trait using two different assays. Firstly, colonies were assessed using the standard VSH behavioural assay of the change in infestation of a highly infested donor comb after a one-week exposure. Secondly, the same colonies were assessed using an "actual brood removal assay" that measured the removal of brood in a section created within the donor combs as a potential alternative measure of hygiene towards Varroa-infested brood. All colonies were then analysed for the recently discovered VSH quantitative trait locus (QTL) to determine whether the genetic mechanisms were similar across different stocks. Based on the two assays, RHB colonies were consistently more hygienic toward Varroa-infested brood than Italian honey bee colonies. The actual number of brood cells removed in the defined section was negatively correlated with the Varroa infestations of the colonies (r2 = 0.25). Only two (percentages of brood removed and reproductive foundress Varroa) out of nine phenotypic parameters showed significant associations with genotype distributions. However, the allele associated with each parameter was the opposite of that determined by VSH mapping. In this study, RHB colonies showed high levels of hygienic behaviour towards Varroa -infested brood. The genetic mechanisms are similar to those of the VSH stock, though the opposite allele associates in RHB, indicating a stable recombination event before the selection of the VSH stock. The measurement of brood removal is a simple, reliable alternative method of measuring hygienic behaviour towards Varroa mites, at least in RHB stock.

  10. Phenotypic and genetic analyses of the varroa sensitive hygienic trait in Russian honey bee (hymenoptera: apidae colonies.

    Directory of Open Access Journals (Sweden)

    Maria J Kirrane

    Full Text Available Varroa destructor continues to threaten colonies of European honey bees. General hygiene, and more specific Varroa Sensitive Hygiene (VSH, provide resistance towards the Varroa mite in a number of stocks. In this study, 32 Russian (RHB and 14 Italian honey bee colonies were assessed for the VSH trait using two different assays. Firstly, colonies were assessed using the standard VSH behavioural assay of the change in infestation of a highly infested donor comb after a one-week exposure. Secondly, the same colonies were assessed using an "actual brood removal assay" that measured the removal of brood in a section created within the donor combs as a potential alternative measure of hygiene towards Varroa-infested brood. All colonies were then analysed for the recently discovered VSH quantitative trait locus (QTL to determine whether the genetic mechanisms were similar across different stocks. Based on the two assays, RHB colonies were consistently more hygienic toward Varroa-infested brood than Italian honey bee colonies. The actual number of brood cells removed in the defined section was negatively correlated with the Varroa infestations of the colonies (r2 = 0.25. Only two (percentages of brood removed and reproductive foundress Varroa out of nine phenotypic parameters showed significant associations with genotype distributions. However, the allele associated with each parameter was the opposite of that determined by VSH mapping. In this study, RHB colonies showed high levels of hygienic behaviour towards Varroa -infested brood. The genetic mechanisms are similar to those of the VSH stock, though the opposite allele associates in RHB, indicating a stable recombination event before the selection of the VSH stock. The measurement of brood removal is a simple, reliable alternative method of measuring hygienic behaviour towards Varroa mites, at least in RHB stock.

  11. Late winter feeding stimulates rapid spring development of carniolan honey bee colonies (Apis mellifera carnica)

    OpenAIRE

    Zlatko Puškadija; Lejla Spiljak; Marin Kovačić

    2017-01-01

    Unfavourable weather conditions after the queen starts with intensive oviposition during early spring may cause an imbalance in the division of tasks among worker bees in the bee colony. This can lead to slow spring development and poor exploitation of the main spring nectar flows. In order to accelerate the spring development, it is necessary, as a technological measure, to feed supplemental candy to bee colonies. In this research, the necessity of supplemental feeding, as well as the com...

  12. Nutritional aspects of honey bee-collected pollen and constraints on colony development in the eastern Mediterranean.

    Science.gov (United States)

    Avni, Dorit; Hendriksma, Harmen P; Dag, Arnon; Uni, Zehava; Shafir, Sharoni

    2014-10-01

    Pollen is the main protein and lipid source for honey bees (Apis mellifera), and nutritionally impoverished landscapes pose a threat to colony development. To determine colony nutritional demands, we analyzed a yearly cycle of bee-collected pollen from colonies in the field and compared it to colony worker production and honey bee body composition, for the first time in social insects. We monitored monthly bee production in ten colonies at each of seven sites throughout Israel, and trapped pollen bi-monthly in five additional colonies at each of four of these sites. Pollen mixtures from each sampling date and site were analyzed for weight, total protein, total fatty acids (FAs), and FA composition. Compared to more temperate climates, the eastern Mediterranean allows a relatively high yearly colony growth of ca. 300,000-400,000 bees. Colonies at higher elevation above sea level showed lower growth rates. Queen egg-laying rate did not seem to limit growth, as peaks in capped brood areas showed that queens lay a prolific 2000 eggs a day on average, with up to 3300 eggs in individual cases. Pollen uptake varied significantly among sites and seasons, with an overall annual mean total 16.8kg per colony, containing 7.14kg protein and 677g fat. Overall mean pollen protein content was high (39.8%), and mean total FA content was 3.8%. Production cost, as expressed by the amount of nutrient used per bee, was least variable for linoleic acid and protein, suggesting these as the best descriptive variables for total number of bees produced. Linolenic acid levels in pollen during the autumn were relatively low, and supplementing colonies with this essential FA may mitigate potential nutritional deficiency. The essentiality of linoleic and linolenic acids was consistent with these FAs' tendency to be present at higher levels in collected pollen than in the expected nutrients in bee bodies, demonstrating a well-developed adjustment between pollinator nutritional demands and the

  13. Bee Alert: Africanized Honey Bee Facts

    OpenAIRE

    Lazaneo, Vincent

    2002-01-01

    Information on how to “bee prepared” for the movement of the Africanized honey bee into California. Includes tips on how to identify Africanized honey bees, bee-proofing your home, and what to do if stung.

  14. Fearful foragers: honey bees tune colony and individual foraging to multi-predator presence and food quality.

    Directory of Open Access Journals (Sweden)

    Ken Tan

    Full Text Available Fear can have strong ecosystem effects by giving predators a role disproportionate to their actual kill rates. In bees, fear is shown through foragers avoiding dangerous food sites, thereby reducing the fitness of pollinated plants. However, it remains unclear how fear affects pollinators in a complex natural scenario involving multiple predator species and different patch qualities. We studied hornets, Vespa velutina (smaller and V. tropica (bigger preying upon the Asian honey bee, Apis cerana in China. Hornets hunted bees on flowers and were attacked by bee colonies. Bees treated the bigger hornet species (which is 4 fold more massive as more dangerous. It received 4.5 fold more attackers than the smaller hornet species. We tested bee responses to a three-feeder array with different hornet species and varying resource qualities. When all feeders offered 30% sucrose solution (w/w, colony foraging allocation, individual visits, and individual patch residence times were reduced according to the degree of danger. Predator presence reduced foraging visits by 55-79% and residence times by 17-33%. When feeders offered different reward levels (15%, 30%, or 45% sucrose, colony and individual foraging favored higher sugar concentrations. However, when balancing food quality against multiple threats (sweeter food corresponding to higher danger, colonies exhibited greater fear than individuals. Colonies decreased foraging at low and high danger patches. Individuals exhibited less fear and only decreased visits to the high danger patch. Contrasting individual with emergent colony-level effects of fear can thus illuminate how predators shape pollination by social bees.

  15. Fungicide contamination reduces beneficial fungi in bee bread based on an area-wide field study in honey bee, Apis mellifera, colonies.

    Science.gov (United States)

    Yoder, Jay A; Jajack, Andrew J; Rosselot, Andrew E; Smith, Terrance J; Yerke, Mary Clare; Sammataro, Diana

    2013-01-01

    Fermentation by fungi converts stored pollen into bee bread that is fed to honey bee larvae, Apis mellifera, so the diversity of fungi in bee bread may be related to its food value. To explore the relationship between fungicide exposure and bee bread fungi, samples of bee bread collected from bee colonies pollinating orchards from 7 locations over 2 years were analyzed for fungicide residues and fungus composition. There were detectable levels of fungicides from regions that were sprayed before bloom. An organic orchard had the highest quantity and variety of fungicides, likely due to the presence of treated orchards within bees' flight range. Aspergillus, Penicillium, Rhizopus, and Cladosporium (beneficial fungi) were the primary fungal isolates found, regardless of habitat differences. There was some variation in fungal components amongst colonies, even within the same apiary. The variable components were Absidia, Alternaria, Aureobasidium, Bipolaris, Fusarium, Geotrichum, Mucor, Nigrospora, Paecilomyces, Scopulariopsis, and Trichoderma. The number of fungal isolates was reduced as an effect of fungicide contamination. Aspergillus abundance was particularly affected by increased fungicide levels, as indicated by Simpson's diversity index. Bee bread showing fungicide contamination originated from colonies, many of which showed chalkbrood symptoms.

  16. Honey Bee Antiviral Immune Barriers as Affected by Multiple Stress Factors: A Novel Paradigm to Interpret Colony Health Decline and Collapse

    Directory of Open Access Journals (Sweden)

    Francesco Nazzi

    2018-03-01

    Full Text Available Any attempt to outline a logical framework in which to interpret the honey bee health decline and its contribution to elevated colony losses should recognize the importance of the multifactorial nature of the responsible syndrome and provide a functional model as a basis for defining and testing working hypotheses. We propose that covert infections by deformed wing virus (DWV represent a sword of Damocles permanently threatening the survival of honey bee colonies and suggest that any factor affecting the honey bee’s antiviral defenses can turn this pathogen into a killer. Here we discuss the available experimental evidence in the framework of a model based on honey bee immune competence as affected by multiple stress factors that is proposed as a conceptual tool for analyzing bee mortality and its underlying mechanisms.

  17. The impact of insecticides to local honey bee colony Apis cerana indica in laboratory condition

    Science.gov (United States)

    Putra, Ramadhani E.; Permana, Agus D.; Nuriyah, Syayidah

    2014-03-01

    Heavy use of insecticides considered as one of common practice at local farming systems. Even though many Indonesian researchers had stated the possible detrimental effect of insecticide on agriculture environment and biodiversity, researches on this subject had been neglected. Therefore, our purpose in this research is observing the impact of insecticides usage by farmer to non target organisme like local honey bee (Apis cerana indica), which commonly kept in area near agriculture system. This research consisted of field observations out at Ciburial, Dago Pakar, Bandung and laboratory tests at School of Life Sciences and Technology, Institut Teknologi Bandung. The field observations recorded visited agriculture corps and types of pollen carried by bees to the nest while laboratory test recorderd the effect of common insecticide to mortality and behavior of honey bees. Three types of insecticides used in this research were insecticides A with active agent Chlorantraniliprol 50 g/l, insecticide B with active agent Profenofos 500 g/l, and insecticides C with active agent Chlorantraniliprol 100 g/l and λ-cyhalotrin 50g/l. The results show that during one week visit, wild flower, Wedelia montana, visited by most honey bees with average visit 60 honey bees followed by corn, Zea mays, with 21 honey bees. The most pollen carried by foragers was Wedelia montana, Calliandra callothyrsus, and Zea mays. Preference test show that honeybees tend move to flowers without insecticides as the preference to insecticides A was 12.5%, insecticides B was 0%, and insecticides was C 4.2%. Mortality test showed that insecticides A has LD50 value 0.01 μg/μl, insecticide B 0.31 μg/μl, and insecticides C 0.09 μg/μl which much lower than suggested dosage recommended by insecticides producer. This research conclude that the use of insecticide could lower the pollination service provide by honey bee due to low visitation rate to flowers and mortality of foraging bees.

  18. Special Issue: Honey Bee Viruses

    Directory of Open Access Journals (Sweden)

    Sebastian Gisder

    2015-10-01

    Full Text Available Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus, or a so far neglected virus species (Apis mellifera filamentous virus, and cutting edge technologies (mass spectrometry, RNAi approach applied in the field.

  19. Special Issue: Honey Bee Viruses

    Science.gov (United States)

    Gisder, Sebastian; Genersch, Elke

    2015-01-01

    Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field. PMID:26702462

  20. Queen Quality and the Impact of Honey Bee Diseases on Queen Health: Potential for Interactions between Two Major Threats to Colony Health

    Directory of Open Access Journals (Sweden)

    Esmaeil Amiri

    2017-05-01

    Full Text Available Western honey bees, Apis mellifera, live in highly eusocial colonies that are each typically headed by a single queen. The queen is the sole reproductive female in a healthy colony, and because long-term colony survival depends on her ability to produce a large number of offspring, queen health is essential for colony success. Honey bees have recently been experiencing considerable declines in colony health. Among a number of biotic and abiotic factors known to impact colony health, disease and queen failure are repeatedly reported as important factors underlying colony losses. Surprisingly, there are relatively few studies on the relationship and interaction between honey bee diseases and queen quality. It is critical to understand the negative impacts of pests and pathogens on queen health, how queen problems might enable disease, and how both factors influence colony health. Here, we review the current literature on queen reproductive potential and the impacts of honey bee parasites and pathogens on queens. We conclude by highlighting gaps in our knowledge on the combination of disease and queen failure to provide a perspective and prioritize further research to mitigate disease, improve queen quality, and ensure colony health.

  1. Are dispersal mechanisms changing the host-parasite relationship and increasing the virulence of Varroa destructor [Acari:Varroidae] in managed honey bee [Hymenoptera: Apidae] colonies?

    Science.gov (United States)

    Varroa mites are the most serious pest of honey bees worldwide, and difficult to control in managed colonies. We show in a longitudinal study that even with multiple miticide treatments in the summer and fall, mite numbers remained high and colony losses exceeded 55%. Furthermore, large heavily infe...

  2. Organochlorine Pesticides in Honey and Pollen Samples from Managed Colonies of the Honey Bee Apis mellifera Linnaeus and the Stingless Bee Scaptotrigona mexicana Guérin from Southern, Mexico.

    Science.gov (United States)

    Ruiz-Toledo, Jovani; Vandame, Rémy; Castro-Chan, Ricardo Alberto; Penilla-Navarro, Rosa Patricia; Gómez, Jaime; Sánchez, Daniel

    2018-05-10

    In this paper, we show the results of investigating the presence of organochlorine pesticides in honey and pollen samples from managed colonies of the honey bee, Apis mellifera L. and of the stingless bee Scaptotrigona mexicana Guérin. Three colonies of each species were moved into each of two sites. Three samples of pollen and three samples of honey were collected from each colony: the first collection occurred at the beginning of the study and the following ones at every six months during a year. Thus the total number of samples collected was 36 for honey (18 for A. mellifera and 18 for S. mexicana ) and 36 for pollen (18 for A. mellifera and 18 for S. mexicana ). We found that 88.44% and 93.33% of honey samples, and 22.22% and 100% of pollen samples of S. mexicana and A. mellifera , respectively, resulted positive to at least one organochlorine. The most abundant pesticides were Heptaclor (44% of the samples), γ-HCH (36%), DDT (19%), Endrin (18%) and DDE (11%). Despite the short foraging range of S. mexicana , the number of pesticides quantified in the honey samples was similar to that of A. mellifera . Paradoxically we found a small number of organochlorines in pollen samples of S. mexicana in comparison to A. mellifera , perhaps indicating a low abundance of pollen sources within the foraging range of this species.

  3. Organochlorine Pesticides in Honey and Pollen Samples from Managed Colonies of the Honey Bee Apis mellifera Linnaeus and the Stingless Bee Scaptotrigona mexicana Guérin from Southern, Mexico

    Directory of Open Access Journals (Sweden)

    Jovani Ruiz-Toledo

    2018-05-01

    Full Text Available In this paper, we show the results of investigating the presence of organochlorine pesticides in honey and pollen samples from managed colonies of the honey bee, Apis mellifera L. and of the stingless bee Scaptotrigona mexicana Guérin. Three colonies of each species were moved into each of two sites. Three samples of pollen and three samples of honey were collected from each colony: the first collection occurred at the beginning of the study and the following ones at every six months during a year. Thus the total number of samples collected was 36 for honey (18 for A. mellifera and 18 for S. mexicana and 36 for pollen (18 for A. mellifera and 18 for S. mexicana. We found that 88.44% and 93.33% of honey samples, and 22.22% and 100% of pollen samples of S. mexicana and A. mellifera, respectively, resulted positive to at least one organochlorine. The most abundant pesticides were Heptaclor (44% of the samples, γ-HCH (36%, DDT (19%, Endrin (18% and DDE (11%. Despite the short foraging range of S. mexicana, the number of pesticides quantified in the honey samples was similar to that of A. mellifera. Paradoxically we found a small number of organochlorines in pollen samples of S. mexicana in comparison to A. mellifera, perhaps indicating a low abundance of pollen sources within the foraging range of this species.

  4. E-β-ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Alban Maisonnasse

    Full Text Available BACKGROUND: In honey bee colony, the brood is able to manipulate and chemically control the workers in order to sustain their own development. A brood ester pheromone produced primarily by old larvae (4 and 5 days old larvae was first identified as acting as a contact pheromone with specific effects on nurses in the colony. More recently a new volatile brood pheromone has been identified: E-β-ocimene, which partially inhibits ovary development in workers. METHODOLOGY AND PRINCIPAL FINDING: Our analysis of E-β-ocimene production revealed that young brood (newly hatched to 3 days old produce the highest quantity of E-β-ocimene relative to their body weight. By testing the potential action of this molecule as a non-specific larval signal, due to its high volatility in the colony, we demonstrated that in the presence of E-β-ocimene nest workers start to forage earlier in life, as seen in the presence of real brood. CONCLUSIONS/SIGNIFICANCE: In this way, young larvae are able to assign precedence to the task of foraging by workers in order to increase food stores for their own development. Thus, in the complexity of honey bee chemical communication, E-β-ocimene, a pheromone of young larvae, provides the brood with the means to express their nutritional needs to the workers.

  5. Local behavioral rules sustain the cell allocation pattern in the combs of honey bee colonies (Apis mellifera).

    Science.gov (United States)

    Montovan, Kathryn J; Karst, Nathaniel; Jones, Laura E; Seeley, Thomas D

    2013-11-07

    In the beeswax combs of honey bees, the cells of brood, pollen, and honey have a consistent spatial pattern that is sustained throughout the life of a colony. This spatial pattern is believed to emerge from simple behavioral rules that specify how the queen moves, where foragers deposit honey/pollen and how honey/pollen is consumed from cells. Prior work has shown that a set of such rules can explain the formation of the allocation pattern starting from an empty comb. We show that these rules cannot maintain the pattern once the brood start to vacate their cells, and we propose new, biologically realistic rules that better sustain the observed allocation pattern. We analyze the three resulting models by performing hundreds of simulation runs over many gestational periods and a wide range of parameter values. We develop new metrics for pattern assessment and employ them in analyzing pattern retention over each simulation run. Applied to our simulation results, these metrics show alteration of an accepted model for honey/pollen consumption based on local information can stabilize the cell allocation pattern over time. We also show that adding global information, by biasing the queen's movements towards the center of the comb, expands the parameter regime over which pattern retention occurs. © 2013 Published by Elsevier Ltd. All rights reserved.

  6. Antiviral Defense Mechanisms in Honey Bees

    Science.gov (United States)

    Brutscher, Laura M.; Daughenbaugh, Katie F.; Flenniken, Michelle L.

    2015-01-01

    Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation. PMID:26273564

  7. Nosema ceranae is an old resident of honey bee (Apis mellifera) colonies in Mexico, causing infection levels of one million spores per bee or higher during summer and fall.

    Science.gov (United States)

    Guerrero-Molina, Cristina; Correa-Benítez, Adriana; Hamiduzzaman, Mollah Md; Guzman-Novoa, Ernesto

    2016-11-01

    This study was conducted to identify Nosema spp. and to determine their infection levels in honey bee (Apis mellifera) samples collected in Mexico in 1995-1996. Samples of historical surveys from different countries are of particular interest to support or challenge the hypothesis that the microsporidium Nosema ceranae is a new parasite of A. mellifera that has recently dispersed across the world. We demonstrate that N. ceranae has parasitized honey bees in Mexico since at least 1995 and that the infection levels of this parasite during summer and fall, exceed the threshold at which treatment of honey bee colonies is recommended. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Assessing Patterns of Admixture and Ancestry in Canadian Honey Bees

    Science.gov (United States)

    Canada has a large beekeeping industry comprised of 8483 beekeepers managing 672094 23 colonies. Canadian honey bees, like all honey bees in the New World, originate from centuries of importation of predominately European honey bees, but their precise ancestry remains unknown. There have been no i...

  9. A large-scale field study examining effects of exposure to clothianidin seed-treated canola on honey bee colony health, development, and overwintering success

    Directory of Open Access Journals (Sweden)

    G. Christopher Cutler

    2014-10-01

    Full Text Available In summer 2012, we initiated a large-scale field experiment in southern Ontario, Canada, to determine whether exposure to clothianidin seed-treated canola (oil seed rape has any adverse impacts on honey bees. Colonies were placed in clothianidin seed-treated or control canola fields during bloom, and thereafter were moved to an apiary with no surrounding crops grown from seeds treated with neonicotinoids. Colony weight gain, honey production, pest incidence, bee mortality, number of adults, and amount of sealed brood were assessed in each colony throughout summer and autumn. Samples of honey, beeswax, pollen, and nectar were regularly collected, and samples were analyzed for clothianidin residues. Several of these endpoints were also measured in spring 2013. Overall, colonies were vigorous during and after the exposure period, and we found no effects of exposure to clothianidin seed-treated canola on any endpoint measures. Bees foraged heavily on the test fields during peak bloom and residue analysis indicated that honey bees were exposed to low levels (0.5–2 ppb of clothianidin in pollen. Low levels of clothianidin were detected in a few pollen samples collected toward the end of the bloom from control hives, illustrating the difficulty of conducting a perfectly controlled field study with free-ranging honey bees in agricultural landscapes. Overwintering success did not differ significantly between treatment and control hives, and was similar to overwintering colony loss rates reported for the winter of 2012–2013 for beekeepers in Ontario and Canada. Our results suggest that exposure to canola grown from seed treated with clothianidin poses low risk to honey bees.

  10. A large-scale field study examining effects of exposure to clothianidin seed-treated canola on honey bee colony health, development, and overwintering success.

    Science.gov (United States)

    Cutler, G Christopher; Scott-Dupree, Cynthia D; Sultan, Maryam; McFarlane, Andrew D; Brewer, Larry

    2014-01-01

    In summer 2012, we initiated a large-scale field experiment in southern Ontario, Canada, to determine whether exposure to clothianidin seed-treated canola (oil seed rape) has any adverse impacts on honey bees. Colonies were placed in clothianidin seed-treated or control canola fields during bloom, and thereafter were moved to an apiary with no surrounding crops grown from seeds treated with neonicotinoids. Colony weight gain, honey production, pest incidence, bee mortality, number of adults, and amount of sealed brood were assessed in each colony throughout summer and autumn. Samples of honey, beeswax, pollen, and nectar were regularly collected, and samples were analyzed for clothianidin residues. Several of these endpoints were also measured in spring 2013. Overall, colonies were vigorous during and after the exposure period, and we found no effects of exposure to clothianidin seed-treated canola on any endpoint measures. Bees foraged heavily on the test fields during peak bloom and residue analysis indicated that honey bees were exposed to low levels (0.5-2 ppb) of clothianidin in pollen. Low levels of clothianidin were detected in a few pollen samples collected toward the end of the bloom from control hives, illustrating the difficulty of conducting a perfectly controlled field study with free-ranging honey bees in agricultural landscapes. Overwintering success did not differ significantly between treatment and control hives, and was similar to overwintering colony loss rates reported for the winter of 2012-2013 for beekeepers in Ontario and Canada. Our results suggest that exposure to canola grown from seed treated with clothianidin poses low risk to honey bees.

  11. The Effects of Age of Grafted Larvae and of Supplemental Feeding on Performance of Iranian Honey Bee Colonies (Apis Mellifera Meda

    Directory of Open Access Journals (Sweden)

    Mahbobi Ali

    2014-06-01

    Full Text Available The performance of bee colonies greatly depends on the quality of the queens. The current research was conducted at the apiary of the Faculty of Agriculture, Zanjan University, in Zanjan, Iran. Together, 24 rearing colonies were assigned to 4 grafting larvae age groups: 1-day-old, 2-day-old, 3-day-old, and emergency queens. Two feeding groups, fed and not fed, were created. The effects of reared queens on biological characteristics and performance of honeybee colonies (Apis mellifera meda headed by those queens were measured. Age of grafted larvae significantly influenced the results. The performance ratios of the most efficient colonies headed by queens reared from 1-day-old larvae compared with the least-efficient queens reared from 3-day-old larvae were 118% in brood production, 140% in bee population, and 154% in honey production. However, the age of grafted larvae did not affect colony defense behavior. Supplemental feeding of rearing colonies increased brood production to 111%, bee population to 116%, and honey production to 115%. A combination of the effect of age of larvae and supplemental feeding resulted in twice as much honey (12 kg produced by colonies with queens reared from 1-day-old larvae in fed rearing colonies compared to those with queens raised from 3-day-old larvae in unfed rearing colonies.

  12. Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses.

    Science.gov (United States)

    Zaluski, Rodrigo; Kadri, Samir Moura; Alonso, Diego Peres; Martins Ribolla, Paulo Eduardo; de Oliveira Orsi, Ricardo

    2015-05-01

    Bees play a crucial role in pollination and generate honey and other hive products; therefore, their worldwide decline is cause for concern. New broad-spectrum systemic insecticides such as fipronil can harm bees and their use has been discussed as a potential threat to bees' survival. In the present study, the authors evaluate the in vitro toxicity of fipronil and note behavioral and motor activity changes in Africanized adult Apis mellifera that ingest or come into contact with lethal or sublethal doses of fipronil. The effects of sublethal doses on brood viability, population growth, behavior, and the expression of the defensin 1 gene in adult bees were studied in colonies fed with contaminated sugar syrup (8 µg fipronil L(-1) ). Fipronil is highly toxic to bees triggering agitation, seizures, tremors, and paralysis. Bees that are exposed to a lethal or sublethal doses showed reduced motor activity. The number of eggs that hatched, the area occupied by worker eggs, and the number of larvae and pupae that developed were reduced, adult bees showed lethargy, and colonies were abandoned when they were exposed to sublethal doses of fipronil. No change was seen in the bees' expression of defensin 1. The authors conclude that fipronil is highly toxic to honey bees and even sublethal doses may negatively affect the development and maintenance of colonies. © 2015 SETAC.

  13. Summary of winter honey bee colony losses in Slovakia between the years 2009 and 2015

    Directory of Open Access Journals (Sweden)

    Róbert Chlebo

    2016-03-01

    Full Text Available Between the seasons 2009/2010 and 2014/2015 was evaluated 1305 questionnaires in total, received from Slovak beekeepers. Standard questionnaires of COST working group COLOSS were used with sets of questions related to overwintering of bee colonies and possible reasons of its losses. In season 2009/2010 winter losses in Slovakia reached 7.10 %, subsequently in 2010/2011 - 5.96 %, 2011/2012 - 9.70 %, 2012/2013 - 9.50 %, 2013/2014 - 8.84 %, 2014/2015 - 10.00 %. Expected causes of winter mortality (starvation, poor queen´s quality, parasitism, robbery were evaluated in the study to detect the presence of depopulation syndrome of bee colonies - CCD (colony collapse disorder reported from some North American and European areas. As acceptable level of winter losses is generally considered level 10 %, which was not exceeded in any season, thereby Slovakia ranks among countries with the lowest winter mortality of bee colonies worldwide. Possible reason of this situation is most probably multiple Varroa treatment throughout the year, but other reasons are discussed as well in the study.

  14. Genetic control of the honey bee (Apis mellifera) dance language: segregating dance forms in a backcrossed colony.

    Science.gov (United States)

    Johnson, R N; Oldroyd, B P; Barron, A B; Crozier, R H

    2002-01-01

    We studied the genetic control of the dance dialects that exist in the different subspecies of honey bees (Apis mellifera) by observing the variation in dance form observed in a backcross between two lines that showed widely different dance dialects. To do this we generated the reciprocal of the cross performed by Rinderer and Beaman (1995), thus producing phenotypic segregation of dance forms within a single colony rather than between colonies. Our results are consistent with Rinderer and Beaman (1995) in that inheritance of the transition point from round dancing --> waggle dancing is consistent with control by a single locus with more than one allele. That is, we found one dance type to be dominant in the F(1), and observed a 1:1 segregation of dance in a backcross involving the F(1) and the recessive parent. However, we found some minor differences in dance dialect inheritance, with the most significant being an apparent reversal of dominance between our cross (for us "black" is the dominant dialect) and that of Rinderer and Beaman (1995) (they report "yellow" to be the dominant dialect). We also found that our black bees do not perform a distinct sickle dance, whereas the black bees used by Rinderer and Beaman (1995) did perform such a dance. However, our difference in dominance need not contradict the results of Rinderer and Beaman (1995), as there is no evidence that body color and dominance for dance dialect are linked.

  15. Brood removal or queen caging combined with oxalic acid treatment to control varroa mites (Varroa destructor) in honey bee colonies (Apis mellifera)

    Science.gov (United States)

    Few studies of honey bee colonies exist where varroa mite control is achieved by integrating broodless conditions, through either total brood removal or queen caging, in combination with oxalic acid (OA) applications. We observed significant varroa mortality after applications of OA in obtaining bro...

  16. Using an adverse outcome pathway network to describe the weight of evidence linking nicotinic acetylcholine receptor activation to honey bee colony failure

    Science.gov (United States)

    Significant and unsustainable losses of managed honey bee (Apis mellifera) colonies have been documented over recent years, which have led to scientific investigation to determine the contributing factors. Evidence suggests that both chemical and non-chemical stressors play a rol...

  17. Weight of evidence evaluation of a network of adverse outcome pathways linking activation of the nicotinic acetylcholine receptor in honey bees to colony death

    Science.gov (United States)

    Ongoing honey bee colony losses are of significant international concern because of the essential role these insects play in pollinating many high nutrient crops, such as fruits, vegetables, and nuts. Both chemical and non-chemical stressors have been implicated as possible cont...

  18. Evaluation of pollen collected by honey bee, Apis mellifera L. colonies at Fayoum Governorate, Egypt. Part 1: Botanical origin

    Directory of Open Access Journals (Sweden)

    Abdel-Halim M. Ismail

    2013-06-01

    Full Text Available The present work is the 1st part of 3-part study carried out at Fayoum Governorate, Egypt to evaluate the pollen species collected by honey bee, Apis mellifera L., colonies during two successive years, 2009 and 2010. Obtained results showed that, in 2009, total amount of trapped pollen (fresh weight was 2354.89 g/colony/year (mean 588.72 g/colony/season, with peaks in summer and spring, while declined in autumn and winter. Correlation between mean maximum and minimum temperatures and weekly pollen weights was highly positive, while it was insignificant for relative humidity. In 2010, total amount of trapped pollen decreased to 1635.36 g/colony/year (mean 408.84 g/colony/season. The largest amounts were collected in summer followed by winter then spring, while least ones were in autumn. Correlation was highly positive between weekly mean of pollen weights and maximum temperature, while it was insignificant for minimum temperature or relative humidity. There were 24 plant species of 16 botanical families from which bees collected pollen. These sources were ranked according to their predominant quantities in the 1st and 2nd years by two numbers, respectively as the following: sesame 1 and 1, maize 2 and 2, clover 3 and 7, sunflower 4 and 8, wild mustard 5 and 3, casuarina 6 and 13, olive 7 and 11, eucalyptus 8 and 4, pumpkin 9 and 9, cocklebur 10 and 5, date palm 11 and 10, chamomile 12 and 12, field bindweed 13 and 6, pepper 14 and 20, coriander 15 and 16, acacia 16 and 24, citrus 17 and 0, marigold 18 and 0, common red 19 and 17, Christ’s thorn 20 and 22, tooth pick 21 and 21, brood bean 22 and 15, belladonna 23 and 23, pea 0 and 14, marjoram 0 and 18 and fennel 0 and 19. The 1st five plants seem to be the main pollen sources for honey bee colonies and consequently pollen producing during the whole year in the tested region. These sources represented 75.61% and 66.95% of the total annual yield in the two surveyed years, respectively.

  19. Honey Bee Colonies Headed by Hyperpolyandrous Queens Have Improved Brood Rearing Efficiency and Lower Infestation Rates of Parasitic Varroa Mites.

    Directory of Open Access Journals (Sweden)

    Keith S Delaplane

    Full Text Available A honey bee queen mates on wing with an average of 12 males and stores their sperm to produce progeny of mixed paternity. The degree of a queen's polyandry is positively associated with measures of her colony's fitness, and observed distributions of mating number are evolutionary optima balancing risks of mating flights against benefits to the colony. Effective mating numbers as high as 40 have been documented, begging the question of the upper bounds of this behavior that can be expected to confer colony benefit. In this study we used instrumental insemination to create three classes of queens with exaggerated range of polyandry--15, 30, or 60 drones. Colonies headed by queens inseminated with 30 or 60 drones produced more brood per bee and had a lower proportion of samples positive for Varroa destructor mites than colonies whose queens were inseminated with 15 drones, suggesting benefits of polyandry at rates higher than those normally obtaining in nature. Our results are consistent with two hypotheses that posit conditions that reward such high expressions of polyandry: (1 a queen may mate with many males in order to promote beneficial non-additive genetic interactions among subfamilies, and (2 a queen may mate with many males in order to capture a large number of rare alleles that regulate resistance to pathogens and parasites in a breeding population. Our results are unique for identifying the highest levels of polyandry yet detected that confer colony-level benefit and for showing a benefit of polyandry in particular toward the parasitic mite V. destructor.

  20. Honey bee hemocyte profiling by flow cytometry.

    Science.gov (United States)

    Marringa, William J; Krueger, Michael J; Burritt, Nancy L; Burritt, James B

    2014-01-01

    Multiple stress factors in honey bees are causing loss of bee colonies worldwide. Several infectious agents of bees are believed to contribute to this problem. The mechanisms of honey bee immunity are not completely understood, in part due to limited information about the types and abundances of hemocytes that help bees resist disease. Our study utilized flow cytometry and microscopy to examine populations of hemolymph particulates in honey bees. We found bee hemolymph includes permeabilized cells, plasmatocytes, and acellular objects that resemble microparticles, listed in order of increasing abundance. The permeabilized cells and plasmatocytes showed unexpected differences with respect to properties of the plasma membrane and labeling with annexin V. Both permeabilized cells and plasmatocytes failed to show measurable mitochondrial membrane potential by flow cytometry using the JC-1 probe. Our results suggest hemolymph particulate populations are dynamic, revealing significant differences when comparing individual hive members, and when comparing colonies exposed to diverse conditions. Shifts in hemocyte populations in bees likely represent changing conditions or metabolic differences of colony members. A better understanding of hemocyte profiles may provide insight into physiological responses of honey bees to stress factors, some of which may be related to colony failure.

  1. Regional distribution of Paenibacillus larvae subspecies larvae, the causative organism of American foulbrood, in honey bee colonies of the Western United States.

    Science.gov (United States)

    Eischen, Frank A; Graham, R Henry; Cox, Robert

    2005-08-01

    We examined honey bee, Apis mellifera L., colonies pollinating almonds in California during February 2003 for Paenibacillus larvae subsp. Larvae, the causative organism of the virulent brood disease American foulbrood. Colonies originating from the Rocky Mountain area and California had significantly higher numbers (P bees, respectively) than colonies from the upper Midwest (1.28). Colonies from the northwestern, central, and southwestern United States had intermediate CFU or bacterial colony levels. Operations positive for P. larvae larvae were relatively uniform at approximately 70-80%, and no regional significant differences were found. Percentages of colonies with high CFUs (> or = 400 per 30 bees) differed significantly, with those from the Rocky Mountain region having 8.73% compared with those of the upper Midwest with 0%. The significance of CFU levels was evaluated by inoculating healthy colonies with diseased immatures and sampling adult bees. The number of CFUs detected per diseased immature was conservatively estimated to be approximately 399 CFUs per 30 adult bees. We defined this spore level as 1 disease equivalent. Based on this, 3.86% colonies in our survey had 1 or more disease equivalent number of P. larvae larvae CFUs. Operations with high P. larvae larvae spore levels in their colonies will likely observe American foulbrood if prophylaxis is not practiced diligently.

  2. Honey Bee Inhibitory Signaling Is Tuned to Threat Severity and Can Act as a Colony Alarm Signal.

    Directory of Open Access Journals (Sweden)

    Ken Tan

    2016-03-01

    Full Text Available Alarm communication is a key adaptation that helps social groups resist predation and rally defenses. In Asia, the world's largest hornet, Vespa mandarinia, and the smaller hornet, Vespa velutina, prey upon foragers and nests of the Asian honey bee, Apis cerana. We attacked foragers and colony nest entrances with these predators and provide the first evidence, in social insects, of an alarm signal that encodes graded danger and attack context. We show that, like Apis mellifera, A. cerana possesses a vibrational "stop signal," which can be triggered by predator attacks upon foragers and inhibits waggle dancing. Large hornet attacks were more dangerous and resulted in higher bee mortality. Per attack at the colony level, large hornets elicited more stop signals than small hornets. Unexpectedly, stop signals elicited by large hornets (SS large hornet had a significantly higher vibrational fundamental frequency than those elicited by small hornets (SS small hornet and were more effective at inhibiting waggle dancing. Stop signals resulting from attacks upon the nest entrance (SS nest were produced by foragers and guards and were significantly longer in pulse duration than stop signals elicited by attacks upon foragers (SS forager. Unlike SS forager, SS nest were targeted at dancing and non-dancing foragers and had the common effect, tuned to hornet threat level, of inhibiting bee departures from the safe interior of the nest. Meanwhile, nest defenders were triggered by the bee alarm pheromone and live hornet presence to heat-ball the hornet. In A. cerana, sophisticated recruitment communication that encodes food location, the waggle dance, is therefore matched with an inhibitory/alarm signal that encodes information about the context of danger and its threat level.

  3. Honey Bee Inhibitory Signaling Is Tuned to Threat Severity and Can Act as a Colony Alarm Signal.

    Science.gov (United States)

    Tan, Ken; Dong, Shihao; Li, Xinyu; Liu, Xiwen; Wang, Chao; Li, Jianjun; Nieh, James C

    2016-03-01

    Alarm communication is a key adaptation that helps social groups resist predation and rally defenses. In Asia, the world's largest hornet, Vespa mandarinia, and the smaller hornet, Vespa velutina, prey upon foragers and nests of the Asian honey bee, Apis cerana. We attacked foragers and colony nest entrances with these predators and provide the first evidence, in social insects, of an alarm signal that encodes graded danger and attack context. We show that, like Apis mellifera, A. cerana possesses a vibrational "stop signal," which can be triggered by predator attacks upon foragers and inhibits waggle dancing. Large hornet attacks were more dangerous and resulted in higher bee mortality. Per attack at the colony level, large hornets elicited more stop signals than small hornets. Unexpectedly, stop signals elicited by large hornets (SS large hornet) had a significantly higher vibrational fundamental frequency than those elicited by small hornets (SS small hornet) and were more effective at inhibiting waggle dancing. Stop signals resulting from attacks upon the nest entrance (SS nest) were produced by foragers and guards and were significantly longer in pulse duration than stop signals elicited by attacks upon foragers (SS forager). Unlike SS forager, SS nest were targeted at dancing and non-dancing foragers and had the common effect, tuned to hornet threat level, of inhibiting bee departures from the safe interior of the nest. Meanwhile, nest defenders were triggered by the bee alarm pheromone and live hornet presence to heat-ball the hornet. In A. cerana, sophisticated recruitment communication that encodes food location, the waggle dance, is therefore matched with an inhibitory/alarm signal that encodes information about the context of danger and its threat level.

  4. A Bio-Economic Case Study of Canadian Honey Bee (Hymenoptera: Apidae) Colonies: Marker-Assisted Selection (MAS) in Queen Breeding Affects Beekeeper Profits

    Science.gov (United States)

    Baylis, Kathy; Hoover, Shelley E.; Currie, Rob W.; Melathopoulos, Andony P.; Pernal, Stephen F.; Foster, Leonard J.; Guarna, M. Marta

    2017-01-01

    Abstract Over the past decade in North America and Europe, winter losses of honey bee (Hymenoptera: Apidae) colonies have increased dramatically. Scientific consensus attributes these losses to multifactorial causes including altered parasite and pathogen profiles, lack of proper nutrition due to agricultural monocultures, exposure to pesticides, management, and weather. One method to reduce colony loss and increase productivity is through selective breeding of queens to produce disease-, pathogen-, and mite-resistant stock. Historically, the only method for identifying desirable traits in honey bees to improve breeding was through observation of bee behavior. A team of Canadian scientists have recently identified markers in bee antennae that correspond to behavioral traits in bees and can be tested for in a laboratory. These scientists have demonstrated that this marker-assisted selection (MAS) can be used to produce hygienic, pathogen-resistant honey bee colonies. Based on this research, we present a beekeeping case study where a beekeeper’s profit function is used to evaluate the economic impact of adopting colonies selected for hygienic behavior using MAS into an apiary. Our results show a net profit gain from an MAS colony of between 2% and 5% when Varroa mites are effectively treated. In the case of ineffective treatment, MAS generates a net profit benefit of between 9% and 96% depending on the Varroa load. When a Varroa mite population has developed some treatment resistance, we show that MAS colonies generate a net profit gain of between 8% and 112% depending on the Varroa load and degree of treatment resistance. PMID:28334400

  5. A Bio-Economic Case Study of Canadian Honey Bee (Hymenoptera: Apidae) Colonies: Marker-Assisted Selection (MAS) in Queen Breeding Affects Beekeeper Profits.

    Science.gov (United States)

    Bixby, Miriam; Baylis, Kathy; Hoover, Shelley E; Currie, Rob W; Melathopoulos, Andony P; Pernal, Stephen F; Foster, Leonard J; Guarna, M Marta

    2017-06-01

    Over the past decade in North America and Europe, winter losses of honey bee (Hymenoptera: Apidae) colonies have increased dramatically. Scientific consensus attributes these losses to multifactorial causes including altered parasite and pathogen profiles, lack of proper nutrition due to agricultural monocultures, exposure to pesticides, management, and weather. One method to reduce colony loss and increase productivity is through selective breeding of queens to produce disease-, pathogen-, and mite-resistant stock. Historically, the only method for identifying desirable traits in honey bees to improve breeding was through observation of bee behavior. A team of Canadian scientists have recently identified markers in bee antennae that correspond to behavioral traits in bees and can be tested for in a laboratory. These scientists have demonstrated that this marker-assisted selection (MAS) can be used to produce hygienic, pathogen-resistant honey bee colonies. Based on this research, we present a beekeeping case study where a beekeeper's profit function is used to evaluate the economic impact of adopting colonies selected for hygienic behavior using MAS into an apiary. Our results show a net profit gain from an MAS colony of between 2% and 5% when Varroa mites are effectively treated. In the case of ineffective treatment, MAS generates a net profit benefit of between 9% and 96% depending on the Varroa load. When a Varroa mite population has developed some treatment resistance, we show that MAS colonies generate a net profit gain of between 8% and 112% depending on the Varroa load and degree of treatment resistance. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  6. The Plight of the Honey Bee

    Science.gov (United States)

    Hockridge, Emma

    2010-01-01

    The decline of colonies of honey bees across the world is threatening local plant biodiversity and human food supplies. Neonicotinoid pesticides have been implicated as a major cause of the problem and are banned or suspended in several countries. Other factors could also be lowering the resistance of bees to opportunist infections by, for…

  7. Virus Status, Varroa Levels, and Survival of 20 Managed Honey Bee Colonies Monitored in Luxembourg Between the Summer of 2011 and the Spring of 2013

    Directory of Open Access Journals (Sweden)

    Clermont Antoine

    2015-06-01

    Full Text Available Twenty managed honey bee colonies, split between 5 apiaries with 4 hives each, were monitored between the summer of 2011 and spring of 2013. Living bees were sampled in July 2011, July 2012, and August 2012. Twenty-five, medium-aged bees, free of varroa mites, were pooled per colony and date, to form one sample. Unlike in France and Belgium, Chronic Bee Paralysis Virus (CBPV has not been found in Luxembourg. Slow Bee Paralysis Virus (SBPV and Israeli Acute Paralysis Virus (IAPV levels were below detection limits. Traces of Kashmir Bee Virus (KBV were amplified. Black Queen Cell Virus (BQCV, Varroa destructor Virus-1 (VDV-1, and SacBrood Virus (SBV were detected in all samples and are reported from Luxembourg for the first time. Varroa destructor Macula- Like Virus (VdMLV, Deformed Wing Virus (DWV, and Acute Bee Paralysis Virus (ABPV were detected at all locations, and in most but not all samples. There was a significant increase in VDV-1 and DWV levels within the observation period. A principal component analysis was unable to separate the bees of colonies that survived the following winter from bees that died, based on their virus contents in summer. The number of dead varroa mites found below colonies was elevated in colonies that died in the following winter. Significant positive relationships were found between the log-transformed virus levels of the bees and the log-transformed number of mites found below the colonies per week, for VDV-1 and DWV. Sacbrood virus levels were independent of varroa levels, suggesting a neutral or competitive relationship between this virus and varroa.

  8. Metal contaminant accumulation in the hive: Consequences for whole-colony health and brood production in the honey bee (Apis mellifera L.).

    Science.gov (United States)

    Hladun, Kristen R; Di, Ning; Liu, Tong-Xian; Trumble, John T

    2016-02-01

    Metal pollution has been increasing rapidly over the past century, and at the same time, the human population has continued to rise and produce contaminants that may negatively impact pollinators. Honey bees (Apis mellifera L.) forage over large areas and can collect contaminants from the environment. The primary objective of the present study was to determine whether the metal contaminants cadmium (Cd), copper (Cu), lead (Pb), and selenium (Se) can have a detrimental effect on whole-colony health in the managed pollinator A. mellifera. The authors isolated small nucleus colonies under large cages and fed them an exclusive diet of sugar syrup and pollen patty spiked with Cd, Cu, Pb, and Se or a control (no additional metal). Treatment levels were based on concentrations in honey and pollen from contaminated hives around the world. They measured whole-colony health including wax, honey, and brood production; colony weight; brood survival; and metal accumulation in various life stages. Colonies treated with Cd or Cu contained more dead pupae within capped cells compared with control, and Se-treated colonies had lower total worker weights compared to control. Lead had a minimal effect on colony performance, although many members of the hive accumulated significant quantities of the metal. By examining the honey bee as a social organism through whole-colony assessments of toxicity, the authors found that the distribution of toxicants throughout the colony varied from metal to metal, some caste members were more susceptible to certain metals, and the colony's ability to grow over time may have been reduced in the presence of Se. Apiaries residing near metal-contaminated areas may be at risk and can suffer changes in colony dynamics and survival. © 2015 SETAC.

  9. Brood pheromone effects on colony protein supplement consumption and growth in the honey bee (Hymenoptera: Apidae) in a subtropical winter climate.

    Science.gov (United States)

    Pankiw, Tanya; Sagili, Ramesh R; Metz, Bradley N

    2008-12-01

    Fatty acid esters extractable from the surface of honey bee, Apis mellifera L. (Hymenoptera: Apidae), larvae, called brood pheromone, significantly increase rate of colony growth in the spring and summer when flowering plant pollen is available in the foraging environment. Increased colony growth rate occurs as a consequence of increased pollen intake through mechanisms such as increasing number of pollen foragers and pollen load weights returned. Here, we tested the hypothesis that addition of brood pheromone during the winter pollen dearth period of a humid subtropical climate increases rate of colony growth in colonies provisioned with a protein supplement. Experiments were conducted in late winter (9 February-9 March 2004) and mid-winter (19 January-8 February 2005). In both years, increased brood area, number of bees, and amount of protein supplement consumption were significantly greater in colonies receiving daily treatments of brood pheromone versus control colonies. Amount of extractable protein from hypopharyngeal glands measured in 2005 was significantly greater in bees from pheromone-treated colonies. These results suggest that brood pheromone may be used as a tool to stimulate colony growth in the southern subtropical areas of the United States where the package bee industry is centered and a large proportion of migratory colonies are overwintered.

  10. Honey bee surveillance: a tool for understanding and improving honey bee health.

    Science.gov (United States)

    Lee, Kathleen; Steinhauer, Nathalie; Travis, Dominic A; Meixner, Marina D; Deen, John; vanEngelsdorp, Dennis

    2015-08-01

    Honey bee surveillance systems are increasingly used to characterize honey bee health and disease burdens of bees in different regions and/or over time. In addition to quantifying disease prevalence, surveillance systems can identify risk factors associated with colony morbidity and mortality. Surveillance systems are often observational, and prove particularly useful when searching for risk factors in real world complex systems. We review recent examples of surveillance systems with particular emphasis on how these efforts have helped increase our understanding of honey bee health. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Lower virus infections in Varroa destructor-infested and uninfested brood and adult honey bees (Apis mellifera) of a low mite population growth colony compared to a high mite population growth colony.

    Science.gov (United States)

    Emsen, Berna; Hamiduzzaman, Mollah Md; Goodwin, Paul H; Guzman-Novoa, Ernesto

    2015-01-01

    A comparison was made of the prevalence and relative quantification of deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV), Kashmir bee virus (KBV), acute bee paralysis virus (ABPV) and sac brood virus (SBV) in brood and adult honey bees (Apis mellifera) from colonies selected for high (HMP) and low (LMP) Varroa destructor mite population growth. Two viruses, ABPV and SBV, were never detected. For adults without mite infestation, DWV, IAPV, BQCV and KBV were detected in the HMP colony; however, only BQCV was detected in the LMP colony but at similar levels as in the HMP colony. With mite infestation, the four viruses were detected in adults of the HMP colony but all at higher amounts than in the LMP colony. For brood without mite infestation, DWV and IAPV were detected in the HMP colony, but no viruses were detected in the LMP colony. With mite infestation of brood, the four viruses were detected in the HMP colony, but only DWV and IAPV were detected and at lower amounts in the LMP colony. An epidemiological explanation for these results is that pre-experiment differences in virus presence and levels existed between the HMP and LMP colonies. It is also possible that low V. destructor population growth in the LMP colony resulted in the bees being less exposed to the mite and thus less likely to have virus infections. LMP and HMP bees may have also differed in susceptibility to virus infection.

  12. Lower Virus Infections in Varroa destructor-Infested and Uninfested Brood and Adult Honey Bees (Apis mellifera) of a Low Mite Population Growth Colony Compared to a High Mite Population Growth Colony

    Science.gov (United States)

    Emsen, Berna; Hamiduzzaman, Mollah Md.; Goodwin, Paul H.; Guzman-Novoa, Ernesto

    2015-01-01

    A comparison was made of the prevalence and relative quantification of deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV), Kashmir bee virus (KBV), acute bee paralysis virus (ABPV) and sac brood virus (SBV) in brood and adult honey bees (Apis mellifera) from colonies selected for high (HMP) and low (LMP) Varroa destructor mite population growth. Two viruses, ABPV and SBV, were never detected. For adults without mite infestation, DWV, IAPV, BQCV and KBV were detected in the HMP colony; however, only BQCV was detected in the LMP colony but at similar levels as in the HMP colony. With mite infestation, the four viruses were detected in adults of the HMP colony but all at higher amounts than in the LMP colony. For brood without mite infestation, DWV and IAPV were detected in the HMP colony, but no viruses were detected in the LMP colony. With mite infestation of brood, the four viruses were detected in the HMP colony, but only DWV and IAPV were detected and at lower amounts in the LMP colony. An epidemiological explanation for these results is that pre-experiment differences in virus presence and levels existed between the HMP and LMP colonies. It is also possible that low V. destructor population growth in the LMP colony resulted in the bees being less exposed to the mite and thus less likely to have virus infections. LMP and HMP bees may have also differed in susceptibility to virus infection. PMID:25723540

  13. Risk factors associated with the presence of Varroa destructor in honey bee colonies from east-central Argentina.

    Science.gov (United States)

    Giacobino, A; Bulacio Cagnolo, N; Merke, J; Orellano, E; Bertozzi, E; Masciangelo, G; Pietronave, H; Salto, C; Signorini, M

    2014-08-01

    Varroa destructor is considered one of the major threats for worldwide apiculture. Damage caused by varroa mite includes body weight loss, malformation and weakening of the bees. It was also suggested as the main cause associated with colony winter mortality and as an important vector for several honey bee viruses. Little is known about multiple factors and their interaction affecting V. destructor prevalence in apiaries from South America. The aim of this study was to identify risk factors associated with V. destructor prevalence in east-central Argentina. Parasitic mite infestation level and colony strength measures were evaluated in 63 apiaries distributed in 4 different regions in east-central Argentina in a cross sectional study. Data regarding management practices in each apiary were collected by means of a questionnaire. A mixed-effects logistic regression model was constructed to associate management variables with the risk of achieving mite infestation higher than 3%. Colonies owned by beekeepers who indicated that they did not monitor colonies after mite treatment (OR=2.305; 95% CI: 0.944-5.629) nor disinfect hives woodenware material (OR=2.722; 95% CI: 1.380-5.565) were associated with an increased risk of presenting high intensity infestation with V. destructor (>3%). On the other hand, beekeepers who reported replacing more than 50% of the queens in their operation (OR=0.305; 95% CI: 0.107-0.872), feeding colonies protein substitute containing natural pollen (OR=0.348; 95% CI: 0.129-0.941) and feeding colonies High Fructose Corn Syrup (HFCS) (OR=0.108; 95% CI: 0.032-0.364), had colonies that were less likely to have V. destructor infestations above 3%, than beekeepers who did not report using these management practices. Further research should be conducted considering that certain management practices were associated to mite infestation level in order to improve the sanitary condition in the colonies. Epidemiological studies provide key information to

  14. A four-year field program investigating long-term effects of repeated exposure of honey bee colonies to flowering crops treated with thiamethoxam.

    Directory of Open Access Journals (Sweden)

    Edward Pilling

    Full Text Available Neonicotinoid residues in nectar and pollen from crop plants have been implicated as one of the potential factors causing the declines of honey bee populations. Median residues of thiamethoxam in pollen collected from honey bees after foraging on flowering seed treated maize were found to be between 1 and 7 µg/kg, median residues of the metabolite CGA322704 (clothianidin in the pollen were between 1 and 4 µg/kg. In oilseed rape, median residues of thiamethoxam found in pollen collected from bees were between <1 and 3.5 µg/kg and in nectar from foraging bees were between 0.65 and 2.4 µg/kg. Median residues of CGA322704 in pollen and nectar in the oilseed rape trials were all below the limit of quantification (1 µg/kg. Residues in the hive were even lower in both the maize and oilseed rape trials, being at or below the level of detection of 1 µg/kg for bee bread in the hive and at or below the level of detection of 0.5 µg/kg for hive nectar, honey and royal jelly samples. The long-term risk to honey bee colonies in the field was also investigated, including the sensitive overwintering stage, from four years consecutive single treatment crop exposures to flowering maize and oilseed rape grown from thiamethoxam treated seeds at rates recommended for insect control. Throughout the study, mortality, foraging behavior, colony strength, colony weight, brood development and food storage levels were similar between treatment and control colonies. Detailed examination of brood development throughout the year demonstrated that colonies exposed to the treated crop were able to successfully overwinter and had a similar health status to the control colonies in the following spring. We conclude that these data demonstrate there is a low risk to honey bees from systemic residues in nectar and pollen following the use of thiamethoxam as a seed treatment on oilseed rape and maize.

  15. A Four-Year Field Program Investigating Long-Term Effects of Repeated Exposure of Honey Bee Colonies to Flowering Crops Treated with Thiamethoxam

    Science.gov (United States)

    Pilling, Edward; Campbell, Peter; Coulson, Mike; Ruddle, Natalie; Tornier, Ingo

    2013-01-01

    Neonicotinoid residues in nectar and pollen from crop plants have been implicated as one of the potential factors causing the declines of honey bee populations. Median residues of thiamethoxam in pollen collected from honey bees after foraging on flowering seed treated maize were found to be between 1 and 7 µg/kg, median residues of the metabolite CGA322704 (clothianidin) in the pollen were between 1 and 4 µg/kg. In oilseed rape, median residues of thiamethoxam found in pollen collected from bees were between <1 and 3.5 µg/kg and in nectar from foraging bees were between 0.65 and 2.4 µg/kg. Median residues of CGA322704 in pollen and nectar in the oilseed rape trials were all below the limit of quantification (1 µg/kg). Residues in the hive were even lower in both the maize and oilseed rape trials, being at or below the level of detection of 1 µg/kg for bee bread in the hive and at or below the level of detection of 0.5 µg/kg for hive nectar, honey and royal jelly samples. The long-term risk to honey bee colonies in the field was also investigated, including the sensitive overwintering stage, from four years consecutive single treatment crop exposures to flowering maize and oilseed rape grown from thiamethoxam treated seeds at rates recommended for insect control. Throughout the study, mortality, foraging behavior, colony strength, colony weight, brood development and food storage levels were similar between treatment and control colonies. Detailed examination of brood development throughout the year demonstrated that colonies exposed to the treated crop were able to successfully overwinter and had a similar health status to the control colonies in the following spring. We conclude that these data demonstrate there is a low risk to honey bees from systemic residues in nectar and pollen following the use of thiamethoxam as a seed treatment on oilseed rape and maize. PMID:24194871

  16. Effects of honey bee (Hymenoptera: Apidae) and bumble bee (Hymenoptera: Apidae) presence on cranberry (Ericales: Ericaceae) pollination.

    Science.gov (United States)

    Evans, E C; Spivak, M

    2006-06-01

    Honey bees, Apis mellifera L., are frequently used to pollinate commercial cranberries, Vaccinium macrocarpon Ait., but information is lacking on the relative contribution of honey bees and native bees, the effects of surrounding vegetation on bee visitation, and on optimal timing for honey bee introduction. We begin with a descriptive study of numbers of honey bees, bumble bees, and other bees visiting cranberry blossoms, and their subsequent effect on cranberry yield, on three cranberry properties in 1999. The property surrounded by agricultural land, as opposed to wetlands and woodlands, had fewer numbers of all bee types. In 2000, one property did not introduce honey bee colonies, providing an opportunity to document the effect of lack of honey bees on yield. With no honey bees, plants along the edge of the bed had significantly higher berry weights compared with nonedge plants, suggesting that wild pollinators were only effective along the edge. Comparing the same bed between 1999, with three honey bee colonies per acre, and 2000, with no honey bees, we found a significant reduction in average berry size. In 2000, we compared stigma loading on properties with and without honey bees. Significantly more stigmas received the minimum number of tetrads required for fruit set on the property with honey bees. Significantly more tetrads were deposited during mid-bloom compared with early bloom, indicating that mid-bloom was the best time to have honey bees present. This study emphasizes the importance and effectiveness of honey bees as pollinators of commercial size cranberry plantings.

  17. Retrospective study of the Nosema ceranae infection of honey bee colonies in Iran (2004-2013

    Directory of Open Access Journals (Sweden)

    Modirrousta, H.

    2014-11-01

    Full Text Available Nosemosis is the most common disease in adult bees. Nosema apis and Nosema ceranae species are agents of important economic losses to beekeepers around the world. The severity of disease at various area is different. Previously, N. apis was observed in areas with a long winter, especially in late winter and early spring. But in recent years, disease has been reported in the warm seasons. The studies indicated that a new species as N. ceranae is involvement in loss and mortality in adult bees. Therefore, diagnosis and differentiation of Nosema species is importance at colony collapse disorders (CCD. The aim of this Research was a retrospective study on Nosema samples isolated from apiaries. Forty- one Nosema Sp. Positive samples were collected from five provinces during 2004 to 2013. The samples were tested by multiplex PCR method using both primers of N. ceranea and N. apis were simultaneously. All of samples were positive for N. ceranea. The products were sent for sequencing. The results show that N. ceranea has spread in Iran, from previous years almost simultaneously with other parts of the world.

  18. Honey Bee Infecting Lake Sinai Viruses.

    Science.gov (United States)

    Daughenbaugh, Katie F; Martin, Madison; Brutscher, Laura M; Cavigli, Ian; Garcia, Emma; Lavin, Matt; Flenniken, Michelle L

    2015-06-23

    Honey bees are critical pollinators of important agricultural crops. Recently, high annual losses of honey bee colonies have prompted further investigation of honey bee infecting viruses. To better characterize the recently discovered and very prevalent Lake Sinai virus (LSV) group, we sequenced currently circulating LSVs, performed phylogenetic analysis, and obtained images of LSV2. Sequence analysis resulted in extension of the LSV1 and LSV2 genomes, the first detection of LSV4 in the US, and the discovery of LSV6 and LSV7. We detected LSV1 and LSV2 in the Varroa destructor mite, and determined that a large proportion of LSV2 is found in the honey bee gut, suggesting that vector-mediated, food-associated, and/or fecal-oral routes may be important for LSV dissemination. Pathogen-specific quantitative PCR data, obtained from samples collected during a small-scale monitoring project, revealed that LSV2, LSV1, Black queen cell virus (BQCV), and Nosema ceranae were more abundant in weak colonies than strong colonies within this sample cohort. Together, these results enhance our current understanding of LSVs and illustrate the importance of future studies aimed at investigating the role of LSVs and other pathogens on honey bee health at both the individual and colony levels.

  19. Honey Bee Infecting Lake Sinai Viruses

    Directory of Open Access Journals (Sweden)

    Katie F. Daughenbaugh

    2015-06-01

    Full Text Available Honey bees are critical pollinators of important agricultural crops. Recently, high annual losses of honey bee colonies have prompted further investigation of honey bee infecting viruses. To better characterize the recently discovered and very prevalent Lake Sinai virus (LSV group, we sequenced currently circulating LSVs, performed phylogenetic analysis, and obtained images of LSV2. Sequence analysis resulted in extension of the LSV1 and LSV2 genomes, the first detection of LSV4 in the US, and the discovery of LSV6 and LSV7. We detected LSV1 and LSV2 in the Varroa destructor mite, and determined that a large proportion of LSV2 is found in the honey bee gut, suggesting that vector-mediated, food-associated, and/or fecal-oral routes may be important for LSV dissemination. Pathogen-specific quantitative PCR data, obtained from samples collected during a small-scale monitoring project, revealed that LSV2, LSV1, Black queen cell virus (BQCV, and Nosema ceranae were more abundant in weak colonies than strong colonies within this sample cohort. Together, these results enhance our current understanding of LSVs and illustrate the importance of future studies aimed at investigating the role of LSVs and other pathogens on honey bee health at both the individual and colony levels.

  20. Video Tracking Protocol to Screen Deterrent Chemistries for Honey Bees.

    Science.gov (United States)

    Larson, Nicholas R; Anderson, Troy D

    2017-06-12

    The European honey bee, Apis mellifera L., is an economically and agriculturally important pollinator that generates billions of dollars annually. Honey bee colony numbers have been declining in the United States and many European countries since 1947. A number of factors play a role in this decline, including the unintentional exposure of honey bees to pesticides. The development of new methods and regulations are warranted to reduce pesticide exposures to these pollinators. One approach is the use of repellent chemistries that deter honey bees from a recently pesticide-treated crop. Here, we describe a protocol to discern the deterrence of honey bees exposed to select repellent chemistries. Honey bee foragers are collected and starved overnight in an incubator 15 h prior to testing. Individual honey bees are placed into Petri dishes that have either a sugar-agarose cube (control treatment) or sugar-agarose-compound cube (repellent treatment) placed into the middle of the dish. The Petri dish serves as the arena that is placed under a camera in a light box to record the honey bee locomotor activities using video tracking software. A total of 8 control and 8 repellent treatments were analyzed for a 10 min period with each treatment was duplicated with new honey bees. Here, we demonstrate that honey bees are deterred from the sugar-agarose cubes with a compound treatment whereas honey bees are attracted to the sugar-agarose cubes without an added compound.

  1. The habitat disruption induces immune-suppression and oxidative stress in honey bees

    Science.gov (United States)

    Morimoto, Tomomi; Kojima, Yuriko; Toki, Taku; Komeda, Yayoi; Yoshiyama, Mikio; Kimura, Kiyoshi; Nirasawa, Keijiro; Kadowaki, Tatsuhiko

    2011-01-01

    The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycling of honey bee colonies. To understand the physiological states of honey bees used for long-term pollination in greenhouses, we characterized their gene expression profiles by microarray. We found that the greenhouse environment changes the gene expression profiles and induces immune-suppression and oxidative stress in honey bees. In fact, the increase of the number of Nosema microsporidia and protein carbonyl content was observed in honey bees during pollination in greenhouses. Thus, honey bee colonies are likely to collapse during pollination in greenhouses when heavily infested with pathogens. Degradation of honey bee habitat by changing the outside environment of the colony, during pollination services for example, imposes negative impacts on honey bees. Thus, worldwide use of honey bees for crop pollination in general could be one of reasons for the decline of managed honey bee colonies. PMID:22393496

  2. Parasite pressures on feral honey bees (Apis mellifera sp..

    Directory of Open Access Journals (Sweden)

    Catherine E Thompson

    Full Text Available Feral honey bee populations have been reported to be in decline due to the spread of Varroa destructor, an ectoparasitic mite that when left uncontrolled leads to virus build-up and colony death. While pests and diseases are known causes of large-scale managed honey bee colony losses, no studies to date have considered the wider pathogen burden in feral colonies, primarily due to the difficulty in locating and sampling colonies, which often nest in inaccessible locations such as church spires and tree tops. In addition, little is known about the provenance of feral colonies and whether they represent a reservoir of Varroa tolerant material that could be used in apiculture. Samples of forager bees were collected from paired feral and managed honey bee colonies and screened for the presence of ten honey bee pathogens and pests using qPCR. Prevalence and quantity was similar between the two groups for the majority of pathogens, however feral honey bees contained a significantly higher level of deformed wing virus than managed honey bee colonies. An assessment of the honey bee race was completed for each colony using three measures of wing venation. There were no apparent differences in wing morphometry between feral and managed colonies, suggesting feral colonies could simply be escapees from the managed population. Interestingly, managed honey bee colonies not treated for Varroa showed similar, potentially lethal levels of deformed wing virus to that of feral colonies. The potential for such findings to explain the large fall in the feral population and the wider context of the importance of feral colonies as potential pathogen reservoirs is discussed.

  3. Parasite pressures on feral honey bees (Apis mellifera sp.).

    Science.gov (United States)

    Thompson, Catherine E; Biesmeijer, Jacobus C; Allnutt, Theodore R; Pietravalle, Stéphane; Budge, Giles E

    2014-01-01

    Feral honey bee populations have been reported to be in decline due to the spread of Varroa destructor, an ectoparasitic mite that when left uncontrolled leads to virus build-up and colony death. While pests and diseases are known causes of large-scale managed honey bee colony losses, no studies to date have considered the wider pathogen burden in feral colonies, primarily due to the difficulty in locating and sampling colonies, which often nest in inaccessible locations such as church spires and tree tops. In addition, little is known about the provenance of feral colonies and whether they represent a reservoir of Varroa tolerant material that could be used in apiculture. Samples of forager bees were collected from paired feral and managed honey bee colonies and screened for the presence of ten honey bee pathogens and pests using qPCR. Prevalence and quantity was similar between the two groups for the majority of pathogens, however feral honey bees contained a significantly higher level of deformed wing virus than managed honey bee colonies. An assessment of the honey bee race was completed for each colony using three measures of wing venation. There were no apparent differences in wing morphometry between feral and managed colonies, suggesting feral colonies could simply be escapees from the managed population. Interestingly, managed honey bee colonies not treated for Varroa showed similar, potentially lethal levels of deformed wing virus to that of feral colonies. The potential for such findings to explain the large fall in the feral population and the wider context of the importance of feral colonies as potential pathogen reservoirs is discussed.

  4. Population Growth of Varroa destructor (Acari: Varroidae) in Colonies of Russian and Unselected Honey Bee (Hymenoptera: Apidae) Stocks as Related to Numbers of Foragers With Mites.

    Science.gov (United States)

    DeGrandi-Hoffman, Gloria; Ahumada, Fabiana; Danka, Robert; Chambers, Mona; DeJong, Emily Watkins; Hidalgo, Geoff

    2017-06-01

    Varroa (Varroa destructor Anderson and Trueman) is an external parasite of honey bees (Apis mellifera L.) and a leading cause of colony losses worldwide. Varroa populations can be controlled with miticides, but mite-resistant stocks such as the Russian honey bee (RHB) also are available. Russian honey bee and other mite-resistant stocks limit Varroa population growth by affecting factors that contribute to mite reproduction. However, mite population growth is not entirely due to reproduction. Numbers of foragers with mites (FWM) entering and leaving hives also affect the growth of mite populations. If FWM significantly contribute to Varroa population growth, mite numbers in RHB colonies might not differ from unselected lines (USL). Foragers with mites were monitored at the entrances of RHB and USL hives from August to November, 2015, at two apiary sites. At site 1, RHB colonies had fewer FWM than USL and smaller phoretic mite populations. Russian honey bee also had fewer infested brood cells and lower percentages with Varroa offspring than USL. At site 2, FWM did not differ between RHB and USL, and phoretic mite populations were not significantly different. At both sites, there were sharp increases in phoretic mite populations from September to November that corresponded with increasing numbers of FWM. Under conditions where FWM populations are similar between RHB and USL, attributes that contribute to mite resistance in RHB may not keep Varroa population levels below that of USL. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  5. Development of a user-friendly delivery method for the fungus Metarhizium anisopliae to control the ectoparasitic mite Varroa destructor in honey bee, Apis mellifera, colonies.

    Science.gov (United States)

    Kanga, Lambert H B; Adamczyk, John; Patt, Joseph; Gracia, Carlos; Cascino, John

    2010-12-01

    A user-friendly method to deliver Metarhizium spores to honey bee colonies for control of Varroa mites was developed and tested. Patty blend formulations protected the fungal spores at brood nest temperatures and served as an improved delivery system of the fungus to bee hives. Field trials conducted in 2006 in Texas using freshly harvested spores indicated that patty blend formulations of 10 g of conidia per hive (applied twice) significantly reduced the numbers of mites per adult bee, mites in sealed brood cells, and residual mites at the end of the 47-day experimental period. Colony development in terms of adult bee populations and brood production also improved. Field trials conducted in 2007 in Florida using less virulent spores produced mixed results. Patty blends of 10 g of conidia per hive (applied twice) were less successful in significantly reducing the number of mites per adult bee. However, hive survivorship and colony strength were improved, and the numbers of residual mites were significantly reduced at the end of the 42-day experimental period. The overall results from 2003 to 2008 field trials indicated that it was critical to have fungal spores with good germination, pathogenicity and virulence. We determined that fungal spores (1 × 10(10) viable spores per gram) with 98% germination and high pathogenicity (95% mite mortality at day 7) provided successful control of mite populations in established honey bee colonies at 10 g of conidia per hive (applied twice). Overall, microbial control of Varroa mite with M. anisopliae is feasible and could be a useful component of an integrated pest management program.

  6. Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection

    OpenAIRE

    Oddie, Melissa AY; Dahle, Bjørn Steinar; Neumann, Peter

    2017-01-01

    Background Managed, feral and wild populations of European honey bee subspecies, Apis mellifera, are currently facing severe colony losses globally. There is consensus that the ectoparasitic mite Varroa destructor, that switched hosts from the Eastern honey bee Apis cerana to the Western honey bee A. mellifera, is a key factor driving these losses. For >20 years, breeding efforts have not produced European honey bee colonies that can survive infestations without the need for mite control....

  7. Differential performance of honey bee colonies selected for bee-pollen production through instrumental insemination and free-mating technique

    Directory of Open Access Journals (Sweden)

    I.M. de Mattos

    Full Text Available ABSTRACT The use of bee-pollen as a nutritional supplement or as a production-enhancing agent in livestock has increased the demand for this product worldwide. Despite the current importance of this niche within the apiculture industry, few studies have addressed the pollen production. We tested the performance of free-mated (FM and instrumentally inseminated queens (IQ in order to establish the effect of different breeding systems on pollen production. The F1 generation of IQ queens produced 153.95±42.83g/day, showing a significant improvement on the pollen production (2.74 times when compared to the parental generation (51.83±7.84g/day. The F1 generation of free-mated queens produced 100.07±8.23 g/day, which increased by 1.78 times when compared to the parental generation. Furthermore, we observed a statistically significant difference between the pollen production between colonies from the IQ and FM treatments. This study suggests that inseminated queens should be considered by beekeepers that aim to increase pollen production.

  8. Consumption of tyrosine in royal jelly increases brain levels of dopamine and tyramine and promotes transition from normal to reproductive workers in queenless honey bee colonies.

    Science.gov (United States)

    Matsuyama, Syuhei; Nagao, Takashi; Sasaki, Ken

    2015-01-15

    Dopamine (DA) and tyramine (TA) have neurohormonal roles in the production of reproductive workers in queenless colonies of honey bees, but the regulation of these biogenic amines in the brain are still largely unclear. Nutrition is an important factor in promoting reproduction and might be involved in the regulation of these biogenic amines in the brain. To test this hypothesis, we examined the effect of oral treatments of tyrosine (Tyr; a common precursor of DA, TA and octopamine, and a component of royal jelly) in queenless workers and quantified the resulting production of biogenic amines. Tyrosine treatments enhanced the levels of DA, TA and their metabolites in the brain. Workers fed royal jelly had significantly larger brain levels of Tyr, DA, TA and the metabolites in the brains compared with those bees fed honey or sucrose (control). Treatment with Tyr also inhibited the behavior of workers outside of the hive and promoted ovarian development. These results suggest that there is a link between nutrition and the regulation of DA and TA in the brain to promote the production of reproductive workers in queenless honey bee colonies. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains

    Science.gov (United States)

    Otto, Clint R.; Roth, Cali; Carlson, Benjamin; Smart, Matthew

    2016-01-01

    Human reliance on insect pollination services continues to increase even as pollinator populations exhibit global declines. Increased commodity crop prices and federal subsidies for biofuel crops, such as corn and soybeans, have contributed to rapid land-use change in the US Northern Great Plains (NGP), changes that may jeopardize habitat for honey bees in a part of the country that supports >40% of the US colony stock. We investigated changes in biofuel crop production and grassland land covers surrounding ∼18,000 registered commercial apiaries in North and South Dakota from 2006 to 2014. We then developed habitat selection models to identify remotely sensed land-cover and land-use features that influence apiary site selection by Dakota beekeepers. Our study demonstrates a continual increase in biofuel crops, totaling 1.2 Mha, around registered apiary locations in North and South Dakota. Such crops were avoided by commercial beekeepers when selecting apiary sites in this region. Furthermore, our analysis reveals how grasslands that beekeepers target when selecting commercial apiary locations are becoming less common in eastern North and South Dakota, changes that may have lasting impact on pollinator conservation efforts. Our study highlights how land-use change in the NGP is altering the landscape in ways that are seemingly less conducive to beekeeping. Our models can be used to guide future conservation efforts highlighted in the US national pollinator health strategy by identifying areas that support high densities of commercial apiaries and that have exhibited significant land-use changes.

  10. The habitat disruption induces immune-suppression and oxidative stress in honey bees

    OpenAIRE

    Morimoto, Tomomi; Kojima, Yuriko; Toki, Taku; Komeda, Yayoi; Yoshiyama, Mikio; Kimura, Kiyoshi; Nirasawa, Keijiro; Kadowaki, Tatsuhiko

    2011-01-01

    The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycli...

  11. Polychlorinated biphenyls in honey bees

    Energy Technology Data Exchange (ETDEWEB)

    Morse, R.A.; Culliney, T.W.; Gutenmann, W.H.; Littman, C.B.; Lisk, D.J.

    1987-02-01

    Honey bees (Apis mellifera L.) may traverse a radius of several miles from their hives and contact innumerable surfaces during their collection of nectar, pollen, propolis and water. In the process, they may become contaminated with surface constituents which are indicative of the type of environmental pollution in their particular foraging area. Honey has also been analyzed as a possible indicator of heavy metal pollution. Insecticides used in the vicinity of bee hives have been found in bees and honey. It has been recently reported that appreciable concentrations of polychlorinated biphenyls (PCBs) have been found in honey bees sampled throughout Connecticut. In the work reported here, an analytical survey was conducted on PCBs in honey bees, honey, propolis and related samples in several states to learn the extent of contamination and possible sources.

  12. Are Dispersal Mechanisms Changing the Host-Parasite Relationship and Increasing the Virulence of Varroa destructor (Mesostigmata: Varroidae) in Managed Honey Bee (Hymenoptera: Apidae) Colonies?

    Science.gov (United States)

    DeGrandi-Hoffman, Gloria; Ahumada, Fabiana; Graham, Henry

    2017-08-01

    Varroa (Varroa destructor Anderson and Trueman) are a serious pest of European honey bees (Apis mellifera L.), and difficult to control in managed colonies. In our 11-mo longitudinal study, we applied multiple miticide treatments, yet mite numbers remained high and colony losses exceeded 55%. High mortality from varroa in managed apiaries is a departure from the effects of the mite in feral colonies where bees and varroa can coexist. Differences in mite survival strategies and dispersal mechanisms may be contributing factors. In feral colonies, mites can disperse through swarming. In managed apiaries, where swarming is reduced, mites disperse on foragers robbing or drifting from infested hives. Using a honey bee-varroa population model, we show that yearly swarming curtails varroa population growth, enabling colony survival for >5 yr. Without swarming, colonies collapsed by the third year. To disperse, varroa must attach to foragers that then enter other hives. We hypothesize that stress from parasitism and virus infection combined with effects that viruses have on cognitive function may contribute to forager drift and mite and virus dispersal. We also hypothesize that drifting foragers with mites can measurably increase mite populations. Simulations initialized with field data indicate that low levels of drifting foragers with mites can create sharp increases in mite populations in the fall and heavily infested colonies in the spring. We suggest new research directions to investigate factors leading to mite dispersal on foragers, and mite management strategies with consideration of varroa as a migratory pest. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  13. RNAi and Antiviral Defense in the Honey Bee

    Science.gov (United States)

    Brutscher, Laura M.; Flenniken, Michelle L.

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans. PMID:26798663

  14. RNAi and Antiviral Defense in the Honey Bee

    Directory of Open Access Journals (Sweden)

    Laura M. Brutscher

    2015-01-01

    Full Text Available Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD- affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans.

  15. Genetic stock identification of Russian honey bees.

    Science.gov (United States)

    Bourgeois, Lelania; Sheppard, Walter S; Sylvester, H Allen; Rinderer, Thomas E

    2010-06-01

    A genetic stock certification assay was developed to distinguish Russian honey bees from other European (Apis mellifera L.) stocks that are commercially produced in the United States. In total, 11 microsatellite and five single-nucleotide polymorphism loci were used. Loci were selected for relatively high levels of homogeneity within each group and for differences in allele frequencies between groups. A baseline sample consisted of the 18 lines of Russian honey bees released to the Russian Bee Breeders Association and bees from 34 queen breeders representing commercially produced European honey bee stocks. Suitability tests of the baseline sample pool showed high levels of accuracy. The probability of correct assignment was 94.2% for non-Russian bees and 93.3% for Russian bees. A neighbor-joining phenogram representing genetic distance data showed clear distinction of Russian and non-Russian honey bee stocks. Furthermore, a test of appropriate sample size showed a sample of eight bees per colony maximizes accuracy and consistency of the results. An additional 34 samples were tested as blind samples (origin unknown to those collecting data) to determine accuracy of individual assignment tests. Only one of these samples was incorrectly assigned. The 18 current breeding lines were represented among the 2009 blind sampling, demonstrating temporal stability of the genetic stock identification assay. The certification assay will be used through services provided by a service laboratory, by the Russian Bee Breeders Association to genetically certify their stock. The genetic certification will be used in conjunction with continued selection for favorable traits, such as honey production and varroa and tracheal mite resistance.

  16. Heritabilities and genetic correlations for honey yield, gentleness, calmness and swarming behaviour in Austrian honey bees

    NARCIS (Netherlands)

    Brascamp, Evert; Willam, Alfons; Boigenzahn, Christian; Bijma, Piter; Veerkamp, Roel F.

    2016-01-01

    Heritabilities and genetic correlations were estimated for honey yield and behavioural traits in Austrian honey bees using data on nearly 15,000 colonies of the bee breeders association Biene Österreich collected between 1995 and 2014. The statistical models used distinguished between the genetic

  17. An exposure study to assess the potential impact of fipronil in treated sunflower seeds on honey bee colony losses in Spain.

    Science.gov (United States)

    Bernal, José; Martin-Hernandez, Raquel; Diego, Juan C; Nozal, María J; Gozalez-Porto, Amelia V; Bernal, José L; Higes, Mariano

    2011-10-01

    There is great concern about the high losses and strong depopulation of honey bee colonies in some areas of Spain. Some beekeepers have suggested that sunflower seeds treated with the insecticide fipronil could be an important factor in causing those losses. Therefore, an in-depth field study has been carried out in two regions of Spain where sunflower production is intense (Cuenca and Andalucía) and where, for some crops and varieties, fipronil has been used as seed insecticide. Samples of adult bees and pollen were analysed for bee pathogens and pesticide residues respectively. Neither fipronil residues nor its metabolites were detected in any of the samples analysed, indicating that short-term or chronic exposure of bees to fipronil and/or its metabolites can be ruled out in the apiaries surveyed. Varroa destructor and Nosema ceranae were found to be very prevalent. The combination of the two pathogens could augment the risk of colony death in infected colonies, without fipronil residues exerting a significant effect in the given field conditions. Indeed, in this study the losses observed in apiaries located close to sunflower crops were similar to those in apiaries situated in forested areas with wild vegetation. Copyright © 2011 Society of Chemical Industry.

  18. Toxicity assessment of glyphosate on honey bee (Apis mellifera) spermatozoa

    Science.gov (United States)

    During 2016-2017, 33.2% of managed honey bee colonies in the U.S. were lost due to Colony Collapse Disorder (CCD). Commonly used pesticides are among the suspected reasons for bee mortality. N-(phosphonomethyl)glycine (glyphosate) is a widely used herbicide in the U.S. and has previously been shown ...

  19. Challenges associated with the honey bee ( Apis Mellifera Adansonii )

    African Journals Online (AJOL)

    Challenges associated with the honey bee ( Apis Mellifera Adansonii ) colonies ... Diseases like American and European foulbrood were absent while ... African Journal of Food, Agriculture, Nutrition and Development, Volume 13 No. 2 April ...

  20. Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees

    OpenAIRE

    Youngsteadt, Elsa; Appler, R. Holden; L?pez-Uribe, Margarita M.; Tarpy, David R.; Frank, Steven D.

    2015-01-01

    Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus), the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens....

  1. Impacts of Austrian Climate Variability on Honey Bee Mortality

    Science.gov (United States)

    Switanek, Matt; Brodschneider, Robert; Crailsheim, Karl; Truhetz, Heimo

    2015-04-01

    Global food production, as it is today, is not possible without pollinators such as the honey bee. It is therefore alarming that honey bee populations across the world have seen increased mortality rates in the last few decades. The challenges facing the honey bee calls into question the future of our food supply. Beside various infectious diseases, Varroa destructor is one of the main culprits leading to increased rates of honey bee mortality. Varroa destructor is a parasitic mite which strongly depends on honey bee brood for reproduction and can wipe out entire colonies. However, climate variability may also importantly influence honey bee breeding cycles and bee mortality rates. Persistent weather events affects vegetation and hence foraging possibilities for honey bees. This study first defines critical statistical relationships between key climate indicators (e.g., precipitation and temperature) and bee mortality rates across Austria, using 6 consecutive years of data. Next, these leading indicators, as they vary in space and time, are used to build a statistical model to predict bee mortality rates and the respective number of colonies affected. Using leave-one-out cross validation, the model reduces the Root Mean Square Error (RMSE) by 21% with respect to predictions made with the mean mortality rate and the number of colonies. Furthermore, a Monte Carlo test is used to establish that the model's predictions are statistically significant at the 99.9% confidence level. These results highlight the influence of climate variables on honey bee populations, although variability in climate, by itself, cannot fully explain colony losses. This study was funded by the Austrian project 'Zukunft Biene'.

  2. ABC Assay: Method Development and Application to Quantify the Role of Three DWV Master Variants in Overwinter Colony Losses of European Honey Bees

    Directory of Open Access Journals (Sweden)

    Jessica L. Kevill

    2017-10-01

    Full Text Available Deformed wing virus (DWV is one of the most prevalent honey bee viral pathogens in the world. Typical of many RNA viruses, DWV is a quasi-species, which is comprised of a large number of different variants, currently consisting of three master variants: Type A, B, and C. Little is known about the impact of each variant or combinations of variants upon the biology of individual hosts. Therefore, we have developed a new set of master variant-specific DWV primers and a set of standards that allow for the quantification of each of the master variants. Competitive reverse transcriptase polymerase chain reaction (RT-PCR experimental design confirms that each new DWV primer set is specific to the retrospective master variant. The sensitivity of the ABC assay is dependent on whether DNA or RNA is used as the template and whether other master variants are present in the sample. Comparison of the overall proportions of each master variant within a sample of known diversity, as confirmed by next-generation sequence (NGS data, validates the efficiency of the ABC assay. The ABC assay was used on archived material from a Devon overwintering colony loss (OCL 2006–2007 study; further implicating DWV type A and, for the first time, possibly C in the untimely collapse of honey bee colonies. Moreover, in this study DWV type B was not associated with OCL. The use of the ABC assay will allow researchers to quickly and cost effectively pre-screen for the presence of DWV master variants in honey bees.

  3. Varroa Sensitive Hygiene contributes to naturally selected varroa resistance in honey bees

    NARCIS (Netherlands)

    Panziera, Delphine; Langevelde, van Frank; Blacquière, Tjeerd

    2017-01-01

    The parasitic mite Varroa destructor is a serious threat for western honey bee colonies and beekeepers are compelled to control it to keep their colonies healthy. Yet, by controlling varroa no resistance to the parasite can evolve. As a trial, honey bee colonies have been left untreated in

  4. New Paenibacillus larvae bacterial isolates from honey bee colonies infected with American foulbrood disease in Egypt.

    Science.gov (United States)

    Masry, Saad Hamdy Daif; Kabeil, Sanaa Soliman; Hafez, Elsayed Elsayed

    2014-03-04

    The American foulbrood disease is widely distributed all over the world and causes a serious problem for the honeybee industry. Different infected larvae were collected from different apiaries, ground in phosphate saline buffer (PSB) and bacterial isolation was carried out on nutrient agar medium. Different colonies were observed and were characterized biologically. Two bacterial isolates (SH11 and SH33) were subjected to molecular identification using 16S rRNA gene and the sequence analysis revealed that the two isolates are Paenibacillus larvae with identity not exceeding 83%. The DNA sequence alignment between the other P. larvae bacterial strains and the two identified bacterial isolates showed that all the examined bacterial strains have the same ancestor, i.e. they have the same origin. The SH33 isolate was closely related to the P. larvae isolated from Germany, whereas the isolate SH11 was close to the P. larvae isolated from India. The phylogenetic tree constructed for 20 different Bacillus sp. and the two isolates SH11 and SH33 demonstrated that the two isolates are Bacillus sp. and they are new isolates. The bacterial isolates will be subjected to more tests for more confirmations.

  5. Honey bee nest thermoregulation: diversity promotes stability.

    Science.gov (United States)

    Jones, Julia C; Myerscough, Mary R; Graham, Sonia; Oldroyd, Benjamin P

    2004-07-16

    A honey bee colony is characterized by high genetic diversity among its workers, generated by high levels of multiple mating by its queen. Few clear benefits of this genetic diversity are known. Here we show that brood nest temperatures in genetically diverse colonies (i.e., those sired by several males) tend to be more stable than in genetically uniform ones (i.e., those sired by one male). One reason this increased stability arises is because genetically determined diversity in workers' temperature response thresholds modulates the hive-ventilating behavior of individual workers, preventing excessive colony-level responses to temperature fluctuations.

  6. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L.)

    OpenAIRE

    Fleming, James C.; Schmehl, Daniel R.; Ellis, James D.

    2015-01-01

    Western honey bee (Apis mellifera L.) populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony's nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutrit...

  7. Improving honey production in worker bees (Apis mellifera adansoni ...

    African Journals Online (AJOL)

    Modification of feeding activity, nursing care and undertaker behaviour were carried out among some colonies of honey bees Apis mellifera adansoni L to know the effect on honey production. Apiaries Numbers 1, 2 and 3 contain three replicates of experimental hives while apiary Number 4 contains control hives. All the ...

  8. No apparent correlation between honey bee forager gut microbiota and honey production.

    Science.gov (United States)

    Horton, Melissa A; Oliver, Randy; Newton, Irene L

    2015-01-01

    One of the best indicators of colony health for the European honey bee (Apis mellifera) is its performance in the production of honey. Recent research into the microbial communities naturally populating the bee gut raise the question as to whether there is a correlation between microbial community structure and colony productivity. In this work, we used 16S rRNA amplicon sequencing to explore the microbial composition associated with forager bees from honey bee colonies producing large amounts of surplus honey (productive) and compared them to colonies producing less (unproductive). As supported by previous work, the honey bee microbiome was found to be dominated by three major phyla: the Proteobacteria, Bacilli and Actinobacteria, within which we found a total of 23 different bacterial genera, including known "core" honey bee microbiome members. Using discriminant function analysis and correlation-based network analysis, we identified highly abundant members (such as Frischella and Gilliamella) as important in shaping the bacterial community; libraries from colonies with high quantities of these Orbaceae members were also likely to contain fewer Bifidobacteria and Lactobacillus species (such as Firm-4). However, co-culture assays, using isolates from these major clades, were unable to confirm any antagonistic interaction between Gilliamella and honey bee gut bacteria. Our results suggest that honey bee colony productivity is associated with increased bacterial diversity, although this mechanism behind this correlation has yet to be determined. Our results also suggest researchers should not base inferences of bacterial interactions solely on correlations found using sequencing. Instead, we suggest that depth of sequencing and library size can dramatically influence statistically significant results from sequence analysis of amplicons and should be cautiously interpreted.

  9. Effects of Long Distance Transportation on Honey Bee Physiology

    Directory of Open Access Journals (Sweden)

    Kiheung Ahn

    2012-01-01

    Full Text Available Despite the requirement of long distance transportation of honey bees used for pollination, we understand little how transportation affects honey bees. Three trials in three different states (CA, GA, and MI were conducted to study the effects of long distance transportation on honey bee physiology. Newly emerged bees from one colony were split into two groups and introduced into a transported (T colony or a stationary (S colony in each trial. Volumes of hypopharyngeal gland acini in T colonies were significantly smaller than S colonies in all three trials. There were no significant differences between S and T colonies in juvenile hormone titers. Protein content in head showed no significant differences between S and T either in 7-day-old or 17-day-old bees of MI trial, but GA trial showed a significant reduction in bees experiencing transportation. Protein content in thorax was only measured in GA trial and was not significantly different between the two groups. Lipid content in abdomen was not significantly different between the S and T colonies in all three trials. This study suggests that bees experiencing transportation have trouble fully developing their food glands and this might affect their ability to nurse the next generation of workers.

  10. Genic control of honey bee dance language dialect.

    Science.gov (United States)

    Rinderer, T E; Beaman, L D

    1995-10-01

    Behavioural genetic analysis of honey bee dance language shows simple Mendelian genic control over certain dance dialect differences. Worker honey bees of one parent colony (yellow) changed from round to transition dances for foraging distances of 20 m and from transition to waggle dances at 40 m. Worker bees of the other parent colony (black) made these shifts at 30 m and 90 m, respectively. F1 colonies behaved identically to their yellow parent, suggesting dominance. Progeny of backcrossing between the F1 generation and the putative recessive black parent assorted to four classes, indicating that the dialect differences studied are regulated by genes at two unlinked loci, each having two alleles. Honey bee dance communication is complex and highly integrated behaviour. Nonetheless, analysis of a small element of this behaviour, variation in response to distance, suggests that dance communication is regulated by subsets consisting of simple genic systems.

  11. Varroa destructor (Mesostigmata: Varroidae in Costa Rica: population dynamics and its influence on the colony condition of Africanized honey bees (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    Rafael A Calderón

    2008-12-01

    Full Text Available The development of Varroa destructor Anderson & Trueman (Mesostigmata: Varroidae population dynamics in Africanized honey bees, Apis mellifera L. (Hymenoptera: Apidae colonies was monitored from February to July 2004 in Atenas, Costa Rica. A correlation between the mite infestation level and the colony condition was evaluated. For each colony, infestation of varroa in adult bees was measured twice a month. Sticky boards were placed on the bottom boards of each colony to collect fallen mites. The condition of the colonies was evaluated by measuring the amount of brood and adult bees. Our results consistently showed that mite infestation on adult bees increased significantly in the experimental colonies, rising to 10.0% by the end of the experiment. In addition, the mean mite fall increased significantly over the course of the study in the treated (R= 0.72, PLa dinámica poblacional del ácaro Varroa destructor Anderson & Trueman (Mesostigmata: Varroidae en abejas africanizadas, Apis mellifera L. (Hymenoptera: Apidae fue monitoreada de febrero a julio 2004, en Atenas, Costa Rica. Asimismo, se analizó la relación entre el nivel de infestación de varroa y la condición de la colmena. La infestación del ácaro V. destructor fue evaluada en abejas adultas dos veces al mes. Además, se colocaron trampas adhesivas en el fondo de la colmena para recoger los ácaros que caen naturalmente. La condición de la colmena fue determinada midiendo la cantidad de cría y la población de abejas adultas. La infestación del ácaro V. destructor en abejas adultas aumentó significativamente durante el estudio hasta alcanzar un 10.0%. Igualmente, la caída natural de ácaros se incrementó, tanto en colmenas que fueron tratadas previa-mente con un acaricida químico (R= 0.72, P<0.05 como en colmenas sin tratamiento (R= 0.74, P<0.05, hasta llegar a 63.8 y 73.5 ácaros por día, respectivamente. El aumento de la infestación en las colmenas coincidió con una

  12. Current Pesticide Risk Assessment Protocols Do Not Adequately Address Differences Between Honey Bees (Apis mellifera and Bumble Bees (Bombus spp.

    Directory of Open Access Journals (Sweden)

    Kimberly Stoner

    2016-12-01

    Full Text Available Recent research has demonstrated colony-level sublethal effects of imidacloprid on bumble bees, affecting foraging and food consumption, and thus colony growth and reproduction, at lower pesticide concentrations than for honey bee colonies. However, these studies may not reflect the full effects of neonicotinoids on bumble bees because bumble bee life cycles are different from those of honey bees. Unlike honey bees, bumble bees live in colonies for only a few months each year. Assessing the sublethal effects of systemic insecticides only on the colony level is appropriate for honey bees, but for bumble bees, this approach addresses just part of their annual life cycle. Queens are solitary from the time they leave their home colonies in fall until they produce their first workers the following year. Queens forage for pollen and nectar, and are thus exposed to more risk of direct pesticide exposure than honey bee queens. Almost no research has been done on pesticide exposure to and effects on bumble bee queens. Additional research should focus on critical periods in a bumble bee queen’s life which have the greatest nutritional demands, foraging requirements, and potential for exposure to pesticides, particularly the period during and after nest establishment in the spring when the queen must forage for the nutritional needs of her brood and for her own needs while she maintains an elevated body temperature in order to incubate the brood.

  13. Widespread occurrence of honey bee pathogens in solitary bees.

    Science.gov (United States)

    Ravoet, Jorgen; De Smet, Lina; Meeus, Ivan; Smagghe, Guy; Wenseleers, Tom; de Graaf, Dirk C

    2014-10-01

    Solitary bees and honey bees from a neighbouring apiary were screened for a broad set of putative pathogens including protists, fungi, spiroplasmas and viruses. Most sampled bees appeared to be infected with multiple parasites. Interestingly, viruses exclusively known from honey bees such as Apis mellifera Filamentous Virus and Varroa destructor Macula-like Virus were also discovered in solitary bees. A microsporidium found in Andrena vaga showed most resemblance to Nosema thomsoni. Our results suggest that bee hives represent a putative source of pathogens for other pollinators. Similarly, solitary bees may act as a reservoir of honey bee pathogens. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees.

    Directory of Open Access Journals (Sweden)

    Elsa Youngsteadt

    Full Text Available Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus, the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens. We also measured worker survival in a laboratory bioassay. We found that pathogen pressure on honey bees increased with urbanization and management, and the probability of worker survival declined 3-fold along our urbanization gradient. The effect of management on pathogens appears to be mediated by immunity, with feral bees expressing immune genes at nearly twice the levels of managed bees following an immune challenge. The effect of urbanization, however, was not linked with immunity; instead, urbanization may favor viability and transmission of some disease agents. Feral colonies, with lower disease burdens and stronger immune responses, may illuminate ways to improve honey bee management. The previously unexamined effects of urbanization on honey-bee disease are concerning, suggesting that urban areas may favor problematic diseases of pollinators.

  15. Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees.

    Science.gov (United States)

    Youngsteadt, Elsa; Appler, R Holden; López-Uribe, Margarita M; Tarpy, David R; Frank, Steven D

    2015-01-01

    Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus), the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens. We also measured worker survival in a laboratory bioassay. We found that pathogen pressure on honey bees increased with urbanization and management, and the probability of worker survival declined 3-fold along our urbanization gradient. The effect of management on pathogens appears to be mediated by immunity, with feral bees expressing immune genes at nearly twice the levels of managed bees following an immune challenge. The effect of urbanization, however, was not linked with immunity; instead, urbanization may favor viability and transmission of some disease agents. Feral colonies, with lower disease burdens and stronger immune responses, may illuminate ways to improve honey bee management. The previously unexamined effects of urbanization on honey-bee disease are concerning, suggesting that urban areas may favor problematic diseases of pollinators.

  16. Why does bee health matter? The science surrounding honey bee health concerns and what we can do about it

    Science.gov (United States)

    Spivak, Marla S; Browning, Zac; Goblirsch, Mike; Lee, Katie; Otto, Clint R.; Smart, Matthew; Wu-Smart, Judy

    2017-01-01

    A colony of honey bees is an amazing organism when it is healthy; it is a superorganism in many senses of the word. As with any organism, maintaining a state of health requires cohesiveness and interplay among cells and tissues and, in the case of a honey bee colony, the bees themselves. The individual bees that make up a honey bee colony deliver to the superorganism what it needs: pollen and nectar collected from flowering plants that contain nutrients necessary for growth and survival. Honey bees with access to better and more complete nutrition exhibit improved immune system function and behavioral defenses for fighting off effects of pathogens and pesticides (Evans and Spivak 2010; Mao, Schuler, and Berenbaum 2013; Wahl and Ulm 1983). Sadly, as this story is often told in the headlines, the focus is rarely about what it means for a honey bee colony to be healthy and is instead primarily focused on colony survival rates. Bee colonies are chronically exposed to parasitic mites, viruses, diseases, miticides, pesticides, and poor nutrition, which weaken and make innate defenses insufficient at overcoming these combined stressors. Colonies that are chronically weakened can be even more susceptible to infections and levels of pesticide exposure that might otherwise be innocuous, further promoting a downward spiral of health. Sick and weakened bees diminish the colony’s resiliency, ultimately leading to a breakdown in the social structure, production, efficiency, immunity, and reproduction of the colony, and eventual or sudden colony death.

  17. Swimming of the Honey Bees

    Science.gov (United States)

    Roh, Chris; Gharib, Morteza

    2016-11-01

    When the weather gets hot, nursing honey bees nudge foragers to collect water for thermoregulation of their hive. While on their mission to collect water, foragers sometimes get trapped on the water surface, forced to interact with a different fluid environment. In this study, we present the survival strategy of the honey bees at the air-water interface. A high-speed videography and shadowgraph were used to record the honey bees swimming. A unique thrust mechanism through rapid vibration of their wings at 60 to 150 Hz was observed. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.

  18. Parasite infection accelerates age polyethism in young honey bees

    DEFF Research Database (Denmark)

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per

    2016-01-01

    micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing......Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab...... manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens....

  19. Saccharide breakdown and fermentation by the honey bee gut microbiome.

    Science.gov (United States)

    Lee, Fredrick J; Rusch, Douglas B; Stewart, Frank J; Mattila, Heather R; Newton, Irene L G

    2015-03-01

    The honey bee, the world's most important agricultural pollinator, relies exclusively on plant-derived foods for nutrition. Nectar and pollen collected by honey bees are processed and matured within the nest through the activities of honey bee-derived microbes and enzymes. In order to better understand the contribution of the microbial community to food processing in the honey bee, we generated a metatranscriptome of the honey bee gut microbiome. The function of the microbial community in the honey bee, as revealed by metatranscriptome sequencing, resembles that of other animal guts and food-processing environments. We identified three major bacterial classes that are active in the gut (γ-Proteobacteria, Bacilli and Actinobacteria), all of which are predicted to participate in the breakdown of complex macromolecules (e.g. polysaccharides and polypeptides), the fermentation of component parts of these macromolecules, and the generation of various fermentation products, such as short-chain fatty acids and alcohol. The ability of the microbial community to metabolize these carbon-rich food sources was confirmed through the use of community-level physiological profiling. Collectively, these findings suggest that the gut microflora of the honey bee harbours bacterial members with unique roles, which ultimately can contribute to the processing of plant-derived food for colonies. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. How honey bees carry pollen

    Science.gov (United States)

    Matherne, Marguerite E.; Anyanwu, Gabriel; Leavey, Jennifer K.; Hu, David L.

    2017-11-01

    Honey bees are the tanker of the skies, carrying thirty percent of their weight in pollen per foraging trip using specialized orifices on their body. How do they manage to hang onto those pesky pollen grains? In this experimental study, we investigate the adhesion force of pollen to the honeybee. To affix pollen to themselves, honey bees form a suspension of pollen in nectar, creating a putty-like pollen basket that is skewered by leg hairs. We use tensile tests to show that the viscous force of the pollen basket is more than ten times the honeybee's flight force. This work may provide inspiration for the design of robotic flying pollinators.

  1. Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees.

    Directory of Open Access Journals (Sweden)

    David T Peck

    Full Text Available Varroa destructor, the introduced parasite of European honey bees associated with massive colony deaths, spreads readily through populations of honey bee colonies, both managed colonies living crowded together in apiaries and wild colonies living widely dispersed in natural settings. Mites are hypothesized to spread between most managed colonies via phoretically riding forager bees when they engage in robbing colonies or they drift between hives. However, widely spaced wild colonies show Varroa infestation despite limited opportunities for robbing and little or no drifting of bees between colonies. Both wild and managed colonies may also exchange mites via another mechanism that has received remarkably little attention or study: floral transmission. The present study tested the ability of mites to infest foragers at feeders or flowers. We show that Varroa destructor mites are highly capable of phoretically infesting foraging honey bees, detail the mechanisms and maneuvers by which they do so, and describe mite behaviors post-infestation.

  2. Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees

    Science.gov (United States)

    Smith, Michael L.; Seeley, Thomas D.

    2016-01-01

    Varroa destructor, the introduced parasite of European honey bees associated with massive colony deaths, spreads readily through populations of honey bee colonies, both managed colonies living crowded together in apiaries and wild colonies living widely dispersed in natural settings. Mites are hypothesized to spread between most managed colonies via phoretically riding forager bees when they engage in robbing colonies or they drift between hives. However, widely spaced wild colonies show Varroa infestation despite limited opportunities for robbing and little or no drifting of bees between colonies. Both wild and managed colonies may also exchange mites via another mechanism that has received remarkably little attention or study: floral transmission. The present study tested the ability of mites to infest foragers at feeders or flowers. We show that Varroa destructor mites are highly capable of phoretically infesting foraging honey bees, detail the mechanisms and maneuvers by which they do so, and describe mite behaviors post-infestation. PMID:27942015

  3. Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees.

    Science.gov (United States)

    Peck, David T; Smith, Michael L; Seeley, Thomas D

    2016-01-01

    Varroa destructor, the introduced parasite of European honey bees associated with massive colony deaths, spreads readily through populations of honey bee colonies, both managed colonies living crowded together in apiaries and wild colonies living widely dispersed in natural settings. Mites are hypothesized to spread between most managed colonies via phoretically riding forager bees when they engage in robbing colonies or they drift between hives. However, widely spaced wild colonies show Varroa infestation despite limited opportunities for robbing and little or no drifting of bees between colonies. Both wild and managed colonies may also exchange mites via another mechanism that has received remarkably little attention or study: floral transmission. The present study tested the ability of mites to infest foragers at feeders or flowers. We show that Varroa destructor mites are highly capable of phoretically infesting foraging honey bees, detail the mechanisms and maneuvers by which they do so, and describe mite behaviors post-infestation.

  4. Winter honey bee colony losses, Varroa destructor control strategies, and the role of weather conditions: Results from a survey among beekeepers.

    Science.gov (United States)

    Beyer, Marco; Junk, Jürgen; Eickermann, Michael; Clermont, Antoine; Kraus, François; Georges, Carlo; Reichart, Andreas; Hoffmann, Lucien

    2018-06-01

    Sets of treatments that were applied against varroa mites in the Luxembourgish beekeeper community were surveyed annually with a questionnaire between the winters 2010/11 and 2014/15. The average temperature and the precipitation sum of the month, when the respective varroa control method was applied were considered as co-variables when evaluating the efficacy of varroa control regimes. Success or failure of control regimes was evaluated based on the percentage of colonies lost per apiary in the winter following the treatment(s). Neither a positive nor a negative effect of formic acid (concentration 60%, w/v) on the colony losses could be found, irrespective of the weather conditions around the time of application. The higher concentration of 85% formic acid was linked with reduced colony losses when applications were done in August. Colony losses were reduced when Thymovar was applied in July or August, but applications in September were associated with increased losses compared with apiaries not treated with Thymovar during the same period. Apilife application in July as well as Apivar applications between July and September were associated with reduced colony losses. The removal of the drone brood and trickled oxalic acid application had beneficial effects when being done in April and December, respectively. Relatively warm (3.0±1.3°C) and wet (507.0±38.6mm/2months) conditions during the winter months December and January and relatively cool (17.2±1.4°C average monthly temperature) and wet (110.8±55.5mm/month) conditions in July were associated with elevated honey bee colony losses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Varroa Sensitive Hygiene contributes to naturally selected varroa resistance in honey bees

    OpenAIRE

    Panziera, Delphine; Langevelde, van, Frank; Blacquière, Tjeerd

    2017-01-01

    The parasitic mite Varroa destructor is a serious threat for western honey bee colonies and beekeepers are compelled to control it to keep their colonies healthy. Yet, by controlling varroa no resistance to the parasite can evolve. As a trial, honey bee colonies have been left untreated in isolated locations to allow development of resistance or tolerance to the mite. These colonies developed an ability to live without control measures against varroa, although the traits responsible for this ...

  6. Nutritional status influences socially regulated foraging ontogeny in honey bees.

    Science.gov (United States)

    Toth, Amy L; Kantarovich, Sara; Meisel, Adam F; Robinson, Gene E

    2005-12-01

    In many social insects, including honey bees, worker energy reserve levels are correlated with task performance in the colony. Honey bee nest workers have abundant stored lipid and protein while foragers are depleted of these reserves; this depletion precedes the shift from nest work to foraging. The first objective of this study was to test the hypothesis that lipid depletion has a causal effect on the age at onset of foraging in honey bees (Apis mellifera L.). We found that bees treated with a fatty acid synthesis inhibitor (TOFA) were more likely to forage precociously. The second objective of this study was to determine whether there is a relationship between social interactions, nutritional state and behavioral maturation. Since older bees are known to inhibit the development of young bees into foragers, we asked whether this effect is mediated nutritionally via the passage of food from old to young bees. We found that bees reared in social isolation have low lipid stores, but social inhibition occurs in colonies in the field, whether young bees are starved or fed. These results indicate that although social interactions affect the nutritional status of young bees, social and nutritional factors act independently to influence age at onset of foraging. Our findings suggest that mechanisms linking internal nutritional physiology to foraging in solitary insects have been co-opted to regulate altruistic foraging in a social context.

  7. Nosema ceranae Winter Control: Study of the Effectiveness of Different Fumagillin Treatments and Consequences on the Strength of Honey Bee (Hymenoptera: Apidae) Colonies.

    Science.gov (United States)

    Mendoza, Y; Diaz-Cetti, S; Ramallo, G; Santos, E; Porrini, M; Invernizzi, C

    2017-02-01

    In Uruguay, colonies of honey bees moving to Eucalyptus grandis plantation in autumn habitually become infected with the microsporidian Nosema ceranae , a parasite that attacks the digestive system of bees. Beekeepers attributed to N. ceranae depopulation of the colonies that often occurs at the end of the blooming period, and many use the antibiotic fumagillin to reduce the level of infection. The aim of this study was to compare the effectiveness of four different fumagillin treatments and determine how this antibiotic affects the strength of the colonies during the winter season. The colonies treated with fumagillin in July showed less spore load at the end of applications, being the most effective the following treatments: the four applications sprayed over bees of 30 mg of fumagillin in 100 ml of sugar syrup 1:1, and four applications of 90 mg of fumagillin in 250 ml of sugar syrup 1:1 using a feeder. However, 2 month after the treatment applications, the colonies treated with fumagillin were the same size as the untreated colonies. In September, the colonies treated and not treated with fumagillin did not differ in colony strength (adult bee population and brood area) or spores abundance. Our study demonstrates that fumagillin treatment temporarily decreased the spore load of N. ceranae , but this was not reflected in either the size of the colonies or the probability of surviving the winter regardless of the dose or the administration strategy applied. Given the results obtained, we suggest to not perform the pharmacological treatment under the conditions described in the experiment. En Uruguay las colonias de abejas melíferas que se trasladan a las forestaciones de Eucalyptus grandis en otoño indefectiblemente se infectan con el microsporido Nosema ceranae , parásito que ataca el sistema digestivo de las abejas. Los apicultores atribuyen a N. ceranae el despoblamiento de las colonias que ocurre con frecuencia al terminar el periodo de floraci

  8. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    Science.gov (United States)

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  9. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Zhiguo Li

    Full Text Available Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV, on the foraging behaviors and homing ability of European honey bees (Apis mellifera L. were investigated based on proboscis extension response (PER assays and radio frequency identification (RFID systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  10. Viral Infection Affects Sucrose Responsiveness and Homing Ability of Forager Honey Bees, Apis mellifera L.

    Science.gov (United States)

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 107 copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive. PMID:24130876

  11. Bees and Honey

    Institute of Scientific and Technical Information of China (English)

    TOM; HANCOCK

    2011-01-01

    The first bee landed on Dalin Wang at around one in the afternoon.Surrounded by3,000 onlookers,he wore a pair of trousers,black boots and two small cloth bags,each containing a queen bee.Wang watched the bees cover his chest,legs and arms,until every

  12. Omega-3 deficiency impairs honey bee learning

    Science.gov (United States)

    Arien, Yael; Dag, Arnon; Zarchin, Shlomi; Masci, Tania

    2015-01-01

    Deficiency in essential omega-3 polyunsaturated fatty acids (PUFAs), particularly the long-chain form of docosahexaenoic acid (DHA), has been linked to health problems in mammals, including many mental disorders and reduced cognitive performance. Insects have very low long-chain PUFA concentrations, and the effect of omega-3 deficiency on cognition in insects has not been studied. We show a low omega-6:3 ratio of pollen collected by honey bee colonies in heterogenous landscapes and in many hand-collected pollens that we analyzed. We identified Eucalyptus as an important bee-forage plant particularly poor in omega-3 and high in the omega-6:3 ratio. We tested the effect of dietary omega-3 deficiency on olfactory and tactile associative learning of the economically highly valued honey bee. Bees fed either of two omega-3–poor diets, or Eucalyptus pollen, showed greatly reduced learning abilities in conditioned proboscis-extension assays compared with those fed omega-3–rich diets, or omega-3–rich pollen mixture. The effect on performance was not due to reduced sucrose sensitivity. Omega-3 deficiency also led to smaller hypopharyngeal glands. Bee brains contained high omega-3 concentrations, which were only slightly affected by diet, suggesting additional peripheral effects on learning. The shift from a low to high omega-6:3 ratio in the Western human diet is deemed a primary cause of many diseases and reduced mental health. A similar shift seems to be occurring in bee forage, possibly an important factor in colony declines. Our study shows the detrimental effect on cognitive performance of omega-3 deficiency in a nonmammal. PMID:26644556

  13. Current knowledge of detoxification mechanisms of xenobiotic in honey bees.

    Science.gov (United States)

    Gong, Youhui; Diao, Qingyun

    2017-01-01

    The western honey bee Apis mellifera is the most important managed pollinator species in the world. Multiple factors have been implicated as potential causes or factors contributing to colony collapse disorder, including honey bee pathogens and nutritional deficiencies as well as exposure to pesticides. Honey bees' genome is characterized by a paucity of genes associated with detoxification, which makes them vulnerable to specific pesticides, especially to combinations of pesticides in real field environments. Many studies have investigated the mechanisms involved in detoxification of xenobiotics/pesticides in honey bees, from primal enzyme assays or toxicity bioassays to characterization of transcript gene expression and protein expression in response to xenobiotics/insecticides by using a global transcriptomic or proteomic approach, and even to functional characterizations. The global transcriptomic and proteomic approach allowed us to learn that detoxification mechanisms in honey bees involve multiple genes and pathways along with changes in energy metabolism and cellular stress response. P450 genes, is highly implicated in the direct detoxification of xenobiotics/insecticides in honey bees and their expression can be regulated by honey/pollen constitutes, resulting in the tolerance of honey bees to other xenobiotics or insecticides. P450s is also a key detoxification enzyme that mediate synergism interaction between acaricides/insecticides and fungicides through inhibition P450 activity by fungicides or competition for detoxification enzymes between acaricides. With the wide use of insecticides in agriculture, understanding the detoxification mechanism of insecticides in honey bees and how honeybees fight with the xenobiotis or insecticides to survive in the changing environment will finally benefit honeybees' management.

  14. The Status of Honey Bee Health in Italy: Results from the Nationwide Bee Monitoring Network.

    Directory of Open Access Journals (Sweden)

    Claudio Porrini

    Full Text Available In Italy a nation-wide monitoring network was established in 2009 in response to significant honey bee colony mortality reported during 2008. The network comprised of approximately 100 apiaries located across Italy. Colonies were sampled four times per year, in order to assess the health status and to collect samples for pathogen, chemical and pollen analyses. The prevalence of Nosema ceranae ranged, on average, from 47-69% in 2009 and from 30-60% in 2010, with strong seasonal variation. Virus prevalence was higher in 2010 than in 2009. The most widespread viruses were BQCV, DWV and SBV. The most frequent pesticides in all hive contents were organophosphates and pyrethroids such as coumaphos and tau-fluvalinate. Beeswax was the most frequently contaminated hive product, with 40% of samples positive and 13% having multiple residues, while 27% of bee-bread and 12% of honey bee samples were contaminated. Colony losses in 2009/10 were on average 19%, with no major differences between regions of Italy. In 2009, the presence of DWV in autumn was positively correlated with colony losses. Similarly, hive mortality was higher in BQCV infected colonies in the first and second visits of the year. In 2010, colony losses were significantly related to the presence of pesticides in honey bees during the second sampling period. Honey bee exposure to poisons in spring could have a negative impact at the colony level, contributing to increase colony mortality during the beekeeping season. In both 2009 and 2010, colony mortality rates were positively related to the percentage of agricultural land surrounding apiaries, supporting the importance of land use for honey bee health.

  15. Proceedings "… Towards Resilient Honey Bees …"

    NARCIS (Netherlands)

    Dooremalen, van C.A.; Zweep, A.

    2015-01-01

    The Research Roadmap is a co-creation by Bees@wur and the Dutch government, and the (inter)national researchers participating in the workshop Resilient Honey bees 23-24 November 2015, Castle Hoekelum, Bennekom, The Netherlands

  16. Biological and therapeutic effects of honey produced by honey bees and stingless bees: a comparative review

    Directory of Open Access Journals (Sweden)

    Pasupuleti Visweswara Rao

    Full Text Available ABSTRACT Honey is a natural product produced by both honey bees and stingless bees. Both types of honey contain unique and distinct types of phenolic and flavonoid compounds of variable biological and clinical importance. Honey is one of the most effective natural products used for wound healing. In this review, the traditional uses and clinical applications of both honey bee and stingless bee honey – such as antimicrobial, antioxidant, anti-inflammatory, anticancer, antihyperlipidemic, and cardioprotective properties; the treatment of eye disorders, gastrointestinal tract diseases, neurological disorders, and fertility disorders and wound healing activity are described.

  17. Life history strategy of the honey bee, Apis mellifera.

    Science.gov (United States)

    Seeley, Thomas D

    1978-01-01

    The feral honey bee queens (colonies) of central New York State (USA) show a K-type life history strategy. Their demographic characteristics include low early life mortality, low reproductive rate, long lifespan, high population stability and repeated reproductions. Identifying the life history strategy of these bees reveals the general pattern of selection for competitive ability, rather than productivity, which has shaped their societies. Selection for competitive power explains the adaptiveness (compared with alternatives found in many other insect societies) of the large perennial colonies, infrequent but expensive offspring, and efficient foraging which characterize the social organization of these bees.

  18. A Diverse Range of Novel RNA Viruses in Geographically Distinct Honey Bee Populations.

    Science.gov (United States)

    Remnant, Emily J; Shi, Mang; Buchmann, Gabriele; Blacquière, Tjeerd; Holmes, Edward C; Beekman, Madeleine; Ashe, Alyson

    2017-08-15

    Understanding the diversity and consequences of viruses present in honey bees is critical for maintaining pollinator health and managing the spread of disease. The viral landscape of honey bees ( Apis mellifera ) has changed dramatically since the emergence of the parasitic mite Varroa destructor , which increased the spread of virulent variants of viruses such as deformed wing virus. Previous genomic studies have focused on colonies suffering from infections by Varroa and virulent viruses, which could mask other viral species present in honey bees, resulting in a distorted view of viral diversity. To capture the viral diversity within colonies that are exposed to mites but do not suffer the ultimate consequences of the infestation, we examined populations of honey bees that have evolved naturally or have been selected for resistance to Varroa This analysis revealed seven novel viruses isolated from honey bees sampled globally, including the first identification of negative-sense RNA viruses in honey bees. Notably, two rhabdoviruses were present in three geographically diverse locations and were also present in Varroa mites parasitizing the bees. To characterize the antiviral response, we performed deep sequencing of small RNA populations in honey bees and mites. This provided evidence of a Dicer-mediated immune response in honey bees, while the viral small RNA profile in Varroa mites was novel and distinct from the response observed in bees. Overall, we show that viral diversity in honey bee colonies is greater than previously thought, which encourages additional studies of the bee virome on a global scale and which may ultimately improve disease management. IMPORTANCE Honey bee populations have become increasingly susceptible to colony losses due to pathogenic viruses spread by parasitic Varroa mites. To date, 24 viruses have been described in honey bees, with most belonging to the order Picornavirales Collapsing Varroa -infected colonies are often overwhelmed

  19. A Diverse Range of Novel RNA Viruses in Geographically Distinct Honey Bee Populations

    Science.gov (United States)

    Shi, Mang; Buchmann, Gabriele; Blacquière, Tjeerd; Beekman, Madeleine; Ashe, Alyson

    2017-01-01

    ABSTRACT Understanding the diversity and consequences of viruses present in honey bees is critical for maintaining pollinator health and managing the spread of disease. The viral landscape of honey bees (Apis mellifera) has changed dramatically since the emergence of the parasitic mite Varroa destructor, which increased the spread of virulent variants of viruses such as deformed wing virus. Previous genomic studies have focused on colonies suffering from infections by Varroa and virulent viruses, which could mask other viral species present in honey bees, resulting in a distorted view of viral diversity. To capture the viral diversity within colonies that are exposed to mites but do not suffer the ultimate consequences of the infestation, we examined populations of honey bees that have evolved naturally or have been selected for resistance to Varroa. This analysis revealed seven novel viruses isolated from honey bees sampled globally, including the first identification of negative-sense RNA viruses in honey bees. Notably, two rhabdoviruses were present in three geographically diverse locations and were also present in Varroa mites parasitizing the bees. To characterize the antiviral response, we performed deep sequencing of small RNA populations in honey bees and mites. This provided evidence of a Dicer-mediated immune response in honey bees, while the viral small RNA profile in Varroa mites was novel and distinct from the response observed in bees. Overall, we show that viral diversity in honey bee colonies is greater than previously thought, which encourages additional studies of the bee virome on a global scale and which may ultimately improve disease management. IMPORTANCE Honey bee populations have become increasingly susceptible to colony losses due to pathogenic viruses spread by parasitic Varroa mites. To date, 24 viruses have been described in honey bees, with most belonging to the order Picornavirales. Collapsing Varroa-infected colonies are often

  20. Octopamine and tyramine modulate the thermoregulatory fanning response in honey bees (Apis mellifera L.)

    Science.gov (United States)

    Biogenic amines regulate the proximate mechanisms underlying most behavior, including those that contribute to the overall success of complex societies. For honey bees one critical set of behaviors contributing to the welfare of a colony are involved with nest thermoregulation. Worker honey bees co...

  1. Nosema parasitism in honey bees (Apis mellifera) impacts olfactory learning and memory and neurochemistry

    Science.gov (United States)

    Nosema sp. is an internal parasite of the honey bee, Apis mellifera, and one of the leading contributors to colony losses worldwide. This parasite is found in the honey bee midgut, and has profound consequences on the host’s physiology. There are reports that Nosema sp. impairs foraging performance ...

  2. Honey bee (Apis mellifera) nurses do not consume pollens based on their nutritional quality

    Science.gov (United States)

    Honey bees (Apis mellifera) consume a variety of pollens to meet the majority of their requirements for protein and lipids. Recent work indicates that at both the colony and individual levels, honey bees prefer diets that reflect the proper ratio of nutrients necessary for optimal survival and homeo...

  3. Differential responses to DWV infection in honey bees: A case of tolerance or resistance?

    Science.gov (United States)

    Honey bees contend with a variety of abiotic and biotic stressors, and this has led to high and likely unsustainable annual colony mortality. The ectoparasitic mite Varroa destructor is the biggest threat affecting honey bee health in large part because of the viruses that mites vector while feeding...

  4. Chemical communication in the honey bee scarab pest Oplostomus haroldi: role of (Z)-9-Pentacosene

    Science.gov (United States)

    Oplostomus haroldi Witte belongs to a unique genus of afro-tropical scarabs that have associations with honey bee colonies, from which they derive vital nutrients. Although the attributes of the honey bee nest impose barriers to communication among nest invaders, this beetle still is able to detect ...

  5. Agricultural Landscape and Pesticide Effects on Honey Bee (Hymenoptera: Apidae) Biological Traits.

    Science.gov (United States)

    Alburaki, Mohamed; Steckel, Sandra J; Williams, Matthew T; Skinner, John A; Tarpy, David R; Meikle, William G; Adamczyk, John; Stewart, Scott D

    2017-06-01

    Sixteen honey bee (Apis mellifera L.) colonies were placed in four different agricultural landscapes to study the effects of agricultural landscape and exposure to pesticides on honey bee health. Colonies were located in three different agricultural areas with varying levels of agricultural intensity (AG areas) and one nonagricultural area (NAG area). Colonies were monitored for their performance and productivity for one year by measuring colony weight changes, brood production, and colony thermoregulation. Palynological and chemical analyses were conducted on the trapped pollen collected from each colony and location. Our results indicate that the landscape's composition significantly affected honey bee colony performance and development. Colony weight and brood production were significantly greater in AG areas compared to the NAG area. Better colony thermoregulation in AG areas' colonies was also observed. The quantities of pesticides measured in the trapped pollen were relatively low compared to their acute toxicity. Unexplained queen and colony losses were recorded in the AG areas, while colony losses because of starvation were observed in the NAG area. Our results indicate that landscape with high urban activity enhances honey bee brood production, with no significant effects on colony weight gain. Our study indicates that agricultural crops provide a valuable resource for honey bee colonies, but there is a trade-off with an increased risk of exposure to pesticides. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. A modified scout bee for artificial bee colony algorithm and its performance on optimization problems

    Directory of Open Access Journals (Sweden)

    Syahid Anuar

    2016-10-01

    Full Text Available The artificial bee colony (ABC is one of the swarm intelligence algorithms used to solve optimization problems which is inspired by the foraging behaviour of the honey bees. In this paper, artificial bee colony with the rate of change technique which models the behaviour of scout bee to improve the performance of the standard ABC in terms of exploration is introduced. The technique is called artificial bee colony rate of change (ABC-ROC because the scout bee process depends on the rate of change on the performance graph, replace the parameter limit. The performance of ABC-ROC is analysed on a set of benchmark problems and also on the effect of the parameter colony size. Furthermore, the performance of ABC-ROC is compared with the state of the art algorithms.

  7. Draft genome of the honey bee ectoparasitic mite, Tropilaelaps mercedesae, is shaped by the parasitic life history

    OpenAIRE

    Dong, Xiaofeng; Armstrong, Stuart D.; Xia, Dong; Makepeace, Benjamin L.; Darby, Alistair C.; Kadowaki, Tatsuhiko

    2017-01-01

    Abstract The number of managed honey bee colonies has considerably decreased in many developed countries in recent years and ectoparasitic mites are considered as major threats to honey bee colonies and health. However, their general biology remains poorly understood. We sequenced the genome of Tropilaelaps mercedesae, the prevalent ectoparasitic mite infesting honey bees in Asia, and predicted 15?190 protein-coding genes that were well supported by the mite transcriptomes and proteomic data....

  8. Wild bees enhance honey bees' pollination of hybrid sunflower.

    Science.gov (United States)

    Greenleaf, Sarah S; Kremen, Claire

    2006-09-12

    Pollinators are required for producing 15-30% of the human food supply, and farmers rely on managed honey bees throughout the world to provide these services. Yet honey bees are not always the most efficient pollinators of all crops and are declining in various parts of the world. Crop pollination shortages are becoming increasingly common. We found that behavioral interactions between wild and honey bees increase the pollination efficiency of honey bees on hybrid sunflower up to 5-fold, effectively doubling honey bee pollination services on the average field. These indirect contributions caused by interspecific interactions between wild and honey bees were more than five times more important than the contributions wild bees make to sunflower pollination directly. Both proximity to natural habitat and crop planting practices were significantly correlated with pollination services provided directly and indirectly by wild bees. Our results suggest that conserving wild habitat at the landscape scale and altering selected farm management techniques could increase hybrid sunflower production. These findings also demonstrate the economic importance of interspecific interactions for ecosystem services and suggest that protecting wild bee populations can help buffer the human food supply from honey bee shortages.

  9. Performance of two honey bee subspecies during harsh weather and Acacia gerrardii nectar-rich flow

    Directory of Open Access Journals (Sweden)

    Awad Mohamed Awad

    Full Text Available ABSTRACT Both climatic factors and bee forage characteristics affect the population size and productivity of honey bee colonies. To our knowledge, no scientific investigation has as yet considered the potential effect of nectar-rich bee forage exposed to drastic subtropical weather conditions on the performance of honey bee colonies. This study investigated the performance of the honey bee subspecies Apis mellifera jemenitica Ruttner (Yemeni and Apis mellifera carnica Pollmann (Carniolan in weather that was hot and dry and in an environment of nectar-rich flora. The brood production, food storage, bee population and honey yield of Yemeni (native and Carniolan (imported colonies on Talh trees (Acacia gerrardii Benth., a nectar-rich, subtropical, and summer bee forage source in Central Arabia were evaluated. Owing to their structural and behavioral adaptations, the Yemeni bees constructed stronger (high population size colonies than the Carniolan bees. Although both groups yielded similar amounts of Talh honey, the Yemeni bees consumed their stored honey rapidly if not timely harvested. A. m. jemenitica has a higher performance than A. m. carnica during extremely hot-dry conditions and A. gerrardii nectar-rich flow.

  10. Methods to estimate breeding values in honey bees

    NARCIS (Netherlands)

    Brascamp, E.W.; Bijma, P.

    2014-01-01

    Background Efficient methodologies based on animal models are widely used to estimate breeding values in farm animals. These methods are not applicable in honey bees because of their mode of reproduction. Observations are recorded on colonies, which consist of a single queen and thousands of workers

  11. The Honey Bee Parasite Nosema ceranae: Transmissible via Food Exchange?

    NARCIS (Netherlands)

    Smith, M.L.

    2012-01-01

    Nosema ceranae, a newly introduced parasite of the honey bee, Apis mellifera, is contributing to worldwide colony losses. Other Nosema species, such as N. apis, tend to be associated with increased defecation and spread via a fecal-oral pathway, but because N. ceranae does not induce defecation, it

  12. Parasite infection accelerates age polyethism in young honey bees

    Science.gov (United States)

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C.

    2016-01-01

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens. PMID:26912310

  13. Parasite infection accelerates age polyethism in young honey bees.

    Science.gov (United States)

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C

    2016-02-25

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens.

  14. Physiology and biochemistry of honey bees

    Science.gov (United States)

    Despite their tremendous economic importance, honey bees are not a typical model system for studying general questions of insect physiology. This is primarily due to the fact that honey bees live in complex social settings which impact their physiological and biochemical characteristics. Not surpris...

  15. Cell culture techniques in honey bee research

    Science.gov (United States)

    Cell culture techniques are indispensable in most if not all life science disciplines to date. Wherever cell culture models are lacking scientific development is hampered. Unfortunately this has been and still is the case in honey bee research because permanent honey bee cell lines have not yet been...

  16. A new threat to honey bees, the parasitic phorid fly Apocephalus borealis.

    Directory of Open Access Journals (Sweden)

    Andrew Core

    Full Text Available Honey bee colonies are subject to numerous pathogens and parasites. Interaction among multiple pathogens and parasites is the proposed cause for Colony Collapse Disorder (CCD, a syndrome characterized by worker bees abandoning their hive. Here we provide the first documentation that the phorid fly Apocephalus borealis, previously known to parasitize bumble bees, also infects and eventually kills honey bees and may pose an emerging threat to North American apiculture. Parasitized honey bees show hive abandonment behavior, leaving their hives at night and dying shortly thereafter. On average, seven days later up to 13 phorid larvae emerge from each dead bee and pupate away from the bee. Using DNA barcoding, we confirmed that phorids that emerged from honey bees and bumble bees were the same species. Microarray analyses of honey bees from infected hives revealed that these bees are often infected with deformed wing virus and Nosema ceranae. Larvae and adult phorids also tested positive for these pathogens, implicating the fly as a potential vector or reservoir of these honey bee pathogens. Phorid parasitism may affect hive viability since 77% of sites sampled in the San Francisco Bay Area were infected by the fly and microarray analyses detected phorids in commercial hives in South Dakota and California's Central Valley. Understanding details of phorid infection may shed light on similar hive abandonment behaviors seen in CCD.

  17. A New Threat to Honey Bees, the Parasitic Phorid Fly Apocephalus borealis

    Science.gov (United States)

    Core, Andrew; Runckel, Charles; Ivers, Jonathan; Quock, Christopher; Siapno, Travis; DeNault, Seraphina; Brown, Brian; DeRisi, Joseph; Smith, Christopher D.; Hafernik, John

    2012-01-01

    Honey bee colonies are subject to numerous pathogens and parasites. Interaction among multiple pathogens and parasites is the proposed cause for Colony Collapse Disorder (CCD), a syndrome characterized by worker bees abandoning their hive. Here we provide the first documentation that the phorid fly Apocephalus borealis, previously known to parasitize bumble bees, also infects and eventually kills honey bees and may pose an emerging threat to North American apiculture. Parasitized honey bees show hive abandonment behavior, leaving their hives at night and dying shortly thereafter. On average, seven days later up to 13 phorid larvae emerge from each dead bee and pupate away from the bee. Using DNA barcoding, we confirmed that phorids that emerged from honey bees and bumble bees were the same species. Microarray analyses of honey bees from infected hives revealed that these bees are often infected with deformed wing virus and Nosema ceranae. Larvae and adult phorids also tested positive for these pathogens, implicating the fly as a potential vector or reservoir of these honey bee pathogens. Phorid parasitism may affect hive viability since 77% of sites sampled in the San Francisco Bay Area were infected by the fly and microarray analyses detected phorids in commercial hives in South Dakota and California's Central Valley. Understanding details of phorid infection may shed light on similar hive abandonment behaviors seen in CCD. PMID:22235317

  18. Non-Specific dsRNA-Mediated Antiviral Response in the Honey Bee

    Science.gov (United States)

    Flenniken, Michelle L.; Andino, Raul

    2013-01-01

    Honey bees are essential pollinators of numerous agricultural crops. Since 2006, honey bee populations have suffered considerable annual losses that are partially attributed to Colony Collapse Disorder (CCD). CCD is an unexplained phenomenon that correlates with elevated incidence of pathogens, including RNA viruses. Honey bees are eusocial insects that live in colonies of genetically related individuals that work in concert to gather and store nutrients. Their social organization provides numerous benefits, but also facilitates pathogen transmission between individuals. To investigate honey bee antiviral defense mechanisms, we developed an RNA virus infection model and discovered that administration of dsRNA, regardless of sequence, reduced virus infection. Our results suggest that dsRNA, a viral pathogen associated molecular pattern (PAMP), triggers an antiviral response that controls virus infection in honey bees. PMID:24130869

  19. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera.

    Science.gov (United States)

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2013-05-28

    As a managed pollinator, the honey bee Apis mellifera is critical to the American agricultural enterprise. Recent colony losses have thus raised concerns; possible explanations for bee decline include nutritional deficiencies and exposures to pesticides and pathogens. We determined that constituents found in honey, including p-coumaric acid, pinocembrin, and pinobanksin 5-methyl ether, specifically induce detoxification genes. These inducers are primarily found not in nectar but in pollen in the case of p-coumaric acid (a monomer of sporopollenin, the principal constituent of pollen cell walls) and propolis, a resinous material gathered and processed by bees to line wax cells. RNA-seq analysis (massively parallel RNA sequencing) revealed that p-coumaric acid specifically up-regulates all classes of detoxification genes as well as select antimicrobial peptide genes. This up-regulation has functional significance in that that adding p-coumaric acid to a diet of sucrose increases midgut metabolism of coumaphos, a widely used in-hive acaricide, by ∼60%. As a major component of pollen grains, p-coumaric acid is ubiquitous in the natural diet of honey bees and may function as a nutraceutical regulating immune and detoxification processes. The widespread apicultural use of honey substitutes, including high-fructose corn syrup, may thus compromise the ability of honey bees to cope with pesticides and pathogens and contribute to colony losses.

  20. Imidacloprid decreases honey bee survival but does not affect the gut microbiome.

    Science.gov (United States)

    Raymann, Kasie; Motta, Erick V S; Girard, Catherine; Riddington, Ian M; Dinser, Jordan A; Moran, Nancy A

    2018-04-20

    Accumulating evidence suggests that pesticides have played a role in the increased rate of honeybee colony loss. One of the most commonly used pesticides in the US is the neonicotinoid imidacloprid. Although the primary mode of action of imidacloprid is the insect nervous system, it has also been shown to cause changes insects' digestive physiology, and alter the microbiota of Drosophila melanogaster larvae. The honey bee gut microbiome plays a major role in bee health. Although many studies have shown that imidacloprid affects honey bee behavior, its impact on the microbiome has not been fully elucidated. Here we investigated the impact of imidacloprid on the gut microbiome composition, survivorship of honey bees, and susceptibility to pathogens. Consistent with other studies, we show that imidacloprid exposure results in elevated mortality of honey bees in the hive and increases susceptibility to infection by pathogens. However, we did not find evidence that imidacloprid affects the gut bacterial community of honey bees. Our in vitro experiments demonstrated that honey bee gut bacteria can grow in the presence of imidacloprid, and we found some evidence that imidacloprid can be metabolized in the bee gut environment. However, none of the individual bee gut bacterial species tested could metabolize imidacloprid, suggesting that the observed metabolism of imidacloprid in vitro bee gut cultures is not caused by the gut bacteria. Overall, our results indicate that imidacloprid causes increased mortality in honey bees, but this mortality does not appear to be linked to the microbiome. Importance Growing evidence suggests that the extensive use of pesticides has played a large role in the increased rate of honey bee colony loss. Despite extensive research on the effects of imidacloprid on honey bees, it is still unknown whether it impacts the community structure of the gut microbiome. Here we investigated the impact of imidacloprid on the gut microbiome composition

  1. Survival and immune response of drones of a Nosemosis tolerant honey bee strain towards N. ceranae infections

    DEFF Research Database (Denmark)

    Huanga, Qiang; Kryger, Per; Le Conte, Yves

    2012-01-01

    Honey bee colonies (Apis mellifera) have been selected for low level of Nosema in Denmark over decades and Nosema is now rarely found in bee colonies from these breeding lines. We compared the immune response of a selected and an unselected honey bee lineage, taking advantage of the haploid males...

  2. An artificial bee colony algorithm for the capacitated vehicle routing problem

    DEFF Research Database (Denmark)

    Szeto, W.Y.; Wu, Yongzhong; Ho, Sin C.

    2011-01-01

    This paper introduces an artificial bee colony heuristic for solving the capacitated vehicle routing problem. The artificial bee colony heuristic is a swarm-based heuristic, which mimics the foraging behavior of a honey bee swarm. An enhanced version of the artificial bee colony heuristic is also...... proposed to improve the solution quality of the original version. The performance of the enhanced heuristic is evaluated on two sets of standard benchmark instances, and compared with the original artificial bee colony heuristic. The computational results show that the enhanced heuristic outperforms...

  3. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees.

    Science.gov (United States)

    Woodcock, B A; Bullock, J M; Shore, R F; Heard, M S; Pereira, M G; Redhead, J; Ridding, L; Dean, H; Sleep, D; Henrys, P; Peyton, J; Hulmes, S; Hulmes, L; Sárospataki, M; Saure, C; Edwards, M; Genersch, E; Knäbe, S; Pywell, R F

    2017-06-30

    Neonicotinoid seed dressings have caused concern world-wide. We use large field experiments to assess the effects of neonicotinoid-treated crops on three bee species across three countries (Hungary, Germany, and the United Kingdom). Winter-sown oilseed rape was grown commercially with either seed coatings containing neonicotinoids (clothianidin or thiamethoxam) or no seed treatment (control). For honey bees, we found both negative (Hungary and United Kingdom) and positive (Germany) effects during crop flowering. In Hungary, negative effects on honey bees (associated with clothianidin) persisted over winter and resulted in smaller colonies in the following spring (24% declines). In wild bees ( Bombus terrestris and Osmia bicornis ), reproduction was negatively correlated with neonicotinoid residues. These findings point to neonicotinoids causing a reduced capacity of bee species to establish new populations in the year following exposure. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Sepsis and Hemocyte Loss in Honey Bees (Apis mellifera) Infected with Serratia marcescens Strain Sicaria.

    Science.gov (United States)

    Burritt, Nancy L; Foss, Nicole J; Neeno-Eckwall, Eric C; Church, James O; Hilger, Anna M; Hildebrand, Jacob A; Warshauer, David M; Perna, Nicole T; Burritt, James B

    2016-01-01

    Global loss of honey bee colonies is threatening the human food supply. Diverse pathogens reduce honey bee hardiness needed to sustain colonies, especially in winter. We isolated a free-living Gram negative bacillus from hemolymph of worker honey bees (Apis mellifera) found separated from winter clusters. In some hives, greater than 90% of the dying bees detached from the winter cluster were found to contain this bacterium in their hemolymph. Throughout the year, the same organism was rarely found in bees engaged in normal hive activities, but was detected in about half of Varroa destructor mites obtained from colonies that housed the septic bees. Flow cytometry of hemolymph from septic bees showed a significant reduction of plasmatocytes and other types of hemocytes. Interpretation of the16S rRNA sequence of the bacterium indicated that it belongs to the Serratia genus of Gram-negative Gammaproteobacteria, which has not previously been implicated as a pathogen of adult honey bees. Complete genome sequence analysis of the bacterium supported its classification as a novel strain of Serratia marcescens, which was designated as S. marcescens strain sicaria (Ss1). When compared with other strains of S. marcescens, Ss1 demonstrated several phenotypic and genetic differences, including 65 genes not previously found in other Serratia genomes. Some of the unique genes we identified in Ss1 were related to those from bacterial insect pathogens and commensals. Recovery of this organism extends a complex pathosphere of agents which may contribute to failure of honey bee colonies.

  5. Sepsis and Hemocyte Loss in Honey Bees (Apis mellifera) Infected with Serratia marcescens Strain Sicaria

    Science.gov (United States)

    Burritt, Nancy L.; Foss, Nicole J.; Neeno-Eckwall, Eric C.; Church, James O.; Hildebrand, Jacob A.; Warshauer, David M.; Perna, Nicole T.; Burritt, James B.

    2016-01-01

    Global loss of honey bee colonies is threatening the human food supply. Diverse pathogens reduce honey bee hardiness needed to sustain colonies, especially in winter. We isolated a free-living Gram negative bacillus from hemolymph of worker honey bees (Apis mellifera) found separated from winter clusters. In some hives, greater than 90% of the dying bees detached from the winter cluster were found to contain this bacterium in their hemolymph. Throughout the year, the same organism was rarely found in bees engaged in normal hive activities, but was detected in about half of Varroa destructor mites obtained from colonies that housed the septic bees. Flow cytometry of hemolymph from septic bees showed a significant reduction of plasmatocytes and other types of hemocytes. Interpretation of the16S rRNA sequence of the bacterium indicated that it belongs to the Serratia genus of Gram-negative Gammaproteobacteria, which has not previously been implicated as a pathogen of adult honey bees. Complete genome sequence analysis of the bacterium supported its classification as a novel strain of Serratia marcescens, which was designated as S. marcescens strain sicaria (Ss1). When compared with other strains of S. marcescens, Ss1 demonstrated several phenotypic and genetic differences, including 65 genes not previously found in other Serratia genomes. Some of the unique genes we identified in Ss1 were related to those from bacterial insect pathogens and commensals. Recovery of this organism extends a complex pathosphere of agents which may contribute to failure of honey bee colonies. PMID:28002470

  6. The honey bee parasite Nosema ceranae: transmissible via food exchange?

    Directory of Open Access Journals (Sweden)

    Michael L Smith

    Full Text Available Nosema ceranae, a newly introduced parasite of the honey bee, Apis mellifera, is contributing to worldwide colony losses. Other Nosema species, such as N. apis, tend to be associated with increased defecation and spread via a fecal-oral pathway, but because N. ceranae does not induce defecation, it may instead be spread via an oral-oral pathway. Cages that separated older infected bees from young uninfected bees were used to test whether N. ceranae can be spread during food exchange. When cages were separated by one screen, food could be passed between the older bees and the young bees, but when separated by two screens, food could not be passed between the two cages. Young uninfected bees were also kept isolated in cages, as a solitary control. After 4 days of exposure to the older bees, and 10 days to incubate infections, young bees were more likely to be infected in the 1-Screen Test treatment vs. the 2-Screen Test treatment (P=0.0097. Young bees fed by older bees showed a 13-fold increase in mean infection level relative to young bees not fed by older bees (1-Screen Test 40.8%; 2-Screen Test 3.4%; Solo Control 2.8%. Although fecal-oral transmission is still possible in this experimental design, oral-oral infectivity could help explain the rapid spread of N. ceranae worldwide.

  7. Honey bee success predicted by landscape composition in Ohio, USA.

    Science.gov (United States)

    Sponsler, D B; Johnson, R M

    2015-01-01

    Foraging honey bees (Apis mellifera L.) can routinely travel as far as several kilometers from their hive in the process of collecting nectar and pollen from floral patches within the surrounding landscape. Since the availability of floral resources at the landscape scale is a function of landscape composition, apiculturists have long recognized that landscape composition is a critical determinant of honey bee colony success. Nevertheless, very few studies present quantitative data relating colony success metrics to local landscape composition. We employed a beekeeper survey in conjunction with GIS-based landscape analysis to model colony success as a function of landscape composition in the State of Ohio, USA, a region characterized by intensive cropland, urban development, deciduous forest, and grassland. We found that colony food accumulation and wax production were positively related to cropland and negatively related to forest and grassland, a pattern that may be driven by the abundance of dandelion and clovers in agricultural areas compared to forest or mature grassland. Colony food accumulation was also negatively correlated with urban land cover in sites dominated by urban and agricultural land use, which does not support the popular opinion that the urban environment is more favorable to honey bees than cropland.

  8. Honey bee success predicted by landscape composition in Ohio, USA

    Directory of Open Access Journals (Sweden)

    DB Sponsler

    2015-03-01

    Full Text Available Foraging honey bees (Apis mellifera L. can routinely travel as far as several kilometers from their hive in the process of collecting nectar and pollen from floral patches within the surrounding landscape. Since the availability of floral resources at the landscape scale is a function of landscape composition, apiculturists have long recognized that landscape composition is a critical determinant of honey bee colony success. Nevertheless, very few studies present quantitative data relating colony success metrics to local landscape composition. We employed a beekeeper survey in conjunction with GIS-based landscape analysis to model colony success as a function of landscape composition in the State of Ohio, USA, a region characterized by intensive cropland, urban development, deciduous forest, and grassland. We found that colony food accumulation and wax production were positively related to cropland and negatively related to forest and grassland, a pattern that may be driven by the abundance of dandelion and clovers in agricultural areas compared to forest or mature grassland. Colony food accumulation was also negatively correlated with urban land cover in sites dominated by urban and agricultural land use, which does not support the popular opinion that the urban environment is more favorable to honey bees than cropland.

  9. Multiple Virus Infections and the Characteristics of Chronic Bee Paralysis Virus in Diseased Honey Bees (Apis Mellifera L. in China

    Directory of Open Access Journals (Sweden)

    Wu Yan Y.

    2015-12-01

    Full Text Available China has the largest number of managed honey bee colonies globally, but there is currently no data on viral infection in diseased A. mellifera L. colonies in China. In particular, there is a lack of data on chronic bee paralysis virus (CBPV in Chinese honey bee colonies. Consequently, the present study investigated the occurrence and frequency of several widespread honey bee viruses in diseased Chinese apiaries, and we used the reverse transcription-polymerase chain reaction (RT-PCR assay. Described was the relationship between the presence of CBPV and diseased colonies (with at least one of the following symptoms: depopulation, paralysis, dark body colorings and hairless, or a mass of dead bees on the ground surrounding the beehives. Phylogenetic analyses of CBPV were employed. The prevalence of multiple infections of honey bee viruses in diseased Chinese apiaries was 100%, and the prevalence of infections with even five and six viruses were higher than expected. The incidence of CBPV in diseased colonies was significantly higher than that in apparently healthy colonies in Chinese A. mellifera aparies, and CBPV isolates from China can be separated into Chinese-Japanese clade 1 and 2. The results indicate that beekeeping in China may be threatened by colony decline due to the high prevalence of multiple viruses with CBPV.

  10. Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L).

    Science.gov (United States)

    Berry, Jennifer A; Hood, W Michael; Pietravalle, Stéphane; Delaplane, Keith S

    2013-01-01

    In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.

  11. Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Jennifer A Berry

    Full Text Available In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate and Check Mite+ (coumaphos and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.

  12. Rapid parallel evolution overcomes global honey bee parasite.

    Science.gov (United States)

    Oddie, Melissa; Büchler, Ralph; Dahle, Bjørn; Kovacic, Marin; Le Conte, Yves; Locke, Barbara; de Miranda, Joachim R; Mondet, Fanny; Neumann, Peter

    2018-05-16

    In eusocial insect colonies nestmates cooperate to combat parasites, a trait called social immunity. However, social immunity failed for Western honey bees (Apis mellifera) when the ectoparasitic mite Varroa destructor switched hosts from Eastern honey bees (Apis cerana). This mite has since become the most severe threat to A. mellifera world-wide. Despite this, some isolated A. mellifera populations are known to survive infestations by means of natural selection, largely by supressing mite reproduction, but the underlying mechanisms of this are poorly understood. Here, we show that a cost-effective social immunity mechanism has evolved rapidly and independently in four naturally V. destructor-surviving A. mellifera populations. Worker bees of all four 'surviving' populations uncapped/recapped worker brood cells more frequently and targeted mite-infested cells more effectively than workers in local susceptible colonies. Direct experiments confirmed the ability of uncapping/recapping to reduce mite reproductive success without sacrificing nestmates. Our results provide striking evidence that honey bees can overcome exotic parasites with simple qualitative and quantitative adaptive shifts in behaviour. Due to rapid, parallel evolution in four host populations this appears to be a key mechanism explaining survival of mite infested colonies.

  13. Learning impairment in honey bees caused by agricultural spray adjuvants.

    Directory of Open Access Journals (Sweden)

    Timothy J Ciarlo

    Full Text Available BACKGROUND: Spray adjuvants are often applied to crops in conjunction with agricultural pesticides in order to boost the efficacy of the active ingredient(s. The adjuvants themselves are largely assumed to be biologically inert and are therefore subject to minimal scrutiny and toxicological testing by regulatory agencies. Honey bees are exposed to a wide array of pesticides as they conduct normal foraging operations, meaning that they are likely exposed to spray adjuvants as well. It was previously unknown whether these agrochemicals have any deleterious effects on honey bee behavior. METHODOLOGY/PRINCIPAL FINDINGS: An improved, automated version of the proboscis extension reflex (PER assay with a high degree of trial-to-trial reproducibility was used to measure the olfactory learning ability of honey bees treated orally with sublethal doses of the most widely used spray adjuvants on almonds in the Central Valley of California. Three different adjuvant classes (nonionic surfactants, crop oil concentrates, and organosilicone surfactants were investigated in this study. Learning was impaired after ingestion of 20 µg organosilicone surfactant, indicating harmful effects on honey bees caused by agrochemicals previously believed to be innocuous. Organosilicones were more active than the nonionic adjuvants, while the crop oil concentrates were inactive. Ingestion was required for the tested adjuvant to have an effect on learning, as exposure via antennal contact only induced no level of impairment. CONCLUSIONS/SIGNIFICANCE: A decrease in percent conditioned response after ingestion of organosilicone surfactants has been demonstrated here for the first time. Olfactory learning is important for foraging honey bees because it allows them to exploit the most productive floral resources in an area at any given time. Impairment of this learning ability may have serious implications for foraging efficiency at the colony level, as well as potentially many

  14. Colonies of Bumble Bees (Bombus impatiens Produce Fewer Workers, Less Bee Biomass, and Have Smaller Mother Queens Following Fungicide Exposure

    Directory of Open Access Journals (Sweden)

    Olivia M. Bernauer

    2015-06-01

    Full Text Available Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possible culprit contributing to bee declines. Even fungicides, generally considered safe for bees, have been shown to disrupt honey bee development and impair bumble bee behavior. Little is known, however, how fungicides may affect bumble bee colony growth. We conducted a controlled cage study to determine the effects of fungicide exposure on colonies of a native bumble bee species (Bombus impatiens. Colonies of B. impatiens were exposed to flowers treated with field-relevant levels of the fungicide chlorothalonil over the course of one month. Colony success was assessed by the number and biomass of larvae, pupae, and adult bumble bees. Bumble bee colonies exposed to fungicide produced fewer workers, lower total bee biomass, and had lighter mother queens than control colonies. Our results suggest that fungicides negatively affect the colony success of a native bumble bee species and that the use of fungicides during bloom has the potential to severely impact the success of native bumble bee populations foraging in agroecosystems.

  15. Mapping Sleeping Bees within Their Nest: Spatial and Temporal Analysis of Worker Honey Bee Sleep

    Science.gov (United States)

    Klein, Barrett Anthony; Stiegler, Martin; Klein, Arno; Tautz, Jürgen

    2014-01-01

    Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.). Honey bees face variables such as temperature and position of resources within their colony's nest that may impact their sleep. We mapped sleep behavior and temperature of worker bees and produced maps of their nest's comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns. PMID:25029445

  16. Mapping sleeping bees within their nest: spatial and temporal analysis of worker honey bee sleep.

    Directory of Open Access Journals (Sweden)

    Barrett Anthony Klein

    Full Text Available Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.. Honey bees face variables such as temperature and position of resources within their colony's nest that may impact their sleep. We mapped sleep behavior and temperature of worker bees and produced maps of their nest's comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns.

  17. Mapping sleeping bees within their nest: spatial and temporal analysis of worker honey bee sleep.

    Science.gov (United States)

    Klein, Barrett Anthony; Stiegler, Martin; Klein, Arno; Tautz, Jürgen

    2014-01-01

    Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.). Honey bees face variables such as temperature and position of resources within their colony's nest that may impact their sleep. We mapped sleep behavior and temperature of worker bees and produced maps of their nest's comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns.

  18. Differences Among Commonly Sprayed Orchard Fungicides in Targeting the Beneficial Fungi Associated with Honey Bee Colony and Bee Bread Provisions (In Vitro)

    Science.gov (United States)

    Our studies evaluated the effects of representative fungicides, boscalid and pyraclostrobin, propiconazole, and chlorothalonil, alone and in combination, on 12 fungi species isolated from bee bread. Chlorothalonil was fungicidal (slowed growth without killing) and was least effective on Aspergillus...

  19. Pollination of tomatoes by the stingless bee Melipona quadrifasciata and the honey bee Apis mellifera (Hymenoptera, Apidae).

    Science.gov (United States)

    dos Santos, S A Bispo; Roselino, A C; Hrncir, M; Bego, L R

    2009-06-30

    The pollination effectiveness of the stingless bee Melipona quadrifasciata and the honey bee Apis mellifera was tested in tomato plots. The experiment was conducted in four greenhouses as well as in an external open plot in Ribeirão Preto, SP, Brazil. The tomato plants were exposed to visits by M. quadrifasciata in one greenhouse and to A. mellifera in another; two greenhouses were maintained without bees (controls) and an open field plot was exposed to pollinators in an area where both honey bee and stingless bee colonies are abundant. We counted the number of tomatoes produced in each plot. Two hundred tomatoes from each plot were weighed, their vertical and transversal circumferences were measured, and the seeds were counted. We collected 253 Chrysomelidae, 17 Halictidae, one Paratrigona sp, and one honey bee from the flowers of the tomato plants in the open area. The largest number of fruits (1414 tomatoes), the heaviest and largest tomatoes, and the ones with the most seed were collected from the greenhouse with stingless bees. Fruits cultivated in the greenhouse with honey bees had the same weight and size as those produced in one of the control greenhouses. The stingless bee, M. quadrifasciata, was significantly more efficient than honey bees in pollinating greenhouse tomatoes.

  20. Selection of VSH-derived “Pol-line” honey bees and evaluation of their Varroa-resistance characteristics

    OpenAIRE

    Danka , Robert G.; Harris , Jeffery W.; Dodds , Garrett E.

    2016-01-01

    International audience; AbstractHoney bees with Varroa sensitive hygiene (VSH) have good resistance to Varroa destructor. We bred “Pol-line” bees by outcrossing VSH queens to US commercial stocks from 2008 to 2014 and then selecting colonies with low mite infestations. Beginning in 2011, field performance of colonies with outcrossed Pol-line queens was compared to colonies with outcrossed VSH queens. Mite infestations after one season were comparable in colonies of the two bee types. Queens f...

  1. Dynamics of Persistent and Acute Deformed Wing Virus Infections in Honey Bees, Apis mellifera

    Directory of Open Access Journals (Sweden)

    Jay D. Evans

    2011-12-01

    Full Text Available The dynamics of viruses are critical to our understanding of disease pathogenesis. Using honey bee Deformed wing virus (DWV as a model, we conducted field and laboratory studies to investigate the roles of abiotic and biotic stress factors as well as host health conditions in dynamics of virus replication in honey bees. The results showed that temperature decline could lead to not only significant decrease in the rate for pupae to emerge as adult bees, but also an increased severity of the virus infection in emerged bees, partly explaining the high levels of winter losses of managed honey bees, Apis mellifera, around the world. By experimentally exposing adult bees with variable levels of parasitic mite Varroa destructor, we showed that the severity of DWV infection was positively correlated with the density and time period of Varroa mite infestation, confirming the role of Varroa mites in virus transmission and activation in honey bees. Further, we showed that host conditions have a significant impact on the outcome of DWV infection as bees that originate from strong colonies resist DWV infection and replication significantly better than bee originating from weak colonies. The information obtained from this study has important implications for enhancing our understanding of host‑pathogen interactions and can be used to develop effective disease control strategies for honey bees.

  2. Red mason bees cannot compete with honey bees for floral resources in a cage experiment.

    Science.gov (United States)

    Hudewenz, Anika; Klein, Alexandra-Maria

    2015-11-01

    Intensive beekeeping to mitigate crop pollination deficits and habitat loss may cause interspecific competition between bees. Studies show negative correlations between flower visitation of honey bees (Apis mellifera) and wild bees, but effects on the reproduction of wild bees were not proven. Likely reasons are that honey bees can hardly be excluded from controls and wild bee nests are generally difficult to detect in field experiments. The goal of this study was to investigate whether red mason bees (Osmia bicornis) compete with honey bees in cages in order to compare the reproduction of red mason bees under different honey bee densities. Three treatments were applied, each replicated in four cages of 18 m³ with 38 red mason bees in all treatments and 0, 100, and 300 honey bees per treatment with 10-20% being foragers. Within the cages, the flower visitation and interspecific displacements from flowers were observed. Niche breadths and resource overlaps of both bee species were calculated, and the reproduction of red mason bees was measured. Red mason bees visited fewer flowers when honey bees were present. Niche breadth of red mason bees decreased with increasing honey bee density while resource overlaps remained constant. The reproduction of red mason bees decreased in cages with honey bees. In conclusion, our experimental results show that in small and isolated flower patches, wild bees can temporarily suffer from competition with honey bees. Further research should aim to test for competition on small and isolated flower patches in real landscapes.

  3. Field tests of an acephate baiting system designed for eradicating undesirable honey bees (Hymenoptera: Apidae).

    Science.gov (United States)

    Danka, R G; Williams, J L; Sugden, E A; Rivera, R

    1992-08-01

    Field evaluations were made of a baiting system designed for use by regulatory agencies in suppressing populations of undesirable feral honey bees, Apis mellifera L. (e.g., bees posing hazards [especially Africanized bees] and colonies infested with parasitic mites). Bees from feral or simulated feral (hived) colonies were lured with honey and Nasonov pheromone components to feeders dispensing sucrose-honey syrup. After 1-3 wk of passive training to feeders, colonies were treated during active foraging by replacing untreated syrup with syrup containing 500 ppm (mg/liter) acephate (Orthene 75 S). In four trials using hived colonies on Grant Terre Island, LA., 21 of 29 colonies foraged actively enough at baits to be treated, and 20 of the 22 treated were destroyed. In the lower Rio Grande Valley of Texas (two trials at each of two trials), treatments killed 11 of 16 colonies (6 of 10 hived; 50 of 6 feral). Overall results showed that all 11 colonies that collected greater than 25 mg acephate died, whereas 3 of 10 colonies receiving less than 25 mg survived. Delivering adequate doses required a minimum of approximately 100 bees per target colony simultaneously collecting treated syrup. The system destroyed target colonies located up to nearly 700 m away from baits. Major factors limiting efficacy were conditions inhibiting foraging at baits (e.g., competing natural nectar sources and temperatures and winds that restricted bee flight).

  4. Behavioral Modulation of Infestation by Varroa destructor in Bee Colonies. Implications for Colony Stability.

    Science.gov (United States)

    de Figueiró Santos, Joyce; Coelho, Flávio Codeço; Bliman, Pierre-Alexandre

    2016-01-01

    Colony Collapse Disorder (CCD) has become a global problem for beekeepers and for the crops that depend on bee pollination. While many factors are known to increase the risk of colony collapse, the ectoparasitic mite Varroa destructor is considered to be the most serious one. Although this mite is unlikely to cause the collapse of hives itself, it is the vector for many viral diseases which are among the likely causes for Colony Collapse Disorder. The effects of V. destructor infestation differ from one part of the world to another, with greater morbidity and higher colony losses in European honey bees (EHB) in Europe, Asia and North America. Although this mite has been present in Brazil for many years, there have been no reports of colony losses amongst Africanized Honey Bees (AHB). Studies carried out in Mexico have highlighted different behavioral responses by the AHB to the presence of the mite, notably as far as grooming and hygienic behavior are concerned. Could these explain why the AHB are less susceptible to Colony Collapse Disorder? In order to answer this question, we have developed a mathematical model of the infestation dynamics to analyze the role of resistance behavior by bees in the overall health of the colony, and as a consequence, its ability to face epidemiological challenges.

  5. Behavioral Modulation of Infestation by Varroa destructor in Bee Colonies. Implications for Colony Stability.

    Directory of Open Access Journals (Sweden)

    Joyce de Figueiró Santos

    Full Text Available Colony Collapse Disorder (CCD has become a global problem for beekeepers and for the crops that depend on bee pollination. While many factors are known to increase the risk of colony collapse, the ectoparasitic mite Varroa destructor is considered to be the most serious one. Although this mite is unlikely to cause the collapse of hives itself, it is the vector for many viral diseases which are among the likely causes for Colony Collapse Disorder. The effects of V. destructor infestation differ from one part of the world to another, with greater morbidity and higher colony losses in European honey bees (EHB in Europe, Asia and North America. Although this mite has been present in Brazil for many years, there have been no reports of colony losses amongst Africanized Honey Bees (AHB. Studies carried out in Mexico have highlighted different behavioral responses by the AHB to the presence of the mite, notably as far as grooming and hygienic behavior are concerned. Could these explain why the AHB are less susceptible to Colony Collapse Disorder? In order to answer this question, we have developed a mathematical model of the infestation dynamics to analyze the role of resistance behavior by bees in the overall health of the colony, and as a consequence, its ability to face epidemiological challenges.

  6. Drone and Worker Brood Microclimates Are Regulated Differentially in Honey Bees, Apis mellifera.

    Science.gov (United States)

    Li, Zhiyong; Huang, Zachary Y; Sharma, Dhruv B; Xue, Yunbo; Wang, Zhi; Ren, Bingzhong

    2016-01-01

    Honey bee (Apis mellifera) drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood. We assessed temperature and relative humidity (RH) inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1) both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2) temperature in drones are maintained at higher precision (smaller variance) in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3) RH regulation showed higher variance in drone than workers across all brood stages; and 4) RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers. We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices.

  7. High Humidity in the Honey Bee (Apis mellifera L.) Brood Nest Limits Reproduction of the Parasitic Mite Varroa jacobsoni Oud.

    NARCIS (Netherlands)

    Kraus, B.; Velthuis, H.H.W.

    1997-01-01

    Factors influencing reproduction of the parasitic mite Varroa jacobsoni have become a central theme of honey bee pathology. In large parts of the world the mite has made it impossible for colonies of the honey bee Apis mellifera to survive if no measures of treatment are applied [1].

  8. Effects of Pesticide Treatments on Nutrient Levels in Worker Honey Bees (Apis mellifera

    Directory of Open Access Journals (Sweden)

    Haley K. Feazel-Orr

    2016-03-01

    Full Text Available Honey bee colony loss continues to be an issue and no factor has been singled out as to the cause. In this study, we sought to determine whether two beekeeper-applied pesticide products, tau-fluvalinate and Fumagilin-B®, and one agrochemical, chlorothalonil, impact the nutrient levels in honey bee workers in a natural colony environment. Treatments were performed in-hive and at three different periods (fall, spring, and summer over the course of one year. Bees were sampled both at pre-treatment and two and four weeks post-treatment, weighed, and their protein and carbohydrate levels were determined using BCA and anthrone based biochemical assays, respectively. We report that, based on the pesticide concentrations tested, no significant negative impact of the pesticide products was observed on wet weight, protein levels, or carbohydrate levels of bees from treated colonies compared with bees from untreated control colonies.

  9. Nosema ceranae parasitism impacts olfactory learning and memory and neurochemistry in honey bees (Apis mellifera).

    Science.gov (United States)

    Gage, Stephanie L; Kramer, Catherine; Calle, Samantha; Carroll, Mark; Heien, Michael; DeGrandi-Hoffman, Gloria

    2018-02-19

    Nosema sp. is an internal parasite of the honey bee, Apis mellifera , and one of the leading contributors to colony losses worldwide. This parasite is found in the honey bee midgut and has profound consequences for the host's physiology. Nosema sp. impairs foraging performance in honey bees, yet, it is unclear whether this parasite affects the bee's neurobiology. In this study, we examined whether Nosema sp. affects odor learning and memory and whether the brains of parasitized bees show differences in amino acids and biogenic amines. We took newly emerged bees and fed them with Nosema ceranae At approximate nurse and forager ages, we employed an odor-associative conditioning assay using the proboscis extension reflex and two bioanalytical techniques to measure changes in brain chemistry. We found that nurse-aged bees infected with N. ceranae significantly outperformed controls in odor learning and memory, suggestive of precocious foraging, but by forager age, infected bees showed deficits in learning and memory. We also detected significant differences in amino acid concentrations, some of which were age specific, as well as altered serotonin, octopamine, dopamine and l-dopa concentrations in the brains of parasitized bees. These findings suggest that N. ceranae infection affects honey bee neurobiology and may compromise behavioral tasks. These results yield new insight into the host-parasite dynamic of honey bees and N. ceranae , as well as the neurochemistry of odor learning and memory under normal and parasitic conditions. © 2018. Published by The Company of Biologists Ltd.

  10. Are agrochemicals present in high fructose corn syrup fed to honey bees (Apis mellifera L.)?

    Science.gov (United States)

    Honey bee colonies are commonly fed high fructose corn syrup (HFCS) as a nectar substitute. Many agrochemicals are applied to corn during cultivation including systemic neonicotinoids. Whether agrochemicals are present in HFCS fed to bees is unknown. Samples from the major manufacturers and distri...

  11. Modelling collective foraging by means of individual behaviour rules in honey-bees

    NARCIS (Netherlands)

    Vries, Han de; Biesmeijer, J.C.

    1998-01-01

    An individual-oriented model is constructed which simulates the collective foraging behaviour of a colony of honey-bees, Apis mellifera. Each bee follows the same set of behavioural rules. Each rule consists of a set of conditions followed by the behavioural act to be performed if the

  12. Modelling collective foraging by means of individual behaviour rules in honey-bees

    NARCIS (Netherlands)

    de Vries, H; Biesmeijer, JC

    1998-01-01

    An individual-oriented model is constructed which simulates the collective foraging behaviour of a colony of honey-bees, Apis mellifera. Each bee follows the same set of behavioural rules. Each rule consists of a set of conditions followed by the behavioural act to be performed if the conditions are

  13. Regular dorsal dimples and damaged mites of Varroa destructor in some Iranian honey bees (Apis mellifera)

    OpenAIRE

    Ardestani, Masoud M.; Ebadi, Rahim; Tahmasbi, Gholamhossein

    2011-01-01

    The frequency of damaged Varroa destructor Anderson and Trueman (Mesostigmata: Varroidae) found on the bottom board of hives of the honey bee, Apis mellifera L. (Hymenoptera: Apidae) has been used as an indicator of the degree of tolerance or resistance of honey bee colonies against mites. However, it is not clear that this measure is adequate. These injuries should be separated from regular dorsal dimples that have a developmental origin. To investigate damage to Varroa mites and regular dor...

  14. Honey bee-inspired algorithms for SNP haplotype reconstruction problem

    Science.gov (United States)

    PourkamaliAnaraki, Maryam; Sadeghi, Mehdi

    2016-03-01

    Reconstructing haplotypes from SNP fragments is an important problem in computational biology. There have been a lot of interests in this field because haplotypes have been shown to contain promising data for disease association research. It is proved that haplotype reconstruction in Minimum Error Correction model is an NP-hard problem. Therefore, several methods such as clustering techniques, evolutionary algorithms, neural networks and swarm intelligence approaches have been proposed in order to solve this problem in appropriate time. In this paper, we have focused on various evolutionary clustering techniques and try to find an efficient technique for solving haplotype reconstruction problem. It can be referred from our experiments that the clustering methods relying on the behaviour of honey bee colony in nature, specifically bees algorithm and artificial bee colony methods, are expected to result in more efficient solutions. An application program of the methods is available at the following link. http://www.bioinf.cs.ipm.ir/software/haprs/

  15. Intensively Cultivated Landscape and Varroa Mite Infestation Are Associated with Reduced Honey Bee Nutritional State.

    Science.gov (United States)

    Dolezal, Adam G; Carrillo-Tripp, Jimena; Miller, W Allen; Bonning, Bryony C; Toth, Amy L

    2016-01-01

    As key pollinators, honey bees are crucial to many natural and agricultural ecosystems. An important factor in the health of honey bees is the availability of diverse floral resources. However, in many parts of the world, high-intensity agriculture could result in a reduction in honey bee forage. Previous studies have investigated how the landscape surrounding honey bee hives affects some aspects of honey bee health, but to our knowledge there have been no investigations of the effects of intensively cultivated landscapes on indicators of individual bee health such as nutritional physiology and pathogen loads. Furthermore, agricultural landscapes in different regions vary greatly in forage and land management, indicating a need for additional information on the relationship between honey bee health and landscape cultivation. Here, we add to this growing body of information by investigating differences in nutritional physiology between honey bees kept in areas of comparatively low and high cultivation in an area generally high agricultural intensity in the Midwestern United States. We focused on bees collected directly before winter, because overwintering stress poses one of the most serious problems for honey bees in temperate climates. We found that honey bees kept in areas of lower cultivation exhibited higher lipid levels than those kept in areas of high cultivation, but this effect was observed only in colonies that were free of Varroa mites. Furthermore, we found that the presence of mites was associated with lower lipid levels and higher titers of deformed wing virus (DWV), as well as a non-significant trend towards higher overwinter losses. Overall, these results show that mite infestation interacts with landscape, obscuring the effects of landscape alone and suggesting that the benefits of improved foraging landscape could be lost without adequate control of mite infestations.

  16. Intensively Cultivated Landscape and Varroa Mite Infestation Are Associated with Reduced Honey Bee Nutritional State.

    Directory of Open Access Journals (Sweden)

    Adam G Dolezal

    Full Text Available As key pollinators, honey bees are crucial to many natural and agricultural ecosystems. An important factor in the health of honey bees is the availability of diverse floral resources. However, in many parts of the world, high-intensity agriculture could result in a reduction in honey bee forage. Previous studies have investigated how the landscape surrounding honey bee hives affects some aspects of honey bee health, but to our knowledge there have been no investigations of the effects of intensively cultivated landscapes on indicators of individual bee health such as nutritional physiology and pathogen loads. Furthermore, agricultural landscapes in different regions vary greatly in forage and land management, indicating a need for additional information on the relationship between honey bee health and landscape cultivation. Here, we add to this growing body of information by investigating differences in nutritional physiology between honey bees kept in areas of comparatively low and high cultivation in an area generally high agricultural intensity in the Midwestern United States. We focused on bees collected directly before winter, because overwintering stress poses one of the most serious problems for honey bees in temperate climates. We found that honey bees kept in areas of lower cultivation exhibited higher lipid levels than those kept in areas of high cultivation, but this effect was observed only in colonies that were free of Varroa mites. Furthermore, we found that the presence of mites was associated with lower lipid levels and higher titers of deformed wing virus (DWV, as well as a non-significant trend towards higher overwinter losses. Overall, these results show that mite infestation interacts with landscape, obscuring the effects of landscape alone and suggesting that the benefits of improved foraging landscape could be lost without adequate control of mite infestations.

  17. Differentially expressed regulatory genes in honey bee caste development

    Science.gov (United States)

    Hepperle, C.; Hartfelder, K.

    2001-03-01

    In the honey bee, an eminently fertile queen with up to 200 ovarioles per ovary monopolizes colony level reproduction. In contrast, worker bees have only few ovarioles and are essentially sterile. This phenotype divergence is a result of caste-specifically modulated juvenile hormone and ecdysteroid titers in larval development. In this study we employed a differential-display reverse transcription (DDRT)-PCR protocol to detect ecdysteroid-regulated gene expression during a critical phase of caste development. We identified a Ftz-F1 homolog and a Cut-like transcript. Ftz-F1 could be a putative element of the metamorphic ecdysone response cascade of bees, whereas Cut-like proteins are described as transcription factors involved in maintaining cellular differentiation states. The downregulation of both factors can be interpreted as steps in the metamorphic degradation of ovarioles in worker-bee ovaries.

  18. Patterns of viral infection in honey bee queens

    DEFF Research Database (Denmark)

    Francis, Roy Mathew; Kryger, Per; Nielsen, Steen Lykke

    2013-01-01

    by two real-time PCRs: one for the presence of deformed wing virus (DWV), and one that would detect sequences of acute bee-paralysis virus, Kashmir bee virus and Israeli acute paralysis virus (AKI complex). Worker bees accompanying the queen were also analysed. The queens could be divided into three......The well-being of a colony and replenishment of the workers depends on a healthy queen. Diseases in queens are seldom reported, and our knowledge on viral infection in queens is limited. In this study, 86 honey bee queens were collected from beekeepers in Denmark. All queens were tested separately...... groups based on the level of infection in their head, thorax, ovary, intestines and spermatheca. Four queens exhibited egg-laying deficiency, but visually all queens appeared healthy. Viral infection was generally at a low level in terms of AKI copy numbers, with 134/430 tissues (31 %) showing...

  19. The Honey Bee Pathosphere of Mongolia: European Viruses in Central Asia.

    Science.gov (United States)

    Tsevegmid, Khaliunaa; Neumann, Peter; Yañez, Orlando

    2016-01-01

    Parasites and pathogens are apparent key factors for the detrimental health of managed European honey bee subspecies, Apis mellifera. Apicultural trade is arguably the main factor for the almost global distribution of most honey bee diseases, thereby increasing chances for multiple infestations/infections of regions, apiaries, colonies and even individual bees. This imposes difficulties to evaluate the effects of pathogens in isolation, thereby creating demand to survey remote areas. Here, we conducted the first comprehensive survey for 14 honey bee pathogens in Mongolia (N = 3 regions, N = 9 locations, N = 151 colonies), where honey bee colonies depend on humans to overwinter. In Mongolia, honey bees, Apis spp., are not native and colonies of European A. mellifera subspecies have been introduced ~60 years ago. Despite the high detection power and large sample size across Mongolian regions with beekeeping, the mite Acarapis woodi, the bacteria Melissococcus plutonius and Paenibacillus larvae, the microsporidian Nosema apis, Acute bee paralysis virus, Kashmir bee virus, Israeli acute paralysis virus and Lake Sinai virus strain 2 were not detected, suggesting that they are either very rare or absent. The mite Varroa destructor, Nosema ceranae and four viruses (Sacbrood virus, Black queen cell virus, Deformed wing virus (DWV) and Chronic bee paralysis virus) were found with different prevalence. Despite the positive correlation between the prevalence of V. destructor mites and DWV, some areas had only mites, but not DWV, which is most likely due to the exceptional isolation of apiaries (up to 600 km). Phylogenetic analyses of the detected viruses reveal their clustering and European origin, thereby supporting the role of trade for pathogen spread and the isolation of Mongolia from South-Asian countries. In conclusion, this survey reveals the distinctive honey bee pathosphere of Mongolia, which offers opportunities for exciting future research.

  20. The Honey Bee Pathosphere of Mongolia: European Viruses in Central Asia.

    Directory of Open Access Journals (Sweden)

    Khaliunaa Tsevegmid

    Full Text Available Parasites and pathogens are apparent key factors for the detrimental health of managed European honey bee subspecies, Apis mellifera. Apicultural trade is arguably the main factor for the almost global distribution of most honey bee diseases, thereby increasing chances for multiple infestations/infections of regions, apiaries, colonies and even individual bees. This imposes difficulties to evaluate the effects of pathogens in isolation, thereby creating demand to survey remote areas. Here, we conducted the first comprehensive survey for 14 honey bee pathogens in Mongolia (N = 3 regions, N = 9 locations, N = 151 colonies, where honey bee colonies depend on humans to overwinter. In Mongolia, honey bees, Apis spp., are not native and colonies of European A. mellifera subspecies have been introduced ~60 years ago. Despite the high detection power and large sample size across Mongolian regions with beekeeping, the mite Acarapis woodi, the bacteria Melissococcus plutonius and Paenibacillus larvae, the microsporidian Nosema apis, Acute bee paralysis virus, Kashmir bee virus, Israeli acute paralysis virus and Lake Sinai virus strain 2 were not detected, suggesting that they are either very rare or absent. The mite Varroa destructor, Nosema ceranae and four viruses (Sacbrood virus, Black queen cell virus, Deformed wing virus (DWV and Chronic bee paralysis virus were found with different prevalence. Despite the positive correlation between the prevalence of V. destructor mites and DWV, some areas had only mites, but not DWV, which is most likely due to the exceptional isolation of apiaries (up to 600 km. Phylogenetic analyses of the detected viruses reveal their clustering and European origin, thereby supporting the role of trade for pathogen spread and the isolation of Mongolia from South-Asian countries. In conclusion, this survey reveals the distinctive honey bee pathosphere of Mongolia, which offers opportunities for exciting future research.

  1. Antagonistic interactions between honey bee bacterial symbionts and implications for disease

    Directory of Open Access Journals (Sweden)

    Armstrong Tamieka-Nicole

    2006-03-01

    Full Text Available Abstract Background Honey bees, Apis mellifera, face many parasites and pathogens and consequently rely on a diverse set of individual and group-level defenses to prevent disease. One route by which honey bees and other insects might combat disease is through the shielding effects of their microbial symbionts. Bees carry a diverse assemblage of bacteria, very few of which appear to be pathogenic. Here we explore the inhibitory effects of these resident bacteria against the primary bacterial pathogen of honey bees, Paenibacillus larvae. Results Here we isolate, culture, and describe by 16S rRNA and protein-coding gene sequences 61 bacterial isolates from honey bee larvae, reflecting a total of 43 distinct bacterial taxa. We culture these bacteria alongside the primary larval pathogen of honey bees, Paenibacillus larvae, and show that many of these isolates severely inhibit the growth of this pathogen. Accordingly, symbiotic bacteria including those described here are plausible natural antagonists toward this widespread pathogen. Conclusion The results suggest a tradeoff in social insect colonies between the maintenance of potentially beneficial bacterial symbionts and deterrence at the individual and colony level of pathogenic species. They also provide a novel mechanism for recently described social components behind disease resistance in insect colonies, and point toward a potential control strategy for an important bee disease.

  2. Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection

    Directory of Open Access Journals (Sweden)

    Melissa A.Y. Oddie

    2017-10-01

    Full Text Available Background Managed, feral and wild populations of European honey bee subspecies, Apis mellifera, are currently facing severe colony losses globally. There is consensus that the ectoparasitic mite Varroa destructor, that switched hosts from the Eastern honey bee Apis cerana to the Western honey bee A. mellifera, is a key factor driving these losses. For >20 years, breeding efforts have not produced European honey bee colonies that can survive infestations without the need for mite control. However, at least three populations of European honey bees have developed this ability by means of natural selection and have been surviving for >10 years without mite treatments. Reduced mite reproductive success has been suggested as a key factor explaining this natural survival. Here, we report a managed A. mellifera population in Norway, that has been naturally surviving consistent V. destructor infestations for >17 years. Methods Surviving colonies and local susceptible controls were evaluated for mite infestation levels, mite reproductive success and two potential mechanisms explaining colony survival: grooming of adult worker bees and Varroa Sensitive Hygiene (VSH: adult workers specifically detecting and removing mite-infested brood. Results Mite infestation levels were significantly lower in surviving colonies and mite reproductive success was reduced by 30% when compared to the controls. No significant differences were found between surviving and control colonies for either grooming or VSH. Discussion Our data confirm that reduced mite reproductive success seems to be a key factor for natural survival of infested A. mellifera colonies. However, neither grooming nor VSH seem to explain colony survival. Instead, other behaviors of the adult bees seem to be sufficient to hinder mite reproductive success, because brood for this experiment was taken from susceptible donor colonies only. To mitigate the global impact of V. destructor, we suggest learning

  3. Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection.

    Science.gov (United States)

    Oddie, Melissa A Y; Dahle, Bjørn; Neumann, Peter

    2017-01-01

    Managed, feral and wild populations of European honey bee subspecies, Apis mellifera , are currently facing severe colony losses globally. There is consensus that the ectoparasitic mite Varroa destructor , that switched hosts from the Eastern honey bee Apis cerana to the Western honey bee A. mellifera , is a key factor driving these losses. For >20 years, breeding efforts have not produced European honey bee colonies that can survive infestations without the need for mite control. However, at least three populations of European honey bees have developed this ability by means of natural selection and have been surviving for >10 years without mite treatments. Reduced mite reproductive success has been suggested as a key factor explaining this natural survival. Here, we report a managed A. mellifera population in Norway, that has been naturally surviving consistent V. destructor infestations for >17 years. Surviving colonies and local susceptible controls were evaluated for mite infestation levels, mite reproductive success and two potential mechanisms explaining colony survival: grooming of adult worker bees and Varroa Sensitive Hygiene (VSH): adult workers specifically detecting and removing mite-infested brood. Mite infestation levels were significantly lower in surviving colonies and mite reproductive success was reduced by 30% when compared to the controls. No significant differences were found between surviving and control colonies for either grooming or VSH. Our data confirm that reduced mite reproductive success seems to be a key factor for natural survival of infested A. mellifera colonies. However, neither grooming nor VSH seem to explain colony survival. Instead, other behaviors of the adult bees seem to be sufficient to hinder mite reproductive success, because brood for this experiment was taken from susceptible donor colonies only. To mitigate the global impact of V. destructor , we suggest learning more from nature, i.e., identifying the obviously

  4. Queens and Workers Contribute Differently to Adaptive Evolution in Bumble Bees and Honey Bees.

    Science.gov (United States)

    Harpur, Brock A; Dey, Alivia; Albert, Jennifer R; Patel, Sani; Hines, Heather M; Hasselmann, Martin; Packer, Laurence; Zayed, Amro

    2017-09-01

    Eusociality represents a major transition in evolution and is typified by cooperative brood care and reproductive division of labor between generations. In bees, this division of labor allows queens and workers to phenotypically specialize. Worker traits associated with helping are thought to be crucial to the fitness of a eusocial lineage, and recent studies of honey bees (genus Apis) have found that adaptively evolving genes often have worker-biased expression patterns. It is unclear however if worker-biased genes are disproportionately acted on by strong positive selection in all eusocial insects. We undertook a comparative population genomics study of bumble bees (Bombus) and honey bees to quantify natural selection on queen- and worker-biased genes across two levels of social complexity. Despite sharing a common eusocial ancestor, genes, and gene groups with the highest levels of positive selection were often unique within each genus, indicating that life history and the environment, but not sociality per se, drives patterns of adaptive molecular evolution. We uncovered differences in the contribution of queen- and worker-biased genes to adaptive evolution in bumble bees versus honey bees. Unlike honey bees, where worker-biased genes are enriched for signs of adaptive evolution, genes experiencing positive selection in bumble bees were predominately expressed by reproductive foundresses during the initial solitary-founding stage of colonies. Our study suggests that solitary founding is a major selective pressure and that the loss of queen totipotency may cause a change in the architecture of selective pressures upon the social insect genome. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Application of the artificial bee colony algorithm for solving the set covering problem.

    Science.gov (United States)

    Crawford, Broderick; Soto, Ricardo; Cuesta, Rodrigo; Paredes, Fernando

    2014-01-01

    The set covering problem is a formal model for many practical optimization problems. In the set covering problem the goal is to choose a subset of the columns of minimal cost that covers every row. Here, we present a novel application of the artificial bee colony algorithm to solve the non-unicost set covering problem. The artificial bee colony algorithm is a recent swarm metaheuristic technique based on the intelligent foraging behavior of honey bees. Experimental results show that our artificial bee colony algorithm is competitive in terms of solution quality with other recent metaheuristic approaches for the set covering problem.

  6. BEE VENOM TRAP DESIGN FOR PRODUCE BEE VENOM OF APIS MELLIFERA L. HONEY BEES

    OpenAIRE

    Budiaman

    2015-01-01

    Bee venom is one honey bee products are very expensive and are required in the pharmaceutical industry and as an anti-cancer known as nanobee, but the production technique is still done in the traditional way. The purpose of this study was to design a bee venom trap to produce bee venom of Apis mellifera L honey bees. The method used is to design several models of bee venom apparatus equipped weak current (DC current) with 3 variations of voltage, ie 12 volts, 15 volts and 18 volts coupled...

  7. Divergent forms of endoplasmic reticulum stress trigger a robust unfolded protein response in honey bees.

    Science.gov (United States)

    Johnston, Brittany A; Hooks, Katarzyna B; McKinstry, Mia; Snow, Jonathan W

    2016-03-01

    Honey bee colonies in the United States have suffered from an increased rate of die-off in recent years, stemming from a complex set of interacting stresses that remain poorly described. While we have some understanding of the physiological stress responses in the honey bee, our molecular understanding of honey bee cellular stress responses is incomplete. Thus, we sought to identify and began functional characterization of the components of the UPR in honey bees. The IRE1-dependent splicing of the mRNA for the transcription factor Xbp1, leading to translation of an isoform with more transactivation potential, represents the most conserved of the UPR pathways. Honey bees and other Apoidea possess unique features in the Xbp1 mRNA splice site, which we reasoned could have functional consequences for the IRE1 pathway. However, we find robust induction of target genes upon UPR stimulation. In addition, the IRE1 pathway activation, as assessed by splicing of Xbp1 mRNA upon UPR, is conserved. By providing foundational knowledge about the UPR in the honey bee and the relative sensitivity of this species to divergent stresses, this work stands to improve our understanding of the mechanistic underpinnings of honey bee health and disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The paratransgenic potential of Lactobacillus kunkeei in the honey bee Apis mellifera.

    Science.gov (United States)

    Rangberg, A; Mathiesen, G; Amdam, G V; Diep, D B

    2015-01-01

    The honey bee (Apis mellifera) is a domestic insect of high value to human societies, as a crop pollinator in agriculture and a model animal in scientific research. The honey bee, however, has experienced massive mortality worldwide due to the phenomenon Colony Collapse Disorder (CCD), resulting in alarming prospects for crop failure in Europe and the USA. The reasons for CCD are complex and much debated, but several honey bee pathogens are believed to be involved. Paratransgenesis is a Trojan horse strategy, where endogenous microorganisms are used to express effector molecules that antagonise pathogen development. For use in honey bees, paratransgenesis must rely on a set of criteria that the candidate paratransgenic microorganism must fulfil in order to obtain a successful outcome: (1) the candidate must be genetically modifiable to express effector molecules; (2) the modified organism should have no adverse effects on honey bee health upon reintroduction; and (3) it must survive together with other non-pathogenic bee-associated microorganisms. Lactic acid bacteria (LAB) are common gut bacteria in vertebrates and invertebrates, and some have naturally beneficial properties in their host. In the present work we aimed to find a potential paratransgenic candidate within this bacterial group for use in honey bees. Among isolated LAB associated with bee gut microbiota, we found the fructophilic Lactobacillus kunkeei to be the most predominant species during foraging seasons. Four genetically different strains of L. kunkeei were selected for further assessment. We demonstrated (1) that L. kunkeei is transformable; (2) that the transformed cells had no obvious adverse effect on honey bee survival; and (3) that transformed cells survived well in the gut environment of bees upon reintroduction. Our study demonstrates that L. kunkeei fulfils the three criteria for paratransgenesis and can be a suitable candidate for further research on this strategy in honey bees.

  9. Intraspecific Aggression in Giant Honey Bees (Apis dorsata

    Directory of Open Access Journals (Sweden)

    Frank Weihmann

    2014-09-01

    Full Text Available We investigated intraspecific aggression in experimental nests (expN1, expN2 of the giant honey bee Apis dorsata in Chitwan (Nepal, focusing on interactions between surface bees and two other groups of bees approaching the nest: (1 homing “nestmate” foragers landing on the bee curtain remained unmolested by guards; and (2 supposed “non-nestmate” bees, which were identified by their erratic flight patterns in front of the nest, such as hovering or sideways scanning and splaying their legs from their body, and were promptly attacked by the surface bees after landing. These supposed non-nestmate bees only occurred immediately before and after migration swarms, which had arrived in close vicinity (and were most likely scouting for a nesting site. In total, 231 of the “nestmate” foragers (fb and 102 approaches of such purported “non-nestmate” scouts (sc were analysed (total observation time expN1: 5.43 min regarding the evocation of shimmering waves (sh. During their landing the “nestmate” foragers provoked less shimmering waves (relnsh[fb] = 23/231 = 0.0996, relnsh[sc] = 75/102 = 0.7353; p <0.001, χ2-test with shorter duration (Dsh[fb] = 197 ± 17 ms, Dsh[sc] = 488 ± 16 ms; p <0.001; t-test than “non-nestmates”. Moreover, after having landed on the nest surface, the “non-nestmates” were attacked by the surface bees (expN1, expN2: observation time >18 min quite similarly to the defensive response against predatory wasps. Hence, the surface members of settled colonies respond differently to individual giant honey bees approaching the nest, depending on whether erratic flight patterns are displayed or not.

  10. Defending the hive: social mechanisms complement individual immunity in honey bees

    Science.gov (United States)

    Honey bees live in large colonies (~50,000 individuals), but sociality has both costs and benefits. In some ways, social life enables individuals within colonies to better fend off pathogens and parasites than if they were solitary. However, an environment with many genetically related individuals i...

  11. Impact of managed honey bee viruses on wild bees.

    Science.gov (United States)

    Tehel, Anja; Brown, Mark Jf; Paxton, Robert J

    2016-08-01

    Several viruses found in the Western honey bee (Apis mellifera) have recently been detected in other bee species, raising the possibility of spill-over from managed to wild bee species. Alternatively, these viruses may be shared generalists across flower-visiting insects. Here we explore the former hypothesis, pointing out weaknesses in the current evidence, particularly in relation to deformed wing virus (DWV), and highlighting research areas that may help test it. Data so far suggest that DWV spills over from managed to wild bee species and has the potential to cause population decline. That DWV and other viruses of A. mellifera are found in other bee species needs to be considered for the sustainable management of bee populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A Clustering Approach Using Cooperative Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Wenping Zou

    2010-01-01

    Full Text Available Artificial Bee Colony (ABC is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. This paper presents an extended ABC algorithm, namely, the Cooperative Article Bee Colony (CABC, which significantly improves the original ABC in solving complex optimization problems. Clustering is a popular data analysis and data mining technique; therefore, the CABC could be used for solving clustering problems. In this work, first the CABC algorithm is used for optimizing six widely used benchmark functions and the comparative results produced by ABC, Particle Swarm Optimization (PSO, and its cooperative version (CPSO are studied. Second, the CABC algorithm is used for data clustering on several benchmark data sets. The performance of CABC algorithm is compared with PSO, CPSO, and ABC algorithms on clustering problems. The simulation results show that the proposed CABC outperforms the other three algorithms in terms of accuracy, robustness, and convergence speed.

  13. Escalated convergent artificial bee colony

    Science.gov (United States)

    Jadon, Shimpi Singh; Bansal, Jagdish Chand; Tiwari, Ritu

    2016-03-01

    Artificial bee colony (ABC) optimisation algorithm is a recent, fast and easy-to-implement population-based meta heuristic for optimisation. ABC has been proved a rival algorithm with some popular swarm intelligence-based algorithms such as particle swarm optimisation, firefly algorithm and ant colony optimisation. The solution search equation of ABC is influenced by a random quantity which helps its search process in exploration at the cost of exploitation. In order to find a fast convergent behaviour of ABC while exploitation capability is maintained, in this paper basic ABC is modified in two ways. First, to improve exploitation capability, two local search strategies, namely classical unidimensional local search and levy flight random walk-based local search are incorporated with ABC. Furthermore, a new solution search strategy, namely stochastic diffusion scout search is proposed and incorporated into the scout bee phase to provide more chance to abandon solution to improve itself. Efficiency of the proposed algorithm is tested on 20 benchmark test functions of different complexities and characteristics. Results are very promising and they prove it to be a competitive algorithm in the field of swarm intelligence-based algorithms.

  14. Evaluation of cage designs and feeding regimes for honey bee (Hymenoptera: Apidae) laboratory experiments.

    Science.gov (United States)

    Huang, Shao Kang; Csaki, Tamas; Doublet, Vincent; Dussaubat, Claudia; Evans, Jay D; Gajda, Anna M; Gregorc, Alex; Hamilton, Michele C; Kamler, Martin; Lecocq, Antoine; Muz, Mustafa N; Neumann, Peter; Ozkirim, Asli; Schiesser, Aygün; Sohr, Alex R; Tanner, Gina; Tozkar, Cansu Ozge; Williams, Geoffrey R; Wu, Lyman; Zheng, Huoqing; Chen, Yan Ping

    2014-02-01

    The aim of this study was to improve cage systems for maintaining adult honey bee (Apis mellifera L.) workers under in vitro laboratory conditions. To achieve this goal, we experimentally evaluated the impact of different cages, developed by scientists of the international research network COLOSS (Prevention of honey bee COlony LOSSes), on the physiology and survival of honey bees. We identified three cages that promoted good survival of honey bees. The bees from cages that exhibited greater survival had relatively lower titers of deformed wing virus, suggesting that deformed wing virus is a significant marker reflecting stress level and health status of the host. We also determined that a leak- and drip-proof feeder was an integral part of a cage system and a feeder modified from a 20-ml plastic syringe displayed the best result in providing steady food supply to bees. Finally, we also demonstrated that the addition of protein to the bees' diet could significantly increase the level ofvitellogenin gene expression and improve bees' survival. This international collaborative study represents a critical step toward improvement of cage designs and feeding regimes for honey bee laboratory experiments.

  15. Influence of Pollen Nutrition on Honey Bee Health: Do Pollen Quality and Diversity Matter?

    OpenAIRE

    Di Pasquale, Garance; Salignon, Marion; Le Conte, Yves; Belzunces, Luc P.; Decourtye, Axel; Kretzschmar, Andr?; Suchail, S?verine; Brunet, Jean-Luc; Alaux, C?dric

    2013-01-01

    Honey bee colonies are highly dependent upon the availability of floral resources from which they get the nutrients (notably pollen) necessary to their development and survival. However, foraging areas are currently affected by the intensification of agriculture and landscape alteration. Bees are therefore confronted to disparities in time and space of floral resource abundance, type and diversity, which might provide inadequate nutrition and endanger colonies. The beneficial influence of pol...

  16. How Varroa Parasitism Affects the Immunological and Nutritional Status of the Honey Bee, Apis mellifera

    Science.gov (United States)

    Aronstein, Katherine A.; Saldivar, Eduardo; Vega, Rodrigo; Westmiller, Stephanie; Douglas, Angela E.

    2012-01-01

    We investigated the effect of the parasitic mite Varroadestructor on the immunological and nutritional condition of honey bees, Apis mellifera, from the perspective of the individual bee and the colony. Pupae, newly-emerged adults and foraging adults were sampled from honey bee colonies at one site in S. Texas, USA. Varroa‑infested bees displayed elevated titer of Deformed Wing Virus (DWV), suggestive of depressed capacity to limit viral replication. Expression of genes coding three anti-microbial peptides (defensin1, abaecin, hymenoptaecin) was either not significantly different between Varroa-infested and uninfested bees or was significantly elevated in Varroa-infested bees, varying with sampling date and bee developmental age. The effect of Varroa on nutritional indices of the bees was complex, with protein, triglyceride, glycogen and sugar levels strongly influenced by life-stage of the bee and individual colony. Protein content was depressed and free amino acid content elevated in Varroa-infested pupae, suggesting that protein synthesis, and consequently growth, may be limited in these insects. No simple relationship between the values of nutritional and immune-related indices was observed, and colony-scale effects were indicated by the reduced weight of pupae in colonies with high Varroa abundance, irrespective of whether the individual pupa bore Varroa. PMID:26466617

  17. How Varroa Parasitism Affects the Immunological and Nutritional Status of the Honey Bee, Apis mellifera.

    Science.gov (United States)

    Aronstein, Katherine A; Saldivar, Eduardo; Vega, Rodrigo; Westmiller, Stephanie; Douglas, Angela E

    2012-06-27

    We investigated the effect of the parasitic mite Varroa destructor on the immunological and nutritional condition of honey bees, Apis mellifera, from the perspective of the individual bee and the colony. Pupae, newly-emerged adults and foraging adults were sampled from honey bee colonies at one site in S. Texas, USA. Varroa‑infested bees displayed elevated titer of Deformed Wing Virus (DWV), suggestive of depressed capacity to limit viral replication. Expression of genes coding three anti-microbial peptides (defensin1, abaecin, hymenoptaecin) was either not significantly different between Varroa-infested and uninfested bees or was significantly elevated in Varroa-infested bees, varying with sampling date and bee developmental age. The effect of Varroa on nutritional indices of the bees was complex, with protein, triglyceride, glycogen and sugar levels strongly influenced by life-stage of the bee and individual colony. Protein content was depressed and free amino acid content elevated in Varroa-infested pupae, suggesting that protein synthesis, and consequently growth, may be limited in these insects. No simple relationship between the values of nutritional and immune-related indices was observed, and colony-scale effects were indicated by the reduced weight of pupae in colonies with high Varroa abundance, irrespective of whether the individual pupa bore Varroa.

  18. A Look into the Cell: Honey Storage in Honey Bees, Apis mellifera.

    Science.gov (United States)

    Eyer, Michael; Neumann, Peter; Dietemann, Vincent

    2016-01-01

    Honey bees, Apis species, obtain carbohydrates from nectar and honeydew. These resources are ripened into honey in wax cells that are capped for long-term storage. These stores are used to overcome dearth periods when foraging is not possible. Despite the economic and ecological importance of honey, little is known about the processes of its production by workers. Here, we monitored the usage of storage cells and the ripening process of honey in free-flying A. mellifera colonies. We provided the colonies with solutions of different sugar concentrations to reflect the natural influx of nectar with varying quality. Since the amount of carbohydrates in a solution affects its density, we used computer tomography to measure the sugar concentration of cell content over time. The data show the occurrence of two cohorts of cells with different provisioning and ripening dynamics. The relocation of the content of many cells before final storage was part of the ripening process, because sugar concentration of the content removed was lower than that of content deposited. The results confirm the mixing of solutions of different concentrations in cells and show that honey is an inhomogeneous matrix. The last stage of ripening occurred when cell capping had already started, indicating a race against water absorption. The storage and ripening processes as well as resource use were context dependent because their dynamics changed with sugar concentration of the food. Our results support hypotheses regarding honey production proposed in earlier studies and provide new insights into the mechanisms involved.

  19. A Look into the Cell: Honey Storage in Honey Bees, Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Michael Eyer

    Full Text Available Honey bees, Apis species, obtain carbohydrates from nectar and honeydew. These resources are ripened into honey in wax cells that are capped for long-term storage. These stores are used to overcome dearth periods when foraging is not possible. Despite the economic and ecological importance of honey, little is known about the processes of its production by workers. Here, we monitored the usage of storage cells and the ripening process of honey in free-flying A. mellifera colonies. We provided the colonies with solutions of different sugar concentrations to reflect the natural influx of nectar with varying quality. Since the amount of carbohydrates in a solution affects its density, we used computer tomography to measure the sugar concentration of cell content over time. The data show the occurrence of two cohorts of cells with different provisioning and ripening dynamics. The relocation of the content of many cells before final storage was part of the ripening process, because sugar concentration of the content removed was lower than that of content deposited. The results confirm the mixing of solutions of different concentrations in cells and show that honey is an inhomogeneous matrix. The last stage of ripening occurred when cell capping had already started, indicating a race against water absorption. The storage and ripening processes as well as resource use were context dependent because their dynamics changed with sugar concentration of the food. Our results support hypotheses regarding honey production proposed in earlier studies and provide new insights into the mechanisms involved.

  20. Tropilaelaps mite: an emerging threat to European honey bee.

    Science.gov (United States)

    Chantawannakul, Panuwan; Ramsey, Samuel; vanEngelsdorp, Dennis; Khongphinitbunjong, Kitiphong; Phokasem, Patcharin

    2018-04-01

    The risk of transmission of honey bee parasites has increased substantially as a result of trade globalization and technical developments in transportation efficacy. Great concern over honey bee decline has accelerated research on newly emerging bee pests and parasites. These organisms are likely to emerge from Asia as it is the only region where all 10 honey bee species co-occur. Varroa destructor, an ectoparasitic mite, is a classic example of a pest that has shifted from A. cerana, a cavity nesting Asian honey bee to A. mellifera, the European honey bee. In this review, we will describe the potential risks to global apiculture of the global expansion of Tropilaelaps mercedesae, originally a parasite of the open-air nesting Asian giant honey bee, compared to the impact of V. destructor. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Season and landscape composition affect pollen foraging distances and habitat use of honey bees.

    Science.gov (United States)

    Danner, Nadja; Molitor, Anna Maria; Schiele, Susanne; Härtel, Stephan; Steffan-Dewenter, Ingolf

    2016-09-01

    Honey bees (Apis mellifera L.) show a large variation in foraging distances and use a broad range of plant species as pollen resources, even in regions with intensive agriculture. However, it is unknown how increasing areas of mass-flowering crops like oilseed rape (Brassica napus; OSR) or a decrease of seminatural habitats (SNH) change the temporal and spatial availability of pollen resources for honey bee colonies, and thus foraging distances and frequency in different habitat types. We studied pollen foraging of honey bee colonies in 16 agricultural landscapes with independent gradients of OSR and SNH area within 2 km and used waggle dances and digital geographic maps with major land cover types to reveal the distance and visited habitat type on a landscape level. Mean pollen foraging distance of 1347 decoded bee dances was 1015 m (± 26 m; SEM). In spring, increasing area of flowering OSR within 2 km reduced mean pollen foraging distances from 1324 m to only 435 m. In summer, increasing cover of SNH areas close to the colonies (within 200 m radius) reduced mean pollen foraging distances from 846 to 469 m. Frequency of pollen foragers per habitat type, measured as the number of dances per hour and hectare, was equally high for SNH, grassland, and OSR fields, but lower for other crops and forests. In landscapes with a small proportion of SNH a significantly higher density of pollen foragers on SNH was observed, indicating that pollen resources in such simple agricultural landscapes are more limited. Overall, we conclude that SNH and mass-flowering crops can reduce foraging distances of honey bee colonies at different scales and seasons with possible benefits for the performance of honey bee colonies. Further, mixed agricultural landscapes with a high proportion of SNH reduce foraging densities of honey bees in SNH and thus possible competition for pollen resources. © 2016 by the Ecological Society of America.

  2. Assessing the Role of Environmental Conditions on Efficacy Rates of Heterorhabditis indica (Nematoda: Heterorhabditidae) for Controlling Aethina tumida (Coleoptera: Nitidulidae) in Honey Bee (Hymenoptera: Apidae) Colonies: a Citizen Science Approach.

    Science.gov (United States)

    Hill, Elizabeth S; Smythe, Ashleigh B; Delaney, Deborah A

    2016-02-01

    Certain species of entomopathogenic nematodes, such as Heterorhabditis indica Poinar, Karunakar & David, have the potential to be effective controls for Aethina tumida (Murray), or small hive beetles, when applied to the soil surrounding honey bee (Apis mellifera L.) hives. Despite the efficacy of H. indica, beekeepers have struggled to use them successfully as a biocontrol. It is believed that the sensitivity of H. indica to certain environmental conditions is the primary reason for this lack of success. Although research has been conducted to explore the impact of specific environmental conditions--such as soil moisture or soil temperature-on entomopathogenic nematode infectivity, no study to date has taken a comprehensive approach that considers the impact of multiple environmental conditions simultaneously. In exploring this, a multivariate logistic regression model was used to determine what environmental conditions resulted in reductions of A. tumida populations in honey bee colonies. To obtain the sample sizes necessary to run a multivariate logistic regression, this study utilized citizen scientist beekeepers and their hives from across the mid-Atlantic region of the United States. Results suggest that soil moisture, soil temperatures, sunlight exposure, and groundcover contribute to the efficacy of H. indica in reducing A. tumida populations in A. mellifera colonies. The results of this study offer direction for future research on the environmental preferences of H. indica and can be used to educate beekeepers about methods for better utilizing H. indica as a biological control. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Effects of pollen dilution on infection of Nosema ceranae in honey bees.

    Science.gov (United States)

    Jack, Cameron J; Uppala, Sai Sree; Lucas, Hannah M; Sagili, Ramesh R

    2016-04-01

    Multiple stressors are currently threatening honey bee health, including pests and pathogens. Among honey bee pathogens, Nosema ceranae is a microsporidian found parasitizing the western honey bee (Apis mellifera) relatively recently. Honey bee colonies are fed pollen or protein substitute during pollen dearth to boost colony growth and immunity against pests and pathogens. Here we hypothesize that N. ceranae intensity and prevalence will be low in bees receiving high pollen diets, and that honey bees on high pollen diets will have higher survival and/or increased longevity. To test this hypothesis we examined the effects of different quantities of pollen on (a) the intensity and prevalence of N. ceranae and (b) longevity and nutritional physiology of bees inoculated with N. ceranae. Significantly higher spore intensities were observed in treatments that received higher pollen quantities (1:0 and 1:1 pollen:cellulose) when compared to treatments that received relatively lower pollen quantities. There were no significant differences in N. ceranae prevalence among different pollen diet treatments. Interestingly, the bees in higher pollen quantity treatments also had significantly higher survival despite higher intensities of N. ceranae. Significantly higher hypopharyngeal gland protein was observed in the control (no Nosema infection, and receiving a diet of 1:0 pollen:cellulose), followed by 1:0 pollen:cellulose treatment that was inoculated with N. ceranae. Here we demonstrate that diet with higher pollen quantity increases N. ceranae intensity, but also enhances the survival or longevity of honey bees. The information from this study could potentially help beekeepers formulate appropriate protein feeding regimens for their colonies to mitigate N. ceranae problems. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Medicinal and cosmetic uses of Bee's Honey - A review.

    Science.gov (United States)

    Ediriweera, E R H S S; Premarathna, N Y S

    2012-04-01

    Bee's honey is one of the most valued and appreciated natural substances known to mankind since ancient times. There are many types of bee's honey mentioned in Ayurveda. Their effects differ and 'Makshika' is considered medicinally the best. According to modern scientific view, the best bee's honey is made by Apis mellifera (Family: Apidae). In Sri Lanka, the predominant honey-maker bee is Apis cerana. The aim of this survey is to emphasize the importance of bee's honey and its multitude of medicinal, cosmetic and general values. Synonyms, details of formation, constitution, properties, and method of extraction and the usages of bee's honey are gathered from text books, traditional and Ayurvedic physicians of Western and Southern provinces, villagers of 'Kalahe' in Galle district of Sri Lanka and from few search engines. Fresh bee's honey is used in treatment of eye diseases, throat infections, bronchial asthma, tuberculosis, hiccups, thirst, dizziness, fatigue, hepatitis, worm infestation, constipation, piles, eczema, healing of wounds, ulcers and used as a nutritious, easily digestible food for weak people. It promotes semen, mental health and used in cosmetic purposes. Old bee's honey is used to treat vomiting, diarrhea, rheumatoid arthritis, obesity, diabetes mellitus and in preserving meat and fruits. Highly popular in cosmetic treatment, bee's honey is used in preparing facial washes, skin moisturizers, hair conditioners and in treatment of pimples. Bee's honey could be considered as one of the finest products of nature that has a wide range of beneficial uses.

  5. Testing Honey Bees' Avoidance of Predators

    Science.gov (United States)

    Robinson, Jesse Wade; Nieh, James C.; Goodale, Eben

    2012-01-01

    Many high school science students do not encounter opportunities for authentic science inquiry in their formal coursework. Ecological field studies can provide such opportunities. The purpose of this project was to teach students about the process of science by designing and conducting experiments on whether and how honey bees (Apis mellifera)…

  6. Unequal subfamily proportions among honey bee queen and worker brood

    Science.gov (United States)

    Tilley; Oldroyd

    1997-12-01

    Queens from three colonies of feral honey bees, Apis mellifera were removed and placed in separate nucleus colonies. For each colony, eggs and larvae were taken from the nucleus and placed in the main hive on each of 3-4 consecutive weeks. Workers in the queenless parts selected young larvae to rear as queens. Queen pupae, together with the surrounding worker pupae, were removed from each colony and analysed at two to three microsatellite loci to determine their paternity. In all three colonies, the paternity of larvae chosen by the bees to rear as queens was not a random sample of the paternities in the worker brood, with certain subfamilies being over-represented in queens. These results support an important prediction of kin selection theory: when colonies are queenless, unequal relatedness within colonies could lead to the evolution of reproductive competition, that is some subfamilies achieving greater reproductive success than others. The mechanism by which such dominance is achieved could be through a system of kin recognition and nepotism, but we conclude that genetically based differential attractiveness of larvae for rearing as queens is more likely.Copyright 1997 The Association for the Study of Animal BehaviourCopyright 1997The Association for the Study of Animal Behaviour.

  7. Invasion of Varroa mites into honey bee brood cells

    NARCIS (Netherlands)

    Boot, W.J.

    1995-01-01

    The parasitic mite Varroa-jacobsoni is one of the most serious pests of Western honey bees, Apis mellifera. The mites parasitize adult bees, but reproduction only occurs while parasitizing on honey bee brood. Invasion into a

  8. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them.

    Science.gov (United States)

    Vanengelsdorp, Dennis; Meixner, Marina Doris

    2010-01-01

    Honey bees are a highly valued resource around the world. They are prized for their honey and wax production and depended upon for pollination of many important crops. While globally honey bee populations have been increasing, the rate of increase is not keeping pace with demand. Further, honey bee populations have not been increasing in all parts of the world, and have declined in many nations in Europe and in North America. Managed honey bee populations are influenced by many factors including diseases, parasites, pesticides, the environment, and socio-economic factors. These factors can act alone or in combination with each other. This review highlights the present day value of honey bees, followed by a detailed description of some of the historical and present day factors that influence honey bee populations, with particular emphasis on colony populations in Europe and the United States. Copyright 2009 Elsevier Inc. All rights reserved.

  9. Comparative chronic toxicity of three neonicotinoids on New Zealand packaged honey bees.

    Directory of Open Access Journals (Sweden)

    Sarah C Wood

    Full Text Available Thiamethoxam, clothianidin, and imidacloprid are the most commonly used neonicotinoid insecticides on the Canadian prairies. There is widespread contamination of nectar and pollen with neonicotinoids, at concentrations which are sublethal for honey bees (Apis mellifera Linnaeus.We compared the effects of chronic, sublethal exposure to the three most commonly used neonicotinoids on honey bee colonies established from New Zealand packaged bees using colony weight gain, brood area, and population size as measures of colony performance.From May 7 to July 29, 2016 (12 weeks, sixty-eight colonies received weekly feedings of sugar syrup and pollen patties containing 0 nM, 20 nM (median environmental dose, or 80 nM (high environmental dose of one of three neonicotinoids (thiamethoxam, clothianidin, and imidacloprid. Colonies were weighed at three-week intervals. Brood area and population size were determined from digital images of colonies at week 12. Statistical analyses were performed by ANOVA and mixed models.There was a significant negative effect (-30%, p80% statistical power to detect an effect.Chronic exposure of honey bees to high environmental doses of neonicotinoids has negative effects on honey production. Brood area appears to be less sensitive to detect sublethal effects of neonicotinoids.

  10. Comparative chronic toxicity of three neonicotinoids on New Zealand packaged honey bees.

    Science.gov (United States)

    Wood, Sarah C; Kozii, Ivanna V; Koziy, Roman V; Epp, Tasha; Simko, Elemir

    2018-01-01

    Thiamethoxam, clothianidin, and imidacloprid are the most commonly used neonicotinoid insecticides on the Canadian prairies. There is widespread contamination of nectar and pollen with neonicotinoids, at concentrations which are sublethal for honey bees (Apis mellifera Linnaeus). We compared the effects of chronic, sublethal exposure to the three most commonly used neonicotinoids on honey bee colonies established from New Zealand packaged bees using colony weight gain, brood area, and population size as measures of colony performance. From May 7 to July 29, 2016 (12 weeks), sixty-eight colonies received weekly feedings of sugar syrup and pollen patties containing 0 nM, 20 nM (median environmental dose), or 80 nM (high environmental dose) of one of three neonicotinoids (thiamethoxam, clothianidin, and imidacloprid). Colonies were weighed at three-week intervals. Brood area and population size were determined from digital images of colonies at week 12. Statistical analyses were performed by ANOVA and mixed models. There was a significant negative effect (-30%, pbee cluster size (-21%, pbees lacked adequate (>80%) statistical power to detect an effect. Chronic exposure of honey bees to high environmental doses of neonicotinoids has negative effects on honey production. Brood area appears to be less sensitive to detect sublethal effects of neonicotinoids.

  11. Effects of Imidacloprid and Varroa destructor on survival and health of European honey bees, Apis mellifera.

    Science.gov (United States)

    Abbo, Pendo M; Kawasaki, Joshua K; Hamilton, Michele; Cook, Steven C; DeGrandi-Hoffman, Gloria; Li, Wen Feng; Liu, Jie; Chen, Yan Ping

    2017-06-01

    There has been growing concern over declines in populations of honey bees and other pollinators which are a vital part to our food security. It is imperative to identify factors responsible for accelerated declines in bee populations and develop solutions for reversing bee losses. While exact causes of colony losses remain elusive, risk factors thought to play key roles are ectoparasitic mites Varroa destructor and neonicotinoid pesticides. The present study aims to investigate effects of a neonicotinoid pesticide Imidacloprid and Varroa mites individually on survivorship, growth, physiology, virus dynamics and immunity of honey bee workers. Our study provides clear evidence that the exposure to sublethal doses of Imidacloprid could exert a significantly negative effect on health and survival of honey bees. We observed a significant reduction in the titer of vitellogenin (Vg), an egg yolk precursor that regulates the honey bees development and behavior and often are linked to energy homeostasis, in bees exposed to Imidacloprid. This result indicates that sublethal exposure to neonicotinoid could lead to increased energy usage in honey bees as detoxification is a energy-consuming metabolic process and suggests that Vg could be a useful biomarker for measuring levels of energy stress and sublethal effects of pesticides on honey bees. Measurement of the quantitative effects of different levels of Varroa mite infestation on the replication dynamic of Deformed wing virus (DWV), an RNA virus associated with Varroa infestation, and expression level of immune genes yields unique insights into how honey bees respond to stressors under laboratory conditions. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  12. Effects of Imidacloprid and Varroa destructor on survival and health of European honey bees, Apis mellifera

    Institute of Scientific and Technical Information of China (English)

    Pendo M.Abbo; Joshua K.Kawasaki; Michele Hamilton; Steven C.Cook; Gloria DeGrandi-Hoffman; Wen Feng Li; Jie Liu; Yan Ping Chen

    2017-01-01

    There has been growing concern over declines in populations of honey bees and other pollinators which are a vital part to our food security.It is imperative to identify factors responsible for accelerated declines in bee populations and develop solutions for reversing bee losses.While exact causes of colony losses remain elusive,risk factors thought to play key roles are ectoparasitic mites Varroa destructor and neonicotinoid pesticides.The present study aims to investigate effects of a neonicotinoid pesticide Imidacloprid and Varroa mites individually on survivorship,growth,physiology,virus dynamics and immunity of honey bee workers.Our study provides clear evidence that the exposure to sublethal doses of Imidacloprid could exert a significantly negative effect on health and survival of honey bees.We observed a significant reduction in the titer ofvitellogenin (Vg),an egg yolk precursor that regulates the honey bees development and behavior and often are linked to energy homeostasis,in bees exposed to Imidacloprid.This result indicates that sublethal exposure to neonicotinoid could lead to increased energy usage in honey bees as detoxification is a energy-consuming metabolic process and suggests that Vg could be a useful biomarker for measuring levels of energy stress and sublethal effects of pesticideson honey bees.Measurement of the quantitative effects of different levels of Varroa mite infestation on the replication dynamic of Deformed wing virus (DWV),an RNA virus associated with Varroa infestation,and expression level of immune genes yields unique insights into how honey bees respond to stressors under laboratory conditions.

  13. Sucrose Sensitivity of Honey Bees Is Differently Affected by Dietary Protein and a Neonicotinoid Pesticide.

    Directory of Open Access Journals (Sweden)

    Fabien J Démares

    Full Text Available Over a decade, declines in honey bee colonies have raised worldwide concerns. Several potentially contributing factors have been investigated, e.g. parasites, diseases, and pesticides. Neonicotinoid pesticides have received much attention due to their intensive use in crop protection, and their adverse effects on many levels of honey bee physiology led the European Union to ban these compounds. Due to their neuronal target, a receptor expressed throughout the insect nervous system, studies have focused mainly on neuroscience and behaviour. Through the Geometric Framework of nutrition, we investigated effects of the neonicotinoid thiamethoxam on survival, food consumption and sucrose sensitivity of honey bees (Apis mellifera. Thiamethoxam did not affect protein and carbohydrate intake, but decreased responses to high concentrations of sucrose. Interestingly, when bees ate fixed unbalanced diets, dietary protein facilitated better sucrose detection. Both thiamethoxam and dietary protein influenced survival. These findings suggest that, in the presence of a pesticide and unbalanced food, honey bee health may be severely challenged. Consequences for foraging efficiency and colony activity, cornerstones of honey bee health, are also discussed.

  14. Effects of insemination quantity on honey bee queen physiology.

    Directory of Open Access Journals (Sweden)

    Freddie-Jeanne Richard

    2007-10-01

    Full Text Available Mating has profound effects on the physiology and behavior of female insects, and in honey bee (Apis mellifera queens, these changes are permanent. Queens mate with multiple males during a brief period in their early adult lives, and shortly thereafter they initiate egg-laying. Furthermore, the pheromone profiles of mated queens differ from those of virgins, and these pheromones regulate many different aspects of worker behavior and colony organization. While it is clear that mating causes dramatic changes in queens, it is unclear if mating number has more subtle effects on queen physiology or queen-worker interactions; indeed, the effect of multiple matings on female insect physiology has not been broadly addressed. Because it is not possible to control the natural mating behavior of queens, we used instrumental insemination and compared queens inseminated with semen from either a single drone (single-drone inseminated, or SDI or 10 drones (multi-drone inseminated, or MDI. We used observation hives to monitor attraction of workers to SDI or MDI queens in colonies, and cage studies to monitor the attraction of workers to virgin, SDI, and MDI queen mandibular gland extracts (the main source of queen pheromone. The chemical profiles of the mandibular glands of virgin, SDI, and MDI queens were characterized using GC-MS. Finally, we measured brain expression levels in SDI and MDI queens of a gene associated with phototaxis in worker honey bees (Amfor. Here, we demonstrate for the first time that insemination quantity significantly affects mandibular gland chemical profiles, queen-worker interactions, and brain gene expression. Further research will be necessary to elucidate the mechanistic bases for these effects: insemination volume, sperm and seminal protein quantity, and genetic diversity of the sperm may all be important factors contributing to this profound change in honey bee queen physiology, queen behavior, and social interactions in the

  15. Honey Bee Survival and Pathogen Prevalence: From the Perspective of Landscape and Exposure to Pesticides

    Directory of Open Access Journals (Sweden)

    Mohamed Alburaki

    2018-06-01

    Full Text Available In order to study the in situ effects of the agricultural landscape and exposure to pesticides on honey bee health, sixteen honey bee colonies were placed in four different agricultural landscapes. Those landscapes were three agricultural areas with varying levels of agricultural intensity (AG areas and one non-agricultural area (NAG area. Colonies were monitored for different pathogen prevalence and pesticide residues over a period of one year. RT-qPCR was used to study the prevalence of seven different honey bee viruses as well as Nosema sp. in colonies located in different agricultural systems with various intensities of soybean, corn, sorghum, and cotton production. Populations of the parasitic mite Varroa destructor were also extensively monitored. Comprehensive MS-LC pesticide residue analyses were performed on samples of wax, honey, foragers, winter bees, dead bees, and crop flowers for each apiary and location. A significantly higher level of varroa loads were recorded in colonies of the AG areas, but this at least partly correlated with increased colony size and did not necessarily result from exposure to pesticides. Infections of two viruses (deformed wing virus genotype a (DWVa and acute bee paralysis virus (ABPV and Nosema sp. varied among the four studied locations. The urban location significantly elevated colony pathogen loads, while AG locations significantly benefited and increased the colony weight gain. Cotton and sorghum flowers contained high concentrations of insecticide including neonicotinoids, while soybean and corn had less pesticide residues. Several events of pesticide toxicity were recorded in the AG areas, and high concentrations of neonicotinoid insecticides were detected in dead bees.

  16. Radionuclide concentrations in honey bees from Area G at TA-54 during 1997. Progress report

    International Nuclear Information System (INIS)

    Haarmann, T.K.; Fresquez, P.R.

    1998-07-01

    Honey bees were collected from two colonies located at Los Alamos National Laboratory's Area G, Technical Area 54, and from one control (background) colony located near Jamez Springs, NM. Samples were analyzed for the following: cesium ( 137 Cs), americium ( 241 Am), plutonium ( 238 Pu and 239,240 Pu), tritium ( 3 H), total uranium, and gross gamma activity. Area G sample results from both colonies were higher than the upper (95%) level background concentration for 238 Pu and 3 H

  17. Solving Multiobjective Optimization Problems Using Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Wenping Zou

    2011-01-01

    Full Text Available Multiobjective optimization has been a difficult problem and focus for research in fields of science and engineering. This paper presents a novel algorithm based on artificial bee colony (ABC to deal with multi-objective optimization problems. ABC is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. It uses less control parameters, and it can be efficiently used for solving multimodal and multidimensional optimization problems. Our algorithm uses the concept of Pareto dominance to determine the flight direction of a bee, and it maintains nondominated solution vectors which have been found in an external archive. The proposed algorithm is validated using the standard test problems, and simulation results show that the proposed approach is highly competitive and can be considered a viable alternative to solve multi-objective optimization problems.

  18. Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (nkd) Improves Host Immune Function and Reduces Nosema ceranae Infections

    Science.gov (United States)

    Li, Wenfeng; Evans, Jay D.; Huang, Qiang; Rodríguez-García, Cristina; Liu, Jie; Hamilton, Michele; Grozinger, Christina M.; Webster, Thomas C.; Su, Songkun

    2016-01-01

    ABSTRACT Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera, that has been implicated in colony losses worldwide. RNA interference (RNAi), a posttranscriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling infections of parasites and pathogens in honey bees. While previous studies have focused on the silencing of parasite/pathogen virulence factors, we explore here the possibility of silencing a host factor as a mechanism for reducing parasite load. Specifically, we used an RNAi strategy to reduce the expression of a honey bee gene, naked cuticle (nkd), which is a negative regulator of host immune function. Our studies found that nkd mRNA levels in adult bees were upregulated by N. ceranae infection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific to nkd efficiently silenced its expression. Furthermore, we found that RNAi-mediated knockdown of nkd transcripts in Nosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin, Apidaecin, Defensin-1, and PGRP-S2), reduction of Nosema spore loads, and extension of honey bee life span. The results of our studies clearly indicate that silencing the host nkd gene can activate honey bee immune responses, suppress the reproduction of N. ceranae, and improve the overall health of honey bees. This study represents a novel host-derived therapeutic for honey bee disease treatment that merits further exploration. IMPORTANCE Given the critical role of honey bees in the pollination of agricultural crops, it is urgent to develop strategies to prevent the colony decline induced by the infection of parasites/pathogens. Targeting parasites and pathogens directly by RNAi has been proven to be useful for controlling infections in honey bees, but little is known about the disease impacts of RNAi silencing of host factors

  19. Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (nkd) Improves Host Immune Function and Reduces Nosema ceranae Infections.

    Science.gov (United States)

    Li, Wenfeng; Evans, Jay D; Huang, Qiang; Rodríguez-García, Cristina; Liu, Jie; Hamilton, Michele; Grozinger, Christina M; Webster, Thomas C; Su, Songkun; Chen, Yan Ping

    2016-11-15

    Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera, that has been implicated in colony losses worldwide. RNA interference (RNAi), a posttranscriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling infections of parasites and pathogens in honey bees. While previous studies have focused on the silencing of parasite/pathogen virulence factors, we explore here the possibility of silencing a host factor as a mechanism for reducing parasite load. Specifically, we used an RNAi strategy to reduce the expression of a honey bee gene, naked cuticle (nkd), which is a negative regulator of host immune function. Our studies found that nkd mRNA levels in adult bees were upregulated by N. ceranae infection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific to nkd efficiently silenced its expression. Furthermore, we found that RNAi-mediated knockdown of nkd transcripts in Nosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin, Apidaecin, Defensin-1, and PGRP-S2), reduction of Nosema spore loads, and extension of honey bee life span. The results of our studies clearly indicate that silencing the host nkd gene can activate honey bee immune responses, suppress the reproduction of N. ceranae, and improve the overall health of honey bees. This study represents a novel host-derived therapeutic for honey bee disease treatment that merits further exploration. Given the critical role of honey bees in the pollination of agricultural crops, it is urgent to develop strategies to prevent the colony decline induced by the infection of parasites/pathogens. Targeting parasites and pathogens directly by RNAi has been proven to be useful for controlling infections in honey bees, but little is known about the disease impacts of RNAi silencing of host factors. Here, we demonstrate

  20. Comparative Flight Activities and Pathogen Load of Two Stocks of Honey Bees Reared in Gamma-Irradiated Combs

    Directory of Open Access Journals (Sweden)

    Lilia I. de Guzman

    2017-11-01

    Full Text Available Gamma irradiation is known to inactivate various pathogens that negatively affect honey bee health. Bee pathogens, such as Deformed wing virus (DWV and Nosema spp., have a deleterious impact on foraging activities and bee survival, and have been detected in combs. In this study, we assessed the effects of gamma irradiation on the flight activities, pathogen load, and survival of two honey bee stocks that were reared in irradiated and non-irradiated combs. Overall, bee genotype influenced the average number of daily flights, the total number of foraging flights, and total flight duration, in which the Russian honey bees outperformed the Italian honey bees. Exposing combs to gamma irradiation only affected the age at first flight, with worker bees that were reared in non-irradiated combs foraging prematurely compared to those reared in irradiated combs. Precocious foraging may be associated with the higher levels of DWV in bees reared in non-irradiated combs and also with the lower amount of pollen stores in colonies that used non-irradiated combs. These data suggest that gamma irradiation of combs can help minimize the negative impact of DWV in honey bees. Since colonies with irradiated combs stored more pollen than those with non-irradiated combs, crop pollination efficiency may be further improved when mite-resistant stocks are used, since they performed more flights and had longer flight durations.

  1. Genetics, Synergists, and Age Affect Insecticide Sensitivity of the Honey Bee, Apis mellifera

    Science.gov (United States)

    Rinkevich, Frank D.; Margotta, Joseph W.; Pittman, Jean M.; Danka, Robert G.; Tarver, Matthew R.; Ottea, James A.; Healy, Kristen B.

    2015-01-01

    The number of honey bee colonies in the United States has declined to half of its peak level in the 1940s, and colonies lost over the winter have reached levels that are becoming economically unstable. While the causes of these losses are numerous and the interaction between them is very complex, the role of insecticides has garnered much attention. As a result, there is a need to better understand the risk of insecticides to bees, leading to more studies on both toxicity and exposure. While much research has been conducted on insecticides and bees, there have been very limited studies to elucidate the role that bee genotype and age has on the toxicity of these insecticides. The goal of this study was to determine if there are differences in insecticide sensitivity between honey bees of different genetic backgrounds (Carniolan, Italian, and Russian stocks) and assess if insecticide sensitivity varies with age. We found that Italian bees were the most sensitive of these stocks to insecticides, but variation was largely dependent on the class of insecticide tested. There were almost no differences in organophosphate bioassays between honey bee stocks (bees aged, the sensitivity to phenothrin significantly decreased, but the sensitivity to naled significantly increased. These results demonstrate the variation arising from the genetic background and physiological transitions in honey bees as they age. This information can be used to determine risk assessment, as well as establishing baseline data for future comparisons to explain the variation in toxicity differences for honey bees reported in the literature. PMID:26431171

  2. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures.

    Science.gov (United States)

    Kakumanu, Madhavi L; Reeves, Alison M; Anderson, Troy D; Rodrigues, Richard R; Williams, Mark A

    2016-01-01

    Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2-V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation.

  3. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L.).

    Science.gov (United States)

    Fleming, James C; Schmehl, Daniel R; Ellis, James D

    2015-01-01

    Western honey bee (Apis mellifera L.) populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony's nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees' consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees' midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control). The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts.

  4. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L..

    Directory of Open Access Journals (Sweden)

    James C Fleming

    Full Text Available Western honey bee (Apis mellifera L. populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony's nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees' consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees' midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control. The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts.

  5. Acute bee paralysis virus occurs in the Asian honey bee Apis cerana and parasitic mite Tropilaelaps mercedesae.

    Science.gov (United States)

    Chanpanitkitchote, Pichaya; Chen, Yanping; Evans, Jay D; Li, Wenfeng; Li, Jianghong; Hamilton, Michele; Chantawannakul, Panuwan

    2018-01-01

    Viruses, and especially RNA viruses, constantly change and adapt to new host species and vectors, posing a potential threat of new and reemerging infectious diseases. Honey bee Acute bee paralysis virus (ABPV) and Deformed wing virus (DWV) are two of the most common honey bee viruses found in European honey bees Apis mellifera and have been implicated in worldwide Varroa-associated bee colony losses. Previous studies have shown that DWV has jumped hosts several times in history causing infection in multiple host species. In the present study, we show that DWV infection could be detected in the Asian honey bee, A. cerana, and the parasitic mite Tropilaelaps mercedesae, confirming previous findings that DWV is a multi-host pathogen and supporting the notion that the high prevalence of DWV in honey bee host populations could be attributed to the high adaptability of this virus. Furthermore, our study provides the first evidence that ABPV occurs in both A. cerana and T. mercedesae in northern Thailand. The geographical proximity of host species likely played an important role in the initial exposure and the subsequent cross-species transmission of these viruses. Phylogenetic analyses suggest that ABPV might have moved from T. mercedesae to A. mellifera and to A. cerana while DWV might have moved in the opposite direction from A. cerana to A. mellifera and T. mercedesae. This result may reflect the differences in virus life history and virus-host interactions, warranting further investigation of virus transmission, epidemiology, and impacts of virus infections in the new hosts. The results from this study indicate that viral populations will continue to evolve and likely continue to expand host range, increasing the need for effective surveillance and control of virus infections in honey bee populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Exposure to clothianidin seed-treated canola has no long-term impact on honey bees.

    Science.gov (United States)

    Cutler, G Christopher; Scott-Dupree, Cynthia D

    2007-06-01

    We conducted a long-term investigation to ascertain effects on honey bee, Apis mellifera L., colonies during and after exposure to flowering canola, Brassica napus variety Hyola 420, grown from clothianidin-treated seed. Colonies were placed in the middle of 1-ha clothianidin seed-treated or control canola fields for 3 wk during bloom, and thereafter they were moved to a fall apiary. There were four treated and four control fields, and four colonies per field, giving 32 colonies total. Bee mortality, worker longevity, and brood development were regularly assessed in each colony for 130 d from initial exposure to canola. Samples of honey, beeswax, pollen, and nectar were regularly collected for 130 d, and the samples were analyzed for clothianidin residues by using high-performance liquid chromatography with tandem mass spectrometry detection. Overall, no differences in bee mortality, worker longevity, or brood development occurred between control and treatment groups throughout the study. Weight gains of and honey yields from colonies in treated fields were not significantly different from those in control fields. Although clothianidin residues were detected in honey, nectar, and pollen from colonies in clothianidin-treated fields, maximum concentrations detected were 8- to 22-fold below the reported no observable adverse effects concentration. Clothianidin residues were not detected in any beeswax sample. Assessment of overwintered colonies in spring found no differences in those originally exposed to treated or control canola. The results show that honey bee colonies will, in the long-term, be unaffected by exposure to clothianidin seed-treated canola.

  7. Pollution monitoring of puget sound with honey bees.

    Science.gov (United States)

    Bromenshenk, J J; Carlson, S R; Simpson, J C; Thomas, J M

    1985-02-08

    To show that honey bees are effective biological monitors of environmental contaminants over large geographic areas, beekeepers of Puget Sound, Washington, collected pollen and bees for chemical analysis. From these data, kriging maps of arsenic, cadmium, and fluoride were generated. Results, based on actual concentrations of contaminants in bee tissues, show that the greatest concentrations of contaminants occur close to Commencement Bay and that honey bees are effective as large-scale monitors.

  8. Spore load and immune response of honey bees naturally infected by Nosema ceranae.

    Science.gov (United States)

    Li, Wenfeng; Evans, Jay D; Li, Jianghong; Su, Songkun; Hamilton, Michele; Chen, Yanping

    2017-12-01

    Nosema ceranae causes widespread infection in adult workers of European honey bees, Apis mellifera, and has often been linked to honey bee colony losses worldwide. Previous investigations of honey bee immune response to N. ceranae infection were largely based on laboratory experiment, however, little is known about the immune response of honey bees that are naturally infected by N. ceranae. Here, we compared the infection levels of N. ceranae in three different categories of adult bees (emergent bees, nurses, and foragers) and detected the host immune response to the N. ceranae infection under natural conditions. Our studies showed that the Nosema spore load and infection prevalence varied among the different types of adult workers, and both of them increased as honey bees aged: No infection was detected in emergent bees, nurses had a medium spore load and prevalence, while foragers were with the highest Nosema infection level and prevalence. Quantification of the mRNA levels of antimicrobial peptides (abaecin, apidaecin, defensin-1, defensin-2, and hymenoptaecin) and microbial recognition proteins (PGRP-S1, PGRP-S2, PGRP-S3, PGRP-LC, GNBP1-1, and GNBP1-2) confirmed the involvement of the Toll and/or Imd immune pathways in the host response to N. ceranae infection, and revealed an activation of host immune response by N. ceranae infection under natural conditions. Additionally, the levels of immune response were positively correlated with the Nosema spore loads in the infected bees. The information gained from this study will be relevant to the predictive modeling of honey bee disease dynamics for Nosema disease prevention and management.

  9. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees.

    Science.gov (United States)

    Liu, Hui; Robinson, Gene E; Jakobsson, Eric

    2016-06-01

    The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for social organization.

  10. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees.

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2016-06-01

    Full Text Available The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for

  11. A monitoring study to assess the acute mortality effects of indoxacarb on honey bees (Apis mellifera L.) in flowering apple orchards

    NARCIS (Netherlands)

    Steen, van der J.J.M.; Dinter, A.

    2007-01-01

    To evaluate the effect of the indoxacarb 300 g kg-1 WG, Steward 30WDGTM, on the honey bee (Apis mellifera L.) in apple orchards, a monitoring study was conducted in Dutch apple orchards in April/May 2004. Before apple flowering began, two honey bee colonies were placed in each orchard to investigate

  12. The first comprehensive molecular detection of six honey bee viruses in Iran in 2015-2016.

    Science.gov (United States)

    Ghorani, Mohammadreza; Madadgar, Omid; Langeroudi, Arash Ghalyanchi; Rezapanah, Mohammadreza; Nabian, Sedigheh; Akbarein, Hesameddin; Farahani, Reza Kh; Maghsoudloo, Hossein; Abdollahi, Hamed; Forsi, Mohammad

    2017-08-01

    At least 18 viruses have been reported in the honey bee (Apis mellifera L.). However, severe diseases in honey bees are mainly caused by six viruses, and these are the most important in beekeeping. These viruses include: deformed wing virus (DWV), acute bee paralysis virus (ABPV), chronic bee paralysis virus (CBPV), sacbrood virus (SBV), kashmir bee virus (KBV), and black queen cell virus (BQCV). In this study, we evaluated 89 Iranian honey bee apiaries (during the period 2015-2016) suffering from symptoms of depopulation, sudden collapse, paralysis, or dark coloring, by employing reverse transcription-PCR. Samples were collected from four regions (Mazandaran, Hormozgan, Kurdistan, and Khorasan Razavi) of Iran. Of the 89 apiaries examined, 16 (17.97%), three (3.37%), and three (3.37%) were infected by DWV, ABPV, and CBPV, respectively. The study results for the other viruses (SBV, KBV, and BQCV) were negative. The present study evaluated the presence of the six most important honey bee viruses in bee colonies with suspected infections, and identified remarkable differences in the distribution patterns of the viruses in different geographic regions of Iran.

  13. Temporal Analysis of the Honey Bee Microbiome Reveals Four Novel Viruses and Seasonal Prevalence of Known Viruses, Nosema, and Crithidia

    Science.gov (United States)

    Engel, Juan C.; Ruby, J. Graham; Ganem, Donald; Andino, Raul; DeRisi, Joseph L.

    2011-01-01

    Honey bees (Apis mellifera) play a critical role in global food production as pollinators of numerous crops. Recently, honey bee populations in the United States, Canada, and Europe have suffered an unexplained increase in annual losses due to a phenomenon known as Colony Collapse Disorder (CCD). Epidemiological analysis of CCD is confounded by a relative dearth of bee pathogen field studies. To identify what constitutes an abnormal pathophysiological condition in a honey bee colony, it is critical to have characterized the spectrum of exogenous infectious agents in healthy hives over time. We conducted a prospective study of a large scale migratory bee keeping operation using high-frequency sampling paired with comprehensive molecular detection methods, including a custom microarray, qPCR, and ultra deep sequencing. We established seasonal incidence and abundance of known viruses, Nosema sp., Crithidia mellificae, and bacteria. Ultra deep sequence analysis further identified four novel RNA viruses, two of which were the most abundant observed components of the honey bee microbiome (∼1011 viruses per honey bee). Our results demonstrate episodic viral incidence and distinct pathogen patterns between summer and winter time-points. Peak infection of common honey bee viruses and Nosema occurred in the summer, whereas levels of the trypanosomatid Crithidia mellificae and Lake Sinai virus 2, a novel virus, peaked in January. PMID:21687739

  14. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia.

    Directory of Open Access Journals (Sweden)

    Charles Runckel

    Full Text Available Honey bees (Apis mellifera play a critical role in global food production as pollinators of numerous crops. Recently, honey bee populations in the United States, Canada, and Europe have suffered an unexplained increase in annual losses due to a phenomenon known as Colony Collapse Disorder (CCD. Epidemiological analysis of CCD is confounded by a relative dearth of bee pathogen field studies. To identify what constitutes an abnormal pathophysiological condition in a honey bee colony, it is critical to have characterized the spectrum of exogenous infectious agents in healthy hives over time. We conducted a prospective study of a large scale migratory bee keeping operation using high-frequency sampling paired with comprehensive molecular detection methods, including a custom microarray, qPCR, and ultra deep sequencing. We established seasonal incidence and abundance of known viruses, Nosema sp., Crithidia mellificae, and bacteria. Ultra deep sequence analysis further identified four novel RNA viruses, two of which were the most abundant observed components of the honey bee microbiome (∼10(11 viruses per honey bee. Our results demonstrate episodic viral incidence and distinct pathogen patterns between summer and winter time-points. Peak infection of common honey bee viruses and Nosema occurred in the summer, whereas levels of the trypanosomatid Crithidia mellificae and Lake Sinai virus 2, a novel virus, peaked in January.

  15. Multi Dimensional Honey Bee Foraging Algorithm Based on Optimal Energy Consumption

    Science.gov (United States)

    Saritha, R.; Vinod Chandra, S. S.

    2017-10-01

    In this paper a new nature inspired algorithm is proposed based on natural foraging behavior of multi-dimensional honey bee colonies. This method handles issues that arise when food is shared from multiple sources by multiple swarms at multiple destinations. The self organizing nature of natural honey bee swarms in multiple colonies is based on the principle of energy consumption. Swarms of multiple colonies select a food source to optimally fulfill the requirements of its colonies. This is based on the energy requirement for transporting food between a source and destination. Minimum use of energy leads to maximizing profit in each colony. The mathematical model proposed here is based on this principle. This has been successfully evaluated by applying it on multi-objective transportation problem for optimizing cost and time. The algorithm optimizes the needs at each destination in linear time.

  16. Brain metabolomic profiling of eastern honey bee (Apis cerana infested with the mite Varroa destructor.

    Directory of Open Access Journals (Sweden)

    Jiang-Li Wu

    Full Text Available The mite Varroa destructor is currently the greatest threat to apiculture as it is causing a global decrease in honey bee colonies. However, it rarely causes serious damage to its native hosts, the eastern honey bees Apis cerana. To better understand the mechanism of resistance of A. cerana against the V. destructor mite, we profiled the metabolic changes that occur in the honey bee brain during V. destructor infestation. Brain samples were collected from infested and control honey bees and then measured using an untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS-based global metabolomics method, in which 7918 and 7462 ions in ESI+ and ESI- mode, respectively, were successfully identified. Multivariate statistical analyses were applied, and 64 dysregulated metabolites, including fatty acids, amino acids, carboxylic acid, and phospholipids, amongst others, were identified. Pathway analysis further revealed that linoleic acid metabolism; propanoate metabolism; and glycine, serine, and threonine metabolism were acutely perturbed. The data obtained in this study offer insight into the defense mechanisms of A. cerana against V. destructor mites and provide a better method for understanding the synergistic effects of parasitism on honey bee colonies.

  17. Taxonomy Icon Data: honey bee [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available honey bee Apis mellifera Arthropoda Apis_mellifera_L.png Apis_mellifera_NL.png Apis_mellife...ra_S.png Apis_mellifera_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apis+mellifera&t=L h...ttp://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apis+mellifera&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apis+mellife...ra&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apis+mellifera&t=NS ...

  18. Vanishing honey bees: Is the dying of adult worker bees a consequence of short telomeres and premature aging?

    Science.gov (United States)

    Stindl, Reinhard; Stindl, Wolfgang

    2010-10-01

    Einstein is often quoted to have said that without the bee, mankind would have but 4years to live. It is highly unlikely that he made this comment, which was even mentioned in a Lancet article on honey bees. However, the current vanishing of the bees can have serious consequences for human health, because 35% of the human diet is thought to benefit from pollination. Colony collapse disorder (CCD) in honey bees is characterized by the rapid decline of the adult bee population, leaving the brood and the queen poorly or completely unattended, with no dead bodies in or around the hive. A large study found no evidence that the presence or amount of any individual pesticide or infectious agent occurred more frequently or abundantly in CCD-affected colonies. The growing consensus is that honey bees are suffering from comprised immune systems, which allow various infectious pathogens to invade. The question remains, what causes immunosuppression in many colonies of Apis mellifera in North America and Europe? Telomeres are protective DNA structures located at eukaryotic chromosome tips that shorten in the somatic tissues of animals with age. Lifelong tissue regeneration takes place in Apis mellifera, and worker bees have been shown to senesce. In humans, a vast amount of literature has accumulated on exhausted telomere reserves causing impaired tissue regeneration and age-associated diseases, specifically cancer and immunosuppression. Therefore, we propose a new causative mechanism for the vanishing of the bees: critically short telomeres in long-lived winter bees. We term this the telomere premature aging syndrome. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. General Stress Responses in the Honey Bee

    Directory of Open Access Journals (Sweden)

    Naïla Even

    2012-12-01

    Full Text Available The biological concept of stress originated in mammals, where a “General Adaptation Syndrome” describes a set of common integrated physiological responses to diverse noxious agents. Physiological mechanisms of stress in mammals have been extensively investigated through diverse behavioral and physiological studies. One of the main elements of the stress response pathway is the endocrine hypothalamo-pituitary-adrenal (HPA axis, which underlies the “fight-or-flight” response via a hormonal cascade of catecholamines and corticoid hormones. Physiological responses to stress have been studied more recently in insects: they involve biogenic amines (octopamine, dopamine, neuropeptides (allatostatin, corazonin and metabolic hormones (adipokinetic hormone, diuretic hormone. Here, we review elements of the physiological stress response that are or may be specific to honey bees, given the economical and ecological impact of this species. This review proposes a hypothetical integrated honey bee stress pathway somewhat analogous to the mammalian HPA, involving the brain and, particularly, the neurohemal organ corpora cardiaca and peripheral targets, including energy storage organs (fat body and crop. We discuss how this system can organize rapid coordinated changes in metabolic activity and arousal, in response to adverse environmental stimuli. We highlight physiological elements of the general stress responses that are specific to honey bees, and the areas in which we lack information to stimulate more research into how this fascinating and vital insect responds to stress.

  20. Honey Bee Viruses in Wild Bees: Viral Prevalence, Loads, and Experimental Inoculation

    Science.gov (United States)

    Dolezal, Adam G.; Hendrix, Stephen D.; Scavo, Nicole A.; Carrillo-Tripp, Jimena; Harris, Mary A.; Wheelock, M. Joseph; O’Neal, Matthew E.; Toth, Amy L.

    2016-01-01

    Evidence of inter-species pathogen transmission from managed to wild bees has sparked concern that emerging diseases could be causing or exacerbating wild bee declines. While some pathogens, like RNA viruses, have been found in pollen and wild bees, the threat these viruses pose to wild bees is largely unknown. Here, we tested 169 bees, representing 4 families and 8 genera, for five common honey bee (Apis mellifera) viruses, finding that more than 80% of wild bees harbored at least one virus. We also quantified virus titers in these bees, providing, for the first time, an assessment of viral load in a broad spectrum of wild bees. Although virus detection was very common, virus levels in the wild bees were minimal—similar to or lower than foraging honey bees and substantially lower than honey bees collected from hives. Furthermore, when we experimentally inoculated adults of two different bee species (Megachile rotundata and Colletes inaequalis) with a mixture of common viruses that is lethal to honey bees, we saw no effect on short term survival. Overall, we found that honey bee RNA viruses can be commonly detected at low levels in many wild bee species, but we found no evidence that these pathogens cause elevated short-term mortality effects. However, more work on these viruses is greatly needed to assess effects on additional bee species and life stages. PMID:27832169

  1. Honey Bee Viruses in Wild Bees: Viral Prevalence, Loads, and Experimental Inoculation.

    Science.gov (United States)

    Dolezal, Adam G; Hendrix, Stephen D; Scavo, Nicole A; Carrillo-Tripp, Jimena; Harris, Mary A; Wheelock, M Joseph; O'Neal, Matthew E; Toth, Amy L

    2016-01-01

    Evidence of inter-species pathogen transmission from managed to wild bees has sparked concern that emerging diseases could be causing or exacerbating wild bee declines. While some pathogens, like RNA viruses, have been found in pollen and wild bees, the threat these viruses pose to wild bees is largely unknown. Here, we tested 169 bees, representing 4 families and 8 genera, for five common honey bee (Apis mellifera) viruses, finding that more than 80% of wild bees harbored at least one virus. We also quantified virus titers in these bees, providing, for the first time, an assessment of viral load in a broad spectrum of wild bees. Although virus detection was very common, virus levels in the wild bees were minimal-similar to or lower than foraging honey bees and substantially lower than honey bees collected from hives. Furthermore, when we experimentally inoculated adults of two different bee species (Megachile rotundata and Colletes inaequalis) with a mixture of common viruses that is lethal to honey bees, we saw no effect on short term survival. Overall, we found that honey bee RNA viruses can be commonly detected at low levels in many wild bee species, but we found no evidence that these pathogens cause elevated short-term mortality effects. However, more work on these viruses is greatly needed to assess effects on additional bee species and life stages.

  2. Wild bees enhance honey bees’ pollination of hybrid sunflower

    Science.gov (United States)

    Greenleaf, Sarah S.; Kremen, Claire

    2006-01-01

    Pollinators are required for producing 15–30% of the human food supply, and farmers rely on managed honey bees throughout the world to provide these services. Yet honey bees are not always the most efficient pollinators of all crops and are declining in various parts of the world. Crop pollination shortages are becoming increasingly common. We found that behavioral interactions between wild and honey bees increase the pollination efficiency of honey bees on hybrid sunflower up to 5-fold, effectively doubling honey bee pollination services on the average field. These indirect contributions caused by interspecific interactions between wild and honey bees were more than five times more important than the contributions wild bees make to sunflower pollination directly. Both proximity to natural habitat and crop planting practices were significantly correlated with pollination services provided directly and indirectly by wild bees. Our results suggest that conserving wild habitat at the landscape scale and altering selected farm management techniques could increase hybrid sunflower production. These findings also demonstrate the economic importance of interspecific interactions for ecosystem services and suggest that protecting wild bee populations can help buffer the human food supply from honey bee shortages. PMID:16940358

  3. Phenology of Honey Bee Swarm Departure in New Jersey, United States.

    Science.gov (United States)

    Gilley, D C; Courtright, T J; Thom, C

    2018-03-31

    Departure of swarms from honey bee (Apis mellifera Linnaeus (Hymenoptera: Apidae)) nests is an important reproductive event for wild honey bee colonies and economically costly in managed bee colonies. The seasonal timing of swarm departure varies regionally and annually, creating challenges for honey bee management and emphasizing the potential for swarming behavior to be affected by plant-pollinator phenological mismatch. In this study, we first document variability in the timing of swarm departure across the large and heterogeneous geographical area of New Jersey over 4 years using 689 swarm-cluster observations. Second, hypothesizing that honey bee colonies adaptively tune the timing of swarm departure to match floral food-resource availability, we predicted that growing degree-days could be used to account for regional and annual variability. To test this idea, we used local weather records to determine the growing degree-day on which each swarm cluster was observed and tested for differences among climate regions and years. The state-wide mean swarm cluster date was May 15 (± 0.6 d), with moderate but significant differences among the state's five climate regions and between years. Use of degree-day information suggests that local heat accumulation can account for some climate-region differences in swarm-departure timing. Annual variation existed on a scale of only several days and was not accounted for by growing degree-days, suggesting little adaptive tuning of swarm-departure timing with respect to local heat accumulation.

  4. Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite

    Science.gov (United States)

    Mikheyev, Alexander S.; Tin, Mandy M. Y.; Arora, Jatin; Seeley, Thomas D.

    2015-01-01

    Understanding genetic changes caused by novel pathogens and parasites can reveal mechanisms of adaptation and genetic robustness. Using whole-genome sequencing of museum and modern specimens, we describe the genomic changes in a wild population of honey bees in North America following the introduction of the ectoparasitic mite, Varroa destructor. Even though colony density in the study population is the same today as in the past, a major loss of haplotypic diversity occurred, indicative of a drastic mitochondrial bottleneck, caused by massive colony mortality. In contrast, nuclear genetic diversity did not change, though hundreds of genes show signs of selection. The genetic diversity within each bee colony, particularly as a consequence of polyandry by queens, may enable preservation of genetic diversity even during population bottlenecks. These findings suggest that genetically diverse honey bee populations can recover from introduced diseases by evolving rapid tolerance, while maintaining much of the standing genetic variation. PMID:26246313

  5. Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite.

    Science.gov (United States)

    Mikheyev, Alexander S; Tin, Mandy M Y; Arora, Jatin; Seeley, Thomas D

    2015-08-06

    Understanding genetic changes caused by novel pathogens and parasites can reveal mechanisms of adaptation and genetic robustness. Using whole-genome sequencing of museum and modern specimens, we describe the genomic changes in a wild population of honey bees in North America following the introduction of the ectoparasitic mite, Varroa destructor. Even though colony density in the study population is the same today as in the past, a major loss of haplotypic diversity occurred, indicative of a drastic mitochondrial bottleneck, caused by massive colony mortality. In contrast, nuclear genetic diversity did not change, though hundreds of genes show signs of selection. The genetic diversity within each bee colony, particularly as a consequence of polyandry by queens, may enable preservation of genetic diversity even during population bottlenecks. These findings suggest that genetically diverse honey bee populations can recover from introduced diseases by evolving rapid tolerance, while maintaining much of the standing genetic variation.

  6. Antennae hold a key to Varroa-sensitive hygiene behaviour in honey bees

    OpenAIRE

    Mondet, Fanny; Alaux, C?dric; Severac, Dany; Rohmer, Marine; Mercer, Alison R.; Le Conte, Yves

    2015-01-01

    In honey bees, Varroa sensitive hygiene (VSH) behaviour, which involves the detection and removal of brood parasitised by the mite Varroa destructor, can actively participate in the survival of colonies facing Varroa outbreaks. This study investigated the mechanisms of VSH behaviour, by comparing the antennal transcriptomes of bees that do and do not perform VSH behaviour. Results indicate that antennae likely play a key role in the expression of VSH behaviour. Comparisons with the antennal t...

  7. Interactive effect of reduced pollen availability and Varroa destructor infestation limits growth and protein content of young honey bees

    NARCIS (Netherlands)

    Dooremalen, van C.; Stam, E.; Gerritsen, L.J.M.; Cornelissen, B.; Steen, van der J.J.M.; Langevelde, van F.; Blacquiere, T.

    2013-01-01

    Varroa destructor in combination with one or more stressors, such as low food availability or chemical exposure, is considered to be one of the main causes for honey bee colony losses. We examined the inter-active effect of pollen availability on the protein content and body weight of young bees

  8. Draft genome of the honey bee ectoparasitic mite, Tropilaelaps mercedesae, is shaped by the parasitic life history.

    Science.gov (United States)

    Dong, Xiaofeng; Armstrong, Stuart D; Xia, Dong; Makepeace, Benjamin L; Darby, Alistair C; Kadowaki, Tatsuhiko

    2017-03-01

    The number of managed honey bee colonies has considerably decreased in many developed countries in recent years and ectoparasitic mites are considered as major threats to honey bee colonies and health. However, their general biology remains poorly understood. We sequenced the genome of Tropilaelaps mercedesae, the prevalent ectoparasitic mite infesting honey bees in Asia, and predicted 15 190 protein-coding genes that were well supported by the mite transcriptomes and proteomic data. Although amino acid substitutions have been accelerated within the conserved core genes of two mites, T. mercedesae and Metaseiulus occidentalis, T. mercedesae has undergone the least gene family expansion and contraction between the seven arthropods we tested. The number of sensory system genes has been dramatically reduced, but T. mercedesae contains all gene sets required to detoxify xenobiotics. T. mercedesae is closely associated with a symbiotic bacterium (Rickettsiella grylli-like) and Deformed Wing Virus, the most prevalent honey bee virus. T. mercedesae has a very specialized life history and habitat as the ectoparasitic mite strictly depends on the honey bee inside a stable colony. Thus, comparison of the genome and transcriptome sequences with those of a tick and free-living mites has revealed the specific features of the genome shaped by interaction with the honey bee and colony environment. Genome and transcriptome sequences of T. mercedesae, as well as Varroa destructor (another globally prevalent ectoparasitic mite of honey bee), not only provide insights into the mite biology, but may also help to develop measures to control the most serious pests of the honey bee. © The Author 2017. Published by Oxford University Press.

  9. The Effect of Dietary Vitamin C on Carbohydrate Concentrations and Hydrolase Activity, During the Development of Honey Bee Worker Brood

    OpenAIRE

    Farjan Marek; Żółtowska Krystyna; Lipiński Zbigniew; Łopieńska-Biernat Elżbieta; Dmitryjuk Małgorzata

    2015-01-01

    The colony collapse disorder is a growing problem world-wide. For this reason, we were prompted to search for natural and harmless agents that could improve the living conditions of honey bees. This group of agents includes exogenous antioxidants, such as ascorbic acid, which boost natural immunity. We analysed the effect of vitamin C supplementation on carbohydrate metabolism in the developing honey bee worker brood. The total carbohydrate content and the concentrations of glycogen, trehalos...

  10. Effects of genotype, environment, and their interactions on honey bee Health in Europe

    DEFF Research Database (Denmark)

    Meixner, Marina D; Kryger, Per; Costa, Cecilia

    2015-01-01

    There are several reports of honey bee populations in Europe which survive without treatment for Varroa. However, when evaluated outside their native area, higher survival and resistance traits were not observed in colonies of a survivor population. Varroa infestation is strongly influenced by en...

  11. Occurrence, diversity and pattern of damage of Oplostomus species (Coleoptera: Scarabaeidae), honey bee pests in Kenya

    Science.gov (United States)

    Several arthropod pests including the hive beetles Aethina tumida and Oplostomus haroldi and the ectoparasite Varroa destructor have recently been identified as associated with honey bee colonies in Kenya. Here, we report the first documentation of O. fuligineus in Kenya, a related scarab of O. haro...

  12. Expression of varroa sensitive hygiene (VSH) in commercial VSH honey bees (Hymenoptera: Apidae)

    Science.gov (United States)

    We tested six commercial sources of honey bees (Apis mellifera L.) that were bred to include the trait of varroa sensitive hygiene (VSH). VSH confers resistance to the parasitic mite Varroa destructor Anderson & Trueman. Queens from these sources were established in colonies which later were measure...

  13. Predicting honey bee sensitivity based on the conservation of the pesticide molecular initiating event

    Science.gov (United States)

    Concern surrounding the potential adverse impacts of pesticides to honey bee colonies has led to the need for rapid/cost efficient methods for aiding decision making relative to the protection of this important pollinator species. Neonicotinoids represent a class of pesticides th...

  14. Silencing honey bee naked cuticle (nkd) reduces Nosema ceranae replication and disease levels

    Science.gov (United States)

    Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera that has been implicated in alarming colony losses worldwide. RNA interference (RNAi), a post-transcriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling in...

  15. Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites

    Science.gov (United States)

    Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema sp., and several viruses. These pathogens may be ...

  16. Pheromonal regulation of starvation resistance in honey bee workers ( Apis mellifera)

    Science.gov (United States)

    Fischer, Patrick; Grozinger, Christina M.

    2008-08-01

    Most animals can modulate nutrient storage pathways according to changing environmental conditions, but in honey bees nutrient storage is also modulated according to changing behavioral tasks within a colony. Specifically, bees involved in brood care (nurses) have higher lipid stores in their abdominal fat bodies than forager bees. Pheromone communication plays an important role in regulating honey bee behavior and physiology. In particular, queen mandibular pheromone (QMP) slows the transition from nursing to foraging. We tested the effects of QMP exposure on starvation resistance, lipid storage, and gene expression in the fat bodies of worker bees. We found that indeed QMP-treated bees survived much longer compared to control bees when starved and also had higher lipid levels. Expression of vitellogenin RNA, which encodes a yolk protein that is found at higher levels in nurses than foragers, was also higher in the fat bodies of QMP-treated bees. No differences were observed in expression of genes involved in insulin signaling pathways, which are associated with nutrient storage and metabolism in a variety of species; thus, other mechanisms may be involved in increasing the lipid stores. These studies demonstrate that pheromone exposure can modify nutrient storage pathways and fat body gene expression in honey bees and suggest that chemical communication and social interactions play an important role in altering metabolic pathways.

  17. Molecular and phylogenetic characterization of honey bee viruses, Nosema microsporidia, protozoan parasites, and parasitic mites in China.

    Science.gov (United States)

    Yang, Bu; Peng, Guangda; Li, Tianbang; Kadowaki, Tatsuhiko

    2013-02-01

    China has the largest number of managed honey bee colonies, which produce the highest quantity of honey and royal jelly in the world; however, the presence of honey bee pathogens and parasites has never been rigorously identified in Chinese apiaries. We thus conducted a molecular survey of honey bee RNA viruses, Nosema microsporidia, protozoan parasites, and tracheal mites associated with nonnative Apis mellifera ligustica and native Apis cerana cerana colonies in China. We found the presence of black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), and sacbrood virus (SBV), but not that of acute bee paralysis virus (ABPV) or Kashmir bee virus (KBV). DWV was the most prevalent in the tested samples. Phylogenies of Chinese viral isolates demonstrated that genetically heterogeneous populations of BQCV, CBPV, DWV, and A. cerana-infecting SBV, and relatively homogenous populations of IAPV and A. meliifera-infecting new strain of SBV with single origins, are spread in Chinese apiaries. Similar to previous observations in many countries, Nosema ceranae, but not Nosema apis, was prevalent in the tested samples. Crithidia mellificae, but not Apicystis bombi was found in five samples, including one A. c. cerana colony, demonstrating that C. mellificae is capable of infecting multiple honey bee species. Based on kinetoplast-encoded cytochrome b sequences, the C. mellificae isolate from A. c. cerana represents a novel haplotype with 19 nucleotide differences from the Chinese and Japanese isolates from A. m. ligustica. This suggests that A. c. cerana is the native host for this specific haplotype. The tracheal mite, Acarapis woodi, was detected in one A. m. ligustica colony. Our results demonstrate that honey bee RNA viruses, N. ceranae, C. mellificae, and tracheal mites are present in Chinese apiaries, and some might be originated from native Asian honey bees.

  18. Environmental and genetic influences on flight metabolic rate in the honey bee, Apis mellifera.

    Science.gov (United States)

    Harrison, Jon F; Fewell, Jennifer H

    2002-10-01

    Flying honey bees demonstrate highly variable metabolic rates. The lowest reported values (approximately 0.3 Wg(-1)) occur in tethered bees generating the minimum lift to support their body weight, free-flying 2-day old bees, winter bees, or bees flying at high air temperatures (45 degrees C). The highest values (approximately 0.8 Wg(-1)) occur in foragers that are heavily loaded or flying in low-density air. In different studies, flight metabolic rate has increased, decreased, or remained constant with air temperature. Current research collectively suggests that this variation occurs because flight metabolic rates decrease at thorax temperatures above or below 38 degrees C. At 30 degrees C, approximately 30% of colonial energy is spent during typical foraging, so variation in flight metabolic rate can strongly affect colony-level energy balance. Higher air temperatures tend to increase colonial net gain rates, efficiencies and honey storage rates due to lower metabolic rates during flight and in the hive. Variation in flight metabolism has a clear genetic basis. Different genetic strains of honey bees often differ in flight metabolic rate, and these differences in flight physiology can be correlated with foraging effort, suggesting a possible pathway for selection effects on flight metabolism.

  19. Stingless bee honey and its potential value: a systematic review

    Directory of Open Access Journals (Sweden)

    Yaacob, M.,

    2017-10-01

    Full Text Available Modern science has found that most traditional practice of using stingless bee honey has great potential as an added value in modern medicine and considered to have a higher medicinal value than other bee species. However, due to the relatively low output of honey compared to other honey so, focus on this honey is limited. Hence, this systematic review provides the updated result on the potential value of stingless bee honey as an antioxidant, anti-inflammatory, cytotoxicity and antimicrobial. The search strategy was developed in four databases (Scopus, Medline and Ovid, EMBASE and PubMed with the search terms "("honey" and "Kelulut", "honey" and "stingless bee", "honey" and "Trigona", "honey" and "pot honey", and "honey" and "Melipon"". The merged data was assessed using PRISMA guidelines and after the duplicates were removed, 1271 articles were segregated. Afterwards, 1232 articles were eliminated because they do not meet the inclusion criteria and 39 articles were reevaluated again for eligibility. Finally, after the evaluation process, only 26 of the articles were chosen for this review. The data of 26 articles of stingless bee honey were deliberated based on antioxidant properties, anti-inflammatory, cytotoxicity and analysis of antimicrobial activity. Three articles reported on antioxidant properties, one article on anti-inflammatory analysis, two articles on cytotoxicity analysis, and twenty articles on analysis of antimicrobial activity. Based on the feasible affirmation from the literature, stingless bee honey has an antioxidant capacity that able to decrease the ROS. ROS able to lead a variety of health problems thus stingless bee honey can be a dietary supplement to overcome this problem.

  20. Honey bee lines selected for high propolis production also have superior hygienic behavior and increased honey and pollen stores.

    Science.gov (United States)

    Nicodemo, D; De Jong, D; Couto, R H N; Malheiros, E B

    2013-12-19

    Honey bees use propolis to defend against invaders and disease organisms. As some colonies produce much more propolis than others, we investigated whether propolis collecting is associated with disease resistance traits, including hygienic behavior and resistance to the parasitic bee mite, Varroa destructor. The three highest (HP) and three lowest propolis-producing (LP) colonies among 36 Africanized honey bee colonies were initially selected. Queens and drones from these colonies were crossed through artificial insemination to produce five colonies of each of the following crosses: HP♀ X HP♂, LP♀ X HP♂, HP♀ X LP♂, and LP♀ X LP♂. Colonies headed by HP♀ X HP♂ queens produced significantly more propolis than those with HP♀ X LP♂ and LP♀ X HP♂ queens and these in turn produced significantly more propolis than those headed by LP♀ X LP♂ queens. The brood cell uncapping rate of the high-propolis-producing colonies in the hygienic behavior test was significantly superior to that of the other groups. The LP X LP group was significantly less hygienic than the two HP X LP crosses, based on the evaluation of the rate of removal of pin-killed pupae. The HP X HP colonies were significantly more hygienic than the other crosses. No significant differences were found in mite infestation rates among the groups of colonies; although overall, colony infestation rates were quite low (1.0 to 3.2 mites per 100 brood cells), which could have masked such effects. Honey and pollen stores were significantly and positively correlated with propolis production.

  1. The bacterial communities associated with honey bee (Apis mellifera foragers.

    Directory of Open Access Journals (Sweden)

    Vanessa Corby-Harris

    Full Text Available The honey bee is a key pollinator species in decline worldwide. As part of a commercial operation, bee colonies are exposed to a variety of agricultural ecosystems throughout the year and a multitude of environmental variables that may affect the microbial balance of individuals and the hive. While many recent studies support the idea of a core microbiota in guts of younger in-hive bees, it is unknown whether this core is present in forager bees or the pollen they carry back to the hive. Additionally, several studies hypothesize that the foregut (crop, a key interface between the pollination environment and hive food stores, contains a set of 13 lactic acid bacteria (LAB that inoculate collected pollen and act in synergy to preserve pollen stores. Here, we used a combination of 454 based 16S rRNA gene sequencing of the microbial communities of forager guts, crops, and corbicular pollen and crop plate counts to show that (1 despite a very different diet, forager guts contain a core microbiota similar to that found in younger bees, (2 corbicular pollen contains a diverse community dominated by hive-specific, environmental or phyllosphere bacteria that are not prevalent in the gut or crop, and (3 the 13 LAB found in culture-based studies are not specific to the crop but are a small subset of midgut or hindgut specific bacteria identified in many recent 454 amplicon-based studies. The crop is dominated by Lactobacillus kunkeei, and Alpha 2.2 (Acetobacteraceae, highly osmotolerant and acid resistant bacteria found in stored pollen and honey. Crop taxa at low abundance include core hindgut bacteria in transit to their primary niche, and potential pathogens or food spoilage organisms seemingly vectored from the pollination environment. We conclude that the crop microbial environment is influenced by worker task, and may function in both decontamination and inoculation.

  2. Parallel epigenomic and transcriptomic responses to viral infection in honey bees (Apis mellifera).

    Science.gov (United States)

    Galbraith, David A; Yang, Xingyu; Niño, Elina Lastro; Yi, Soojin; Grozinger, Christina

    2015-03-01

    Populations of honey bees are declining throughout the world, with US beekeepers losing 30% of their colonies each winter. Though multiple factors are driving these colony losses, it is increasingly clear that viruses play a major role. However, information about the molecular mechanisms mediating antiviral immunity in honey bees is surprisingly limited. Here, we examined the transcriptional and epigenetic (DNA methylation) responses to viral infection in honey bee workers. One-day old worker honey bees were fed solutions containing Israeli Acute Paralysis Virus (IAPV), a virus which causes muscle paralysis and death and has previously been associated with colony loss. Uninfected control and infected, symptomatic bees were collected within 20-24 hours after infection. Worker fat bodies, the primary tissue involved in metabolism, detoxification and immune responses, were collected for analysis. We performed transcriptome- and bisulfite-sequencing of the worker fat bodies to identify genome-wide gene expression and DNA methylation patterns associated with viral infection. There were 753 differentially expressed genes (FDR<0.05) in infected versus control bees, including several genes involved in epigenetic and antiviral pathways. DNA methylation status of 156 genes (FDR<0.1) changed significantly as a result of the infection, including those involved in antiviral responses in humans. There was no significant overlap between the significantly differentially expressed and significantly differentially methylated genes, and indeed, the genomic characteristics of these sets of genes were quite distinct. Our results indicate that honey bees have two distinct molecular pathways, mediated by transcription and methylation, that modulate protein levels and/or function in response to viral infections.

  3. No genetic tradeoffs between hygienic behaviour and individual innate immunity in the honey bee, Apis mellifera.

    Science.gov (United States)

    Harpur, Brock A; Chernyshova, Anna; Soltani, Arash; Tsvetkov, Nadejda; Mahjoorighasrodashti, Mohammad; Xu, Zhixing; Zayed, Amro

    2014-01-01

    Many animals have individual and social mechanisms for combating pathogens. Animals may exhibit short-term physiological tradeoffs between social and individual immunity because the latter is often energetically costly. Genetic tradeoffs between these two traits can also occur if mutations that enhance social immunity diminish individual immunity, or vice versa. Physiological tradeoffs between individual and social immunity have been previously documented in insects, but there has been no study of genetic tradeoffs involving these traits. There is strong evidence that some genes influence both innate immunity and behaviour in social insects--a prerequisite for genetic tradeoffs. Quantifying genetic tradeoffs is critical for understanding the evolution of immunity in social insects and for devising effective strategies for breeding disease-resistant pollinator populations. We conducted two experiments to test the hypothesis of a genetic tradeoff between social and individual immunity in the honey bee, Apis mellifera. First, we estimated the relative contribution of genetics to individual variation in innate immunity of honey bee workers, as only heritable traits can experience genetic tradeoffs. Second, we examined if worker bees with hygienic sisters have reduced individual innate immune response. We genotyped several hundred workers from two colonies and found that patriline genotype does not significantly influence the antimicrobial activity of a worker's hemolymph. Further, we did not find a negative correlation between hygienic behaviour and the average antimicrobial activity of a worker's hemolymph across 30 honey bee colonies. Taken together, our work indicates no genetic tradeoffs between hygienic behaviour and innate immunity in honey bees. Our work suggests that using artificial selection to increase hygienic behaviour of honey bee colonies is not expected to concurrently compromise individual innate immunity of worker bees.

  4. No genetic tradeoffs between hygienic behaviour and individual innate immunity in the honey bee, Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Brock A Harpur

    Full Text Available Many animals have individual and social mechanisms for combating pathogens. Animals may exhibit short-term physiological tradeoffs between social and individual immunity because the latter is often energetically costly. Genetic tradeoffs between these two traits can also occur if mutations that enhance social immunity diminish individual immunity, or vice versa. Physiological tradeoffs between individual and social immunity have been previously documented in insects, but there has been no study of genetic tradeoffs involving these traits. There is strong evidence that some genes influence both innate immunity and behaviour in social insects--a prerequisite for genetic tradeoffs. Quantifying genetic tradeoffs is critical for understanding the evolution of immunity in social insects and for devising effective strategies for breeding disease-resistant pollinator populations. We conducted two experiments to test the hypothesis of a genetic tradeoff between social and individual immunity in the honey bee, Apis mellifera. First, we estimated the relative contribution of genetics to individual variation in innate immunity of honey bee workers, as only heritable traits can experience genetic tradeoffs. Second, we examined if worker bees with hygienic sisters have reduced individual innate immune response. We genotyped several hundred workers from two colonies and found that patriline genotype does not significantly influence the antimicrobial activity of a worker's hemolymph. Further, we did not find a negative correlation between hygienic behaviour and the average antimicrobial activity of a worker's hemolymph across 30 honey bee colonies. Taken together, our work indicates no genetic tradeoffs between hygienic behaviour and innate immunity in honey bees. Our work suggests that using artificial selection to increase hygienic behaviour of honey bee colonies is not expected to concurrently compromise individual innate immunity of worker bees.

  5. Parallel epigenomic and transcriptomic responses to viral infection in honey bees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    David A Galbraith

    2015-03-01

    Full Text Available Populations of honey bees are declining throughout the world, with US beekeepers losing 30% of their colonies each winter. Though multiple factors are driving these colony losses, it is increasingly clear that viruses play a major role. However, information about the molecular mechanisms mediating antiviral immunity in honey bees is surprisingly limited. Here, we examined the transcriptional and epigenetic (DNA methylation responses to viral infection in honey bee workers. One-day old worker honey bees were fed solutions containing Israeli Acute Paralysis Virus (IAPV, a virus which causes muscle paralysis and death and has previously been associated with colony loss. Uninfected control and infected, symptomatic bees were collected within 20-24 hours after infection. Worker fat bodies, the primary tissue involved in metabolism, detoxification and immune responses, were collected for analysis. We performed transcriptome- and bisulfite-sequencing of the worker fat bodies to identify genome-wide gene expression and DNA methylation patterns associated with viral infection. There were 753 differentially expressed genes (FDR<0.05 in infected versus control bees, including several genes involved in epigenetic and antiviral pathways. DNA methylation status of 156 genes (FDR<0.1 changed significantly as a result of the infection, including those involved in antiviral responses in humans. There was no significant overlap between the significantly differentially expressed and significantly differentially methylated genes, and indeed, the genomic characteristics of these sets of genes were quite distinct. Our results indicate that honey bees have two distinct molecular pathways, mediated by transcription and methylation, that modulate protein levels and/or function in response to viral infections.

  6. Radionuclide Concentrations in Honey Bees from Area G at TA-54 during 1999

    Energy Technology Data Exchange (ETDEWEB)

    T. K. Haarmann; P. R. Fresquez

    2000-06-01

    Honey bees were collected from two colonies located at Los Alamos National Laboratory's Area G, Technical Area 54, and from one control (background) colony located near Jemez Springs, NM. Samples were analyzed for various radionuclides. Area G sample results from both colonies were higher than the upper (95%) level background concentration for {sup 3}H. Sample results from one colony were higher than the upper (95%) level background concentration for total uranium, while sample results from the other colony were higher than the upper (95%) level background concentration for {sup 90}Sr.

  7. Radionuclide Concentrations in Honey Bees from Area G at TA-54 during 1999

    International Nuclear Information System (INIS)

    Haarmann, T. K.; Fresquez, P.R.

    2000-01-01

    Honey bees were collected from two colonies located at Los Alamos National Laboratory's Area G, Technical Area 54, and from one control (background) colony located near Jemez Springs, NM. Samples were analyzed for various radionuclides. Area G sample results from both colonies were higher than the upper (95%) level background concentration for 3 H. Sample results from one colony were higher than the upper (95%) level background concentration for total uranium, while sample results from the other colony were higher than the upper (95%) level background concentration for 90 Sr

  8. In vitro infection of pupae with Israeli acute paralysis virus suggests disturbance of transcriptional homeostasis in honey bees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Humberto F Boncristiani

    Full Text Available The ongoing decline of honey bee health worldwide is a serious economic and ecological concern. One major contributor to the decline are pathogens, including several honey bee viruses. However, information is limited on the biology of bee viruses and molecular interactions with their hosts. An experimental protocol to test these systems was developed, using injections of Israeli Acute Paralysis Virus (IAPV into honey bee pupae reared ex-situ under laboratory conditions. The infected pupae developed pronounced but variable patterns of disease. Symptoms varied from complete cessation of development with no visual evidence of disease to rapid darkening of a part or the entire body. Considerable differences in IAPV titer dynamics were observed, suggesting significant variation in resistance to IAPV among and possibly within honey bee colonies. Thus, selective breeding for virus resistance should be possible. Gene expression analyses of three separate experiments suggest IAPV disruption of transcriptional homeostasis of several fundamental cellular functions, including an up-regulation of the ribosomal biogenesis pathway. These results provide first insights into the mechanisms of IAPV pathogenicity. They mirror a transcriptional survey of honey bees afflicted with Colony Collapse Disorder and thus support the hypothesis that viruses play a critical role in declining honey bee health.

  9. Does the Waggle Dance Help Honey Bees to Forage at Greater Distances than Expected for their Body Size?

    Directory of Open Access Journals (Sweden)

    Francis L.W. Ratnieks

    2015-04-01

    Full Text Available A honey bee colony has been likened to an oil company. Some members of the company or colony prospect for valuable liquid resources. When these are discovered other group members can be recruited to exploit the resource. The recruitment of nestmates to a specific location where there is a patch of flowers should change the economics of scouting, that is, the search for new resource patches. In particular, communication is predicted to make scouting at longer distances worthwhile because a profitable resource patch, once discovered, will enhance the foraging not only of the discoverer but also of nestmates that can be directed to the patch. By virtue of having large colonies and dance communication, honey bees are predicted to be able to profitably scout, and hence forage, at greater distances from the nest than either solitary bees or social bees without communication. We test this hypothesis by first examining existing data on foraging distance to evaluate whether honey bees do indeed forage at greater distances than other bees given their body size. Second, we present a simple cost-benefit analysis of scouting which indicates that communication causes longer range scouting to be more profitable. Overall, our analyses are supportive, but not conclusive, that honey bees forage further than would be expected given their size and that the waggle dance is a cause of the honey bee’s exceptional foraging range.

  10. Honey bee foraging ecology: Season but not landscape diversity shapes the amount and diversity of collected pollen.

    Directory of Open Access Journals (Sweden)

    Nadja Danner

    Full Text Available The availability of pollen in agricultural landscapes is essential for the successful growth and reproduction of honey bee colonies (Apis mellifera L.. The quantity and diversity of collected pollen can influence the growth and health of honey bee colonies, but little is known about the influence of landscape structure on pollen diet. In a field experiment, we rotated 16 honey bee colonies across 16 agricultural landscapes, used traps to collect samples of collected pollen and observed intra-colonial dance communication to gain information about foraging distances. DNA metabarcoding was applied to analyze mixed pollen samples. Neither the amount of collected pollen nor pollen diversity was related to landscape diversity. However, we found a strong seasonal variation in the amount and diversity of collected pollen in all sites independent of landscape diversity. The observed increase in foraging distances with decreasing landscape diversity suggests that honey bees compensated for lower landscape diversity by increasing their pollen foraging range in order to maintain pollen amount and diversity. Our results underscore the importance of a diverse pollen diet for honey bee colonies. Agri-environmental schemes aiming to support pollinators should focus on possible spatial and temporal gaps in pollen availability and diversity in agricultural landscapes.

  11. Climate change: impact on honey bee populations and diseases.

    Science.gov (United States)

    Le Conte, Y; Navajas, M

    2008-08-01

    The European honey bee, Apis mellifera, is the most economically valuable pollinator of agricultural crops worldwide. Bees are also crucial in maintaining biodiversity by pollinating numerous plant species whose fertilisation requires an obligatory pollinator. Apis mellifera is a species that has shown great adaptive potential, as it is found almost everywhere in the world and in highly diverse climates. In a context of climate change, the variability of the honey bee's life-history traits as regards temperature and the environment shows that the species possesses such plasticity and genetic variability that this could give rise to the selection of development cycles suited to new environmental conditions. Although we do not know the precise impact of potential environmental changes on honey bees as a result of climate change, there is a large body of data at our disposal indicating that environmental changes have a direct influence on honey bee development. In this article, the authors examine the potential impact of climate change on honey bee behaviour, physiology and distribution, as well as on the evolution of the honey bee's interaction with diseases. Conservation measures will be needed to prevent the loss of this rich genetic diversity of honey bees and to preserve ecotypes that are so valuable for world biodiversity.

  12. Chinese sacbrood virus infection in Asian honey bees (Apis cerana cerana) and host immune responses to the virus infection

    Science.gov (United States)

    Chinese Sacbrood virus (CSBV) is a common honey bee virus that infects both the European honey bee (A. mellifera) and the Asian honey bee (A. cerana). However, CSBV has much more devastating effects on Asian honey bees than on European honey bees, posing a serious threat to the agricultural and nat...

  13. Stakeholder Conference on Bee Health

    Science.gov (United States)

    USDA and EPA released a comprehensive scientific report on honey bee health in May 2013. The report points to multiple factors playing a role in honey bee colony declines, including parasites and disease, genetics, poor nutrition, and pesticide exposure.

  14. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.).

    Science.gov (United States)

    Brandt, Annely; Gorenflo, Anna; Siede, Reinhold; Meixner, Marina; Büchler, Ralph

    2016-03-01

    A strong immune defense is vital for honey bee health and colony survival. This defense can be weakened by environmental factors that may render honey bees more vulnerable to parasites and pathogens. Honey bees are frequently exposed to neonicotinoid pesticides, which are being discussed as one of the stress factors that may lead to colony failure. We investigated the sublethal effects of the neonicotinoids thiacloprid, imidacloprid, and clothianidin on individual immunity, by studying three major aspects of immunocompetence in worker bees: total hemocyte number, encapsulation response, and antimicrobial activity of the hemolymph. In laboratory experiments, we found a strong impact of all three neonicotinoids. Thiacloprid (24h oral exposure, 200 μg/l or 2000 μg/l) and imidacloprid (1 μg/l or 10 μg/l) reduced hemocyte density, encapsulation response, and antimicrobial activity even at field realistic concentrations. Clothianidin had an effect on these immune parameters only at higher than field realistic concentrations (50-200 μg/l). These results suggest that neonicotinoids affect the individual immunocompetence of honey bees, possibly leading to an impaired disease resistance capacity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Honey bee: a consumer’s point of view

    Directory of Open Access Journals (Sweden)

    Zavodna Lucie Sara

    2016-09-01

    Full Text Available This article concerns the way bee products are perceived by customers. It is mainly focused on honey, which is considered the main output product of beekeeping. Beekeeping is a very popular activity in the Czech Republic. Based on current data there are over 48 thousand people engaged in beekeeping in the Czech Republic. Hand in hand with the increasing number of beekeepers the popularity of bee products - especially honey - among Czech consumers is also growing. Recently, the consumption of honey in the Czech Republic has been slightly increasing. A big problem today is that honey sold in Czech supermarkets is frequently falsified. At the same time, it is increasingly popular to buy honey directly from beekeepers. The aim of this research was to describe the situation about the honey market in the Czech Republic, and also to examine the relationship between consumers on the one hand, and honey/beekeepers on the other. We have also considered customer's trust in organic honey and honey sold in supermarket chains. Results show that consumers view bee products as generally healthy and prefer to buy bee products from a beekeeper because of greater convenience as locally sourced honey is perceived to be of higher quality. The majority of consumers agree with paying a higher price for a product of higher quality. The article confirmed the hypothesis that most people think that bee products sold by a beekeeper are healthier than those bought at ordinary shops.

  16. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae.

    Directory of Open Access Journals (Sweden)

    Jeffery S Pettis

    Full Text Available Recent declines in honey bee populations and increasing demand for insect-pollinated crops raise concerns about pollinator shortages. Pesticide exposure and pathogens may interact to have strong negative effects on managed honey bee colonies. Such findings are of great concern given the large numbers and high levels of pesticides found in honey bee colonies. Thus it is crucial to determine how field-relevant combinations and loads of pesticides affect bee health. We collected pollen from bee hives in seven major crops to determine 1 what types of pesticides bees are exposed to when rented for pollination of various crops and 2 how field-relevant pesticide blends affect bees' susceptibility to the gut parasite Nosema ceranae. Our samples represent pollen collected by foragers for use by the colony, and do not necessarily indicate foragers' roles as pollinators. In blueberry, cranberry, cucumber, pumpkin and watermelon bees collected pollen almost exclusively from weeds and wildflowers during our sampling. Thus more attention must be paid to how honey bees are exposed to pesticides outside of the field in which they are placed. We detected 35 different pesticides in the sampled pollen, and found high fungicide loads. The insecticides esfenvalerate and phosmet were at a concentration higher than their median lethal dose in at least one pollen sample. While fungicides are typically seen as fairly safe for honey bees, we found an increased probability of Nosema infection in bees that consumed pollen with a higher fungicide load. Our results highlight a need for research on sub-lethal effects of fungicides and other chemicals that bees placed in an agricultural setting are exposed to.

  17. Dance communication affects consistency, but not breadth, of resource use in pollen-foraging honey bees.

    Directory of Open Access Journals (Sweden)

    Matina Donaldson-Matasci

    Full Text Available In groups of cooperatively foraging individuals, communication may improve the group's performance by directing foraging effort to where it is most useful. Honey bees (Apis mellifera use a specialized dance to communicate the location of floral resources. Because honey bees dance longer for more rewarding resources, communication may shift the colony's foraging effort towards higher quality resources, and thus narrow the spectrum of resource types used. To test the hypothesis that dance communication changes how much honey bee colonies specialize on particular resources, we manipulated their ability to communicate location, and assessed the relative abundance of different pollen taxa they collected. This was repeated across five natural habitats that differed in floral species richness and spatial distribution. Contrary to expectation, impairing communication did not change the number or diversity of pollen (resource types used by individual colonies per day. However, colonies with intact dance communication were more consistent in their resource use, while those with impaired communication were more likely to collect rare, novel pollen types. This suggests that communication plays an important role in shaping how much colonies invest in exploring new resources versus exploiting known ones. Furthermore, colonies that did more exploration also tended to collect less pollen overall, but only in environments with greater floral abundance per patch. In such environments, the ability to effectively exploit highly rewarding resources may be especially important-and dance communication may help colonies do just that. This could help explain how communication benefits honey bee colonies, and also why it does so only under certain environmental conditions.

  18. Effects of a neonicotinoid pesticide on thermoregulation of African honey bees (Apis mellifera scutellata).

    Science.gov (United States)

    Tosi, Simone; Démares, Fabien J; Nicolson, Susan W; Medrzycki, Piotr; Pirk, Christian W W; Human, Hannelie

    Thiamethoxam is a widely used neonicotinoid pesticide that, as agonist of the nicotinic acetylcholine receptors, has been shown to elicit a variety of sublethal effects in honey bees. However, information concerning neonicotinoid effects on honey bee thermoregulation is lacking. Thermoregulation is an essential ability for the honey bee that guarantees the success of foraging and many in-hive tasks, especially brood rearing. We tested the effects of acute exposure to thiamethoxam (0.2, 1, 2ng/bee) on the thorax temperatures of foragers exposed to low (22°C) and high (33°C) temperature environments. Thiamethoxam significantly altered honey bee thorax temperature at all doses tested; the effects elicited varied depending on the environmental temperature and pesticide dose to which individuals were exposed. When bees were exposed to the high temperature environment, the high dose of thiamethoxam increased their thorax temperature 1-2h after exposure. When bees were exposed to the low temperature, the higher doses of the neonicotinoid reduced bee thorax temperatures 60-90min after treatment. In both experiments, the neonicotinoid decreased the temperature of bees the day following the exposure. After a cold shock (5min at 4°C), the two higher doses elicited a decrease of the thorax temperature, while the lower dose caused an increase, compared to the control. These alterations in thermoregulation caused by thiamethoxam may affect bee foraging activity and a variety of in-hive tasks, likely leading to negative consequences at the colony level. Our results shed light on sublethal effect of pesticides which our bees have to deal with. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Distinct subspecies or phenotypic plasticity? Genetic and morphological differentiation of mountain honey bees in East Africa.

    Science.gov (United States)

    Gruber, Karl; Schöning, Caspar; Otte, Marianne; Kinuthia, Wanja; Hasselmann, Martin

    2013-09-01

    Identifying the forces shaping intraspecific phenotypic and genotypic divergence are of key importance in evolutionary biology. Phenotypic divergence may result from local adaptation or, especially in species with strong gene flow, from pronounced phenotypic plasticity. Here, we examine morphological and genetic divergence among populations of the western honey bee Apis mellifera in the topographically heterogeneous East African region. The currently accepted "mountain refugia hypothesis" states that populations living in disjunct montane forests belong to a different lineage than those in savanna habitats surrounding these forests. We obtained microsatellite data, mitochondrial sequences, and morphometric data from worker honey bees collected from feral colonies in three montane forests and corresponding neighboring savanna regions in Kenya. Honey bee colonies from montane forests showed distinct worker morphology compared with colonies in savanna areas. Mitochondrial sequence data did not support the existence of the two currently accepted subspecies. Furthermore, analyses of the microsatellite data with a Bayesian clustering method did not support the existence of two source populations as it would be expected under the mountain refugia scenario. Our findings suggest that phenotypic plasticity rather than distinct ancestry is the leading cause behind the phenotypic divergence observed between montane forest and savanna honey bees. Our study thus corroborates the idea that high gene flow may select for increased plasticity.

  20. Physiological and behavioral changes in honey bees (Apis mellifera induced by Nosema ceranae infection.

    Directory of Open Access Journals (Sweden)

    Mike Goblirsch

    Full Text Available Persistent exposure to mite pests, poor nutrition, pesticides, and pathogens threaten honey bee survival. In healthy colonies, the interaction of the yolk precursor protein, vitellogenin (Vg, and endocrine factor, juvenile hormone (JH, functions as a pacemaker driving the sequence of behaviors that workers perform throughout their lives. Young bees perform nursing duties within the hive and have high Vg and low JH; as older bees transition to foraging, this trend reverses. Pathogens and parasites can alter this regulatory network. For example, infection with the microsporidian, Nosema apis, has been shown to advance behavioral maturation in workers. We investigated the effects of infection with a recent honey bee pathogen on physiological factors underlying the division of labor in workers. Bees infected with N. ceranae were nearly twice as likely to engage in precocious foraging and lived 9 days less, on average, compared to controls. We also show that Vg transcript was low, while JH titer spiked, in infected nurse-aged bees in cages. This pattern of expression is atypical and the reverse of what would be expected for healthy, non-infected bees. Disruption of the basic underpinnings of temporal polyethism due to infection may be a contributing factor to recent high colony mortality, as workers may lose flexibility in their response to colony demands.

  1. Physiological and Behavioral Changes in Honey Bees (Apis mellifera) Induced by Nosema ceranae Infection

    Science.gov (United States)

    Goblirsch, Mike; Huang, Zachary Y.; Spivak, Marla

    2013-01-01

    Persistent exposure to mite pests, poor nutrition, pesticides, and pathogens threaten honey bee survival. In healthy colonies, the interaction of the yolk precursor protein, vitellogenin (Vg), and endocrine factor, juvenile hormone (JH), functions as a pacemaker driving the sequence of behaviors that workers perform throughout their lives. Young bees perform nursing duties within the hive and have high Vg and low JH; as older bees transition to foraging, this trend reverses. Pathogens and parasites can alter this regulatory network. For example, infection with the microsporidian, Nosema apis, has been shown to advance behavioral maturation in workers. We investigated the effects of infection with a recent honey bee pathogen on physiological factors underlying the division of labor in workers. Bees infected with N. ceranae were nearly twice as likely to engage in precocious foraging and lived 9 days less, on average, compared to controls. We also show that Vg transcript was low, while JH titer spiked, in infected nurse-aged bees in cages. This pattern of expression is atypical and the reverse of what would be expected for healthy, non-infected bees. Disruption of the basic underpinnings of temporal polyethism due to infection may be a contributing factor to recent high colony mortality, as workers may lose flexibility in their response to colony demands. PMID:23483987

  2. Application of a modified selection index for honey bees (Hymenoptera: Apidae).

    Science.gov (United States)

    van Engelsdorp, D; Otis, G W

    2000-12-01

    Nine different genetic families of honey bees (Apis mellifera L.) were compared using summed z-scores (phenotypic values) and a modified selection index (Imod). Imod values incorporated both the phenotypic scores of the different traits and the economic weightings of these traits, as determined by a survey of commercial Ontario beekeepers. Largely because of the high weight all beekeepers place on honey production, a distinct difference between line rankings based on phenotypic scores and Imod scores was apparent, thereby emphasizing the need to properly weight the traits being evaluated to select bee stocks most valuable for beekeepers. Furthermore, when beekeepers who made >10% of their income from queen and nucleus colony sales assigned relative values to the traits used in the Imod calculations, the results differed from those based on weightings assigned by honey producers. Our results underscore the difficulties the North American beekeeping industry must overcome to devise effective methods of evaluating colonies for breeding purposes.

  3. Effects of Nosema apis, N. ceranae, and coinfections on honey bee (Apis mellifera) learning and memory.

    Science.gov (United States)

    Charbonneau, Lise R; Hillier, Neil Kirk; Rogers, Richard E L; Williams, Geoffrey R; Shutler, Dave

    2016-03-10

    Western honey bees (Apis mellifera) face an increasing number of challenges that in recent years have led to significant economic effects on apiculture, with attendant consequences for agriculture. Nosemosis is a fungal infection of honey bees caused by either Nosema apis or N. ceranae. The putative greater virulence of N. ceranae has spurred interest in understanding how it differs from N. apis. Little is known of effects of N. apis or N. ceranae on honey bee learning and memory. Following a Pavlovian model that relies on the proboscis extension reflex, we compared acquisition learning and long-term memory recall of uninfected (control) honey bees versus those inoculated with N. apis, N. ceranae, or both. We also tested whether spore intensity was associated with variation in learning and memory. Neither learning nor memory differed among treatments. There was no evidence of a relationship between spore intensity and learning, and only limited evidence of a negative effect on memory; this occurred only in the co-inoculation treatment. Our results suggest that if Nosema spp. are contributing to unusually high colony losses in recent years, the mechanism by which they may affect honey bees is probably not related to effects on learning or memory, at least as assessed by the proboscis extension reflex.

  4. High-Resolution Linkage Analyses to Identify Genes That Influence Varroa Sensitive Hygiene Behavior in Honey Bees.

    Science.gov (United States)

    Varroa mites (V. destructor) are a major threat to honey bees (Apis melilfera) and beekeeping worldwide and likely lead to colony decline if colonies are not treated. Most treatments involve chemical control of the mites; however, Varroa has evolved resistance to many of these miticides, leaving be...

  5. Development and validation of a real-time two-step RT-qPCR TaqMan(®) assay for quantitation of Sacbrood virus (SBV) and its application to a field survey of symptomatic honey bee colonies

    DEFF Research Database (Denmark)

    Blanchard, Philippe; Guillot, Sylvain; Antùnez, Karina

    2014-01-01

    Sacbrood virus (SBV) is the causal agent of a disease of honey bee larvae, resulting in failure to pupate and causing death. The typical clinical symptom of SBV is an accumulation of SBV-rich fluid in swollen sub-cuticular pouches, forming the characteristic fluid-filled sac that gives its name t...

  6. Increased resin collection after parasite challenge: a case of self-medication in honey bees?

    Directory of Open Access Journals (Sweden)

    Michael D Simone-Finstrom

    Full Text Available The constant pressure posed by parasites has caused species throughout the animal kingdom to evolve suites of mechanisms to resist infection. Individual barriers and physiological defenses are considered the main barriers against parasites in invertebrate species. However, behavioral traits and other non-immunological defenses can also effectively reduce parasite transmission and infection intensity. In social insects, behaviors that reduce colony-level parasite loads are termed "social immunity." One example of a behavioral defense is resin collection. Honey bees forage for plant-produced resins and incorporate them into their nest architecture. This use of resins can reduce chronic elevation of an individual bee's immune response. Since high activation of individual immunity can impose colony-level fitness costs, collection of resins may benefit both the individual and colony fitness. However the use of resins as a more direct defense against pathogens is unclear. Here we present evidence that honey bee colonies may self-medicate with plant resins in response to a fungal infection. Self-medication is generally defined as an individual responding to infection by ingesting or harvesting non-nutritive compounds or plant materials. Our results show that colonies increase resin foraging rates after a challenge with a fungal parasite (Ascophaera apis: chalkbrood or CB. Additionally, colonies experimentally enriched with resin had decreased infection intensities of this fungal parasite. If considered self-medication, this is a particularly unique example because it operates at the colony level. Most instances of self-medication involve pharmacophagy, whereby individuals change their diet in response to direct infection with a parasite. In this case with honey bees, resins are not ingested but used within the hive by adult bees exposed to fungal spores. Thus the colony, as the unit of selection, may be responding to infection through self

  7. Firm Efficiency and Returns-to-Scale in the Honey Bee Pollination Services Industry.

    Science.gov (United States)

    Jones Ritten, Chian; Peck, Dannele; Ehmke, Mariah; Patalee, M A Buddhika

    2018-04-03

    While the demand for pollination services have been increasing, continued declines in honey bee, Apis mellifera L. (Hymenoptera: Apidae), colonies have put the cropping sector and the broader health of agro-ecosystems at risk. Economic factors may play a role in dwindling honey bee colony supply in the United States, but have not been extensively studied. Using data envelopment analysis (DEA), we measure technical efficiency, returns to scale, and factors influencing the efficiency of those apiaries in the northern Rocky Mountain region participating in the pollination services market. We find that, although over 25% of apiaries are technically efficient, many experience either increasing or decreasing returns to scale. Smaller apiaries (under 80 colonies) experience increasing returns to scale, but a lack of available financing may hinder them from achieving economically sustainable colony levels. Larger apiaries (over 1,000 colonies) experience decreasing returns to scale. Those beekeepers may have economic incentivizes to decrease colony numbers. Using a double bootstrap method, we find that apiary location and off-farm employment influence apiary technical efficiency. Apiaries in Wyoming are found to be more efficient than those in Utah or Montana. Further, engagement in off-farm employment increases an apiary's technical efficiency. The combined effects of efficiency gains through off-farm employment and diseconomies of scale may explain, in part, the historical decline in honey bee numbers.

  8. Using safe materials to control Varroa mites with studying grooming behavior of honey bees and morphology of Varroa over winter

    OpenAIRE

    Hossam F. Abou-Shaara

    2017-01-01

    Extracts of drone larvae and propolis as safe materials are anticipated to boost the grooming behavior of honey bees against Varroa mites. It is also expected that grooming behavior of bees and morphology of Varroa are stable during the least active period of the year to bee colonies (i.e winter). Sugar syrup alone or mixed with drone larvae extract or propolis extract were examined as potential Varroa control materials to test these hypothesizes. Moreover, percentages of groomed mites along ...

  9. MORPHOLOGICAL COMPARISON OF THREE ASIAN NATIVE HONEY BEES (APIS CERANA, A. DORSATA, A. FLOREA) IN NORTHERN VIETNAM AND THAILAND

    OpenAIRE

    N.V. NIEM; L. Q. TRUNG

    1999-01-01

    Three species of Asian native honey bees (Apis cerana, A. florea and A. dorsata) from northern Vietnam and Thailand were morphologically analyzed fo r investigations on their geographic variations and relations. In Vietnam, samples were collected from feral and managed colonies. In Thailand, the collections were from feral colonies or from field bees on flowers. Morphological analysis was carried out, using measurements common to honeybee taxonomy. Measured characters were done under ster...

  10. Honey bee-collected pollen in agro-ecosystems reveals diet diversity, diet quality, and pesticide exposure.

    Science.gov (United States)

    Colwell, Megan J; Williams, Geoffrey R; Evans, Rodger C; Shutler, Dave

    2017-09-01

    European honey bees Apis mellifera are important commercial pollinators that have suffered greater than normal overwintering losses since 2007 in North America and Europe. Contributing factors likely include a combination of parasites, pesticides, and poor nutrition. We examined diet diversity, diet nutritional quality, and pesticides in honey bee-collected pollen from commercial colonies in the Canadian Maritime Provinces in spring and summer 2011. We sampled pollen collected by honey bees at colonies in four site types: apple orchards, blueberry fields, cranberry bogs, and fallow fields. Proportion of honey bee-collected pollen from crop versus noncrop flowers was high in apple, very low in blueberry, and low in cranberry sites. Pollen nutritional value tended to be relatively good from apple and cranberry sites and poor from blueberry and fallow sites. Floral surveys ranked, from highest to lowest in diversity, fallow, cranberry, apple, and blueberry sites. Pesticide diversity in honey bee-collected pollen was high from apple and blueberry sites and low from cranberry and fallow sites. Four different neonicotinoid pesticides were detected, but neither these nor any other pesticides were at or above LD 50 levels. Pollen hazard quotients were highest in apple and blueberry sites and lowest in fallow sites. Pollen hazard quotients were also negatively correlated with the number of flower taxa detected in surveys. Results reveal differences among site types in diet diversity, diet quality, and pesticide exposure that are informative for improving honey bee and land agro-ecosystem management.

  11. An Investigation of the Migration of Africanized Honey Bees into the Southern United States

    Science.gov (United States)

    Navarro, Hector

    1997-01-01

    It is estimated that Apis mellifera scutellata, a honey bee subspecies from Africa, now extends over a 20 million square kilometer range that includes much of South America and practically all of Central America, and recently has been introduced to the southern United States. African honeybees were introduced into Brazil in 1956 by a Brazilian geneticist, Mr. Warwick Kerr. At the insistence of the Brazilian Ministry of Agriculture, in 1957, 26 colonies were accidentally released in a eucalyptus forest outside S5o Paulo. The swelling front of the bees was recorded as traveling between 80 and 500 kilometers a year. David Roubik, one of the original killer bee team members estimated that there were one trillion individual Africanized/African honey bees in Latin America. An estimate that is thought to be conservative.

  12. Selection and breeding of honey bees for higher or lower collection of avocado nectar.

    Science.gov (United States)

    Afik, Ohad; Dag, Arnon; Yeselson, Yelena; Schaffer, Arthur; Shafir, Sharoni

    2010-04-01

    Intensive activity of honey bees, Apis mellifera L., is essential for high fruit set in avocado, Persea americana Mill., orchards, but even when hives are located inside the orchard, many bees still search for alternative blooms. We tested for a possible genetic component for a preference of avocado bloom relative to competing bloom. The honey from each hive was extracted at the end of the avocado bloom and the concentration of perseitol, a carbohydrate that is unique to avocado, was analyzed as a measure for avocado foraging. During the first year, five bee strains were compared in three different sites in Israel. Significant differences were found between strains in honey perseitol concentrations, suggesting differences in their efficiency as avocado pollinators, although these differences were site dependent. At two sites, colonies with the highest and lowest perseitol concentrations were selected as parental "high" and "low" lines. Queens were raised from the selected colonies and were instrumentally inseminated by drones from other colonies of this line. During the second and third years, colonies with inseminated queens were introduced to the avocado orchards, together with the selected colonies still surviving from the previous year. Colonies of the high line had greater perseitol concentrations than those of the low line. Selected colonies that survived from the previous year performed consistently vis-à-vis perseitol concentration, in the second year of testing. Heritability value of 0.22 was estimated based on regression of offspring on midparent. The results reveal a heritable component for willingness of honey bees to collect avocado nectar.

  13. Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter?

    Science.gov (United States)

    Di Pasquale, Garance; Salignon, Marion; Le Conte, Yves; Belzunces, Luc P; Decourtye, Axel; Kretzschmar, André; Suchail, Séverine; Brunet, Jean-Luc; Alaux, Cédric

    2013-01-01

    Honey bee colonies are highly dependent upon the availability of floral resources from which they get the nutrients (notably pollen) necessary to their development and survival. However, foraging areas are currently affected by the intensification of agriculture and landscape alteration. Bees are therefore confronted to disparities in time and space of floral resource abundance, type and diversity, which might provide inadequate nutrition and endanger colonies. The beneficial influence of pollen availability on bee health is well-established but whether quality and diversity of pollen diets can modify bee health remains largely unknown. We therefore tested the influence of pollen diet quality (different monofloral pollens) and diversity (polyfloral pollen diet) on the physiology of young nurse bees, which have a distinct nutritional physiology (e.g. hypopharyngeal gland development and vitellogenin level), and on the tolerance to the microsporidian parasite Nosemaceranae by measuring bee survival and the activity of different enzymes potentially involved in bee health and defense response (glutathione-S-transferase (detoxification), phenoloxidase (immunity) and alkaline phosphatase (metabolism)). We found that both nurse bee physiology and the tolerance to the parasite were affected by pollen quality. Pollen diet diversity had no effect on the nurse bee physiology and the survival of healthy bees. However, when parasitized, bees fed with the polyfloral blend lived longer than bees fed with monofloral pollens, excepted for the protein-richest monofloral pollen. Furthermore, the survival was positively correlated to alkaline phosphatase activity in healthy bees and to phenoloxydase activities in infected bees. Our results support the idea that both the quality and diversity (in a specific context) of pollen can shape bee physiology and might help to better understand the influence of agriculture and land-use intensification on bee nutrition and health.

  14. Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter?

    Directory of Open Access Journals (Sweden)

    Garance Di Pasquale

    Full Text Available Honey bee colonies are highly dependent upon the availability of floral resources from which they get the nutrients (notably pollen necessary to their development and survival. However, foraging areas are currently affected by the intensification of agriculture and landscape alteration. Bees are therefore confronted to disparities in time and space of floral resource abundance, type and diversity, which might provide inadequate nutrition and endanger colonies. The beneficial influence of pollen availability on bee health is well-established but whether quality and diversity of pollen diets can modify bee health remains largely unknown. We therefore tested the influence of pollen diet quality (different monofloral pollens and diversity (polyfloral pollen diet on the physiology of young nurse bees, which have a distinct nutritional physiology (e.g. hypopharyngeal gland development and vitellogenin level, and on the tolerance to the microsporidian parasite Nosemaceranae by measuring bee survival and the activity of different enzymes potentially involved in bee health and defense response (glutathione-S-transferase (detoxification, phenoloxidase (immunity and alkaline phosphatase (metabolism. We found that both nurse bee physiology and the tolerance to the parasite were affected by pollen quality. Pollen diet diversity had no effect on the nurse bee physiology and the survival of healthy bees. However, when parasitized, bees fed with the polyfloral blend lived longer than bees fed with monofloral pollens, excepted for the protein-richest monofloral pollen. Furthermore, the survival was positively correlated to alkaline phosphatase activity in healthy bees and to phenoloxydase activities in infected bees. Our results support the idea that both the quality and diversity (in a specific context of pollen can shape bee physiology and might help to better understand the influence of agriculture and land-use intensification on bee nutrition and health.

  15. Emerging and re-emerging viruses of the honey bee (Apis mellifera L.).

    Science.gov (United States)

    Genersch, Elke; Aubert, Michel

    2010-01-01

    Until the late 1980s, specific viral infections of the honey bee were generally considered harmless in all countries. Then, with the worldwide introduction of the ectoparasite mite Varroa destructor, beekeepers encountered increasing difficulties in maintaining their colonies. Epidemiological surveys and laboratory experiments have demonstrated that the newly acquired virulence of several viruses belonging to the family Dicistroviridae (acute bee paralysis virus, Kashmir bee virus and Israeli acute paralysis virus) in Europe and the USA had been observed in relation with V. destructor acting as a disseminator of these viruses between and within bee colonies and as an activator of virus multiplication in the infected individuals: bee larvae and adults. Equal emphasis is given to deformed wing virus (DWV) belonging to the Iflaviridae. Overt outbreaks of DWV infections have been shown to be linked to the ability of V. destructor to act not only as a mechanical vector of DWV but also as a biological vector. Its replication in mites prior to its vectoring into pupae seemed to be necessary and sufficient for the induction of a overt infection in pupae developing in non-viable bees with deformed wings. DWV in V. destructor infested colonies is now considered as one of the key players of the final collapse. Various approaches for combating bee viral diseases are described: they include selection of tolerant bees, RNA interference and prevention of new pathogen introduction. None of these approaches are expected to lead to enhanced bee-health in the short term. © INRA, EDP Sciences, 2010.

  16. Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup.

    Science.gov (United States)

    Wheeler, Marsha M; Robinson, Gene E

    2014-07-17

    Severe declines in honey bee populations have made it imperative to understand key factors impacting honey bee health. Of major concern is nutrition, as malnutrition in honey bees is associated with immune system impairment and increased pesticide susceptibility. Beekeepers often feed high fructose corn syrup (HFCS) or sucrose after harvesting honey or during periods of nectar dearth. We report that, relative to honey, chronic feeding of either of these two alternative carbohydrate sources elicited hundreds of differences in gene expression in the fat body, a peripheral nutrient-sensing tissue analogous to vertebrate liver and adipose tissues. These expression differences included genes involved in protein metabolism and oxidation-reduction, including some involved in tyrosine and phenylalanine metabolism. Differences between HFCS and sucrose diets were much more subtle and included a few genes involved in carbohydrate and lipid metabolism. Our results suggest that bees receive nutritional components from honey that are not provided by alternative food sources widely used in apiculture.

  17. Neonicotinoid-contaminated puddles of water represent a risk of intoxication for honey bees.

    Directory of Open Access Journals (Sweden)

    Olivier Samson-Robert

    Full Text Available In recent years, populations of honey bees and other pollinators have been reported to be in decline worldwide. A number of stressors have been identified as potential contributing factors, including the extensive prophylactic use of neonicotinoid insecticides, which are highly toxic to bees, in agriculture. While multiple routes of exposure to these systemic insecticides have been documented for honey bees, contamination from puddle water has not been investigated. In this study, we used a multi-residue method based on LC-MS/MS to analyze samples of puddle water taken in the field during the planting of treated corn and one month later. If honey bees were to collect and drink water from these puddles, our results showed that they would be exposed to various agricultural pesticides. All water samples collected from corn fields were contaminated with at least one neonicotinoid compound, although most contained more than one systemic insecticide. Concentrations of neonicotinoids were higher in early spring, indicating that emission and drifting of contaminated dust during sowing raises contamination levels of puddles. Although the overall average acute risk of drinking water from puddles was relatively low, concentrations of neonicotinoids ranged from 0.01 to 63 µg/L and were sufficient to potentially elicit a wide array of sublethal effects in individuals and colony alike. Our results also suggest that risk assessment of honey bee water resources underestimates the foragers' exposure and consequently miscalculates the risk. In fact, our data shows that honey bees and native pollinators are facing unprecedented cumulative exposure to these insecticides from combined residues in pollen, nectar and water. These findings not only document the impact of this route of exposure for honey bees, they also have implications for the cultivation of a wide variety of crops for which the extensive use of neonicotinoids is currently promoted.

  18. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees.

    Science.gov (United States)

    Di Prisco, Gennaro; Cavaliere, Valeria; Annoscia, Desiderato; Varricchio, Paola; Caprio, Emilio; Nazzi, Francesco; Gargiulo, Giuseppe; Pennacchio, Francesco

    2013-11-12

    Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-κB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-κB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-κB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture.

  19. Radionuclide Concentrations in Honey Bees from Area G at TA-54 during 1998

    Energy Technology Data Exchange (ETDEWEB)

    Haarmann, T.K.; Fresquez, P.R.

    1999-06-01

    Honey bees were collected from two colonies located at Los Alamos National Laboratory's Area G, Technical Area 54, and from one control (background) colony located near Jemez Springs, NM. Samples were analyzed for various radionuclides. Area G sample results from both colonies were higher than the upper (95%) level background concentration for {sup 239,240}Pu, {sup 3}H, and total uranium. Sample results from one colony were higher than the upper (95%) level background concentration for {sup 238}Pu.

  20. Immune related gene expression in worker honey bee (Apis mellifera carnica) pupae exposed to neonicotinoid thiamethoxam and Varroa mites (Varroa destructor).

    Science.gov (United States)

    Tesovnik, Tanja; Cizelj, Ivanka; Zorc, Minja; Čitar, Manuela; Božič, Janko; Glavan, Gordana; Narat, Mojca

    2017-01-01

    Varroa destructor is one of the most common parasites of honey bee colonies and is considered as a possible co-factor for honey bee decline. At the same time, the use of pesticides in intensive agriculture is still the most effective method of pest control. There is limited information about the effects of pesticide exposure on parasitized honey bees. Larval ingestion of certain pesticides could have effects on honey bee immune defense mechanisms, development and metabolic pathways. Europe and America face the disturbing phenomenon of the disappearance of honey bee colonies, termed Colony Collapse Disorder (CCD). One reason discussed is the possible suppression of honey bee immune system as a consequence of prolonged exposure to chemicals. In this study, the effects of the neonicotinoid thiamethoxam on honey bee, Apis mellifera carnica, pupae infested with Varroa destructor mites were analyzed at the molecular level. Varroa-infested and non-infested honey bee colonies received protein cakes with or without thiamethoxam. Nurse bees used these cakes as a feed for developing larvae. Samples of white-eyed and brown-eyed pupae were collected. Expression of 17 immune-related genes was analyzed by real-time PCR. Relative gene expression in samples exposed only to Varroa or to thiamethoxam or simultaneously to both Varroa and thiamethoxam was compared. The impact from the consumption of thiamethoxam during the larval stage on honey bee immune related gene expression in Varroa-infested white-eyed pupae was reflected as down-regulation of spaetzle, AMPs abaecin and defensin-1 and up-regulation of lysozyme-2. In brown-eyed pupae up-regulation of PPOact, spaetzle, hopscotch and basket genes was detected. Moreover, we observed a major difference in immune response to Varroa infestation between white-eyed pupae and brown-eyed pupae. The majority of tested immune-related genes were upregulated only in brown-eyed pupae, while in white-eyed pupae they were downregulated.

  1. Immune related gene expression in worker honey bee (Apis mellifera carnica pupae exposed to neonicotinoid thiamethoxam and Varroa mites (Varroa destructor.

    Directory of Open Access Journals (Sweden)

    Tanja Tesovnik

    Full Text Available Varroa destructor is one of the most common parasites of honey bee colonies and is considered as a possible co-factor for honey bee decline. At the same time, the use of pesticides in intensive agriculture is still the most effective method of pest control. There is limited information about the effects of pesticide exposure on parasitized honey bees. Larval ingestion of certain pesticides could have effects on honey bee immune defense mechanisms, development and metabolic pathways. Europe and America face the disturbing phenomenon of the disappearance of honey bee colonies, termed Colony Collapse Disorder (CCD. One reason discussed is the possible suppression of honey bee immune system as a consequence of prolonged exposure to chemicals. In this study, the effects of the neonicotinoid thiamethoxam on honey bee, Apis mellifera carnica, pupae infested with Varroa destructor mites were analyzed at the molecular level. Varroa-infested and non-infested honey bee colonies received protein cakes with or without thiamethoxam. Nurse bees used these cakes as a feed for developing larvae. Samples of white-eyed and brown-eyed pupae were collected. Expression of 17 immune-related genes was analyzed by real-time PCR. Relative gene expression in samples exposed only to Varroa or to thiamethoxam or simultaneously to both Varroa and thiamethoxam was compared. The impact from the consumption of thiamethoxam during the larval stage on honey bee immune related gene expression in Varroa-infested white-eyed pupae was reflected as down-regulation of spaetzle, AMPs abaecin and defensin-1 and up-regulation of lysozyme-2. In brown-eyed pupae up-regulation of PPOact, spaetzle, hopscotch and basket genes was detected. Moreover, we observed a major difference in immune response to Varroa infestation between white-eyed pupae and brown-eyed pupae. The majority of tested immune-related genes were upregulated only in brown-eyed pupae, while in white-eyed pupae they were

  2. REVIEW: The Diversity of Indigenous Honey Bee Species of Indonesia

    Directory of Open Access Journals (Sweden)

    SOESILAWATI HADISOESILO

    2001-01-01

    Full Text Available It has been known that Indonesia has the most diverse honey bee species in the world. At least five out of nine species of honey bees are native to Indonesia namely Apis andreniformis, A. dorsata, A. cerana, A. koschevnikovi, and A. nigrocincta. One species, A. florea, although it was claimed to be a species native to Indonesia, it is still debatable whether it is really found in Indonesia or not. The new species, A. nuluensis, which is found in Sabah, Borneo is likely to be found in Kalimantan but it has not confirmed yet. This paper discusses briefly the differences among those native honey bees.

  3. Temporal Variation in Honey Production by the Stingless Bee Melipona subnitida (Hymenoptera: Apidae): Long-Term Management Reveals its Potential as a Commercial Species in Northeastern Brazil.

    Science.gov (United States)

    Koffler, Sheina; Menezes, Cristiano; Menezes, Paulo Roberto; Kleinert, Astrid de Matos Peixoto; Imperatriz-Fonseca, Vera Lucia; Pope, Nathaniel; Jaffé, Rodolfo

    2015-06-01

    Even though stingless beekeeping has a great potential as a sustainable development tool, the activity remains essentially informal, technical knowledge is scarce, and management practices lack the sophistication and standardization found in apiculture. Here, we contributed to the further development of stingless beekeeping by investigating the long-term impact of management and climate on honey production and colony survival in the stingless bee Melipona subnitida Ducke (1910). We analyzed a 10-yr record of 155 M. subnitida colonies kept by a commercial honey producer of northeastern Brazil. This constitutes the longest and most accurate record available for a stingless bee. We modeled honey production in relation to time (years), age, management practices (colony division and food supplementation), and climatic factors (temperature and precipitation), and used a model selection approach to identify which factors best explained honey production. We also modeled colony mortality in relation to climatic factors. Although the amount of honey produced by each colony decreased over time, we found that the probability of producing honey increased over the years. Colony divisions decreased honey production, but did not affect honey presence, while supplementary feeding positively affected honey production. In warmer years, the probability of producing honey decreased and the amount of honey produced was lower. In years with lower precipitation, fewer colonies produced honey. In contrast, colony mortality was not affected by climatic factors, and some colonies lived up to nine years, enduring extreme climatic conditions. Our findings provide useful guidelines to improve management and honey production in stingless bees. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. The density of feral honey bee (Apis mellifera) colonies in South East Australia is greater in undisturbed than in disturbed habitats

    OpenAIRE

    Hinson , Eloise M.; Duncan , Michael; Lim , Julianne; Arundel , Jonathan; Oldroyd , Benjamin P.

    2015-01-01

    International audience; AbstractApis mellifera is an important pollinator but is sometimes associated with adverse effects on natural ecosystems. We surveyed pairs of disturbed and undisturbed sites across three biomes in South East Australia. We used pheromone lures to trap drones, genotyped the drones to infer the number of colonies within flight range and then estimated colony densities using synthetic sampling distributions. Estimated colony densities ranged from 0.1 to 1.5 colonies km−2 ...

  5. Assessing grooming behavior of Russian honey bees toward Varroa destructor.

    Science.gov (United States)

    The grooming behavior of Russian bees was compared to Italian bees. Overall, Russian bees had significantly lower numbers of mites than the Italian bees with a mean of 1,937 ± 366 and 5,088 ± 733 mites, respectively. This low mite population in the Russian colonies was probably due to the increased ...

  6. Physiology of reproductive worker honey bees (Apis mellifera): insights for the development of the worker caste.

    Science.gov (United States)

    Peso, Marianne; Even, Naïla; Søvik, Eirik; Naeger, Nicholas L; Robinson, Gene E; Barron, Andrew B

    2016-02-01

    Reproductive and behavioural specialisations characterise advanced social insect societies. Typically, the honey bee (Apis mellifera) shows a pronounced reproductive division of labour between worker and queen castes, and a clear division of colony roles among workers. In a queenless condition, however, both of these aspects of social organisation break down. Queenless workers reproduce, forage and maintain their colony operating in a manner similar to communal bees, rather than as an advanced eusocial group. This plasticity in social organisation provides a natural experiment for exploring physiological mechanisms of division of labour. We measured brain biogenic amine (BA) levels and abdominal fat body vitellogenin gene expression levels of workers in queenright and queenless colonies. Age, ovary activation and social environment influenced brain BA levels in honey bees. BA levels were most influenced by ovary activation state in queenless bees. Vitellogenin expression levels were higher in queenless workers than queenright workers, but in both colony environments vitellogenin expression was lower in foragers than non-foragers. We propose this plasticity in the interacting signalling systems that influence both reproductive and behavioural development allows queenless workers to deviate significantly from the typical worker bee reaction norm and develop as reproductively active behavioural generalists.

  7. First demonstration of olfactory learning and long term memory in honey bee queens.

    Science.gov (United States)

    Gong, Zhiwen; Tan, Ken; Nieh, James C

    2018-05-18

    As the primary source of colony reproduction, social insect queens play a vital role. However, the cognitive abilities of queens are not well understood, although queen learning and memory are essential in multiple species such as honey bees, in which virgin queens must leave the nest and then successful learn to navigate back over repeated nuptial flights. Honey bee queen learning has never been previously demonstrated. We therefore tested olfactory learning in queens and workers and examined the role of DNA methylation, which plays a key role in long term memory formation. We provide the first evidence that honey bee queens have excellent learning and memory. The proportion of honey bee queens that exhibited learning was 5-fold higher than workers at every tested age and, for memory, 4-fold higher than workers at a very young age. DNA methylation may play a key role in this queen memory because queens exhibiting remote memory had a more consistent elevation in Dnmt3 gene expression as compared to workers. Both castes also showed excellent remote memory (7 day memory), which was reduced by 14-20% by the DNA methylation inhibitor, zebularine. Given that queens live about 10-fold longer than workers, these results suggest that queens can serve as an excellently long-term reservoir of colony memory. © 2018. Published by The Company of Biologists Ltd.

  8. Honey bee Apis mellifera parasites in the absence of Nosema ceranae fungi and Varroa destructor mites.

    Science.gov (United States)

    Shutler, Dave; Head, Krista; Burgher-MacLellan, Karen L; Colwell, Megan J; Levitt, Abby L; Ostiguy, Nancy; Williams, Geoffrey R

    2014-01-01

    Few areas of the world have western honey bee (Apis mellifera) colonies that are free of invasive parasites Nosema ceranae (fungi) and Varroa destructor (mites). Particularly detrimental is V. destructor; in addition to feeding on host haemolymph, these mites are important vectors of several viruses that are further implicated as contributors to honey bee mortality around the world. Thus, the biogeography and attendant consequences of viral communities in the absence of V. destructor are of significant interest. The island of Newfoundland, Province of Newfoundland and Labrador, Canada, is free of V. destructor; the absence of N. ceranae has not been confirmed. Of 55 Newfoundland colonies inspected visually for their strength and six signs of disease, only K-wing had prevalence above 5% (40/55 colonies = 72.7%). Similar to an earlier study, screenings again confirmed the absence of V. destructor, small hive beetles Aethina tumida (Murray), tracheal mites Acarapis woodi (Rennie), and Tropilaelaps spp. ectoparasitic mites. Of a subset of 23 colonies screened molecularly for viruses, none had Israeli acute paralysis virus, Kashmir bee virus, or sacbrood virus. Sixteen of 23 colonies (70.0%) were positive for black queen cell virus, and 21 (91.3%) had some evidence for deformed wing virus. No N. ceranae was detected in molecular screens of 55 colonies, although it is possible extremely low intensity infections exist; the more familiar N. apis was found in 53 colonies (96.4%). Under these conditions, K-wing was associated (positively) with colony strength; however, viruses and N. apis were not. Furthermore, black queen cell virus was positively and negatively associated with K-wing and deformed wing virus, respectively. Newfoundland honey bee colonies are thus free of several invasive parasites that plague operations in other parts of the world, and they provide a unique research arena to study independent pathology of the parasites that are present.

  9. Honey bee (Apis mellifera) nurses do not consume pollens based on their nutritional quality

    OpenAIRE

    Corby-Harris, Vanessa; Snyder, Lucy; Meador, Charlotte; Ayotte, Trace

    2018-01-01

    Honey bee workers (Apis mellifera) consume a variety of pollens to meet the majority of their requirements for protein and lipids. Recent work indicates that honey bees prefer diets that reflect the proper ratio of nutrients necessary for optimal survival and homeostasis. This idea relies on the precept that honey bees evaluate the nutritional composition of the foods provided to them. While this has been shown in bumble bees, the data for honey bees are mixed. Further, there is controversy a...

  10. Behavioral response of two species of stingless bees and the honey bee (Hymenoptera: Apidae) to GF-120.

    Science.gov (United States)

    Gómez-Escobar, Enoc; Liedo, Pablo; Montoya, Pablo; Vandame, Rémy; Sánchez, Daniel

    2014-08-01

    We present the results of evaluating the response of three species of bees, Trigona fulviventris (Guérin), Scaptotrigona mexicana (Guérin-Meneville), and Apis mellifera (L.), to food sources baited with the toxic bait GF-120 (NF Naturalyte), a spinosad-based bait exclusively used to manage fruit flies. Groups of foragers were trained to collect honey and water from a feeder located 50 m from the colonies. Once a sufficient number of foragers were observed at the experimental location, the training feeder was changed to two or three feeders that offered either honey and water, GF-120, Captor (hydrolyzed protein), GF-120 and honey (4:6), or Captor and honey (1:19). T fulviventris and S. mexicana rarely visited GF-120, Captor, or their mixtures with honey, while approximately 28.5 and 1.5% of A. mellifera foragers visited the GF-120 and honey and Captor and honey mixtures, respectively. Our results show that GF-120 clearly repels T. fulviventris and S. mexicana, whereas for A. mellifera, repellence is not as marked when GF-120 is combined with highly nutritious substances like honey.

  11. Quality parameters of Bulgarian’s kinds of bee honey

    Directory of Open Access Journals (Sweden)

    Dinko Hristov Dinkov

    2014-03-01

    Full Text Available In Bulgaria were found more than 3600 kinds of higher plants, which predispose to production of different kinds of bee honey. In the country were registered 11 natural and 3 national parks, in which could found all kinds of plants, some of them unique in the world. Up to now there were harvested and investigated more than 11 kinds of bee honey. The aim of the present work was on the basis of available literature data to sum up the scientific information related to the main kinds of Bulgarian’s bee honeys from 2000 to present. In the study were presented quality parameters from organically produced and commercially processed bee honeys: pollen analysis, proline content, invertase activity, specific optical rotation, electrical conductivity, antioxidant and antibacterial activities.

  12. Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae.

    Directory of Open Access Journals (Sweden)

    Wayne Hunter

    Full Text Available The importance of honey bees to the world economy far surpasses their contribution in terms of honey production; they are responsible for up to 30% of the world's food production through pollination of crops. Since fall 2006, honey bees in the U.S. have faced a serious population decline, due in part to a phenomenon called Colony Collapse Disorder (CCD, which is a disease syndrome that is likely caused by several factors. Data from an initial study in which investigators compared pathogens in honey bees affected by CCD suggested a putative role for Israeli Acute Paralysis Virus, IAPV. This is a single stranded RNA virus with no DNA stage placed taxonomically within the family Dicistroviridae. Although subsequent studies have failed to find IAPV in all CCD diagnosed colonies, IAPV has been shown to cause honey bee mortality. RNA interference technology (RNAi has been used successfully to silence endogenous insect (including honey bee genes both by injection and feeding. Moreover, RNAi was shown to prevent bees from succumbing to infection from IAPV under laboratory conditions. In the current study IAPV specific homologous dsRNA was used in the field, under natural beekeeping conditions in order to prevent mortality and improve the overall health of bees infected with IAPV. This controlled study included a total of 160 honey bee hives in two discrete climates, seasons and geographical locations (Florida and Pennsylvania. To our knowledge, this is the first successful large-scale real world use of RNAi for disease control.

  13. Is the Salivary Gland Associated with Honey Bee Recognition Compounds in Worker Honey Bees (Apis mellifera)?

    Science.gov (United States)

    Martin, Stephen J; Correia-Oliveira, Maria E; Shemilt, Sue; Drijfhout, Falko P

    2018-06-07

    Cuticular hydrocarbons (CHCs) function as recognition compounds with the best evidence coming from social insects such as ants and honey bees. The major exocrine gland involved in hydrocarbon storage in ants is the post-pharyngeal gland (PPG) in the head. It is still not clearly understood where CHCs are stored in the honey bee. The aim of this study was to investigate the hydrocarbons and esters found in five major worker honey bee (Apis mellifera) exocrine glands, at three different developmental stages (newly emerged, nurse, and forager) using a high temperature GC analysis. We found the hypopharyngeal gland contained no hydrocarbons nor esters, and the thoracic salivary and mandibular glands only contained trace amounts of n-alkanes. However, the cephalic salivary gland (CSG) contained the greatest number and highest quantity of hydrocarbons relative to the five other glands with many of the hydrocarbons also found in the Dufour's gland, but at much lower levels. We discovered a series of oleic acid wax esters that lay beyond the detection of standard GC columns. As a bee's activities changed, as it ages, the types of compounds detected in the CSG also changed. For example, newly emerged bees have predominately C 19 -C 23 n-alkanes, alkenes and methyl-branched compounds, whereas the nurses' CSG had predominately C 31:1 and C 33:1 alkene isomers, which are replaced by a series of oleic acid wax esters in foragers. These changes in the CSG were mirrored by corresponding changes in the adults' CHCs profile. This indicates that the CSG may have a parallel function to the PPG found in ants acting as a major storage gland of CHCs. As the CSG duct opens into the buccal cavity the hydrocarbons can be worked into the comb wax and could help explain the role of comb wax in nestmate recognition experiments.

  14. Social modulation of stress reactivity and learning in young worker honey bees.

    Directory of Open Access Journals (Sweden)

    Elodie Urlacher

    Full Text Available Alarm pheromone and its major component isopentylacetate induce stress-like responses in forager honey bees, impairing their ability to associate odors with a food reward. We investigated whether isopentylacetate exposure decreases appetitive learning also in young worker bees. While isopentylacetate-induced learning deficits were observed in guards and foragers collected from a queen-right colony, learning impairments resulting from exposure to this pheromone could not be detected in bees cleaning cells. As cell cleaners are generally among the youngest workers in the colony, effects of isopentylacetate on learning behavior were examined further using bees of known age. Adult workers were maintained under laboratory conditions from the time of adult emergence. Fifty percent of the bees were exposed to queen mandibular pheromone during this period, whereas control bees were not exposed to this pheromone. Isopentylacetate-induced learning impairments were apparent in young (less than one week old controls, but not in bees of the same age exposed to queen mandibular pheromone. This study reveals young worker bees can exhibit a stress-like response to alarm pheromone, but isopentylacetate-induced learning impairments in young bees are suppressed by queen mandibular pheromone. While isopentylacetate exposure reduced responses during associative learning (acquisition, it did not affect one-hour memory retrieval.

  15. Social Modulation of Stress Reactivity and Learning in Young Worker Honey Bees

    Science.gov (United States)

    Mercer, Alison R.

    2014-01-01

    Alarm pheromone and its major component isopentylacetate induce stress-like responses in forager honey bees, impairing their ability to associate odors with a food reward. We investigated whether isopentylacetate exposure decreases appetitive learning also in young worker bees. While isopentylacetate-induced learning deficits were observed in guards and foragers collected from a queen-right colony, learning impairments resulting from exposure to this pheromone could not be detected in bees cleaning cells. As cell cleaners are generally among the youngest workers in the colony, effects of isopentylacetate on learning behavior were examined further using bees of known age. Adult workers were maintained under laboratory conditions from the time of adult emergence. Fifty percent of the bees were exposed to queen mandibular pheromone during this period, whereas control bees were not exposed to this pheromone. Isopentylacetate-induced learning impairments were apparent in young (less than one week old) controls, but not in bees of the same age exposed to queen mandibular pheromone. This study reveals young worker bees can exhibit a stress-like response to alarm pheromone, but isopentylacetate-induced learning impairments in young bees are suppressed by queen mandibular pheromone. While isopentylacetate exposure reduced responses during associative learning (acquisition), it did not affect one-hour memory retrieval. PMID:25470128

  16. Effect of Propolis Oral Intake on Physiological Condition of Young Worker Honey Bees, Apis Mellifera L.

    Directory of Open Access Journals (Sweden)

    Damiani Natalia

    2017-12-01

    Full Text Available Honey bees collect resin from various plant species and transform it into propolis that is incorporated into the nest. The role of resins in the bee health field is poorly understood. The aim was to evaluate the effects of forced consumption of propolis on the physiological condition and short-term survival of Apis mellifera worker bees. It was tested if the number of circulating hemocytes in hemolymph, the abdominal fat bodies and the hypopharyngeal glands development were affected by the feeding with propolis extracts in laboratory conditions during the warm and the cold seasons. Propolis added to sugar candy was consumed by workers for fourteen days without affecting the bee survival. The number of circulating hemocytes in hemolymph remained constant despite the differential diet during the experiment. However, the development of fat bodies and hypopharyngeal glands was altered by propolis ingestion. The abdominal fat body development in winter bees diminished after fourteen days of propolis consumption, while it increased in summer bees. The hypopharyngeal gland development decreased for the assayed period in workers from both seasons. Our results encourage us to continue exploring this research field and learn how long-term forced ingestion of a plant-derived compound, a non-nutritive substance, can modify physiological bee parameters. A broader understanding of the multiple roles of propolis in the health of the honey bee colonies could be obtained by studying the ways in which it is processed and metabolized and the effect that generates in another physiological responses.

  17. Antennae hold a key to Varroa-sensitive hygiene behaviour in honey bees.

    Science.gov (United States)

    Mondet, Fanny; Alaux, Cédric; Severac, Dany; Rohmer, Marine; Mercer, Alison R; Le Conte, Yves

    2015-05-22

    In honey bees, Varroa sensitive hygiene (VSH) behaviour, which involves the detection and removal of brood parasitised by the mite Varroa destructor, can actively participate in the survival of colonies facing Varroa outbreaks. This study investigated the mechanisms of VSH behaviour, by comparing the antennal transcriptomes of bees that do and do not perform VSH behaviour. Results indicate that antennae likely play a key role in the expression of VSH behaviour. Comparisons with the antennal transcriptome of nurse and forager bees suggest that VSH profile is more similar to that of nurse bees than foragers. Enhanced detection of certain odorants in VSH bees may be predicted from transcriptional patterns, as well as a higher metabolism and antennal motor activity. Interestingly, Deformed wing virus/Varroa destructor virus infections were detected in the antennae, with higher level in non-VSH bees; a putative negative impact of viral infection on bees' ability to display VSH behaviour is proposed. These results bring new perspectives to the understanding of VSH behaviour and the evolution of collective defence by focusing attention on the importance of the peripheral nervous system. In addition, such data might be useful for promoting marker-assisted selection of honey bees that can survive Varroa infestations.

  18. Genetic detection and quantification of Nosema apis and N. ceranae in the honey bee.

    Science.gov (United States)

    Bourgeois, A Lelania; Rinderer, Thomas E; Beaman, Lorraine D; Danka, Robert G

    2010-01-01

    The incidence of nosemosis has increased in recent years due to an emerging infestation of Nosema ceranae in managed honey bee populations in much of the world. A real-time PCR assay was developed to facilitate detection and quantification of both Nosema apis and N. ceranae in both single bee and pooled samples. The assay is a multiplexed reaction in which both species are detected and quantified in a single reaction. The assay is highly sensitive and can detect single copies of the target sequence. Real-time PCR results were calibrated to spore counts generated by standard microscopy procedures. The assay was used to assess bees from commercial apiaries sampled in November 2008 and March 2009. Bees from each colony were pooled. A large amount of variation among colonies was evident, signifying the need to examine large numbers of colonies. Due to sampling constraints, a subset of colonies (from five apiaries) was sampled in both seasons. In November, N. apis levels were 1212+/-148 spores/bee and N. ceranae levels were 51,073+/-31,155 spores/bee. In March, no N. apis was detected, N. ceranae levels were 11,824+/-6304 spores/bee. Changes in N. ceranae levels were evident among apiaries, some increasing and other decreasing. This demonstrates the need for thorough sampling of apiaries and the need for a rapid test for both detection and quantification of both Nosema spp. This assay provides the opportunity for detailed study of disease resistance, infection kinetics, and improvement of disease management practices for honey bees.

  19. Prochloraz and coumaphos induce different gene expression patterns in three developmental stages of the Carniolan honey bee (Apis mellifera carnica Pollmann).

    Science.gov (United States)

    Cizelj, Ivanka; Glavan, Gordana; Božič, Janko; Oven, Irena; Mrak, Vesna; Narat, Mojca

    2016-03-01

    The Carniolan honey bee, Apis mellifera carnica, is a Slovenian autochthonous subspecies of honey bee. In recent years, the country has recorded an annual loss of bee colonies through mortality of up to 35%. One possible reason for such high mortality could be the exposure of honey bees to xenobiotic residues that have been found in honey bee and beehive products. Acaricides are applied by beekeepers to control varroosis, while the most abundant common agricultural chemicals found in honey bee and beehive products are fungicides, which may enter the system when applied to nearby flowering crops and fruit plants. Acaricides and fungicides are not intrinsically highly toxic to bees but their action in combination might lead to higher honey bee sensitivity or mortality. In the present study we investigated the molecular immune response of honey bee workers at different developmental stages (prepupa, white-eyed pupa, adult) exposed to the acaricide coumaphos and the fungicide prochloraz individually and in combination. Expression of 17 immune-related genes was examined by quantitative RT-PCR. In treated prepupae downregulation of most immune-related genes was observed in all treatments, while in adults upregulation of most of the genes was recorded. Our study shows for the first time that negative impacts of prochloraz and a combination of coumaphos and prochloraz differ among the different developmental stages of honey bees. The main effect of the xenobiotic combination was found to be upregulation of the antimicrobial peptide genes abaecin and defensin-1 in adult honey bees. Changes in immune-related gene expression could result in depressed immunity of honey bees and their increased susceptibility to various pathogens. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Modelling seasonal effects of temperature and precipitation on honey bee winter mortality in a temperate climate.

    Science.gov (United States)

    Switanek, Matthew; Crailsheim, Karl; Truhetz, Heimo; Brodschneider, Robert

    2017-02-01

    Insect pollinators are essential to global food production. For this reason, it is alarming that honey bee (Apis mellifera) populations across the world have recently seen increased rates of mortality. These changes in colony mortality are often ascribed to one or more factors including parasites, diseases, pesticides, nutrition, habitat dynamics, weather and/or climate. However, the effect of climate on colony mortality has never been demonstrated. Therefore, in this study, we focus on longer-term weather conditions and/or climate's influence on honey bee winter mortality rates across Austria. Statistical correlations between monthly climate variables and winter mortality rates were investigated. Our results indicate that warmer and drier weather conditions in the preceding year were accompanied by increased winter mortality. We subsequently built a statistical model to predict colony mortality using temperature and precipitation data as predictors. Our model reduces the mean absolute error between predicted and observed colony mortalities by 9% and is statistically significant at the 99.9% confidence level. This is the first study to show clear evidence of a link between climate variability and honey bee winter mortality. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.

  1. Food consumption and food exchange of caged honey bees using a radioactive labelled sugar solution.

    Directory of Open Access Journals (Sweden)

    Robert Brodschneider

    Full Text Available We measured the distribution of sugar solution within groups of caged honey bees (Apis mellifera under standard in vitro laboratory conditions using 14C polyethylene glycol as a radioactive marker to analyze ingestion by individual bees after group feeding. We studied the impact of different experimental setups by varying the number of bees, age of bees, origin of bees, duration of experiment, the amount of available diet, and the influence of the neurotoxic pesticide imidacloprid in the diet on the feeding and food sharing behavior (trophallaxis. Sugar solution was non-uniformly distributed in bees in 36 out of 135 cages. As a measure of the extent to which the sugar diet was equally distributed between caged bees, we calculated the (inner 80% intake ratio by dividing the intake of the 90th percentile bee by the intake of the 10th percentile bee. This intake ratio ranged from 1.3 to 94.8 in 133 individual cages, further supporting a non-uniform distribution of food among caged bees. We can expect a cage with 10 or 30 bees containing one bee that ingests, on average, the 8.8-fold of the bee in the same cage ingesting the smallest quantity of food. Inner 80% intake ratios were lower in experiments with a permanent or chronic offering of labelled sugar solution compared to temporary or acute feedings. After pooling the data of replicates to achieve a higher statistical power we compared different experimental setups. We found that uniform food distribution is best approached with 10 newly emerged bees per cage, which originate from a brood comb from a single colony. We also investigated the trophallaxis between caged honey bees which originally consumed the diet and newly added bees. Color marked bees were starved and added to the cages in a ratio of 10:5 or 20:20 after the initial set of bees consumed all the labelled sugar solution. The distribution of the labelled sugar solution by trophallaxis within 48 hours to added bees was 25% (10:5 or 45

  2. Food consumption and food exchange of caged honey bees using a radioactive labelled sugar solution.

    Science.gov (United States)

    Brodschneider, Robert; Libor, Anika; Kupelwieser, Vera; Crailsheim, Karl

    2017-01-01

    We measured the distribution of sugar solution within groups of caged honey bees (Apis mellifera) under standard in vitro laboratory conditions using 14C polyethylene glycol as a radioactive marker to analyze ingestion by individual bees after group feeding. We studied the impact of different experimental setups by varying the number of bees, age of bees, origin of bees, duration of experiment, the amount of available diet, and the influence of the neurotoxic pesticide imidacloprid in the diet on the feeding and food sharing behavior (trophallaxis). Sugar solution was non-uniformly distributed in bees in 36 out of 135 cages. As a measure of the extent to which the sugar diet was equally distributed between caged bees, we calculated the (inner 80%) intake ratio by dividing the intake of the 90th percentile bee by the intake of the 10th percentile bee. This intake ratio ranged from 1.3 to 94.8 in 133 individual cages, further supporting a non-uniform distribution of food among caged bees. We can expect a cage with 10 or 30 bees containing one bee that ingests, on average, the 8.8-fold of the bee in the same cage ingesting the smallest quantity of food. Inner 80% intake ratios were lower in experiments with a permanent or chronic offering of labelled sugar solution compared to temporary or acute feedings. After pooling the data of replicates to achieve a higher statistical power we compared different experimental setups. We found that uniform food distribution is best approached with 10 newly emerged bees per cage, which originate from a brood comb from a single colony. We also investigated the trophallaxis between caged honey bees which originally consumed the diet and newly added bees. Color marked bees were starved and added to the cages in a ratio of 10:5 or 20:20 after the initial set of bees consumed all the labelled sugar solution. The distribution of the labelled sugar solution by trophallaxis within 48 hours to added bees was 25% (10:5) or 45% (20:20) of the

  3. Nosema ceranae escapes fumagillin control in honey bees.

    Directory of Open Access Journals (Sweden)

    Wei-Fone Huang

    2013-03-01

    Full Text Available Fumagillin is the only antibiotic approved for control of nosema disease in honey bees and has been extensively used in United States apiculture for more than 50 years for control of Nosema apis. It is toxic to mammals and must be applied seasonally and with caution to avoid residues in honey. Fumagillin degrades or is diluted in hives over the foraging season, exposing bees and the microsporidia to declining concentrations of the drug. We showed that spore production by Nosema ceranae, an emerging microsporidian pathogen in honey bees, increased in response to declining fumagillin concentrations, up to 100% higher than that of infected bees that have not been exposed to fumagillin. N. apis spore production was also higher, although not significantly so. Fumagillin inhibits the enzyme methionine aminopeptidase2 (MetAP2 in eukaryotic cells and interferes with protein modifications necessary for normal cell function. We sequenced the MetAP2 gene for apid Nosema species and determined that, although susceptibility to fumagillin differs among species, there are no apparent differences in fumagillin binding sites. Protein assays of uninfected bees showed that fumagillin altered structural and metabolic proteins in honey bee midgut tissues at concentrations that do not suppress microsporidia reproduction. The microsporidia, particularly N. ceranae, are apparently released from the suppressive effects of fumagillin at concentrations that continue to impact honey bee physiology. The current application protocol for fumagillin may exacerbate N. ceranae infection rather than suppress it.

  4. Ecological adaptation of diverse honey bee (Apis mellifera populations.

    Directory of Open Access Journals (Sweden)

    Robert Parker

    Full Text Available BACKGROUND: Honey bees are complex eusocial insects that provide a critical contribution to human agricultural food production. Their natural migration has selected for traits that increase fitness within geographical areas, but in parallel their domestication has selected for traits that enhance productivity and survival under local conditions. Elucidating the biochemical mechanisms of these local adaptive processes is a key goal of evolutionary biology. Proteomics provides tools unique among the major 'omics disciplines for identifying the mechanisms employed by an organism in adapting to environmental challenges. RESULTS: Through proteome profiling of adult honey bee midgut from geographi