WorldWideScience

Sample records for homopolygalacturonan molecular size

  1. Molecular size distribution of Np(V)-humate

    International Nuclear Information System (INIS)

    Sakamoto, Yoshiaki; Nagao, Seiya; Tanaka, Tadao

    1996-10-01

    Molecular size distributions of humic acid and Np(V)-humate were studied as a function of pH and an ionic strength by an ultrafiltration method. Small particle (10,000-30,000 daltons) of humic acid increased slightly with increases in solution pH. The ion strength dependence of the molecular size distribution was clearly observed for humic acid. The abundance ratio of humic acid in the range from 10,000 to 30,000 daltons increased with the ionic strength from 0.015 M to 0.105 M, in place of the decreasing of that in range from 30,000 to 100,000 daltons. Most of neptunium(V) in the 200 mg/l of the humic acid solution was fractionated into 10,000-30,000 daltons. The abundance ratio of neptunium(V) in the 10,000-30,000 daltons was not clearly dependent on pH and the ionic strength of the solution, in spite of the changing in the molecular size distribution of humic acid by the ionic strength. These results imply that the molecular size distribution of Np(V)-humate does not simply obey by that of the humic acid. Stability constant of Np(V)-humate was measured as a function of the molecular size of the humic acid. The stability constant of Np(V)-humate in the range from 10,000 to 30,000 daltons was highest value comparing with the constants in the molecular size ranges of 100,000 daltons-0.45μm, 30,000-100,000, 5,000-10,000 daltons and under 5,000 daltons. These results may indicate that the Np(V) complexation with humic acid is dominated by the interaction of neptunyl ion with the humic acid in the specific molecular size range. (author)

  2. Effects of anion size and concentration on electrolyte invasion into molecular-sized nanopores

    International Nuclear Information System (INIS)

    Liu Ling; Chen Xi; Kim, Taewan; Han Aijie; Qiao Yu

    2010-01-01

    When an electrolyte solution is pressurized into a molecular-sized nanopore, oppositely charged ions are strongly inclined to aggregate, which effectively reduces the ion solubility to zero. Inside the restrictive confinement, a unique quasi-periodic structure is formed where the paired ion couples are periodically separated by a number of water molecules. As the anion size or ion concentration varies, the geometrical characteristics of the confined ion structure would change considerably, leading to a significant variation in the transport pressure. Both experimental and simulation results indicate that, contradictory to the prediction of conventional theory, infiltration pressure decreases as the anions become larger.

  3. Biomimetic supercontainers for size-selective electrochemical sensing of molecular ions

    Science.gov (United States)

    Netzer, Nathan L.; Must, Indrek; Qiao, Yupu; Zhang, Shi-Li; Wang, Zhenqiang; Zhang, Zhen

    2017-04-01

    New ionophores are essential for advancing the art of selective ion sensing. Metal-organic supercontainers (MOSCs), a new family of biomimetic coordination capsules designed using sulfonylcalix[4]arenes as container precursors, are known for their tunable molecular recognition capabilities towards an array of guests. Herein, we demonstrate the use of MOSCs as a new class of size-selective ionophores dedicated to electrochemical sensing of molecular ions. Specifically, a MOSC molecule with its cavities matching the size of methylene blue (MB+), a versatile organic molecule used for bio-recognition, was incorporated into a polymeric mixed-matrix membrane and used as an ion-selective electrode. This MOSC-incorporated electrode showed a near-Nernstian potentiometric response to MB+ in the nano- to micro-molar range. The exceptional size-selectivity was also evident through contrast studies. To demonstrate the practical utility of our approach, a simulated wastewater experiment was conducted using water from the Fyris River (Sweden). It not only showed a near-Nernstian response to MB+ but also revealed a possible method for potentiometric titration of the redox indicator. Our study thus represents a new paradigm for the rational design of ionophores that can rapidly and precisely monitor molecular ions relevant to environmental, biomedical, and other related areas.

  4. Effects of molecular size and chemical factor on plasma gene transfection

    Science.gov (United States)

    Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu; Jinno, Masafumi

    2016-07-01

    In order to clarify the mechanism of plasma gene transfection, the relationship between transfection efficiency and transferred molecular size was investigated. Molecules with low molecular mass (less than 50 kDa; dye or dye-labeled oligonucleotide) and high molecular mass (more than 1 MDa; plasmid DNA or fragment of plasmid DNA) were transferred to L-929 cells. It was found that the transfection efficiency decreases with increasing in transferred molecular size and also depends on the tertiary structure of transferred molecules. Moreover, it was suggested the transfection mechanism is different between the molecules with low (less than 50 kDa) and high molecular mass (higher than 1 MDa). For the amount of gene transfection after plasma irradiation, which is comparable to that during plasma irradiation, it is shown that H2O2 molecules are the main contributor. The transfection efficiency decreased to 0.40 ± 0.22 upon scavenging the H2O2 generated by plasma irradiation using the catalase. On the other hand, when the H2O2 solution is dropped into the cell suspension without plasma irradiation, the transfection efficiency is almost 0%. In these results, it is also suggested that there is a synergetic effect of H2O2 with electrical factors or other reactive species generated by plasma irradiation.

  5. Size and shape of soil humic acids estimated by viscosity and molecular weight.

    Science.gov (United States)

    Kawahigashi, Masayuki; Sumida, Hiroaki; Yamamoto, Kazuhiko

    2005-04-15

    Ultrafiltration fractions of three soil humic acids were characterized by viscometry and high performance size-exclusion chromatography (HPSEC) in order to estimate shapes and hydrodynamic sizes. Intrinsic viscosities under given solute/solvent/temperature conditions were obtained by extrapolating the concentration dependence of reduced viscosities to zero concentration. Molecular mass (weight average molecular weight (M (w)) and number average molecular weight (M (n))) and hydrodynamic radius (R(H)) were determined by HPSEC using pullulan as calibrant. Values of M (w) and M (n) ranged from 15 to 118 x 10(3) and from 9 to 50 x 10(3) (g mol(-1)), respectively. Polydispersity, as indicated by M (w)/M (n), increased with increasing filter size from 1.5 to 2.4. The hydrodynamic radii (R(H)) ranged between 2.2 and 6.4 nm. For each humic acid, M (w) and [eta] were related. Mark-Houwink coefficients calculated on the basis of the M (w)-[eta] relationships suggested restricted flexible chains for two of the humic acids and a branched structure for the third humic acid. Those structures probably behave as hydrated sphere colloids in a good solvent. Hydrodynamic radii of fractions calculated from [eta] using Einstein's equation, which is applicable to hydrated sphere colloids, ranged from 2.2 to 7.1 nm. These dimensions are fit to the size of nanospaces on and between clay minerals and micropores in soil particle aggregates. On the other hand, the good agreement of R(H) values obtained by applying Einstein's equation with those directly determined by HPSEC suggests that pullulan is a suitable calibrant for estimation of molecular mass and size of humic acids by HPSEC.

  6. Influence of the molecular structure on indentation size effect in polymers

    International Nuclear Information System (INIS)

    Han, Chung-Souk

    2010-01-01

    Size dependent deformation of polymers has been observed by various researchers in various experimental settings including micro beam bending, foams and indentation testing. Here in this article the indentation size effect in polymers is examined which manifests itself in increased hardness at decreasing indentation depths. Based on previously suggested rationale of size dependent deformation and depth dependent hardness model the depth dependent hardness of various polymers are analyzed. It is found that polymers containing aromatic rings in their molecular structure exhibit depth dependent hardness above the micron length scale. For polymers not containing aromatic rings polymers the indentation size effect starts at smaller indentation depths if they are present at all.

  7. The mean-size dependence of the exchange narrowing in molecular J-aggregates

    International Nuclear Information System (INIS)

    Chen Yulu; Zhao Jijun

    2011-01-01

    The effect of segment-size fluctuations on exchange narrowing in a molecular J-aggregate of site-energy disordered distributions is studied using a one-dimensional Frenkel-exciton model. It is found that the segment-size disorder leads to the width of the absorption spectra deviating from the scaling law, σ 4/3 of the site-energy disordered standard deviation σ, being suitable for the system only with the site-energy disorder. In larger σ, the segment-size disorder has little influence on the linear absorption spectra. With increasing segment mean-length, the absorption line width monotonically increases, and then approaches a saturated value. By comparing a system of larger mean-length segment with a smaller one, both with the same segment-size disorder, it is found that the absorption line width of the former is broadened, and the exchange narrowing effect is reduced. The present result shows that the correlation effect can be partially maintained for the system with larger mean-length segment. -- Research Highlights: → Segment fluctuations affect the exchange narrowing of molecular J-aggregates. → The width of the absorption spectra is found to deviate from the scaling law. → Increase in segment size causes increase in the width and then saturates. → Exchange narrowing is reduced for larger mean-size segment. → Correlation can be kept partly in the larger size segment.

  8. Molecular sizes of lichen ice nucleation sites determined by gamma radiation inactivation analysis

    International Nuclear Information System (INIS)

    Kieft, T.L.; Ruscetti, T.

    1992-01-01

    It has previously been shown that some species of lichen fungi contain proteinaceous ice nuclei which are active at temperatures as warm as −2 °C. This experiment was undertaken to determine the molecular sizes of ice nuclei in the lichen fungus Rhizoplaca chrysoleuca and to compare them to bacterial ice nuclei from Pseudomonas syringae. Gamma radiation inactivation analysis was used to determine molecular weights. Radiation inactivation analysis is based on target theory, which states that the likelihood of a molecule being inactivated by gamma rays increases as its size increases. Three different sources of ice nuclei from the lichen R. chrysoleuca were tested: field-collected lichens, extract of lichen fungus, and a pure culture of the fungus R. chrysoleuca. P. syringae strain Cit7 was used as a source of bacterial ice nuclei. Samples were lyophilized, irradiated with gamma doses ranging from 0 to 10.4 Mrads, and then tested for ice nucleation activity using a droplet-freezing assay. Data for all four types of samples were in rough agreement; sizes of nucleation sites increased logarithmically with increasing temperatures of ice nucleation activity. Molecular weights of nucleation sites active between −3 and −4 °C from the bacteria and from the field-collected lichens were approximately 1.0 × 10 6 Da. Nuclei from the lichen fungus and in the lichen extract appeared to be slightly smaller but followed the same log-normal pattern with temperature of ice nucleation activity. The data for both the bacterial and lichen ice nuclei are in agreement with ice nucleation theory which states that the size of ice nucleation sites increases logarithmically as the temperature of nucleation increases linearly. This suggests that although some differences exist between bacterial and lichen ice nucleation sites, their molecular sizes are quite similar

  9. Effect of linear alcohol molecular size on the self-assembly of fullerene whiskers

    International Nuclear Information System (INIS)

    Amer, Maher S.; Todd, T. Kyle; Busbee, John D.

    2011-01-01

    Highlights: → The longer the alcohol molecule, the shorter the length of the assembled whisker. → Interaction between alcohol and fullerene solvent is the key factor. → The stronger the alcohol/solvent interaction, the longer the whisker. - Abstract: The recent development of self-assembled fullerene whiskers and wires has created an enormous potential and resolved a serious challenge for utilizing such unique class of carbon material in advanced nano-scale, molecular-based electronic, optical, and thermal devices. In this paper we investigate, the self-assembly of C 60 molecules into one-dimensional whiskers using a series of linear alcohols H(CH 2 ) n OH, with n changing from 1 (methanol) to 3 (isopropyl alcohol), to elucidate the effect of alcohol molecular size on the size distribution of the self-assemble fullerene whiskers. Our results show that the length of the produced fullerene whiskers is affected by the molecular size of the alcohol used in the process. The crucial role played by solvent/alcohol interaction in the assembly process is discussed. In addition, Raman spectroscopy measurements support the notion that the self-assembled whiskers are primarily held by depletion forces and no evidence of fullerene polymerization was observed.

  10. Molecular-Sized DNA or RNA Sequencing Machine | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute's Gene Regulation and Chromosome Biology Laboratory is seeking statements of capability or interest from parties interested in collaborative research to co-develop a molecular-sized DNA or RNA sequencing machine.

  11. The one-sample PARAFAC approach reveals molecular size distributions of fluorescent components in dissolved organic matter

    DEFF Research Database (Denmark)

    Wünsch, Urban; Murphy, Kathleen R.; Stedmon, Colin

    2017-01-01

    Molecular size plays an important role in dissolved organic matter (DOM) biogeochemistry, but its relationship with the fluorescent fraction of DOM (FDOM) remains poorly resolved. Here high-performance size exclusion chromatography (HPSEC) was coupled to fluorescence emission-excitation (EEM...... but not their spectral properties. Thus, in contrast to absorption measurements, bulk fluorescence is unlikely to reliably indicate the average molecular size of DOM. The one-sample approach enables robust and independent cross-site comparisons without large-scale sampling efforts and introduces new analytical...... opportunities for elucidating the origins and biogeochemical properties of FDOM...

  12. Experiments for the Undergraduate Laboratory that Illustrate the Size-Exclusion Properties of Zeolite Molecular Sieves

    Science.gov (United States)

    Cooke, Jason; Henderson, Eric J.

    2009-01-01

    Experiments are presented that demonstrate the size-exclusion properties of zeolites and reveal the reason for naming zeolites "molecular sieves". If an IR spectrometer is available, the adsorption or exclusion of alcohols of varying sizes from dichloromethane or chloroform solutions can be readily demonstrated by monitoring changes in the…

  13. Tunable separations based on a molecular size effect for biomolecules by poly(ethylene glycol) gel-based capillary electrophoresis.

    Science.gov (United States)

    Kubo, Takuya; Nishimura, Naoki; Furuta, Hayato; Kubota, Kei; Naito, Toyohiro; Otsuka, Koji

    2017-11-10

    We report novel capillary gel electrophoresis (CGE) with poly(ethylene glycol) (PEG)-based hydrogels for the effective separations of biomolecules containing sugars and DNAs based on a molecular size effect. The gel capillaries were prepared in a fused silica capillary modified with 3-(trimethoxysilyl)propylmethacrylate using a variety of the PEG-based hydrogels. After the fundamental evaluations in CGE regarding the separation based on the molecular size effect depending on the crosslinking density, the optimized capillary provided the efficient separation of glucose ladder (G1 to G20). In addition, another capillary showed the successful separation of DNA ladder in the range of 10-1100 base pair, which is superior to an authentic acrylamide-based gel capillary. For both glucose and DNA ladders, the separation ranges against the molecular size were simply controllable by alteration of the concentration and/or units of ethylene oxide in the PEG-based crosslinker. Finally, we demonstrated the separations of real samples, which included sugars carved out from monoclonal antibodies, mAbs, and then the efficient separations based on the molecular size effect were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Rates of molecular evolution in tree ferns are associated with body size, environmental temperature, and biological productivity.

    Science.gov (United States)

    Barrera-Redondo, Josué; Ramírez-Barahona, Santiago; Eguiarte, Luis E

    2018-05-01

    Variation in rates of molecular evolution (heterotachy) is a common phenomenon among plants. Although multiple theoretical models have been proposed, fundamental questions remain regarding the combined effects of ecological and morphological traits on rate heterogeneity. Here, we used tree ferns to explore the correlation between rates of molecular evolution in chloroplast DNA sequences and several morphological and environmental factors within a Bayesian framework. We revealed direct and indirect effects of body size, biological productivity, and temperature on substitution rates, where smaller tree ferns living in warmer and less productive environments tend to have faster rates of molecular evolution. In addition, we found that variation in the ratio of nonsynonymous to synonymous substitution rates (dN/dS) in the chloroplast rbcL gene was significantly correlated with ecological and morphological variables. Heterotachy in tree ferns may be influenced by effective population size associated with variation in body size and productivity. Macroevolutionary hypotheses should go beyond explaining heterotachy in terms of mutation rates and instead, should integrate population-level factors to better understand the processes affecting the tempo of evolution at the molecular level. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  15. Association of radionuclides with different molecular size fractions in soil solution: implications for plant uptake

    International Nuclear Information System (INIS)

    Nisbet, A.F.; Shaw, S.; Salbu, B.

    1993-01-01

    The feasibility of using hollow fibre ultrafiltration to determine the molecular size distribution of radionuclides in soil solution was investigated. The physical and chemical composition of soil plays a vital role in determining radionuclide uptake by plant roots. Soil solution samples were extracted from loam, peat and sand soils that had been artificially contaminated with 137 Cs, 90 Sr, 239 Pu and 241 Am six years previously as part of a five-year lysimeter study on radionuclide uptake to crops. Ultrafiltration of soil solution was performed using hollow fibre cartridges with a nominal molecular weight cut off of 3 and 10 kD. The association of 137 Cs, 90 Sr, 239 Pu and 241 Am with different molecular size fractions of the soil solution is discussed in terms of radionuclide bioavailability to cabbage grown in the same three soils. 137 Cs and 90 Sr were present in low molecular weight forms and as such were mobile in soil and potentially available for uptake by the cabbage. In contrast, a large proportion (61-87%) of the 239 Pu and 241 Am were associated with colloidal and high molecular weight material and therefore less available for uptake by plant roots. The contribution from low molecular weight species of 239 Pu and 241 Am to the total activity in soil solution decreased in the order loam ≥ peat ≥ sand. Association of radionuclides with low molecular weight species of less than 3 kD did not, however, automatically imply availability to plants. (author)

  16. Molecular size evolution of oligomers in organic aerosols collected in urban atmospheres and generated in a smog chamber.

    Science.gov (United States)

    Kalberer, Markus; Sax, Mirjam; Samburova, Vera

    2006-10-01

    Only a minor fraction of the total organic aerosol mass can be resolved on a molecular level. High molecular weight compounds in organic aerosols have recently gained much attention because this class of compound potentially explains a major fraction of the unexplained organic aerosol mass. These compounds have been identified with different mass spectrometric methods, and compounds with molecular masses up to 1000 Da are found in secondary organic aerosols (SOA) generated from aromatic and terpene precursors in smog chamber experiments. Here, we apply matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to SOA particles from two biogenic precursors, alpha-pinene and isoprene. Similar oligomer patterns are found in these two SOA systems, but also in SOA from trimethylbenzene, an anthropogenic SOA precursor. However, different maxima molecular sizes were measured for these three SOA systems. While oligomers in alpha-pinene and isoprene have sizes mostly below 600-700 Da, they grow up to about 1000 Da in trimethylbenzene-SOA. The final molecular size of the oligomers is reached early during the particle aging process, whereas other particle properties related to aging, such as the overall acid concentration or the oligomer concentration, increase continuously over a much longer time scale. This kinetic behavior of the oligomer molecular size growth can be explained by a chain growth kinetic regime. Similar oligomer mass patterns were measured in aqueous extracts of ambient aerosol samples (measured with the same technique). Distinct differences between summer and winter were observed. In summer a few single mass peaks were measured with much higher intensity than in winter, pointing to a possible difference in the formation processes of these compounds in winter and summer.

  17. Comparable investigation of the molecular size distribution and the amount of humic substances isolated from ONKALO, Olkiluoto, 2011

    International Nuclear Information System (INIS)

    Luste, S.; Maekelae, J.; Manninen, P.

    2012-06-01

    The humic substances (HS) at groundwater from ONKALO, Olkiluoto were studied in order to determine the apparent molecular size distribution and the amount of humic substances. Humic substances were isolated from the water sample using DAX-8 resin and eluted with 0.1 M NaOH. The molecular size distribution was defined using high performance size exclusion chromatography (HPSEC) and ultraviolet (UV) and refractive index (RI) detector. In the SEC calibration (polystyrene sulfonate) sodium salts (PSS) were employed. Different eluents (NaNO 3 , Na-acetate and asetonitrile) with phosphate buffer and distinct ionic strengths were studied in order to optimize the determination method. The amount of humic substances was determined using total organic carbon (TOC) measurements. The results were compared with the previous ones in order to find out the variation of different methods (HPSEC) and to follow up the HS quantity (TOC). The method developed during the study is considered to be suitable for the HS molecular size distribution follow up, although the method development is suggested to be continued. (orig.)

  18. Comparable investigation of the molecular size distribution and the amount of humic substances isolated from ONKALO, Olkiluoto, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Luste, S.; Maekelae, J.; Manninen, P. [Ramboll Finland Oy, Espoo (Finland)

    2012-06-15

    The humic substances (HS) at groundwater from ONKALO, Olkiluoto were studied in order to determine the apparent molecular size distribution and the amount of humic substances. Humic substances were isolated from the water sample using DAX-8 resin and eluted with 0.1 M NaOH. The molecular size distribution was defined using high performance size exclusion chromatography (HPSEC) and ultraviolet (UV) and refractive index (RI) detector. In the SEC calibration (polystyrene sulfonate) sodium salts (PSS) were employed. Different eluents (NaNO{sub 3}, Na-acetate and asetonitrile) with phosphate buffer and distinct ionic strengths were studied in order to optimize the determination method. The amount of humic substances was determined using total organic carbon (TOC) measurements. The results were compared with the previous ones in order to find out the variation of different methods (HPSEC) and to follow up the HS quantity (TOC). The method developed during the study is considered to be suitable for the HS molecular size distribution follow up, although the method development is suggested to be continued. (orig.)

  19. Size-dependent single electron transfer and semi-metal-to-insulator transitions in molecular metal oxide electronics

    Science.gov (United States)

    Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M.; Skoulatakis, George; Kennou, Stella; Glezos, Nikos

    2018-07-01

    All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV–vis spectroscopy and AFM measurements show that this functionality stems from the films’ ability to structurally tune their HOMO–LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures’ plausibility for on-chip molecular electronics operative at room temperature.

  20. Size-dependent single electron transfer and semi-metal-to-insulator transitions in molecular metal oxide electronics.

    Science.gov (United States)

    Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M; Skoulatakis, George; Kennou, Stella; Glezos, Nikos

    2018-07-06

    All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV-vis spectroscopy and AFM measurements show that this functionality stems from the films' ability to structurally tune their HOMO-LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO 2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures' plausibility for on-chip molecular electronics operative at room temperature.

  1. Evaluation of Kirkwood-Buff integrals via finite size scaling: a large scale molecular dynamics study

    Science.gov (United States)

    Dednam, W.; Botha, A. E.

    2015-01-01

    Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution

  2. Evaluation of Kirkwood-Buff integrals via finite size scaling: a large scale molecular dynamics study

    International Nuclear Information System (INIS)

    Dednam, W; Botha, A E

    2015-01-01

    Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution

  3. Functional and physical molecular size of the chicken hepatic lectin determined by radiation inactivation and sedimentation equilibrium analysis

    International Nuclear Information System (INIS)

    Steer, C.J.; Osborne, J.C. Jr.; Kempner, E.S.

    1990-01-01

    Radiation inactivation and sedimentation equilibrium analysis were used to determine the functional and physical size of the chicken hepatic membrane receptor that binds N-acetylglucosamine-terminated glycoproteins. Purified plasma membranes from chicken liver were irradiated with high energy electrons and assayed for 125I-agalactoorosomucoid binding. Increasing the dose of ionizing radiation resulted in a monoexponential decay in binding activity due to a progressive loss of binding sites. The molecular mass of the chicken lectin, determined in situ by target analysis, was 69,000 +/- 9,000 Da. When the same irradiated membranes were solubilized in Brij 58 and assayed, the binding protein exhibited a target size of 62,000 +/- 4,000 Da; in Triton X-100, the functional size of the receptor was 85,000 +/- 10,000 Da. Sedimentation equilibrium measurements of the purified binding protein yielded a lower limit molecular weight of 79,000 +/- 7,000. However, the solubilized lectin was detected as a heterogeneous population of oligomers with molecular weights as high as 450,000. Addition of calcium or calcium plus N-acetylglucosamine decreased the higher molecular weight species, but the lower limit molecular weights remained invariant. Similar results were determined when the chicken lectin was solubilized in Brij 58, C12E9, or 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonic acid (CHAPS). Results from the present study suggest that in the plasma membrane, the functional species of the chicken hepatic lectin exists as a trimer. However, in detergent solution, the purified receptor forms a heterogeneous population of irreversible oligomers that exhibit binding activity proportional to size

  4. Quantitative structure-activity relationship (QSAR) models for polycyclic aromatic hydrocarbons (PAHs) dissipation in rhizosphere based on molecular structure and effect size

    International Nuclear Information System (INIS)

    Ma Bin; Chen Huaihai; Xu Minmin; Hayat, Tahir; He Yan; Xu Jianming

    2010-01-01

    Rhizoremediation is a significant form of bioremediation for polycyclic aromatic hydrocarbons (PAHs). This study examined the role of molecular structure in determining the rhizosphere effect on PAHs dissipation. Effect size in meta-analysis was employed as activity dataset for building quantitative structure-activity relationship (QSAR) models and accumulative effect sizes of 16 PAHs were used for validation of these models. Based on the genetic algorithm combined with partial least square regression, models for comprehensive dataset, Poaceae dataset, and Fabaceae dataset were built. The results showed that information indices, calculated as information content of molecules based on the calculation of equivalence classes from the molecular graph, were the most important molecular structural indices for QSAR models of rhizosphere effect on PAHs dissipation. The QSAR model, based on the molecular structure indices and effect size, has potential to be used in studying and predicting the rhizosphere effect of PAHs dissipation. - Effect size based on meta-analysis was used for building PAHs dissipation quantitative structure-activity relationship (QSAR) models.

  5. Quantitative structure-activity relationship (QSAR) models for polycyclic aromatic hydrocarbons (PAHs) dissipation in rhizosphere based on molecular structure and effect size

    Energy Technology Data Exchange (ETDEWEB)

    Ma Bin; Chen Huaihai; Xu Minmin; Hayat, Tahir [Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310029 (China); He Yan, E-mail: yhe2006@zju.edu.c [Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310029 (China); Xu Jianming, E-mail: jmxu@zju.edu.c [Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310029 (China)

    2010-08-15

    Rhizoremediation is a significant form of bioremediation for polycyclic aromatic hydrocarbons (PAHs). This study examined the role of molecular structure in determining the rhizosphere effect on PAHs dissipation. Effect size in meta-analysis was employed as activity dataset for building quantitative structure-activity relationship (QSAR) models and accumulative effect sizes of 16 PAHs were used for validation of these models. Based on the genetic algorithm combined with partial least square regression, models for comprehensive dataset, Poaceae dataset, and Fabaceae dataset were built. The results showed that information indices, calculated as information content of molecules based on the calculation of equivalence classes from the molecular graph, were the most important molecular structural indices for QSAR models of rhizosphere effect on PAHs dissipation. The QSAR model, based on the molecular structure indices and effect size, has potential to be used in studying and predicting the rhizosphere effect of PAHs dissipation. - Effect size based on meta-analysis was used for building PAHs dissipation quantitative structure-activity relationship (QSAR) models.

  6. Molecular diversity patterns among various phytoplankton size-fractions in West Greenland in late summer

    Science.gov (United States)

    Elferink, Stephanie; Neuhaus, Stefan; Wohlrab, Sylke; Toebe, Kerstin; Voß, Daniela; Gottschling, Marc; Lundholm, Nina; Krock, Bernd; Koch, Boris P.; Zielinski, Oliver; Cembella, Allan; John, Uwe

    2017-03-01

    Arctic regions have experienced pronounced biological and biophysical transformations as a result of global change processes over the last several decades. Current hypotheses propose an elevated impact of those environmental changes on the biodiversity, community composition and metabolic processes of species. The effects on ecosystem function and services, particularly when invasive or toxigenic harmful species become dominant, can be expressed over a wide range of temporal and spatial scales in plankton communities. Our study focused on the comparison of molecular biodiversity of three size-fractions (micro-, nano-, picoplankton) in the coastal pelagic zone of West Greenland and their association with environmental parameters. Molecular diversity was assessed via parallel amplicon sequencing the 28S rRNA hypervariable D1/D2 region. We showed that biodiversity distribution within the area of Uummannaq Fjord, Vaigat Strait and Disko Bay differed markedly within and among size-fractions. In general, we observed a higher diversity within the picoplankton size fraction compared to the nano- and microplankton. In multidimensional scaling analysis, community composition of all three size fractions correlated with cell size, silicate and phosphate, chlorophyll a (chl a) and dinophysistoxin (DTX). Individually, each size fraction community composition also correlated with other different environmental parameters, i.e. temperature and nitrate. We observed a more homogeneous community of the picoplankton across all stations compared to the larger size classes, despite different prevailing environmental conditions of the sampling areas. This suggests that habitat niche occupation for larger-celled species may lead to higher functional trait plasticity expressed as an enhanced range of phenotypes, whereas smaller organisms may compensate for lower potential plasticity with higher diversity. The presence of recently identified toxigenic harmful algal bloom (HAB) species (such

  7. Influence of the apparent molecular size of humic substances on the efficiency of coagulation using Fenton's reagent

    Directory of Open Access Journals (Sweden)

    MARCELO DE JULIO

    2013-06-01

    Full Text Available This work used Fenton's reagent as a coagulating agent in the treatment of water samples with high true colour caused by humic substances (HS extracted from peat. In addition, the effects of the apparent molecular size of HS on coagulation, flocculation and flotation were studied. To that end, four distinct water samples having the same true colour were prepared using HS with different molecular sizes, which were obtained by ultrafiltration fractioning. Through optimisation of coagulant dosage and coagulation pH, as well as posterior construction of coagulation diagrams for each water sample, it was verified that the sample prepared with the smallest apparent molecular size of HS was the most difficult to treat, requiring higher coagulant (Fenton's reagent dosages than samples prepared with larger HS molecular sizes. Furthermore, filtration experiments after dissolved air flotation (DAF were carried out in an attempt to simulate conventional treatment. The most representative results in filtered water were: apparent colour ≤ 3 HU; turbidity Este trabalho empregou o reagente de Fenton como agente coagulante no tratamento de águas contendo cor elevada causada pela introdução de substâncias húmicas extraídas de turfa. Além disto, foi estudado o efeito do tamanho molecular aparente das substâncias húmicas na eficiência da coagulação, floculação e flotação de águas; para isto foram preparadas quatro águas distintas apresentado a mesma cor verdadeira, mas com substâncias húmicas de diferentes tamanhos moleculares, obtidas por fracionamento por ultrafiltração. Por meio da otimização da dosagem de coagulante e respectivo pH de coagulação e posterior construção dos diagramas de coagulação para cada água de estudo, verificou-se que a água preparada com as substâncias húmicas de menor tamanho molecular aparente apresentou maior grau de dificuldade para tratamento, requerendo dosagens de coagulante (reagente de Fenton bem

  8. Nanometer size wear debris generated from ultra high molecular weight polyethylene in vivo

    Czech Academy of Sciences Publication Activity Database

    Lapčíková, Monika; Šlouf, Miroslav; Dybal, Jiří; Zolotarevova, E.; Entlicher, G.; Pokorný, D.; Gallo, J.; Sosna, A.

    2009-01-01

    Roč. 266, 1-2 (2009), s. 349-355 ISSN 0043-1648 R&D Projects: GA MŠk 2B06096 Institutional research plan: CEZ:AV0Z40500505 Keywords : ultra high molecular weight polyethylene * nanometer size wear debris * morphology of wear particles Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.771, year: 2009

  9. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Science.gov (United States)

    Tu, Peijun; Johnston, Murray V.

    2017-06-01

    Formation of secondary organic aerosol (SOA) is initiated by the oxidation of volatile organic compounds (VOCs) in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process) to be distinguished from those produced by particle phase reaction (a volume-limited process). In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O / C) ratio and carbon oxidation state (OSc) were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases). Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased), the average O / C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes important.

  10. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Directory of Open Access Journals (Sweden)

    P. Tu

    2017-06-01

    Full Text Available Formation of secondary organic aerosol (SOA is initiated by the oxidation of volatile organic compounds (VOCs in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process to be distinguished from those produced by particle phase reaction (a volume-limited process. In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O ∕ C ratio and carbon oxidation state (OSc were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases. Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased, the average O ∕ C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes

  11. Size and molecular weight determination of polysaccharides by means of nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA).

    Science.gov (United States)

    Weiss, Victor U; Golesne, Monika; Friedbacher, Gernot; Alban, Susanne; Szymanski, Wladyslaw W; Marchetti-Deschmann, Martina; Allmaier, Günter

    2018-02-21

    Size, size distribution and molecular weight (MW) determination of nanoparticles and that are for example large polymers, are of great interest and pose an analytical challenge. In this context, nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA) is a valuable tool with growing impact. Separation of single-charged analytes according to their electrophoretic mobility diameter (EMD) starting from single-digit EMDs up to several hundred nm diameters is possible. In case of spherical analytes, the EMD corresponds to the dry nanoparticle size. Additionally, the instrument is capable of number-based, single-particle detection following the recommendation of the European Commission for nanoparticle characterization (2011/696/EU). In case an EMD/MW correlation for a particular compound class (based on availability of well-defined standards) exists, a nanoparticle's MW can be determined from its EMD. In the present study, we focused on nES GEMMA of linear and branched, water-soluble polysaccharides forming nanoparticles and were able to obtain spectra for both analyte classes regarding single-charged species. Based on EMDs for corresponding analytes, an excellent EMD/MW correlation could be obtained in case of the branched natural polymer (dextran). This enables the determination of dextran MWs from nES GEMMA spectra despite high analyte polydispersity and in a size/MW range, where classical mass spectrometry is limited. EMD/MW correlations based on linear (pullulans, oat-ß-glucans) polymers were significantly different, possibly indicating challenges in the exact MW determination of these compounds by, for example, chromatographic and light scattering means. Despite these observations, nES GEMMA of linear, monosaccharide-based polymers enabled the determination of size and size-distribution of such dry bionanoparticles. © 2018 The Authors. Electrophoresis published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. A Splash to Nano-Sized Inorganic Energy-Materials by the Low-Temperature Molecular Precursor Approach.

    Science.gov (United States)

    Driess, Matthias; Panda, Chakadola; Menezes, Prashanth Wilfried

    2018-05-07

    The low-temperature synthesis of inorganic materials and their interfaces at the atomic and molecular level provides numerous opportunities for the design and improvement of inorganic materials in heterogeneous catalysis for sustainable chemical energy conversion or other energy-saving areas. Using suitable molecular precursors for functional inorganic nanomaterial synthesis allows for facile control over uniform particle size distribution, stoichiometry, and leads to desired chemical and physical properties. This minireview outlines some advantages of the molecular precursor approach in light of selected recent developments of molecule-to-nanomaterials synthesis for renewable energy applications, relevant for the oxygen evolution reaction (OER), hydrogen evolution reaction (HER) and overall water-splitting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Lactone size dependent reactivity in Candida antarctica lipase B: A molecular dynamics and docking study

    NARCIS (Netherlands)

    Veld, M.A.J.; Fransson, L.; Palmans, A.R.A.; Meijer, E.W.; Hult, K.

    2009-01-01

    Size matters: Lactones have extensively been studied as monomers in enzymatic polymerization reactions. Large lactones showed an unexpectedly high reactivity in these reactions. A combination of docking and molecular dynamics studies have been used to explain this high reactivity in terms of

  14. Size and number of DNA molecules from Chinese hamster ovary cells determined by molecular autoradiography

    International Nuclear Information System (INIS)

    Todd, M.B.

    1980-06-01

    A new method for visualization of separable subunits of DNA is described. Autoradiography of tritium-labeled DNA from one or a few nuclei, lysed with detergent, moderate salt, and proteases, and gently deposited on a filter, allows determination of subunit molecular weight, size distribution, number per nucleus, and organization. The shape of the size distribution of CHO subunit images is similar to that of CHO mitotic chromosomes, and the numbers of subunits per nucleus supports a model of eight subunits per chromosome

  15. Equilibrium partitioning of macromolecules in confining geometries: Improved universality with a new molecular size parameter

    DEFF Research Database (Denmark)

    Wang, Yanwei; Peters, Günther H.J.; Hansen, Flemming Yssing

    2008-01-01

    structures (CABS), allows the computation of equilibrium partition coefficients as a function of confinement size solely based on a single sampling of the configuration space of a macromolecule in bulk. Superior in computational speed to previous computational methods, CABS is capable of handling slits...... parameter for characterization of spatial confinement effects on macromolecules. Results for the equilibrium partition coefficient in the weak confinement regime depend only on the ratio ofR-s to the confinement size regardless of molecular details....

  16. Comparable investigation of the molecular size distribution and the amount of humic substances isolated from ONKALO, Olkiluoto, 2010

    International Nuclear Information System (INIS)

    Vilhunen, S.; Manninen, P.

    2010-11-01

    The humic substances at groundwater from Onkalo, Olkiluoto were studied in order to determine the molecular size distribution and the amount of humic substances. Humic substances were isolated from the water sample using DAX-8 resin and eluted with 0.1 M NaOH. The molecular size distribution was defined using high performance size exclusion chromatography (HPSEC) and ultraviolet (UV) or reflactive index (RI) detector. Two calibration standard sets (poly(styrene sulfonate) sodium salt (PSS) or polyethylene glycol (PEG) standards) with distinct structures as well as two eluents (0.05 M NaNO3 or 0.01 M Na-acetate) were studied and the results were compared with the previous ones. The calibration standards and eluents were found to have major effect on the measured parameters. The amount of humic substances was determined using total organic carbon (TOC) measurements. (orig.)

  17. Separation of both fibrous and globular proteins on the basis of molecular weight using high-performance size exclusion chromatography.

    Science.gov (United States)

    Barden, J A

    1983-11-01

    A high-performance size exclusion liquid chromatographic system has been used to separate proteins with different shapes solely on the basis of their molecular weights. After the effects of ionic and hydrophobic interactions with the stationary phase have been overcome, protein elution is normally governed by their effective size in solution. Conditions are described under which proteins, with isoelectric points within the normal operating pH range of the columns, are eluted independent of their Stokes' radii. Even fibrous proteins with axial ratios of 50 elute according to their known molecular weights over the range 2000-2,000,000.

  18. On the Da Vinci size effect in tensile strengths of nanowires: A molecular dynamics study

    Science.gov (United States)

    Zhao, Ziyu; Liu, Jinxing; Soh, Ai Kah

    2018-01-01

    In recent decades, size effects caused by grain size, strain gradient, typical defects etc., have been widely investigated. Nevertheless, the dependence of tensile strength on the specimen length, addressed by Da Vinci around 500 hundred years ago, has received rather limited attention, even though it is one unavoidable question to answer if people attempt to bring materials' amazing nano-scale strengths up to macro-level. Therefore, we make efforts to study tensile behaviors of copper nanowires with a common cross-section and various lengths by employing the molecular dynamics simulations. Surprisingly, a strong size effect of Da Vinci type indeed arises. We have shown the influences of lattice orientation, temperature and prescribed notch on such a Da Vinci size effect. Two different theoretical explanations are briefly proposed for a qualitative understanding. Finally, a simple scaling rule is summarized to cover the tendencies observed.

  19. THE MASS-SIZE RELATION FROM CLOUDS TO CORES. I. A NEW PROBE OF STRUCTURE IN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Kauffmann, J.; Shetty, R.; Goodman, A. A.; Pillai, T.; Myers, P. C.

    2010-01-01

    We use a new contour-based map analysis technique to measure the mass and size of molecular cloud fragments continuously over a wide range of spatial scales (0.05 ≤ r/pc ≤ 10), i.e., from the scale of dense cores to those of entire clouds. The present paper presents the method via a detailed exploration of the Perseus molecular cloud. Dust extinction and emission data are combined to yield reliable scale-dependent measurements of mass. This scale-independent analysis approach is useful for several reasons. First, it provides a more comprehensive characterization of a map (i.e., not biased toward a particular spatial scale). Such a lack of bias is extremely useful for the joint analysis of many data sets taken with different spatial resolution. This includes comparisons between different cloud complexes. Second, the multi-scale mass-size data constitute a unique resource to derive slopes of mass-size laws (via power-law fits). Such slopes provide singular constraints on large-scale density gradients in clouds.

  20. On the Da Vinci size effect in tensile strengths of nanowires: A molecular dynamics study

    Directory of Open Access Journals (Sweden)

    Ziyu Zhao

    2018-01-01

    Full Text Available In recent decades, size effects caused by grain size, strain gradient, typical defects etc., have been widely investigated. Nevertheless, the dependence of tensile strength on the specimen length, addressed by Da Vinci around 500 hundred years ago, has received rather limited attention, even though it is one unavoidable question to answer if people attempt to bring materials’ amazing nano-scale strengths up to macro-level. Therefore, we make efforts to study tensile behaviors of copper nanowires with a common cross-section and various lengths by employing the molecular dynamics simulations. Surprisingly, a strong size effect of Da Vinci type indeed arises. We have shown the influences of lattice orientation, temperature and prescribed notch on such a Da Vinci size effect. Two different theoretical explanations are briefly proposed for a qualitative understanding. Finally, a simple scaling rule is summarized to cover the tendencies observed.

  1. Absorption spectroscopy of colored dissolved organic carbon in Georgia (USA rivers: the impact of molecular size distribution

    Directory of Open Access Journals (Sweden)

    Michelle McELVAINE

    2003-02-01

    Full Text Available Dissolved organic carbon (DOC was collected in six rivers that transect the coastal plain of Georgia in July 1999 and February 2000. DOC concentrations ranged from 4.9 to 40.7 g m-3 and from 7.1 to 40.5 g m-3, respectively. The absorption coefficient at 440 nm was highly correlated with DOC concentration, suggesting that the optical parameter may be utilized for rapid estimation of DOC in these waters. The isolated DOC was separated into fractions of operationally defined molecular size, using an ultrafiltration technique that yielded three fractions: 50 ("large" kilodalton. The smallest fraction was the most abundant (>50% in 4 rivers in July and in all rivers in February, and considerably more abundant than in previous years. The wavelength-dependent absorption of the total DOC and its fractions showed approximately uniform shape of a curve declining exponentially with the increase of wavelength. The average slope of logarithmically transformed curves was 0.0151 and 0.0159 nm-1, for the material collected in July and February, respectively and showed a dependence on DOC molecular size. In unfractionated DOC samples, the mass-specific light absorption determined at 440 nm was on average 0.33 m2 g-1 in July, and 0.26 m2 g-1 in February. The mass-specific absorption coefficient in all fractions ranged between 0.085 and 1.347 m2 g-1 in July and between 0.085 and 1.877 m2 g-1 in February, and was positively correlated with the molecular size of the measured samples. The results of the reported study clearly suggest that the specific absorption coefficient of the yellow substance is an outcome of the relative contribution of its different size fractions.

  2. Influence of template/functional monomer/cross‐linking monomer ratio on particle size and binding properties of molecularly imprinted nanoparticles

    DEFF Research Database (Denmark)

    Yoshimatsu, Keiichi; Yamazaki, Tomohiko; Chronakis, Ioannis S.

    2012-01-01

    A series of molecularly imprinted polymer nanoparticles have been synthesized employing various template/functional monomer/crosslinking monomer ratio and characterized in detail to elucidate the correlation between the synthetic conditions used and the properties (e.g., particle size and templat...... tuning of particle size and binding properties are required to fit practical applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012...

  3. The nearly neutral and selection theories of molecular evolution under the fisher geometrical framework: substitution rate, population size, and complexity.

    Science.gov (United States)

    Razeto-Barry, Pablo; Díaz, Javier; Vásquez, Rodrigo A

    2012-06-01

    The general theories of molecular evolution depend on relatively arbitrary assumptions about the relative distribution and rate of advantageous, deleterious, neutral, and nearly neutral mutations. The Fisher geometrical model (FGM) has been used to make distributions of mutations biologically interpretable. We explored an FGM-based molecular model to represent molecular evolutionary processes typically studied by nearly neutral and selection models, but in which distributions and relative rates of mutations with different selection coefficients are a consequence of biologically interpretable parameters, such as the average size of the phenotypic effect of mutations and the number of traits (complexity) of organisms. A variant of the FGM-based model that we called the static regime (SR) represents evolution as a nearly neutral process in which substitution rates are determined by a dynamic substitution process in which the population's phenotype remains around a suboptimum equilibrium fitness produced by a balance between slightly deleterious and slightly advantageous compensatory substitutions. As in previous nearly neutral models, the SR predicts a negative relationship between molecular evolutionary rate and population size; however, SR does not have the unrealistic properties of previous nearly neutral models such as the narrow window of selection strengths in which they work. In addition, the SR suggests that compensatory mutations cannot explain the high rate of fixations driven by positive selection currently found in DNA sequences, contrary to what has been previously suggested. We also developed a generalization of SR in which the optimum phenotype can change stochastically due to environmental or physiological shifts, which we called the variable regime (VR). VR models evolution as an interplay between adaptive processes and nearly neutral steady-state processes. When strong environmental fluctuations are incorporated, the process becomes a selection model

  4. The prognostic role of tumor size in early breast cancer in the era of molecular biology.

    Directory of Open Access Journals (Sweden)

    Anaid Anna Kasangian

    Full Text Available The prognosis of early breast cancer (EBC depends on patient and tumor characteristics. The association between tumor size, the largest diameter in TNM staging, and prognosis is well recognized. According to TNM, tumors classified as T2, could have very different volumes; e.g. a tumor of 2.1 cm has a volume of 4500 mm3, while a tumor of 4.9 cm has a volume of 60.000 mm3 even belonging to the same class. The aim of the study is to establish if the prognostic role of tumor size, expressed as diameter and volume, has been overshadowed by other factors.The primary objective is to evaluate the association between tumor dimensions and overall survival (OS / disease free survival (DFS, in our institution from January 1st 2005 to September 30th 2013 in a surgical T1-T2 population. Volume was evaluated with the measurement of three half-diameters of the tumor (a, b and c, and calculated using the following formula: 4/3π x a x b x c.341 patients with T1-T2 EBC were included. 86.5% were treated with conservative surgery. 85.1% had a Luminal subtype, 9.1% were Triple negative and 7.4% were HER2 positive. Median volume was 942 mm3 (range 0.52-31.651.2. 44 patients (12.9% relapsed and 23 patients died. With a median follow-up of 6.5 years, the univariate analysis for DFS showed an association between age, tumor size, volume, histological grading and molecular subtype. The multivariate analysis confirmed the statistically significant association only for molecular subtype (p 0.005, with a worse prognosis for Triple negative and HER2 positive subtypes compared with Luminal (HR: 2.65; 95%CI: 1.34-5.22. Likewise for OS, an association was shown by the multivariate analysis solely for molecular subtype (HER2 and Triple negative vs. Luminal. HR: 2.83; 95% CI:1.46-5.49; p 0.002.In our study, the only parameter that strongly influences survival is molecular subtype. These findings encourage clinicians to choose adjuvant treatment not based on dimensional criteria

  5. The prognostic role of tumor size in early breast cancer in the era of molecular biology.

    Science.gov (United States)

    Kasangian, Anaid Anna; Gherardi, Giorgio; Biagioli, Elena; Torri, Valter; Moretti, Anna; Bernardin, Elena; Cordovana, Andrea; Farina, Gabriella; Bramati, Annalisa; Piva, Sheila; Dazzani, Maria Chiara; Paternò, Emanuela; La Verde, Nicla Maria

    2017-01-01

    The prognosis of early breast cancer (EBC) depends on patient and tumor characteristics. The association between tumor size, the largest diameter in TNM staging, and prognosis is well recognized. According to TNM, tumors classified as T2, could have very different volumes; e.g. a tumor of 2.1 cm has a volume of 4500 mm3, while a tumor of 4.9 cm has a volume of 60.000 mm3 even belonging to the same class. The aim of the study is to establish if the prognostic role of tumor size, expressed as diameter and volume, has been overshadowed by other factors. The primary objective is to evaluate the association between tumor dimensions and overall survival (OS) / disease free survival (DFS), in our institution from January 1st 2005 to September 30th 2013 in a surgical T1-T2 population. Volume was evaluated with the measurement of three half-diameters of the tumor (a, b and c), and calculated using the following formula: 4/3π x a x b x c. 341 patients with T1-T2 EBC were included. 86.5% were treated with conservative surgery. 85.1% had a Luminal subtype, 9.1% were Triple negative and 7.4% were HER2 positive. Median volume was 942 mm3 (range 0.52-31.651.2). 44 patients (12.9%) relapsed and 23 patients died. With a median follow-up of 6.5 years, the univariate analysis for DFS showed an association between age, tumor size, volume, histological grading and molecular subtype. The multivariate analysis confirmed the statistically significant association only for molecular subtype (p 0.005), with a worse prognosis for Triple negative and HER2 positive subtypes compared with Luminal (HR: 2.65; 95%CI: 1.34-5.22). Likewise for OS, an association was shown by the multivariate analysis solely for molecular subtype (HER2 and Triple negative vs. Luminal. HR: 2.83; 95% CI:1.46-5.49; p 0.002). In our study, the only parameter that strongly influences survival is molecular subtype. These findings encourage clinicians to choose adjuvant treatment not based on dimensional criteria but on

  6. Calibration of denaturing agarose gels for molecular weight estimation of DNA: size determination of the single-stranded genomes of parvoviruses

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, C.E. (Oak Ridge National Lab., TN); Schmoyer, R.L.; Bates, R.C.; Mitra, S.

    1982-01-01

    Vertical slab gel electrophoresis of DNA with CH/sub 3/HgOH-containing agarose produces sharp bands whose mobilities are suitable for size estimation of single-stranded DNA containing 600 to 20,000 bases. The relationship of electrophoretic mobility to size of DNA over this range is a smooth, S-shaped function, and an empirical model was developed to express the relationship. The model involves terms in squared and reciprocal mobilities, and produced excellent fit of known standard markers to measured mobilities. It was used to estimate the sizes of six parvovirus DNAs: Kilham rat virus (KRV), H-1, LuIII, and minute virus of mice (MVM) DNAs had molecular weights of 1.66 to 1.70 x 10/sup 6/, while the molecular weight of bovine parvovirus (BPV) DNA was 1.84 x 10/sup 6/ and that of adenoassociated virus (AAV) DNA was 1.52 x 10/sup 6/.

  7. Molecular size estimation of plasma membrane β-glucan synthase from red beet root

    International Nuclear Information System (INIS)

    Sloan, M.E.; Eiberger, L.L.; Wasserman, B.P.

    1986-01-01

    Cellulose and cell wall β-D-glucans in higher plants are thought to be synthesized by the plasma membrane enzyme, β-glucan synthase. This enzyme has never been purified to homogeneity, hence its subunit composition is unknown. Partial purification of red beet root glucan synthase by glycerol density gradient centrifugation followed by SDS-PAGE yielded a highly enriched subunit of 68 kDa. Radiation inactivation of plasma membranes gave a molecular size the 450 kDa for the holoenzyme complex. This suggests that glucan synthase consists of 6 to 7 subunits and confirms electron microscope studies showing that glucan synthases exist as multi-subunit complexes embedded within the membrane

  8. Molecularly imprinted macroporous monoliths for solid-phase extraction: Effect of pore size and column length on recognition properties.

    Science.gov (United States)

    Vlakh, E G; Stepanova, M A; Korneeva, Yu M; Tennikova, T B

    2016-09-01

    The series of macroporous monolithic molecularly imprinted monoliths differed by pore size, column length (volume) and amount of template used for imprinting was synthesized using methacrylic acid and glycerol dimethacrylate as co-monomers and antibiotic ciprofloxacin as a template. The prepared monoliths were characterized regarding to their permeability, pore size, porosity, and resistance to the flow of a mobile phase. The surface morphology was also analyzed. The slight dependence of imprinting factor on flow rate, as well as its independence on pore size of macroporous molecularly imprinted monolithic media was observed. The column obtained at different conditions exhibited different affinity of ciprofloxacin to the imprinted sites that was characterized with Kdiss values in the range of 10(-5)-10(-4)M. The solid-phase extraction of ciprofloxacin from such biological liquids as human blood serum, human urine and cow milk serum was performed using the developed monolithic columns. In all cases, the extraction was found to be 95.0-98.6%. Additionally, the comparison of extraction of three fluoroqinolone analogues, e.g. ciprofloxacin, levofloxacin and moxifloxacin, from human blood plasma was carried out. Contrary to ciprofloxacin extracted with more than 95%, this parameter did not exceed 40% for its analogues. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Size effect on local magnetic moments in ferrimagnetic molecular complexes: an XMCD investigation

    International Nuclear Information System (INIS)

    Champion, G.; Villain, F.; Cartier dit Moulin, C.; Arrio, M.-A.; Sainctavit, P.; Zacchigna, M.; Zangrando, M.; Finazzi, M.; Parmigiani, F.; Mathoniere, C.

    2003-01-01

    Molecular chemistry allows to synthesize new magnetic systems with controlled properties such as size, magnetization or anisotropy. The theoretical study of the magnetic properties of small molecules (from 2 to 10 metallic cations per molecule) predicts that the magnetization at saturation of each ion does not reach the expected value for uncoupled ions when the magnetic interaction is antiferromagnetic. The quantum origin of this effect is due to the linear combination of several spin states building the wave function of the ground state and clusters of finite size and of finite spin value exhibit this property. When single crystals are available, spin densities on each atom can be experimentally given by polarized neutron diffraction (PND) experiments. In the case of bimetallic MnCu powdered samples, we will show that x-ray magnetic circular dichroism (XMCD) spectroscopy can be used to follow the evolution of the spin distribution on the Mn II and Cu II sites when passing from a dinuclear MnCu unit to a one dimensional (MnCu) n compound. (author)

  10. Effect of gamma-irradiation on rice seed DNA. Pt. 1. Yield and molecular size of DNA extracted from irradiated rice seeds

    International Nuclear Information System (INIS)

    Kawamura, Yoko; Konishi, Akihiro; Yamada, Takashi; Saito, Yukio

    1995-01-01

    The effect of gamma-irradiation on the DNA of hulled rice seeds was investigated. The cetyltrimethylammonium bromide (CTAB) method was preferred for the extraction of DNA from rice seeds because of its high quality and good yield. The yield of DNA that was determined by gel electrophoresis, decreased as the irradiation dose increased from 1 kGy. DNA extracted from rice seeds irradiated with a 30 kGy dose showed a molecular size of less than 20 kb, while that from unirradiated rice showed more than 100 kb in electrophoretic profiles. It can be assumed that the decrease in yield was mainly induced by the crosslinking between protein and DNA, and the reduction in molecular size was induced by double-strand breaks. (J.P.N.)

  11. Influence of grain size on the mechanical properties of nano-crystalline copper; insights from molecular dynamics simulation

    Science.gov (United States)

    Rida, A.; Makke, A.; Rouhaud, E.; Micoulaut, M.

    2017-10-01

    We use molecular dynamics simulations to study the mechanical properties of a columnar nanocrystalline copper with a mean grain size between 8.91 nm and 24 nm. The used samples were generated by using a melting cooling method. These samples were submitted to uniaxial tensile test. The results reveal the presence of a critical mean grain size between 16 and 20 nm, where there is an inversion in the conventional Hall-Petch tendency. This inversion is illustrated by the increase of flow stress with the increase of the mean grain size. This transition is caused by shifting of the deformation mechanism from dislocations to a combination of grain boundaries sliding and dislocations. Moreover, the effect of temperature on the mechanical properties of nanocrystalline copper has been investigated. The results show a decrease of the flow stress and Young's modulus when the temperature increases.

  12. Constant size descriptors for accurate machine learning models of molecular properties

    Science.gov (United States)

    Collins, Christopher R.; Gordon, Geoffrey J.; von Lilienfeld, O. Anatole; Yaron, David J.

    2018-06-01

    Two different classes of molecular representations for use in machine learning of thermodynamic and electronic properties are studied. The representations are evaluated by monitoring the performance of linear and kernel ridge regression models on well-studied data sets of small organic molecules. One class of representations studied here counts the occurrence of bonding patterns in the molecule. These require only the connectivity of atoms in the molecule as may be obtained from a line diagram or a SMILES string. The second class utilizes the three-dimensional structure of the molecule. These include the Coulomb matrix and Bag of Bonds, which list the inter-atomic distances present in the molecule, and Encoded Bonds, which encode such lists into a feature vector whose length is independent of molecular size. Encoded Bonds' features introduced here have the advantage of leading to models that may be trained on smaller molecules and then used successfully on larger molecules. A wide range of feature sets are constructed by selecting, at each rank, either a graph or geometry-based feature. Here, rank refers to the number of atoms involved in the feature, e.g., atom counts are rank 1, while Encoded Bonds are rank 2. For atomization energies in the QM7 data set, the best graph-based feature set gives a mean absolute error of 3.4 kcal/mol. Inclusion of 3D geometry substantially enhances the performance, with Encoded Bonds giving 2.4 kcal/mol, when used alone, and 1.19 kcal/mol, when combined with graph features.

  13. Determination of the Molecular Weight of Low-Molecular-Weight Heparins by Using High-Pressure Size Exclusion Chromatography on Line with a Triple Detector Array and Conventional Methods

    Directory of Open Access Journals (Sweden)

    Antonella Bisio

    2015-03-01

    Full Text Available The evaluation of weight average molecular weight (Mw and molecular weight distribution represents one of the most controversial aspects concerning the characterization of low molecular weight heparins (LMWHs. As the most commonly used method for the measurement of such parameters is high performance size exclusion chromatography (HP-SEC, the soundness of results mainly depends on the appropriate calibration of the chromatographic columns used. With the aim of meeting the requirement of proper Mw standards for LMWHs, in the present work the determination of molecular weight parameters (Mw and Mn by HP-SEC combined with a triple detector array (TDA was performed. The HP-SEC/TDA technique permits the evaluation of polymeric samples by exploiting the combined and simultaneous action of three on-line detectors: light scattering detectors (LALLS/RALLS; refractometer and viscometer. Three commercial LMWH samples, enoxaparin, tinzaparin and dalteparin, a γ-ray depolymerized heparin (γ-Hep and its chromatographic fractions, and a synthetic pentasaccharide were analysed by HP-SEC/TDA. The same samples were analysed also with a conventional HP-SEC method employing refractive index (RI and UV detectors and two different chromatographic column set, silica gel and polymeric gel columns. In both chromatographic systems, two different calibration curves were built up by using (i γ-Hep chromatographic fractions and the corresponding Mw parameters obtained via HP-SEC/TDA; (ii the whole γ-Hep preparation with broad Mw dispersion and the corresponding cumulative distribution function calculated via HP-SEC/TDA. In addition, also a chromatographic column calibration according to European Pharmacopoeia indication was built up. By comparing all the obtained results, some important differences among Mw and size distribution values of the three LMWHs were found with the five different calibration methods and with HP-SEC/TDA method. In particular, the detection of

  14. A molecular-sized optical logic circuit for digital modulation of a fluorescence signal

    Science.gov (United States)

    Nishimura, Takahiro; Tsuchida, Karin; Ogura, Yusuke; Tanida, Jun

    2018-03-01

    Fluorescence measurement allows simultaneous detection of multiple molecular species by using spectrally distinct fluorescence probes. However, due to the broad spectra of fluorescence emission, the multiplicity of fluorescence measurement is generally limited. To overcome this limitation, we propose a method to digitally modulate fluorescence output signals with a molecular-sized optical logic circuit by using optical control of fluorescence resonance energy transfer (FRET). The circuit receives a set of optical inputs represented with different light wavelengths, and then it switches high and low fluorescence intensity from a reporting molecule according to the result of the logic operation. By using combinational optical inputs in readout of fluorescence signals, the number of biomolecular species that can be identified is increased. To implement the FRET-based circuits, we designed two types of basic elements, YES and NOT switches. An YES switch produces a high-level output intensity when receiving a designated light wavelength input and a low-level intensity without the light irradiation. A NOT switch operates inversely to the YES switch. In experiments, we investigated the operation of the YES and NOT switches that receive a 532-nm light input and modulate the fluorescence intensity of Alexa Fluor 488. The experimental result demonstrates that the switches can modulate fluorescence signals according to the optical input.

  15. ALMA REVEALS THE ANATOMY OF THE mm-SIZED DUST AND MOLECULAR GAS IN THE HD 97048 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Catherine; Maud, Luke T. [Leiden Observatory, Leiden University, P.O. Box 9531, 2300 RA Leiden (Netherlands); Juhász, Attila [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Meeus, Gwendolyn [Departamento de Física Teórica, Universidad Autonoma de Madrid, Campus Cantoblanco, E-28049 Madrid (Spain); Dent, William R. F. [Joint ALMA Observatory (JAO), Alonso de Córdova 3107, Vitacura, Santiago (Chile); Aikawa, Yuri [Center for Computer Sciences, University of Tsukuba, 305-8577 Tsukuba (Japan); Millar, Tom J. [School of Mathematics and Physics, Queen’s University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Nomura, Hideko, E-mail: cwalsh@strw.leidenuniv.nl, E-mail: c.walsh1@leeds.ac.uk [Department of Earth and Planetary Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8551 Tokyo (Japan)

    2016-11-10

    Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ∼ mm wavelengths. We present the first spatially resolved ∼ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ≈640 au. ALMA data reveal a circular-symmetric dusty disk extending to ≈350 au, and a molecular disk traced in CO J = 3-2 emission, extending to ≈750 au. The CO emission arises from a flared layer with an opening angle ≈30°–40°. HD 97048 is another source for which the large (∼ mm-sized) dust grains are more centrally concentrated than the small (∼ μ m-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modeling suggest a decrement in continuum emission within ≈50 au, consistent with the cavity size determined from mid-infrared imaging (34 ± 4 au). The extracted continuum intensity profiles show ring-like structures with peaks at ≈50, 150, and 300 au, with associated gaps at ≈100 and 250 au. This structure should be confirmed in higher-resolution images (FWHM ≈ 10–20 au). These data confirm the classification of HD 97048 as a transitional disk that also possesses multiple ring-like structures in the dust continuum emission. Additional data are required at multiple and well-separated frequencies to fully characterize the disk structure, and thereby constrain the mechanism(s) responsible for sculpting the HD 97048 disk.

  16. ALMA Reveals the Anatomy of the mm-sized Dust and Molecular Gas in the HD 97048 Disk

    Science.gov (United States)

    Walsh, Catherine; Juhász, Attila; Meeus, Gwendolyn; Dent, William R. F.; Maud, Luke T.; Aikawa, Yuri; Millar, Tom J.; Nomura, Hideko

    2016-11-01

    Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ˜ mm wavelengths. We present the first spatially resolved ˜ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ≈640 au. ALMA data reveal a circular-symmetric dusty disk extending to ≈350 au, and a molecular disk traced in CO J = 3-2 emission, extending to ≈750 au. The CO emission arises from a flared layer with an opening angle ≈30°-40°. HD 97048 is another source for which the large (˜ mm-sized) dust grains are more centrally concentrated than the small (˜μm-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modeling suggest a decrement in continuum emission within ≈50 au, consistent with the cavity size determined from mid-infrared imaging (34 ± 4 au). The extracted continuum intensity profiles show ring-like structures with peaks at ≈50, 150, and 300 au, with associated gaps at ≈100 and 250 au. This structure should be confirmed in higher-resolution images (FWHM ≈ 10-20 au). These data confirm the classification of HD 97048 as a transitional disk that also possesses multiple ring-like structures in the dust continuum emission. Additional data are required at multiple and well-separated frequencies to fully characterize the disk structure, and thereby constrain the mechanism(s) responsible for sculpting the HD 97048 disk.

  17. ALMA REVEALS THE ANATOMY OF THE mm-SIZED DUST AND MOLECULAR GAS IN THE HD 97048 DISK

    International Nuclear Information System (INIS)

    Walsh, Catherine; Maud, Luke T.; Juhász, Attila; Meeus, Gwendolyn; Dent, William R. F.; Aikawa, Yuri; Millar, Tom J.; Nomura, Hideko

    2016-01-01

    Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ∼ mm wavelengths. We present the first spatially resolved ∼ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ≈640 au. ALMA data reveal a circular-symmetric dusty disk extending to ≈350 au, and a molecular disk traced in CO J = 3-2 emission, extending to ≈750 au. The CO emission arises from a flared layer with an opening angle ≈30°–40°. HD 97048 is another source for which the large (∼ mm-sized) dust grains are more centrally concentrated than the small (∼ μ m-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modeling suggest a decrement in continuum emission within ≈50 au, consistent with the cavity size determined from mid-infrared imaging (34 ± 4 au). The extracted continuum intensity profiles show ring-like structures with peaks at ≈50, 150, and 300 au, with associated gaps at ≈100 and 250 au. This structure should be confirmed in higher-resolution images (FWHM ≈ 10–20 au). These data confirm the classification of HD 97048 as a transitional disk that also possesses multiple ring-like structures in the dust continuum emission. Additional data are required at multiple and well-separated frequencies to fully characterize the disk structure, and thereby constrain the mechanism(s) responsible for sculpting the HD 97048 disk.

  18. The influence of molecular architecture and solvent type on the size and structure of poly(benzyl ether) dendrimers by SANS

    NARCIS (Netherlands)

    Evmenenko, G.; Bauer, B.J.; Kleppinger, R.; Forier, B.; Dehaen, W.; Amis, E.J.; Mischenko, N.; Reynaers, H.

    2001-01-01

    The size of poly(benzyl ether) dendrimers with different molecular architectures was measured by small angle neutron scattering (SANS). Both polar and non-polar solvents were used to measure the effect of solvent type. The radius of gyration (Rg) of all of the dendrimers follows a scaling law of Rg

  19. Extraction Kinetics and Molecular Size Fractionation of Humic Substances From Two Brazilian Soils

    Directory of Open Access Journals (Sweden)

    Dick Deborah Pinheiro

    1999-01-01

    Full Text Available In the present study, the extraction behaviour of humic substances (HS from an Oxisol and a Mollisol from South Brazil, by using 0.1 and 0.5 mol L-1 NaOH and 0.15 mol L-1 neutral pyrophosphate solutions, respectively, was systematically studied. The kinetics and efficiency of HS extraction were evaluated by means of UV/Vis spectroscopy. The isolated humic acids (HA and fulvic acids (FA were size-classified by multistage ultrafiltration (six fractions in the molecular weight range of 1 to 100 kDa. The obtained data show that the HS extraction yield depended not only on the extractant, but also on the soil type. Within 3 h approximately 90% of the soluble HS could be extracted following complex extraction kinetics by both methods and none or little structural modification was verified as observed from their stable extinction ratio E350/E550. In the Mollisol the pyrophosphate extraction was more effective, suggesting that a great part of HS occurred as macromolecules bonded to clay minerals and aggregated between themselves through cationic bridges. In the Oxisol a higher HS yield was verified with the alkaline method, presumably due to HS fixation onto the oxide surface by H-bonds and/or surface complexation reactions. In general, HS extracted by the pyrophosphate procedure showed higher molecular weights than those extracted by NaOH.

  20. Molecular dynamics study on microstructure of near grain boundary distortion region in small grain size nano- NiAl alloy

    International Nuclear Information System (INIS)

    Wang, J.Y.; Wang, X.W.; Rifkin, J.; Li, D.X.

    2001-12-01

    Using the molecular dynamics simulation method, the microstructure of distortion region near curved amorphous-like grain boundary in nano-NiAl alloy is studied. The results showed that due to the internal elastic force of high energy grain boundary, distortion layer exists between grain and grain boundary. The lattice expansion and structure factor decreasing are observed in this region. Stacking fault in sample with grain size 3.8nm is clearly observed across the distortion region at the site very close to grain. The influences of different grain sizes on average distortion degree and volume fractions of distortion region, grain and grain boundary are also discussed. (author)

  1. Evaporation of liquid droplets of nano- and micro-meter size as a function of molecular mass and intermolecular interactions: experiments and molecular dynamics simulations.

    Science.gov (United States)

    Hołyst, Robert; Litniewski, Marek; Jakubczyk, Daniel

    2017-09-13

    Transport of heat to the surface of a liquid is a limiting step in the evaporation of liquids into an inert gas. Molecular dynamics (MD) simulations of a two component Lennard-Jones (LJ) fluid revealed two modes of energy transport from a vapour to an interface of an evaporating droplet of liquid. Heat is transported according to the equation of temperature diffusion, far from the droplet of radius R. The heat flux, in this region, is proportional to temperature gradient and heat conductivity in the vapour. However at some distance from the interface, Aλ, (where λ is the mean free path in the gas), the temperature has a discontinuity and heat is transported ballistically i.e. by direct individual collisions of gas molecules with the interface. This ballistic transport reduces the heat flux (and consequently the mass flux) by the factor R/(R + Aλ) in comparison to the flux obtained from temperature diffusion. Thus it slows down the evaporation of droplets of sizes R ∼ Aλ and smaller (practically for sizes from 10 3 nm down to 1 nm). We analyzed parameter A as a function of interactions between molecules and their masses. The rescaled parameter, A(k B T b /ε 11 ) 1/2 , is a linear function of the ratio of the molecular mass of the liquid molecules to the molecular mass of the gas molecules, m 1 /m 2 (for a series of chemically similar compounds). Here ε 11 is the interaction parameter between molecules in the liquid (proportional to the enthalpy of evaporation) and T b is the temperature of the gas in the bulk. We tested the predictions of MD simulations in experiments performed on droplets of ethylene glycol, diethylene glycol, triethylene glycol and tetraethylene glycol. They were suspended in an electrodynamic trap and evaporated into dry nitrogen gas. A changes from ∼1 (for ethylene glycol) to approximately 10 (for tetraethylene glycol) and has the same dependence on molecular parameters as obtained for the LJ fluid in MD simulations. The value of x = A

  2. On the Peculiar Molecular Shape and Size Dependence of the Dynamics of Fluids confined in a Small-Pore Metal-Organic Framework

    KAUST Repository

    Skarmoutsos, Ioannis

    2018-05-15

    Force field based-Molecular dynamics simulations were deployed to systematically explore the dynamics of confined molecules of different shapes and sizes, i.e. linear (CO2 and N2) and spherical (CH4) fluids, in a model small pore system, i.e. the Metal-Organic Framework SIFSIX-2-Cu-i. These computations unveil an unprecedented molecular symmetry dependence of the translational and rotational dynamics of fluids confined in channel-like nanoporous materials. In particular this peculiar behaviour is reflected by the extremely slow decay of the Legendre reorientational correlation functions of even-parity order for the linear fluids which is associated to jump-like orientation flips, while the spherical fluid shows a very fast decay taking place in a sub-picosecond time scale. Such a fundamental understanding is relevant to diverse disciplines such as in chemistry, physics, biology and materials science where diatomic or polyatomic molecules of different shapes/sizes diffuse through nanopores.

  3. Magnetic high throughput screening system for the development of nano-sized molecularly imprinted polymers for controlled delivery of curcumin.

    Science.gov (United States)

    Piletska, Elena V; Abd, Bashar H; Krakowiak, Agata S; Parmar, Anitha; Pink, Demi L; Wall, Katie S; Wharton, Luke; Moczko, Ewa; Whitcombe, Michael J; Karim, Kal; Piletsky, Sergey A

    2015-05-07

    Curcumin is a versatile anti-inflammatory and anti-cancer agent known for its low bioavailability, which could be improved by developing materials capable of binding and releasing drug in a controlled fashion. The present study describes the preparation of magnetic nano-sized Molecularly Imprinted Polymers (nanoMIPs) for the controlled delivery of curcumin and their high throughput characterisation using microtitre plates modified with magnetic inserts. NanoMIPs were synthesised using functional monomers chosen with the aid of molecular modelling. The rate of release of curcumin from five polymers was studied under aqueous conditions and was found to correlate well with the binding energies obtained computationally. The presence of specific monomers was shown to be significant in ensuring effective binding of curcumin and to the rate of release obtained. Characterisation of the polymer particles was carried out using dynamic light scattering (DLS) technique and scanning electron microscopy (SEM) in order to establish the relationship between irradiation time and particle size. The protocols optimised during this study could be used as a blueprint for the development of nanoMIPs capable of the controlled release of potentially any compound of interest.

  4. Molecular characterization of multivalent bioconjugates by size-exclusion chromatography (SEC) with multi-angle laser light scattering (MALS)

    Science.gov (United States)

    Pollock, Jacob F.; Ashton, Randolph S.; Rode, Nikhil A.; Schaffer, David V.; Healy, Kevin E.

    2013-01-01

    The degree of substitution and valency of bioconjugate reaction products are often poorly judged or require multiple time- and product- consuming chemical characterization methods. These aspects become critical when analyzing and optimizing the potency of costly polyvalent bioactive conjugates. In this study, size-exclusion chromatography with multi-angle laser light scattering was paired with refractive index detection and ultraviolet spectroscopy (SEC-MALS-RI-UV) to characterize the reaction efficiency, degree of substitution, and valency of the products of conjugation of either peptides or proteins to a biopolymer scaffold, i.e., hyaluronic acid (HyA). Molecular characterization was more complete compared to estimates from a protein quantification assay, and exploitation of this method led to more accurate deduction of the molecular structures of polymer bioconjugates. Information obtained using this technique can improve macromolecular engineering design principles and better understand multivalent macromolecular interactions in biological systems. PMID:22794081

  5. Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation

    KAUST Repository

    Carney, Randy P.; Kim, Jin Young; Qian, Huifeng; Jin, Rongchao; Mehenni, Hakim; Stellacci, Francesco; Bakr, Osman

    2011-01-01

    Nanoparticles are finding many research and industrial applications, yet their characterization remains a challenge. Their cores are often polydisperse and coated by a stabilizing shell that varies in size and composition. No single technique can characterize both the size distribution and the nature of the shell. Advances in analytical ultracentrifugation allow for the extraction of the sedimentation (s) and diffusion coefficients (D). Here we report an approach to transform the s and D distributions of nanoparticles in solution into precise molecular weight (M), density (?P) and particle diameter (dp) distributions. M for mixtures of discrete nanocrystals is found within 4% of the known quantities. The accuracy and the density information we achieve on nanoparticles are unparalleled. A single experimental run is sufficient for full nanoparticle characterization, without the need for standards or other auxiliary measurements. We believe that our method is of general applicability and we discuss its limitations. 2011 Macmillan Publishers Limited. All rights reserved.

  6. Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation

    KAUST Repository

    Carney, Randy P.

    2011-06-07

    Nanoparticles are finding many research and industrial applications, yet their characterization remains a challenge. Their cores are often polydisperse and coated by a stabilizing shell that varies in size and composition. No single technique can characterize both the size distribution and the nature of the shell. Advances in analytical ultracentrifugation allow for the extraction of the sedimentation (s) and diffusion coefficients (D). Here we report an approach to transform the s and D distributions of nanoparticles in solution into precise molecular weight (M), density (?P) and particle diameter (dp) distributions. M for mixtures of discrete nanocrystals is found within 4% of the known quantities. The accuracy and the density information we achieve on nanoparticles are unparalleled. A single experimental run is sufficient for full nanoparticle characterization, without the need for standards or other auxiliary measurements. We believe that our method is of general applicability and we discuss its limitations. 2011 Macmillan Publishers Limited. All rights reserved.

  7. Contributions of molecular size, charge distribution, and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates.

    Science.gov (United States)

    Sun, Na; Cui, Pengbo; Jin, Ziqi; Wu, Haitao; Wang, Yixing; Lin, Songyi

    2017-09-01

    This study investigated the contributions of molecular size, charge distribution and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates (SCOHs), and further explored their iron-binding sites. It was demonstrated that enzyme type and degree of hydrolysis (DH) significantly influenced the iron-binding capacity of the SCOHs. The SCOHs produced by alcalase at a DH of 25.9% possessed the highest iron-binding capacity at 92.1%. As the hydrolysis time increased, the molecular size of the SCOHs decreased, the negative charges increased, and the hydrophilic amino acids were exposed to the surface, facilitating iron binding. Furthermore, the Fourier transform infrared spectra, combined with amino acid composition analysis, revealed that iron bound to the SCOHs primarily through interactions with carboxyl oxygen of Asp, guanidine nitrogen of Arg or nitrogen atoms in imidazole group of His. The formed SCOHs-iron complexes exhibited a fold and crystal structure with spherical particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cation solvation with quantum chemical effects modeled by a size-consistent multi-partitioning quantum mechanics/molecular mechanics method.

    Science.gov (United States)

    Watanabe, Hiroshi C; Kubillus, Maximilian; Kubař, Tomáš; Stach, Robert; Mizaikoff, Boris; Ishikita, Hiroshi

    2017-07-21

    In the condensed phase, quantum chemical properties such as many-body effects and intermolecular charge fluctuations are critical determinants of the solvation structure and dynamics. Thus, a quantum mechanical (QM) molecular description is required for both solute and solvent to incorporate these properties. However, it is challenging to conduct molecular dynamics (MD) simulations for condensed systems of sufficient scale when adapting QM potentials. To overcome this problem, we recently developed the size-consistent multi-partitioning (SCMP) quantum mechanics/molecular mechanics (QM/MM) method and realized stable and accurate MD simulations, using the QM potential to a benchmark system. In the present study, as the first application of the SCMP method, we have investigated the structures and dynamics of Na + , K + , and Ca 2+ solutions based on nanosecond-scale sampling, a sampling 100-times longer than that of conventional QM-based samplings. Furthermore, we have evaluated two dynamic properties, the diffusion coefficient and difference spectra, with high statistical certainty. Furthermore the calculation of these properties has not previously been possible within the conventional QM/MM framework. Based on our analysis, we have quantitatively evaluated the quantum chemical solvation effects, which show distinct differences between the cations.

  9. Self-reduction and size controlled synthesis of silver nanoparticles on carbon nanospheres by grafting triazine-based molecular layer for conductivity improvement

    Science.gov (United States)

    Sang, Jing; Aisawa, Sumio; Hirahara, Hidetoshi; Kudo, Takahiro; Mori, Kunio

    2016-02-01

    A facile, self-reduction and size controlled synthesis method has been explored to fabricate silver nanoparticles (Ag NPs) on carbon nanosphere (CNs) under mild conditions. Without using predeposition of seed metals and reducing agent, a uniform and complete layer of Ag NPs was formed through grafting a molecular layer on CNs surfaces under UV irradiation. The size and thickness of Ag NPs were effectively tuned by adjusting the UV irradiation time. This direct formation of Ag NPs was attributed to self seed in aqueous Ag(NH3)2+ complex solution through a triazine-based silane coupling agent molecular layer, even at 25 °C. Scanning electron microscopy (SEM), Transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS) were employed to characterize the Ag NPs' properties. A substantial conductivity improvement of prepared Ag NPs on carbon nanosphere was demonstrated. The presented method is simple and environmentally friendly and thus should be of significant value for the industrial fabrication of Ag NPs on carbon nanosphere in conduct electricity paint and coating applications.

  10. Physical Selectivity of Molecularly Imprinted polymers evaluated through free volume size distributions derived from Positron Lifetime Spectroscopy

    Science.gov (United States)

    Pasang, T.; Ranganathaiah, C.

    2015-06-01

    The technique of imprinting molecules of various sizes in a stable structure of polymer matrix has derived multitudes of applications. Once the template molecule is extracted from the polymer matrix, it leaves behind a cavity which is physically (size and shape) and chemically (functional binding site) compatible to the particular template molecule. Positron Annihilation Lifetime Spectroscopy (PALS) is a well known technique to measure cavity sizes precisely in the nanoscale and is not being used in the field of MIPs effectively. This method is capable of measuring nanopores and hence suitable to understand the physical selectivity of the MIPs better. With this idea in mind, we have prepared molecular imprinted polymers (MIPs) with methacrylicacid (MAA) as monomer and EGDMA as cross linker in different molar ratio for three different size template molecules, viz. 4-Chlorophenol (4CP)(2.29 Å), 2-Nephthol (2NP) (3.36 Å) and Phenolphthalein (PP) (4.47Å). FTIR and the dye chemical reactions are used to confirm the complete extraction of the template molecules from the polymer matrix. The free volume size and its distribution have been derived from the measured o-Ps lifetime spectra. Based on the free volume distribution analysis, the percentage of functional cavities for the three template molecules are determined. Percentage of functional binding cavities for 4-CP molecules has been found out to be 70.2% and the rest are native cavities. Similarly for 2NP it is 81.5% and nearly 100% for PP. Therefore, PALS method proves to be very precise and accurate for determining the physical selectivity of MIPs.

  11. The effect of alcohols on red blood cell mechanical properties and membrane fluidity depends on their molecular size.

    Science.gov (United States)

    Sonmez, Melda; Ince, Huseyin Yavuz; Yalcin, Ozlem; Ajdžanović, Vladimir; Spasojević, Ivan; Meiselman, Herbert J; Baskurt, Oguz K

    2013-01-01

    The role of membrane fluidity in determining red blood cell (RBC) deformability has been suggested by a number of studies. The present investigation evaluated alterations of RBC membrane fluidity, deformability and stability in the presence of four linear alcohols (methanol, ethanol, propanol and butanol) using ektacytometry and electron paramagnetic resonance (EPR) spectroscopy. All alcohols had a biphasic effect on deformability such that it increased then decreased with increasing concentration; the critical concentration for reversal was an inverse function of molecular size. EPR results showed biphasic changes of near-surface fluidity (i.e., increase then decrease) and a decreased fluidity of the lipid core; rank order of effectiveness was butanol > propanol > ethanol > methanol, with a significant correlation between near-surface fluidity and deformability (r = 0.697; palcohol enhanced the impairment of RBC deformability caused by subjecting cells to 100 Pa shear stress for 300 s, with significant differences from control being observed at higher concentrations of all four alcohols. The level of hemolysis was dependent on molecular size and concentration, whereas echinocytic shape transformation (i.e., biconcave disc to crenated morphology) was observed only for ethanol and propanol. These results are in accordance with available data obtained on model membranes. They document the presence of mechanical links between RBC deformability and near-surface membrane fluidity, chain length-dependence of the ability of alcohols to alter RBC mechanical behavior, and the biphasic response of RBC deformability and near-surface membrane fluidity to increasing alcohol concentrations.

  12. Size-dependent melting modes and behaviors of Ag nanoparticles: a molecular dynamics study

    Science.gov (United States)

    Liang, Tianshou; Zhou, Dejian; Wu, Zhaohua; Shi, Pengpeng

    2017-12-01

    The size-dependent melting behaviors and mechanisms of Ag nanoparticles (NPs) with diameters of 3.5-16 nm were investigated by molecular dynamics (MD). Two distinct melting modes, non-premelting and premelting with transition ranges of about 7-8 nm, for Ag NPs were demonstrated via the evolution of distribution and transition of atomic physical states during annealing. The small Ag NPs (3.5-7 nm) melt abruptly without a stable liquid shell before the melting point, which is characterized as non-premelting. A solid-solid crystal transformation is conducted through the migration of adatoms on the surface of Ag NPs with diameters of 3.5-6 nm before the initial melting, which is mainly responsible for slightly increasing the melting point of Ag NPs. On the other hand, surface premelting of Ag NPs with diameters of 8-16 nm propagates from the outer shell to the inner core with initial anisotropy and late isotropy as the temperature increases, and the close-packed facets {111} melt by a side-consumed way which is responsible for facets {111} melting in advance relative to the crystallographic plane {111}. Once a stable liquid shell is formed, its size-independent minimum thickness is obtained, and a three-layer structure of atomic physical states is set up. Lastly, the theory of point defect-pair (vacancy-interstitial) severing as the mechanism of formation and movement of the solid-liquid interface was also confirmed. Our study provides a basic understanding and theoretical guidance for the research, production and application of Ag NPs.

  13. Study on Compatibility of Polymer Hydrodynamic Size and Pore Throat Size for Honggang Reservoir

    Directory of Open Access Journals (Sweden)

    Dan-Dan Yin

    2014-01-01

    Full Text Available Long core flow experiment was conducted to study problems like excessive injection pressure and effective lag of oil wells during the polymer flooding in Honggang reservoir in Jilin oilfield. According to the changes in viscosity and hydrodynamic dimensions before and after polymer solution was injected into porous media, the compatibility of polymer hydrodynamic dimension and the pore throat size was studied in this experiment. On the basis of the median of radius R of pore throats in rocks with different permeability, dynamic light scattering method (DLS was adopted to measure the hydrodynamic size Rh of polymer solution with different molecular weights. The results state that three kinds of 1500 mg/L concentration polymer solution with 2000 × 104, 1500 × 104, and 1000 × 104 molecular weight matched well with the pore throat in rocks with permeability of 300 mD, 180 mD, and 75 mD in sequence. In this case, the ratios of core pore throat radius median to the size of polymer molecular clew R/Rh are 6.16, 5.74, and 6.04. For Honggang oil reservoir in Jilin, when that ratio ranges from 5.5 to 6.0, the compatibility of polymer and the pore structure will be relatively better.

  14. Defined-size DNA triple crossover construct for molecular electronics: modification, positioning and conductance properties.

    Science.gov (United States)

    Linko, Veikko; Leppiniemi, Jenni; Paasonen, Seppo-Tapio; Hytönen, Vesa P; Toppari, J Jussi

    2011-07-08

    We present a novel, defined-size, small and rigid DNA template, a so-called B-A-B complex, based on DNA triple crossover motifs (TX tiles), which can be utilized in molecular scale patterning for nanoelectronics, plasmonics and sensing applications. The feasibility of the designed construct is demonstrated by functionalizing the TX tiles with one biotin-triethylene glycol (TEG) and efficiently decorating them with streptavidin, and furthermore by positioning and anchoring single thiol-modified B-A-B complexes to certain locations on a chip via dielectrophoretic trapping. Finally, we characterize the conductance properties of the non-functionalized construct, first by measuring DC conductivity and second by utilizing AC impedance spectroscopy in order to describe the conductivity mechanism of a single B-A-B complex using a detailed equivalent circuit model. This analysis also reveals further information about the conductivity of DNA structures in general.

  15. Molecular Formula and Molecular Weight - NBDC NikkajiRDF | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us NBDC NikkajiRDF Molecular Formula and Molecular Weight Data detail Data name Molecular Formula and Molecul...- Description of data contents This RDF data includes molecular formula and molecular weight of chemical sub...ikkajiRDF_MFMW.tar.gz File size: 404 MB Simple search URL - Data acquisition method The data was converted from data of molecul...ar formulas and molecular weights in Basic Information ( http://dbarchive.biosciencedbc.j... Policy | Contact Us Molecular Formula and Molecular Weight - NBDC NikkajiRDF | LSDB Archive ...

  16. The effect of alcohols on red blood cell mechanical properties and membrane fluidity depends on their molecular size.

    Directory of Open Access Journals (Sweden)

    Melda Sonmez

    Full Text Available The role of membrane fluidity in determining red blood cell (RBC deformability has been suggested by a number of studies. The present investigation evaluated alterations of RBC membrane fluidity, deformability and stability in the presence of four linear alcohols (methanol, ethanol, propanol and butanol using ektacytometry and electron paramagnetic resonance (EPR spectroscopy. All alcohols had a biphasic effect on deformability such that it increased then decreased with increasing concentration; the critical concentration for reversal was an inverse function of molecular size. EPR results showed biphasic changes of near-surface fluidity (i.e., increase then decrease and a decreased fluidity of the lipid core; rank order of effectiveness was butanol > propanol > ethanol > methanol, with a significant correlation between near-surface fluidity and deformability (r = 0.697; p<0.01. The presence of alcohol enhanced the impairment of RBC deformability caused by subjecting cells to 100 Pa shear stress for 300 s, with significant differences from control being observed at higher concentrations of all four alcohols. The level of hemolysis was dependent on molecular size and concentration, whereas echinocytic shape transformation (i.e., biconcave disc to crenated morphology was observed only for ethanol and propanol. These results are in accordance with available data obtained on model membranes. They document the presence of mechanical links between RBC deformability and near-surface membrane fluidity, chain length-dependence of the ability of alcohols to alter RBC mechanical behavior, and the biphasic response of RBC deformability and near-surface membrane fluidity to increasing alcohol concentrations.

  17. Controlling the Molecular Weight of Lignosulfonates by an Alkaline Oxidative Treatment at Moderate Temperatures and Atmospheric Pressure: A Size-Exclusion and Reverse-Phase Chromatography Study

    Directory of Open Access Journals (Sweden)

    Chamseddine Guizani

    2017-11-01

    Full Text Available The molecular weights of lignosulfonates (LSs are modified by a rather simple process involving an alkaline oxidative treatment at moderate temperatures (70–90 °C and atmospheric pressure. Starting from LSs with an average molecular weight of 90,000 Da, and using such a treatment, one can prepare controlled molecular weight LSs in the range of 30,000 to 3500 Da based on the average mass molecular weight. The LS depolymerisation was monitored via reverse-phase and size-exclusion chromatography. It has been shown that the combination of O2, H2O2 and Cu as a catalyst in alkaline conditions at 80 °C induces a high LS depolymerisation. The depolymerisation was systemically accompanied by a vanillin production, the yields of which reached 1.4 wt % (weight percentage on LS raw basis in such conditions. Also, the average molecular weight and vanillin concentration were correlated and depended linearly on the temperature and reaction duration.

  18. Effects of incident cluster size, substrate temperature, and incident energy on bombardment of Ni clusters onto Cu (0 0 1) surface studied using molecular dynamics simulation

    International Nuclear Information System (INIS)

    Lin, Shiang-Jiun; Wu, Cheng-Da; Fang, Te-Hua; Chen, Guan-Hung

    2012-01-01

    The bombardment process of a Ni cluster onto a Cu (0 0 1) surface is studied using molecular dynamics (MD) simulations based on the tight-binding second-moment approximation (TB-SMA) many-body potential. The effects of incident cluster size, substrate temperature, and incident energy are evaluated in terms of molecular trajectories, kinetic energy, stress, self-diffusion coefficient, and sputtering yield. The simulation results clearly show that the penetration depth and Cu surface damage increase with increasing incident cluster size for a given incident energy per atom. The self-diffusion coefficient and the penetration depth of a cluster significantly increase with increasing substrate temperature. An incident cluster can be scattered into molecules or atoms that become embedded in the surface after incidence. When the incident energy is increased, the number of volcano-like defects and the penetration depth increase. A high sputtering yield can be obtained by increasing the incident energy at high temperature. The sputtering yield significantly increases with cluster size when the incident energy is above 5 eV/atom.

  19. Nano-Sized Cyclodextrin-Based Molecularly Imprinted Polymer Adsorbents for Perfluorinated Compounds—A Mini-Review

    Directory of Open Access Journals (Sweden)

    Abdalla H. Karoyo

    2015-06-01

    Full Text Available Recent efforts have been directed towards the design of efficient and contaminant selective remediation technology for the removal of perfluorinated compounds (PFCs from soils, sediments, and aquatic environments. While there is a general consensus on adsorption-based processes as the most suitable methodology for the removal of PFCs from aquatic environments, challenges exist regarding the optimal materials design of sorbents for selective uptake of PFCs. This article reviews the sorptive uptake of PFCs using cyclodextrin (CD-based polymer adsorbents with nano- to micron-sized structural attributes. The relationship between synthesis of adsorbent materials and their structure relate to the overall sorption properties. Hence, the adsorptive uptake properties of CD-based molecularly imprinted polymers (CD-MIPs are reviewed and compared with conventional MIPs. Further comparison is made with non-imprinted polymers (NIPs that are based on cross-linking of pre-polymer units such as chitosan with epichlorohydrin in the absence of a molecular template. In general, MIPs offer the advantage of selectivity, chemical tunability, high stability and mechanical strength, ease of regeneration, and overall lower cost compared to NIPs. In particular, CD-MIPs offer the added advantage of possessing multiple binding sites with unique physicochemical properties such as tunable surface properties and morphology that may vary considerably. This mini-review provides a rationale for the design of unique polymer adsorbent materials that employ an intrinsic porogen via incorporation of a macrocyclic compound in the polymer framework to afford adsorbent materials with tunable physicochemical properties and unique nanostructure properties.

  20. Nano-Sized Cyclodextrin-Based Molecularly Imprinted Polymer Adsorbents for Perfluorinated Compounds—A Mini-Review

    Science.gov (United States)

    Karoyo, Abdalla H.; Wilson, Lee D.

    2015-01-01

    Recent efforts have been directed towards the design of efficient and contaminant selective remediation technology for the removal of perfluorinated compounds (PFCs) from soils, sediments, and aquatic environments. While there is a general consensus on adsorption-based processes as the most suitable methodology for the removal of PFCs from aquatic environments, challenges exist regarding the optimal materials design of sorbents for selective uptake of PFCs. This article reviews the sorptive uptake of PFCs using cyclodextrin (CD)-based polymer adsorbents with nano- to micron-sized structural attributes. The relationship between synthesis of adsorbent materials and their structure relate to the overall sorption properties. Hence, the adsorptive uptake properties of CD-based molecularly imprinted polymers (CD-MIPs) are reviewed and compared with conventional MIPs. Further comparison is made with non-imprinted polymers (NIPs) that are based on cross-linking of pre-polymer units such as chitosan with epichlorohydrin in the absence of a molecular template. In general, MIPs offer the advantage of selectivity, chemical tunability, high stability and mechanical strength, ease of regeneration, and overall lower cost compared to NIPs. In particular, CD-MIPs offer the added advantage of possessing multiple binding sites with unique physicochemical properties such as tunable surface properties and morphology that may vary considerably. This mini-review provides a rationale for the design of unique polymer adsorbent materials that employ an intrinsic porogen via incorporation of a macrocyclic compound in the polymer framework to afford adsorbent materials with tunable physicochemical properties and unique nanostructure properties. PMID:28347047

  1. Effect of particle size on the glass transition.

    Science.gov (United States)

    Larsen, Ryan J; Zukoski, Charles F

    2011-05-01

    The glass transition temperature of a broad class of molecules is shown to depend on molecular size. This dependency results from the size dependence of the pair potential. A generalized equation of state is used to estimate how the volume fraction at the glass transition depends on the size of the molecule, for rigid molecule glass-formers. The model shows that at a given pressure and temperature there is a size-induced glass transition: For molecules larger than a critical size, the volume fraction required to support the effective pressure due to particle attractions is above that which characterizes the glassy state. This observation establishes the boundary between nanoparticles, which exist in liquid form only as dispersions in low molecular weight solvents and large molecules which form liquids that have viscosities below those characterized by the glassy state.

  2. DISSOLVED ORGANIC-MATTER, CADMIUM, COPPER AND ZINC IN PIG SLURRY-SIZE AND SOIL SOLUTION-SIZE EXCLUSION CHROMATOGRAPHY FRACTIONS

    NARCIS (Netherlands)

    DELCASTILHO, P; DALENBERG, JW; BRUNT, K; BRUINS, AP

    1993-01-01

    Sephadex size exclusion chromatography was used to prepare molecular size fractions from liquid pig slurry, before and after aerobic interaction with a loamy-sand soil. In the liquid fractions organic matter was characterized and some components were identified. The distribution of zinc and copper

  3. Comparative characterization of humic substances extracted from freshwater and peat of different apparent molecular sizes

    Directory of Open Access Journals (Sweden)

    Eliane Sloboda Rigobello

    2017-09-01

    Full Text Available This paper compares the structural characteristics of aquatic humic substances (AHS with humic substances from peat (HSP through different analytical techniques, including elemental analysis, solid state 13C cross polarization/magic-angle-spinning nuclear magnetic resonance spectroscopy (13C CP-MAS NMR, ultraviolet/visible (UV/Vis spectroscopy and Fourier transform infrared (FTIR spectroscopy and total organic carbon (TOC. The AHS were extracted from water collected in a tributary of the Itapanhaú River (Bertioga/SP using XAD 8 resin, and the HSP were extracted from peat collected in the Mogi Guaçu River bank (Luis Antonio/SP with a KOH solution. After dialysis, both AHS and HSP extracts were filtered in membrane of 0.45 µm pore size (Fraction F1: < 0.45 µm and fractioned by ultrafiltration in different apparent molecular sizes (AMS (F2: 100 kDa-0.45 μm; F3: 30 kDa-100 kDa and F4: < 30 kDa. The extracts with the lowest AMS (F3 and F4 showed a higher number of aliphatic carbons than aromatic carbons, a higher concentration of groups containing oxygen and a higher percentage of fulvic acids (FA than humic acids (HA for both AHS and HSP. However, the AHS presented higher FA than HA content in relation to the HSP and distinct structural properties.

  4. LINEAR RELATION FOR WIND-BLOWN BUBBLE SIZES OF MAIN-SEQUENCE OB STARS IN A MOLECULAR ENVIRONMENT AND IMPLICATION FOR SUPERNOVA PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yang; Zhou Ping [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Chu Youhua [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2013-05-20

    We find a linear relationship between the size of a massive star's main-sequence bubble in a molecular environment and the star's initial mass: R{sub b} Almost-Equal-To 1.22 M/M{sub Sun} - 9.16 pc, assuming a constant interclump pressure. Since stars in the mass range of 8 to 25-30 M{sub Sun} will end their evolution in the red supergiant phase without launching a Wolf-Rayet wind, the main-sequence wind-blown bubbles are mainly responsible for the extent of molecular gas cavities, while the effect of the photoionization is comparatively small. This linear relation can thus be used to infer the masses of the massive star progenitors of supernova remnants (SNRs) that are discovered to evolve in molecular cavities, while few other means are available for inferring the properties of SNR progenitors. We have used this method to estimate the initial masses of the progenitors of eight SNRs: Kes 69, Kes 75, Kes 78, 3C 396, 3C 397, HC 40, Vela, and RX J1713-3946.

  5. Nano- and Micro-sized Molecularly Imprinted Polymer Particles on Solid Surfaces

    OpenAIRE

    Kamra, Tripta

    2015-01-01

    Molecularly imprinted polymers (MIPs) are artificial receptors made by imprinting template molecules in a polymer matrix followed by their removal through washing to obtain a specific and selective template cavities. This property of the MIPs have made them a very efficient material for diverse applications such as chromatography, purification, drug sensing, etc. Recently, zero-dimensional polymer materials, in the present case molecularly imprinted polymer nanoparticles (MIP nanoparticles), ...

  6. High pressure size exclusion chromatography (HPSEC) determination of dissolved organic matter molecular weight revisited: Accounting for changes in stationary phases, analytical standards, and isolation methods

    Science.gov (United States)

    McAdams, Brandon C.; Aiken, George R.; McKnight, Diane M.; Arnold, William A.; Chin, Yu-Ping

    2018-01-01

    We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA280) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA280.

  7. High Pressure Size Exclusion Chromatography (HPSEC) Determination of Dissolved Organic Matter Molecular Weight Revisited: Accounting for Changes in Stationary Phases, Analytical Standards, and Isolation Methods.

    Science.gov (United States)

    McAdams, Brandon C; Aiken, George R; McKnight, Diane M; Arnold, William A; Chin, Yu-Ping

    2018-01-16

    We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA 280 ) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA 280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA 280 .

  8. In silico predictions of LH2 ring sizes from the crystal structure of a single subunit using molecular dynamics simulations.

    Science.gov (United States)

    Janosi, Lorant; Keer, Harindar; Cogdell, Richard J; Ritz, Thorsten; Kosztin, Ioan

    2011-07-01

    Most of the currently known light-harvesting complexes 2 (LH2) rings are formed by 8 or 9 subunits. As of now, questions like "what factors govern the LH2 ring size?" and "are there other ring sizes possible?" remain largely unanswered. Here, we investigate by means of molecular dynamics (MD) simulations and stochastic modeling the possibility of predicting the size of an LH2 ring from the sole knowledge of the high resolution crystal structure of a single subunit. Starting with single subunits of two LH2 rings with known size, that is, an 8-ring from Rs. moliscianum (MOLI) and a 9-ring from Rps. acidophila (ACI), and one with unknown size (referred to as X), we build atomic models of subunit dimers corresponding to assumed 8-, 9-, and 10-ring geometries. After inserting each of the dimers into a lipid-water environment, we determine the preferred angle between the corresponding subunits by three methods: (1) energy minimization, (2) free MD simulations, and (3) potential of mean force calculations. We find that the results from all three methods are consistent with each other, and when taken together, it allows one to predict with reasonable level of confidence the sizes of the corresponding ring structures. One finds that X and ACI very likely form a 9-ring, while MOLI is more likely to form an 8-ring than a 9-ring. Finally, we discuss both the merits and limitations of all three prediction methods. Copyright © 2011 Wiley-Liss, Inc.

  9. Molecular sieving through a graphene nanopore: non-equilibrium molecular dynamics simulation

    Institute of Scientific and Technical Information of China (English)

    Chengzhen Sun; Bofeng Bai

    2017-01-01

    Two-dimensional graphene nanopores have shown great promise as ultra-permeable molecular sieves based on their size-sieving effects.We design a nitrogen/hydrogen modified graphene nanopore and conduct a transient non-equilibrium molecular dynamics simulation on its molecular sieving effects.The distinct time-varying molecular crossing numbers show that this special nanopore can efficiently sieve CO2 and H2S molecules from CH4 molecules with high selectivity.By analyzing the molecular structure and pore functionalization-related molecular orientation and permeable zone in the nanopore,density distribution in the molecular adsorption layer on the graphene surface,as well as other features,the molecular sieving mechanisms of graphene nanopores are revealed.Finally,several implications on the design of highly-efficient graphene nanopores,especially for determining the porosity and chemical functionalization,as gas separation membranes are summarized based on the identified phenomena and mechanisms.

  10. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations.

    Science.gov (United States)

    Deng, Lu; Du, Jincheng

    2018-01-14

    Borosilicate glasses form an important glass forming system in both glass science and technologies. The structure and property changes of borosilicate glasses as a function of thermal history in terms of cooling rate during glass formation and simulation system sizes used in classical molecular dynamics (MD) simulation were investigated with recently developed composition dependent partial charge potentials. Short and medium range structural features such as boron coordination, Si and B Q n distributions, and ring size distributions were analyzed to elucidate the effects of cooling rate and simulation system size on these structure features and selected glass properties such as glass transition temperature, vibration density of states, and mechanical properties. Neutron structure factors, neutron broadened pair distribution functions, and vibrational density of states were calculated and compared with results from experiments as well as ab initio calculations to validate the structure models. The results clearly indicate that both cooling rate and system size play an important role on the structures of these glasses, mainly by affecting the 3 B and 4 B distributions and consequently properties of the glasses. It was also found that different structure features and properties converge at different sizes or cooling rates; thus convergence tests are needed in simulations of the borosilicate glasses depending on the targeted properties. The results also shed light on the complex thermal history dependence on structure and properties in borosilicate glasses and the protocols in MD simulations of these and other glass materials.

  11. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations

    Science.gov (United States)

    Deng, Lu; Du, Jincheng

    2018-01-01

    Borosilicate glasses form an important glass forming system in both glass science and technologies. The structure and property changes of borosilicate glasses as a function of thermal history in terms of cooling rate during glass formation and simulation system sizes used in classical molecular dynamics (MD) simulation were investigated with recently developed composition dependent partial charge potentials. Short and medium range structural features such as boron coordination, Si and B Qn distributions, and ring size distributions were analyzed to elucidate the effects of cooling rate and simulation system size on these structure features and selected glass properties such as glass transition temperature, vibration density of states, and mechanical properties. Neutron structure factors, neutron broadened pair distribution functions, and vibrational density of states were calculated and compared with results from experiments as well as ab initio calculations to validate the structure models. The results clearly indicate that both cooling rate and system size play an important role on the structures of these glasses, mainly by affecting the 3B and 4B distributions and consequently properties of the glasses. It was also found that different structure features and properties converge at different sizes or cooling rates; thus convergence tests are needed in simulations of the borosilicate glasses depending on the targeted properties. The results also shed light on the complex thermal history dependence on structure and properties in borosilicate glasses and the protocols in MD simulations of these and other glass materials.

  12. Observation of propane cluster size distributions during nucleation and growth in a Laval expansion

    Energy Technology Data Exchange (ETDEWEB)

    Ferreiro, Jorge J.; Chakrabarty, Satrajit; Schläppi, Bernhard; Signorell, Ruth [Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich (Switzerland)

    2016-12-07

    We report on molecular-level studies of the condensation of propane gas and propane/ethane gas mixtures in the uniform (constant pressure and temperature) postnozzle flow of Laval expansions using soft single-photon ionization by vacuum ultraviolet light and mass spectrometric detection. The whole process, from the nucleation to the growth to molecular aggregates of sizes of several nanometers (∼5 nm), can be monitored at the molecular level with high time-resolution (∼3 μs) for a broad range of pressures and temperatures. For each time, pressure, and temperature, a whole mass spectrum is recorded, which allows one to determine the critical cluster size range for nucleation as well as the kinetics and mechanisms of cluster-size specific growth. The detailed information about the size, composition, and population of individual molecular clusters upon condensation provides unique experimental data for comparison with future molecular-level simulations.

  13. Influence of size and temperature on the phase stability and thermophysical properties of anatase TiO2 nanoparticles: molecular dynamics simulation

    International Nuclear Information System (INIS)

    Okeke, George; Hammond, Robert B.; Joseph Antony, S.

    2013-01-01

    Nanoparticles have attracted the attention of researchers in a number of multidisciplinary fields as they possess enhanced structural and physical properties, which make them desirable to a wide range of industries. These enhancements have mostly been attributed to their large surface area-to-volume ratio. However, the effect of temperature on the structural and surface properties of nanoparticles of different sizes is still not well understood, an aspect addressed in the present work. Using molecular dynamics simulations, we have performed investigations on anatase TiO 2 nanoparticles with sizes ranging between 2 and 6 nm and at different temperatures. Structural and surface properties including surface energies are reported for the different nanoparticle sizes, temperature and simulation time step. Comparisons of surface energies for the different nanoparticle sizes show that surface energy increases to a maximum (optimum value) especially for temperatures between 300 and 1,500 K, as the particle size increases after which no further significant increase is observed. Studies conducted on the change of final structure with respect to the initial structure of the particles, revealed that atomic structural disordering is more visible at the surface layer compared to the bulk or core of the final structure. Further studies conducted on the sphericity of the nanoparticles showed that the particles became less spherical with increase in temperature.

  14. Molecular Level Design Principle behind Optimal Sizes of Photosynthetic LH2 Complex: Taming Disorder through Cooperation of Hydrogen Bonding and Quantum Delocalization.

    Science.gov (United States)

    Jang, Seogjoo; Rivera, Eva; Montemayor, Daniel

    2015-03-19

    The light harvesting 2 (LH2) antenna complex from purple photosynthetic bacteria is an efficient natural excitation energy carrier with well-known symmetric structure, but the molecular level design principle governing its structure-function relationship is unknown. Our all-atomistic simulations of nonnatural analogues of LH2 as well as those of a natural LH2 suggest that nonnatural sizes of LH2-like complexes could be built. However, stable and consistent hydrogen bonding (HB) between bacteriochlorophyll and the protein is shown to be possible only near naturally occurring sizes, leading to significantly smaller disorder than for nonnatural ones. Extensive quantum calculations of intercomplex exciton transfer dynamics, sampled for a large set of disorder, reveal that taming the negative effect of disorder through a reliable HB as well as quantum delocalization of the exciton is a critical mechanism that makes LH2 highly functional, which also explains why the natural sizes of LH2 are indeed optimal.

  15. Molecular dynamics simulation studies of mid-size liquid n-Alkanes, C12–C160

    International Nuclear Information System (INIS)

    Kwon, Tae Woo; Lee, Song Hi

    2015-01-01

    In this study, we report the results of molecular dynamics simulations (MD) for model systems of mid-size liquid n-alkanes (C 12 –C 160 ) at several temperatures (⁓2700 K) in canonical ensembles to calculate structural and dynamic properties (viscosity η, self-diffusion constant D, and monomeric friction constant ζ). For the small n-alkanes for n ≤ 80, the chains are clearly ≥ 1, which leads to the conclusion that the liquid n-alkanes are far away from the Rouse regime, but for the n-alkanes for n ≥ 120, the chains are ⁓ 1 and they are Gaussian. It is found that the long chains of these n-alkanes at high temperatures show abnormalities in density, viscosity, and monomeric friction constant. The mass and temperature dependences of structural and dynamic properties (η, D, and ζ) are discussed

  16. Particle Size Affects Concentration-Dependent Cytotoxicity of Chitosan Nanoparticles towards Mouse Hematopoietic Stem Cells

    International Nuclear Information System (INIS)

    Zaki, S. S. O.; Ibrahim, M. N.; Katas, H.

    2015-01-01

    Chitosan nanoparticles (CSNPs) have been extensively applied in medical and pharmaceutical fields as promising drug delivery systems. Despite that, the safety of CSNPs remains inadequate and needs further investigation, particularly on hematopoietic stem cells (HSCs). CSNPs were prepared by ionic gelation method and later were characterized for their physical characteristics (particle size and zeta potential). Cytotoxicity of CSNPs was assessed by MTT assay. Particle size was highly influenced by chitosan concentration and molecular weight (medium and high molecular weight (MMW and HMW)). Higher chitosan concentration and molecular weight produced larger nanoparticles. Zeta potential of CSNPs was not significantly affected by chitosan concentrations and molecular weights used in the present study. MMW had a better stability than HMW CSNPs as their particle size and zeta potential were not significantly altered after autoclaving. Cytotoxicity of CSNPs was influenced by zeta potential and particle size. On the other hand, chitosan concentration and molecular weight indirectly influenced cytotoxicity by affecting particle size and zeta potential of CSNPs. In conclusion, cytotoxicity of CSNPs was mainly attributed to their physical characteristics and this opens a strategy to ensure the safety of CSNPs applications in stem cell technology.

  17. New aids for the non-invasive prenatal diagnosis of achondroplasia: dysmorphic features, charts of fetal size and molecular confirmation using cell-free fetal DNA in maternal plasma

    NARCIS (Netherlands)

    Chitty, L. S.; Griffin, D. R.; Meaney, C.; Barrett, A.; Khalil, A.; Pajkrt, E.; Cole, T. J.

    2011-01-01

    To improve the prenatal diagnosis of achondroplasia by constructing charts of fetal size, defining frequency of sonographic features and exploring the role of non-invasive molecular diagnosis based on cell-free fetal deoxyribonucleic acid (DNA) in maternal plasma. Data on fetuses with a confirmed

  18. Genome Size, Molecular Phylogeny, and Evolutionary History of the Tribe Aquilarieae (Thymelaeaceae, the Natural Source of Agarwood

    Directory of Open Access Journals (Sweden)

    Azman H. Farah

    2018-05-01

    Full Text Available The tribe Aquilarieae of the family Thymelaeaceae consists of two genera, Aquilaria and Gyrinops, with a total of 30 species, distributed from northeast India, through southeast Asia and the south of China, to Papua New Guinea. They are an important botanical resource for fragrant agarwood, a prized product derived from injured or infected stems of these species. The aim of this study was to estimate the genome size of selected Aquilaria species and comprehend the evolutionary history of Aquilarieae speciation through molecular phylogeny. Five non-coding chloroplast DNA regions and a nuclear region were sequenced from 12 Aquilaria and three Gyrinops species. Phylogenetic trees constructed using combined chloroplast DNA sequences revealed relationships of the studied 15 members in Aquilarieae, while nuclear ribosomal DNA internal transcribed spacer (ITS sequences showed a paraphyletic relationship between Aquilaria species from Indochina and Malesian. We exposed, for the first time, the estimated divergence time for Aquilarieae speciation, which was speculated to happen during the Miocene Epoch. The ancestral split and biogeographic pattern of studied species were discussed. Results showed no large variation in the 2C-values for the five Aquilaria species (1.35–2.23 pg. Further investigation into the genome size may provide additional information regarding ancestral traits and its evolution history.

  19. Molecular Structural Transformation of 2:1 Clay Minerals by a Constant-Pressure Molecular Dynamics Simulation Method

    International Nuclear Information System (INIS)

    Wang, J.; Gutierre, M.S.

    2010-01-01

    This paper presents results of a molecular dynamics simulation study of dehydrated 2:1 clay minerals using the Parrinello-Rahman constant-pressure molecular dynamics method. The method is capable of simulating a system under the most general applied stress conditions by considering the changes of MD cell size and shape. Given the advantage of the method, it is the major goal of the paper to investigate the influence of imposed cell boundary conditions on the molecular structural transformation of 2:1 clay minerals under different normal pressures. Simulation results show that the degrees of freedom of the simulation cell (i.e., whether the cell size or shape change is allowed) determines the final equilibrated crystal structure of clay minerals. Both the MD method and the static method have successfully revealed unforeseen structural transformations of clay minerals upon relaxation under different normal pressures. It is found that large shear distortions of clay minerals occur when full allowance is given to the cell size and shape change. A complete elimination of the interlayer spacing is observed in a static simulation. However, when only the cell size change is allowed, interlayer spacing is retained, but large internal shear stresses also exist.

  20. Microbe-associated molecular pattern (MAMP) signatures, synergy, size and charge

    DEFF Research Database (Denmark)

    Aslam, Shazia N.; Erbs, Gitte; Morrissey, Kate L.

    2009-01-01

    Triggering of defences by microbes has mainly been investigated using single elicitors or microbe-associated molecular patterns (MAMPs), but MAMPs are released in planta as complex mixtures together with endogenous oligogalacturonan (OGA) elicitor. We investigated the early responses in Arabidops...

  1. ChemCam Passive Sky Spectroscopy at Gale Crater, Mars: Interannual Variability in Dust Aerosol Particle Size, Missing Water Vapor, and the Molecular Oxygen Problem

    Science.gov (United States)

    McConnochie, T. H.; Smith, M. D.; Wolff, M. J.; Bender, S. C.; Lemmon, M. T.; Wiens, R. C.; Maurice, S.; Gasnault, O.; Lasue, J.; Meslin, P. Y.; Harri, A. M.; Genzer, M.; Kemppinen, O.; Martinez, G.; DeFlores, L. P.; Blaney, D. L.; Johnson, J. R.; Bell, J. F., III; Trainer, M. G.; Lefèvre, F.; Atreya, S. K.; Mahaffy, P. R.; Wong, M. H.; Franz, H. B.; Guzewich, S.; Villanueva, G. L.; Khayat, A. S.

    2017-12-01

    The Mars Science Laboratory's (MSL) ChemCam spectrometer measures atmospheric aerosol properties and gas abundances by operating in passive mode and observing scattered sky light at two different elevation angles. We have previously [e. g. 1, 2] presented the methodology and results of these ChemCam Passive Sky observations. Here we will focus on three of the more surprising results that we have obtained: (1) depletion of the column water vapor at Gale Crater relative to that of the surrounding region combined with a strong enhancement of the local column water vapor relative to pre-dawn in-situ measurements, (2) an interannual change in the effective particle size of dust aerosol during the aphelion season, and (3) apparent seasonal and interannual variability in molecular oxygen that differs significantly from the expected behavior of a non-condensable trace gas and differs significantly from global climate model expectations. The ChemCam passive sky water vapor measurements are quite robust but their interpretation depends on the details of measurements as well as on the types of water vapor vertical distributions that can be produced by climate models. We have a high degree of confidence in the dust particle size changes but since aerosol results in general are subject to a variety of potential systematic effects our particle size results would benefit from confirmation by other techniques [c.f. 3]. For the ChemCam passive sky molecular oxygen results we are still working to constrain the uncertainties well enough to confirm the observed surprising behavior, motivated by similarly surprising atmospheric molecular oxygen variability observed by MSL's Sample Analysis at Mars (SAM) instrument [4]. REFERENCES: [1] McConnochie, et al. (2017), Icarus (submitted). [2] McConnochie, et al. (2017), abstract # 3201, The 6th International Workshop on the Mars Atmosphere: Granada, Spain. [3] Vicente-Retortillo et al. (2017), GRL, 44. [4] Trainer et al. (2017), 2017 AGU Fall

  2. Rapid Convergence of Energy and Free Energy Profiles with Quantum Mechanical Size in Quantum Mechanical-Molecular Mechanical Simulations of Proton Transfer in DNA.

    Science.gov (United States)

    Das, Susanta; Nam, Kwangho; Major, Dan Thomas

    2018-03-13

    In recent years, a number of quantum mechanical-molecular mechanical (QM/MM) enzyme studies have investigated the dependence of reaction energetics on the size of the QM region using energy and free energy calculations. In this study, we revisit the question of QM region size dependence in QM/MM simulations within the context of energy and free energy calculations using a proton transfer in a DNA base pair as a test case. In the simulations, the QM region was treated with a dispersion-corrected AM1/d-PhoT Hamiltonian, which was developed to accurately describe phosphoryl and proton transfer reactions, in conjunction with an electrostatic embedding scheme using the particle-mesh Ewald summation method. With this rigorous QM/MM potential, we performed rather extensive QM/MM sampling, and found that the free energy reaction profiles converge rapidly with respect to the QM region size within ca. ±1 kcal/mol. This finding suggests that the strategy of QM/MM simulations with reasonably sized and selected QM regions, which has been employed for over four decades, is a valid approach for modeling complex biomolecular systems. We point to possible causes for the sensitivity of the energy and free energy calculations to the size of the QM region, and potential implications.

  3. Molecular dynamics simulations of the effect of shape and size of SiO2 nanoparticle dopants on insulation paper cellulose

    Directory of Open Access Journals (Sweden)

    Chao Tang

    2016-12-01

    Full Text Available The effect of silica nanoparticle (Nano-SiO2 dopants on insulation paper cellulose, and the interaction between them, was investigated using molecular dynamics simulations. The mechanical properties, interactions, and cellulose-Nano-SiO2 compatibility of composite models of cellulose doped with Nano-SiO2 were studied. An increase in Nano-SiO2 size leads to a decrease in the mechanical properties, and a decrease in the anti-deformation ability of the composite model. The binding energies and bond energies per surface area of the composite models indicate that the bonding interaction between spherical Nano-SiO2 and cellulose is the strongest among the four different Nano-SiO2 shapes that are investigated. The solubilities of the four composite models decrease with increasing Nano-SiO2 size, and the difference between the solubility of pure cellulose and those of the composite models increases with increasing Nano-SiO2 size. Good doping effects with the highest cellulose-Nano-SiO2 compatibility are achieved for the cellulose model doped with spherical Nano-SiO2 of 10 Å in diameter. These findings provide a method for modifying the mechanical properties of cellulose by doping, perhaps for improving insulation dielectrics.

  4. New aids for the non-invasive prenatal diagnosis of achondroplasia: dysmorphic features, charts of fetal size and molecular confirmation using cell-free fetal DNA in maternal plasma.

    Science.gov (United States)

    Chitty, L S; Griffin, D R; Meaney, C; Barrett, A; Khalil, A; Pajkrt, E; Cole, T J

    2011-03-01

    To improve the prenatal diagnosis of achondroplasia by constructing charts of fetal size, defining frequency of sonographic features and exploring the role of non-invasive molecular diagnosis based on cell-free fetal deoxyribonucleic acid (DNA) in maternal plasma. Data on fetuses with a confirmed diagnosis of achondroplasia were obtained from our databases, records reviewed, sonographic features and measurements determined and charts of fetal size constructed using the LMS (lambda-mu-sigma) method and compared with charts used in normal pregnancies. Cases referred to our regional genetics laboratory for molecular diagnosis using cell-free fetal DNA were identified and results reviewed. Twenty-six cases were scanned in our unit. Fetal size charts showed that femur length was usually on or below the 3(rd) centile by 25 weeks' gestation, and always below the 3(rd) by 30 weeks. Head circumference was above the 50(th) centile, increasing to above the 95(th) when compared with normal for the majority of fetuses. The abdominal circumference was also increased but to a lesser extent. Commonly reported sonographic features were bowing of the femora, frontal bossing, short fingers, a small chest and polyhydramnios. Analysis of cell-free fetal DNA in six pregnancies confirmed the presence of the c.1138G > A mutation in the FGRF3 gene in four cases with achondroplasia, but not the two subsequently found to be growth restricted. These data should improve the accuracy of diagnosis of achondroplasia based on sonographic findings, and have implications for targeted molecular confirmation that can reliably and safely be carried out using cell-free fetal DNA. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  5. Molecular scale

    Directory of Open Access Journals (Sweden)

    Christopher H. Childers

    2016-03-01

    Full Text Available This manuscript demonstrates the molecular scale cure rate dependence of di-functional epoxide based thermoset polymers cured with amines. A series of cure heating ramp rates were used to determine the influence of ramp rate on the glass transition temperature (Tg and sub-Tg transitions and the average free volume hole size in these systems. The networks were comprised of 3,3′-diaminodiphenyl sulfone (33DDS and diglycidyl ether of bisphenol F (DGEBF and were cured at ramp rates ranging from 0.5 to 20 °C/min. Differential scanning calorimetry (DSC and NIR spectroscopy were used to explore the cure ramp rate dependence of the polymer network growth, whereas broadband dielectric spectroscopy (BDS and free volume hole size measurements were used to interrogate networks’ molecular level structural variations upon curing at variable heating ramp rates. It was found that although the Tg of the polymer matrices was similar, the NIR and DSC measurements revealed a strong correlation for how these networks grow in relation to the cure heating ramp rate. The free volume analysis and BDS results for the cured samples suggest differences in the molecular architecture of the matrix polymers due to cure heating rate dependence.

  6. Fucosylated chondroitin sulfate oligosaccharides exert anticoagulant activity by targeting at intrinsic tenase complex with low FXII activation: Importance of sulfation pattern and molecular size.

    Science.gov (United States)

    Li, Junhui; Li, Shan; Yan, Lufeng; Ding, Tian; Linhardt, Robert J; Yu, Yanlei; Liu, Xinyue; Liu, Donghong; Ye, Xingqian; Chen, Shiguo

    2017-10-20

    Fucosylated chondroitin sulfates (fCSs) are structurally unusual glycosaminoglycans isolated from sea cucumbers that exhibit potent anticoagulant activity. These fCSs were isolated from sea cucumber, Isostichopus badionotus and Pearsonothuria graeffei. Fenton reaction followed by gel filtration chromatography afforded fCS oligosaccharides, with different sulfation patterns identified by mass and NMR spectroscopy, and these were used to clarify the relationship between the structures and the anticoagulant activities of fCSs. In vitro activities were measured by activated partial thromboplastin time (APTT), thrombin time (TT), thrombin and factor Xa inhibition, and activation of FXII. The results showed that free radicals preferentially acted on GlcA residues affording oligosaccharides that were purified from both fCSs. The inhibition of thrombin and factor X activities, mediated through antithrombin III and heparin cofactor II of fCSs oligosaccharides were affected by their molecular weight and fucose branches. Oligosaccharides with different sulfation patterns of the fucose branching had a similar ability to inhibit the FXa by the intrinsic factor Xase (factor IXa-VIIIa complex). Oligosaccharides with 2,4-O-sulfo fucose branches from fCS-Ib showed higher activities than ones with 3,4-O-disulfo branches obtained from fCS-Pg. Furthermore, a heptasaccharide is the minimum size oligosaccharide required for anticoagulation and FXII activation. This activity was absent for fCS oligosaccharides smaller than nonasaccharides. Molecular size and fucose branch sulfation are important for anticoagulant activity and reduction of size can reverse the activation of FXII caused by native fCSs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Trees of unusual size: biased inference of early bursts from large molecular phylogenies.

    Directory of Open Access Journals (Sweden)

    Matthew W Pennell

    Full Text Available An early burst of speciation followed by a subsequent slowdown in the rate of diversification is commonly inferred from molecular phylogenies. This pattern is consistent with some verbal theory of ecological opportunity and adaptive radiations. One often-overlooked source of bias in these studies is that of sampling at the level of whole clades, as researchers tend to choose large, speciose clades to study. In this paper, we investigate the performance of common methods across the distribution of clade sizes that can be generated by a constant-rate birth-death process. Clades which are larger than expected for a given constant-rate branching process tend to show a pattern of an early burst even when both speciation and extinction rates are constant through time. All methods evaluated were susceptible to detecting this false signature when extinction was low. Under moderate extinction, both the [Formula: see text]-statistic and diversity-dependent models did not detect such a slowdown but only because the signature of a slowdown was masked by subsequent extinction. Some models which estimate time-varying speciation rates are able to detect early bursts under higher extinction rates, but are extremely prone to sampling bias. We suggest that examining clades in isolation may result in spurious inferences that rates of diversification have changed through time.

  8. Atomic size effect on the formation of ionized cluster beam epitaxy in Lennard-Jones systems

    International Nuclear Information System (INIS)

    Hsieh Horngming; Averback, R.S.

    1991-01-01

    Ionized cluster beam deposition is studied by molecular dynamics simulations in which the atomic size of incident cluster atoms is different from the size of substrate atoms. Lennard-Jones interatomic potentials are used for the two-component system. The results provide the morphologies of the overlayers for various atomic sizes and are compared to simulation results of molecular beam epitaxy. (orig.)

  9. Microcavity single virus detection and sizing with molecular sensitivity

    Science.gov (United States)

    Dantham, V. R.; Holler, S.; Kolchenko, V.; Wan, Z.; Arnold, S.

    2013-02-01

    We report the label-free detection and sizing of the smallest individual RNA virus, MS2 by a spherical microcavity. Mass of this virus is ~6 ag and produces a theoretical resonance shift ~0.25 fm upon adsorbing an individual virus at the equator of the bare microcavity, which is well below the r.m.s background noise of 2 fm. However, detection was accomplished with ease (S/N = 8, Q = 4x105) using a single dipole stimulated plasmonic-nanoshell as a microcavity wavelength shift enhancer. Analytical expressions based on the "reactive sensing principle" are developed to extract the radius of the virus from the measured signals. Estimated limit of detection for these experiments was ~0.4 ag or 240 kDa below the size of all known viruses, largest globular and elongated proteins [Phosphofructokinase (345 kDa) and Fibrinogen (390 kDa), respectively].

  10. Bioavailability of Carbon Nanomaterial-Adsorbed Polycyclic Aromatic Hydrocarbons to Pimphales promelas: Influence of Adsorbate Molecular Size and Configuration.

    Science.gov (United States)

    Linard, Erica N; Apul, Onur G; Karanfil, Tanju; van den Hurk, Peter; Klaine, Stephen J

    2017-08-15

    Despite carbon nanomaterials' (CNMs) potential to alter the bioavailability of adsorbed contaminants, information characterizing the relationship between adsorption behavior and bioavailability of CNM-adsorbed contaminants is still limited. To investigate the influence of CNM morphology and organic contaminant (OC) physicochemical properties on this relationship, adsorption isotherms were generated for a suite of polycyclic aromatic hydrocarbons (PAHs) on multiwalled carbon nanotubes (MWCNTs) and exfoliated graphene (GN) in conjunction with determining the bioavailability of the adsorbed PAHs to Pimphales promelas using bile analysis via fluorescence spectroscopy. Although it appeared that GN adsorbed PAHs indiscriminately compared to MWCNTs, the subsequent bioavailability of GN-adsorbed PAHs was more sensitive to PAH morphology than MWCNTs. GN was effective at reducing bioavailability of linear PAHs by ∼70%, but had little impact on angular PAHs. MWCNTs were sensitive to molecular size, where bioavailability of two-ringed naphthalene was reduced by ∼80%, while bioavailability of the larger PAHs was reduced by less than 50%. Furthermore, the reduction in bioavailability of CNM-adsorbed PAHs was negatively correlated with the amount of CNM surface area covered by the adsorbed-PAHs. This study shows that the variability in bioavailability of CNM-adsorbed PAHs is largely driven by PAH size, configuration and surface area coverage.

  11. Study on Relation between Hydrodynamic Feature Size of HPAM and Pore Size of Reservoir Rock in Daqing Oilfield

    Directory of Open Access Journals (Sweden)

    Qing Fang

    2015-01-01

    Full Text Available The flow mechanism of the injected fluid was studied by the constant pressure core displacement experiments in the paper. It is assumed under condition of the constant pressure gradient in deep formation based on the characteristic of pressure gradient distribution between the injection and production wells and the mobility of different polymer systems in deep reservoir. Moreover, the flow rate of steady stream was quantitatively analyzed and the critical flow pressure gradient of different injection parameters polymer solutions in different permeability cores was measured. The result showed that polymer hydrodynamic feature size increases with the increasing molecular weight. If the concentration of polymer solutions overlaps beyond critical concentration, then molecular chains entanglement will be occur and cause the augment of its hydrodynamic feature size. The polymer hydrodynamic feature size decreased as the salinity of the dilution water increased. When the median radius of the core pore and throat was 5–10 times of the polymer system hydrodynamic feature size, the polymer solution had a better compatibility with the microscopic pore structure of the reservoir. The estimation of polymer solutions mobility in the porous media can be used to guide the polymer displacement plan and select the optimum injection parameters.

  12. Cooling rate and size effects on the medium-range structure of multicomponent oxide glasses simulated by molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tilocca, Antonio [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2013-09-21

    A set of molecular dynamics simulations were performed to investigate the effect of cooling rate and system size on the medium-range structure of melt-derived multicomponent silicate glasses, represented by the quaternary 45S5 Bioglass composition. Given the significant impact of the glass degradation on applications of these materials in biomedicine and nuclear waste disposal, bulk structural features which directly affect the glass dissolution process are of particular interest. Connectivity of the silicate matrix, ion clustering and nanosegregation, distribution of ring and chain structural patterns represent critical features in this context, which can be directly extracted from the models. A key issue is represented by the effect of the computational approach on the corresponding glass models, especially in light of recent indications questioning the suitability of conventional MD approaches (that is, involving melt-and-quench of systems containing ∼10{sup 3} atoms at cooling rates of 5-10 K/ps) when applied to model these glasses. The analysis presented here compares MD models obtained with conventional and nonconventional cooling rates and system sizes, highlighting the trend and range of convergence of specific structural features in the medium range. The present results show that time-consuming computational approaches involving much lower cooling rates and/or significantly larger system sizes are in most cases not necessary in order to obtain a reliable description of the medium-range structure of multicomponent glasses. We identify the convergence range for specific properties and use them to discuss models of several glass compositions for which a possible influence of cooling-rate or size effects had been previously hypothesized. The trends highlighted here represent an important reference to obtain reliable models of multicomponent glasses and extract converged medium-range structural features which affect the glass degradation and thus their

  13. Cooling rate and size effects on the medium-range structure of multicomponent oxide glasses simulated by molecular dynamics

    International Nuclear Information System (INIS)

    Tilocca, Antonio

    2013-01-01

    A set of molecular dynamics simulations were performed to investigate the effect of cooling rate and system size on the medium-range structure of melt-derived multicomponent silicate glasses, represented by the quaternary 45S5 Bioglass composition. Given the significant impact of the glass degradation on applications of these materials in biomedicine and nuclear waste disposal, bulk structural features which directly affect the glass dissolution process are of particular interest. Connectivity of the silicate matrix, ion clustering and nanosegregation, distribution of ring and chain structural patterns represent critical features in this context, which can be directly extracted from the models. A key issue is represented by the effect of the computational approach on the corresponding glass models, especially in light of recent indications questioning the suitability of conventional MD approaches (that is, involving melt-and-quench of systems containing ∼10 3 atoms at cooling rates of 5-10 K/ps) when applied to model these glasses. The analysis presented here compares MD models obtained with conventional and nonconventional cooling rates and system sizes, highlighting the trend and range of convergence of specific structural features in the medium range. The present results show that time-consuming computational approaches involving much lower cooling rates and/or significantly larger system sizes are in most cases not necessary in order to obtain a reliable description of the medium-range structure of multicomponent glasses. We identify the convergence range for specific properties and use them to discuss models of several glass compositions for which a possible influence of cooling-rate or size effects had been previously hypothesized. The trends highlighted here represent an important reference to obtain reliable models of multicomponent glasses and extract converged medium-range structural features which affect the glass degradation and thus their application

  14. Predicting the performance of molecularly imprinted polymers: Selective extraction of caffeine by molecularly imprinted solid phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Farrington, Keith [School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland); Magner, Edmond [Materials and Surface Science Institute, Chemical and Environmental Sciences Department, University of Limerick, Limerick (Ireland); Regan, Fiona [School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland)]. E-mail: fiona.regan@dcu.ie

    2006-04-27

    A rational design approach was taken to the planning and synthesis of a molecularly imprinted polymer capable of extracting caffeine (the template molecule) from a standard solution of caffeine and further from a food sample containing caffeine. Data from NMR titration experiments in conjunction with a molecular modelling approach was used in predicting the relative ratios of template to functional monomer and furthermore determined both the choice of solvent (porogen) and the amount used for the study. In addition the molecular modelling program yielded information regarding the thermodynamic stability of the pre-polymerisation complex. Post-polymerisation analysis of the polymer itself by analysis of the pore size distribution by BET yielded significant information regarding the nature of the size and distribution of the pores within the polymer matrix. Here is proposed a stepwise procedure for the development and testing of a molecularly imprinted polymer using a well-studied compound-caffeine as a model system. It is shown that both the physical characteristics of a molecularly imprinted polymer (MIP) and the analysis of the pre-polymerisation complex can yield vital information, which can predict how well a given MIP will perform.

  15. Predicting the performance of molecularly imprinted polymers: Selective extraction of caffeine by molecularly imprinted solid phase extraction

    International Nuclear Information System (INIS)

    Farrington, Keith; Magner, Edmond; Regan, Fiona

    2006-01-01

    A rational design approach was taken to the planning and synthesis of a molecularly imprinted polymer capable of extracting caffeine (the template molecule) from a standard solution of caffeine and further from a food sample containing caffeine. Data from NMR titration experiments in conjunction with a molecular modelling approach was used in predicting the relative ratios of template to functional monomer and furthermore determined both the choice of solvent (porogen) and the amount used for the study. In addition the molecular modelling program yielded information regarding the thermodynamic stability of the pre-polymerisation complex. Post-polymerisation analysis of the polymer itself by analysis of the pore size distribution by BET yielded significant information regarding the nature of the size and distribution of the pores within the polymer matrix. Here is proposed a stepwise procedure for the development and testing of a molecularly imprinted polymer using a well-studied compound-caffeine as a model system. It is shown that both the physical characteristics of a molecularly imprinted polymer (MIP) and the analysis of the pre-polymerisation complex can yield vital information, which can predict how well a given MIP will perform

  16. Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: The control of particle size suitable for different analytical applications

    International Nuclear Information System (INIS)

    Yoshimatsu, Keiichi; Reimhult, Kristina; Krozer, Anatol; Mosbach, Klaus; Sode, Koji; Ye Lei

    2007-01-01

    Molecularly imprinted polymers (MIPs) are being increasingly used as selective adsorbents in different analytical applications. To satisfy the different application purposes, MIPs with well controlled physical forms in different size ranges are highly desirable. For examples, MIP nanoparticles are very suitable to be used to develop binding assays and for microfluidic separations, whereas MIP beads with diameter of 1.5-3 μm can be more appropriate to use in new analytical liquid chromatography systems. Previous studies have demonstrated that imprinted microspheres and nanoparticles can be synthesized using a simple precipitation polymerization method. Despite that the synthetic method is straightforward, the final particle size obtained has been difficult to adjust for a given template. In this work, we initiated to study new synthetic conditions to obtain MIP beads with controllable size in the nano- to micro-meter range, using racemic propranolol as a model template. Varying the composition of the cross-linking monomer allowed the particle size of the MIP beads to be altered in the range of 130 nm to 2.4 μm, whereas the favorable binding property of the imprinted beads remained intact. The chiral recognition sites were further characterized with equilibrium binding analysis using tritium-labeled (S)-propranolol as a tracer. In general, the imprinted sites displayed a high chiral selectivity: the apparent affinity of the (S)-imprinted sites for (S)-propranolol was 20 times that of for (R)-propranolol. Compared to previously reported irregular particles, the chiral selectivity of competitive radioligand binding assays developed from the present imprinted beads has been increased by six to seven folds in an optimized aqueous solvent

  17. Gold Nanoparticles Size Design and Control by Poly(N,N′-diethylaminoethyl methacrylate

    Directory of Open Access Journals (Sweden)

    Norma A. Cortez-Lemus

    2015-01-01

    Full Text Available Poly(N,N′-diethylaminoethyl methacrylate (PDEAEM with different molecular weights was used to stabilize gold nanoparticles (AuNPs obtained by in situ reduction of tetrachloroauric acid using citrates under acidic conditions and in organic/alcoholic medium. The influence of the pH value on gold nanoparticle size in the presence of PDEAEM was investigated. Results show that the pH of the reacting mixture has a dramatic effect on the size, polydispersity, and morphology of the resulting AuNPs. Moreover, the size of the nanoparticles (NPs may be modified by changing the solution’s pH or by changing the solvent type. Electron microscope images showed that the sizes of AuNPs coated with PDEAEM were not sensitive to the variation of the polymer molecular weight in the range between 9000 and 29300 g/mol; however their aggregation behavior depended strongly on the polymer molecular weight as revealed by dynamic light scattering studies. AuNPs stabilized with PDEAEM (AuNP@PDEAEM are stable in water at acidic pH and in organic polar solvents.

  18. Atomic size effect on critical cooling rate and glass formation

    International Nuclear Information System (INIS)

    Jalali, Payman; Li Mo

    2005-01-01

    Atomic size effect on critical cooling rate and glass formability in a model binary system is investigated using molecular dynamics simulation. To isolate atomic size effect from the rest of the factors that critically influence the glass formation, a hard sphere model is employed in conjunction with a newly developed densification method. The glass formability is defined as a set of optimal conditions that result in the slowest cooling rate of the glass-forming liquid. Critical cooling rates are identified from extensive molecular dynamics simulations. A kinetic glass-forming diagram is mapped out that marks the boundary between the glass-forming regions and competing crystalline phases in terms of the parameters of the atomic size ratio and alloy concentration. It is found that the potency of the atomic size difference on glass formation is influenced greatly by the competing metastable and equilibrium crystalline phases in the system, and the kinetic processes leading to the formation of these phases. The mechanisms of the atomic size effect on topological instability of crystal packing and glass formation are discussed

  19. Molecular Structure of Human-Liver Glycogen.

    Directory of Open Access Journals (Sweden)

    Bin Deng

    Full Text Available Glycogen is a highly branched glucose polymer which is involved in maintaining blood-sugar homeostasis. Liver glycogen contains large composite α particles made up of linked β particles. Previous studies have shown that the binding which links β particles into α particles is impaired in diabetic mice. The present study reports the first molecular structural characterization of human-liver glycogen from non-diabetic patients, using transmission electron microscopy for morphology and size-exclusion chromatography for the molecular size distribution; the latter is also studied as a function of time during acid hydrolysis in vitro, which is sensitive to certain structural features, particularly glycosidic vs. proteinaceous linkages. The results are compared with those seen in mice and pigs. The molecular structural change during acid hydrolysis is similar in each case, and indicates that the linkage of β into α particles is not glycosidic. This result, and the similar morphology in each case, together imply that human liver glycogen has similar molecular structure to those of mice and pigs. This knowledge will be useful for future diabetes drug targets.

  20. System-size corrections for self-diffusion coefficients calculated from molecular dynamics simulations: The case of CO{sub 2}, n-alkanes, and poly(ethylene glycol) dimethyl ethers

    Energy Technology Data Exchange (ETDEWEB)

    Moultos, Othonas A.; Economou, Ioannis G. [Chemical Engineering Program, Texas A& M University at Qatar, P.O. Box 23847, Doha (Qatar); Zhang, Yong; Maginn, Edward J., E-mail: ed@nd.edu [Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Tsimpanogiannis, Ioannis N. [Chemical Engineering Program, Texas A& M University at Qatar, P.O. Box 23847, Doha (Qatar); Environmental Research Laboratory, National Center for Scientific Research “Demokritos,” 15310 Aghia Paraskevi Attikis (Greece)

    2016-08-21

    Molecular dynamics simulations were carried out to study the self-diffusion coefficients of CO{sub 2}, methane, propane, n-hexane, n-hexadecane, and various poly(ethylene glycol) dimethyl ethers (glymes in short, CH{sub 3}O–(CH{sub 2}CH{sub 2}O){sub n}–CH{sub 3} with n = 1, 2, 3, and 4, labeled as G1, G2, G3, and G4, respectively) at different conditions. Various system sizes were examined. The widely used Yeh and Hummer [J. Phys. Chem. B 108, 15873 (2004)] correction for the prediction of diffusion coefficient at the thermodynamic limit was applied and shown to be accurate in all cases compared to extrapolated values at infinite system size. The magnitude of correction, in all cases examined, is significant, with the smallest systems examined giving for some cases a self-diffusion coefficient approximately 15% lower than the infinite system-size extrapolated value. The results suggest that finite size corrections to computed self-diffusivities must be used in order to obtain accurate results.

  1. [Determination of the distribution of relative molecular mass of organic matter by high pressure size exclusion chromatography with UV and TOC detectors].

    Science.gov (United States)

    Zhang, Han; Dong, Bing-Zhi

    2012-09-01

    An on-line high pressure size exclusion chromatography (HPSEC) with UV and TOC detectors was adapted to examine the distribution of relative molecular mass of natural organic matter (NOM). Through synchronous determination of UV254 and TOC responses in a wide range of relative molecular mass, it was possible to accurately characterize the structure of NOM, especially for some non-aromatic and non-conjugated double bond organics which have low response to UV. It was found that, TOC detector was capable of detecting all kinds of organic matters, including sucrose, sodium alginate and other hydrophilic organic compounds. The sample volume had a positively linear correlation with the TOC response, indicating that the larger volume would produce stronger responses. The effect of ion strength was relatively low, shown by the small decrease of peak area (1.2% ) from none to 0.2 mol x L(-1) NaCl. The pH value of tested samples should be adjusted to neutral or acidic because when the samples were alkaline, the results might be inaccurate. Compared to the sample solvents adopted as ultrapure water, the samples prepared by mobile phase solvents had less interference to salt boundary peak. The on-line HPSEC-UV-TOC can be used accurately to characterize the distribution of relative molecular mass and its four fractions in River Xiang.

  2. Molecular control of brain size: Regulators of neural stem cell life, death and beyond

    International Nuclear Information System (INIS)

    Joseph, Bertrand; Hermanson, Ola

    2010-01-01

    The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas members of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or 'pilots', to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.

  3. Molecular control of brain size: Regulators of neural stem cell life, death and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Bertrand [Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm (Sweden); Hermanson, Ola, E-mail: ola.hermanson@ki.se [Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, Stockholm (Sweden)

    2010-05-01

    The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas members of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or 'pilots', to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.

  4. Size scaling of static friction.

    Science.gov (United States)

    Braun, O M; Manini, Nicola; Tosatti, Erio

    2013-02-22

    Sliding friction across a thin soft lubricant film typically occurs by stick slip, the lubricant fully solidifying at stick, yielding and flowing at slip. The static friction force per unit area preceding slip is known from molecular dynamics (MD) simulations to decrease with increasing contact area. That makes the large-size fate of stick slip unclear and unknown; its possible vanishing is important as it would herald smooth sliding with a dramatic drop of kinetic friction at large size. Here we formulate a scaling law of the static friction force, which for a soft lubricant is predicted to decrease as f(m)+Δf/A(γ) for increasing contact area A, with γ>0. Our main finding is that the value of f(m), controlling the survival of stick slip at large size, can be evaluated by simulations of comparably small size. MD simulations of soft lubricant sliding are presented, which verify this theory.

  5. Facile Synthesis of Micron-Sized Hollow Silver Spheres as Substrates for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Lixin Xia

    2014-01-01

    Full Text Available A well-designed type of micron-sized hollow silver sphere was successfully synthesized by a simple hard-template method to be used as substrates for surface-enhanced Raman scattering. 4 Å molecular sieves were employed as a removable solid template. [Ag(NH32]+ was absorbed as the precursor on the surface of the molecular sieve. Formaldehyde was selected as a reducing agent to reduce [Ag(NH32]+, resulting in the formation of a micron-sized silver shell on the surface of the 4 Å molecular sieves. The micron-sized hollow silver spheres were obtained by removing the molecular sieve template. SEM and XRD were used to characterize the structure of the micron-sized hollow silver spheres. The as-prepared micro-silver spheres exhibited robust SERS activity in the presence of adsorbed 4-mercaptobenzoic acid (4-MBA with excitation at 632.8 nm, and the enhancement factor reached ~1.5 × 106. This synthetic process represents a promising method for preparing various hollow metal nanoparticles.

  6. Gas Sensors Based on Molecular Imprinting Technology

    OpenAIRE

    Zhang, Yumin; Zhang, Jin; Liu, Qingju

    2017-01-01

    Molecular imprinting technology (MIT); often described as a method of designing a material to remember a target molecular structure (template); is a technique for the creation of molecularly imprinted polymers (MIPs) with custom-made binding sites complementary to the target molecules in shape; size and functional groups. MIT has been successfully applied to analyze; separate and detect macromolecular organic compounds. Furthermore; it has been increasingly applied in assays of biological mac...

  7. High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution.

    Science.gov (United States)

    Stehlik, Stepan; Varga, Marian; Ledinsky, Martin; Miliaieva, Daria; Kozak, Halyna; Skakalova, Viera; Mangler, Clemens; Pennycook, Timothy J; Meyer, Jannik C; Kromka, Alexander; Rezek, Bohuslav

    2016-12-02

    Detonation nanodiamonds (DNDs) with a typical size of 5 nm have attracted broad interest in science and technology. Further size reduction of DNDs would bring these nanoparticles to the molecular-size level and open new prospects for research and applications in various fields, ranging from quantum physics to biomedicine. Here we show a controllable size reduction of the DND mean size down to 1.4 nm without significant particle loss and with additional disintegration of DND core agglutinates by air annealing, leading to a significantly narrowed size distribution (±0.7 nm). This process is scalable to large quantities. Such molecular-sized DNDs keep their diamond structure and characteristic DND features as shown by Raman spectroscopy, infrared spectroscopy, STEM and EELS. The size of 1 nm is identified as a limit, below which the DNDs become amorphous.

  8. High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution

    Science.gov (United States)

    Stehlik, Stepan; Varga, Marian; Ledinsky, Martin; Miliaieva, Daria; Kozak, Halyna; Skakalova, Viera; Mangler, Clemens; Pennycook, Timothy J.; Meyer, Jannik C.; Kromka, Alexander; Rezek, Bohuslav

    2016-12-01

    Detonation nanodiamonds (DNDs) with a typical size of 5 nm have attracted broad interest in science and technology. Further size reduction of DNDs would bring these nanoparticles to the molecular-size level and open new prospects for research and applications in various fields, ranging from quantum physics to biomedicine. Here we show a controllable size reduction of the DND mean size down to 1.4 nm without significant particle loss and with additional disintegration of DND core agglutinates by air annealing, leading to a significantly narrowed size distribution (±0.7 nm). This process is scalable to large quantities. Such molecular-sized DNDs keep their diamond structure and characteristic DND features as shown by Raman spectroscopy, infrared spectroscopy, STEM and EELS. The size of 1 nm is identified as a limit, below which the DNDs become amorphous.

  9. Self-consistent field theory based molecular dynamics with linear system-size scaling

    Energy Technology Data Exchange (ETDEWEB)

    Richters, Dorothee [Institute of Mathematics and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 9, D-55128 Mainz (Germany); Kühne, Thomas D., E-mail: kuehne@uni-mainz.de [Institute of Physical Chemistry and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 7, D-55128 Mainz (Germany); Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)

    2014-04-07

    We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.

  10. Dynamics and Thermodynamics of Molecular Machines

    DEFF Research Database (Denmark)

    Golubeva, Natalia

    2014-01-01

    to their microscopic size, molecular motors are governed by principles fundamentally different from those describing the operation of man-made motors such as car engines. In this dissertation the dynamic and thermodynamic properties of molecular machines are studied using the tools of nonequilibrium statistical......Molecular machines, or molecular motors, are small biophysical devices that perform a variety of essential metabolic processes such as DNA replication, protein synthesis and intracellular transport. Typically, these machines operate by converting chemical energy into motion and mechanical work. Due...... mechanics. The first part focuses on noninteracting molecular machines described by a paradigmatic continuum model with the aim of comparing and contrasting such a description to the one offered by the widely used discrete models. Many molecular motors, for example, kinesin involved in cellular cargo...

  11. Thermodynamic Stability of Structure H Hydrates Based on the Molecular Properties of Large Guest Molecules

    OpenAIRE

    Tezuka, Kyoichi; Taguchi, Tatsuhiko; Alavi, Saman; Sum, Amadeu K.; Ohmura, Ryo

    2012-01-01

    This paper report analyses of thermodynamic stability of structure-H clathrate hydrates formed with methane and large guest molecules in terms of their gas phase molecular sizes and molar masses for the selection of a large guest molecule providing better hydrate stability. We investigated the correlation among the gas phase molecular sizes, the molar masses of large molecule guest substances, and the equilibrium pressures. The results suggest that there exists a molecular-size value for the ...

  12. Constraints on extra dimensions from precision molecular spectroscopy

    NARCIS (Netherlands)

    Salumbides, E.J.; Schellekens, A.N.; Gato-Rivera, B.; Ubachs, W.M.G.

    2015-01-01

    Accurate investigations of quantum-level energies in molecular systems are shown to provide a testing ground to constrain the size of compactified extra dimensions. This is made possible by recent progress in precision metrology with ultrastable lasers on energy levels in neutral molecular hydrogen

  13. Molecular dynamics using quasielastic neutron scattering

    CERN Document Server

    Mitra, S

    2003-01-01

    Quasielastic neutron scattering (QENS) technique is well suited to study the molecular motions (rotations and translations) in solids or liquids. It offers a unique possibility of analysing spatial dimensions of atomic or molecular processes in their development over time. We describe here some of the systems studied using the QENS spectrometer, designed, developed and commissioned at Dhruva reactor in Trombay. We have studied a variety of systems to investigate the molecular motion, for example, simple molecular solids, molecules adsorbed in confined medium like porous systems or zeolites, monolayer-protected nano-sized metal clusters, water in Portland cement as it cures with time, etc. (author)

  14. Electronic shift register memory based on molecular electron-transfer reactions

    Science.gov (United States)

    Hopfield, J. J.; Onuchic, Jose Nelson; Beratan, David N.

    1989-01-01

    The design of a shift register memory at the molecular level is described in detail. The memory elements are based on a chain of electron-transfer molecules incorporated on a very large scale integrated (VLSI) substrate, and the information is shifted by photoinduced electron-transfer reactions. The design requirements for such a system are discussed, and several realistic strategies for synthesizing these systems are presented. The immediate advantage of such a hybrid molecular/VLSI device would arise from the possible information storage density. The prospect of considerable savings of energy per bit processed also exists. This molecular shift register memory element design solves the conceptual problems associated with integrating molecular size components with larger (micron) size features on a chip.

  15. Molecular mobility of nematic E7 confined to molecular sieves with a low filling degree.

    Science.gov (United States)

    Brás, A R; Frunza, S; Guerreiro, L; Fonseca, I M; Corma, A; Frunza, L; Dionísio, M; Schönhals, A

    2010-06-14

    The nematic liquid crystalline mixture E7 was confined with similar filling degrees to molecular sieves with constant composition but different pore diameters (from 2.8 to 6.8 nm). Fourier transform infrared analysis proved that the E7 molecules interact via the cyanogroup with the pore walls of the molecular sieves. The molecular dynamics of the system was investigated by broadband dielectric spectroscopy (10(-2)-10(9) Hz) covering a wide temperature range of approximately 200 K from temperatures well above the isotropic-nematic transition down to the glass transition of bulk E7. A variety of relaxation processes is observed including two modes that are located close to the bulk behavior in its temperature dependence. For all confined samples, two relaxation processes, at frequencies lower than the processes observed for the bulk, were detected. At lower temperatures, their relaxation rates have different temperature dependencies whereas at higher temperatures, they seem to collapse into one chart. The temperature dependence of the slowest process (S-process) obeys the Vogel-Fulcher-Tammann law indicating a glassy dynamics of the E7 molecules anchored to the pore surface. The pore size dependence of both the Vogel temperature and fragility revealed a steplike transition around 4 nm pore size, which indicates a transition from a strong to a fragile behavior. The process with a relaxation rate in between the bulklike and the S-process (I-process) shows no dependence on the pore size. The agreement of the I-process with the behavior of a 5CB surface layer adsorbed on nonporous silica leads to the assignment of E7 molecules anchored at the outer surface of the microcrystals of the molecular sieves.

  16. Structure–performance characterization for carbon molecular sieve membranes using molecular scale gas probes

    KAUST Repository

    Rungta, Meha

    2015-04-01

    © 2015 Elsevier Ltd. All rights reserved. Understanding the relationship between carbon molecular sieve (CMS) pore structure and corresponding gas separation performance enables optimization for a given gas separation application. The final pyrolysis temperature and starting polymer precursor are the two critical parameters in controlling CMS performance. This study considers structure and performance changes of CMS derived from a commercially available polymer precursor at different pyrolysis temperatures. As reviewed in this paper, most traditional characterization methods based on microscopy, X-ray diffraction, spectroscopy, sorption-based pore size distribution measurements etc. provide limited information for relating separation performance to the CMS morphology and structural changes. A useful alternative approach based on different sized gases as molecular scale probes of the CMS pore structure was successfully used here in conjunction with separation data to provide critical insights into the structure-performance relationships of the engineered CMS.

  17. Charge- and Size-Selective Molecular Separation using Ultrathin Cellulose Membranes

    KAUST Repository

    Puspasari, Tiara

    2016-08-30

    To date, it is still a challenge to prepare high-flux and highselectivity microporous membranes thinner than 20 nm without introducing defects. In this work, we report for the first time the application of cellulose membranes for selective separation of small molecules. A freestanding cellulose membrane as thin as 10 nm has been prepared through regeneration of trimethylsilyl cellulose (TMSC). The freestanding membrane can be transferred to any desired substrate and shows a normalized flux as high as 700 L m−2 h−1 bar−1 when supported by a porous alumina disc. According to filtration experiments, the membrane exhibits precise size-sieving performances with an estimated pore size between 1.5–3.5 nm depending on the regeneration period and initial TMSC concentration. A perfect discrimination of anionic molecules over neutral species is demonstrated. Moreover, the membrane demonstrates high reproducibility, high scale-up potential, and excellent stability over two months.

  18. Effective population size and evolutionary dynamics in outbred ...

    Indian Academy of Sciences (India)

    populations of fruit flies is not primarily driven by new mutations, but rather by changes in the frequency of ..... Drift simulation: The sex ratio, total population size and ...... Gillespie J. H. 1994a Substitution processes in molecular evolution. II.

  19. High-pressure size exclusion chromatography analysis of dissolved organic matter isolated by tangential-flow ultra filtration

    Science.gov (United States)

    Everett, C.R.; Chin, Y.-P.; Aiken, G.R.

    1999-01-01

    A 1,000-Dalton tangential-flow ultrafiltration (TFUF) membrane was used to isolate dissolved organic matter (DOM) from several freshwater environments. The TFUF unit used in this study was able to completely retain a polystyrene sulfonate 1,800-Dalton standard. Unaltered and TFUF-fractionated DOM molecular weights were assayed by high-pressure size exclusion chromatography (HPSEC). The weight-averaged molecular weights of the retentates were larger than those of the raw water samples, whereas the filtrates were all significantly smaller and approximately the same size or smaller than the manufacturer-specified pore size of the membrane. Moreover, at 280 nm the molar absorptivity of the DOM retained by the ultrafilter is significantly larger than the material in the filtrate. This observation suggests that most of the chromophoric components are associated with the higher molecular weight fraction of the DOM pool. Multivalent metals in the aqueous matrix also affected the molecular weights of the DOM molecules. Typically, proton-exchanged DOM retentates were smaller than untreated samples. This TFUF system appears to be an effective means of isolating aquatic DOM by size, but the ultimate size of the retentates may be affected by the presence of metals and by configurational properties unique to the DOM phase.

  20. Electroporation of Skin Stratum Corneum Lipid Bilayer and Molecular Mechanism of Drug Transport: A Molecular Dynamics Study.

    Science.gov (United States)

    Gupta, Rakesh; Rai, Beena

    2018-04-30

    Skin electroporation has been used significantly to increase the drug permeation. However, molecular mechanism, which resulted in enhancement of flux through skin, is still not known. In this study, extensive atomistic molecular dynamics simulation of skin lipids (made up of ceramide (CER), cholesterol (CHOL) and free fatty acid (FFA)) have been performed at various external electric field. We show for the first time the pore formation in the skin lipid bilayer during the electroporation. We show the effect of applied external electrical field on the pore formation dynamics in lipid bilayer of different size and composition. The pore formation and resealing kinetics were different and was found to be highly dependent on the composition of skin lipid bilayer. The pore formation time decreased with increase in the bilayer size. The pore sustaining electric field was found to be in the range of 0.20-0.25 V/nm for equimolar CER, CHOL and FFA lipid bilayer. The skin lipid bilayer (1:1:1), sealed itself within 20 ns after the removal of external electric field. We also present the molecular mechanism of enhancement of drug permeation in the presence of external field as compared to the passive diffusion. The molecular level understanding obtained here could help in optimizing/designing the electroporation experiments for effective drug delivery. For a given skin composition and size of drug molecule, the combination of pore formation time and pore growth model can be used to know aproiri the desired electric field and time for application of electric field.

  1. Confinement of Aggregation-Induced Emission Molecular Rotors in Ultrathin Two-Dimensional Porous Organic Nanosheets for Enhanced Molecular Recognition.

    Science.gov (United States)

    Dong, Jinqiao; Li, Xu; Zhang, Kang; Di Yuan, Yi; Wang, Yuxiang; Zhai, Linzhi; Liu, Guoliang; Yuan, Daqiang; Jiang, Jianwen; Zhao, Dan

    2018-03-21

    Despite the rapid development of molecular rotors over the past decade, it still remains a huge challenge to understand their confined behavior in ultrathin two-dimensional (2D) nanomaterials for molecular recognition. Here, we report an all-carbon, 2D π-conjugated aromatic polymer, named NUS-25, containing flexible tetraphenylethylene (TPE) units as aggregation-induced emission (AIE) molecular rotors. NUS-25 bulk powder can be easily exfoliated into micrometer-sized lamellar freestanding nanosheets with a thickness of 2-5 nm. The dynamic behavior of the TPE rotors is partially restricted through noncovalent interactions in the ultrathin 2D nanosheets, which is proved by comparative experimental studies including AIE characteristics, size-selective molecular recognition, and theoretical calculations of rotary energy barrier. Because of the partially restricted TPE rotors, NUS-25 nanosheets are highly fluorescent. This property allows NUS-25 nanosheets to be used as a chemical sensor for the specific detection of acenaphthylene among a series of polycyclic aromatic hydrocarbons (PAHs) via fluorescent quenching mechanism. Further investigations show that NUS-25 nanosheets have much higher sensitivity and selectivity than their stacked bulk powder and other similar polymers containing dynamic TPE rotors. The highly efficient molecular recognition can be attributed to the photoinduced electron transfer (PET) from NUS-25 nanosheets to acenaphthylene, which is investigated by time-resolved photoluminescence measurements (TRPL), excitation and emission spectra, and density functional theory (DFT) calculations. Our findings demonstrate that confinement of AIE molecular rotors in 2D nanomaterials can enhance the molecular recognition. We anticipate that the material design strategy demonstrated in this study will inspire the development of other ultrathin 2D nanomaterials equipped with smart molecular machines for various applications.

  2. Physisorption of molecular hydrogen on carbon nanotube with vacant defects

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Gang; Shen, Huaze; Wang, Enge; Xu, Limei, E-mail: limei.xu@pku.edu.cn [International Center for Quantum Materials and School of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Tangpanitanon, Jirawat [University of Cambridge, Cambridge, Cambridgeshire CB2 1TP (United Kingdom); Wen, Bo [International Center for Quantum Materials and School of Physics, Peking University, Beijing 100871 (China); Beijing Computational Science Research Center, Heqing Street, Haidian District, Beijing 100084 (China); Xue, Jianming [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China)

    2014-05-28

    Physisorption of molecular hydrogen on single-walled carbon nanotubes (SWCNTs) is important for its engineering applications and hydrogen energy storage. Using molecular dynamics simulation, we study the physisorption of molecular hydrogen on a SWCNT with a vacant defect, focusing on the effect of the vacant defect size and external parameters such as temperature and pressure. We find that hydrogen can be physisorbed inside a SWCNT through a vacant defect when the defect size is above a threshold. By controlling the size of the defects, we are able to extract hydrogen molecules from a gas mixture and store them inside the SWCNT. We also find that external parameters, such as low temperature and high pressure, enhance the physisorption of hydrogen molecules inside the SWCNT. In addition, the storage efficiency can be improved by introducing more defects, i.e., reducing the number of carbon atoms on the SWCNT.

  3. Physisorption of molecular hydrogen on carbon nanotube with vacant defects

    Science.gov (United States)

    Sun, Gang; Tangpanitanon, Jirawat; Shen, Huaze; Wen, Bo; Xue, Jianming; Wang, Enge; Xu, Limei

    2014-05-01

    Physisorption of molecular hydrogen on single-walled carbon nanotubes (SWCNTs) is important for its engineering applications and hydrogen energy storage. Using molecular dynamics simulation, we study the physisorption of molecular hydrogen on a SWCNT with a vacant defect, focusing on the effect of the vacant defect size and external parameters such as temperature and pressure. We find that hydrogen can be physisorbed inside a SWCNT through a vacant defect when the defect size is above a threshold. By controlling the size of the defects, we are able to extract hydrogen molecules from a gas mixture and store them inside the SWCNT. We also find that external parameters, such as low temperature and high pressure, enhance the physisorption of hydrogen molecules inside the SWCNT. In addition, the storage efficiency can be improved by introducing more defects, i.e., reducing the number of carbon atoms on the SWCNT.

  4. Physisorption of molecular hydrogen on carbon nanotube with vacant defects

    International Nuclear Information System (INIS)

    Sun, Gang; Shen, Huaze; Wang, Enge; Xu, Limei; Tangpanitanon, Jirawat; Wen, Bo; Xue, Jianming

    2014-01-01

    Physisorption of molecular hydrogen on single-walled carbon nanotubes (SWCNTs) is important for its engineering applications and hydrogen energy storage. Using molecular dynamics simulation, we study the physisorption of molecular hydrogen on a SWCNT with a vacant defect, focusing on the effect of the vacant defect size and external parameters such as temperature and pressure. We find that hydrogen can be physisorbed inside a SWCNT through a vacant defect when the defect size is above a threshold. By controlling the size of the defects, we are able to extract hydrogen molecules from a gas mixture and store them inside the SWCNT. We also find that external parameters, such as low temperature and high pressure, enhance the physisorption of hydrogen molecules inside the SWCNT. In addition, the storage efficiency can be improved by introducing more defects, i.e., reducing the number of carbon atoms on the SWCNT

  5. Nanoconfined catalytic Ångström-size motors

    Energy Technology Data Exchange (ETDEWEB)

    Colberg, Peter H., E-mail: pcolberg@chem.utoronto.ca; Kapral, Raymond, E-mail: rkapral@chem.utoronto.ca [Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 (Canada)

    2015-11-14

    Self-propelled chemically powered synthetic micron and nano-scale motors are being intensively studied because of the wide range of potential applications that exploit their directed motion. This paper considers even smaller Ångström-size synthetic motors. Such very small motors in bulk solution display effects arising from their self-propulsion. Recent experiments have shown that small-molecule catalysts and single enzyme molecules exhibit properties that have been attributed to their chemical activity. Molecular dynamics is used to investigate the properties of very small Ångström-size synthetic chemically powered sphere-dimer motors in a simple atomic-like solvent confined between walls separated by distances of tens of nanometers. Evidence for strong structural ordering of the motors between the walls, which reflects the finite size of solvent molecules and depends on solvent depletion forces, is provided. Dynamical properties, such as average motor velocity, orientational relaxation, and mean square displacement, are anisotropic and depend on the distance from the walls. This research provides information needed for potential applications that use molecular-scale motors in the complex confined geometries encountered in biology and the laboratory.

  6. Nanoconfined catalytic Ångström-size motors

    International Nuclear Information System (INIS)

    Colberg, Peter H.; Kapral, Raymond

    2015-01-01

    Self-propelled chemically powered synthetic micron and nano-scale motors are being intensively studied because of the wide range of potential applications that exploit their directed motion. This paper considers even smaller Ångström-size synthetic motors. Such very small motors in bulk solution display effects arising from their self-propulsion. Recent experiments have shown that small-molecule catalysts and single enzyme molecules exhibit properties that have been attributed to their chemical activity. Molecular dynamics is used to investigate the properties of very small Ångström-size synthetic chemically powered sphere-dimer motors in a simple atomic-like solvent confined between walls separated by distances of tens of nanometers. Evidence for strong structural ordering of the motors between the walls, which reflects the finite size of solvent molecules and depends on solvent depletion forces, is provided. Dynamical properties, such as average motor velocity, orientational relaxation, and mean square displacement, are anisotropic and depend on the distance from the walls. This research provides information needed for potential applications that use molecular-scale motors in the complex confined geometries encountered in biology and the laboratory

  7. Improving a Lecture-Size Molecular Model Set by Repurposing Used Whiteboard Markers

    Science.gov (United States)

    Dragojlovic, Veljko

    2015-01-01

    Preparation of an inexpensive model set from whiteboard markers and either HGS molecular model set or atoms made of wood is described. The model set is relatively easy to prepare and is sufficiently large to be suitable as an instructor set for use in lectures.

  8. Study of Cluster-size Effect on Damage Formation

    International Nuclear Information System (INIS)

    Aoki, Takaaki; Seki, Toshio; Nakai, Atsuko; Matsuo, Jiro; Takaoka, Gikan

    2003-01-01

    Computer simulation and experiments were performed in order to understand the effect of cluster size on damage formation. Results of molecular dynamics simulations of cluster impact on solid targets derived the model function, which explains the relationship among cluster size, incident energy and number of displacements. On the other hand, time of flight mass measurement system was installed a cluster irradiation system, so that cluster ion beam which cluster size distribution is well known can be irradiated on the target. The damage properties under various cluster irradiation conditions were examined using RBS. The results from computer simulations and experiments showed good agreements with each other, which suggests that irradiation damage by cluster ion beam can be controlled by selecting cluster size distribution and incident energy

  9. Molecular ultrasound imaging: current status and future directions

    International Nuclear Information System (INIS)

    Deshpande, N.; Needles, A.; Willmann, J.K.

    2010-01-01

    Targeted contrast-enhanced ultrasound (molecular ultrasound) is an emerging imaging strategy that combines ultrasound technology with novel molecularly-targeted ultrasound contrast agents for assessing biological processes at the molecular level. Molecular ultrasound contrast agents are nano- or micro-sized particles that are targeted to specific molecular markers by adding high-affinity binding ligands onto the surface of the particles. Following intravenous administration, these targeted ultrasound contrast agents accumulate at tissue sites overexpressing specific molecular markers, thereby enhancing the ultrasound imaging signal. High spatial and temporal resolution, real-time imaging, non-invasiveness, relatively low costs, lack of ionising irradiation and wide availability of ultrasound systems are advantages compared to other molecular imaging modalities. In this article we review current concepts and future directions of molecular ultrasound imaging, including different classes of molecular ultrasound contrast agents, ongoing technical developments of pre-clinical and clinical ultrasound systems, the potential of molecular ultrasound for imaging different diseases at the molecular level, and the translation of molecular ultrasound into the clinic.

  10. Molecular finite-size effects in stochastic models of equilibrium chemical systems.

    Science.gov (United States)

    Cianci, Claudia; Smith, Stephen; Grima, Ramon

    2016-02-28

    The reaction-diffusion master equation (RDME) is a standard modelling approach for understanding stochastic and spatial chemical kinetics. An inherent assumption is that molecules are point-like. Here, we introduce the excluded volume reaction-diffusion master equation (vRDME) which takes into account volume exclusion effects on stochastic kinetics due to a finite molecular radius. We obtain an exact closed form solution of the RDME and of the vRDME for a general chemical system in equilibrium conditions. The difference between the two solutions increases with the ratio of molecular diameter to the compartment length scale. We show that an increase in the fraction of excluded space can (i) lead to deviations from the classical inverse square root law for the noise-strength, (ii) flip the skewness of the probability distribution from right to left-skewed, (iii) shift the equilibrium of bimolecular reactions so that more product molecules are formed, and (iv) strongly modulate the Fano factors and coefficients of variation. These volume exclusion effects are found to be particularly pronounced for chemical species not involved in chemical conservation laws. Finally, we show that statistics obtained using the vRDME are in good agreement with those obtained from Brownian dynamics with excluded volume interactions.

  11. Does size matter? Study of performance of pseudo-ELISAs based on molecularly imprinted polymer nanoparticles prepared for analytes of different sizes.

    Science.gov (United States)

    Cáceres, C; Canfarotta, F; Chianella, I; Pereira, E; Moczko, E; Esen, C; Guerreiro, A; Piletska, E; Whitcombe, M J; Piletsky, S A

    2016-02-21

    The aim of this work is to evaluate whether the size of the analyte used as template for the synthesis of molecularly imprinted polymer nanoparticles (nanoMIPs) can affect their performance in pseudo-enzyme linked immunosorbent assays (pseudo-ELISAs). Successful demonstration of a nanoMIPs-based pseudo-ELISA for vancomycin (1449.3 g mol(-1)) was demonstrated earlier. In the present investigation, the following analytes were selected: horseradish peroxidase (HRP, 44 kDa), cytochrome C (Cyt C, 12 kDa) biotin (244.31 g mol(-1)) and melamine (126.12 g mol(-1)). NanoMIPs with a similar composition for all analytes were synthesised by persulfate-initiated polymerisation in water. In addition, core-shell nanoMIPs coated with polyethylene glycol (PEG) and imprinted for melamine were produced in organics and tested. The polymerisation of the nanoparticles was done using a solid-phase approach with the correspondent template immobilised on glass beads. The performance of the nanoMIPs used as replacement for antibodies in direct pseudo-ELISA (for the enzymes) and competitive pseudo-ELISA for the smaller analytes was investigated. For the competitive mode we rely on competition for the binding to the nanoparticles between free analyte and corresponding analyte-HRP conjugate. The results revealed that the best performances were obtained for nanoMIPs synthesised in aqueous media for the larger analytes. In addition, this approach was successful for biotin but completely failed for the smallest template melamine. This problem was solved using nanoMIP prepared by UV polymerisation in an organic media with a PEG shell. This study demonstrates that the preparation of nanoMIP by solid-phase approach can produce material with high affinity and potential to replace antibodies in ELISA tests for both large and small analytes. This makes this technology versatile and applicable to practically any target analyte and diagnostic field.

  12. Molecular dynamics simulation of melting of finite and infinite size silicene

    OpenAIRE

    Min, Tjun Kit; Yoon, Tiem Leong; Lim, Thong Leng

    2017-01-01

    We report the melting temperature of free-standing silicene by carrying out molecular dynamics (MD) simulation experiments using optimzed Stillinger-Weber (SW) potential by Zhang {\\it et al.}. The melting scenario of a free-standing silicene is well captured visually in our MD simulations. The data are systematically analyzed using a few qualitatively different indicators, including caloric curve, radial distribution function and a numerical indicator known as `global similarity index'. The o...

  13. Functional size of vacuolar H+ pumps: Estimates from radiation inactivation studies

    International Nuclear Information System (INIS)

    Sarafian, V.; Poole, R.J.

    1991-01-01

    The PPase and the ATPase from red beet (Beta vulgaris) vacuolar membranes were subjected to radiation inactivation by a 60 Co source in both the native tonoplast and detergent-solubilized states, in order to determine their target molecular sizes. Analysis of the residual phosphohydrolytic and proton transport activities, after exposure to varying doses of radiation, yielded exponential relationships between the activities and radiation doses. The deduced target molecular sizes for PPase activity in native and solubilized membranes were 125kD and 259kD respectively and 327kD for H + -transport. This suggests that the minimum number of subunits of 67kD for PPi hydrolysis is two in the native state and four after Triton X-100 solubilization. At least four subunits would be required for H + -translocation. Analysis of the ATPase inactivation patterns revealed target sizes of 384kD and 495kD for ATP hydrolysis in native and solubilized tonoplast respectively and 430kD for H + -transport. These results suggest that the minimum size for hydrolytic or transport functions is relatively constant for the ATPase

  14. Why size really matters when sequencing plant genomes

    Czech Academy of Sciences Publication Activity Database

    Kelly, L.J.; Leitch, A.R.; Fay, M. F.; Renny-Byfield, S.; Pellicer, J.; Macas, Jiří; Leitch, I.J.

    2012-01-01

    Roč. 5, č. 4 (2012), s. 415-425 ISSN 1755-0874 Institutional research plan: CEZ:AV0Z50510513 Institutional support: RVO:60077344 Keywords : C-value * genome assembly * genome size evolution * genome sequencing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.924, year: 2012

  15. An Educational Software for Simulating the Sample Size of Molecular Marker Experiments

    Science.gov (United States)

    Helms, T. C.; Doetkott, C.

    2007-01-01

    We developed educational software to show graduate students how to plan molecular marker experiments. These computer simulations give the students feedback on the precision of their experiments. The objective of the software was to show students using a hands-on approach how: (1) environmental variation influences the range of the estimates of the…

  16. Sexual dimorphism in plumage and size in Black-tailed Godwits Limosa limosa limosa

    NARCIS (Netherlands)

    Schroeder, Julia; Lourenco, Pedro M.; van der Velde, Marco; Hooijmeijer, Jos C.E.W.; Both, Christiaan; Piersma, Theunis; Heg, Dik

    2008-01-01

    Systematic sex-related differences in size and plumage are informative of sex-specific selection pressures. Here, we present an analysis of sexual dimorphism in body size and plumage of Black-tailed Godwits Limosa limosa limosa from a breeding population in The Netherlands. Molecular methods were

  17. Thermodynamic limits on the size and size distribution of nucleic acids synthesized in vitro: the role of pyrophosphate hydrolysis.

    Science.gov (United States)

    Peller, L

    1977-02-08

    The free-energy change of phosphodiester bond formation from nucleoside triphosphates is more favorable than with nucleoside diphosphates as substrates. Base-stacking interactions can make significant contributions to both delta G degrees ' values. Pyrophosphate hydrolysis when it accompanies the former reaction dominates all thermodynamic considerations. Three experimental situations are discussed in which high-molecular-weight polynucleotides are synthesized without a strong driving force for covalent bond formation. For one of these, a kinetic scheme is presented which encompasses an early narrow Poisson distribution of chain lengths with ultimate passage to a disperse equilibrium population of chain sizes. Hydrolytic removal of pyrophosphate expands the time scale for this undesirable process by a factor of 10(9), while it enormously elevates the thermodynamic ceiling for the average degrees of polymerization in the other two examples. The electron micrographically revealed broad size population from an early study of partial replication of a T7 DNA template is found to adhere (fortuitously) to a disperse most probable representation. Some possible origins are examined for the branched structures in this product, as well as in a later investigation of replication of this nucleic acid. The achievement of both very high molecular weights and sharply peaked size distributions in polynucleotides synthesized in vitro will require coupling to inorganic pyrophosphatase action as in vivo.

  18. Nuclear genome size analysis of Agave tequilana Weber

    Czech Academy of Sciences Publication Activity Database

    Palomino, G.; Doležel, Jaroslav; Méndez, I.; Rubluo, A.

    2003-01-01

    Roč. 56, č. 1 (2003), s. 37-46 ISSN 0008-7114 Grant - others:Itálie(IT) Z5038910 Institutional research plan: CEZ:AV0Z5038910 Keywords : Flow cytometry * nuclear genome size * Agave tequilana Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.337, year: 2003

  19. Progress in molecular precursors for electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Buhro, W.E. [Washington Univ., St. Louis, MO (United States)

    1996-09-01

    Molecular-precursor chemistry provides an essential underpinning to all electronic-materials technologies, including photovoltaics and related areas of direct interest to the DOE. Materials synthesis and processing is a rapidly developing field in which advances in molecular precursors are playing a major role. This article surveys selected recent research examples that define the exciting current directions in molecular-precursor science. These directions include growth of increasingly complex structures and stoichiometries, surface-selective growth, kinetic growth of metastable materials, growth of size-controlled quantum dots and quantum-dot arrays, and growth at progressively lower temperatures. Continued progress in molecular-precursor chemistry will afford precise control over the crystal structures, nanostructures, and microstructures of electronic materials.

  20. Is the molecular statics method suitable for the study of nanomaterials? A study case of nanowires

    International Nuclear Information System (INIS)

    Chang, I-L; Chen, Y-C

    2007-01-01

    Both molecular statics and molecular dynamics methods were employed to study the mechanical properties of copper nanowires. The size effect on both elastic and plastic properties of square cross-sectional nanowire was examined and compared systematically using two molecular approaches. It was found consistently from both molecular methods that the elastic and plastic properties of nanowires depend on the lateral size of nanowires. As the lateral size of nanowires decreases, the values of Young's modulus decrease and dislocation nucleation stresses increase. However, it was shown that the dislocation nucleation stress would be significantly influenced by the axial periodic length of the nanowire model using the molecular statics method while molecular dynamics simulations at two distinct temperatures (0.01 and 300 K) did not show the same dependence. It was concluded that molecular statics as an energy minimization numerical scheme is quite insensitive to the instability of atomic structure especially without thermal fluctuation and might not be a suitable tool for studying the behaviour of nanomaterials beyond the elastic limit

  1. TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Gao, Yang; Law, Chung K.; Xu, Haitao

    2015-01-01

    The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation

  2. Conserved regulators of nucleolar size revealed by global phenotypic analyses.

    Science.gov (United States)

    Neumüller, Ralph A; Gross, Thomas; Samsonova, Anastasia A; Vinayagam, Arunachalam; Buckner, Michael; Founk, Karen; Hu, Yanhui; Sharifpoor, Sara; Rosebrock, Adam P; Andrews, Brenda; Winston, Fred; Perrimon, Norbert

    2013-08-20

    Regulation of cell growth is a fundamental process in development and disease that integrates a vast array of extra- and intracellular information. A central player in this process is RNA polymerase I (Pol I), which transcribes ribosomal RNA (rRNA) genes in the nucleolus. Rapidly growing cancer cells are characterized by increased Pol I-mediated transcription and, consequently, nucleolar hypertrophy. To map the genetic network underlying the regulation of nucleolar size and of Pol I-mediated transcription, we performed comparative, genome-wide loss-of-function analyses of nucleolar size in Saccharomyces cerevisiae and Drosophila melanogaster coupled with mass spectrometry-based analyses of the ribosomal DNA (rDNA) promoter. With this approach, we identified a set of conserved and nonconserved molecular complexes that control nucleolar size. Furthermore, we characterized a direct role of the histone information regulator (HIR) complex in repressing rRNA transcription in yeast. Our study provides a full-genome, cross-species analysis of a nuclear subcompartment and shows that this approach can identify conserved molecular modules.

  3. Conserved Regulators of Nucleolar Size Revealed by Global Phenotypic Analyses

    Science.gov (United States)

    Neumüller, Ralph A.; Gross, Thomas; Samsonova, Anastasia A.; Vinayagam, Arunachalam; Buckner, Michael; Founk, Karen; Hu, Yanhui; Sharifpoor, Sara; Rosebrock, Adam P.; Andrews, Brenda; Winston, Fred; Perrimon, Norbert

    2014-01-01

    Regulation of cell growth is a fundamental process in development and disease that integrates a vast array of extra- and intracellular information. A central player in this process is RNA polymerase I (Pol I), which transcribes ribosomal RNA (rRNA) genes in the nucleolus. Rapidly growing cancer cells are characterized by increased Pol I–mediated transcription and, consequently, nucleolar hypertrophy. To map the genetic network underlying the regulation of nucleolar size and of Pol I–mediated transcription, we performed comparative, genome-wide loss-of-function analyses of nucleolar size in Saccharomyces cerevisiae and Drosophila melanogaster coupled with mass spectrometry–based analyses of the ribosomal DNA (rDNA) promoter. With this approach, we identified a set of conserved and nonconserved molecular complexes that control nucleolar size. Furthermore, we characterized a direct role of the histone information regulator (HIR) complex in repressing rRNA transcription in yeast. Our study provides a full-genome, cross-species analysis of a nuclear subcompartment and shows that this approach can identify conserved molecular modules. PMID:23962978

  4. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations

    KAUST Repository

    Liu, Gongping; Chernikova, Valeriya; Liu, Yang; Zhang, Kuang; Belmabkhout, Youssef; Shekhah, Osama; Zhang, Chen; Yi, Shouliang; Eddaoudi, Mohamed; Koros, William J.

    2018-01-01

    Membrane-based separations can improve energy efficiency and reduce the environmental impacts associated with traditional approaches. Nevertheless, many challenges must be overcome to design membranes that can replace conventional gas separation processes. Here, we report on the incorporation of engineered submicrometre-sized metal–organic framework (MOF) crystals into polymers to form hybrid materials that successfully translate the excellent molecular sieving properties of face-centred cubic (fcu)-MOFs into the resultant membranes. We demonstrate, simultaneously, exceptionally enhanced separation performance in hybrid membranes for two challenging and economically important applications: the removal of CO2 and H2S from natural gas and the separation of butane isomers. Notably, the membrane molecular sieving properties demonstrate that the deliberately regulated and contracted MOF pore-aperture size can discriminate between molecular pairs. The improved performance results from precise control of the linkers delimiting the triangular window, which is the sole entrance to the fcu-MOF pore. This rational-design hybrid approach provides a general toolbox for enhancing the transport properties of advanced membranes bearing molecular sieve fillers with sub-nanometre-sized pore-apertures.

  5. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations

    Science.gov (United States)

    Liu, Gongping; Chernikova, Valeriya; Liu, Yang; Zhang, Kuang; Belmabkhout, Youssef; Shekhah, Osama; Zhang, Chen; Yi, Shouliang; Eddaoudi, Mohamed; Koros, William J.

    2018-03-01

    Membrane-based separations can improve energy efficiency and reduce the environmental impacts associated with traditional approaches. Nevertheless, many challenges must be overcome to design membranes that can replace conventional gas separation processes. Here, we report on the incorporation of engineered submicrometre-sized metal-organic framework (MOF) crystals into polymers to form hybrid materials that successfully translate the excellent molecular sieving properties of face-centred cubic (fcu)-MOFs into the resultant membranes. We demonstrate, simultaneously, exceptionally enhanced separation performance in hybrid membranes for two challenging and economically important applications: the removal of CO2 and H2S from natural gas and the separation of butane isomers. Notably, the membrane molecular sieving properties demonstrate that the deliberately regulated and contracted MOF pore-aperture size can discriminate between molecular pairs. The improved performance results from precise control of the linkers delimiting the triangular window, which is the sole entrance to the fcu-MOF pore. This rational-design hybrid approach provides a general toolbox for enhancing the transport properties of advanced membranes bearing molecular sieve fillers with sub-nanometre-sized pore-apertures.

  6. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations

    KAUST Repository

    Liu, Gongping

    2018-02-09

    Membrane-based separations can improve energy efficiency and reduce the environmental impacts associated with traditional approaches. Nevertheless, many challenges must be overcome to design membranes that can replace conventional gas separation processes. Here, we report on the incorporation of engineered submicrometre-sized metal–organic framework (MOF) crystals into polymers to form hybrid materials that successfully translate the excellent molecular sieving properties of face-centred cubic (fcu)-MOFs into the resultant membranes. We demonstrate, simultaneously, exceptionally enhanced separation performance in hybrid membranes for two challenging and economically important applications: the removal of CO2 and H2S from natural gas and the separation of butane isomers. Notably, the membrane molecular sieving properties demonstrate that the deliberately regulated and contracted MOF pore-aperture size can discriminate between molecular pairs. The improved performance results from precise control of the linkers delimiting the triangular window, which is the sole entrance to the fcu-MOF pore. This rational-design hybrid approach provides a general toolbox for enhancing the transport properties of advanced membranes bearing molecular sieve fillers with sub-nanometre-sized pore-apertures.

  7. Molecular dynamics simulation of bubble nucleation in explosive boiling

    International Nuclear Information System (INIS)

    Zou Yu; Chinese Academy of Sciences, Beijing; Huai Xiulan; Liang Shiqiang

    2009-01-01

    Molecular dynamics (MD) simulation is carried out for the bubble nucleation of liquid nitrogen in explosive boiling. The heat is transferred into the simulation system by rescaling the velocity of the molecules. The results indicate that the initial equilibrium temperature of liquid and molecular cluster size affect the energy conversion in the process of bubble nucleation. The potential energy of the system violently varies at the beginning of the bubble nucleation, and then varies around a fixed value. At the end of bubble nucleation, the potential energy of the system slowly increases. In the bubble nucleation of explosive boiling, the lower the initial equilibrium temperature, the larger the size of the molecular cluster, and the more the heat transferred into the system of the simulation cell, causing the increase potential energy in a larger range. (authors)

  8. Study on Size-Dependent Young’s Modulus of a Silicon Nano beam by Molecular Dynamics Simulation

    International Nuclear Information System (INIS)

    Yu, H.; Sun, C.; Zhang, W.W.; Lei, S.Y.; Huang, K.A.

    2013-01-01

    Young’s modulus of a silicon nano beam with a rectangular cross-section is studied by molecular dynamics method. Dynamic simulations are performed for doubly clamped silicon nano beams with lengths ranging from 4.888 to 12.491 nm and cross-sections ranging from 1.22 nm ×1.22 nm to 3.39 nm × 3.39 nm. The results show that Young’s moduli of such small silicon nano beams are much higher than the value of Young’s modulus for bulk silicon. Moreover, the resonant frequency and Young’s modulus of the Si nano beam are strongly dependent not only on the size of the nano beam but also on surface effects. Young’s modulus increases significantly with the decreasing of the thickness of the silicon nano beam. This result qualitatively agrees with one of the conclusions based on a semi continuum model, in which the surface relaxation and the surface tension were taken into consideration. The impacts of the surface reconstruction with (2 ×1) dimmers on the resonant frequency and Young’s modulus are studied in this paper too. It is shown that the surface reconstruction makes the silicon nano beam stiffer than the one without the surface reconstruction, resulting in a higher resonant frequency and a larger Young’s modulus

  9. Synthesis and properties of ionic polyurethane dispersions: influence of polyol molecular weight

    International Nuclear Information System (INIS)

    Valipour Ebrahimi, M.; Barikani, M.; Mohammad Seyed Mohaghegh, S.

    2006-01-01

    A series of water dispersible polyurethanes containing carboxylate anion as the hydrophilic pendant group were prepared from toluene diisocyanate (TDI), 1,4- butanediol (1,4-BDO), dimethylol propionic acid and different molecular weight of polytetramethylene glycol . IR Spectroscopy was used to check the end of polymerization reaction and characterization of polymer. The effect of polytetramethylene glycol molecular weight was studied on the particle size distribution, contact angle, and mechanical and thermal properties of the emulsion-cast films. Average particle size of prepared polyurethane emulsions decreases with increasing the polytetramethylene glycol molecular weight. Tensile strength and hardness decrease and elongation-at-break and contact angle increase with increase of the polytetramethylene glycol molecular weight. Thermal property and thermal stability are also effected by variation of polytetramethylene glycol molecular weight. The thermal stability increases with increasing polytetramethylene glycol molecular weight. Glass transition temperature (T g ) moved toward the lower temperatures by increasing molecular weight of the polyol. Decrease in T g and tensile properties are interpreted in terms of the decrease in hard segments and the increase in chain flexibility and phase separation in high molecular weight polytetramethylene glycol based polyurethane

  10. Prediction of bread-making quality using size exclusion high ...

    African Journals Online (AJOL)

    Variation in the distribution of protein molecular weight in wheat (Triticum aestivum), influences breadmaking quality of wheat cultivars, resulting in either poor or good bread. The objective of this study was to predict breadmaking quality of wheat cultivars using size exclusion high performance liquid chromatography.

  11. Size-dependent deformation behavior of nanocrystalline graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Huang, Yuhong [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, Shaanxi (China); Ma, Fei, E-mail: mafei@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Sun, Yunjin [Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Laboratory of Food Quality and Safety, Beijing 102206 (China); Xu, Kewei, E-mail: kwxu@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Opt-electronic Engineering, Xi’an University of Arts and Science, Xi’an 710065, Shaanxi (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-08-15

    Highlights: • MD simulation is conducted to study the deformation of nanocrystalline graphene. • Unexpectedly, the elastic modulus decreases with the grain size considerably. • But the fracture stress and strain are nearly insensitive to the grain size. • A composite model with grain domains and GBs as two components is suggested. - Abstract: Molecular dynamics (MD) simulation is conducted to study the deformation behavior of nanocrystalline graphene sheets. It is found that the graphene sheets have almost constant fracture stress and strain, but decreased elastic modulus with grain size. The results are different from the size-dependent strength observed in nanocrystalline metals. Structurally, the grain boundaries (GBs) become a principal component in two-dimensional materials with nano-grains and the bond length in GBs tends to be homogeneously distributed. This is almost the same for all the samples. Hence, the fracture stress and strain are almost size independent. As a low-elastic-modulus component, the GBs increase with reducing grain size and the elastic modulus decreases accordingly. A composite model is proposed to elucidate the deformation behavior.

  12. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes.

    Science.gov (United States)

    Brangwynne, Clifford P; Mitchison, Timothy J; Hyman, Anthony A

    2011-03-15

    For most intracellular structures with larger than molecular dimensions, little is known about the connection between underlying molecular activities and higher order organization such as size and shape. Here, we show that both the size and shape of the amphibian oocyte nucleolus ultimately arise because nucleoli behave as liquid-like droplets of RNA and protein, exhibiting characteristic viscous fluid dynamics even on timescales of Nucleoli exhibit a broad distribution of sizes with a characteristic power law, which we show is a consequence of spontaneous coalescence events. These results have implications for the function of nucleoli in ribosome subunit processing and provide a physical link between activity within a macromolecular assembly and its physical properties on larger length scales.

  13. Entropic effects, shape, and size of mixed micelles formed by copolymers with complex architectures

    Science.gov (United States)

    Kalogirou, Andreas; Gergidis, Leonidas N.; Moultos, Othonas; Vlahos, Costas

    2015-11-01

    The entropic effects in the comicellization behavior of amphiphilic A B copolymers differing in the chain size of solvophilic A parts were studied by means of molecular dynamics simulations. In particular, mixtures of miktoarm star copolymers differing in the molecular weight of solvophilic arms were investigated. We found that the critical micelle concentration values show a positive deviation from the analytical predictions of the molecular theory of comicellization for chemically identical copolymers. This can be attributed to the effective interactions between copolymers originated from the arm size asymmetry. The effective interactions induce a very small decrease in the aggregation number of preferential micelles triggering the nonrandom mixing between the solvophilic moieties in the corona. Additionally, in order to specify how the chain architecture affects the size distribution and the shape of mixed micelles we studied star-shaped, H-shaped, and homo-linked-rings-linear mixtures. In the first case the individual constituents form micelles with preferential and wide aggregation numbers and in the latter case the individual constituents form wormlike and spherical micelles.

  14. Size-exclusion chromatography of perfluorosulfonated ionomers.

    Science.gov (United States)

    Mourey, T H; Slater, L A; Galipo, R C; Koestner, R J

    2011-08-26

    A size-exclusion chromatography (SEC) method in N,N-dimethylformamide containing 0.1 M LiNO(3) is shown to be suitable for the determination of molar mass distributions of three classes of perfluorosulfonated ionomers, including Nafion(®). Autoclaving sample preparation is optimized to prepare molecular solutions free of aggregates, and a solvent exchange method concentrates the autoclaved samples to enable the use of molar-mass-sensitive detection. Calibration curves obtained from light scattering and viscometry detection suggest minor variation in the specific refractive index increment across the molecular size distributions, which introduces inaccuracies in the calculation of local absolute molar masses and intrinsic viscosities. Conformation plots that combine apparent molar masses from light scattering detection with apparent intrinsic viscosities from viscometry detection partially compensate for the variations in refractive index increment. The conformation plots are consistent with compact polymer conformations, and they provide Mark-Houwink-Sakurada constants that can be used to calculate molar mass distributions without molar-mass-sensitive detection. Unperturbed dimensions and characteristic ratios calculated from viscosity-molar mass relationships indicate unusually free rotation of the perfluoroalkane backbones and may suggest limitations to applying two-parameter excluded volume theories for these ionomers. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Molecular Binding Contributes to Concentration Dependent Acrolein Deposition in Rat Upper Airways: CFD and Molecular Dynamics Analyses

    Directory of Open Access Journals (Sweden)

    Jinxiang Xi

    2018-03-01

    Full Text Available Existing in vivo experiments show significantly decreased acrolein uptake in rats with increasing inhaled acrolein concentrations. Considering that high-polarity chemicals are prone to bond with each other, it is hypothesized that molecular binding between acrolein and water will contribute to the experimentally observed deposition decrease by decreasing the effective diffusivity. The objective of this study is to quantify the probability of molecular binding for acrolein, as well as its effects on acrolein deposition, using multiscale simulations. An image-based rat airway geometry was used to predict the transport and deposition of acrolein using the chemical species model. The low Reynolds number turbulence model was used to simulate the airflows. Molecular dynamic (MD simulations were used to study the molecular binding of acrolein in different media and at different acrolein concentrations. MD results show that significant molecular binding can happen between acrolein and water molecules in human and rat airways. With 72 acrolein embedded in 800 water molecules, about 48% of acrolein compounds contain one hydrogen bond and 10% contain two hydrogen bonds, which agreed favorably with previous MD results. The percentage of hydrogen-bonded acrolein compounds is higher at higher acrolein concentrations or in a medium with higher polarity. Computational dosimetry results show that the size increase caused by the molecular binding reduces the effective diffusivity of acrolein and lowers the chemical deposition onto the airway surfaces. This result is consistent with the experimentally observed deposition decrease at higher concentrations. However, this size increase can only explain part of the concentration-dependent variation of the acrolein uptake and acts as a concurrent mechanism with the uptake-limiting tissue ration rate. Intermolecular interactions and associated variation in diffusivity should be considered in future dosimetry modeling of

  16. Molecular Binding Contributes to Concentration Dependent Acrolein Deposition in Rat Upper Airways: CFD and Molecular Dynamics Analyses.

    Science.gov (United States)

    Xi, Jinxiang; Hu, Qin; Zhao, Linlin; Si, Xiuhua April

    2018-03-27

    Existing in vivo experiments show significantly decreased acrolein uptake in rats with increasing inhaled acrolein concentrations. Considering that high-polarity chemicals are prone to bond with each other, it is hypothesized that molecular binding between acrolein and water will contribute to the experimentally observed deposition decrease by decreasing the effective diffusivity. The objective of this study is to quantify the probability of molecular binding for acrolein, as well as its effects on acrolein deposition, using multiscale simulations. An image-based rat airway geometry was used to predict the transport and deposition of acrolein using the chemical species model. The low Reynolds number turbulence model was used to simulate the airflows. Molecular dynamic (MD) simulations were used to study the molecular binding of acrolein in different media and at different acrolein concentrations. MD results show that significant molecular binding can happen between acrolein and water molecules in human and rat airways. With 72 acrolein embedded in 800 water molecules, about 48% of acrolein compounds contain one hydrogen bond and 10% contain two hydrogen bonds, which agreed favorably with previous MD results. The percentage of hydrogen-bonded acrolein compounds is higher at higher acrolein concentrations or in a medium with higher polarity. Computational dosimetry results show that the size increase caused by the molecular binding reduces the effective diffusivity of acrolein and lowers the chemical deposition onto the airway surfaces. This result is consistent with the experimentally observed deposition decrease at higher concentrations. However, this size increase can only explain part of the concentration-dependent variation of the acrolein uptake and acts as a concurrent mechanism with the uptake-limiting tissue ration rate. Intermolecular interactions and associated variation in diffusivity should be considered in future dosimetry modeling of high

  17. Unexpected Molecular Sieving Properties of Zeolitic Imidazolate Framework-8

    KAUST Repository

    Zhang, Chen; Lively, Ryan P.; Zhang, Ke; Johnson, Justin R.; Karvan, Oguz; Koros, William J.

    2012-01-01

    We studied molecular sieving properties of zeolitic imidazolate framework-8 (ZIF-8) by estimating the thermodynamically corrected diffusivities of probe molecules at 35 °C. From helium (2.6 Å) to iso-C 4H 10 (5.0 Å), the corrected diffusivity drops 14 orders of magnitude. Our results further suggest that the effective aperture size of ZIF-8 for molecular sieving is in the range of 4.0 to 4.2 Å, which is significantly larger than the XRD-derived value (3.4 Å) and between the well-known aperture size of zeolite 4A (3.8 Å) and 5A (4.3 Å). Interestingly, because of aperture flexibility, the studied C 4 hydrocarbon molecules that are larger than this effective aperture size still adsorb in the micropores of ZIF-8 with kinetic selectivities for iso-C 4H 8/iso-C 4H 10 of 180 and n-C 4H 10/iso-C 4H 10 of 2.5 × 10 6. These unexpected molecular sieving properties open up new opportunities for ZIF materials for separations that cannot be economically achieved by traditional microporous adsorbents such as synthetic zeolites. © 2012 American Chemical Society.

  18. Unexpected Molecular Sieving Properties of Zeolitic Imidazolate Framework-8

    KAUST Repository

    Zhang, Chen

    2012-08-16

    We studied molecular sieving properties of zeolitic imidazolate framework-8 (ZIF-8) by estimating the thermodynamically corrected diffusivities of probe molecules at 35 °C. From helium (2.6 Å) to iso-C 4H 10 (5.0 Å), the corrected diffusivity drops 14 orders of magnitude. Our results further suggest that the effective aperture size of ZIF-8 for molecular sieving is in the range of 4.0 to 4.2 Å, which is significantly larger than the XRD-derived value (3.4 Å) and between the well-known aperture size of zeolite 4A (3.8 Å) and 5A (4.3 Å). Interestingly, because of aperture flexibility, the studied C 4 hydrocarbon molecules that are larger than this effective aperture size still adsorb in the micropores of ZIF-8 with kinetic selectivities for iso-C 4H 8/iso-C 4H 10 of 180 and n-C 4H 10/iso-C 4H 10 of 2.5 × 10 6. These unexpected molecular sieving properties open up new opportunities for ZIF materials for separations that cannot be economically achieved by traditional microporous adsorbents such as synthetic zeolites. © 2012 American Chemical Society.

  19. Chitosan-magnesium aluminum silicate composite dispersions: characterization of rheology, flocculate size and zeta potential.

    Science.gov (United States)

    Khunawattanakul, Wanwisa; Puttipipatkhachorn, Satit; Rades, Thomas; Pongjanyakul, Thaned

    2008-03-03

    Composite dispersions of chitosan (CS), a positively charged polymer, and magnesium aluminum silicate (MAS), a negatively charged clay, were prepared and rheology, flocculate size and zeta potential of the CS-MAS dispersions were investigated. High and low molecular weights of CS (HCS and LCS, respectively) were used in this study. Moreover, the effects of heat treatment at 60 degrees C on the characteristics of the CS-MAS dispersions and the zeta potential of MAS upon addition of CS at different pHs were examined. Incorporation of MAS into CS dispersions caused an increase in viscosity and a shift of CS flow type from Newtonian to pseudoplastic flow with thixotropic properties. Heat treatment brought about a significant decrease in viscosity and hysteresis area of the composite dispersions. Microscopic studies showed that flocculation of MAS occurred after mixing with CS. The size and polydispersity index of the HCS-MAS flocculate were greater than those of the LCS-MAS flocculate. However, a narrower size distribution and the smaller size of the HCS-MAS flocculate were found after heating at 60 degrees C. Zeta potentials of the CS-MAS flocculates were positive and slightly increased with increasing MAS content. In the zeta potential studies, the negative charge of the MAS could be neutralized by the addition of CS. Increasing the pH and molecular weight of CS resulted in higher CS concentrations required to neutralize the charge of MAS. These findings suggest that the electrostatic interaction between CS and MAS caused a change in flow behavior and flocculation of the composite dispersions, depending on the molecular weight of CS. Heat treatment affected the rheological properties and the flocculate size of the composite dispersions. Moreover, pH of medium and molecular weight of CS influence the zeta potential of MAS.

  20. Understanding the Synthesis and Properties of Molecular Silver Nanoparticles

    Science.gov (United States)

    Ashenfelter, Brian A.

    Molecular nanoparticles have emerged as an interesting class of materials whose atomically precise structures and discrete properties set them apart from their larger counterparts. Molecular silver nanoparticles are of particular interest because they provide a host of advantages as optical materials for possible use in sensing and imaging applications. However, relatively little is known about molecular silver nanoparticles including the details of their formation and their optical and mechanical properties. Size control remains a longstanding challenge in the production of glutathionate (SG) protected silver nanoparticles. Singular Ag:SG nanoparticle products have been difficult to obtain directly, but size focusing of larger distributions through attrition has been found to lead to useful isolation of particular species. Here, we present a methodology for controlling the size of Ag:SG molecular nanoparticles that leverages the stability of the most robust species. These results were then used to develop a facile approach for achieving two of the most stable species in the Ag:SG system. Molecular metal nanoparticles are known to be much more fluorescent than larger plasmonic nanoparticles, however the nature and origin of this fluorescence are not fully understood. Fluorescence can originate from either the quantum states within the metal core or mixed ligand states at the inorganic-organic interface. We have presented compelling evidence that fluorescence from molecular silver glutathionate nanoparticles has its origin in interfacial electronic states. Fluorescence spectra were found to be independent of size, with very similar wavelength and bandwidth, although the quantum yield was not. Excitation spectra indicated that the strongest fluorescence had its origin in that part of the spectrum that is dominated by ligand-related states. Further, excitations to strictly core states and to higher lying d-band states had little to no contribution to the fluorescence

  1. Explicit all-atom modeling of realistically sized ligand-capped nanocrystals

    KAUST Repository

    Kaushik, Ananth P.; Clancy, Paulette

    2012-01-01

    We present a study of an explicit all-atom representation of nanocrystals of experimentally relevant sizes (up to 6 nm), capped with alkyl chain ligands, in vacuum. We employ all-atom molecular dynamics simulation methods in concert with a well

  2. Size dependence of elastic mechanical properties of nanocrystalline aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenwu; Dávila, Lilian P., E-mail: ldavila@ucmerced.edu

    2017-04-24

    The effect of grain size on the elastic mechanical properties of nanocrystalline pure metal Al is quantified by molecular dynamics simulation method. In this work, the largest nanocrystalline Al sample has a mean grain size of 29.6 nm and contains over 100 millions atoms in the modeling system. The simulation results show that the elastic properties including elastic modulus and ultimate tensile strength of nanocrystalline Al are relatively insensitive to the variation of mean grain size above 13 nm yet they become distinctly grain size dependent below 13 nm. Moreover, at a grain size <13 nm, the elastic modulus decreases monotonically with decreasing grain size while the ultimate tensile strength of nanocrystalline Al initially decreases with the decrease of the grain size down to 9 nm and then increases with further reduction of grain size. The increase of ultimate tensile strength below 9 nm is believed to be a result of an extended elasticity in the ultrafine grain size nanocrystalline Al. This study can facilitate the prediction of varied mechanical properties for similar nanocrystalline materials and even guide testing and fabrication schemes of such materials.

  3. Molecular clock in neutral protein evolution

    Directory of Open Access Journals (Sweden)

    Wilke Claus O

    2004-08-01

    Full Text Available Abstract Background A frequent observation in molecular evolution is that amino-acid substitution rates show an index of dispersion (that is, ratio of variance to mean substantially larger than one. This observation has been termed the overdispersed molecular clock. On the basis of in silico protein-evolution experiments, Bastolla and coworkers recently proposed an explanation for this observation: Proteins drift in neutral space, and can temporarily get trapped in regions of substantially reduced neutrality. In these regions, substitution rates are suppressed, which results in an overall substitution process that is not Poissonian. However, the simulation method of Bastolla et al. is representative only for cases in which the product of mutation rate μ and population size Ne is small. How the substitution process behaves when μNe is large is not known. Results Here, I study the behavior of the molecular clock in in silico protein evolution as a function of mutation rate and population size. I find that the index of dispersion decays with increasing μNe, and approaches 1 for large μNe . This observation can be explained with the selective pressure for mutational robustness, which is effective when μNe is large. This pressure keeps the population out of low-neutrality traps, and thus steadies the ticking of the molecular clock. Conclusions The molecular clock in neutral protein evolution can fall into two distinct regimes, a strongly overdispersed one for small μNe, and a mostly Poissonian one for large μNe. The former is relevant for the majority of organisms in the plant and animal kingdom, and the latter may be relevant for RNA viruses.

  4. The simulation of molecular clouds formation in the Milky Way

    Science.gov (United States)

    Khoperskov, S. A.; Vasiliev, E. O.; Sobolev, A. M.; Khoperskov, A. V.

    2013-01-01

    Using 3D hydrodynamic calculations we simulate formation of molecular clouds in the Galaxy. The simulations take into account molecular hydrogen chemical kinetics, cooling and heating processes. Comprehensive gravitational potential accounts for contributions from the stellar bulge, two- and four-armed spiral structure, stellar disc, dark halo and takes into account self-gravitation of the gaseous component. Gas clouds in our model form in the spiral arms due to shear and wiggle instabilities and turn into molecular clouds after t ≳ 100 Myr. At the times t ˜ 100-300 Myr the clouds form hierarchical structures and agglomerations with the sizes of 100 pc and greater. We analyse physical properties of the simulated clouds and find that synthetic statistical distributions like mass spectrum, `mass-size' relation and velocity dispersion are close to those observed in the Galaxy. The synthetic l-v (galactic longitude-radial velocity) diagram of the simulated molecular gas distribution resembles observed one and displays a structure with appearance similar to molecular ring of the Galaxy. Existence of this structure in our modelling can be explained by superposition of emission from the galactic bar and the spiral arms at ˜3-4 kpc.

  5. The effect of chitosan molecular weight on the properties of alginate ...

    African Journals Online (AJOL)

    Purpose: The aim of the present study was to investigate the effect of chitosan molecular weight on size, size distribution, release rate, mucoadhesive properties and electrostatic bonding of alginate/chitosan microparticles containing prednisolone. Methods: Three mucoadhesive alginate/chitosan microparticle formulations, ...

  6. Molecular nanomagnets

    CERN Document Server

    Gatteschi, Dante; Villain, Jacques

    2006-01-01

    Nanomagnetism is a rapidly expanding area of research which appears to be able to provide novel applications. Magnetic molecules are at the very bottom of the possible size of nanomagnets and they provide a unique opportunity to observe the coexistence of classical and quantum properties. The discovery in the early 90's that a cluster comprising twelve manganese ions shows hysteresis of molecular origin, and later proved evidence of quantum effects, opened a new research area whichis still flourishing through the collaboration of chemists and physicists. This book is the first attempt to cover

  7. The size distribution of dissolved uranium in natural waters

    International Nuclear Information System (INIS)

    Mann, D.K.; Wong, G.T.F.

    1987-01-01

    The size distribution of dissolved uranium in natural waters is poorly known. Some fraction of dissolved uranium is known to associate with organic matter which had a wide range of molecular weights. The presence of inorganic colloidal uranium has not been reported. Ultrafiltration has been used to quantify the size distribution of a number of elements, such as dissolved organic carbon, selenium, and some trace metals, in both the organic and/or the inorganic forms. The authors have applied this technique to dissolved uranium and the data are reported here

  8. Alkynes as a versatile platform for construction of chemical molecular complexity and realization of molecular 3D printing

    International Nuclear Information System (INIS)

    Galkin, K I; Ananikov, V P

    2016-01-01

    The current level of scientific and technological development requires the formation of general tools and techniques. One of the most versatile technologies is 3D printing, which allows fast and efficient creation of materials and biological objects of desired shape and composition. Today, methods have been developed for 3D printing of macro- and nano-sized objects and for production of films and deposited materials with molecular precision but the most promising technology is printing at the molecular level (molecular 3D printing) for the purpose of direct construction of molecular complexity. This process is currently at the initial stage concerning selection of simple molecules to be used as building blocks possessing flexibility, availability and ease of modification. In this review, we examine the possible versatile synthons suitable for preparation of the main types of organic compounds using molecular 3D printing. The surveyed data strongly indicate that alkyne molecules may be used as a building material in a molecular 3D printer working on hydrocarbons. The bibliography includes 428 references

  9. Fluorescence of soil humic acids and their fractions obtained by tandem size exclusion chromatography-polyacrylamide gel electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Trubetskaya, O. [Russian Academy of Sciences, Moscow Region (Russian Federation). Shemyakin and Ovchinnikov Inst. of Bioorganic Chemistry; Trubetskoj, O. [Russian Academy of Sciences, Moscow Region (Russian Federation). Inst. of Basic Biological Problems; Guyot, G.; Richard, C. [UMR CNRS 6505, Aubiere (France). Lab. de Photochimie Moleculaire et Macromoleculaire; Andreux, F. [Centre des Sciences de la Terre, Dijon (France)

    2002-07-01

    Humic acids (HAs) extracted from soils of different origin (chernozem, ferralsol and ranker) and their fractions (A, B and C+D) obtained by tandem size exclusion chromatography-polyacrylamide gel electrophoresis were investigated by steady-state fluorescence spectroscopy in the emission mode. Independently of HA source, high molecular size fractions A and B are shown to be weakly fluorescent. The main fluorophores, especially those emitting at long wavelength (around 500-510 nm), are contained in the polar and low molecular size fractions C+D. As indicated by the observed pH effect, aromatic structures bearing carboxylate and OH substituents may be involved in these longer wavelength emissions. [author].

  10. Orthonormal Wavelet Bases for Quantum Molecular Dynamics

    International Nuclear Information System (INIS)

    Tymczak, C.; Wang, X.

    1997-01-01

    We report on the use of compactly supported, orthonormal wavelet bases for quantum molecular-dynamics (Car-Parrinello) algorithms. A wavelet selection scheme is developed and tested for prototypical problems, such as the three-dimensional harmonic oscillator, the hydrogen atom, and the local density approximation to atomic and molecular systems. Our method shows systematic convergence with increased grid size, along with improvement on compression rates, thereby yielding an optimal grid for self-consistent electronic structure calculations. copyright 1997 The American Physical Society

  11. Turbulence and star formation in molecular clouds

    International Nuclear Information System (INIS)

    Larson, R.B.

    1981-01-01

    Data for many molecular clouds and condensations show that the internal velocity dispersion of each region is well correlated with its size and mass, and these correlations are approximately of power-law form. The dependence of velocity dispersion on region size is similar to the Kolmogoroff law for subsonic turbulence, suggesting that the observed motions are all part of a common hierarchy of interstellar turbulent motions. The regions studied are mostly gravitationally bound and in approximate virial equilibrium. However, they cannot have formed by simple gravitational collapse, and it appears likely that molecular clouds and their substructures have been created at least partly by processes of supersonic hydrodynamics. The hierarchy of subcondensations may terminate with objects so small that their internal motions are no longer supersonic; this predicts a minimum protostellar mass of the order of a few tenths of a solar mass. Massive 'protostellar' clumps always have supersonic internal motions and will therefore develop complex internal structures, probably leading to the formation of many pre-stellar condensation nuclei that grow by accretion to produce the final stellar mass spectrum. Molecular clouds must be transient structures, and are probably dispersed after not much more than 10 7 yr. (author)

  12. Quality control considerations for size exclusion chromatography with online ICP-MS: a powerful tool for evaluating the size dependence of metal-organic matter complexation.

    Science.gov (United States)

    McKenzie, Erica R; Young, Thomas M

    2013-01-01

    Size exclusion chromatography (SEC), which separates molecules based on molecular volume, can be coupled with online inductively coupled plasma mass spectrometry (ICP-MS) to explore size-dependent metal-natural organic matter (NOM) complexation. To make effective use of this analytical dual detector system, the operator should be mindful of quality control measures. Al, Cr, Fe, Se, and Sn all exhibited columnless attenuation, which indicated unintended interactions with system components. Based on signal-to-noise ratio and peak reproducibility between duplicate analyses of environmental samples, consistent peak time and height were observed for Mg, Cl, Mn, Cu, Br, and Pb. Al, V, Fe, Co, Ni, Zn, Se, Cd, Sn, and Sb were less consistent overall, but produced consistent measurements in select samples. Ultrafiltering and centrifuging produced similar peak distributions, but glass fiber filtration produced more high molecular weight (MW) peaks. Storage in glass also produced more high MW peaks than did plastic bottles.

  13. Molecular dynamics for reactions of heterogeneous catalysis

    NARCIS (Netherlands)

    Jansen, A.P.J.; Brongersma, H.H.; Santen, van R.A.

    1991-01-01

    An overview is given of Molecular Dynamics, and numerical integration techniques, system initialization, boundary conditions, force representation, statistics, system size, and simulations duration are discussed. Examples from surface science are used to illustrate the pros and cons of the method.

  14. On the validity of the Navier-Stokes equations for nanoscale liquid flows: The role of channel size

    Directory of Open Access Journals (Sweden)

    Chong Liu

    2011-09-01

    Full Text Available In this work, we investigate the validity of the Navier-Stokes (NS equations for nanoscale liquid flows through molecular dynamics simulations. We focus on the role of channel size by considering the fluid-wall interaction. Liquid flows between two planar parallel walls driven by an external force with channel size ranging from 2 to 80 nm are studied. The volumetric flux is computed and the dependence of the volumetric flux on the channel size is explained both qualitatively and quantitatively. It is found that the flow is sensitive to the fluid-wall binding energy and the classical fluid mechanics falls apart in small nanochannels. However, the wall effects become insignificant and the NS equations are valid when the channel size is larger than about 150 molecular diameters (∼ 50 nm.

  15. Characteristics of Sodium Polyacrylate/Nano-Sized Carbon Hydrogel for Biomedical Patch.

    Science.gov (United States)

    Park, Jong-Kyu; Seo, Sun-Kyo; Cho, Seungkwan; Kim, Han-Sung; Lee, Chi-Hwan

    2018-03-01

    Conductive hydrogels were prepared for biomedical patch in order to improve the electrical conductivity. Sodium polyacrylate and nano-sized carbon were mixed and fabricated by aqueous solution gelation process in various contents of nano-sized carbon with 0.1, 0.5, 1.0 and 2.0 wt%. Sodium polyacrylate/nano-sized carbon conductive hydrogels were investigated by molecular structure, surface morphology and electrical conductivity. The conductivity of the hydrogel/nano-sized carbon conductive hydrogel proved to be 10% higher than conductive hydrogel without nano-sized carbon. However, it was founded that conductive hydrogels with nano-sized carbon content from 0.5 up to 2.0 wt% were remarkably decreased. This may be due to the non-uniform distribution of nano-sized carbon, resulting from agglomerates of nano-sized carbon. The developed hydrogel is intended for use in the medical and cosmetic fields that is applicable to supply micro-current from device to human body.

  16. Molecular fingerprinting of complex grass allergoids: size assessments reveal new insights in epitope repertoires and functional capacities.

    Science.gov (United States)

    Starchenka, S; Bell, A J; Mwange, J; Skinner, M A; Heath, M D

    2017-01-01

    Subcutaneous allergen immunotherapy (SCIT) is a well-documented treatment for allergic disease which involves injections of native allergen or modified (allergoid) extracts. The use of allergoid vaccines is a growing sector of the allergy immunotherapy market, associated with shorter-course therapy. The aim of this study was the structural and immunological characterisation of group 1 (Lol p 1) IgG-binding epitopes within a complex mix grass allergoid formulation containing rye grass. HP-SEC was used to resolve a mix grass allergoid preparation of high molecular weight into several distinct fractions with defined molecular weight and elution profiles. Allergen verification of the HP-SEC allergoid fractions was confirmed by mass spectrometry analysis. IgE and IgG immunoreactivity of the allergoid preparations was explored and Lol p 1 specific IgG-binding epitopes mapped by SPOT synthesis technology (PepSpot™) with structural analysis based on a Lol p 1 homology model. Grass specific IgE reactivity of the mix grass modified extract (allergoid) was diminished in comparison with the mix grass native extract. A difference in IgG profiles was observed between an intact mix grass allergoid preparation and HP-SEC allergoid fractions, which indicated enhancement of accessible reactive IgG epitopes across size distribution profiles of the mix grass allergoid formulation. Detailed analysis of the epitope specificity showed retention of six Lol p 1 IgG-binding epitopes in the mix grass modified extract. The structural and immunological changes which take place following the grass allergen modification process was further unravelled revealing distinct IgG immunological profiles. All epitopes were mapped on the solvent exposed area of Lol p 1 homology model accessible for IgG binding. One of the epitopes was identified as an 'immunodominant' Lol p 1 IgG-binding epitope (62-IFKDGRGCGSCFEIK-76) and classified as a novel epitope. The results from this study support the concept

  17. Nanobody: the "magic bullet" for molecular imaging?

    Science.gov (United States)

    Chakravarty, Rubel; Goel, Shreya; Cai, Weibo

    2014-01-01

    Molecular imaging involves the non-invasive investigation of biological processes in vivo at the cellular and molecular level, which can play diverse roles in better understanding and treatment of various diseases. Recently, single domain antigen-binding fragments known as 'nanobodies' were bioengineered and tested for molecular imaging applications. Small molecular size (~15 kDa) and suitable configuration of the complementarity determining regions (CDRs) of nanobodies offer many desirable features suitable for imaging applications, such as rapid targeting and fast blood clearance, high solubility, high stability, easy cloning, modular nature, and the capability of binding to cavities and difficult-to-access antigens. Using nanobody-based probes, several imaging techniques such as radionuclide-based, optical and ultrasound have been employed for visualization of target expression in various disease models. This review summarizes the recent developments in the use of nanobody-based probes for molecular imaging applications. The preclinical data reported to date are quite promising, and it is expected that nanobody-based molecular imaging agents will play an important role in the diagnosis and management of various diseases.

  18. Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters.

    Science.gov (United States)

    Xu, Huacheng; Guo, Laodong

    2017-06-15

    Dissolved organic matter (DOM) is ubiquitous in natural waters. The ecological role and environmental fate of DOM are highly related to the chemical composition and size distribution. To evaluate size-dependent DOM quantity and quality, water samples were collected from river, lake, and coastal marine environments and size fractionated through a series of micro- and ultra-filtrations with different membranes having different pore-sizes/cutoffs, including 0.7, 0.4, and 0.2 μm and 100, 10, 3, and 1 kDa. Abundance of dissolved organic carbon, total carbohydrates, chromophoric and fluorescent components in the filtrates decreased consistently with decreasing filter/membrane cutoffs, but with a rapid decline when the filter cutoff reached 3 kDa, showing an evident size-dependent DOM abundance and composition. About 70% of carbohydrates and 90% of humic- and protein-like components were measured in the definition of DOM and its size continuum in quantity and quality in aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Size determination of an equilibrium enzymic system by radiation inactivation

    International Nuclear Information System (INIS)

    Simon, P.; Swillens, S.; Dumont, J.E.

    1982-01-01

    Radiation inactivation of complex enzymic systems is currently used to determine the enzyme size and the molecular organization of the components in the system. An equilibrium model was simulated describing the regulation of enzyme activity by association of the enzyme with a regulatory unit. It is assumed that, after irradiation, the system equilibrates before the enzyme activity is assayed. The theoretical results show that the target-size analysis of these numerical data leads to a bad estimate of the enzyme size. Moreover, some implicit assumptions such as the transfer of radiation energy between non-covalently bound molecules should be verified before interpretation of target-size analysis. It is demonstrated that the apparent target size depends on the parameters of the system, namely the size and the concentration of the components, the equilibrium constant, the relative activities of free enzyme and enzymic complex, the existence of energy transfer, and the distribution of the components between free and bound forms during the irradiation. (author)

  20. Microeconomic principles explain an optimal genome size in bacteria.

    Science.gov (United States)

    Ranea, Juan A G; Grant, Alastair; Thornton, Janet M; Orengo, Christine A

    2005-01-01

    Bacteria can clearly enhance their survival by expanding their genetic repertoire. However, the tight packing of the bacterial genome and the fact that the most evolved species do not necessarily have the biggest genomes suggest there are other evolutionary factors limiting their genome expansion. To clarify these restrictions on size, we studied those protein families contributing most significantly to bacterial-genome complexity. We found that all bacteria apply the same basic and ancestral 'molecular technology' to optimize their reproductive efficiency. The same microeconomics principles that define the optimum size in a factory can also explain the existence of a statistical optimum in bacterial genome size. This optimum is reached when the bacterial genome obtains the maximum metabolic complexity (revenue) for minimal regulatory genes (logistic cost).

  1. Gas Sensors Based on Molecular Imprinting Technology.

    Science.gov (United States)

    Zhang, Yumin; Zhang, Jin; Liu, Qingju

    2017-07-04

    Molecular imprinting technology (MIT); often described as a method of designing a material to remember a target molecular structure (template); is a technique for the creation of molecularly imprinted polymers (MIPs) with custom-made binding sites complementary to the target molecules in shape; size and functional groups. MIT has been successfully applied to analyze; separate and detect macromolecular organic compounds. Furthermore; it has been increasingly applied in assays of biological macromolecules. Owing to its unique features of structure specificity; predictability; recognition and universal application; there has been exploration of the possible application of MIPs in the field of highly selective gas sensors. In this present study; we outline the recent advances in gas sensors based on MIT; classify and introduce the existing molecularly imprinted gas sensors; summarize their advantages and disadvantages; and analyze further research directions.

  2. Target size analysis of bioactive substances by radiation inactivation. Comparison with electron beam and. gamma. -ray

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu; Watanabe, Yuhei; Ishigaki, Isao; Hirose, Shigehisa

    1988-11-01

    The molecular sizes of various bioactive substances can be measured by the radiation inactivation method. The high energy electron beam (10 MeV) and /sup 60/Co-..gamma.. ray are mainly used for radiation inactivation method. When the practical electron accelerator (/similar to/ 3 MeV) is used for the method, the problems such as penetration and increase of temperature will arise. In this paper the radiation inactivation using 3MeV electron beam is investigated by comparison with ..gamma..-ray. When the plate type glass ampules (glass thickness 1 +- 0.1 mm) were used as the irradiation vessels, relatively uniform dose distribution was obtained. The temperature increased only from 21 degC to 35 degC by irradiation (0.77 mA, 100 passes, 100 kGy). Under the irradiation condition mentioned above, the molecular size of three enzymes were calculated from D/sub 37/ doses. The molecular sizes obtained by electron beam and ..gamma..-ray were 14,000 and 17,000 respectively for lysozyme, 33,000 for pepsin, and 191,000 and 164,000 for yeast alcohol dehydrogenase. These values agreed closely with the reported molecular weight, suggesting that the 3 MeV electron beam can also be used for the radiation inactivation under limited conditions.

  3. Functional size analysis of bioactive materials by radiation inactivation

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    1994-01-01

    When the research on various proteins including enzymes is carried out, first molecular weight is measured. The physical chemical methods used for measuring molecular weight cannot measure it in the state of actually acting in living bodies. Radiation inactivation method is the unique method which can measure the molecular weight of the active substances in living bodies. Paying attention to this point, recently it is attempted to measure the activity unit of enzymes, receptors and others, and to apply to the elucidation of their functions. In this report, the concept of the method of measuring molecular size based on radiation inactivation, the detailed experimental method and the points to which attention must be paid are described. Also its application to the elucidation of living body functions according to the example of the studies by the author is reported. The concept of the measurement of molecular weight by radiation inactivation is based on target theory. The preparation of samples, the effect of oxygen, radiation sources, dosimetry, irradiation temperature, internal standard process and so on are reported. The trend of the research is shown. (K.I.)

  4. Functional size of photosynthetic electron transport chain determined by radiation inactivation

    International Nuclear Information System (INIS)

    Pan, R.S.; Chen, L.F.; Wang, M.Y.; Tsal, M.Y.; Pan, R.L.; Hsu, B.D.

    1987-01-01

    Radiation inactivation technique was employed to determine the functional size of photosynthetic electron transport chain of spinach chloroplasts. The functional size for photosystem I+II(H 2 O to methylviologen) was 623 +/- 37 kilodaltons; for photosystem II (H 2 O to dimethylquinone/ferricyanide), 174 +/- 11 kilodaltons; and for photosystem I (reduced diaminodurene to methylviologen), 190 +/- 11 kilodaltons. The difference between 364 +/- 22 (the sum of 174 +/- 11 and 190 +/- 11) kilodaltons and 623 +/- 37 kilodaltons is partially explained to be due to the presence of two molecules of cytochrome b 6 /f complex of 280 kilodaltons. The molecular mass for other partial reactions of photosynthetic electron flow, also measured by radiation inactivation, is reported. The molecular mass obtained by this technique is compared with that determined by other conventional biochemical methods. A working hypothesis for the composition, stoichiometry, and organization of polypeptides for photosynthetic electron transport chain is proposed

  5. Perspective: Size selected clusters for catalysis and electrochemistry

    Science.gov (United States)

    Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro; Vajda, Stefan

    2018-03-01

    Size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization, and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition, cluster-support interactions, and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modeling based on density functional theory sampling of local minima and energy barriers or ab initio molecular dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Finally, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.

  6. Investigation of the Physical and Molecular Properties of Asphalt Binders Processed with Used Motor Oils

    Directory of Open Access Journals (Sweden)

    Mohyeldin Ragab

    2015-01-01

    Full Text Available In this work we investigated the performance aspects of addition of used motor oils (UMO to neat and crumb rubber modified asphalts (CRMA and related that to the change of molecular size distribution of modified asphalt’s fractions; asphaltenes, saturates, naphthene aromatics, and polar aromatics. Based on the results of temperature sweep viscoelastic tests, addition of crumb rubber modifier (CRM alone or with UMO results in the formation of internal network within the modified asphalt. Based on the results of short and long term aged asphalts, the utilization of combination of UMO and CRM enhanced the aging behavior of asphalt. Bending beam rheometer was utilized to investigate the low temperature behavior of UMO modified asphalts. Based on those tests, the utilization of the UMO and CRM enhanced the low temperature properties of asphalts. Based on the results of the asphalt separation tests and the Gel Permeation Chromatography (GPC analysis, it was found that saturates and naphthene aromatics are the two asphalt fractions that have similar molecular size fractions as those of UMO. However, UMO only shifts the molecular sizes of saturates after interaction with asphalt. Results also show that polar aromatics pose higher molecular size structures than UMO.

  7. The hydrodynamic size of polymer stabilized nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Karl M; Al-Somali, Ali M; Mejia, Michelle; Colvin, Vicki L [Department of Chemistry, Rice University, MS-60 6100 Main Street, Houston, TX 77005 (United States)

    2007-11-28

    For many emerging applications, nanocrystals are surface functionalized with polymers to control self-assembly, prevent aggregation, and promote incorporation into polymer matrices and biological systems. The hydrodynamic diameter of these nanoparticle-polymer complexes is a critical factor for many applications, and predicting this size is complicated by the fact that the structure of the grafted polymer at a nanocrystalline interface is not generally established. In this work we evaluate using size-exclusion chromatography the overall hydrodynamic diameter of nanocrystals (Au, CdSe, d<5 nm) surface coated with polystyrene of varying molecular weight. The polymer is tethered to the nanoparticles via a terminal thiol to provide strong attachment. Our data show that at full coverage the polymer assumes a brush conformation and is 44% longer than the unbound polymer in solution. The brush conformation is confirmed by comparison with models used to describe polymer brushes at flat interfaces. From this work, we suggest an empirical formula which predicts the hydrodynamic diameter of polymer coated nanoparticles based on the size of the nanoparticle core and the size of the randomly coiled unbound polymer in solution.

  8. Molecular Imprinting Techniques Used for the Preparation of Biosensors

    Directory of Open Access Journals (Sweden)

    Gizem Ertürk

    2017-02-01

    Full Text Available Molecular imprinting is the technology of creating artificial recognition sites in polymeric matrices which are complementary to the template in their size, shape and spatial arrangement of the functional groups. Molecularly imprinted polymers (MIPs and their incorporation with various transducer platforms are among the most promising approaches for detection of several analytes. There are a variety of molecular imprinting techniques used for the preparation of biomimetic sensors including bulk imprinting, surface imprinting (soft lithography, template immobilization, grafting, emulsion polymerization and epitope imprinting. This chapter presents an overview of all of these techniques with examples from particular publications.

  9. Logic circuits based on molecular spider systems.

    Science.gov (United States)

    Mo, Dandan; Lakin, Matthew R; Stefanovic, Darko

    2016-08-01

    Spatial locality brings the advantages of computation speed-up and sequence reuse to molecular computing. In particular, molecular walkers that undergo localized reactions are of interest for implementing logic computations at the nanoscale. We use molecular spider walkers to implement logic circuits. We develop an extended multi-spider model with a dynamic environment wherein signal transmission is triggered via localized reactions, and use this model to implement three basic gates (AND, OR, NOT) and a cascading mechanism. We develop an algorithm to automatically generate the layout of the circuit. We use a kinetic Monte Carlo algorithm to simulate circuit computations, and we analyze circuit complexity: our design scales linearly with formula size and has a logarithmic time complexity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Invariance of molecular charge transport upon changes of extended molecule size and several related issues

    Directory of Open Access Journals (Sweden)

    Ioan Bâldea

    2016-03-01

    Full Text Available As a sanity test for the theoretical method employed, studies on (steady-state charge transport through molecular devices usually confine themselves to check whether the method in question satisfies the charge conservation. Another important test of the theory’s correctness is to check that the computed current does not depend on the choice of the central region (also referred to as the “extended molecule”. This work addresses this issue and demonstrates that the relevant transport and transport-related properties are indeed invariant upon changing the size of the extended molecule, when the embedded molecule can be described within a general single-particle picture (namely, a second-quantized Hamiltonian bilinear in the creation and annihilation operators. It is also demonstrates that the invariance of nonequilibrium properties is exhibited by the exact results but not by those computed approximately within ubiquitous wide- and flat-band limits (WBL and FBL, respectively. To exemplify the limitations of the latter, the phenomenon of negative differential resistance (NDR is considered. It is shown that the exactly computed current may exhibit a substantial NDR, while the NDR effect is absent or drastically suppressed within the WBL and FBL approximations. The analysis done in conjunction with the WBLs and FBLs reveals why general studies on nonequilibrium properties require a more elaborate theoretical than studies on linear response properties (e.g., ohmic conductance and thermopower at zero temperature. Furthermore, examples are presented that demonstrate that treating parts of electrodes adjacent to the embedded molecule and the remaining semi-infinite electrodes at different levels of theory (which is exactly what most NEGF-DFT approaches do is a procedure that yields spurious structures in nonlinear ranges of current–voltage curves.

  11. Effect of small mapping population sizes on reliability of quantitative ...

    African Journals Online (AJOL)

    A limitation of quantitative trait loci (QTL) mapping is that accuracy of determining QTL position and effects are largely determined by population size. Despite the importance of this concept, known as the "Beavis effect there has generally been a lack of understanding by molecular geneticists and breeders. One possible ...

  12. Role of Carboxylate ligands in the Synthesis of AuNPs: Size Control, Molecular Interaction and Catalytic Activity

    KAUST Repository

    Aljohani, Hind Abdullah

    2016-05-22

    then describe the effect of the concentrations and of various type of the stabilizer, and the post-synthesis treatment on gold nanoparticles size. In Chapter 4, we focus on determining the nature of the interactions at molecular level between citrate (and other carboxylate-containing ligands) and AuNP in terms of the mode of coordination at the surface, and the formal oxidation state of Au when interacting with these negatively charged carboxylate ligands (i.e., LX- in the Green formalism). We achieve this by combining very advanced 13C CP/MAS, 23Na MAS and low-temperature SSNMR, high-resolution transmission electron microscopy (HRTEM) and density functional theory (DFT) calculations. A particular emphasis will be based on SS-NMR. In Chapter 5, we study the influence of pretreatment of 1% Au/TiO2 catalysts on the resulting activity in the oxidation of carbon monoxide, the effect of the concentration and the type of the ligands on the catalytic activity. The catalysts were characterized by TPO, XRD, and TEM spectroscopy.

  13. Prediction of the effects of size and morphology on the structure of water around hematite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Spagnoli, D.; Gilbert, B.; Waychunas, G.A.; Banfield, J. F.

    2009-05-15

    Compared with macroscopic surfaces, the structure of water around nanoparticles is difficult to probe directly. We used molecular dynamics simulations to investigate the effects of particle size and morphology on the time-averaged structure and the dynamics of water molecules around two sizes of hematite ({alpha}-Fe{sub 2}O{sub 3}) nanoparticles. Interrogation of the simulations via atomic density maps, radial distribution functions and bound water residence times provide insight into the relationships between particle size and morphology and the behavior of interfacial water. Both 1.6 and 2.7 nm particles are predicted to cause the formation of ordered water regions close to the nanoparticle surface, but the extent of localization and ordering, the connectivity between regions of bound water, and the rates of molecular exchange between inner and outer regions are all affected by particle size and morphology. These findings are anticipated to be relevant to understanding the rates of interfacial processes involving water exchange and the transport of aqueous ions to surface sites.

  14. Molecular candidates of MTV in air

    Science.gov (United States)

    Dam, Nico; Mirzaei, Mehrnoosh; van de Water, Willem

    2011-11-01

    In molecular tagging velocimetry (MTV), the molecules of a gas are used as flow tracers. These tracers can be produced at will by illumination with a laser which promotes molecules to a long- lived excited state, fuses N2 and N2 to NO, or makes molecules phosphoresce. A while later these tagged molecules can be visualized by laser-induced fluorescence, or by just watching them while they phosphoresce. Candidates for MTV in turbulence research must be arranged in structures narrower than the Kolmogorov scale, which remain narrow as time progresses, and must live longer than the Kolmogorov time. These requirements invalidate many candidates, candidates once deemed successful. They do so in various surprising manners that involve a combination of fluid flow and molecular dynamics. Rather than velocimetry in turbulence, MTV techniques offer a unique view on basic dispersion processes at the smallest scales of turbulence. In this way we have measured the spreading of clouds whose size is a few times the Kolmogorov length and the Batchelor dispersion of objects whose size is inside the inertial range.

  15. Laboratory Studies of the Formation of Interstellar Dust from Molecular Precursors

    Science.gov (United States)

    Contreras, Cesar S.; Salama, Farid

    2009-06-01

    The study of the formation and the destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. Interstellar dust presents a continuous size distribution from large molecules, radicals and ions to nanometer-sized particles to micron-sized grains. The lower end of the carbonaceous dust size distribution is thought to be responsible for the ubiquitous spectral features that are seen in emission in the IR (UIBs) and in absorption in the visible (DIBs). The higher end of the dust-size distribution is thought to be responsible for the continuum emission plateau that is seen in the IR and for the strong absorption seen in the interstellar UV extinction curve. All these spectral signatures are characteristic of cosmic organic materials that are ubiquitous and present in various forms from gas-phase molecules to solid-state grains and all are expected to exhibit FIR spectral signatures. Space observations from the UV (HST) to the IR (ISO, Spitzer) help place size constraints on the molecular component of carbonaceous IS dust and its contribution to the IS features in the UV and in the IR. Studies of large molecular and nano-sized IS dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate interstellar and circumstellar environments. The species (molecules, molecular fragments, ions, nanoparticles, etc...) formed in the pulsed discharge nozzle (PDN) plasma source are detected and characterized with a high-sensitivity cavity ringdown spectrometer (CRDS) coupled to a Reflectron time-of-flight mass spectrometer (ReTOF-MS). We will present new experimental results that indicate that nanoparticles are generated in the plasma. From these unique measurements, we derive information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of IS dust and the resulting budget of extraterrestrial organic

  16. Membrane-bound Na,K-ATPase: target size and radiation inactivation size of some of its enzymatic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, J.; Norby, J.G.

    1988-12-05

    Frozen samples of membrane-bound pig kidney Na,K-ATPase were subjected to target size analysis by radiation inactivation with 10-MeV electrons at -15 degrees C. The various properties investigated decreased monoexponentially with radiation dose, and the decay constants, gamma, were independent of the presence of other proteins and of sucrose concentrations above 0.25 M. The temperature factor was the same as described by others. Irradiation of four proteins of known molecular mass, m, showed that gamma for protein integrity was proportional to m with a proportionality factor about 20% higher than that conventionally used. By this standard curve, glucose-6-phosphate dehydrogenase activity used as internal standard gave a radiation inactivation size of 110 +/- 5 kDa, very close to m = 104-108 kDa for the dimer, as expected. For Na+/K+-transporting ATPase the following target sizes and radiation inactivation size values were very close to m = 112 kDa for the alpha-peptide: peptide integrity of alpha, 115 kDa; unmodified binding sites for ATP and vanadate, 108 kDa; K+-activated p-nitrophenylphosphatase activity, 106 kDa. There was thus no sign of dimerization of the alpha-peptide or involvement of the beta-peptide. In contrast, optimal Na+/K+-transporting ATPase activity had a radiation inactivation size = 189 +/- 7 kDa, and total nucleotide binding capacity corresponded to 72 +/- 3 kDa. These latter results will be extended and discussed in a forthcoming paper.

  17. Membrane-bound Na,K-ATPase: target size and radiation inactivation size of some of its enzymatic reactions

    International Nuclear Information System (INIS)

    Jensen, J.; Norby, J.G.

    1988-01-01

    Frozen samples of membrane-bound pig kidney Na,K-ATPase were subjected to target size analysis by radiation inactivation with 10-MeV electrons at -15 degrees C. The various properties investigated decreased monoexponentially with radiation dose, and the decay constants, gamma, were independent of the presence of other proteins and of sucrose concentrations above 0.25 M. The temperature factor was the same as described by others. Irradiation of four proteins of known molecular mass, m, showed that gamma for protein integrity was proportional to m with a proportionality factor about 20% higher than that conventionally used. By this standard curve, glucose-6-phosphate dehydrogenase activity used as internal standard gave a radiation inactivation size of 110 +/- 5 kDa, very close to m = 104-108 kDa for the dimer, as expected. For Na+/K+-transporting ATPase the following target sizes and radiation inactivation size values were very close to m = 112 kDa for the alpha-peptide: peptide integrity of alpha, 115 kDa; unmodified binding sites for ATP and vanadate, 108 kDa; K+-activated p-nitrophenylphosphatase activity, 106 kDa. There was thus no sign of dimerization of the alpha-peptide or involvement of the beta-peptide. In contrast, optimal Na+/K+-transporting ATPase activity had a radiation inactivation size = 189 +/- 7 kDa, and total nucleotide binding capacity corresponded to 72 +/- 3 kDa. These latter results will be extended and discussed in a forthcoming paper

  18. Crystal structure and pair potentials: A molecular-dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1980-10-06

    With use of a Lagrangian which allows for the variation of the shape and size of the periodically repeating molecular-dynamics cell, it is shown that different pair potentials lead to different crystal structures.

  19. Consolidation of nanometer-sized aluminum single crystals: Microstructure and defects evolutions

    KAUST Repository

    Afify, N. D.

    2014-04-01

    Deriving bulk materials with ultra-high mechanical strength from nanometer-sized single metalic crystals depends on the consolidation procedure. We present an accurate molecular dynamics study to quantify microstructure responses to consolidation. Aluminum single crystals with an average size up to 10.7 nm were hydrostatically compressed at temperatures up to 900 K and pressures up to 5 GPa. The consolidated material developed an average grain size that grew exponentially with the consolidation temperature, with a growth rate dependent on the starting average grain size and the consolidation pressure. The evolution of the microstructure was accompanied by a significant reduction in the concentration of defects. The ratio of vacancies to dislocation cores decreased with the average grain size and then increased after reaching a critical average grain size. The deformation mechanisms of poly-crystalline metals can be better understood in the light of the current findings. © 2013 Elsevier B.V. All rights reserved.

  20. Consolidation of nanometer-sized aluminum single crystals: Microstructure and defects evolutions

    KAUST Repository

    Afify, N. D.; Salem, H. G.; Yavari, A.; El Sayed, Tamer S.

    2014-01-01

    Deriving bulk materials with ultra-high mechanical strength from nanometer-sized single metalic crystals depends on the consolidation procedure. We present an accurate molecular dynamics study to quantify microstructure responses to consolidation. Aluminum single crystals with an average size up to 10.7 nm were hydrostatically compressed at temperatures up to 900 K and pressures up to 5 GPa. The consolidated material developed an average grain size that grew exponentially with the consolidation temperature, with a growth rate dependent on the starting average grain size and the consolidation pressure. The evolution of the microstructure was accompanied by a significant reduction in the concentration of defects. The ratio of vacancies to dislocation cores decreased with the average grain size and then increased after reaching a critical average grain size. The deformation mechanisms of poly-crystalline metals can be better understood in the light of the current findings. © 2013 Elsevier B.V. All rights reserved.

  1. Biomedical nanotechnology for molecular imaging, diagnostics, and targeted therapy.

    Science.gov (United States)

    Nie, Shuming

    2009-01-01

    Biomedical nanotechnology is a cross-disciplinary area of research in science, engineering and medicine with broad applications for molecular imaging, molecular diagnosis, and targeted therapy. The basic rationale is that nanometer-sized particles such as semiconductor quantum dots and iron oxide nanocrystals have optical, magnetic or structural properties that are not available from either molecules or bulk solids. When linked with biotargeting ligands such as monoclonal antibodies, peptides or small molecules, these nanoparticles can be used to target diseased cells and organs (such as malignant tumors and cardiovascular plaques) with high affinity and specificity. In the "mesoscopic" size range of 5-100 nm diameter, nanoparticles also have large surface areas and functional groups for conjugating to multiple diagnostic (e.g., optical, radioisotopic, or magnetic) and therapeutic (e.g., anticancer) agents.

  2. A Size Exclusion Chromatography Laboratory with Unknowns for Introductory Students

    Science.gov (United States)

    McIntee, Edward J.; Graham, Kate J.; Colosky, Edward C.; Jakubowski, Henry V.

    2015-01-01

    Size exclusion chromatography is an important technique in the separation of biological and polymeric samples by molecular weight. While a number of laboratory experiments have been published that use this technique for the purification of large molecules, this is the first report of an experiment that focuses on purifying an unknown small…

  3. Nanobody: The “Magic Bullet” for Molecular Imaging?

    Science.gov (United States)

    Chakravarty, Rubel; Goel, Shreya; Cai, Weibo

    2014-01-01

    Molecular imaging involves the non-invasive investigation of biological processes in vivo at the cellular and molecular level, which can play diverse roles in better understanding and treatment of various diseases. Recently, single domain antigen-binding fragments known as 'nanobodies' were bioengineered and tested for molecular imaging applications. Small molecular size (~15 kDa) and suitable configuration of the complementarity determining regions (CDRs) of nanobodies offer many desirable features suitable for imaging applications, such as rapid targeting and fast blood clearance, high solubility, high stability, easy cloning, modular nature, and the capability of binding to cavities and difficult-to-access antigens. Using nanobody-based probes, several imaging techniques such as radionuclide-based, optical and ultrasound have been employed for visualization of target expression in various disease models. This review summarizes the recent developments in the use of nanobody-based probes for molecular imaging applications. The preclinical data reported to date are quite promising, and it is expected that nanobody-based molecular imaging agents will play an important role in the diagnosis and management of various diseases. PMID:24578722

  4. Size effects on the Kauzmann temperature and related thermodynamic parameters of Ag nanoparticles

    International Nuclear Information System (INIS)

    Ao, Z M; Zheng, W T; Jiang, Q

    2007-01-01

    Based on the Sutton-Chen many-body potential function, several thermodynamic parameters of Ag are simulated by molecular dynamics. The parameters simulated are size dependences of the Kauzmann temperature T K and melting temperature T m , and size and temperature dependences of melting enthalpy H m and melting entropy S m . The simulation results and the results of the thermodynamic theory models of T K and T m show good agreement, indicating that as the size of the Ag particles decreases, the T K and T m functions decrease. However, the ratio of T K and T m of Ag nanoparticles is size-independent

  5. Size-dependent penetrant diffusion in polymer glasses.

    Science.gov (United States)

    Meng, Dong; Zhang, Kai; Kumar, Sanat K

    2018-05-18

    Molecular Dynamics simulations are used to understand the underpinning basis of the transport of gas-like solutes in deeply quenched polymeric glasses. As found in previous work, small solutes, with sizes smaller than 0.15 times the chain monomer size, move as might be expected in a medium with large pores. In contrast, the motion of larger solutes is activated and is strongly facilitated by matrix motion. In particular, solute motion is coupled to the local elastic fluctuations of the matrix as characterized by the Debye-Waller factor. While similar ideas have been previously proposed for the viscosity of supercooled liquids above their glass transition, to our knowledge, this is the first illustration of this concept in the context of solute mass transport in deeply quenched polymer glasses.

  6. Degree of Response to Homeopathic Potencies Correlates with Dipole Moment Size in Molecular Detectors: Implications for Understanding the Fundamental Nature of Serially Diluted and Succussed Solutions.

    Science.gov (United States)

    Cartwright, Steven J

    2018-02-01

     The use of solvatochromic dyes to investigate homeopathic potencies holds out the promise of understanding the nature of serially succussed and diluted solutions at a fundamental physicochemical level. Recent studies have shown that a range of different dyes interact with potencies and, moreover, the nature of the interaction is beginning to allow certain specific characteristics of potencies to be delineated.  The study reported in this article takes previous investigations further and aims to understand more about the nature of the interaction between potencies and solvatochromic dyes. To this end, the UV-visible spectra of a wide range of potential detectors of potencies have been examined using methodologies previously described.  Results presented demonstrate that solvatochromic dyes are a sub-group of a larger class of compounds capable of demonstrating interactions with potencies. In particular, amino acids containing an aromatic bridge also show marked optical changes in the presence of potencies. Several specific features of molecular detectors can now be shown to be necessary for significant interactions with homeopathic potencies. These include systems with a large dipole moment, electron delocalisation, polarizability and molecular rigidity.  Analysis of the optical changes occurring on interaction with potencies suggests that in all cases potencies increase the polarity of molecular detectors to a degree that correlates with the size of the compound's permanent or ground dipole moment. These results can be explained by inferring that potencies themselves have polarity. Possible candidates for the identity of potencies, based on these and previously reported results, are discussed. The Faculty of Homeopathy.

  7. Density-functional errors in ionization potential with increasing system size

    Energy Technology Data Exchange (ETDEWEB)

    Whittleton, Sarah R.; Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States); Johnson, Erin R., E-mail: erin.johnson@dal.ca [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States); Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2 (Canada)

    2015-05-14

    This work investigates the effects of molecular size on the accuracy of density-functional ionization potentials for a set of 28 hydrocarbons, including series of alkanes, alkenes, and oligoacenes. As the system size increases, delocalization error introduces a systematic underestimation of the ionization potential, which is rationalized by considering the fractional-charge behavior of the electronic energies. The computation of the ionization potential with many density-functional approximations is not size-extensive due to excessive delocalization of the incipient positive charge. While inclusion of exact exchange reduces the observed errors, system-specific tuning of long-range corrected functionals does not generally improve accuracy. These results emphasize that good performance of a functional for small molecules is not necessarily transferable to larger systems.

  8. Size exclusion HPLC of proteins for evaluation of durum wheat quality

    Science.gov (United States)

    The present research aimed to assess size exclusion HPLC (SE-HPLC) in protein molecular weight distribution determination for quality evaluation of durum semolina. Semolina samples were milled from 13 durum genotypes grown at 7 locations in 2009 and 2010 in ND. Sodium dodecyl sulfate (SDS) buffer ...

  9. Size exclusion chromatography with online ICP-MS enables molecular weight fractionation of dissolved phosphorus species in water samples.

    Science.gov (United States)

    Venkatesan, Arjun K; Gan, Wenhui; Ashani, Harsh; Herckes, Pierre; Westerhoff, Paul

    2018-04-15

    Phosphorus (P) is an important and often limiting element in terrestrial and aquatic ecosystem. A lack of understanding of its distribution and structures in the environment limits the design of effective P mitigation and recovery approaches. Here we developed a robust method employing size exclusion chromatography (SEC) coupled to an ICP-MS to determine the molecular weight (MW) distribution of P in environmental samples. The most abundant fraction of P varied widely in different environmental samples: (i) orthophosphate was the dominant fraction (93-100%) in one lake, two aerosols and DOC isolate samples, (ii) species of 400-600 Da range were abundant (74-100%) in two surface waters, and (iii) species of 150-350 Da range were abundant in wastewater effluents. SEC-DOC of the aqueous samples using a similar SEC column showed overlapping peaks for the 400-600 Da species in two surface waters, and for >20 kDa species in the effluents, suggesting that these fractions are likely associated with organic matter. The MW resolution and performance of SEC-ICP-MS agreed well with the time integrated results obtained using conventional ultrafiltration method. Results show that SEC in combination with ICP-MS and DOC has the potential to be a powerful and easy-to-use method in identifying unknown fractions of P in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Gold Nanoparticles Size Design and Control by Poly(N,N′-diethylaminoethyl methacrylate)

    OpenAIRE

    Cortez-Lemus, Norma A.; Licea-Claverie, Angel; Paraguay-Delgado, Francisco; Alonso-Nuñez, Gabriel

    2015-01-01

    Poly(N,N′-diethylaminoethyl methacrylate) (PDEAEM) with different molecular weights was used to stabilize gold nanoparticles (AuNPs) obtained by in situ reduction of tetrachloroauric acid using citrates under acidic conditions and in organic/alcoholic medium. The influence of the pH value on gold nanoparticle size in the presence of PDEAEM was investigated. Results show that the pH of the reacting mixture has a dramatic effect on the size, polydispersity, and morphology of the resulting AuNPs...

  11. Controlling silk fibroin microspheres via molecular weight distribution

    International Nuclear Information System (INIS)

    Zeng, Dong-Mei; Pan, Jue-Jing; Wang, Qun; Liu, Xin-Fang; Wang, Hui; Zhang, Ke-Qin

    2015-01-01

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K 2 HPO 4 –KH 2 PO 4 ). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength > 0.7 M and pH > 7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications. - Highlights: • MW distribution was changed by applying different dissolving methods of SF fiber. • Smaller and narrower MW distribution improves the quality of SF microspheres. • Size and polydispersity of microspheres increase as SF concentration increases. • Improved SF microspheres have potential in drug and gene delivery applications

  12. Controlling silk fibroin microspheres via molecular weight distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Dong-Mei; Pan, Jue-Jing; Wang, Qun; Liu, Xin-Fang; Wang, Hui [National Engineering Laboratory for Modern Silk, College for Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Zhang, Ke-Qin, E-mail: kqzhang@suda.edu.cn [National Engineering Laboratory for Modern Silk, College for Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-05-01

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K{sub 2}HPO{sub 4}–KH{sub 2}PO{sub 4}). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength > 0.7 M and pH > 7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications. - Highlights: • MW distribution was changed by applying different dissolving methods of SF fiber. • Smaller and narrower MW distribution improves the quality of SF microspheres. • Size and polydispersity of microspheres increase as SF concentration increases. • Improved SF microspheres have potential in drug and gene delivery applications.

  13. Size and temperature dependence of the tensile mechanical properties of zinc blende CdSe nanowires

    International Nuclear Information System (INIS)

    Fu, Bing; Chen, Na; Xie, Yiqun; Ye, Xiang; Gu, Xiao

    2013-01-01

    The effect of size and temperature on the tensile mechanical properties of zinc blende CdSe nanowires is investigated by all atoms molecular dynamic simulation. We found the ultimate tensile strength and Young's modulus will decrease as the temperature and size of the nanowire increase. The size and temperature dependence are mainly attributed to surface effect and thermally elongation effect. High reversibility of tensile behavior will make zinc blende CdSe nanowires suitable for building efficient nanodevices.

  14. Coalescence preference and droplet size inequality during fluid phase segregation

    Science.gov (United States)

    Roy, Sutapa

    2018-02-01

    Using molecular dynamics simulations and scaling arguments, we investigate the coalescence preference dynamics of liquid droplets in a phase-segregating off-critical, single-component fluid. It is observed that the preferential distance of the product drop from its larger parent, during a coalescence event, gets smaller for large parent size inequality. The relative coalescence position exhibits a power-law dependence on the parent size ratio with an exponent q ≃ 3.1 . This value of q is in strong contrast with earlier reports 2.1 and 5.1 in the literature. The dissimilarity is explained by considering the underlying coalescence mechanisms.

  15. Nanoparticle-Supported Molecular Polymerization Catalysts

    OpenAIRE

    Amgoune, Abderramane; Krumova, Marina; Mecking, Stefan

    2008-01-01

    Homogeneous molecular catalysts are immobilzed in a well-defined fashion on individual silica nanoparticles with a narrow particle size distribution by covalent attachment. This synthetic methodology is demonstrated with modified salicylaldiminato-substituted titanium(IV) complexes incorporating a trimethoxysilane-terminated linker: dichloro-bis[κ2-N,O-6-(3-(trimethoxysilyl)propoxyphenylimino)-2-tert-butyl-phenolato]titanium(IV) (3) and dichlorobis[κ2-N,O-6-(4-(trimethoxysilyl)propoxy-2,3,5,6...

  16. Artificial neural network based particle size prediction of polymeric nanoparticles.

    Science.gov (United States)

    Youshia, John; Ali, Mohamed Ehab; Lamprecht, Alf

    2017-10-01

    Particle size of nanoparticles and the respective polydispersity are key factors influencing their biopharmaceutical behavior in a large variety of therapeutic applications. Predicting these attributes would skip many preliminary studies usually required to optimize formulations. The aim was to build a mathematical model capable of predicting the particle size of polymeric nanoparticles produced by a pharmaceutical polymer of choice. Polymer properties controlling the particle size were identified as molecular weight, hydrophobicity and surface activity, and were quantified by measuring polymer viscosity, contact angle and interfacial tension, respectively. A model was built using artificial neural network including these properties as input with particle size and polydispersity index as output. The established model successfully predicted particle size of nanoparticles covering a range of 70-400nm prepared from other polymers. The percentage bias for particle prediction was 2%, 4% and 6%, for the training, validation and testing data, respectively. Polymer surface activity was found to have the highest impact on the particle size followed by viscosity and finally hydrophobicity. Results of this study successfully highlighted polymer properties affecting particle size and confirmed the usefulness of artificial neural networks in predicting the particle size and polydispersity of polymeric nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Molecular basis sets - a general similarity-based approach for representing chemical spaces.

    Science.gov (United States)

    Raghavendra, Akshay S; Maggiora, Gerald M

    2007-01-01

    A new method, based on generalized Fourier analysis, is described that utilizes the concept of "molecular basis sets" to represent chemical space within an abstract vector space. The basis vectors in this space are abstract molecular vectors. Inner products among the basis vectors are determined using an ansatz that associates molecular similarities between pairs of molecules with their corresponding inner products. Moreover, the fact that similarities between pairs of molecules are, in essentially all cases, nonzero implies that the abstract molecular basis vectors are nonorthogonal, but since the similarity of a molecule with itself is unity, the molecular vectors are normalized to unity. A symmetric orthogonalization procedure, which optimally preserves the character of the original set of molecular basis vectors, is used to construct appropriate orthonormal basis sets. Molecules can then be represented, in general, by sets of orthonormal "molecule-like" basis vectors within a proper Euclidean vector space. However, the dimension of the space can become quite large. Thus, the work presented here assesses the effect of basis set size on a number of properties including the average squared error and average norm of molecular vectors represented in the space-the results clearly show the expected reduction in average squared error and increase in average norm as the basis set size is increased. Several distance-based statistics are also considered. These include the distribution of distances and their differences with respect to basis sets of differing size and several comparative distance measures such as Spearman rank correlation and Kruscal stress. All of the measures show that, even though the dimension can be high, the chemical spaces they represent, nonetheless, behave in a well-controlled and reasonable manner. Other abstract vector spaces analogous to that described here can also be constructed providing that the appropriate inner products can be directly

  18. The molecular mechanism and physiological role of cytoplasmic streaming.

    Science.gov (United States)

    Tominaga, Motoki; Ito, Kohji

    2015-10-01

    Cytoplasmic streaming occurs widely in plants ranging from algae to angiosperms. However, the molecular mechanism and physiological role of cytoplasmic streaming have long remained unelucidated. Recent molecular genetic approaches have identified specific myosin members (XI-2 and XI-K as major and XI-1, XI-B, and XI-I as minor motive forces) for the generation of cytoplasmic streaming among 13 myosin XIs in Arabidopsis thaliana. Simultaneous knockout of these myosin XI members led to a reduced velocity of cytoplasmic streaming and marked defects of plant development. Furthermore, the artificial modifications of myosin XI-2 velocity changed plant and cell sizes along with the velocity of cytoplasmic streaming. Therefore, we assume that cytoplasmic streaming is one of the key regulators in determining plant size. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Body size evolution in an old insect order: No evidence for Cope's Rule in spite of fitness benefits of large size.

    Science.gov (United States)

    Waller, John T; Svensson, Erik I

    2017-09-01

    We integrate field data and phylogenetic comparative analyses to investigate causes of body size evolution and stasis in an old insect order: odonates ("dragonflies and damselflies"). Fossil evidence for "Cope's Rule" in odonates is weak or nonexistent since the last major extinction event 65 million years ago, yet selection studies show consistent positive selection for increased body size among adults. In particular, we find that large males in natural populations of the banded demoiselle (Calopteryx splendens) over several generations have consistent fitness benefits both in terms of survival and mating success. Additionally, there was no evidence for stabilizing or conflicting selection between fitness components within the adult life-stage. This lack of stabilizing selection during the adult life-stage was independently supported by a literature survey on different male and female fitness components from several odonate species. We did detect several significant body size shifts among extant taxa using comparative methods and a large new molecular phylogeny for odonates. We suggest that the lack of Cope's rule in odonates results from conflicting selection between fitness advantages of large adult size and costs of long larval development. We also discuss competing explanations for body size stasis in this insect group. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  20. Self-assembly of chiral molecular polygons.

    Science.gov (United States)

    Jiang, Hua; Lin, Wenbin

    2003-07-09

    Treatment of 2,2'-diacetyl-1,1'-binaphthyl-6,6'-bis(ethyne), L-H2, with 1 equiv of trans-Pt(PEt3)2Cl2 led to a mixture of different sizes of chiral metallocycles [trans-(PEt3)2Pt(L)]n (n = 3-8, 1-6). Each of the chiral molecular polygons 1-6 was purified by silica gel column chromatography and characterized by 1H, 13C{1H}, and 31P{1H} NMR spectroscopy, MS, IR, UV-vis, and circular dichroism spectroscopies, and microanalysis. The presence of tunable cavities (1.4-4.3 nm) and chiral functionalities in these molecular polygons promises to make them excellent receptors for a variety of guests.

  1. Finite-size effects on the dynamic susceptibility of CoPhOMe single-chain molecular magnets in presence of a static magnetic field

    Science.gov (United States)

    Pini, M. G.; Rettori, A.; Bogani, L.; Lascialfari, A.; Mariani, M.; Caneschi, A.; Sessoli, R.

    2011-09-01

    The static and dynamic properties of the single-chain molecular magnet Co(hfac)2NITPhOMe (CoPhOMe) (hfac = hexafluoroacetylacetonate, NITPhOMe = 4'-methoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) are investigated in the framework of the Ising model with Glauber dynamics, in order to take into account both the effect of an applied magnetic field and a finite size of the chains. For static fields of moderate intensity and short chain lengths, the approximation of a monoexponential decay of the magnetization fluctuations is found to be valid at low temperatures; for strong fields and long chains, a multiexponential decay should rather be assumed. The effect of an oscillating magnetic field, with intensity much smaller than that of the static one, is included in the theory in order to obtain the dynamic susceptibility χ(ω). We find that, for an open chain with N spins, χ(ω) can be written as a weighted sum of N frequency contributions, with a sum rule relating the frequency weights to the static susceptibility of the chain. Very good agreement is found between the theoretical dynamic susceptibility and the ac susceptibility measured in moderate static fields (Hdc≤2 kOe), where the approximation of a single dominating frequency for each segment length turns out to be valid. For static fields in this range, data for the relaxation time, τ versus Hdc, of the magnetization of CoPhOMe at low temperature are also qualitatively reproduced by theory, provided that finite-size effects are included.

  2. Measuring the molecular dimensions of wine tannins: comparison of small-angle X-ray scattering, gel-permeation chromatography and mean degree of polymerization.

    Science.gov (United States)

    McRae, Jacqui M; Kirby, Nigel; Mertens, Haydyn D T; Kassara, Stella; Smith, Paul A

    2014-07-23

    The molecular size of wine tannins can influence astringency, and yet it has been unclear as to whether the standard methods for determining average tannin molecular weight (MW), including gel-permeation chromatography (GPC) and depolymerization reactions, are actually related to the size of the tannin in wine-like conditions. Small-angle X-ray scattering (SAXS) was therefore used to determine the molecular sizes and corresponding MWs of wine tannin samples from 3 and 7 year old Cabernet Sauvignon wine in a variety of wine-like matrixes: 5-15% and 100% ethanol; 0-200 mM NaCl and pH 3.0-4.0, and compared to those measured using the standard methods. The SAXS results indicated that the tannin samples from the older wine were larger than those of the younger wine and that wine composition did not greatly impact on tannin molecular size. The average tannin MWs as determined by GPC correlated strongly with the SAXS results, suggesting that this method does give a good indication of tannin molecular size in wine-like conditions. The MW as determined from the depolymerization reactions did not correlate as strongly with the SAXS results. To our knowledge, SAXS measurements have not previously been attempted for wine tannins.

  3. Synthesis of mesoporous SAPO-34 molecular sieves and their applications in dehydration of butanols and ethanol.

    Science.gov (United States)

    Jun, Jong Won; Jeon, Jaewoo; Kim, Chul-Ung; Jeong, Kwang-Eun; Jeong, Soon-Yong; Jhung, Sung Hwa

    2013-04-01

    Microporous SAPO-34 molecular sieves were hydrothermally synthesized with microwave irradiation in the presence of tetraethylammonium hydroxide (TEAOH) as a template. SAPO-34 molecular sieves with mesoporosity were also prepared in the presence of carbon black as a hard template. By increasing the content of the carbon black template in the synthesis, the mesopore volume increased. Dehydration of alcohols (butanols and ethanol) was carried out with the synthesized SAPO-34 molecular sieves, and the lifetime of the catalysts for the dehydration reaction increased as the mesoporosity increased. Moreover, the performance of the microporous catalyst synthesized with microwave was better than that of the catalyst obtained with conventional electric heating. The relative performance of the catalytic dehydration may be explained by the mesoporosity and the crystal size. Therefore, it may be concluded that small-sized SAPO-34 molecular sieves with high mesoporosity can be produced efficiently with microwave irradiation in the presence of carbon black template, and the molecular sieves are effective in the stable dehydration of alcohols.

  4. Controlled deposition of size-selected MnO nanoparticle thin films for water splitting applications: reduction of onset potential with particle size

    Science.gov (United States)

    Khojasteh, Malak; Haghighat, Shima; Dawlaty, Jahan M.; Kresin, Vitaly V.

    2018-05-01

    Emulating water oxidation catalyzed by the oxomanganese clusters in the photosynthetic apparatus of plants has been a long-standing scientific challenge. The use of manganese oxide films has been explored, but while they may be catalytically active on the surface, their poor conductivity hinders their overall performance. We have approached this problem by using manganese oxide nanoparticles with sizes of 4, 6 and 8 nm, produced in a sputter-gas-aggregation source and soft-landed onto conducting electrodes. The mass loading of these catalytic particles was kept constant and corresponded to 45%–80% of a monolayer coverage. Measurements of the water oxidation threshold revealed that the onset potential decreases significantly with decreasing particle size. The final stoichiometry of the catalytically active nanoparticles, after exposure to air, was identified as predominantly MnO. The ability of such a sub-monolayer film to lower the reaction threshold implies that the key role is played by intrinsic size effects, i.e., by changes in the electronic properties and surface fields of the nanoparticles with decreasing size. We anticipate that this work will serve to bridge the knowledge gap between bulk thick film electrocatalysts and natural photosynthetic molecular-cluster complexes.

  5. General physical characteristics of the interstellar molecular gas

    International Nuclear Information System (INIS)

    Turner, B.E.

    1979-01-01

    The interstellar medium may be characterized by several physically rather distinct regimes: coronal gas, intercloud gas, diffuse clouds, isolated dark clouds and globules (of small to modest mass), more massive molecular clouds containing OB (and later) stars, and giant molecular clouds. Values of temperature, density, ionization fraction, mass, size, and velocity field are discussed for each regime. Heating and cooling mechanisms are reviewed. Nearly all molecular clouds exceed the Jeans criteria for gravitational instability, yet detailed models reveal no cases where observations can be interpreted unambiguously in terms of rapid collapse. The possibility that clouds are supported by turbulence, rotation, or magnetic fields is discussed, and it is concluded that none of these agencies suffice. Comments are made about fragmentation and star formation in molecular clouds, with possible explanations for why only low mass stars form in low mass clouds, why early-type stars form only in clouds with masses > approximately 10 3 M solar masses, and why O-stars seem to form near edges of clouds. Finally, large-scale interactions between molecular clouds and the galactic disk stellar population are discussed. (Auth.)

  6. Micro-/nanostructured multicomponent molecular materials: design, assembly, and functionality.

    Science.gov (United States)

    Yan, Dongpeng

    2015-03-23

    Molecule-based micro-/nanomaterials have attracted considerable attention because their properties can vary greatly from the corresponding macro-sized bulk systems. Recently, the construction of multicomponent molecular solids based on crystal engineering principles has emerged as a promising alternative way to develop micro-/nanomaterials. Unlike single-component materials, the resulting multicomponent systems offer the advantages of tunable composition, and adjustable molecular arrangement, and intermolecular interactions within their solid states. The study of these materials also supplies insight into how the crystal structure, molecular components, and micro-/nanoscale effects can influence the performance of molecular materials. In this review, we describe recent advances and current directions in the assembly and applications of crystalline multicomponent micro-/nanostructures. Firstly, the design strategies for multicomponent systems based on molecular recognition and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low-dimensional multicomponent micro-/nanostructures. Their new applications are also outlined. Finally, we briefly discuss perspectives for the further development of these molecular crystalline micro-/nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Molecular computational elements encode large populations of small objects

    Science.gov (United States)

    Prasanna de Silva, A.; James, Mark R.; McKinney, Bernadine O. F.; Pears, David A.; Weir, Sheenagh M.

    2006-10-01

    Since the introduction of molecular computation, experimental molecular computational elements have grown to encompass small-scale integration, arithmetic and games, among others. However, the need for a practical application has been pressing. Here we present molecular computational identification (MCID), a demonstration that molecular logic and computation can be applied to a widely relevant issue. Examples of populations that need encoding in the microscopic world are cells in diagnostics or beads in combinatorial chemistry (tags). Taking advantage of the small size (about 1nm) and large `on/off' output ratios of molecular logic gates and using the great variety of logic types, input chemical combinations, switching thresholds and even gate arrays in addition to colours, we produce unique identifiers for members of populations of small polymer beads (about 100μm) used for synthesis of combinatorial libraries. Many millions of distinguishable tags become available. This method should be extensible to far smaller objects, with the only requirement being a `wash and watch' protocol. Our focus on converting molecular science into technology concerning analog sensors, turns to digital logic devices in the present work.

  8. Size dependence of efficiency at maximum power of heat engine

    KAUST Repository

    Izumida, Y.; Ito, N.

    2013-01-01

    We perform a molecular dynamics computer simulation of a heat engine model to study how the engine size difference affects its performance. Upon tactically increasing the size of the model anisotropically, we determine that there exists an optimum size at which the model attains the maximum power for the shortest working period. This optimum size locates between the ballistic heat transport region and the diffusive heat transport one. We also study the size dependence of the efficiency at the maximum power. Interestingly, we find that the efficiency at the maximum power around the optimum size attains a value that has been proposed as a universal upper bound, and it even begins to exceed the bound as the size further increases. We explain this behavior of the efficiency at maximum power by using a linear response theory for the heat engine operating under a finite working period, which naturally extends the low-dissipation Carnot cycle model [M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)]. The theory also shows that the efficiency at the maximum power under an extreme condition may reach the Carnot efficiency in principle.© EDP Sciences Società Italiana di Fisica Springer-Verlag 2013.

  9. Size dependence of efficiency at maximum power of heat engine

    KAUST Repository

    Izumida, Y.

    2013-10-01

    We perform a molecular dynamics computer simulation of a heat engine model to study how the engine size difference affects its performance. Upon tactically increasing the size of the model anisotropically, we determine that there exists an optimum size at which the model attains the maximum power for the shortest working period. This optimum size locates between the ballistic heat transport region and the diffusive heat transport one. We also study the size dependence of the efficiency at the maximum power. Interestingly, we find that the efficiency at the maximum power around the optimum size attains a value that has been proposed as a universal upper bound, and it even begins to exceed the bound as the size further increases. We explain this behavior of the efficiency at maximum power by using a linear response theory for the heat engine operating under a finite working period, which naturally extends the low-dissipation Carnot cycle model [M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)]. The theory also shows that the efficiency at the maximum power under an extreme condition may reach the Carnot efficiency in principle.© EDP Sciences Società Italiana di Fisica Springer-Verlag 2013.

  10. Turbulence in molecular clouds - A new diagnostic tool to probe their origin

    Science.gov (United States)

    Canuto, V. M.; Battaglia, A.

    1985-01-01

    A method is presented to uncover the instability responsible for the type of turbulence observed in molecular clouds and the value of the physical parameters of the 'placental medium' from which turbulence originated. The method utilizes the observational relation between velocities and sizes of molecular clouds, together with a recent model for large-scale turbulence (constructed by Canuto and Goldman, 1985).

  11. Flexible single-layer ionic organic-inorganic frameworks towards precise nano-size separation

    Science.gov (United States)

    Yue, Liang; Wang, Shan; Zhou, Ding; Zhang, Hao; Li, Bao; Wu, Lixin

    2016-02-01

    Consecutive two-dimensional frameworks comprised of molecular or cluster building blocks in large area represent ideal candidates for membranes sieving molecules and nano-objects, but challenges still remain in methodology and practical preparation. Here we exploit a new strategy to build soft single-layer ionic organic-inorganic frameworks via electrostatic interaction without preferential binding direction in water. Upon consideration of steric effect and additional interaction, polyanionic clusters as connection nodes and cationic pseudorotaxanes acting as bridging monomers connect with each other to form a single-layer ionic self-assembled framework with 1.4 nm layer thickness. Such soft supramolecular polymer frameworks possess uniform and adjustable ortho-tetragonal nanoporous structure in pore size of 3.4-4.1 nm and exhibit greatly convenient solution processability. The stable membranes maintaining uniform porous structure demonstrate precisely size-selective separation of semiconductor quantum dots within 0.1 nm of accuracy and may hold promise for practical applications in selective transport, molecular separation and dialysis systems.

  12. Pore size dependent molecular adsorption of cationic dye in biomass derived hierarchically porous carbon.

    Science.gov (United States)

    Chen, Long; Ji, Tuo; Mu, Liwen; Shi, Yijun; Wang, Huaiyuan; Zhu, Jiahua

    2017-07-01

    Hierarchically porous carbon adsorbents were successfully fabricated from different biomass resources (softwood, hardwood, bamboo and cotton) by a facile two-step process, i.e. carbonization in nitrogen and thermal oxidation in air. Without involving any toxic/corrosive chemicals, large surface area of up to 890 m 2 /g was achieved, which is comparable to commercial activated carbon. The porous carbons with various surface area and pore size were used as adsorbents to investigate the pore size dependent adsorption phenomenon. Based on the density functional theory, effective (E-SSA) and ineffective surface area (InE-SSA) was calculated considering the geometry of used probing adsorbate. It was demonstrated that the adsorption capacity strongly depends on E-SSA instead of total surface area. Moreover, a regression model was developed to quantify the adsorption capacities contributed from E-SSA and InE-SSA, respectively. The applicability of this model has been verified by satisfactory prediction results on porous carbons prepared in this work as well as commercial activated carbon. Revealing the pore size dependent adsorption behavior in these biomass derived porous carbon adsorbents will help to design more effective materials (either from biomass or other carbon resources) targeting to specific adsorption applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Ordinary differential equations with applications in molecular biology.

    Science.gov (United States)

    Ilea, M; Turnea, M; Rotariu, M

    2012-01-01

    Differential equations are of basic importance in molecular biology mathematics because many biological laws and relations appear mathematically in the form of a differential equation. In this article we presented some applications of mathematical models represented by ordinary differential equations in molecular biology. The vast majority of quantitative models in cell and molecular biology are formulated in terms of ordinary differential equations for the time evolution of concentrations of molecular species. Assuming that the diffusion in the cell is high enough to make the spatial distribution of molecules homogenous, these equations describe systems with many participating molecules of each kind. We propose an original mathematical model with small parameter for biological phospholipid pathway. All the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. If we reduce the size of the solution region the same small epsilon will result in a different condition number. It is clear that the solution for a smaller region is less difficult. We introduce the mathematical technique known as boundary function method for singular perturbation system. In this system, the small parameter is an asymptotic variable, different from the independent variable. In general, the solutions of such equations exhibit multiscale phenomena. Singularly perturbed problems form a special class of problems containing a small parameter which may tend to zero. Many molecular biology processes can be quantitatively characterized by ordinary differential equations. Mathematical cell biology is a very active and fast growing interdisciplinary area in which mathematical concepts, techniques, and models are applied to a variety of problems in developmental medicine and bioengineering. Among the different modeling approaches, ordinary differential equations (ODE) are particularly important and have led to significant advances

  14. Nanofiltration Membranes with Narrow Pore Size Distribution via Contra-Diffusion-Induced Mussel-Inspired Chemistry.

    Science.gov (United States)

    Du, Yong; Qiu, Wen-Ze; Lv, Yan; Wu, Jian; Xu, Zhi-Kang

    2016-11-02

    Nanofiltration membranes (NFMs) are widely used in saline water desalination, wastewater treatment, and chemical product purification. However, conventional NFMs suffer from broad pore size distribution, which limits their applications for fine separation, especially in complete separation of molecules with slight differences in molecular size. Herein, defect-free composite NFMs with narrow pore size distribution are fabricated using a contra-diffusion method, with dopamine/polyethylenimine solution on the skin side and ammonium persulfate solution on the other side of the ultrafiltration substrate. Persulfate ions can diffuse through the ultrafiltration substrate into the other side and in situ trigger dopamine to form a codeposited coating with polyethylenimine. The codeposition is hindered on those sites completely covered by the polydopamine/polyethylenimine coating, although it is promoted at the defects or highly permeable regions because it is induced by the diffused persulfate ions. Such a "self-completion" process results in NFMs with highly uniform structures and narrow pore size distribution, as determined by their rejection of neutral solutes. These near electrically neutral NFMs show a high rejection of divalent ions with a low rejection of monovalent ions (MgCl 2 rejection = 96%, NaCl rejection = 23%), majorly based on a steric hindrance effect. The as-prepared NFMs can be applied in molecular separation such as isolating cellulose hydrogenation products.

  15. Structure of a molecular liquid GeI4

    International Nuclear Information System (INIS)

    Fuchizaki, Kazuhiro; Sakagami, Takahiro; Kohara, Shinji; Mizuno, Akitoshi; Asano, Yuta; Hamaya, Nozomu

    2016-01-01

    A molecular liquid GeI 4 is a candidate that undergoes a pressure-induced liquid-to-liquid phase transition. This study establishes the reference structure of the low-pressure liquid phase. Synchrotron x-ray diffraction measurements were carried out at several temperatures between the melting and the boiling points under ambient pressure. The molecule has regular tetrahedral symmetry, and the intramolecular Ge–I length of 2.51 Å is almost temperature-independent within the measured range. A reverse Monte Carlo (RMC) analysis is employed to find that the distribution of molecular centers remains self-similar against heating, and thus justifying the length-scaling method adopted in determining the density. The RMC analysis also reveals that the vertex-to-face orientation of the nearest molecules are not straightly aligned, but are inclined at about 20 degrees, thereby making the closest intermolecular I–I distance definitely shorter than the intramolecular one. The prepeak observed at  ∼1 Å −1 in the structural factor slightly shifts and increases in height with increasing temperature. The origin of the prepeak is clearly identified to be traces of the 111 diffraction peak in the crystalline state. The prepeak, assuming the residual spatial correlation between germanium sites in the densest direction, thus shifts toward lower wavenumbers with thermal expansion. The aspect that a relative reduction in molecular size associated with the volume expansion is responsible for the increase in the prepeak’s height is confirmed by a simulation, in which the molecular size is changed. (paper)

  16. Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline.

    Science.gov (United States)

    Li, Ming; Xie, Fengwei; Hasjim, Jovin; Witt, Torsten; Halley, Peter J; Gilbert, Robert G

    2015-03-06

    The effects of molecular and crystalline structures on the tensile mechanical properties of thermoplastic starch (TPS) films from waxy, normal, and high-amylose maize were investigated. Starch structural variations were obtained through extrusion and hydrothermal treatment (HTT). The molecular and crystalline structures were characterized using size-exclusion chromatography and X-ray diffractometry, respectively. TPS from high-amylose maize showed higher elongation at break and tensile strength than those from normal maize and waxy maize starches when processed with 40% plasticizer. Within the same amylose content, the mechanical properties were not affected by amylopectin molecular size or the crystallinity of TPS prior to HTT. This lack of correlation between the molecular size, crystallinity and mechanical properties may be due to the dominant effect of the plasticizer on the mechanical properties. Further crystallization of normal maize TPS by HTT increased the tensile strength and Young's modulus, while decreasing the elongation at break. The results suggest that the crystallinity from the remaining ungelatinized starch granules has less significant effect on the mechanical properties than that resulting from starch recrystallization, possibly due to a stronger network from leached-out amylose surrounding the remaining starch granules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A combined reaction class approach with integrated molecular orbital+molecular orbital (IMOMO) methodology: A practical tool for kinetic modeling

    International Nuclear Information System (INIS)

    Truong, Thanh N.; Maity, Dilip K.; Truong, Thanh-Thai T.

    2000-01-01

    We present a new practical computational methodology for predicting thermal rate constants of reactions involving large molecules or a large number of elementary reactions in the same class. This methodology combines the integrated molecular orbital+molecular orbital (IMOMO) approach with our recently proposed reaction class models for tunneling. With the new methodology, we show that it is possible to significantly reduce the computational cost by several orders of magnitude while compromising the accuracy in the predicted rate constants by less than 40% over a wide range of temperatures. Another important result is that the computational cost increases only slightly as the system size increases. (c) 2000 American Institute of Physics

  18. Diverging effects of isotopic fractionation upon molecular diffusion of noble gases in water: mechanistic insights through ab initio molecular dynamics simulations.

    Science.gov (United States)

    Pinto de Magalhães, Halua; Brennwald, Matthias S; Kipfer, Rolf

    2017-03-22

    Atmospheric noble gases are routinely used as natural tracers to analyze gas transfer processes in aquatic systems. Their isotopic ratios can be employed to discriminate between different physical transport mechanisms by comparison to the unfractionated atmospheric isotope composition. In many applications of aquatic systems molecular diffusion was thought to cause a mass dependent fractionation of noble gases and their isotopes according to the square root ratio of their masses. However, recent experiments focusing on isotopic fractionation within a single element challenged this broadly accepted assumption. The determined fractionation factors of Ne, Ar, Kr and Xe isotopes revealed that only Ar follows the prediction of the so-called square root relation, whereas within the Ne, Kr and Xe elements no mass-dependence was found. The reason for this unexpected divergence of Ar is not yet understood. The aim of our computational exercise is to establish the molecular-resolved mechanisms behind molecular diffusion of noble gases in water. We make the hypothesis that weak intermolecular interactions are relevant for the dynamical properties of noble gases dissolved in water. Therefore, we used ab initio molecular dynamics to explicitly account for the electronic degrees of freedom. Depending on the size and polarizability of the hydrophobic particles such as noble gases, their motion in dense and polar liquids like water is subject to different diffusive regimes: the inter-cavity hopping mechanism of small particles (He, Ne) breaks down if a critical particle size achieved. For the case of large particles (Kr, Xe), the motion through the water solvent is governed by mass-independent viscous friction leading to hydrodynamical diffusion. Finally, Ar falls in between the two diffusive regimes, where particle dispersion is propagated at the molecular collision time scale of the surrounding water molecules.

  19. Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    V. Zelenak; M. Badanicova; D. Halamova; J. Cejka; A. Zukal; N. Murafa; G. Goerigk [P.J. Safarik University, Kosice (Slovak Republic)

    2008-10-15

    Three mesoporous silica materials with different pore sizes and pore connectivity were prepared and functionalized with aminopropyl (AP) ligands by post-synthesis treatment. The materials were characterized by small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and nitrogen adsorption/desorption experiments. The carbon dioxide sorption on modified mesoporous molecular sieves was investigated by using of microbalances at 25{sup o}C, and the influence of pore size and pore architecture on CO{sub 2} sorption was discussed. The large pore silica, SBA-15, showed the largest carbon dioxide sorption capacity (1.5 mmol/g), relating to highest amine surface density in this material. On the other hand, three-dimensional accessibility of amine sites inside the pores of SBA-12 silica resulted in a faster response to CO{sub 2} uptake in comparison with MCM-41 and SBA-15 molecular sieves

  20. Determination of size of molecular clusters of ethanol by means of NMR diffusometry and hydrodynamic calculations

    Czech Academy of Sciences Publication Activity Database

    Šoltésová, M.; Benda, L.; Peksa, M.; Czernek, Jiří; Lang, J.

    2014-01-01

    Roč. 118, č. 24 (2014), s. 6864-6874 ISSN 1520-6106 Institutional support: RVO:61389013 Keywords : diffusion * NMR * molecular Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.302, year: 2014

  1. Size-exclusion chromatography using core-shell particles.

    Science.gov (United States)

    Pirok, Bob W J; Breuer, Pascal; Hoppe, Serafine J M; Chitty, Mike; Welch, Emmet; Farkas, Tivadar; van der Wal, Sjoerd; Peters, Ron; Schoenmakers, Peter J

    2017-02-24

    Size-exclusion chromatography (SEC) is an indispensable technique for the separation of high-molecular-weight analytes and for determining molar-mass distributions. The potential application of SEC as second-dimension separation in comprehensive two-dimensional liquid chromatography demands very short analysis times. Liquid chromatography benefits from the advent of highly efficient core-shell packing materials, but because of the reduced total pore volume these materials have so far not been explored in SEC. The feasibility of using core-shell particles in SEC has been investigated and contemporary core-shell materials were compared with conventional packing materials for SEC. Columns packed with very small core-shell particles showed excellent resolution in specific molar-mass ranges, depending on the pore size. The analysis times were about an order of magnitude shorter than what could be achieved using conventional SEC columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.

    Science.gov (United States)

    Cawkwell, M J; Niklasson, Anders M N

    2012-10-07

    Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.

  3. Exploring the no-man's land between molecular nanomagnets and magnetic nanoparticles.

    Science.gov (United States)

    Gatteschi, Dante; Fittipaldi, Maria; Sangregorio, Claudio; Sorace, Lorenzo

    2012-05-14

    The comparison of the structural and magnetic properties of molecular nanomagnets (MNM) and magnetic nanoparticles (MNP) can be instructive to get a deeper understanding of the magnetic behavior on the intermediate scale between molecular and bulk objects. In this respect iron oxo based clusters are particularly interesting, since they provide an increasing number of molecular systems with sizes close to that of iron oxide MNP. In this Minireview we report a survey of literature data aimed at improving our understanding of the emergence of MNP properties from MNM ones. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis of Polyimides in Molecular-Scale Confinement for Low-Density Hybrid Nanocomposites.

    Science.gov (United States)

    Isaacson, Scott G; Fostvedt, Jade I; Koerner, Hilmar; Baur, Jeffery W; Lionti, Krystelle; Volksen, Willi; Dubois, Geraud; Dauskardt, Reinhold H

    2017-11-08

    In this work, we exploit a confinement-induced molecular synthesis and a resulting bridging mechanism to create confined polyimide thermoset nanocomposites that couple molecular confinement-enhanced toughening with an unprecedented combination of high-temperature properties at low density. We describe a synthesis strategy that involves the infiltration of individual polymer chains through a nanoscale porous network while simultaneous imidization reactions increase the molecular backbone stiffness. In the extreme limit where the confinement length scale is much smaller than the polymer's molecular size, confinement-induced molecular mechanisms give rise to exceptional mechanical properties. We find that polyimide oligomers can undergo cross-linking reactions even in such molecular-scale confinement, increasing the molecular weight of the organic phase and toughening the nanocomposite through a confinement-induced energy dissipation mechanism. This work demonstrates that the confinement-induced molecular bridging mechanism can be extended to thermoset polymers with multifunctional properties, such as excellent thermo-oxidative stability and high service temperatures (>350 °C).

  5. Acid hydrolysis and molecular density of phytoglycogen and liver glycogen helps understand the bonding in glycogen α (composite particles.

    Directory of Open Access Journals (Sweden)

    Prudence O Powell

    Full Text Available Phytoglycogen (from certain mutant plants and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired.

  6. Acid Hydrolysis and Molecular Density of Phytoglycogen and Liver Glycogen Helps Understand the Bonding in Glycogen α (Composite) Particles

    Science.gov (United States)

    Powell, Prudence O.; Sullivan, Mitchell A.; Sheehy, Joshua J.; Schulz, Benjamin L.; Warren, Frederick J.; Gilbert, Robert G.

    2015-01-01

    Phytoglycogen (from certain mutant plants) and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired. PMID:25799321

  7. Supramolecular Nanoparticles for Molecular Diagnostics and Therapeutics

    Science.gov (United States)

    Chen, Kuan-Ju

    Over the past decades, significant efforts have been devoted to explore the use of various nanoparticle-based systems in the field of nanomedicine, including molecular imaging and therapy. Supramolecular synthetic approaches have attracted lots of attention due to their flexibility, convenience, and modularity for producing nanoparticles. In this dissertation, the developmental story of our size-controllable supramolecular nanoparticles (SNPs) will be discussed, as well as their use in specific biomedical applications. To achieve the self-assembly of SNPs, the well-characterized molecular recognition system (i.e., cyclodextrin/adamantane recognition) was employed. The resulting SNPs, which were assembled from three molecular building blocks, possess incredible stability in various physiological conditions, reversible size-controllability and dynamic disassembly that were exploited for various in vitro and in vivo applications. An advantage of using the supramolecular approach is that it enables the convenient incorporation of functional ligands onto SNP surface that confers functionality ( e.g., targeting, cell penetration) to SNPs. We utilized SNPs for molecular imaging such as magnetic resonance imaging (MRI) and positron emission tomography (PET) by introducing reporter systems (i.e., radio-isotopes, MR contrast agents, and fluorophores) into SNPs. On the other hand, the incorporation of various payloads, including drugs, genes and proteins, into SNPs showed improved delivery performance and enhanced therapeutic efficacy for these therapeutic agents. Leveraging the powers of (i) a combinatorial synthetic approach based on supramolecular assembly and (ii) a digital microreactor, a rapid developmental pathway was developed that is capable of screening SNP candidates for the ideal structural and functional properties that deliver optimal performance. Moreover, SNP-based theranostic delivery systems that combine reporter systems and therapeutic payloads into a

  8. Selective molecular sieving through porous graphene.

    Science.gov (United States)

    Koenig, Steven P; Wang, Luda; Pellegrino, John; Bunch, J Scott

    2012-11-01

    Membranes act as selective barriers and play an important role in processes such as cellular compartmentalization and industrial-scale chemical and gas purification. The ideal membrane should be as thin as possible to maximize flux, mechanically robust to prevent fracture, and have well-defined pore sizes to increase selectivity. Graphene is an excellent starting point for developing size-selective membranes because of its atomic thickness, high mechanical strength, relative inertness and impermeability to all standard gases. However, pores that can exclude larger molecules but allow smaller molecules to pass through would have to be introduced into the material. Here, we show that ultraviolet-induced oxidative etching can create pores in micrometre-sized graphene membranes, and the resulting membranes can be used as molecular sieves. A pressurized blister test and mechanical resonance are used to measure the transport of a range of gases (H(2), CO(2), Ar, N(2), CH(4) and SF(6)) through the pores. The experimentally measured leak rate, separation factors and Raman spectrum agree well with models based on effusion through a small number of ångstrom-sized pores.

  9. Molecular dynamics simulations of tension–compression asymmetry in nanocrystalline copper

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kai, E-mail: kaizhou@aliyun.com; Liu, Bin; Shao, Shaofeng; Yao, Yijun

    2017-04-04

    Molecular dynamics simulations are used to investigate uniaxial tension and compression of nanocrystalline copper with mean grain sizes of 3.8–11.9 nm. The simulation results show an apparent asymmetry in the flow stress, with nanocrystalline copper stronger in compression than in tension. The asymmetry exhibits a maximum at the mean grain size of about 10 nm. The dominant mechanism of the asymmetry depends on the mean grain size. At small grain sizes, grain-boundary based plasticity dominates the asymmetry, while for large grain sizes the asymmetry mainly arises from the pressure dependent dislocation emission from grain boundaries. - Highlights: • The tension–compression asymmetry in strength exhibits a maximum at the mean grain size of about 10 nm. • The main mechanisms govern the asymmetry are grain-boundary mediated plasticity and dislocation based plasticity. • The above-mentioned mechanisms are both grain size and pressure dependent. • The transition of the asymmetry with the mean grain size is not influenced by strain rate.

  10. Molecular clusters of 3D and lower magnetic dimensionality

    International Nuclear Information System (INIS)

    Papaefthymiou, G.C

    1991-01-01

    Controlled polymerization of iron leads to the synthesis of molecular clusters of ever-increasing size, tending to extended structures. Polymerization of oxo-bridged octahedrally coordinated iron leads to clusters with 3D magnetic interactions between iron ions, while sulfide- and selenide-bridged tetrahedrally coordinated iron ions produce clusters of lower magnetic dimensionality. In this paper the magnetic properties of the resulting large molecular clusters with N ≥ 17 (where N = the number of iron ions in the cluster) are investigated for the presence of collective magnetic correlations associated with the solid state

  11. Nanopatterned surface with adjustable area coverage and feature size fabricated by photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Bai Yang; Zhang Yan; Li Wei; Zhou Xuefeng; Wang Changsong; Feng Xin [State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing University of Technology, Nanjing, Jiangsu 210009 (China); Zhang Luzheng [Petroleum Research Recovery Center, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Lu Xiaohua, E-mail: xhlu@njut.edu.cn [State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing University of Technology, Nanjing, Jiangsu 210009 (China)

    2009-08-30

    We report an effective approach to fabricate nanopatterns of alkylsilane self-assembly monolayers (SAMs) with desirable coverage and feature size by gradient photocatalysis in TiO{sub 2} aqueous suspension. Growth and photocatalytic degradation of octadecyltrichlorosilane (OTS) were combined to fabricate adjustable monolayered nanopatterns on mica sheet in this work. Systematic atomic force microscopy (AFM) analysis showed that OTS-SAMs that have similar area coverage with different feature sizes and similar feature size with different area coverages can be fabricated by this approach. Contact angle measurement was applied to confirm the gradually varied nanopatterns contributed to the gradient of UV light illumination. Since this approach is feasible for various organic SAMs and substrates, a versatile method was presented to prepare tunable nanopatterns with desirable area coverage and feature size in many applications, such as molecular and biomolecular recognition, sensor and electrode modification.

  12. Nanopatterned surface with adjustable area coverage and feature size fabricated by photocatalysis

    International Nuclear Information System (INIS)

    Bai Yang; Zhang Yan; Li Wei; Zhou Xuefeng; Wang Changsong; Feng Xin; Zhang Luzheng; Lu Xiaohua

    2009-01-01

    We report an effective approach to fabricate nanopatterns of alkylsilane self-assembly monolayers (SAMs) with desirable coverage and feature size by gradient photocatalysis in TiO 2 aqueous suspension. Growth and photocatalytic degradation of octadecyltrichlorosilane (OTS) were combined to fabricate adjustable monolayered nanopatterns on mica sheet in this work. Systematic atomic force microscopy (AFM) analysis showed that OTS-SAMs that have similar area coverage with different feature sizes and similar feature size with different area coverages can be fabricated by this approach. Contact angle measurement was applied to confirm the gradually varied nanopatterns contributed to the gradient of UV light illumination. Since this approach is feasible for various organic SAMs and substrates, a versatile method was presented to prepare tunable nanopatterns with desirable area coverage and feature size in many applications, such as molecular and biomolecular recognition, sensor and electrode modification.

  13. Single Cell Analysis Linking Ribosomal (r)DNA and rRNA Copy Numbers to Cell Size and Growth Rate Provides Insights into Molecular Protistan Ecology.

    Science.gov (United States)

    Fu, Rao; Gong, Jun

    2017-11-01

    Ribosomal (r)RNA and rDNA have been golden molecular markers in microbial ecology. However, it remains poorly understood how ribotype copy number (CN)-based characteristics are linked with diversity, abundance, and activity of protist populations and communities observed at organismal levels. Here, we applied a single-cell approach to quantify ribotype CNs in two ciliate species reared at different temperatures. We found that in actively growing cells, the per-cell rDNA and rRNA CNs scaled with cell volume (CV) to 0.44 and 0.58 powers, respectively. The modeled rDNA and rRNA concentrations thus appear to be much higher in smaller than in larger cells. The observed rRNA:rDNA ratio scaled with CV 0.14 . The maximum growth rate could be well predicted by a combination of per-cell ribotype CN and temperature. Our empirical data and modeling on single-cell ribotype scaling are in agreement with both the metabolic theory of ecology and the growth rate hypothesis, providing a quantitative framework for linking cellular rDNA and rRNA CNs with body size, growth (activity), and biomass stoichiometry. This study also demonstrates that the expression rate of rRNA genes is constrained by cell size, and favors biomass rather than abundance-based interpretation of quantitative ribotype data in population and community ecology of protists. © 2017 The Authors. Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists.

  14. Atomistic origin of size effects in fatigue behavior of metallic glasses

    Science.gov (United States)

    Sha, Zhendong; Wong, Wei Hin; Pei, Qingxiang; Branicio, Paulo Sergio; Liu, Zishun; Wang, Tiejun; Guo, Tianfu; Gao, Huajian

    2017-07-01

    While many experiments and simulations on metallic glasses (MGs) have focused on their tensile ductility under monotonic loading, the fatigue mechanisms of MGs under cyclic loading still remain largely elusive. Here we perform molecular dynamics (MD) and finite element simulations of tension-compression fatigue tests in MGs to elucidate their fatigue mechanisms with focus on the sample size effect. Shear band (SB) thickening is found to be the inherent fatigue mechanism for nanoscale MGs. The difference in fatigue mechanisms between macroscopic and nanoscale MGs originates from whether the SB forms partially or fully through the cross-section of the specimen. Furthermore, a qualitative investigation of the sample size effect suggests that small sample size increases the fatigue life while large sample size promotes cyclic softening and necking. Our observations on the size-dependent fatigue behavior can be rationalized by the Gurson model and the concept of surface tension of the nanovoids. The present study sheds light on the fatigue mechanisms of MGs and can be useful in interpreting previous experimental results.

  15. Monolayer atomic crystal molecular superlattices

    Science.gov (United States)

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O.; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A., III; Huang, Yu; Duan, Xiangfeng

    2018-03-01

    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  16. Parallel Molecular Distributed Detection With Brownian Motion.

    Science.gov (United States)

    Rogers, Uri; Koh, Min-Sung

    2016-12-01

    This paper explores the in vivo distributed detection of an undesired biological agent's (BAs) biomarkers by a group of biological sized nanomachines in an aqueous medium under drift. The term distributed, indicates that the system information relative to the BAs presence is dispersed across the collection of nanomachines, where each nanomachine possesses limited communication, computation, and movement capabilities. Using Brownian motion with drift, a probabilistic detection and optimal data fusion framework, coined molecular distributed detection, will be introduced that combines theory from both molecular communication and distributed detection. Using the optimal data fusion framework as a guide, simulation indicates that a sub-optimal fusion method exists, allowing for a significant reduction in implementation complexity while retaining BA detection accuracy.

  17. Molecular models and simulations of layered materials

    International Nuclear Information System (INIS)

    Kalinichev, Andrey G.; Cygan, Randall Timothy; Heinz, Hendrik; Greathouse, Jeffery A.

    2008-01-01

    The micro- to nano-sized nature of layered materials, particularly characteristic of naturally occurring clay minerals, limits our ability to fully interrogate their atomic dispositions and crystal structures. The low symmetry, multicomponent compositions, defects, and disorder phenomena of clays and related phases necessitate the use of molecular models and modern simulation methods. Computational chemistry tools based on classical force fields and quantum-chemical methods of electronic structure calculations provide a practical approach to evaluate structure and dynamics of the materials on an atomic scale. Combined with classical energy minimization, molecular dynamics, and Monte Carlo techniques, quantum methods provide accurate models of layered materials such as clay minerals, layered double hydroxides, and clay-polymer nanocomposites

  18. Genome size estimation: a new methodology

    Science.gov (United States)

    Álvarez-Borrego, Josué; Gallardo-Escárate, Crisitian; Kober, Vitaly; López-Bonilla, Oscar

    2007-03-01

    Recently, within the cytogenetic analysis, the evolutionary relations implied in the content of nuclear DNA in plants and animals have received a great attention. The first detailed measurements of the nuclear DNA content were made in the early 40's, several years before Watson and Crick proposed the molecular structure of the DNA. In the following years Hewson Swift developed the concept of "C-value" in reference to the haploid phase of DNA in plants. Later Mirsky and Ris carried out the first systematic study of genomic size in animals, including representatives of the five super classes of vertebrates as well as of some invertebrates. From these preliminary results it became evident that the DNA content varies enormously between the species and that this variation does not bear relation to the intuitive notion from the complexity of the organism. Later, this observation was reaffirmed in the following years as the studies increased on genomic size, thus denominating to this characteristic of the organisms like the "Paradox of the C-value". Few years later along with the no-codification discovery of DNA the paradox was solved, nevertheless, numerous questions remain until nowadays unfinished, taking to denominate this type of studies like the "C-value enigma". In this study, we reported a new method for genome size estimation by quantification of fluorescence fading. We measured the fluorescence intensity each 1600 milliseconds in DAPI-stained nuclei. The estimation of the area under the graph (integral fading) during fading period was related with the genome size.

  19. DISCOVERY OF THE PIGTAIL MOLECULAR CLOUD IN THE GALACTIC CENTER

    International Nuclear Information System (INIS)

    Matsumura, Shinji; Oka, Tomoharu; Tanaka, Kunihiko; Nagai, Makoto; Kamegai, Kazuhisa; Hasegawa, Tetsuo

    2012-01-01

    This paper reports the discovery of a helical molecular cloud in the central molecular zone (CMZ) of our Galaxy. This 'pigtail' molecular cloud appears at (l, b, V LSR ) ≅ (–0. 0 7, + 0. 0 0, – 70 to –30 km s –1 ), with a spatial size of ∼20 × 20 pc 2 and a mass of (2-6) × 10 5 M ☉ . This is the third helical gaseous nebula found in the Galactic center region to date. Line intensity ratios indicate that the pigtail molecular cloud has slightly higher temperature and/or density than the other normal clouds in the CMZ. We also found a high-velocity wing emission near the footpoint of this cloud. We propose a formation model of the pigtail molecular cloud. It might be associated with a magnetic tube that is twisted and coiled because of the interaction between clouds in the innermost x 1 orbit and ones in the outermost x 2 orbit.

  20. Influence of ion size asymmetry on the properties of ionic liquid-vapour interfaces

    International Nuclear Information System (INIS)

    Bresme, Fernando; Gonzalez-Melchor, Minerva; Alejandre, Jose

    2005-01-01

    The influence of ion size asymmetry on the properties of ionic liquid-vapour interfaces is investigated using molecular dynamics simulations of the soft primitive model. Ion size asymmetry results in charge separation at the liquid-vapour interface and therefore in a local violation of the electroneutrality condition. For moderate size asymmetries the electrostatic potential at the interface can reach values of the order of 0.1 V. Size asymmetry plays a very important role in determining ion adsorption at the liquid-vapour interface of ionic mixtures. The interfacial adsorption of the bigger component results in an increase of the electrostatic potential, and a reduction of the interfacial surface tension. Our results show that ionic mixtures provide a very efficient way to tune the electrostatics and surface properties of ionic liquid-vapour interfaces

  1. Influence of ion size asymmetry on the properties of ionic liquid-vapour interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bresme, Fernando [Department of Chemistry, Imperial College London, London SW7 2AZ (United Kingdom); Gonzalez-Melchor, Minerva [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Colonia Vicentina, 09340 Mexico D.F. (Mexico); Alejandre, Jose [Departamento de QuImica, Universidad Autonoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Colonia Vicentina, 09340 Mexico D.F. (Mexico)

    2005-11-16

    The influence of ion size asymmetry on the properties of ionic liquid-vapour interfaces is investigated using molecular dynamics simulations of the soft primitive model. Ion size asymmetry results in charge separation at the liquid-vapour interface and therefore in a local violation of the electroneutrality condition. For moderate size asymmetries the electrostatic potential at the interface can reach values of the order of 0.1 V. Size asymmetry plays a very important role in determining ion adsorption at the liquid-vapour interface of ionic mixtures. The interfacial adsorption of the bigger component results in an increase of the electrostatic potential, and a reduction of the interfacial surface tension. Our results show that ionic mixtures provide a very efficient way to tune the electrostatics and surface properties of ionic liquid-vapour interfaces.

  2. Making and Operating Molecular Machines: A Multidisciplinary Challenge.

    Science.gov (United States)

    Baroncini, Massimo; Casimiro, Lorenzo; de Vet, Christiaan; Groppi, Jessica; Silvi, Serena; Credi, Alberto

    2018-02-01

    Movement is one of the central attributes of life, and a key feature in many technological processes. While artificial motion is typically provided by macroscopic engines powered by internal combustion or electrical energy, movement in living organisms is produced by machines and motors of molecular size that typically exploit the energy of chemical fuels at ambient temperature to generate forces and ultimately execute functions. The progress in several areas of chemistry, together with an improved understanding of biomolecular machines, has led to the development of a large variety of wholly synthetic molecular machines. These systems have the potential to bring about radical innovations in several areas of technology and medicine. In this Minireview, we discuss, with the help of a few examples, the multidisciplinary aspects of research on artificial molecular machines and highlight its translational character.

  3. Molecular techniques as complementary tools in orchid mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Nazir Basiran; Sakinah Ariffin [Malaysian Institute for Nuclear Technology Research (MINT), Bangi (Malaysia)

    2002-02-01

    Orchid breeders have always been dependent on hybridization technology to produce new orchid hybrids and varieties. The technology has proven very reliable and easy to use and has produced wide range of successful cultivars with attractive combinations of spray length, bud number, flower colour and form, vase life, fragrance, seasonality, and compactness. By introducing mutagenesis however, wide variations of flower colours, form and size can still be obtained in addition to overcoming the problem of sexual incompatibility and sterility. In addition, complementary use of molecular techniques will allow breeders to target more specific characteristic changes and cut short breeding time. PCR-based techniques used to analyse the DNA of mutagenic clones found polymorphic fragments that can be developed as molecular markers. This paper describes how mutagenesis and molecular techniques can be used to enhance orchid breeding efforts. (author)

  4. Mesoporous thin films of ``molecular squares'' as sensors for volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, M.H.; Slone, R.V.; Hupp, J.T.; Czaplewski, K.F.; Snurr, R.Q.; Stern, C.L.

    2000-04-18

    Mesoporous thin films of rhenium-based molecular squares, [Re(CO){sub 3}Cl(L)]{sub 4} (L = pyrazine, 4,4{prime}-bipyridine), have been utilized as sensors for volatile organic compounds (VOCs). The sensing was conducted using a quartz crystal microbalance with the target compounds present in the gas phase at concentrations ranging from 0.05 to 1 mM. Quartz crystal microbalance studies with these materials allowed for distinction between the following VOCs: (1) small aromatic versus aliphatic molecules of almost identical size and volatility and (2) an array of benzene molecules derivatized with electron donating/withdrawing substituents. The experiments suggest that the mesoporous host materials interact with VOC guest molecules through both van der Waals and weak charge-transfer interactions. In addition, size selectivity is shown by exposure of the molecular squares to cyclic ethers of differing size.

  5. The evolution of bacterial cell size: the internal diffusion-constraint hypothesis.

    Science.gov (United States)

    Gallet, Romain; Violle, Cyrille; Fromin, Nathalie; Jabbour-Zahab, Roula; Enquist, Brian J; Lenormand, Thomas

    2017-07-01

    Size is one of the most important biological traits influencing organismal ecology and evolution. However, we know little about the drivers of body size evolution in unicellulars. A long-term evolution experiment (Lenski's LTEE) in which Escherichia coli adapts to a simple glucose medium has shown that not only the growth rate and the fitness of the bacterium increase over time but also its cell size. This increase in size contradicts prominent 'external diffusion' theory (EDC) predicting that cell size should have evolved toward smaller cells. Among several scenarios, we propose and test an alternative 'internal diffusion-constraint' (IDC) hypothesis for cell size evolution. A change in cell volume affects metabolite concentrations in the cytoplasm. The IDC states that a higher metabolism can be achieved by a reduction in the molecular traffic time inside of the cell, by increasing its volume. To test this hypothesis, we studied a population from the LTEE. We show that bigger cells with greater growth and CO 2 production rates and lower mass-to-volume ratio were selected over time in the LTEE. These results are consistent with the IDC hypothesis. This novel hypothesis offers a promising approach for understanding the evolutionary constraints on cell size.

  6. Inferring Population Size History from Large Samples of Genome-Wide Molecular Data - An Approximate Bayesian Computation Approach.

    Directory of Open Access Journals (Sweden)

    Simon Boitard

    2016-03-01

    Full Text Available Inferring the ancestral dynamics of effective population size is a long-standing question in population genetics, which can now be tackled much more accurately thanks to the massive genomic data available in many species. Several promising methods that take advantage of whole-genome sequences have been recently developed in this context. However, they can only be applied to rather small samples, which limits their ability to estimate recent population size history. Besides, they can be very sensitive to sequencing or phasing errors. Here we introduce a new approximate Bayesian computation approach named PopSizeABC that allows estimating the evolution of the effective population size through time, using a large sample of complete genomes. This sample is summarized using the folded allele frequency spectrum and the average zygotic linkage disequilibrium at different bins of physical distance, two classes of statistics that are widely used in population genetics and can be easily computed from unphased and unpolarized SNP data. Our approach provides accurate estimations of past population sizes, from the very first generations before present back to the expected time to the most recent common ancestor of the sample, as shown by simulations under a wide range of demographic scenarios. When applied to samples of 15 or 25 complete genomes in four cattle breeds (Angus, Fleckvieh, Holstein and Jersey, PopSizeABC revealed a series of population declines, related to historical events such as domestication or modern breed creation. We further highlight that our approach is robust to sequencing errors, provided summary statistics are computed from SNPs with common alleles.

  7. Ordered molecular arrays as templates: A new approach to synthesis of mesoporous materials

    Science.gov (United States)

    Behrens, P.; Stucky, G.

    There has been a growing interest in the extension of the microporous molecular sieve synthesis and applications to mesoscopic dimensions. Typical areas for the application of mesoscopic zeolite-type structures are in separation (e.g., protein separation and selective adsorption of large organic molecules from waste waters) and catalysis (e.g., processing of tar sand and of the high distillates of crude oils to valuable low-boiling products). Another is in the supramolecular assembly of molecular array and polymers for electronic and optical applications. In a new concept in the synthesis of porous material the templating agent is no longer a single, solvated, organic molecule or metal ion, but rather a self-assembled molecular array. This template leads to mesoporous materials with adjustable pore sizes between 16 and greater than 100 Angstrom, covering well the mesophorous range of greatest interest. The periodic arrangement of pores is very regular, and the pore size distribution measured by absorption is nearly as sharp as that of conventional zeolites.

  8. Percolation approach for atomic and molecular cluster formation

    International Nuclear Information System (INIS)

    Knospe, O.; Seifert, G.

    1987-12-01

    We apply a percolation approach for the theoretical analysis of mass spectra of molecular microclusters obtained by adiabatic expansion technique. The evolution of the shape of the experimental size distributions as function of stagnation pressure and stagnation temperature are theoretically reproduced by varying the percolation parameter. Remaining discrepancies between theory and experiment are discussed. In addition, the even-odd alternation as well as the 'magic' shell structure within metallic, secondary ion mass spectra are investigated by introducing statistical weights for the cluster formation probabilities. Shell correction energies of atomic clusters as function of cluster-size are deduced from the experimental data. (orig.)

  9. Molecular characterization and expression analysis of fat mass and ...

    Indian Academy of Sciences (India)

    Keywords. fat mass and obesity-associated gene (FTO); rabbit; mRNA expression patterns; sequence analysis; Oryctolagus cuniculus. ... In this work, the molecular characterization and expression features of rabbit (Oryctolagus cuniculus) FTO cDNA were analysed. The rabbit FTO cDNA with a size of 2158 bp was cloned, ...

  10. Evolution and maintenance of sexual size dimorphism: Aligning phylogenetic and experimental evidence

    Directory of Open Access Journals (Sweden)

    Matjaz eKuntner

    2014-06-01

    Full Text Available Integrating the insights derived from both phylogenetic and experimental approaches offers a more complete understanding of evolutionary patterns and processes, yet it is rarely a feature of investigations of the evolutionary significance of trait variation. We combine these approaches to reinterpret the patterns and processes in the evolution of female biased sexual size dimorphism in Nephilidae, a spider lineage characterized by the most extreme sexual size dimorphism among terrestrial animals. We use a molecular phylogeny to reconstruct the size evolution for each sex and reveal a case of sexually dimorphic gigantism: both sexes steadily outgrow their ancestral sizes, but the female and male slopes differ, and hence sexual size dimorphism steadily increases. A review of the experimental evidence reveals a predominant net selection for large size in both sexes, consistent with the phylogenetic pattern for females but not for males. Thus, while sexual size dimorphism in spiders most likely originates and is maintained by fecundity selection on females, it is unclear what selection pressures prevent males from becoming as large as females. This integrated approach highlights the dangers of inferring evolutionary significance from experimental studies that isolate the effects of single selection pressures.

  11. New formula for dependence of molecular electronic energy on internuclear distance

    International Nuclear Information System (INIS)

    Rebane, T.K.

    1988-01-01

    We formulate an integral virial theorem which connects the change in the molecular electronic energy during finite changes in the size of the nuclear core (in the case of a diatomic molecule, during finite changes of the internuclear distance) with a matrix element of the kinetic electronic energy operator and with an overlap integral between wave functions. Our results can be used to calculate the dependence of the molecular electronic energy on the internuclear distance, as well as to check the quality of, and to improve, the approximate electronic wave functions. The theory is illustrated by the simplest example of the approximate MO LCAO wave function for the hydrogen molecular ion

  12. Mechanism of the superior mechanical strength of nanometer-sized metal single crystals revealed

    KAUST Repository

    Afify, N. D.

    2013-10-01

    Clear understanding of the superior mechanical strength of nanometer-sized metal single crystals is required to derive advanced mechanical components retaining such superiority. Although high quality studies have been reported on nano-crystalline metals, the superiority of small single crystals has neither been fundamentally explained nor quantified to this date. Here we present a molecular dynamics study of aluminum single crystals in the size range from 4.1 nm to 40.5 nm. We show that the ultimate mechanical strength deteriorates exponentially as the single crystal size increases. The small crystals superiority is explained by their ability to continuously form vacancies and to recover them. © 2013 Published by Elsevier B.V.

  13. GS6, a member of the GRAS gene family, negatively regulates grain size in rice.

    Science.gov (United States)

    Sun, Lianjun; Li, Xiaojiao; Fu, Yongcai; Zhu, Zuofeng; Tan, Lubin; Liu, Fengxia; Sun, Xianyou; Sun, Xuewen; Sun, Chuanqing

    2013-10-01

    Grain size is an important yield-related trait in rice. Intensive artificial selection for grain size during domestication is evidenced by the larger grains of most of today's cultivars compared with their wild relatives. However, the molecular genetic control of rice grain size is still not well characterized. Here, we report the identification and cloning of Grain Size 6 (GS6), which plays an important role in reducing grain size in rice. A premature stop at the +348 position in the coding sequence (CDS) of GS6 increased grain width and weight significantly. Alignment of the CDS regions of GS6 in 90 rice materials revealed three GS6 alleles. Most japonica varieties (95%) harbor the Type I haplotype, and 62.9% of indica varieties harbor the Type II haplotype. Association analysis revealed that the Type I haplotype tends to increase the width and weight of grains more than either of the Type II or Type III haplotypes. Further investigation of genetic diversity and the evolutionary mechanisms of GS6 showed that the GS6 gene was strongly selected in japonica cultivars. In addition, a "ggc" repeat region identified in the region that encodes the GRAS domain of GS6 played an important historic role in the domestication of grain size in rice. Knowledge of the function of GS6 might aid efforts to elucidate the molecular mechanisms that control grain development and evolution in rice plants, and could facilitate the genetic improvement of rice yield. © 2013 Institute of Botany, Chinese Academy of Sciences.

  14. Poisson-Boltzmann versus Size-Modified Poisson-Boltzmann Electrostatics Applied to Lipid Bilayers.

    Science.gov (United States)

    Wang, Nuo; Zhou, Shenggao; Kekenes-Huskey, Peter M; Li, Bo; McCammon, J Andrew

    2014-12-26

    Mean-field methods, such as the Poisson-Boltzmann equation (PBE), are often used to calculate the electrostatic properties of molecular systems. In the past two decades, an enhancement of the PBE, the size-modified Poisson-Boltzmann equation (SMPBE), has been reported. Here, the PBE and the SMPBE are reevaluated for realistic molecular systems, namely, lipid bilayers, under eight different sets of input parameters. The SMPBE appears to reproduce the molecular dynamics simulation results better than the PBE only under specific parameter sets, but in general, it performs no better than the Stern layer correction of the PBE. These results emphasize the need for careful discussions of the accuracy of mean-field calculations on realistic systems with respect to the choice of parameters and call for reconsideration of the cost-efficiency and the significance of the current SMPBE formulation.

  15. Explicit all-atom modeling of realistically sized ligand-capped nanocrystals

    KAUST Repository

    Kaushik, Ananth P.

    2012-01-01

    We present a study of an explicit all-atom representation of nanocrystals of experimentally relevant sizes (up to 6 nm), capped with alkyl chain ligands, in vacuum. We employ all-atom molecular dynamics simulation methods in concert with a well-tested intermolecular potential model, MM3 (molecular mechanics 3), for the studies presented here. These studies include determining the preferred conformation of an isolated single nanocrystal (NC), pairs of isolated NCs, and (presaging studies of superlattice arrays) unit cells of NC superlattices. We observe that very small NCs (3 nm) behave differently in a superlattice as compared to larger NCs (6 nm and above) due to the conformations adopted by the capping ligands on the NC surface. Short ligands adopt a uniform distribution of orientational preferences, including some that lie against the face of the nanocrystal. In contrast, longer ligands prefer to interdigitate. We also study the effect of changing ligand length and ligand coverage on the NCs on the preferred ligand configurations. Since explicit all-atom modeling constrains the maximum system size that can be studied, we discuss issues related to coarse-graining the representation of the ligands, including a comparison of two commonly used coarse-grained models. We find that care has to be exercised in the choice of coarse-grained model. The data provided by these realistically sized ligand-capped NCs, determined using explicit all-atom models, should serve as a reference standard for future models of coarse-graining ligands using united atom models, especially for self-assembly processes. © 2012 American Institute of Physics.

  16. On-wire lithography-generated molecule-based transport junctions: a new testbed for molecular electronics.

    Science.gov (United States)

    Chen, Xiaodong; Jeon, You-Moon; Jang, Jae-Won; Qin, Lidong; Huo, Fengwei; Wei, Wei; Mirkin, Chad A

    2008-07-02

    On-wire lithography (OWL) fabricated nanogaps are used as a new testbed to construct molecular transport junctions (MTJs) through the assembly of thiolated molecular wires across a nanogap formed between two Au electrodes. In addition, we show that one can use OWL to rapidly characterize a MTJ and optimize gap size for two molecular wires of different dimensions. Finally, we have used this new testbed to identify unusual temperature-dependent transport mechanisms for alpha,omega-dithiol terminated oligo(phenylene ethynylene).

  17. Advance of Mechanically Controllable Break Junction for Molecular Electronics.

    Science.gov (United States)

    Wang, Lu; Wang, Ling; Zhang, Lei; Xiang, Dong

    2017-06-01

    Molecular electronics stands for the ultimate size of functional elements, keeping up with an unstoppable trend over the past few decades. As a vital component of molecular electronics, single molecular junctions have attracted significant attention from research groups all over the world. Due to its pronounced superiority, the mechanically controllable break junctions (MCBJ) technique has been widely applied to characterize the dynamic performance of single molecular junctions. This review presents a system analysis for single-molecule junctions and offers an overview of four test-beds for single-molecule junctions, thus offering more insight into the mechanisms of electron transport. We mainly focus on the development of state-of-the-art mechanically controlled break junctions. The three-terminal gated MCBJ approaches are introduced to manipulate the electron transport of molecules, and MCBJs are combined with characterization techniques. Additionally, applications of MCBJs and remarkable properties of single molecules are addressed. Finally, the challenges and perspective for the mechanically controllable break junctions technique are provided.

  18. Ligand Bridging-Angle-Driven Assembly of Molecular Architectures Based on Quadruply Bonded Mo-Mo Dimers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian-Rong; Yakovenko, Andrey A; Lu, Weigang; Timmons, Daren J; Zhuang, Wenjuan; Yuan, Daqiang; Zhou, Hong-Cai

    2010-12-15

    A systematic exploration of the assembly of Mo₂(O₂C-)₄-based metal–organic molecular architectures structurally controlled by the bridging angles of rigid organic linkers has been performed. Twelve bridging dicarboxylate ligands were designed to be of different sizes with bridging angles of 0, 60, 90, and 120° while incorporating a variety of nonbridging functional groups, and these ligands were used as linkers. These dicarboxylate linkers assemble with quadruply bonded Mo–Mo clusters acting as nodes to give 13 molecular architectures, termed metal–organic polygons/polyhedra with metal cluster node arrangements of a linear shape, triangle, octahedron, and cuboctahedron/anti-cuboctahedron. The syntheses of these complexes have been optimized and their structures determined by single-crystal X-ray diffraction. The results have shown that the shape and size of the resulting molecular architecture can be controlled by tuning the bridging angle and size of the linker, respectively. Functionalization of the linker can adjust the solubility of the ensuing molecular assembly but has little or no effect on the geometry of the product. Preliminary gas adsorption, spectroscopic, and electrochemical properties of selected members were also studied. The present work is trying to enrich metal-containing supramolecular chemistry through the inclusion of well-characterized quadruply bonded Mo–Mo units into the structures, which can widen the prospect of additional electronic functionality, thereby leading to novel properties.

  19. Ligand bridging-angle-driven assembly of molecular architectures based on quadruply bonded Mo-Mo dimers.

    Science.gov (United States)

    Li, Jian-Rong; Yakovenko, Andrey A; Lu, Weigang; Timmons, Daren J; Zhuang, Wenjuan; Yuan, Daqiang; Zhou, Hong-Cai

    2010-12-15

    A systematic exploration of the assembly of Mo2(O2C-)4-based metal-organic molecular architectures structurally controlled by the bridging angles of rigid organic linkers has been performed. Twelve bridging dicarboxylate ligands were designed to be of different sizes with bridging angles of 0, 60, 90, and 120° while incorporating a variety of nonbridging functional groups, and these ligands were used as linkers. These dicarboxylate linkers assemble with quadruply bonded Mo-Mo clusters acting as nodes to give 13 molecular architectures, termed metal-organic polygons/polyhedra with metal cluster node arrangements of a linear shape, triangle, octahedron, and cuboctahedron/anti-cuboctahedron. The syntheses of these complexes have been optimized and their structures determined by single-crystal X-ray diffraction. The results have shown that the shape and size of the resulting molecular architecture can be controlled by tuning the bridging angle and size of the linker, respectively. Functionalization of the linker can adjust the solubility of the ensuing molecular assembly but has little or no effect on the geometry of the product. Preliminary gas adsorption, spectroscopic, and electrochemical properties of selected members were also studied. The present work is trying to enrich metal-containing supramolecular chemistry through the inclusion of well-characterized quadruply bonded Mo-Mo units into the structures, which can widen the prospect of additional electronic functionality, thereby leading to novel properties.

  20. Communication: Nucleation of water on ice nanograins: Size, charge, and quantum effects

    Energy Technology Data Exchange (ETDEWEB)

    Marciante, Mathieu [Institut Lumière Matière, UMR5306 Université Lyon 1 – CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Calvo, Florent, E-mail: florent.calvo@ujf-grenoble.fr [Institut Lumière Matière, UMR5306 Université Lyon 1 – CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Laboratoire Interdisciplinaire de Physique, Rue de La Piscine, Campus Saint Martin d’Hères, 38000 Grenoble (France)

    2015-05-07

    The sticking cross sections of water molecules on cold size-selected water clusters have been simulated using classical and quantum (path-integral) molecular dynamics trajectories under realistic conditions. The integrated cross sections for charged clusters show significant size effects with comparable trends as in experiments, as well as essentially no sign effect. Vibrational delocalization, although it contributes to enlarging the geometric cross sections, leads to a counter-intuitive decrease in the dynamical cross section obtained from the trajectories. These results are interpreted based on the apparent reduction in the effective interaction between the projectile and the target owing to zero-point effects.

  1. Communication: Nucleation of water on ice nanograins: Size, charge, and quantum effects

    International Nuclear Information System (INIS)

    Marciante, Mathieu; Calvo, Florent

    2015-01-01

    The sticking cross sections of water molecules on cold size-selected water clusters have been simulated using classical and quantum (path-integral) molecular dynamics trajectories under realistic conditions. The integrated cross sections for charged clusters show significant size effects with comparable trends as in experiments, as well as essentially no sign effect. Vibrational delocalization, although it contributes to enlarging the geometric cross sections, leads to a counter-intuitive decrease in the dynamical cross section obtained from the trajectories. These results are interpreted based on the apparent reduction in the effective interaction between the projectile and the target owing to zero-point effects

  2. Engineering controllable bidirectional molecular motors based on myosin

    Science.gov (United States)

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

    2012-04-01

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions and other signals. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies and guided by a structural model for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size and branchpoint turning.

  3. Fluctuating hydrodynamics for multiscale modeling and simulation: energy and heat transfer in molecular fluids.

    Science.gov (United States)

    Shang, Barry Z; Voulgarakis, Nikolaos K; Chu, Jhih-Wei

    2012-07-28

    This work illustrates that fluctuating hydrodynamics (FHD) simulations can be used to capture the thermodynamic and hydrodynamic responses of molecular fluids at the nanoscale, including those associated with energy and heat transfer. Using all-atom molecular dynamics (MD) trajectories as the reference data, the atomistic coordinates of each snapshot are mapped onto mass, momentum, and energy density fields on Eulerian grids to generate a corresponding field trajectory. The molecular length-scale associated with finite molecule size is explicitly imposed during this coarse-graining by requiring that the variances of density fields scale inversely with the grid volume. From the fluctuations of field variables, the response functions and transport coefficients encoded in the all-atom MD trajectory are computed. By using the extracted fluid properties in FHD simulations, we show that the fluctuations and relaxation of hydrodynamic fields quantitatively match with those observed in the reference all-atom MD trajectory, hence establishing compatibility between the atomistic and field representations. We also show that inclusion of energy transfer in the FHD equations can more accurately capture the thermodynamic and hydrodynamic responses of molecular fluids. The results indicate that the proposed MD-to-FHD mapping with explicit consideration of finite molecule size provides a robust framework for coarse-graining the solution phase of complex molecular systems.

  4. Molecular spectrum of laterally coupled quantum rings under intense terahertz radiation.

    Science.gov (United States)

    Baghramyan, Henrikh M; Barseghyan, Manuk G; Laroze, David

    2017-09-05

    We study the influence of intense THz laser radiation and electric field on molecular states of laterally coupled quantum rings. Laser radiation shows the capability to dissociate quantum ring molecule and add 2-fold degeneracy to the molecular states at the fixed value of the overlapping size between rings. It is shown that coupled to decoupled molecular states phase transition points form almost a straight line with a slope equal to two. In addition, the electric field direction dependent energy spectrum shows unexpected oscillations, demonstrating strong coupling between molecular states. Besides, intraband absorption is considered, showing both blue and redshifts in its spectrum. The obtained results can be useful for the controlling of degeneracy of the discrete energy spectrum of nanoscale structures and in the tunneling effects therein.

  5. Molecular dynamics study on the relaxation properties of bilayered ...

    Indian Academy of Sciences (India)

    2017-08-31

    Aug 31, 2017 ... Abstract. The influence of defects on the relaxation properties of bilayered graphene (BLG) has been studied by molecular dynamics simulation in nanometre sizes. Type and position of defects were taken into account in the calculated model. The results show that great changes begin to occur in the ...

  6. Analyzing the Molecular Kinetics of Water Spreading on Hydrophobic Surfaces via Molecular Dynamics Simulation.

    Science.gov (United States)

    Zhao, Lei; Cheng, Jiangtao

    2017-09-07

    In this paper, we report molecular kinetic analyses of water spreading on hydrophobic surfaces via molecular dynamics simulation. The hydrophobic surfaces are composed of amorphous polytetrafluoroethylene (PTFE) with a static contact angle of ~112.4° for water. On the basis of the molecular kinetic theory (MKT), the influences of both viscous damping and solid-liquid retarding were analyzed in evaluating contact line friction, which characterizes the frictional force on the contact line. The unit displacement length on PTFE was estimated to be ~0.621 nm and is ~4 times as long as the bond length of C-C backbone. The static friction coefficient was found to be ~[Formula: see text] Pa·s, which is on the same order of magnitude as the dynamic viscosity of water, and increases with the droplet size. A nondimensional number defined by the ratio of the standard deviation of wetting velocity to the characteristic wetting velocity was put forward to signify the strength of the inherent contact line fluctuation and unveil the mechanism of enhanced energy dissipation in nanoscale, whereas such effect would become insignificant in macroscale. Moreover, regarding a liquid droplet on hydrophobic or superhydrophobic surfaces, an approximate solution to the base radius development was derived by an asymptotic expansion approach.

  7. Overcoming time scale and finite size limitations to compute nucleation rates from small scale well tempered metadynamics simulations

    Science.gov (United States)

    Salvalaglio, Matteo; Tiwary, Pratyush; Maggioni, Giovanni Maria; Mazzotti, Marco; Parrinello, Michele

    2016-12-01

    Condensation of a liquid droplet from a supersaturated vapour phase is initiated by a prototypical nucleation event. As such it is challenging to compute its rate from atomistic molecular dynamics simulations. In fact at realistic supersaturation conditions condensation occurs on time scales that far exceed what can be reached with conventional molecular dynamics methods. Another known problem in this context is the distortion of the free energy profile associated to nucleation due to the small, finite size of typical simulation boxes. In this work the problem of time scale is addressed with a recently developed enhanced sampling method while contextually correcting for finite size effects. We demonstrate our approach by studying the condensation of argon, and showing that characteristic nucleation times of the order of magnitude of hours can be reliably calculated. Nucleation rates spanning a range of 10 orders of magnitude are computed at moderate supersaturation levels, thus bridging the gap between what standard molecular dynamics simulations can do and real physical systems.

  8. Next generation extended Lagrangian first principles molecular dynamics.

    Science.gov (United States)

    Niklasson, Anders M N

    2017-08-07

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  9. The influence of the negative-positive ratio and screening database size on the performance of machine learning-based virtual screening.

    Science.gov (United States)

    Kurczab, Rafał; Bojarski, Andrzej J

    2017-01-01

    The machine learning-based virtual screening of molecular databases is a commonly used approach to identify hits. However, many aspects associated with training predictive models can influence the final performance and, consequently, the number of hits found. Thus, we performed a systematic study of the simultaneous influence of the proportion of negatives to positives in the testing set, the size of screening databases and the type of molecular representations on the effectiveness of classification. The results obtained for eight protein targets, five machine learning algorithms (SMO, Naïve Bayes, Ibk, J48 and Random Forest), two types of molecular fingerprints (MACCS and CDK FP) and eight screening databases with different numbers of molecules confirmed our previous findings that increases in the ratio of negative to positive training instances greatly influenced most of the investigated parameters of the ML methods in simulated virtual screening experiments. However, the performance of screening was shown to also be highly dependent on the molecular library dimension. Generally, with the increasing size of the screened database, the optimal training ratio also increased, and this ratio can be rationalized using the proposed cost-effectiveness threshold approach. To increase the performance of machine learning-based virtual screening, the training set should be constructed in a way that considers the size of the screening database.

  10. Analysis of a MIL-L-27502 lubricant from a gas-turbine engine test by size-exclusion chromatography

    Science.gov (United States)

    Jones, W. R., Jr.; Morales, W.

    1983-01-01

    Size exclusion chromatography was used to determine the chemical degradation of MIL-L-27502 oil samples from a gas turbine engine test run at a bulk oil temperature of 216 C. Results revealed a progressive loss of primary ester and additive depletion and the formation of higher molecular weight products with time. The high molecular weight products absorbed strongly in the ultraviolet indicating the presence of chromophoric groups.

  11. Newer methods for the characterization of higher molecular mass coal derivatives

    International Nuclear Information System (INIS)

    Bartle, K.D.

    1983-01-01

    Recent developments in a number of areas in the analytical chemistry of higher molecular mass coal derivatives are critically reviewed, viz. supercritical fluid chromatography, size-exclusion chromatography, charge-transfer fractionation, nmr spectroscopy, mass spectrometry and electrochemical analysis. (orig.) [de

  12. SCF(SAP) controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Zhibiao; Li, Na; Jiang, Shan; Gonzalez, Nathalie; Huang, Xiahe; Wang, Yingchun; Inzé, Dirk; Li, Yunhai

    2016-04-06

    Control of organ size by cell proliferation and growth is a fundamental process, but the mechanisms that determine the final size of organs are largely elusive in plants. We have previously revealed that the ubiquitin receptor DA1 regulates organ size by repressing cell proliferation in Arabidopsis. Here we report that a mutant allele of STERILE APETALA (SAP) suppresses the da1-1 mutant phenotype. We show that SAP is an F-box protein that forms part of a SKP1/Cullin/F-box E3 ubiquitin ligase complex and controls organ size by promoting the proliferation of meristemoid cells. Genetic analyses suggest that SAP may act in the same pathway with PEAPOD1 and PEAPOD2, which are negative regulators of meristemoid proliferation, to control organ size, but does so independently of DA1. Further results reveal that SAP physically associates with PEAPOD1 and PEAPOD2, and targets them for degradation. These findings define a molecular mechanism by which SAP and PEAPOD control organ size.

  13. A Caenorhabditis elegans wild type defies the temperature-size rule owing to a single nucleotide polymorphism in tra-3.

    Directory of Open Access Journals (Sweden)

    Jan E Kammenga

    2007-03-01

    Full Text Available Ectotherms rely for their body heat on surrounding temperatures. A key question in biology is why most ectotherms mature at a larger size at lower temperatures, a phenomenon known as the temperature-size rule. Since temperature affects virtually all processes in a living organism, current theories to explain this phenomenon are diverse and complex and assert often from opposing assumptions. Although widely studied, the molecular genetic control of the temperature-size rule is unknown. We found that the Caenorhabditis elegans wild-type N2 complied with the temperature-size rule, whereas wild-type CB4856 defied it. Using a candidate gene approach based on an N2 x CB4856 recombinant inbred panel in combination with mutant analysis, complementation, and transgenic studies, we show that a single nucleotide polymorphism in tra-3 leads to mutation F96L in the encoded calpain-like protease. This mutation attenuates the ability of CB4856 to grow larger at low temperature. Homology modelling predicts that F96L reduces TRA-3 activity by destabilizing the DII-A domain. The data show that size adaptation of ectotherms to temperature changes may be less complex than previously thought because a subtle wild-type polymorphism modulates the temperature responsiveness of body size. These findings provide a novel step toward the molecular understanding of the temperature-size rule, which has puzzled biologists for decades.

  14. Phylogeny suggests nondirectional and isometric evolution of sexual size dimorphism in argiopine spiders.

    Science.gov (United States)

    Cheng, Ren-Chung; Kuntner, Matjaž

    2014-10-01

    Sexual dimorphism describes substantial differences between male and female phenotypes. In spiders, sexual dimorphism research almost exclusively focuses on size, and recent studies have recovered steady evolutionary size increases in females, and independent evolutionary size changes in males. Their discordance is due to negative allometric size patterns caused by different selection pressures on male and female sizes (converse Rensch's rule). Here, we investigated macroevolutionary patterns of sexual size dimorphism (SSD) in Argiopinae, a global lineage of orb-weaving spiders with varying degrees of SSD. We devised a Bayesian and maximum-likelihood molecular species-level phylogeny, and then used it to reconstruct sex-specific size evolution, to examine general hypotheses and different models of size evolution, to test for sexual size coevolution, and to examine allometric patterns of SSD. Our results, revealing ancestral moderate sizes and SSD, failed to reject the Brownian motion model, which suggests a nondirectional size evolution. Contrary to predictions, male and female sizes were phylogenetically correlated, and SSD evolution was isometric. We interpret these results to question the classical explanations of female-biased SSD via fecundity, gravity, and differential mortality. In argiopines, SSD evolution may be driven by these or additional selection mechanisms, but perhaps at different phylogenetic scales. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  15. Size and composition dependence of the frozen structures in Co-based bimetallic clusters

    International Nuclear Information System (INIS)

    Li, Guojian; Wang, Qiang; Cao, Yongze; Du, Jiaojiao; He, Jicheng

    2012-01-01

    This Letter studies the size-dependent freezing of Co, Co–Ni, and Co–Cu clusters by using molecular dynamics with embedded atom method. Size effect occurs in these three types of clusters. The clusters with large sizes always freeze to form their bulk-like structures. However, the frozen structures for small sizes are generally related to their compositions. The icosahedral clusters are formed for Co clusters (for ⩽3.2 nm diameter) and also for Co–Ni clusters but at a larger size range (for ⩽4.08 nm). Upon the Co–Cu clusters, decahedral structure is obtained for small size (for 2.47 nm). The released energy induced the structural transformation plays a key role in the frozen structures. These results indicate that the preformed clusters with special structures can be tuned by controlling their compositions and sizes. -- Highlights: ► The size effect occurs in the Co, Co–Ni, and Co–Cu clusters. ► The clusters with large sizes always freeze to form their bulk-like structures. ► The frozen structures for small sizes are generally related to their compositions. ► Icosahedron is formed for Co and also for Co–Ni but at a larger size range. ► Upon the Co–Cu clusters, decahedral structure is obtained for small size.

  16. Hydration structure and dynamics of a hydroxide ion in water clusters of varying size and temperature: Quantum chemical and ab initio molecular dynamics studies

    International Nuclear Information System (INIS)

    Bankura, Arindam; Chandra, Amalendu

    2012-01-01

    Highlights: ► A theoretical study of hydroxide ion-water clusters is carried for varying cluster size and temperature. ► The structures of OH − (H 2 O) n are found out through quantum chemical calculations for n = 4, 8, 16 and 20. ► The finite temperature behavior of the clusters is studied through ab initio dynamical simulations. ► The spectral features of OH modes (deuterated) and their dependence on hydrogen bonding states of water are discussed. ► The mechanism and kinetics of proton transfer processes in these anionic clusters are also investigated. - Abstract: We have investigated the hydration structure and dynamics of OH − (H 2 O) n clusters (n = 4, 8, 16 and 20) by means of quantum chemical and ab initio molecular dynamics calculations. Quantum chemical calculations reveal that the solvation structure of the hydroxide ion transforms from three and four-coordinated surface states to five-coordinated interior state with increase in cluster size. Several other isomeric structures with energies not very different from the most stable isomer are also found. Ab initio simulations show that the most probable configurations at higher temperatures need not be the lowest energy isomeric structure. The rates of proton transfer in these clusters are found to be slower than that in bulk water. The vibrational spectral calculations reveal distinct features for free OH (deuterated) stretch modes of water in different hydrogen bonding states. Effects of temperature on the structural and dynamical properties are also investigated for the largest cluster considered here.

  17. Large-scale molecular dynamics simulations of self-assembling systems.

    Science.gov (United States)

    Klein, Michael L; Shinoda, Wataru

    2008-08-08

    Relentless increases in the size and performance of multiprocessor computers, coupled with new algorithms and methods, have led to novel applications of simulations across chemistry. This Perspective focuses on the use of classical molecular dynamics and so-called coarse-grain models to explore phenomena involving self-assembly in complex fluids and biological systems.

  18. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging

    NARCIS (Netherlands)

    Mulder, Willem J. M.; Strijkers, Gustav J.; van Tilborg, Geralda A. F.; Griffioen, Arjan W.; Nicolay, Klaas

    2006-01-01

    In the field of MR imaging and especially in the emerging field of cellular and molecular MR imaging, flexible strategies to synthesize contrast agents that can be manipulated in terms of size and composition and that can be easily conjugated with targeting ligands are required. Furthermore, the

  19. THE MASS-SIZE RELATION FROM CLOUDS TO CORES. II. SOLAR NEIGHBORHOOD CLOUDS

    International Nuclear Information System (INIS)

    Kauffmann, J.; Shetty, R.; Goodman, A. A.; Pillai, T.; Myers, P. C.

    2010-01-01

    We measure the mass and size of cloud fragments in several molecular clouds continuously over a wide range of spatial scales (0.05 ∼ 2 , is not well suited to describe the derived mass-size data. Solar neighborhood clouds not forming massive stars (∼ sun ; Pipe Nebula, Taurus, Perseus, and Ophiuchus) obey m(r) ≤ 870 M sun (r/pc) 1.33 . In contrast to this, clouds forming massive stars (Orion A, G10.15 - 0.34, G11.11 - 0.12) do exceed the aforementioned relation. Thus, this limiting mass-size relation may approximate a threshold for the formation of massive stars. Across all clouds, cluster-forming cloud fragments are found to be-at given radius-more massive than fragments devoid of clusters. The cluster-bearing fragments are found to roughly obey a mass-size law m ∝ r 1.27 (where the exponent is highly uncertain in any given cloud, but is certainly smaller than 1.5).

  20. Size-density relations in dark clouds: Non-LTE effects

    International Nuclear Information System (INIS)

    Maloney, P.

    1986-01-01

    One of the major goals of molecular astronomy has been to understand the physics and dynamics of dense interstellar clouds. Because the interpretation of observations of giant molecular clouds is complicated by their very complex structure and the dynamical effects of star formation, a number of studies have concentrated on dark clouds. Leung, Kutner and Mead (1982) (hereafter LKM) and Myers (1983), in studies of CO and NH 3 emission, concluded that dark clouds exhibit significant correlations between linewidth and cloud radius of the form delta v varies as R(0.5) and between mean density and radius of the form n varies as R(-1), as originally suggested by Larson (1981). This result suggests that these objects are in virial equilibrium. However, the mean densities inferred from the CO data of LKM are based on an local thermodynamic equilibrium (LTE) analysis of their 13CO data. At the very low mean densities inferred by LKM for the larger clouds in their samples, the assumption of LTE becomes very questionable. As most of the range in R in the density-size correlation comes from the clouds observed in CO, it seems worthwhile to examine how non-LTE effects will influence the derived densities. Microturbulent models of inhomogeneous clouds of varying central concentration with the linewidth-size and mean density-size relations found by Myers show sub-thermal excitation of the 13CO line in the larger clouds, with the result that LTE analysis considerbly underestimates the actual column density. A more general approach which doesn't require detailed modeling of the clouds is to consider whether the observed T/sub R/*(13CO)/T/sub R/*(12CO) ratios in the clouds studied by LKM are in the range where the LTE-derived optical depths be seriously in error due to sub-thermal excitation of the 13CO molecule

  1. Experimental thermodynamics of single molecular motor.

    Science.gov (United States)

    Toyabe, Shoichi; Muneyuki, Eiro

    2013-01-01

    Molecular motor is a nano-sized chemical engine that converts chemical free energy to mechanical motions. Hence, the energetics is as important as kinetics in order to understand its operation principle. We review experiments to evaluate the thermodynamic properties of a rotational F1-ATPase motor (F1-motor) at a single-molecule level. We show that the F1-motor achieves 100% thermo dynamic efficiency at the stalled state. Furthermore, the motor reduces the internal irreversible heat inside the motor to almost zero and achieves a highly-efficient free energy transduction close to 100% during rotations far from quasistatic process. We discuss the mechanism of how the F1-motor achieves such a high efficiency, which highlights the remarkable property of the nano-sized engine F1-motor.

  2. Molecular Components of Catalytic Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-07-02

    Selectivity, that is, to produce one molecule out of many other thermodynamically feasible product molecules, is the key concept to develop 'clean manufacturing' processes that do not produce byproducts (green chemistry). Small differences in potential energy barriers for elementary reaction steps control which reaction channel is more likely to yield the desired product molecule (selectivity), instead of the overall activation energy for the reaction that controls turnover rates (activity). Recent studies have demonstrated the atomic- or molecular-level tailoring of parameters such as the surface structures of active sites that give rise to nanoparticle size and shape dependence of turnover rates and reaction selectivities. Here, we highlight seven molecular components that influence reaction selectivities. These include: surface structure, adsorbate-induced restructuring, adsorbate mobility, reaction intermediates, surface composition, charge transport, and oxidation states for model metal single crystal and colloid nanoparticle catalysts. We show examples of their functioning and describe in-situ instruments that permit us to investigate their roles in surface reactions.

  3. Temperature Effect on Micelle Formation: Molecular Thermodynamic Model Revisited.

    Science.gov (United States)

    Khoshnood, Atefeh; Lukanov, Boris; Firoozabadi, Abbas

    2016-03-08

    Temperature affects the aggregation of macromolecules such as surfactants, polymers, and proteins in aqueous solutions. The effect on the critical micelle concentration (CMC) is often nonmonotonic. In this work, the effect of temperature on the micellization of ionic and nonionic surfactants in aqueous solutions is studied using a molecular thermodynamic model. Previous studies based on this technique have predicted monotonic behavior for ionic surfactants. Our investigation shows that the choice of tail transfer energy to describe the hydrophobic effect between the surfactant tails and the polar solvent molecules plays a key role in the predicted CMC. We modify the tail transfer energy by taking into account the effect of the surfactant head on the neighboring methylene group. The modification improves the description of the CMC and the predicted micellar size for aqueous solutions of sodium n-alkyl sulfate, dodecyl trimethylammonium bromide (DTAB), and n-alkyl polyoxyethylene. The new tail transfer energy describes the nonmonotonic behavior of CMC versus temperature. In the DTAB-water system, we redefine the head size by including the methylene group, next to the nitrogen, in the head. The change in the head size along with our modified tail transfer energy improves the CMC and aggregation size prediction significantly. Tail transfer is a dominant energy contribution in micellar and microemulsion systems. It also promotes the adsorption of surfactants at fluid-fluid interfaces and affects the formation of adsorbed layer at fluid-solid interfaces. Our proposed modifications have direct applications in the thermodynamic modeling of the effect of temperature on molecular aggregation, both in the bulk and at the interfaces.

  4. Synthesis and Characterization of Magnesium Substituted Aluminophosphate Molecular Sieves with AEL Structure

    Institute of Scientific and Technical Information of China (English)

    Benjing Xu; Ling Qian; Xinmei Liu; Chunmin Song; Zifeng Yan

    2004-01-01

    MAPO-11 molecular sieves were synthesized by hydrothermal methods. The influence of precursor of magnesium, Mg/Al ratio, synthesis temperature, synthesis time and the type of template on the formation and properties of MAPO-11 molecular sieves was examined. The samples were characterized by the techniques of X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric/differential thermogravimetric analysis (TG-DGA), etc. The results show that the shape and size of crystal were influenced by the precursor of Mg, the Mg/Al ratio and the type of template, and the TG-DGA analysis shows that MAPO-11 molecular sieves as-synthesized have poor thermal stability.

  5. Sex-specific weight loss mediates sexual size dimorphism in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Nicholas D Testa

    Full Text Available The selective pressures leading to the evolution of Sexual Size Dimorphism (SSD have been well studied in many organisms, yet, the underlying developmental mechanisms are poorly understood. By generating a complete growth profile by sex in Drosophila melanogaster, we describe the sex-specific pattern of growth responsible for SSD. Growth rate and critical size for pupariation significantly contributed to adult SSD, whereas duration of growth did not. Surprisingly, SSD at peak larval mass was twice that of the uneclosed adult SSD with weight loss between peak larval mass and pupariation playing an important role in generating the final SSD. Our finding that weight loss is an important regulator of SSD adds additional complexity to our understanding of how body size is regulated in different sexes. Collectively, these data allow for the elucidation of the molecular-genetic mechanisms that generate SSD, an important component of understanding how SSD evolves.

  6. Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize.

    Science.gov (United States)

    Chen, Lin; Li, Yong-xiang; Li, Chunhui; Wu, Xun; Qin, Weiwei; Li, Xin; Jiao, Fuchao; Zhang, Xiaojing; Zhang, Dengfeng; Shi, Yunsu; Song, Yanchun; Li, Yu; Wang, Tianyu

    2016-04-12

    Kernel weight and size are important components of grain yield in cereals. Although some information is available concerning the map positions of quantitative trait loci (QTL) for kernel weight and size in maize, little is known about the molecular mechanisms of these QTLs. qGW4.05 is a major QTL that is associated with kernel weight and size in maize. We combined linkage analysis and association mapping to fine-map and identify candidate gene(s) at qGW4.05. QTL qGW4.05 was fine-mapped to a 279.6-kb interval in a segregating population derived from a cross of Huangzaosi with LV28. By combining the results of regional association mapping and linkage analysis, we identified GRMZM2G039934 as a candidate gene responsible for qGW4.05. Candidate gene-based association mapping was conducted using a panel of 184 inbred lines with variable kernel weights and kernel sizes. Six polymorphic sites in the gene GRMZM2G039934 were significantly associated with kernel weight and kernel size. The results of linkage analysis and association mapping revealed that GRMZM2G039934 is the most likely candidate gene for qGW4.05. These results will improve our understanding of the genetic architecture and molecular mechanisms underlying kernel development in maize.

  7. Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A.

    Science.gov (United States)

    Aguado, Sonia; Bergeret, Gérard; Daniel, Cecile; Farrusseng, David

    2012-09-12

    Absolute ethylene/ethane separation is achieved by ethane exclusion on silver-exchanged zeolite A adsorbent. This molecular sieving type separation is attributed to the pore size of the adsorbent, which falls between ethylene and ethane kinetic diameters.

  8. Molecular accessibility in solvent swelled coals

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1993-02-01

    An EPR technique developed in this lab is being used to determine the pore size and number distribution changes after swelling the coal samples with various solvents. Stable nitroxide radical spin probes of different sizes, shapes and reactivity are dissolved in an appropriate solvent, the coal sample is added to the resulting solution, stirred over night at elevated temperature, filtered, washed with a non swelling solvent to eliminate any spin probes that are not trapped in the pores and the spin concentration is measured. Comparing these spin probe measurements to DRIFT data have shown that the relative number distribution of acidic functionalities can be accurately predicted by the spin probe method. The spin probe method had also been used to predict the increase in elongated voids in Pittsburgh No. 8 (APCS No. 4) upon swelling with pyridine in agreement with independent SANS data. NMR relaxation data show that it is possible to deduce the pore (accessibility) distribution as a function of size (up to 6 mn). It has also been possible by variable temperature and ENDOR measurements to determine the presence of hydrogen bonding as a function of pore shape and size. The advantage of the EPR method is that it permits molecules of selected shape and size to be used as probes of accessible regions of coal, thus providing information on the importance of molecular shape.

  9. Molecular analysis of pancreatic cyst fluid changes clinical management.

    Science.gov (United States)

    Arner, David M; Corning, Brooke E; Ahmed, Ali M; Ho, Henry C; Weinbaum, Bradley J; Siddiqui, Uzma; Aslanian, Harry; Adams, Reid B; Bauer, Todd W; Wang, Andrew Y; Shami, Vanessa M; Sauer, Bryan G

    2018-01-01

    DNA molecular analysis has been suggested as a tool to evaluate pancreatic cysts. This study assesses whether the addition of DNA molecular analysis alters clinical management. This is a retrospective review of 46 consecutive patients who underwent EUS-FNA of pancreatic cysts with DNA molecular analysis at two major academic institutions. Cases were presented to two pancreaticobiliary surgeons first without and then with DNA molecular analysis data. The primary outcome was the frequency with which clinical management was altered with the addition of DNA molecular analysis. Forty-six patients with a mean age of 62.0 (±13.4) years and mean cyst size of 3.2 (±2.3) cm were included in the study. Cyst carcinoembryonic antigen (CEA) was available in 30 patients and ranged from 0.4 to 15,927 ng/mL. DNA molecular analysis was described as benign in 23 (50%), statistically indolent in 13 (28%), statistically higher risk in 9 (20%), and indeterminate in 1 (2%). Surgeon #1 changed the management in 13/46 cases (28%) and surgeon #2 changed the management in 12/46 cases (26%) with the addition of DNA molecular analysis. When organized by CEA concentration, those with an intermediate CEA (45-800 ng/mL) or without a CEA concentration had a management changed more frequently (40%) compared to all others (P molecular analysis alters the clinical management of pancreatic cystic lesions most often when CEA levels are intermediate (45-800 ng/mL) or when no CEA concentration is available. Use of DNA molecular analysis can be considered in this cohort. Further study of molecular markers in pancreatic cystic lesions is recommended.

  10. Qualitative and quantitative analysis of heparin and low molecular weight heparins using size exclusion chromatography with multiple angle laser scattering/refractive index and inductively coupled plasma/mass spectrometry detectors.

    Science.gov (United States)

    Ouyang, Yilan; Zeng, Yangyang; Yi, Lin; Tang, Hong; Li, Duxin; Linhardt, Robert J; Zhang, Zhenqing

    2017-11-03

    Heparin, a highly sulfated glycosaminoglycan, has been used as a clinical anticoagulant over 80 years. Low molecular weight heparins (LMWHs), heparins partially depolymerized using different processes, are widely used as clinical anticoagulants. Qualitative molecular weight (MW) and quantitative mass content analysis are two important factors that contribute to LMWH quality control. Size exclusion chromatography (SEC), relying on multiple angle laser scattering (MALS)/refractive index (RI) detectors, has been developed for accurate analysis of heparin MW in the absence of standards. However, the cations, which ion-pair with the anionic polysaccharide chains of heparin and LMWHs, had not been considered in previous reports. In this study, SEC with MALS/RI and inductively coupled plasma/mass spectrometry detectors were used in a comprehensive analytical approach taking both anionic polysaccharide and ion-paired cations heparin products. This approach was also applied to quantitative analysis of heparin and LMWHs. Full profiles of MWs and mass recoveries for three commercial heparin/LMWH products, heparin sodium, enoxaparin sodium and nadroparin calcium, were obtained and all showed higher MWs than previously reported. This important improvement more precisely characterized the MW properties of heparin/LMWHs and potentially many other anionic polysaccharides. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Surface properties of heat-induced soluble soy protein aggregates of different molecular masses.

    Science.gov (United States)

    Guo, Fengxian; Xiong, Youling L; Qin, Fang; Jian, Huajun; Huang, Xiaolin; Chen, Jie

    2015-02-01

    Suspensions (2% and 5%, w/v) of soy protein isolate (SPI) were heated at 80, 90, or 100 °C for different time periods to produce soluble aggregates of different molecular sizes to investigate the relationship between particle size and surface properties (emulsions and foams). Soluble aggregates generated in these model systems were characterized by gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Heat treatment increased surface hydrophobicity, induced SPI aggregation via hydrophobic interaction and disulfide bonds, and formed soluble aggregates of different sizes. Heating of 5% SPI always promoted large-size aggregate (LA; >1000 kDa) formation irrespective of temperature, whereas the aggregate size distribution in 2% SPI was temperature dependent: the LA fraction progressively rose with temperature (80→90→100 °C), corresponding to the attenuation of medium-size aggregates (MA; 670 to 1000 kDa) initially abundant at 80 °C. Heated SPI with abundant LA (>50%) promoted foam stability. LA also exhibited excellent emulsifying activity and stabilized emulsions by promoting the formation of small oil droplets covered with a thick interfacial protein layer. However, despite a similar influence on emulsion stability, MA enhanced foaming capacity but were less capable of stabilizing emulsions than LA. The functionality variation between heated SPI samples is clearly related to the distribution of aggregates that differ in molecular size and surface activity. The findings may encourage further research to develop functional SPI aggregates for various commercial applications. © 2015 Institute of Food Technologists®

  12. Molecular characterization of colombian introductions of squash Cucurbita moschata Caracterización molecular de introducciones colombianas de zapallo Cucurbita moschata

    Directory of Open Access Journals (Sweden)

    Restrepo Javier

    2008-03-01

    Full Text Available size: 10pt; font-family: Arial">The molecular characterization was carried out by means of the amplified fragment length polymorphism (AFLP of 121 introductions of C. moschata, of the germoplasm bank of the Vegetables Research Program of the Universidad Nacional de Colombia campus Palmira, originating from eight departments of Colombia. The AFLP data were evaluated utilizing multiple correspondence analysis (MCA, genetic distance, genetic analysis with the TFPGA program and the UPGMA cluster analysis. The genetic diversity of these introductions was high and was according with the morphoagronomic diversity previously studied. The Fst values indicated that exist genetic structure between most of the introductions. The most of the genetic variation between the introductions corresponded to variations between them inside each department.size: 10pt; font-family: Arial">size: 10pt; font-family: Arial">Se realizó la caracterización molecular mediante el polimorfismo en la longitud de fragmentos amplificados (AFLP de 121 introducciones de C. moschata, del Banco de Germoplasma del Programa de Investigación en Hortalizas de la Universidad Nacional de Colombia Sede Palmira, provenientes de ocho departamentos de Colombia. Los datos AFLP se evaluaron utilizando análisis de correspondencia múltiple (ACM, distancia genética, análisis genético con el programa TFPGA y el método de agrupamiento UPGMA. La diversidad genética de estas introducciones fue alta y estuvo de acuerdo con la diversidad morfoagronómica estudiada previamente. Los valores Fst indicaron que existe estructura genética entre la mayoría de las introducciones. La mayoría de la variación genética entre las introducciones se atribuyó a variación entre individuos dentro de cada departamento.size: 10pt; font-family: Arial">

  13. Introductory guide to the statistics of molecular genetics.

    Science.gov (United States)

    Eley, Thalia C; Rijsdijk, Frühling

    2005-10-01

    This introductory guide presents the main two analytical approaches used by molecular geneticists: linkage and association. Traditional linkage and association methods are described, along with more recent advances in methodologies such as those using a variance components approach. New methods are being developed all the time but the core principles of linkage and association remain the same. The basis of linkage is the transmission of a marker along with a disease within families, whereas association is based on the comparison of marker frequencies in case and control groups. It is becoming increasingly clear that effect sizes of individual markers on diseases and traits are likely to be very small. As such, much greater power is needed, and correspondingly greater sample sizes. Although non-replication is still a problem, molecular genetic studies in some areas such as attention deficit/hyperactivity disorder (ADHD) are starting to show greater convergence. Epidemiologists and other researchers with large well-characterized samples will be well placed to use these methods. Inter-disciplinary studies can then ask far more interesting questions such as those relating to developmental, multivariate and gene-environment interaction hypotheses.

  14. Whole-Genome Resequencing of Experimental Populations Reveals Polygenic Basis of Egg-Size Variation in Drosophila melanogaster.

    Science.gov (United States)

    Jha, Aashish R; Miles, Cecelia M; Lippert, Nodia R; Brown, Christopher D; White, Kevin P; Kreitman, Martin

    2015-10-01

    Complete genome resequencing of populations holds great promise in deconstructing complex polygenic traits to elucidate molecular and developmental mechanisms of adaptation. Egg size is a classic adaptive trait in insects, birds, and other taxa, but its highly polygenic architecture has prevented high-resolution genetic analysis. We used replicated experimental evolution in Drosophila melanogaster and whole-genome sequencing to identify consistent signatures of polygenic egg-size adaptation. A generalized linear-mixed model revealed reproducible allele frequency differences between replicated experimental populations selected for large and small egg volumes at approximately 4,000 single nucleotide polymorphisms (SNPs). Several hundred distinct genomic regions contain clusters of these SNPs and have lower heterozygosity than the genomic background, consistent with selection acting on polymorphisms in these regions. These SNPs are also enriched among genes expressed in Drosophila ovaries and many of these genes have well-defined functions in Drosophila oogenesis. Additional genes regulating egg development, growth, and cell size show evidence of directional selection as genes regulating these biological processes are enriched for highly differentiated SNPs. Genetic crosses performed with a subset of candidate genes demonstrated that these genes influence egg size, at least in the large genetic background. These findings confirm the highly polygenic architecture of this adaptive trait, and suggest the involvement of many novel candidate genes in regulating egg size. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Insights into the role of protein molecule size and structure on interfacial properties using designed sequences

    Science.gov (United States)

    Dwyer, Mirjana Dimitrijev; He, Lizhong; James, Michael; Nelson, Andrew; Middelberg, Anton P. J.

    2013-01-01

    Mixtures of a large, structured protein with a smaller, unstructured component are inherently complex and hard to characterize at interfaces, leading to difficulties in understanding their interfacial behaviours and, therefore, formulation optimization. Here, we investigated interfacial properties of such a mixed system. Simplicity was achieved using designed sequences in which chemical differences had been eliminated to isolate the effect of molecular size and structure, namely a short unstructured peptide (DAMP1) and its longer structured protein concatamer (DAMP4). Interfacial tension measurements suggested that the size and bulk structuring of the larger molecule led to much slower adsorption kinetics. Neutron reflectometry at equilibrium revealed that both molecules adsorbed as a monolayer to the air–water interface (indicating unfolding of DAMP4 to give a chain of four connected DAMP1 molecules), with a concentration ratio equal to that in the bulk. This suggests the overall free energy of adsorption is equal despite differences in size and bulk structure. At small interfacial extensional strains, only molecule packing influenced the stress response. At larger strains, the effect of size became apparent, with DAMP4 registering a higher stress response and interfacial elasticity. When both components were present at the interface, most stress-dissipating movement was achieved by DAMP1. This work thus provides insights into the role of proteins' molecular size and structure on their interfacial properties, and the designed sequences introduced here can serve as effective tools for interfacial studies of proteins and polymers. PMID:23303222

  16. Ultra-Tuning of the Rare-Earth fcu-MOF Aperture Size for Selective Molecular Exclusion of Branched Paraffins

    KAUST Repository

    Assen, Ayalew Hussen Assen

    2015-10-02

    Using isoreticular chemistry allows the design and construction of a new rare-earth metal (RE) fcu-MOF with a suitable aperture size for practical steric adsorptive separations. The judicious choice of a relatively short organic building block, namely fumarate, to bridge the 12-connected RE hexanuclear clusters has afforded the contraction of the well-defined RE-fcu-MOF triangular window aperture, the sole access to the two interconnected octahedral and tetrahedral cages. The newly constructed RE (Y and Tb) fcu-MOF analogues display unprecedented total exclusion of branched paraffins from normal paraffins. The resultant window aperture size of about 4.7 Å, regarded as a sorbate-size cut-off, enabled a complete sieving of branched paraffins from normal paraffins. The results are supported by collective single gas and mixed gas/vapor adsorption and calorimetric studies.

  17. Size quantization patterns in self-assembled InAs/GaAs quantum dots

    Science.gov (United States)

    Colocci, M.; Bogani, F.; Carraresi, L.; Mattolini, R.; Bosacchi, A.; Franchi, S.; Frigeri, P.; Taddei, S.; Rosa-Clot, M.

    1997-07-01

    Molecular beam epitaxy has been used for growing self-assembled InAs quantum dots. A continuous variation of the InAs average coverage across the sample has been obtained by properly aligning the (001) GaAs substrate with respect to the molecular beam. Excitation of a large number of dots (laser spot diameter ≈ 100 μm) results in structured photoluminescence spectra; a clear quantization of the dot sizes is deduced from the distinct luminescence bands separated in energy by an average spacing of 20-30 meV. We ascribe the individual bands of the photoluminescence spectrum after low excitation to families of dots with roughly the same diameter and heights differing by one monolayer.

  18. Photoionization-regulated star formation and the structure of molecular clouds

    Science.gov (United States)

    Mckee, Christopher F.

    1989-01-01

    A model for the rate of low-mass star formation in Galactic molecular clouds and for the influence of this star formation on the structure and evolution of the clouds is presented. The rate of energy injection by newly formed stars is estimated, and the effect of this energy injection on the size of the cloud is determined. It is shown that the observed rate of star formation appears adequate to support the observed clouds against gravitational collapse. The rate of photoionization-regulated star formation is estimated and it is shown to be in agreement with estimates of the observed rate of star formation if the observed molecular cloud parameters are used. The mean cloud extinction and the Galactic star formation rate per unit mass of molecular gas are predicted theoretically from the condition that photionization-regulated star formation be in equilibrium. A simple model for the evolution of isolated molecular clouds is developed.

  19. NATO Advanced Research Workshop on Molecular Engineering for Advanced Materials

    CERN Document Server

    Schaumburg, Kjeld

    1995-01-01

    An important aspect of molecular engineering is the `property directed' synthesis of large molecules and molecular assemblies. Synthetic expertise has advanced to a state which allows the assembly of supramolecules containing thousands of atoms using a `construction kit' of molecular building blocks. Expansion in the field is driven by the appearance of new building blocks and by an improved understanding of the rules for joining them in the design of nanometer-sized devices. Another aspect is the transition from supramolecules to materials. At present no single molecule (however large) has been demonstrated to function as a device, but this appears to be only a matter of time. In all of this research, which has a strongly multidisciplinary character, both existing and yet to be developed analytical techniques are and will remain indispensable. All this and more is discussed in Molecular Engineering for Advanced Materials, which provides a masterly and up to date summary of one of the most challenging researc...

  20. Size Effect on Transport Properties of Gaseous Argon: A Molecular Dynamics Simulation Study

    International Nuclear Information System (INIS)

    Lee, Songhi

    2014-01-01

    We have carried out a series of equilibrium molecular dynamics (EMD) simulations of gaseous argon at 273.15 K and 1.00 atm for the calculation of transport properties as a function of the number of argon molecules (N). While the diffusion coefficients (D) of gaseous argon approach to the experimental measure with increasing N, the viscosities (η) and thermal conductivities (λ) obtained for N = 432 are unreliable due to the high fluctuation of the time correlation functions and those for N = 1728 are rather acceptable. Increasing further to N = 6912 has improved the MD results a little closer to the experimental measures for η and λ. Both the EMD results for η and λ for N = 6912 underestimate the experimental measures and it is not expected that the more increasing N makes the closer results to the experimental measures. One possible explanation for the large disagreement between MD results and the experimental measures for η and λ may be due to the use of LJ parameters which were used for liquid argon. In a recent study, we have examined the Green-Kubo formula for the calculation of transport properties (diffusion coefficient, viscosity, and thermal conductivity) of noble gases (He, Ne, Ar, Kr, and Xe) by carrying out a series of equilibrium molecular dynamics (EMD) simulations for the system of N=1728 at 273.15 K and 1.00 atm.1 While the diffusion coefficients (D) of noble gases were obtained through the original Green-Kubo formula, the viscosities (η) and thermal conductivities (λ) were obtained by utilizing the revised Green-Kubo formulas. The structural and dynamic properties of gaseous argon are completely different from those of liquid argon at 94.4 K and 1.374 g/cm 3 . The results for transport properties (D, η, and λ) at 273.15 K and 1.00 atm obtained from our EMD simulations are in general agreement with the experimental data and superior to the rigorous results of the kinetic theory

  1. Supra-molecular networks for CO2 capture

    Science.gov (United States)

    Sadowski, Jerzy; Kestell, John

    Utilizing capabilities of low-energy electron microscopy (LEEM) for non-destructive interrogation of the real-time molecular self-assembly, we have investigated supramolecular systems based on carboxylic acid-metal complexes, such as trimesic and mellitic acid, doped with transition metals. Such 2D networks can act as host systems for transition-metal phthalocyanines (MPc; M = Fe, Ti, Sc). The electrostatic interactions of CO2 molecules with transition metal ions can be tuned by controlling the type of TM ion and the size of the pore in the host network. We further applied infrared reflection-absorption spectroscopy (IRRAS) to determine of the molecular orientation of the functional groups and the whole molecule in the 2D monolayers of carboxylic acid. The kinetics and mechanism of the CO2 adsorption/desorption on the 2D molecular network, with and without the TM ion doping, have been also investigated. This research used resources of the Center for Functional Nanomaterials, which is the U.S. DOE Office of Science User Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.

  2. Site-discrimination by molecular imposters at dissymmetric molecular crystal surfaces

    Science.gov (United States)

    Poloni, Laura N.

    -cystine surfaces. Collectively, these findings identify the key structural factors responsible for molecular recognition between molecular imposters and L-cystine crystal step sites, thereby articulating a strategy for stone prevention based on molecular design. The second part of this thesis describes the crystal growth and inhibition of a P2X3 receptor antagonist, denoted as DAPSA, recently reported as a non-opioid treatment of chronic pain. The low solubility of this compound results in the formation of drug-induced renal calculi (a.k.a. xenostones). in situ AFM of the morphologically significant (011) DAPSA surface revealed dislocation-actuated growth spirals with an anisotropic morphology, behavior that can be attributed to the non-uniform rate of solute attachment to eight crystallographically unique steps of the spiral, a direct consequence of the dissymmetry of this crystal surface. Eighteen molecular imposters were selected from the screening library to systematically investigate the roles of imposter substitute position, size, and functionality on the step velocities along the eight unique crystallographic directions. A non-uniform reduction in step velocities was observed, signaling site discrimination of imposter binding that can be attributed to stereochemical recognition of the imposters at specific crystal sites. The anisotropy of growth inhibition observed in the presence of the various imposters is consistent with binding energies calculated for the thirty-two crystallographically unique kink sites on steps advancing along predominant growth directions. These results provide insight to the design of growth inhibitors for molecular crystalline solids with complex and dissymmetric surfaces, while also suggesting a strategy for formulations containing congeners that can prevent harmful crystal growth in human renal structures. The last two crystalline systems discussed in this thesis are two isomorphous crystal systems that are ideal for the study of impurity

  3. Luminescence studies of molecular materials

    International Nuclear Information System (INIS)

    Miller, P.F.

    2000-01-01

    Molecular materials have been widely studied for their potential uses in novel semiconductor devices. They occupy the intellectually interesting area between molecular and bulk descriptions of matter, and as such often have unique and useful characteristics. The design and engineering of these structures is inter-disciplinary in its nature, embracing the fields of physics, electrical engineering and both synthetic and physical chemistry. In this thesis luminescence studies of molecular materials will be presented that probe the nature of the excited states in two promising semiconductor systems. Luminescence techniques provide a powerful and sensitive tool in the investigation of kinetic pathways of radiative and non-radiative emission from these samples. This is particularly appropriate here, as the materials being studied are of potential use in electroluminescent devices. The suitability of photoluminescence techniques comes from both the electroluminescence and photoluminescence sharing the same emitting state. The first class of material studied here is an organic semiconducting polymer, cyano-substituted polyphenylenevinylene (CN-PPV). Conjugated polymers combine semiconducting electronic properties with favourable processing properties and offer the possibility of tuning their optical and electronic properties chemically. The cyanosubstitution increases the electron affinity of the polymer backbone, facilitating electron injection in light-emitting diodes. The polymers are soluble in solvents such as toluene and chloroform due the presence of alkoxy sidegroups. CdSe semiconductor nanocrystals are the other class of material characterised in this work. Semiconductor nanocrystals exhibit interesting size-tunable optical properties due to the confinement of the electronic wave functions. Characterisation of samples produced by different synthetic routes has been carried out to demonstrate the advantages of a novel synthetic method in terms of physical and

  4. A chemical screen probing the relationship between mitochondrial content and cell size.

    Directory of Open Access Journals (Sweden)

    Toshimori Kitami

    Full Text Available The cellular content of mitochondria changes dynamically during development and in response to external stimuli, but the underlying mechanisms remain obscure. To systematically identify molecular probes and pathways that control mitochondrial abundance, we developed a high-throughput imaging assay that tracks both the per cell mitochondrial content and the cell size in confluent human umbilical vein endothelial cells. We screened 28,786 small molecules and observed that hundreds of small molecules are capable of increasing or decreasing the cellular content of mitochondria in a manner proportionate to cell size, revealing stereotyped control of these parameters. However, only a handful of compounds dissociate this relationship. We focus on one such compound, BRD6897, and demonstrate through secondary assays that it increases the cellular content of mitochondria as evidenced by fluorescence microscopy, mitochondrial protein content, and respiration, even after rigorous correction for cell size, cell volume, or total protein content. BRD6897 increases uncoupled respiration 1.6-fold in two different, non-dividing cell types. Based on electron microscopy, BRD6897 does not alter the percent of cytoplasmic area occupied by mitochondria, but instead, induces a striking increase in the electron density of existing mitochondria. The mechanism is independent of known transcriptional programs and is likely to be related to a blockade in the turnover of mitochondrial proteins. At present the molecular target of BRD6897 remains to be elucidated, but if identified, could reveal an important additional mechanism that governs mitochondrial biogenesis and turnover.

  5. MOLECULAR DISK PROPERTIES IN EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Xu, X.; Walker, C.; Narayanan, D.

    2010-01-01

    We study the simulated CO emission from elliptical galaxies formed in the mergers of gas-rich disk galaxies. The cold gas not consumed in the merger-driven starburst quickly resettles into a disk-like configuration. By analyzing a variety of arbitrary merger orbits that produce a range of fast- to slow-rotating remnants, we find that molecular disk formation is a fairly common consequence of gas-rich galaxy mergers. Hence, if a molecular disk is observed in an early-type merger remnant, it is likely the result of a 'wet merger' rather than a 'dry merger'. We compare the physical properties from our simulated disks (e.g., size and mass) and find reasonably good agreement with recent observations. Finally, we discuss the detectability of these disks as an aid to future observations.

  6. Hybrid Metaheuristic Approach for Nonlocal Optimization of Molecular Systems.

    Science.gov (United States)

    Dresselhaus, Thomas; Yang, Jack; Kumbhar, Sadhana; Waller, Mark P

    2013-04-09

    Accurate modeling of molecular systems requires a good knowledge of the structure; therefore, conformation searching/optimization is a routine necessity in computational chemistry. Here we present a hybrid metaheuristic optimization (HMO) algorithm, which combines ant colony optimization (ACO) and particle swarm optimization (PSO) for the optimization of molecular systems. The HMO implementation meta-optimizes the parameters of the ACO algorithm on-the-fly by the coupled PSO algorithm. The ACO parameters were optimized on a set of small difluorinated polyenes where the parameters exhibited small variance as the size of the molecule increased. The HMO algorithm was validated by searching for the closed form of around 100 molecular balances. Compared to the gradient-based optimized molecular balance structures, the HMO algorithm was able to find low-energy conformations with a 87% success rate. Finally, the computational effort for generating low-energy conformation(s) for the phenylalanyl-glycyl-glycine tripeptide was approximately 60 CPU hours with the ACO algorithm, in comparison to 4 CPU years required for an exhaustive brute-force calculation.

  7. Engineering controllable bidirectional molecular motors based on myosin

    Science.gov (United States)

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

    2012-01-01

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells1, and have potential applications in molecular detection and diagnostic devices2,3. Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in living cells, and yield optimized device components for complex tasks such as molecular sorting and directed assembly3. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions4,5 and other signals6. Here we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies7–11 and guided by a structural model12 for the redirected power stroke of myosin VI, we constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our general strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should enable spatiotemporal control over a range of motor properties including processivity, stride size13, and branchpoint turning14. PMID:22343382

  8. Experiment-scale molecular simulation study of liquid crystal thin films

    Science.gov (United States)

    Nguyen, Trung Dac; Carrillo, Jan-Michael Y.; Matheson, Michael A.; Brown, W. Michael

    2014-03-01

    Supercomputers have now reached a performance level adequate for studying thin films with molecular detail at the relevant scales. By exploiting the power of GPU accelerators on Titan, we have been able to perform simulations of characteristic liquid crystal films that provide remarkable qualitative agreement with experimental images. We have demonstrated that key features of spinodal instability can only be observed with sufficiently large system sizes, which were not accessible with previous simulation studies. Our study emphasizes the capability and significance of petascale simulations in providing molecular-level insights in thin film systems as well as other interfacial phenomena.

  9. Ab initio molecular dynamics in a finite homogeneous electric field.

    Science.gov (United States)

    Umari, P; Pasquarello, Alfredo

    2002-10-07

    We treat homogeneous electric fields within density functional calculations with periodic boundary conditions. A nonlocal energy functional depending on the applied field is used within an ab initio molecular dynamics scheme. The reliability of the method is demonstrated in the case of bulk MgO for the Born effective charges, and the high- and low-frequency dielectric constants. We evaluate the static dielectric constant by performing a damped molecular dynamics in an electric field and avoiding the calculation of the dynamical matrix. Application of this method to vitreous silica shows good agreement with experiment and illustrates its potential for systems of large size.

  10. Size exclusion chromatography with superficially porous particles.

    Science.gov (United States)

    Schure, Mark R; Moran, Robert E

    2017-01-13

    A comparison is made using size-exclusion chromatography (SEC) of synthetic polymers between fully porous particles (FPPs) and superficially porous particles (SPPs) with similar particle diameters, pore sizes and equal flow rates. Polystyrene molecular weight standards with a mobile phase of tetrahydrofuran are utilized for all measurements conducted with standard HPLC equipment. Although it is traditionally thought that larger pore volume is thermodynamically advantageous in SEC for better separations, SPPs have kinetic advantages and these will be shown to compensate for the loss in pore volume compared to FPPs. The comparison metrics include the elution range (smaller with SPPs), the plate count (larger for SPPs), the rate production of theoretical plates (larger for SPPs) and the specific resolution (larger with FPPs). Advantages to using SPPs for SEC are discussed such that similar separations can be conducted faster using SPPs. SEC using SPPs offers similar peak capacities to that using FPPs but with faster operation. This also suggests that SEC conducted in the second dimension of a two-dimensional liquid chromatograph may benefit with reduced run time and with equivalently reduced peak width making SPPs advantageous for sampling the first dimension by the second dimension separator. Additional advantages are discussed for biomolecules along with a discussion of optimization criteria for size-based separations. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Improved estimates of coordinate error for molecular replacement

    International Nuclear Information System (INIS)

    Oeffner, Robert D.; Bunkóczi, Gábor; McCoy, Airlie J.; Read, Randy J.

    2013-01-01

    A function for estimating the effective root-mean-square deviation in coordinates between two proteins has been developed that depends on both the sequence identity and the size of the protein and is optimized for use with molecular replacement in Phaser. A top peak translation-function Z-score of over 8 is found to be a reliable metric of when molecular replacement has succeeded. The estimate of the root-mean-square deviation (r.m.s.d.) in coordinates between the model and the target is an essential parameter for calibrating likelihood functions for molecular replacement (MR). Good estimates of the r.m.s.d. lead to good estimates of the variance term in the likelihood functions, which increases signal to noise and hence success rates in the MR search. Phaser has hitherto used an estimate of the r.m.s.d. that only depends on the sequence identity between the model and target and which was not optimized for the MR likelihood functions. Variance-refinement functionality was added to Phaser to enable determination of the effective r.m.s.d. that optimized the log-likelihood gain (LLG) for a correct MR solution. Variance refinement was subsequently performed on a database of over 21 000 MR problems that sampled a range of sequence identities, protein sizes and protein fold classes. Success was monitored using the translation-function Z-score (TFZ), where a TFZ of 8 or over for the top peak was found to be a reliable indicator that MR had succeeded for these cases with one molecule in the asymmetric unit. Good estimates of the r.m.s.d. are correlated with the sequence identity and the protein size. A new estimate of the r.m.s.d. that uses these two parameters in a function optimized to fit the mean of the refined variance is implemented in Phaser and improves MR outcomes. Perturbing the initial estimate of the r.m.s.d. from the mean of the distribution in steps of standard deviations of the distribution further increases MR success rates

  12. Influencing factors on the size uniformity of self-assembled SiGe quantum rings grown by molecular beam epitaxy.

    Science.gov (United States)

    Cui, J; Lv, Y; Yang, X J; Fan, Y L; Zhong, Z; Jiang, Z M

    2011-03-25

    The size uniformity of self-assembled SiGe quantum rings, which are formed by capping SiGe quantum dots with a thin Si layer, is found to be greatly influenced by the growth temperature and the areal density of SiGe quantum dots. Higher growth temperature benefits the size uniformity of quantum dots, but results in low Ge concentration as well as asymmetric Ge distribution in the dots, which induces the subsequently formed quantum rings to be asymmetric in shape or even broken somewhere in the ridge of rings. Low growth temperature degrades the size uniformity of quantum dots, and thus that of quantum rings. A high areal density results in the expansion and coalescence of neighboring quantum dots to form a chain, rather than quantum rings. Uniform quantum rings with a size dispersion of 4.6% and an areal density of 7.8×10(8) cm(-2) are obtained at the optimized growth temperature of 640°C.

  13. An Atomistic Carbide-Derived Carbon Model Generated Using ReaxFF-Based Quenched Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Matthew W. Thompson

    2017-10-01

    Full Text Available We report a novel atomistic model of carbide-derived carbons (CDCs, which are nanoporous carbons with high specific surface areas, synthesis-dependent degrees of graphitization, and well-ordered, tunable porosities. These properties make CDCs viable substrates in several energy-relevant applications, such as gas storage media, electrochemical capacitors, and catalytic supports. These materials are heterogenous, non-ideal structures and include several important parameters that govern their performance. Therefore, a realistic model of the CDC structure is needed in order to study these systems and their nanoscale and macroscale properties with molecular simulation. We report the use of the ReaxFF reactive force field in a quenched molecular dynamics routine to generate atomistic CDC models. The pair distribution function, pore size distribution, and adsorptive properties of this model are reported and corroborated with experimental data. Simulations demonstrate that compressing the system after quenching changes the pore size distribution to better match the experimental target. Ring size distributions of this model demonstrate the prevalence of non-hexagonal carbon rings in CDCs. These effects may contrast the properties of CDCs against those of activated carbons with similar pore size distributions and explain higher energy densities of CDC-based supercapacitors.

  14. Size Effect of Defects on the Mechanical Properties of Graphene

    Science.gov (United States)

    Park, Youngho; Hyun, Sangil

    2018-03-01

    Graphene, a two-dimensional material, has been studied and utilized for its excellent material properties. In reality, achieving a pure single-crystalline structure in graphene is difficult, so usually graphene may have various types of defects in it. Vacancies, Stone-Wales defects, and grain boundaries can drastically change the material properties of graphene. Graphene with vacancy defects has been of interest because it is a two-dimensional analogy of three-dimensional porous materials. It has efficient material properties, and can function as a part of modern devices. The mechanical properties have been studied by using molecular dynamics for either a single vacancy defect with various sizes or multiple vacancy defects with same defect ratios. However, it is not clear which one has more influence on the mechanical properties between the size of the defects and the defect ratio. Therefore, we investigated the hole-size effect on the mechanical properties of single-crystalline graphene at various defect ratios. A void defect with large size can have a rather high tensile modulus with a low fracture strain compared to a void defect with small size. We numerically found that the tensile properties of scattered single vacancies is similar to that of amorphous graphene. We suspect that this is due to the local orbital change of the carbon atoms near the boundary of the void defects, so-called the interfacial phase.

  15. Synthesis of Sub-10 nm Two-Dimensional Covalent Organic Thin Film with Sharp Molecular Sieving Nanofiltration

    KAUST Repository

    Gadwal, Ikhlas

    2018-04-06

    We demonstrated here a novel and facile synthesis of two-dimensional (2D) covalent organic thin film with pore size around 1.5 nm using a planar, amphiphilic and substituted heptacyclic truxene based triamine and a simple dialdehyde as building blocks by dynamic imine bond formation at the air/water interface using Langmuir–Blodgett (LB) method. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), all unanimously showed the formation of large, molecularly thin and free-standing membrane that can be easily transferred on different substrate surfaces. The 2D membrane supported on a porous polysulfone showed a rejection rate of 64 and 71% for NaCl and MgSO4, respectively, and a clear molecular sieving at molecular size around 1.3 nm, which demonstrated a great potential in the application of pretreatment of seawater desalination and separation of organic molecules.

  16. Ductility and work hardening in nano-sized metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D. Z., E-mail: dzchen@caltech.edu [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); Gu, X. W. [Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States); An, Q.; Goddard, W. A. [Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125 (United States); Greer, J. R. [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); The Kavli Nanoscience Institute, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-02-09

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of ∼18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and ∼3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses.

  17. Molecular-dynamics simulations of urea nucleation from aqueous solution

    Science.gov (United States)

    Salvalaglio, Matteo; Perego, Claudio; Giberti, Federico; Mazzotti, Marco; Parrinello, Michele

    2015-01-01

    Despite its ubiquitous character and relevance in many branches of science and engineering, nucleation from solution remains elusive. In this framework, molecular simulations represent a powerful tool to provide insight into nucleation at the molecular scale. In this work, we combine theory and molecular simulations to describe urea nucleation from aqueous solution. Taking advantage of well-tempered metadynamics, we compute the free-energy change associated to the phase transition. We find that such a free-energy profile is characterized by significant finite-size effects that can, however, be accounted for. The description of the nucleation process emerging from our analysis differs from classical nucleation theory. Nucleation of crystal-like clusters is in fact preceded by large concentration fluctuations, indicating a predominant two-step process, whereby embryonic crystal nuclei emerge from dense, disordered urea clusters. Furthermore, in the early stages of nucleation, two different polymorphs are seen to compete. PMID:25492932

  18. Molecular-dynamics simulations of urea nucleation from aqueous solution.

    Science.gov (United States)

    Salvalaglio, Matteo; Perego, Claudio; Giberti, Federico; Mazzotti, Marco; Parrinello, Michele

    2015-01-06

    Despite its ubiquitous character and relevance in many branches of science and engineering, nucleation from solution remains elusive. In this framework, molecular simulations represent a powerful tool to provide insight into nucleation at the molecular scale. In this work, we combine theory and molecular simulations to describe urea nucleation from aqueous solution. Taking advantage of well-tempered metadynamics, we compute the free-energy change associated to the phase transition. We find that such a free-energy profile is characterized by significant finite-size effects that can, however, be accounted for. The description of the nucleation process emerging from our analysis differs from classical nucleation theory. Nucleation of crystal-like clusters is in fact preceded by large concentration fluctuations, indicating a predominant two-step process, whereby embryonic crystal nuclei emerge from dense, disordered urea clusters. Furthermore, in the early stages of nucleation, two different polymorphs are seen to compete.

  19. Melting of Cu nanoclusters by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Zhang, Yanning; Bian, Xiufang; Chen, Ying

    2003-04-14

    We present a detailed molecular dynamics study of the melting of copper nanoclusters with up to 8628 atoms within the framework of the embedded-atom method. The finding indicates that there exists an intermediate nanocrystal regime above 456 atoms. The linear relation between the cluster size and its thermodynamics properties is obeyed in this regime. Melting first occurs at the surface of the clusters, leading to T{sub m,N}=T{sub m,Bulk}-{alpha}N{sup -1/3}, dropping from T{sub m,Bulk}=1360 K to T{sub m,456}=990 K. In addition, the size, surface energy as well as the root mean square displacement (RMSD) of the clusters in the intermediate regime have been investigated.

  20. Specific Electrostatic Molecular Recognition in Water

    DEFF Research Database (Denmark)

    Li, Ming; Hoeck, Casper; Schoffelen, Sanne

    2016-01-01

    The identification of pairs of small peptides that recognize each other in water exclusively through electrostatic interactions is reported. The target peptide and a structure-biased combinatorial ligand library consisting of ≈78 125 compounds were synthesized on different sized beads. Peptide......-bead binding assay and by 2D NMR spectroscopy. Molecular dynamics (MD) studies revealed a putative mode of interaction for this unusual electrostatic binding event. High binding specificity occurred through a combination of topological matching and electrostatic and hydrogen-bond complementarities. From MD...

  1. Ultra-Tuning of the Rare-Earth fcu-MOF Aperture Size for Selective Molecular Exclusion of Branched Paraffins.

    Science.gov (United States)

    Assen, Ayalew H; Belmabkhout, Youssef; Adil, Karim; Bhatt, Prashant M; Xue, Dong-Xu; Jiang, Hao; Eddaoudi, Mohamed

    2015-11-23

    Using isoreticular chemistry allows the design and construction of a new rare-earth metal (RE) fcu-MOF with a suitable aperture size for practical steric adsorptive separations. The judicious choice of a relatively short organic building block, namely fumarate, to bridge the 12-connected RE hexanuclear clusters has afforded the contraction of the well-defined RE-fcu-MOF triangular window aperture, the sole access to the two interconnected octahedral and tetrahedral cages. The newly constructed RE (Y(3+) and Tb(3+)) fcu-MOF analogues display unprecedented total exclusion of branched paraffins from normal paraffins. The resultant window aperture size of about 4.7 Å, regarded as a sorbate-size cut-off, enabled a complete sieving of branched paraffins from normal paraffins. The results are supported by collective single gas and mixed gas/vapor adsorption and calorimetric studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Motor proteins and molecular motors: how to operate machines at the nanoscale

    International Nuclear Information System (INIS)

    Kolomeisky, Anatoly B

    2013-01-01

    Several classes of biological molecules that transform chemical energy into mechanical work are known as motor proteins or molecular motors. These nanometer-sized machines operate in noisy stochastic isothermal environments, strongly supporting fundamental cellular processes such as the transfer of genetic information, transport, organization and functioning. In the past two decades motor proteins have become a subject of intense research efforts, aimed at uncovering the fundamental principles and mechanisms of molecular motor dynamics. In this review, we critically discuss recent progress in experimental and theoretical studies on motor proteins. Our focus is on analyzing fundamental concepts and ideas that have been utilized to explain the non-equilibrium nature and mechanisms of molecular motors. (topical review)

  3. Transient hydrodynamic finite-size effects in simulations under periodic boundary conditions

    Science.gov (United States)

    Asta, Adelchi J.; Levesque, Maximilien; Vuilleumier, Rodolphe; Rotenberg, Benjamin

    2017-06-01

    We use lattice-Boltzmann and analytical calculations to investigate transient hydrodynamic finite-size effects induced by the use of periodic boundary conditions. These effects are inevitable in simulations at the molecular, mesoscopic, or continuum levels of description. We analyze the transient response to a local perturbation in the fluid and obtain the local velocity correlation function via linear response theory. This approach is validated by comparing the finite-size effects on the steady-state velocity with the known results for the diffusion coefficient. We next investigate the full time dependence of the local velocity autocorrelation function. We find at long times a crossover between the expected t-3 /2 hydrodynamic tail and an oscillatory exponential decay, and study the scaling with the system size of the crossover time, exponential rate and amplitude, and oscillation frequency. We interpret these results from the analytic solution of the compressible Navier-Stokes equation for the slowest modes, which are set by the system size. The present work not only provides a comprehensive analysis of hydrodynamic finite-size effects in bulk fluids, which arise regardless of the level of description and simulation algorithm, but also establishes the lattice-Boltzmann method as a suitable tool to investigate such effects in general.

  4. PaCYP78A9, a Cytochrome P450, Regulates Fruit Size in Sweet Cherry (Prunus avium L.

    Directory of Open Access Journals (Sweden)

    Xiliang Qi

    2017-12-01

    Full Text Available Sweet cherry (Prunus avium L. is an important fruit crop in which fruit size is strongly associated with commercial value; few genes associated with fruit size have, however, been identified in sweet cherry. Members of the CYP78A subfamily, a group of important cytochrome P450s, have been found to be involved in controlling seed size and development in Arabidopsis thaliana, rice, soybean, and tomato. However, the influence of CYP78A members in controlling organ size and the underlying molecular mechanisms in sweet cherry and other fruit trees remains unclear. Here, we characterized a P. avium CYP78A gene PaCYP78A9 that is thought to be involved in the regulation of fruit size and organ development using overexpression and silencing approaches. PaCYP78A9 was significantly expressed in the flowers and fruit of sweet cherry. RNAi silencing of PaCYP78A9 produced small cherry fruits and PaCYP78A9 was found to affect fruit size by mediating mesocarp cell proliferation and expansion during fruit growth and development. Overexpression of PaCYP78A9 in Arabidopsis resulted in increased silique and seed size and PaCYP78A9 was found to be highly expressed in the inflorescences and siliques of transgenic plants. Genes related to cell cycling and proliferation were downregulated in fruit from sweet cherry TRV::PaCYP78A9-silencing lines, suggesting that PaCYP78A9 is likely to be an important upstream regulator of cell cycle processes. Together, our findings indicate that PaCYP78A9 plays an essential role in the regulation of cherry fruit size and provide insights into the molecular basis of the mechanisms regulating traits such as fruit size in P. avium.

  5. One size may not fit all: anti-aging therapies and sarcopenia

    OpenAIRE

    Burks, Tyesha N.; Cohn, Ronald D.

    2011-01-01

    Sarcopenia refers to age-related loss of muscle mass and function. Several age-related changes occur in skeletal muscle including a decrease in myofiber size and number and a diminished ability of satellite cells to activate and proliferate upon injury leading to impaired muscle remodeling. Although the molecular mechanisms underlying sarcopenia are unknown, it is tempting to hypothesize that interplay between biological and environmental factors cooperate in a positive feedback cycle contrib...

  6. Hofmeister effect on thermo-responsive poly(propylene oxide): Role of polymer molecular weight and concentration

    DEFF Research Database (Denmark)

    Moghaddam, Saeed Zajforoushan; Thormann, Esben

    2016-01-01

    ) salts on aqueous solutions of poly(propylene oxide) (PPO) is studied. Four different molecular weights of PPO were investigated, to determine how the variation in the polymer coil size affects the Hofmeister effect. The investigation was further conducted for different PPO concentrations, in order...... with the transition. It was observed that increasing the molecular weight weakens the effect of the both salts, which is interpreted in terms of a scaling law between the molecular weight and the accessible surface area of the polymers. Increasing the PPO concentration further diminished the NaCl effect...

  7. Side-by-Side Comparison of Commonly Used Biomolecules That Differ in Size and Affinity on Tumor Uptake and Internalization

    Science.gov (United States)

    Leelawattanachai, Jeerapond; Kwon, Keon-Woo; Michael, Praveesuda; Ting, Richard; Kim, Ju-Young; Jin, Moonsoo M.

    2015-01-01

    The ability to use a systemically injected agent to image tumor is influenced by tumor characteristics such as permeability and vascularity, and the size, shape, and affinity of the imaging agent. In this study, six different imaging biomolecules, with or without specificity to tumor, were examined for tumor uptake and internalization at the whole body, ex-vivo tissue, and cellular levels: antibodies, antibody fragments (Fab), serum albumin, and streptavidin. The time of peak tumor uptake was dependent solely on the size of molecules, suggesting that molecular size is the major factor that influences tumor uptake by its effect on systemic clearance and diffusion into tumor. Affinity to tumor antigen failed to augment tumor uptake of Fab above non-specific accumulation, which suggests that Fab fragments of typical monoclonal antibodies may fall below an affinity threshold for use as molecular imaging agents. Despite abundant localization into the tumor, albumin and streptavidin were not found on cell surface or inside cells. By comparing biomolecules differing in size and affinity, our study highlights that while pharmacokinetics are a dominant factor in tumor uptake for biomolecules, affinity to tumor antigen is required for tumor binding and internalization. PMID:25901755

  8. Friction tensor for a pair of Brownian particles: Spurious finite-size effects and molecular dynamics estimates

    International Nuclear Information System (INIS)

    Bocquet, L.; Hansen, J.P.; Piasecki, J.

    1997-01-01

    In this work, we show that in any finite system, the binary friction tenser for two Brownian particles cannot be directly estimated from an evaluation of the microscopic Green Kubo formula, involving the time integral of force-force autocorrelation functions. This pitfall is associated with a subtle inversion of the thermodynamic and long-time limits and leads to spurious results for the estimates of the friction matrix based on molecular dynamics simulations. Starting from a careful analysis of the coupled Langevin equations for two interacting Brownian particles, we derive a method to circumvent these effects and extract the binary friction tenser from the correlation function matrix of the instantaneous forces exerted by the bath particles on the fixed Brownian particles, and from the relaxation of the total momentum of the bath in a finite system. The general methodology is applied to the case of two hard or soft Brownian spheres in a bath of light particles. Numerical estimates of the relevant correlation functions and of the resulting self and mutual components of the matrix of friction tensors are obtained by molecular dynamics simulations for various spacings between the Brownian particles

  9. Production of carbon molecular sieves from Illinois coal

    Science.gov (United States)

    Lizzio, A.A.; Rostam-Abadi, M.

    1993-01-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for application in the separation of gas molecules that vary in size and shape. A study is in progress at the Illinois State Geological Survey to determine whether Illinois basin coals are suitable feedstocks for the production of CMS and to evaluate their potential application in gas separation processes of commercial importance. Chars were prepared from Illinois coal in a fixed-bed reactor under a wide range of heat treatment and activation conditions. The effects of various coal/char pretreatments, including coal demineralization, preoxidation, char activation, and carbon deposition, on the molecular sieve properties of the chars were also investigated. Chars with commercially significant BET surface areas of 1500 m2/g were produced by chemical activation using potassium hydroxide as the activant. These high-surface-area (HSA) chars had more than twice the adsorption capacity of commercial carbon and zeolite molecular sieves. The kinetics of adsorption of various gases, e.g., N2, O2, CO2, CH4, CO and H2, on these chars at 25??C was measured. The O2/N2 molecular sieve properties of one char prepared without chemical activation were similar to those of a commercial CMS. On the other hand, the O2/N2 selectivity of the HSA char was comparable to that of a commercial activated carbon, i.e., essentially unity. Carbon deposition, using methane as the cracking gas, increased the O2/N2 selectivity of the HSA char, but significantly decreased its adsorption capacity. Several chars showed good potential for efficient CO2/CH4 separation; both a relatively high CO2 adsorption capacity and CO2/CH4 selectivity were achieved. The micropore size distribution of selected chars was estimated by equilibrium adsorption of carbon dioxide, n-butane and iso-butane at O??C. The extent of adsorption of each gas corresponded to the effective surface area contained in pores with diameters greater than 3

  10. Proteoglycan depletion and size reduction in lesions of early grade chondromalacia of the patella.

    Science.gov (United States)

    Väätäinen, U; Häkkinen, T; Kiviranta, I; Jaroma, H; Inkinen, R; Tammi, M

    1995-10-01

    To determine the content and molecular size of proteoglycans (PGs) in patellar chondromalacia (CM) and control cartilages as a first step in investigating the role of matrix alterations in the pathogenesis of this disease. Chondromalacia tissue from 10 patients was removed with a surgical knife. Using identical techniques, apparently healthy cartilage of the same site was obtained from 10 age matched cadavers (mean age 31 years in both groups). Additional pathological cartilage was collected from 67 patients with grades II-IV CM (classified according to Outerbridge) using a motorised shaver under arthroscopic control. The shaved cartilage chips were collected with a dense net from the irrigation fluid of the shaver. The content of tissue PGs was determined by Safranin O precipitation or uronic acid content, and the molecular size by mobility on agarose gel electrophoresis. The mean PG content of the CM tissue samples with a knife was dramatically reduced, being only 15% of that in controls. The cartilage chips collected from shaving operations of grades II, III, and IV CM showed a decreasing PG content: 9%, 5%, and 1% of controls, respectively. Electrophoretic analysis of PGs extracted with guanidium chloride from the shaved tissue samples suggested a significantly reduced size of aggrecans in the mild (grade II) lesions. These data show that there is already a dramatic and progressive depletion of PGs in CM grade II lesions. This explains the softening of cartilage, a typical finding in the arthroscopic examination of CM. The PG size reduction observed in grade II implicates proteolytic attack as a factor in the pathogenesis of CM.

  11. The quantification of spermatozoa by real-time quantitative PCR, spectrophotometry, and spermatophore cap size.

    Science.gov (United States)

    Doyle, Jacqueline M; McCormick, Cory R; DeWoody, J Andrew

    2011-01-01

    Many animals, such as crustaceans, insects, and salamanders, package their sperm into spermatophores, and the number of spermatozoa contained in a spermatophore is relevant to studies of sexual selection and sperm competition. We used two molecular methods, real-time quantitative polymerase chain reaction (RT-qPCR) and spectrophotometry, to estimate sperm numbers from spermatophores. First, we designed gene-specific primers that produced a single amplicon in four species of ambystomatid salamanders. A standard curve generated from cloned amplicons revealed a strong positive relationship between template DNA quantity and cycle threshold, suggesting that RT-qPCR could be used to quantify sperm in a given sample. We then extracted DNA from multiple Ambystoma maculatum spermatophores, performed RT-qPCR on each sample, and estimated template copy numbers (i.e. sperm number) using the standard curve. Second, we used spectrophotometry to determine the number of sperm per spermatophore by measuring DNA concentration relative to the genome size. We documented a significant positive relationship between the estimates of sperm number based on RT-qPCR and those based on spectrophotometry. When these molecular estimates were compared to spermatophore cap size, which in principle could predict the number of sperm contained in the spermatophore, we also found a significant positive relationship between sperm number and spermatophore cap size. This linear model allows estimates of sperm number strictly from cap size, an approach which could greatly simplify the estimation of sperm number in future studies. These methods may help explain variation in fertilization success where sperm competition is mediated by sperm quantity. © 2010 Blackwell Publishing Ltd.

  12. Vacancy profile in reverse osmosis membranes studied by positron annihilation lifetime measurements and molecular dynamics simulations

    International Nuclear Information System (INIS)

    Shimazu, A; Shintani, T; Hirose, M; Goto, H; Suzuki, R; Kobayashi, Y

    2013-01-01

    The positron annihilation technique using a slow positron beam can be used for the study of the vacancy profiles in typical reverse osmosis (RO) membranes. In this study, the vacancy profile in the polyamide membrane that exhibits a high permselectivity between ions and water was studied using the positron annihilation technique and molecular dynamics simulations. Ortho-positronium (o-Ps) lifetimes in the surface region of the membranes were evaluated by using a slow positron beam. The diffusion behavior of Na + and water in the polyamides was simulated by molecular dynamics (MD) methods using the TSUBAME2 supercomputer at the Tokyo Institute of Technology and discussed with the vacancy profile probed by the o-Ps. The results suggested that the large hydration size of Na + compared to the vacancy size in the polyamides contributes to the increased diffusivity selectivity of water/Na + that is related to the NaCl desalination performance of the membrane. Both the hydration size of the ions and the vacancy size appeared to be significant parameters to discuss the diffusivity selectivity of water/ions in typical polyamide membranes.

  13. Efficient molecular density functional theory using generalized spherical harmonics expansions.

    Science.gov (United States)

    Ding, Lu; Levesque, Maximilien; Borgis, Daniel; Belloni, Luc

    2017-09-07

    We show that generalized spherical harmonics are well suited for representing the space and orientation molecular density in the resolution of the molecular density functional theory. We consider the common system made of a rigid solute of arbitrary complexity immersed in a molecular solvent, both represented by molecules with interacting atomic sites and classical force fields. The molecular solvent density ρ(r,Ω) around the solute is a function of the position r≡(x,y,z) and of the three Euler angles Ω≡(θ,ϕ,ψ) describing the solvent orientation. The standard density functional, equivalent to the hypernetted-chain closure for the solute-solvent correlations in the liquid theory, is minimized with respect to ρ(r,Ω). The up-to-now very expensive angular convolution products are advantageously replaced by simple products between projections onto generalized spherical harmonics. The dramatic gain in speed of resolution enables to explore in a systematic way molecular solutes of up to nanometric sizes in arbitrary solvents and to calculate their solvation free energy and associated microscopic solvent structure in at most a few minutes. We finally illustrate the formalism by tackling the solvation of molecules of various complexities in water.

  14. MOLECULAR DIAGNOSTICS OF YERSINIA RUCKERI

    Directory of Open Access Journals (Sweden)

    Yu. Rud

    2014-06-01

    Full Text Available Purpose. The analysis of nucleotide sequences of the 16S rDNA gene of virulent strains of Yersinia ruckeri and to develop the method of molecular diagnostic of enteric redmouth disease. Methodology. By the method of CLUSTALW algorithm in MEGA software version 6.0 the nucleotide sequences of the 16S rDNA gene of virulent strains of Yersinia ruckeri were analysed. For development of molecular diagnostic of Y. ruckeri the method of polymerase chain reaction (PCR was used. Primer selection was carried out in software VectorNTI11 and on-line-service BLAST. The PCR products were investigated by the methods of sequencing and nucleotide analysis. Findings. Based on PCR assay the method of molecular diagnostic of enteric redmouth disease agent, bacterium Y. ruckeri was developed. It was shown that specific oligonucleotide primers generated PCR products in size of 600 base pairs. PCR products were investigated by the sequencing that showed right targeting of primers in reaction. Originality. Among high-conservative gene of 16S rDNA of Y. ruckeri the fragment of DNA was determined to which the specific primers for rapid diagnostic of virulent strains were selected. Practical Value. Rapid diagnostic of yersiniosis will allow to identify an agent of this infectious disease, bacterium Y. ruckeri, and to provide the prophylactic or medical measures in the fish farming of Ukraine.

  15. Molecular-scale hydrophobic interactions between hard-sphere reference solutes are attractive and endothermic.

    Science.gov (United States)

    Chaudhari, Mangesh I; Holleran, Sinead A; Ashbaugh, Henry S; Pratt, Lawrence R

    2013-12-17

    The osmotic second virial coefficients, B2, for atomic-sized hard spheres in water are attractive (B2 attractive with increasing temperature (ΔB2/ΔT attractive and endothermic at moderate temperatures. Hydrophobic interactions between atomic-sized hard spheres in water are more attractive than predicted by the available statistical mechanical theory. These results constitute an initial step toward detailed molecular theory of additional intermolecular interaction features, specifically, attractive interactions associated with hydrophobic solutes.

  16. Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer

    DEFF Research Database (Denmark)

    Solov'yov, Ilia A.; Korol, Andrei V.; Solov'yov, Andrey V.

    This book introduces readers to MesoBioNano (MBN) Explorer - a multi-purpose software package designed to model molecular systems at various levels of size and complexity. In addition, it presents a specially designed multi-task toolkit and interface - the MBN Studio - which enables the set-up of...

  17. Sizing protein-templated gold nanoclusters by time resolved fluorescence anisotropy decay measurements

    Science.gov (United States)

    Soleilhac, Antonin; Bertorelle, Franck; Antoine, Rodolphe

    2018-03-01

    Protein-templated gold nanoclusters (AuNCs) are very attractive due to their unique fluorescence properties. A major problem however may arise due to protein structure changes upon the nucleation of an AuNC within the protein for any future use as in vivo probes, for instance. In this work, we propose a simple and reliable fluorescence based technique measuring the hydrodynamic size of protein-templated gold nanoclusters. This technique uses the relation between the time resolved fluorescence anisotropy decay and the hydrodynamic volume, through the rotational correlation time. We determine the molecular size of protein-directed AuNCs, with protein templates of increasing sizes, e.g. insulin, lysozyme, and bovine serum albumin (BSA). The comparison of sizes obtained by other techniques (e.g. dynamic light scattering and small-angle X-ray scattering) between bare and gold clusters containing proteins allows us to address the volume changes induced either by conformational changes (for BSA) or the formation of protein dimers (for insulin and lysozyme) during cluster formation and incorporation.

  18. Sizing protein-templated gold nanoclusters by time resolved fluorescence anisotropy decay measurements.

    Science.gov (United States)

    Soleilhac, Antonin; Bertorelle, Franck; Antoine, Rodolphe

    2018-03-15

    Protein-templated gold nanoclusters (AuNCs) are very attractive due to their unique fluorescence properties. A major problem however may arise due to protein structure changes upon the nucleation of an AuNC within the protein for any future use as in vivo probes, for instance. In this work, we propose a simple and reliable fluorescence based technique measuring the hydrodynamic size of protein-templated gold nanoclusters. This technique uses the relation between the time resolved fluorescence anisotropy decay and the hydrodynamic volume, through the rotational correlation time. We determine the molecular size of protein-directed AuNCs, with protein templates of increasing sizes, e.g. insulin, lysozyme, and bovine serum albumin (BSA). The comparison of sizes obtained by other techniques (e.g. dynamic light scattering and small-angle X-ray scattering) between bare and gold clusters containing proteins allows us to address the volume changes induced either by conformational changes (for BSA) or the formation of protein dimers (for insulin and lysozyme) during cluster formation and incorporation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Study of effect of gamma radiation on molecular weight and mechanical properties of PHB and PHNV

    International Nuclear Information System (INIS)

    Fechine, Guilhermino J.M.; Terence, Mauro C.; Rabello, M.S.; Willen, Renate M.R.

    2011-01-01

    The effect of gamma radiation on molecular weight and mechanical properties (tensile and flexural) of PHB and PHBV samples was investigated. The values of stress and strain at the break point for both mechanical properties indicated that scission molecular reactions were predominant in PHB and PHBV samples submitted to gamma radiation. These results were confirmed by Size Exclusion Chromatography (SEC) analysis. (author)

  20. Hypoglycemic effect of polysaccharides with different molecular weight of Pseudostellaria heterophylla

    Science.gov (United States)

    2013-01-01

    Abstracts Background The aims of this study were to evaluate the antidiabetic activity and to detect molecular size of Pseudostellaria heterophylla polysaccharide (PHP). Pseudostellaria heterophylla is a medicine extensively used in traditional Chinese medicine formulas to treat diabetes and its complications. Methods Molecular weight of PHP was determined by gel permeation chromatography combined with phenol-sulphuric acid method and the monosaccharides composition was determined by HPLC with a precolumn derivatization. Four polysaccharides with different molecular weight were compared for hypoglycemic active on two animal models both high does alloxan induced type1 diabetic mellitus (T1DM) and high-fat/lower does streptozotocin induced type2 diabetic mellitus (T2DM). Blood sugar, glucose tolerance, and insulin tolerance were detected. Rat serum IL-1β, IL-2, IL-10, Leptin, TNF-α, Acrp30 and CRP were also analyzed by sandwich-ELISA approaches to preliminary probe the hypoglycemic mechanism of PHP. Results The hypoglycemic effects related to molecular size of polysaccharide were more effective against T2DM than T1DM. PHP comprise four monosaccharides of galacturonic acid, glucose, galactose and arabinos. T2DM rats daily receiving oral dose of polysaccharide(100 ~ 400 mg/kg) with 50 ~ 210 kDa molecular weight (PF40) could not only significantly lower blood sugar but also reduce total triglyceride level in serum. PF40 improves in insulin tolerance inhibited the expression of some biomarkers including inflammatory cytokine TNF-α and elevated anti-inflammatory cytokine IL-10, regulated adiponectin Acrp30 and leptin. Conclusions PF40 prevent the cascade of inflammatory events in the treatment of T2DM to block overweight progresses to obesity. PMID:24131482

  1. Molecular MR Imaging of CD44 in Breast Cancer with Hyaluronan-Based Contrast Agents

    Science.gov (United States)

    2009-09-01

    linear polysaccharide composed of alternating (β-1,4)-linked d- glucuronic acid and (β-1,3) N-acetyl-d-glucosamine residues with molecular weights as...enzymatic reactions in-vivo that generate polysaccharides of decreasing sizes, which in principle may facilitate the timely excretion of HA based...14CO2) or in urine (as low molecular weight HA or monosaccharide fragments). The same authors also reported that the total amount of excretion into

  2. Simulation study on the effects of chemical structure and molecular size on the acceptor strength in poly(3-hexylthiophene)-based copolymer with alternating donor and acceptor for photovoltaic applications

    Science.gov (United States)

    Rassamesard, Areefen; Pengpan, Teparksorn

    2017-02-01

    This research assessed the effects of various chemical structures and molecular sizes on the simulated geometric parameters, electron structures, and spectroscopic properties of single-chain complex alternating donor-acceptor (D-A) monomers and copolymers that are intended for use as photoactive layer in a polymer solar cell by using Kohn-Sham density functional theory with B3LYP exchange-correlation functional. The 3-hexylthiophene (3HT) was selected for electron donor, while eight chemicals, namely thiazole (Z), thiadiazole (D), thienopyrazine (TP), thienothiadiazole (TD), benzothiadiazole (BT), thiadiazolothieno-pyrazine (TPD), oxadiazole (OXD) and 5-diphenyl-1,2,4-triazole (TAZ), were employed as electron acceptor functional groups. The torsional angle, bridge bond length, intramolecular charge transfer, energy levels, and molecular orbitals were analyzed. The simulation results reveal that the geometry and electron structure of donor-acceptor monomer and copolymer are significantly impacted by heterocyclic rings, heteroatoms, fused rings, degree of steric hindrance and coplanarity of the acceptor molecular structure. Planar conformation was obtained from the D copolymer, and a pseudo-planar structure with the TD copolymer. The TAZ acceptor exhibited strong steric hindrance due to its bulky structure and non-planarity of its structure. An analysis of the electron structures indicated that the degree of intramolecular electron-withdrawing capability had the rank order TAZ  gaps of TD as well as TPD copolymer indicate that these two copolymers can be used in transparent conducting materials. The copolymer based on BT acceptor exhibited good intramolecular charge transfer and absorbed at 656 nm wavelength which is close to the maximum flux of solar spectrum. Hence, the BT acceptor functional group provides a compromise in the characteristics of a donor-acceptor copolymer, useful in a polymeric candidate material for the photoactive layer in a polymer solar

  3. Conformation of phylogenetic relationship of Penaeidae shrimp based on morphometric and molecular investigations.

    Science.gov (United States)

    Rajakumaran, P; Vaseeharan, B; Jayakumar, R; Chidambara, R

    2014-01-01

    Understanding of accurate phylogenetic relationship among Penaeidae shrimp is important for academic and fisheries industry. The Morphometric and Randomly amplified polymorphic DNA (RAPD) analysis was used to make the phylogenetic relationsip among 13 Penaeidae shrimp. For morphometric analysis forty variables and total lengths of shrimp were measured for each species, and removed the effect of size variation. The size normalized values obtained was subjected to UPGMA (Unweighted Pair-Group Method with Arithmetic Mean) cluster analysis. For RAPD analysis, the four primers showed reliable differentiation between species, and used correlation coefficient between the DNA banding patterns of 13 Penaeidae species to construct UPGMA dendrogram. Phylogenetic relationship from morphometric and molecular analysis for Penaeidae species found to be congruent. We concluded that as the results from morphometry investigations concur with molecular one, phylogenetic relationship obtained for the studied Penaeidae are considered to be reliable.

  4. Molecular self-assembly approaches for supramolecular electronic and organic electronic devices

    Science.gov (United States)

    Yip, Hin-Lap

    Molecular self-assembly represents an efficient bottom-up strategy to generate structurally well-defined aggregates of semiconducting pi-conjugated materials. The capability of tuning the chemical structures, intermolecular interactions and nanostructures through molecular engineering and novel materials processing renders it possible to tailor a large number of unprecedented properties such as charge transport, energy transfer and light harvesting. This approach does not only benefit traditional electronic devices based on bulk materials, but also generate a new research area so called "supramolecular electronics" in which electronic devices are built up with individual supramolecular nanostructures with size in the sub-hundred nanometers range. My work combined molecular self-assembly together with several novel materials processing techniques to control the nucleation and growth of organic semiconducting nanostructures from different type of pi-conjugated materials. By tailoring the interactions between the molecules using hydrogen bonds and pi-pi stacking, semiconducting nanoplatelets and nanowires with tunable sizes can be fabricated in solution. These supramolecular nanostructures were further patterned and aligned on solid substrates through printing and chemical templating methods. The capability to control the different hierarchies of organization on surface provides an important platform to study their structural-induced electronic properties. In addition to using molecular self-assembly to create different organic nanostructures, functional self-assembled monolayer (SAM) formed by spontaneous chemisorption on surfaces was used to tune the interfacial property in organic solar cells. Devices showed dramatically improved performance when appropriate SAMs were applied to optimize the contact property for efficiency charge collection.

  5. Population genomics of eusocial insects: the costs of a vertebrate-like effective population size.

    Science.gov (United States)

    Romiguier, J; Lourenco, J; Gayral, P; Faivre, N; Weinert, L A; Ravel, S; Ballenghien, M; Cahais, V; Bernard, A; Loire, E; Keller, L; Galtier, N

    2014-03-01

    The evolution of reproductive division of labour and social life in social insects has lead to the emergence of several life-history traits and adaptations typical of larger organisms: social insect colonies can reach masses of several kilograms, they start reproducing only when they are several years old, and can live for decades. These features and the monopolization of reproduction by only one or few individuals in a colony should affect molecular evolution by reducing the effective population size. We tested this prediction by analysing genome-wide patterns of coding sequence polymorphism and divergence in eusocial vs. noneusocial insects based on newly generated RNA-seq data. We report very low amounts of genetic polymorphism and an elevated ratio of nonsynonymous to synonymous changes – a marker of the effective population size – in four distinct species of eusocial insects, which were more similar to vertebrates than to solitary insects regarding molecular evolutionary processes. Moreover, the ratio of nonsynonymous to synonymous substitutions was positively correlated with the level of social complexity across ant species. These results are fully consistent with the hypothesis of a reduced effective population size and an increased genetic load in eusocial insects, indicating that the evolution of social life has important consequences at both the genomic and population levels. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  6. Molecular device computer: point of departure for large scale cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Carter, F L

    1984-01-01

    Switching is possible at the molecular size level because of the conformational changes that occur. Three of the most promising switching mechanisms include electron tunnelling in short periodic arrays, soliton switching and soliton valving. Assuming a 3-d architecture and molecular dimensions, memory and switching elements with densities of 10/sup 15/ to 10 /sup 18/ elements per cc are possible. The active elements are connected together conceptionally with molecular wires like polysulfur nitride (sn)/sub x/ and polyacetylene (ch)/sub x/. Simple cellular automata involving soliton propagation in conjugated systems would include soliton valves and cyclic configurations of valves. In the latter, soliton propagation becomes isomorphous with group operations giving rise to possible non-binary finite-state machines. The development of a molecular electron device (MED) synthetic capability in combination with the above devices would suggest that large 3-d arrays of parallel processors will be possible with automata, biological, and crystallographic implications. 41 references.

  7. Multiscale modeling of complex molecular structure and dynamics with MBN Explorer

    CERN Document Server

    Solov’yov, Ilia A; Solov’yov, Andrey V

    2017-01-01

    This book introduces readers to MesoBioNano (MBN) Explorer – a multi-purpose software package designed to model molecular systems at various levels of size and complexity. In addition, it presents a specially designed multi-task toolkit and interface – the MBN Studio – which enables the set-up of input files, controls the simulations, and supports the subsequent visualization and analysis of the results obtained. The book subsequently provides a systematic description of the capabilities of this universal and powerful software package within the framework of computational molecular science, and guides readers through its applications in numerous areas of research in bio- and chemical physics and material science – ranging from the nano- to the meso-scale. MBN Explorer is particularly suited to computing the system’s energy, to optimizing molecular structure, and to exploring the various facets of molecular and random walk dynamics. The package allows the use of a broad variety of interatomic potenti...

  8. Turning the pore size of nanoporous membranes using layer-by-layer cross-linking polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Byeon, Min Seon; Park, Ji Woong [School of Materials Science and Engineering and Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2017-01-15

    Covalent organic networks consisting of molecular nodes and links are promising for preparation of nanostructured materials that are key to the technologies for molecular separation, storage, and catalysis. The network of covalent bonds provides high-dimensional stability, which is essential for maintaining the functionality of the nanostructure under various chemical and thermal environments. However, most of network materials are synthesized as insoluble precipitates or gels formed directly from polymerization of network-forming monomers, being severely limited in chemical functionalization or post-processing needed for their applications. The synthesis method for network materials with facile size or shape controllability is crucial for their exploitation for various potential applications.

  9. A molecular analysis of L-arabinan degradation in Aspergillus niger and Aspergillus nidulans

    NARCIS (Netherlands)

    Flipphi, M.J.A.

    1995-01-01

    This thesis describes a molecular study of the genetics ofsize="-1">L-arabinan degradation in Aspergillus niger and Aspergillus nidulans. These saprophytic hyphal fungi produce an extracellular hydrolytic enzyme system to

  10. Mono- and multilayers of molecular spoked carbazole wheels on graphite.

    Science.gov (United States)

    Jester, Stefan-S; Aggarwal, A Vikas; Kalle, Daniel; Höger, Sigurd

    2014-01-01

    Self-assembled monolayers of a molecular spoked wheel (a shape-persistent macrocycle with an intraannular spoke/hub system) and its synthetic precursor are investigated by scanning tunneling microscopy (STM) at the liquid/solid interface of 1-octanoic acid and highly oriented pyrolytic graphite. The submolecularly resolved STM images reveal that the molecules indeed behave as more or less rigid objects of certain sizes and shapes - depending on their chemical structures. In addition, the images provide insight into the multilayer growth of the molecular spoked wheels (MSWs), where the first adlayer acts as a template for the commensurate adsorption of molecules in the second layer.

  11. Mono- and multilayers of molecular spoked carbazole wheels on graphite

    Directory of Open Access Journals (Sweden)

    Stefan-S. Jester

    2014-11-01

    Full Text Available Self-assembled monolayers of a molecular spoked wheel (a shape-persistent macrocycle with an intraannular spoke/hub system and its synthetic precursor are investigated by scanning tunneling microscopy (STM at the liquid/solid interface of 1-octanoic acid and highly oriented pyrolytic graphite. The submolecularly resolved STM images reveal that the molecules indeed behave as more or less rigid objects of certain sizes and shapes – depending on their chemical structures. In addition, the images provide insight into the multilayer growth of the molecular spoked wheels (MSWs, where the first adlayer acts as a template for the commensurate adsorption of molecules in the second layer.

  12. Reversible Size Control of Silver Nanoclusters via Ligand-exchange

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2015-05-21

    The properties of atomically monodisperse noble metal nanoclusters (NCs) are intricately intertwined with their precise molecular formula. The vast majority of size-specific NC syntheses start from the reduction of the metal salt and thiol ligand mixture. Only in gold was it recently shown that ligand-exchange could induce the growth of NCs from one atomically precise species to another; a process of yet unknown reversibility. Here, we present a process for the ligand-exchange-induced growth of atomically precise silver NCs, in a biphasic liquid-liquid system, which is particularly of interest because of its complete reversibility and ability to occur at room temperature. We explore this phenomenon in-depth using Ag35(SG)18 [SG= glutathionate] and Ag44(4-FTP)30 [4-FTP= 4-fluorothiophenol] as model systems. We show that the ligand-exchange conversion of Ag35(SG)18 into Ag44(4-FTP)30 is rapid (< 5 min) and direct, while the reverse process proceeds slowly through intermediate cluster sizes. We adapt a recently developed theory of reverse Ostwald ripening to model the NCs’ interconvertibility. The model’s predictions are in good agreement with the experimental observations, and they highlight the importance of small changes in the ligand-metal binding energy in determining the final equilibrium NC size. Based on the insight provided by this model, we demonstrated experimentally that by varying the choice of ligands, ligand-exchange can be used to obtain different sized NCs. The findings in this work establish ligand-exchange as a versatile tool for tuning cluster sizes.

  13. Reversible Size Control of Silver Nanoclusters via Ligand-exchange

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa; Burlakov, Victor M.; Besong, Tabot M.D.; Joshi, Chakra Prasad; AbdulHalim, L; Black, David; Whetten, Robert; Goriely, Alain; Bakr, Osman

    2015-01-01

    The properties of atomically monodisperse noble metal nanoclusters (NCs) are intricately intertwined with their precise molecular formula. The vast majority of size-specific NC syntheses start from the reduction of the metal salt and thiol ligand mixture. Only in gold was it recently shown that ligand-exchange could induce the growth of NCs from one atomically precise species to another; a process of yet unknown reversibility. Here, we present a process for the ligand-exchange-induced growth of atomically precise silver NCs, in a biphasic liquid-liquid system, which is particularly of interest because of its complete reversibility and ability to occur at room temperature. We explore this phenomenon in-depth using Ag35(SG)18 [SG= glutathionate] and Ag44(4-FTP)30 [4-FTP= 4-fluorothiophenol] as model systems. We show that the ligand-exchange conversion of Ag35(SG)18 into Ag44(4-FTP)30 is rapid (< 5 min) and direct, while the reverse process proceeds slowly through intermediate cluster sizes. We adapt a recently developed theory of reverse Ostwald ripening to model the NCs’ interconvertibility. The model’s predictions are in good agreement with the experimental observations, and they highlight the importance of small changes in the ligand-metal binding energy in determining the final equilibrium NC size. Based on the insight provided by this model, we demonstrated experimentally that by varying the choice of ligands, ligand-exchange can be used to obtain different sized NCs. The findings in this work establish ligand-exchange as a versatile tool for tuning cluster sizes.

  14. Formalizing the definition of meta-analysis in Molecular Ecology.

    Science.gov (United States)

    ArchMiller, Althea A; Bauer, Eric F; Koch, Rebecca E; Wijayawardena, Bhagya K; Anil, Ammu; Kottwitz, Jack J; Munsterman, Amelia S; Wilson, Alan E

    2015-08-01

    Meta-analysis, the statistical synthesis of pertinent literature to develop evidence-based conclusions, is relatively new to the field of molecular ecology, with the first meta-analysis published in the journal Molecular Ecology in 2003 (Slate & Phua 2003). The goal of this article is to formalize the definition of meta-analysis for the authors, editors, reviewers and readers of Molecular Ecology by completing a review of the meta-analyses previously published in this journal. We also provide a brief overview of the many components required for meta-analysis with a more specific discussion of the issues related to the field of molecular ecology, including the use and statistical considerations of Wright's FST and its related analogues as effect sizes in meta-analysis. We performed a literature review to identify articles published as 'meta-analyses' in Molecular Ecology, which were then evaluated by at least two reviewers. We specifically targeted Molecular Ecology publications because as a flagship journal in this field, meta-analyses published in Molecular Ecology have the potential to set the standard for meta-analyses in other journals. We found that while many of these reviewed articles were strong meta-analyses, others failed to follow standard meta-analytical techniques. One of these unsatisfactory meta-analyses was in fact a secondary analysis. Other studies attempted meta-analyses but lacked the fundamental statistics that are considered necessary for an effective and powerful meta-analysis. By drawing attention to the inconsistency of studies labelled as meta-analyses, we emphasize the importance of understanding the components of traditional meta-analyses to fully embrace the strengths of quantitative data synthesis in the field of molecular ecology. © 2015 John Wiley & Sons Ltd.

  15. Molecularly Imprinted Nanomaterials for Sensor Applications

    Science.gov (United States)

    Irshad, Muhammad; Iqbal, Naseer; Mujahid, Adnan; Afzal, Adeel; Hussain, Tajamal; Sharif, Ahsan; Ahmad, Ejaz; Athar, Muhammad Makshoof

    2013-01-01

    Molecular imprinting is a well-established technology to mimic antibody-antigen interaction in a synthetic platform. Molecularly imprinted polymers and nanomaterials usually possess outstanding recognition capabilities. Imprinted nanostructured materials are characterized by their small sizes, large reactive surface area and, most importantly, with rapid and specific analysis of analytes due to the formation of template driven recognition cavities within the matrix. The excellent recognition and selectivity offered by this class of materials towards a target analyte have found applications in many areas, such as separation science, analysis of organic pollutants in water, environmental analysis of trace gases, chemical or biological sensors, biochemical assays, fabricating artificial receptors, nanotechnology, etc. We present here a concise overview and recent developments in nanostructured imprinted materials with respect to various sensor systems, e.g., electrochemical, optical and mass sensitive, etc. Finally, in light of recent studies, we conclude the article with future perspectives and foreseen applications of imprinted nanomaterials in chemical sensors. PMID:28348356

  16. Processing surface sizing starch using oxidation, enzymatic hydrolysis and ultrasonic treatment methods--Preparation and application.

    Science.gov (United States)

    Brenner, Tobias; Kiessler, Birgit; Radosta, Sylvia; Arndt, Tiemo

    2016-03-15

    The surface application of starch is a well-established method for increasing paper strength. In surface sizing, a solution of degraded starch is applied to the paper. Two procedures have proved valuable for starch degradation in the paper mill: enzymatic and thermo-oxidative degradation. The objective of this study was to determine achievable efficiencies of cavitation in preparing degraded starch for surface application on paper. It was found that ultrasonic-assisted starch degradation can provide a starch solution that is suitable for surface sizing. The molecular composition of starch solutions prepared by ultrasonic treatment differed from that of starch solutions degraded by enzymes or by thermo-oxidation. Compared to commercial degradation processes, this resulted in intensified film formation and in greater penetration during surface sizing and ultimately in a higher starch content of the paper. Paper sized with ultrasonically treated starch solutions show the same strength properties compared to commercially sized paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Preparation of nano-sized α-Al2O3 from oil shale ash

    International Nuclear Information System (INIS)

    An, Baichao; Wang, Wenying; Ji, Guijuan; Gan, Shucai; Gao, Guimei; Xu, Jijing; Li, Guanghuan

    2010-01-01

    Oil shale ash (OSA), the residue of oil shale semi-coke roasting, was used as a raw material to synthesize nano-sized α-Al 2 O 3 . Ultrasonic oscillation pretreatment followed by azeotropic distillation was employed for reducing the particle size of α-Al 2 O 3 . The structural characterization at molecular and nanometer scales was performed using X-ray diffraction (XRD), transmission electron microscopy (TEM), respectively. The interaction between alumina and n-butanol was characterized by Fourier transform infrared spectroscopy (FT-IR). The results revealed that the crystalline phase of alumina nanoparticles was regular and the well dispersed alumina nanoparticles had a diameter of 50-80 nm. In addition, the significant factors including injection rate of carbon oxide (CO 2 ), ultrasonic oscillations, azeotropic distillation and surfactant were investigated with respect to their effects on the size of the alumina particles.

  18. Cell and Tissue Imaging with Molecularly Imprinted Polymers.

    Science.gov (United States)

    Panagiotopoulou, Maria; Kunath, Stephanie; Haupt, Karsten; Tse Sum Bui, Bernadette

    2017-01-01

    Advanced tools for cell imaging are of particular interest as they can detect, localize and quantify molecular targets like abnormal glycosylation sites that are biomarkers of cancer and infection. Targeting these biomarkers is often challenging due to a lack of receptor materials. Molecularly imprinted polymers (MIPs) are promising artificial receptors; they can be tailored to bind targets specifically, be labeled easily, and are physically and chemically stable. Herein, we demonstrate the application of MIPs as artificial antibodies for selective labeling and imaging of cellular targets, on the example of hyaluronan and sialylation moieties on fixated human skin cells and tissues. Thus, fluorescently labeled MIP nanoparticles templated with glucuronic acid (MIPGlcA) and N-acetylneuraminic acid (MIPNANA) are respectively applied. Two different fluorescent probes are used: (1) MIPGlcA particles, ~400 nm in size are labeled with the dye rhodamine that target the extracellular hyaluronan on cells and tissue specimens and (2) MIP-coated InP/ZnS quantum dots (QDs) of two different colors, ~125 nm in size that target the extracellular and intracellular hyaluronan and sialylation sites. Green and red emitting QDs are functionalized with MIPGlcA and MIPNANA respectively, enabling multiplexed cell imaging. This is a general approach that can also be adapted to other target molecules on and in cells.

  19. Molecular modeling in the development of metal radiopharmaceuticals

    International Nuclear Information System (INIS)

    Green, M.A.

    1993-10-01

    We began this project with a compilation of a structural library to serve as a data base containing descriptions of the molecular features of metal-labeled radiopharmaceuticals known to efficiently cross the blood-brain barrier. Such a data base is needed in order to identify structural features (size, shape, molecular surface areas and volumes) that are critical in allowing blood-brain barrier penetration. Nine metal complexes have been added to this structural library. We have completed a detailed comparison of four molecular mechanics computer programs QUANTA, SYBYL, BOYD, and MM2DREW to assess their applicability to modeling the structures of low molecular weight metal complexes. We tested the ability of each program to reproduce the crystallographic structures of 38 complexes between nickel(II) and saturated N-donor ligands. The programs were evaluated in terns of their ability to reproduce structural features such as bond lengths, bond angles, and torsion angles. Recently, we investigated the synthesis and characterization of lipophilic cationic gallium complexes with hexadentate bis(salicylaldimine) ligands. This work identified the first gallium-68 radiopharrnaceuticals that can be injected intravenously and that subsequently exhibit significant myocardial uptake followed by prolonged myocardial retention of 68 Ga radioactivity. Tracers of this type remain under investigation as agents for evaluation of myocardial perfusion with positron emission tomography

  20. Diffusion of Supercritical Fluids through Single-Layer Nanoporous Solids: Theory and Molecular Simulations.

    Science.gov (United States)

    Oulebsir, Fouad; Vermorel, Romain; Galliero, Guillaume

    2018-01-16

    With the advent of graphene material, membranes based on single-layer nanoporous solids appear as promising devices for fluid separation, be it liquid or gaseous mixtures. The design of such architectured porous materials would greatly benefit from accurate models that can predict their transport and separation properties. More specifically, there is no universal understanding of how parameters such as temperature, fluid loading conditions, or the ratio of the pore size to the fluid molecular diameter influence the permeation process. In this study, we address the problem of pure supercritical fluids diffusing through simplified models of single-layer porous materials. Basically, we investigate a toy model that consists of a single-layer lattice of Lennard-Jones interaction sites with a slit gap of controllable width. We performed extensive equilibrium and biased molecular dynamics simulations to document the physical mechanisms involved at the molecular scale. We propose a general constitutive equation for the diffusional transport coefficient derived from classical statistical mechanics and kinetic theory, which can be further simplified in the ideal gas limit. This transport coefficient relates the molecular flux to the fluid density jump across the single-layer membrane. It is found to be proportional to the accessible surface porosity of the single-layer porous solid and to a thermodynamic factor accounting for the inhomogeneity of the fluid close to the pore entrance. Both quantities directly depend on the potential of mean force that results from molecular interactions between solid and fluid atoms. Comparisons with the simulations data show that the kinetic model captures how narrowing the pore size below the fluid molecular diameter lowers dramatically the value of the transport coefficient. Furthermore, we demonstrate that our general constitutive equation allows for a consistent interpretation of the intricate effects of temperature and fluid loading

  1. SMPBS: Web server for computing biomolecular electrostatics using finite element solvers of size modified Poisson-Boltzmann equation.

    Science.gov (United States)

    Xie, Yang; Ying, Jinyong; Xie, Dexuan

    2017-03-30

    SMPBS (Size Modified Poisson-Boltzmann Solvers) is a web server for computing biomolecular electrostatics using finite element solvers of the size modified Poisson-Boltzmann equation (SMPBE). SMPBE not only reflects ionic size effects but also includes the classic Poisson-Boltzmann equation (PBE) as a special case. Thus, its web server is expected to have a broader range of applications than a PBE web server. SMPBS is designed with a dynamic, mobile-friendly user interface, and features easily accessible help text, asynchronous data submission, and an interactive, hardware-accelerated molecular visualization viewer based on the 3Dmol.js library. In particular, the viewer allows computed electrostatics to be directly mapped onto an irregular triangular mesh of a molecular surface. Due to this functionality and the fast SMPBE finite element solvers, the web server is very efficient in the calculation and visualization of electrostatics. In addition, SMPBE is reconstructed using a new objective electrostatic free energy, clearly showing that the electrostatics and ionic concentrations predicted by SMPBE are optimal in the sense of minimizing the objective electrostatic free energy. SMPBS is available at the URL: smpbs.math.uwm.edu © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Molecular Genetic Identification Of Some Flax Mutants

    International Nuclear Information System (INIS)

    AMER, I.M.; MOUSTAFA, H.A.M.

    2009-01-01

    Five flax genotypes (Linum usitatissimum L.) i.e., commercial cultivar Sakha 2, the mother variety Giza 4 and three mutant types induced by gamma rays, were screened for their salinity tolerance in field experiments (salinity concentration was 8600 and 8300 ppm for soil and irrigation water, respectively). Mutation 6 was the most salt tolerant as compared to the other four genotypes.RAPD technique was used to detect some molecular markers associated with salt tolerance in flax (Mut 6), RAPD-PCR results using 12 random primers exhibited 149 amplified fragments; 91.9% of them were polymorphic and twelve molecular markers (8.1%) for salt tolerant (mutant 6) were identified with molecular size ranged from 191 to 4159 bp and only eight primers successes to amplify these specific markers. Concerning the other mutants, Mut 15 and Mut 25 exhibited 4.3% and 16.2% specific markers, respectively. The induced mutants exhibited genetic similarity to the parent variety were about 51%, 58.3% and 61.1% for Mut 25, Mut 6 and Mut 15, respectively. These specific markers (SM) are used for identification of the induced mutations and it is important for new variety registration.

  3. Molecular structure of dextran sulphate sodium in aqueous environment

    Science.gov (United States)

    Yu, Miao; Every, Hayley A.; Jiskoot, Wim; Witkamp, Geert-Jan; Buijs, Wim

    2018-03-01

    Here we propose a 3D-molecular structural model for dextran sulphate sodium (DSS) in a neutral aqueous environment based on the results of a molecular modelling study. The DSS structure is dominated by the stereochemistry of the 1,6-linked α-glucose units and the presence of two sulphate groups on each α-glucose unit. The structure of DSS can be best described as a helix with various patterns of di-sulphate substitution on the glucose rings. The presence of a side chain does not alter the 3D-structure of the linear main chain much, but affects the overall spatial dimension of the polymer. The simulated polymers have a diameter similar to or in some cases even larger than model α-hemolysin nano-pores for macromolecule transport in many biological processes, indicating a size-limited translocation through such pores. All results of the molecular modelling study are in line with previously reported experimental data. This study establishes the three-dimensional structure of DSS and summarizes the spatial dimension of the polymer, serving as the basis for a better understanding on the molecular level of DSS-involved electrostatic interaction processes with biological components like proteins and cell pores.

  4. Molecular imaging of tumor blood vessels in prostate cancer.

    Science.gov (United States)

    Tilki, Derya; Seitz, Michael; Singer, Bernhard B; Irmak, Ster; Stief, Christian G; Reich, Oliver; Ergün, Süleyman

    2009-05-01

    In the past three decades many efforts have been undertaken to understand the mechanisms of tumor angiogenesis. The introduction of anti-angiogenic drugs in tumor therapy during the last few years necessitates the establishment of new techniques enabling molecular imaging of tumor vascular remodelling. The determination of tumor size as commonly used is not appropriate since the extended necrosis under anti-angiogenic therapy does not necessarily result in the reduction of tumor diameter. The basis for the molecular imaging of tumor blood vessels is the remodelling of the tumor vessels under anti-angiogenic therapy which obviously occurs at an early stage and seems to be a convincing parameter. Beside the enormous progress in this field during the last few years the resolution is still not high enough to evaluate the remodelling of the micro tumor vessels. New imaging approaches combining specific molecular markers for tumor vessels with the different imaging techniques are needed to overcome this issue as exemplarily discussed for prostate cancer in this review. Molecular contrast agents targeting the vasculature will allow clinicians the visualization of vascular remodelling processes taking place under anti-angiogenic therapy and improve tumor diagnosis and follow-up.

  5. Size-density relations in dark clouds: Non-LTE effects

    Science.gov (United States)

    Maloney, P.

    1986-01-01

    One of the major goals of molecular astronomy has been to understand the physics and dynamics of dense interstellar clouds. Because the interpretation of observations of giant molecular clouds is complicated by their very complex structure and the dynamical effects of star formation, a number of studies have concentrated on dark clouds. Leung, Kutner and Mead (1982) (hereafter LKM) and Myers (1983), in studies of CO and NH3 emission, concluded that dark clouds exhibit significant correlations between linewidth and cloud radius of the form delta v varies as R(0.5) and between mean density and radius of the form n varies as R(-1), as originally suggested by Larson (1981). This result suggests that these objects are in virial equilibrium. However, the mean densities inferred from the CO data of LKM are based on an local thermodynamic equilibrium (LTE) analysis of their 13CO data. At the very low mean densities inferred by LKM for the larger clouds in their samples, the assumption of LTE becomes very questionable. As most of the range in R in the density-size correlation comes from the clouds observed in CO, it seems worthwhile to examine how non-LTE effects will influence the derived densities. One way to assess the validity of LTE-derived densities is to construct cloud models and then to interpret them in the same way as the observed data. Microturbulent models of inhomogeneous clouds of varying central concentration with the linewidth-size and mean density-size relations found by Myers show sub-thermal excitation of the 13CO line in the larger clouds, with the result that LTE analysis considerbly underestimates the actual column density. A more general approach which doesn't require detailed modeling of the clouds is to consider whether the observed T sub R*(13CO)/T sub R*(12CO) ratios in the clouds studied by LKM are in the range where the LTE-derived optical depths (and hence column densities) can be seriously in error due to sub-thermal excitation of the 13CO

  6. Cold Molecular Gas Along the Merger Sequence in Local Luminous Infrared Galaxies

    Science.gov (United States)

    Yamashita, Takuji; Komugi, Shinya; Matsuhara, Hideo; Armus, Lee; Inami, Hanae; Ueda, Junko; Iono, Daisuke; Kohno, Kotaro; Evans, Aaron S.; Arimatsu, Ko

    2017-08-01

    We present an initial result from the 12CO (J = 1-0) survey of 79 galaxies in 62 local luminous and ultraluminous infrared galaxy (LIRG and ULIRG) systems obtained using the 45 m telescope at the Nobeyama Radio Observatory. This is a systematic 12CO (J = 1-0) survey of the Great Observatories All-sky LIRGs Survey (GOALS) sample. The molecular gas mass of the sample is in the range 2.2× {10}8{--}7.0× {10}9 {M}⊙ within the central several kiloparsecs subtended by the 15\\prime\\prime beam. A method to estimate the size of a CO gas distribution is introduced, which is combined with the total CO flux in the literature. This method is applied to part of our sample, and we find that the median CO radius is 1-4 kpc. From the early stage to the late stage of mergers, we find that the CO size decreases while the median value of the molecular gas mass in the central several-kiloparsec region is constant. Our results statistically support a scenario where molecular gas inflows toward the central region from the outer disk to replenish gas consumed by starburst, and that such a process is common in merging LIRGs.

  7. Molecular sensors and molecular logic gates

    International Nuclear Information System (INIS)

    Georgiev, N.; Bojinov, V.

    2013-01-01

    Full text: The rapid grow of nanotechnology field extended the concept of a macroscopic device to the molecular level. Because of this reason the design and synthesis of (supra)-molecular species capable of mimicking the functions of macroscopic devices are currently of great interest. Molecular devices operate via electronic and/or nuclear rearrangements and, like macroscopic devices, need energy to operate and communicate between their elements. The energy needed to make a device work can be supplied as chemical energy, electrical energy, or light. Luminescence is one of the most useful techniques to monitor the operation of molecular-level devices. This fact determinates the synthesis of novel fluorescence compounds as a considerable and inseparable part of nanoscience development. Further miniaturization of semiconductors in electronic field reaches their limit. Therefore the design and construction of molecular systems capable of performing complex logic functions is of great scientific interest now. In semiconductor devices the logic gates work using binary logic, where the signals are encoded as 0 and 1 (low and high current). This process is executable on molecular level by several ways, but the most common are based on the optical properties of the molecule switches encoding the low and high concentrations of the input guest molecules and the output fluorescent intensities with binary 0 and 1 respectively. The first proposal to execute logic operations at the molecular level was made in 1988, but the field developed only five years later when the analogy between molecular switches and logic gates was experimentally demonstrated by de Silva. There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR and XNOR and all of them were achieved by molecules, the fluorescence switching as well. key words: fluorescence, molecular sensors, molecular logic gates

  8. Coupling effects of abiotic and biotic factors on molecular composition of dissolved organic matter in a freshwater wetland

    Energy Technology Data Exchange (ETDEWEB)

    He, Wei [Department of Environment and Energy, Sejong University, Seoul 143-747 (Korea, Republic of); Choi, Ilhwan [Water Analysis and Research Center, K-water, 560 Sintanjin-ro, Daedeok-gu, Daejeon 307-711 (Korea, Republic of); Lee, Jung-Joon [Department of Biological Education, Daegu University, Gyungbuk 712-714 (Korea, Republic of); Hur, Jin, E-mail: jinhur@sejong.ac.kr [Department of Environment and Energy, Sejong University, Seoul 143-747 (Korea, Republic of)

    2016-02-15

    In this study, temporal and spatial variations in five defined molecular size fractions of dissolved organic matter (DOM) were examined for a well preserved wetland (Upo Wetland) and its surrounding areas, and the influencing factors were explored with many biotic and abioic parameters. For each DOM sample, the five size fractions were determined by size-exclusion chromatography coupled with organic carbon detector (SEC-OCD). For 2-year long monthly monitoring, bio-polymers (BP), humic substances (HS), building blocks (BB), low molecular-weight (LMW) neutrals, and LMW acids displayed the median values of 264, 1884, 1070, 1090, and 11 μg-C L{sup −1}, respectively, accounting for 6.2%, 41.7%, 24.5%, 26.4%, and 0.4% of dissolved organic carbon (DOC). The dominant presence of HS indicated that terrestrial input played important roles in DOM composition of the freshwater ecosystem, which contrasted with coastal wetlands in other reports. Both seasonal and periodic patterns in the variations were found only for HS and BB among the size fractions. It was also notable that the sources of HS were seasonally shifted from aquagenic origin in winter to pedogenic origin in summer. The correlations among the size fractions revealed that BB and LMW neutrals might be degradation products from HS and humic-like substances (HS + BB), respectively, while LMW acids, from LMW neutrals. Principle component analysis revealed that the humic-like substances and the aromaticity of DOM were associated with temperature, chlorophyll a, phosphorous, and rainfall, whereas the other fractions and the molecular weight of HS were primarily affected by solar irradiation. Significant correlations between DOM composition and some biotic factors further suggested that DOM may even affect the biological communities, which provides an insight into the potential coupling effects of biotic and abiotic factors on DOM molecular composition in freshwater wetlands. - Highlights: • Humic fractions varied

  9. Coupling effects of abiotic and biotic factors on molecular composition of dissolved organic matter in a freshwater wetland

    International Nuclear Information System (INIS)

    He, Wei; Choi, Ilhwan; Lee, Jung-Joon; Hur, Jin

    2016-01-01

    In this study, temporal and spatial variations in five defined molecular size fractions of dissolved organic matter (DOM) were examined for a well preserved wetland (Upo Wetland) and its surrounding areas, and the influencing factors were explored with many biotic and abioic parameters. For each DOM sample, the five size fractions were determined by size-exclusion chromatography coupled with organic carbon detector (SEC-OCD). For 2-year long monthly monitoring, bio-polymers (BP), humic substances (HS), building blocks (BB), low molecular-weight (LMW) neutrals, and LMW acids displayed the median values of 264, 1884, 1070, 1090, and 11 μg-C L"−"1, respectively, accounting for 6.2%, 41.7%, 24.5%, 26.4%, and 0.4% of dissolved organic carbon (DOC). The dominant presence of HS indicated that terrestrial input played important roles in DOM composition of the freshwater ecosystem, which contrasted with coastal wetlands in other reports. Both seasonal and periodic patterns in the variations were found only for HS and BB among the size fractions. It was also notable that the sources of HS were seasonally shifted from aquagenic origin in winter to pedogenic origin in summer. The correlations among the size fractions revealed that BB and LMW neutrals might be degradation products from HS and humic-like substances (HS + BB), respectively, while LMW acids, from LMW neutrals. Principle component analysis revealed that the humic-like substances and the aromaticity of DOM were associated with temperature, chlorophyll a, phosphorous, and rainfall, whereas the other fractions and the molecular weight of HS were primarily affected by solar irradiation. Significant correlations between DOM composition and some biotic factors further suggested that DOM may even affect the biological communities, which provides an insight into the potential coupling effects of biotic and abiotic factors on DOM molecular composition in freshwater wetlands. - Highlights: • Humic fractions varied

  10. Influence of cellulose ether particle size on water retention of freshly-mixed mortars

    OpenAIRE

    Patural , Laetitia; Govin , Alexandre; Grosseau , Philippe; Ruot , Bertrand; Deves , Olivier

    2009-01-01

    International audience; Cellulose ethers are polymers frequently introduced into mortar formulations in order to improve water retention capacity and workability of the freshly-mixed materials. Physico-chemical parameters of these admixtures (molecular weight, granulometry, substitution degrees, etc) seem to have a strong influence on mortar water retention capacity. In this paper, the influence of cellulose ether particle size was studied. Two behaviors were highlighted regarding the particl...

  11. Nanoscaffold matrices for size-controlled, pulsatile transdermal testosterone delivery: nanosize effects on the time dimension

    International Nuclear Information System (INIS)

    Malik, Ritu; Misra, Amit; Tondwal, Shailesh; Venkatesh, K S

    2008-01-01

    Pulsatile transdermal testosterone (T) has applications in hormone supplementation and male contraception. Pulsatile T delivery was achieved by assembling crystalline and nanoparticulate T in nucleation-inhibiting polymer matrices of controlled porosity. Different interference patterns observed from various polymeric films containing T were due to the various particle sizes of T present in the polymer matrices. Scanning electron microscopy was used to determine the size and shape of T crystals. Skin-adherent films containing T nanoparticles of any size between 10-500 nm could be prepared using pharmaceutically acceptable vinylic polymers. Drug release and skin permeation profiles were studied. The dissolution-diffusion behavior of nanoparticles differed from crystalline and molecular states. Nanosize may thus be used to engineer chronopharmacologically relevant drug delivery.

  12. Nanoscaffold matrices for size-controlled, pulsatile transdermal testosterone delivery: nanosize effects on the time dimension

    Science.gov (United States)

    Malik, Ritu; Tondwal, Shailesh; Venkatesh, K. S.; Misra, Amit

    2008-10-01

    Pulsatile transdermal testosterone (T) has applications in hormone supplementation and male contraception. Pulsatile T delivery was achieved by assembling crystalline and nanoparticulate T in nucleation-inhibiting polymer matrices of controlled porosity. Different interference patterns observed from various polymeric films containing T were due to the various particle sizes of T present in the polymer matrices. Scanning electron microscopy was used to determine the size and shape of T crystals. Skin-adherent films containing T nanoparticles of any size between 10-500 nm could be prepared using pharmaceutically acceptable vinylic polymers. Drug release and skin permeation profiles were studied. The dissolution-diffusion behavior of nanoparticles differed from crystalline and molecular states. Nanosize may thus be used to engineer chronopharmacologically relevant drug delivery.

  13. Directional anisotropy, finite size effect and elastic properties of hexagonal boron nitride

    International Nuclear Information System (INIS)

    Thomas, Siby; Ajith, K M; Valsakumar, M C

    2016-01-01

    Classical molecular dynamics simulations have been performed to analyze the elastic and mechanical properties of two-dimensional (2D) hexagonal boron nitride (h-BN) using a Tersoff-type interatomic empirical potential. We present a systematic study of h-BN for various system sizes. Young’s modulus and Poisson’s ratio are found to be anisotropic for finite sheets whereas they are isotropic for the infinite sheet. Both of them increase with system size in accordance with a power law. It is concluded from the computed values of elastic constants that h-BN sheets, finite or infinite, satisfy Born’s criterion for mechanical stability. Due to the the strong in-plane sp 2 bonds and the small mass of boron and nitrogen atoms, h-BN possesses high longitudinal and shear velocities. The variation of bending rigidity with system size is calculated using the Foppl–von Karman approach by coupling the in-plane bending and out-of-plane stretching modes of the 2D h-BN. (paper)

  14. Molecular dynamics study of the thermal expansion coefficient of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Nejat Pishkenari, Hossein, E-mail: nejat@sharif.edu; Mohagheghian, Erfan; Rasouli, Ali

    2016-12-16

    Due to the growing applications of silicon in nano-scale systems, a molecular dynamics approach is employed to investigate thermal properties of silicon. Since simulation results rely upon interatomic potentials, thermal expansion coefficient (TEC) and lattice constant of bulk silicon have been obtained using different potentials (SW, Tersoff, MEAM, and EDIP) and results indicate that SW has a better agreement with the experimental observations. To investigate effect of size on TEC of silicon nanowires, further simulations are performed using SW potential. To this end, silicon nanowires of different sizes are examined and their TEC is calculated by averaging in different directions ([100], [110], [111], and [112]) and various temperatures. Results show that as the size increases, due to the decrease of the surface effects, TEC approaches its bulk value. - Highlights: • MD simulations of TEC and lattice constant of bulk silicon. • Effects of four potentials on the results. • Comparison to experimental data. • Investigating size effect on TEC of silicon nanowires.

  15. Effect of pore size on performance of monolithic tube chromatography of large biomolecules.

    Science.gov (United States)

    Podgornik, Ales; Hamachi, Masataka; Isakari, Yu; Yoshimoto, Noriko; Yamamoto, Shuichi

    2017-11-01

    Effect of pore size on the performance of ion-exchange monolith tube chromatography of large biomolecules was investigated. Radial flow 1 mL polymer based monolith tubes of different pore sizes (1.5, 2, and 6 μm) were tested with model samples such as 20 mer poly T-DNA, basic proteins, and acidic proteins (molecular weight 14 000-670 000). Pressure drop, pH transient, the number of binding site, dynamic binding capacity, and peak width were examined. Pressure drop-flow rate curves and dynamic binding capacity values were well correlated with the nominal pore size. While duration of the pH transient curves depends on the pore size, it was found that pH duration normalized on estimated surface area was constant, indicating that the ligand density is the same. This was also confirmed by the constant number of binding site values being independent of pore size. The peak width values were similar to those for axial flow monolith chromatography. These results showed that it is easy to scale up axial flow monolith chromatography to radial flow monolith tube chromatography by choosing the right pore size in terms of the pressure drop and capacity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Recent development of relativistic molecular theory

    International Nuclear Information System (INIS)

    Takahito, Nakajima; Kimihiko, Hirao

    2005-01-01

    Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D. In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches. (author)

  17. Fabrication of reproducible, integration-compatible hybrid molecular/si electronics.

    Science.gov (United States)

    Yu, Xi; Lovrinčić, Robert; Kraynis, Olga; Man, Gabriel; Ely, Tal; Zohar, Arava; Toledano, Tal; Cahen, David; Vilan, Ayelet

    2014-12-29

    Reproducible molecular junctions can be integrated within standard CMOS technology. Metal-molecule-semiconductor junctions are fabricated by direct Si-C binding of hexadecane or methyl-styrene onto oxide-free H-Si(111) surfaces, with the lateral size of the junctions defined by an etched SiO2 well and with evaporated Pb as the top contact. The current density, J, is highly reproducible with a standard deviation in log(J) of 0.2 over a junction diameter change from 3 to 100 μm. Reproducibility over such a large range indicates that transport is truly across the molecules and does not result from artifacts like edge effects or defects in the molecular monolayer. Device fabrication is tested for two n-Si doping levels. With highly doped Si, transport is dominated by tunneling and reveals sharp conductance onsets at room temperature. Using the temperature dependence of current across medium-doped n-Si, the molecular tunneling barrier can be separated from the Si-Schottky one, which is a 0.47 eV, in agreement with the molecular-modified surface dipole and quite different from the bare Si-H junction. This indicates that Pb evaporation does not cause significant chemical changes to the molecules. The ability to manufacture reliable devices constitutes important progress toward possible future hybrid Si-based molecular electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Simultaneous observation of chemomechanical coupling of a molecular motor.

    Science.gov (United States)

    Nishizaka, Takayuki; Hasimoto, Yuh; Masaike, Tomoko

    2011-01-01

    F(1)-ATPase is the smallest rotary molecular motor ever found. Unidirectional rotation of the γ-shaft is driven by precisely coordinated sequential ATP hydrolysis reactions in three catalytic sites arranged 120° apart in the cylinder. Single-molecule observation allows us to directly watch the rotation of the shaft using micron-sized plastic beads. Additionally, an advanced version of "total internal reflection fluorescence microscope (TIRFM)" enables us to detect binding and release of energy currency through fluorescently labeled ATP. In this chapter, we describe how to set up the system for simultaneous observation of these two critical events. This specialized optical setup is applicable to a variety of research, not only molecular motors but also other single-molecule topics.

  19. Complexity of chemical graphs in terms of size, branching, and cyclicity.

    Science.gov (United States)

    Balaban, A T; Mills, D; Kodali, V; Basak, S C

    2006-08-01

    Chemical graph complexity depends on many factors, but the main ones are size, branching, and cyclicity. Some molecular descriptors embrace together all these three parameters, which cannot then be disentangled. The topological index J (and its refinements that include accounting for bond multiplicity and the presence of heteroatoms) was designed to compensate in a significant measure for graph size and cyclicity, and therefore it contains information mainly on branching. In order to separate these factors, two new indices (F and G) related with J are proposed, which allow to group together graphs with the same size into families of constitutional formulas differing in their branching and cyclicity. A comparison with other topological indices revealed that a few other topological indices vary similarly with index G, notably DN2S4 among the triplet indices, and TOTOP among the indices contained in the Molconn-Z program. This comparison involved all possible chemical graphs (i.e. connected planar graphs with vertex degrees not higher than four) with four through six vertices, and all possible alkanes with four through nine carbon atoms.

  20. Detection and size analysis of proteins with switchable DNA layers.

    Science.gov (United States)

    Rant, Ulrich; Pringsheim, Erika; Kaiser, Wolfgang; Arinaga, Kenji; Knezevic, Jelena; Tornow, Marc; Fujita, Shozo; Yokoyama, Naoki; Abstreiter, Gerhard

    2009-04-01

    We introduce a chip-compatible scheme for the label-free detection of proteins in real-time that is based on the electrically driven conformation switching of DNA oligonucleotides on metal surfaces. The switching behavior is a sensitive indicator for the specific recognition of IgG antibodies and antibody fragments, which can be detected in quantities of less than 10(-18) mol on the sensor surface. Moreover, we show how the dynamics of the induced molecular motion can be monitored by measuring the high-frequency switching response. When proteins bind to the layer, the increase in hydrodynamic drag slows the switching dynamics, which allows us to determine the size of the captured proteins. We demonstrate the identification of different antibody fragments by means of their kinetic fingerprint. The switchDNA method represents a generic approach to simultaneously detect and size target molecules using a single analytical platform.

  1. Molecular dynamics modeling and simulation of void growth in two dimensions

    Science.gov (United States)

    Chang, H.-J.; Segurado, J.; Rodríguez de la Fuente, O.; Pabón, B. M.; LLorca, J.

    2013-10-01

    The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids.

  2. Molecular dynamics modeling and simulation of void growth in two dimensions

    International Nuclear Information System (INIS)

    Chang, H-J; Segurado, J; LLorca, J; Rodríguez de la Fuente, O; Pabón, B M

    2013-01-01

    The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids. (paper)

  3. Atomic size effects on local coordination and medium range order in molten trivalent metal chlorides

    International Nuclear Information System (INIS)

    Tatlipinar, H.; Akdeniz, Z.; Pastore, G.

    1992-08-01

    Structural correlations in molten trivalent metal chlorides are evaluated as functions of the metal ion size R M across the range from LaCl 3 (R M approx. 1.4 A) to AlCl 3 (R M approx. 0.8 A), using a charged soft-sphere model and the hypernetted chain approximation. Main attention is given to trends in the local liquid structure (partial radial distribution functions, coordination numbers and bond lengths) and in the intermediate range order (first sharp diffraction peak in the number-number and partial structure factors). The trend towards fourfold local coordination of the metal ions, the stabilization of their first-neighbour chlorine cage and the growth of medium range order are found to proceed in parallel as the size of the metal ion is allowed to decrease at constant number density and temperature. A tendency to molecular-type local structure and liquid-vapour phase separation is found within the hypernetted chain scheme at small metal ion sizes corresponding to AlCl 3 and is emphasized by decreasing the number density of the fluid. The predicted molecular units are rather strongly distorted Al 2 Cl 6 dimers, in agreement with observation. The calculated structural trends for other trichlorides are compared with diffraction and transport data. (author). 17 refs, 8 figs, 1 tab

  4. Glass formability in medium-sized molecular systems/pharmaceuticals. I. Thermodynamics vs. kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Wenkang; Li, Xiangqian; Chen, Zeming; Liu, Ying Dan; Wang, Li-Min, E-mail: simone.capaccioli@unipi.it, E-mail: Limin-Wang@ysu.edu.cn [State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China); Labardi, Massimiliano [CNR-IPCF, Sede Secondaria Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy); Capaccioli, Simone, E-mail: simone.capaccioli@unipi.it, E-mail: Limin-Wang@ysu.edu.cn [CNR-IPCF, Sede Secondaria Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy); Department of Physics, Pisa University, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Paluch, M. [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland)

    2016-05-07

    Scrutinizing critical thermodynamic and kinetic factors for glass formation and the glass stability of materials would benefit the screening of the glass formers for the industry of glassy materials. The present work aims at elucidating the factors that contribute to the glass formation by investigating medium-sized molecules of pharmaceuticals. Glass transition related thermodynamics and kinetics are performed on the pharmaceuticals using calorimetric, dielectric, and viscosity measurements. The characteristic thermodynamic and kinetic parameters of glass transition are found to reproduce the relations established for small-molecule glass formers. The systematic comparison of the thermodynamic and kinetic contributions to glass formation reveals that the melting-point viscosity is the crucial quantity for the glass formation. Of more interest is the finding of a rough correlation between the melting-point viscosity and the entropy of fusion normalized by the number of beads of the pharmaceuticals, suggesting the thermodynamics can partly manifest its contribution to glass formation via kinetics.

  5. Glass formability in medium-sized molecular systems/pharmaceuticals. I. Thermodynamics vs. kinetics.

    Science.gov (United States)

    Tu, Wenkang; Li, Xiangqian; Chen, Zeming; Liu, Ying Dan; Labardi, Massimiliano; Capaccioli, Simone; Paluch, M; Wang, Li-Min

    2016-05-07

    Scrutinizing critical thermodynamic and kinetic factors for glass formation and the glass stability of materials would benefit the screening of the glass formers for the industry of glassy materials. The present work aims at elucidating the factors that contribute to the glass formation by investigating medium-sized molecules of pharmaceuticals. Glass transition related thermodynamics and kinetics are performed on the pharmaceuticals using calorimetric, dielectric, and viscosity measurements. The characteristic thermodynamic and kinetic parameters of glass transition are found to reproduce the relations established for small-molecule glass formers. The systematic comparison of the thermodynamic and kinetic contributions to glass formation reveals that the melting-point viscosity is the crucial quantity for the glass formation. Of more interest is the finding of a rough correlation between the melting-point viscosity and the entropy of fusion normalized by the number of beads of the pharmaceuticals, suggesting the thermodynamics can partly manifest its contribution to glass formation via kinetics.

  6. Molecular dynamics studies of superionic conductors

    International Nuclear Information System (INIS)

    Rahman, A.; Vashishta, P.

    1983-01-01

    Structural and dynamical properties of superionic conductors AgI and CuI are studied using molecular dynamics (MD) techniques. The model of these superionic conductors is based on the use of effective pair potentials. To determine the constants in these potentials, cohesive energy and bulk modulus are used as input: in addition one uses notions of ionic size based on the known crystal structure. Salient features of the MD technique are outlined. Methods of treating long range Coulomb forces are discussed in detail. This includes the manner of doing Ewald sum for MD cells of arbitrary shape. Features that can be incorporated to expedite the MD calculations are also discussed. A novel MD technique which allows for a dynamically controlled variation of the shape and size of the MD cell is described briefly. The development of this novel technique has made it possible to study structural phase transitions in superionic conductors. 68 references, 17 figures, 2 tables

  7. Synthesis and characterization of Co (Ni or Cu)-MCM-41 mesoporous molecular sieves with different amount of metal obtained by using microwave irradiation method

    International Nuclear Information System (INIS)

    Jiang Tingshun; Zhao Qian; Chen Kangmin; Tang Yajing; Yu Longbao; Yin Hengbo

    2008-01-01

    Co (Ni or Cu)-MCM-41 mesoporous molecular sieves with different amount of metal were synthesized by using cetyltrimethyl ammonium bromide as a template and by a novel microwave irradiation method. These samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and N 2 physical adsorption. The experimental results show that Co (Ni or Cu)-MCM-41 mesoporous molecular sieves were successfully synthesized. When the as-synthesized samples were calcined at 550 deg. C for 10 h, the template was effectively removed. Under microwave irradiation condition, Co-MCM-41 mesoporous molecular sieves have specific surface areas in a range of 745.7-1188.8 m 2 /g and average pore sizes in a range of 2.46-2.75 nm; Ni-MCM-41 mesoporous molecular sieves have specific surface areas in a range of 625.8-1161.3 m 2 /g and average pore sizes of ca. 2.7 nm; Cu-MCM-41 mesoporous molecular sieves have specific surface areas in a range of 601.6-1142.9 m 2 /g and average pore sizes in a range of 2.46-2.76 nm. On the other hand, with increasing the introduced metal amount, the specific surface area and pore volume of the synthesized Co (Ni or Cu)-MCM-41 mesoporous molecular sieves became small, and the mesoporous ordering of the samples became poor. Under the comparable synthesis conditions, the synthesized Co-MCM-41 mesoporous molecular sieve has a bigger specific surface area and a more uniform pore distribution as compared with the synthesized Ni-MCM-41and Cu-MCM-41 mesoporous molecular sieves

  8. NMR studies of organic liquids confined in mesoporous materials: (1) Pore size distribution and (2) Phase behaviour and dynamic studies in restricted geometry

    International Nuclear Information System (INIS)

    Foerland, Kjersti

    2005-01-01

    In the thesis NMR spectroscopy is used for studying liquids confined in various porous materials. In the first part, pore size distributions of mesoporous silicas and controlled pore glasses were determined by measuring the 1H NMR signal from the non-frozen fraction of the confined liquid as a function of temperature, using benzene, acetonitrile and HMDS as probe molecules. In the second part, the molecular dynamics of acetonitrile, hexamethyldisilane, cyclohexane and cyclopentane confined in mesoporous materials were studied as a function of temperature. 6 papers are included with titles: 1) Pore-size determination of mesoporous materials by 1H NMR spectroscopy. 2) Pore-size distribution in mesoporous materials as studied by 1H NMR. 3) Dynamic 1H and 2H NMR investigations of acetonitrile confined in porous silica. 4) NMR investigations of hexamethyldisilane confined in controlled pore glasses: Pore size distribution and molecular dynamics studies. 5) 1H and 2H NMR studies of cyclohexane nano crystals in controlled pore glasses. 6) 1H NMR relaxation and diffusion studies of cyclohexane and cyclopentane confined in MCM-41

  9. NMR studies of organic liquids confined in mesoporous materials: (1) Pore size distribution and (2) Phase behaviour and dynamic studies in restricted geometry

    Energy Technology Data Exchange (ETDEWEB)

    Foerland, Kjersti

    2005-07-01

    In the thesis NMR spectroscopy is used for studying liquids confined in various porous materials. In the first part, pore size distributions of mesoporous silicas and controlled pore glasses were determined by measuring the 1H NMR signal from the non-frozen fraction of the confined liquid as a function of temperature, using benzene, acetonitrile and HMDS as probe molecules. In the second part, the molecular dynamics of acetonitrile, hexamethyldisilane, cyclohexane and cyclopentane confined in mesoporous materials were studied as a function of temperature. 6 papers are included with titles: 1) Pore-size determination of mesoporous materials by 1H NMR spectroscopy. 2) Pore-size distribution in mesoporous materials as studied by 1H NMR. 3) Dynamic 1H and 2H NMR investigations of acetonitrile confined in porous silica. 4) NMR investigations of hexamethyldisilane confined in controlled pore glasses: Pore size distribution and molecular dynamics studies. 5) 1H and 2H NMR studies of cyclohexane nano crystals in controlled pore glasses. 6) 1H NMR relaxation and diffusion studies of cyclohexane and cyclopentane confined in MCM-41.

  10. Patterned gallium surfaces as molecular mirrors.

    Science.gov (United States)

    Bossi, Alessandra; Rivetti, Claudio; Mangiarotti, Laura; Whitcombe, Michael J; Turner, Anthony P F; Piletsky, Sergey A

    2007-09-30

    An entirely new means of printing molecular information on a planar film, involving casting nanoscale impressions of the template protein molecules in molten gallium, is presented here for the first time. The metallic imprints not only replicate the shape and size of the proteins used as template. They also show specific binding for the template species. Such a simple approach to the creation of antibody-like properties in metallic mirrors can lead to applications in separations, microfluidic devices, and the development of new optical and electronic sensors, and will be of interest to chemists, materials scientists, analytical specialists, and electronic engineers.

  11. Towards high-throughput molecular detection of Plasmodium: new approaches and molecular markers

    Directory of Open Access Journals (Sweden)

    Rogier Christophe

    2009-04-01

    molecular methods. Dot18S and CYTB, the new methods reported herein are highly sensitive, allow parasite DNA extraction as well as genus- and species-specific diagnosis of several hundreds of samples, and are amenable to high-throughput scaling up for larger sample sizes. Such methods provide novel information on malaria prevalence and epidemiology and are suited for active malaria detection. The usefulness of such sensitive malaria diagnosis tools, especially in low endemic areas where eradication plans are now on-going, is discussed in this paper.

  12. Quality control of radiopharmaceuticals with HPLC using aqueous size exclusion spherogel column

    International Nuclear Information System (INIS)

    Vallabhajosula, S.; Goldsmith, S.J.; Lipszyc, H.

    1982-01-01

    The application of HPLC for the analysis and quality control of 99 Tc-radiopharmaceuticals, using a weakly basic anion exchange column, has been reported. This HPLC method for the separation of the components is based on molecular size. 99 Tc-MDP, 99 Tc-HDP and 99 Tc-DTPA were analysed and UV absorption studies carried out on the components. Components of the 99 Tc-MDP separation were injected into rabbits and renal excretion and serial images studied. (U.K.)

  13. Epidemiología molecular del dengue en las Américas

    Directory of Open Access Journals (Sweden)

    Francisco Javier Díaz Castrillón

    2004-03-01

    Full Text Available

    size: 10pt; font-family: Arial">Después de varias décadas de erradicación, el dengue se ha hecho endémico en la mayor parte de la América tropical y presenta tendencia al crecimiento en la mayoría de los países. La enfermedad ha sufrido un cambio en su expresión clínica en las últimas dos décadas. Una forma grave inexistente hasta los años 80 conocida como fiebre hemorrágica dengue (FHD se ha diseminado primero por las Antillas, luego en Suramérica y más tarde en Centroamérica y Méjico, convirtiéndose en un problema significativo para la salud pública del continente. Las causas del aumento en la virulencia de la enfermedad producida por el virus del dengue (DENV solo se conocen parcialmente. La potenciación de la enfermedad por acción de la inmunidad previa a serotipos diferentes al causante de la infección actual fue demostrada en el sureste asiático, pero no ha sido muy estudiada en las Américas. Además, este mecanismo no provee una explicación completa, puesto que FHD se ha observado también en personas que se infectan por primera vez, y la infección secundaria no siempre resulta en un cuadro severo.

    size: 10pt; font-family: Arial">La epidemiología molecular permite correlacionar la variación genética del agente infeccioso con los eventos epidemiológicos en un marco espacio-temporal. Utilizando técnicas moleculares es posible clasificar las diferentes cepas de cada serotipo del DENV en tres a seis subtipos o “genotipos”. Estos genotipos generalmente están segregados geográficamente pero ocasionalmente son introducidos en países o continentes que no los habían detectado previamente. Estos episodios migratorios pueden o no ir acompañados de cambios en la frecuencia y en la expresión clínica de la enfermedad.

    size: 10pt; font-family: Arial">En las Américas, sólo se ha detectado

  14. Excipient-assisted vinpocetine nanoparticles: experiments and molecular dynamic simulations.

    Science.gov (United States)

    Li, Cai-Xia; Wang, Hao-Bo; Oppong, Daniel; Wang, Jie-Xin; Chen, Jian-Feng; Le, Yuan

    2014-11-03

    Hydrophilic excipients can be used to increase the solubility and bioavailability of poorly soluble drugs. In this work, the conventional water-soluble pharmaceutical excipients hydroxypropylmethylcellulose (HPMC), polyvinylpyrrolidone (PVP), and lactose (LAC) were used as solid supports to prevent drug nanoparticles from aggregation and enhance drug dissolution. Excipient-assisted vinpocetine (VIN) nanoparticles were prepared by reactive precipitation. The analysis results indicated that HPMC was a suitable excipient to prepare VIN nanoparticles. VIN/HPMC nanoparticles had a mean size of 130 nm within a narrow distribution. The dissolution rate of VIN nanoparticles was significantly faster than those of a physical mixture of VIN/HPMC and raw VIN. VIN/HPMC nanoparticles had a higher dissolution profile than VIN/PVP and VIN/LAC nanoparticles. Besides, molecular dynamics (MD) simulation was applied to investigate the molecular interactions between VIN and excipients. The calculated results revealed that VIN interacted with excipients by Coulomb and Lennard-Jones (LJ) interactions. Few hydrogen bonds were formed between VIN and excipients. The HPMC affording smaller particle size may be a result of the stronger interactions between VIN and HPMC (mainly LJ interaction) and the property of HPMC. These characteristics may greatly influence the adsorption behavior and may be the crucial parameter for the better performance of HPMC.

  15. Raman molecular imaging of brain frozen tissue sections.

    Science.gov (United States)

    Kast, Rachel E; Auner, Gregory W; Rosenblum, Mark L; Mikkelsen, Tom; Yurgelevic, Sally M; Raghunathan, Aditya; Poisson, Laila M; Kalkanis, Steven N

    2014-10-01

    Raman spectroscopy provides a molecular signature of the region being studied. It is ideal for neurosurgical applications because it is non-destructive, label-free, not impacted by water concentration, and can map an entire region of tissue. The objective of this paper is to demonstrate the meaningful spatial molecular information provided by Raman spectroscopy for identification of regions of normal brain, necrosis, diffusely infiltrating glioma and solid glioblastoma (GBM). Five frozen section tissues (1 normal, 1 necrotic, 1 GBM, and 2 infiltrating glioma) were mapped in their entirety using a 300-µm-square step size. Smaller regions of interest were also mapped using a 25-µm step size. The relative concentrations of relevant biomolecules were mapped across all tissues and compared with adjacent hematoxylin and eosin-stained sections, allowing identification of normal, GBM, and necrotic regions. Raman peaks and peak ratios mapped included 1003, 1313, 1431, 1585, and 1659 cm(-1). Tissue maps identified boundaries of grey and white matter, necrosis, GBM, and infiltrating tumor. Complementary information, including relative concentration of lipids, protein, nucleic acid, and hemoglobin, was presented in a manner which can be easily adapted for in vivo tissue mapping. Raman spectroscopy can successfully provide label-free imaging of tissue characteristics with high accuracy. It can be translated to a surgical or laboratory tool for rapid, non-destructive imaging of tumor margins.

  16. Skeletal keratan sulfate chain molecular weight calibration by high-performance gel-permeation chromatography

    International Nuclear Information System (INIS)

    Dickenson, J.M.; Morris, H.G.; Nieduszynski, I.A.; Huckerby, T.N.

    1990-01-01

    A method has been developed for the molecular sizing of skeletal keratan sulfate chains using an HPLC gel-permeation chromatography system. Keratan sulfate chains and keratanase-derived oligosaccharides were prepared from the nucleus pulposus of bovine intervertebral disc (6-year-old animals). A Bio-Gel TSK 30 XL column eluted in 0.2 M NaCl and at 30 degrees C was calibrated with keratan sulfate oligosaccharides of known size as well as 3H-end-labeled keratan sulfate chains to yield the relationship

  17. Modelling the effect of size-asymmetric competition on size inequality

    DEFF Research Database (Denmark)

    Rasmussen, Camilla Ruø; Weiner, Jacob

    2017-01-01

    Abstract The concept of size asymmetry in resource competition among plants, in which larger individuals obtain a disproportionate share of contested resources, appears to be very straightforward, but the effects of size asymmetry on growth and size variation among individuals have proved...... to be controversial. It has often been assumed that competition among individual plants in a population has to be size-asymmetric to result in higher size inequality than in the absence of competition, but here we question this inference. Using very simple, individual-based models, we investigate how size symmetry...... of competition affects the development in size inequality between two competing plants and show that increased size inequality due to competition is not always strong evidence for size-asymmetric competition. Even absolute symmetric competition, in which all plants receive the same amount of resources...

  18. Molecular accessibility in solvent swelled coals. Quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1993-02-01

    An EPR technique developed in this lab is being used to determine the pore size and number distribution changes after swelling the coal samples with various solvents. Stable nitroxide radical spin probes of different sizes, shapes and reactivity are dissolved in an appropriate solvent, the coal sample is added to the resulting solution, stirred over night at elevated temperature, filtered, washed with a non swelling solvent to eliminate any spin probes that are not trapped in the pores and the spin concentration is measured. Comparing these spin probe measurements to DRIFT data have shown that the relative number distribution of acidic functionalities can be accurately predicted by the spin probe method. The spin probe method had also been used to predict the increase in elongated voids in Pittsburgh No. 8 (APCS No. 4) upon swelling with pyridine in agreement with independent SANS data. NMR relaxation data show that it is possible to deduce the pore (accessibility) distribution as a function of size (up to 6 mn). It has also been possible by variable temperature and ENDOR measurements to determine the presence of hydrogen bonding as a function of pore shape and size. The advantage of the EPR method is that it permits molecules of selected shape and size to be used as probes of accessible regions of coal, thus providing information on the importance of molecular shape.

  19. Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine.

    Science.gov (United States)

    Rapaport, D C

    2009-04-01

    A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency.

  20. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method.

    Science.gov (United States)

    Kalani, Mahshid; Yunus, Robiah

    2012-01-01

    The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks.

  1. Molecular dynamics simulations of nucleation and phase transitions in molecular clusters of hexafluorides

    International Nuclear Information System (INIS)

    Xu, S.

    1993-01-01

    Molecular dynamics simulations of nucleation and phase transitions in TeF 6 and SeF 6 clusters containing 100-350 molecules were carried out. Simulations successfully reproduced the crystalline structures observed in electron diffraction studies of large clusters (containing about 10 4 molecules) of the same materials. When the clusters were cooled, they spontaneously underwent the same bcc the monoclinic phase transition in simulations as in experiment, despite the million-fold difference in the time scales involved. Other transitions observed included melting and freezing. Several new techniques based on molecular translation and orientation were introduced to identify different condensed phases, to study nucleation and phase transitions, and to define characteristic temperatures of transitions. The solid-state transition temperatures decreased with cluster size in the same way as did the melting temperature, in that the depression of transition temperature was inversely proportional to the cluster radius. Rotational melting temperatures, as inferred from the rotational diffusion of molecules, coincided with those of the solid-state transition. Nucleation in liquid-solid and bcc-monoclinic transitions started in the interior of clusters on cooling, and at the surface on heating. Transition temperatures on cooling were always lower than those on heating due to the barriers to nucleation. Linear growth rates of nuclei in freezing were an order of magnitude lower than those in the bcc-monoclinic transition. Revealing evidence about the molecular behavior associated with phase changes was found. Simulations showed the formation of the actual transition complexes along the transition pathway, i.e., the critical nuclei of the new phase. These nuclei, consisting of a few dozen molecules, were distinguishable in the midst of the surrounding matter

  2. Machine learning of accurate energy-conserving molecular force fields

    Science.gov (United States)

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.; Poltavsky, Igor; Schütt, Kristof T.; Müller, Klaus-Robert

    2017-01-01

    Using conservation of energy—a fundamental property of closed classical and quantum mechanical systems—we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol−1 for energies and 1 kcal mol−1 Å̊−1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods. PMID:28508076

  3. Universal size properties of a star-ring polymer structure in disordered environments

    Science.gov (United States)

    Haydukivska, K.; Blavatska, V.

    2018-03-01

    We consider the complex polymer system, consisting of a ring polymer connected to the f1-branched starlike structure, in a good solvent in the presence of structural inhomogeneities. In particular cases f1=1 and f1=2 , such a system restores the synthesized tadpole-shaped polystyrenes [Doi et al., Macromolecules 46, 1075 (2013), 10.1021/ma302511j]. We assume that structural defects are correlated at large distances x according to a power law x-a. Applying the direct polymer renormalization approach, we evaluate the universal size characteristics such as the ratio of the radii of gyration of star-ring and star topologies, and compare the effective sizes of single arms in complex structures and isolated polymers of the same total molecular weight. The nontrivial impact of disorder on these quantities is analyzed.

  4. An analytical procedure to evaluate electronic integrals for molecular quantum mechanical calculations

    International Nuclear Information System (INIS)

    Mundim, Kleber C.

    2004-01-01

    Full text: We propose an alternative methodology for the calculation of electronic integrals, through an analytical function based on the generalized Gaussian function (q Gaussian), where a single q Gaussian replaces the usual linear combination of Gaussian functions for different basis set. Moreover, the integrals become analytical functions of the interatomic distances. Therefore, when estimating certain quantities such as molecular energy, g Gaussian avoid new calculations of the integrals: they are simply another value of the corresponding function. The procedure proposed here is particularly advantageous, when compared with the usual one, because it reduces drastically the number of two-electronic integrals used in the construction of the Fock matrix, enabling the use of the quantum mechanics in the description of macro-molecular systems. This advantage increases when the size of the molecular systems become larger and more complex. While in the usual approach CPU time increases with n4, in the one proposed here the CPU time scales linearly with n. This catastrophic dependence of the rank the Hamiltonian or Fock matrix with n4 two-electron integrals is a severe bottleneck for petaFLOPS computing time. Its is important to emphasize that this methodology is equally applicable to systems of any sizes, including biomolecules, solid materials and solutions, within the HF, post-HF and DFT theories. (author)

  5. Nuclear genome size and genomic distribution of ribosomal DNA in Musa and Ensete (Musaceae): taxonomic implications

    Czech Academy of Sciences Publication Activity Database

    Bartoš, Jan; Alkhimova, Olena; Kubaláková, Marie; De Langhe, E.; Doležel, Jaroslav

    2005-01-01

    Roč. 109, - (2005), s. 50-57 ISSN 1424-8581 R&D Projects: GA AV ČR IAA6038204 Grant - others:IAEA Research Contract 12230/RBF Institutional research plan: CEZ:AV0Z50380511 Keywords : Musa and Ensete * nuclear genome size * FISH Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.076, year: 2005

  6. Automated processing of data generated by molecular dynamics

    International Nuclear Information System (INIS)

    Lobato Hoyos, Ivan; Rojas Tapia, Justo; Instituto Peruano de Energia Nuclear, Lima

    2008-01-01

    A new integrated tool for automated processing of data generated by molecular dynamics packages and programs have been developed. The program allows to calculate important quantities such as pair correlation function, the analysis of common neighbors, counting nanoparticles and their size distribution, conversion of output files between different formats. The work explains in detail the modules of the tool, the interface between them. The uses of program are illustrated in application examples in the calculation of various properties of silver nanoparticles. (author)

  7. Effect of soil sieving on respiration induced by low-molecular-weight substrates

    Science.gov (United States)

    Datta, Rahul; Vranová, Valerie; Pavelka, Marian; Rejšek, Klement; Formánek, Pavel

    2014-03-01

    The mesh size of sieves has a significant impact upon soil disturbance, affecting pore structure, fungal hyphae, proportion of fungi to bacteria, and organic matter fractions. The effects are dependent upon soil type and plant coverage. Sieving through a 2 mm mesh increases mineralization of exogenously supplied carbohydrates and phenolics compared to a 5 mm mesh and the effect is significant (p<0.05), especially in organic horizons, due to increased microbial metabolism and alteration of other soil properties. Finer mesh size particularly increases arabinose, mannose, galactose, ferulic and pthalic acid metabolism, whereas maltose mineralization is less affected. Sieving through a 5 mm mesh size is suggested for all type of experiments where enhanced mineralization of low-molecular-weight organic compounds needs to be minimalized.

  8. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms

    Science.gov (United States)

    Fleischmann, Andreas; Michael, Todd P.; Rivadavia, Fernando; Sousa, Aretuza; Wang, Wenqin; Temsch, Eva M.; Greilhuber, Johann; Müller, Kai F.; Heubl, Günther

    2014-01-01

    Background and Aims Some species of Genlisea possess ultrasmall nuclear genomes, the smallest known among angiosperms, and some have been found to have chromosomes of diminutive size, which may explain why chromosome numbers and karyotypes are not known for the majority of species of the genus. However, other members of the genus do not possess ultrasmall genomes, nor do most taxa studied in related genera of the family or order. This study therefore examined the evolution of genome sizes and chromosome numbers in Genlisea in a phylogenetic context. The correlations of genome size with chromosome number and size, with the phylogeny of the group and with growth forms and habitats were also examined. Methods Nuclear genome sizes were measured from cultivated plant material for a comprehensive sampling of taxa, including nearly half of all species of Genlisea and representing all major lineages. Flow cytometric measurements were conducted in parallel in two laboratories in order to compare the consistency of different methods and controls. Chromosome counts were performed for the majority of taxa, comparing different staining techniques for the ultrasmall chromosomes. Key Results Genome sizes of 15 taxa of Genlisea are presented and interpreted in a phylogenetic context. A high degree of congruence was found between genome size distribution and the major phylogenetic lineages. Ultrasmall genomes with 1C values of sections of the genus. The smallest known plant genomes were not found in G. margaretae, as previously reported, but in G. tuberosa (1C ≈ 61 Mbp) and some strains of G. aurea (1C ≈ 64 Mbp). Conclusions Genlisea is an ideal candidate model organism for the understanding of genome reduction as the genus includes species with both relatively large (∼1700 Mbp) and ultrasmall (∼61 Mbp) genomes. This comparative, phylogeny-based analysis of genome sizes and karyotypes in Genlisea provides essential data for selection of suitable species for comparative

  9. Continuum electrostatics for ionic solutions with non-uniform ionic sizes

    International Nuclear Information System (INIS)

    Li Bo

    2009-01-01

    This work concerns electrostatic properties of an ionic solution with multiple ionic species of possibly different ionic sizes. Such properties are described by the minimization of an electrostatic free-energy functional of ionic concentrations. Bounds are obtained for ionic concentrations with low electrostatic free energies. Such bounds are used to show that there exists a unique set of equilibrium ionic concentrations that minimizes the free-energy functional. The equilibrium ionic concentrations are found to depend sorely on the equilibrium electrostatic potential, resembling the classical Boltzmann distributions that relate the equilibrium ionic concentrations to the equilibrium electrostatic potential. Unless all the ionic and solvent molecular sizes are assumed to be the same, explicit formulae of such dependence are, however, not available in general. It is nevertheless proved that in equilibrium the ionic charge density is a decreasing function of the electrostatic potential. This determines a variational principle with a convex functional for the electrostatic potential

  10. Sizing for ethnicity in multi-cultural societies: development of size ...

    African Journals Online (AJOL)

    ... years, and fell in the size 6/10 to size 14/38 size range. The findings of the study suggest that young South African women of African descent with a triangular body shape may experience loose fit in the upper body of garments sized according to the size specifications currently used in the South African apparel industry.

  11. On the Relationship between Pollen Size and Genome Size

    Directory of Open Access Journals (Sweden)

    Charles A. Knight

    2010-01-01

    Full Text Available Here we test whether genome size is a predictor of pollen size. If it were, inferences of ancient genome size would be possible using the abundant paleo-palynolgical record. We performed regression analyses across 464 species of pollen width and genome size. We found a significant positive trend. However, regression analysis using phylogentically independent contrasts did not support the correlated evolution of these traits. Instead, a large split between angiosperms and gymnosperms for both pollen width and genome size was revealed. Sister taxa were not more likely to show a positive contrast when compared to deeper nodes. However, significantly more congeneric species had a positive trend than expected by chance. These results may reflect the strong selection pressure for pollen to be small. Also, because pollen grains are not metabolically active when measured, their biology is different than other cells which have been shown to be strongly related to genome size, such as guard cells. Our findings contrast with previously published research. It was our hope that pollen size could be used as a proxy for inferring the genome size of ancient species. However, our results suggest pollen is not a good candidate for such endeavors.

  12. Molecular cloud-scale star formation in NGC 300

    Energy Technology Data Exchange (ETDEWEB)

    Faesi, Christopher M.; Lada, Charles J.; Forbrich, Jan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Menten, Karl M. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Bouy, Hervé [Centro de Astrobiología, (INTA-CSIC), Departamento de Astrofísica, POB 78, ESAC Campus, 28691 Villanueva dela Cañada (Spain)

    2014-07-01

    We present the results of a galaxy-wide study of molecular gas and star formation in a sample of 76 H II regions in the nearby spiral galaxy NGC 300. We have measured the molecular gas at 250 pc scales using pointed CO(J = 2-1) observations with the Atacama Pathfinder Experiment telescope. We detect CO in 42 of our targets, deriving molecular gas masses ranging from our sensitivity limit of ∼10{sup 5} M {sub ☉} to 7 × 10{sup 5} M {sub ☉}. We find a clear decline in the CO detection rate with galactocentric distance, which we attribute primarily to the decreasing radial metallicity gradient in NGC 300. We combine Galaxy Evolution Explorer far-ultraviolet, Spitzer 24 μm, and Hα narrowband imaging to measure the star formation activity in our sample. We have developed a new direct modeling approach for computing star formation rates (SFRs) that utilizes these data and population synthesis models to derive the masses and ages of the young stellar clusters associated with each of our H II region targets. We find a characteristic gas depletion time of 230 Myr at 250 pc scales in NGC 300, more similar to the results obtained for Milky Way giant molecular clouds than the longer (>2 Gyr) global depletion times derived for entire galaxies and kiloparsec-sized regions within them. This difference is partially due to the fact that our study accounts for only the gas and stars within the youngest star-forming regions. We also note a large scatter in the NGC 300 SFR-molecular gas mass scaling relation that is furthermore consistent with the Milky Way cloud results. This scatter likely represents real differences in giant molecular cloud physical properties such as the dense gas fraction.

  13. 2012 Gordon Research Conference On Molecular And Ionic Clusters

    International Nuclear Information System (INIS)

    McCoy, Anne

    2012-01-01

    The Gordon Research Conference on 'Molecular and Ionic Clusters' focuses on clusters, which are the initial molecular species found in gases when condensation begins to occur. Condensation can take place solely from molecules interacting with each other, mostly at low temperatures, or when molecules condense around charged particles (electrons, protons, metal cations, molecular ions), producing ion molecule clusters. These clusters provide models for solvation, allow a pristine look at geometric as well as electronic structures of molecular complexes or matter in general, their interaction with radiation, their reactivity, their thermodynamic properties and, in particular, the related dynamics. This conference focuses on new ways to make clusters composed of different kinds of molecules, new experimental techniques to investigate the properties of the clusters and new theoretical methods with which to calculate the structures, dynamical motions and energetics of the clusters. Some of the main experimental methods employed include molecular beams, mass spectrometry, laser spectroscopy (from infrared to XUV; in the frequency as well as the time domain) and photoelectron spectroscopy. Techniques include laser absorption spectroscopy, laser induced fluorescence, resonance enhanced photoionization, mass-selected photodissociation, photofragment imaging, ZEKE photoelectron spectroscopy, etc. From the theoretical side, this conference highlights work on potential surfaces and measurable properties of the clusters. The close ties between experiment, theory and computation have been a hallmark of the Gordon Research Conference on Molecular and Ionic Clusters. In the 2012 meeting, we plan to have sessions that will focus on topics including: (1) The use of cluster studies to probe fundamental phenomena; (2) Finite size effects on structure and thermodynamics; (3) Intermolecular forces and cooperative effects; (4) Molecular clusters as models for solvation; and (5) Studies of

  14. Classical molecular dynamics simulations of fusion and fragmentation in fullerene-fullerene collisions

    International Nuclear Information System (INIS)

    Verkhovtsev, A.; Korol, A.V.; Solovyov, A.V.

    2017-01-01

    We present the results of classical molecular dynamics simulations of collision-induced fusion and fragmentation of C 60 fullerenes, performed by means of the MBN Explorer software package. The simulations provide information on structural differences of the fused compound depending on kinematics of the collision process. The analysis of fragmentation dynamics at different initial conditions shows that the size distributions of produced molecular fragments are peaked for dimers, which is in agreement with a well-established mechanism of C 60 fragmentation via preferential C 2 emission. Atomic trajectories of the colliding particles are analyzed and different fragmentation patterns are observed and discussed. On the basis of the performed simulations, characteristic time of C 2 emission is estimated as a function of collision energy. The results are compared with experimental time-of-flight distributions of molecular fragments and with earlier theoretical studies. Considering the widely explored case study of C 60 -C 60 collisions, we demonstrate broad capabilities of the MBN Explorer software, which can be utilized for studying collisions of a broad variety of nano-scale and bio-molecular systems by means of classical molecular dynamics. (authors)

  15. Effect of Molecular Weight and Molar Ratio of Dextran on Self-Assembly of Dextran Stearate Polymeric Micelles as Nanocarriers for Etoposide

    Directory of Open Access Journals (Sweden)

    Jaleh Varshosaz

    2012-01-01

    Full Text Available Amphiphilic polymer surfactants are composed of hydrophilic and hydrophobic polymers and are widely used in targeted drug delivery. The purpose of this study was the evaluation of the effect of molecular weight and molar ratio of dextran on physicochemical properties of dextran stearate polymeric micelles. Dextran stearate was synthesized by acylation of dextran with stearoyl chloride. Etoposide loaded polymeric micelles were prepared by dialysis method. The resulting micelles were evaluated for particle size, zeta potential, critical micelle concentration (CMC, drug loading capacity, and release efficiency. Cytotoxicity and cellular uptake of micelles were studied in CT-26 colorectal carcinoma cell line. Molecular weight and molar ratio of dextran-stearate were impressive on zeta potential, CMC, drug loading capacity, and release efficiency. Unlike polymer molecular weight, molar ratio of stearate had a significant effect on cytotoxicity and particle size of etoposide loaded micelles. Although molecular weight of dextran had no significant effect on cytotoxicity of micelles on CT-26 cells, it had drastic attributes for stability of polymeric micelles. Consequently, both variables of molecular weight of dextran and molar ratio of stearate should be taken into account to have a stable and effective micelle of dextran-stearate.

  16. Neutron-optical effects at very cold neutrons scattering on the spherical particles of different sizes

    International Nuclear Information System (INIS)

    Grinev, V.G.; Kudinova, O.I.; Novokshonova, L.A.; Kuznetsov, S.P.; Udovenko, A.I.; Shelagin, A.V.

    2006-01-01

    Very cold neutrons (VCN) with the wavelength λ > 4.0 ran are convenient tool for investigating the super molecular structures of different nature. Using a Born approximation (BA) to the analysis of dependencies on the wavelength of the VCN scattering cross sections, it is possible to obtain information about average sizes (R) and concentrations of the scattering particles with R∼ λ. However, with an increasing the sizes of scatterers the conditions for BA applicability can be disrupted. In this work we investigated the possibilities of BA, eikonal and geometric-optical approximations for the analysis of VCN scattering on the spherical particles with R ≥ λ

  17. Wall-collision line broadening of molecular oxygen within nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Can T.; Lewander, Maerta; Andersson-Engels, Stefan; Svensson, Tomas; Svanberg, Sune [Department of Physics, Lund University, P. O. Box 118, SE-221 00 Lund (Sweden); Adolfsson, Erik [Ceramic Materials, SWEREA IVF, Box 104, SE-431 22 Moelndal (Sweden)

    2011-10-15

    Wall-collision broadening of near-infrared absorption lines of molecular oxygen confined in nanoporous zirconia is studied by employing high-resolution diode-laser spectroscopy. The broadening is studied for pores of different sizes under a range of pressures, providing new insights on how wall collisions and intermolecular collisions influence the total spectroscopic line profile. The pressure series show that wall-collision broadening is relatively more prominent under reduced pressures, enabling sensitive means to probe pore sizes of porous materials. In addition, we show that the total wall-collision-broadened profile strongly deviates from a Voigt profile and that wall-collision broadening exhibits an additive-like behavior to the pressure and Doppler broadening.

  18. Influence of ion size and charge on osmosis.

    Science.gov (United States)

    Cannon, James; Kim, Daejoong; Maruyama, Shigeo; Shiomi, Junichiro

    2012-04-12

    Osmosis is fundamental to many processes, such as in the function of biological cells and in industrial desalination to obtain clean drinking water. The choice of solute in industrial applications of osmosis is highly important in maximizing efficiency and minimizing costs. The macroscale process of osmosis originates from the nanoscale properties of the solvent, and therefore an understanding of the mechanisms of how these properties determine osmotic strength can be highly useful. For this reason, we have undertaken molecular dynamics simulations to systematically study the influence of ion size and charge on the strength of osmosis of water through carbon nanotube membranes. Our results show that strong osmosis occurs under optimum conditions of ion placement near the region of high water density near the membrane wall and of maintenance of a strong water hydration shell around the ions. The results in turn allow greater insight into the origin of the strong osmotic strength of real ions such as NaCl. Finally, in terms of practical simulation, we highlight the importance of avoiding size effects that can occur if the simulation cell is too small.

  19. BAND STRUCTURE OF NON-STEIOCHIOMETRIC LARGE-SIZED NANOCRYSTALLITES

    Directory of Open Access Journals (Sweden)

    I.V.Kityk

    2004-01-01

    Full Text Available A band structure of large-sized (from 20 to 35nm non-steichiometric nanocrystallites (NC of the Si2-xCx (1.04 < x < 1.10 has been investigated using different band energy approaches and a modified Car-Parinello molecular dynamics structure optimization of the NC interfaces. The non-steichiometric excess of carbon favors the appearance of a thin prevailingly carbon-contained layer (with thickness of about 1 nm covering the crystallites. As a consequence, one can observe a substantial structure reconstruction of boundary SiC crystalline layers. The numerical modeling has shown that these NC can be considered as SiC reconstructed crystalline films with thickness of about 2 nm covering the SiC crystallites. The observed data are considered within the different one-electron band structure methods. It was shown that the nano-sized carbon sheet plays a key role in a modified band structure. Independent manifestation of the important role played by the reconstructed confined layers is due to the experimentally discovered excitonic-like resonances. Low-temperature absorption measurements confirm the existence of sharp-like absorption resonances originating from the reconstructed layers.

  20. The effect of solvent upon molecularly thin rotaxane film formation

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Alan A. [Nanoscale Function Group, Centre for Research on Adaptive Nanostructures and Nanodevices, University of Dublin, Trinity College, Dublin 2 (Ireland)]. E-mail: farrelaa@tcd.ie; Kay, Euan R. [School of Chemistry, University of Edinburgh, The King' s Buildings, West Mains Road, Edinburgh EH9 3 JJ (United Kingdom); Bottari, Giovanni [School of Chemistry, University of Edinburgh, The King' s Buildings, West Mains Road, Edinburgh EH9 3 JJ (United Kingdom); Leigh, David A. [School of Chemistry, University of Edinburgh, The King' s Buildings, West Mains Road, Edinburgh EH9 3 JJ (United Kingdom); Jarvis, Suzanne P. [Nanoscale Function Group, Centre for Research on Adaptive Nanostructures and Nanodevices, University of Dublin, Trinity College, Dublin 2 (Ireland)

    2007-05-15

    We have investigated variations in molecularly thin rotaxane films deposited by solvent evaporation, using atomic force microscopy (AFM). Small changes in rotaxane structure result in significant differences in film morphology. The addition of exo-pyridyl moietes to the rotaxane macrocycle results in uniform domains having orientations corresponding to the underlying substrate lattice, while a larger, less symmetric molecule results in a greater lattice mismatch and smaller domain sizes. We have measured differences in film heights both as a function of the solvent of deposition and as a function of surface coverage of rotaxanes. Based on these observations we describe how the use of solvents with higher hydrogen-bond basicity results in films which are more likely to favour sub-molecular motion.

  1. Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale

    KAUST Repository

    Rivnay, Jonathan

    2012-10-10

    A study was conducted to demonstrate quantitative determination of organic semiconductor microstructure from the molecular to device scale. The quantitative determination of organic semiconductor microstructure from the molecular to device scale was key to obtaining precise description of the molecular structure and microstructure of the materials of interest. This information combined with electrical characterization and modeling allowed for the establishment of general design rules to guide future rational design of materials and devices. Investigations revealed that a number and variety of defects were the largest contributors to the existence of disorder within a lattice, as organic semiconductor crystals were dominated by weak van der Waals bonding. Crystallite size, texture, and variations in structure due to spatial confinement and interfaces were also found to be relevant for transport of free charge carriers and bound excitonic species over distances that were important for device operation.

  2. Células madre: generalidades, eventos biológicos y moleculares Stem cells: general aspects, biological and molecular events

    Directory of Open Access Journals (Sweden)

    Mónica María Cortés Márquez

    2008-09-01

    Full Text Available size: 12pt; font-family: 'Times New Roman','serif'">Las autorrenovación y la diferenciación son características de las células madre que varían entre los diferentes tipos celulares según el tejido en el que se encuentren y el microambiente que las rodee. En ambos procesos intervienen inhibidores del ciclo celular, genes implicados en rearreglos cromosómicos, proteínas del desarrollo esencial y vías de señalización específicas. La autorrenovación está regulada por diversos mecanismos, entre los cuales se destacan las vías Wnt, Notch y Hedgehog, y los factores BMI-1, p16Ink4a, ARF, NANOG, OCT3/4, SOX2, HOXB4 y sus páralogos. Los adelantos en el conocimiento de la biología de las células madre y de los mecanismos moleculares que regulan la autorrenovación y la diferenciación han convertido a estas células en una importante promesa para la investigación básica y aplicada. size: 12pt; font-family: 'Times New Roman','serif'">Self-renewal capacity and differentiation are features of stem cells that vary among the different cellular types according to the tissue in which they reside and the surrounding microenvironment. Cellular cycle inhibitors, genes implied in chromosomal rearrangements, essential development proteins and specific signaling pathways intervene in these processes. Self-renewal is regulated by different mechanisms, the most important of which are the Wnt, Notch and Hedgehog pathways, and the factors BMI-1, p16Ink4a, ARF, NANOG, OCT3/4, SOX2, HOXB4 and their paralogs. Advances in the knowledge of stem cells biology and of the molecular mechanisms that influence their selfrenewal and differentiation have made these cells an important promise for both basic and appliedsize: 12pt; font-family: 'Times New Roman','serif'">research.

  3. Statistical analysis of coding for molecular properties in the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Benjamin eAuffarth

    2011-07-01

    Full Text Available The relationship between molecular properties of odorants and neural activities is arguably one of the most important issues in olfaction and the rules governing this relationship are still not clear. In the olfactory bulb (OB, glomeruli relay olfactory information to second-order neurons which in turn project to cortical areas. We investigate relevance of odorant properties, spatial localization of glomerular coding sites, and size of coding zones in a dataset of 2-deoxyglucose images of glomeruli over the entire OB of the rat. We relate molecular properties to activation of glomeruli in the OB using a nonparametric statistical test and a support-vector machine classification study. Our method permits to systematically map the topographic representation of various classes of odorants in the OB. Our results suggest many localized coding sites for particular molecular properties and some molecular properties that could form the basis for a spatial map of olfactory information. We found that alkynes, alkanes, alkenes, and amines affect activation maps very strongly as compared to other properties and that amines, sulfur-containing compounds, and alkynes have small zones and high relevance to activation changes, while aromatics, alkanes, and carboxylics acid recruit very big zones in the dataset. Results suggest a local spatial encoding for molecular properties.

  4. Shape-persistent two-component 2D networks with atomic-size tunability.

    Science.gov (United States)

    Liu, Jia; Zhang, Xu; Wang, Dong; Wang, Jie-Yu; Pei, Jian; Stang, Peter J; Wan, Li-Jun

    2011-09-05

    Over the past few years, two-dimensional (2D) nanoporous networks have attracted great interest as templates for the precise localization and confinement of guest building blocks, such as functional molecules or clusters on the solid surfaces. Herein, a series of two-component molecular networks with a 3-fold symmetry are constructed on graphite using a truxenone derivative and trimesic acid homologues with carboxylic-acid-terminated alkyl chains. The hydrogen-bonding partner-recognition-induced 2D crystallization of alkyl chains makes the flexible alkyl chains act as rigid spacers in the networks to continuously tune the pore size with an accuracy of one carbon atom per step. The two-component networks were found to accommodate and regulate the distribution and aggregation of guest molecules, such as COR and CuPc. This procedure provides a new pathway for the design and fabrication of molecular nanostructures on solid surfaces. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Thermal conductivity of armchair black phosphorus nanotubes: a molecular dynamics study

    International Nuclear Information System (INIS)

    Hao, Feng; Liao, Xiangbiao; Xiao, Hang; Chen, Xi

    2016-01-01

    The effects of size, strain, and vacancies on the thermal properties of armchair black phosphorus nanotubes are investigated based on qualitative analysis from molecular dynamics simulations. It is found that thermal conductivity has a remarkable size effect, because of the restricted paths for phonon transport, which is strongly dependent on the diameter and length of the nanotube. Owing to the intensified low-frequency phonons, axial tensile strain can facilitate thermal transport. In contrast, compressive strain weakens thermal transport due to the enhanced phonon scattering around the buckling of the nanotube. In addition, the thermal conductivity is dramatically reduced by single vacancies, particularly those with high defect concentrations. (paper)

  6. Size-exclusion chromatography (HPLC-SEC) technique optimization by simplex method to estimate molecular weight distribution of agave fructans.

    Science.gov (United States)

    Moreno-Vilet, Lorena; Bostyn, Stéphane; Flores-Montaño, Jose-Luis; Camacho-Ruiz, Rosa-María

    2017-12-15

    Agave fructans are increasingly important in food industry and nutrition sciences as a potential ingredient of functional food, thus practical analysis tools to characterize them are needed. In view of the importance of the molecular weight on the functional properties of agave fructans, this study has the purpose to optimize a method to determine their molecular weight distribution by HPLC-SEC for industrial application. The optimization was carried out using a simplex method. The optimum conditions obtained were at column temperature of 61.7°C using tri-distilled water without salt, adjusted pH of 5.4 and a flow rate of 0.36mL/min. The exclusion range is from 1 to 49 of polymerization degree (180-7966Da). This proposed method represents an accurate and fast alternative to standard methods involving multiple-detection or hydrolysis of fructans. The industrial applications of this technique might be for quality control, study of fractionation processes and determination of purity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Sauropod dinosaurs evolved moderately sized genomes unrelated to body size.

    Science.gov (United States)

    Organ, Chris L; Brusatte, Stephen L; Stein, Koen

    2009-12-22

    Sauropodomorph dinosaurs include the largest land animals to have ever lived, some reaching up to 10 times the mass of an African elephant. Despite their status defining the upper range for body size in land animals, it remains unknown whether sauropodomorphs evolved larger-sized genomes than non-avian theropods, their sister taxon, or whether a relationship exists between genome size and body size in dinosaurs, two questions critical for understanding broad patterns of genome evolution in dinosaurs. Here we report inferences of genome size for 10 sauropodomorph taxa. The estimates are derived from a Bayesian phylogenetic generalized least squares approach that generates posterior distributions of regression models relating genome size to osteocyte lacunae volume in extant tetrapods. We estimate that the average genome size of sauropodomorphs was 2.02 pg (range of species means: 1.77-2.21 pg), a value in the upper range of extant birds (mean = 1.42 pg, range: 0.97-2.16 pg) and near the average for extant non-avian reptiles (mean = 2.24 pg, range: 1.05-5.44 pg). The results suggest that the variation in size and architecture of genomes in extinct dinosaurs was lower than the variation found in mammals. A substantial difference in genome size separates the two major clades within dinosaurs, Ornithischia (large genomes) and Saurischia (moderate to small genomes). We find no relationship between body size and estimated genome size in extinct dinosaurs, which suggests that neutral forces did not dominate the evolution of genome size in this group.

  8. A molecular dynamics algorithm for simulation of field theories in the canonical ensemble

    International Nuclear Information System (INIS)

    Kogut, J.B.; Sinclair, D.K.

    1986-01-01

    We add a single scalar degree of freedom (''demon'') to the microcanonical ensemble which converts its molecular dynamics into a simulation method for the canonical ensemble (euclidean path integral) of the underlying field theory. This generalization of the microcanonical molecular dynamics algorithm simulates the field theory at fixed coupling with a completely deterministic procedure. We discuss the finite size effects of the method, the equipartition theorem and ergodicity. The method is applied to the planar model in two dimensions and SU(3) lattice gauge theory with four species of light, dynamical quarks in four dimensions. The method is much less sensitive to its discrete time step than conventional Langevin equation simulations of the canonical ensemble. The method is a straightforward generalization of a procedure introduced by S. Nose for molecular physics. (orig.)

  9. Nano-nitride cathode catalysts of Ti, Ta, and Nb for polymer electrolyte fuel cells: Temperature-programmed desorption investigation of molecularly adsorbed oxygen at low temperature

    KAUST Repository

    Ohnishi, Ryohji

    2013-01-10

    TiN, NbN, TaN, and Ta3N5 nanoparticles synthesized using mesoporous graphitic (mpg)-C3N4 templates were investigated for the oxygen reduction reaction (ORR) as cathode catalysts for polymer electrolyte fuel cells. The temperature-programmed desorption (TPD) of molecularly adsorbed O2 at 120-170 K from these nanoparticles was examined, and the resulting amount and temperature of desorption were key factors determining the ORR activity. The size-dependent TiN nanoparticles (5-8 and 100 nm) were then examined. With decreasing particle size, the density of molecularly adsorbed O2 per unit of surface area increased, indicating that a decrease in particle size increases the number of active sites. It is hard to determine the electrochemical active surface area for nonmetal electrocatalysts (such as oxides or nitrides), because of the absence of proton adsorption/desorption peaks in the voltammograms. In this study, O2-TPD for molecularly adsorbed O2 at low temperature demonstrated that the amount and strength of adsorbed O2 were key factors determining the ORR activity. The properties of molecularly adsorbed O2 on cathode catalysts are discussed against the ORR activity. © 2012 American Chemical Society.

  10. Interaction between the SNR Sagittarius A East and the 50-km s-1 Molecular Cloud

    International Nuclear Information System (INIS)

    Tsuboi, Masato; Okumura, Sachiko K; Miyazaki, Atsushi

    2006-01-01

    We performed high-resolution observations of the Galactic Center 50-km s -1 molecular cloud in the CS J = 1 - 0 line using the Nobeyama Millimeter Array. The 50-km s -1 molecular cloud corresponds to a break in the Sagittarius (Sgr) A east shell. A very broad and negative velocity wing feature is detected at an apparent contact spot between the molecular cloud and the Sgr A east shell. The velocity width of the wing feature is over 50-km s -1 . The width is three times wider than those of typical Galactic Center clouds. This strongly suggests that the shell is interacting physically with the molecular cloud. The asymmetric velocity profile of the wing feature indicates that the Sgr A east shell expands and crashes into the far side of the molecular cloud. About 50 clumps are identified in the cloud using CLUMPFIND. The velocity width-size relation and the mass spectrum of clumps in the cloud are similar to those in Central Molecular Zone (CMZ)

  11. Computational and experimental study of the cluster size distribution in MAPLE

    International Nuclear Information System (INIS)

    Leveugle, Elodie; Zhigilei, Leonid V.; Sellinger, Aaron; Fitz-Gerald, James M.

    2007-01-01

    A combined experimental and computational study is performed to investigate the origin and characteristics of the surface features observed in SEM images of thin polymer films deposited in matrix-assisted pulsed laser evaporation (MAPLE). Analysis of high-resolution SEM images of surface morphologies of the films deposited at different fluences reveals that the mass distributions of the surface features can be well described by a power-law, Y(N) ∝ N -t , with exponent -t ∼ -1.6. Molecular dynamic simulations of the MAPLE process predict a similar size distribution for large clusters observed in the ablation plume. A weak dependence of the cluster size distributions on fluence and target composition suggests that the power-law cluster size distribution may be a general characteristic of the ablation plume generated as a result of an explosive decomposition of a target region overheated above the limit of its thermodynamic stability. Based on the simulation results, we suggest that the ejection of large matrix-polymer clusters, followed by evaporation of the volatile matrix, is responsible for the formation of the surface features observed in the polymer films deposited in MAPLE experiments

  12. NMR and molecular modeling of wine tannins binding to saliva proteins: revisiting astringency from molecular and colloidal prospects.

    Science.gov (United States)

    Cala, Olivier; Pinaud, Noël; Simon, Cécile; Fouquet, Eric; Laguerre, Michel; Dufourc, Erick J; Pianet, Isabelle

    2010-11-01

    In organoleptic science, the association of tannins to saliva proteins leads to the poorly understood phenomenon of astringency. To decipher this interaction at molecular and colloidal levels, the binding of 4 procyanidin dimers (B1-4) and 1 trimer (C2) to a human saliva proline-rich peptide, IB7(14), was studied. Interactions have been characterized by measuring dissociation constants, sizes of complexes, number, and nature of binding sites using NMR (chemical shift variations, diffusion-ordered spectroscopy, and saturation transfer diffusion). The binding sites were identified using molecular mechanics, and the hydrophilic/hydrophobic nature of the interactions was resolved by calculating the molecular lipophilicity potential within the complexes. The following comprehensive scheme can be proposed: 1) below the tannin critical micelle concentration (CMC), interaction is specific, and the procyanidin anchorage always occurs on the same three IB7(14) sites. The tannin 3-dimensional structure plays a key role in the binding force and in the tannin's ability to act as a bidentate ligand: tannins adopting an extended conformation exhibit higher affinity toward protein and initiate the formation of a network. 2) Above the CMC, after the first specific hydrophilic interaction has taken place, a random hydrophobic stacking occurs between tannins and proteins. The whole process is discussed in the general frame of wine tannins eliciting astringency.

  13. Magnetic characterization of radio frequency heat affected micron size Fe3O4 powders: a bio-application perspective

    CSIR Research Space (South Africa)

    Roul, BK

    2009-05-01

    Full Text Available in oxygen plasma and noted to be dependent on average particle size. Microscopic rise in electron temperature during RF heating may likely to enhance the electron-hopping rate between Fe(+2) and Fe(+3) in the octahedral site of Fe3O4 molecular crystal...

  14. THE CALIFORNIA MOLECULAR CLOUD

    International Nuclear Information System (INIS)

    Lada, Charles J.; Lombardi, Marco; Alves, Joao F.

    2009-01-01

    We present an analysis of wide-field infrared extinction maps of a region in Perseus just north of the Taurus-Auriga dark cloud complex. From this analysis we have identified a massive, nearby, but previously unrecognized, giant molecular cloud (GMC). Both a uniform foreground star density and measurements of the cloud's velocity field from CO observations indicate that this cloud is likely a coherent structure at a single distance. From comparison of foreground star counts with Galactic models, we derive a distance of 450 ± 23 pc to the cloud. At this distance the cloud extends over roughly 80 pc and has a mass of ∼ 10 5 M sun , rivaling the Orion (A) molecular cloud as the largest and most massive GMC in the solar neighborhood. Although surprisingly similar in mass and size to the more famous Orion molecular cloud (OMC) the newly recognized cloud displays significantly less star formation activity with more than an order of magnitude fewer young stellar objects than found in the OMC, suggesting that both the level of star formation and perhaps the star formation rate in this cloud are an order of magnitude or more lower than in the OMC. Analysis of extinction maps of both clouds shows that the new cloud contains only 10% the amount of high extinction (A K > 1.0 mag) material as is found in the OMC. This, in turn, suggests that the level of star formation activity and perhaps the star formation rate in these two clouds may be directly proportional to the total amount of high extinction material and presumably high density gas within them and that there might be a density threshold for star formation on the order of n(H 2 ) ∼ a few x 10 4 cm -3 .

  15. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments

    Science.gov (United States)

    Bergamaschi, Brian A.; Tsamakis, Elizabeth; Keil, Richard G.; Eglinton, Timothy I.; Montluçon, Daniel B.; Hedges, John I.

    1997-03-01

    A C-rich sediment sample from the Peru Margin was sorted into nine hydrodynamically-determined grain size fractions to explore the effect of grain size distribution and sediment surface area on organic matter content and composition. The neutral monomeric carbohydrate composition, lignin oxidation product yields, total organic carbon, and total nitrogen contents were determined independently for each size fraction, in addition to sediment surface area and abundance of biogenic opal. The percent organic carbon and percent total nitrogen were strongly related to surface area in these sediments. In turn, the distribution of surface area closely followed mass distribution among the textural size classes, suggesting hydrodynamic controls on grain size also control organic carbon content. Nevertheless, organic compositional distinctions were observed between textural size classes. Total neutral carbohydrate yields in the Peru Margin sediments were found to closely parallel trends in total organic carbon, increasing in abundance among grain size fractions in proportion to sediment surface area. Coincident with the increases in absolute abundance, rhamnose and mannose increased as a fraction of the total carbohydrate yield in concert with surface area, indicating these monomers were preferentially represented in carbohydrates associated with surfaces. Lignin oxidation product yields varied with surface area when normalized to organic carbon, suggesting that the terrestrially-derived component may be diluted by sorption of marine derived material. Lignin-based parameters suggest a separate source for terrestrially derived material associated with sand-size material as opposed to that associated with silts and clays.

  16. On reliable discovery of molecular signatures

    Directory of Open Access Journals (Sweden)

    Björkegren Johan

    2009-01-01

    Full Text Available Abstract Background Molecular signatures are sets of genes, proteins, genetic variants or other variables that can be used as markers for a particular phenotype. Reliable signature discovery methods could yield valuable insight into cell biology and mechanisms of human disease. However, it is currently not clear how to control error rates such as the false discovery rate (FDR in signature discovery. Moreover, signatures for cancer gene expression have been shown to be unstable, that is, difficult to replicate in independent studies, casting doubts on their reliability. Results We demonstrate that with modern prediction methods, signatures that yield accurate predictions may still have a high FDR. Further, we show that even signatures with low FDR may fail to replicate in independent studies due to limited statistical power. Thus, neither stability nor predictive accuracy are relevant when FDR control is the primary goal. We therefore develop a general statistical hypothesis testing framework that for the first time provides FDR control for signature discovery. Our method is demonstrated to be correct in simulation studies. When applied to five cancer data sets, the method was able to discover molecular signatures with 5% FDR in three cases, while two data sets yielded no significant findings. Conclusion Our approach enables reliable discovery of molecular signatures from genome-wide data with current sample sizes. The statistical framework developed herein is potentially applicable to a wide range of prediction problems in bioinformatics.

  17. Insulin-like growth factor-II (IGF II) receptor from rat brain is of lower apparent molecular weight than the IGF II receptor from rat liver

    International Nuclear Information System (INIS)

    McElduff, A.; Poronnik, P.; Baxter, R.C.

    1987-01-01

    The binding subunits of the insulin and insulin-like growth factor-I (IGF I) receptors from rat brain are of lower molecular weight than the corresponding receptor in rat liver, possibly due to variations in sialic acid content. We have compared the IGF II receptor from rat brain and rat liver. The brain receptor is of smaller apparent mol wt (about 10 K) on sodium dodecyl sulfate polyacrylamide gel electrophoresis. This size difference is independent of ligand binding as it persists in iodinated and specifically immunoprecipitated receptors. From studies of wheat germ agglutinin binding and the effect of neuraminidase on receptor mobility, we conclude that this difference is not simply due to variations in sialic acid content. Treatment with endoglycosidase F results in reduction in the molecular size of both liver and brain receptors and after this treatment the aglycoreceptors are of similar size. We conclude that in rat brain tissue the IGF II receptor like the binding subunits of the insulin and IGF I receptors is of lower molecular size than the corresponding receptors in rat liver. This difference is due to differences in N-linked glycosylation

  18. Understanding molecular structure from molecular mechanics.

    Science.gov (United States)

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  19. Molecular strain typing of Brucella abortus isolates from Italy by two VNTR allele sizing technologies.

    Science.gov (United States)

    De Santis, Riccardo; Ancora, Massimo; De Massis, Fabrizio; Ciammaruconi, Andrea; Zilli, Katiuscia; Di Giannatale, Elisabetta; Pittiglio, Valentina; Fillo, Silvia; Lista, Florigio

    2013-10-01

    Brucellosis, one of the most important re-emerging zoonoses in many countries, is caused by bacteria belonging to the genus Brucella. Furthermore these bacteria represent potential biological warfare agents and the identification of species and biovars of field strains may be crucial for tracing back source of infection, allowing to discriminate naturally occurring outbreaks instead of bioterrorist events. In the last years, multiple-locus variable-number tandem repeat analysis (MLVA) has been proposed as complement of the classical biotyping methods and it has been applied for genotyping large collections of Brucella spp. At present, the MLVA band profiles may be resolved by automated or manual procedures. The Lab on a chip technology represents a valid alternative to standard genotyping techniques (as agarose gel electrophoresis) and it has been previously used for Brucella genotyping. Recently, a new high-throughput genotyping analysis system based on capillary gel electrophoresis, the QIAxcel, has been described. The aim of the study was to evaluate the ability of two DNA sizing equipments, the QIAxcel System and the Lab chip GX, to correctly call alleles at the sixteen loci including one frequently used MLVA assay for Brucella genotyping. The results confirmed that these technologies represent a meaningful advancement in high-throughput Brucella genotyping. Considering the accuracy required to confidently resolve loci discrimination, QIAxcel shows a better ability to measure VNTR allele sizes compared to LabChip GX.

  20. Enzymatic Degradation of Dynasan 114 SLN - Effect of Surfactants and Particle Size

    International Nuclear Information System (INIS)

    Olbrich, Carsten; Kayser, Oliver; Mueller, Rainer Helmut

    2002-01-01

    The degradation velocity of solid lipid nanoparticles (SLN) is - apart from drug diffusion - an important parameter determining drug release in vivo. To assess the effect of stabilizers systematically, Dynasan 114 SLN were produced with ionic surfactants (e.g. cholic acid sodium salt (NaCh), sodium dodecyl sulfate (SDS), cetylpyridiniumchloride (CPC)) and steric stabilizers (Tween 80, Poloxamer 188, 407 and Poloxamine 908) including a mixture of cholic acid sodium salt and Poloxamer 407. In addition, the size effects were investigated. The degradation velocity was measured using an in vitro lipase assay. SLN stabilized with lecithin and NaCh showed the fastest, Tween 80 the intermediate and the high molecular weight Poloxamer 407 the slowest degradation. Size effects were less pronounced for fast degrading particles (e.g. those stabilized with NaCh). No difference in the size range of 180-300-nm was observed, but a distinctly slower degradation of 800-nm SLN could be detected. For slowly degrading particles, more pronounced size effects were found. Size effects are more difficult to assess when the PCS diameters are similar, but small fractions of micrometer particles are present, besides the nanometer bulk population. The measured FFA formation is then a superposition of particles degrading at different speeds due to differences in the shape of the size distribution. Admixing of Poloxamer to NaCh had no delaying effect on the degradation of the Dynasan 114 SLN, indicating an influence of the nature of the lipid matrix that is affecting the stabilizers affinity to and anchoring onto the SLN surface

  1. Consequences of Morphology on Molecularly Imprinted Polymer-Ligand Recognition

    Directory of Open Access Journals (Sweden)

    Annika M. Rosengren

    2013-01-01

    Full Text Available The relationship between molecularly imprinted polymer (MIP morphology and template-rebinding over a series of warfarin-imprinted methacrylic acid co(ethylene dimethacrylate polymers has been explored. Detailed investigations of the nature of template recognition revealed that an optimal template binding was obtained with polymers possessing a narrow population of pores (~3–4 nm in the mesopore size range. Importantly, the warfarin-polymer rebinding analyses suggest strategies for regulating ligand binding capacity and specificity through variation of the degree of cross-linking, where polymers prepared with a lower degree of cross-linking afford higher capacity though non-specific in character. In contrast, the co-existence of specific and non-specific binding was found in conjunction with higher degrees of cross-linking and resultant meso- and macropore size distributions.

  2. Size did not matter: An evolutionary account of the variation in penis size and size anxiety

    Directory of Open Access Journals (Sweden)

    Menelaos Apostolou

    2016-12-01

    Full Text Available The human penis exhibits considerable variation in size, while a substantial proportion of the adult male population experiences size anxiety. This paper employs an evolutionary framework in order to understand this variation, as well as the concern men exhibit about the adequacy of the size of their penis. It is argued that female choice has been one important sexual selection force, responsible for shaping the size of the penis. However, this force has been relatively weak, because women do not consider the size of their partners’ penis to be the most important determinant of their sexual satisfaction. Also, in ancestral human societies, sexual satisfaction was a secondary concern, while women had limited space to exercise mate choice. The mismatch between ancestral and modern conditions, with female choice being stronger in the present than in the past, causes anxiety in men about their ability to satisfy their partners, which is also manifested in their concerns about size.

  3. A revision of the genus Neogrubea Dillon & Hargis, 1968 (Monogenea: Mazocraeidae): new morphological and molecular data from off the Patagonian coast of Argentina

    Czech Academy of Sciences Publication Activity Database

    Hernández-Orts, Jesús S.; Alama-Bermejo, Gema; Crespo, E.A.; Raga, J. A.; Montero, F. E.

    2014-01-01

    Roč. 89, č. 1 (2014), s. 59-72 ISSN 0165-5752 Institutional support: RVO:60077344 Keywords : kuhnia-scombri monogenea * 28s rdna sequences * host size * platyhelminthes * polyopisthocotylea * phylogeny * digenea * hamuli Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 1.336, year: 2014

  4. Estimation of the ancestral effective population sizes of African great apes under different selection regimes.

    Science.gov (United States)

    Schrago, Carlos G

    2014-08-01

    Reliable estimates of ancestral effective population sizes are necessary to unveil the population-level phenomena that shaped the phylogeny and molecular evolution of the African great apes. Although several methods have previously been applied to infer ancestral effective population sizes, an analysis of the influence of the selective regime on the estimates of ancestral demography has not been thoroughly conducted. In this study, three independent data sets under different selective regimes were used were composed to tackle this issue. The results showed that selection had a significant impact on the estimates of ancestral effective population sizes of the African great apes. The inference of the ancestral demography of African great apes was affected by the selection regime. The effects, however, were not homogeneous along the ancestral populations of great apes. The effective population size of the ancestor of humans and chimpanzees was more impacted by the selection regime when compared to the same parameter in the ancestor of humans, chimpanzees and gorillas. Because the selection regime influenced the estimates of ancestral effective population size, it is reasonable to assume that a portion of the discrepancy found in previous studies that inferred the ancestral effective population size may be attributable to the differential action of selection on the genes sampled.

  5. PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions

    Science.gov (United States)

    Tacconi, L. J.; Genzel, R.; Saintonge, A.; Combes, F.; García-Burillo, S.; Neri, R.; Bolatto, A.; Contini, T.; Förster Schreiber, N. M.; Lilly, S.; Lutz, D.; Wuyts, S.; Accurso, G.; Boissier, J.; Boone, F.; Bouché, N.; Bournaud, F.; Burkert, A.; Carollo, M.; Cooper, M.; Cox, P.; Feruglio, C.; Freundlich, J.; Herrera-Camus, R.; Juneau, S.; Lippa, M.; Naab, T.; Renzini, A.; Salome, P.; Sternberg, A.; Tadaki, K.; Übler, H.; Walter, F.; Weiner, B.; Weiss, A.

    2018-02-01

    This paper provides an update of our previous scaling relations between galaxy-integrated molecular gas masses, stellar masses, and star formation rates (SFRs), in the framework of the star formation main sequence (MS), with the main goal of testing for possible systematic effects. For this purpose our new study combines three independent methods of determining molecular gas masses from CO line fluxes, far-infrared dust spectral energy distributions, and ∼1 mm dust photometry, in a large sample of 1444 star-forming galaxies between z = 0 and 4. The sample covers the stellar mass range log(M */M ⊙) = 9.0–11.8, and SFRs relative to that on the MS, δMS = SFR/SFR(MS), from 10‑1.3 to 102.2. Our most important finding is that all data sets, despite the different techniques and analysis methods used, follow the same scaling trends, once method-to-method zero-point offsets are minimized and uncertainties are properly taken into account. The molecular gas depletion time t depl, defined as the ratio of molecular gas mass to SFR, scales as (1 + z)‑0.6 × (δMS)‑0.44 and is only weakly dependent on stellar mass. The ratio of molecular to stellar mass μ gas depends on (1+z{)}2.5× {(δ {MS})}0.52× {({M}* )}-0.36, which tracks the evolution of the specific SFR. The redshift dependence of μ gas requires a curvature term, as may the mass dependences of t depl and μ gas. We find no or only weak correlations of t depl and μ gas with optical size R or surface density once one removes the above scalings, but we caution that optical sizes may not be appropriate for the high gas and dust columns at high z. Based on observations of an IRAM Legacy Program carried out with the NOEMA, operated by the Institute for Radio Astronomy in the Millimetre Range (IRAM), which is funded by a partnership of INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  6. The role of Molecular Markers in Improvement of Fruit Crops

    Directory of Open Access Journals (Sweden)

    Zahoor Ahmad BHAT

    2010-06-01

    Full Text Available Markers have been used over the years for the classification of plants. Markers are any trait of an organism that can be identified with confidence and relative easy, and can be followed in a mapping population on another hand markers be defined as heritable entities associated with the economically important trait under the control of polygenes. Morphological markers can be detected with naked eye (naked eye polymorphism or as difference in physical or chemical properties of the macromolecules. In other words, there are two types of genetic markers viz. morphological markers or naked eye polymorphism and non-morphological markers or molecular markers. Morphological markers include traits such as plant height, disease response, photoperiod, sensitivity, shape or colour of flowers, fruits or seeds etc. Molecular markers include biochemical constituents. Morphological markers have many limitations for being used as markers particularly in fruit crops because of long generation time and large size of fruit trees besides being influenced by environment. Consequently, molecular markers could be appropriate choice to study and preserve the diversity in any germplasm. Molecular markers have diverse applications in fruit crop improvement, particularly in the areas of genetic diversity and varietal identification studies, gene tagging, disease diagnostics, pedigree analysis, hybrid detection, sex differentiation and marker assisted selection.

  7. A NEW RECIPE FOR OBTAINING CENTRAL VOLUME DENSITIES OF PRESTELLAR CORES FROM SIZE MEASUREMENTS

    International Nuclear Information System (INIS)

    Tassis, Konstantinos; Yorke, Harold W.

    2011-01-01

    We propose a simple analytical method for estimating the central volume density of prestellar molecular cloud cores from their column density profiles. Prestellar cores feature a flat central part of the column density and volume density profiles of the same size indicating the existence of a uniform-density inner region. The size of this region is set by the thermal pressure force which depends only on the central volume density and temperature of the core, and can provide a direct measurement of the central volume density. Thus, a simple length measurement can immediately yield a central density estimate independent of any dynamical model for the core and without the need for fitting. Using the radius at which the column density is 90% of the central value as an estimate of the size of the flat inner part of the column density profile yields an estimate of the central volume density within a factor of two for well-resolved cores.

  8. Molecular dynamics simulation of equilibrium configurations of plasmas containing multi-species dusts

    International Nuclear Information System (INIS)

    Liu, Yanhong; Chew, Lock Yue

    2007-01-01

    Equilibrium configurations of dusty plasmas with grains of different sizes, which interact through a screened Coulomb force field and confined by a two-dimensional quadratic potential, are studied using molecular dynamics simulation. The system configuration depends on the sizes, masses and charges of the grain species as well as the screening strength of the background plasma. The consideration of the grain size has established a different equilibrium configuration relative to that of point grains. In the new configurations, grains of different species separate into different shells, with the grains of larger mass and charge located away from the system center, forming a shell that surrounds the grains of smaller mass and charge at the system center. This configuration occurs beyond a critical grain radius, and its structure and size are determined by the competing effects between the inter-grain electrostatic repulsive force, the screening effect of the plasma and the mass-dependent confinement force of the quadratic potential

  9. The Small Nuclear Genomes of Selaginella Are Associated with a Low Rate of Genome Size Evolution.

    Science.gov (United States)

    Baniaga, Anthony E; Arrigo, Nils; Barker, Michael S

    2016-06-03

    The haploid nuclear genome size (1C DNA) of vascular land plants varies over several orders of magnitude. Much of this observed diversity in genome size is due to the proliferation and deletion of transposable elements. To date, all vascular land plant lineages with extremely small nuclear genomes represent recently derived states, having ancestors with much larger genome sizes. The Selaginellaceae represent an ancient lineage with extremely small genomes. It is unclear how small nuclear genomes evolved in Selaginella We compared the rates of nuclear genome size evolution in Selaginella and major vascular plant clades in a comparative phylogenetic framework. For the analyses, we collected 29 new flow cytometry estimates of haploid genome size in Selaginella to augment publicly available data. Selaginella possess some of the smallest known haploid nuclear genome sizes, as well as the lowest rate of genome size evolution observed across all vascular land plants included in our analyses. Additionally, our analyses provide strong support for a history of haploid nuclear genome size stasis in Selaginella Our results indicate that Selaginella, similar to other early diverging lineages of vascular land plants, has relatively low rates of genome size evolution. Further, our analyses highlight that a rapid transition to a small genome size is only one route to an extremely small genome. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Molecular polymorphism of a cell surface proteoglycan: distinct structures on simple and stratified epithelia.

    Science.gov (United States)

    Sanderson, R D; Bernfield, M

    1988-12-01

    Epithelial cells are organized into either a single layer (simple epithelia) or multiple layers (stratified epithelia). Maintenance of these cellular organizations requires distinct adhesive mechanisms involving many cell surface molecules. One such molecule is a cell surface proteoglycan, named syndecan, that contains both heparan sulfate and chondroitin sulfate chains. This proteoglycan binds cells to fibrillar collagens and fibronectin and thus acts as a receptor for interstitial matrix. The proteoglycan is restricted to the basolateral surface of simple epithelial cells, but is located over the entire surface of stratified epithelial cells, even those surfaces not contacting matrix. We now show that the distinct localization in simple and stratified epithelia correlates with a distinct proteoglycan structure. The proteoglycan from simple epithelia (modal molecular size, 160 kDa) is larger than that from stratified epithelia (modal molecular size, 92 kDa), but their core proteins are identical in size and immunoreactivity. The proteoglycan from simple epithelia has more and larger heparan sulfate and chondroitin sulfate chains than the proteoglycan from stratified epithelia. Thus, the cell surface proteoglycan shows a tissue-specific structural polymorphism due to distinct posttranslational modifications. This polymorphism likely reflects distinct proteoglycan functions in simple and stratified epithelia, potentially meeting the different adhesive requirements of the cells in these different organizations.

  11. Pleiades cluster. IV. The visit of a molecular CO cloud

    International Nuclear Information System (INIS)

    Breger, M.

    1987-01-01

    The location, size, and mass of the CO molecular cloud seen in the direction of the Pleiades cluster is determined from a study of the polarization and reddening of cluster members and nonmembers. Arguments are presented against both a foreground and background location of the molecular cloud, so that the cloud should be presently situated inside the cluster. Stellar reddening determinations with the appropriate value of R = 3.3 for the region, as well as star counts, lead to a determination of a total extinction of A(V) in the range of 1.0-1.6 mag for the central region of the CO cloud. The extinction determinations for cluster members and background stars indicate a mass of 20 solar masses for the CO cloud visiting the Pleiades cluster. 20 references

  12. Light and redox switchable molecular components for molecular electronics.

    Science.gov (United States)

    Browne, Wesley R; Feringa, Ben L

    2010-01-01

    The field of molecular and organic electronics has seen rapid progress in recent years, developing from concept and design to actual demonstration devices in which both single molecules and self-assembled monolayers are employed as light-responsive components. Research in this field has seen numerous unexpected challenges that have slowed progress and the initial promise of complex molecular-based computers has not yet been realised. Primarily this has been due to the realisation at an early stage that molecular-based nano-electronics brings with it the interface between the hard (semiconductor) and soft (molecular) worlds and the challenges which accompany working in such an environment. Issues such as addressability, cross-talk, molecular stability and perturbation of molecular properties (e.g., inhibition of photochemistry) have nevertheless driven development in molecular design and synthesis as well as our ability to interface molecular components with bulk metal contacts to a very high level of sophistication. Numerous groups have played key roles in progressing this field not least teams such as those led by Whitesides, Aviram, Ratner, Stoddart and Heath. In this short review we will however focus on the contributions from our own group and those of our collaborators, in employing diarylethene based molecular components.

  13. Effect of Molecular Weight on the Properties of Liquid Epoxidized Natural Rubber Acrylate (LENRA)/ Silica Hybrid Composites

    International Nuclear Information System (INIS)

    Eda Yuhana Ariffin; Azizan Ahmad; Dahlan Mohd; Mahathir Mohamed

    2011-01-01

    This paper reports on the effect of molecular weight on the morphological and mechanical properties of liquid epoxidized natural rubber acrylate (LENRA)/ silica hybrid composites prepared by sol-gel technique. The sol-gel reaction was conducted at different concentration of tetraethyl orthosilicate (TEOS), used as a precursor of silica. TEOS were introduced in 10, 20, 30, 40 and 50 parts per hundred rubber (phr) in the composites. Two different molecular weights of ENR were used to study the effect of molecular weight on the mechanical and morphological properties of the compounds. These compounds were cured by ultraviolet (UV) irradiation. The mechanical properties were studied through pendulum hardness and scratch tests. Higher molecular weight of ENR showed better mechanical properties than lower molecular weight. Transmission electron microscope was used to determine the silica size and to study the distribution and dispersion of the silica particles. High molecular weight showed greater distribution and dispersion of silica particles with diameter of 13 - 256 nm. Morphological and mechanical properties of LENRA/ silica hybrid composites were improved by using high molecular weight of ENR. (author)

  14. Crystal and molecular simulation of high-performance polymers.

    Science.gov (United States)

    Colquhoun, H M; Williams, D J

    2000-03-01

    Single-crystal X-ray analyses of oligomeric models for high-performance aromatic polymers, interfaced to computer-based molecular modeling and diffraction simulation, have enabled the determination of a range of previously unknown polymer crystal structures from X-ray powder data. Materials which have been successfully analyzed using this approach include aromatic polyesters, polyetherketones, polythioetherketones, polyphenylenes, and polycarboranes. Pure macrocyclic homologues of noncrystalline polyethersulfones afford high-quality single crystals-even at very large ring sizes-and have provided the first examples of a "protein crystallographic" approach to the structures of conventionally amorphous synthetic polymers.

  15. Plasmon-Based Colorimetric Nanosensors for Ultrasensitive Molecular Diagnostics.

    Science.gov (United States)

    Tang, Longhua; Li, Jinghong

    2017-07-28

    Colorimetric detection of target analytes with high specificity and sensitivity is of fundamental importance to clinical and personalized point-of-care diagnostics. Because of their extraordinary optical properties, plasmonic nanomaterials have been introduced into colorimetric sensing systems, which provide significantly improved sensitivity in various biosensing applications. Here we review the recent progress on these plasmonic nanoparticles-based colorimetric nanosensors for ultrasensitive molecular diagnostics. According to their different colorimetric signal generation mechanisms, these plasmonic nanosensors are classified into two categories: (1) interparticle distance-dependent colorimetric assay based on target-induced forming cross-linking assembly/aggregate of plasmonic nanoparticles; and (2) size/morphology-dependent colorimetric assay by target-controlled growth/etching of the plasmonic nanoparticles. The sensing fundamentals and cutting-edge applications will be provided for each of them, particularly focusing on signal generation and/or amplification mechanisms that realize ultrasensitive molecular detection. Finally, we also discuss the challenge and give our future perspective in this emerging field.

  16. Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors

    Science.gov (United States)

    Emir Diltemiz, Sibel; Keçili, Rüstem; Ersöz, Arzu; Say, Rıdvan

    2017-01-01

    Molecularly imprinted polymers (MIPs) as artificial antibodies have received considerable scientific attention in the past years in the field of (bio)sensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values, etc.). On the other hand, the Quartz Crystal Microbalance (QCM) is an analytical tool based on the measurement of small mass changes on the sensor surface. QCM sensors are practical and convenient monitoring tools because of their specificity, sensitivity, high accuracy, stability and reproducibility. QCM devices are highly suitable for converting the recognition process achieved using MIP-based memories into a sensor signal. Therefore, the combination of a QCM and MIPs as synthetic receptors enhances the sensitivity through MIP process-based multiplexed binding sites using size, 3D-shape and chemical function having molecular memories of the prepared sensor system toward the target compound to be detected. This review aims to highlight and summarize the recent progress and studies in the field of (bio)sensor systems based on QCMs combined with molecular imprinting technology. PMID:28245588

  17. Molecular dynamics simulations of solutions at constant chemical potential

    Science.gov (United States)

    Perego, C.; Salvalaglio, M.; Parrinello, M.

    2015-04-01

    Molecular dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, which range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, which influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a grand-canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work, we propose the Constant Chemical Potential Molecular Dynamics (CμMD) method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the CμMD method to the paradigmatic case of urea crystallization in aqueous solution. As a result, we have been able to study crystal growth dynamics under constant supersaturation conditions and to extract growth rates and free-energy barriers.

  18. Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM Sensors

    Directory of Open Access Journals (Sweden)

    Sibel Emir Diltemiz

    2017-02-01

    Full Text Available Molecularly imprinted polymers (MIPs as artificial antibodies have received considerable scientific attention in the past years in the field of (biosensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values, etc.. On the other hand, the Quartz Crystal Microbalance (QCM is an analytical tool based on the measurement of small mass changes on the sensor surface. QCM sensors are practical and convenient monitoring tools because of their specificity, sensitivity, high accuracy, stability and reproducibility. QCM devices are highly suitable for converting the recognition process achieved using MIP-based memories into a sensor signal. Therefore, the combination of a QCM and MIPs as synthetic receptors enhances the sensitivity through MIP process-based multiplexed binding sites using size, 3D-shape and chemical function having molecular memories of the prepared sensor system toward the target compound to be detected. This review aims to highlight and summarize the recent progress and studies in the field of (biosensor systems based on QCMs combined with molecular imprinting technology.

  19. A High-Yield Synthesis of Chalcopyrite CuInS2 Nanoparticles with Exceptional Size Control

    Directory of Open Access Journals (Sweden)

    Chivin Sun

    2009-01-01

    Full Text Available We report high-yield and efficient size-controlled syntheses of Chalcopyrite CuInS2 nanoparticles by decomposing molecular single source precursors (SSPs via microwave irradiation in the presence of 1,2-ethanedithiol at reaction temperatures as low as 100°C and times as short as 30 minutes. The nanoparticles sizes were 1.8 nm to 10.8 nm as reaction temperatures were varied from 100°C to 200°C with the bandgaps from 2.71 eV to 1.28 eV with good size control and high yields (64%–95%. The resulting nanoparticles were analyzed by XRD, UV-Vis, ICP-OES, XPS, SEM, EDS, and HRTEM. Titration studies by 1H NMR using SSP 1 with 1,2-ethanedithiol and benzyl mercaptan were conducted to elucidate the formation of Chalcopyrite CuInS2 nanoparticles.

  20. Preparation of nano-sized {alpha}-Al{sub 2}O{sub 3} from oil shale ash

    Energy Technology Data Exchange (ETDEWEB)

    An, Baichao; Wang, Wenying; Ji, Guijuan; Gan, Shucai; Gao, Guimei; Xu, Jijing; Li, Guanghuan [College of Chemistry, Jilin University, Changchun 130026 (China)

    2010-01-15

    Oil shale ash (OSA), the residue of oil shale semi-coke roasting, was used as a raw material to synthesize nano-sized {alpha}-Al{sub 2}O{sub 3}. Ultrasonic oscillation pretreatment followed by azeotropic distillation was employed for reducing the particle size of {alpha}-Al{sub 2}O{sub 3}. The structural characterization at molecular and nanometer scales was performed using X-ray diffraction (XRD), transmission electron microscopy (TEM), respectively. The interaction between alumina and n-butanol was characterized by Fourier transform infrared spectroscopy (FT-IR). The results revealed that the crystalline phase of alumina nanoparticles was regular and the well dispersed alumina nanoparticles had a diameter of 50-80 nm. In addition, the significant factors including injection rate of carbon oxide (CO{sub 2}), ultrasonic oscillations, azeotropic distillation and surfactant were investigated with respect to their effects on the size of the alumina particles. (author)