Wapenaar, Kees
2017-06-01
A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.
Exact traveling wave solutions of the Boussinesq equation
International Nuclear Information System (INIS)
Ding Shuangshuang; Zhao Xiqiang
2006-01-01
The repeated homogeneous balance method is used to construct exact traveling wave solutions of the Boussinesq equation, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation, respectively. Many new exact traveling wave solutions of the Boussinesq equation are successfully obtained
Non-periodic homogenization of 3-D elastic media for the seismic wave equation
Cupillard, Paul; Capdeville, Yann
2018-05-01
Because seismic waves have a limited frequency spectrum, the velocity structure of the Earth that can be extracted from seismic records has a limited resolution. As a consequence, one obtains smooth images from waveform inversion, although the Earth holds discontinuities and small scales of various natures. Within the last decade, the non-periodic homogenization method shed light on how seismic waves interact with small geological heterogeneities and `see' upscaled properties. This theory enables us to compute long-wave equivalent density and elastic coefficients of any media, with no constraint on the size, the shape and the contrast of the heterogeneities. In particular, the homogenization leads to the apparent, structure-induced anisotropy. In this paper, we implement this method in 3-D and show 3-D tests for the very first time. The non-periodic homogenization relies on an asymptotic expansion of the displacement and the stress involved in the elastic wave equation. Limiting ourselves to the order 0, we show that the practical computation of an upscaled elastic tensor basically requires (i) to solve an elastostatic problem and (ii) to low-pass filter the strain and the stress associated with the obtained solution. The elastostatic problem consists in finding the displacements due to local unit strains acting in all directions within the medium to upscale. This is solved using a parallel, highly optimized finite-element code. As for the filtering, we rely on the finite-element quadrature to perform the convolution in the space domain. We end up with an efficient numerical tool that we apply on various 3-D models to test the accuracy and the benefit of the homogenization. In the case of a finely layered model, our method agrees with results derived from Backus. In a more challenging model composed by a million of small cubes, waveforms computed in the homogenized medium fit reference waveforms very well. Both direct phases and complex diffracted waves are
State equations and stability of shock wave fronts in homogeneous and heterogeneous metallic medium
International Nuclear Information System (INIS)
Romain, Jean-Pierre
1977-01-01
This research thesis in physical sciences reports a theoretical and experimental study of some mechanical and thermodynamic aspects related to a shock wave propagation in homogeneous and heterogeneous metallic media: state equations, stability and instability of shock wave fronts. In the first part, the author reports the study of the Grueneisen coefficient for some metallic elements with known static and dynamic compression properties. The second part reports the experimental investigation of dynamic compressibility of some materials (lamellar Al-Cu compounds). The front shock wave propagation has been visualised, and experimental Hugoniot curves are compared with those deduced from a developed numeric model and other models. The bismuth Hugoniot curve is also determined, and the author compares the existence and nature of phase transitions obtained by static and dynamic compression
High-frequency homogenization for travelling waves in periodic media.
Harutyunyan, Davit; Milton, Graeme W; Craster, Richard V
2016-07-01
We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω 1 plus a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω 2 . We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω 1 = ω 2 and [Formula: see text] where Λ =(λ 1 λ 2 …λ d ) is the periodicity cell of the medium and for any two vectors [Formula: see text] the product a ⊙ b is defined to be the vector ( a 1 b 1 , a 2 b 2 ,…, a d b d ). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.
Directory of Open Access Journals (Sweden)
Olaniyi Samuel Iyiola
2014-09-01
Full Text Available In this paper, we obtain analytical solutions of homogeneous time-fractional Gardner equation and non-homogeneous time-fractional models (including Buck-master equation using q-Homotopy Analysis Method (q-HAM. Our work displays the elegant nature of the application of q-HAM not only to solve homogeneous non-linear fractional differential equations but also to solve the non-homogeneous fractional differential equations. The presence of the auxiliary parameter h helps in an effective way to obtain better approximation comparable to exact solutions. The fraction-factor in this method gives it an edge over other existing analytical methods for non-linear differential equations. Comparisons are made upon the existence of exact solutions to these models. The analysis shows that our analytical solutions converge very rapidly to the exact solutions.
True amplitude wave equation migration arising from true amplitude one-way wave equations
Zhang, Yu; Zhang, Guanquan; Bleistein, Norman
2003-10-01
One-way wave operators are powerful tools for use in forward modelling and inversion. Their implementation, however, involves introduction of the square root of an operator as a pseudo-differential operator. Furthermore, a simple factoring of the wave operator produces one-way wave equations that yield the same travel times as the full wave equation, but do not yield accurate amplitudes except for homogeneous media and for almost all points in heterogeneous media. Here, we present augmented one-way wave equations. We show that these equations yield solutions for which the leading order asymptotic amplitude as well as the travel time satisfy the same differential equations as the corresponding functions for the full wave equation. Exact representations of the square-root operator appearing in these differential equations are elusive, except in cases in which the heterogeneity of the medium is independent of the transverse spatial variables. Here, we address the fully heterogeneous case. Singling out depth as the preferred direction of propagation, we introduce a representation of the square-root operator as an integral in which a rational function of the transverse Laplacian appears in the integrand. This allows us to carry out explicit asymptotic analysis of the resulting one-way wave equations. To do this, we introduce an auxiliary function that satisfies a lower dimensional wave equation in transverse spatial variables only. We prove that ray theory for these one-way wave equations leads to one-way eikonal equations and the correct leading order transport equation for the full wave equation. We then introduce appropriate boundary conditions at z = 0 to generate waves at depth whose quotient leads to a reflector map and an estimate of the ray theoretical reflection coefficient on the reflector. Thus, these true amplitude one-way wave equations lead to a 'true amplitude wave equation migration' (WEM) method. In fact, we prove that applying the WEM imaging condition
Travelling waves in expanding spatially homogeneous space–times
International Nuclear Information System (INIS)
Alekseev, George
2015-01-01
Some classes of the so-called ‘travelling wave’ solutions of Einstein and Einstein–Maxwell equations in general relativity and of dynamical equations for massless bosonic fields in string gravity in four and higher dimensions are presented. Similarly to the well known plane-fronted waves with parallel rays (pp-waves), these travelling wave solutions may depend on arbitrary functions of a null coordinate which determine the arbitrary profiles and polarizations of the waves. However, in contrast with pp-waves, these waves do not admit the null Killing vector fields and can exist in some curved (expanding and spatially homogeneous) background space–times, where these waves propagate in certain directions without any scattering. Mathematically, some of these classes of solutions arise as the fixed points of Kramer–Neugebauer transformations for hyperbolic integrable reductions of the above mentioned field equations or, in other cases, after imposing the ansatz that these waves do not change the part of the spatial metric transverse to the direction of wave propagation. It is worth noting that the strikingly simple forms of all the solutions presented prospectively make possible the consideration of the nonlinear interaction of these waves with the background curvature and singularities, as well as the collision of such wave pulses with solitons or with each other in the backgrounds where such travelling waves may exist. (paper)
Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains
Przedborski, Michelle; Anco, Stephen C.
2017-09-01
A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.
Head-on collision between positron acoustic waves in homogeneous and inhomogeneous plasmas
Alam, M. S.; Hafez, M. G.; Talukder, M. R.; Ali, M. Hossain
2018-05-01
The head-on collision between positron acoustic solitary waves (PASWs) as well as the production of rogue waves (RWs) in homogeneous and PASWs in inhomogeneous unmagnetized plasma systems are investigated deriving the nonlinear evolution equations. The plasmas are composed of immobile positive ions, mobile cold and hot positrons, and hot electrons, where the hot positrons and hot electrons are assumed to follow the Kappa distributions. The evolution equations are derived using the appropriate coordinate transformation and the reductive perturbation technique. The effects of concentrations, kappa parameters of hot electrons and positrons, and temperature ratios on the characteristics of PASWs and RWs are examined. It is found that the kappa parameters and temperature ratios significantly modify phase shifts after head-on collisions and RWs in homogeneous as well as PASWs in inhomogeneous plasmas. The amplitudes of the PASWs in inhomogeneous plasmas are diminished with increasing kappa parameters, concentration and temperature ratios. Further, the amplitudes of RWs are reduced with increasing charged particles concentration, while it enhances with increasing kappa- and temperature parameters. Besides, the compressive and rarefactive solitons are produced at critical densities from KdV equation for hot and cold positrons, while the compressive solitons are only produced from mKdV equation for both in homogeneous and inhomogeneous plasmas.
Non-homogeneous polymer model for wave propagation and its ...
African Journals Online (AJOL)
user
density are functions of space i.e. non-homogeneous engineering material. .... The Solution of equation Eq. (9) in the form of Eq. (10) can be obtained by taking a phase ..... Viscoelastic Model Applied to a Particular Case .... p m i exp m α α σ σ σ. = −. +. −. (35). The progressive harmonic wave which starts from the end. 0 x =.
Directory of Open Access Journals (Sweden)
Luo Li-Qin
2016-01-01
Full Text Available In this paper, we investigate the value distribution of meromorphic solutions of homogeneous and non-homogeneous complex linear differential-difference equations, and obtain the results on the relations between the order of the solutions and the convergence exponents of the zeros, poles, a-points and small function value points of the solutions, which show the relations in the case of non-homogeneous equations are sharper than the ones in the case of homogeneous equations.
Homogenization of Stokes and Navier-Stokes equations
International Nuclear Information System (INIS)
Allaire, G.
1990-04-01
This thesis is devoted to homogenization of Stokes and Navier-Stokes equations with a Dirichlet boundary condition in a domain containing many tiny obstacles. Tipycally those obstacles are distributed at the modes of a periodic lattice with same small period in each axe's direction, and their size is always asymptotically smaller than the lattice's step. With the help of the energy method, and thanks to a suitable pressure's extension, we prove the convergence of the homogenization process when the lattice's step tends to zero (and thus the number of obstacles tends to infinity). For a so-called critical size of the obstacles, the homogenized problem turns out to be a Brinkman's law (i.e. Stokes or Navier-Stokes equation plus a linear zero-order term for the velocity in the momentum equation). For obstacles which have a size smaller than the critical one, the limit problem reduces to the initial Stokes or Navier-Stokes equations, while for larger sizes the homogenized problem a Darcy's law. Furthermore, those results have been extended to the case of obstacles included in a hyperplane, and we establish a simple model of fluid flows through grids, which is based on a special form of Brinkman's law [fr
On the second-order homogenization of wave motion in periodic media and the sound of a chessboard
Wautier, Antoine; Guzina, Bojan B.
2015-05-01
The goal of this study is to better understand the mathematical structure and ramifications of the second-order homogenization of low-frequency wave motion in periodic solids. To this end, multiple-scales asymptotic approach is applied to the scalar wave equation (describing anti-plane shear motion) in one and two spatial dimensions. In contrast to previous studies where the second-order homogenization has lead to the introduction of a single fourth-order derivative in the governing equation, present investigation demonstrates that such (asymptotic) approach results in a family of field equations uniting spatial, temporal, and mixed fourth-order derivatives - that jointly control incipient wave dispersion. Given the consequent freedom in selecting the affiliated lengthscale parameters, the notion of an optimal asymptotic model is next considered in a one-dimensional setting via its ability to capture the salient features of wave propagation within the first Brillouin zone, including the onset and magnitude of the phononic band gap. In the context of two-dimensional wave propagation, on the other hand, the asymptotic analysis is first established in a general setting, exposing the constant shear modulus as sufficient condition under which the second-order approximation of a bi-periodic elastic solid is both isotropic and limited to even-order derivatives. On adopting a chessboard-like periodic structure (with contrasts in both modulus and mass density) as a testbed for in-depth analytical treatment, it is next shown that the second-order approximation of germane wave motion is governed by a family fourth-order differential equations that: (i) entail exclusively even-order derivatives and homogenization coefficients that depend explicitly on the contrast in mass density; (ii) describe anisotropic wave dispersion characterized by the "sin4 θ +cos4 θ" term, and (iii) include the asymptotic model for a square lattice of circular inclusions as degenerate case. For
Travelling wave solutions of the homogeneous one-dimensional FREFLO model
Huang, B.; Hong, J. Y.; Jing, G. Q.; Niu, W.; Fang, L.
2018-01-01
Presently there is quite few analytical studies in traffic flows due to the non-linearity of the governing equations. In the present paper we introduce travelling wave solutions for the homogeneous one-dimensional FREFLO model, which are expressed in the form of series and describe the procedure that vehicles/pedestrians move with a negative velocity and decelerate until rest, then accelerate inversely to positive velocities. This method is expect to be extended to more complex situations in the future.
Stoneley waves in a non-homogeneous orthotropic granular medium under the influence of gravity
Directory of Open Access Journals (Sweden)
S. M. Ahmed
2005-01-01
Full Text Available The aim of this paper is to investigate the Stoneley waves in a non-homogeneous orthotropic granular medium under the influence of a gravity field. The frequency equation obtained, in the form of a sixth-order determinantal expression, is in agreement with the corresponding result when both media are elastic. The frequency equation when the gravity field is neglected has been deduced as a particular case.
Plane waves and spherical means applied to partial differential equations
John, Fritz
2004-01-01
Elementary and self-contained, this heterogeneous collection of results on partial differential equations employs certain elementary identities for plane and spherical integrals of an arbitrary function, showing how a variety of results on fairly general differential equations follow from those identities. The first chapter deals with the decomposition of arbitrary functions into functions of the type of plane waves. Succeeding chapters introduce the first application of the Radon transformation and examine the solution of the initial value problem for homogeneous hyperbolic equations with con
Boundary Observability and Stabilization for Westervelt Type Wave Equations without Interior Damping
International Nuclear Information System (INIS)
Kaltenbacher, Barbara
2010-01-01
In this paper we show boundary observability and boundary stabilizability by linear feedbacks for a class of nonlinear wave equations including the undamped Westervelt model used in nonlinear acoustics. We prove local existence for undamped generalized Westervelt equations with homogeneous Dirichlet boundary conditions as well as global existence and exponential decay with absorbing type boundary conditions.
Combined solitary-wave solution for coupled higher-order nonlinear Schroedinger equations
International Nuclear Information System (INIS)
Tian Jinping; Tian Huiping; Li Zhonghao; Zhou Guosheng
2004-01-01
Coupled nonlinear Schroedinger equations model several interesting physical phenomena. We used a trigonometric function transform method based on a homogeneous balance to solve the coupled higher-order nonlinear Schroedinger equations. We obtained four pairs of exact solitary-wave solutions including a dark and a bright-soliton pair, a bright- and a dark-soliton pair, a bright- and a bright-soliton pair, and the last pair, a combined bright-dark-soliton pair
Wave Equation Inversion of Skeletonized SurfaceWaves
Zhang, Zhendong
2015-08-19
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Results with synthetic and field data illustrate the benefits and limitations of this method.
Neutron transport equation - indications on homogenization and neutron diffusion
International Nuclear Information System (INIS)
Argaud, J.P.
1992-06-01
In PWR nuclear reactor, the practical study of the neutrons in the core uses diffusion equation to describe the problem. On the other hand, the most correct method to describe these neutrons is to use the Boltzmann equation, or neutron transport equation. In this paper, we give some theoretical indications to obtain a diffusion equation from the general transport equation, with some simplifying hypothesis. The work is organised as follows: (a) the most general formulations of the transport equation are presented: integro-differential equation and integral equation; (b) the theoretical approximation of this Boltzmann equation by a diffusion equation is introduced, by the way of asymptotic developments; (c) practical homogenization methods of transport equation is then presented. In particular, the relationships with some general and useful methods in neutronic are shown, and some homogenization methods in energy and space are indicated. A lot of other points of view or complements are detailed in the text or the remarks
Wave-equation dispersion inversion
Li, Jing
2016-12-08
We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.
Skeletonized wave equation of surface wave dispersion inversion
Li, Jing
2016-09-06
We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel-time inversion, the complicated surface-wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the (kx,ω) domain. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2D or 3D velocity models. This procedure, denoted as wave equation dispersion inversion (WD), does not require the assumption of a layered model and is less prone to the cycle skipping problems of full waveform inversion (FWI). The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distribution in laterally heterogeneous media.
Wave Equation Inversion of Skeletonized SurfaceWaves
Zhang, Zhendong; Liu, Yike; Schuster, Gerard T.
2015-01-01
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve
Wave-equation Qs Inversion of Skeletonized Surface Waves
Li, Jing
2017-02-08
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.
Skeletonized wave-equation Qs tomography using surface waves
Li, Jing
2017-08-17
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is then found that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs tomography (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to Q full waveform inversion (Q-FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsur-face Qs distribution as long as the Vs model is known with sufficient accuracy.
Wave-equation Qs Inversion of Skeletonized Surface Waves
Li, Jing; Dutta, Gaurav; Schuster, Gerard T.
2017-01-01
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.
Skeletonized wave equation of surface wave dispersion inversion
Li, Jing; Schuster, Gerard T.
2016-01-01
We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel
Linear superposition solutions to nonlinear wave equations
International Nuclear Information System (INIS)
Liu Yu
2012-01-01
The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed
Sethi, M.; Sharma, A.; Vasishth, A.
2017-05-01
The present paper deals with the mathematical modeling of the propagation of torsional surface waves in a non-homogeneous transverse isotropic elastic half-space under a rigid layer. Both rigidities and density of the half-space are assumed to vary inversely linearly with depth. Separation of variable method has been used to get the analytical solutions for the dispersion equation of the torsional surface waves. Also, the effects of nonhomogeneities on the phase velocity of torsional surface waves have been shown graphically. Also, dispersion equations have been derived for some particular cases, which are in complete agreement with some classical results.
The relativistic electron wave equation
International Nuclear Information System (INIS)
Dirac, P.A.M.
1977-08-01
The paper was presented at the European Conference on Particle Physics held in Budapest between the 4th and 9th July of 1977. A short review is given on the birth of the relativistic electron wave equation. After Schroedinger has shown the equivalence of his wave mechanics and the matrix mechanics of Heisenberg, a general transformation theory was developed by the author. This theory required a relativistic wave equation linear in delta/delta t. As the Klein--Gordon equation available at this time did not satisfy this condition the development of a new equation became necessary. The equation which was found gave the value of the electron spin and magnetic moment automatically. (D.P.)
Homogenization of the critically spectral equation in neutron transport
International Nuclear Information System (INIS)
Allaire, G.; Paris-6 Univ., 75; Bal, G.
1998-01-01
We address the homogenization of an eigenvalue problem for the neutron transport equation in a periodic heterogeneous domain, modeling the criticality study of nuclear reactor cores. We prove that the neutron flux, corresponding to the first and unique positive eigenvector, can be factorized in the product of two terms, up to a remainder which goes strongly to zero with the period. On terms is the first eigenvector of the transport equation in the periodicity cell. The other term is the first eigenvector of a diffusion equation in the homogenized domain. Furthermore, the corresponding eigenvalue gives a second order corrector for the eigenvalue of the heterogeneous transport problem. This result justifies and improves the engineering procedure used in practice for nuclear reactor cores computations. (author)
Homogenization of the critically spectral equation in neutron transport
Energy Technology Data Exchange (ETDEWEB)
Allaire, G. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie]|[Paris-6 Univ., 75 (France). Lab. d' Analyse Numerique; Bal, G. [Electricite de France (EDF), 92 - Clamart (France). Direction des Etudes et Recherches
1998-07-01
We address the homogenization of an eigenvalue problem for the neutron transport equation in a periodic heterogeneous domain, modeling the criticality study of nuclear reactor cores. We prove that the neutron flux, corresponding to the first and unique positive eigenvector, can be factorized in the product of two terms, up to a remainder which goes strongly to zero with the period. On terms is the first eigenvector of the transport equation in the periodicity cell. The other term is the first eigenvector of a diffusion equation in the homogenized domain. Furthermore, the corresponding eigenvalue gives a second order corrector for the eigenvalue of the heterogeneous transport problem. This result justifies and improves the engineering procedure used in practice for nuclear reactor cores computations. (author)
KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma
Westerhof, E.
2010-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves: Part II homogeneous plasma
Westerhof, E.
2000-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves - Part II: Homogeneous plasma
Westerhof, E.
2008-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold
Analysis of wave equation in electromagnetic field by Proca equation
International Nuclear Information System (INIS)
Pamungkas, Oky Rio; Soeparmi; Cari
2017-01-01
This research is aimed to analyze wave equation for the electric and magnetic field, vector and scalar potential, and continuity equation using Proca equation. Then, also analyze comparison of the solution on Maxwell and Proca equation for scalar potential and electric field, both as a function of distance and constant wave number. (paper)
Nonlinear wave equation with intrinsic wave particle dualism
International Nuclear Information System (INIS)
Klein, J.J.
1976-01-01
A nonlinear wave equation derived from the sine-Gordon equation is shown to possess a variety of solutions, the most interesting of which is a solution that describes a wave packet travelling with velocity usub(e) modulating a carrier wave travelling with velocity usub(c). The envelop and carrier wave speeds agree precisely with the group and phase velocities found by de Broglie for matter waves. No spreading is exhibited by the soliton, so that it behaves exactly like a particle in classical mechanics. Moreover, the classically computed energy E of the disturbance turns out to be exactly equal to the frequency ω of the carrier wave, so that the Planck relation is automatically satisfied without postulating a particle-wave dualism. (author)
Deduction of Einstein equation from homogeneity of Riemann spacetime
Ni, Jun
2012-03-01
The symmetry of spacetime translation leads to the energy-momentum conservation. However, the Lagrange depends on spacetime coordinates, which makes the symmetry of spacetime translation different with other symmetry invariant explicitly under symmetry transformation. We need an equation to guarantee the symmetry of spacetime translation. In this talk, I will show that the Einstein equation can be deduced purely from the general covariant principle and the homogeneity of spacetime in the frame of quantum field theory. The Einstein equation is shown to be the equation to guarantee the symmetry of spacetime translation. Gravity is an apparent force due to the curvature of spacetime resulted from the conservation of energy-momentum. In the action of quantum field, only electroweak-strong interactions appear with curved spacetime metric determined by the Einstein equation.. The general covariant principle and the homogeneity of spacetime are merged into one basic principle: Any Riemann spacetime metric guaranteeing the energy-momentum conservation are equivalent, which can be called as the conserved general covariant principle. [4pt] [1] Jun Ni, Chin. Phys. Lett. 28, 110401 (2011).
Parsimonious wave-equation travel-time inversion for refraction waves
Fu, Lei
2017-02-14
We present a parsimonious wave-equation travel-time inversion technique for refraction waves. A dense virtual refraction dataset can be generated from just two reciprocal shot gathers for the sources at the endpoints of the survey line, with N geophones evenly deployed along the line. These two reciprocal shots contain approximately 2N refraction travel times, which can be spawned into O(N2) refraction travel times by an interferometric transformation. Then, these virtual refraction travel times are used with a source wavelet to create N virtual refraction shot gathers, which are the input data for wave-equation travel-time inversion. Numerical results show that the parsimonious wave-equation travel-time tomogram has about the same accuracy as the tomogram computed by standard wave-equation travel-time inversion. The most significant benefit is that a reciprocal survey is far less time consuming than the standard refraction survey where a source is excited at each geophone location.
The influence of non-homogenous dielectric material in the waveguide propagation modes
Directory of Open Access Journals (Sweden)
Ion VONCILA
2006-12-01
Full Text Available The aim of this paper is to indicate the equations of electromagnetic wave in homogenous and non-homogenous dielectric material, estabilising the bundary conditions and solves by FEM the equations of the electromagnetic wave in the rectangular cavity. By numeric simulation of the waveguide in the cavity there have been studied the modifications of both the ways of propagation and the field’s distribution. The non-homogenous mediums afectes the field’s amplitude, obtaining a non-homogenous distribution. Poyting vector of the wave’s transmision, indicates the energetic flux’s concentration in the air besides the dielectric material.
Long, Feng-Shan; Karnbanjong, Adisak; Suriyawichitseranee, Amornrat; Grigoriev, Yurii N.; Meleshko, Sergey V.
2017-07-01
This paper proposes an algorithm for group classification of a nonhomogeneous equation using the group analysis provided for the corresponding homogeneous equation. The approach is illustrated by a partial differential equation, an integro-differential equation, and a delay partial differential equation.
A numerical solution to the radial equation of the tidal wave propagation
International Nuclear Information System (INIS)
Makarious, S.H.
1981-08-01
The tidal wave function y(x) is a solution to an inhomogeneous, linear, second-order differential equation with variable coefficient. Numerical values for the height-dependence terms, in the observed tides, have been utilized in finding y(x) as a solution to an initial-value problem. Complex Fast Fourier Transform technique is also used to obtain the solution in a complex form. Based on a realistic temperature structure, the atmosphere - below 110 km - has been divided into layers with distinct characteristics, and thus the technique of propagation in stratified media has been applied. The reduced homogeneous equation assumes the form of Helmholtz equation and with initial conditions the general solution is obtained. (author)
Li, Tatsien
2017-01-01
This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.
International Nuclear Information System (INIS)
Beklaryan, Leva A
2011-01-01
A finite difference analogue of the wave equation with potential perturbation is investigated, which simulates the behaviour of an infinite rod under the action of an external longitudinal force field. For a homogeneous rod, describing solutions of travelling wave type is equivalent to describing the full space of classical solutions to an induced one-parameter family of functional differential equations of point type, with the characteristic of the travelling wave as parameter. For an inhomogeneous rod, the space of solutions of travelling wave type is trivial, and their 'proper' extension is defined as solutions of 'quasitravelling' wave type. By contrast to the case of a homogeneous rod, describing the solutions of quasitravelling wave type is equivalent to describing the quotient of the full space of impulsive solutions to an induced one-parameter family of point-type functional differential equations by an equivalence relation connected with the definition of solutions of quasitravelling wave type. Stability of stationary solutions is analyzed. Bibliography: 9 titles.
Directory of Open Access Journals (Sweden)
M. Arshad
Full Text Available In this manuscript, we constructed different form of new exact solutions of generalized coupled Zakharov–Kuznetsov and dispersive long wave equations by utilizing the modified extended direct algebraic method. New exact traveling wave solutions for both equations are obtained in the form of soliton, periodic, bright, and dark solitary wave solutions. There are many applications of the present traveling wave solutions in physics and furthermore, a wide class of coupled nonlinear evolution equations can be solved by this method. Keywords: Traveling wave solutions, Elliptic solutions, Generalized coupled Zakharov–Kuznetsov equation, Dispersive long wave equation, Modified extended direct algebraic method
BOOK REVIEW: Kinetic theory of plasma waves, homogeneous plasmas
Porkolab, Miklos
1998-11-01
The linear theory of plasma waves in homogeneous plasma is arguably the most mature and best understood branch of plasma physics. Given the recently revised version of Stix's excellent Waves in Plasmas (1992), one might ask whether another book on this subject is necessary only a few years later. The answer lies in the scope of this volume; it is somewhat more detailed in certain topics than, and complementary in many fusion research relevant areas to, Stix's book. (I am restricting these comments to the homogeneous plasma theory only, since the author promises a second volume on wave propagation in inhomogeneous plasmas.) This book is also much more of a theorist's approach to waves in plasmas, with the aim of developing the subject within the logical framework of kinetic theory. This may indeed be pleasing to the expert and to the specialist, but may be too difficult to the graduate student as an `introduction' to the subject (which the author explicitly states in the Preface). On the other hand, it may be entirely appropriate for a second course on plasma waves, after the student has mastered fluid theory and an introductory kinetic treatment of waves in a hot magnetized `Vlasov' plasma. For teaching purposes, my personal preference is to review the cold plasma wave treatment using the unified Stix formalism and notation (which the author wisely adopts in the present book, but only in Chapter 5). Such an approach allows one to deal with CMA diagrams early on, as well as to provide a framework to discuss electromagnetic wave propagation and accessibility in inhomogeneous plasmas (for which the cold plasma wave treatment is perfectly adequate). Such an approach does lack some of the rigour, however, that the author achieves with the present approach. As the author correctly shows, the fluid theory treatment of waves follows logically from kinetic theory in the cold plasma limit. I only question the pedagogical value of this approach. Otherwise, I welcome this
International Nuclear Information System (INIS)
Lebedev, D.R.
1979-01-01
Benney's equations of motion of incompressible nonviscous fluid with free surface in the approximation of long waves are analyzed. The connection between the Lie algebra of Hamilton plane vector fields and the Benney's momentum equations is shown
Spatial evolution equation of wind wave growth
Institute of Scientific and Technical Information of China (English)
WANG; Wei; (王; 伟); SUN; Fu; (孙; 孚); DAI; Dejun; (戴德君)
2003-01-01
Based on the dynamic essence of air-sea interactions, a feedback type of spatial evolution equation is suggested to match reasonably the growing process of wind waves. This simple equation involving the dominant factors of wind wave growth is able to explain the transfer of energy from high to low frequencies without introducing the concept of nonlinear wave-wave interactions, and the results agree well with observations. The rate of wave height growth derived in this dissertation is applicable to both laboratory and open sea, which solidifies the physical basis of using laboratory experiments to investigate the generation of wind waves. Thus the proposed spatial evolution equation provides a new approach for the research on dynamic mechanism of air-sea interactions and wind wave prediction.
Cnoidal waves governed by the Kudryashov–Sinelshchikov equation
International Nuclear Information System (INIS)
Randrüüt, Merle; Braun, Manfred
2013-01-01
The evolution equation for waves propagating in a mixture of liquid and gas bubbles as proposed by Kudryashov and Sinelshchikov allows, in a special case, the propagation of solitary waves of the sech 2 type. It is shown that these waves represent the solitary limit separating two families of periodic waves. One of them consists of the same cnoidal waves that are solutions of the Korteweg–de Vries equation, while the other one does not have a corresponding counterpart. It is pointed out how the ordinary differential equations governing traveling-wave solutions of the Kudryashov–Sinelshchikov and the Korteweg–de Vries equations are related to each other.
Cnoidal waves governed by the Kudryashov–Sinelshchikov equation
Energy Technology Data Exchange (ETDEWEB)
Randrüüt, Merle, E-mail: merler@cens.ioc.ee [Tallinn University of Technology, Faculty of Mechanical Engineering, Department of Mechatronics, Ehitajate tee 5, 19086 Tallinn (Estonia); Braun, Manfred [University of Duisburg–Essen, Chair of Mechanics and Robotics, Lotharstraße 1, 47057 Duisburg (Germany)
2013-10-30
The evolution equation for waves propagating in a mixture of liquid and gas bubbles as proposed by Kudryashov and Sinelshchikov allows, in a special case, the propagation of solitary waves of the sech{sup 2} type. It is shown that these waves represent the solitary limit separating two families of periodic waves. One of them consists of the same cnoidal waves that are solutions of the Korteweg–de Vries equation, while the other one does not have a corresponding counterpart. It is pointed out how the ordinary differential equations governing traveling-wave solutions of the Kudryashov–Sinelshchikov and the Korteweg–de Vries equations are related to each other.
Fibonacci-like Differential Equations with a Polynomial Non-Homogeneous Part
Asveld, P.R.J.
1989-01-01
We investigate non-homogeneous linear differential equations of the form $x''(t) + x'(t) - x(t) = p(t)$ where $p(t)$ is either a polynomial or a factorial polynomial in $t$. We express the solution of these differential equations in terms of the coefficients of $p(t)$, in the initial conditions, and
A new auxiliary equation and exact travelling wave solutions of nonlinear equations
International Nuclear Information System (INIS)
Sirendaoreji
2006-01-01
A new auxiliary ordinary differential equation and its solutions are used for constructing exact travelling wave solutions of nonlinear partial differential equations in a unified way. The main idea of this method is to take full advantage of the auxiliary equation which has more new exact solutions. More new exact travelling wave solutions are obtained for the quadratic nonlinear Klein-Gordon equation, the combined KdV and mKdV equation, the sine-Gordon equation and the Whitham-Broer-Kaup equations
Separate P‐ and SV‐wave equations for VTI media
Pestana, Reynam C.; Ursin, Bjø rn; Stoffa, Paul L.
2011-01-01
In isotropic media we use the scalar acoustic wave equation to perform reverse time migration RTM of the recorded pressure wavefleld data. In anisotropic media P- and SV-waves are coupled and the elastic wave equation should be used for RTM. However, an acoustic anisotropic wave equation is often used instead. This results in significant shear wave energy in both modeling and RTM. To avoid this undesired SV-wave energy, we propose a different approach to separate P- and SV-wave components for vertical transversely isotropic VTI media. We derive independent pseudo-differential wave equations for each mode. The derived equations for P- and SV-waves are stable and reduce to the isotropic case. The equations presented here can be effectively used to model and migrate seismic data in VTI media where ε - δ is small. The SV-wave equation we develop is now well-posed and triplications in the SV wavefront are removed resulting in stable wave propagation. We show modeling and RTM results using the derived pure P-wave mode in complex VTI media and use the rapid expansion method REM to propagate the waveflelds in time. © 2011 Society of Exploration Geophysicists.
On a functional equation related to the intermediate long wave equation
International Nuclear Information System (INIS)
Hone, A N W; Novikov, V S
2004-01-01
We resolve an open problem stated by Ablowitz et al (1982 J. Phys. A: Math. Gen. 15 781) concerning the integral operator appearing in the intermediate long wave equation. We explain how this is resolved using the perturbative symmetry approach introduced by one of us with Mikhailov. By solving a certain functional equation, we prove that the intermediate long wave equation and the Benjamin-Ono equation are the unique integrable cases within a particular class of integro-differential equations. Furthermore, we explain how the perturbative symmetry approach is naturally extended to treat equations on a periodic domain. (letter to the editor)
Homogeneous wave turbulence driven by tidal flows
Favier, B.; Le Reun, T.; Barker, A.; Le Bars, M.
2017-12-01
When a moon orbits around a planet, the rotation of the induced tidal bulge drives a homogeneous, periodic, large-scale flow. The combination of such an excitation with the rotating motion of the planet has been shown to drive parametric resonance of a pair of inertial waves in a mechanism called the elliptical instability. Geophysical fluid layers can also be stratified: this is the case for instance of the Earth's oceans and, as suggested by several studies, of the upper part of the Earth's liquid Outer Core. We thus investigate the stability of a rotating and stratified layer undergoing tidal distortion in the limit where either rotation or stratification is dominant. We show that the periodic tidal flow drives a parametric subharmonic resonance of inertial (resp. internal) waves in the rotating (resp. stratified) case. The instability saturates into a wave turbulence pervading the whole fluid layer. In such a state, the instability mechanism conveys the tidal energy from the large scale tidal flow to the resonant modes, which then feed a succession of triadic resonances also generating small spatial scales. In the rotating case, we observe a kinetic energy spectrum with a k-2 slope for which the Coriolis force is dominant at all spatial scales. In the stratified case, where the timescale separation is increased between the tidal excitation and the Brunt-Väisälä frequencies, the temporal spectrum decays with a ω-2 power law up to the cut-off frequency beyond which waves do not exist. This result is reminiscent of the Garrett and Munk spectrum measured in the oceans and theoretically described as a manifestation of internal wave turbulence. In addition to revealing an instability driving homogeneous turbulence in geophysical fluid layers, our approach is also an efficient numerical tool to investigate the possibly universal properties of wave turbulence in a geophysical context.
Boundary value problems for multi-term fractional differential equations
Daftardar-Gejji, Varsha; Bhalekar, Sachin
2008-09-01
Multi-term fractional diffusion-wave equation along with the homogeneous/non-homogeneous boundary conditions has been solved using the method of separation of variables. It is observed that, unlike in the one term case, solution of multi-term fractional diffusion-wave equation is not necessarily non-negative, and hence does not represent anomalous diffusion of any kind.
Homogeneous axisymmetric model with a limitting stiff equation of state
International Nuclear Information System (INIS)
Korkina, M.P.; Martynenko, V.G.
1976-01-01
A solution is obtained for Einstein's equations in which all metric coefficients are time functions for a limiting stiff equation of the substance state. Thr solution describes a homogeneous cosmological model with cylindrical symmetry. It is shown that the same metrics can be induced by a massless scalar only time-dependent field. Analysis of this solution is presented
Blowing-up Semilinear Wave Equation with Exponential ...
Indian Academy of Sciences (India)
Blowing-up Semilinear Wave Equation with Exponential Nonlinearity in Two Space ... We investigate the initial value problem for some semi-linear wave equation in two space dimensions with exponential nonlinearity growth. ... Current Issue
Orbital stability of solitary waves for Kundu equation
Zhang, Weiguo; Qin, Yinghao; Zhao, Yan; Guo, Boling
In this paper, we consider the Kundu equation which is not a standard Hamiltonian system. The abstract orbital stability theory proposed by Grillakis et al. (1987, 1990) cannot be applied directly to study orbital stability of solitary waves for this equation. Motivated by the idea of Guo and Wu (1995), we construct three invariants of motion and use detailed spectral analysis to obtain orbital stability of solitary waves for Kundu equation. Since Kundu equation is more complex than the derivative Schrödinger equation, we utilize some techniques to overcome some difficulties in this paper. It should be pointed out that the results obtained in this paper are more general than those obtained by Guo and Wu (1995). We present a sufficient condition under which solitary waves are orbitally stable for 2c+sυ1995) only considered the case 2c+sυ>0. We obtain the results on orbital stability of solitary waves for the derivative Schrödinger equation given by Colin and Ohta (2006) as a corollary in this paper. Furthermore, we obtain orbital stability of solitary waves for Chen-Lee-Lin equation and Gerdjikov-Ivanov equation, respectively.
An approach to rogue waves through the cnoidal equation
Lechuga, Antonio
2014-05-01
Lately it has been realized the importance of rogue waves in some events happening in open seas. Extreme waves and extreme weather could explain some accidents, but not all of them. Every now and then inflicted damages on ships only can be reported to be caused by anomalous and elusive waves, such as rogue waves. That's one of the reason why they continue attracting considerable interest among researchers. In the frame of the Nonlinear Schrödinger equation(NLS), Witham(1974) and Dingemans and Otta (2001)gave asymptotic solutions in moving coordinates that transformed the NLS equation in a ordinary differential equation that is the Duffing or cnoidal wave equation. Applying the Zakharov equation, Stiassnie and Shemer(2004) and Shemer(2010)got also a similar equation. It's well known that this ordinary equation can be solved in elliptic functions. The main aim of this presentation is to sort out the domains of the solutions of this equation, that, of course, are linked to the corresponding solutions of the partial differential equations(PDEs). That being, Lechuga(2007),a simple way to look for anomalous waves as it's the case with some "chaotic" solutions of the Duffing equation.
Travelling wave solutions for a surface wave equation in fluid mechanics
Directory of Open Access Journals (Sweden)
Tian Yi
2016-01-01
Full Text Available This paper considers a non-linear wave equation arising in fluid mechanics. The exact traveling wave solutions of this equation are given by using G'/G-expansion method. This process can be reduced to solve a system of determining equations, which is large and difficult. To reduce this process, we used Wu elimination method. Example shows that this method is effective.
Nonlinear Wave Propagation and Solitary Wave Formation in Two-Dimensional Heterogeneous Media
Luna, Manuel
2011-05-01
Solitary wave formation is a well studied nonlinear phenomenon arising in propagation of dispersive nonlinear waves under suitable conditions. In non-homogeneous materials, dispersion may happen due to effective reflections between the material interfaces. This dispersion has been used along with nonlinearities to find solitary wave formation using the one-dimensional p-system. These solitary waves are called stegotons. The main goal in this work is to find two-dimensional stegoton formation. To do so we consider the nonlinear two-dimensional p-system with variable coefficients and solve it using finite volume methods. The second goal is to obtain effective equations that describe the macroscopic behavior of the variable coefficient system by a constant coefficient one. This is done through a homogenization process based on multiple-scale asymptotic expansions. We compare the solution of the effective equations with the finite volume results and find a good agreement. Finally, we study some stability properties of the homogenized equations and find they and one-dimensional versions of them are unstable in general.
Wave equations in higher dimensions
Dong, Shi-Hai
2011-01-01
Higher dimensional theories have attracted much attention because they make it possible to reduce much of physics in a concise, elegant fashion that unifies the two great theories of the 20th century: Quantum Theory and Relativity. This book provides an elementary description of quantum wave equations in higher dimensions at an advanced level so as to put all current mathematical and physical concepts and techniques at the reader’s disposal. A comprehensive description of quantum wave equations in higher dimensions and their broad range of applications in quantum mechanics is provided, which complements the traditional coverage found in the existing quantum mechanics textbooks and gives scientists a fresh outlook on quantum systems in all branches of physics. In Parts I and II the basic properties of the SO(n) group are reviewed and basic theories and techniques related to wave equations in higher dimensions are introduced. Parts III and IV cover important quantum systems in the framework of non-relativisti...
Travelling wave solutions to the Kuramoto-Sivashinsky equation
International Nuclear Information System (INIS)
Nickel, J.
2007-01-01
Combining the approaches given by Baldwin [Baldwin D et al. Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs. J Symbol Comput 2004;37:669-705], Peng [Peng YZ. A polynomial expansion method and new general solitary wave solutions to KS equation. Comm Theor Phys 2003;39:641-2] and by Schuermann [Schuermann HW, Serov VS. Weierstrass' solutions to certain nonlinear wave and evolution equations. Proc progress electromagnetics research symposium, 28-31 March 2004, Pisa. p. 651-4; Schuermann HW. Traveling-wave solutions to the cubic-quintic nonlinear Schroedinger equation. Phys Rev E 1996;54:4312-20] leads to a method for finding exact travelling wave solutions of nonlinear wave and evolution equations (NLWEE). The first idea is to generalize ansaetze given by Baldwin and Peng to find elliptic solutions of NLWEEs. Secondly, conditions used by Schuermann to find physical (real and bounded) solutions and to discriminate between periodic and solitary wave solutions are used. The method is shown in detail by evaluating new solutions of the Kuramoto-Sivashinsky equation
Sun, Yimin; Verschuur, Eric; van Borselen, Roald
2018-03-01
The Rayleigh integral solution of the acoustic Helmholtz equation in a homogeneous medium can only be applied when the integral surface is a planar surface, while in reality almost all surfaces where pressure waves are measured exhibit some curvature. In this paper we derive a theoretically rigorous way of building propagation operators for pressure waves on an arbitrarily curved surface. Our theory is still based upon the Rayleigh integral, but it resorts to matrix inversion to overcome the limitations faced by the Rayleigh integral. Three examples are used to demonstrate the correctness of our theory - propagation of pressure waves acquired on an arbitrarily curved surface to a planar surface, on an arbitrarily curved surface to another arbitrarily curved surface, and on a spherical cap to a planar surface, and results agree well with the analytical solutions. The generalization of our method for particle velocities and the calculation cost of our method are also discussed.
Dutta, Gaurav
2016-10-12
Strong subsurface attenuation leads to distortion of amplitudes and phases of seismic waves propagating inside the earth. The amplitude and the dispersion losses from attenuation are often compensated for during prestack depth migration. However, most attenuation compensation or Qcompensation migration algorithms require an estimate of the background Q model. We have developed a wave-equation gradient optimization method that inverts for the subsurface Q distribution by minimizing a skeletonized misfit function ∈, where ∈ is the sum of the squared differences between the observed and the predicted peak/centroid-frequency shifts of the early arrivals. The gradient is computed by migrating the observed traces weighted by the frequency shift residuals. The background Q model is perturbed until the predicted and the observed traces have the same peak frequencies or the same centroid frequencies. Numerical tests determined that an improved accuracy of the Q model by wave-equation Q tomography leads to a noticeable improvement in migration image quality. © 2016 Society of Exploration Geophysicists.
Dutta, Gaurav; Schuster, Gerard T.
2016-01-01
Strong subsurface attenuation leads to distortion of amplitudes and phases of seismic waves propagating inside the earth. The amplitude and the dispersion losses from attenuation are often compensated for during prestack depth migration. However, most attenuation compensation or Qcompensation migration algorithms require an estimate of the background Q model. We have developed a wave-equation gradient optimization method that inverts for the subsurface Q distribution by minimizing a skeletonized misfit function ∈, where ∈ is the sum of the squared differences between the observed and the predicted peak/centroid-frequency shifts of the early arrivals. The gradient is computed by migrating the observed traces weighted by the frequency shift residuals. The background Q model is perturbed until the predicted and the observed traces have the same peak frequencies or the same centroid frequencies. Numerical tests determined that an improved accuracy of the Q model by wave-equation Q tomography leads to a noticeable improvement in migration image quality. © 2016 Society of Exploration Geophysicists.
Homogenization of variational inequalities and equations defined by pseudomonotone operators
International Nuclear Information System (INIS)
Sandrakov, G V
2008-01-01
Results on the convergence of sequences of solutions of non-linear equations and variational inequalities for obstacle problems are proved. The variational inequalities and equations are defined by a non-linear, pseudomonotone operator of the second order with periodic, rapidly oscillating coefficients and by sequences of functions characterizing the obstacles and the boundary conditions. Two-scale and macroscale (homogenized) limiting problems for such variational inequalities and equations are obtained. Results on the relationship between solutions of these limiting problems are established and sufficient conditions for the uniqueness of solutions are presented. Bibliography: 25 titles
Rogue periodic waves of the modified KdV equation
Chen, Jinbing; Pelinovsky, Dmitry E.
2018-05-01
Rogue periodic waves stand for rogue waves on a periodic background. Two families of travelling periodic waves of the modified Korteweg–de Vries (mKdV) equation in the focusing case are expressed by the Jacobian elliptic functions dn and cn. By using one-fold and two-fold Darboux transformations of the travelling periodic waves, we construct new explicit solutions for the mKdV equation. Since the dn-periodic wave is modulationally stable with respect to long-wave perturbations, the new solution constructed from the dn-periodic wave is a nonlinear superposition of an algebraically decaying soliton and the dn-periodic wave. On the other hand, since the cn-periodic wave is modulationally unstable with respect to long-wave perturbations, the new solution constructed from the cn-periodic wave is a rogue wave on the cn-periodic background, which generalizes the classical rogue wave (the so-called Peregrine’s breather) of the nonlinear Schrödinger equation. We compute the magnification factor for the rogue cn-periodic wave of the mKdV equation and show that it remains constant for all amplitudes. As a by-product of our work, we find explicit expressions for the periodic eigenfunctions of the spectral problem associated with the dn and cn periodic waves of the mKdV equation.
Traveling wave behavior for a generalized fisher equation
International Nuclear Information System (INIS)
Feng Zhaosheng
2008-01-01
There is the widespread existence of wave phenomena in physics, chemistry and biology. This clearly necessitates a study of traveling waves in depth and of the modeling and analysis involved. In the present paper, we study a nonlinear reaction-diffusion equation, which can be regarded as a generalized Fisher equation. Applying the Cole-Hopf transformation and the first integral method, we obtain a class of traveling solitary wave solutions for this generalized Fisher equation
Parsimonious wave-equation travel-time inversion for refraction waves
Fu, Lei; Hanafy, Sherif M.; Schuster, Gerard T.
2017-01-01
We present a parsimonious wave-equation travel-time inversion technique for refraction waves. A dense virtual refraction dataset can be generated from just two reciprocal shot gathers for the sources at the endpoints of the survey line, with N
Islam, Md Hamidul; Khan, Kamruzzaman; Akbar, M Ali; Salam, Md Abdus
2014-01-01
Mathematical modeling of many physical systems leads to nonlinear evolution equations because most physical systems are inherently nonlinear in nature. The investigation of traveling wave solutions of nonlinear partial differential equations (NPDEs) plays a significant role in the study of nonlinear physical phenomena. In this article, we construct the traveling wave solutions of modified KDV-ZK equation and viscous Burgers equation by using an enhanced (G '/G) -expansion method. A number of traveling wave solutions in terms of unknown parameters are obtained. Derived traveling wave solutions exhibit solitary waves when special values are given to its unknown parameters. 35C07; 35C08; 35P99.
Wave-equation reflection traveltime inversion
Zhang, Sanzong
2011-01-01
The main difficulty with iterative waveform inversion using a gradient optimization method is that it tends to get stuck in local minima associated within the waveform misfit function. This is because the waveform misfit function is highly nonlinear with respect to changes in the velocity model. To reduce this nonlinearity, we present a reflection traveltime tomography method based on the wave equation which enjoys a more quasi-linear relationship between the model and the data. A local crosscorrelation of the windowed downgoing direct wave and the upgoing reflection wave at the image point yields the lag time that maximizes the correlation. This lag time represents the reflection traveltime residual that is back-projected into the earth model to update the velocity in the same way as wave-equation transmission traveltime inversion. No travel-time picking is needed and no high-frequency approximation is assumed. The mathematical derivation and the numerical examples are presented to partly demonstrate its efficiency and robustness. © 2011 Society of Exploration Geophysicists.
Gao, Yingjie; Zhang, Jinhai; Yao, Zhenxing
2015-12-01
The complex frequency shifted perfectly matched layer (CFS-PML) can improve the absorbing performance of PML for nearly grazing incident waves. However, traditional PML and CFS-PML are based on first-order wave equations; thus, they are not suitable for second-order wave equation. In this paper, an implementation of CFS-PML for second-order wave equation is presented using auxiliary differential equations. This method is free of both convolution calculations and third-order temporal derivatives. As an unsplit CFS-PML, it can reduce the nearly grazing incidence. Numerical experiments show that it has better absorption than typical PML implementations based on second-order wave equation.
Traveltime sensitivity kernels for wave equation tomography using the unwrapped phase
Djebbi, Ramzi
2014-02-18
Wave equation tomography attempts to improve on traveltime tomography, by better adhering to the requirements of our finite-frequency data. Conventional wave equation tomography, based on the first-order Born approximation followed by cross-correlation traveltime lag measurement, or on the Rytov approximation for the phase, yields the popular hollow banana sensitivity kernel indicating that the measured traveltime at a point is insensitive to perturbations along the ray theoretical path at certain finite frequencies. Using the instantaneous traveltime, which is able to unwrap the phase of the signal, instead of the cross-correlation lag, we derive new finite-frequency traveltime sensitivity kernels. The kernel reflects more the model-data dependency, we typically encounter in full waveform inversion. This result confirms that the hollow banana shape is borne of the cross-correlation lag measurement, which exposes the Born approximations weakness in representing transmitted waves. The instantaneous traveltime can thus mitigate the additional component of nonlinearity introduced by the hollow banana sensitivity kernels in finite-frequency traveltime tomography. The instantaneous traveltime simply represents the unwrapped phase of Rytov approximation, and thus is a good alternative to Born and Rytov to compute the misfit function for wave equation tomography. We show the limitations of the cross-correlation associated with Born approximation for traveltime lag measurement when the source signatures of the measured and modelled data are different. The instantaneous traveltime is proven to be less sensitive to the distortions in the data signature. The unwrapped phase full banana shape of the sensitivity kernels shows smoother update compared to the banana–doughnut kernels. The measurement of the traveltime delay caused by a small spherical anomaly, embedded into a 3-D homogeneous model, supports the full banana sensitivity assertion for the unwrapped phase.
Traveltime sensitivity kernels for wave equation tomography using the unwrapped phase
Djebbi, Ramzi; Alkhalifah, Tariq Ali
2014-01-01
Wave equation tomography attempts to improve on traveltime tomography, by better adhering to the requirements of our finite-frequency data. Conventional wave equation tomography, based on the first-order Born approximation followed by cross-correlation traveltime lag measurement, or on the Rytov approximation for the phase, yields the popular hollow banana sensitivity kernel indicating that the measured traveltime at a point is insensitive to perturbations along the ray theoretical path at certain finite frequencies. Using the instantaneous traveltime, which is able to unwrap the phase of the signal, instead of the cross-correlation lag, we derive new finite-frequency traveltime sensitivity kernels. The kernel reflects more the model-data dependency, we typically encounter in full waveform inversion. This result confirms that the hollow banana shape is borne of the cross-correlation lag measurement, which exposes the Born approximations weakness in representing transmitted waves. The instantaneous traveltime can thus mitigate the additional component of nonlinearity introduced by the hollow banana sensitivity kernels in finite-frequency traveltime tomography. The instantaneous traveltime simply represents the unwrapped phase of Rytov approximation, and thus is a good alternative to Born and Rytov to compute the misfit function for wave equation tomography. We show the limitations of the cross-correlation associated with Born approximation for traveltime lag measurement when the source signatures of the measured and modelled data are different. The instantaneous traveltime is proven to be less sensitive to the distortions in the data signature. The unwrapped phase full banana shape of the sensitivity kernels shows smoother update compared to the banana–doughnut kernels. The measurement of the traveltime delay caused by a small spherical anomaly, embedded into a 3-D homogeneous model, supports the full banana sensitivity assertion for the unwrapped phase.
Paraxial WKB solution of a scalar wave equation
International Nuclear Information System (INIS)
Pereverzev, G.V.
1993-04-01
An asymptotic method of solving a scalar wave equation in inhomogeneous media is developed. This method is an extension of the WKB method to the multidimensional case. It reduces a general wave equation to a set of ordinary differential equations similar to that of the eikonal approach and includes the latter as a particular case. However, the WKB method makes use of another kind of asymptotic expansion and, unlike the eikonal approach, describes the wave properties, i.e. diffraction and interference. At the same time, the three-dimensional WKB method is more simple for numerical treatment because the number of equations is less than in the eikonal approach. The method developed may be used for a calculation of wave fields in problems of RF heating, current drive and plasma diagnostics with microwave beams. (orig.)
DNA Dynamics Studied Using the Homogeneous Balance Method
International Nuclear Information System (INIS)
Zayed, E. M. E.; Arnous, A. H.
2012-01-01
We employ the homogeneous balance method to construct the traveling waves of the nonlinear vibrational dynamics modeling of DNA. Some new explicit forms of traveling waves are given. It is shown that this method provides us with a powerful mathematical tool for solving nonlinear evolution equations in mathematical physics. Strengths and weaknesses of the proposed method are discussed. (general)
Traveling waves of the regularized short pulse equation
International Nuclear Information System (INIS)
Shen, Y; Horikis, T P; Kevrekidis, P G; Frantzeskakis, D J
2014-01-01
The properties of the so-called regularized short pulse equation (RSPE) are explored with a particular focus on the traveling wave solutions of this model. We theoretically analyze and numerically evolve two sets of such solutions. First, using a fixed point iteration scheme, we numerically integrate the equation to find solitary waves. It is found that these solutions are well approximated by a finite sum of hyperbolic secants powers. The dependence of the soliton's parameters (height, width, etc) to the parameters of the equation is also investigated. Second, by developing a multiple scale reduction of the RSPE to the nonlinear Schrödinger equation, we are able to construct (both standing and traveling) envelope wave breather type solutions of the former, based on the solitary wave structures of the latter. Both the regular and the breathing traveling wave solutions identified are found to be robust and should thus be amenable to observations in the form of few optical cycle pulses. (paper)
International Nuclear Information System (INIS)
Guo Shimin; Wang Hongli; Mei Liquan
2012-01-01
By combining the effects of bounded cylindrical geometry, azimuthal and axial perturbations, the nonlinear dust acoustic waves (DAWs) in an unmagnetized plasma consisting of negatively charged dust grains, nonextensive ions, and nonextensive electrons are studied in this paper. Using the reductive perturbation method, a (3 + 1)-dimensional variable-coefficient cylindrical Korteweg-de Vries (KdV) equation describing the nonlinear propagation of DAWs is derived. Via the homogeneous balance principle, improved F-expansion technique and symbolic computation, the exact traveling and solitary wave solutions of the KdV equation are presented in terms of Jacobi elliptic functions. Moreover, the effects of the plasma parameters on the solitary wave structures are discussed in detail. The obtained results could help in providing a good fit between theoretical analysis and real applications in space physics and future laboratory plasma experiments where long-range interactions are present.
N-body bound state relativistic wave equations
International Nuclear Information System (INIS)
Sazdjian, H.
1988-06-01
The manifestly covariant formalism with constraints is used for the construction of relativistic wave equations to describe the dynamics of N interacting spin 0 and/or spin 1/2 particles. The total and relative time evolutions of the system are completely determined by means of kinematic type wave equations. The internal dynamics of the system is 3 N-1 dimensional, besides the contribution of the spin degrees of freedom. It is governed by a single dynamical wave equation, that determines the eigenvalue of the total mass squared of the system. The interaction is introduced in a closed form by means of two-body potentials. The system satisfies an approximate form of separability
Reflection principle for classical solutions of the homogeneous real Monge–Ampère equation
Directory of Open Access Journals (Sweden)
Mika Koskenoja
2015-12-01
Full Text Available We consider reflection principle for classical solutions of the homogeneous real Monge–Ampère equation. We show that both the odd and the even reflected functions satisfy the Monge–Ampère equation if the second-order partial derivatives have continuous limits on the reflection boundary. In addition to sufficient conditions, we give some necessary conditions. Before stating the main results, we present elementary formulas for the reflected functions and study their differentiability properties across the reflection boundary. As an important special case, we finally consider extension of polynomials satisfying the homogeneous Monge–Ampère equation.
Wave-equation dispersion inversion
Li, Jing; Feng, Zongcai; Schuster, Gerard T.
2016-01-01
We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained
Temperature waves and the Boltzmann kinetic equation for phonons
International Nuclear Information System (INIS)
Urushev, D.; Borisov, M.; Vavrek, A.
1988-01-01
The ordinary parabolic equation for thermal conduction based on the Fourier empiric law as well as the generalized thermal conduction equation based on the Maxwell law have been derived from the Boltzmann equation for the phonons within the relaxation time approximation. The temperature waves of the so-called second sound in crystals at low temperatures are transformed into Fourier waves at low frequencies with respect to the characteristic frequency of the U-processes. These waves are transformed into temperature waves similar to the second sound waves in He II at frequences higher than the U-processes characteristic. 1 fig., 19 refs
International Nuclear Information System (INIS)
Zhang Huiqun
2009-01-01
By using a new coupled Riccati equations, a direct algebraic method, which was applied to obtain exact travelling wave solutions of some complex nonlinear equations, is improved. And the exact travelling wave solutions of the complex KdV equation, Boussinesq equation and Klein-Gordon equation are investigated using the improved method. The method presented in this paper can also be applied to construct exact travelling wave solutions for other nonlinear complex equations.
Exact solitary waves of the Fisher equation
International Nuclear Information System (INIS)
Kudryashov, Nikolai A.
2005-01-01
New method is presented to search exact solutions of nonlinear differential equations. This approach is used to look for exact solutions of the Fisher equation. New exact solitary waves of the Fisher equation are given
Skeletonized Least Squares Wave Equation Migration
Zhan, Ge
2010-10-17
The theory for skeletonized least squares wave equation migration (LSM) is presented. The key idea is, for an assumed velocity model, the source‐side Green\\'s function and the geophone‐side Green\\'s function are computed by a numerical solution of the wave equation. Only the early‐arrivals of these Green\\'s functions are saved and skeletonized to form the migration Green\\'s function (MGF) by convolution. Then the migration image is obtained by a dot product between the recorded shot gathers and the MGF for every trial image point. The key to an efficient implementation of iterative LSM is that at each conjugate gradient iteration, the MGF is reused and no new finitedifference (FD) simulations are needed to get the updated migration image. It is believed that this procedure combined with phase‐encoded multi‐source technology will allow for the efficient computation of wave equation LSM images in less time than that of conventional reverse time migration (RTM).
Gabor Wave Packet Method to Solve Plasma Wave Equations
International Nuclear Information System (INIS)
Pletzer, A.; Phillips, C.K.; Smithe, D.N.
2003-01-01
A numerical method for solving plasma wave equations arising in the context of mode conversion between the fast magnetosonic and the slow (e.g ion Bernstein) wave is presented. The numerical algorithm relies on the expansion of the solution in Gaussian wave packets known as Gabor functions, which have good resolution properties in both real and Fourier space. The wave packets are ideally suited to capture both the large and small wavelength features that characterize mode conversion problems. The accuracy of the scheme is compared with a standard finite element approach
Diffusion phenomenon for linear dissipative wave equations
Said-Houari, Belkacem
2012-01-01
In this paper we prove the diffusion phenomenon for the linear wave equation. To derive the diffusion phenomenon, a new method is used. In fact, for initial data in some weighted spaces, we prove that for {equation presented} decays with the rate {equation presented} [0,1] faster than that of either u or v, where u is the solution of the linear wave equation with initial data {equation presented} [0,1], and v is the solution of the related heat equation with initial data v 0 = u 0 + u 1. This result improves the result in H. Yang and A. Milani [Bull. Sci. Math. 124 (2000), 415-433] in the sense that, under the above restriction on the initial data, the decay rate given in that paper can be improved by t -γ/2. © European Mathematical Society.
Nonlinear Electrostatic Wave Equations for Magnetized Plasmas
DEFF Research Database (Denmark)
Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans
1984-01-01
The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....
Bifurcations of traveling wave solutions for an integrable equation
International Nuclear Information System (INIS)
Li Jibin; Qiao Zhijun
2010-01-01
This paper deals with the following equation m t =(1/2)(1/m k ) xxx -(1/2)(1/m k ) x , which is proposed by Z. J. Qiao [J. Math. Phys. 48, 082701 (2007)] and Qiao and Liu [Chaos, Solitons Fractals 41, 587 (2009)]. By adopting the phase analysis method of planar dynamical systems and the theory of the singular traveling wave systems to the traveling wave solutions of the equation, it is shown that for different k, the equation may have infinitely many solitary wave solutions, periodic wave solutions, kink/antikink wave solutions, cusped solitary wave solutions, and breaking loop solutions. We discuss in a detail the cases of k=-2,-(1/2),(1/2),2, and parametric representations of all possible bounded traveling wave solutions are given in the different (c,g)-parameter regions.
International Nuclear Information System (INIS)
Lambert, A.J.D.
1979-01-01
A review of linear and weakly non-linear theory of electron waves, ion waves and electromagnetic waves in plasmas is presented. The author restricts the discussion to an infinitely extended, homogeneous and isotropic plasma, not affected by external fields and described by Vlasov's and Maxwell's equations. (Auth.)
Capillary-gravity waves and the Navier-Stokes equation
International Nuclear Information System (INIS)
Behroozi, F.; Podolefsky, N.
2001-01-01
Water waves are a source of great fascination for undergraduates and thus provide an excellent context for introducing some important topics in fluid dynamics. In this paper we introduce the potential theory for incompressible and inviscid flow and derive the differential equation that governs the behaviour of the velocity potential. Next we obtain the harmonic solutions of the velocity potential by a very general argument. These solutions in turn yield the equations for the velocity and displacement of a water element under the action of a harmonic wave. Finally we obtain the dispersion relation for surface waves by requiring that the harmonic solutions satisfy the Navier-Stokes equation. (author)
A new iterative solver for the time-harmonic wave equation
Riyanti, C.D.; Erlangga, Y.A.; Plessix, R.E.; Mulder, W.A.; Vuik, C.; Oosterlee, C.
2006-01-01
The time-harmonic wave equation, also known as the Helmholtz equation, is obtained if the constant-density acoustic wave equation is transformed from the time domain to the frequency domain. Its discretization results in a large, sparse, linear system of equations. In two dimensions, this system can
An acoustic wave equation for pure P wave in 2D TTI media
Zhan, Ge; Pestana, Reynam C.; Stoffa, Paul L.
2011-01-01
In this paper, a pure P wave equation for an acoustic 2D TTI media is derived. Compared with conventional TTI coupled equations, the resulting equation is unconditionally stable due to the complete isolation of the SV wave mode. To avoid numerical dispersion and produce high quality images, the rapid expansion method REM is employed for numerical implementation. Synthetic results validate the proposed equation and show that it is a stable algorithm for modeling and reverse time migration RTM in a TTI media for any anisotropic parameter values. © 2011 Society of Exploration Geophysicists.
Generation of exact solutions to the Einstein field equations for homogeneous space--time
International Nuclear Information System (INIS)
Hiromoto, R.E.
1978-01-01
A formalism is presented capable of finding all homogeneous solutions of the Einstein field equations with an arbitrary energy-stress tensor. Briefly the method involves the classification of the four-dimensional Lie algebra over the reals into nine different broad classes, using only the Lorentz group. Normally the classification of Lie algebras means that one finds all essentially different solutions of the Jacobi identities, i.e., there exists no nonsingular linear transformation which transforms two sets of structure constants into the other. This approach is to utilize the geometrical considerations of the homogeneous spacetime and field equations to be solved. Since the set of orthonormal basis vectors is not only endowed with a Minkowskian metric, but also constitutes the vector space of our four-dimensional Lie algebras, the Lie algebras are classified against the Lorentz group restricts the linear group of transformations, denoting the essentially different Lie algebras, into nine different broad classes. The classification of the four-dimensional Lie algebras represents the unification of various methods previously introduced by others. Where their methods found only specific solutions to the Einstein field equations, systematic application of the nine different classes of Lie algebras guarantees the extraction of all solutions. Therefore, the methods of others were extended, and their foundations of formalism which goes beyond the present literature of exact homogeneous solutions to the Einstein field equations is built upon
International Nuclear Information System (INIS)
Chakraverty, S.; Nayak, S.
2013-01-01
Highlights: • Uncertain neutron diffusion equation of bare square homogeneous reactor is studied. • Proposed interval arithmetic is extended for fuzzy numbers. • The developed fuzzy arithmetic is used to handle uncertain parameters. • Governing differential equation is modelled by modified fuzzy finite element method. • Fuzzy critical eigenvalues and effective multiplication factors are investigated. - Abstract: The scattering of neutron collision inside a reactor depends upon geometry of the reactor, diffusion coefficient and absorption coefficient etc. In general these parameters are not crisp and hence we get uncertain neutron diffusion equation. In this paper we have investigated the above equation for a bare square homogeneous reactor. Here the uncertain governing differential equation is modelled by a modified fuzzy finite element method. Using modified fuzzy finite element method, obtained eigenvalues and effective multiplication factors are studied. Corresponding results are compared with the classical finite element method in special cases and various uncertain results have been discussed
Karavashkin, S B
2002-01-01
We analyse the exact analytical solutions for 1D elastic lumped lines under action of an external force inclined to the line axis. We show that in this case an inclined wave being described by an implicit function propagates along the line. We extend this conclusion both to free vibrations and to distributed lines. We prove that the presented solution in the form of implicit function is a generalizing for the wave equation. When taken into consideration exactly, the dynamical processes pattern leads to the conclusion that the divergence of a vector in dynamical fields is not zero but proportional to the scalar product of the partial derivative of the given vector with respect to time into the wave propagation direction vector.
Non-homogeneous polymer model for wave propagation and its ...
African Journals Online (AJOL)
This article concerns certain aspects of four parameter polymer models to study harmonic waves in the non-homogeneous polymer rods of varying density. There are two sections of this paper, in first section, the rheological behaviour of the model is discussed numerically and then it is solved analytically with the help of ...
Relativistic wave equations and compton scattering
International Nuclear Information System (INIS)
Sutanto, S.H.; Robson, B.A.
1998-01-01
Full text: Recently an eight-component relativistic wave equation for spin-1/2 particles was proposed.This equation was obtained from a four-component spin-1/2 wave equation (the KG1/2 equation), which contains second-order derivatives in both space and time, by a procedure involving a linearisation of the time derivative analogous to that introduced by Feshbach and Villars for the Klein-Gordon equation. This new eight-component equation gives the same bound-state energy eigenvalue spectra for hydrogenic atoms as the Dirac equation but has been shown to predict different radiative transition probabilities for the fine structure of both the Balmer and Lyman a-lines. Since it has been shown that the new theory does not always give the same results as the Dirac theory, it is important to consider the validity of the new equation in the case of other physical problems. One of the early crucial tests of the Dirac theory was its application to the scattering of a photon by a free electron: the so-called Compton scattering problem. In this paper we apply the new theory to the calculation of Compton scattering to order e 2 . It will be shown that in spite of the considerable difference in the structure of the new theory and that of Dirac the cross section is given by the Klein-Nishina formula
EXACT TRAVELLING WAVE SOLUTIONS TO BBM EQUATION
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Abundant new travelling wave solutions to the BBM (Benjamin-Bona-Mahoni) equation are obtained by the generalized Jacobian elliptic function method. This method can be applied to other nonlinear evolution equations.
Nonlinear effects in water waves
International Nuclear Information System (INIS)
Janssen, P.A.E.M.
1989-05-01
This set of lecture notes on nonlinear effects in water waves was written on the occasion of the first ICTP course on Ocean Waves and Tides held from 26 September until 28 October 1988 in Trieste, Italy. It presents a summary and unification of my knowledge on nonlinear effects of gravity waves on an incompressible fluid without vorticity. The starting point of the theory is the Hamiltonian for water waves. The evolution equations of both weakly nonlinear, shallow water and deep water gravity waves are derived by suitable approximation of the energy of the waves, resulting in the Korteweg-de Vries equation and the Zakharov equation, respectively. Next, interesting properties of the KdV equation (solitons) and the Zakharov equation (instability of a finite amplitude wave train) are discussed in some detail. Finally, the evolution of a homogeneous, random wave field due to resonant four wave processes is considered and the importance of this process for ocean wave prediction is pointed out. 38 refs, 21 figs
A wave equation interpolating between classical and quantum mechanics
Schleich, W. P.; Greenberger, D. M.; Kobe, D. H.; Scully, M. O.
2015-10-01
We derive a ‘master’ wave equation for a family of complex-valued waves {{Φ }}\\equiv R{exp}[{{{i}}S}({cl)}/{{\\hbar }}] whose phase dynamics is dictated by the Hamilton-Jacobi equation for the classical action {S}({cl)}. For a special choice of the dynamics of the amplitude R which eliminates all remnants of classical mechanics associated with {S}({cl)} our wave equation reduces to the Schrödinger equation. In this case the amplitude satisfies a Schrödinger equation analogous to that of a charged particle in an electromagnetic field where the roles of the scalar and the vector potentials are played by the classical energy and the momentum, respectively. In general this amplitude is complex and thereby creates in addition to the classical phase {S}({cl)}/{{\\hbar }} a quantum phase. Classical statistical mechanics, as described by a classical matter wave, follows from our wave equation when we choose the dynamics of the amplitude such that it remains real for all times. Our analysis shows that classical and quantum matter waves are distinguished by two different choices of the dynamics of their amplitudes rather than two values of Planck’s constant. We dedicate this paper to the memory of Richard Lewis Arnowitt—a pioneer of many-body theory, a path finder at the interface of gravity and quantum mechanics, and a true leader in non-relativistic and relativistic quantum field theory.
The offset-midpoint traveltime pyramid of P-waves in homogeneous orthorhombic media
Hao, Qi
2016-07-18
The offset-midpoint traveltime pyramid describes the diffraction traveltime of a point diffractor in homogeneous media. We have developed an analytic approximation for the P-wave offset-midpoint traveltime pyramid for homogeneous orthorhombic media. In this approximation, a perturbation method and the Shanks transform were implemented to derive the analytic expressions for the horizontal slowness components of P-waves in orthorhombic media. Numerical examples were shown to analyze the proposed traveltime pyramid formula and determined its accuracy and the application in calculating migration isochrones and reflection traveltime. The proposed offset-midpoint traveltime formula is useful for Kirchhoff prestack time migration and migration velocity analysis for orthorhombic media.
The offset-midpoint traveltime pyramid of P-waves in homogeneous orthorhombic media
Hao, Qi; Stovas, Alexey; Alkhalifah, Tariq Ali
2016-01-01
The offset-midpoint traveltime pyramid describes the diffraction traveltime of a point diffractor in homogeneous media. We have developed an analytic approximation for the P-wave offset-midpoint traveltime pyramid for homogeneous orthorhombic media. In this approximation, a perturbation method and the Shanks transform were implemented to derive the analytic expressions for the horizontal slowness components of P-waves in orthorhombic media. Numerical examples were shown to analyze the proposed traveltime pyramid formula and determined its accuracy and the application in calculating migration isochrones and reflection traveltime. The proposed offset-midpoint traveltime formula is useful for Kirchhoff prestack time migration and migration velocity analysis for orthorhombic media.
Anisotropic wave-equation traveltime and waveform inversion
Feng, Shihang
2016-09-06
The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially performed using the wave-equation traveltime inversion (WT) method. The WT tomograms are then used as starting background models for VTI full waveform inversion. Preliminary numerical tests on synthetic data demonstrate the feasibility of this method for multi-parameter inversion.
On the Generalized Maxwell Equations and Their Prediction of Electroscalar Wave
Directory of Open Access Journals (Sweden)
Arbab A. I.
2009-04-01
Full Text Available We have formulated the basic laws of electromagnetic theory in quaternion form. The formalism shows that Maxwell equations and Lorentz force are derivable from just one quaternion equation that only requires the Lorentz gauge. We proposed a quaternion form of the continuity equation from which we have derived the ordinary continuity equation. We introduce new transformations that produces a scalar wave and generalize the continuity equation to a set of three equations. These equations imply that both current and density are waves. Moreover, we have shown that the current can not cir- culate around a point emanating from it. Maxwell equations are invariant under these transformations. An electroscalar wave propagating with speed of light is derived upon requiring the invariance of the energy conservation equation under the new transforma- tions. The electroscalar wave function is found to be proportional to the electric field component along the charged particle motion. This scalar wave exists with or without considering the Lorentz gauge. We have shown that the electromagnetic fields travel with speed of light in the presence or absence of free charges.
Ultra Deep Wave Equation Imaging and Illumination
Energy Technology Data Exchange (ETDEWEB)
Alexander M. Popovici; Sergey Fomel; Paul Sava; Sean Crawley; Yining Li; Cristian Lupascu
2006-09-30
In this project we developed and tested a novel technology, designed to enhance seismic resolution and imaging of ultra-deep complex geologic structures by using state-of-the-art wave-equation depth migration and wave-equation velocity model building technology for deeper data penetration and recovery, steeper dip and ultra-deep structure imaging, accurate velocity estimation for imaging and pore pressure prediction and accurate illumination and amplitude processing for extending the AVO prediction window. Ultra-deep wave-equation imaging provides greater resolution and accuracy under complex geologic structures where energy multipathing occurs, than what can be accomplished today with standard imaging technology. The objective of the research effort was to examine the feasibility of imaging ultra-deep structures onshore and offshore, by using (1) wave-equation migration, (2) angle-gathers velocity model building, and (3) wave-equation illumination and amplitude compensation. The effort consisted of answering critical technical questions that determine the feasibility of the proposed methodology, testing the theory on synthetic data, and finally applying the technology for imaging ultra-deep real data. Some of the questions answered by this research addressed: (1) the handling of true amplitudes in the downward continuation and imaging algorithm and the preservation of the amplitude with offset or amplitude with angle information required for AVO studies, (2) the effect of several imaging conditions on amplitudes, (3) non-elastic attenuation and approaches for recovering the amplitude and frequency, (4) the effect of aperture and illumination on imaging steep dips and on discriminating the velocities in the ultra-deep structures. All these effects were incorporated in the final imaging step of a real data set acquired specifically to address ultra-deep imaging issues, with large offsets (12,500 m) and long recording time (20 s).
Wave equations for pulse propagation
International Nuclear Information System (INIS)
Shore, B.W.
1987-01-01
Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation
Local energy decay for linear wave equations with variable coefficients
Ikehata, Ryo
2005-06-01
A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].
Topological horseshoes in travelling waves of discretized nonlinear wave equations
International Nuclear Information System (INIS)
Chen, Yi-Chiuan; Chen, Shyan-Shiou; Yuan, Juan-Ming
2014-01-01
Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes
Topological horseshoes in travelling waves of discretized nonlinear wave equations
Energy Technology Data Exchange (ETDEWEB)
Chen, Yi-Chiuan, E-mail: YCChen@math.sinica.edu.tw [Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan (China); Chen, Shyan-Shiou, E-mail: sschen@ntnu.edu.tw [Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Yuan, Juan-Ming, E-mail: jmyuan@pu.edu.tw [Department of Financial and Computational Mathematics, Providence University, Shalu, Taichung 43301, Taiwan (China)
2014-04-15
Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.
Wave equations on anti self dual (ASD) manifolds
Bashingwa, Jean-Juste; Kara, A. H.
2017-11-01
In this paper, we study and perform analyses of the wave equation on some manifolds with non diagonal metric g_{ij} which are of neutral signatures. These include the invariance properties, variational symmetries and conservation laws. In the recent past, wave equations on the standard (space time) Lorentzian manifolds have been performed but not on the manifolds from metrics of neutral signatures.
Skeletonized wave-equation inversion for Q
Dutta, Gaurav
2016-09-06
A wave-equation gradient optimization method is presented that inverts for the subsurface Q distribution by minimizing a skeletonized misfit function ε. Here, ε is the sum of the squared differences between the observed and the predicted peak/centroid frequency shifts of the early-arrivals. The gradient is computed by migrating the observed traces weighted by the frequency-shift residuals. The background Q model is perturbed until the predicted and the observed traces have the same peak frequencies or the same centroid frequencies. Numerical tests show that an improved accuracy of the inverted Q model by wave-equation Q tomography (WQ) leads to a noticeable improvement in the migration image quality.
Skeletonized wave-equation inversion for Q
Dutta, Gaurav; Schuster, Gerard T.
2016-01-01
A wave-equation gradient optimization method is presented that inverts for the subsurface Q distribution by minimizing a skeletonized misfit function ε. Here, ε is the sum of the squared differences between the observed and the predicted peak/centroid frequency shifts of the early-arrivals. The gradient is computed by migrating the observed traces weighted by the frequency-shift residuals. The background Q model is perturbed until the predicted and the observed traces have the same peak frequencies or the same centroid frequencies. Numerical tests show that an improved accuracy of the inverted Q model by wave-equation Q tomography (WQ) leads to a noticeable improvement in the migration image quality.
Directory of Open Access Journals (Sweden)
Mostafa M.A. Khater
Full Text Available In this article and for the first time, we introduce and describe Khater method which is a new technique for solving nonlinear partial differential equations (PDEs.. We apply this method for each of the following models Bogoyavlenskii equation, couple Boiti-Leon-Pempinelli system and Time-fractional Cahn-Allen equation. Khater method is very powerful, Effective, felicitous and fabulous method to get exact and solitary wave solution of (PDEs.. Not only just like that but it considers too one of the general methods for solving that kind of equations since it involves some methods as we will see in our discuss of the results. We make a comparison between the results of this new method and another method. Keywords: Bogoyavlenskii equations system, Couple Boiti-Leon-Pempinelli equations system, Time-fractional Cahn-Allen equation, Khater method, Traveling wave solutions, Solitary wave solutions
Analysis of spectral methods for the homogeneous Boltzmann equation
Filbet, Francis; Mouhot, Clé ment
2011-01-01
The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.
Analysis of spectral methods for the homogeneous Boltzmann equation
Filbet, Francis
2011-04-01
The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.
Nature of complex time eigenvalues of the one speed transport equation in a homogeneous sphere
International Nuclear Information System (INIS)
Dahl, E.B.; Sahni, D.C.
1990-01-01
The complex time eigenvalues of the transport equation have been studied for one speed neutrons, scattered isotropically in a homogeneous sphere with vacuum boundary conditions. It is shown that the complex decay constants vary continuously with the radius of the sphere. Our earlier conjecture (Dahl and Sahni (1983-84)) regarding disjoint arcs is thus shown to be true. We also indicate that complex decay constants exist even for large assemblies, though with rapid oscillations in the corresponding eigenvectors. These modes cannot be predicted by the diffusion equation as this behaviour of the eigenvectors contradicts the assumption of 'slowly varying flux' needed to derive the diffusion approximation from the transport equation. For an infinite system, the existence of complex modes is related to the solution of a homogeneous equation. (author)
Periodic and solitary-wave solutions of the Degasperis-Procesi equation
International Nuclear Information System (INIS)
Vakhnenko, V.O.; Parkes, E.J.
2004-01-01
Travelling-wave solutions of the Degasperis-Procesi equation are investigated. The solutions are characterized by two parameters. For propagation in the positive x-direction, hump-like, inverted loop-like and coshoidal periodic-wave solutions are found; hump-like, inverted loop-like and peakon solitary-wave solutions are obtained as well. For propagation in the negative x-direction, there are solutions which are just the mirror image in the x-axis of the aforementioned solutions. A transformed version of the Degasperis-Procesi equation, which is a generalization of the Vakhnenko equation, is also considered. For propagation in the positive x-direction, hump-like, loop-like, inverted loop-like, bell-like and coshoidal periodic-wave solutions are found; loop-like, inverted loop-like and kink-like solitary-wave solutions are obtained as well. For propagation in the negative x-direction, well-like and inverted coshoidal periodic-wave solutions are found; well-like and inverted peakon solitary-wave solutions are obtained as well. In an appropriate limit, the previously known solutions of the Vakhnenko equation are recovered
New exact travelling wave solutions of bidirectional wave equations
Indian Academy of Sciences (India)
Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea. ∗ ... exact travelling wave solutions of system (1) using the modified tanh–coth function method ... The ordinary differential equation is then integrated.
A nonlinear wave equation in nonadiabatic flame propagation
International Nuclear Information System (INIS)
Booty, M.R.; Matalon, M.; Matkowsky, B.J.
1988-01-01
The authors derive a nonlinear wave equation from the diffusional thermal model of gaseous combustion to describe the evolution of a flame front. The equation arises as a long wave theory, for values of the volumeric heat loss in a neighborhood of the extinction point (beyond which planar uniformly propagating flames cease to exist), and for Lewis numbers near the critical value beyond which uniformly propagating planar flames lose stability via a degenerate Hopf bifurcation. Analysis of the equation suggests the possibility of a singularity developing in finite time
Zou, Li; Tian, Shou-Fu; Feng, Lian-Li
2017-12-01
In this paper, we consider the (2+1)-dimensional breaking soliton equation, which describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. By virtue of the truncated Painlevé expansion method, we obtain the nonlocal symmetry, Bäcklund transformation and Schwarzian form of the equation. Furthermore, by using the consistent Riccati expansion (CRE), we prove that the breaking soliton equation is solvable. Based on the consistent tan-function expansion, we explicitly derive the interaction solutions between solitary waves and cnoidal periodic waves.
Directory of Open Access Journals (Sweden)
Gabriel Nguetseng
2010-01-01
Full Text Available The present work is devoted to the study of homogenization of the weakly damped wave equation ∫Ωρε∂2uε∂t2(t⋅υdx+2ε2μ∫ΩfεEij(∂uε∂t(tEij(υdx+ε2λ∫Ωfεdiv(∂uε∂t(tdiv υdx+ϑ∫Ωfεdiv(uε(tdivυdx=∫Ωf(t⋅υdx for all υ=(υ1,υ2,υ3∈Vε(0
New traveling wave solutions to AKNS and SKdV equations
International Nuclear Information System (INIS)
Ozer, Teoman
2009-01-01
We analyze the traveling wave solutions of Ablowitz-Kaup-Newell-Segur (AKNS) and Schwarz-Korteweg-de Vries (SKdV) equations. As the solution method for differential equations we consider the improved tanh approach. This approach provides to transform the partial differential equation into the ordinary differential equation and then obtain the new families of exact solutions based on the solutions of the Riccati equation. The different values of the coefficients of the Riccati equation allow us to obtain new type of traveling wave solutions to AKNS and SKdV equations.
International Nuclear Information System (INIS)
Yomba, Emmanuel
2005-01-01
By using a modified extended Fan's sub-equation method, we have obtained new and more general solutions including a series of non-travelling wave and coefficient function solutions namely: soliton-like solutions, triangular-like solutions, single and combined non-degenerative Jacobi elliptic wave function-like solutions for the (2 + 1)-dimensional dispersive long wave equation. The most important achievement of this method lies on the fact that, we have succeeded in one move to give all the solutions which can be previously obtained by application of at least four methods (method using Riccati equation, or first kind elliptic equation, or auxiliary ordinary equation, or generalized Riccati equation as mapping equation)
Analytic perturbation theory for screened Coulomb potential: full continuum wave function
International Nuclear Information System (INIS)
Bechler, A.; Ennan, Mc J.; Pratt, R.H.
1979-01-01
An analytic perturbation theory developed previously is used to find a continuum screened-Coulomb wave function characterized by definite asymptotic momentum. This wave function satisfies an inhomogeneous partial differential equation which is solved in parabolic coordinates; the solution depends on both parabolic variables. We calculate partial wave projections of this solution and show that we can choose to add a solution of the homogeneous equation such that the partial wave projections become equal to the normalized continuum radial function found previously. However, finding the unique solution with given asymptotic linear momentum will require either using boundary conditions to determine the unique needed solution of the homogeneous equation or equivalently specifying the screened-Coulomb phase-shifts. (author)
International Nuclear Information System (INIS)
Scully, M O
2008-01-01
The time dependent Schrodinger equation is frequently 'derived' by postulating the energy E → i h-bar (∂/∂t) and momentum p-vector → ( h-bar /i)∇ operator relations. In the present paper we review the quantum field theoretic route to the Schrodinger wave equation which treats time and space as parameters, not operators. Furthermore, we recall that a classical (nonlinear) wave equation can be derived from the classical action via Hamiltonian-Jacobi theory. By requiring the wave equation to be linear we again arrive at the Schrodinger equation, without postulating operator relations. The underlying philosophy is operational: namely 'a particle is what a particle detector detects.' This leads us to a useful physical picture combining the wave (field) and particle paradigms which points the way to the time-dependent Schrodinger equation
Nonlinear dynamics of resistive electrostatic drift waves
DEFF Research Database (Denmark)
Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.
1999-01-01
The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... polarity, i.e. a pair of electrostatic convective cells....
Dynamic equations for gauge-invariant wave functions
International Nuclear Information System (INIS)
Kapshaj, V.N.; Skachkov, N.B.; Solovtsov, I.L.
1984-01-01
The Bethe-Salpeter and quasipotential dynamic equations for wave functions of relative quark motion, have been derived. Wave functions are determined by the gauge invariant method. The V.A. Fock gauge condition is used in the construction. Despite the transl tional noninvariance of the gauge condition the standard separation of variables has been obtained and wave function doesn't contain gauge exponents
Directory of Open Access Journals (Sweden)
Nguyen Thanh Long
2005-12-01
Full Text Available In this paper we consider the nonlinear wave equation problem $$displaylines{ u_{tt}-Big(|u|_0^2,|u_{r}|_0^2ig(u_{rr}+frac{1}{r}u_{r} =f(r,t,u,u_{r},quad 0less than r less than 1,; 0 less than t less than T, ig|lim_{ro 0^+}sqrt{r}u_{r}(r,tig| less than infty, u_{r}(1,t+hu(1,t=0, u(r,0=widetilde{u}_0(r, u_{t}(r,0=widetilde{u}_1(r. }$$ To this problem, we associate a linear recursive scheme for which the existence of a local and unique weak solution is proved, in weighted Sobolev using standard compactness arguments. In the latter part, we give sufficient conditions for quadratic convergence to the solution of the original problem, for an autonomous right-hand side independent on $u_{r}$ and a coefficient function $B$ of the form $B=B(|u|_0^2=b_0+|u|_0^2$ with $b_0$ greater than 0.
Negative-energy waves in a magnetized, homogeneous plasma
International Nuclear Information System (INIS)
Correa-Restrepo, D.; Pfirsch, D.
1991-09-01
The general expression for the second wave energy of a Vlasov-Maxwell system derived by Morrison and Pfirsch is evaluated here for the case of a magnetized, homogeneous plasma. It is again shown that negative-energy waves (which could become nonlinearly unstable and cause anomalous transport) exist for any deviation from monotonicity and/or any (however small) anisotropy in the equilibrium distribution function of any of the particle species. The partly unexpected and particularly interesting feature of the results is that, contrary to the proof of Morrison and Pfirsch, no restricting condition has to be imposed on the perpendicular wave number k perpendicular to of the perturbation (i.e. large k perpendicular to is not required). Finite-gyroradius effects are therefore not expected to improve the situation. Anisotropy alone would, however, impose a restriction on k z , the parallel wave number, relating it to the gyroradius. As far as distribution functions with v z δf v (0) /δv z > 0 in some region of v-space are concerned, however, this result agrees with a result found by Pfirsch and Morrison within the framework of drift-kinetic theory. (orig.)
Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric
2013-01-01
Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis
A new time–space domain high-order finite-difference method for the acoustic wave equation
Liu, Yang; Sen, Mrinal K.
2009-01-01
A new unified methodology was proposed in Finkelstein and Kastner (2007) [39] to derive spatial finite-difference (FD) coefficients in the joint time-space domain to reduce numerical dispersion. The key idea of this method is that the dispersion relation is completely satisfied at several designated frequencies. We develop this new time-space domain FD method further for 1D, 2D and 3D acoustic wave modeling using a plane wave theory and the Taylor series expansion. New spatial FD coefficients are frequency independent though they lead to a frequency dependent numerical solution. We prove that the modeling accuracy is 2nd-order when the conventional (2 M)th-order space domain FD and the 2nd-order time domain FD stencils are directly used to solve the acoustic wave equation. However, under the same discretization, the new 1D method can reach (2 M)th-order accuracy and is always stable. The 2D method can reach (2 M)th-order accuracy along eight directions and has better stability. Similarly, the 3D method can reach (2 M)th-order accuracy along 48 directions and also has better stability than the conventional FD method. The advantages of the new method are also demonstrated by the results of dispersion analysis and numerical modeling of acoustic wave equation for homogeneous and inhomogeneous acoustic models. In addition, we study the influence of the FD stencil length on numerical modeling for 1D inhomogeneous media, and derive an optimal FD stencil length required to balance the accuracy and efficiency of modeling. A new time-space domain high-order staggered-grid FD method for the 1D acoustic wave equation with variable densities is also developed, which has similar advantages demonstrated by dispersion analysis, stability analysis and modeling experiments. The methodology presented in this paper can be easily extended to solve similar partial difference equations arising in other fields of science and engineering. © 2009 Elsevier Inc.
A new time–space domain high-order finite-difference method for the acoustic wave equation
Liu, Yang
2009-12-01
A new unified methodology was proposed in Finkelstein and Kastner (2007) [39] to derive spatial finite-difference (FD) coefficients in the joint time-space domain to reduce numerical dispersion. The key idea of this method is that the dispersion relation is completely satisfied at several designated frequencies. We develop this new time-space domain FD method further for 1D, 2D and 3D acoustic wave modeling using a plane wave theory and the Taylor series expansion. New spatial FD coefficients are frequency independent though they lead to a frequency dependent numerical solution. We prove that the modeling accuracy is 2nd-order when the conventional (2 M)th-order space domain FD and the 2nd-order time domain FD stencils are directly used to solve the acoustic wave equation. However, under the same discretization, the new 1D method can reach (2 M)th-order accuracy and is always stable. The 2D method can reach (2 M)th-order accuracy along eight directions and has better stability. Similarly, the 3D method can reach (2 M)th-order accuracy along 48 directions and also has better stability than the conventional FD method. The advantages of the new method are also demonstrated by the results of dispersion analysis and numerical modeling of acoustic wave equation for homogeneous and inhomogeneous acoustic models. In addition, we study the influence of the FD stencil length on numerical modeling for 1D inhomogeneous media, and derive an optimal FD stencil length required to balance the accuracy and efficiency of modeling. A new time-space domain high-order staggered-grid FD method for the 1D acoustic wave equation with variable densities is also developed, which has similar advantages demonstrated by dispersion analysis, stability analysis and modeling experiments. The methodology presented in this paper can be easily extended to solve similar partial difference equations arising in other fields of science and engineering. © 2009 Elsevier Inc.
Bessaih, Hakima
2015-04-01
The evolution Stokes equation in a domain containing periodically distributed obstacles subject to Fourier boundary condition on the boundaries is considered. We assume that the dynamic is driven by a stochastic perturbation on the interior of the domain and another stochastic perturbation on the boundaries of the obstacles. We represent the solid obstacles by holes in the fluid domain. The macroscopic (homogenized) equation is derived as another stochastic partial differential equation, defined in the whole non perforated domain. Here, the initial stochastic perturbation on the boundary becomes part of the homogenized equation as another stochastic force. We use the twoscale convergence method after extending the solution with 0 in the holes to pass to the limit. By Itô stochastic calculus, we get uniform estimates on the solution in appropriate spaces. In order to pass to the limit on the boundary integrals, we rewrite them in terms of integrals in the whole domain. In particular, for the stochastic integral on the boundary, we combine the previous idea of rewriting it on the whole domain with the assumption that the Brownian motion is of trace class. Due to the particular boundary condition dealt with, we get that the solution of the stochastic homogenized equation is not divergence free. However, it is coupled with the cell problem that has a divergence free solution. This paper represents an extension of the results of Duan and Wang (Comm. Math. Phys. 275:1508-1527, 2007), where a reaction diffusion equation with a dynamical boundary condition with a noise source term on both the interior of the domain and on the boundary was studied, and through a tightness argument and a pointwise two scale convergence method the homogenized equation was derived. © American Institute of Mathematical Sciences.
Two-Dimensional Homogeneous Fermi Gases
Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning
2018-02-01
We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.
Numerical study of the Kadomtsev-Petviashvili equation and dispersive shock waves
Grava, T.; Klein, C.; Pitton, G.
2018-02-01
A detailed numerical study of the long time behaviour of dispersive shock waves in solutions to the Kadomtsev-Petviashvili (KP) I equation is presented. It is shown that modulated lump solutions emerge from the dispersive shock waves. For the description of dispersive shock waves, Whitham modulation equations for KP are obtained. It is shown that the modulation equations near the soliton line are hyperbolic for the KPII equation while they are elliptic for the KPI equation leading to a focusing effect and the formation of lumps. Such a behaviour is similar to the appearance of breathers for the focusing nonlinear Schrödinger equation in the semiclassical limit.
The propagation of travelling waves for stochastic generalized KPP equations
International Nuclear Information System (INIS)
Elworthy, K.D.; Zhao, H.Z.
1993-09-01
We study the existence and propagation of approximate travelling waves of generalized KPP equations with seasonal multiplicative white noise perturbations of Ito type. Three regimes of perturbation are considered: weak, milk, and strong. We show that weak perturbations have little effect on the wave like solutions of the unperturbed equations while strong perturbations essentially destroy the wave and force the solutions to die down. For mild perturbations we show that there is a residual wave form but propagating at a different speed to that of the unperturbed equation. In the appendix J.G. Gaines illustrates these different regimes by computer simulations. (author). 27 refs, 13 figs
Integral equation for Coulomb problem
International Nuclear Information System (INIS)
Sasakawa, T.
1986-01-01
For short range potentials an inhomogeneous (homogeneous) Lippmann-Schwinger integral equation of the Fredholm type yields the wave function of scattering (bound) state. For the Coulomb potential, this statement is no more valid. It has been felt difficult to express the Coulomb wave function in a form of an integral equation with the Coulomb potential as the perturbation. In the present paper, the author shows that an inhomogeneous integral equation of a Volterra type with the Coulomb potential as the perturbation can be constructed both for the scattering and the bound states. The equation yielding the binding energy is given in an integral form. The present treatment is easily extended to the coupled Coulomb problems
Energy Technology Data Exchange (ETDEWEB)
Uesaka, S [Kyoto University, Kyoto (Japan). Faculty of Engineering; Watanabe, T; Sassa, K [Kyoto University, Kyoto (Japan)
1997-05-27
Algorithm is constructed and a program developed for a full-wave inversion (FWI) method utilizing the elastic wave equation in seismic exploration. The FWI method is a method for obtaining a physical property distribution using the whole observed waveforms as the data. It is capable of high resolution which is several times smaller than the wavelength since it can handle such phenomena as wave reflection and dispersion. The method for determining the P-wave velocity structure by use of the acoustic wave equation does not provide information about the S-wave velocity since it does not consider S-waves or converted waves. In an analysis using the elastic wave equation, on the other hand, not only P-wave data but also S-wave data can be utilized. In this report, under such circumstances, an inverse analysis algorithm is constructed on the basis of the elastic wave equation, and a basic program is developed. On the basis of the methods of Mora and of Luo and Schuster, the correction factors for P-wave and S-wave velocities are formulated directly from the elastic wave equation. Computations are performed and the effects of the hypocenter frequency and vibration transmission direction are examined. 6 refs., 8 figs.
Nonlinear electrostatic wave equations for magnetized plasmas - II
DEFF Research Database (Denmark)
Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.
1985-01-01
For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent (electrosta......For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent...... (electrostatic) cut-off implies that various cases must be considered separately, leading to equations with rather different properties. Various equations encountered previously in the literature are recovered as limiting cases....
WHAMP - waves in homogeneous, anisotropic, multicomponent plasmas
International Nuclear Information System (INIS)
Roennmark, K.
1982-06-01
In this report, a computer program which solves the dispersion relation of waves in a magnetized plasma is described. The dielectric tensor is derived using the kinetic theory of homogeneous plasmas with Maxwellian velocity distribution. Up to six different plasma components can be included in this version of the program, and each component is specified by its density, temperature, particle mass, anisotropy and drift velocity along the magnetic field. The program is thus applicable to a very wide class of plasmas, and the method should in general be useful whenever a homogeneous magnetized plasma can be approximated by a linear combination of Maxwellian components. The general theory underlying the program is outlined. It is shown that by introducing a Pade approximant for the plasma dispersion function Z, the infinite sums of modified Bessel functions which appear in the dielectric tensor may be reduced to a summable form. The Pade approximant is derived and the accuracy of the approximation is also discussed. The subroutines making up the program are described. (Author)
Numerical Integration of the Transport Equation For Infinite Homogeneous Media
Energy Technology Data Exchange (ETDEWEB)
Haakansson, Rune
1962-01-15
The transport equation for neutrons in infinite homogeneous media is solved by direct numerical integration. Accounts are taken to the anisotropy and the inelastic scattering. The integration has been performed by means of the trapezoidal rule and the length of the energy intervals are constant in lethargy scale. The machine used is a Ferranti Mercury computer. Results are given for water, heavy water, aluminium water mixture and iron-aluminium-water mixture.
Relativistic covariant wave equations and acausality in external fields
International Nuclear Information System (INIS)
Pijlgroms, R.B.J.
1980-01-01
The author considers linear, finite dimensional, first order relativistic wave equations: (βsup(μ)ideltasub(μ)-β)PSI(x) = 0 with βsup(μ) and β constant matrices. Firstly , the question of the relativistic covariance conditions on these equations is considered. Then the theory of these equations with β non-singular is summarized. Theories with βsup(μ), β square matrices and β singular are also discussed. Non-square systems of covariant relativistic wave equations for arbitrary spin > 1 are then considered. Finally, the interaction with external fields and the acausality problem are discussed. (G.T.H.)
Cuahutenango-Barro, B.; Taneco-Hernández, M. A.; Gómez-Aguilar, J. F.
2017-12-01
Analytical solutions of the wave equation with bi-fractional-order and frictional memory kernel of Mittag-Leffler type are obtained via Caputo-Fabrizio fractional derivative in the Liouville-Caputo sense. Through the method of separation of variables and Laplace transform method we derive closed-form solutions and establish fundamental solutions. Special cases with homogeneous Dirichlet boundary conditions and nonhomogeneous initial conditions, as well as for the external force are considered. Numerical simulations of the special solutions were done and novel behaviors are obtained.
Engel, Aaron J; Bashford, Gregory R
2015-08-01
Ultrasound based shear wave elastography (SWE) is a technique used for non-invasive characterization and imaging of soft tissue mechanical properties. Robust estimation of shear wave propagation speed is essential for imaging of soft tissue mechanical properties. In this study we propose to estimate shear wave speed by inversion of the first-order wave equation following directional filtering. This approach relies on estimation of first-order derivatives which allows for accurate estimations using smaller smoothing filters than when estimating second-order derivatives. The performance was compared to three current methods used to estimate shear wave propagation speed: direct inversion of the wave equation (DIWE), time-to-peak (TTP) and cross-correlation (CC). The shear wave speed of three homogeneous phantoms of different elastic moduli (gelatin by weight of 5%, 7%, and 9%) were measured with each method. The proposed method was shown to produce shear speed estimates comparable to the conventional methods (standard deviation of measurements being 0.13 m/s, 0.05 m/s, and 0.12 m/s), but with simpler processing and usually less time (by a factor of 1, 13, and 20 for DIWE, CC, and TTP respectively). The proposed method was able to produce a 2-D speed estimate from a single direction of wave propagation in about four seconds using an off-the-shelf PC, showing the feasibility of performing real-time or near real-time elasticity imaging with dedicated hardware.
Travelling wave solutions of the generalized Benjamin-Bona-Mahony equation
International Nuclear Information System (INIS)
Estevez, P.G.; Kuru, S.; Negro, J.; Nieto, L.M.
2009-01-01
A class of particular travelling wave solutions of the generalized Benjamin-Bona-Mahony equation is studied systematically using the factorization technique. Then, the general travelling wave solutions of Benjamin-Bona-Mahony equation, and of its modified version, are also recovered.
Reduction of the equation for lower hybrid waves in a plasma to a nonlinear Schroedinger equation
Karney, C. F. F.
1977-01-01
Equations describing the nonlinear propagation of waves in an anisotropic plasma are rarely exactly soluble. However it is often possible to make approximations that reduce the exact equations into a simpler equation. The use of MACSYMA to make such approximations, and so reduce the equation describing lower hybrid waves into the nonlinear Schrodinger equation which is soluble by the inverse scattering method is demonstrated. MACSYMA is used at several stages in the calculation only because there is a natural division between calculations that are easiest done by hand, and those that are easiest done by machine.
Quantum-Wave Equation and Heisenberg Inequalities of Covariant Quantum Gravity
Directory of Open Access Journals (Sweden)
Claudio Cremaschini
2017-07-01
Full Text Available Key aspects of the manifestly-covariant theory of quantum gravity (Cremaschini and Tessarotto 2015–2017 are investigated. These refer, first, to the establishment of the four-scalar, manifestly-covariant evolution quantum wave equation, denoted as covariant quantum gravity (CQG wave equation, which advances the quantum state ψ associated with a prescribed background space-time. In this paper, the CQG-wave equation is proved to follow at once by means of a Hamilton–Jacobi quantization of the classical variational tensor field g ≡ g μ ν and its conjugate momentum, referred to as (canonical g-quantization. The same equation is also shown to be variational and to follow from a synchronous variational principle identified here with the quantum Hamilton variational principle. The corresponding quantum hydrodynamic equations are then obtained upon introducing the Madelung representation for ψ , which provides an equivalent statistical interpretation of the CQG-wave equation. Finally, the quantum state ψ is proven to fulfill generalized Heisenberg inequalities, relating the statistical measurement errors of quantum observables. These are shown to be represented in terms of the standard deviations of the metric tensor g ≡ g μ ν and its quantum conjugate momentum operator.
Waves spontaneously generated by heterogeneity in oscillatory media
Cui, Xiaohua; Huang, Xiaodong; Hu, Gang
2016-05-01
Wave propagation is an important characteristic for pattern formation and pattern dynamics. To date, various waves in homogeneous media have been investigated extensively and have been understood to a great extent. However, the wave behaviors in heterogeneous media have been studied and understood much less. In this work, we investigate waves that are spontaneously generated in one-dimensional heterogeneous oscillatory media governed by complex Ginzburg-Landau equations; the heterogeneity is modeled by multiple interacting homogeneous media with different system control parameters. Rich behaviors can be observed by varying the control parameters of the systems, whereas the behavior is incomparably simple in the homogeneous cases. These diverse behaviors can be fully understood and physically explained well based on three aspects: dispersion relation curves, driving-response relations, and wave competition rules in homogeneous systems. Possible applications of heterogeneity-generated waves are anticipated.
Unified formulation of radiation conditions for the wave equation
DEFF Research Database (Denmark)
Krenk, Steen
2002-01-01
A family of radiation conditions for the wave equation is derived by truncating a rational function approxiamtion of the corresponding plane wave representation, and it is demonstrated how these boundary conditions can be formulated in terms of fictitious surface densities, governed by second......-order wave equations on the radiating surface. Several well-established radiation boundary conditions appear as special cases, corresponding to different choice of the coefficients in the rational approximation. The relation between these choices is established, and an explicit formulation in terms...
Three-dimensional wave-induced current model equations and radiation stresses
Xia, Hua-yong
2017-08-01
After the approach by Mellor (2003, 2008), the present paper reports on a repeated effort to derive the equations for three-dimensional wave-induced current. Via the vertical momentum equation and a proper coordinate transformation, the phase-averaged wave dynamic pressure is well treated, and a continuous and depth-dependent radiation stress tensor, rather than the controversial delta Dirac function at the surface shown in Mellor (2008), is provided. Besides, a phase-averaged vertical momentum flux over a sloping bottom is introduced. All the inconsistencies in Mellor (2003, 2008), pointed out by Ardhuin et al. (2008) and Bennis and Ardhuin (2011), are overcome in the presently revised equations. In a test case with a sloping sea bed, as shown in Ardhuin et al. (2008), the wave-driving forces derived in the present equations are in good balance, and no spurious vertical circulation occurs outside the surf zone, indicating that Airy's wave theory and the approach of Mellor (2003, 2008) are applicable for the derivation of the wave-induced current model.
Linear fractional diffusion-wave equation for scientists and engineers
Povstenko, Yuriy
2015-01-01
This book systematically presents solutions to the linear time-fractional diffusion-wave equation. It introduces the integral transform technique and discusses the properties of the Mittag-Leffler, Wright, and Mainardi functions that appear in the solutions. The time-nonlocal dependence between the flux and the gradient of the transported quantity with the “long-tail” power kernel results in the time-fractional diffusion-wave equation with the Caputo fractional derivative. Time-nonlocal generalizations of classical Fourier’s, Fick’s and Darcy’s laws are considered and different kinds of boundary conditions for this equation are discussed (Dirichlet, Neumann, Robin, perfect contact). The book provides solutions to the fractional diffusion-wave equation with one, two and three space variables in Cartesian, cylindrical and spherical coordinates. The respective sections of the book can be used for university courses on fractional calculus, heat and mass transfer, transport processes in porous media and ...
Some Further Results on Traveling Wave Solutions for the ZK-BBM( Equations
Directory of Open Access Journals (Sweden)
Shaoyong Li
2013-01-01
Full Text Available We investigate the traveling wave solutions for the ZK-BBM( equations by using bifurcation method of dynamical systems. Firstly, for ZK-BBM(2, 2 equation, we obtain peakon wave, periodic peakon wave, and smooth periodic wave solutions and point out that the peakon wave is the limit form of the periodic peakon wave. Secondly, for ZK-BBM(3, 2 equation, we obtain some elliptic function solutions which include periodic blow-up and periodic wave. Furthermore, from the limit forms of the elliptic function solutions, we obtain some trigonometric and hyperbolic function solutions which include periodic blow-up, blow-up, and smooth solitary wave. We also show that our work extends some previous results.
International Nuclear Information System (INIS)
Zhang Weiguo; Dong Chunyan; Fan Engui
2006-01-01
In this paper, we discuss conditional stability of solitary-wave solutions in the sense of Liapunov for the generalized compound KdV equation and the generalized compound KdV-Burgers equations. Linear stability of the exact solitary-wave solutions is proved for the above two types of equations when the small disturbance of travelling wave form satisfies some special conditions.
Directory of Open Access Journals (Sweden)
Bui The Anh
2007-01-01
Full Text Available We extend the classical Perron-Frobenius theorem for positive quasipolynomial matrices associated with homogeneous difference equations. Finally, the result obtained is applied to derive necessary and sufficient conditions for the stability of positive system.
International Nuclear Information System (INIS)
Carter, B.; McLenaghan, R.G.
1982-01-01
It is shown how previous general formulae for the separated radial and angular parts of the massive, charged scalar (Klein, Gordon) wave equation on one hand, and of the zero mass, neutral, but higher spin (neutrino, electromagnetic and gravitational) wave equations on the other hand may be combined in a more general formula which also covers the case of the full massive charged Dirac equation in a Kerr or Kerr-Newman background space. (Auth.)
Li, Jing; Schuster, Gerard T.; Zeng, Zhaofa
2017-01-01
A robust imaging technology is reviewed that provide subsurface information in challenging environments: wave-equation dispersion inversion (WD) of surface waves for the shear velocity model. We demonstrate the benefits and liabilities of the method
Closed form solutions of two time fractional nonlinear wave equations
Directory of Open Access Journals (Sweden)
M. Ali Akbar
2018-06-01
Full Text Available In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G′/G-expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics. Keywords: Traveling wave solution, Soliton, Generalized (G′/G-expansion method, Time fractional Duffing equation, Time fractional Riccati equation
Inverse Schroedinger equation and the exact wave function
International Nuclear Information System (INIS)
Nakatsuji, Hiroshi
2002-01-01
Using the inverse of the Hamiltonian, we introduce the inverse Schroedinger equation (ISE) that is equivalent to the ordinary Schroedinger equation (SE). The ISE has the variational principle and the H-square group of equations as the SE has. When we use a positive Hamiltonian, shifting the energy origin, the inverse energy becomes monotonic and we further have the inverse Ritz variational principle and cross-H-square equations. The concepts of the SE and the ISE are combined to generalize the theory for calculating the exact wave function that is a common eigenfunction of the SE and ISE. The Krylov sequence is extended to include the inverse Hamiltonian, and the complete Krylov sequence is introduced. The iterative configuration interaction (ICI) theory is generalized to cover both the SE and ISE concepts and four different computational methods of calculating the exact wave function are presented in both analytical and matrix representations. The exact wave-function theory based on the inverse Hamiltonian can be applied to systems that have singularities in the Hamiltonian. The generalized ICI theory is applied to the hydrogen atom, giving the exact solution without any singularity problem
International Nuclear Information System (INIS)
Macia, R.; Correig, A.M.
1987-01-01
Seismic wave propagation is described by a second order differential equation for medium displacement. By Fourier transforming with respect to time and space, wave equation transforms into a system of first order linear differential equations for the Fourier transform of displacement and stress. This system of differential equations is solved by means of Matrix Propagator and applied to the propagation of body waves in stratified media. The matrix propagators corresponding to P-SV and SH waves in homogeneous medium are found as an intermediate step to obtain the spectral response of body waves propagating through a stratified medium with homogeneous layers. (author) 14 refs
International Nuclear Information System (INIS)
Pujols, Agnes
1991-01-01
We prove that the scattering operator for the wave equation in the exterior of an non-homogeneous obstacle exists. Its distribution kernel is represented by a time-dependent boundary integral equation. A space-time integral variational formulation is developed for determining the current induced by the scattering of an electromagnetic wave by an homogeneous object. The discrete approximation of the variational problem using a finite element method in both space and time leads to stable convergent schemes, giving a numerical code for perfectly conducting cylinders. (author) [fr
Homogenization of neutronic diffusion models
International Nuclear Information System (INIS)
Capdebosq, Y.
1999-09-01
In order to study and simulate nuclear reactor cores, one needs to access the neutron distribution in the core. In practice, the description of this density of neutrons is given by a system of diffusion equations, coupled by non differential exchange terms. The strong heterogeneity of the medium constitutes a major obstacle to the numerical computation of this models at reasonable cost. Homogenization appears as compulsory. Heuristic methods have been developed since the origin by nuclear physicists, under a periodicity assumption on the coefficients. They consist in doing a fine computation one a single periodicity cell, to solve the system on the whole domain with homogeneous coefficients, and to reconstruct the neutron density by multiplying the solutions of the two computations. The objectives of this work are to provide mathematically rigorous basis to this factorization method, to obtain the exact formulas of the homogenized coefficients, and to start on geometries where two periodical medium are placed side by side. The first result of this thesis concerns eigenvalue problem models which are used to characterize the state of criticality of the reactor, under a symmetry assumption on the coefficients. The convergence of the homogenization process is proved, and formulas of the homogenized coefficients are given. We then show that without symmetry assumptions, a drift phenomenon appears. It is characterized by the mean of a real Bloch wave method, which gives the homogenized limit in the general case. These results for the critical problem are then adapted to the evolution model. Finally, the homogenization of the critical problem in the case of two side by side periodic medium is studied on a one dimensional on equation model. (authors)
New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod
Directory of Open Access Journals (Sweden)
Aly R. Seadawy
2018-03-01
Full Text Available This paper examines the effectiveness of an integration scheme which called the extended trial equation method (ETEM in exactly solving a well-known nonlinear equation of partial differential equations (PDEs. In this respect, the longitudinal wave equation (LWE that arises in mathematical physics with dispersion caused by the transverse Poisson’s effect in a magneto-electro-elastic (MEE circular rod, which a series of exact traveling wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of the longitudinal wave equation. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomena of this longitudinal wave equation. Many other such types of nonlinear equations arising in non-destructive evaluation of structures made of the advanced MEE material can also be solved by this method. Keywords: Extended trial equation method, Longitudinal wave equation in a MEE circular rod, Dark solitons, Bright solitons, Solitary wave, Periodic solitary wave
Limiting Behavior of Travelling Waves for the Modified Degasperis-Procesi Equation
Directory of Open Access Journals (Sweden)
Jiuli Yin
2014-01-01
Full Text Available Using an improved qualitative method which combines characteristics of several methods, we classify all travelling wave solutions of the modified Degasperis-Procesi equation in specified regions of the parametric space. Besides some popular exotic solutions including peaked waves, and looped and cusped waves, this equation also admits some very particular waves, such as fractal-like waves, double stumpons, double kinked waves, and butterfly-like waves. The last three types of solutions have not been reported in the literature. Furthermore, we give the limiting behavior of all periodic solutions as the parameters trend to some special values.
Simple functional-differential equations for the bound-state wave-function components
International Nuclear Information System (INIS)
Kamuntavicius, G.P.
1986-01-01
The author presents a new method of a direct derivation of differential equations for the wave-function components of identical-particles systems. The method generates in a simple manner all the possible variants of these equations. In some cases they are the differential equations of Faddeev or Yakubovskii. It is shown that the case of the bound states allows to formulate very simple equations for the components which are equivalent to the Schroedinger equation for the complete wave function. The components with a minimal antisymmetry are defined and the corresponding equations are derived. (Auth.)
Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric
2011-01-01
A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a
Exact solitary and periodic wave solutions for a generalized nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Sun Chengfeng; Gao Hongjun
2009-01-01
The generalized nonlinear Schroedinger equation (GNLS) iu t + u xx + β | u | 2 u + γ | u | 4 u + iα (| u | 2 u) x + iτ(| u | 2 ) x u = 0 is studied. Using the bifurcation of travelling waves of this equation, some exact solitary wave solutions were obtained in [Wang W, Sun J,Chen G, Bifurcation, Exact solutions and nonsmooth behavior of solitary waves in the generalized nonlinear Schroedinger equation. Int J Bifucat Chaos 2005:3295-305.]. In this paper, more explicit exact solitary wave solutions and some new smooth periodic wave solutions are obtained.
Wave equation of hydrogen atom
International Nuclear Information System (INIS)
Suwito.
1977-01-01
The calculation of the energy levels of the hydrogen atom using Bohr, Schroedinger and Dirac theories is reviewed. The result is compared with that obtained from infinite component wave equations theory which developed recently. The conclusion can be stated that the latter theory is better to describe the composit system than the former. (author)
Stumpons and fractal-like wave solutions to the Dullin-Gottwald-Holm equation
International Nuclear Information System (INIS)
Yin Jiuli; Tian Lixin
2009-01-01
The traveling wave solutions to the Dullin-Gottwald-Holm equation (called DGH equation) are classified by an improved qualitative analysis method. Meanwhile, the influence of the parameters on the traveling wave forms is specifically considered. The equation is shown to admit more traveling wave forms solutions, especially new solutions such as stumpons and fractal-like waves are first given. We also point out that the smooth solutions can converge to non-smooth ones under certain conditions. Furthermore, the new explicit forms of peakons with period are obtained.
Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves
DEFF Research Database (Denmark)
Eldeberky, Y.; Madsen, Per A.
1999-01-01
and stochastic formulations are solved numerically for the case of cross shore motion of unidirectional waves and the results are verified against laboratory data for wave propagation over submerged bars and over a plane slope. Outside the surf zone the two model predictions are generally in good agreement......This paper presents a new and more accurate set of deterministic evolution equations for the propagation of fully dispersive, weakly nonlinear, irregular, multidirectional waves. The equations are derived directly from the Laplace equation with leading order nonlinearity in the surface boundary...... is significantly underestimated for larger wave numbers. In the present work we correct this inconsistency. In addition to the improved deterministic formulation, we present improved stochastic evolution equations in terms of the energy spectrum and the bispectrum for multidirectional waves. The deterministic...
Transport equation and shock waves
International Nuclear Information System (INIS)
Besnard, D.
1981-04-01
A multi-group method is derived from a one dimensional transport equation for the slowing down and spatial transport of energetic positive ions in a plasma. This method is used to calculate the behaviour of energetic charged particles in non homogeneous and non stationary plasma, and the effect of energy deposition of the particles on the heating of the plasma. In that purpose, an equation for the density of fast ions is obtained from the Fokker-Planck equation, and a closure condition for the second moment of this equation is deduced from phenomenological considerations. This method leads to a numerical method, simple and very efficient, which doesn't require much computer storage. Two types of numerical results are obtained. First, results on the slowing down of 3.5 MeV alpha particles in a 50 keV plasma plublished by Corman and al and Moses are compared with the results obtained with both our method and a Monte Carlo type method. Good agreement was obtained, even for energy deposition on the ions of the plasma. Secondly, we have calculated propagation of alpha particles heating a cold plasma. These results are in very good agreement with those given by an accurate Monte Carlo method, for both the thermal velocity, and the energy deposition in the plasma
Stability of negative solitary waves for an integrable modified Camassa-Holm equation
International Nuclear Information System (INIS)
Yin Jiuli; Tian Lixin; Fan Xinghua
2010-01-01
In this paper, we prove that the modified Camassa-Holm equation is Painleve integrable. We also study the orbital stability problem of negative solitary waves for this integrable equation. It is shown that the negative solitary waves are stable for arbitrary wave speed of propagation.
A One-Dimensional Wave Equation with White Noise Boundary Condition
International Nuclear Information System (INIS)
Kim, Jong Uhn
2006-01-01
We discuss the Cauchy problem for a one-dimensional wave equation with white noise boundary condition. We also establish the existence of an invariant measure when the noise is additive. Similar problems for parabolic equations were discussed by several authors. To our knowledge, there is only one work which investigated the initial-boundary value problem for a wave equation with random noise at the boundary. We handle a more general case by a different method. Our result on the existence of an invariant measure relies on the author's recent work on a certain class of stochastic evolution equations
International Nuclear Information System (INIS)
Fu Jing-Li; He Yu-Fang; Hong Fang-Yu; Song Duan; Fu Hao
2013-01-01
In this paper, we present a new method to obtain the Lie symmetries and conserved quantities of the discrete wave equation with the Ablowitz—Ladik—Lattice equations. Firstly, the wave equation is transformed into a simple difference equation with the Ablowitz—Ladik—Lattice method. Secondly, according to the invariance of the discrete wave equation and the Ablowitz—Ladik—Lattice equations under infinitesimal transformation of dependent and independent variables, we derive the discrete determining equation and the discrete restricted equations. Thirdly, a series of the discrete analogs of conserved quantities, the discrete analogs of Lie groups, and the characteristic equations are obtained for the wave equation. Finally, we study a model of a biological macromolecule chain of mechanical behaviors, the Lie symmetry theory of discrete wave equation with the Ablowitz—Ladik—Lattice method is verified. (general)
Partial Differential Equations and Solitary Waves Theory
Wazwaz, Abdul-Majid
2009-01-01
"Partial Differential Equations and Solitary Waves Theory" is a self-contained book divided into two parts: Part I is a coherent survey bringing together newly developed methods for solving PDEs. While some traditional techniques are presented, this part does not require thorough understanding of abstract theories or compact concepts. Well-selected worked examples and exercises shall guide the reader through the text. Part II provides an extensive exposition of the solitary waves theory. This part handles nonlinear evolution equations by methods such as Hirota’s bilinear method or the tanh-coth method. A self-contained treatment is presented to discuss complete integrability of a wide class of nonlinear equations. This part presents in an accessible manner a systematic presentation of solitons, multi-soliton solutions, kinks, peakons, cuspons, and compactons. While the whole book can be used as a text for advanced undergraduate and graduate students in applied mathematics, physics and engineering, Part II w...
Wave-equation Migration Velocity Analysis Using Plane-wave Common Image Gathers
Guo, Bowen; Schuster, Gerard T.
2017-01-01
Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain or time-lag common image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images
Skeletonized Least Squares Wave Equation Migration
Zhan, Ge; Schuster, Gerard T.
2010-01-01
of the wave equation. Only the early‐arrivals of these Green's functions are saved and skeletonized to form the migration Green's function (MGF) by convolution. Then the migration image is obtained by a dot product between the recorded shot gathers and the MGF
Nonresonant decay of lower hybrid waves
International Nuclear Information System (INIS)
Brambilla, M.; Liberman, B.; Pesic, S.S.; Moreau, D.
1979-01-01
Parametric decay of Lower Hybrid waves has been extensively studied since a few years. To derive the dispersion relation of the decay waves, two different approaches have been used in the literature. In the first the pump electric field is assumed to be homogeneous in space (dipole approximation) and Vlasov Equation is integrated in the Oscillating Center Coordinates (OCC). In the second approach the parametric decay process is considered as the linear stage of a three wave interaction (pump, sideband and beat wave) and the dispersion relation is obtained from a recursive solution of Vlasov equation
Wave-equation Migration Velocity Analysis Using Plane-wave Common Image Gathers
Guo, Bowen
2017-06-01
Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain or time-lag common image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, a WEMVA method using plane-wave CIGs is presented. Plane-wave CIGs reduce the computational cost and memory storage because they are directly calculated from prestack plane-wave migration, and the number of plane waves is often much smaller than the number of shots. In the case of an inaccurate migration velocity, the moveout of plane-wave CIGs is automatically picked by a semblance analysis method, which is then linked to the migration velocity update by a connective function. Numerical tests on two synthetic datasets and a field dataset validate the efficiency and effectiveness of this method.
On the Stochastic Wave Equation with Nonlinear Damping
International Nuclear Information System (INIS)
Kim, Jong Uhn
2008-01-01
We discuss an initial boundary value problem for the stochastic wave equation with nonlinear damping. We establish the existence and uniqueness of a solution. Our method for the existence of pathwise solutions consists of regularization of the equation and data, the Galerkin approximation and an elementary measure-theoretic argument. We also prove the existence of an invariant measure when the equation has pure nonlinear damping
Integral Equation Methods for Electromagnetic and Elastic Waves
Chew, Weng; Hu, Bin
2008-01-01
Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral eq
Relativistic wave equations without the Velo-Zwanziger pathology
International Nuclear Information System (INIS)
Khalil, M.A.K.
1976-06-01
For particles described by relativistic wave equations of the form: (-iGAMMA x delta + m) psi(x) = 0 interacting with an external field B(x) it is known that the ''noncausal'' propagation characteristics are not present when (1) GAMMA 0 is diagonalizable and (2) B(x) = -eGAMMA/sub mu/A/sup mu/(x) (Amar--Dozzio). The ''noncausality''difficulties arise for the Rarita--Schwinger spin 3 / 2 equation, with nondiagonalizable GAMMA 0 , in minimal coupling (i.e., B(x) = -eGAMMA x A(x)) and the PDK spin 1 equation, with diagonalizable GAMMA 0 , in a quadrupole coupling (Velo--Zwanziger) where either (1) or (2) of the Amar--Dozzio (sufficient) conditions are violated. Some sufficient conditions are derived and explored where the Velo--Zwanziger ''noncausality'' pathology can be avoided, even though one, or the other, or both of the conditions (1) and (2) are violated. Examples with both reducible and irreducible wave equations are included
Goedel, Penrose, anti-Mach: extra supersymmetries of time-dependent plane waves
International Nuclear Information System (INIS)
Blau, Matthias; O'Loughlin, Martin; Meessen, Patrick
2003-01-01
We prove that M-theory plane waves with extra supersymmetries are necessarily homogeneous (but possibly time-dependent), and we show by explicit construction that such time-dependent plane waves can admit extra supersymmetries. To that end we study the Penrose limits of Goedel-like metrics, show that the Penrose limit of the M-theory Goedel metric (with 20 supercharges) is generically a time-dependent homogeneous plane wave of the anti-Mach type, and display the four extra Killings spinors in that case. We conclude with some general remarks on the Killing spinor equations for homogeneous plane waves. (author)
Goedel, Penrose, anti-Mach: extra supersymmetries of time-dependent plane waves
Energy Technology Data Exchange (ETDEWEB)
Blau, Matthias; O' Loughlin, Martin; Meessen, Patrick [SISSA/ISAS, Via Beirut 2-4, 34014 Trieste (Italy)]. E-mail: meessen@sissa.it
2003-09-01
We prove that M-theory plane waves with extra supersymmetries are necessarily homogeneous (but possibly time-dependent), and we show by explicit construction that such time-dependent plane waves can admit extra supersymmetries. To that end we study the Penrose limits of Goedel-like metrics, show that the Penrose limit of the M-theory Goedel metric (with 20 supercharges) is generically a time-dependent homogeneous plane wave of the anti-Mach type, and display the four extra Killings spinors in that case. We conclude with some general remarks on the Killing spinor equations for homogeneous plane waves. (author)
Ginzburg-Landau equation as a heuristic model for generating rogue waves
Lechuga, Antonio
2016-04-01
Envelope equations have many applications in the study of physical systems. Particularly interesting is the case 0f surface water waves. In steady conditions, laboratory experiments are carried out for multiple purposes either for researches or for practical problems. In both cases envelope equations are useful for understanding qualitative and quantitative results. The Ginzburg-Landau equation provides an excellent model for systems of that kind with remarkable patterns. Taking into account the above paragraph the main aim of our work is to generate waves in a water tank with almost a symmetric spectrum according to Akhmediev (2011) and thus, to produce a succession of rogue waves. The envelope of these waves gives us some patterns whose model is a type of Ginzburg-Landau equation, Danilov et al (1988). From a heuristic point of view the link between the experiment and the model is achieved. Further, the next step consists of changing generating parameters on the water tank and also the coefficients of the Ginzburg-Landau equation, Lechuga (2013) in order to reach a sufficient good approach.
Approximate equations at breaking for nearshore wave transformation coefficients
Digital Repository Service at National Institute of Oceanography (India)
Chandramohan, P.; Nayak, B.U.; SanilKumar, V.
Based on small amplitude wave theory approximate equations are evaluated for determining the coefficients of shoaling, refraction, bottom friction, bottom percolation and viscous dissipation at breaking. The results obtainEd. by these equations...
Asymptotic solutions and spectral theory of linear wave equations
International Nuclear Information System (INIS)
Adam, J.A.
1982-01-01
This review contains two closely related strands. Firstly the asymptotic solution of systems of linear partial differential equations is discussed, with particular reference to Lighthill's method for obtaining the asymptotic functional form of the solution of a scalar wave equation with constant coefficients. Many of the applications of this technique are highlighted. Secondly, the methods and applications of the theory of the reduced (one-dimensional) wave equation - particularly spectral theory - are discussed. While the breadth of application and power of the techniques is emphasised throughout, the opportunity is taken to present to a wider readership, developments of the methods which have occured in some aspects of astrophysical (particularly solar) and geophysical fluid dynamics. It is believed that the topics contained herein may be of relevance to the applied mathematician or theoretical physicist interest in problems of linear wave propagation in these areas. (orig./HSI)
Radio wave propagation and parabolic equation modeling
Apaydin, Gokhan
2018-01-01
A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...
Smooth, cusped, and discontinuous traveling waves in the periodic fluid resonance equation
Kruse, Matthew Thomas
The principal motivation for this dissertation is to extend the study of small amplitude high frequency wave propagation in solutions for hyperbolic conservation laws begun by A. Majda and R. Rosales in 1984. It was then that Majda and Rosales obtained equations governing the leading order wave amplitudes of resonantly interacting weakly nonlinear high frequency wave trains in the compressible Euler equations. The equations were obtained through systematic application of multiple scales and result in a pair of nonlinear acoustic wave equations coupled through a convolution operator. The extended solutions satisfy a pair of inviscid Burgers' equations coupled via a spatial convolution operator. Since then, many mathematicians have used this technique to extend the time validity of solutions to systems of equations other than the Euler equations and have arrived at similar nonlinear non-local systems. This work attempts to look at some of the basic features of the linear and nonlinear coupled and decoupled non- local equations, offering some analytic solutions and numerical insight into the phenomena associated with these equations. We do so by examining a single non-local linear equation, and then a single equation coupling a Burgers' nonlinearity with a linear convolution operator. The linear case is completely solvable. Analytic solutions are provided along with numerical results showing the fundamental properties of the linear non- local equations. In the nonlinear case some analytic solutions, including steady state profiles and traveling wave solutions, are provided along with a battery of numerical simulations. Evidence indicates the existence of attractors for solutions of the single equation with a single mode kernel. Provided resonant interaction takes place, the profile of the attractor is uniquely dependent on the kernel alone. Hamiltonian equations are obtained for both the linear and nonlinear equations with the condition that the resonant kernel must
Visco-acoustic wave-equation traveltime inversion and its sensitivity to attenuation errors
Yu, Han; Chen, Yuqing; Hanafy, Sherif M.; Huang, Jiangping
2018-01-01
A visco-acoustic wave-equation traveltime inversion method is presented that inverts for the shallow subsurface velocity distribution. Similar to the classical wave equation traveltime inversion, this method finds the velocity model that minimizes
On an Acoustic Wave Equation Arising in Non-Equilibrium Gasdynamics. Classroom Notes
Chandran, Pallath
2004-01-01
The sixth-order wave equation governing the propagation of one-dimensional acoustic waves in a viscous, heat conducting gaseous medium subject to relaxation effects has been considered. It has been reduced to a system of lower order equations corresponding to the finite speeds occurring in the equation, following a method due to Whitham. The lower…
The Appell transformation for the paraxial wave equation
International Nuclear Information System (INIS)
Torre, A
2011-01-01
Some issues related to the 1D heat equation are revisited and framed within the context of the free-space paraxial propagation, formally accounted for by the 2D paraxial wave equation. In particular, the Appell transformation, which is well known in the theory of the heat equation, is reformulated in optical terms, and accordingly interpreted in the light of the propagation of given source functions, which are in a definite relation with the source functions of the original wavefunctions. Basic to the discussion is the Lie-algebra-based approach, as developed in a series of seminal papers by Kalnins, Miller and Boyer, to evolutionary-type equations, ruled by Hamiltonian operators underlying a harmonic oscillator-like symmetry algebra. Indeed, both the heat equation and the paraxial wave equation are particular cases of this kind of equation. When interpreting such an approach in terms of the propagation of assigned 'source' functions, the transformations between wavefunctions may be traced back to definite relations between the respective source functions. Thus, the optical Appell transformation is seen to be a manifestation of the correspondence between wavefunctions generated by eigenstates of operators, which are linked through a Fourier-similarity transformation. As a mere consequence, one can introduce the fractional Appell transformation, thus displaying a family of symmetry transformations parameterized by a continuous parameter
Super-Grid Modeling of the Elastic Wave Equation in Semi-Bounded Domains
Energy Technology Data Exchange (ETDEWEB)
Petersson, N. Anders; Sjögreen, Björn
2014-10-01
We develop a super-grid modeling technique for solving the elastic wave equation in semi-bounded two- and three-dimensional spatial domains. In this method, waves are slowed down and dissipated in sponge layers near the far-field boundaries. Mathematically, this is equivalent to a coordinate mapping that transforms a very large physical domain to a significantly smaller computational domain, where the elastic wave equation is solved numerically on a regular grid. To damp out waves that become poorly resolved because of the coordinate mapping, a high order artificial dissipation operator is added in layers near the boundaries of the computational domain. We prove by energy estimates that the super-grid modeling leads to a stable numerical method with decreasing energy, which is valid for heterogeneous material properties and a free surface boundary condition on one side of the domain. Our spatial discretization is based on a fourth order accurate finite difference method, which satisfies the principle of summation by parts. We show that the discrete energy estimate holds also when a centered finite difference stencil is combined with homogeneous Dirichlet conditions at several ghost points outside of the far-field boundaries. Therefore, the coefficients in the finite difference stencils need only be boundary modified near the free surface. This allows for improved computational efficiency and significant simplifications of the implementation of the proposed method in multi-dimensional domains. Numerical experiments in three space dimensions show that the modeling error from truncating the domain can be made very small by choosing a sufficiently wide super-grid damping layer. The numerical accuracy is first evaluated against analytical solutions of Lamb’s problem, where fourth order accuracy is observed with a sixth order artificial dissipation. We then use successive grid refinements to study the numerical accuracy in the more
THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN.
Jiang, H; Liu, F; Meerschaert, M M; McGough, R J
2013-01-01
Fractional partial differential equations with more than one fractional derivative term in time, such as the Szabo wave equation, or the power law wave equation, describe important physical phenomena. However, studies of these multi-term time-space or time fractional wave equations are still under development. In this paper, multi-term modified power law wave equations in a finite domain are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals (1, 2], [2, 3), [2, 4) or (0, n ) ( n > 2), respectively. Analytical solutions of the multi-term modified power law wave equations are derived. These new techniques are based on Luchko's Theorem, a spectral representation of the Laplacian operator, a method of separating variables and fractional derivative techniques. Then these general methods are applied to the special cases of the Szabo wave equation and the power law wave equation. These methods and techniques can also be extended to other kinds of the multi-term time-space fractional models including fractional Laplacian.
Line Rogue Waves in the Mel'nikov Equation
Shi, Yongkang
2017-07-01
General line rogue waves in the Mel'nikov equation are derived via the Hirota bilinear method, which are given in terms of determinants whose matrix elements have plain algebraic expressions. It is shown that fundamental rogue waves are line rogue waves, which arise from the constant background with a line profile and then disappear into the constant background again. By means of the regulation of free parameters, two subclass of nonfundamental rogue waves are generated, which are called as multirogue waves and higher-order rogue waves. The multirogue waves consist of several fundamental line rogue waves, which arise from the constant background and then decay back to the constant background. The higher-order rogue waves start from a localised lump and retreat back to it. The dynamical behaviours of these line rogue waves are demonstrated by the density and the three-dimensional figures.
Study of nonlinear waves described by the cubic Schroedinger equation
International Nuclear Information System (INIS)
Walstead, A.E.
1980-01-01
The cubic Schroedinger equation (CSE) is ubiquitous as a model equation for the long-time evolution of finite-amplitude near-monochromatic dispersive waves. It incorporates the effects of the radiation field pressure on the constitutive properties of the supporting medium in a self-consistent manner. The properties of the uniformly transiating periodic wave solutions of the one-dimensional CSE are studied here. These (so-called cnoidal) waves are characterized by the values of four parameters. Whitham's averaged variational principle is used to derive a system of quasilinear evolution equations (the modulational equations) for the values of these parameters when they are slowly varying in space and time. Explicit expressions for the characteristic velocities of the modulational equations are obtained for the full set of cnoidal waves. Riemann invariants are obtained for several limits for the stable case, and growth rates are obtained for several limits, including the solitary wave chain, for the unstable case. The results for several nontrivial limiting cases agree with those obtained by independent methods by others. The dynamics of the CSE generalized to two spatial dimensions are studied for the unstable case. A large class of similarity solutions with cylindrical symmetry are obtained systematically using infinitesimal transformation group techniques. The methods are adapted to obtain the symmetries of the action functional of the CSE and to deduce nine integral invariants. A numerical study of the self-similar solutions reveals that they are modulationally unstable and that singularities dominate the dynamics of the CSE in two dimensions. The CSE is derived using perturbation theory for a specific problem in plasma physics: the evolution of the envelope of a near-monochromatic electromagnetic wave in a cold magnetized plasma. 13 figures, 2 tables
Study of nonlinear waves described by the cubic Schroedinger equation
Energy Technology Data Exchange (ETDEWEB)
Walstead, A.E.
1980-03-12
The cubic Schroedinger equation (CSE) is ubiquitous as a model equation for the long-time evolution of finite-amplitude near-monochromatic dispersive waves. It incorporates the effects of the radiation field pressure on the constitutive properties of the supporting medium in a self-consistent manner. The properties of the uniformly transiating periodic wave solutions of the one-dimensional CSE are studied here. These (so-called cnoidal) waves are characterized by the values of four parameters. Whitham's averaged variational principle is used to derive a system of quasilinear evolution equations (the modulational equations) for the values of these parameters when they are slowly varying in space and time. Explicit expressions for the characteristic velocities of the modulational equations are obtained for the full set of cnoidal waves. Riemann invariants are obtained for several limits for the stable case, and growth rates are obtained for several limits, including the solitary wave chain, for the unstable case. The results for several nontrivial limiting cases agree with those obtained by independent methods by others. The dynamics of the CSE generalized to two spatial dimensions are studied for the unstable case. A large class of similarity solutions with cylindrical symmetry are obtained systematically using infinitesimal transformation group techniques. The methods are adapted to obtain the symmetries of the action functional of the CSE and to deduce nine integral invariants. A numerical study of the self-similar solutions reveals that they are modulationally unstable and that singularities dominate the dynamics of the CSE in two dimensions. The CSE is derived using perturbation theory for a specific problem in plasma physics: the evolution of the envelope of a near-monochromatic electromagnetic wave in a cold magnetized plasma. 13 figures, 2 tables.
THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN
Jiang, H.; Liu, F.; Meerschaert, M. M.; McGough, R. J.
2013-01-01
Fractional partial differential equations with more than one fractional derivative term in time, such as the Szabo wave equation, or the power law wave equation, describe important physical phenomena. However, studies of these multi-term time-space or time fractional wave equations are still under development.
DEFF Research Database (Denmark)
Jørgensen, Bo Hoffmann
2003-01-01
The goal of this brief report is to express the model equations for an incompressible flow which is horizontally homogeneous. It is intended as a computationally inexpensive starting point of a more complete solution for neutral atmospheric flow overcomplex terrain. This idea was set forth...... by Ayotte and Taylor (1995) and in the work of Beljaars et al. (1987). Unlike the previous models, the present work uses general orthogonal coordinates. Strong conservation form of the model equations is employedto allow a robust and consistent numerical procedure. An invariant tensor form of the model...
New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod
Seadawy, Aly R.; Manafian, Jalil
2018-03-01
This paper examines the effectiveness of an integration scheme which called the extended trial equation method (ETEM) in exactly solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the longitudinal wave equation (LWE) that arises in mathematical physics with dispersion caused by the transverse Poisson's effect in a magneto-electro-elastic (MEE) circular rod, which a series of exact traveling wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of the longitudinal wave equation. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomena of this longitudinal wave equation. Many other such types of nonlinear equations arising in non-destructive evaluation of structures made of the advanced MEE material can also be solved by this method.
Exact solitary waves of the Korteveg - de Vries - Burgers equation
Kudryashov, N. A.
2004-01-01
New approach is presented to search exact solutions of nonlinear differential equations. This method is used to look for exact solutions of the Korteveg -- de Vries -- Burgers equation. New exact solitary waves of the Korteveg -- de Vries -- Burgers equation are found.
Periodic solutions for one dimensional wave equation with bounded nonlinearity
Ji, Shuguan
2018-05-01
This paper is concerned with the periodic solutions for the one dimensional nonlinear wave equation with either constant or variable coefficients. The constant coefficient model corresponds to the classical wave equation, while the variable coefficient model arises from the forced vibrations of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. For finding the periodic solutions of variable coefficient wave equation, it is usually required that the coefficient u (x) satisfies ess infηu (x) > 0 with ηu (x) = 1/2 u″/u - 1/4 (u‧/u)2, which actually excludes the classical constant coefficient model. For the case ηu (x) = 0, it is indicated to remain an open problem by Barbu and Pavel (1997) [6]. In this work, for the periods having the form T = 2p-1/q (p , q are positive integers) and some types of boundary value conditions, we find some fundamental properties for the wave operator with either constant or variable coefficients. Based on these properties, we obtain the existence of periodic solutions when the nonlinearity is monotone and bounded. Such nonlinearity may cross multiple eigenvalues of the corresponding wave operator. In particular, we do not require the condition ess infηu (x) > 0.
Relativistic n-body wave equations in scalar quantum field theory
International Nuclear Information System (INIS)
Emami-Razavi, Mohsen
2006-01-01
The variational method in a reformulated Hamiltonian formalism of Quantum Field Theory (QFT) is used to derive relativistic n-body wave equations for scalar particles (bosons) interacting via a massive or massless mediating scalar field (the scalar Yukawa model). Simple Fock-space variational trial states are used to derive relativistic n-body wave equations. The equations are shown to have the Schroedinger non-relativistic limits, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Some examples of approximate ground state solutions of the n-body relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields
Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar
2018-06-01
In this current work, we employ novel methods to find the exact travelling wave solutions of Modified Liouville equation and the Symmetric Regularized Long Wave equation, which are called extended simple equation and exp(-Ψ(ξ))-expansion methods. By assigning the different values to the parameters, different types of the solitary wave solutions are derived from the exact traveling wave solutions, which shows the efficiency and precision of our methods. Some solutions have been represented by graphical. The obtained results have several applications in physical science.
Drift of Spiral Waves in Complex Ginzburg-Landau Equation
International Nuclear Information System (INIS)
Yang Junzhong; Zhang Mei
2006-01-01
The spontaneous drift of the spiral wave in a finite domain in the complex Ginzburg-Landau equation is investigated numerically. By using the interactions between the spiral wave and its images, we propose a phenomenological theory to explain the observations.
International Nuclear Information System (INIS)
Zhang, H.; Rizwan-uddin; Dorning, J.J.
1995-01-01
A diffusion equation-based systematic homogenization theory and a self-consistent dehomogenization theory for fuel assemblies have been developed for use with coarse-mesh nodal diffusion calculations of light water reactors. The theoretical development is based on a multiple-scales asymptotic expansion carried out through second order in a small parameter, the ratio of the average diffusion length to the reactor characteristic dimension. By starting from the neutron diffusion equation for a three-dimensional heterogeneous medium and introducing two spatial scales, the development systematically yields an assembly-homogenized global diffusion equation with self-consistent expressions for the assembly-homogenized diffusion tensor elements and cross sections and assembly-surface-flux discontinuity factors. The rector eigenvalue 1/k eff is shown to be obtained to the second order in the small parameter, and the heterogeneous diffusion theory flux is shown to be obtained to leading order in that parameter. The latter of these two results provides a natural procedure for the reconstruction of the local fluxes and the determination of pin powers, even though homogenized assemblies are used in the global nodal diffusion calculation
Anisotropic wave-equation traveltime and waveform inversion
Feng, Shihang; Schuster, Gerard T.
2016-01-01
The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially
Inaccuracy caused by the use of thermodynamic equation inside shock wave front
International Nuclear Information System (INIS)
Sano, Yukio; Abe, Akihisa; Tokushima, Koji; Arathoon, P.
1998-01-01
The aim of this study is to examine the difference between shock temperatures predicted by an equation for temperature inside a steady wave front and the Walsh-Christian equation. Calculations are for yttria-doped tetragonal zirconia, which shows an elastic-plastic and a phase transition: Thus the shock waves treated are multiple structure waves composed of one to three steady wave fronts. The evaluated temperature was 3350K at the minimum specific volume of 0.1175 cm 3 /g (or maximum Hugoniot shock pressure of 140GPa) considered in the present examination, while the temperature predicted by the Walsh-Christian equation under identical conditions was 2657K. The cause of the large temperature discrepancy is considered to be that the present model treats nonequilibrium states inside steady waves
On the solution of the equations for nonlinear interaction of three damped waves
International Nuclear Information System (INIS)
1976-01-01
Three-wave interactions are analyzed in a coherent wave description assuming different linear damping (or growth) of the individual waves. It is demonstrated that when two of the coefficients of dissipation are equal, the set of equations can be reduced to a single equivalent equation, which in the nonlinearly unstable case, where one wave is undamped, asymptotically takes the form of an equation defining the third Painleve transcendent. It is then possible to find an asymptotic expansion near the time of explosion. This solution is of principal interest since it indicates that the solution of the general three-wave system, where the waves undergo different individual dissipations, belongs to a higher class of functions, which reduces to Jacobian elliptic functions only in the case where all waves suffer the same damping [fr
Homogenization models for thin rigid structured surfaces and films.
Marigo, Jean-Jacques; Maurel, Agnès
2016-07-01
A homogenization method for thin microstructured surfaces and films is presented. In both cases, sound hard materials are considered, associated with Neumann boundary conditions and the wave equation in the time domain is examined. For a structured surface, a boundary condition is obtained on an equivalent flat wall, which links the acoustic velocity to its normal and tangential derivatives (of the Myers type). For a structured film, jump conditions are obtained for the acoustic pressure and the normal velocity across an equivalent interface (of the Ventcels type). This interface homogenization is based on a matched asymptotic expansion technique, and differs slightly from the classical homogenization, which is known to fail for small structuration thicknesses. In order to get insight into what causes this failure, a two-step homogenization is proposed, mixing classical homogenization and matched asymptotic expansion. Results of the two homogenizations are analyzed in light of the associated elementary problems, which correspond to problems of fluid mechanics, namely, potential flows around rigid obstacles.
Symmetries of the triple degenerate DNLS equations for weakly nonlinear dispersive MHD waves
International Nuclear Information System (INIS)
Webb, G. M.; Brio, M.; Zank, G. P.
1996-01-01
A formulation of Hamiltonian and Lagrangian variational principles, Lie point symmetries and conservation laws for the triple degenerate DNLS equations describing the propagation of weakly nonlinear dispersive MHD waves along the ambient magnetic field, in β∼1 plasmas is given. The equations describe the interaction of the Alfven and magnetoacoustic modes near the triple umbilic point, where the fast magnetosonic, slow magnetosonic and Alfven speeds coincide and a g 2 =V A 2 where a g is the gas sound speed and V A is the Alfven speed. A discussion is given of the travelling wave similarity solutions of the equations, which include solitary wave and periodic traveling waves. Strongly compressible solutions indicate the necessity for the insertion of shocks in the flow, whereas weakly compressible, near Alfvenic solutions resemble similar, shock free travelling wave solutions of the DNLS equation
Invariant measures for stochastic nonlinear beam and wave equations
Czech Academy of Sciences Publication Activity Database
Brzezniak, Z.; Ondreját, Martin; Seidler, Jan
2016-01-01
Roč. 260, č. 5 (2016), s. 4157-4179 ISSN 0022-0396 R&D Projects: GA ČR GAP201/10/0752 Institutional support: RVO:67985556 Keywords : stochastic partial differential equation * stochastic beam equation * stochastic wave equation * invariant measure Subject RIV: BA - General Mathematics Impact factor: 1.988, year: 2016 http://library.utia.cas.cz/separaty/2016/SI/ondrejat-0453412.pdf
Travelling Solitary Wave Solutions for Generalized Time-delayed Burgers-Fisher Equation
International Nuclear Information System (INIS)
Deng Xijun; Han Libo; Li Xi
2009-01-01
In this paper, travelling wave solutions for the generalized time-delayed Burgers-Fisher equation are studied. By using the first-integral method, which is based on the ring theory of commutative algebra, we obtain a class of travelling solitary wave solutions for the generalized time-delayed Burgers-Fisher equation. A minor error in the previous article is clarified. (general)
Separation of variables for the nonlinear wave equation in polar coordinates
International Nuclear Information System (INIS)
Shermenev, Alexander
2004-01-01
Some classical types of nonlinear wave motion in polar coordinates are studied within quadratic approximation. When the nonlinear quadratic terms in the wave equation are arbitrary, the usual perturbation techniques used in polar coordinates leads to overdetermined systems of linear algebraic equations for the unknown coefficients. However, we show that these overdetermined systems are compatible with the special case of the nonlinear shallow water equation and express explicitly the coefficients of the first two harmonics as polynomials of the Bessel functions of radius and of the trigonometric functions of angle. It gives a series of solutions to the nonlinear shallow water equation that are periodic in time and found with the same accuracy as the equation is derived
Homogeneous internal wave turbulence driven by tidal flows
Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael; Erc Fludyco Team
2017-11-01
We propose a novel investigation of the stability of strongly stratified planetary fluid layers undergoing periodic tidal distortion in the limit where rotational effects are negligible compared to buoyancy. With the help of a local model focusing on a small fluid area compared to the global layer, we find that periodic tidal distortion drives a parametric subharmonic resonance of internal. This instability saturates into an homogeneous internal wave turbulence pervading the whole fluid interior: the energy is injected in the unstable waves which then feed a succession of triadic resonances also generating small spatial scales. As the timescale separation between the forcing and Brunt-Väisälä is increased, the temporal spectrum of this turbulence displays a -2 power law reminiscent of the Garrett and Munk spectrum measured in the oceans (Garett & Munk 1979). Moreover, in this state consisting of a superposition of waves in weak non-linear interaction, the mixing efficiency is increased compared to classical, Kolmogorov-like stratified turbulence. This study is of wide interest in geophysical fluid dynamics ranging from oceanic turbulence and tidal heating in icy satellites to dynamo action in partially stratified planetary cores as it could be the case in the Earth. We acknowledge support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG).
Rarita-Schwinger field and multicomponent wave equation
International Nuclear Information System (INIS)
Kaloshin, A.E.; Lomov, V.P.
2011-01-01
We suggest a simple method to solve a wave equation for Rarita-Schwinger field without additional constraints. This method based on the use of off-shell projection operators allows one to diagonalize spin-1/2 sector of the field
Bofill, Josep Maria; Quapp, Wolfgang; Caballero, Marc
2012-12-11
The potential energy surface (PES) of a molecule can be decomposed into equipotential hypersurfaces. We show in this article that the hypersurfaces are the wave fronts of a certain hyperbolic partial differential equation, a wave equation. It is connected with the gradient lines, or the steepest descent, or the steepest ascent lines of the PES. The energy seen as a reaction coordinate plays the central role in this treatment.
Energy Technology Data Exchange (ETDEWEB)
Watanabe, T; Sassa, K [Kyoto University, Kyoto (Japan); Uesaka, S [Kyoto University, Kyoto (Japan). Faculty of Engineering
1996-10-01
The effect of initial models on full-wave inversion (FWI) analysis based on acoustic wave-equation was studied for elastic wave tomography of underground structures. At present, travel time inversion using initial motion travel time is generally used, and inverse analysis is conducted using the concept `ray,` assuming very high wave frequency. Although this method can derive stable solutions relatively unaffected by initial model, it uses only the data of initial motion travel time. FWI calculates theoretical waveform at each receiver using all of observed waveforms as data by wave equation modeling where 2-D underground structure is calculated by difference calculus under the assumption that wave propagation is described by wave equation of P wave. Although it is a weak point that FWI is easily affected by noises in an initial model and data, it is featured by high resolution of solutions. This method offers very excellent convergence as a proper initial model is used, resulting in sufficient performance, however, it is strongly affected by initial model. 2 refs., 7 figs., 1 tab.
The periodic wave solutions for the (2 + 1)-dimensional Konopelchenko-Dubrovsky equations
International Nuclear Information System (INIS)
Sheng Zhang
2006-01-01
More periodic wave solutions expressed by Jacobi elliptic functions for the (2 + 1)-dimensional Konopelchenko-Dubrovsky equations are obtained by using the extended F-expansion method. In the limit cases, the solitary wave solutions and trigonometric function solutions for the equations are also obtained
The non-local Fisher–KPP equation: travelling waves and steady states
International Nuclear Information System (INIS)
Berestycki, Henri; Nadin, Grégoire; Perthame, Benoit; Ryzhik, Lenya
2009-01-01
We consider the Fisher–KPP equation with a non-local saturation effect defined through an interaction kernel φ(x) and investigate the possible differences with the standard Fisher–KPP equation. Our first concern is the existence of steady states. We prove that if the Fourier transform φ-circumflex(ξ) is positive or if the length σ of the non-local interaction is short enough, then the only steady states are u ≡ 0 and u ≡ 1. Next, we study existence of the travelling waves. We prove that this equation admits travelling wave solutions that connect u = 0 to an unknown positive steady state u ∞ (x), for all speeds c ≥ c * . The travelling wave connects to the standard state u ∞ (x) ≡ 1 under the aforementioned conditions: φ-circumflex(ξ) > 0 or σ is sufficiently small. However, the wave is not monotonic for σ large
International Nuclear Information System (INIS)
Shang Yadong
2008-01-01
The extended hyperbolic functions method for nonlinear wave equations is presented. Based on this method, we obtain a multiple exact explicit solutions for the nonlinear evolution equations which describe the resonance interaction between the long wave and the short wave. The solutions obtained in this paper include (a) the solitary wave solutions of bell-type for S and L, (b) the solitary wave solutions of kink-type for S and bell-type for L, (c) the solitary wave solutions of a compound of the bell-type and the kink-type for S and L, (d) the singular travelling wave solutions, (e) periodic travelling wave solutions of triangle function types, and solitary wave solutions of rational function types. The variety of structure to the exact solutions of the long-short wave equation is illustrated. The methods presented here can also be used to obtain exact solutions of nonlinear wave equations in n dimensions
Diffusion phenomenon for linear dissipative wave equations in an exterior domain
Ikehata, Ryo
Under the general condition of the initial data, we will derive the crucial estimates which imply the diffusion phenomenon for the dissipative linear wave equations in an exterior domain. In order to derive the diffusion phenomenon for dissipative wave equations, the time integral method which was developed by Ikehata and Matsuyama (Sci. Math. Japon. 55 (2002) 33) plays an effective role.
High Order Numerical Simulation of Waves Using Regular Grids and Non-conforming Interfaces
2013-10-06
for a homogeneous problem . . . . . . . . . . . . . . . . . 65 6 BEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 7...Lqu = 0, and Tr u = ξΓ. Finally, we have proved that ξΓ satisfies the BEP if and only if ξΓ = Tr u for which Lq u = 0 [51, 53, 39]. We call equation...2.9) the boundary equation with projection ( BEP ). 2.1.1 Wave Split The solutions to the homogeneous equation Lqu = 0 can be interpreted as incoming
Classification of All Single Travelling Wave Solutions to Calogero-Degasperis-Focas Equation
International Nuclear Information System (INIS)
Liu Chengshi
2007-01-01
Under the travelling wave transformation, Calogero-Degasperis-Focas equation is reduced to an ordinary differential equation. Using a symmetry group of one parameter, this ODE is reduced to a second-order linear inhomogeneous ODE. Furthermore, we apply the change of the variable and complete discrimination system for polynomial to solve the corresponding integrals and obtained the classification of all single travelling wave solutions to Calogero-Degasperis-Focas equation.
Numerical study of traveling-wave solutions for the Camassa-Holm equation
International Nuclear Information System (INIS)
Kalisch, Henrik; Lenells, Jonatan
2005-01-01
We explore numerically different aspects of periodic traveling-wave solutions of the Camassa-Holm equation. In particular, the time evolution of some recently found new traveling-wave solutions and the interaction of peaked and cusped waves is studied
Jacobian elliptic wave solutions for the Wadati-Segur-Ablowitz equation
International Nuclear Information System (INIS)
Teh, C.G.R.; Koo, W.K.; Lee, B.S.
1996-07-01
Jacobian elliptic travelling wave solutions for a new Hamiltonian amplitude equation determining some instabilities of modulated wave train are obtained. By a mere variation of the Jacobian elliptic parameter k 2 from zero to one, these solutions are transformed from a trivial one to the known solitary wave solutions. (author). 9 refs
Smooth and non-smooth travelling waves in a nonlinearly dispersive Boussinesq equation
International Nuclear Information System (INIS)
Shen Jianwei; Xu Wei; Lei Youming
2005-01-01
The dynamical behavior and special exact solutions of nonlinear dispersive Boussinesq equation (B(m,n) equation), u tt -u xx -a(u n ) xx +b(u m ) xxxx =0, is studied by using bifurcation theory of dynamical system. As a result, all possible phase portraits in the parametric space for the travelling wave system, solitary wave, kink and anti-kink wave solutions and uncountably infinite many smooth and non-smooth periodic wave solutions are obtained. It can be shown that the existence of singular straight line in the travelling wave system is the reason why smooth waves converge to cusp waves, finally. When parameter are varied, under different parametric conditions, various sufficient conditions guarantee the existence of the above solutions are given
Nonlinear evolution equations for waves in random media
International Nuclear Information System (INIS)
Pelinovsky, E.; Talipova, T.
1994-01-01
The scope of this paper is to highlight the main ideas of asymptotical methods applying in modern approaches of description of nonlinear wave propagation in random media. We start with the discussion of the classical conception of ''mean field''. Then an exactly solvable model describing nonlinear wave propagation in the medium with fluctuating parameters is considered in order to demonstrate that the ''mean field'' method is not correct. We develop new asymptotic procedures of obtaining the nonlinear evolution equations for the wave fields in random media. (author). 16 refs
Modeling for cardiac excitation propagation based on the Nernst-Planck equation and homogenization.
Okada, Jun-ichi; Sugiura, Seiryo; Hisada, Toshiaki
2013-06-01
The bidomain model is a commonly used mathematical model of the electrical properties of the cardiac muscle that takes into account the anisotropy of both the intracellular and extracellular spaces. However, the equations contain self-contradiction such that the update of ion concentrations does not consider intracellular or extracellular ion movements due to the gradient of electric potential and the membrane charge as capacitive currents in spite of the fact that those currents are taken into account in forming Kirchhoff's first law. To overcome this problem, we start with the Nernst-Planck equation, the ionic conservation law, and the electroneutrality condition at the cellular level, and by introducing a homogenization method and assuming uniformity of variables at the microscopic scale, we derive rational bidomain equations at the macroscopic level.
Initial-value problem for the Gardner equation applied to nonlinear internal waves
Rouvinskaya, Ekaterina; Kurkina, Oxana; Kurkin, Andrey; Talipova, Tatiana; Pelinovsky, Efim
2017-04-01
The Gardner equation is a fundamental mathematical model for the description of weakly nonlinear weakly dispersive internal waves, when cubic nonlinearity cannot be neglected. Within this model coefficients of quadratic and cubic nonlinearity can both be positive as well as negative, depending on background conditions of the medium, where waves propagate (sea water density stratification, shear flow profile) [Rouvinskaya et al., 2014, Kurkina et al., 2011, 2015]. For the investigation of weakly dispersive behavior in the framework of nondimensional Gardner equation with fixed (positive) sign of quadratic nonlinearity and positive or negative cubic nonlinearity {eq1} partial η/partial t+6η( {1± η} )partial η/partial x+partial ^3η/partial x^3=0, } the series of numerical experiments of initial-value problem was carried out for evolution of a bell-shaped impulse of negative polarity (opposite to the sign of quadratic nonlinear coefficient): {eq2} η(x,t=0)=-asech2 ( {x/x0 } ), for which amplitude a and width x0 was varied. Similar initial-value problem was considered in the paper [Trillo et al., 2016] for the Korteweg - de Vries equation. For the Gardner equation with different signs of cubic nonlinearity the initial-value problem for piece-wise constant initial condition was considered in detail in [Grimshaw et al., 2002, 2010]. It is widely known, for example, [Pelinovsky et al., 2007], that the Gardner equation (1) with negative cubic nonlinearity has a family of classic solitary wave solutions with only positive polarity,and with limiting amplitude equal to 1. Therefore evolution of impulses (2) of negative polarity (whose amplitudes a were varied from 0.1 to 3, and widths at the level of a/2 were equal to triple width of solitons with the same amplitude for a 1) was going on a universal scenario with the generation of nonlinear Airy wave. For the Gardner equation (1) with the positive cubic nonlinearity coefficient there exist two one-parametric families of
Hidden regularity for a strongly nonlinear wave equation
International Nuclear Information System (INIS)
Rivera, J.E.M.
1988-08-01
The nonlinear wave equation u''-Δu+f(u)=v in Q=Ωx]0,T[;u(0)=u 0 ,u'(0)=u 1 in Ω; u(x,t)=0 on Σ= Γx]0,T[ where f is a continuous function satisfying, lim |s| sup →+∞ f(s)/s>-∞, and Ω is a bounded domain of R n with smooth boundary Γ, is analysed. It is shown that there exist a solution for the presented nonlinear wave equation that satisfies the regularity condition: |∂u/∂ η|ε L 2 (Σ). Moreover, it is shown that there exist a constant C>0 such that, |∂u/∂ η|≤c{ E(0)+|v| 2 Q }. (author) [pt
Finite element and discontinuous Galerkin methods for transient wave equations
Cohen, Gary
2017-01-01
This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem ...
Energy Technology Data Exchange (ETDEWEB)
Huang, Lianjie [Los Alamos National Laboratory; Simonetti, Francesco [IMPERIAL COLLEGE LONDON; Huthwaite, Peter [IMPERIAL COLLEGE LONDON; Rosenberg, Robert [UNM; Williamson, Michael [UNM
2010-01-01
Ultrasound image resolution and quality need to be significantly improved for breast microcalcification detection. Super-resolution imaging with the factorization method has recently been developed as a promising tool to break through the resolution limit of conventional imaging. In addition, wave-equation reflection imaging has become an effective method to reduce image speckles by properly handling ultrasound scattering/diffraction from breast heterogeneities during image reconstruction. We explore the capabilities of a novel super-resolution ultrasound imaging method and a wave-equation reflection imaging scheme for detecting breast microcalcifications. Super-resolution imaging uses the singular value decomposition and a factorization scheme to achieve an image resolution that is not possible for conventional ultrasound imaging. Wave-equation reflection imaging employs a solution to the acoustic-wave equation in heterogeneous media to backpropagate ultrasound scattering/diffraction waves to scatters and form images of heterogeneities. We construct numerical breast phantoms using in vivo breast images, and use a finite-difference wave-equation scheme to generate ultrasound data scattered from inclusions that mimic microcalcifications. We demonstrate that microcalcifications can be detected at full spatial resolution using the super-resolution ultrasound imaging and wave-equation reflection imaging methods.
Persistence of travelling waves in a generalized Fisher equation
International Nuclear Information System (INIS)
Kyrychko, Yuliya N.; Blyuss, Konstantin B.
2009-01-01
Travelling waves of the Fisher equation with arbitrary power of nonlinearity are studied in the presence of long-range diffusion. Using analogy between travelling waves and heteroclinic solutions of corresponding ODEs, we employ the geometric singular perturbation theory to prove the persistence of these waves when the influence of long-range effects is small. When the long-range diffusion coefficient becomes larger, the behaviour of travelling waves can only be studied numerically. In this case we find that starting with some values, solutions of the model lose monotonicity and become oscillatory
An Unconditionally Stable Method for Solving the Acoustic Wave Equation
Directory of Open Access Journals (Sweden)
Zhi-Kai Fu
2015-01-01
Full Text Available An unconditionally stable method for solving the time-domain acoustic wave equation using Associated Hermit orthogonal functions is proposed. The second-order time derivatives in acoustic wave equation are expanded by these orthogonal basis functions. By applying Galerkin temporal testing procedure, the time variable can be eliminated from the calculations. The restriction of Courant-Friedrichs-Levy (CFL condition in selecting time step for analyzing thin layer can be avoided. Numerical results show the accuracy and the efficiency of the proposed method.
Wave Functions for Time-Dependent Dirac Equation under GUP
Zhang, Meng-Yao; Long, Chao-Yun; Long, Zheng-Wen
2018-04-01
In this work, the time-dependent Dirac equation is investigated under generalized uncertainty principle (GUP) framework. It is possible to construct the exact solutions of Dirac equation when the time-dependent potentials satisfied the proper conditions. In (1+1) dimensions, the analytical wave functions of the Dirac equation under GUP have been obtained for the two kinds time-dependent potentials. Supported by the National Natural Science Foundation of China under Grant No. 11565009
Multi-wave solutions of the space–time fractional Burgers and Sharma–Tasso–Olver equations
Emad A.-B. Abdel-Salam; Gamal F. Hassan
2016-01-01
Based on the improved generalized exp-function method, the space–time fractional Burgers and Sharma–Tasso–Olver equations were studied. The single-wave, double-wave, three-wave and four-wave solution discussed. With the best of our knowledge, some of the results are obtained for the first time. The improved generalized exp-function method can be applied to other fractional differential equations.
International Nuclear Information System (INIS)
Grigoriev, Yurii N; Meleshko, Sergey V; Suriyawichitseranee, Amornrat
2015-01-01
Group analysis of the spatially homogeneous and molecular energy dependent Boltzmann equations with source term is carried out. The Fourier transform of the Boltzmann equation with respect to the molecular velocity variable is considered. The correspondent determining equation of the admitted Lie group is reduced to a partial differential equation for the admitted source. The latter equation is analyzed by an algebraic method. A complete group classification of the Fourier transform of the Boltzmann equation with respect to a source function is given. The representation of invariant solutions and corresponding reduced equations for all obtained source functions are also presented. (paper)
Dirac equation and optical wave propagation in one dimension
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, Gabriel [Catedras CONACYT, Universidad Autonoma de San Luis Potosi (Mexico); Coordinacion para la Innovacion y la Aplicacion de la Ciencia y la Tecnologia, Universidad Autonoma de San Luis Potosi (Mexico)
2018-02-15
We show that the propagation of transverse electric (TE) polarized waves in one-dimensional inhomogeneous settings can be written in the form of the Dirac equation in one space dimension with a Lorentz scalar potential, and consequently perform photonic simulations of the Dirac equation in optical structures. In particular, we propose how the zero energy state of the Jackiw-Rebbi model can be generated in an optical set-up by controlling the refractive index landscape, where TE-polarized waves mimic the Dirac particles and the soliton field can be tuned by adjusting the refractive index. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Wang, T.
2017-05-26
Elastic full waveform inversion (EFWI) provides high-resolution parameter estimation of the subsurface but requires good initial guess of the true model. The traveltime inversion only minimizes traveltime misfits which are more sensitive and linearly related to the low-wavenumber model perturbation. Therefore, building initial P and S wave velocity models for EFWI by using elastic wave-equation reflections traveltime inversion (WERTI) would be effective and robust, especially for the deeper part. In order to distinguish the reflection travletimes of P or S-waves in elastic media, we decompose the surface multicomponent data into vector P- and S-wave seismogram. We utilize the dynamic image warping to extract the reflected P- or S-wave traveltimes. The P-wave velocity are first inverted using P-wave traveltime followed by the S-wave velocity inversion with S-wave traveltime, during which the wave mode decomposition is applied to the gradients calculation. Synthetic example on the Sigbee2A model proves the validity of our method for recovering the long wavelength components of the model.
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-01-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-06-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0. Furthermore, we prove the global existence and uniqueness of C^{α ,β }-solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1-space. The exponential convergence rate is also derived.
Stimulated Raman scattering and ion dynamics: the role of Langmuir wave non-linearities
International Nuclear Information System (INIS)
Bonnaud, G.; Pesme, D.
1988-02-01
The non-linear evolution of stimulated Raman scattering by coupling of the SRS-driven Langmuir waves to ion acoustic waves is studied numerically, in a homogeneous density laser-irradiated plasma. The coupled wave amplitude behaviour is represented either by envelope equations or by complete wave-like equations. The various physical phenomena which are involved are described. This preliminary work has been presented at the 17th Anomalous Absorption Conference, held in last May, in Lake Tahoe City (USA) [fr
Quadratic algebras in the noncommutative integration method of wave equation
International Nuclear Information System (INIS)
Varaksin, O.L.
1995-01-01
The paper deals with the investigation of applications of the method of noncommutative integration of linear differential equations by partial derivatives. Nontrivial example was taken for integration of three-dimensions wave equation with the use of non-Abelian quadratic algebras
Fifth-order amplitude equation for traveling waves in isothermal double diffusive convection
International Nuclear Information System (INIS)
Mendoza, S.; Becerril, R.
2009-01-01
Third-order amplitude equations for isothermal double diffusive convection are known to hold the tricritical condition all along the oscillatory branch, predicting that stable traveling waves exist Only at the onset of the instability. In order to properly describe stable traveling waves, we perform a fifth-order calculation and present explicitly the corresponding amplitude equation.
Nonlinear Raman scattering behavior with Langmuir and sound waves coupling in a homogeneous plasma
International Nuclear Information System (INIS)
Bonnaud, G.; Pesme, D.; Pellat, R.
1990-01-01
By means of wave-coupling simulations, the typical nonlinear evolution of stimulated Raman scattering (SRS) is investigated in a homogeneous sub-quarter-critical plasma for present-day low laser irradiances and kilo-electron-volt electron temperatures. The decrease of the Langmuir energy observed after the SRS growth is found to be basically the result of the electrostatic decay instability (EDI) onset, which generates a high-amplitude ion-acoustic wave. The resulting strong modulation of the plasma density causes a conversion process that transforms the initial one-wave-vector Langmuir wave driven by SRS into a Bloch wave and induces SRS detuning and larger damping. The conditions involved herein have allowed isolation of these processes from the modulational instability; in addition, the Langmuir collapse is found not to occur owing to the high electron temperature
International Nuclear Information System (INIS)
Kong Cuicui; Wang Dan; Song Lina; Zhang Hongqing
2009-01-01
In this paper, with the aid of symbolic computation and a general ansaetz, we presented a new extended rational expansion method to construct new rational formal exact solutions to nonlinear partial differential equations. In order to illustrate the effectiveness of this method, we apply it to the MKDV-Burgers equation and the (2 + 1)-dimensional dispersive long wave equation, then several new kinds of exact solutions are successfully obtained by using the new ansaetz. The method can also be applied to other nonlinear partial differential equations.
TRAVELING WAVE SOLUTIONS OF SOME FRACTIONAL DIFFERENTIAL EQUATIONS
Directory of Open Access Journals (Sweden)
SERIFE MUGE EGE
2016-07-01
Full Text Available The modified Kudryashov method is powerful, efficient and can be used as an alternative to establish new solutions of different type of fractional differential equations applied in mathematical physics. In this article, we’ve constructed new traveling wave solutions including symmetrical Fibonacci function solutions, hyperbolic function solutions and rational solutions of the space-time fractional Cahn Hillihard equation D_t^α u − γD_x^α u − 6u(D_x^α u^2 − (3u^2 − 1D_x^α (D_x^α u + D_x^α(D_x^α(D_x^α(D_x^α u = 0 and the space-time fractional symmetric regularized long wave (SRLW equation D_t^α(D_t^α u + D_x^α(D_x^α u + uD_t^α(D_x^α u + D_x^α u D_t^α u + D_t^α(D_t^α(D_x^α(D_x^α u = 0 via modified Kudryashov method. In addition, some of the solutions are described in the figures with the help of Mathematica.
International Nuclear Information System (INIS)
Yang Pei; Li Zhibin; Chen Yong
2010-01-01
In this paper, the short-wave model equations are investigated, which are associated with the Camassa-Holm (CH) and Degasperis-Procesi (DP) shallow-water wave equations. Firstly, by means of the transformation of the independent variables and the travelling wave transformation, the partial differential equation is reduced to an ordinary differential equation. Secondly, the equation is solved by homotopy analysis method. Lastly, by the transformations back to the original independent variables, the solution of the original partial differential equation is obtained. The two types of solutions of the short-wave models are obtained in parametric form, one is one-cusp soliton for the CH equation while the other one is one-loop soliton for the DP equation. The approximate analytic solutions expressed by a series of exponential functions agree well with the exact solutions. It demonstrates the validity and great potential of homotopy analysis method for complicated nonlinear solitary wave problems. (general)
Nonlinear and linear wave equations for propagation in media with frequency power law losses
Szabo, Thomas L.
2003-10-01
The Burgers, KZK, and Westervelt wave equations used for simulating wave propagation in nonlinear media are based on absorption that has a quadratic dependence on frequency. Unfortunately, most lossy media, such as tissue, follow a more general frequency power law. The authors first research involved measurements of loss and dispersion associated with a modification to Blackstock's solution to the linear thermoviscous wave equation [J. Acoust. Soc. Am. 41, 1312 (1967)]. A second paper by Blackstock [J. Acoust. Soc. Am. 77, 2050 (1985)] showed the loss term in the Burgers equation for plane waves could be modified for other known instances of loss. The authors' work eventually led to comprehensive time-domain convolutional operators that accounted for both dispersion and general frequency power law absorption [Szabo, J. Acoust. Soc. Am. 96, 491 (1994)]. Versions of appropriate loss terms were developed to extend the standard three nonlinear wave equations to these more general losses. Extensive experimental data has verified the predicted phase velocity dispersion for different power exponents for the linear case. Other groups are now working on methods suitable for solving wave equations numerically for these types of loss directly in the time domain for both linear and nonlinear media.
Ion-acoustic shock waves with negative ions in presence of dust particulates
International Nuclear Information System (INIS)
Sarma, Arun; Nakamura, Y.
2009-01-01
Dust acoustics shock waves have been investigated experimentally in a homogeneous unmagnetized dusty plasma device containing negative ions. When the negative ion density larger than a critical concentration 'r c ' negative shock waves were observed instead of positive shock waves. Again when it is nearly equal to 'r c ' both positive and negative shock waves propagate. The experimental findings are compared with modified KdV-Burgers equation. The velocity of the shock waves are also measured and compared with the numerical integration of modified KdV-Burgers equation.
Some isometrical identities in the wave equation
Directory of Open Access Journals (Sweden)
Saburou Saitoh
1984-01-01
Full Text Available We consider the usual wave equation utt(x,t=c2uxx(x,t on the real line with some typical initial and boundary conditions. In each case, we establish a natural isometrical identity and inverse formula between the sourse function and the response function.
Linear waves and instabilities
International Nuclear Information System (INIS)
Bers, A.
1975-01-01
The electrodynamic equations for small-amplitude waves and their dispersion relation in a homogeneous plasma are outlined. For such waves, energy and momentum, and their flow and transformation, are described. Perturbation theory of waves is treated and applied to linear coupling of waves, and the resulting instabilities from such interactions between active and passive waves. Linear stability analysis in time and space is described where the time-asymptotic, time-space Green's function for an arbitrary dispersion relation is developed. The perturbation theory of waves is applied to nonlinear coupling, with particular emphasis on pump-driven interactions of waves. Details of the time--space evolution of instabilities due to coupling are given. (U.S.)
Multi-wave solutions of the space–time fractional Burgers and Sharma–Tasso–Olver equations
Directory of Open Access Journals (Sweden)
Emad A.-B. Abdel-Salam
2016-03-01
Full Text Available Based on the improved generalized exp-function method, the space–time fractional Burgers and Sharma–Tasso–Olver equations were studied. The single-wave, double-wave, three-wave and four-wave solution discussed. With the best of our knowledge, some of the results are obtained for the first time. The improved generalized exp-function method can be applied to other fractional differential equations.
A membrane wave equation for Q.C.D. (SU(infinity))
International Nuclear Information System (INIS)
Botelho, L.C.L.
1988-01-01
It is proposed a quantum membrane wave functional describing the interaction between a colored SU(N c ) membrane and a quantized Yang-Mills field. Additionally, its associated wave equation in the t'Hooft N c ->infinity limit is deduced. (A.C.A.S.) [pt
Singular solitons and other solutions to a couple of nonlinear wave equations
International Nuclear Information System (INIS)
Inc Mustafa; Ulutaş Esma; Biswas Anjan
2013-01-01
This paper addresses the extended (G'/G)-expansion method and applies it to a couple of nonlinear wave equations. These equations are modified the Benjamin—Bona—Mahoney equation and the Boussinesq equation. This extended method reveals several solutions to these equations. Additionally, the singular soliton solutions are revealed, for these two equations, with the aid of the ansatz method
Control Operator for the Two-Dimensional Energized Wave Equation
Directory of Open Access Journals (Sweden)
Sunday Augustus REJU
2006-07-01
Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.
Directory of Open Access Journals (Sweden)
Olivier Millet
2008-03-01
Full Text Available In this paper, we propose a macroscopic migration model for cementitious porous media obtained from periodic homogenization technique. The dimensional analysis of Nernst-Planck equation leads to dimensionless numbers characterizing the problem. According to the order of magnitude of the dimensionless numbers, the homogenization of Nernst-Planck equation leads at the leading order to a macroscopic model where several rates can be coupled or not. For a large applied electrical field accelerating the transfer of ionic species, we obtain a macroscopic model only involving migration. A simple experimental procedure of measurement of the homogenized chlorides diffusivity is then proposed for cement-based materials.
The wave equation: From eikonal to anti-eikonal approximation
Directory of Open Access Journals (Sweden)
Luis Vázquez
2016-06-01
Full Text Available When the refractive index changes very slowly compared to the wave-length we may use the eikonal approximation to the wave equation. In the opposite case, when the refractive index highly variates over the distance of one wave-length, we have what can be termed as the anti-eikonal limit. This situation is addressed in this work. The anti-eikonal limit seems to be a relevant tool in the modelling and design of new optical media. Besides, it describes a basic universal behaviour, independent of the actual values of the refractive index and, thus, of the media, for the components of a wave with wave-length much greater than the characteristic scale of the refractive index.
A Modified Homogeneous Balance Method and Its Applications
International Nuclear Information System (INIS)
Liu Chunping
2011-01-01
A modified homogeneous balance method is proposed by improving some key steps in the homogeneous balance method. Bilinear equations of some nonlinear evolution equations are derived by using the modified homogeneous balance method. Generalized Boussinesq equation, KP equation, and mKdV equation are chosen as examples to illustrate our method. This approach is also applicable to a large variety of nonlinear evolution equations. (general)
Solitary Wave Solutions of the Boussinesq Equation and Its Improved Form
Directory of Open Access Journals (Sweden)
Reza Abazari
2013-01-01
Full Text Available This paper presents the general case study of previous works on generalized Boussinesq equations, (Abazari, 2011 and (Kılıcman and Abazari, 2012, that focuses on the application of G′/G-expansion method with the aid of Maple to construct more general exact solutions for the coupled Boussinesq equations. In this work, the mentioned method is applied to construct more general exact solutions of Boussinesq equation and improved Boussinesq equation, which the French scientist Joseph Valentin Boussinesq (1842–1929 described in the 1870s model equations for the propagation of long waves on the surface of water with small amplitude. Our work is motivated by the fact that the G′/G-expansion method provides not only more general forms of solutions but also periodic, solitary waves and rational solutions. The method appears to be easier and faster by means of a symbolic computation.
Closed form solutions of two time fractional nonlinear wave equations
Akbar, M. Ali; Ali, Norhashidah Hj. Mohd.; Roy, Ripan
2018-06-01
In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G‧ / G) -expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics.
International Nuclear Information System (INIS)
Pierantozzi, T.; Vazquez, L.
2005-01-01
Through fractional calculus and following the method used by Dirac to obtain his well-known equation from the Klein-Gordon equation, we analyze a possible interpolation between the Dirac and the diffusion equations in one space dimension. We study the transition between the hyperbolic and parabolic behaviors by means of the generalization of the D'Alembert formula for the classical wave equation and the invariance under space and time inversions of the interpolating fractional evolution equations Dirac like. Such invariance depends on the values of the fractional index and is related to the nonlocal property of the time fractional differential operator. For this system of fractional evolution equations, we also find an associated conserved quantity analogous to the Hamiltonian for the classical Dirac case
Differential equation for Alfven ion cyclotron waves in finite-length plasma
International Nuclear Information System (INIS)
Watson, D.C.; Fateman, R.J.; Baldwin, D.E.
1977-01-01
One finds the fourth-order differential equation describing an Alfven-ion-cyclotron wave propagating along a magnetic field of varying intensity. The equation is self-adjoint and possesses non-trivial turning points. The final form of the equation is checked using MACSYMA, a system for performing algebra on a computer
Quaternion wave equations in curved space-time
Edmonds, J. D., Jr.
1974-01-01
The quaternion formulation of relativistic quantum theory is extended to include curvilinear coordinates and curved space-time in order to provide a framework for a unified quantum/gravity theory. Six basic quaternion fields are identified in curved space-time, the four-vector basis quaternions are identified, and the necessary covariant derivatives are obtained. Invariant field equations are derived, and a general invertable coordinate transformation is developed. The results yield a way of writing quaternion wave equations in curvilinear coordinates and curved space-time as well as a natural framework for solving the problem of second quantization for gravity.
New binary travelling-wave periodic solutions for the modified KdV equation
International Nuclear Information System (INIS)
Yan Zhenya
2008-01-01
In this Letter, the modified Korteweg-de Vries (mKdV) equations with the focusing (+) and defocusing (-) branches are investigated, respectively. Many new types of binary travelling-wave periodic solutions are obtained for the mKdV equation in terms of Jacobi elliptic functions such as sn(ξ,m)cn(ξ,m)dn(ξ,m) and their extensions. Moreover, we analyze asymptotic properties of some solutions. In addition, with the aid of the Miura transformation, we also give the corresponding binary travelling-wave periodic solutions of KdV equation
Wave-equation dispersion inversion of surface waves recorded on irregular topography
Li, Jing; Schuster, Gerard T.; Lin, Fan-Chi; Alam, Amir
2017-01-01
Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.
Wave-equation dispersion inversion of surface waves recorded on irregular topography
Li, Jing
2017-08-17
Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.
International Nuclear Information System (INIS)
Shang Yadong
2005-01-01
In this paper, the evolution equations with strong nonlinear term describing the resonance interaction between the long wave and the short wave are studied. Firstly, based on the qualitative theory and bifurcation theory of planar dynamical systems, all of the explicit and exact solutions of solitary waves are obtained by qualitative seeking the homoclinic and heteroclinic orbits for a class of Lienard equations. Then the singular travelling wave solutions, periodic travelling wave solutions of triangle functions type are also obtained on the basis of the relationships between the hyperbolic functions and that between the hyperbolic functions with the triangle functions. The varieties of structure of exact solutions of the generalized long-short wave equation with strong nonlinear term are illustrated. The methods presented here also suitable for obtaining exact solutions of nonlinear wave equations in multidimensions
New solutions of the generalized ellipsoidal wave equation
Directory of Open Access Journals (Sweden)
Harold Exton
1999-10-01
Full Text Available Certain aspects and a contribution to the theory of new forms of solutions of an algebraic form of the generalized ellipsoidal wave equation are deduced by considering the Laplace transform of a soluble system of linear differential equations. An ensuing system of non-linear algebraic equations is shown to be consistent and is numerically implemented by means of the computer algebra package MAPLE V. The main results are presented as series of hypergeometric type of there and four variables which readily lend themselves to numerical handling although this does not indicate all of the detailedanalytic properties of the solutions under consideration.
Energy Technology Data Exchange (ETDEWEB)
Tumelero, Fernanda; Bodmann, Bardo E. J.; Vilhena, Marco T. [Universidade Federal do Rio Grande do Sul (PROMEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos Graduacao em Engenharia Mecanica; Lapa, Celso M.F., E-mail: fernanda.tumelero@yahoo.com.br, E-mail: bardo.bodmann@ufrgs.br, E-mail: mtmbvilhena@gmail.com, E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2017-07-01
In this work we solve the space kinetic diffusion equation in a one-dimensional geometry considering a homogeneous domain, for two energy groups and six groups of delayed neutron precursors. The proposed methodology makes use of a Taylor expansion in the space variable of the scalar neutron flux (fast and thermal) and the concentration of delayed neutron precursors, allocating the time dependence to the coefficients. Upon truncating the Taylor series at quadratic order, one obtains a set of recursive systems of ordinary differential equations, where a modified decomposition method is applied. The coefficient matrix is split into two, one constant diagonal matrix and the second one with the remaining time dependent and off-diagonal terms. Moreover, the equation system is reorganized such that the terms containing the latter matrix are treated as source terms. Note, that the homogeneous equation system has a well known solution, since the matrix is diagonal and constant. This solution plays the role of the recursion initialization of the decomposition method. The recursion scheme is set up in a fashion where the solutions of the previous recursion steps determine the source terms of the subsequent steps. A second feature of the method is the choice of the initial and boundary conditions, which are satisfied by the recursion initialization, while from the rst recursion step onward the initial and boundary conditions are homogeneous. The recursion depth is then governed by a prescribed accuracy for the solution. (author)
Solution of wave-like equation based on Haar wavelet
Directory of Open Access Journals (Sweden)
Naresh Berwal
2012-11-01
Full Text Available Wavelet transform and wavelet analysis are powerful mathematical tools for many problems. Wavelet also can be applied in numerical analysis. In this paper, we apply Haar wavelet method to solve wave-like equation with initial and boundary conditions known. The fundamental idea of Haar wavelet method is to convert the differential equations into a group of algebraic equations, which involves a finite number or variables. The results and graph show that the proposed way is quite reasonable when compared to exact solution.
An acoustic eikonal equation for attenuating orthorhombic media
Hao, Qi
2017-04-06
Attenuating orthorhombic models are often used to describe the azimuthal variation of the seismic wave velocity and amplitude in finely layered hydrocarbon reservoirs with vertical fractures. In addition to the P-wave related medium parameters, shear wave parameters are also present in the complex eikonal equation needed to describe the P-wave complex-valued traveltime in an attenuating orthorhombic medium, which increases the complexity of using the P-wave traveltime to invert for the medium parameters in practice. Here, we use the acoustic assumption to derive an acoustic eikonal equation that approximately governs the complex-valued traveltime of P-waves in an attenuating orthorhombic medium. For a homogeneous attenuating orthorhombic media, we solve the eikonal equation using a combination of the perturbation method and Shanks transform. For a horizontal attenuating orthorhombic layer, both the real and imaginary part of the complex-valued reflection traveltime have nonhyperbolic behaviors in terms of the source-receiver offset. Similar to the roles of normal moveout (NMO) velocity and anellipticity, the attenuation NMO velocity and the attenuation anellipticity characterize the variation of the imaginary part of the complex-valued reflection traveltime around zero source-receiver offset.
Jiang, Lijian; Efendiev, Yalchin; Ginting, Victor
2010-01-01
In this paper, we discuss a numerical multiscale approach for solving wave equations with heterogeneous coefficients. Our interest comes from geophysics applications and we assume that there is no scale separation with respect to spatial variables. To obtain the solution of these multiscale problems on a coarse grid, we compute global fields such that the solution smoothly depends on these fields. We present a Galerkin multiscale finite element method using the global information and provide a convergence analysis when applied to solve the wave equations. We investigate the relation between the smoothness of the global fields and convergence rates of the global Galerkin multiscale finite element method for the wave equations. Numerical examples demonstrate that the use of global information renders better accuracy for wave equations with heterogeneous coefficients than the local multiscale finite element method. © 2010 IMACS.
Jiang, Lijian
2010-08-01
In this paper, we discuss a numerical multiscale approach for solving wave equations with heterogeneous coefficients. Our interest comes from geophysics applications and we assume that there is no scale separation with respect to spatial variables. To obtain the solution of these multiscale problems on a coarse grid, we compute global fields such that the solution smoothly depends on these fields. We present a Galerkin multiscale finite element method using the global information and provide a convergence analysis when applied to solve the wave equations. We investigate the relation between the smoothness of the global fields and convergence rates of the global Galerkin multiscale finite element method for the wave equations. Numerical examples demonstrate that the use of global information renders better accuracy for wave equations with heterogeneous coefficients than the local multiscale finite element method. © 2010 IMACS.
''Free-space'' boundary conditions for the time-dependent wave equation
International Nuclear Information System (INIS)
Lindman, E.L.
1975-01-01
Boundary conditions for the discrete wave equation which act like an infinite region of free space in contact with the computational region can be constructed using projection operators. Propagating and evanescent waves coming from within the computational region generate no reflected waves as they cross the boundary. At the same time arbitrary waves may be launched into the computational region. Well known projection operators for one-dimensional waves may be used for this purpose in one dimension. Extensions of these operators to higher dimensions along with numerically efficient approximations to them are described for higher-dimensional problems. The separation of waves into ingoing and outgoing waves inherent in these boundary conditions greatly facilitates diagnostics
International Nuclear Information System (INIS)
Inan, Ibrahim E.; Kaya, Dogan
2006-01-01
In this Letter by considering an improved tanh function method, we found some exact solutions of the potential Kadomtsev-Petviashvili equation. Some exact solutions of the system of the shallow water wave equation were also found
Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria
International Nuclear Information System (INIS)
Frieman, E.A.; Chen, L.
1981-10-01
A nonlinear gyrokinetic formalism for low-frequency (less than the cyclotron frequency) microscopic electromagnetic perturbations in general magnetic field configurations is developed. The nonlinear equations thus derived are valid in the strong-turbulence regime and contain effects due to finite Larmor radius, plasma inhomogeneities, and magentic field geometries. The specific case of axisymmetric tokamaks is then considered, and a model nonlinear equation is derived for electrostatic drift waves. Also, applying the formalism to the shear Alfven wave heating sceme, it is found that nonlinear ion Landau damping of kinetic shear-Alfven waves is modified, both qualitatively and quantitatively, by the diamagnetic drift effects. In particular, wave energy is found to cascade in wavenumber instead of frequency
Yamashita, Shizuya; Kawase, Ryota; Nakaoka, Hajime; Nakatani, Kazuhiro; Inagaki, Miwako; Yuasa-Kawase, Miyako; Tsubakio-Yamamoto, Kazumi; Sandoval, Jose C; Masuda, Daisaku; Ohama, Tohru; Nakagawa-Toyama, Yumiko; Matsuyama, Akifumi; Nishida, Makoto; Ishigami, Masato
2009-12-01
In routine clinical laboratory testing and numerous epidemiological studies, LDL-cholesterol (LDL-C) has been estimated commonly using the Friedewald equation. We investigated the relationship between the Friedewald equation and 4 homogeneous assays for LDL-C. LDL-C was determined by 4 homogeneous assays [liquid selective detergent method: LDL-C (L), selective solubilization method: LDL-C (S), elimination method: LDL-C (E), and enzyme selective protecting method: LDL-C (P)]. Samples with discrepancies between the Friedewald equation and the 4 homogeneous assays for LDL-C were subjected to polyacrylamide gel electrophoresis and the beta-quantification method. The correlations between the Friedewald equation and the 4 homogeneous LDL-C assays were as follows: LDL-C (L) (r=0.962), LDL-C (S) (r=0.986), LDL-C (E) (r=0.946) and LDL-C (P) (r=0.963). Discrepancies were observed in sera from type III hyperlipoproteinemia patients and in sera containing large amounts of midband and small dense LDL on polyacrylamide gel electrophoresis. LDL-C (S) was most strongly correlated with the beta-quantification method even in sera from patients with type III hyperlipoproteinemia. Of the 4 homogeneous assays for LDL-C, LDL-C (S) exhibited the closest correlation with the Friedewald equation and the beta-quantification method, thus reflecting the current clinical databases for coronary heart disease.
Rayleigh waves in elastic medium with double porosity
Directory of Open Access Journals (Sweden)
Rajneesh KUMAR
2018-03-01
Full Text Available The present paper deals with the propagation of Rayleigh waves in isotropic homogeneous elastic half-space with double porosity whose surface is subjected to stress-free boundary conditions. The compact secular equations for elastic solid half-space with voids are deduced as special cases from the present analysis. In order to illustrate the analytical developments, the secular equations have been solved numerically. The computer simulated results for copper materials in respect of Rayleigh wave velocity and attenuation coe¢ cient have been presented graphically.
To the complete integrability of long-wave short-wave interaction equations
International Nuclear Information System (INIS)
Roy Chowdhury, A.; Chanda, P.K.
1984-10-01
We show that the non-linear partial differential equations governing the interaction of long and short waves are completely integrable. The methodology we use is that of Ablowitz et al. though in the last section of our paper we have discussed the problem also in the light of the procedure due to Weiss et al. and have obtained a Baecklund transformation. (author)
Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations
Zhang, Linghai
2017-10-01
The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 traveling wave front as well as the existence and instability of a standing pulse solution if 0 traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.
On the exact solutions of high order wave equations of KdV type (I)
Bulut, Hasan; Pandir, Yusuf; Baskonus, Haci Mehmet
2014-12-01
In this paper, by means of a proper transformation and symbolic computation, we study high order wave equations of KdV type (I). We obtained classification of exact solutions that contain soliton, rational, trigonometric and elliptic function solutions by using the extended trial equation method. As a result, the motivation of this paper is to utilize the extended trial equation method to explore new solutions of high order wave equation of KdV type (I). This method is confirmed by applying it to this kind of selected nonlinear equations.
On "new travelling wave solutions" of the KdV and the KdV-Burgers equations
Kudryashov, Nikolai A.
The Korteweg-de Vries and the Korteweg-de Vries-Burgers equations are considered. Using the travelling wave the general solutions of these equations are presented. "New travelling wave solutions" of the KdV and the KdV-Burgers equations by Wazzan [Wazzan L Commun Nonlinear Sci Numer Simulat
Rogue waves and rational solutions of a (3+1)-dimensional nonlinear evolution equation
International Nuclear Information System (INIS)
Zhaqilao,
2013-01-01
A simple symbolic computation approach for finding the rogue waves and rational solutions to the nonlinear evolution equation is proposed. It turns out that many rational solutions with real and complex forms of a (3+1)-dimensional nonlinear evolution equation are obtained. Some features of rogue waves and rational solutions are graphically discussed. -- Highlights: •A simple symbolic computation approach for finding the rational solutions to the NEE is proposed. •Some rogue waves and rational solutions with real and complex forms of a (3+1)-D NEE are obtained. •Some features of rogue waves are graphically discussed
Rogue waves and rational solutions of a (3+1)-dimensional nonlinear evolution equation
Energy Technology Data Exchange (ETDEWEB)
Zhaqilao,, E-mail: zhaqilao@imnu.edu.cn
2013-12-06
A simple symbolic computation approach for finding the rogue waves and rational solutions to the nonlinear evolution equation is proposed. It turns out that many rational solutions with real and complex forms of a (3+1)-dimensional nonlinear evolution equation are obtained. Some features of rogue waves and rational solutions are graphically discussed. -- Highlights: •A simple symbolic computation approach for finding the rational solutions to the NEE is proposed. •Some rogue waves and rational solutions with real and complex forms of a (3+1)-D NEE are obtained. •Some features of rogue waves are graphically discussed.
Valdés, Felipe
2013-03-01
Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis functions and a collocation testing procedure, thus allowing for a marching-on-in-time (MOT) solution scheme. Unlike dual-source formulations, single-source equations involve space-time domain operator products, for which spatial discretization techniques developed for standalone operators do not apply. Here, the spatial discretization of the single-source time-domain integral equations is achieved by using the high-order divergence-conforming basis functions developed by Graglia alongside the high-order divergence-and quasi curl-conforming (DQCC) basis functions of Valdés The combination of these two sets allows for a well-conditioned mapping from div-to curl-conforming function spaces that fully respects the space-mapping properties of the space-time operators involved. Numerical results corroborate the fact that the proposed procedure guarantees accuracy and stability of the MOT scheme. © 2012 IEEE.
Spinor-electron wave guided modes in coupled quantum wells structures by solving the Dirac equation
International Nuclear Information System (INIS)
Linares, Jesus; Nistal, Maria C.
2009-01-01
A quantum analysis based on the Dirac equation of the propagation of spinor-electron waves in coupled quantum wells, or equivalently coupled electron waveguides, is presented. The complete optical wave equations for Spin-Up (SU) and Spin-Down (SD) spinor-electron waves in these electron guides couplers are derived from the Dirac equation. The relativistic amplitudes and dispersion equations of the spinor-electron wave-guided modes in a planar quantum coupler formed by two coupled quantum wells, or equivalently by two coupled slab electron waveguides, are exactly derived. The main outcomes related to the spinor modal structure, such as the breaking of the non-relativistic degenerate spin states, the appearance of phase shifts associated with the spin polarization and so on, are shown.
Generalized internal long wave equations: construction, hamiltonian structure and conservation laws
International Nuclear Information System (INIS)
Lebedev, D.R.
1982-01-01
Some aspects of the theory of the internal long-wave equations (ILW) are considered. A general class of the ILW type equations is constructed by means of the Zakharov-Shabat ''dressing'' method. Hamiltonian structure and infinite numbers of conservation laws are introduced. The considered equations are shown to be Hamiltonian in the so-called second Hamiltonian structu
Destrade, M.
2010-12-08
We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation cannot be a scalar equation for the propagation of two-dimensional shear waves in general elastic materials (with strain energy depending on the first and second principal invariants of strain). Then, we introduce dispersive and dissipative terms to deduce the scalar Kadomtsev-Petviashvili (KP), Zabolotskaya-Khokhlov (ZK) and Khokhlov- Zabolotskaya-Kuznetsov (KZK) equations of incompressible solid mechanics. © 2010 The Royal Society.
Destrade, M.; Goriely, A.; Saccomandi, G.
2010-01-01
We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation cannot be a scalar equation for the propagation of two-dimensional shear waves in general elastic materials (with strain energy depending on the first and second principal invariants of strain). Then, we introduce dispersive and dissipative terms to deduce the scalar Kadomtsev-Petviashvili (KP), Zabolotskaya-Khokhlov (ZK) and Khokhlov- Zabolotskaya-Kuznetsov (KZK) equations of incompressible solid mechanics. © 2010 The Royal Society.
International Nuclear Information System (INIS)
de Jong, G.
1975-01-01
With the aid of a two-dimensional integral equation formulation, the ground wave propagation of electromagnetic waves transmitted by a vertical electric dipole over an inhomogeneous flat earth is investigated. For the configuration in which a ground wave is propagating across an ''island'' on a flat earth, the modulus and argument of the attenuation function have been computed. The results for the two-dimensional treatment are significantly more accurate in detail than the calculations using a one-dimensional integral equation
Solitons and cnoidal waves of the Klein–Gordon–Zakharov equation ...
Indian Academy of Sciences (India)
In (3), κ represents the wave number of the soliton while ω represents ... integration constant to be zero, since the search is for soliton solutions only, gives ..... and also using relations (3)–(5) gives the following rational travelling wave ... In future, the plan is to study the numerical simulations for this equation along with.
Scattering for wave equations with dissipative terms in layered media
Directory of Open Access Journals (Sweden)
Mitsuteru Kadowaki
2011-05-01
Full Text Available In this article, we show the existence of scattering solutions to wave equations with dissipative terms in layered media. To analyze the wave propagation in layered media, it is necessary to handle singular points called thresholds in the spectrum. Our main tools are Kato's smooth perturbation theory and some approximate operators.
Variable coefficient Korteweg-de Vries equations and travelling waves in an inhomogeneous medium
International Nuclear Information System (INIS)
Baby, B.V.
1987-04-01
The well-known Korteweg-de Vries equations with the coefficients as two arbitrary functions of the time variable, is studied in this paper. The Painleve property analysis provides the conditions on the two variable coefficients, in order to form the Lax pairs associated with this equation. The similarity analysis shows the non-existence of travelling wave solutions when the equation has variable coefficients. These results are used to show the non-existence of travelling waves in an inhomogeneous medium. (author). 33 refs
A delay differential equation model of follicle waves in women.
Panza, Nicole M; Wright, Andrew A; Selgrade, James F
2016-01-01
This article presents a mathematical model for hormonal regulation of the menstrual cycle which predicts the occurrence of follicle waves in normally cycling women. Several follicles of ovulatory size that develop sequentially during one menstrual cycle are referred to as follicle waves. The model consists of 13 nonlinear, delay differential equations with 51 parameters. Model simulations exhibit a unique stable periodic cycle and this menstrual cycle accurately approximates blood levels of ovarian and pituitary hormones found in the biological literature. Numerical experiments illustrate that the number of follicle waves corresponds to the number of rises in pituitary follicle stimulating hormone. Modifications of the model equations result in simulations which predict the possibility of two ovulations at different times during the same menstrual cycle and, hence, the occurrence of dizygotic twins via a phenomenon referred to as superfecundation. Sensitive parameters are identified and bifurcations in model behaviour with respect to parameter changes are discussed. Studying follicle waves may be helpful for improving female fertility and for understanding some aspects of female reproductive ageing.
Visco-acoustic wave-equation traveltime inversion and its sensitivity to attenuation errors
Yu, Han
2018-02-23
A visco-acoustic wave-equation traveltime inversion method is presented that inverts for the shallow subsurface velocity distribution. Similar to the classical wave equation traveltime inversion, this method finds the velocity model that minimizes the squared sum of the traveltime residuals. Even though, wave-equation traveltime inversion can partly avoid the cycle skipping problem, a good initial velocity model is required for the inversion to converge to a reasonable tomogram with different attenuation profiles. When Q model is far away from the real model, the final tomogram is very sensitive to the starting velocity model. Nevertheless, a minor or moderate perturbation of the Q model from the true one does not strongly affect the inversion if the low wavenumber information of the initial velocity model is mostly correct. These claims are validated with numerical tests on both the synthetic and field data sets.
Visco-acoustic wave-equation traveltime inversion and its sensitivity to attenuation errors
Yu, Han; Chen, Yuqing; Hanafy, Sherif M.; Huang, Jiangping
2018-04-01
A visco-acoustic wave-equation traveltime inversion method is presented that inverts for the shallow subsurface velocity distribution. Similar to the classical wave equation traveltime inversion, this method finds the velocity model that minimizes the squared sum of the traveltime residuals. Even though, wave-equation traveltime inversion can partly avoid the cycle skipping problem, a good initial velocity model is required for the inversion to converge to a reasonable tomogram with different attenuation profiles. When Q model is far away from the real model, the final tomogram is very sensitive to the starting velocity model. Nevertheless, a minor or moderate perturbation of the Q model from the true one does not strongly affect the inversion if the low wavenumber information of the initial velocity model is mostly correct. These claims are validated with numerical tests on both the synthetic and field data sets.
Instability of traveling waves of the convective-diffusive Cahn-Hilliard equation
International Nuclear Information System (INIS)
Gao Hongjun; Liu Changchun
2004-01-01
In this paper we study the instability of the traveling waves of the convective-diffusive Cahn-Hilliard equation. We prove that it is nonlinearly unstable under H 2 perturbations, for some traveling wave solution that is asymptotic to a constant as x→∞
A comparative study of diffraction of shallow-water waves by high-level IGN and GN equations
Energy Technology Data Exchange (ETDEWEB)
Zhao, B.B. [College of Shipbuilding Engineering, Harbin Engineering University, 150001 Harbin (China); Ertekin, R.C. [Department of Ocean and Resources Engineering, University of Hawai' i, Honolulu, HI 96822 (United States); College of Shipbuilding Engineering, Harbin Engineering University, 150001 Harbin (China); Duan, W.Y., E-mail: duanwenyangheu@hotmail.com [College of Shipbuilding Engineering, Harbin Engineering University, 150001 Harbin (China)
2015-02-15
This work is on the nonlinear diffraction analysis of shallow-water waves, impinging on submerged obstacles, by two related theories, namely the classical Green–Naghdi (GN) equations and the Irrotational Green–Naghdi (IGN) equations, both sets of equations being at high levels and derived for incompressible and inviscid flows. Recently, the high-level Green–Naghdi equations have been applied to some wave transformation problems. The high-level IGN equations have also been used in the last decade to study certain wave propagation problems. However, past works on these theories used different numerical methods to solve these nonlinear and unsteady sets of differential equations and at different levels. Moreover, different physical problems have been solved in the past. Therefore, it has not been possible to understand the differences produced by these two sets of theories and their range of applicability so far. We are thus motivated to make a direct comparison of the results produced by these theories by use of the same numerical method to solve physically the same wave diffraction problems. We focus on comparing these two theories by using similar codes; only the equations used are different but other parts of the codes, such as the wave-maker, damping zone, discretion method, matrix solver, etc., are exactly the same. This way, we eliminate many potential sources of differences that could be produced by the solution of different equations. The physical problems include the presence of various submerged obstacles that can be used for example as breakwaters or to represent the continental shelf. A numerical wave tank is created by placing a wavemaker on one end and a wave absorbing beach on the other. The nonlinear and unsteady sets of differential equations are solved by the finite-difference method. The results are compared with different equations as well as with the available experimental data.
Numerical Simulation of Freak Waves Based on the Four-Order Nonlinear Schr(o)dinger Equation
Institute of Scientific and Technical Information of China (English)
ZHANG Yun-qiu; ZHANG Ning-chuan; PEI Yu-guo
2007-01-01
A numerical wave model based on the modified four-order nonlinear Schrodinger (NLS) equation in deep water is developed to simulate freak waves. A standard split-step, pseudo-spectral method is used to solve NLS equation. The validation of the model is firstly verified, and then the simulation of freak waves is performed by changing sideband conditions. Results show that freak waves entirely consistent with the definition in the evolution of wave trains are obtained. The possible occurrence mechanism of freak waves is discussed and the relevant characteristics are also analyzed.
NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION
Liu, F.; Meerschaert, M.M.; McGough, R.J.; Zhuang, P.; Liu, Q.
2013-01-01
In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and technique...
''Localized'' tachyonic wavelet-solutions of the wave equation
International Nuclear Information System (INIS)
Barut, A.O.; Chandola, H.C.
1993-05-01
Localized-nonspreading, wavelet-solutions of the wave equation □φ=0 with group velocity v>c and phase velocity u=c 2 /v< c are constructed explicitly by two different methods. Some recent experiments seem to find evidence for superluminal group velocities. (author). 7 refs, 2 figs
International Nuclear Information System (INIS)
Abdou, M.A.
2008-01-01
The generalized F-expansion method with a computerized symbolic computation is used for constructing a new exact travelling wave solutions for the generalized nonlinear Schrodinger equation with a source. As a result, many exact travelling wave solutions are obtained which include new periodic wave solution, trigonometric function solutions and rational solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in physics
International Nuclear Information System (INIS)
Werby, M.F.; Broadhead, M.K.; Strayer, M.R.; Bottcher, C.
1992-01-01
The Helmholtz-Poincarf Wave Equation (H-PWE) arises in many areas of classical wave scattering theory. In particular it can be found for the cases of acoustical scattering from submerged bounded objects and electromagnetic scattering from objects. The extended boundary integral equations (EBIE) method is derived from considering both the exterior and interior solutions of the H-PWECs. This coupled set of expressions has the advantage of not only offering a prescription for obtaining a solution for the exterior scattering problem, but it also obviates the problem of irregular values corresponding to fictitious interior eigenvalues. Once the coupled equations are derived, they can be obtained in matrix form by expanding all relevant terms in partial wave expansions, including a bi-orthogonal expansion of the Green's function. However some freedom in the choice of the surface expansion is available since the unknown surface quantities may be expanded in a variety of ways so long as closure is obtained. Out of many possible choices, we develop an optimal method to obtain such expansions which is based on the optimum eigenfunctions related to the surface of the object. In effect, we convert part of the problem (that associated with the Fredholms integral equation of the first kind) an eigenvalue problem of a related Hermitian operator. The methodology will be explained in detail and examples will be presented
Classical and quantum treatments of the diffraction problem in the case of non-homogeneous media
International Nuclear Information System (INIS)
Datzeff, A.B.
1978-02-01
The diffraction of waves by an aperture is usually studied in the case of a homogeneous medium. In this paper, a method is proposed for the solution of the same problem in a medium of variable parameters (refractive index, external fields). It is successfully applied to diffraction of a classical scalar wave as well as of an electromagnetic vector wave and a Schroedinger wave, within the framework of this method, the scattering of particles may be considered as a particular case of the diffraction problem. Furthermore, the method is extended to cover the case of diffraction of dense electron beams. This has been achieved by means of a non-linear integro-differential equation, proposed by the author as a generalization of the well-known linear Schroedinger equation. A decisive experiment could be made which, besides showing whether the solution thus obtained is true, would also speak in favour of one of the two equations mentioned above. The latter is pertinent to the discussion of the physical essence of Quantum Mechanics
Elastic waves trapped by a homogeneous anisotropic semicylinder
Energy Technology Data Exchange (ETDEWEB)
Nazarov, S A [Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St.-Petersburg (Russian Federation)
2013-11-30
It is established that the problem of elastic oscillations of a homogeneous anisotropic semicylinder (console) with traction-free lateral surface (Neumann boundary condition) has no eigenvalues when the console is clamped at one end (Dirichlet boundary condition). If the end is free, under additional requirements of elastic and geometric symmetry, simple sufficient conditions are found for the existence of an eigenvalue embedded in the continuous spectrum and generating a trapped elastic wave, that is, one which decays at infinity at an exponential rate. The results are obtained by generalizing the methods developed for scalar problems, which however require substantial modification for the vector problem in elasticity theory. Examples are given and open questions are stated. Bibliography: 53 titles.
Hao, Qi
2016-11-21
Seismic-wave attenuation is an important component of describing wave propagation. Certain regions, such as gas clouds inside the earth, exert highly localized attenuation. In fact, the anisotropic nature of the earth induces anisotropic attenuation because the quasi P-wave dispersion effect should be profound along the symmetry direction. We have developed a 2D acoustic eikonal equation governing the complex-valued traveltime of quasi P-waves in attenuating, transversely isotropic media with a vertical-symmetry axis (VTI). This equation is derived under the assumption that the complex-valued traveltime of quasi P-waves in attenuating VTI media are independent of the S-wave velocity parameter υS0 in Thomsen\\'s notation and the S-wave attenuation coefficient AS0 in Zhu and Tsvankin\\'s notation. We combine perturbation theory and Shanks transform to develop practical approximations to the acoustic attenuating eikonal equation, capable of admitting an analytical description of the attenuation in homogeneous media. For a horizontal-attenuating VTI layer, we also derive the nonhyperbolic approximations for the real and imaginary parts of the complex-valued reflection traveltime. These equations reveal that (1) the quasi SV-wave velocity and the corresponding quasi SV-wave attenuation coefficient given as part of Thomsen-type notation barely affect the ray velocity and ray attenuation of quasi P-waves in attenuating VTI media; (2) combining the perturbation method and Shanks transform provides an accurate analytic eikonal solution for homogeneous attenuating VTI media; (3) for a horizontal attenuating VTI layer with weak attenuation, the real part of the complex-valued reflection traveltime may still be described by the existing nonhyperbolic approximations developed for nonattenuating VTI media, and the imaginary part of the complex-valued reflection traveltime still has the shape of nonhyperbolic curves. In addition, we have evaluated the possible extension of the
Study on monostable and bistable reaction-diffusion equations by iteration of travelling wave maps
Yi, Taishan; Chen, Yuming
2017-12-01
In this paper, based on the iterative properties of travelling wave maps, we develop a new method to obtain spreading speeds and asymptotic propagation for monostable and bistable reaction-diffusion equations. Precisely, for Dirichlet problems of monostable reaction-diffusion equations on the half line, by making links between travelling wave maps and integral operators associated with the Dirichlet diffusion kernel (the latter is NOT invariant under translation), we obtain some iteration properties of the Dirichlet diffusion and some a priori estimates on nontrivial solutions of Dirichlet problems under travelling wave transformation. We then provide the asymptotic behavior of nontrivial solutions in the space-time region for Dirichlet problems. These enable us to develop a unified method to obtain results on heterogeneous steady states, travelling waves, spreading speeds, and asymptotic spreading behavior for Dirichlet problem of monostable reaction-diffusion equations on R+ as well as of monostable/bistable reaction-diffusion equations on R.
Aguareles, M.
2014-06-01
In this paper we consider an oscillatory medium whose dynamics are modeled by the complex Ginzburg-Landau equation. In particular, we focus on n-armed spiral wave solutions of the complex Ginzburg-Landau equation in a disk of radius d with homogeneous Neumann boundary conditions. It is well-known that such solutions exist for small enough values of the twist parameter q and large enough values of d. We investigate the effect of boundaries on the rotational frequency of the spirals, which is an unknown of the problem uniquely determined by the parameters d and q. We show that there is a threshold in the parameter space where the effect of the boundary on the rotational frequency switches from being algebraic to exponentially weak. We use the method of matched asymptotic expansions to obtain explicit expressions for the asymptotic wavenumber as a function of the twist parameter and the domain size for small values of q. © 2014 Elsevier B.V. All rights reserved.
Travelling wave solutions for some time-delayed equations through factorizations
International Nuclear Information System (INIS)
Fahmy, E.S.
2008-01-01
In this work, we use factorization method to find explicit particular travelling wave solutions for the following important nonlinear second-order partial differential equations: The generalized time-delayed Burgers-Huxley, time-delayed convective Fishers, and the generalized time-delayed Burgers-Fisher. Using the particular solutions for these equations we find the general solutions, two-parameter solution, as special cases
Zhang, Zhendong
2016-07-26
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh wave dispersion curve using a difference approximation to the gradient of the misfit function. We call this wave equation inversion of skeletonized surface waves because the skeletonized dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the multi-dimensional elastic wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Our method can invert for lateral velocity variations and also can mitigate the local minimum problem in full waveform inversion with a reasonable computation cost for simple models. Results with synthetic and field data illustrate the benefits and limitations of this method. © 2016 Elsevier B.V.
Knezevic, David; Patera, Anthony T.; Huynh, Dinh Bao Phuong
2010-01-01
We present a certified reduced basis (RB) method for the heat equation and wave equation. The critical ingredients are certified RB approximation of the Laplace transform; the inverse Laplace transform to develop the time-domain RB output approximation and rigorous error bound; a (Butterworth) filter in time to effect the necessary “modal” truncation; RB eigenfunction decomposition and contour integration for Offline–Online decomposition. We present numerical results to demonstrate the accura...
The (′/-Expansion Method for Abundant Traveling Wave Solutions of Caudrey-Dodd-Gibbon Equation
Directory of Open Access Journals (Sweden)
Hasibun Naher
2011-01-01
Full Text Available We construct the traveling wave solutions of the fifth-order Caudrey-Dodd-Gibbon (CDG equation by the (/-expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in terms of the hyperbolic, the trigonometric, and the rational functions. It is shown that the (/-expansion method is a powerful and concise mathematical tool for solving nonlinear partial differential equations.
Energy Technology Data Exchange (ETDEWEB)
Fierros Palacios, Angel [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)
2001-02-01
In this work the complete set of differential field equations which describes the dynamic state of a continuos conducting media which flow in presence of a perturbed magnetic field is obtained. Then, the thermic equation of state, the wave equation and the conservation law of energy for the Alfven MHD waves are obtained. [Spanish] Es este trabajo se obtiene el conjunto completo de ecuaciones diferenciales de campo que describen el estado dinamico de un medio continuo conductor que se mueve en presencia de un campo magnetico externo perturbado. Asi, se obtiene la ecuacion termica de estado, la ecuacion de onda y la ley de la conservacion de la energia para las ondas de Alfven de la MHD.
Energy decay of a variable-coefficient wave equation with nonlinear time-dependent localized damping
Directory of Open Access Journals (Sweden)
Jieqiong Wu
2015-09-01
Full Text Available We study the energy decay for the Cauchy problem of the wave equation with nonlinear time-dependent and space-dependent damping. The damping is localized in a bounded domain and near infinity, and the principal part of the wave equation has a variable-coefficient. We apply the multiplier method for variable-coefficient equations, and obtain an energy decay that depends on the property of the coefficient of the damping term.
Smooth and non-smooth traveling wave solutions of a class of nonlinear dispersive equation
International Nuclear Information System (INIS)
Zhao Xiaoshan; Wu Aidi; He Wenzhang
2009-01-01
There is the widespread existence of wave phenomena in physics, mechanics. This clearly necessitates a study of traveling waves in depth and of the modeling and analysis involved. In this paper, we study a nonlinear dispersive K(n,-n,2n) equation, which can be regarded as a generalized K(n,n) equation. Applying the bifurcation theory and the method of phase portraits analysis, we obtain the dynamical behavior and special exact solutions of the K(n,-n,2n) equation. As a result, the conditions under which peakon and compacton solutions appear are also given and the analytic expressions of peakon solutions, compacton and periodic cusp wave solutions are obtained.
Two modified symplectic partitioned Runge-Kutta methods for solving the elastic wave equation
Su, Bo; Tuo, Xianguo; Xu, Ling
2017-08-01
Based on a modified strategy, two modified symplectic partitioned Runge-Kutta (PRK) methods are proposed for the temporal discretization of the elastic wave equation. The two symplectic schemes are similar in form but are different in nature. After the spatial discretization of the elastic wave equation, the ordinary Hamiltonian formulation for the elastic wave equation is presented. The PRK scheme is then applied for time integration. An additional term associated with spatial discretization is inserted into the different stages of the PRK scheme. Theoretical analyses are conducted to evaluate the numerical dispersion and stability of the two novel PRK methods. A finite difference method is used to approximate the spatial derivatives since the two schemes are independent of the spatial discretization technique used. The numerical solutions computed by the two new schemes are compared with those computed by a conventional symplectic PRK. The numerical results, which verify the new method, are superior to those generated by traditional conventional methods in seismic wave modeling.
Traveling Wave Solutions of Reaction-Diffusion Equations Arising in Atherosclerosis Models
Directory of Open Access Journals (Sweden)
Narcisa Apreutesei
2014-05-01
Full Text Available In this short review article, two atherosclerosis models are presented, one as a scalar equation and the other one as a system of two equations. They are given in terms of reaction-diffusion equations in an infinite strip with nonlinear boundary conditions. The existence of traveling wave solutions is studied for these models. The monostable and bistable cases are introduced and analyzed.
The extensions of space-time. Physics in the 8-dimensional homogeneous space D = SU(2,2)/K
International Nuclear Information System (INIS)
Barut, A.O.
1993-07-01
The Minkowski space-time is only a boundary of a bigger homogeneous space of the conformal group. The conformal group is the symmetry group of our most fundamental massless wave equations. These extended groups and spaces have many remarkable properties and physical implications. (author). 36 refs
International Nuclear Information System (INIS)
Andrews, P.L.; Perkins, F.W.
1983-01-01
The investigation of the scattering of lower-hybrid waves by density fluctuations arising from drift waves in tokamaks is distinguished by the presence in the wave equation of a large, random, derivative-coupling term. The propagation of the lower-hybrid waves is well represented by a radiative transfer equation when the scale size of the density fluctuations is small compared to the overall plasma size. The radiative transfer equation is solved in two limits: first, the forward scattering limit, where the scale size of density fluctuations is large compared to the lower-hybrid perpendicular wavelength, and second, the large-angle scattering limit, where this inequality is reversed. The most important features of these solutions are well represented by analytical formulas derived by simple arguments. Based on conventional estimates for density fluctuations arising from drift waves and a parabolic density profile, the optical depth tau for scattering through a significant angle, is given by tauroughly-equal(2/N 2 /sub parallel/) (#betta#/sub p/i0/#betta#) 2 (m/sub e/c 2 /2T/sub i/)/sup 1/2/ [c/α(Ω/sub i/Ω/sub e/)/sup 1/2/ ], where #betta#/sub p/i0 is the central ion plasma frequency and T/sub i/ denotes the ion temperature near the edge of the plasma. Most of the scattering occurs near the surface. The transmission through the scattering region scales as tau - 1 and the emerging intensity has an angular spectrum proportional to cos theta, where sin theta = k/sub perpendicular/xB/sub p//(k/sub perpendicular/B/sub p/), and B/sub p/ is the poloidal field
Classification of homoclinic rogue wave solutions of the nonlinear Schrödinger equation
Osborne, A. R.
2014-01-01
Certain homoclinic solutions of the nonlinear Schrödinger (NLS) equation, with spatially periodic boundary conditions, are the most common unstable wave packets associated with the phenomenon of oceanic rogue waves. Indeed the homoclinic solutions due to Akhmediev, Peregrine and Kuznetsov-Ma are almost exclusively used in scientific and engineering applications. Herein I investigate an infinite number of other homoclinic solutions of NLS and show that they reduce to the above three classical homoclinic solutions for particular spectral values in the periodic inverse scattering transform. Furthermore, I discuss another infinity of solutions to the NLS equation that are not classifiable as homoclinic solutions. These latter are the genus-2N theta function solutions of the NLS equation: they are the most general unstable spectral solutions for periodic boundary conditions. I further describe how the homoclinic solutions of the NLS equation, for N = 1, can be derived directly from the theta functions in a particular limit. The solutions I address herein are actual spectral components in the nonlinear Fourier transform theory for the NLS equation: The periodic inverse scattering transform. The main purpose of this paper is to discuss a broader class of rogue wave packets1 for ship design, as defined in the Extreme Seas program. The spirit of this research came from D. Faulkner (2000) who many years ago suggested that ship design procedures, in order to take rogue waves into account, should progress beyond the use of simple sine waves. 1An overview of other work in the field of rogue waves is given elsewhere: Osborne 2010, 2012 and 2013. See the books by Olagnon and colleagues 2000, 2004 and 2008 for the Brest meetings. The books by Kharif et al. (2008) and Pelinovsky et al. (2010) are excellent references.
Zhang, Zhendong; Schuster, Gerard T.; Liu, Yike; Hanafy, Sherif M.; Li, Jing
2016-01-01
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh wave dispersion curve using a difference approximation to the gradient of the misfit function. We call this wave equation inversion of skeletonized
Explicit Solutions and Bifurcations for a Class of Generalized Boussinesq Wave Equation
International Nuclear Information System (INIS)
Ma Zhi-Min; Sun Yu-Huai; Liu Fu-Sheng
2013-01-01
In this paper, the generalized Boussinesq wave equation u tt — u xx + a(u m ) xx + bu xxxx = 0 is investigated by using the bifurcation theory and the method of phase portraits analysis. Under the different parameter conditions, the exact explicit parametric representations for solitary wave solutions and periodic wave solutions are obtained. (general)
International Nuclear Information System (INIS)
Tian Lixin; Yin Jiuli
2004-01-01
In this paper, we introduce the fully nonlinear generalized Camassa-Holm equation C(m,n,p) and by using four direct ansatzs, we obtain abundant solutions: compactons (solutions with the absence of infinite wings), solitary patterns solutions having infinite slopes or cups, solitary waves and singular periodic wave solutions and obtain kink compacton solutions and nonsymmetry compacton solutions. We also study other forms of fully nonlinear generalized Camassa-Holm equation, and their compacton solutions are governed by linear equations
Rigorous asymptotics of traveling-wave solutions to the thin-film equation and Tanner’s law
Giacomelli, Lorenzo; Gnann, Manuel V.; Otto, Felix
2016-09-01
We are interested in traveling-wave solutions to the thin-film equation with zero microscopic contact angle (in the sense of complete wetting without precursor) and inhomogeneous mobility {{h}3}+{λ3-n}{{h}n} , where h, λ, and n\\in ≤ft(\\frac{3}{2},\\frac{7}{3}\\right) denote film height, slip parameter, and mobility exponent, respectively. Existence and uniqueness of these solutions have been established by Maria Chiricotto and the first of the authors in previous work under the assumption of sub-quadratic growth as h\\to ∞ . In the present work we investigate the asymptotics of solutions as h\\searrow 0 (the contact-line region) and h\\to ∞ . As h\\searrow 0 we observe, to leading order, the same asymptotics as for traveling waves or source-type self-similar solutions to the thin-film equation with homogeneous mobility h n and we additionally characterize corrections to this law. Moreover, as h\\to ∞ we identify, to leading order, the logarithmic Tanner profile, i.e. the solution to the corresponding unperturbed problem with λ =0 that determines the apparent macroscopic contact angle. Besides higher-order terms, corrections turn out to affect the asymptotic law as h\\to ∞ only by setting the length scale in the logarithmic Tanner profile. Moreover, we prove that both the correction and the length scale depend smoothly on n. Hence, in line with the common philosophy, the precise modeling of liquid-solid interactions (within our model, the mobility exponent) does not affect the qualitative macroscopic properties of the film.
The scalar wave equation in a Schwarzschild spacetime
International Nuclear Information System (INIS)
Stewart, J.M.; Schmidt, B.G.
1978-09-01
This paper studies the asymptotic behaviour of solutions of the zero rest mass scalar wave equation in the Schwarzschild spacetime in a neighbourhood of spatial infinity, which includes parts of future and past null infinity. The behaviour of such fields is essentially different from that which accurs in a flat spacetime. (orig.) [de
Semin, Adrien; Schmidt, Kersten
2018-02-01
The direct numerical simulation of the acoustic wave propagation in multiperforated absorbers with hundreds or thousands of tiny openings would result in a huge number of basis functions to resolve the microstructure. One is, however, primarily interested in effective and so homogenized transmission and absorption properties and how they are influenced by microstructure and its endpoints. For this, we introduce the surface homogenization that asymptotically decomposes the solution in a macroscopic part, a boundary layer corrector close to the interface and a near-field part close to its ends. The effective transmission and absorption properties are expressed by transmission conditions for the macroscopic solution on an infinitely thin interface and corner conditions at its endpoints to ensure the correct singular behaviour, which are intrinsic to the microstructure. We study and give details on the computation of the effective parameters for an inviscid and a viscous model and show their dependence on geometrical properties of the microstructure for the example of Helmholtz equation. Numerical experiments indicate that with the obtained macroscopic solution representation one can achieve an high accuracy for low and high porosities as well as for viscous boundary conditions while using only a small number of basis functions.
Exponential decay for solutions to semilinear damped wave equation
Gerbi, Sté phane; Said-Houari, Belkacem
2011-01-01
This paper is concerned with decay estimate of solutions to the semilinear wave equation with strong damping in a bounded domain. Intro- ducing an appropriate Lyapunov function, we prove that when the damping is linear, we can find initial data
Stability properties of solitary waves for fractional KdV and BBM equations
Angulo Pava, Jaime
2018-03-01
This paper sheds new light on the stability properties of solitary wave solutions associated with Korteweg-de Vries-type models when the dispersion is very low. Using a compact, analytic approach and asymptotic perturbation theory, we establish sufficient conditions for the existence of exponentially growing solutions to the linearized problem and so a criterium of spectral instability of solitary waves is obtained for both models. Moreover, the nonlinear stability and spectral instability of the ground state solutions for both models is obtained for some specific regimen of parameters. Via a Lyapunov strategy and a variational analysis, we obtain the stability of the blow-up of solitary waves for the critical fractional KdV equation. The arguments presented in this investigation show promise for use in the study of the instability of traveling wave solutions of other nonlinear evolution equations.
The damped wave equation with unbounded damping
Czech Academy of Sciences Publication Activity Database
Freitas, P.; Siegl, Petr; Tretter, C.
2018-01-01
Roč. 264, č. 12 (2018), s. 7023-7054 ISSN 0022-0396 Institutional support: RVO:61389005 Keywords : damped wave equation * unbounded damping * essential spectrum * quadratic operator funciton with unbounded coefficients * Schrodinger operators with complex potentials Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.988, year: 2016
Valdés, Felipe
2011-06-01
A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a single source magnetic field integral equation. The equation is immune to low-frequency and dense-mesh breakdown, and free from spurious resonances. Unlike dual source formulations, this equation involves operator products that cannot be discretized using standard procedures for discretizing standalone electric, magnetic, and combined field operators. Instead, the single source equation proposed here is discretized using a recently developed technique that achieves a well-conditioned mapping from div- to curl-conforming function spaces, thereby fully respecting the space mapping properties of the operators involved, and guaranteeing accuracy and stability. Numerical results show that the proposed equation and discretization technique give rise to rapidly convergent solutions. They also validate the equation\\'s resonant free character. © 2006 IEEE.
Statistical approach to LHCD modeling using the wave kinetic equation
International Nuclear Information System (INIS)
Kupfer, K.; Moreau, D.; Litaudon, X.
1993-04-01
Recent work has shown that for parameter regimes typical of many present day current drive experiments, the orbits of the launched LH rays are chaotic (in the Hamiltonian sense), so that wave energy diffuses through the stochastic layer and fills the spectral gap. We have analyzed this problem using a statistical approach, by solving the wave kinetic equation for the coarse-grained spectral energy density. An interesting result is that the LH absorption profile is essentially independent of both the total injected power and the level of wave stochastic diffusion
The Multi-Wave Method for Exact Solutions of Nonlinear Partial Differential Equations
Directory of Open Access Journals (Sweden)
Yusuf Pandir
2018-02-01
Full Text Available In this research, we use the multi-wave method to obtain new exact solutions for generalized forms of 5th order KdV equation and fth order KdV (fKdV equation with power law nonlinearity. Computations are performed with the help of the mathematics software Mathematica. Then, periodic wave solutions, bright soliton solutions and rational function solutions with free parameters are obtained by this approach. It is shown that this method is very useful and effective.
Kyprianou, A.E.
2000-01-01
Recently Harris using probabilistic methods alone has given new proofs for the known existence asymptotics and unique ness of travelling wave solutions to the KPP equation Following in this vein we outline alternative probabilistic proofs for wave speeds exceeding the critical minimal wave speed
Heat-flow equation motivated by the ideal-gas shock wave.
Holian, Brad Lee; Mareschal, Michel
2010-08-01
We present an equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, in order to model shockwave propagation in gases. Our approach is motivated by the observation of a disequilibrium among the three components of temperature, namely, the difference between the temperature component in the direction of a planar shock wave, versus those in the transverse directions. This difference is most prominent near the shock front. We test our heat-flow equation for the case of strong shock waves in the ideal gas, which has been studied in the past and compared to Navier-Stokes solutions. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations of hard spheres under strong shockwave conditions.
Electromagnetic interactions in relativistic infinite component wave equations
International Nuclear Information System (INIS)
Gerry, C.C.
1979-01-01
The electromagnetic interactions of a composite system described by relativistic infinite-component wave equations are considered. The noncompact group SO(4,2) is taken as the dynamical group of the systems, and its unitary irreducible representations, which are infinite dimensional, are used to find the energy spectra and to specify the states of the systems. First the interaction mechanism is examined in the nonrelativistic SO(4,2) formulation of the hydrogen atom as a heuristic guide. A way of making a minimal relativistic generalization of the minimal ineractions in the nonrelativistic equation for the hydrogen atom is proposed. In order to calculate the effects of the relativistic minimal interactions, a covariant perturbation theory suitable for infinite-component wave equations, which is an algebraic and relativistic version of the Rayleigh-Schroedinger perturbation theory, is developed. The electric and magnetic polarizabilities for the ground state of the hydrogen atom are calculated. The results have the correct nonrelativistic limits. Next, the relativistic cross section of photon absorption by the atom is evaluated. A relativistic expression for the cross section of light scattering corresponding to the seagull diagram is derived. The Born amplitude is combusted and the role of spacelike solutions is discussed. Finally, internal electromagnetic interactions that give rise to the fine structure splittings, the Lamb shifts and the hyperfine splittings are considered. The spin effects are introduced by extending the dynamical group
Relating systems properties of the wave and the Schrödinger equation
Zwart, Heiko J.; Le Gorrec, Yann; Maschke, B.M.
In this article we show that systems properties of the systems governed by the second order differential equation d2wdt2=−A0w and the first order differential equation dzdt=iA0z are related. This can be used to show that, for instance, exact observability of the N-dimensional wave equation implies
Gravitational wave reception by a sphere
International Nuclear Information System (INIS)
Ashby, N.; Dreitlein, J.
1975-01-01
The reception of gravitational waves by an elastic self-gravitating spherical detector is studied in detail. The equations of motion of a detector driven by a gravitational wave are presented in the intuitively convenient coordinate system of Fermi. An exact analytic solution is given for the homogeneous isotropic sphere. Nonlinear effects of a massive self-gravitating system are computed for a body of mass equal to that of the earth, and are shown to be numerically important
International Nuclear Information System (INIS)
Yang Zonghang
2007-01-01
We find new exact travelling wave solutions for two potential KdV equations which are presented by Foursov [Foursov MV. J Math Phys 2000;41:6173-85]. Compared with the extended tanh-function method, the algorithm used in our paper can obtain some new kinds of exact travelling wave solutions. With the aid of symbolic computation, some novel exact travelling wave solutions of the potential KdV equations are constructed
Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method
International Nuclear Information System (INIS)
Fan Engui
2002-01-01
A new direct and unified algebraic method for constructing multiple travelling wave solutions of general nonlinear evolution equations is presented and implemented in a computer algebraic system. Compared with most of the existing tanh methods, the Jacobi elliptic function method or other sophisticated methods, the proposed method not only gives new and more general solutions, but also provides a guideline to classify the various types of the travelling wave solutions according to the values of some parameters. The solutions obtained in this paper include (a) kink-shaped and bell-shaped soliton solutions, (b) rational solutions, (c) triangular periodic solutions and (d) Jacobi and Weierstrass doubly periodic wave solutions. Among them, the Jacobi elliptic periodic wave solutions exactly degenerate to the soliton solutions at a certain limit condition. The efficiency of the method can be demonstrated on a large variety of nonlinear evolution equations such as those considered in this paper, KdV-MKdV, Ito's fifth MKdV, Hirota, Nizhnik-Novikov-Veselov, Broer-Kaup, generalized coupled Hirota-Satsuma, coupled Schroedinger-KdV, (2+1)-dimensional dispersive long wave, (2+1)-dimensional Davey-Stewartson equations. In addition, as an illustrative sample, the properties of the soliton solutions and Jacobi doubly periodic solutions for the Hirota equation are shown by some figures. The links among our proposed method, the tanh method, extended tanh method and the Jacobi elliptic function method are clarified generally. (author)
The two-wave X-ray field calculated by means of integral-equation methods
International Nuclear Information System (INIS)
Bremer, J.
1984-01-01
The problem of calculating the two-wave X-ray field on the basis of the Takagi-Taupin equations is discussed for the general case of curved lattice planes. A two-dimensional integral equation which incorporates the nature of the incoming radiation, the form of the crystal/vacuum boundary, and the curvature of the structure, is deduced. Analytical solutions for the symmetrical Laue case with incoming plane waves are obtained directly for perfect crystals by means of iteration. The same method permits a simple derivation of the narrow-wave Laue and Bragg cases. Modulated wave fronts are discussed, and it is shown that a cut-off in the width of an incoming plane wave leads to lateral oscillations which are superimposed on the Pendelloesung fringes. Bragg and Laue shadow fields are obtained. The influence of a non-zero kernel is discussed and a numerical procedure for calculating wave amplitudes in curved crystals is presented. (Auth.)
Generating gravity waves with matter and electromagnetic waves
International Nuclear Information System (INIS)
Barrabes, C.; Hogan, P A.
2008-01-01
If a homogeneous plane lightlike shell collides head on with a homogeneous plane electromagnetic shock wave having a step-function profile then no backscattered gravitational waves are produced. We demonstrate, by explicit calculation, that if the matter is accompanied by a homogeneous plane electromagnetic shock wave with a step-function profile then backscattered gravitational waves appear after the collision
DEFF Research Database (Denmark)
Guo, Hairun; Zeng, Xianglong; Zhou, Binbin
2013-01-01
We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...... nonlinearities, delayed Raman effects, and anisotropic nonlinearities. The full potential of this wave equation is demonstrated by investigating simulations of solitons generated in the process of ultrafast cascaded second-harmonic generation. We show that a balance in the soliton delay can be achieved due...
International Nuclear Information System (INIS)
Malenfant, J.
1988-01-01
The Breit equation for two equal-mass spin-1/2 particles interacting through an attractive Coulomb potential is separated into its angular and radial parts, obtaining coupled sets of first-order differential equations for the radial wave functions. The radial equations for the 1 J/sub J/, 3 J/sub J/, and 3 P 0 states are further reduced to a single, one-dimensional Schroedinger equation with a relatively simple effective potential. No approximations, other than the initial one of an instantaneous Coulomb interaction, are made in deriving this equation; it accounts for all relativistic effects, as well as for mixing between different components of the wave function. Approximate solutions are derived for this Schroedinger equation, which gives the correct O(α 4 ) term for the 1 1 S 0 energy and for the n 1 J/sub J/ energies, for J>0. The radial equations for the 3 (J +- 1)/sub J/ states are reduced to two second-order coupled equations. At small r, the Breit Coulomb wave functions behave as r/sup ν//sup -1/, where ν is either √J(J+1)+1-α 2 /4 or √J(J+1)-α 2 /4 . The 1 S 0 and 3 P 0 wave functions therefore diverge at the origin as r/sup //sup √//sup 1-//sup α//sup <2//4 -1$. This divergence of the J = 0 states, however, does not occur when the spin-spin interaction, -(α/r)αxα, is added to the Coulomb potential
Asymptotic Behavior of Periodic Wave Solution to the Hirota—Satsuma Equation
International Nuclear Information System (INIS)
Wu Yong-Qi
2011-01-01
The one- and two-periodic wave solutions for the Hirota—Satsuma (HS) equation are presented by using the Hirota derivative and Riemann theta function. The rigorous proofs on asymptotic behaviors of these two solutions are given such that soliton solution can be obtained from the periodic wave solution in an appropriate limiting procedure. (general)
The wave equation on a curved space-time
International Nuclear Information System (INIS)
Friedlander, F.G.
1975-01-01
It is stated that chapters on differential geometry, distribution theory, and characteristics and the propagation of discontinuities are preparatory. The main matter is in three chapters, entitled: fundamental solutions, representation theorems, and wave equations on n-dimensional space-times. These deal with general construction of fundamental solutions and their application to the Cauchy problem. (U.K.)
Semilinear damped wave equation in locally uniform spaces
Czech Academy of Sciences Publication Activity Database
Michálek, Martin; Pražák, D.; Slavík, J.
2017-01-01
Roč. 16, č. 5 (2017), s. 1673-1695 ISSN 1534-0392 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : damped wave equations * nonlinear damping * unbounded domains Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.801, year: 2016 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=14110
Hakoda, Christopher; Rose, Joseph; Shokouhi, Parisa; Lissenden, Clifford
2018-04-01
Dispersion curves are essential to any guided-wave-related project. The Semi-Analytical Finite Element (SAFE) method has become the conventional way to compute dispersion curves for homogeneous waveguides. However, only recently has a general SAFE formulation for commercial and open-source software become available, meaning that until now SAFE analyses have been variable and more time consuming than desirable. Likewise, the Floquet boundary conditions enable analysis of waveguides with periodicity and have been an integral part of the development of metamaterials. In fact, we have found the use of Floquet boundary conditions to be an extremely powerful tool for homogeneous waveguides, too. The nuances of using periodic boundary conditions for homogeneous waveguides that do not exhibit periodicity are discussed. Comparisons between this method and SAFE are made for selected homogeneous waveguide applications. The COMSOL Multiphysics software is used for the results shown, but any standard finite element software that can implement Floquet periodicity (user-defined or built-in) should suffice. Finally, we identify a number of complex waveguides for which dispersion curves can be found with relative ease by using the periodicity inherent to the Floquet boundary conditions.
On the so called rogue waves in nonlinear Schrodinger equations
Directory of Open Access Journals (Sweden)
Y. Charles Li
2016-04-01
Full Text Available The mechanism of a rogue water wave is still unknown. One popular conjecture is that the Peregrine wave solution of the nonlinear Schrodinger equation (NLS provides a mechanism. A Peregrine wave solution can be obtained by taking the infinite spatial period limit to the homoclinic solutions. In this article, from the perspective of the phase space structure of these homoclinic orbits in the infinite dimensional phase space where the NLS defines a dynamical system, we examine the observability of these homoclinic orbits (and their approximations. Our conclusion is that these approximate homoclinic orbits are the most observable solutions, and they should correspond to the most common deep ocean waves rather than the rare rogue waves. We also discuss other possibilities for the mechanism of a rogue wave: rough dependence on initial data or finite time blow up.
Angle-domain Migration Velocity Analysis using Wave-equation Reflection Traveltime Inversion
Zhang, Sanzong
2012-11-04
The main difficulty with an iterative waveform inversion is that it tends to get stuck in a local minima associated with the waveform misfit function. This is because the waveform misfit function is highly non-linear with respect to changes in the velocity model. To reduce this nonlinearity, we present a reflection traveltime tomography method based on the wave equation which enjoys a more quasi-linear relationship between the model and the data. A local crosscorrelation of the windowed downgoing direct wave and the upgoing reflection wave at the image point yields the lag time that maximizes the correlation. This lag time represents the reflection traveltime residual that is back-projected into the earth model to update the velocity in the same way as wave-equation transmission traveltime inversion. The residual movemout analysis in the angle-domain common image gathers provides a robust estimate of the depth residual which is converted to the reflection traveltime residual for the velocity inversion. We present numerical examples to demonstrate its efficiency in inverting seismic data for complex velocity model.
International Nuclear Information System (INIS)
Bardo, R.D.; Wolfsberg, M.
1977-01-01
The wave equation for a nonlinear polyatomic molecule is formulated in molecule-fixed coordinates by a method originally due to Hirschfelder and Wigner. Application is made to a triatomic molecule, and the wave equation is explicitly presented in a useful molecule-fixed coordinate system. The formula for the adiabatic correction to the Born--Oppenheimer approximation for a triatomic molecule is obtained. The extension of the present formulation to larger polyatomic molecules is pointed out. Some terms in the triatomic molecule wave equation are discussed in detail
Runge-Kutta Integration of the Equal Width Wave Equation Using the Method of Lines
Directory of Open Access Journals (Sweden)
M. A. Banaja
2015-01-01
Full Text Available The equal width (EW equation governs nonlinear wave phenomena like waves in shallow water. Numerical solution of the (EW equation is obtained by using the method of lines (MOL based on Runge-Kutta integration. Using von Neumann stability analysis, the scheme is found to be unconditionally stable. Solitary wave motion and interaction of two solitary waves are studied using the proposed method. The three invariants of the motion are evaluated to determine the conservation properties of the generated scheme. Accuracy of the proposed method is discussed by computing the L2 and L∞ error norms. The results are found in good agreement with exact solution.
NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION.
Liu, F; Meerschaert, M M; McGough, R J; Zhuang, P; Liu, Q
2013-03-01
In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.
Nonlinear q-Generalizations of Quantum Equations: Homogeneous and Nonhomogeneous Cases—An Overview
Directory of Open Access Journals (Sweden)
Fernando D. Nobre
2017-01-01
Full Text Available Recent developments on the generalizations of two important equations of quantum physics, namely the Schroedinger and Klein–Gordon equations, are reviewed. These generalizations present nonlinear terms, characterized by exponents depending on an index q, in such a way that the standard linear equations are recovered in the limit q → 1 . Interestingly, these equations present a common, soliton-like, traveling solution, which is written in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics. In both cases, the corresponding well-known Einstein energy-momentum relations, as well as the Planck and the de Broglie ones, are preserved for arbitrary values of q. In order to deal appropriately with the continuity equation, a classical field theory has been developed, where besides the usual Ψ ( x → , t , a new field Φ ( x → , t must be introduced; this latter field becomes Ψ * ( x → , t only when q → 1 . A class of linear nonhomogeneous Schroedinger equations, characterized by position-dependent masses, for which the extra field Φ ( x → , t becomes necessary, is also investigated. In this case, an appropriate transformation connecting Ψ ( x → , t and Φ ( x → , t is proposed, opening the possibility for finding a connection between these fields in the nonlinear cases. The solutions presented herein are potential candidates for applications to nonlinear excitations in plasma physics, nonlinear optics, in structures, such as those of graphene, as well as in shallow and deep water waves.
Two-dimensional wave propagation in layered periodic media
Quezada de Luna, Manuel
2014-09-16
We study two-dimensional wave propagation in materials whose properties vary periodically in one direction only. High order homogenization is carried out to derive a dispersive effective medium approximation. One-dimensional materials with constant impedance exhibit no effective dispersion. We show that a new kind of effective dispersion may arise in two dimensions, even in materials with constant impedance. This dispersion is a macroscopic effect of microscopic diffraction caused by spatial variation in the sound speed. We analyze this dispersive effect by using highorder homogenization to derive an anisotropic, dispersive effective medium. We generalize to two dimensions a homogenization approach that has been used previously for one-dimensional problems. Pseudospectral solutions of the effective medium equations agree to high accuracy with finite volume direct numerical simulations of the variable-coeffi cient equations.
An inhomogeneous wave equation and non-linear Diophantine approximation
DEFF Research Database (Denmark)
Beresnevich, V.; Dodson, M. M.; Kristensen, S.
2008-01-01
A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...
Li, Li; Li, YanYan; Yan, Xukai
2018-03-01
We classify all (-1)-homogeneous axisymmetric no-swirl solutions of incompressible stationary Navier-Stokes equations in three dimension which are smooth on the unit sphere minus the south pole, parameterize them as a two dimensional surface with boundary, and analyze their pressure profiles near the north pole. Then we prove that there is a curve of (-1)-homogeneous axisymmetric solutions with nonzero swirl, having the same smoothness property, emanating from every point of the interior and one part of the boundary of the solution surface. Moreover we prove that there is no such curve of solutions for any point on the other part of the boundary. We also establish asymptotic expansions for every (-1)-homogeneous axisymmetric solutions in a neighborhood of the singular point on the unit sphere.
Local-in-space blow-up criteria for a class of nonlinear dispersive wave equations
Novruzov, Emil
2017-11-01
This paper is concerned with blow-up phenomena for the nonlinear dispersive wave equation on the real line, ut -uxxt +[ f (u) ] x -[ f (u) ] xxx +[ g (u) + f″/(u) 2 ux2 ] x = 0 that includes the Camassa-Holm equation as well as the hyperelastic-rod wave equation (f (u) = ku2 / 2 and g (u) = (3 - k) u2 / 2) as special cases. We establish some a local-in-space blow-up criterion (i.e., a criterion involving only the properties of the data u0 in a neighborhood of a single point) simplifying and precising earlier blow-up criteria for this equation.
The two-fermion relativistic wave equations of Constraint Theory in the Pauli-Schroedinger form
International Nuclear Information System (INIS)
Mourad, J.; Sazdjian, H.
1994-01-01
The two-fermion relativistic wave equations of Constraint Theory are reduced, after expressing the components of the 4x4 matrix wave function in terms of one of the 2x2 components, to a single equation of the Pauli-Schroedinger type, valid for all sectors of quantum numbers. The potentials that are present belong to the general classes of scalar, pseudoscalar and vector interactions and are calculable in perturbation theory from Feynman diagrams. In the limit when one of the masses becomes infinite, the equation reduces to the two-component form of the one-particle Dirac equation with external static potentials. The Hamiltonian, to order 1/c 2 , reproduces most of the known theoretical results obtained by other methods. The gauge invariance of the wave equation is checked, to that order, in the case of QED. The role of the c.m. energy dependence of the relativistic interquark confining potential is emphasized and the structure of the Hamiltonian, to order 1/c 2 , corresponding to confining scalar potentials, is displayed. (authors). 32 refs., 2 figs
Travelling Waves in Hyperbolic Chemotaxis Equations
Xue, Chuan; Hwang, Hyung Ju; Painter, Kevin J.; Erban, Radek
2010-01-01
Mathematical models of bacterial populations are often written as systems of partial differential equations for the densities of bacteria and concentrations of extracellular (signal) chemicals. This approach has been employed since the seminal work of Keller and Segel in the 1970s (Keller and Segel, J. Theor. Biol. 30:235-248, 1971). The system has been shown to permit travelling wave solutions which correspond to travelling band formation in bacterial colonies, yet only under specific criteria, such as a singularity in the chemotactic sensitivity function as the signal approaches zero. Such a singularity generates infinite macroscopic velocities which are biologically unrealistic. In this paper, we formulate a model that takes into consideration relevant details of the intracellular processes while avoiding the singularity in the chemotactic sensitivity. We prove the global existence of solutions and then show the existence of travelling wave solutions both numerically and analytically. © 2010 Society for Mathematical Biology.
Travelling Waves in Hyperbolic Chemotaxis Equations
Xue, Chuan
2010-10-16
Mathematical models of bacterial populations are often written as systems of partial differential equations for the densities of bacteria and concentrations of extracellular (signal) chemicals. This approach has been employed since the seminal work of Keller and Segel in the 1970s (Keller and Segel, J. Theor. Biol. 30:235-248, 1971). The system has been shown to permit travelling wave solutions which correspond to travelling band formation in bacterial colonies, yet only under specific criteria, such as a singularity in the chemotactic sensitivity function as the signal approaches zero. Such a singularity generates infinite macroscopic velocities which are biologically unrealistic. In this paper, we formulate a model that takes into consideration relevant details of the intracellular processes while avoiding the singularity in the chemotactic sensitivity. We prove the global existence of solutions and then show the existence of travelling wave solutions both numerically and analytically. © 2010 Society for Mathematical Biology.
International Nuclear Information System (INIS)
Wang, Xin; Chen, Yong; Cao, Jianli
2015-01-01
In this paper, we utilize generalized Darboux transformation to study higher-order rogue wave solutions of the three-wave resonant interaction equation, which describes the propagation and mixing of waves with different frequencies in weakly nonlinear dispersive media. A general Nth-order rogue wave solution with two characteristic velocities structural parameters and 3N independent parameters under a determined plane-wave background and a specific parameter condition is derived. As an application, we show that four fundamental rogue waves with fundamental, two kinds of line and quadrilateral patterns, or six fundamental rogue waves with fundamental, triangular, two kinds of quadrilateral and circular patterns can emerge in the second-order rogue waves. Moreover, several important wave characteristics including the maximum values, the corresponding coordinate positions of the humps, and the stability problem for some special higher-order rogue wave solutions such as the fundamental and quadrilateral cases are discussed. (paper)
Wave function for time-dependent harmonically confined electrons in a time-dependent electric field.
Li, Yu-Qi; Pan, Xiao-Yin; Sahni, Viraht
2013-09-21
The many-body wave function of a system of interacting particles confined by a time-dependent harmonic potential and perturbed by a time-dependent spatially homogeneous electric field is derived via the Feynman path-integral method. The wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the Harmonic Potential Theorem wave function for the case of the time-independent harmonic confining potential.
Hao, Qi; Alkhalifah, Tariq Ali
2016-01-01
in homogeneous media. For a horizontal-attenuating VTI layer, we also derive the nonhyperbolic approximations for the real and imaginary parts of the complex-valued reflection traveltime. These equations reveal that (1) the quasi SV-wave velocity
Solving the KPI wave equation with a moving adaptive FEM grid
Directory of Open Access Journals (Sweden)
Granville Sewell
2013-04-01
Full Text Available The Kadomtsev-Petviashvili I (KPI equation is the difficult nonlinear wave equation $U_{xt} + 6U_x^2 + 6UU_{xx} + U_{xxxx} = 3U_{yy}.$ We solve this equation using PDE2D (www.pde2d.com with initial conditions consisting of two lump solitons, which collide and reseparate. Since the solution has steep, moving, peaks, an adaptive finite element grid is used with a grading which moves with the peaks.
Dark and composite rogue waves in the coupled Hirota equations
International Nuclear Information System (INIS)
Chen, Shihua
2014-01-01
The intriguing dark and composite rogue wave dynamics in a coupled Hirota system are unveiled, based on the exact explicit rational solutions obtained under the assumption of equal background height. It is found that a dark rogue wave state would occur as a result of the strong coupling between two field components with large wavenumber difference, and there would appear plenty of composite structures that are attributed to the specific wavenumber difference and the free choice of three independent structural parameters. The coexistence of different fundamental rogue waves in such a coupled system is also demonstrated. - Highlights: • Exact rational rogue wave solutions under different parameter conditions are presented for the coupled Hirota equations. • The basic rogue wave features and hence the intriguing dark structures are unveiled. • We attributed the diversity of composite rogue wave dynamics to the free choice of three independent structural parameters. • The remarkable coexisting rogue wave behaviors in such a coupled system are demonstrated
Solution of the Burgers Equation in the Time Domain
Directory of Open Access Journals (Sweden)
M. Bednařík
2002-01-01
Full Text Available This paper deals with a theoretical description of the propagation of a finite amplitude acoustic waves. The theory based on the homogeneous Burgers equation of the second order of accuracy is presented here. This equation takes into account both nonlinear effects and dissipation. The method for solving this equation, using the well-known Cole-Hopf transformation, is presented. Two methods for numerical solution of these equations in the time domain are presented. The first is based on the simple Simpson method, which is suitable for smaller Goldberg numbers. The second uses the more advanced saddle point method, and is appropriate for large Goldberg numbers.
Diffusive Wave Approximation to the Shallow Water Equations: Computational Approach
Collier, Nathan; Radwan, Hany; Dalcin, Lisandro; Calo, Victor M.
2011-01-01
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity
International Nuclear Information System (INIS)
Feng Zhaosheng
2003-01-01
In this paper, we study the two-dimensional Burgers-Korteweg-de Vries (2D-BKdV) equation by analysing an equivalent two-dimensional autonomous system, which indicates that under some particular conditions, the 2D-BKdV equation has a unique bounded travelling wave solution. Then by using a direct method, a travelling solitary wave solution to the 2D-BKdV equation is expressed explicitly, which appears to be more efficient than the existing methods proposed in the literature. At the end of the paper, the asymptotic behaviour of the proper solutions of the 2D-BKdV equation is established by applying the qualitative theory of differential equations
Test of a new heat-flow equation for dense-fluid shock waves.
Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon
2010-09-21
Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.
Scattering of quantized solitary waves in the cubic Schrodinger equation
International Nuclear Information System (INIS)
Dolan, L.
1976-01-01
The quantum mechanics for N particles interacting via a delta-function potential in one space dimension and one time dimension is known. The second-quantized description of this system has for its Euler-Lagrange equations of motion the cubic Schrodinger equation. This nonlinear differential equation supports solitary wave solutions. A quantization of these solitons reproduces the weak-coupling limit to the known quantum mechanics. The phase shift for two-body scattering and the energy of the N-body bound state is derived in this approximation. The nonlinear Schrodinger equation is contrasted with the sine-Gordon theory in respect to the ideas which the classical solutions play in the description of the quantum states
Four-dimensional integral equations for the MHD diffraction waves in plasma
International Nuclear Information System (INIS)
Alexandrova, A.A.; Khizhnyak, N.A.
2000-01-01
The superficial analysis of the boundary-value nonstationary problem for Alfven wave has shown the principal possibility of using the method of evolutionary integral equations of non-stationary macroscopic electrodynamical in a case of MHD description of waves in plasma. With the importance of strict mathematical solutions obtained for simple model problems that is the diffraction of one separately taken Alfven wave is that it can be the basis for construction of the approximate solutions of more complex boundary-value problems
International Nuclear Information System (INIS)
Sugaya, Reiji
1989-01-01
General expressions of the matrix elements for nonlinear wave-particle scattering (nonlinear Landau and cyclotron damping) of electromagnetic and electrostatic waves in a homogeneous magnetized plasma are derived from the Vlasov-Maxwell equations. The kinetic wave equations obtained for electromagnetic waves are expressed by four-order tensors in the rotating and cartesian coordinates. No restrictions are imposed on the propagation angle to a uniform magnetic field, the Larmor radius, the frequencies, or the wave numbers. By electrostatic approximation of the dielectric tensor and the matrix elements the kinetic wave equations can be applied to the case in which two scattering waves are electrostatic or they are partially electrostatic. Further, the matrix elements in the limit of parallel or perpendicular propagation to the magnetic field are given. (author)
Blakley, G. R.
1982-01-01
Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)
Directory of Open Access Journals (Sweden)
Baojun Zhao
2018-01-01
Full Text Available Envelope gravity solitary waves are an important research hot spot in the field of solitary wave. And the weakly nonlinear model equations system is a part of the research of envelope gravity solitary waves. Because of the lack of technology and theory, previous studies tried hard to reduce the variable numbers and constructed the two-dimensional model in barotropic atmosphere and could only describe the propagation feature in a direction. But for the propagation of envelope gravity solitary waves in real ocean ridges and atmospheric mountains, the three-dimensional model is more appropriate. Meanwhile, the baroclinic problem of atmosphere is also an inevitable topic. In the paper, the three-dimensional coupled nonlinear Schrödinger (CNLS equations are presented to describe the evolution of envelope gravity solitary waves in baroclinic atmosphere, which are derived from the basic dynamic equations by employing perturbation and multiscale methods. The model overcomes two disadvantages: (1 baroclinic problem and (2 propagation path problem. Then, based on trial function method, we deduce the solution of the CNLS equations. Finally, modulational instability of wave trains is also discussed.
Application of perturbation theory to a P-wave eikonal equation in orthorhombic media
Stovas, Alexey; Masmoudi, Nabil; Alkhalifah, Tariq Ali
2016-01-01
The P-wave eikonal equation for orthorhombic (ORT) anisotropic media is a highly nonlinear partial differential equation requiring the solution of a sixth-order polynomial to obtain traveltimes, resulting in complex and time-consuming numerical
Information Geometry Formalism for the Spatially Homogeneous Boltzmann Equation
Directory of Open Access Journals (Sweden)
Bertrand Lods
2015-06-01
Full Text Available Information Geometry generalizes to infinite dimension by modeling the tangent space of the relevant manifold of probability densities with exponential Orlicz spaces. We review here several properties of the exponential manifold on a suitable set Ɛ of mutually absolutely continuous densities. We study in particular the fine properties of the Kullback-Liebler divergence in this context. We also show that this setting is well-suited for the study of the spatially homogeneous Boltzmann equation if Ɛ is a set of positive densities with finite relative entropy with respect to the Maxwell density. More precisely, we analyze the Boltzmann operator in the geometric setting from the point of its Maxwell’s weak form as a composition of elementary operations in the exponential manifold, namely tensor product, conditioning, marginalization and we prove in a geometric way the basic facts, i.e., the H-theorem. We also illustrate the robustness of our method by discussing, besides the Kullback-Leibler divergence, also the property of Hyvärinen divergence. This requires us to generalize our approach to Orlicz–Sobolev spaces to include derivatives.
Traveling waves and the renormalization group improvedBalitsky-Kovchegov equation
Energy Technology Data Exchange (ETDEWEB)
Enberg, Rikard
2006-12-01
I study the incorporation of renormalization group (RG)improved BFKL kernels in the Balitsky-Kovchegov (BK) equation whichdescribes parton saturation. The RG improvement takes into accountimportant parts of the next-to-leading and higher order logarithmiccorrections to the kernel. The traveling wave front method for analyzingthe BK equation is generalized to deal with RG-resummed kernels,restricting to the interesting case of fixed QCD coupling. The resultsshow that the higher order corrections suppress the rapid increase of thesaturation scale with increasing rapidity. I also perform a "diffusive"differential equation approximation, which illustrates that someimportant qualitative properties of the kernel change when including RGcorrections.
Shock formation in small-data solutions to 3D quasilinear wave equations
Speck, Jared
2016-01-01
In 1848 James Challis showed that smooth solutions to the compressible Euler equations can become multivalued, thus signifying the onset of a shock singularity. Today it is known that, for many hyperbolic systems, such singularities often develop. However, most shock-formation results have been proved only in one spatial dimension. Serge Alinhac's groundbreaking work on wave equations in the late 1990s was the first to treat more than one spatial dimension. In 2007, for the compressible Euler equations in vorticity-free regions, Demetrios Christodoulou remarkably sharpened Alinhac's results and gave a complete description of shock formation. In this monograph, Christodoulou's framework is extended to two classes of wave equations in three spatial dimensions. It is shown that if the nonlinear terms fail to satisfy the null condition, then for small data, shocks are the only possible singularities that can develop. Moreover, the author exhibits an open set of small data whose solutions form a shock, and he prov...
New multidimensional partially integrable generalization of S-integrable N-wave equation
International Nuclear Information System (INIS)
Zenchuk, A. I.
2007-01-01
This paper develops a modification of the dressing method based on the inhomogeneous linear integral equation with integral operator having nonempty kernel. The method allows one to construct the systems of multidimensional partial differential equations having differential polynomial structure in any dimension n. The associated solution space is not full, although it is parametrized by certain number of arbitrary functions of (n-1) variables. We consider four-dimensional generalization of the classical (2+1)-dimensional S-integrable N-wave equation as an example
Traveling Wave Solutions of ZK-BBM Equation Sine-Cosine Method
Directory of Open Access Journals (Sweden)
Sadaf Bibi
2014-03-01
Full Text Available Travelling wave solutions are obtained by using a relatively new technique which is called sine-cosine method for ZK-BBM equations. Solution procedure and obtained results re-confirm the efficiency of the proposed scheme.
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Using direct algebraic method,exact solitary wave solutions are performed for a class of third order nonlinear dispersive disipative partial differential equations. These solutions are obtained under certain conditions for the relationship between the coefficients of the equation. The exact solitary waves of this class are rational functions of real exponentials of kink-type solutions.
Li, Jing
2017-12-22
A robust imaging technology is reviewed that provide subsurface information in challenging environments: wave-equation dispersion inversion (WD) of surface waves for the shear velocity model. We demonstrate the benefits and liabilities of the method with synthetic seismograms and field data. The benefits of WD are that 1) there is no layered medium assumption, as there is in conventional inversion of dispersion curves, so that the 2D or 3D S-velocity model can be reliably obtained with seismic surveys over rugged topography, and 2) WD mostly avoids getting stuck in local minima. The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic media and the inversion of dispersion curves associated with Love wave. The liability is that is almost as expensive as FWI and only recovers the Vs distribution to a depth no deeper than about 1/2~1/3 wavelength.
An efficient hybrid pseudospectral/finite-difference scheme for solving the TTI pure P-wave equation
Zhan, Ge
2013-02-19
The pure P-wave equation for modelling and migration in tilted transversely isotropic (TTI) media has attracted more and more attention in imaging seismic data with anisotropy. The desirable feature is that it is absolutely free of shear-wave artefacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield updating at each time step, the computational cost is significant, and thereby hampers its prevalence. We propose to use a hybrid pseudospectral (PS) and finite-difference (FD) scheme to solve the pure P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the benefit in cost saving of the new scheme, 2D and 3D reverse-time migration (RTM) examples using the hybrid solution to the pure P-wave equation are carried out, and respective runtimes are listed and compared. Numerical results show that the hybrid strategy demands less computation time and is faster than using the PS method alone. Furthermore, this new TTI RTM algorithm with the hybrid method is computationally less expensive than that with the FD solution to conventional TTI coupled equations. © 2013 Sinopec Geophysical Research Institute.
An efficient hybrid pseudospectral/finite-difference scheme for solving the TTI pure P-wave equation
International Nuclear Information System (INIS)
Zhan, Ge; Pestana, Reynam C; Stoffa, Paul L
2013-01-01
The pure P-wave equation for modelling and migration in tilted transversely isotropic (TTI) media has attracted more and more attention in imaging seismic data with anisotropy. The desirable feature is that it is absolutely free of shear-wave artefacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward–backward Fourier transforms in wavefield updating at each time step, the computational cost is significant, and thereby hampers its prevalence. We propose to use a hybrid pseudospectral (PS) and finite-difference (FD) scheme to solve the pure P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the benefit in cost saving of the new scheme, 2D and 3D reverse-time migration (RTM) examples using the hybrid solution to the pure P-wave equation are carried out, and respective runtimes are listed and compared. Numerical results show that the hybrid strategy demands less computation time and is faster than using the PS method alone. Furthermore, this new TTI RTM algorithm with the hybrid method is computationally less expensive than that with the FD solution to conventional TTI coupled equations. (paper)
Witten, Matthew
1983-01-01
Hyperbolic Partial Differential Equations, Volume 1: Population, Reactors, Tides and Waves: Theory and Applications covers three general areas of hyperbolic partial differential equation applications. These areas include problems related to the McKendrick/Von Foerster population equations, other hyperbolic form equations, and the numerical solution.This text is composed of 15 chapters and begins with surveys of age specific population interactions, populations models of diffusion, nonlinear age dependent population growth with harvesting, local and global stability for the nonlinear renewal eq
Gaussian solitary waves for the logarithmic-KdV and the logarithmic-KP equations
International Nuclear Information System (INIS)
Wazwaz, Abdul-Majid
2014-01-01
We investigate the logarithmic-KdV equation for more Gaussian solitary waves. We extend this work to derive the logarithmic-KP (Kadomtsev–Petviashvili) equation. We show that both logarithmic models are characterized by their Gaussian solitons. (paper)
Extended common-image-point gathers for anisotropic wave-equation migration
Sava, Paul C.; Alkhalifah, Tariq Ali
2010-01-01
In regions characterized by complex subsurface structure, wave-equation depth migration is a powerful tool for accurately imaging the earth’s interior. The quality of the final image greatly depends on the quality of the model which includes
Dutta, Gaurav
2013-08-20
Attenuation leads to distortion of amplitude and phase of seismic waves propagating inside the earth. Conventional acoustic and least-squares reverse time migration do not account for this distortion which leads to defocusing of migration images in highly attenuative geological environments. To account for this distortion, we propose to use the visco-acoustic wave equation for least-squares reverse time migration. Numerical tests on synthetic data show that least-squares reverse time migration with the visco-acoustic wave equation corrects for this distortion and produces images with better balanced amplitudes compared to the conventional approach. © 2013 SEG.
Solution of the nonrelativistic wave equation using the tridiagonal representation approach
Alhaidari, A. D.
2017-07-01
We choose a complete set of square integrable functions as a basis for the expansion of the wavefunction in configuration space such that the matrix representation of the nonrelativistic time-independent linear wave operator is tridiagonal and symmetric. Consequently, the matrix wave equation becomes a symmetric three-term recursion relation for the expansion coefficients of the wavefunction. The recursion relation is then solved exactly in terms of orthogonal polynomials in the energy. Some of these polynomials are not found in the mathematics literature. The asymptotics of these polynomials give the phase shift for the continuous energy scattering states and the spectrum for the discrete energy bound states. Depending on the space and boundary conditions, the basis functions are written in terms of either the Laguerre or Jacobi polynomials. The tridiagonal requirement limits the number of potential functions that yield exact solutions of the wave equation. Nonetheless, the class of exactly solvable problems in this approach is larger than the conventional class (see, for example, Table XII in the text). We also give very accurate results for cases where the wave operator matrix is not tridiagonal but its elements could be evaluated either exactly or numerically with high precision.
Destrade, Michel; Goriely, Alain; Saccomandi, Giuseppe
2011-01-01
We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent, and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation c...
Relativistic transport equation for a discontinuity wave of multiplicity one
Energy Technology Data Exchange (ETDEWEB)
Giambo, S; Palumbo, A [Istituto di Matematica, Universita degli Studi, Messina (Italy)
1980-04-14
In the framework of the theory of the singular hypersurfaces, the transport equation for the amplitude of a discontinuity wave, corresponding to a simple characteristic of a quasi-linear hyperbolic system, is established in the context of special relativity.
Yuan, Na
2018-04-01
With the aid of the symbolic computation, we present an improved ( G ‧ / G ) -expansion method, which can be applied to seek more types of exact solutions for certain nonlinear evolution equations. In illustration, we choose the (3 + 1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation to demonstrate the validity and advantages of the method. As a result, abundant explicit and exact nontraveling wave solutions are obtained including two solitary waves solutions, nontraveling wave solutions and dromion soliton solutions. Some particular localized excitations and the interactions between two solitary waves are researched. The method can be also applied to other nonlinear partial differential equations.
Homogenization of resonant chiral metamaterials
DEFF Research Database (Denmark)
Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten
2010-01-01
Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....
Lamb, George L
1995-01-01
INTRODUCTORY APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS. With Emphasis on Wave Propagation and Diffusion. This is the ideal text for students and professionals who have some familiarity with partial differential equations, and who now wish to consolidate and expand their knowledge. Unlike most other texts on this topic, it interweaves prior knowledge of mathematics and physics, especially heat conduction and wave motion, into a presentation that demonstrates their interdependence. The result is a superb teaching text that reinforces the reader's understanding of both mathematics and physic
Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee
In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.
International Nuclear Information System (INIS)
Xu, J.; Ren, Y.; Ting, C.S.
1995-01-01
The properties of a d x 2 -y 2 -wave superconductor in an external magnetic field are investigated on the basis of Gorkov's theory of weakly coupled superconductors. The Ginzburg-Landau (GL) equations, which govern the spatial variations of the order parameter and the supercurrent, are microscopically derived. The single vortex structure and surface problems in such a superconductor are studied using these equations. It is shown that the d-wave vortex structure is very different from the conventional s-wave vortex: the s-wave and d-wave components, with the opposite winding numbers, are found to coexist in the region near the vortex core. The supercurrent and local magnetic field around the vortex are calculated. Far away from the vortex core, both of them exhibit a fourfold symmetry, in contrast to an s-wave superconductor. The surface problem in a d-wave superconductor is also studied by solving the GL equations. The total order parameter near the surface is always a real combination of s- and d-wave components, which means that the proximity effect cannot induce a time-reversal symmetry-breaking state at the surface
International Nuclear Information System (INIS)
Zhang Zaiyun; Liu Zhenhai; Miao Xiujin; Chen Yuezhong
2011-01-01
In this Letter, we investigate the perturbed nonlinear Schroedinger's equation (NLSE) with Kerr law nonlinearity. All explicit expressions of the bounded traveling wave solutions for the equation are obtained by using the bifurcation method and qualitative theory of dynamical systems. These solutions contain bell-shaped solitary wave solutions, kink-shaped solitary wave solutions and Jacobi elliptic function periodic solutions. Moreover, we point out the region which these periodic wave solutions lie in. We present the relation between the bounded traveling wave solution and the energy level h. We find that these periodic wave solutions tend to the corresponding solitary wave solutions as h increases or decreases. Finally, for some special selections of the energy level h, it is shown that the exact periodic solutions evolute into solitary wave solution.
New Exact Travelling Wave and Periodic Solutions of Discrete Nonlinear Schroedinger Equation
International Nuclear Information System (INIS)
Yang Qin; Dai Chaoqing; Zhang Jiefang
2005-01-01
Some new exact travelling wave and period solutions of discrete nonlinear Schroedinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differential-different models.
Simulation of the Schroedinger equation on SHAC
International Nuclear Information System (INIS)
Stewart, A.
1976-01-01
A simulation of the Schroedinger wave equation for the hydrogen atom, on SHAC, a simple homogeneous analogue computer primarily intended for use in schools, is described. Due to the incorporation of FET switches very high speed switching from initial conditions to compute modes is possible. The techniques employed in the multiplier and divider are discussed and the flow diagram for the Schroedinger program shown. Results and photographs are discussed. (U.K.)
Said-Houari, Belkacem
2012-03-01
In this paper, we consider a viscoelastic wave equation with an absorbing term and space-time dependent damping term. Based on the weighted energy method, and by assuming that the kernel decaying exponentially, we obtain the L2 decay rates of the solutions. More precisely, we show that the decay rates are the same as those obtained in Lin et al. (2010) [15] for the semilinear wave equation with absorption term. © 2011 Elsevier Inc.
Said-Houari, Belkacem
2012-01-01
In this paper, we consider a viscoelastic wave equation with an absorbing term and space-time dependent damping term. Based on the weighted energy method, and by assuming that the kernel decaying exponentially, we obtain the L2 decay rates of the solutions. More precisely, we show that the decay rates are the same as those obtained in Lin et al. (2010) [15] for the semilinear wave equation with absorption term. © 2011 Elsevier Inc.
Viscoacoustic wave-equation traveltime inversion with correct and incorrect attenuation profiles
Yu, Han
2017-08-17
A visco-acoustic wave-equation traveltime inversion method is presented that inverts for a shallow subsurface velocity distribution with correct and incorrect attenuation profiles. Similar to the classical wave equation traveltime inversion, this method applies the misfit functional that minimizes the first break differences between the observed and predicted data. Although, WT can partly avoid the cycle skipping problem, an initial velocity model approaches to the right or wrong velocity models under different setups of the attenuation profiles. However, with a Q model far away from the real model, the inverted tomogram is obviously different from the true velocity model while a small change of the Q model does not improve the inversion quality in a strong manner if low frequency information is not lost.
Manning, Robert M.
2004-01-01
The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the delta-correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The comprehensive operator solution also allows one to obtain expressions for the longitudinal (generalized) second order moment. This is also considered and the solution for the atmospheric case is obtained and discussed. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.
Energy Technology Data Exchange (ETDEWEB)
Capdebosq, Y
1999-09-01
In order to study and simulate nuclear reactor cores, one needs to access the neutron distribution in the core. In practice, the description of this density of neutrons is given by a system of diffusion equations, coupled by non differential exchange terms. The strong heterogeneity of the medium constitutes a major obstacle to the numerical computation of this models at reasonable cost. Homogenization appears as compulsory. Heuristic methods have been developed since the origin by nuclear physicists, under a periodicity assumption on the coefficients. They consist in doing a fine computation one a single periodicity cell, to solve the system on the whole domain with homogeneous coefficients, and to reconstruct the neutron density by multiplying the solutions of the two computations. The objectives of this work are to provide mathematically rigorous basis to this factorization method, to obtain the exact formulas of the homogenized coefficients, and to start on geometries where two periodical medium are placed side by side. The first result of this thesis concerns eigenvalue problem models which are used to characterize the state of criticality of the reactor, under a symmetry assumption on the coefficients. The convergence of the homogenization process is proved, and formulas of the homogenized coefficients are given. We then show that without symmetry assumptions, a drift phenomenon appears. It is characterized by the mean of a real Bloch wave method, which gives the homogenized limit in the general case. These results for the critical problem are then adapted to the evolution model. Finally, the homogenization of the critical problem in the case of two side by side periodic medium is studied on a one dimensional on equation model. (authors)
Baumeister, K. J.
1983-01-01
A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.
Baumeiste, K. J.
1983-01-01
A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.
Perfectly Matched Layer for the Wave Equation Finite Difference Time Domain Method
Miyazaki, Yutaka; Tsuchiya, Takao
2012-07-01
The perfectly matched layer (PML) is introduced into the wave equation finite difference time domain (WE-FDTD) method. The WE-FDTD method is a finite difference method in which the wave equation is directly discretized on the basis of the central differences. The required memory of the WE-FDTD method is less than that of the standard FDTD method because no particle velocity is stored in the memory. In this study, the WE-FDTD method is first combined with the standard FDTD method. Then, Berenger's PML is combined with the WE-FDTD method. Some numerical demonstrations are given for the two- and three-dimensional sound fields.
Stochastic wave-function unravelling of the generalized Lindblad equation using correlated states
International Nuclear Information System (INIS)
Moodley, Mervlyn; Nsio Nzundu, T; Paul, S
2012-01-01
We perform a stochastic wave-function unravelling of the generalized Lindblad master equation using correlated states, a combination of the system state vectors and the environment population. The time-convolutionless projection operator method using correlated projection superoperators is applied to a two-state system, a qubit, that is coupled to an environment consisting of two energy bands which are both populated. These results are compared to the data obtained from Monte Carlo wave-function simulations based on the unravelling of the master equation. We also show a typical quantum trajectory and the average time evolution of the state vector on the Bloch sphere. (paper)
Bifurcations of Exact Traveling Wave Solutions for (2+1)-Dimensional HNLS Equation
International Nuclear Information System (INIS)
Xu Yuanfen
2012-01-01
For the (2+1)-Dimensional HNLS equation, what are the dynamical behavior of its traveling wave solutions and how do they depend on the parameters of the systems? This paper will answer these questions by using the methods of dynamical systems. Ten exact explicit parametric representations of the traveling wave solutions are given. (general)
Antisymmetrized molecular dynamics of wave packets with stochastic incorporation of Vlasov equation
International Nuclear Information System (INIS)
Ono, Akira; Horiuchi, Hisashi.
1996-01-01
The first purpose of this report is to present an extended AMD model which can generally describe such minor branching processes by removing the restriction on the one-body distribution function. This is done not by generalizing the wave packets to arbitrary single-particle wave functions but by representing the diffused and/or deformed wave packet as an ensemble of Gaussian wave packets. In other words, stochastic displacements are given to the wave packets in phase space so that the ensemble-average of the time evolution of the one-body distribution function is essentially equivalent to the solution of Vlasov equation which does not have any restriction on the shape of wave packets. This new model is called AMD-V. Although AMD-V is equivalent to Vlasov equation in the instantaneous time evolution of the one-body distribution function for an AMD wave function, AMD-V describes the branching into channels and the fluctuation of the mean field which are caused by the spreading or the splitting of the single-particle wave function. The second purpose of this report is to show the drastic effect of this new stochastic process of wave packet splitting on the dynamics of heavy ion collisions, especially in the fragmentation mechanism. We take the 40 Ca + 40 Ca system at the incident energy 35 MeV/nucleon. It will be shown that the reproduction of data by the AMD-V calculation is surprisingly good. We will see that the effect of the wave packet diffusion is crucially important to remove the spurious binary feature of the AMD calculation and to enable the multi-fragment final state. (J.P.N.)
International Nuclear Information System (INIS)
Zhou Yubin; Li Chao
2009-01-01
A modified G'/G-expansion method is presented to derive traveling wave solutions for a class of nonlinear partial differential equations called Whitham-Broer-Kaup-Like equations. As a result, the hyperbolic function solutions, trigonometric function solutions, and rational solutions with parameters to the equations are obtained. When the parameters are taken as special values the solitary wave solutions can be obtained. (general)
Shot- and angle-domain wave-equation traveltime inversion of reflection data: Theory
Zhang, Sanzong
2015-05-26
The main difficulty with iterative waveform inversion is that it tends to get stuck in local minima associated with the waveform misfit function. To mitigate this problem and avoid the need to fit amplitudes in the data, we have developed a wave-equation method that inverts the traveltimes of reflection events, and so it is less prone to the local minima problem. Instead of a waveform misfit function, the penalty function was a crosscorrelation of the downgoing direct wave and the upgoing reflection wave at the trial image point. The time lag, which maximized the crosscorrelation amplitude, represented the reflection-traveltime residual (RTR) that was back projected along the reflection wavepath to update the velocity. Shot- and angle-domain crosscorrelation functions were introduced to estimate the RTR by semblance analysis and scanning. In theory, only the traveltime information was inverted and there was no need to precisely fit the amplitudes or assume a high-frequency approximation. Results with synthetic data and field records revealed the benefits and limitations of wave-equation reflection traveltime inversion.
Shot- and angle-domain wave-equation traveltime inversion of reflection data: Theory
Zhang, Sanzong; Luo, Yi; Schuster, Gerard T.
2015-01-01
The main difficulty with iterative waveform inversion is that it tends to get stuck in local minima associated with the waveform misfit function. To mitigate this problem and avoid the need to fit amplitudes in the data, we have developed a wave-equation method that inverts the traveltimes of reflection events, and so it is less prone to the local minima problem. Instead of a waveform misfit function, the penalty function was a crosscorrelation of the downgoing direct wave and the upgoing reflection wave at the trial image point. The time lag, which maximized the crosscorrelation amplitude, represented the reflection-traveltime residual (RTR) that was back projected along the reflection wavepath to update the velocity. Shot- and angle-domain crosscorrelation functions were introduced to estimate the RTR by semblance analysis and scanning. In theory, only the traveltime information was inverted and there was no need to precisely fit the amplitudes or assume a high-frequency approximation. Results with synthetic data and field records revealed the benefits and limitations of wave-equation reflection traveltime inversion.
Exponential decay for solutions to semilinear damped wave equation
Gerbi, Stéphane
2011-10-01
This paper is concerned with decay estimate of solutions to the semilinear wave equation with strong damping in a bounded domain. Intro- ducing an appropriate Lyapunov function, we prove that when the damping is linear, we can find initial data, for which the solution decays exponentially. This result improves an early one in [4].
Wave-Breaking Phenomena and Existence of Peakons for a Generalized Compressible Elastic-Rod Equation
Directory of Open Access Journals (Sweden)
Xiaolian Ai
2014-01-01
Full Text Available Consideration in this paper is the Cauchy problem of a generalized hyperelastic-rod wave equation. We first derive a wave-breaking mechanism for strong solutions, which occurs in finite time for certain initial profiles. In addition, we determine the existence of some new peaked solitary wave solutions.
Wave equations on a de Sitter fiber bundle. [Semiclassical wave function, bundle space, L-S coupling
Energy Technology Data Exchange (ETDEWEB)
Drechsler, W [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany)
1975-01-01
A gauge theory of strong interaction is developed based on fields defined on a fiber bundle. The structural group of the bundle is taken to be the Lsub(4,1) de Sitter group. An internal variable xi, varying in the fiber over a space-time point x, is introduced as a means to describe - with the help of a semiclassical wave function psi(x,xi) defined on the bundle space - the internal structure of extended hadrons in a framework using differential geometric techniques. Three basic nonlinear wave equations for psi(x,xi) are established which are of integro-differential type. The nonlinear coupling terms in these de Sitter gauge invariant equations represent physically a generalized spin orbit coupling or a generalized spin coupling for the motion taking place in the fiber. The motivation for using a bigger space for the definition of hadronic matter wave functions as well as the implications of this geometric approach to strong interaction physics is discussed in detail, in particular with respect to the problem of hadronic constituents. The proposed fiber bundle formalism allows a dynamical description of extended structures for hadrons without implying the necessity of introducing any constituents.
Vitanov, Nikolay K.
2011-03-01
We discuss the class of equations ∑i,j=0mAij(u){∂iu}/{∂ti}∂+∑k,l=0nBkl(u){∂ku}/{∂xk}∂=C(u) where Aij( u), Bkl( u) and C( u) are functions of u( x, t) as follows: (i) Aij, Bkl and C are polynomials of u; or (ii) Aij, Bkl and C can be reduced to polynomials of u by means of Taylor series for small values of u. For these two cases the above-mentioned class of equations consists of nonlinear PDEs with polynomial nonlinearities. We show that the modified method of simplest equation is powerful tool for obtaining exact traveling-wave solution of this class of equations. The balance equations for the sub-class of traveling-wave solutions of the investigated class of equations are obtained. We illustrate the method by obtaining exact traveling-wave solutions (i) of the Swift-Hohenberg equation and (ii) of the generalized Rayleigh equation for the cases when the extended tanh-equation or the equations of Bernoulli and Riccati are used as simplest equations.
Exact traveling wave solutions of the bbm and kdv equations using (G'/G)-expansion method
International Nuclear Information System (INIS)
Saddique, I.; Nazar, K.
2009-01-01
In this paper, we construct the traveling wave solutions involving parameters of the Benjamin Bona-Mahony (BBM) and KdV equations in terms of the hyperbolic, trigonometric and rational functions by using the (G'/G)-expansion method, where G = G(zeta) satisfies a second order linear ordinary differential equation. When the parameters are taken special values, the Solitary was are derived from the traveling waves. (author)
Seadawy, A. R.; El-Rashidy, K.
2018-03-01
The Kadomtsev-Petviashvili (KP) and modified KP equations are two of the most universal models in nonlinear wave theory, which arises as a reduction of system with quadratic nonlinearity which admit weakly dispersive waves. The generalized extended tanh method and the F-expansion method are used to derive exact solitary waves solutions of KP and modified KP equations. The region of solutions are displayed graphically.
Integrable discretizations for the short-wave model of the Camassa-Holm equation
International Nuclear Information System (INIS)
Feng Baofeng; Maruno, Ken-ichi; Ohta, Yasuhiro
2010-01-01
The link between the short-wave model of the Camassa-Holm equation (SCHE) and bilinear equations of the two-dimensional Toda lattice equation is clarified. The parametric form of the N-cuspon solution of the SCHE in Casorati determinant is then given. Based on the above finding, integrable semi-discrete and full-discrete analogues of the SCHE are constructed. The determinant solutions of both semi-discrete and fully discrete analogues of the SCHE are also presented.
Roshid, Harun-Or; Kabir, Md Rashed; Bhowmik, Rajandra Chadra; Datta, Bimal Kumar
2014-01-01
In this paper, we have described two dreadfully important methods to solve nonlinear partial differential equations which are known as exp-function and the exp(-ϕ(ξ)) -expansion method. Recently, there are several methods to use for finding analytical solutions of the nonlinear partial differential equations. The methods are diverse and useful for solving the nonlinear evolution equations. With the help of these methods, we are investigated the exact travelling wave solutions of the Vakhnenko- Parkes equation. The obtaining soliton solutions of this equation are described many physical phenomena for weakly nonlinear surface and internal waves in a rotating ocean. Further, three-dimensional plots of the solutions such as solitons, singular solitons, bell type solitary wave i.e. non-topological solitons solutions and periodic solutions are also given to visualize the dynamics of the equation.
Application of the Exp-function method to the equal-width wave equation
International Nuclear Information System (INIS)
Biazar, J; Ayati, Z
2008-01-01
In this paper, the Exp-function method is used to find an exact solution of the equal-width wave (EW) equation. The method is straightforward and concise, and its applications are promising. It is shown that the Exp-function method, with the help of symbolic computation, provides a very effective and powerful mathematical tool for solving the EW equation.
Multiple periodic-soliton solutions of the (3+1)-dimensional generalised shallow water equation
Li, Ye-Zhou; Liu, Jian-Guo
2018-06-01
Based on the extended variable-coefficient homogeneous balance method and two new ansätz functions, we construct auto-Bäcklund transformation and multiple periodic-soliton solutions of (3 {+} 1)-dimensional generalised shallow water equations. Completely new periodic-soliton solutions including periodic cross-kink wave, periodic two-solitary wave and breather type of two-solitary wave are obtained. In addition, cross-kink three-soliton and cross-kink four-soliton solutions are derived. Furthermore, propagation characteristics and interactions of the obtained solutions are discussed and illustrated in figures.
Analysis and computation of the elastic wave equation with random coefficients
Motamed, Mohammad; Nobile, Fabio; Tempone, Raul
2015-01-01
We consider the stochastic initial-boundary value problem for the elastic wave equation with random coefficients and deterministic data. We propose a stochastic collocation method for computing statistical moments of the solution or statistics
Yu, Fajun
2015-03-01
We present the nonautonomous discrete bright soliton solutions and their interactions in the discrete Ablowitz-Ladik (DAL) equation with variable coefficients, which possesses complicated wave propagation in time and differs from the usual bright soliton waves. The differential-difference similarity transformation allows us to relate the discrete bright soliton solutions of the inhomogeneous DAL equation to the solutions of the homogeneous DAL equation. Propagation and interaction behaviors of the nonautonomous discrete solitons are analyzed through the one- and two-soliton solutions. We study the discrete snaking behaviors, parabolic behaviors, and interaction behaviors of the discrete solitons. In addition, the interaction management with free functions and dynamic behaviors of these solutions is investigated analytically, which have certain applications in electrical and optical systems.
Family of electrovac colliding wave solutions of Einstein's equations
International Nuclear Information System (INIS)
Li, W.; Ernst, F.J.
1989-01-01
Beginning with any colliding wave solution of the vacuum Einstein equations, a corresponding electrified colliding wave solution can be generated through the use of a transformation due to Harrison [J. Math. Phys. 9, 1744 (1968)]. The method, long employed in the context of stationary axisymmetric fields, is equally applicable to colliding wave solutions. Here it is applied to a large family of vacuum metrics derived by applying a generalized Ehlers transformation to solutions published recently by Ernst, Garcia, and Hauser (EGH) [J. Math. Phys. 28, 2155, 2951 (1987); 29, 681 (1988)]. Those EGH solutions were themselves a generalization of solutions first derived by Ferrari, Ibanez, and Bruni [Phys. Rev. D 36, 1053 (1987)]. Among the electrovac solutions that are obtained is a charged version of the Nutku--Halil [Phys. Rev. Lett. 39, 1379 (1977)] metric that possesses an arbitrary complex charge parameter
Ma, Li-Yuan; Ji, Jia-Liang; Xu, Zong-Wei; Zhu, Zuo-Nong
2018-03-01
We study a nonintegrable discrete nonlinear Schrödinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term. Project supported by the National Natural Science Foundation of China (Grant Nos. 11671255 and 11701510), the Ministry of Economy and Competitiveness of Spain (Grant No. MTM2016-80276-P (AEI/FEDER, EU)), and the China Postdoctoral Science Foundation (Grant No. 2017M621964).
Measuring the neutron star equation of state with gravitational wave observations
International Nuclear Information System (INIS)
Read, Jocelyn S.; Markakis, Charalampos; Creighton, Jolien D. E.; Friedman, John L.; Shibata, Masaru; Uryu, Koji
2009-01-01
We report the results of a first study that uses numerical simulations to estimate the accuracy with which one can use gravitational wave observations of double neutron-star inspiral to measure parameters of the neutron-star equation of state. The simulations use the evolution and initial-data codes of Shibata and Uryu to compute the last several orbits and the merger of neutron stars, with matter described by a parametrized equation of state. Previous work suggested the use of an effective cutoff frequency to place constraints on the equation of state. We find, however, that greater accuracy is obtained by measuring departures from the point-particle limit of the gravitational waveform produced during the late inspiral. As the stars approach their final plunge and merger, the gravitational wave phase accumulates more rapidly for smaller values of the neutron-star compactness (the ratio of the mass of the neutron-star to its radius). We estimate that realistic equations of state will lead to gravitational waveforms that are distinguishable from point-particle inspirals at an effective distance (the distance to an optimally oriented and located system that would produce an equivalent waveform amplitude) of 100 Mpc or less. As Lattimer and Prakash observed, neutron-star radius is closely tied to the pressure at density not far above nuclear. Our results suggest that broadband gravitational wave observations at frequencies between 500 and 1000 Hz will constrain this pressure, and we estimate the accuracy with which it can be measured. Related first estimates of radius measurability show that the radius can be determined to an accuracy of δR∼1 km at 100 Mpc.
Travelling wave solutions in a class of generalized Korteweg-de Vries equation
International Nuclear Information System (INIS)
Shen Jianwei; Xu Wei
2007-01-01
In this paper, we consider a new generalization of KdV equation u t = u x u l-2 + α[2u xxx u p + 4pu p-1 u x u xx + p(p - 1)u p-2 (u x ) 3 ] and investigate its bifurcation of travelling wave solutions. From the above analysis, we know that there exists compacton and cusp waves in the system. We explain the reason that these non-smooth travelling wave solution arise by using the bifurcation theory
Conservation Laws and Traveling Wave Solutions of a Generalized Nonlinear ZK-BBM Equation
Directory of Open Access Journals (Sweden)
Khadijo Rashid Adem
2014-01-01
Full Text Available We study a generalized two-dimensional nonlinear Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZK-BBM equation, which is in fact Benjamin-Bona-Mahony equation formulated in the ZK sense. Conservation laws for this equation are constructed by using the new conservation theorem due to Ibragimov and the multiplier method. Furthermore, traveling wave solutions are obtained by employing the (G'/G-expansion method.
Spiral waves are stable in discrete element models of two-dimensional homogeneous excitable media
Feldman, A. B.; Chernyak, Y. B.; Cohen, R. J.
1998-01-01
The spontaneous breakup of a single spiral wave of excitation into a turbulent wave pattern has been observed in both discrete element models and continuous reaction-diffusion models of spatially homogeneous 2D excitable media. These results have attracted considerable interest, since spiral breakup is thought to be an important mechanism of transition from the heart rhythm disturbance ventricular tachycardia to the fatal arrhythmia ventricular fibrillation. It is not known whether this process can occur in the absence of disease-induced spatial heterogeneity of the electrical properties of the ventricular tissue. Candidate mechanisms for spiral breakup in uniform 2D media have emerged, but the physical validity of the mechanisms and their applicability to myocardium require further scrutiny. In this letter, we examine the computer simulation results obtained in two discrete element models and show that the instability of each spiral is an artifact resulting from an unphysical dependence of wave speed on wave front curvature in the medium. We conclude that spiral breakup does not occur in these two models at the specified parameter values and that great care must be exercised in the representation of a continuous excitable medium via discrete elements.
Akbar, M Ali; Hj Mohd Ali, Norhashidah
2014-01-01
The exp(-Ф(η))-expansion method is an ascending method for obtaining exact and solitary wave solutions for nonlinear evolution equations. In this article, we implement the exp(-Ф(η))-expansion method to build solitary wave solutions to the fourth order Boussinesq equation. The procedure is simple, direct and useful with the help of computer algebra. By using this method, we obtain solitary wave solutions in terms of the hyperbolic functions, the trigonometric functions and elementary functions. The results show that the exp(-Ф(η))-expansion method is straightforward and effective mathematical tool for the treatment of nonlinear evolution equations in mathematical physics and engineering. 35C07; 35C08; 35P99.
Invariant Solutions for a Class of Perturbed Nonlinear Wave Equations
Directory of Open Access Journals (Sweden)
Waheed A. Ahmed
2017-11-01
Full Text Available Approximate symmetries of a class of perturbed nonlinear wave equations are computed using two newly-developed methods. Invariant solutions associated with the approximate symmetries are constructed for both methods. Symmetries and solutions are compared through discussing the advantages and disadvantages of each method.
Energy Technology Data Exchange (ETDEWEB)
Pinchedez, K
1999-06-01
Parallel computing meets the ever-increasing requirements for neutronic computer code speed and accuracy. In this work, two different approaches have been considered. We first parallelized the sequential algorithm used by the neutronics code CRONOS developed at the French Atomic Energy Commission. The algorithm computes the dominant eigenvalue associated with PN simplified transport equations by a mixed finite element method. Several parallel algorithms have been developed on distributed memory machines. The performances of the parallel algorithms have been studied experimentally by implementation on a T3D Cray and theoretically by complexity models. A comparison of various parallel algorithms has confirmed the chosen implementations. We next applied a domain sub-division technique to the two-group diffusion Eigen problem. In the modal synthesis-based method, the global spectrum is determined from the partial spectra associated with sub-domains. Then the Eigen problem is expanded on a family composed, on the one hand, from eigenfunctions associated with the sub-domains and, on the other hand, from functions corresponding to the contribution from the interface between the sub-domains. For a 2-D homogeneous core, this modal method has been validated and its accuracy has been measured. (author)
An acoustic eikonal equation for attenuating VTI media
Hao, Qi
2016-09-06
We present an acoustic eikonal equation governing the complex-valued travel time of P-waves in attenuating, transversely isotropic media with a vertical symmetry axis (VTI). This equation is based on the assumption that the Pwave complex-valued travel time is independent of the Swave velocity parameter v in Thomsen\\'s notation and the attenuation coefficient A in the Thomsen-type notation for attenuating VTI media. We combine perturbation theory and Shanks transform to develop practical approximations to the attenuating acoustic eikonal equation, capable of admitting analytical description of the attenuation in homogeneous media. For a horizontal, attenuating VTI layer, we also derive non-hyperbolic approximations for the real and imaginary parts of the complex-valued reflection travel time.
Hossen, Md. Belal; Roshid, Harun-Or; Ali, M. Zulfikar
2018-05-01
Under inquisition in this paper is a (2 + 1)-dimensional Breaking Soliton equation, which can describe various nonlinear scenarios in fluid dynamics. Using the Bell polynomials, some proficient auxiliary functions are offered to apparently construct its bilinear form and corresponding soliton solutions which are different from the previous literatures. Moreover, a direct method is used to construct its rogue wave and solitary wave solutions using particular auxiliary function with the assist of bilinear formalism. Finally, the interactions between solitary waves and rogue waves are offered with a complete derivation. These results enhance the variety of the dynamics of higher dimensional nonlinear wave fields related to mathematical physics and engineering.
Directory of Open Access Journals (Sweden)
Sachin Kumar
2012-10-01
Full Text Available Exact travelling wave solutions have been established for generalised sinh-Gordon andgeneralised (2+1 dimensional ZK-BBM equations by using GG expansion method whereG G( satisfies a second-order linear ordinary differential equation. The travelling wave solutionsare expressed by hyperbolic, trigonometric and rational functions.
TWO FERROMAGNETIC SPHERES IN HOMOGENEOUS MAGNETIC FIELD
Directory of Open Access Journals (Sweden)
Yury A. Krasnitsky
2018-01-01
Full Text Available The problem of two spherical conductors is studied quite in detail with bispherical coordinates usage and has numerous appendices in an electrostatics. The boundary-value problem about two ferromagnetic spheres enclosed on homogeneous and infinite environment in which the lack of spheres exists like homogeneous magnetic field is considered. The solution of Laplace's equation in the bispherical system of coordinates allows us to find the potential and field distribution in all spaces, including area between spheres. The boundary conditions in potential continuity and in ordinary density constituent of spheres surfaces induction flux are used. It is supposed that spheres are identical, and magnetic permeability of their material is expressed in >> 0. The problem about falling of electromagnetic plane wave on the system of two spheres, which possesses electrically small sizes, can be considered as quasistationary. The scalar potentials received as a result of Laplace's equation solution are represented by the series containing Legendre polynomials. The concept of two spheres system effective permeability is introduced. It is equal to the advantage in magnitude of magnetic induction flux vector through a certain system’s section arising due to its magnetic properties. Necessary ratios for the effective permeability referred to the central system’s section are obtained. Particularly, the results can be used during the analysis of ferroxcube core clearance, which influences on the magnetic antenna properties.
Extended common-image-point gathers for anisotropic wave-equation migration
Sava, Paul C.
2010-01-01
In regions characterized by complex subsurface structure, wave-equation depth migration is a powerful tool for accurately imaging the earth’s interior. The quality of the final image greatly depends on the quality of the model which includes anisotropy parameters (Gray et al., 2001). In particular, it is important to construct subsurface velocity models using techniques that are consistent with the methods used for imaging. Generally speaking, there are two possible strategies for velocity estimation from surface seismic data in the context of wavefield-based imaging (Sava et al., 2010). One possibility is to formulate an objective function in the data space, prior to migration, by matching the recorded data with simulated data. Techniques in this category are known by the name of waveform inversion. Another possibility is to formulate an objective function in the image space, after migration, by measuring and correcting image features that indicate model inaccuracies. Techniques in this category are known as wave-equation migration velocity analysis (MVA).
Differential Equation over Banach Algebra
Kleyn, Aleks
2018-01-01
In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.
THE EFFECTS OF WAVE ESCAPE ON FAST MAGNETOSONIC WAVE TURBULENCE IN SOLAR FLARES
International Nuclear Information System (INIS)
Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard
2012-01-01
One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ( f ast waves ) . In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term. We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region. We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.
Soliton on a cnoidal wave background in the coupled nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Shin, H J
2004-01-01
An application of the Darboux transformation on a cnoidal wave background in the coupled nonlinear Schroedinger equation gives a new solution which describes a soliton moving on a cnoidal wave. This is a generalized version of the previously known soliton solutions of dark-bright pair. Here a dark soliton resides on a cnoidal wave instead of on a constant background. It also exhibits a new type of soliton solution in a self-focusing medium, which describes a breakup of a generalized dark-bright pair into another generalized dark-bright pair and an 'oscillating' soliton. We calculate the shift of the crest of the cnoidal wave along a soliton and the moving direction of the soliton on a cnoidal wave
Integral representations of solutions of the wave equation based on relativistic wavelets
International Nuclear Information System (INIS)
Perel, Maria; Gorodnitskiy, Evgeny
2012-01-01
A representation of solutions of the wave equation with two spatial coordinates in terms of localized elementary ones is presented. Elementary solutions are constructed from four solutions with the help of transformations of the affine Poincaré group, i.e. with the help of translations, dilations in space and time and Lorentz transformations. The representation can be interpreted in terms of the initial-boundary value problem for the wave equation in a half-plane. It gives the solution as an integral representation of two types of solutions: propagating localized solutions running away from the boundary under different angles and packet-like surface waves running along the boundary and exponentially decreasing away from the boundary. Properties of elementary solutions are discussed. A numerical investigation of coefficients of the decomposition is carried out. An example of the decomposition of the field created by sources moving along a line with different speeds is considered, and the dependence of coefficients on speeds of sources is discussed. (paper)
Travelling wave solutions to the perturbed Π4 equation
International Nuclear Information System (INIS)
Geicke, J.
1985-01-01
Exact travelling wave solutions to the Π 4 equation, perturbed by a dissipative force and a constant external field η, are presented. For |η| 3 -λ 2 and λ 2 -λ 1 where λ 1 2 3 are the real roots of λ 3 -λ+η=O. The class with |v/ 3 -λ 1 . The stability of the solutions is discussed. (author) [pt
Angle-domain Migration Velocity Analysis using Wave-equation Reflection Traveltime Inversion
Zhang, Sanzong; Schuster, Gerard T.; Luo, Yi
2012-01-01
way as wave-equation transmission traveltime inversion. The residual movemout analysis in the angle-domain common image gathers provides a robust estimate of the depth residual which is converted to the reflection traveltime residual for the velocity
Wave-packet revival for the Schroedinger equation with position-dependent mass
International Nuclear Information System (INIS)
Schmidt, Alexandre G.M.
2006-01-01
We study the temporal evolution of solutions of 1D Schroedinger equation with position-dependent mass inside an infinite well. Revival of wave-packet is shown to exist and partial revivals are different from the usual ones
Macías-Díaz, J. E.
2018-06-01
In this work, we investigate numerically a model governed by a multidimensional nonlinear wave equation with damping and fractional diffusion. The governing partial differential equation considers the presence of Riesz space-fractional derivatives of orders in (1, 2], and homogeneous Dirichlet boundary data are imposed on a closed and bounded spatial domain. The model under investigation possesses an energy function which is preserved in the undamped regime. In the damped case, we establish the property of energy dissipation of the model using arguments from functional analysis. Motivated by these results, we propose an explicit finite-difference discretization of our fractional model based on the use of fractional centered differences. Associated to our discrete model, we also propose discretizations of the energy quantities. We establish that the discrete energy is conserved in the undamped regime, and that it dissipates in the damped scenario. Among the most important numerical features of our scheme, we show that the method has a consistency of second order, that it is stable and that it has a quadratic order of convergence. Some one- and two-dimensional simulations are shown in this work to illustrate the fact that the technique is capable of preserving the discrete energy in the undamped regime. For the sake of convenience, we provide a Matlab implementation of our method for the one-dimensional scenario.
Exact travelling wave solutions of the Whitham-Broer-Kaup and Broer-Kaup-Kupershmidt equations
International Nuclear Information System (INIS)
Xu Guiqiong; Li Zhibin
2005-01-01
In this paper, an interesting fact is found that the auxiliary equation method is also applicable to a coupled system of two different equations involving both even-order and odd-order partial derivative terms. Furthermore, singular travelling wave solutions can also be obtained by considering other types of exact solutions of auxiliary equation. The Whitham-Broer-Kaup and the (2 + 1)-dimensional Broer-Kaup-Kupershmidt equations are chosen as examples to illustrate the effectiveness of the auxiliary equation method
International Nuclear Information System (INIS)
Roy Choudhury, S.
2007-01-01
The Ostrovsky equation is an important canonical model for the unidirectional propagation of weakly nonlinear long surface and internal waves in a rotating, inviscid and incompressible fluid. Limited functional analytic results exist for the occurrence of one family of solitary-wave solutions of this equation, as well as their approach to the well-known solitons of the famous Korteweg-de Vries equation in the limit as the rotation becomes vanishingly small. Since solitary-wave solutions often play a central role in the long-time evolution of an initial disturbance, we consider such solutions here (via the normal form approach) within the framework of reversible systems theory. Besides confirming the existence of the known family of solitary waves and its reduction to the KdV limit, we find a second family of multihumped (or N-pulse) solutions, as well as a continuum of delocalized solitary waves (or homoclinics to small-amplitude periodic orbits). On isolated curves in the relevant parameter region, the delocalized waves reduce to genuine embedded solitons. The second and third families of solutions occur in regions of parameter space distinct from the known solitary-wave solutions and are thus entirely new. Directions for future work are also mentioned
Delay-induced wave instabilities in single-species reaction-diffusion systems
Otto, Andereas; Wang, Jian; Radons, Günter
2017-11-01
The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two) components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period is equal to the period of the variable delay.
Diffractons: Solitary Waves Created by Diffraction in Periodic Media
Ketcheson, David I.
2015-03-31
A new class of solitary waves arises in the solution of nonlinear wave equations with constant impedance and no dispersive terms. These solitary waves depend on a balance between nonlinearity and a dispersion-like effect due to spatial variation in the sound speed of the medium. A high-order homogenized model confirms this effective dispersive behavior, and its solutions agree well with those obtained by direct simulation of the variable-coefficient system. These waves are observed to be long-time stable, globally attracting solutions that arise in general as solutions to nonlinear wave problems with periodically varying sound speed. They share some properties with known classes of solitary waves but possess important differences as well.
Directory of Open Access Journals (Sweden)
Letlhogonolo Daddy Moleleki
2014-01-01
Full Text Available We analyze the (3+1-dimensional Boussinesq equation, which has applications in fluid mechanics. We find exact solutions of the (3+1-dimensional Boussinesq equation by utilizing the Lie symmetry method along with the simplest equation method. The solutions obtained are traveling wave solutions. Moreover, we construct the conservation laws of the (3+1-dimensional Boussinesq equation using the new conservation theorem, which is due to Ibragimov.
Surface wave propagation in a double liquid layer over a liquid ...
Indian Academy of Sciences (India)
The frequency equation is derived for surface waves in a liquidsaturated porous half-space supporting a double layer, that of inhomogeneous and homogeneous liquids. Asymptotic approximations of Bessel functions are used for long and short wavelength cases. Certain other problems are discussed as special cases.
Sun, Wen-Rong; Wang, Lei
2018-01-01
To show the existence and properties of matter rogue waves in an F =1 spinor Bose-Einstein condensate (BEC), we work on the three-component Gross-Pitaevskii (GP) equations. Via the Darboux-dressing transformation, we obtain a family of rational solutions describing the extreme events, i.e. rogue waves. This family of solutions includes bright-dark-bright and bright-bright-bright rogue waves. The algebraic construction depends on Lax matrices and their Jordan form. The conditions for the existence of rogue wave solutions in an F =1 spinor BEC are discussed. For the three-component GP equations, if there is modulation instability, it is of baseband type only, confirming our analytic conditions. The energy transfers between the waves are discussed.
Interactions of Soliton Waves for a Generalized Discrete KdV Equation
International Nuclear Information System (INIS)
Zhou Tong; Zhu Zuo-Nong
2017-01-01
It is well known that soliton interactions in discrete integrable systems often possess new properties which are different from the continuous integrable systems, e.g., we found that there are such discrete solitons in a semidiscrete integrable system (the time variable is continuous and the space one is discrete) that the shorter solitary waves travel faster than the taller ones. Very recently, this kind of soliton was also observed in a full discrete generalized KdV system (the both of time and space variables are discrete) introduced by Kanki et al. In this paper, for the generalized discrete KdV (gdKdV) equation, we describe its richer structures of one-soliton solutions. The interactions of two-soliton waves to the gdKdV equation are studied. Some new features of the soliton interactions are proposed by rigorous theoretical analysis. (paper)
Quantum aspects of photon propagation in transparent infinite homogeneous media
International Nuclear Information System (INIS)
Nistor, Rudolf Emil
2008-01-01
The energy balance photon - medium, during the light travelling, through a specific continuous interaction between a single photon and a homogeneous, infinite medium (fully ionized plasma or a transparent dielectric), was studied. We obtained a wave equation for the interacting photon. To explain the interaction in quantum terms, we assume a certain photon - medium interaction energy, macroscopically materialized by the existence of the refractive index. It turns out that the interaction is of a scalar type, for vanishing rest mass and of spin 1 particle submitted both to scalar and vectorial fields. We found out an expression of the propagation equation of the photon through a non-dissipative medium, using a coupling between the photon spin S vector and the scalar interaction field ( E S vector,H S vector). (authors)
Modified wave operators for nonlinear Schrodinger equations in one and two dimensions
Directory of Open Access Journals (Sweden)
Nakao Hayashi
2004-04-01
Full Text Available We study the asymptotic behavior of solutions, in particular the scattering theory, for the nonlinear Schr"{o}dinger equations with cubic and quadratic nonlinearities in one or two space dimensions. The nonlinearities are summation of gauge invariant term and non-gauge invariant terms. The scattering problem of these equations belongs to the long range case. We prove the existence of the modified wave operators to those equations for small final data. Our result is an improvement of the previous work [13
Alam, Md Nur; Akbar, M Ali; Roshid, Harun-Or-
2014-01-01
Exact solutions of nonlinear evolution equations (NLEEs) play a vital role to reveal the internal mechanism of complex physical phenomena. In this work, the exact traveling wave solutions of the Boussinesq equation is studied by using the new generalized (G'/G)-expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in terms of the hyperbolic, trigonometric, and rational functions. It is shown that the new approach of generalized (G'/G)-expansion method is a powerful and concise mathematical tool for solving nonlinear partial differential equations in mathematical physics and engineering. 05.45.Yv, 02.30.Jr, 02.30.Ik.
Seismic wave propagation in non-homogeneous elastic media by boundary elements
Manolis, George D; Rangelov, Tsviatko V; Wuttke, Frank
2017-01-01
This book focuses on the mathematical potential and computational efficiency of the Boundary Element Method (BEM) for modeling seismic wave propagation in either continuous or discrete inhomogeneous elastic/viscoelastic, isotropic/anisotropic media containing multiple cavities, cracks, inclusions and surface topography. BEM models may take into account the entire seismic wave path from the seismic source through the geological deposits all the way up to the local site under consideration. The general presentation of the theoretical basis of elastodynamics for inhomogeneous and heterogeneous continua in the first part is followed by the analytical derivation of fundamental solutions and Green's functions for the governing field equations by the usage of Fourier and Radon transforms. The numerical implementation of the BEM is for antiplane in the second part as well as for plane strain boundary value problems in the third part. Verification studies and parametric analysis appear throughout the book, as do both ...
Chirped self-similar solutions of a generalized nonlinear Schroedinger equation
Energy Technology Data Exchange (ETDEWEB)
Fei Jin-Xi [Lishui Univ., Zhejiang (China). College of Mathematics and Physics; Zheng Chun-Long [Shaoguan Univ., Guangdong (China). School of Physics and Electromechanical Engineering; Shanghai Univ. (China). Shanghai Inst. of Applied Mathematics and Mechanics
2011-01-15
An improved homogeneous balance principle and an F-expansion technique are used to construct exact chirped self-similar solutions to the generalized nonlinear Schroedinger equation with distributed dispersion, nonlinearity, and gain coefficients. Such solutions exist under certain conditions and impose constraints on the functions describing dispersion, nonlinearity, and distributed gain function. The results show that the chirp function is related only to the dispersion coefficient, however, it affects all of the system parameters, which influence the form of the wave amplitude. As few characteristic examples and some simple chirped self-similar waves are presented. (orig.)
Daivis, Peter J; Todd, B D
2006-05-21
We present a simple and direct derivation of the SLLOD equations of motion for molecular simulations of general homogeneous flows. We show that these equations of motion (1) generate the correct particle trajectories, (2) conserve the total thermal momentum without requiring the center of mass to be located at the origin, and (3) exactly generate the required energy dissipation. These equations of motion are compared with the g-SLLOD and p-SLLOD equations of motion, which are found to be deficient. Claims that the SLLOD equations of motion are incorrect for elongational flows are critically examined and found to be invalid. It is confirmed that the SLLOD equations are, in general, non-Hamiltonian. We derive a Hamiltonian from which they can be obtained in the special case of a symmetric velocity gradient tensor. In this case, it is possible to perform a canonical transformation that results in the well-known DOLLS tensor Hamiltonian.
Poincare group and relativistic wave equations in 2+1 dimensions
Energy Technology Data Exchange (ETDEWEB)
Gitman, Dmitri M. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP (Brazil); Shelepin, A.L. [Moscow Institute of Radio Engenering, Electronics and Automation, Moscow (Russian Federation)
1997-09-07
Using the generalized regular representation, an explicit construction of the unitary irreducible representations of the (2+1)-Poincare group is presented. A detailed description of the angular momentum and spin in 2+1 dimensions is given. On this base the relativistic wave equations for all spins (including fractional) are constructed. (author)
Phenomenological Derivation of the Schrödinger Equation
Directory of Open Access Journals (Sweden)
Ogiba F.
2011-10-01
Full Text Available The Schrödinger equation is derived classically assuming that particles present local random spatial fluctuations compatible with the presence of the zero-point field. With- out specifying the forces arising from this permanent matter-field interaction but ex- ploring its fundamental properties (homogeneity, isotropy and random aspect to justify the emergence of the continuity equation in one-particle context, these fluctuations are described in terms of the probability density. Specifically, the starting point is the as- sumption that the local activities, which turn the path followed by the particle totally unpredictable, must be associated with an energy proportional to @ P =@ t . The polar form of the wave function, which connects the obtained classical equations with the corre- sponding quantum equation, emerges as a by-product of the approach.
International Nuclear Information System (INIS)
Radha, R; Kumar, C Senthil; Lakshmanan, M; Gilson, C R
2009-01-01
In this communication, we investigate the two-component long-wave-short-wave resonance interaction equation and show that it admits the Painleve property. We then suitably exploit the recently developed truncated Painleve approach to generate exponentially localized solutions for the short-wave components S (1) and S (2) while the long wave L admits a line soliton only. The exponentially localized solutions driving the short waves S (1) and S (2) in the y-direction are endowed with different energies (intensities) and are called 'multimode dromions'. We also observe that the multimode dromions suffer from intramodal inelastic collision while the existence of a firewall across the modes prevents the switching of energy between the modes. (fast track communication)
Exact traveling wave solutions for a new nonlinear heat transfer equation
Directory of Open Access Journals (Sweden)
Gao Feng
2017-01-01
Full Text Available In this paper, we propose a new non-linear partial differential equation to de-scribe the heat transfer problems at the extreme excess temperatures. Its exact traveling wave solutions are obtained by using Cornejo-Perez and Rosu method.
Directory of Open Access Journals (Sweden)
Tarikul Islam
2018-03-01
Full Text Available In this article, the analytical solutions to the space-time fractional foam drainage equation and the space-time fractional symmetric regularized long wave (SRLW equation are successfully examined by the recently established rational (G′/G-expansion method. The suggested equations are reduced into the nonlinear ordinary differential equations with the aid of the fractional complex transform. Consequently, the theories of the ordinary differential equations are implemented effectively. Three types closed form traveling wave solutions, such as hyperbolic function, trigonometric function and rational, are constructed by using the suggested method in the sense of conformable fractional derivative. The obtained solutions might be significant to analyze the depth and spacing of parallel subsurface drain and small-amplitude long wave on the surface of the water in a channel. It is observed that the performance of the rational (G′/G-expansion method is reliable and will be used to establish new general closed form solutions for any other NPDEs of fractional order.
Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet
2017-11-01
In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.
Ak, Turgut; Aydemir, Tugba; Saha, Asit; Kara, Abdul Hamid
2018-06-01
Propagation of nonlinear shock waves for the generalised Oskolkov equation and dynamic motions of the perturbed Oskolkov equation are investigated. Employing the unified method, a collection of exact shock wave solutions for the generalised Oskolkov equations is presented. Collocation finite element method is applied to the generalised Oskolkov equation for checking the accuracy of the proposed method by two test problems including the motion of shock wave and evolution of waves with Gaussian and undular bore initial conditions. Considering an external periodic perturbation, the dynamic motions of the perturbed generalised Oskolkov equation are studied depending on the system parameters with the help of phase portrait and time series plot. The perturbed generalised Oskolkov equation exhibits period-3, quasiperiodic and chaotic motions for some special values of the system parameters, whereas the generalised Oskolkov equation presents shock waves in the absence of external periodic perturbation.
Degenerate four-wave mixing in a resonant homogeneously broadened system
International Nuclear Information System (INIS)
Lind, R.C.; Steel, D.G.
1979-01-01
Detailed measurements have been made of degenerate four-wave mixing (DFWM) in a resonant homogeneously broadened gas. The measurements were performed in SF 6 using a CO 2 laser operated on the 10.4-μm branch. The experimental results were compared to a two-level theory for a resonant saturable absorber developed by Abrams and Lind. The measured value of 7% reflectivity on the P(20) line was in excellent agreement with Abrams and Lind when corrected for thermal motion. A peak reflectivity of 38% was observed for off-resonant operation on the P(8) line. In addition to the usual two-level nonlinear response, discussion and measurement of the coherent three-level nonlinearity is also presented. A two-photon contribution in SF 6 using the P(16) line of CO 2 equals the one-photon response. Initial observations of coherent propagation effects are also presented
Directory of Open Access Journals (Sweden)
Rahmatullah
2018-03-01
Full Text Available We have computed new exact traveling wave solutions, including complex solutions of fractional order Boussinesq-Like equations, occurring in physical sciences and engineering, by applying Exp-function method. The method is blended with fractional complex transformation and modified Riemann-Liouville fractional order operator. Our obtained solutions are verified by substituting back into their corresponding equations. To the best of our knowledge, no other technique has been reported to cope with the said fractional order nonlinear problems combined with variety of exact solutions. Graphically, fractional order solution curves are shown to be strongly related to each other and most importantly, tend to fixate on their integer order solution curve. Our solutions comprise high frequencies and very small amplitude of the wave responses. Keywords: Exp-function method, New exact traveling wave solutions, Modified Riemann-Liouville derivative, Fractional complex transformation, Fractional order Boussinesq-like equations, Symbolic computation
Surface wave propagation in a double liquid layer over a liquid ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Abstract. The frequency equation is derived for surface waves in a liquid- saturated porous half-space supporting a double layer, that of inhomogeneous and homogeneous liquids. Asymptotic approximations of Bessel functions are used for long and short wavelength cases. Certain other problems are discussed as spe-.
Electromagnetic wave scattering by many small particles
International Nuclear Information System (INIS)
Ramm, A.G.
2007-01-01
Scattering of electromagnetic waves by many small particles of arbitrary shapes is reduced rigorously to solving linear algebraic system of equations bypassing the usual usage of integral equations. The matrix elements of this linear algebraic system have physical meaning. They are expressed in terms of the electric and magnetic polarizability tensors. Analytical formulas are given for calculation of these tensors with any desired accuracy for homogeneous bodies of arbitrary shapes. An idea to create a 'smart' material by embedding many small particles in a given region is formulated
Kiselev, A
2003-01-01
Two new families of exact solutions of the wave equation u sub x sub x + u sub y sub y + u sub z sub z - c sup - sup 2 u sub t sub t = 0 generalizing Bessel-Gauss pulses and Bateman-Hillion relatively undistorted progressive waves, respectively are presented. In each of these families new simple solutions describing localized wave propagation are found. The approach is based on a kind of separation of variables. (letter to the editor)
Energy Technology Data Exchange (ETDEWEB)
Lo, W.-C.; Sposito, G.; Majer, E.
2007-02-01
An analytical theory is presented for the low-frequency behavior of dilatational waves propagating through a homogeneous elastic porous medium containing two immiscible fluids. The theory is based on the Berryman-Thigpen-Chin (BTC) model, in which capillary pressure effects are neglected. We show that the BTC model equations in the frequency domain can be transformed, at sufficiently low frequencies, into a dissipative wave equation (telegraph equation) and a propagating wave equation in the time domain. These partial differential equations describe two independent modes of dilatational wave motion that are analogous to the Biot fast and slow compressional waves in a single-fluid system. The equations can be solved analytically under a variety of initial and boundary conditions. The stipulation of 'low frequency' underlying the derivation of our equations in the time domain is shown to require that the excitation frequency of wave motions be much smaller than a critical frequency. This frequency is shown to be the inverse of an intrinsic time scale that depends on an effective kinematic shear viscosity of the interstitial fluids and the intrinsic permeability of the porous medium. Numerical calculations indicate that the critical frequency in both unconsolidated and consolidated materials containing water and a nonaqueous phase liquid ranges typically from kHz to MHz. Thus engineering problems involving the dynamic response of an unsaturated porous medium to low excitation frequencies (e.g. seismic wave stimulation) should be accurately modeled by our equations after suitable initial and boundary conditions are imposed.
Khusnutdinova, K. R.; Stepanyants, Y. A.; Tranter, M. R.
2018-02-01
We study solitary wave solutions of the fifth-order Korteweg-de Vries equation which contains, besides the traditional quadratic nonlinearity and third-order dispersion, additional terms including cubic nonlinearity and fifth order linear dispersion, as well as two nonlinear dispersive terms. An exact solitary wave solution to this equation is derived, and the dependence of its amplitude, width, and speed on the parameters of the governing equation is studied. It is shown that the derived solution can represent either an embedded or regular soliton depending on the equation parameters. The nonlinear dispersive terms can drastically influence the existence of solitary waves, their nature (regular or embedded), profile, polarity, and stability with respect to small perturbations. We show, in particular, that in some cases embedded solitons can be stable even with respect to interactions with regular solitons. The results obtained are applicable to surface and internal waves in fluids, as well as to waves in other media (plasma, solid waveguides, elastic media with microstructure, etc.).
Asinari, Pietro
2010-10-01
The homogeneous isotropic Boltzmann equation (HIBE) is a fundamental dynamic model for many applications in thermodynamics, econophysics and sociodynamics. Despite recent hardware improvements, the solution of the Boltzmann equation remains extremely challenging from the computational point of view, in particular by deterministic methods (free of stochastic noise). This work aims to improve a deterministic direct method recently proposed [V.V. Aristov, Kluwer Academic Publishers, 2001] for solving the HIBE with a generic collisional kernel and, in particular, for taking care of the late dynamics of the relaxation towards the equilibrium. Essentially (a) the original problem is reformulated in terms of particle kinetic energy (exact particle number and energy conservation during microscopic collisions) and (b) the computation of the relaxation rates is improved by the DVM-like correction, where DVM stands for Discrete Velocity Model (ensuring that the macroscopic conservation laws are exactly satisfied). Both these corrections make possible to derive very accurate reference solutions for this test case. Moreover this work aims to distribute an open-source program (called HOMISBOLTZ), which can be redistributed and/or modified for dealing with different applications, under the terms of the GNU General Public License. The program has been purposely designed in order to be minimal, not only with regards to the reduced number of lines (less than 1000), but also with regards to the coding style (as simple as possible). Program summaryProgram title: HOMISBOLTZ Catalogue identifier: AEGN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 23 340 No. of bytes in distributed program, including test data, etc.: 7 635 236 Distribution format: tar
Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar
2018-06-01
The Equal-Width and Modified Equal-Width equations are used as a model in partial differential equations for the simulation of one-dimensional wave transmission in nonlinear media with dispersion processes. In this article we have employed extend simple equation method and the exp(-varphi(ξ)) expansion method to construct the exact traveling wave solutions of equal width and modified equal width equations. The obtained results are novel and have numerous applications in current areas of research in mathematical physics. It is exposed that our method, with the help of symbolic computation, provides a effective and powerful mathematical tool for solving different kind nonlinear wave problems.
International Nuclear Information System (INIS)
Moutsopoulos, George
2013-01-01
We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre–Petrov types and discuss the warped de Sitter spacetime. (paper)
Moutsopoulos, George
2013-06-01
We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre-Petrov types and discuss the warped de Sitter spacetime.
Global existence and decay of solutions of a nonlinear system of wave equations
Said-Houari, Belkacem
2012-01-01
This work is concerned with a system of two wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we show that our problem has a unique local solution. Also, we prove that, for some restrictions on the initial data, the rate of decay of the total energy is exponential or polynomial depending on the exponents of the damping terms in both equations.
Global existence and decay of solutions of a nonlinear system of wave equations
Said-Houari, Belkacem
2012-03-01
This work is concerned with a system of two wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we show that our problem has a unique local solution. Also, we prove that, for some restrictions on the initial data, the rate of decay of the total energy is exponential or polynomial depending on the exponents of the damping terms in both equations.
Shock-wave structure based on the Navier-Stokes-Fourier equations
Uribe, F. J.; Velasco, R. M.
2018-04-01
We use the Navier-Stokes-Fourier constitutive equations to study plane shock waves in dilute gases. It is shown that the experimental information on the normalized density profiles can be fit by using the so-called soft sphere model, in which the viscosity and thermal conductivity are proportional to a power of the temperature.
Integrability of an extended (2+1)-dimensional shallow water wave equation with Bell polynomials
International Nuclear Information System (INIS)
Wang Yun-Hu; Chen Yong
2013-01-01
We investigate the extended (2+1)-dimensional shallow water wave equation. The binary Bell polynomials are used to construct bilinear equation, bilinear Bäcklund transformation, Lax pair, and Darboux covariant Lax pair for this equation. Moreover, the infinite conservation laws of this equation are found by using its Lax pair. All conserved densities and fluxes are given with explicit recursion formulas. The N-soliton solutions are also presented by means of the Hirota bilinear method. (general)
International Nuclear Information System (INIS)
Sandev, D. Trivche
2010-01-01
The fractional calculus basis, Mittag-Leffler functions, various relaxation-oscillation and diffusion-wave fractional order equation and systems of fractional order equations are considered in this thesis. To solve these fractional order equations analytical methods, such as the Laplace transform method and method of separation of variables are employed. Some applications of the fractional calculus are considered, particularly physical system with anomalous diffusive behavior. (Author)
Local Fractional Series Expansion Method for Solving Wave and Diffusion Equations on Cantor Sets
Directory of Open Access Journals (Sweden)
Ai-Min Yang
2013-01-01
Full Text Available We proposed a local fractional series expansion method to solve the wave and diffusion equations on Cantor sets. Some examples are given to illustrate the efficiency and accuracy of the proposed method to obtain analytical solutions to differential equations within the local fractional derivatives.
Nonlinear metric perturbation enhancement of primordial gravitational waves.
Bastero-Gil, M; Macias-Pérez, J; Santos, D
2010-08-20
We present the evolution of the full set of Einstein equations during preheating after inflation. We study a generic supersymmetric model of hybrid inflation, integrating fields and metric fluctuations in a 3-dimensional lattice. We take initial conditions consistent with Einstein's constraint equations. The induced preheating of the metric fluctuations is not large enough to backreact onto the fields, but preheating of the scalar modes does affect the evolution of vector and tensor modes. In particular, they do enhance the induced stochastic background of gravitational waves during preheating, giving an energy density in general an order of magnitude larger than that obtained by evolving the tensor fluctuations in an homogeneous background metric. This enhancement can improve the expectations for detection by planned gravitational wave observatories.
On a class of nonlocal wave equations from applications
Beyer, Horst Reinhard; Aksoylu, Burak; Celiker, Fatih
2016-06-01
We study equations from the area of peridynamics, which is a nonlocal extension of elasticity. The governing equations form a system of nonlocal wave equations. We take a novel approach by applying operator theory methods in a systematic way. On the unbounded domain ℝn, we present three main results. As main result 1, we find that the governing operator is a bounded function of the governing operator of classical elasticity. As main result 2, a consequence of main result 1, we prove that the peridynamic solutions strongly converge to the classical solutions by utilizing, for the first time, strong resolvent convergence. In addition, main result 1 allows us to incorporate local boundary conditions, in particular, into peridynamics. This avenue of research is developed in companion papers, providing a remedy for boundary effects. As main result 3, employing spherical Bessel functions, we give a new practical series representation of the solution which allows straightforward numerical treatment with symbolic computation.
Orbital stability of periodic traveling-wave solutions for the log-KdV equation
Natali, Fábio; Pastor, Ademir; Cristófani, Fabrício
2017-09-01
In this paper we establish the orbital stability of periodic waves related to the logarithmic Korteweg-de Vries equation. Our motivation is inspired in the recent work [3], in which the authors established the well-posedness and the linear stability of Gaussian solitary waves. By using the approach put forward recently in [20] to construct a smooth branch of periodic waves as well as to get the spectral properties of the associated linearized operator, we apply the abstract theories in [13] and [25] to deduce the orbital stability of the periodic traveling waves in the energy space.
Stability of Planar Rarefaction Wave to 3D Full Compressible Navier-Stokes Equations
Li, Lin-an; Wang, Teng; Wang, Yi
2018-05-01
We prove time-asymptotic stability toward the planar rarefaction wave for the three-dimensional full, compressible Navier-Stokes equations with the heat-conductivities in an infinite long flat nozzle domain {R × T^2} . Compared with one-dimensional case, the proof here is based on our new observations on the cancellations on the flux terms and viscous terms due to the underlying wave structures, which are crucial for overcoming the difficulties due to the wave propagation in the transverse directions x 2 and x 3 and its interactions with the planar rarefaction wave in x 1 direction.
Asymmetric systems described by a pair of local covariant wave equations
Energy Technology Data Exchange (ETDEWEB)
Mallik, S [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik
1979-07-16
A class of asymmetric solutions of the integrability conditions for systems obeying the Leutwyler-Stern pair of covariant wave equations is obtained. The class of unequal-mass systems described by these solutions does not embed the particle-antiparticle system behaving as a relativistic harmonic oscillator.
A second stage homogenization method
International Nuclear Information System (INIS)
Makai, M.
1981-01-01
A second homogenization is needed before the diffusion calculation of the core of large reactors. Such a second stage homogenization is outlined here. Our starting point is the Floquet theorem for it states that the diffusion equation for a periodic core always has a particular solution of the form esup(j)sup(B)sup(x) u (x). It is pointed out that the perturbation series expansion of function u can be derived by solving eigenvalue problems and the eigenvalues serve to define homogenized cross sections. With the help of these eigenvalues a homogenized diffusion equation can be derived the solution of which is cos Bx, the macroflux. It is shown that the flux can be expressed as a series of buckling. The leading term in this series is the well known Wigner-Seitz formula. Finally three examples are given: periodic absorption, a cell with an absorber pin in the cell centre, and a cell of three regions. (orig.)
Diaz, Manuel A.; Solovchuk, Maxim A.; Sheu, Tony W. H.
2018-06-01
A nonlinear system of partial differential equations capable of describing the nonlinear propagation and attenuation of finite amplitude perturbations in thermoviscous media is presented. This system constitutes a full nonlinear wave model that has been formulated in the conservation form. Initially, this model is investigated analytically in the inviscid limit where it has been found that the resulting flux function fulfills the Lax-Wendroff theorem, and the scheme can match the solutions of the Westervelt and Burgers equations numerically. Here, high-order numerical descriptions of strongly nonlinear wave propagations become of great interest. For that matter we consider finite difference formulations of the weighted essentially non-oscillatory (WENO) schemes associated with explicit strong stability preserving Runge-Kutta (SSP-RK) time integration methods. Although this strategy is known to be computationally demanding, it is found to be effective when implemented to be solved in graphical processing units (GPUs). As we consider wave propagations in unbounded domains, perfectly matching layers (PML) have been also considered in this work. The proposed system model is validated and illustrated by using one- and two-dimensional benchmark test cases proposed in the literature for nonlinear acoustic propagation in homogeneous thermoviscous media.
Controllability for a Wave Equation with Moving Boundary
Directory of Open Access Journals (Sweden)
Lizhi Cui
2014-01-01
Full Text Available We investigate the controllability for a one-dimensional wave equation in domains with moving boundary. This model characterizes small vibrations of a stretched elastic string when one of the two endpoints varies. When the speed of the moving endpoint is less than 1-1/e, by Hilbert uniqueness method, sidewise energy estimates method, and multiplier method, we get partial Dirichlet boundary controllability. Moreover, we will give a sharper estimate on controllability time that only depends on the speed of the moving endpoint.
Stabilization of the Wave Equation with Boundary Time-Varying Delay
Directory of Open Access Journals (Sweden)
Hao Li
2014-01-01
Full Text Available We study the stabilization of the wave equation with variable coefficients in a bounded domain and a time-varying delay term in the time-varying, weakly nonlinear boundary feedbacks. By the Riemannian geometry methods and a suitable assumption of nonlinearity, we obtain the uniform decay of the energy of the closed loop system.
A stochastic collocation method for the second order wave equation with a discontinuous random speed
Motamed, Mohammad; Nobile, Fabio; Tempone, Raul
2012-01-01
In this paper we propose and analyze a stochastic collocation method for solving the second order wave equation with a random wave speed and subjected to deterministic boundary and initial conditions. The speed is piecewise smooth in the physical