Directory of Open Access Journals (Sweden)
Chifu E. N.
2009-07-01
Full Text Available General Relativistic metric tensors for gravitational fields exterior to homogeneous spherical mass distributions rotating with constant angular velocity about a fixed di- ameter are constructed. The coeffcients of affine connection for the gravitational field are used to derive equations of motion for test particles. The laws of conservation of energy and angular momentum are deduced using the generalized Lagrangian. The law of conservation of angular momentum is found to be equal to that in Schwarzschild’s gravitational field. The planetary equation of motion and the equation of motion for a photon in the vicinity of the rotating spherical mass distribution have rotational terms not found in Schwarzschild’s field.
Gravitational Metric Tensor Exterior to Rotating Homogeneous ...
African Journals Online (AJOL)
... ω is constructed. The constructed metric tensors in this gravitational field have seven non-zero distinct components.The Lagrangian for this gravitational field is constructed. It is used to derive Einstein's planetary equation of motion and photon equation of motion in the vicinity of the rotating homogeneous spherical mass.
Homogeneous cosmological models in Yang's gravitation theory
Fennelly, A. J.; Pavelle, R.
1979-01-01
We present a dynamic, spatially homogeneous solution of Yang's pure space gravitational field equations which is non-Einsteinian. The predictions of this cosmological model seem to be at variance with observations.
G3-homogeneous gravitational instantons
Energy Technology Data Exchange (ETDEWEB)
Bourliot, F; Petropoulos, P M [Centre de Physique Theorique, CNRS-UMR 7644, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Estes, J [Laboratoire de Physique Theorique, CNRS-UMR 8549, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris cedex 05 (France); Spindel, Ph, E-mail: bourliot@cpht.polytechnique.f, E-mail: estes@cpht.polytechnique.f, E-mail: marios@cpht.polytechnique.f, E-mail: philippe.spindel@umons.ac.b [Service de Mecanique et Gravitation, Universite de Mons, 20 Place du Parc, 7000 Mons, Belgique (Belgium)
2010-05-21
We provide an exhaustive classification of self-dual four-dimensional gravitational instantons foliated with three-dimensional homogeneous spaces, i.e. homogeneous self-dual metrics on four-dimensional Euclidean spaces admitting a Bianchi simply transitive isometry group. The classification pattern is based on the algebra homomorphisms relating the Bianchi group and the duality group SO(3). New and general solutions are found for Bianchi III.
G3-homogeneous gravitational instantons
Bourliot, F; Petropoulos, P M; Spindel, Ph
2009-01-01
We provide an exhaustive classification of self-dual four-dimensional gravitational instantons foliated with three-dimensional homogeneous spaces, i.e. homogeneous self-dual metrics on four-dimensional Euclidean spaces admitting a Bianchi simply transitive isometry group. The classification pattern is based on the algebra homomorphisms relating the Bianchi group and the duality group SO(3). New and general solutions are found for Bianchi III.
Orbits in Homogeneous Oblate Spheroidal Gravitational Space-Time
Directory of Open Access Journals (Sweden)
Chifu E. N.
2009-07-01
Full Text Available The generalized Lagrangian in general relativistic homogeneous oblate spheroidal gravitational fields is constructed and used to study orbits exterior to homogenous oblate spheroids. Expressions for the conservation of energy and angular momentum for this gravitational field are obtained. The planetary equation of motion and the equation of motion of a photon in the vicinity of an oblate spheroid are derived. These equations have additional terms not found in Schwarzschild's space time.
Directory of Open Access Journals (Sweden)
Chifu E. N.
2009-10-01
Full Text Available In this article, we formulate solutions to Einstein's geometrical field equations derived using our new approach. Our field equations exterior and interior to the mass distribution have only one unknown function determined by the mass or pressure distribution. Our obtained solutions yield the unknown function as generalizations of Newton's gravitational scalar potential. Thus, our solution puts Einstein's geometrical theory of gravity on same footing with Newton's dynamical theory; with the dependence of the field on one and only one unknown function comparable to Newton's gravitational scalar potential. Our results in this article are of much significance as the Sun and planets in the solar system are known to be more precisely oblate spheroidal in geometry. The oblate spheroidal geometries of these bodies have effects on their gravitational fields and the motions of test particles and photons in these fields.
Einstein-Cartan gravitational collapse of a homogeneous Weyssenhoff fluid
Ziaie, Amir Hadi; Moniz, Paulo Vargas; Ranjbar, Arash; Sepangi, Hamid Reza
2013-01-01
We consider the gravitational collapse of a spherically symmetric homogeneous matter distribution consisting of a Weyssenhoff fluid in the presence of a negative cosmological constant. Our aim is to investigate the effects of torsion and spin averaged terms on the final outcome of the collapse. For a specific interior spacetime setup, namely the homogeneous and isotropic FLRW metric, we obtain two classes of solutions to the field equations where depending on the relation between spin source ...
Einstein-Cartan gravitational collapse of a homogeneous Weyssenhoff fluid
Energy Technology Data Exchange (ETDEWEB)
Ziaie, Amir Hadi; Sepangi, Hamid Reza [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Vargas Moniz, Paulo [Universidade da Beira Interior, Departamento de Fisica, Covilha (Portugal); Universidade da Beira Interior, Centro de Matematica e Aplicacoes (CMA-UBI), Covilha (Portugal); Ranjbar, Arash [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Centro de Estudios Cientficos (CECs), Valdivia (Chile); Universidad Andres Bello, Santiago (Chile)
2014-11-15
We consider the gravitational collapse of a spherically symmetric homogeneous matter distribution consisting of a Weyssenhoff fluid in the presence of a negative cosmological constant. Our aim is to investigate the effects of torsion and spin averaged terms on the final outcome of the collapse. For a specific interior space-time setup, namely the homogeneous and isotropic FLRW metric, we obtain two classes of solutions to the field equations where depending on the relation between spin source parameters, (i) the collapse procedure culminates in a space-time singularity or (ii) it is replaced by a non-singular bounce. We show that, under certain conditions, for a specific subset of the former solutions, the formation of trapped surfaces is prevented and thus the resulted singularity could be naked. The curvature singularity that forms could be gravitationally strong in the sense of Tipler. Our numerical analysis for the latter solutions shows that the collapsing dynamical process experiences four phases, so that two of which occur at the pre-bounce and the other two at post-bounce regimes. We further observe that there can be found a minimum radius for the apparent horizon curve, such that the main outcome of which is that there exists an upper bound for the size of the collapsing body, below which no horizon forms throughout the whole scenario. (orig.)
Gravitational field of Schwarzschild soliton
Directory of Open Access Journals (Sweden)
Musavvir Ali
2015-01-01
Full Text Available The aim of this paper is to study the gravitational field of Schwarzschild soliton. Use of characteristic of λ-tensor is given to determine the kinds of gravitational fields. Through the cases of two and three dimension for Schwarzschild soliton, the Gaussian curvature is expressed in terms of eigen values of the characteristic equation.
Gravitational fields of prolate spheroidal bodies extension of ...
African Journals Online (AJOL)
The expressions for the gravitational fields of spherical bodies are well known. In this paper we derive the exact expressions for a homogenous massive prolate spheroidal, an extension of the gravitational fields of spherical body for investigations and applications. Journal of the Nigerian Association of Mathematical Physics ...
Kling, Helmut
2013-01-01
A mass distribution is analyzed in terms of classical gravitational field theory. Newton's law of gravitation is consistently applied on the assumption that the equivalence of energy and mass according to Einstein's theory of relativity is valid for gravitational fields as well. Different from standard approaches the gravitational field, via its associated field energy, is handled as a source of gravitation by itself. Starting from these principles a gravitational self-shielding phenomenon is...
Forces in electromagnetic field and gravitational field
Weng, Zihua
2008-01-01
The force can be defined from the linear momentum in the gravitational field and electromagnetic field. But this definition can not cover the gradient of energy. In the paper, the force will be defined from the energy and torque in a new way, which involves the gravitational force, electromagnetic force, inertial force, gradient of energy, and some other new force terms etc. One of these new force terms can be used to explain why the solar wind varies velocity along the magnetic force line in...
Gravitational Fields of Conical Mass Distributions
Directory of Open Access Journals (Sweden)
Chifu Ebenezer Ndikilar
2013-01-01
Full Text Available The gravitational field of conical mass distributions is formulated using the general theory of relativity. The gravitational metric tensor is constructed and applied to the motion of test particles and photons in this gravitational field. The expression for gravitational time dilation is found to have the same form as that in spherical, oblate spheroidal, and prolate spheroidal gravitational fields and hence confirms an earlier assertion that this gravitational phenomena is invariant in form with various mass distributions. It is shown using the pure radial equation of motion that as a test particle moves closer to the conical mass distribution along the radial direction, its radial speed decreases.
Mass, Momentum and Energy of Gravitational Field
Fedosin, Sergey G.
2008-01-01
The energy of the gravitational field and the mass related to it are calculated. The momentum of the gravitational field of a moving body and the appropriate mass of the field are determined. Comparison of the given masses shows their difference. The reasons of violation of relativity and equivalence principles are discussed.
On the field theoretic description of gravitation
Nieuwenhuizen, T.M.; Kleinert, H.; Jantzen, R.T.; Ruffini, R.
2008-01-01
Maxwell started to describe gravitation as a field in Minkowski space. Such an approach brought Babak and Grishchuk in 1999 the gravitational energy-momentum tensor. Simple manipulations allow the Einstein equations to take the form Aµν = (8πG/c4)Θµν, where A is the acceleration tensor and Θ, the
Gravitational Field Shielding by Scalar Field and Type II Superconductors
Directory of Open Access Journals (Sweden)
Zhang B. J.
2013-01-01
Full Text Available The gravitational field shielding by scalar field and type II superconductors are theoret- ically investigated. In accord with the well-developed five-dimensional fully covariant Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space as shown previously, but also flatten the space as indicated recently. The polariza- tion of space decreases the electromagnetic field by increasing the equivalent vacuum permittivity constant, while the flattening of space decreases the gravitational field by decreasing the equivalent gravitational constant. In other words, the scalar field can be also employed to shield the gravitational field. A strong scalar field significantly shield the gravitational field by largely decreasing the equivalent gravitational constant. According to the theory of gravitational field shielding by scalar field, the weight loss experimentally detected for a sample near a rotating ceramic disk at very low tempera- ture can be explained as the shielding of the Earth gravitational field by the Ginzburg- Landau scalar field, which is produced by the type II superconductors. The significant shielding of gravitational field by scalar field produced by superconductors may lead to a new spaceflight technology in future.
Superconductor in a weak static gravitational field
Energy Technology Data Exchange (ETDEWEB)
Ummarino, Giovanni Alberto [Dipartimento DISAT, Politecnico di Torino, Turin (Italy); National Research Nuclear University MEPhI-Moscow Engineering Physics Institute, Moscow (Russian Federation); Gallerati, Antonio [Dipartimento DISAT, Politecnico di Torino, Turin (Italy)
2017-08-15
We provide the detailed calculation of a general form for Maxwell and London equations that takes into account gravitational corrections in linear approximation. We determine the possible alteration of a static gravitational field in a superconductor making use of the time-dependent Ginzburg-Landau equations, providing also an analytic solution in the weak field condition. Finally, we compare the behavior of a high-T{sub c} superconductor with a classical low-T{sub c} superconductor, analyzing the values of the parameters that can enhance the reduction of the gravitational field. (orig.)
Relativity in Combinatorial Gravitational Fields
Directory of Open Access Journals (Sweden)
Mao Linfan
2010-04-01
Full Text Available A combinatorial spacetime $(mathscr{C}_G| uboverline{t}$ is a smoothly combinatorial manifold $mathscr{C}$ underlying a graph $G$ evolving on a time vector $overline{t}$. As we known, Einstein's general relativity is suitable for use only in one spacetime. What is its disguise in a combinatorial spacetime? Applying combinatorial Riemannian geometry enables us to present a combinatorial spacetime model for the Universe and suggest a generalized Einstein gravitational equation in such model. Forfinding its solutions, a generalized relativity principle, called projective principle is proposed, i.e., a physics law ina combinatorial spacetime is invariant under a projection on its a subspace and then a spherically symmetric multi-solutions ofgeneralized Einstein gravitational equations in vacuum or charged body are found. We also consider the geometrical structure in such solutions with physical formations, and conclude that an ultimate theory for the Universe maybe established if all such spacetimes in ${f R}^3$. Otherwise, our theory is only an approximate theory and endless forever.
Gravitation Field Dynamics in Jeans Theory
Indian Academy of Sciences (India)
Closed system of time equations for nonrelativistic gravitation field and hydrodynamic medium was obtained by taking into account binary correlations of the field, which is the generalization of Jeans theory. Distribution function of the systemwas built on the basis of the Bogolyubov reduced description method. Calculations ...
Galilean Covariance and the Gravitational Field
Ulhoa, S. C.; Khanna, F. C.; Santana, A.E.
2009-01-01
The paper is concerned with the development of a gravitational field theory having locally a covariant version of the Galilei group. We show that this Galilean gravity can be used to study the advance of perihelion of a planet, following in parallel with the result of the (relativistic) theory of general relativity in the post-Newtonian approximation.
Dirac particles in a gravitational field
Energy Technology Data Exchange (ETDEWEB)
Gosselin, Pierre [UFR de Mathematiques, Universite Grenoble I, BP74, Institut Fourier, UMR 5582 CNRS-UJF, Saint Martin d' Heres Cedex (France); Mohrbach, Herve [Universite Paul Verlaine-Metz, Groupe BioPhysStat, ICPMB-FR CNRS 2843, Metz Cedex 3 (France)
2011-09-15
The semiclassical approximation for the Hamiltonian of Dirac particles interacting with an arbitrary gravitational field is investigated. The time dependence of the metric leads to new contributions to the in-band energy operator in comparison to previous works in the static case. In particular we find a new coupling term between the linear momentum and the spin, as well as couplings that contribute to the breaking of the particle-antiparticle symmetry. (orig.)
Spectral expressions for modelling the gravitational field of the Earth’s crust density structure
Tenzer, R.; Novak, P.; Vajda, P.
2011-01-01
We derive expressions for computing the gravitational field (potential and its radial derivative) generated by an arbitrary homogeneous or laterally varying density contrast layer with a variable depth and thickness based on methods for a spherical harmonic analysis and synthesis of gravity field.
Casimir apparatuses in a weak gravitational field
DEFF Research Database (Denmark)
Bimonte, Giuseppe; Calloni, Enrico; Esposito, Giampiero
2009-01-01
We review and assess a part of the recent work on Casimir apparatuses in the weak gravitational field of the Earth. For a free, real massless scalar field subject to Dirichlet or Neumann boundary conditions on the parallel plates, the resulting regularized and renormalized energy-momentum tensor...... is covariantly conserved, while the trace anomaly vanishes if the massless field is conformally coupled to gravity. Conformal coupling also ensures a finite Casimir energy and finite values of the pressure upon parallel plates. These results have been extended to an electromagnetic field subject to perfect...... conductor (hence idealized) boundary conditions on parallel plates, by various authors. The regularized and renormalized energy-momentum tensor has beene valuated up to second order in the gravity acceleration. In both the scalar and the electromagnetic case, studied to first order in the gravity...
Aspects of electrostatics in a weak gravitational field
Padmanabhan, Hamsa; Padmanabhan, T.
2010-05-01
Several features of electrostatics of point charged particles in a weak, homogeneous, gravitational field are discussed using the Rindler metric to model the gravitational field. Some previously known results are obtained by simpler and more transparent procedures and are interpreted in an intuitive manner. Specifically: (a) We discuss possible definitions of the electric field in curved spacetime (and noninertial frames), argue in favour of a specific definition for the electric field and discuss its properties. (b) We show that the electrostatic potential of a charge at rest in the Rindler frame (which is known and is usually expressed as a complicated function of the coordinates) is expressible as A 0 = q/ λ where λ is the affine parameter distance along the null geodesic from the charge to the field point. (c) This relates well with the result that the electric field lines of a charge coincide with the null geodesics; that is, both light and the electric field lines ‘bend’ in the same manner in a weak gravitational field. We provide a simple proof for this result as well as for the fact that the null geodesics (and field lines) are circles in space. (d) We obtain the sum of the electrostatic forces exerted by one charge on another in the Rindler frame and discuss its interpretation. In particular, we compare the results in the Rindler frame and in the inertial frame and discuss their consistency. (e) We show how a purely electrostatic term in the Rindler frame appears as a radiation term in the inertial frame. (In part, this arises because charges at rest in a weak gravitational field possess additional weight due to their electrostatic energy. This weight is proportional to the acceleration and falls inversely with distance—which are the usual characteristics of a radiation field.) (f) We also interpret the origin of the radiation reaction term by extending our approach to include a slowly varying acceleration. Many of these results might have possible
Gravitational field of a charged mass point.
Pekeris, C L
1982-10-01
Adopting, with Schwarzschild, the Einstein gauge ((munu) = -1), a solution of Einstein's field equations for a charged mass point of mass M and charge Q is derived, which differs from the Reissner-Nordstrøm solution only in that the variable r is replaced by R = (r(3) + a(3))((1/3)), where a is a constant. The Newtonian gravitational potential psi identical with (2/c(2))(1 - g(00)) obeys exactly the Poisson equation (in the R variable), with the mass density equal to (E(2)/4pic(2)), E denoting the electric field. psi also obeys a second linear equation in which the operator on psi is the square root of the Laplacian operator. The electrostatic potential Phi (= Q/R), psi, and all the components of the curvature tensor remain finite at the origin of coordinates. The electromagnetic energy of the point charge is finite and equal to (Q(2)/a). The charge Q defines a pivotal mass M(*) = (Q/G((1/2))). If M M(*), the electromagnetic part of the mass M(em) equals [M - (M(2) - M(*2))((1/2))], whereas the material part of the mass M(mat) equals (M(2) - M(*2))((1/2)). When M > M(*), the constant a is determined, following Schwarzschild, by shrinking the "Schwarzschild radius" to zero. When M < M(*), a is determined so as to make the gravitational acceleration vanish at the origin.
Magnetic field homogeneity for neutron EDM experiment
Anderson, Melissa
2016-09-01
The neutron electric dipole moment (nEDM) is an observable which, if non-zero, would violate time-reversal symmetry, and thereby charge-parity symmetry of nature. New sources of CP violation beyond those found in the standard model of particle physics are already tightly constrained by nEDM measurements. Our future nEDM experiment seeks to improve the precision on the nEDM by a factor of 30, using a new ultracold neutron (UCN) source that is being constructed at TRIUMF. Systematic errors in the nEDM experiment are driven by magnetic field inhomogeneity and instability. The goal field inhomogeneity averaged over the experimental measurement cell (order of 1 m) is 1 nT/m, at a total magnetic field of 1 microTesla. This equates to roughly 10-3 homogeneity. A particularly challenging aspect of the design problem is that nearby magnetic materials will also affect the magnetic inhomogeneity, and this must be taken into account in completing the design. This poster will present the design methodology and status of the main coil for the experiment where we use FEA software (COMSOL) to simulate and analyze the magnetic field. Natural Sciences and Engineering Research Council.
Magnetic Field in the Gravitationally Stratified Coronal Loops
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... We study the effect of gravitational stratification on the estimation of magnetic fields in the coronal loops. By using the method of MHD seismology of kink waves for the estimation of magnetic field of coronal loops, we derive a new formula for the magnetic field considering the effect of gravitational ...
New Effects of the Interaction of Gravitational and Magnetic Fields
Krechet, V. G.; Ushurko, V. B.; Rodichev, S. V.
2017-11-01
Within the framework of GRT, properties of stationary distributions of self-gravitating magnetic fields are considered under the condition that a vortex component is present in the gravitational field. It is shown that in this case, cylindrically symmetric configurations of the considered fields always lead to the formation of a wormhole geometry. The properties of such formations are investigated.
Symmetries in tetrad theories. [of gravitational fields and general relativity
Chinea, F. J.
1988-01-01
The isometry conditions for gravitational fields are given directly at the tetrad level, rather than in terms of the metric. As an illustration, an analysis of the curvature collineations and Killing fields for a twisting type-N vacuum gravitational field is made.
Axially symmetric static sources of gravitational field
Hernandez-Pastora, J. L.; Herrera, L.; Martin, J.
2016-12-01
A general procedure to find static and axially symmetric, interior solutions to the Einstein equations is presented. All the so obtained solutions, verify the energy conditions for a wide range of values of the parameters, and match smoothly to some exterior solution of the Weyl family, thereby representing globally regular models describing non-spherical sources of gravitational field. In the spherically symmetric limit, all our models converge to the well known incompressible perfect fluid solution. The key stone of our approach is based on an ansatz allowing to define the interior metric in terms of the exterior metric functions evaluated at the boundary source. Some particular sources are obtained, and the physical variables of the energy-momentum tensor are calculated explicitly, as well as the geometry of the source in terms of the relativistic multipole moments. The total mass of different configurations is also calculated, it is shown to be equal to the monopole of the exterior solution.
Space-time algebra for the generalization of gravitational field ...
Indian Academy of Sciences (India)
De. 1. Introduction. The term gravitoelectromagnetism (GEM) refers to the formal analogies between. Newton's law of gravitation and Coulomb's law of electricity. In Newton's law, the origin of gravitational field is the mass of the body whereas in Coulomb's law, the source of elec- tromagnetic field is the charge of the particle.
Misner, Charles W; Wheeler, John Archibald
2017-01-01
First published in 1973, Gravitation is a landmark graduate-level textbook that presents Einstein’s general theory of relativity and offers a rigorous, full-year course on the physics of gravitation. Upon publication, Science called it “a pedagogic masterpiece,” and it has since become a classic, considered essential reading for every serious student and researcher in the field of relativity. This authoritative text has shaped the research of generations of physicists and astronomers, and the book continues to influence the way experts think about the subject. With an emphasis on geometric interpretation, this masterful and comprehensive book introduces the theory of relativity; describes physical applications, from stars to black holes and gravitational waves; and portrays the field’s frontiers. The book also offers a unique, alternating, two-track pathway through the subject. Material focusing on basic physical ideas is designated as Track 1 and formulates an appropriate one-semester graduate-level...
Gravitational time dilation and length contraction in fields exterior to ...
African Journals Online (AJOL)
Here, we use our new metric tensor exterior to a massiv3e oblate spheroid to study the gravitational phenomena of time dilation and length contraction. It turns out most profoundly that, the above phenomena hold good in the gravitational field exterior to an oblate spheroid. We then use the oblate spheroidal Earth to ...
Possible alterations of the gravitational field in a superconductor
Ummarino, G. A.
2000-01-01
In this paper I calculate the possible alteration of the gravitational field in a superconductor by using the time-dependent Ginzburg-Landau equations (TDGL). I compare the behaviour of a high-Tc superconductor (HTCS) like YBa_2Cu_3O_7 (YBCO) with a classical low-Tc superconductor (LTCS) like Pb. Finally, I discuss what values of the parameters characterizing a superconductor can enhance the reduction of gravitational field.
Jupiter's Equatorially Antisymmetric Gravitational Field and its Interior Dynamics
Zhang, Keke; Kong, Dali; Schubert, Gerald; Anderson, John D.
2017-10-01
The equatorially anti-symmetric gravitational field of Jupiter is nearly unaffected by its rotational distortion and,hence, it provides a direct window into the equatorially anti-symmetric fluid motion taking place in Jupiter's interior.We present a new accurate approach, based on the thermal-gravitational wind equation in spherical geometry(a two-dimensional kernel integral equation with the Green's function in its integrand), for estimating the location/structure/amplitude of the Jovian equatorially antisymmetric zonal flow of Jupiter via its equatorially anti-symmetric gravitational field and understanding the dynamics of Jupiter's deep interior. The mathematical and numerical difficulties in computing the equatorially anti-symmetric gravitational field are discussed.
Alhulaimi, B.; van den Hoogen, R. J.; Coley, A. A.
2017-12-01
Inflationary spatially homogeneous cosmological models within an Einstein-aether gravitational framework are investigated. The matter source is assumed to be a scalar field which is coupled to the aether field expansion and shear scalars through the generalized harmonic scalar field potential. The evolution equations are expressed in terms of expansion-normalized variables to produce an autonomous system of ordinary differential equations suitable for numerical and local stability analysis. An analysis of the local stability of the equilibrium points indicates that there exists a range of values of the parameters in which there exists an accelerating expansionary future attractor.
NASA Computational Case Study: Modeling Planetary Magnetic and Gravitational Fields
Simpson, David G.; Vinas, Adolfo F.
2014-01-01
In this case study, we model a planet's magnetic and gravitational fields using spherical harmonic functions. As an exercise, we analyze data on the Earth's magnetic field collected by NASA's MAGSAT spacecraft, and use it to derive a simple magnetic field model based on these spherical harmonic functions.
The (weak) gravitational field of a Dirac monopole
Banyas, E.; Franklin, J.
2017-10-01
We establish the gravitational detectability of a Dirac monopole using a weak-field limit of general relativity, which can be developed from the Newtonian gravitational potential by including energy as a source. The resulting potential matches (by construction) the weak-field limit of two different solutions to Einstein’s equations of general relativity: one associated with the magnetically monopolar spray of field lines emerging from the half-infinite solenoid that makes up the Dirac monopole, the other associated with the field-energetic source of the solenoid itself (the Dirac string). The string’s gravitational effect dominates, and we suggest that the primary strong-field contribution of the Dirac configuration is that of a half-infinite line of energy, whose GR solution is known.
Gravitational waves from self-ordering scalar fields
Fenu, Elisa; Durrer, Ruth; Garcia-Bellido, Juan
2009-01-01
Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as $\\Omega_{\\rm GW}(f) \\propto f^3$ with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer tim...
Gravitational Collapse of Massless Fields in an Expanding Universe
Directory of Open Access Journals (Sweden)
Yoo Chul-Moon
2018-01-01
Full Text Available Gravitational collapse of a massless scalar field with the periodic boundary condition in a cubic box is reported. This system can be regarded as a lattice universe model. The initial data is constructed for a Gaussian like profile of the scalar field taking the integrability condition associated with the periodic boundary condition into account. For a large initial amplitude, a black hole is formed after a certain period of time. While the scalar field spreads out in the whole region for a small initial amplitude. The difference of the late time expansion law of the lattice universe depending on the final fate of the gravitational collapse is discussed.
Gravitational Collapse of Massless Fields in an Expanding Universe
Yoo, Chul-Moon
2018-01-01
Gravitational collapse of a massless scalar field with the periodic boundary condition in a cubic box is reported. This system can be regarded as a lattice universe model. The initial data is constructed for a Gaussian like profile of the scalar field taking the integrability condition associated with the periodic boundary condition into account. For a large initial amplitude, a black hole is formed after a certain period of time. While the scalar field spreads out in the whole region for a small initial amplitude. The difference of the late time expansion law of the lattice universe depending on the final fate of the gravitational collapse is discussed.
Using Jupiter's gravitational field to probe the Jovian convective dynamo.
Kong, Dali; Zhang, Keke; Schubert, Gerald
2016-03-23
Convective motion in the deep metallic hydrogen region of Jupiter is believed to generate its magnetic field, the strongest in the solar system. The amplitude, structure and depth of the convective motion are unknown. A promising way of probing the Jovian convective dynamo is to measure its effect on the external gravitational field, a task to be soon undertaken by the Juno spacecraft. We calculate the gravitational signature of non-axisymmetric convective motion in the Jovian metallic hydrogen region and show that with sufficiently accurate measurements it can reveal the nature of the deep convection.
Light deflection and polarisation rotation in gravitational fields
Elton, N. E.
1988-01-01
This thesis is broadly divided into two parts linked by the common theme of the behaviour of electromagnetic radiation in gravitational fields. A review of gravitational waves is presented containing background information useful in subsequent chapters. The effects of plane gravitational waves on various properties of electromagnetic radiation are investigated using geometric optics and the concept of parallel propagation and it is shown how the gravitational wave can produce a rotation of the plane of polarisation, deflection of the light ray, fluctuations in intensity and a redshift. The order of magnitude of these effects is estimated for a range of potential sources of gravitational waves. The calculation is repeated using a realistic model for the gravitational waveforms for a particular class of sources (binary interactions). A numerical integration scheme is described and the basic results presented and compared with the plane wave formalism. The time behaviour of the various effects of the gravitational wave is also investigated. Finally in Part One the effects of gravitational radiation on the properties of extended beams of photons are considered and the net polarisation rotation and intensity change calculated for some specific geometries. A model of a massive black hole accretion system is considered in some detail as a possible candidate for producing measurable effects. In Part Two a description is given of the HIPPARCOS astrometric satellite together with an overview of the data reduction. Two specific data reduction tasks are considered in some detail and a simulation of the satellite's star observation strategy is described. The final chapter briefly reviews solar system light deflection and the use of HIPPARCOS in testing the predictions of general relativity. An alternative scheme for extracting the relativistic content of the HIPPARCOS data is presented and evaluated.
Gravitational field of spherical domain wall in higher dimension
Indian Academy of Sciences (India)
Gravitational field of spherical domain wall in higher dimension. FAROOK RAHAMAN and MEHEDI KALAM. Khodar Bazar, Baruipur, 24 Parganas (South), West Bengal 743 302, India. Email: jumath@cal.vsnl.net.in. MS received 5 May 2001; revised 17 August 2001. Abstract. An exact solution of Einstein's equations is ...
Effective action for hard thermal loops in gravitational fields
Directory of Open Access Journals (Sweden)
R.R. Francisco
2016-05-01
Full Text Available We examine, through a Boltzmann equation approach, the generating action of hard thermal loops in the background of gravitational fields. Using the gauge and Weyl invariance of the theory at high temperature, we derive an explicit closed-form expression for the effective action.
Space-time algebra for the generalization of gravitational field ...
Indian Academy of Sciences (India)
The Maxwell–Proca-like field equations of gravitolectromagnetism are formulated using space-time algebra (STA). The gravitational wave equation with massive gravitons and gravitomagnetic monopoles has been derived in terms of this algebra. Using space-time algebra, the most generalized form of ...
Energy Technology Data Exchange (ETDEWEB)
Fukushima, Toshio, E-mail: Toshio.Fukushima@nao.ac.jp [National Astronomical Observatory/SOKENDAI, Ohsawa, Mitaka, Tokyo 181-8588 (Japan)
2017-10-01
In order to obtain the gravitational field of a general finite body inside its Brillouin sphere, we developed a new method to compute the field accurately. First, the body is assumed to consist of some layers in a certain spherical polar coordinate system and the volume mass density of each layer is expanded as a Maclaurin series of the radial coordinate. Second, the line integral with respect to the radial coordinate is analytically evaluated in a closed form. Third, the resulting surface integrals are numerically integrated by the split quadrature method using the double exponential rule. Finally, the associated gravitational acceleration vector is obtained by numerically differentiating the numerically integrated potential. Numerical experiments confirmed that the new method is capable of computing the gravitational field independently of the location of the evaluation point, namely whether inside, on the surface of, or outside the body. It can also provide sufficiently precise field values, say of 14–15 digits for the potential and of 9–10 digits for the acceleration. Furthermore, its computational efficiency is better than that of the polyhedron approximation. This is because the computational error of the new method decreases much faster than that of the polyhedron models when the number of required transcendental function calls increases. As an application, we obtained the gravitational field of 433 Eros from its shape model expressed as the 24 × 24 spherical harmonic expansion by assuming homogeneity of the object.
Fukushima, Toshio
2017-10-01
In order to obtain the gravitational field of a general finite body inside its Brillouin sphere, we developed a new method to compute the field accurately. First, the body is assumed to consist of some layers in a certain spherical polar coordinate system and the volume mass density of each layer is expanded as a Maclaurin series of the radial coordinate. Second, the line integral with respect to the radial coordinate is analytically evaluated in a closed form. Third, the resulting surface integrals are numerically integrated by the split quadrature method using the double exponential rule. Finally, the associated gravitational acceleration vector is obtained by numerically differentiating the numerically integrated potential. Numerical experiments confirmed that the new method is capable of computing the gravitational field independently of the location of the evaluation point, namely whether inside, on the surface of, or outside the body. It can also provide sufficiently precise field values, say of 14-15 digits for the potential and of 9-10 digits for the acceleration. Furthermore, its computational efficiency is better than that of the polyhedron approximation. This is because the computational error of the new method decreases much faster than that of the polyhedron models when the number of required transcendental function calls increases. As an application, we obtained the gravitational field of 433 Eros from its shape model expressed as the 24 × 24 spherical harmonic expansion by assuming homogeneity of the object.
Tachyon motion in a black hole gravitational field
Lipunov, V M
2013-01-01
The motion of superluminal particles in the gravitational field of a non-rotating black hole is analyzed. The relativistic Hamilton-Jacobi equation is solved for particles with imaginary rest mass. It is shown that there are no stable circular orbits and generally no finite motions for tachyons in the Schwarzschild metric and that all unstable circular tachyon orbits lie in a region extending from the gravitational radius to 1.5 times that radius. The particles with speeds exceeding the speed of light are noticed to be able to escape from the space limited by the gravitational radius. The results also indicate that low-energy tachyons near a black hole may acquire higher energies and that this in turn may lead to observable effects.
Shi, Yu; Wang, Yue; Xu, Shijie
2017-11-01
Binary systems are quite common within the populations of near-Earth asteroids, main-belt asteroids, and Kuiper belt asteroids. The dynamics of binary systems, which can be modeled as the full two-body problem, is a fundamental problem for their evolution and the design of relevant space missions. This paper proposes a new shape-based model for the mutual gravitational potential of binary asteroids, differing from prior approaches such as inertia integrals, spherical harmonics, or symmetric trace-free tensors. One asteroid is modeled as a homogeneous polyhedron, while the other is modeled as an extended rigid body with arbitrary mass distribution. Since the potential of the polyhedron is precisely described in a closed form, the mutual gravitational potential can be formulated as a volume integral over the extended body. By using Taylor expansion, the mutual potential is then derived in terms of inertia integrals of the extended body, derivatives of the polyhedron's potential, and the relative location and orientation between the two bodies. The gravitational forces and torques acting on the two bodies described in the body-fixed frame of the polyhedron are derived in the form of a second-order expansion. The gravitational model is then used to simulate the evolution of the binary asteroid (66391) 1999 KW4, and compared with previous results in the literature.
Routing optimization in networks based on traffic gravitational field model
Liu, Longgeng; Luo, Guangchun
2017-04-01
For research on the gravitational field routing mechanism on complex networks, we further analyze the gravitational effect of paths. In this study, we introduce the concept of path confidence degree to evaluate the unblocked reliability of paths that it takes the traffic state of all nodes on the path into account from the overall. On the basis of this, we propose an improved gravitational field routing protocol considering all the nodes’ gravities on the path and the path confidence degree. In order to evaluate the transmission performance of the routing strategy, an order parameter is introduced to measure the network throughput by the critical value of phase transition from a free-flow phase to a jammed phase, and the betweenness centrality is used to evaluate the transmission performance and traffic congestion of the network. Simulation results show that compared with the shortest-path routing strategy and the previous gravitational field routing strategy, the proposed algorithm improves the network throughput considerably and effectively balances the traffic load within the network, and all nodes in the network are utilized high efficiently. As long as γ ≥ α, the transmission performance can reach the maximum and remains unchanged for different α and γ, which ensures that the proposed routing protocol is high efficient and stable.
Gravitational descendants in symplectic field theory
Fabert, O.
2011-01-01
It was pointed out by Y. Eliashberg in his ICM 2006 plenary talk that the rich algebraic formalism of symplectic field theory leads to a natural appearance of quantum and classical integrable systems, at least in the case when the contact manifold is the prequantization space of a symplectic
Large Field Inflation and Gravitational Entropy
DEFF Research Database (Denmark)
Kaloper, Nemanja; Kleban, Matthew; Lawrence, Albion
2016-01-01
Large field inflation can be sensitive to perturbative and nonperturbative quantum corrections that spoil slow roll. A large number $N$ of light species in the theory, which occur in many string constructions, can amplify these problems. One might even worry that in a de Sitter background, light...... species will lead to a violation of the covariant entropy bound at large $N$. If so, requiring the validity of the covariant entropy bound could limit the number of light species and their couplings, which in turn could severely constrain axion-driven inflation. Here we show that there is no such problem...... in this light, and show that they are perfectly consistent with the covariant entropy bound. Thus, while quantum gravity might yet spoil large field inflation, holographic considerations in the semiclassical theory do not obstruct it....
THE EVOLUTION OF HOMOGENEOUS AND ISOTROPIC UNIVERSE IN THE RELATIVISTIC THEORY OF GRAVITATION
Directory of Open Access Journals (Sweden)
Modestov Konstantin Anatol'evich
2015-03-01
Full Text Available The application of the relativistic theory of gravitation with nonzero graviton rest mass to the Universe evolution is being considered in the paper. The authors made an attempt to explain its observed acceleration of expansion due to the presence of graviton rest mass. The evolution half-cycle and the Universe present age is being calculated.
Gravitational leptogenesis in axion inflation with SU(2) gauge field
Maleknejad, Azadeh
2016-12-01
We present an intrinsic leptogenesis mechanism in models of axion inflation with a classical SU(2) gauge field. The gauge field is coupled to the axion with a Chern-Simons interaction and comprises a tiny fraction of the total energy, ρYM/ρtot lesssim epsilon2. However, it has spin-2 fluctuations which breaks the parity and leads to the generation of chiral gravitational waves during inflation. By the gravitational anomaly in SM, it naturally creates a net lepton number density, sufficient to explain the matter asymmetry. We show that this mechanism can generate the observed value of baryon to photon number density in a natural range of parameters and yet has a small chiral tensor power spectrum on large scales.
The relativistic Boltzmann equation on a spherically symmetric gravitational field
Takou, Etienne; Ciake Ciake, Fidèle L.
2017-10-01
In this paper, we consider the Cauchy problem for the relativistic Boltzmann equation with near vacuum initial data where the distribution function depends on the time, the position and the impulsion. We consider this equation on a spherically symmetric gravitational field spacetime. The collision kernel considered here is for the hard potentials case. We prove the existence of a unique global (in time) mild solution in a suitable weighted space.
Galilean-invariant scalar fields can strengthen gravitational lensing.
Wyman, Mark
2011-05-20
The mystery of dark energy suggests that there is new gravitational physics on long length scales. Yet light degrees of freedom in gravity are strictly limited by Solar System observations. We can resolve this apparent contradiction by adding a Galilean-invariant scalar field to gravity. Called Galileons, these scalars have strong self-interactions near overdensities, like the Solar System, that suppress their dynamical effect. These nonlinearities are weak on cosmological scales, permitting new physics to operate. In this Letter, we point out that a massive-gravity-inspired coupling of Galileons to stress energy can enhance gravitational lensing. Because the enhancement appears at a fixed scaled location for dark matter halos of a wide range of masses, stacked cluster analysis of weak lensing data should be able to detect or constrain this effect.
Massive to gauge field reduction and gravitational wave zone information
Deser, S
2016-01-01
We show explicitly that massive, Abelian, vector, just like (properly defined) massive tensor, fields limit smoothly to their massless, gauge, versions: they emit only maximal helicity radiation and mediate Coulomb and (special relativistic) Newtonian, forces between their (conserved) sources. Our main motivation, though, is to show that the recent gravitational wave detection probably cannot directly rule out very long-range gravity: Even though the waves were emitted in a strong field regime, their being detected in the weak field wave zone means the above equivalences apply. There remains the, not unlikely, possibility that no strong field generation of radiation in massive models can reproduce the observed ring-down patterns. Separately, the smooth linear limiting behaviors show that the discontinuity lies not in the mass alone, but rather in Abelian versus non-Abelian, Yang-Mills and General Relativity, regimes, whose respective massive versions are known to be non-physical.
Topological geons with self-gravitating phantom scalar field
Kratovitch, P. V.; Potashov, I. M.; Tchemarina, Ju V.; Tsirulev, A. N.
2017-12-01
A topological geon is the quotient manifold M/Z 2 where M is a static spherically symmetric wormhole having the reflection symmetry with respect to its throat. We distinguish such asymptotically at solutions of the Einstein equations according to the form of the time-time metric function by using the quadrature formulas of the so-called inverse problem for self-gravitating spherically symmetric scalar fields. We distinguish three types of geon spacetimes and illustrate them by simple examples. We also study possible observational effects associated with bounded geodesic motion near topological geons.
Gravitation field algorithm and its application in gene cluster.
Zheng, Ming; Liu, Gui-Xia; Zhou, Chun-Guang; Liang, Yan-Chun; Wang, Yan
2010-09-20
Searching optima is one of the most challenging tasks in clustering genes from available experimental data or given functions. SA, GA, PSO and other similar efficient global optimization methods are used by biotechnologists. All these algorithms are based on the imitation of natural phenomena. This paper proposes a novel searching optimization algorithm called Gravitation Field Algorithm (GFA) which is derived from the famous astronomy theory Solar Nebular Disk Model (SNDM) of planetary formation. GFA simulates the Gravitation field and outperforms GA and SA in some multimodal functions optimization problem. And GFA also can be used in the forms of unimodal functions. GFA clusters the dataset well from the Gene Expression Omnibus. The mathematical proof demonstrates that GFA could be convergent in the global optimum by probability 1 in three conditions for one independent variable mass functions. In addition to these results, the fundamental optimization concept in this paper is used to analyze how SA and GA affect the global search and the inherent defects in SA and GA. Some results and source code (in Matlab) are publicly available at http://ccst.jlu.edu.cn/CSBG/GFA.
Gravitation field algorithm and its application in gene cluster
Directory of Open Access Journals (Sweden)
Zheng Ming
2010-09-01
Full Text Available Abstract Background Searching optima is one of the most challenging tasks in clustering genes from available experimental data or given functions. SA, GA, PSO and other similar efficient global optimization methods are used by biotechnologists. All these algorithms are based on the imitation of natural phenomena. Results This paper proposes a novel searching optimization algorithm called Gravitation Field Algorithm (GFA which is derived from the famous astronomy theory Solar Nebular Disk Model (SNDM of planetary formation. GFA simulates the Gravitation field and outperforms GA and SA in some multimodal functions optimization problem. And GFA also can be used in the forms of unimodal functions. GFA clusters the dataset well from the Gene Expression Omnibus. Conclusions The mathematical proof demonstrates that GFA could be convergent in the global optimum by probability 1 in three conditions for one independent variable mass functions. In addition to these results, the fundamental optimization concept in this paper is used to analyze how SA and GA affect the global search and the inherent defects in SA and GA. Some results and source code (in Matlab are publicly available at http://ccst.jlu.edu.cn/CSBG/GFA.
Determining Symmetry Properties of Gravitational Fields of Terrestrial Group Planets
Directory of Open Access Journals (Sweden)
R.A. Kascheev
2016-09-01
Full Text Available Numerous models of gravity fields of the Solar system bodies have been constructed recently owing to successful space missions. These models are sets of harmonic coefficients of gravity potential expansion in series of spherical functions, which is Laplace series. The sets of coefficients are different in quantity of numerical parameters, sources and composition of the initial observational data, methods to obtain and process them, and, consequently, in a variety of properties and accuracy characteristics. For this reason, the task of comparison of different models of celestial bodies considered in the paper is of interest and relevant. The main purpose of this study is comparison of the models of gravitational potential of the Earth, Moon, Mars, and Venus with the quantitative criteria of different types of symmetries developed by us. It is assumed that some particular symmetry of the density distribution function of the planetary body causes similar symmetry of its gravitational potential. The symmetry of gravitational potential, in its turn, imposes additional conditions (restrictions, which must be satisfied by the harmonic coefficients. The paper deals with seven main types of symmetries: central, axial, two symmetries specular relative to the equatorial planes and prime meridian, as well as three rotational symmetries (at π angle around the coordinate system axes. According to the results of calculations carried out for the Earth, Moon, Mars, and Venus, the values of the criteria vary considerably for different types of symmetries and for different planets. It means that the specific value of each criterion corresponding to a particular celestial body is indicative of the properties and internal structure characteristics of the latter and, therefore, it can be used as a tool for comparative planetology. On the basis of the performed calculations, it is possible to distinguish two groups of celestial bodies having similar properties of
Computational Models for Creating Homogeneous Magnetic Field Generation Systems
Directory of Open Access Journals (Sweden)
Gerlys M. Villalobos-Fontalvo
2013-11-01
Full Text Available It is increasingly common to use magnetic fields at the cellular level to assess their interaction with biological tissues. The stimulation is usually done with Helmholtz coils which generate a uniform magnetic field in the center of the system. However, assessing cellular behavior with different magnetic field characteristics can be a long and expensive process. For this, it can be used computational models to previously estimate the cellular behavior due to variety of field characteristics prior to in-vitro stimulation in a laboratory. In this paper, we present a methodology for the development of three computational models of homogeneous magnetic field generation systems for possible application in cell stimulation. The models were developed in the Ansys Workbench environment and it was evaluated the magnetic flux density behavior at different configurations. The results were validated with theoretical calculations from the Biot-Savart law. Validated models will be coupled to Ansys APDL environment in order to assess the harmonic response of the system.
Post-Newtonian parameters γ and β of scalar-tensor gravity for a homogeneous gravitating sphere
Hohmann, Manuel; Schärer, Andreas
2017-11-01
We calculate the parameters γ and β in the parametrized post-Newtonian (PPN) formalism for scalar-tensor gravity (STG) with an arbitrary potential, under the assumption that the source matter is given by a nonrotating sphere of constant density, pressure, and internal energy. For our calculation we write the STG field equations in a form which is manifestly invariant under conformal transformations of the metric and redefinitions of the scalar field. This easily shows that also the obtained PPN parameters are invariant under such transformations. Our result is consistent with the expectation that STG is a fully conservative theory, i.e., only γ and β differ from their general relativity values γ =β =1 , which indicates the absence of preferred frame and preferred location effects. We find that the values of the PPN parameters depend on both the radius of the gravitating mass source and the distance between the source and the observer. Most interestingly, we find that also at large distances from the source β does not approach β =1 , but receives corrections due to a modified gravitational self-energy of the source. Finally, we compare our result to a number of measurements of γ and β in the Solar System. We find that in particular measurements of β improve the previously obtained bounds on the theory parameters, due to the aforementioned long-distance corrections.
Dynamics of a bubble rising in gravitational field
Directory of Open Access Journals (Sweden)
De Bernardis Enrico
2016-03-01
Full Text Available The rising motion in free space of a pulsating spherical bubble of gas and vapour driven by the gravitational force, in an isochoric, inviscid liquid is investigated. The liquid is at rest at the initial time, so that the subsequent flow is irrotational. For this reason, the velocity field due to the bubble motion is described by means of a potential, which is represented through an expansion based on Legendre polynomials. A system of two coupled, ordinary and nonlinear differential equations is derived for the vertical position of the bubble center of mass and for its radius. This latter equation is a modified form of the Rayleigh-Plesset equation, including a term proportional to the kinetic energy associated to the translational motion of the bubble.
The non-Gaussian distribution of galaxy gravitational fields
Stephanovich, Vladimir; Godłowski, Włodzimierz
2017-12-01
We perform a theoretical analysis of the observational dependence between angular momentum of galaxy clusters and their mass (richness), based on the method introduced in our previous paper. For that we obtain the distribution function of gravitational fields for astronomical objects (like galaxies and/or smooth halos of different kinds) due to their tidal interaction. By applying the statistical method of Chandrasekhar, we are able to show that the distribution function is determined by the form of interaction between objects and for multipole (tidal) interaction it is never Gaussian. Our calculation permits demonstrating how the alignment of galaxy angular momenta depends on cluster richness. The specific form of the corresponding dependence is due to assumptions made about cluster morphology. Our approach also predicts the time evolution of stellar object angular momenta within CDM and ΛCDM models. Namely, we have shown that angular momentum of galaxies increases with time.
Discreteness of space from GUP in a weak gravitational field
Directory of Open Access Journals (Sweden)
Soumen Deb
2016-04-01
Full Text Available Quantum gravity effects modify the Heisenberg's uncertainty principle to a generalized uncertainty principle (GUP. Earlier work showed that the GUP-induced corrections to the Schrödinger equation, when applied to a non-relativistic particle in a one-dimensional box, led to the quantization of length. Similarly, corrections to the Klein–Gordon and the Dirac equations, gave rise to length, area and volume quantizations. These results suggest a fundamental granular structure of space. In this work, it is investigated how spacetime curvature and gravity might influence this discreteness of space. In particular, by adding a weak gravitational background field to the above three quantum equations, it is shown that quantization of lengths, areas and volumes continue to hold. However, it should be noted that the nature of this new quantization is quite complex and under proper limits, it reduces to cases without gravity. These results suggest that quantum gravity effects are universal.
Rainbow scattering in the gravitational field of a compact object
Dolan, Sam R.; Stratton, Tom
2017-06-01
We study the elastic scattering of a planar wave in the curved spacetime of a compact object such as a neutron star, via a heuristic model: a scalar field impinging upon a spherically symmetric uniform density star of radius R and mass M . For R rc, there instead arises a stationary point in the deflection function which creates a caustic and rainbow scattering. As in nuclear rainbow scattering, there is an Airy-type oscillation on a Rutherford-like cross section, followed by a shadow zone. We show that, for R ˜3.5 G M /c2, the rainbow angle lies close to 180°, and thus there arises enhanced backscattering and glory. We explore possible implications for gravitational wave astronomy and dark matter models.
[The use of a detector of the extremely weak radiation as a variometer of gravitation field].
Gorshkov, E S; Bondarenko, E G; Shapovalov, S N; Sokolovskiĭ, V V; Troshichev, O A
2001-01-01
It was shown that the detector of extremely weak radiation with selectively increased sensitivity to the nonelectromagnetic, including the gravitational component of the spectrum of active physical fields can be used as the basis for constructing a variometer of gravitational field of a new type.
Probing Strong-field General Relativity with Gravitational Waves
Pretorius, Frans
We are on the verge of a new era in astrophysics as a world-wide effort to observe the universe with gravitational waves takes hold---ground based laser interferometers (Hz to kHz), pulsar timing (micro to nano Hz), measurements of polarization of the cosmic microwave background (sub-nano Hz), and the planned NASA/ESA mission LISA (.1 mHz to .1 Hz). This project will study the theoretical nature of gravitational waves (GWs) emitted by two sources in the LISA band, namely supermassive-black-hole (SMBH) binary mergers, and extreme-mass-ratio-inspirals (EMRI's)---the merger of a stellar mass black hole, neutron star, or white dwarf with a SMBH. The primary goal will be to ascertain how well LISA, by observing these sources, could answer the following related questions about the fundamental nature of strong-field gravity: Does Einstein's theory of general relativity (GR) describe the geometry of black holes in the universe? What constraints can GW observations of SMBH mergers and EMRIs place on alternative theories of gravity? If there are deviations from GR, are there statistics that could give indications of a deviation if sources are detected using a search strategy based solely on GR waveforms? The primary reasons for focusing on LISA sources to answer these questions are (a) binary SMBH mergers could be detected by LISA with exquisitely high signal-to- noise, allowing enough parameters of the system to be accurately extracted to perform consistency checks of the underlying theory, (b) EMRIs will spend numerous orbits close to the central black hole, and thus will be quite sensitive to even small near-horizon deviations from GR. One approach to develop the requisite knowledge and tools to answer these questions is to study a concrete, theoretically viable alternative to GR. We will focus on the dynamical variant of Chern-Simons modified gravity (CSMG), which is interesting for several reasons, chief among which are (1) that CSMG generically arises in both string
The influence of strong field vacuum polarization on gravitational-electromagnetic wave interaction
Forsberg, Mats; Papadopoulos, Demetrios; Brodin, Gert
2010-01-01
The interaction between gravitational and electromagnetic waves in the presence of a static magnetic field is studied. The field strength of the static field is allowed to surpass the Schwinger critical field, such that the quantum electrodynamical (QED) effects of vacuum polarization and magnetization are significant. Equations governing the interaction are derived and analyzed. It turns out that the energy conversion from gravitational to electromagnetic waves can be significantly altered d...
Variable Field Analytical Ultracentrifugation: II. Gravitational Sweep Sedimentation Velocity.
Ma, Jia; Zhao, Huaying; Sandmaier, Julia; Alexander Liddle, J; Schuck, Peter
2016-01-05
Sedimentation velocity (SV) analytical ultracentrifugation is a classical biophysical technique for the determination of the size-distribution of macromolecules, macromolecular complexes, and nanoparticles. SV has traditionally been carried out at a constant rotor speed, which limits the range of sedimentation coefficients that can be detected in a single experiment. Recently we have introduced methods to implement experiments with variable rotor speeds, in combination with variable field solutions to the Lamm equation, with the application to expedite the approach to sedimentation equilibrium. Here, we describe the use of variable-field sedimentation analysis to increase the size-range covered in SV experiments by ∼100-fold with a quasi-continuous increase of rotor speed during the experiment. Such a gravitational-sweep sedimentation approach has previously been shown to be very effective in the study of nanoparticles with large size ranges. In the past, diffusion processes were not accounted for, thereby posing a lower limit of particle sizes and limiting the accuracy of the size distribution. In this work, we combine variable field solutions to the Lamm equation with diffusion-deconvoluted sedimentation coefficient distributions c(s), which further extend the macromolecular size range that can be observed in a single SV experiment while maintaining accuracy and resolution. In this way, approximately five orders of magnitude of sedimentation coefficients, or eight orders of magnitude of particle mass, can be probed in a single experiment. This can be useful, for example, in the study of proteins forming large assemblies, as in fibrillation process or capsid self-assembly, in studies of the interaction between very dissimilar-sized macromolecular species, or in the study of broadly distributed nanoparticles. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Improved gravitation field algorithm and its application in hierarchical clustering.
Zheng, Ming; Sun, Ying; Liu, Gui-Xia; Zhou, You; Zhou, Chun-Guang
2012-01-01
Gravitation field algorithm (GFA) is a new optimization algorithm which is based on an imitation of natural phenomena. GFA can do well both for searching global minimum and multi-minima in computational biology. But GFA needs to be improved for increasing efficiency, and modified for applying to some discrete data problems in system biology. An improved GFA called IGFA was proposed in this paper. Two parts were improved in IGFA. The first one is the rule of random division, which is a reasonable strategy and makes running time shorter. The other one is rotation factor, which can improve the accuracy of IGFA. And to apply IGFA to the hierarchical clustering, the initial part and the movement operator were modified. Two kinds of experiments were used to test IGFA. And IGFA was applied to hierarchical clustering. The global minimum experiment was used with IGFA, GFA, GA (genetic algorithm) and SA (simulated annealing). Multi-minima experiment was used with IGFA and GFA. The two experiments results were compared with each other and proved the efficiency of IGFA. IGFA is better than GFA both in accuracy and running time. For the hierarchical clustering, IGFA is used to optimize the smallest distance of genes pairs, and the results were compared with GA and SA, singular-linkage clustering, UPGMA. The efficiency of IGFA is proved.
Improved gravitation field algorithm and its application in hierarchical clustering.
Directory of Open Access Journals (Sweden)
Ming Zheng
Full Text Available BACKGROUND: Gravitation field algorithm (GFA is a new optimization algorithm which is based on an imitation of natural phenomena. GFA can do well both for searching global minimum and multi-minima in computational biology. But GFA needs to be improved for increasing efficiency, and modified for applying to some discrete data problems in system biology. METHOD: An improved GFA called IGFA was proposed in this paper. Two parts were improved in IGFA. The first one is the rule of random division, which is a reasonable strategy and makes running time shorter. The other one is rotation factor, which can improve the accuracy of IGFA. And to apply IGFA to the hierarchical clustering, the initial part and the movement operator were modified. RESULTS: Two kinds of experiments were used to test IGFA. And IGFA was applied to hierarchical clustering. The global minimum experiment was used with IGFA, GFA, GA (genetic algorithm and SA (simulated annealing. Multi-minima experiment was used with IGFA and GFA. The two experiments results were compared with each other and proved the efficiency of IGFA. IGFA is better than GFA both in accuracy and running time. For the hierarchical clustering, IGFA is used to optimize the smallest distance of genes pairs, and the results were compared with GA and SA, singular-linkage clustering, UPGMA. The efficiency of IGFA is proved.
Relativistic Mass Change in the Fields of Gravitation, Non-Holonomity, and Deformation
Rabounski, Dmitri
2010-10-01
This study targets solving the scalar geodesic equation (equation of energy) of a mass-bearing particle travelling in the gravitational field, the field of non-holonomity (rotation) of space, and the field of deformation of space, which are the only three external factors present in the equation. The obtained solutions manifest a change in the mass of the particle according to the distance travelled in the corresponding field. The mass defect due to the field of gravitation is known. The effects of the fields of space non-holonomity and space deformation have not been studied before. In contrast to the gravitational mass defect, registered in the gravitational field near the Earth, these two effects are much smaller: they reach the measurable limit 10-10 only in space travel within cosmological distances. A complete report of this study has been submitted to The Abraham Zelmanov Journal.
Quantum phenomena in gravitational field; Phenomenes quantiques dans le champ gravitationnel
Energy Technology Data Exchange (ETDEWEB)
Bourdel, Th. [Laboratoire Charles-Fabry de l' Institut d' Optique, CNRS, Univ. Paris-Sud, Campus Polytechnique RD128, 91127 Palaiseau (France); Doser, M. [CERN, Geneva 23, CH-1211 (Switzerland); Ernest, A.D. [Faculty of Science, Charles Sturt University, Wagga Wagga (Australia); Voronin, A.Y. [Lebedev Institute, 53 Leninskii pr., Moscow, RU-119991 (Russian Federation); Voronin, V.V. [PNPI, Orlova Roscha, Gatchina, RU-188300 (Russian Federation)
2010-10-15
The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)
Massive and mass-less Yang-Mills and gravitational fields
Veltman, M.J.G.; Dam, H. van
1970-01-01
Massive and mass-less Yang-Mills and gravitational fields are considered. It is found that there is a discrete difference between the zero-mass theories and the very small, but non-zero mass theories. In the case of gravitation, comparison of massive and mass-less theories with experiment, in
Constraints on Gravitational Scaling Dimensions from Non-Local Effective Field Equations
Hamber, H W; Hamber, Herbert W.; Williams, Ruth M.
2006-01-01
Quantum corrections to the classical field equations, induced by a scale dependent gravitational constant, are analyzed in the case of the static isotropic metric. The requirement of general covariance for the resulting non-local effective field equations puts severe restrictions on the nature of the solutions that can be obtained. In general the existence of vacuum solutions to the effective field equations restricts the value of the gravitational scaling exponent $\
Continuum dynamics and the electromagnetic field in the scalar ether theory of gravitation
Arminjon, Mayeul
2016-01-01
An alternative, scalar theory of gravitation has been proposed, based on a mechanism/interpretation of gravity as being a pressure force: Archimedes' thrust. In it, the gravitational field affects the physical standards of space and time, but motion is governed by an extension of the relativistic form of Newton's second law. This implies Einstein's geodesic motion for free particles only in a constant gravitational field. In this work, equations governing the dynamics of a continuous medium subjected to gravitational and non-gravitational forces are derived. Then, the case where the non-gravitational force is the Lorentz force is investigated. The gravitational modification of Maxwell's equations is obtained under the requirement that a charged continuous medium, subjected to the Lorentz force, obeys the equation derived for continuum dynamics under external forces. These Maxwell equations are shown to be consistent with the dynamics of a "free" photon, and thus with the geometrical optics of this theory. However, these equations do not imply local charge conservation, except for a constant gravitational field.
Continuum dynamics and the electromagnetic field in the scalar ether theory of gravitation
Directory of Open Access Journals (Sweden)
Arminjon Mayeul
2016-01-01
Full Text Available An alternative, scalar theory of gravitation has been proposed, based on a mechanism/interpretation of gravity as being a pressure force: Archimedes’ thrust. In it, the gravitational field affects the physical standards of space and time, but motion is governed by an extension of the relativistic form of Newton’s second law. This implies Einstein’s geodesic motion for free particles only in a constant gravitational field. In this work, equations governing the dynamics of a continuous medium subjected to gravitational and non-gravitational forces are derived. Then, the case where the non-gravitational force is the Lorentz force is investigated. The gravitational modification of Maxwell’s equations is obtained under the requirement that a charged continuous medium, subjected to the Lorentz force, obeys the equation derived for continuum dynamics under external forces. These Maxwell equations are shown to be consistent with the dynamics of a “free” photon, and thus with the geometrical optics of this theory. However, these equations do not imply local charge conservation, except for a constant gravitational field.
Pradhan,Anirudh; Kumhar, Shyam Sundar; Yadav, Padmini; Jotania, Kanti
2009-01-01
A new class of LRS Bianchi type ${\\rm VI}_{0}$ cosmological models with free gravitational fields and a variable cosmological term is investigated in presence of perfect fluid as well as bulk viscous fluid. To get the deterministic solution we have imposed the two different conditions over the free gravitational fields. In first case we consider the free gravitational field as magnetic type whereas in second case `gravitational wrench' of unit `pitch" is supposed to be present in free gravita...
Cosmology and Gravitation: Summary talk at the XXIV Brazilian Meeting on Particles and Fields
Maia, M. D.
2004-01-01
This is a brief summary with comments on selected contributions to the Cosmology and Gravitation section at the $24^{th}$ Brazilian Meeting on Particle and Fields (ENFPC XXIV), held at Caxambu, from September 30 to October 4, 2003.
Primordial gravitational waves induced by magnetic fields in an ekpyrotic scenario
Directory of Open Access Journals (Sweden)
Asuka Ito
2017-08-01
Full Text Available Both inflationary and ekpyrotic scenarios can account for the origin of the large scale structure of the universe. It is often said that detecting primordial gravitational waves is the key to distinguish both scenarios. We show that this is not true if the gauge kinetic function is present in the ekpyrotic scenario. In fact, primordial gravitational waves sourced by the gauge field can be produced in an ekpyrotic universe. We also study scalar fluctuations sourced by the gauge field and show that it is negligible compared to primordial gravitational waves. This comes from the fact that the fast roll condition holds in ekpyrotic models.
Van Lich, Le; Shimada, Takahiro; Wang, Jie; Dinh, Van-Hai; Bui, Tinh Quoc; Kitamura, Takayuki
2017-10-01
Polarization vortices that typically form in ferroelectric nanostructures are fundamental polar topological structures characterized by a curling polarization around a stable core. The control of vortex chirality by conventional fields including homogeneous electric field is a key to the utilization of vortices in technological applications. However, an effective control of the vortex chirality by such an electric field remains elusive since the toroidal moment of ferroelectric vortex is conjugated to a curled electric field rather than the homogeneous electric field. Here we demonstrate the control of vortex chirality by homogeneous electric field in free-standing nanodots with rationally designed nanostructures. The nanodots are designed by including a notch or an antinotch in the rectangular structure of nanodots. The results show that the chirality of polarization vortex is deterministically switched by a homogeneous electric field through the control of depolarization distribution by designed structures. The evolution path under homogeneous electric field in antinotched nanodot takes place in the opposite direction in comparison with that in notched nanodot. We further demonstrate that the designed nanostructures break the symmetry of electrostatic field in the ferroelectric systems, where the depolarization field concentrates at the notch but scatters at the antinotch. Such a symmetry breaking of electrostatic field results in the opposite evolution paths in the notched and antinotched nanodots under homogeneous electric field and provides the fundamental reason that allows such control. The present study suggests a new route on the practical control of the vortex domain pattern in ferroelectric nanostructures by homogeneous electric field.
Gederim, V V; Sokolovskiĭ, V V; Gorshkov, E S; Shapovalov, S N; Troshichev, O A
2001-01-01
Monitoring the content of lymphocytes and nucleated neutrophils (observation period 10.5 months) and the determination of the values of leucocytes coefficient and erythrocyte sedimentation rate in chronic patients revealed rhythms of oscillations of these parameters (from 3-5 to 33 days). The coincidence of these rhythms with the rhythms of variations of gravitational field indicates that gravitational field affects the quantitative blood cell composition and the rheological properties of blood.
Gravitational field of spherical domain wall in higher dimension
Indian Academy of Sciences (India)
An exact solution of Einstein's equations is found describing the gravitational ﬁeld of a spherical domain wall with nonvanishing stress component in the direction perpendicular to the plane of the wall. Also we have studied the motion of test particle around the domain wall.
Electromagnetic Waves in a Uniform Gravitational Field and Planck's Postulate
Acedo, Luis; Tung, Michael M.
2012-01-01
The gravitational redshift forms the central part of the majority of the classical tests for the general theory of relativity. It could be successfully checked even in laboratory experiments on the earth's surface. The standard derivation of this effect is based on the distortion of the local structure of spacetime induced by large masses. The…
A New Detector for Perturbations in Gravitational Field
Directory of Open Access Journals (Sweden)
Smirnov V. N.
2008-04-01
Full Text Available The paper presents design, principles of operation, and examples of registrations carried out by original device developed and constructed by V. N. Smirnov. The device manifested the possibility to register very weak gravitational perturbations of non-seismic kind both from celestial bodies and from the internal processed in the terrestrial globe.
Improving the magnetic field homogeneity by varying magnetic field structure in a geophone
Hong, Li; Wang, Wentao; Yao, Zhenjing; Gao, Qiang; Han, Zhiming
2018-01-01
The magnetic field structure is a key factor that affects performance of the magneto-electric geophone. In order to enhance the magnetic field homogeneity and magnetic induction intensity of the magnetic field structure, this paper proposes a new magnetic field structure. It consists of two cylindrical permanent magnets: an H-type magnetic boot and an external magnetic yoke. The proposed magnetic field structure can broaden the range of a uniform magnetic field and increase the magnetic field intensity of working air-gap. To confirm the validity of the design, the finite element analysis and real measurement experiments were conducted. The finite element simulations using the ANASYS Electromagnetics Suite 17.2.0 showed that the air-gap magnetic induction intensity is increased and the work space with a uniform magnetic field is broadened. Meanwhile, the output voltage of the coil is increased, and the harmonic distortion rate of output voltage is reduced. According to the real measurement experimental results, compared with the traditional magnetic field structure, the uniform range of the magnetic field is improved 23% in the entire air-gap path, and the magnetic induction intensity enhances 24% over the proposed new magnetic field structure.
On the interpretation of the equatorially antisymmetric Jovian gravitational field
Kong, Dali; Zhang, Keke; Schubert, Gerald
2017-07-01
Since the odd zonal gravitational coefficients of Jupiter are nearly unaffected by the planet's rotational distortion, an effective way of estimating the internal structure of the equatorially antisymmetric Jovian winds is to measure the odd coefficients induced by their equatorially antisymmetric component and then apply a mathematical theory to 'invert' them. The thermal-gravitational wind equation (TGWE) provides this theoretical basis for interpretation. Here, we show that the kernel term of the TGWE requires that its solutions satisfy a solvability condition. The thermal wind equation is a diagnostic relation that generates a 'solution' for any zonal wind profile, but that 'solution' does not necessarily satisfy the solvability condition required for the TGWE. We develop a new approach to solving the TGWE that respects the solvability condition. We then calculate the odd zonal gravitational coefficients of Jupiter using a profile of zonal winds that satisfies the solvability condition and is equatorially antisymmetric and consistent with the observed cloud-level winds of Jupiter. We also explain the subtle but profound difference between the TWE and the TGWE via an analogous inhomogeneous ordinary differential equation. The developed method can be readily extended for inversion of the data soon to be acquired by the Juno spacecraft.
Vacaru, Olivia
2013-01-01
Using $3+1$ spacetime fibrations on Lorentz manifolds, we define an analogous W--entropy for gravitational fields. Such F- and W-functionals were introduced in the Ricci flow theory of three dimensional Riemannian metrics by G. Perelman, arXiv: math.DG/0211159. The main goal of this paper is to solve and study one of the mentioned there problems: how associated statistical thermodynamical functions could reproduce in a relativistic manner the black hole thermodynamics and, in a more general context, provide a thermodynamic description of gravitational interactions? In our approach, the gravitational W--entropy characterizes the geometric evolution of three dimensional (3-d) hypersurface metrics nonoholonomically imbedded into certain classes of 4-d solutions of gravitational field equations. A geometric method for generating generic off-diagonal exact solutions for Einstein manifolds of pseudo-Euclidean signature determined by relativistic Ricci flow evolution of 3-d Riemannian metrics is applied. To relate s...
Continuum dynamics and the electromagnetic field in the scalar ether theory of gravitation
Arminjon Mayeul
2016-01-01
32 pages. V4: Introduction largely rewritten and expanded (new Refs.); some information added at beginning of Sect. 2 and in Sect. 5; some redactional improvements in Sects. 4 and 7.; An alternative, scalar theory of gravitation has been proposed, based on a mechanism/interpretation of gravity as being a pressure force: Archimedes' thrust. In it, the gravitational field affects the physical standards of space and time, but motion is governed by an extension of the relativistic form of Newton'...
The gravitational field of a charged global monopole
Energy Technology Data Exchange (ETDEWEB)
Min-Qiang Lu [East China Univ. of Science and Tecnology, Shangai (China). School of Fundamental Education]|[East China Inst. for Theoretical Physics, Shangai (China)
1998-10-01
A charged global monopole formed as a consequence of the spontaneous breakdown of a global symmetry should have a mass that grows linearly with the distance off its core where the gravitational effect of this configuration is equivalent to that of the deficit solid angle in the metric and the relatively tiny mass at the origin. In this paper it is shown that this small effective mass depends on the charge in that there exists a negative mass when the charge number Q is less than a critical value Q{sub c}r and that there appears a positive one when Q>Q{sub c}r.
Homogeneous Magnetic Field Source For Attenuated Total Reflection
Directory of Open Access Journals (Sweden)
Lesňák Michal
2014-07-01
Full Text Available The paper is focused on the study of two-dimensional magnetic field distribution used for an analysis of samples containing magnetically active films by means of the Attenuated Total Reflection (ATR method. The design of a proposed electromagnet and the magnetic field model computation are presented together with the results obtained from magnetic field distribution measurement. The ATR method can provide information about a thin film thickness, refractive index, and attenuation in addition to the perfunctory coupling of an optical wave into and off a waveguide [1, 2]. The prism coupling conditions are determined for magnetic structures with induced anisotropy.
Homogenous BSCCO-2212 Round Wires for Very High Field Magnets
Energy Technology Data Exchange (ETDEWEB)
Dr. Scott Campbell
2012-06-30
The performance demands on modern particle accelerators generate a relentless push towards higher field magnets. In turn, advanced high field magnet development places increased demands on superconducting materials. Nb3Sn conductors have been used to achieve 16 T in a prototype dipole magnet and are thought to have the capability for {approx}18 T for accelerator magnets (primarily dipoles but also higher order multipole magnets). However there have been suggestions and proposals for such magnets higher than 20 T. The High Energy Physics Community (HEP) has identified important new physics opportunities that are enabled by extremely high field magnets: 20 to 50 T solenoids for muon cooling in a muon collider (impact: understanding of neutrinos and dark matter); and 20+ T dipoles and quadrupoles for high energy hadron colliders (impact: discovery reach far beyond present). This proposal addresses the latest SBIR solicitation that calls for grant applications that seek to develop new or improved superconducting wire technologies for magnets that operate at a minimum of 12 Tesla (T) field, with increases up to 15 to 20 T sought in the near future (three to five years). The long-term development of accelerator magnets with fields greater than 20 T will require superconducting wires having significantly better high-field properties than those possessed by current Nb{sub 3}Sn or other A15 based wires. Given the existing materials science base for Bi-2212 wire processing, we believe that Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212) round wires can be produced in km-long piece lengths with properties suitable to meet both the near term and long term needs of the HEP community. The key advance will be the translation of this materials science base into a robust, high-yield wire technology. While the processing and application of A15 materials have advanced to a much higher level than those of the copper oxide-based, high T{sub c} (HTS) counterparts, the HTS materials have
Hashemi Farahani, H.; Ditmar, P.G.
2011-01-01
Modelling the global gravitational field of the Earth in terms of spherical harmonic coefficients has been performed by a stand-alone inversion of a 4-month set of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) Satellite Gravity Gradiometry (SGG) data and a 9-month set of the
Representations of homogeneous quantum Lévy fields
Indian Academy of Sciences (India)
A strongly covariant GNS representation for the conditionally positive logarithmic functionals of these states is constructed in the complex Minkowski space in terms of canonical quadruples and isometric representations on the underlying pre-Hilbert field space. This is of much use in constructing quantum stochastic ...
Wiggly tails: a gravitational wave signature of massive fields around black holes
Degollado, Juan Carlos
2014-01-01
Massive fields can exist in long-lived configurations around black holes. We examine how the gravitational wave signal of a perturbed black hole is affected by such `dirtiness' within linear theory. As a concrete example, we consider the gravitational radiation emitted by the infall of a massive scalar field into a Schwarzschild black hole. Whereas part of the scalar field is absorbed/scattered by the black hole and triggers gravitational wave emission, another part lingers in long-lived quasi-bound states. Solving numerically the Teukolsky master equation for gravitational perturbations coupled to the massive Klein-Gordon equation, we find a characteristic gravitational wave signal, composed by a quasi-normal ringing followed by a late time tail. In contrast to `clean' black holes, however, the late time tail contains small amplitude wiggles with the frequency of the dominating quasi-bound state. Additionally, an observer dependent beating pattern may also be seen. These features were already observed in ful...
Models for Quarks and Elementary Particles. Part III: What is the Nature of the Gravitational Field?
Directory of Open Access Journals (Sweden)
Neumann U. K. W.
2008-07-01
Full Text Available The first two parts of this article series dealt with the questions: What is a quark? and What is mass? While the present models lead to a physical idea of the mass, the geometrical theory of the general relativity only shows the effect of mass. From the physical idea of mass, from the idea of the resultant vector (EV as electric flux and from the ideas relating to the magnetic monopole (MMP it follows that the gravitational field is an electrical field. The share of the electrical gravitational flux on the entire electrical flux of a quark is determined from Newton’s empirical gravitational constant G . The superposition of the < fluxes of two quark collectives produces the gravitational force effect between two quark collectives. Gravitational fields reach infinitely far according to our current ideas. Connected with the quark oscillations hinted in the Parts I and II this results in the idea of the < - < flux spreading with infinite speed, having enormous consequences.
On continuum dynamics and the electromagnetic field in the scalar ether theory of gravitation
Arminjon, Mayeul
2017-05-01
Our study of aspects of a scalar ether theory of gravitation is formulated in a preferred reference frame in a four-dimensional spacetime endowed with a curved “physical” metric. The dynamics of a test particle is defined by an extension of the special-relativistic form of Newton’s second law. This determines the dynamical equation verified by the energy-momentum tensor T of a “dust” continuum, also in the presence of a non-gravitational external force. The dynamical equation for T thus obtained is assumed valid for a general continuous medium or a system of fields. When the non-gravitational force is the Lorentz force, this equation in turn determines the Maxwell equations in a gravitational field for the present theory. They are consistent with the dynamics of photons i.e. with the geometrical optics of the theory. Except for a constant gravitational field, they seem to imply some local production or destruction of electric charge. The possible amounts are yet to be assessed.
Using Jupiter’s gravitational field to probe the Jovian convective dynamo
Kong, Dali; Zhang, Keke; Schubert, Gerald
2016-01-01
Convective motion in the deep metallic hydrogen region of Jupiter is believed to generate its magnetic field, the strongest in the solar system. The amplitude, structure and depth of the convective motion are unknown. A promising way of probing the Jovian convective dynamo is to measure its effect on the external gravitational field, a task to be soon undertaken by the Juno spacecraft. We calculate the gravitational signature of non-axisymmetric convective motion in the Jovian metallic hydrogen region and show that with sufficiently accurate measurements it can reveal the nature of the deep convection. PMID:27005472
Thermal corrections to the Casimir energy in a general weak gravitational field
Nazari, Borzoo
2016-12-01
We calculate finite temperature corrections to the energy of the Casimir effect of a two conducting parallel plates in a general weak gravitational field. After solving the Klein-Gordon equation inside the apparatus, mode frequencies inside the apparatus are obtained in terms of the parameters of the weak background. Using Matsubara’s approach to quantum statistical mechanics gravity-induced thermal corrections of the energy density are obtained. Well-known weak static and stationary gravitational fields are analyzed and it is found that in the low temperature limit the energy of the system increases compared to that in the zero temperature case.
A Well-Balanced Unified Gas-Kinetic Scheme for Multiscale Flow Transport Under Gravitational Field
Xiao, Tianbai; Xu, Kun
2016-01-01
The gas dynamics under gravitational field is usually associated with the multiple scale nature due to large density variation and a wide range of local Knudsen number. It is chal- lenging to construct a reliable numerical algorithm to accurately capture the non-equilibrium physical effect in different regimes. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for all flow regimes under gravitational field will be developed, which can be used for the study of non-equilibrium gravitational gas system. The well-balanced scheme here is defined as a method to evolve an isolated gravitational system under any initial condition to an isothermal hydrostatic equilibrium state and to keep such a solution. To preserve such a property is important for a numerical scheme, which can be used for the study of slowly evolving gravitational system, such as the formation of star and galaxy. Based on the Boltzmann model with external forcing term, an analytic time evolving (or scale-dependent) solution is constru...
Gravitation Field Dynamics in Jeans Theory A. A. Stupka
Indian Academy of Sciences (India)
Abstract. Closed system of time equations for nonrelativistic gravita- tion field and hydrodynamic medium was obtained by taking into account binary correlations of the field, which is the generalization of Jeans theory. Distribution function of the system was built on the basis of the Bogolyubov reduced description method.
Newton\\'s equation of motion in the gravitational field of an oblate ...
African Journals Online (AJOL)
In this paper, we derived Newton's equation of motion for a satellite in the gravitational scalar field of a uniformly rotating, oblate spheriodal Earth using spheriodal coordinates. The resulting equation is solved for the corresponding precession and the result compared with similar ones. JONAMP Vol. 11 2007: pp. 279-286 ...
[Physical essence of erythrocytic sedimentation rate in the gravitation field of the earth].
Cherniĭ, A N
2009-01-01
The erythrocytic sedimentation rate method has been long known in medicine and extensively used in laboratory practice in tuberculosis facilities. However, many authors note that the erythrocytic sedimentation rate phenomenon has not clearly understood. By applying the total theory of relativity and quantum mechanics, the author discloses the physical essence of erythrocytic sedimentation in the gravitation field of the Earth.
Strong gravitational lensing—a probe for extra dimensions and Kalb-Ramond field
Chakraborty, Sumanta; SenGupta, Soumitra
2017-07-01
Strong field gravitational lensing in the context of both higher spacetime dimensions and in presence of Kalb-Ramond field have been studied. After developing proper analytical tools to analyze the problem we consider gravitational lensing in three distinct black hole spacetimes—(a) four dimensional black hole in presence of Kalb-Ramond field, (b) brane world black holes with Kalb-Ramond field and finally (c) black hole solution in f(T) gravity. In all the three situations we have depicted the behavior of three observables: the asymptotic position approached by the relativistic images, the angular separation and magnitude difference between the outermost images with others packed inner ones, both numerically and analytically. Difference between these scenarios have also been discussed along with possible observational signatures.
Pradhan, Anirudh; Jotania, Kanti
2009-01-01
A new class of LRS Bianchi type ${\\rm VI}_{0}$ cosmological models with free gravitational fields and a variable cosmological term is investigated in presence of perfect fluid as well as bulk viscous fluid. To get the deterministic solution we have imposed the two different conditions over the free gravitational fields. In first case we consider the free gravitational field as magnetic type whereas in second case `gravitational wrench' of unit `pitch" is supposed to be present in free gravitational field. The viscosity coefficient of bulk viscous fluid is assumed to be a power function of mass density. The cosmological constant $\\Lambda$ is found to be a decreasing function of time and positive which is corroborated by results from recent supernovae Ia observations. The physical and geometric aspects of the models are discussed.
On the usefulness of relativistic space-times for the description of the Earth's gravitational field
Soffel, Michael; Frutos, Francisco
2016-12-01
The usefulness of relativistic space-times for the description of the Earth's gravitational field is investigated. A variety of exact vacuum solutions of Einstein's field equations (Schwarzschild, Erez and Rosen, Gutsunayev and Manko, Hernández-Pastora and Martín, Kerr, Quevedo, and Mashhoon) are investigated in that respect. It is argued that because of their multipole structure and influences from external bodies, all these exact solutions are not really useful for the central problem. Then, approximate space-times resulting from an MPM or post-Newtonian approximation are considered. Only in the DSX formalism that is of the first post-Newtonian order, all aspects of the problem can be tackled: a relativistic description (a) of the Earth's gravity field in a well-defined geocentric reference system (GCRS), (b) of the motion of solar system bodies in a barycentric reference system (BCRS), and (c) of inertial and tidal terms in the geocentric metric describing the external gravitational field. A relativistic SLR theory is also discussed with respect to our central problem. Orders of magnitude of many effects related to the Earth's gravitational field and SLR are given. It is argued that a formalism with accuracies better than of the first post-Newtonian order is not yet available.
Study of homogeneity and inhomogeneity phantom in CUDA EGS for small field dosimetry
Yani, Sitti; Rhani, Mohamad Fahdillah; Haryanto, Freddy; Arif, Idam
2017-02-01
CUDA EGS was CUDA implementation to simulate transport photon in a material based on Monte Carlo algorithm for X-ray imaging. The objective of this study was to investigate the effect of inhomogeneities in inhomogeneity phantom for small field dosimetry (1×1, 2×2, 3×3, 4×4 and 5×5 cm2). Two phantoms, homogeneity and inhomogeneity phantom were used. The interaction in homogeneity and inhomogeneity phantom was dominated by Compton interaction and multiple scattering. The CUDA EGS can represent the inhomogeneity effect in small field dosimetry by combining the grayscale curve between homogeneity and inhomogeneity phantom. The grayscale curve in inhomogeneity phantom is not asymmetric because of the existence of different material in phantom.
Dark sector impact on gravitational collapse of an electrically charged scalar field
Energy Technology Data Exchange (ETDEWEB)
Nakonieczna, Anna [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Institute of Agrophysics, Polish Academy of Sciences,Doświadczalna 4, 20-290 Lublin (Poland); Rogatko, Marek [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Nakonieczny, Łukasz [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warszawa (Poland)
2015-11-04
Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.
Diffraction of electromagnetic waves in the gravitational field of the Sun
Turyshev, Slava G.; Toth, Viktor T.
2017-07-01
We consider the propagation of electromagnetic (EM) waves in the gravitational field of the Sun within the first post-Newtonian approximation of the general theory of relativity. We solve Maxwell's equations for the EM field propagating on the background of a static mass monopole and find an exact closed form solution for the Debye potentials, which, in turn, yield a solution to the problem of diffraction of EM waves in the gravitational field of the Sun. The solution is given in terms of the confluent hypergeometric function and, as such, it is valid for all distances and angles. Using this solution, we develop a wave-theoretical description of the solar gravitational lens (SGL) and derive expressions for the EM field and energy flux in the immediate vicinity of the focal line of the SGL. Aiming at the potential practical applications of the SGL, we study its optical properties and discuss its suitability for direct high-resolution imaging of a distant exoplanet.
Fast Gravitational Field Model Using Adaptive Orthogonal Finite Element Approximation
Younes, A.; Macomber, B.; Woollands, R.; Probe, A.; Bai, X.; Junkins, J.
2013-09-01
Recent research has addressed the issue that high degree and order gravity expansions involve tens of thousands of terms in a theoretically infinite order spherical harmonic expansion (some gravity models extend to degree and order 200 with over 30,000 terms) which in principle must be computed at every integration step to obtain the acceleration consistent with the gravity model. We propose to evaluate these gravity model interpolation models and use them in conjunction with the modified Picard path approximation methods. It was decided to consider analogous orthogonal approximation methods to interpolate, an FEM model, high (degree, order) gravity fields, by replacing the global spherical harmonic series by a family of locally precise orthogonal polynomial approximations for efficient computation. Our preliminary results showed that time to compute the state of the art (degree and order 200) spherical harmonic gravity is reduced by 4 to 5 orders of magnitude while maintaining > 9 digits of accuracy. Most of the gain is due to adopting the orthogonal FEM approach, but radial adaptation of the approximation degree gains an additional order of magnitude speedup. The efficient data base storage/access of the local coefficients is studied, which utilizes porting the algorithm to the NVIDIA GPU. This paper will address the accuracy and efficiency in both a C++ serial PC architecture as well as a PC/GPU architecture. The Adaptive Orthogonal Finite Element Gravity Model (AOFEGM) is expected to have broad potential for speeding the trajectory propagation algorithms; for example, used in conjunction with orthogonal Finite Element Model (FEM) gravity approximations, the Chebyshev-Picard path approximation enables truly revolutionary speedups in orbit propagation without accuracy loss.
Solar oscillations, gravitational multipole field of the sun and the solar neutrino paradox
Energy Technology Data Exchange (ETDEWEB)
Hill, H.A.; Rosenwald, R.D.
1986-11-04
The visual solar oblateness work and the solar seismological work on the internal rotation of the sun are reviewed and their implications concerning the static gravitational multipole moments of the sun are discussed. The results of this work are quite deviant which is indicative of the complexity encountered and of the necessity for continued studies based on a diverse set of observing techniques. The evidence for phase-locked internal gravity modes of the sun is reviewed and the implications for the solar neutrino paradox are discussed. The rather unique possibility for testing the relevance which the phase-locked gravity modes have to this paradox is also noted. The oscillating perturbations in the sun's gravitational field produced by the classified internal gravity modes and the phase-locked modes are inferred from the observed temperature eigenfunctions. Strains of the order of 10/sup -18/ in gravitational radiation detectors based on free masses are inferred for frequencies near 100 ..mu..Hz. The relevance of these findings is discussed in terms of a new technique for use in solar seismological studies and of producing background signals in studies of low-frequency gravitational radiation. 64 refs., 2 figs.
Constitutive modeling of two phase materials using the Mean Field method for homogenization
Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.
2010-01-01
A Mean-Field homogenization framework for constitutive modeling of materials involving two distinct elastic-plastic phases is presented. With this approach it is possible to compute the macroscopic mechanical behavior of this type of materials based on the constitutive models of the constituent
A new line element derived from the variable rest mass in gravitational field
Ben-Amots, N.
2008-01-01
This paper presents a new line element based on the assumption of the variable rest mass in gravitational field, and explores some its implications. This line element is not a vacuum solution of Einstein's equations, yet it is sufficiently close to Schwarzschild's line element to be compatible with all of the experimental and observational measurements made so far to confirm the three Einstein's predictions. The theory allows radiation and fast particles to escape from all massive bodies, eve...
Ridgely, Charles T.
2011-01-01
When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…
Owolabi, Taoreed O.; Akande, Kabiru O.; Olatunji, Sunday O.; Aldhafferi, Nahier; Alqahtani, Abdullah
2017-11-01
Titanium dioxide (TiO2) semiconductor is characterized with a wide band gap and attracts a significant attention for several applications that include solar cell carrier transportation and photo-catalysis. The tunable band gap of this semiconductor coupled with low cost, chemical stability and non-toxicity make it indispensable for these applications. Structural distortion always accompany TiO2 band gap tuning through doping and this present work utilizes the resulting structural lattice distortion to estimate band gap of doped TiO2 using support vector regression (SVR) coupled with novel gravitational search algorithm (GSA) for hyper-parameters optimization. In order to fully capture the non-linear relationship between lattice distortion and band gap, two SVR models were homogeneously hybridized and were subsequently optimized using GSA. GSA-HSVR (hybridized SVR) performs better than GSA-SVR model with performance improvement of 57.2% on the basis of root means square error reduction of the testing dataset. Effect of Co doping and Nitrogen-Iodine co-doping on band gap of TiO2 semiconductor was modeled and simulated. The obtained band gap estimates show excellent agreement with the values reported from the experiment. By implementing the models, band gap of doped TiO2 can be estimated with high level of precision and absorption ability of the semiconductor can be extended to visible region of the spectrum for improved properties and efficiency.
Agop, M; Nica, P; Buzea, C G; Jarcau, M
2003-01-01
Some abilities of the SRT theory in studying the polarization gravitational field are analyzed. Thus, one builds a set of Maxwell-type equations for the polarization gravitational field and one studies the behaviour of a gravitomagnetic charge in such fields on a fractalic space-time. One finds that the interaction between the gravitomagnetic charge and the polarization gravitational field reduces to the Van der Waals gravitational type dipole-dipole interaction. From the study of GMHD wave, on a fractal cosmological background it results that the speeds in the planetary and galactic structures are discrete and the Cantorian structure is induced by means of a Tifft and Cocke Cantorian effect (at least for the galaxy pairs NGC 4294-NGC 4299, NGC 4085-NGC 4088). By an iterated map, one gets an object which may be identified with a cosmic fractal string, whose 2D projection corresponds to a cosmic string.
Relativistic two-body Coulomb-Breit Hamiltonian in an external weak gravitational field
Caicedo, J. A.; Urrutia, L. F.
2011-11-01
A construction of the Coulomb-Breit Hamiltonian for a pair of fermions, considered as a quantum two-body system, immersed in an arbitrary background gravitational field described by Einstein's General Relativity is presented. Working with Fermi normal coordinates for a freely falling observer in a spacetime region where there are no background sources and ignoring the gravitational back-reaction of the system, the effective Coulomb-Breit Hamiltonian is obtained starting from the S-matrix element corresponding to the one-photon exchange between the charged fermionic currents. The contributions due to retardation are considered up to order (v / c) 2 and they are subsequently written as effective operators in the relativistic quantum mechanical Hilbert space of the system. The final Hamiltonian includes effects linear in the curvature and up to order (v / c) 2.
Relativistic two-body Coulomb-Breit Hamiltonian in an external weak gravitational field
Energy Technology Data Exchange (ETDEWEB)
Caicedo, J.A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A. Postal 70-543, 04510 Mexico D.F. (Mexico); Urrutia, L.F., E-mail: urrutia@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A. Postal 70-543, 04510 Mexico D.F. (Mexico)
2011-11-03
A construction of the Coulomb-Breit Hamiltonian for a pair of fermions, considered as a quantum two-body system, immersed in an arbitrary background gravitational field described by Einstein's General Relativity is presented. Working with Fermi normal coordinates for a freely falling observer in a spacetime region where there are no background sources and ignoring the gravitational back-reaction of the system, the effective Coulomb-Breit Hamiltonian is obtained starting from the S-matrix element corresponding to the one-photon exchange between the charged fermionic currents. The contributions due to retardation are considered up to order (v/c){sup 2} and they are subsequently written as effective operators in the relativistic quantum mechanical Hilbert space of the system. The final Hamiltonian includes effects linear in the curvature and up to order (v/c){sup 2}.
Gravitational waves induced by massless vector fields with non-minimal coupling to gravity
Feng, Kaixi
2016-01-01
In this paper, we calculate the contribution of the late time mode of a massless vector field to the power spectrum of the primordial gravitational wave using retarded Green's propagator. We consider a non-trivial coupling between gravity and the vector field. We find that the correction is scale-invariant and of order $\\frac{H^4}{M_P^4}$. The non-minimal coupling leads to a dependence of $\\frac{H^2}{M^2}$, which can amplify the correlation function up to the level of $\\frac{H^2}{M^2_P}$.
Energy Technology Data Exchange (ETDEWEB)
Contreras-Astorga, A., E-mail: alonso.contreras.astorga@gmail.com [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary, IN 46408 (United States); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Tristao, S., E-mail: hetsudoyaguiu@gmail.com [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)
2016-01-08
This paper deals with the problem of an electron in a non-homogeneous magnetic field perpendicular to a plane. From the classical point of view this is an integrable, but not superintegrable, solvable system. In the quantum framework of the Dirac equation this integrable system is solvable too; the energy levels and wavefunctions of bound states, for its reduction to the plane, are computed. The effective one-dimensional matrix Hamiltonian is shown to belong to a shape-invariant hierarchy. Through this example we will shed some light on the specific properties of a quantum integrable system with respect to those characteristic of superintegrable systems. - Highlights: • The system: an electron in a non-homogeneous magnetic field. • This is a solvable integrable but not superintegrable system. • Solutions to the discrete Dirac spectrum are found. • The shape-invariance of Dirac matrix Hamiltonians is characterized. • Specific properties of integrable, not superintegrable, systems are analyzed.
DEFF Research Database (Denmark)
Salerno, Mario; Samuelsen, Mogens Rugholm
1999-01-01
We investigate both analytically and numerically phase locking and flux-flow resonances of long Josephson junctions in the presence of homogeneous microwave fields. We use a power balance analysis and a perturbation expansion around the uniform rotating solution to derive analytical expressions...... for the locking range in current of the phase-lock steps is also derived. These results are found to be in good agreement with numerical results....
Gravitational field around black hole induces photonic spin-orbit interaction that twists light
Pan, Deng; Xu, Hong-Xing
2017-10-01
The spin-orbit interaction (SOI) of light has been intensively studied in nanophotonics because it enables sensitive control of photons' spin degree of freedom and thereby the trajectories of the photons, which is useful for applications such as signal encoding and routing. A recent study [ Phys. Rev. Lett. 117, 166803 (2016)] showed that the SOI of photons manifests in the presence of a gradient in the permittivity of the medium through which the photons propagate; this enhances the scattering of circularly polarized light and results in the photons propagating along twisted trajectories. Here we theoretically predict that, because of the equivalence between an inhomogeneous dielectric medium and a gravitational field demonstrated in transformation optics, a significant SOI is induced onto circularly polarized light passing by the gravitational lens of a black hole. This leads to: i) the photons to propagate along chiral trajectories if the size of the black hole is smaller than the wavelength of the incident photons; ii) the resulting image of the gravitational lens to manifest an azimuthal rotation because of these chiral trajectories. The findings open for a way to probe for and discover subwavelength-size black holes using circularly polarized light.
A Multi-layered Model for the Shape, Zonal Winds and Gravitational Field of Jupiter
Schubert, G.; Zhang, K.; Kong, D.
2016-12-01
We have developed a three-dimensional, finite-element, multi-layered, non-spheroidal model of Jupiter consisting of an inner core, a metallic dynamo region and an outer molecular electrically insulating envelope. Different polytropic equations of state are used in the metallic and molecular regions. The zonal winds are on cylinders parallel to the rotation axis and are confined within the molecular envelope by magnetic braking. The effect of rotational distortion is fully accounted for; it is not treated as simply a small perturbation on a spherically symmetric state. The model determines the density, size and shape of the inner core, the irregular shape of the 1-bar pressure level, and the internal structure of Jupiter. It produces the known mass, the known equatorial and polar radii, and the known zonal gravitational coefficient J2 of Jupiter within their error bars; it also yields the coefficients J4 and J6 with an accuracy of a few percent. The variation of the gravitational field caused solely by the effect of the zonal winds on the rotationally distorted Jupiter is also determined. Different cases, ranging from a deep wind profile to a very shallow profile, are considered. The model enables accurate interpretation of the zonal gravitational coefficients expected from the Juno mission.
Hypersurface-homogeneous cosmological models with anisotropic ...
Indian Academy of Sciences (India)
The present study deals with hypersurface-homogeneous cosmological models with anisotropic dark energy in Saez–Ballester theory of gravitation. Exact solutions of field equations are obtained by applying a special law of variation of Hubble's parameter that yields a constant negative value of the deceleration parameter.
Patacchini, L.; Hutchinson, I. H.
2009-04-01
A new explicit time-reversible orbit integrator for the equations of motion in a static homogeneous magnetic field - called Cyclotronic integrator - is presented. Like Spreiter and Walter's Taylor expansion algorithm, for sufficiently weak electric field gradients this second order method does not require a fine resolution of the Larmor motion; it has however the essential advantage of being symplectic, hence time-reversible. The Cyclotronic integrator is only subject to a linear stability constraint ( ΩΔ t Democritus can reduce the cost of orbit integration by up to a factor of ten.
Lother, Steffen; Schiff, Steven J; Neuberger, Thomas; Jakob, Peter M; Fidler, Florian
2016-08-01
In this work, a prototype of an effective electromagnet with a field-of-view (FoV) of 140 mm for neonatal head imaging is presented. The efficient implementation succeeded by exploiting the use of steel plates as a housing system. We achieved a compromise between large sample volumes, high homogeneity, high B0 field, low power consumption, light weight, simple fabrication, and conserved mobility without the necessity of a dedicated water cooling system. The entire magnetic resonance imaging (MRI) system (electromagnet, gradient system, transmit/receive coil, control system) is introduced and its unique features discussed. Furthermore, simulations using a numerical optimization algorithm for magnet and gradient system are presented. Functionality and quality of this low-field scanner operating at 23 mT (generated with 500 W) is illustrated using spin-echo imaging (in-plane resolution 1.6 mm × 1.6 mm, slice thickness 5 mm, and signal-to-noise ratio (SNR) of 23 with a acquisition time of 29 min). B0 field-mapping measurements are presented to characterize the homogeneity of the magnet, and the B0 field limitations of 80 mT of the system are fully discussed. The cryogen-free system presented here demonstrates that this electromagnet with a ferromagnetic housing can be optimized for MRI with an enhanced and homogeneous magnetic field. It offers an alternative to prepolarized MRI designs in both readout field strength and power use. There are multiple indications for the clinical medical application of such low-field devices.
Douch, Karim; Müller, Jürgen; Heinzel, Gerhard; Wu, Hu
2017-04-01
The successful GRACE mission and its far-reaching benefits have highlighted the interest to continue and extend the mapping of the Earth's time-variable gravitational field with follow-on missions and ideally a higher spatiotemporal resolution. Here, we would like to put forward satellite gravitational gradiometry as an alternative solution to satellite-to-satellite tracking for future missions. Besides the higher sensitivity to smaller scales compared to GRACE-like missions, a gradiometry mission would only require one satellite and would provide a direct estimation of a functional of the gravitational field. GOCE, the only gradiometry mission launched so far, was not sensitive enough to map the time-variable part of the gravity field. However, the unprecedented precision of the state-of-the-art optical metrology system on-board the LISA PATHFINDER satellite has opened the way to more performant space inertial sensors. We will therefore examine whether it is technically possible to go beyond GOCE performances and to quantify to what extent the time-variable gravitational field could be determined. First, we derive the requirements on the knowledge of the attitude and the position of the satellite and on the measured gradients in terms of sensitivity and calibration accuracy for a typical repeat low-orbit. We conclude in particular that a noise level smaller than 0.1 mE/√Hz- is required in the measurement bandwidth [5x10-4 ; 10-2]Hz so as to be sensitive to the time-variable gravity signal. We introduce then the design and characteristics of the new gradiometer concept and give an assessment of its noise budget. Contrary to the GOCE electrostatic gradiometer, the position of the test-mass in the accelerometer is measured here by laser interferometry rather than by a capacitive readout system, which improves the overall measurement chain. Finally, the first results of a performance analysis carried out thanks to an end-to-end simulator are discussed and compared
Ivorra, Antoni; Al-Sakere, Bassim; Rubinsky, Boris; Mir, Lluis M.
2008-11-01
Electroporation is used in tissue for gene therapy, drug therapy and minimally invasive tissue ablation. The electrical field that develops during the application of the high voltage pulses needs to be precisely controlled. In the region to be treated, it is desirable to generate a homogeneous electric field magnitude between two specific thresholds whereas in other regions the field magnitude should be as low as possible. In the case of irregularly shaped tissue structures, such as bulky tumors, electric field homogeneity is almost impossible to be achieved with current electrode arrangements. We propose the use of conductive gels, matched to the conductivity of the tissues, to fill dead spaces between plate electrodes gripping the tissue so that the electric field distribution becomes less heterogeneous. Here it is shown that this technique indeed improves the antitumor efficacy of electrochemotherapy in sarcomas implanted in mice. Furthermore, we analyze, through finite element method simulations, how relevant the conductivity mismatches are. We found that conductivity mismatching errors are surprisingly well tolerated by the technique. Gels with conductivities ranging from 5 mS cm-1 to 10 mS cm-1 will be a proper solution for most cases.
Topology optimization based design of unilateral NMR for generating a remote homogeneous field
Wang, Qi; Gao, Renjing; Liu, Shutian
2017-06-01
This paper presents a topology optimization based design method for the design of unilateral nuclear magnetic resonance (NMR), with which a remote homogeneous field can be obtained. The topology optimization is actualized by seeking out the optimal layout of ferromagnetic materials within a given design domain. The design objective is defined as generating a sensitive magnetic field with optimal homogeneity and maximal field strength within a required region of interest (ROI). The sensitivity of the objective function with respect to the design variables is derived and the method for solving the optimization problem is presented. A design example is provided to illustrate the utility of the design method, specifically the ability to improve the quality of the magnetic field over the required ROI by determining the optimal structural topology for the ferromagnetic poles. Both in simulations and experiments, the sensitive region of the magnetic field achieves about 2 times larger than that of the reference design, validating validates the feasibility of the design method.
Topology optimization based design of unilateral NMR for generating a remote homogeneous field.
Wang, Qi; Gao, Renjing; Liu, Shutian
2017-06-01
This paper presents a topology optimization based design method for the design of unilateral nuclear magnetic resonance (NMR), with which a remote homogeneous field can be obtained. The topology optimization is actualized by seeking out the optimal layout of ferromagnetic materials within a given design domain. The design objective is defined as generating a sensitive magnetic field with optimal homogeneity and maximal field strength within a required region of interest (ROI). The sensitivity of the objective function with respect to the design variables is derived and the method for solving the optimization problem is presented. A design example is provided to illustrate the utility of the design method, specifically the ability to improve the quality of the magnetic field over the required ROI by determining the optimal structural topology for the ferromagnetic poles. Both in simulations and experiments, the sensitive region of the magnetic field achieves about 2 times larger than that of the reference design, validating validates the feasibility of the design method. Copyright © 2017. Published by Elsevier Inc.
TASI Lectures on Holographic Space-Time, SUSY, and Gravitational Effective Field Theory
Banks, Tom
2012-11-01
I argue that the conventional field theoretic notion of vacuum state is not valid in quantum gravity. The arguments use gravitational effective field theory, as well as results from string theory, particularly the AdS/CFT correspondence. Different solutions of the same low energy gravitational field equations correspond to different quantum systems, rather than different states in the same system. I then introduce holographic space-time a quasi-local quantum mechanical construction based on the holographic principle. I argue that models of quantum gravity in asymptotically flat space-time will be exactly super-Poincare invariant, because the natural variables of holographic space-time for such a system, are the degrees of freedom of massless superparticles. The formalism leads to a non-singular quantum Big Bang cosmology, in which the asymptotic future is required to be a de Sitter space, with cosmological constant (c.c.) determined by cosmological initial conditions. It is also approximately SUSic in the future, with the gravitino mass KΛ1/4.
Quantum Effects of a Vortex Gravitational Field and the Torsion of Spacetime
Krechet, V. G.; Oshurko, V. B.; Rodichev, S. V.
2017-06-01
Possible quantum effects, induced by the torsion of spacetime described by its pseudotrace {\\overset{\\smile }{Q}}^i=1/6{\\upvarepsilon}^{iklm}{Q}_{klm} , and by a vortex gravitational field described by its angular velocity {\\upomega}^i=1/2{\\upvarepsilon}^{iklm}{e}_{ak}{e}_{lm}^a of rotation of the tetrad field {e}_a^k({x}^i) , are considered. Toward this end, the vacuum averages of the energy-momentum tensor {T}_k^i of the quantized scalar field are calculated. A thorough-going analogy between physical effects induced by these two physical objects is revealed both on the classical and on the quantum level.
Unveiling chameleon fields in tests of the gravitational inverse-square law
Upadhye, Amol; Gubser, Steven S.; Khoury, Justin
2006-11-01
Scalar self-interactions are known to weaken considerably the current constraints on scalar-mediated fifth forces. We consider a scalar field with a quartic self-interaction and gravitation-strength Yukawa couplings to matter particles. After discussing the phenomenology of this scalar field, we assess the ability of ongoing and planned experiments to detect the fifth force mediated by such a field. Assuming that the quartic and matter couplings are of order unity, the current-generation Eöt-Wash experiment at the University of Washington will be able to explore an interesting subset of parameter space. The next-generation Eöt-Wash experiment is expected to be able to detect, or to rule out, the fifth force due to such a scalar with unit quartic and matter couplings at the 3σ confidence level.
Energy Technology Data Exchange (ETDEWEB)
Peters, Thomas; Klessen, Ralf S.; Federrath, Christoph; Smith, Rowan J. [Zentrum fuer Astronomie, Institut fuer Theoretische Astrophysik, Universitaet Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Schleicher, Dominik R. G. [Institut fuer Astrophysik, Georg-August-Universitaet, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Banerjee, Robi [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Sur, Sharanya, E-mail: tpeters@physik.uzh.ch [Raman Research Institute, C. V. Raman Avenue, Sadashivnagar, Bangalore 560080 (India)
2012-12-01
Stars form by the gravitational collapse of interstellar gas. The thermodynamic response of the gas can be characterized by an effective equation of state. It determines how gas heats up or cools as it gets compressed, and hence plays a key role in regulating the process of stellar birth on virtually all scales, ranging from individual star clusters up to the galaxy as a whole. We present a systematic study of the impact of thermodynamics on gravitational collapse in the context of high-redshift star formation, but argue that our findings are also relevant for present-day star formation in molecular clouds. We consider a polytropic equation of state, P = k{rho}{sup {Gamma}}, with both sub-isothermal exponents {Gamma} < 1 and super-isothermal exponents {Gamma} > 1. We find significant differences between these two cases. For {Gamma} > 1, pressure gradients slow down the contraction and lead to the formation of a virialized, turbulent core. Weak magnetic fields are strongly tangled and efficiently amplified via the small-scale turbulent dynamo on timescales corresponding to the eddy-turnover time at the viscous scale. For {Gamma} < 1, on the other hand, pressure support is not sufficient for the formation of such a core. Gravitational contraction proceeds much more rapidly and the flow develops very strong shocks, creating a network of intersecting sheets and extended filaments. The resulting magnetic field lines are very coherent and exhibit a considerable degree of order. Nevertheless, even under these conditions we still find exponential growth of the magnetic energy density in the kinematic regime.
Where else is null the gravitational field between two massive spheres?
Energy Technology Data Exchange (ETDEWEB)
Lima, F M S [Instituto de Fisica, Universidade de Brasilia, PO Box 04455, 70919-970, Brasilia-DF (Brazil)], E-mail: fabio@fis.unb.br
2009-07-15
To find the point between two massive spherical bodies at which their gravitational fields cancel is an apparently simple problem usually found in introductory physics textbooks. However, by noting that such a point does not exist when the distance between the spheres is small and one of the masses is much smaller than the other-e.g., between the Earth and a billiard ball near the ground-I develop here a simple analysis for establishing existence conditions for this point. Unexpectedly, I have found that the net gravitational field can be null also in certain points inside each sphere. The position of these 'inner' points can be determined by solving a cubic equation via the standard method, known as Cardan's solution. However, when the discriminant of this equation is negative one has the irreducible case, for which Cardan's solution 'fails', but a trigonometric method proposed recently yields exact closed-form expressions. Interestingly, it is shown that these 'inner points' do occur in the Earth-Moon system, in which they are determined just by solving irreducible cubic equations.
Inferring gene regulatory networks by singular value decomposition and gravitation field algorithm.
Zheng, Ming; Wu, Jia-nan; Huang, Yan-xin; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang
2012-01-01
Reconstruction of gene regulatory networks (GRNs) is of utmost interest and has become a challenge computational problem in system biology. However, every existing inference algorithm from gene expression profiles has its own advantages and disadvantages. In particular, the effectiveness and efficiency of every previous algorithm is not high enough. In this work, we proposed a novel inference algorithm from gene expression data based on differential equation model. In this algorithm, two methods were included for inferring GRNs. Before reconstructing GRNs, singular value decomposition method was used to decompose gene expression data, determine the algorithm solution space, and get all candidate solutions of GRNs. In these generated family of candidate solutions, gravitation field algorithm was modified to infer GRNs, used to optimize the criteria of differential equation model, and search the best network structure result. The proposed algorithm is validated on both the simulated scale-free network and real benchmark gene regulatory network in networks database. Both the Bayesian method and the traditional differential equation model were also used to infer GRNs, and the results were used to compare with the proposed algorithm in our work. And genetic algorithm and simulated annealing were also used to evaluate gravitation field algorithm. The cross-validation results confirmed the effectiveness of our algorithm, which outperforms significantly other previous algorithms.
Gas-Phase Influence on Quasisteady "Liquid Flames" in Gravitational Fields
Shkadinsky, K. G.; Shkadinskaya, G. V.; Matkowsky, B. J.; Gokoglu, S. (Technical Monitor)
2000-01-01
We consider the SHS (self-propagating high-temperature synthesis) process for synthesizing materials. In this process a powder mixture of reactants is cold pressed into a sample, which is ignited at one end. A high temperature combustion wave then propagates through the sample converting reactants to the desired product material. In this process, melting of some or all the components is often observed. Therefore, we study combustion waves propagating through a high caloricity inorganic powder mixture whose combustion temperature exceeds the melting temperatures of many components. The solid matrix is thus destroyed by the propagating combustion wave due to melting ahead of the reaction zone, and a liquid bath is formed which contains gaseous bubbles. The waves propagate in the presence of a gravitational field. Due to the effect of gravity, there is relative motion between the rising bubbles and the descending bath, which affects the composition of the medium, its thermophysical properties, the 'liquid flame' structure, and the propagation velocity. To enhance our understanding of phenomena associated with the interaction of the relative motion with the propagating combustion wave we formulate and analyze a relatively simple mathematical model of liquid flames in a gravitational field. We describe the wave structure and combustion characteristics including the combustion velocity. We compare our results to existing experimental observations and suggest new experiments to be performed. We consider the effects of gravity and, in particular, examine both microgravity and large gravity conditions.
Magnet design with high B(0) homogeneity for fast-field-cycling NMR applications.
Lips, O; Privalov, A F; Dvinskikh, S V; Fujara, F
2001-03-01
The design, construction, and performance of a low-inductance solenoidal coil with high B(0) homogeneity for fast-field-cycling NMR is presented. It consists of six concentric layers. The conductor width is varied to minimize the B(0) inhomogeneity in the volume of the sample. This is done using an algorithm which takes the real shape of the conductor directly into account. The calculated coil geometry can be manufactured easily using standard computerized numeric control equipment, which keeps the costs low. The coil is liquid cooled and produces a B(0) field of 0.95 T at 800 A. The field inhomogeneity in a cylindrical volume (diameter 5 mm, length 10 mm) is about 10 ppm, and the inductance is 190 microH. Switching times below 200 micros can be achieved. During 6 months of operation the coil has shown good stability and reliability. Copyright 2001 Academic Press.
Potential-field sounding using Euler's homogeneity equation and Zidarov bubbling
Cordell, Lindrith
1994-01-01
Potential-field (gravity) data are transformed into a physical-property (density) distribution in a lower half-space, constrained solely by assumed upper bounds on physical-property contrast and data error. A two-step process is involved. The data are first transformed to an equivalent set of line (2-D case) or point (3-D case) sources, using Euler's homogeneity equation evaluated iteratively on the largest residual data value. Then, mass is converted to a volume-density product, constrained to an upper density bound, by 'bubbling,' which exploits circular or radial expansion to redistribute density without changing the associated gravity field. The method can be developed for gravity or magnetic data in two or three dimensions. The results can provide a beginning for interpretation of potential-field data where few independent constraints exist, or more likely, can be used to develop models and confirm or extend interpretation of other geophysical data sets.
Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa; Reschiglian, Pierluigi; Zattoni, Andrea; Melucci, Dora
2004-08-01
This work continues the project on field-flow fractionation characterisation of whole wine-making yeast cells reported in previous papers. When yeast cells are fractionated by gravitational field-flow fractionation and cell sizing of the collected fractions is achieved by the electrosensing zone technique (Coulter counter), it is shown that yeast cell retention depends on differences between physical indexes of yeast cells other than size. Scanning electron microscopy on collected fractions actually shows co-elution of yeast cells of different size and shape. Otherwise, the observed agreement between the particle size distribution analysis obtained by means of the Coulter counter and by flow field-flow fractionation, which employs a second mobile phase flow as applied field instead of Earth's gravity, indicates that yeast cell density can play a major role in the gravitational field-flow fractionation retention mechanism of yeast cells, in which flow field-flow fractionation retention is independent of particle density. Flow field-flow fractionation is then coupled off-line to gravitational field-flow fractionation for more accurate characterisation of the doubly-fractionated cells. Coupling gravitational and flow field-flow fractionation eventually furnishes more information on the multipolydispersity indexes of yeast cells, in particular on their shape and density polydispersity.
Xu, Yin; Wang, XiaoRui; Sun, Yan; Zhang, JianQi
2012-06-18
A novel model for three dimensional (3D) interactive control of viewing parameters of integral imaging systems is established in this paper. Specifically, transformation matrices are derived in an extended homogeneous light field coordinate space based on interactive controllable requirement of integral imaging displays. In this model, new elemental images can be synthesized directly from the ones captured in the record process to display 3D images with expected viewing parameters, and no extra geometrical information of the 3D scene is required in the synthesis process. Computer simulation and optical experimental results show that the reconstructed 3D scenes with depth control, lateral translation and rotation can be achieved.
Equilibrium of a system of superconducting rings in a uniform gravitational field
Bishaev, A. M.; Bush, A. A.; Gavrikov, M. B.; Gordeev, I. S.; Denisyuk, A. I.; Kamentsev, K. E.; Kozintseva, M. V.; Savel'ev, V. V.; Sigov, A. S.
2013-05-01
To construct a plasma trap with levitating magnetic coils in the thin ring approximation, we derive the expression for the potential energy of a system of several superconducting rings (one of which is fixed) capturing the preset flows in the uniform gravitational field as a function of the coordinates of the free ring (or rings). Calculations performed in the Mathcad system show that the potential energy of such a system has a local minimum for certain values of parameters. Stable levitation of a superconducting ring in the position corresponding to calculations is realized in the field of another superconducting ring, and this leads to the conclusion that a magnetic Galatea trap can be prepared on the basis of a levitating quadrupole.
Entropy of a box of gas in an external gravitational field revisited
Bhattacharya, Sourav; Chakraborty, Sumanta; Padmanabhan, T.
2017-10-01
Earlier it was shown that the entropy of an ideal gas, contained in a box and moving in a gravitational field, develops an area dependence when it approaches the horizon of a static, spherically symmetric spacetime. Here we extend the above result in two directions; viz., to (a) the stationary axisymmteric spacetimes and (b) time-dependent cosmological spacetimes evolving asymptotically to the de Sitter or the Schwarzschild-de Sitter spacetimes. While our calculations are exact for the stationary axisymmetric spacetimes, for the cosmological case we present an analytical expression of the entropy when the spacetime is close to the de Sitter or the Schwarzschild-de Sitter spacetime. Unlike the static spacetimes, there is no hypersurface orthogonal timelike Killing vector field in these cases. Nevertheless, the results hold, and the entropy develops an area dependence in the appropriate limit.
The gravitational field equations in Rastall gravity and the first law of thermodynamics
Moradpour, Hooman
2016-01-01
The restrictions on the Rastall theory due to apply the Newtonian limit to the theory are derived. In addition, we use the Rastall field equations in a spherically symmetric static spacetime as well as the Misner-Sharp mass to investigate the relationship between the Rastall theory and the thermodynamics first law leading to an expression for the horizon entropy in this theory. Moreover, we show that the energy and work changes due to apply a hypothetical displacement to the horizon in the Rastall frame work differ from their counterparts in the theories in which the geometry and matter fields coupled to each other in a minimal way, such as the Einstein theory. The latter shows that the Misner-Sharp mass is probably not a comprehensive definition for the gravitational energy, confined to the horizon, in the Rastall theory. The Schwarzschild and de-Sitter back holes entropy in the Rastall frame work are also addressed.
Classical field theory on electrodynamics, non-Abelian gauge theories and gravitation
Scheck, Florian
2012-01-01
The book describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes wit...
Angrick, C.
2014-09-01
Dark-matter haloes are supposed to form at the positions of maxima in the initial matter density field. The gravitational-shear field's ellipticity and prolaticity that serve as input for the ellipsoidal-collapse model, however, are derived from a distribution that does not take the additional maximum constraint into account. In this article, I quantify the variations of the most probable and the expected values of the ellipticity and the prolaticity when considering this additional constraint as well as the implications for the ellipsoidal-collapse model. Based on the statistics of Gaussian random fields, it is possible to set up a joint distribution for the eigenvalues of the gravitational-shear tensor and the matter density that incorporates the maximum constraint by invoking a vanishing first derivative and a negative definite second derivative of the density field into the calculation. In the density range relevant for cosmological structure formation, both the most probable and the expected value of the ellipticity calculated from the standard distribution used in the literature are about 3-8 per cent higher compared to the ones calculated under the additional assumption of a density maximum. Additionally, the analogous quantities for the prolaticity do not vanish but acquire slightly positive values in the range of 10-3-10-2. For large overdensities, the predictions from both distributions converge. The values for δc and Δv derived from the ellipsoidal-collapse model using the standard distribution for the initial ellipticity and prolaticity are up to 4 and 6 per cent higher, respectively, than those obtained taking the additional maximum constraint into account in the range of 1013-1015 h-1 M⊙ in mass and 0-2 in redshift.
The expected spins of gravitational wave sources with isolated field binary progenitors
Zaldarriaga, Matias; Kushnir, Doron; Kollmeier, Juna A.
2018-01-01
We explore the consequences of dynamical evolution of field binaries composed of a primary black hole (BH) and a Wolf-Rayet (WR) star in the context of gravitational wave (GW) source progenitors. We argue, from general considerations, that the spin of the WR-descendent BH will be maximal in a significant number of cases due to dynamical effects. In other cases, the spin should reflect the natal spin of the primary BH which is currently theoretically unconstrained. We argue that the three currently published LIGO systems (GW150914, GW151226, LVT151012) suggest that this spin is small. The resultant effective spin distribution of gravitational wave sources should thus be bi-model if this classic GW progenitor channel is indeed dominant. While this is consistent with the LIGO detections thus far, it is in contrast to the three best-measured high-mass X-ray binary (HMXB) systems. A comparison of the spin distribution of HMXBs and GW sources should ultimately reveal whether or not these systems arise from similar astrophysical channels.
Energy Technology Data Exchange (ETDEWEB)
Stelina, J., E-mail: julius.stelina@fel.uniza.sk [Department of Physics, University of Zilina, Univerzitna 1, 010 26 Zilina (Slovakia); Musil, C. [Department of Physics, University of Zilina, Univerzitna 1, 010 26 Zilina (Slovakia)
2012-05-15
The effect of a quasi-homogeneous external magnetic field on a created and decaying space nanoparticle structure and its distribution in a sample of a magnetic fluid was studied. This space structure was created as a grating by applying an interference field of two crossed Ar laser beams. The magnetic field was formed using two electromagnets and was applied in three main directions of the created nanoparticle grating. The magnetic field oriented parallel to the strips of the grating or perpendicular to the grating plain does not significantly change the shape of it. The magnetic field oriented in the perpendicular direction to the grating plain causes redistribution of the nanoparticles and as a consequence a perpendicular nanoparticle 'quasi-grating' arises. - Highlights: Black-Right-Pointing-Pointer External magnetic field creates a new nanoparticle quasi-grating. Black-Right-Pointing-Pointer We find that the new grating is perpendicular to the original one. Black-Right-Pointing-Pointer We observe a planar grating in the transitional phase of about 15 s. Black-Right-Pointing-Pointer We speculate that the new grating is related to structuralization of particles.
Bel, Lluis
2009-01-01
A simple and {\\it innocent} modification of Poisson's equation leads to a modified Newtonnian theory of gravitation where a localized and {\\it positive} energy density of the gravitational field contributes to its own source. The result is that the total {\\it active gravitational mass} of a compact object is the sum of its {\\it proper mass} and an {\\it evanescent gravitational mass} which is a mass equivalent to the gravitational energy.
Bowler, Michael George
1976-01-01
Gravitation and Relativity generalizes Isaac Newton's theory of gravitation using the elementary tools of Albert Einstein's special relativity. Topics covered include gravitational waves, martian electrodynamics, relativistic gravitational fields and gravitational forces, the distortion of reference frames, and the precession of the perihelion of Mercury. Black holes and the geometry of spacetime also receive consideration. This book is comprised of 10 chapters; the first of which briefly reviews special relativity, with the emphasis on the Lorentz covariance of the equations of physics. This
Interfacial free energy adjustable phase field crystal model for homogeneous nucleation.
Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Huang, Yunhao
2016-05-18
To describe the homogeneous nucleation process, an interfacial free energy adjustable phase-field crystal model (IPFC) was proposed by reconstructing the energy functional of the original phase field crystal (PFC) methodology. Compared with the original PFC model, the additional interface term in the IPFC model effectively can adjust the magnitude of the interfacial free energy, but does not affect the equilibrium phase diagram and the interfacial energy anisotropy. The IPFC model overcame the limitation that the interfacial free energy of the original PFC model is much less than the theoretical results. Using the IPFC model, we investigated some basic issues in homogeneous nucleation. From the viewpoint of simulation, we proceeded with an in situ observation of the process of cluster fluctuation and obtained quite similar snapshots to colloidal crystallization experiments. We also counted the size distribution of crystal-like clusters and the nucleation rate. Our simulations show that the size distribution is independent of the evolution time, and the nucleation rate remains constant after a period of relaxation, which are consistent with experimental observations. The linear relation between logarithmic nucleation rate and reciprocal driving force also conforms to the steady state nucleation theory.
Energy Technology Data Exchange (ETDEWEB)
Souza, Rafael S. de, E-mail: Rafael@astro.iag.usp.br [IAG, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, CEP 05508-900, Sao Paulo, SP (Brazil); Opher, Reuven, E-mail: Opher@astro.iag.usp.br [IAG, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, CEP 05508-900, Sao Paulo, SP (Brazil)
2011-11-17
The origin of magnetic fields in astrophysical objects is a challenging problem in astrophysics. Throughout the years, many scientists have suggested that non-minimal gravitational-electromagnetic coupling (NMGEC) could be the origin of the ubiquitous astrophysical magnetic fields. We investigate the possible origin of intense magnetic fields by NMGEC near rotating black holes, connected with quasars and gamma-ray bursts. Whereas these intense magnetic fields are difficult to explain astrophysically, we find that they are easily explained by NMGEC.
Photonic forces in the near field of statistically homogeneous fluctuating sources
Aunon, Juan Miguel
2012-01-01
Electromagnetic sources, as e.g. lasers, antennas, diffusers or thermal sources, produce a wavefield that interacts with objects to transfer them its momentum. We show that the photonic force exerted on a small particle in the near field of a planar statistically homogeneous fluctuating source uniquely depends and acts along the coordinate perpendicular to its surface. The gradient part of this force is contributed by only the evanescent components of the emitted field, its sign being opposite to that of the real part of the particle polarizability. The non-conservative force part is uniquely due to the propagating components, being repulsive and constant. Also, the source coherence length adds a degree of freedom since it largely affects these forces. The excitation of plasmons in the source surface drastically enhances the gradient force. Hence, partially coherent wavefields from fluctuating sources constitute new concepts for particle manipulation at the subwavelength scale
Improved mapping of planetary gravitational field with an electrostatic accelerometer/gradiometer
Foulon, Bernard; Huynh, Phuong-Anh; Liorzou, Francoise; Christophe, Bruno; Hardy, Emilie; Boulanger, Damien; Lebat, Vincent; Perrot, Eddy
2015-04-01
ONERA has a proven record spanning several years in developing the most accurate accelerometers for geodesy missions. They are still operational in the GRACE mission and their successors for the GRACE-FO mission will fly in 2017. Finally, the GOCE mission has shown the benefit of using a gradiometer for the direct measurement of the gravity field. Now, ONERA proposes a new accelerometer design, MicroSTAR, for interplanetary missions. This design based on the same technology as for the GRACE and GOCE space missions, with the notable addition of a bias rejection system, has a reduced mass and consumption. The accelerometer is embarked on Uranus Pathfinder (mission proposal for Cosmic M4) as up-scope instrument to achieve two scientific objectives: 1) to determine the gravity fields of Uranus and the satellites, allowing for a better understanding of the planet interior composition, 2) to test gravity at the largest possible length scales to search for deviations from General Relativity. The success of using accelerometer for geodesy mission could be imported in the planetary science field. The poster details the accuracy which can be achieved on the gravity potential field according to different accelerometer configurations. It describes the instrument and its integration inside an interplanetary probe. Finally, it explains the benefit of using this electrostatic accelerometer complementary to radio science technology for improved planetary gravitational field measurements.
Standard Electroweak Interactions in Gravitational Theory with Chameleon Field and Torsion
Ivanov, A N
2015-01-01
We propose a version of a gravitational theory with the torsion field, induced by the chameleon field. Following Hojman et al. Phys. Rev. D17, 3141 (1976) the results, obtained in Phys. Rev. D90, 045040 (2014), are generalised by extending the Einstein gravity to the Einstein-Cartan gravity with the torsion field as a gradient of the chameleon field through a modification of local gauge invariance of minimal coupling in the Weinberg-Salam electroweak model. The contributions of the chameleon (torsion) field to the observables of electromagnetic and weak processes are calculated. Since in our approach the chameleon-photon coupling constant beta_(gamma) is equal to the chameleon-matter coupling constant beta, i.e. beta_(gamma) = beta, the experimental constraints on beta, obtained in terrestrial laboratories by T. Jenke et al. (Phys. Rev. Lett. 112, 115105 (2014)) and by H. Lemmel et al. (Phys. Lett. B743, 310 (2015)), can be used for the analysis of astrophysical sources of chameleons, proposed by C. Burrage e...
Magnetic field mapping of the UCNTau magneto-gravitational trap: design study
Energy Technology Data Exchange (ETDEWEB)
Libersky, Matthew Murray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-09-04
The beta decay lifetime of the free neutron is an important input to the Standard Model of particle physics, but values measured using different methods have exhibited substantial disagreement. The UCN r experiment in development at Los Alamos National Laboratory (LANL) plans to explore better methods of measuring the neutron lifetime using ultracold neutrons (UCNs). In this experiment, UCNs are confined in a magneto-gravitational trap formed by a curved, asymmetric Halbach array placed inside a vacuum vessel and surrounded by holding field coils. If any defects present in the Halbach array are sufficient to reduce the local field near the surface below that needed to repel the desired energy level UCNs, loss by material interaction can occur at a rate similar to the loss by beta decay. A map of the magnetic field near the surface of the array is necessary to identify any such defects, but the array's curved geometry and placement in a vacuum vessel make conventional field mapping methods difficult. A system consisting of computer vision-based tracking and a rover holding a Hall probe has been designed to map the field near the surface of the array, and construction of an initial prototype has begun at LANL. The design of the system and initial results will be described here.
Near-field thermal radiation between homogeneous dual uniaxial electromagnetic metamaterials
Energy Technology Data Exchange (ETDEWEB)
Chang, Jui-Yung; Basu, Soumyadipta; Yang, Yue; Wang, Liping, E-mail: liping.wang@asu.edu [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States)
2016-06-07
Recently, near-field thermal radiation has attracted much attention in several fields since it can exceed the Planck blackbody limit through the coupling of evanescent waves. In this work, near-field radiative heat transfer between two semi-infinite dual uniaxial electromagnetic metamaterials with two different material property sets is theoretically analyzed. The near-field radiative heat transfer is calculated using fluctuational electrodynamics incorporated with anisotropic wave optics. The underlying mechanisms, namely, magnetic hyperbolic mode, magnetic surface polariton, electrical hyperbolic mode, and electrical surface polariton, between two homogeneous dual uniaxial electromagnetic metamaterials are investigated by examining the transmission coefficient and the spectral heat flux. The effect of vacuum gap distance is also studied, which shows that the enhancement at smaller vacuum gap is mainly due to hyperbolic mode and surface plasmon polariton modes. In addition, the results show that the contribution of s-polarized waves is significant and should not be excluded due to the strong magnetic response regardless of vacuum gap distances. The fundamental understanding and insights obtained here will facilitate the finding and application of novel materials for near-field thermal radiation.
Time of flight and range of the motion of a projectile in a constant gravitational field
Directory of Open Access Journals (Sweden)
P. A. Karkantzakos
2009-01-01
Full Text Available In this paper we study the classical problem of the motion of a projectile in a constant gravitational field under the influenceof a retarding force proportional to the velocity. Specifically, we express the time of flight, the time of fall and the range ofthe motion as a function of the constant of resistance per unit mass of the projectile. We also prove that the time of fall isgreater than the time of rise with the exception of the case of zero constant of resistance where we have equality. Finally weprove a formula from which we can compute the constant of resistance per unit mass of the projectile from time of flight andrange of the motion when the acceleration due to gravity and the initial velocity of the projectile are known.
Figueroa, Daniel G; Torrentí, Francisco
2016-01-01
During or towards the end of inflation, the Standard Model (SM) Higgs forms a condensate with a large amplitude. Following inflation, the condensate oscillates, decaying non-perturbatively into the rest of the SM species. The resulting out-of-equilibrium dynamics converts a fraction of the energy available into gravitational waves (GW). We study this process using classical lattice simulations in an expanding box, following the energetically dominant electroweak gauge bosons $W^\\pm$ and $Z$. We characterize the GW spectrum as a function of the running couplings, Higgs initial amplitude, and post-inflationary expansion rate. As long as the SM is decoupled from the inflationary sector, the generation of this background is universally expected, independently of the nature of inflation. Our study demonstrates the efficiency of GW emission by gauge fields undergoing parametric resonance. The initial energy of the Higgs condensate represents however, only a tiny fraction of the inflationary energy. Consequently, th...
Dynamics of Equilibrium Points in a Uniformly Rotating Second-Order and Degree Gravitational Field
Feng, Jinglang; Hou, Xiyun
2017-07-01
Using tools such as periodic orbits and invariant manifolds, the global dynamics around equilibrium points (EPs) in a rotating second-order and degree gravitational field are studied. For EPs on the long axis, planar and vertical periodic families are computed, and their stability properties are investigated. Invariant manifolds are also computed, and their relation to the first-order resonances is briefly discussed. For EPs on the short axis, planar and vertical periodic families are studied, with special emphasis on the genealogy of the planar periodic families. Our studies show that the global dynamics around EPs are highly similar to those around libration points in the circular restricted three-body problem, such as spatial halo orbits, invariant manifolds, and the genealogy of planar periodic families.
Dynamics of Equilibrium Points in a Uniformly Rotating Second-Order and Degree Gravitational Field
Energy Technology Data Exchange (ETDEWEB)
Feng, Jinglang; Hou, Xiyun, E-mail: jinglang@nju.edu.cn, E-mail: silence@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, 210093 (China)
2017-07-01
Using tools such as periodic orbits and invariant manifolds, the global dynamics around equilibrium points (EPs) in a rotating second-order and degree gravitational field are studied. For EPs on the long axis, planar and vertical periodic families are computed, and their stability properties are investigated. Invariant manifolds are also computed, and their relation to the first-order resonances is briefly discussed. For EPs on the short axis, planar and vertical periodic families are studied, with special emphasis on the genealogy of the planar periodic families. Our studies show that the global dynamics around EPs are highly similar to those around libration points in the circular restricted three-body problem, such as spatial halo orbits, invariant manifolds, and the genealogy of planar periodic families.
Petrovskaya, M. S.
The conventional approach to the recovery of the Earth's gravitational field from satellite gradiometry observations is based on constructing, from the start, several boundary value (BV) relations, each of them corresponding to a separate observable component of the gravity gradient (GG) tensor or a certain combination of them. In particular, one of such projects, the ARISTOTELES mission, assumes that only the radial and across-track components are accessible (by technical reasons). The purpose of the present paper is mainly to discuss the principle aspects of the problem of the Earth's potential recovering from satellite gradiometry, to give an optimal formulation of the problem and derive the basic boundary value equation in different forms.
Ruchin, Vyacheslav; Vacaru, Olivia; Vacaru, Sergiu I.
2017-03-01
Using double 2+2 and 3+1 nonholonomic fibrations on Lorentz manifolds, we extend the concept of W-entropy for gravitational fields in general relativity (GR). Such F- and W-functionals were introduced in the Ricci flow theory of three dimensional (3-d) Riemannian metrics by Perelman (the entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159). Non-relativistic 3-d Ricci flows are characterized by associated statistical thermodynamical values determined by W-entropy. Generalizations for geometric flows of 4-d pseudo-Riemannian metrics are considered for models with local thermodynamical equilibrium and separation of dissipative and non-dissipative processes in relativistic hydrodynamics. The approach is elaborated in the framework of classical field theories (relativistic continuum and hydrodynamic models) without an underlying kinetic description, which will be elaborated in other work. The 3+1 splitting allows us to provide a general relativistic definition of gravitational entropy in the Lyapunov-Perelman sense. It increases monotonically as structure forms in the Universe. We can formulate a thermodynamic description of exact solutions in GR depending, in general, on all spacetime coordinates. A corresponding 2+2 splitting with nonholonomic deformation of linear connection and frame structures is necessary for generating in very general form various classes of exact solutions of the Einstein and general relativistic geometric flow equations. Finally, we speculate on physical macrostates and microstate interpretations of the W-entropy in GR, geometric flow theories and possible connections to string theory (a second unsolved problem also contained in Perelman's work) in Polyakov's approach.
Directory of Open Access Journals (Sweden)
Katsuya Hashino
2017-03-01
Full Text Available We calculate the spectrum of gravitational waves originated from strongly first order electroweak phase transition in the extended Higgs model with a real singlet scalar field. In order to calculate the bubble nucleation rate, we perform a two-field analysis and evaluate bounce solutions connecting the true and the false vacua using the one-loop effective potential at finite temperatures. Imposing the Sakharov condition of the departure from thermal equilibrium for baryogenesis, we survey allowed regions of parameters of the model. We then investigate the gravitational waves produced at electroweak bubble collisions in the early Universe, such as the sound wave, the bubble wall collision and the plasma turbulence. We find that the strength at the peak frequency can be large enough to be detected at future space-based gravitational interferometers such as eLISA, DECIGO and BBO. Predicted deviations in the various Higgs boson couplings are also evaluated at the zero temperature, and are shown to be large enough too. Therefore, in this model strongly first order electroweak phase transition can be tested by the combination of the precision study of various Higgs boson couplings at the LHC, the measurement of the triple Higgs boson coupling at future lepton colliders and the shape of the spectrum of gravitational wave detectable at future gravitational interferometers.
Energy Technology Data Exchange (ETDEWEB)
Hashino, Katsuya, E-mail: hashino@jodo.sci.u-toyama.ac.jp [Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Kakizaki, Mitsuru, E-mail: kakizaki@sci.u-toyama.ac.jp [Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Kanemura, Shinya, E-mail: kanemu@sci.u-toyama.ac.jp [Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Ko, Pyungwon, E-mail: pko@kias.re.kr [School of Physics, KIAS, Seoul 02455 (Korea, Republic of); Matsui, Toshinori, E-mail: matsui@kias.re.kr [School of Physics, KIAS, Seoul 02455 (Korea, Republic of)
2017-03-10
We calculate the spectrum of gravitational waves originated from strongly first order electroweak phase transition in the extended Higgs model with a real singlet scalar field. In order to calculate the bubble nucleation rate, we perform a two-field analysis and evaluate bounce solutions connecting the true and the false vacua using the one-loop effective potential at finite temperatures. Imposing the Sakharov condition of the departure from thermal equilibrium for baryogenesis, we survey allowed regions of parameters of the model. We then investigate the gravitational waves produced at electroweak bubble collisions in the early Universe, such as the sound wave, the bubble wall collision and the plasma turbulence. We find that the strength at the peak frequency can be large enough to be detected at future space-based gravitational interferometers such as eLISA, DECIGO and BBO. Predicted deviations in the various Higgs boson couplings are also evaluated at the zero temperature, and are shown to be large enough too. Therefore, in this model strongly first order electroweak phase transition can be tested by the combination of the precision study of various Higgs boson couplings at the LHC, the measurement of the triple Higgs boson coupling at future lepton colliders and the shape of the spectrum of gravitational wave detectable at future gravitational interferometers.
Homogenization system for run-of-mine coal at the Ekibastuz coal field
Energy Technology Data Exchange (ETDEWEB)
Krueckemeier, R.
1985-06-01
One of the largest opencast mining operations for the excavation of bituminous coal is the Ekibastuz field in Kasachstan, USSR. An order was placed with PWH to supply drum reclaimers for the Ekibastuz stockyard, which will be put in operation during 1985. Four homogenization systems, each with a storage capacity of 100,000 t and a stockpiling capacity of 6000 t/h, are interlinked between the mining operation and the shipment of the coal. The reclaiming capacity per system amounts to 4000 t/h. The systems are run in three operating shifts at approx. 6,000 working hours per year. Environmental conditions at temperatures from -45 C to +45 C placed specific demands on the planning, designing and electrical engineering of the individual machines and the structural steel components.
Verification of the semiclassical method for an electron moving in a homogeneous magnetic field.
Bordovitsyn, V A; Myagkii, A N
2001-10-01
A procedure based on the semiclassical approximation for high energy levels is developed to yield solutions to the classical equation of charge motion and to the Bargmann-Michel-Telegdi spin equation. To this end, exact solutions to the Klein-Gordon and the Dirac-Pauli equations are used. The essence of the procedure under review is that the quantum state of a charged particle in a homogeneous magnetic field is represented as a superposition of states corresponding to the neighboring energy levels. As a consequence, the expectation values of the momentum and spin operators with respect to the resulting nonstationary wave function (packet) strictly obey the classical equations of charge motion and spin precession.
Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space
Energy Technology Data Exchange (ETDEWEB)
De Pietri, Roberto E-mail: depietri@cpt.univ-mrs.fr; Freidel, Lauren. E-mail: freidel@phys.psu.edu; Krasnov, Kirill E-mail: krasnov@phys.psu.edu; Rovelli, Carlo E-mail: rovelli@pitt.edu
2000-05-22
Boulatov and Ooguri have generalized the matrix models of 2d quantum gravity to 3d and 4d, in the form of field theories over group manifolds. We show that the Barrett-Crane quantum gravity model arises naturally from a theory of this type, but restricted to the homogeneous space S{sup 3}=SO(4)/SO(3), as a term in its Feynman expansion. From such a perspective, 4d quantum space-time emerges as a Feynman graph, in the manner of the 2d matrix models. This formalism provides a precise meaning to the 'sum over triangulations', which is presumably necessary for a physical interpretation of a spin-foam model as a theory of gravity. In addition, this formalism leads us to introduce a natural alternative model, which might have relevance for quantum gravity.
The Optical Gravitational Lensing Experiment. Gaia South Ecliptic Pole Field as Seen by OGLE-IV
Soszyński, I.; Udalski, A.; Poleski, R.; Kozłowski, S.; Wyrzykowski, Ł.; Pietrukowicz, P.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Ulaczyk, K.; Skowron, J.
2012-09-01
We present a comprehensive analysis of the Gaia South Ecliptic Pole (GSEP) field, 5.3 square degrees area around the South Ecliptic Pole on the outskirts of the LMC, based on the data collected during the fourth phase of the Optical Gravitational Lensing Experiment, OGLE-IV. The GSEP field will be observed during the commissioning phase of the ESA Gaia space mission for testing and calibrating the Gaia instruments. We provide the photometric maps of the GSEP region containing the mean VI photometry of all detected stellar objects and their equatorial coordinates. We show the quality and completeness of the OGLE-IV photometry and color-magnitude diagrams of this region. We conducted an extensive search for variable stars in the GSEP field leading to the discovery of 6789 variable stars. In this sample we found 132 classical Cepheids, 686 RR Lyr type stars, 2819 long-period, and 1377 eclipsing variables. Several objects deserving special attention were also selected, including a new classical Cepheid in a binary eclipsing system. To provide empirical data for the Gaia Science Alert system we also conducted a search for optical transients. We discovered two firm type Ia supernovae and nine additional supernova candidates. To facilitate future Gaia supernovae detections we prepared a list of more than 1900 galaxies to redshift about 0.1 located in the GSEP field. Finally, we present the results of astrometric study of the GSEP field. With the 26 months time base of the presented here OGLE-IV data, proper motions of stars could be detected with the accuracy reaching 2 mas/yr. Astrometry allowed to distinguish galactic foreground variable stars detected in the GSEP field from LMC objects and to discover about 50 high proper motion stars (proper motion ≥ 100 mas/yr). Among them three new nearby white dwarfs were found. All data presented in this paper are available to the astronomical community from the OGLE Internet archive.
Directory of Open Access Journals (Sweden)
E. BOSCHI
1974-06-01
Full Text Available This paper is concerned with the plane strain in a theory for an arbitrary, uniformly rotating, self-gravitating, perfectly elastic Earth model with a hydrostatic initial stress field. Using the associated matrices method, a representation of Galerkin type is given. This representation enables us to derive the solution of the vibration problem corresponding to concentrated body forces.
Class of Exact Solutions for a Cosmological Model of Unified Gravitational and Quintessence Fields
Asenjo, Felipe A.; Hojman, Sergio A.
2017-07-01
A new approach to tackle Einstein equations for an isotropic and homogeneous Friedmann-Robertson-Walker Universe in the presence of a quintessence scalar field is devised. It provides a way to get a simple exact solution to these equations. This solution determines the quintessence potential uniquely and it differs from solutions which have been used to study inflation previously. It relays on a unification of geometry and dark matter implemented through the definition of a functional relation between the scale factor of the Universe and the quintessence field. For a positive curvature Universe, this solution produces perpetual accelerated expansion rate of the Universe, while the Hubble parameter increases abruptly, attains a maximum value and decreases thereafter. The behavior of this cosmological solution is discussed and its main features are displayed. The formalism is extended to include matter and radiation.
Energy Technology Data Exchange (ETDEWEB)
Pusztai, Tamas; Toth, Gyula I; Koernyei, Laszlo [Research Institute for Solid State Physics and Optics, PO Box 49, H-1525 Budapest (Hungary); Tegze, Gyoergy; Bansel, Gurvinder; Fan, Zhungyun; Granasy, Laszlo [Brunel Centre for Advanced Solidification Technology, Brunel University, Uxbridge UB8 3PH (United Kingdom)], E-mail: Laszlo.Granasy@brunel.ac.uk, E-mail: grana@szfki.hu
2008-10-08
Advanced phase-field techniques have been applied to address various aspects of polycrystalline solidification including different modes of crystal nucleation. The height of the nucleation barrier has been determined by solving the appropriate Euler-Lagrange equations. The examples shown include the comparison of various models of homogeneous crystal nucleation with atomistic simulations for the single-component hard sphere fluid. Extending previous work for pure systems (Granasy et al 2007 Phys. Rev. Lett. 98 035703), heterogeneous nucleation in unary and binary systems is described via introducing boundary conditions that realize the desired contact angle. A quaternion representation of crystallographic orientation of the individual particles (outlined in Pusztai et al 2005 Europhys. Lett. 71 131) has been applied for modeling a broad variety of polycrystalline structures including crystal sheaves, spherulites and those built of crystals with dendritic, cubic, rhombo-dodecahedral and truncated octahedral growth morphologies. Finally, we present illustrative results for dendritic polycrystalline solidification obtained using an atomistic phase-field model.
Melek, M
2002-01-01
The sole influence of plane gravitational waves (PGW) on the magnitude of the gradient of a scalar field (MGSF) defined inside a medium, is calculated. The conditions on the relations between the fluctuations in the gradient of the scalar field (GSF) and PGW leading to increase or decrease of the GSF due to the sole influence of PGW, are given. Two special cases of laser interferometers and cryogenic bar detectors are presented as an application of the proposed approach.
Energy Technology Data Exchange (ETDEWEB)
Bogdanov, O.V., E-mail: bov@tpu.ru [Physics Faculty, Tomsk State University, Tomsk, 634050 (Russian Federation); Department of Higher Mathematics and Mathematical Physics, Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Kazinski, P.O., E-mail: kpo@phys.tsu.ru [Physics Faculty, Tomsk State University, Tomsk, 634050 (Russian Federation); Department of Higher Mathematics and Mathematical Physics, Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Lazarenko, G.Yu., E-mail: lazarenko.georgijj@icloud.com [Physics Faculty, Tomsk State University, Tomsk, 634050 (Russian Federation)
2017-05-15
The properties of radiation created by a classical ultrarelativistic scalar charged particle in a constant homogeneous crossed electromagnetic field are described both analytically and numerically with radiation reaction taken into account in the form of the Landau–Lifshitz equation. The total radiation naturally falls into two parts: the radiation formed at the entrance point of a particle into the crossed field (the synchrotron entrance radiation), and the radiation coming from the late-time asymptotics of a particle motion (the de-excited radiation). The synchrotron entrance radiation resembles, although does not coincide with, the ultrarelativistic limit of the synchrotron radiation: its distribution over energies and angles possesses almost the same properties. The de-excited radiation is soft, not concentrated in the plane of motion of a charged particle, and almost completely circularly polarized. The photon energy delivering the maximum to its spectral angular distribution decreases with increasing the initial energy of a charged particle, while the maximum value of this distribution remains the same at the fixed photon observation angle and entrance angle of a charged particle. The ultraviolet and infrared asymptotics of the total radiation are also described. - Highlights: • Properties of an electron radiation in a crossed electromagnetic field are studied. • Spectral angular distribution of the synchrotron entrance radiation is described. • Spectral angular distribution of the de-excited radiation is described. • De-excited radiation is almost completely circularly polarized. • Photon energy at the maximum of the de-excited radiation decreases with increasing the initial energy of an electron.
Mapping Orbits regarding Perturbations due to the Gravitational Field of a Cube
Directory of Open Access Journals (Sweden)
Flaviane C. F. Venditti
2015-01-01
Full Text Available The orbital dynamics around irregular shaped bodies is an actual topic in astrodynamics, because celestial bodies are not perfect spheres. When it comes to small celestial bodies, like asteroids and comets, it is even more import to consider the nonspherical shape. The gravitational field around them may generate trajectories that are different from Keplerian orbits. Modeling an irregular body can be a hard task, especially because it is difficult to know the exact shape when observing it from the Earth, due to their small sizes and long distances. Some asteroids have been observed, but it is still a small amount compared to all existing asteroids in the Solar System. An approximation of their shape can be made as a sum of several known geometric shapes. Some three-dimensional figures have closed equations for the potential and, in this work, the formulation of a cube is considered. The results give the mappings showing the orbits that are less perturbed and then have a good potential to be used by spacecrafts that need to minimize station-keeping maneuvers. Points in the orbit that minimizes the perturbations are found and they can be used for constellations of nanosatellites.
Alimonti, L.; Atalla, N.
2016-04-01
This paper is concerned with the development of a simplified model for noise control treatments to speed up finite element analysis in vibroacoustic applications. The methodology relies on the assumption that the acoustic treatment is flat and homogeneous. Moreover, its finite lateral extent is neglected. This hypothesis is justified by short wavelength and large dissipation, which suggest that the reflected field emanating from the acoustic treatment lateral boundaries does not substantially affect its dynamic response. Under these circumstances, the response of the noise control treatment can be formally obtained by means of convolution integrals involving simple analytical kernels (i.e. Green functions). Such fundamental solutions can be computed efficiently by the transfer matrix method. However, some arbitrariness arises in the formulation of the mathematical model, resulting in different baffling conditions at the two ends of the treatment to be considered. Thus, the paper investigates the possibility of different formulations (i.e. baffling conditions) within the same hybrid finite element-transfer matrix framework, seeking for the best strategy in terms of tradeoff between efficiency and accuracy. Numerical examples are provided to show strengths and limitations of the proposed methodology.
Homogeneous Field and WKB Approximation in Deformed Quantum Mechanics with Minimal Length
Directory of Open Access Journals (Sweden)
Jun Tao
2015-01-01
Full Text Available In the framework of the deformed quantum mechanics with a minimal length, we consider the motion of a nonrelativistic particle in a homogeneous external field. We find the integral representation for the physically acceptable wave function in the position representation. Using the method of steepest descent, we obtain the asymptotic expansions of the wave function at large positive and negative arguments. We then employ the leading asymptotic expressions to derive the WKB connection formula, which proceeds from classically forbidden region to classically allowed one through a turning point. By the WKB connection formula, we prove the Bohr-Sommerfeld quantization rule up to Oβ2. We also show that if the slope of the potential at a turning point is too steep, the WKB connection formula is no longer valid around the turning point. The effects of the minimal length on the classical motions are investigated using the Hamilton-Jacobi method. We also use the Bohr-Sommerfeld quantization to study statistical physics in deformed spaces with the minimal length.
The Newton constant and gravitational waves in some vector field adjusting mechanisms
Santillán, Osvaldo P.; Scornavacche, Marina
2017-10-01
At the present, there exist some Lorentz breaking scenarios which explain the smallness of the cosmological constant at the present era [1]–[2]. An important aspect to analyze is the propagation of gravitational waves and the screening or enhancement of the Newton constant GN in these models. The problem is that the Lorentz symmetry breaking terms may induce an unacceptable value of the Newton constant GN or introduce longitudinal modes in the gravitational wave propagation. Furthermore this breaking may spoil the standard dispersion relation ω=ck. In [3] the authors have presented a model suggesting that the behavior of the gravitational constant is correct for asymptotic times. In the present work, an explicit checking is made and we finally agree with these claims. Furthermore, it is suggested that the gravitational waves are also well behaved for large times. In the process, some new models with the same behavior are obtained, thus enlarging the list of possible adjustment mechanisms.
Dhiman, Joginder Singh; Sharma, Rajni
2017-12-01
The effects of nonuniform rotation and magnetic field on the instability of a self gravitating infinitely extending axisymmetric cylinder of viscoelastic ferromagnetic medium have been studied using the Generalised Hydrodynamic (GH) model. The non-uniform magnetic field and rotation are acting along the axial direction of the cylinder and the propagation of the wave is considered along the radial direction, while the ferrofluid magnetization is taken collinear with the magnetic field. A general dispersion relation representing magnetization, magnetic permeability and viscoelastic relaxation time parameters is obtained using the normal mode analysis method in the linearized perturbation equation system. Jeans criteria which represent the onset of instability of self gravitating medium are obtained under the limits; when the medium behaves like a viscous liquid (strongly coupled limit) and a Newtonian liquid (weakly coupled limit). The effects of various parameters on the Jeans instability criteria and on the growth rate of self gravitating viscoelastic ferromagnetic medium have been discussed. It is found that the magnetic polarizability due to ferromagnetization of medium marginalizes the effect of non-uniform magnetic field on the Jeans instability, whereas the viscoelasticity of the medium has the usual stabilizing effect on the instability of the system. Further, it is found that the cylindrical geometry is more stable than the Cartesian one. The variation of growth rate against the wave number and radial distance has been depicted graphically.
Gravitation and electromagnetism
Sidharth, B. G.
2002-01-01
Maxwell's equations comprise both electromagnetic and gravitational fields. The transverse part of the vector potential belongs to magnetism, the longitudinal one is concerned with gravitation. The Coulomb gauge indicates that longitudinal components of the fields propagate instantaneously. The delta-function singularity of the field of the divergence of the vector potential, referred to as the dilatation center, represents an elementary agent of gravitation. Viewing a particle as a source or...
Directory of Open Access Journals (Sweden)
Chifu E. N.
2009-07-01
Full Text Available Here, we present a profound and complete analytical solution to Einstein’s gravitational field equations exterior to astrophysically real or hypothetical time varying distribu- tions of mass or pressure within regions of spherical geometry. The single arbitrary function f in our proposed exterior metric tensor and constructed field equations makes our method unique, mathematically less combersome and astrophysically satisfactory. The obtained solution of Einstein’s gravitational field equations tends out to be a gen- eralization of Newton’s gravitational scalar potential exterior to the spherical mass or pressure distribution under consideration
Directory of Open Access Journals (Sweden)
Chifu E. N.
2009-07-01
Full Text Available Here, we present a profound and complete analytical solution to Einstein's gravitational field equations exterior to astrophysically real or hypothetical time varying distributions of mass or pressure within regions of spherical geometry. The single arbitrary function $f$ in our proposed exterior metric tensor and constructed field equations makes our method unique, mathematically less combersome and astrophysically satisfactory. The obtained solution of Einstein's gravitational field equations tends out to be a generalization of Newton's gravitational scalar potential exterior to the spherical mass or pressure distribution under consideration.
Morozova, Anna; Ribeiro, Paulo; Pais, M. Alexandra
2013-04-01
The Coimbra Magnetic Observatory (COI) (Portugal) has a long history of observation of the geomagnetic field, spanning almost 150 years. Measurements of the geomagnetic field components started in 1866 and include the observations of all components: horizontal (H), downward vertical (Z), northward (X), eastward (Y), total field magnitude (F), inclination (I) and declination (D). These long instrumental geomagnetic records provide very important information about variability of measured parameters, their trends and cycles, and can be used to improve our knowledge on the sources that drive variations of the geomagnetic field: liquid core dynamics (internal) and solar forcing (external). However, during the long life of the Coimbra observatory, some inevitable changes in station location, instrument's park and electromagnetic environment took place. These changes affected the quality of the data causing breaks and jumps in the series. Clearly, these inhomogeneities, typically of shift-like (step-like) or trend-like, have to be corrected or, at least, minimized in order for the data to be used in scientific studies or to be submitted to international databases. The homogenization of the monthly and annual averages of geomagnetic field components has been done using visual and statistical tests (e.g. standard normal homogeneity test), allowing to estimate not only the level of inhomogeneity of the studied series, but also to detect the highly probable homogeneity break points. These have been compared with the metadata, reference series from the nearest geomagnetic stations and geomagnetic field models (e.g. CM4 and CHAOS3) in order to find and to set up the indispensable correction factors. Similar methods have been applied to the homogenization of the local geomagnetic K-index series (from 1952 to 2012). As a result, the homogenized geomagnetic monthly and annual averages of the series measured in COI are considered to be essentially free of artificial shifts and
Energy Technology Data Exchange (ETDEWEB)
Gravador, E.; Yoshiki, Hajime; Feizeng, H. [Ibaraki Univ., Mito (Japan)
1996-08-01
A superthermal UCN edm measuring machine is currently under construction at KEK. It utilizes a magnetically shielded superconducting solenoid at liquid helium temperature to generate a stable and homogeneous magnetic field at 10 milligauss. The design of the magnetic shield and solenoid and preliminary evaluation of shielding effectiveness is presented. (author)
Ciufolini, I; Moschella, U; Fre, P
2001-01-01
Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.
Caldwell, R. R.; Devulder, C.
2018-01-01
We present a toy model of an axion gauge field inflation scenario that yields viable density and gravitational wave spectra. The scenario consists of an axionic inflaton in a steep potential that is effectively flattened by a coupling to a collection of non-Abelian gauge fields. The model predicts a blue-tilted gravitational wave spectrum that is dominated by one circular polarization, resulting in unique observational targets for cosmic microwave background and gravitational wave experiments. The handedness of the gravitational wave spectrum is incorporated in a model of leptogenesis through the axial-gravitational anomaly; assuming electroweak sphaeleron processes convert the lepton asymmetry into baryons, we predict an approximate lower bound on the tensor-to-scalar ratio r ˜3 - 4 ×10-2 for models that also explain the matter-antimatter asymmetry of the Universe.
Energy Technology Data Exchange (ETDEWEB)
Scheck, Florian [Mainz Univ. (Germany). Inst. fuer Physik
2017-09-01
The following topics are dealt with: Maxwell's equations together with their symmetry and covariance, the Maxwell theory as classical field theory, simple applications of Maxwell's theory, local gauge theories, classical field theory of gravitation. (HSI)
Hu, Wenjing
2017-08-01
This paper uses Fourier’s triple integral transform method to simplify the calculation of the non-homogeneous wave equations of the time-varying electromagnetic field. By adding several special definite conditions to the wave equation, it becomes a mathematical problem of definite condition. Then by using Fourier’s triple integral transform method, this three-dimension non-homogeneous partial differential wave equation is changed into an ordinary differential equation. Through the solution to this ordinary differential equation, the expression of the relationship between the time-varying scalar potential and electromagnetic wave excitation source is developed precisely. This method simplifies the solving process effectively.
Behera, Harihar
2017-12-01
Recently reported [Eur. Phys. J. C., 77, 549 (2017). https://doi.org/10.1140/epjc/s10052-017-5116-y] gravitoelectromagnetic equations of Ummarino and Gallerati (UG) in their linearized version of general relativity (GR) are shown to match with (a) our previously reported special relativistic Maxwellian Gravity equations in the non-relativistic limit and with (b) the non-relativistic equations derived here, when the speed of gravity c_g (an undetermined parameter of the theory here) is set equal to c (the speed of light in vacuum). Seen in the light of our new results, the UG equations satisfy the Correspondence Principle (cp), while many other versions of linearized GR equations that are being (or may be) used to interpret the experimental data defy the cp. Such new findings assume significance and relevance in the contexts of recent detection of gravitational waves and the gravitomagnetic field of the spinning earth and their interpretations. Being well-founded and self-consistent, the equations may be of interest and useful to researchers exploring the phenomenology of gravitomagnetism, gravitational waves and the novel interplay of gravity with different states of matter in flat space-time like UG's interesting work on superconductors in weak gravitational fields.
Directory of Open Access Journals (Sweden)
Jonathan Miller
2015-01-01
Full Text Available In the framework of quantum field theory, a graviton interacts locally with a quantum state having definite mass, that is, the gravitational mass eigenstate, while a weak boson interacts with a state having definite flavor, that is, the flavor eigenstate. An interaction of a neutrino with an energetic graviton may trigger the collapse of the neutrino to a definite mass eigenstate with probability expressed in terms of PMNS mixing matrix elements. Thus, gravitons would induce quantum decoherence of a coherent neutrino flavor state similarly to how weak bosons induce quantum decoherence of a neutrino in a definite mass state. We demonstrate that such an essentially quantum gravity effect may have strong consequences for neutrino oscillation phenomena in astrophysics due to relatively large scattering cross sections of relativistic neutrinos undergoing large angle radiation of energetic gravitons in gravitational field of a classical massive source (i.e., the quasi-classical case of gravitational Bethe-Heitler scattering. This graviton-induced decoherence is compared to decoherence due to propagation in the presence of the Earth matter effect. Based on this study, we propose a new technique for the indirect detection of energetic gravitons by measuring the flavor composition of astrophysical neutrinos.
Das, Ashok
1. Basics of geometry and relativity. 1.1. Two dimensional geometry. 1.2. Inertial and gravitational masses. 1.3. Relativity -- 2. Relativistic dynamics. 2.1. Relativistic point particle. 2.2. Current and charge densities. 2.3. Maxwell's equations in the presence of sources. 2.4. Motion of a charged particle in EM field. 2.5. Energy-momentum tensor. 2.6. Angular momentum -- 3. Principle of general covariance. 3.1. Principle of equivalence. 3.2. Principle of general covariance. 3.3. Tensor densities -- 4. Affine connection and covariant derivative. 4.1. Parallel transport of a vector. 4.2. Christoffel symbol. 4.3. Covariant derivative of contravariant tensors. 4.4. Metric compatibility. 4.5. Covariant derivative of covariant and mixed tensors. 4.6. Electromagnetic analogy. 4.7. Gradient, divergence and curl -- 5. Geodesic equation. 5.1. Covariant differentiation along a curve. 5.2. Curvature from derivatives. 5.3. Parallel transport along a closed curve. 5.4. Geodesic equation. 5.5. Derivation of geodesic equation from a Lagrangian -- 6. Applications of the geodesic equation. 6.1. Geodesic as representing gravitational effect. 6.2. Rotating coordinate system and the Coriolis force. 6.3. Gravitational red shift. 6.4. Twin paradox and general covariance. 6.5. Other equations in the presence of gravitation -- 7. Curvature tensor and Einstein's equation. 7.1. Curvilinear coordinates versus gravitational field. 7.2. Definition of an inertial coordinate frame. 7.3. Geodesic deviation. 7.4. Properties of the curvature tensor. 7.5. Einstein's equation. 7.6. Cosmological constant. 7.7. Initial value problem. 7.8. Einstein's equation from an action -- 8. Schwarzschild solution. 8.1. Line element. 8.2. Connection. 8.3. Solution of the Einstein equation. 8.4. Properties of the Schwarzschild solution. 8.5. Isotropic coordinates -- 9. Tests of general relativity. 9.1. Radar echo experiment. 9.2. Motion of a particle in a Schwarzschild background. 9.3. Motion of light rays in a
DEFF Research Database (Denmark)
Damsgaard, Christian Danvad; Hansen, Mikkel Fougt
2008-01-01
when the bead passes the edge of the sensor in the direction of the applied field. Analytical approximations are derived for the average field from a homogeneous monolayer of beads for beads much smaller than the sensor dimension and for a bead size chosen to minimize the position sensitivity......We present a systematic theoretical study of the average in-plane magnetic field on square and rectangular magnetic field sensors from a single magnetic bead and a monolayer of magnetic beads magnetized by an in-plane externally applied homogeneous magnetic field. General theoretical expressions...... are derived such that the sensor response and its dependence on the sensor size, spacer layer thickness, bead diameter, and bead susceptibility can easily be evaluated. The average magnetic field from a single bead close to the sensor shows a strong dependence on the position of the bead and a change of sign...
CERN. Geneva
2006-01-01
Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.
Theory of gravitational interactions
Gasperini, Maurizio
2017-01-01
This is the second edition of a well-received book that is a modern, self-contained introduction to the theory of gravitational interactions. The new edition includes more details on gravitational waves of cosmological origin, the so-called brane world scenario, and gravitational time-delay effects. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field, while the second, more advanced part discusses the deep analogies (and differences) between a geometric theory of gravity and the “gauge” theories of the other fundamental interactions. This fills a gap within the traditional approach to general relativity which usually leaves students puzzled about the role of gravity. The required notions of differential geometry are reduced to the minimum, allowing room for aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational inter...
Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John
2017-10-01
The structure/amplitude of the Jovian equatorially symmetric gravitational field is affected by both rotational distortion and the fast equatorially symmetric zonal flow. We construct a fully self-consistent, four-layer, non-spheroidal (i.e, the shape is irregular) model of Jupiter that comprises an inner core, a metallic region, an outer molecular envelope and a thin transition layer between the metallic and molecular regions. While the core is assumed to have a uniform density, three different equations of state are adopted for the metallic, molecular and transition regions. We solve the governing equations via a perturbation approach. The leading-order problem accounts for the full effect of rotational distortion, and determines the density, size and shape of the core, the location and thickness of the transition layer, and the shape of the 1-bar pressure level; it also produces the mass, the equatorial and polar radii of Jupiter, and the even zonal gravitational coefficients caused by the rotational distortion. The next-order problem determines the corrections caused by the zonal flow which is assumed to be confined within the molecular envelope and on cylinders parallel to the rotation axis. Our model provides the total even gravitational coefficients that can be compared with those acquired by the Juno spacecraft.
Wilks, R J; Cammack, T; Bliss, P
2006-02-01
Individually paired physical compensators are used in our centre to improve dose homogeneity for radiotherapy to the whole breast. This technical note describes the further improvements that may be achieved when all possible combinations of individual compensators within the library are considered. A retrospective study of 78 patients using a total of 16 (left-sided) and 14 (right-sided) sets of library compensators was evaluated, and the results expressed in terms of the standard deviation of the differential dose-volume histogram and the dose range within the breast volume. The mean of the standard deviations was 3.17% (uncompensated), 2.16% (paired compensators) and 1.97% (combinations) and the mean homogeneity was 15.3%, 11.8% and 11.1%, respectively.
Wu, Yue-Liang
2017-10-01
The relativistic Dirac equation in four-dimensional spacetime reveals a coherent relation between the dimensions of spacetime and the degrees of freedom of fermionic spinors. A massless Dirac fermion generates new symmetries corresponding to chirality spin and charge spin as well as conformal scaling transformations. With the introduction of intrinsic W-parity, a massless Dirac fermion can be treated as a Majorana-type or Weyl-type spinor in a six-dimensional spacetime that reflects the intrinsic quantum numbers of chirality spin. A generalized Dirac equation is obtained in the six-dimensional spacetime with a maximal symmetry. Based on the framework of gravitational quantum field theory proposed in Ref. [1] with the postulate of gauge invariance and coordinate independence, we arrive at a maximally symmetric gravitational gauge field theory for the massless Dirac fermion in six-dimensional spacetime. Such a theory is governed by the local spin gauge symmetry SP(1,5) and the global Poincaré symmetry P(1,5)=SO(1,5)⋉P 1,5 as well as the charge spin gauge symmetry SU(2). The theory leads to the prediction of doubly electrically charged bosons. A scalar field and conformal scaling gauge field are introduced to maintain both global and local conformal scaling symmetries. A generalized gravitational Dirac equation for the massless Dirac fermion is derived in the six-dimensional spacetime. The equations of motion for gauge fields are obtained with conserved currents in the presence of gravitational effects. The dynamics of the gauge-type gravifield as a Goldstone-like boson is shown to be governed by a conserved energy-momentum tensor, and its symmetric part provides a generalized Einstein equation of gravity. An alternative geometrical symmetry breaking mechanism for the mass generation of Dirac fermions is demonstrated. Supported by National Science Foundation of China (NSFC) (11690022, 11475237, 11121064) and Strategic Priority Research Program of the Chinese
Improved Field Homogeneity for Transmission Line MRI Coils Using Series Capacitors
DEFF Research Database (Denmark)
Zhurbenko, Vitaliy; Dong, Yunfeng
2015-01-01
High field magnetic resonance imaging (MRI) systems often use short sections of transmission lines for generating and sensing alternating magnetic fields. Due to distributed nature of transmission lines, the generated field is inhomogeneous. This work investigates the application of series...
1993-06-01
Elliptical Satellite Initial Conditions for "Truth" Model Observations ............................................................................. 115 ...km (3.651789462 x 10- AU) e0 0.05994874611 i0 900 (103.10484938493500) GO 900 (304.19968053947210) Ob0 3150 (297.23942697989870) M 11 115 L&UNA...orbiter data could 155 LUINAR GRAVITATIONAL FMM~ EST rAlON ADAI• rlEORBrT IPR- nIMON provide the best estimate of the remaining second degree harmonic
Lye, Peter G.; Bradbury, Ronald; Lamb, David W.
Silica optical fibres were used to measure colour (mg anthocyanin/g fresh berry weight) in samples of red wine grape homogenates via optical Fibre Evanescent Field Absorbance (FEFA). Colour measurements from 126 samples of grape homogenate were compared against the standard industry spectrophotometric reference method that involves chemical extraction and subsequent optical absorption measurements of clarified samples at 520 nm. FEFA absorbance on homogenates at 520 nm (FEFA520h) was correlated with the industry reference method measurements of colour (R2 = 0.46, n = 126). Using a simple regression equation colour could be predicted with a standard error of cross-validation (SECV) of 0.21 mg/g, with a range of 0.6 to 2.2 mg anthocyanin/g and a standard deviation of 0.33 mg/g. With a Ratio of Performance Deviation (RPD) of 1.6, the technique when utilizing only a single detection wavelength, is not robust enough to apply in a diagnostic sense, however the results do demonstrate the potential of the FEFA method as a fast and low-cost assay of colour in homogenized samples.
Energy Technology Data Exchange (ETDEWEB)
Nakonieczna, Anna [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin (Poland); Yeom, Dong-han [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University,No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China)
2016-02-08
There does not exist a notion of time which could be transferred straightforwardly from classical to quantum gravity. For this reason, a method of time quantification which would be appropriate for gravity quantization is being sought. One of the existing proposals is using the evolving matter as an intrinsic ‘clock’ while investigating the dynamics of gravitational systems. The objective of our research was to check whether scalar fields can serve as time variables during a dynamical evolution of a coupled multi-component matter-geometry system. We concentrated on a neutral case, which means that the elaborated system was not charged electrically nor magnetically. For this purpose, we investigated a gravitational collapse of a self-interacting complex and real scalar fields in the Brans-Dicke theory using the 2+2 spacetime foliation. We focused mainly on the region of high curvature appearing nearby the emerging singularity, which is essential from the perspective of quantum gravity. We investigated several formulations of the theory for various values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke field and the matter sector of the theory. The obtained results indicated that the evolving scalar fields can be treated as time variables in close proximity of the singularity due to the following reasons. The constancy hypersurfaces of the Brans-Dicke field are spacelike in the vicinity of the singularity apart from the case, in which the equation of motion of the field reduces to the wave equation due to a specific choice of free evolution parameters. The hypersurfaces of constant complex and real scalar fields are spacelike in the regions nearby the singularities formed during the examined process. The values of the field functions change monotonically in the areas, in which the constancy hypersurfaces are spacelike.
Pensia, R. K.; Sutar, D. L.; Kumar, V.; Kumar, A.
2017-05-01
In view of the importance of Coriolis force in an astrophysical context, the problem of self-gravitational instability of dusty plasma in the presence of magnetic field is investigated. Equations of the problem are stated and the dispersion relation has been derived with the help of linearized perturbation equations. We find that the Jeans criterion of instability remains valid but the expression of the critical Jeans wave-number is modified. Mathematical calculations have been performed and some figures are plotted between the growth rate of instability and wave numbers. From the curves, it is found that dust sonic speed has a stabilizing effect.
Carmeli, Moshe
2000-01-01
This is the only book on the subject of group theory and Einstein's theory of gravitation. It contains an extensive discussion on general relativity from the viewpoint of group theory and gauge fields. It also puts together in one volume many scattered, original works, on the use of group theory in general relativity theory.There are twelve chapters in the book. The first six are devoted to rotation and Lorentz groups, and their representations. They include the spinor representation as well as the infinite-dimensional representations. The other six chapters deal with the application of groups
Radiation of Air-Borne Noise in Non-Homogeneous Wind and Temperature Fields using FEM Analysis
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Krenk, S.
1999-01-01
The paper describes analysis in the time domain of noise propagating in non-homogeneous mean wind or temperature fields. The analysis is based on a field equation for the velocity potential, which contains strong convection terms. In order to circumvent the problem of numerical instability and loss...... by a conventional Galerkin approach. The radiation condition is an impedance condition for wave propagation towards the artificial boundary at an oblique angle. The propagation angle is estimated geometrically with due consideration of the mean wind velocity. The method has been applied to a 2-dimensional point...
Lu, Biao; Luo, Zhicai; Zhong, Bo; Zhou, Hao; Flechtner, Frank; Förste, Christoph; Barthelmes, Franz; Zhou, Rui
2017-11-01
Based on tensor theory, three invariants of the gravitational gradient tensor (IGGT) are independent of the gradiometer reference frame (GRF). Compared to traditional methods for calculation of gravity field models based on the gravity field and steady-state ocean circulation explorer (GOCE) data, which are affected by errors in the attitude indicator, using IGGT and least squares method avoids the problem of inaccurate rotation matrices. The IGGT approach as studied in this paper is a quadratic function of the gravity field model's spherical harmonic coefficients. The linearized observation equations for the least squares method are obtained using a Taylor expansion, and the weighting equation is derived using the law of error propagation. We also investigate the linearization errors using existing gravity field models and find that this error can be ignored since the used a-priori model EIGEN-5C is sufficiently accurate. One problem when using this approach is that it needs all six independent gravitational gradients (GGs), but the components V_{xy} and V_{yz} of GOCE are worse due to the non-sensitive axes of the GOCE gradiometer. Therefore, we use synthetic GGs for both inaccurate gravitational gradient components derived from the a-priori gravity field model EIGEN-5C. Another problem is that the GOCE GGs are measured in a band-limited manner. Therefore, a forward and backward finite impulse response band-pass filter is applied to the data, which can also eliminate filter caused phase change. The spherical cap regularization approach (SCRA) and the Kaula rule are then applied to solve the polar gap problem caused by GOCE's inclination of 96.7° . With the techniques described above, a degree/order 240 gravity field model called IGGT_R1 is computed. Since the synthetic components of V_{xy} and V_{yz} are not band-pass filtered, the signals outside the measurement bandwidth are replaced by the a-priori model EIGEN-5C. Therefore, this model is practically a
Doyen, G.; Drakova, D.
2015-08-01
We construct a world model consisting of a matter field living in 4 dimensional spacetime and a gravitational field living in 11 dimensional spacetime. The seven hidden dimensions are compactified within a radius estimated by reproducing the particle-wave characteristics of diffraction experiments. In the presence of matter fields the gravitational field develops localized modes with elementary excitations called gravonons which are induced by the sources (massive particles). The final world model treated here contains only gravonons and a scalar matter field. The gravonons are localized in the environment of the massive particles which generate them. The solution of the Schrödinger equation for the world model yields matter fields which are localized in the 4 dimensional subspace. The localization has the following properties: (i) There is a chooser mechanism for the selection of the localization site. (ii) The chooser selects one site on the basis of minor energy differences and differences in the gravonon structure between the sites, which at present cannot be controlled experimentally and therefore let the choice appear statistical. (iii) The changes from one localization site to a neighbouring one take place in a telegraph-signal like manner. (iv) The times at which telegraph like jumps occur depend on subtleties of the gravonon structure which at present cannot be controlled experimentally and therefore let the telegraph-like jumps appear statistical. (v) The fact that the dynamical law acts in the configuration space of fields living in 11 dimensional spacetime lets the events observed in 4 dimensional spacetime appear non-local. In this way the phenomenology of CQM is obtained without the need of introducing the process of collapse and a probabilistic interpretation of the wave function. Operators defining observables need not be introduced. All experimental findings are explained in a deterministic way as a consequence of the time development of the wave
Excursion probabilities of non-homogeneous Gaussian scalar fields based on maxima considerations
DEFF Research Database (Denmark)
Nielsen, Michael Havbro Faber; Rackwitz, R.
1988-01-01
Many uncertain natural or technical phenomena are most realistically described by random fields. A typical example of a random field is the load effect in a floor slab which is loaded by a spatially distributed gravity load. Other examples of random fields include the sea-level around off-shore p...
Iafrate, G. J.; Sokolov, V. N.; Krieger, J. B.
2017-10-01
The theory of Bloch electron dynamics for carriers in homogeneous electric and magnetic fields of arbitrary time dependence is developed in the framework of the Liouville equation. The Wigner distribution function (WDF) is determined from the single-particle density matrix in the ballistic regime, i.e., collision effects are excluded. In the theory, the single-particle transport equation is established with the electric field described in the vector potential gauge, and the magnetic field is treated in the symmetric gauge. No specific assumptions are made concerning the form of the initial distribution in momentum or configuration space. The general approach is to employ the accelerated Bloch state representation (ABR) as a basis so that the dependence upon the electric field, including multiband Zener tunneling, is treated exactly. Further, in the formulation of the WDF, we transform to a new set of variables so that the final WDF is gauge invariant and is expressed explicitly in terms of the position, kinetic momentum, and time. The methodology for developing the WDF is illustrated by deriving the exact WDF equation for free electrons in homogeneous electric and magnetic fields resulting in the same form as given by the collisionless Boltzmann transport equation (BTE). The methodology is then extended to the case of electrons described by an effective Hamiltonian corresponding to an arbitrary energy band function; the exact WDF equation results for the effective Hamiltonian case are shown to approximate the free electron results when taken to second order in the magnetic field. As a corollary, in these cases, it is shown that if the WDF is a wave packet, then the time rate of change of the electron quasimomentum is given by the Lorentz force. In treating the problem of Bloch electrons in a periodic potential in the presence of homogeneous electric and magnetic fields, the methodology for deriving the WDF reveals a multiband character due to the inherent nature of
Motion of a satellite equipped with a pitch flywheel and magnetic coils in gravitational field
Ovchinnikov, M. Yu.; Roldugin, D. S.; Penkov, V. I.; Varatarao, R.; Ryabikov, V. S.
2017-05-01
A satellite equipped with a magnetic attitude control system and a pitch flywheel has been considered. The system performance in the transient mode has been investigated. The characteristic exponent of the system have been approximated for a satellite on a circumpolar orbit. In the steady-state mode of gravitational attitude, small motions are considered in the vicinity of equilibrium. The attitude accuracy has been analyzed. The algorithm of an arbitrary but given attitude of the satellite in the orbital plane has been investigated. A numerical simulation has been performed.
Dong, D,; Gross, R.S.; Dickey, J.
1996-01-01
Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.
Nakonieczna, Anna
2015-01-01
There does not exist a notion of time which could be transferred straightforwardly from classical to quantum gravity. For this reason, a method of time quantification which would be appropriate for gravity quantization is being sought. One of the existing proposals is using the evolving matter as an intrinsic `clock' while investigating the dynamics of gravitational systems. The objective of our research was to check whether scalar fields can serve as time variables during a dynamical evolution of a coupled multi-component matter-geometry system. For this purpose, we investigated a gravitational collapse of a self-interacting complex and real scalar fields in the Brans-Dicke theory using the 2+2 spacetime foliation. We focused mainly on the region of high curvature appearing nearby the emerging singularity, which is essential from the perspective of quantum gravity. We investigated several formulations of the theory for various values of the Brans-Dicke coupling constant and the coupling between the Brans-Dic...
Energy Technology Data Exchange (ETDEWEB)
Reynolds, M., E-mail: michaelreynolds@ualberta.net [Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Fallone, B. G. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada and Departments of Oncology and Physics, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Rathee, S. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)
2014-09-15
Purpose: MR-Linac devices under development worldwide will require standard calibration, commissioning, and quality assurance. Solid state radiation detectors are often used for dose profiles and percent depth dose measurements. The dose response of selected solid state detectors is therefore evaluated in varying transverse and longitudinal magnetic fields for this purpose. Methods: The Monte Carlo code PENELOPE was used to model irradiation of a PTW 60003 diamond detector and IBA PFD diode detector in the presence of a magnetic field. The field itself was varied in strength, and oriented both transversely and longitudinally with respect to the incident photon beam. The long axis of the detectors was oriented either parallel or perpendicular to the photon beam. The dose to the active volume of each detector in air was scored, and its ratio to dose with zero magnetic field strength was determined as the “dose response” in magnetic field. Measurements at low fields for both detectors in transverse magnetic fields were taken to evaluate the accuracy of the simulations. Additional simulations were performed in a water phantom to obtain few representative points for beam profile and percent depth dose measurements. Results: Simulations show significant dose response as a function of magnetic field in transverse field geometries. This response can be near 20% at 1.5 T, and it is highly dependent on the detectors’ relative orientation to the magnetic field, the energy of the photon beam, and detector composition. Measurements at low transverse magnetic fields verify the simulations for both detectors in their relative orientations to radiation beam. Longitudinal magnetic fields, in contrast, show little dose response, rising slowly with magnetic field, and reaching 0.5%–1% at 1.5 T regardless of detector orientation. Water tank and in air simulation results were the same within simulation uncertainty where lateral electronic equilibrium is present and expectedly
Gravitational waves from inflation
Guzzetti, M. C.; Bartolo, N.; Liguori, M.; Matarrese, S.
2016-09-01
The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index nT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.
Einstein's equations of motion in the gravitational field of an oblate ...
African Journals Online (AJOL)
... to a homogeneous oblate spheroidal massive body, expressed in oblate spheroidal coordinates convenient for mathematical investigation and hence physical interpretation and experimental investigation for bodies in the solar system. Journal of the Nigerian Association of Mathematical Physics Vol. 8 2004: pp. 269-272 ...
Theory of gravitational interactions
Gasperini, Maurizio
2013-01-01
This reference textbook is an up-to-date and self-contained introduction to the theory of gravitational interactions. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field. A second, advanced part then discusses the deep analogies (and differences) between a geometric theory of gravity and the gauge theories of the other fundamental interactions. This fills a gap which is present in the context of the traditional approach to general relativity, and which usually makes students puzzled about the role of gravity. The necessary notions of differential geometry are reduced to the minimum, leaving more room for those aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational interactions of spinors, and the supersymmetric and higher-dimensional generalization of the Einstein equations. Theory of Gravitational Interactions will be o...
Nath, Gorakh
Self-similar solutions are obtained for one-dimensional unsteady adiabatic flow behind a spherical shock wave propagating in a dusty gas with conductive and radiative heat fluxes under a gravitational field. The shock is assumed to be driven out by a moving piston and the dusty gas to be a mixture of non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. It is assumed that the equilibrium flow-conditions are maintained and variable energy input is continuously supplied by the piston. The heat conduction is express in terms of Fourier’s law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density. The medium is assumed to be under a gravitational field due to heavy nucleus at the origin (Roche Model). The unsteady model of Roche consists of a dusty gas distributed with spherical symmetry around a nucleus having large mass It is assumed that the gravitational effect of the mixture itself can be neglected compared with the attraction of the heavy nucleus. The density of the ambient medium is taken to be constant. Our analysis reveals that after inclusion of gravitational field effect surprisingly the shock strength increases and remarkable difference can be found in the distribution of flow variables. The effects of the variation of the heat transfer parameters, the gravitational parameter and non-idealness of the gas in the mixture are investigated. Also, the effects of an increase in (i) the mass concentration of solid particles in the mixture and (ii) the ratio of the density of solid particles to the initial density of the gas on the flow variables are investigated. It is found that the shock strength is increased with an increase in the value of gravitational parameter. Further, it is investigated that the presence of gravitational field increases the
Shape, zonal winds and gravitational field of Jupiter: a fully self-consistent, multi-layered model
Schubert, Gerald; Kong, Dali; Zhang, Keke
2016-10-01
We construct a three-dimensional, finite-element, fully self-consistent, multi-layered,non-spheroidal model of Jupiter consisting of an inner core, a metallic electrically conducting dynamo region and an outer molecular electrically insulating envelope. We assume that the Jovian zonal winds are on cylinders parallel to the rotation axis but, due to the effect of magnetic braking, are confined within the outer molecular envelope. Two related calculations are carried out. The first provides an accurate description of the shape and internal density profile of Jupiter; the effect of rotational distortion is not treated as a small perturbation on a spherically symmetric state. This calculation determines the density, size and shape of the inner core, the irregular shape of the 1-bar pressure level, and the internal structure of Jupiter; the full effect of rotational distortion, without the influence of the zonal winds, is accounted for. Our multi-layered model is able to produce the known mass, the known equatorial and polar radii, and the known zonal gravitational coefficient J2 of Jupiter within their error bars; it also yields the coefficients J4 and J6 within about 5% accuracy, and the core equatorial radius 0.09RJ containing 3.73 Earth masses.The second calculation determines the variation of the gravitational field caused solely by the effect of the zonal winds on the rotationally distorted non-spheroidal Jupiter. Four different cases, ranging from a deep wind profile to a very shallow profile, are considered and implications for accurate interpretation of the zonal gravitational coefficients expected from the Juno mission are discussed.
Indian Academy of Sciences (India)
We present a broad overview of the emerging field of gravitational-wave astronomy. Although gravitational waves have not been directly de- tected yet, the worldwide scientific community is engaged in an exciting search for these elusive waves. Once detected, they will open up a new observational window to the Universe.
Valdés, Felipe
2011-06-01
A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a single source magnetic field integral equation. The equation is immune to low-frequency and dense-mesh breakdown, and free from spurious resonances. Unlike dual source formulations, this equation involves operator products that cannot be discretized using standard procedures for discretizing standalone electric, magnetic, and combined field operators. Instead, the single source equation proposed here is discretized using a recently developed technique that achieves a well-conditioned mapping from div- to curl-conforming function spaces, thereby fully respecting the space mapping properties of the operators involved, and guaranteeing accuracy and stability. Numerical results show that the proposed equation and discretization technique give rise to rapidly convergent solutions. They also validate the equation\\'s resonant free character. © 2006 IEEE.
Manzano, A.I.; van Loon, J.J.W.A.; Christianen, P.C.M.; Gonzalez-Rubio, J.M.; Medina, F.J.; Herranz, R.
2012-01-01
Background Biological systems respond to changes in both the Earth's magnetic and gravitational fields, but as experiments in space are expensive and infrequent, Earth-based simulation techniques are required. A high gradient magnetic field can be used to levitate biological material, thereby
Nested Helmholtz coil design for producing homogeneous transient rotating magnetic fields
Podaru, George; Moore, John; Dani, Raj Kumar; Prakash, Punit; Chikan, Viktor
2015-03-01
Electromagnets that can produce strong rotating magnetic fields at kHz frequencies are potentially very useful to exert rotating force on magnetic nanoparticles as small as few nanometers in size. In this article, the construction of a pulsed high-voltage rotating electromagnet is demonstrated based on a nested Helmholtz coil design. The energy for the coils is provided by two high-voltage discharge capacitors. The triggered spark gaps used in the experiments show sufficient accuracy to achieve the high frequency rotating magnetic field. The measured strength of the rotating magnetic field is 200 mT. This magnetic field is scalable by increasing the number of turns on the coils, by reducing the dimensions of the coils and by increasing the discharge current/voltage of the capacitors.
Directory of Open Access Journals (Sweden)
Stavroulakis N.
2008-04-01
Full Text Available The equations of gravitation together with the equations of electromagnetism in terms of the General Theory of Relativity allow to conceive an interdependence between the gravitational field and the electromagnetic field. However the technical difficulties of the relevant problems have precluded from expressing clearly this interdependence. Even the simple problem related to the field generated by a charged spherical mass is not correctly solved. In the present paper we reexamine from the outset this problem and propose a new solution.
Directory of Open Access Journals (Sweden)
Yuanchun Li
2015-01-01
Full Text Available For the trajectory control of the probe soft landing on the asteroids with weak gravitational field, this paper presents a combined integral sliding mode control with an adaptive fuzzy logic system, named adaptive fuzzy sliding mode control (AFSMC scheme. Considering the uncertainty of the orbit dynamics model in the small body fixed coordinate system, and the polyhedron modeling uncertainty in the gravitational potential, a fuzzy logic system is adopted to approximate the upper bound of the uncertainties. In addition, a robust control item is introduced to compensate for the approximation error of fuzzy logic system. The designed adaptive law and robust item make the closed-loop control stable and the tracking errors are convergent to zero. The controller not only guarantees the rapidity and accuracy of the desired trajectory tracking, but also enhances the robustness of the control system, improving the dynamic tracking performance for the probe soft landing on asteroids. Finally, the contrastive simulation results are presented to show the feasibility and effectiveness of the proposed control scheme.
Energy Technology Data Exchange (ETDEWEB)
Dieckhoff, Jan, E-mail: j.dieckhoff@tu-bs.de [Institut fuer Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Braunschweig (Germany); Schrittwieser, Stefan; Schotter, Joerg [Molecular Diagnostics, AIT Austrian Institute of Technology, Vienna (Austria); Remmer, Hilke; Schilling, Meinhard; Ludwig, Frank [Institut fuer Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Braunschweig (Germany)
2015-04-15
In this work, we report on the effect of the magnetic nanoparticle (MNP) concentration on the quantitative detection of proteins in solution with a rotating magnetic field (RMF) based homogeneous bioassay. Here, the phase lag between 30 nm iron oxide single-core particles and the RMF is analyzed with a fluxgate-based measurement system. As a test analyte anti-human IgG is applied which binds to the protein G functionalized MNP shell and causes a change of the phase lag. The measured phase lag changes for a fixed MNP and a varying analyte concentration are modeled with logistic functions. A change of the MNP concentration results in a nonlinear shift of the logistic function with the analyte concentration. This effect results from the law of mass action. Furthermore, the bioassay results are used to determine the association constant of the binding reaction. - Highlights: • A rotating magnetic field based homogeneous bioassay concept was presented. • Here, single-core iron oxide nanoparticles are applied as markers. • The impact of the particle concentration on the bioassay results is investigated. • The relation between particle concentration and bioassay sensitivity is nonlinear. • This finding can be reasonably explained by the law of mass action.
Gravitational collapse and naked singularities
Indian Academy of Sciences (India)
Gravitational collapse is one of the most striking phenomena in gravitational physics. The cosmic censorship conjecture has provided strong motivation for research in this field. In the absence of a general proof for censorship, many examples have been proposed, in which naked singularity is the outcome of gravitational ...
Gravitational Scattering Amplitudes and Closed String Field Theory in the Proper-Time Gauge
Lee, Taejin
2017-01-01
We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the Polyakov string path integrals, we identify the Fock space representations of the closed string vertices. We show that the Fock space representations of the closed string field theory may be completely factorized into those of the open string field...
Barjaktarović, Žarko; Schütz, Wolfgang; Madlung, Johannes; Fladerer, Claudia; Nordheim, Alfred; Hampp, Rüdiger
2009-01-01
In a recent study it was shown that callus cell cultures of Arabidopsis thaliana respond to changes in gravitational field strengths by changes in protein expression. Using ESI-MS/MS for proteins with differential abundance after separation by 2D-PAGE, 28 spots which changed reproducibly and significantly in amount (P gravitational fields induce the production of ROS. Our data further indicate that responses toward RP are more by post-translational protein modulation (most changes in the degree of phosphorylation occur under RP-treatment) than by protein expression (hypergravity). PMID:19129159
Directory of Open Access Journals (Sweden)
Mohammad Javad Tahmasebi Birgani
2010-09-01
Full Text Available Introduction: Treatment with megavoltage electron beams is ideal for irradiating superficial tumors because of their limited range in tissues. However, for electron treatment of extended areas, such as the chest wall, two or more adjacent fields can be used. Abutment of these fields may lead to significant dose in homogeneities in the junction region. The aim of this study is to offer a new method for generating a homogeneous dose distribution in the junction region between two adjacent fields in electron beam therapy. Materials and Methods: Several approaches have been proposed to solve the problem of ‘hot’ and ‘cold’ spots in the junction region between abutting electron fields. These techniques are based on beam-edge modifying devices or penumbra generators which act to broaden the electron beam penumbra, and thus facilitate field matching. But use of these devices is time consuming and design of the modifications to the applicators are generally applicator dependent. An idea which was originally proposed for matching two adjacent photon fields (with dose inhomogeneity of about 2% is resurrected here. This method is based on the rotation of the gantry such that the adjacent fields have a common edge and the overlap region in treatment volume is eliminated. For this purpose, the effective source to surface distance (SSDeff for the available electron beam energies (6, 9, 12 and 15 MeV and applicators (cones (6 × 6, 10 × 10, 15 ×15, 20 × 20 and 25 × 25 cm2 have been determined for a Varian 2100C linear accelerator. Result: Using SSDeff, in respect to beam divergence, one can use the photon beam behavior for electron beams and achieve a uniform dose distribution in adjacent electron fields. Discussion and Conclusion: Compared to beam-edge modifying devices or penumbra generators that are usually time consuming to plan and set up, rotating the gantry to eliminate the overlap region is simple and applicable in the problem of abutting
Internal Field of Homogeneously Magnetized Toroid Sensor for Proton Free Precession Magnetometer
DEFF Research Database (Denmark)
Primdahl, Fritz; Merayo, José M.G.; Brauer, Peter
2005-01-01
The shift of the NMR spectral line frequency in a proton free precession absolute scalar magnetometer using the omni-directional toroid container for a proton-rich liquid depends on the magnetic susceptibility of the liquid and on the direction of the external field relative to the axis...... of the toroid. The theoretical shift is estimated for water by computing the additional magnetic field from the magnetization of the liquid and comparing it to the theoretical field in a spherical container. Along the axis the estimated average shift is -0.08 nT and perpendicular to the axis the shift is +0.......08 nT relative to that of a spherical sensor. The field inhomogeneity introduced by the toroid shape amounts to 0.32 nT over the volume of the sensor and is not expected to significantly affect the signal decay time, when considering the typical water line width of about 2.5 InT....
Gao, Xian; Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun'ichi
2011-11-18
We completely clarify the feature of primordial non-Gaussianities of tensor perturbations in the most general single-field inflation model with second-order field equations. It is shown that the most general cubic action for the tensor perturbation h(ij) is composed only of two contributions, one with two spacial derivatives and the other with one time derivative on each h(ij). The former is essentially identical to the cubic term that appears in Einstein gravity and predicts a squeezed shape, while the latter newly appears in the presence of the kinetic coupling to the Einstein tensor and predicts an equilateral shape. Thus, only two shapes appear in the graviton bispectrum of the most general single-field inflation model, which could open a new clue to the identification of inflationary gravitational waves in observations of cosmic microwave background anisotropies as well as direct detection experiments.
Energy exchange for homogeneous and isotropic universes with a scalar field coupled to matter
Energy Technology Data Exchange (ETDEWEB)
Giambo, Roberto [Department of Mathematics and Computer Science, University of Camerino 62032 Camerino (Italy); Miritzis, John, E-mail: roberto.giambo@unicam.i, E-mail: imyr@aegean.g [Department of Marine Sciences, University of the Aegean, University Hill, Mytilene 81100 (Greece)
2010-05-07
We study the late time evolution of flat and negatively curved Friedmann-Robertson-Walker (FRW) models with a perfect fluid matter source and a scalar field arising in the conformal frame of f(R) theories nonminimally coupled to matter. Under mild assumptions on the potential V we prove that equilibria corresponding to the non-negative local minima for V are asymptotically stable, as well as horizontal asymptotes approached from above by V. We classify all cases of the flat model where one of the matter components eventually dominates. In particular for a nondegenerate minimum of the potential with zero critical value we prove in detail that if gamma, the parameter of the equation of state, is larger than 1, then there is a transfer of energy from the fluid to the scalar field and the latter eventually dominates in a generic way.
Juchem, Christoph; Nixon, Terence W.; McIntyre, Scott; Rothman, Douglas L.; de Graaf, Robin A.
2011-01-01
The prefrontal cortex is a common target brain structure in psychiatry and neuroscience due to its role in working memory and cognitive control. Large differences in magnetic susceptibility between the air-filled sinuses and the tissue/bone in the frontal part of the human head cause a strong and highly localized magnetic field focus in the prefrontal cortex. As a result, image distortion and signal dropout are observed in MR imaging. A set of external, electrical coils is presented that provides localized and high amplitude shim fields in the prefrontal cortex with minimum impact on the rest of the brain when combined with regular zero-to-second order spherical harmonics shimming. The experimental realization of the new shim method strongly minimized or even eliminated signal dropout in gradient-echo images acquired at settings typically used in functional magnetic resonance at 4 Tesla. PMID:19918909
Analytic Calculation of Transmission Field in Homogeneously Layered Mediums Excited by EMP
Directory of Open Access Journals (Sweden)
Dong-yang Sun
2017-01-01
Full Text Available This paper presents an analytic derivation for the time-domain transmission across layered mediums. The transmission coefficient and attenuation coefficient are obtained in the time-domain from general electromagnetic theory. The transmission electric field can be obtained within a few seconds by convolving the coefficients with incident EMP. The results are accordant with the FDTD method, and this approach can deal with the multilayer mediums problem. The limitations of this approach are discussed in this paper.
A simple, small and low cost permanent magnet design to produce homogeneous magnetic fields.
Manz, B; Benecke, M; Volke, F
2008-05-01
A new portable, pocket-size NMR probe based on a novel permanent magnet arrangement is presented. It is based on a Halbach-type magnet design which mimics the field of a spherical dipole by using cylindrical bar and ring magnets. The magnet system is made up of only three individual magnets, and most field calculations and optimisations can be performed analytically. A prototype system has been built using a set of small, off the shelf commercially available permanent magnets. Proton linewidths of 50 ppm FWHM could be achieved at a field strength of 1T. Calculations show that with custom-sized permanent magnets, linewidths of less than 1 ppm can be achieved over sample volumes of up to 1 mm3, which would in theory enable chemical shift resolved proton spectroscopy on mass-limited samples. But even with the achieved linewidth of 50 ppm, this can be a useful portable sensor for small amounts of liquid samples with restricted molecular mobility, like gels, polymers or high viscosity liquids.
Energy Technology Data Exchange (ETDEWEB)
Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-18
This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.
Energy Technology Data Exchange (ETDEWEB)
Vacaru, Olivia [National College of Iasi (Romania); Vacaru, Sergiu I. [Quantum Gravity Research, Topanga, CA (United States); University ' ' Al.I. Cuza' ' Iasi, Project IDEI, Iasi (Romania); Werner-Heisenberg-Institute, Max-Planck-Institute for Physics, Munich (Germany); Leibniz University of Hannover, Institute for Theoretical Physics (Germany); Ruchin, Vyacheslav
2017-03-15
Using double 2 + 2 and 3 + 1 nonholonomic fibrations on Lorentz manifolds, we extend the concept of W-entropy for gravitational fields in general relativity (GR). Such F- and W-functionals were introduced in the Ricci flow theory of three dimensional (3-d) Riemannian metrics by Perelman (the entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159). Non-relativistic 3-d Ricci flows are characterized by associated statistical thermodynamical values determined by W-entropy. Generalizations for geometric flows of 4-d pseudo-Riemannian metrics are considered for models with local thermodynamical equilibrium and separation of dissipative and non-dissipative processes in relativistic hydrodynamics. The approach is elaborated in the framework of classical field theories (relativistic continuum and hydrodynamic models) without an underlying kinetic description, which will be elaborated in other work. The 3 + 1 splitting allows us to provide a general relativistic definition of gravitational entropy in the Lyapunov-Perelman sense. It increases monotonically as structure forms in the Universe. We can formulate a thermodynamic description of exact solutions in GR depending, in general, on all spacetime coordinates. A corresponding 2 + 2 splitting with nonholonomic deformation of linear connection and frame structures is necessary for generating in very general form various classes of exact solutions of the Einstein and general relativistic geometric flow equations. Finally, we speculate on physical macrostates and microstate interpretations of the W-entropy in GR, geometric flow theories and possible connections to string theory (a second unsolved problem also contained in Perelman's work) in Polyakov's approach. (orig.)
PERIODIC ORBIT FAMILIES IN THE GRAVITATIONAL FIELD OF IRREGULAR-SHAPED BODIES
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yu [State Key Laboratory of Astronautic Dynamics, Xi’an Satellite Control Center, Xi’an 710043 (China); Baoyin, Hexi, E-mail: jiangyu_xian_china@163.com [School of Aerospace Engineering, Tsinghua University, Beijing 100084 (China)
2016-11-01
The discovery of binary and triple asteroids in addition to the execution of space missions to minor celestial bodies in the past several years have focused increasing attention on periodic orbits around irregular-shaped celestial bodies. In the present work, we adopt a polyhedron shape model for providing an accurate representation of irregular-shaped bodies and employ the model to calculate their corresponding gravitational and effective potentials. We also investigate the characteristics of periodic orbit families and the continuation of periodic orbits. We prove a fact, which provides a conserved quantity that permits restricting the number of periodic orbits in a fixed energy curved surface about an irregular-shaped body. The collisions of Floquet multipliers are maintained during the continuation of periodic orbits around the comet 1P/Halley. Multiple bifurcations in the periodic orbit families about irregular-shaped bodies are also discussed. Three bifurcations in the periodic orbit family have been found around the asteroid 216 Kleopatra, which include two real saddle bifurcations and one period-doubling bifurcation.
Report on the Implementation of Homogeneous Nucleation Scheme in MARMOT-based Phase Field Simulation
Energy Technology Data Exchange (ETDEWEB)
Li, Yulan; Hu, Shenyang Y.; Sun, Xin
2013-09-30
In this report, we summarized our effort in developing mesoscale phase field models for predicting precipitation kinetics in alloys during thermal aging and/or under irradiation in nuclear reactors. The first part focused on developing a method to predict the thermodynamic properties of critical nuclei such as the sizes and concentration profiles of critical nuclei, and nucleation barrier. These properties are crucial for quantitative simulations of precipitate evolution kinetics with phase field models. Fe-Cr alloy was chosen as a model alloy because it has valid thermodynamic and kinetic data as well as it is an important structural material in nuclear reactors. A constrained shrinking dimer dynamics (CSDD) method was developed to search for the energy minimum path during nucleation. With the method we are able to predict the concentration profiles of the critical nuclei of Cr-rich precipitates and nucleation energy barriers. Simulations showed that Cr concentration distribution in the critical nucleus strongly depends on the overall Cr concentration as well as temperature. The Cr concentration inside the critical nucleus is much smaller than the equilibrium concentration calculated by the equilibrium phase diagram. This implies that a non-classical nucleation theory should be used to deal with the nucleation of Cr precipitates in Fe-Cr alloys. The growth kinetics of both classical and non-classical nuclei was investigated by the phase field approach. A number of interesting phenomena were observed from the simulations: 1) a critical classical nucleus first shrinks toward its non-classical nucleus and then grows; 2) a non-classical nucleus has much slower growth kinetics at its earlier growth stage compared to the diffusion-controlled growth kinetics. 3) a critical classical nucleus grows faster at the earlier growth stage than the non-classical nucleus. All of these results demonstrated that it is critical to introduce the correct critical nuclei into phase
Gravitational Scattering Amplitudes and Closed String Field Theory in the Proper-Time Gauge
Lee, Taejin
2018-01-01
We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the Polyakov string path integrals, we identify the Fock space representations of the closed string vertices. We show that the Fock space representations of the closed string field theory may be completely factorized into those of the open string field theory. It implies that the well known Kawai-Lewellen-Tye (KLT) relations of the first quantized string theory may be promoted to the second quantized closed string theory. We explicitly calculate the scattering amplitudes of three gravitons by using the closed string field theory in the proper-time gauge.
Nath, G.
2013-10-01
Similarity solutions are obtained for one-dimensional unsteady isothermal flow of a dusty gas behind a spherical shock wave with time dependent energy input. The dusty gas is assumed to be a mixture of non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. It is assumed that the equilibrium flow-conditions are maintained, and the viscous stress and heat conduction of the mixture are negligible. The medium is taken to be under the influence of the gravitational field due to a heavy nucleus at the origin (Roche model). The total energy of the flow-field behind the shock is increasing. The effects of an increase in the mass concentration of solid particles, the ratio of the density of the solid particles to the initial density of the gas, the gravitational parameter (or shock Mach number), and the parameter of non-idealness of the gas in the mixture, are investigated. It is shown that due to presence of gravitational field the isothermal compressibility of the medium and the flow-variables increases and the shock strength decreases. A comparison has also been made between the medium with and without gravitational field. The shock waves in dusty medium can be important for description of star formation, shocks in supernova explosions, etc.
Directory of Open Access Journals (Sweden)
S. Ayadi
2015-07-01
Full Text Available The simplest model of the laser is that of a single mode system homogenously broadened. The dynamical behavior of this laser is described by three differential equations, called Haken-Lorenz equations[1], similar to the Lorenz model [1] already known to predict deterministic chaos. In previous recent work [5-7] we have proposed a simple harmonic expansion method to obtain a series of harmonics terms that yield analytical solutions to the laser equations. ¶This method allows us to derive an analytical expression of the laser field amplitude when this last undergoes a periodic oscillations around zero mean value. We also obtain an analytical expression of the pulsing frequency.
Dieckhoff, Jan; Schrittwieser, Stefan; Schotter, Joerg; Remmer, Hilke; Schilling, Meinhard; Ludwig, Frank
2015-04-01
In this work, we report on the effect of the magnetic nanoparticle (MNP) concentration on the quantitative detection of proteins in solution with a rotating magnetic field (RMF) based homogeneous bioassay. Here, the phase lag between 30 nm iron oxide single-core particles and the RMF is analyzed with a fluxgate-based measurement system. As a test analyte anti-human IgG is applied which binds to the protein G functionalized MNP shell and causes a change of the phase lag. The measured phase lag changes for a fixed MNP and a varying analyte concentration are modeled with logistic functions. A change of the MNP concentration results in a nonlinear shift of the logistic function with the analyte concentration. This effect results from the law of mass action. Furthermore, the bioassay results are used to determine the association constant of the binding reaction.
Scale-covariant theory of gravitation and astrophysical applications
Canuto, V.; Adams, P. J.; Hsieh, S.-H.; Tsiang, E.
1977-01-01
A scale-covariant theory of gravitation is presented which is characterized by a set of equations that are complete only after a choice of the scale function is made. Special attention is given to gauge conditions and units which allow gravitational phenomena to be described in atomic units. The generalized gravitational-field equations are derived by performing a direct scale transformation, by extending Riemannian geometry to Weyl geometry through the introduction of the notion of cotensors, and from a variation principle. Modified conservation laws are provided, a set of dynamical equations is obtained, and astrophysical consequences are considered. The theory is applied to examine certain homogeneous cosmological solutions, perihelion shifts, light deflections, secular variations of planetary orbital elements, stellar structure equations for a star in quasi-static equilibrium, and the past thermal history of earth. The possible relation of the scale-covariant theory to gauge field theories and their predictions of cosmological constants is discussed.
Twisting gravitational waves and eigenvector fields for SL(2,C on an infinite jet
Directory of Open Access Journals (Sweden)
J. D. Finley III
2000-07-01
Full Text Available A system of coupled vector-field-valued partial differential equations is presented, the solutions to which would determine two coupled, infinite-dimensional vector-field realizations of the group SL(2,C. While the general solution is (partially presented, the complicated nature of that solution is deplored, and the hope expressed that someone can replace it by something much more natural. The physical origins of the problem are briefly described. The problem arises out of searches for Backlund transforms of a system of PDE's that describe twisting, Petrov type N solutions of Einstein's vacuum field equations.
Quantum Opportunities in Gravitational Wave Detectors
Energy Technology Data Exchange (ETDEWEB)
Mavalvala, Negris (MIT)
2012-03-14
Direct observation of gravitational waves should open a new window into the Universe. Gravitational wave detectors are the most sensitive position meters ever constructed. The quantum limit in gravitational wave detectors opens up a whole new field of study. Quantum opportunities in gravitational wave detectors include applications of quantum optics techniques and new tools for quantum measurement on truly macroscopic (human) scales.
Directory of Open Access Journals (Sweden)
Valery Chepizhenko
2012-09-01
Full Text Available In article schemes have been offered and characteristics of virtual meters of artificial force fields for the conflicts resolution in the aeronavigation environment have been investigated.
Chen, Hua Hsuan
Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) is a safe non-invasive tool to study the physiological mechanisms of the human brain. MRS has the capability to provide the information regarding neurochemicals in brains of patients with neuropsychiatric disorders. Therefore, to produce measurable and interpretable information in MRI and MRS, a quality control (QC) program is required. Magnetic field homogeneity (MFH) is an important factor for QC when the volume sizes and neurochemical levels are quantified. Poor main (B0) MFH leads to artifacts, signal losses and broadened line widths. The American College of Radiology's (ACR) MRI QC manual mandates annual checks of MFH, suggesting tests using spectral line widths (FWHM) and phase-difference (Deltaϕ) maps. A new method, dubbed the bandwidth-difference (DeltaBW) method, is proposed along with a prototype phantom for determining MFH. The DeltaBW method is compared with standard methods and has also been tested in different model MRI systems from various manufacturers. Direct comparisons of the data obtained using the DeltaBW method demonstrated good agreement with data obtained using the linewidth method and the frequency map data provided by one MRI system manufacturer. As a result, the DeltaBW method produces measurements of MFH at various Diameter Sphere Volume (DSV) values that can be obtained from a single set of phantom images. The conclusion of the study is that the accuracy of DeltaBW B0 homogeneity measurements of MFH is comparable to the other methods tested while the ease of measurement in practical clinical setting is considerably improved.
Gravitational time dilation and spectral shift in the field of a massive ...
African Journals Online (AJOL)
In this paper, we derive expressions for the time dilation and spectral shift in terms of proper time and proper frequency in the field of a massive oblate spheroidal body using an approximate value of gμ. Journal of the Nigerian Association of Mathematical Physics Vol. 8 2004: pp. 97-100 ...
Self-gravitating field configurations: The role of the energy-momentum trace
Hod, Shahar
2014-01-01
Static spherically-symmetric matter distributions whose energy-momentum tensor is characterized by a non-negative trace are studied analytically within the framework of general relativity. We prove that such field configurations are necessarily highly relativistic objects. In particular, for matter fields with $T\\geq\\alpha\\cdot\\rho\\geq0$ (here $T$ and $\\rho$ are respectively the trace of the energy-momentum tensor and the energy density of the fields, and $\\alpha$ is a non-negative constant), we obtain the lower bound $\\text{max}_r\\{2m(r)/r\\}>(2+2\\alpha)/(3+2\\alpha)$ on the compactness (mass-to-radius ratio) of regular field configurations. In addition, we prove that these compact objects necessarily possess (at least) {\\it two} photon-spheres, one of which exhibits {\\it stable} trapping of null geodesics. The presence of stable photon-spheres in the corresponding curved spacetimes indicates that these compact objects may be nonlinearly unstable. We therefore conjecture that a negative trace of the energy-mom...
Fukushima, Toshio
2017-06-01
Reviewed are recently developed methods of the numerical integration of the gravitational field of general two- or three-dimensional bodies with arbitrary shape and mass density distribution: (i) an axisymmetric infinitely-thin disc (Fukushima 2016a, MNRAS, 456, 3702), (ii) a general infinitely-thin plate (Fukushima 2016b, MNRAS, 459, 3825), (iii) a plane-symmetric and axisymmetric ring-like object (Fukushima 2016c, AJ, 152, 35), (iv) an axisymmetric thick disc (Fukushima 2016d, MNRAS, 462, 2138), and (v) a general three-dimensional body (Fukushima 2016e, MNRAS, 463, 1500). The key techniques employed are (a) the split quadrature method using the double exponential rule (Takahashi and Mori, 1973, Numer. Math., 21, 206), (b) the precise and fast computation of complete elliptic integrals (Fukushima 2015, J. Comp. Appl. Math., 282, 71), (c) Ridder's algorithm of numerical differentiaion (Ridder 1982, Adv. Eng. Softw., 4, 75), (d) the recursive computation of the zonal toroidal harmonics, and (e) the integration variable transformation to the local spherical polar coordinates. These devices succesfully regularize the Newton kernel in the integrands so as to provide accurate integral values. For example, the general 3D potential is regularly integrated as Φ (\\vec{x}) = - G \\int_0^∞ ( \\int_{-1}^1 ( \\int_0^{2π} ρ (\\vec{x}+\\vec{q}) dψ ) dγ ) q dq, where \\vec{q} = q (√{1-γ^2} cos ψ, √{1-γ^2} sin ψ, γ), is the relative position vector referred to \\vec{x}, the position vector at which the potential is evaluated. As a result, the new methods can compute the potential and acceleration vector very accurately. In fact, the axisymmetric integration reproduces the Miyamoto-Nagai potential with 14 correct digits. The developed methods are applied to the gravitational field study of galaxies and protoplanetary discs. Among them, the investigation on the rotation curve of M33 supports a disc-like structure of the dark matter with a double-power-law surface
CERN. Geneva
2005-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.
Directory of Open Access Journals (Sweden)
Phil Diamond
2003-01-01
Full Text Available Sensitivity of output of a linear operator to its input can be quantified in various ways. In Control Theory, the input is usually interpreted as disturbance and the output is to be minimized in some sense. In stochastic worst-case design settings, the disturbance is considered random with imprecisely known probability distribution. The prior set of probability measures can be chosen so as to quantify how far the disturbance deviates from the white-noise hypothesis of Linear Quadratic Gaussian control. Such deviation can be measured by the minimal Kullback-Leibler informational divergence from the Gaussian distributions with zero mean and scalar covariance matrices. The resulting anisotropy functional is defined for finite power random vectors. Originally, anisotropy was introduced for directionally generic random vectors as the relative entropy of the normalized vector with respect to the uniform distribution on the unit sphere. The associated a-anisotropic norm of a matrix is then its maximum root mean square or average energy gain with respect to finite power or directionally generic inputs whose anisotropy is bounded above by a≥0. We give a systematic comparison of the anisotropy functionals and the associated norms. These are considered for unboundedly growing fragments of homogeneous Gaussian random fields on multidimensional integer lattice to yield mean anisotropy. Correspondingly, the anisotropic norms of finite matrices are extended to bounded linear translation invariant operators over such fields.
Stochastic force in gravitational systems
Del Popolo, A.
2001-01-01
In this paper I study the probability distribution of the gravitational force in gravitational systems through numerical experiments. I show that Kandrup's (1980) and Antonuccio-Delogu & Atrio-Barandela's (1992) theories describe correctly the stochastic force probability distribution respectively in inhomogeneous and clustered systems. I find equations for the probability distribution of stochastic forces in finite systems, both homogeneous and clustered, which I use to compare the theoretic...
Gravitational Effects on Near Field Flow Structure of Low Density Gas Jets
Yep, Tze-Wing; Agrawal, Ajay K.; Griffin, DeVon; Salzman, Jack (Technical Monitor)
2001-01-01
Experiments were conducted in Earth gravity and microgravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2-second drop tower at NASA Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of site measurement technique for the whole field. The flow structure was characterized by distributions of angular deflection and helium mole percentage obtained from color schlieren images taken at 60 Hz. Results show that the jet flow was significantly influenced by the gravity. The jet in microgravity was up to 70 percent wider than that in Earth gravity. The jet flow oscillations observed in Earth gravity were absent in microgravity, providing direct experimental evidence that the flow instability in the low density jet was buoyancy induced. The paper provides quantitative details of temporal flow evolution as the experiment undergoes a change in gravity in the drop tower.
Romero, Gustavo E.
2017-01-01
I discuss the recent claims made by Mario Bunge on the philosophical implications of the discovery of gravitational waves. I think that Bunge is right when he points out that the detection implies the materiality of spacetime, but I reject his identification of spacetime with the gravitational field. I show that Bunge's analysis of the spacetime inside a hollow sphere is defective, but this in no way affects his main claim.
Musheev, Michael U; Kanoatov, Mirzo; Krylov, Sergey N
2013-05-29
Identical molecules move with identical velocities when placed in a uniform electric field within a uniform electrolyte. Here we report that homogeneous DNA does not obey this fundamental rule. While most DNA moves with similar velocities, a fraction of DNA moves with velocities that vary within a multiple-fold range. The size of this irregular fraction increases several orders of magnitude when exogenous counterions are added to DNA. The irregular fraction decreases several orders of magnitude when DNA counterions are removed by dialysis against deionized water in the presence of a strong electric field (0.6 kV/cm). Dialysis without the field is ineffective in decreasing the size of irregular fraction. These results suggest that (i) DNA can form very stable complexes with counterions, (ii) these complexes can be dissociated by an electric field, and (iii) the observed non-uniform velocity of DNA is caused by electric-field-induced slow dissociation of these stable complexes. Our findings help to better understand a fundamental property of DNA: its interaction with counterions. In addition, these findings suggest a practical way of making electromigration of DNA more uniform: removal of strongly bound DNA counterions by electro-dialysis against deionized water.
Adzlan, Ahmad; Tsutsumi, Shunsuke; Gotoda, Hiroshi
2015-02-01
This paper presents the near-field behavior of a variable property jet with swirling flow generated by a change in gravitational orientation, focusing on the onset of vortex formation at the jet interface and the subsequent vortex breakdown (VB). Two types of gases are used to create a significant difference in the physical properties between the inner and outer fluids: CO2 with high-density and low-viscosity, and helium with low-density and high-viscosity. We propose a nondimensional instability parameter M∗ as a useful index for predicting the onset of vortex formation at a swirling jet interface. Inverted gravity (+1g) enlarges the region of unstable VB of the CO2 jet compared with that in normal gravity (-1g), which clearly shows that the buoyancy force has a significant impact on unstable VB. The trends of the changes in the jet half-angle and stagnation point height are investigated in detail for the preceding stable VB. Our physical model derived by considering the momentum balance in a swirling flow is adopted to understand the mechanism of the notable change in the stagnation point height in +1g with increasing swirl number of the inner jet and Reynolds number of the outer jet.
Time variations of Mars' gravitational field using MGS, Mars Odyssey and MRO radio science data
Marty, J.; Bruinsma, S.; Zittersteijn, M.; Le Maistre, S.; Rosenblatt, P.
2013-12-01
Tracking of the Mars Global Surveyor (MGS), Mars Odysey (ODY) and Mars Reconnaissance Orbiter (MRO) spacecraft has been used to measure changes in the long-wavelength gravity field of Mars due to the seasonal cycle of the atmospheric carbon dioxyde that is deposited in the polar regions each fall and winter and sublimed back into the atmosphere every spring and summer. All available observations spanning from 1999 to 2012 have been analyzed. The seasonal signal observed in low degrees has been computed using each satellite separately and all together. Changes in amplitude can be observed depending on satellite and observation time (before 2002, 2002-2006, after 2006). The others solved parameters are orbital parameters, drag coefficient, solar pressure coefficient and acceleration for each of the momentum dumps performed by the spacecrafts. A new assessment of the degree 2 tidal Love number, k2, has also been performed.
Gravitational Effects on Near-Field Flow Structure of Low-Density Gas Jets
Yep, Tze-Wing; Agrawal, Ajay K.; Griffin, DeVon
2004-01-01
Experiments were conducted in earth gravity and micro gravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2 s drop tower at NASA John H. Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of sight measurement technique suited for the microgravity environment. The flow structure was characterized by distribution of helium mole fraction obtained from color schlieren images taken at 60 Hz. Results show that the jet in microgravity was up to 70% wider than that in Earth gravity. Experiments reveal that the global flow oscillations observed in Earth are absent in microgravity. Quantitative deatails are provided of the evolution as the experiment undergoes changes in gravity in the drop tower.
Weiss, R.; Muehlner, D. J.; Benford, R. L.; Owens, D. K.; Pierre, N. A.; Rosenbluh, M.
1972-01-01
Balloon measurements were made of the far infrared background radiation. The radiometer used and its calibration are discussed. An electromagnetically coupled broadband gravitational antenna is also considered. The proposed antenna design and noise sources in the antenna are reviewed. A comparison is made between interferometric broadband and resonant bar antennas for the detection of gravitational wave pulses.
Energy Technology Data Exchange (ETDEWEB)
Quettier, Lionel
2010-06-01
A neuroscience research center with very high field MRI equipments has been opened in November 2006 by the CEA life science division. One of the imaging systems will require a 11.75 T magnet with a 900 mm warm bore, the so-call Iseult/Inumac magnet. Regarding the large aperture and field strength, this magnet is a challenge as compared to the largest MRI systems ever built, and is then developed within an ambitious R&D program. With the objective of demonstrating the possibility of achieving field homogeneity better than 1 ppm using double pancake windings, a 24 double pancakes model coil, working at 1.5 T has been designed. This model magnet has been manufactured by Alstom MSA and tested at CEA. It has been measured with a very high precision, in order to fully characterize the field homogeneity, and then to investigate and discriminate the parameters that influence the field map. This magnet has reached the bare magnet field homogeneity specification expected for Iseult and thus successfully demonstrated the feasibility of building a homogenous magnet with the double pancake winding technique.
CERN. Geneva
2016-01-01
In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.
GOCE gravitational gradients along the orbit
Bouman, J.; Fiorot, S.; Fuchs, M.; Gruber, T.; Schrama, E.J.O.; Tscherning, C.; Veicherts, M.; Visser, P.N.A.M.
2011-01-01
GOCE is ESA’s gravity field mission and the first satellite ever that measures gravitational gradients in space, that is, the second spatial derivatives of the Earth’s gravitational potential. The goal is to determine the Earth’s mean gravitational field with unprecedented accuracy at spatial
Probing Positron Gravitation at HERA
Energy Technology Data Exchange (ETDEWEB)
Gharibyan, Vahagn
2015-07-15
An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.
Ortiz, Néstor; Sarbach, Olivier
2018-01-01
We analyze the stability of the Cauchy horizon associated with a globally naked, shell-focussing singularity arising from the complete gravitational collapse of a spherical dust cloud. In a previous work, we have studied the dynamics of spherical test scalar fields on such a background. In particular, we proved that such fields cannot develop any divergences which propagate along the Cauchy horizon. In the present work, we extend our analysis to the more general case of test fields without symmetries and to linearized gravitational perturbations with odd parity. To this purpose, we first consider test fields possessing a divergence-free stress-energy tensor satisfying the dominant energy condition, and we prove that a suitable energy norm is uniformly bounded in the domain of dependence of the initial slice. In particular, this result implies that free-falling observers co-moving with the dust particles measure a finite energy of the field, even as they cross the Cauchy horizon at points lying arbitrarily close to the central singularity. Next, for the case of Klein–Gordon fields, we derive point-wise bounds from our energy estimates which imply that the scalar field cannot diverge at the Cauchy horizon, except possibly at the central singular point. Finally, we analyze the behaviour of odd-parity, linear gravitational and dust perturbations of the collapsing spacetime. Similarly to the scalar field case, we prove that the relevant gauge-invariant combinations of the metric perturbations stay bounded away from the central singularity, implying that no divergences can propagate in the vacuum region. Our results are in accordance with previous numerical studies and analytic work in the self-similar case.
Gravitationally confined relativistic neutrinos
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2017-09-01
Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.
Vector-tensor interaction of gravitation
Energy Technology Data Exchange (ETDEWEB)
Zhang Yuan-zhong; Guo han-ying
1982-11-01
In the paper, by using the equation of motion a particle, we show that the antigravity exist in the vector-tensor model of gravitation. Thus the motion of a particle deviates from the geodesic equation. In Newtonian approximation and weak gravitational field, acceleration of a particle in a spherically symmetric and astatic gravitation field is zero. The result is obviously not in agreement with gravitational phenomena.
The earth's gravitational field
Digital Repository Service at National Institute of Oceanography (India)
Ramprasad, T.
. The Graf Askania gravimeters mounted on elaborate gyro-stabilized platform have been successful in measuring gravity readings on board surface-ships with an accuracy of 2 mGal. The new Lacoste Romberg gravity meters are being routinely used on board... to the top of Mount Everest (8,850 metres) causes a weight decrease of about 0.28%. (An additional factor affecting apparent weight is the decrease in air density at altitude, which lessens an object's buoyancy.) It is a common misconception...
A new twist on the geometry of gravitational plane waves
Shore, Graham M.
2017-09-01
The geometry of twisted null geodesic congruences in gravitational plane wave spacetimes is explored, with special focus on homogeneous plane waves. The rôle of twist in the relation of the Rosen coordinates adapted to a null congruence with the fundamental Brinkmann coordinates is explained and a generalised form of the Rosen metric describing a gravitational plane wave is derived. The Killing vectors and isometry algebra of homogeneous plane waves (HPWs) are described in both Brinkmann and twisted Rosen form and used to demonstrate the coset space structure of HPWs. The van Vleck-Morette determinant for twisted congruences is evaluated in both Brinkmann and Rosen descriptions. The twisted null congruences of the Ozsváth-Schücking, `anti-Mach' plane wave are investigated in detail. These developments provide the necessary geometric toolkit for future investigations of the rôle of twist in loop effects in quantum field theory in curved spacetime, where gravitational plane waves arise generically as Penrose limits; in string theory, where they are important as string backgrounds; and potentially in the detection of gravitational waves in astronomy.
Meidam, Jeroen; Tsang, Ka Wa; Goldstein, Janna; Agathos, Michalis; Ghosh, Archisman; Haster, Carl-Johan; Raymond, Vivien; Samajdar, Anuradha; Schmidt, Patricia; Smith, Rory; Blackburn, Kent; Del Pozzo, Walter; Field, Scott E.; Li, Tjonnie; Pürrer, Michael; Van Den Broeck, Chris; Veitch, John; Vitale, Salvatore
2018-02-01
Thanks to the recent discoveries of gravitational wave signals from binary black hole mergers by Advanced Laser Interferometer Gravitational Wave Observatory and Advanced Virgo, the genuinely strong-field dynamics of spacetime can now be probed, allowing for stringent tests of general relativity (GR). One set of tests consists of allowing for parametrized deformations away from GR in the template waveform models and then constraining the size of the deviations, as was done for the detected signals in previous work. In this paper, we construct reduced-order quadratures so as to speed up likelihood calculations for parameter estimation on future events. Next, we explicitly demonstrate the robustness of the parametrized tests by showing that they will correctly indicate consistency with GR if the theory is valid. We also check to what extent deviations from GR can be constrained as information from an increasing number of detections is combined. Finally, we evaluate the sensitivity of the method to possible violations of GR.
Gravitational Waves from Gravitational Collapse.
Fryer, Chris L; New, Kimberly C B
2011-01-01
Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.
Gravitational waves from gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory
2008-01-01
Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Gravitational Waves from Gravitational Collapse
Directory of Open Access Journals (Sweden)
Chris L. Fryer
2011-01-01
Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Gravitation radiation observations
Glass, E. N.
2017-01-01
The notion of gravitational radiation begins with electromagnetic radiation. In 1887 Heinrich Hertz, working in one room, generated and received electromagnetic radiation. Maxwell's equations describe the electromagnetic field. The quanta of electromagnetic radiation are spin 1 photons. They are fundamental to atomic physics and quantum electrodynamics.
Dodelson, Scott
2017-01-01
Gravitational lensing is a consequence of general relativity, where the gravitational force due to a massive object bends the paths of light originating from distant objects lying behind it. Using very little general relativity and no higher level mathematics, this text presents the basics of gravitational lensing, focusing on the equations needed to understand the phenomena. It then applies them to a diverse set of topics, including multiply imaged objects, time delays, extrasolar planets, microlensing, cluster masses, galaxy shape measurements, cosmic shear, and lensing of the cosmic microwave background. This approach allows undergraduate students and others to get quickly up to speed on the basics and the important issues. The text will be especially relevant as large surveys such as LSST and Euclid begin to dominate the astronomical landscape. Designed for a one semester course, it is accessible to anyone with two years of undergraduate physics background.
Gravitational scattering of electromagnetic radiation
Brooker, J. T.; Janis, A. I.
1980-01-01
The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.
Workshop on gravitational waves and relativistic astrophysics
Indian Academy of Sciences (India)
This workshop saw five presentations in the field of gravitational radiation and two on compact, relativistic self-gravitating systems. Gravitational waves (GWs) and black holes (BHs) are two of the most significant predictions of Einstein's relativistic theory of gravity and, as far as their experimental status is concerned, both of ...
Nath, G.; Pathak, R. P.; Dutta, Mrityunjoy
2018-01-01
Similarity solutions for the flow of a non-ideal gas behind a strong exponential shock driven out by a piston (cylindrical or spherical) moving with time according to an exponential law is obtained. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic. The shock wave is driven by a piston moving with time according to an exponential law. Similarity solutions exist only when the surrounding medium is of constant density. The effects of variation of ambient magnetic field, non-idealness of the gas, adiabatic exponent and gravitational parameter are worked out in detail. It is shown that the increase in the non-idealness of the gas or the adiabatic exponent of the gas or presence of magnetic field have decaying effect on the shock wave. Consideration of the isothermal flow and the self-gravitational field increase the shock strength. Also, the consideration of isothermal flow or the presence of magnetic field removes the singularity in the density distribution, which arises in the case of adiabatic flow. The result of our study may be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.
Nonlinear metric perturbation enhancement of primordial gravitational waves.
Bastero-Gil, M; Macias-Pérez, J; Santos, D
2010-08-20
We present the evolution of the full set of Einstein equations during preheating after inflation. We study a generic supersymmetric model of hybrid inflation, integrating fields and metric fluctuations in a 3-dimensional lattice. We take initial conditions consistent with Einstein's constraint equations. The induced preheating of the metric fluctuations is not large enough to backreact onto the fields, but preheating of the scalar modes does affect the evolution of vector and tensor modes. In particular, they do enhance the induced stochastic background of gravitational waves during preheating, giving an energy density in general an order of magnitude larger than that obtained by evolving the tensor fluctuations in an homogeneous background metric. This enhancement can improve the expectations for detection by planned gravitational wave observatories.
Gravitational waves and antennas
CERN. Geneva
2003-01-01
Gravitational waves and their detection represent today a hot topic, which promises to play a central role in astrophysics, cosmology and theoretical physics. Technological developments have enabled the construction of such sensitive detectors that the detection of gravitational radiation and the start of a new astronomy could become a reality during the next few years. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of hiterto unseen phenomena such as coalescence of compact objects (neutron stars and black holes) fall of stars into supermassive black holes, stellar core collapses, big bang relics and the new and unexpected. In these lectures I give a brief overview of this challenging field of modern physics. Topics : Basic properties of gravitational radiation. Astrophysical sources. Principle of operation of detectors. Interferometers (both ground based and space-based), bars and spheres. Present status of the experiments, their recent results and their f...
Ohanian, Hans C
2013-01-01
The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached from several perspectives: as a theory constructed by analogy with Maxwell's electrodynamics, as a relativistic generalization of Newton's theory, and as a theory of curved spacetime. The authors provide a concise overview of the important concepts and formulas, coupled with the experimental results underpinning the latest research in the field. Numerous exercises in Newtonian gravitational theory and Maxwell's equations help students master essential concepts for advanced work in general relativity, while detailed spacetime diagrams encourage them to think in terms of four-dimensional geometry. Featuring comprehensive reviews of recent experimental and observational data, the text concludes with chapters on cosmology an...
DeWitt, Bryce S.
2017-06-01
During the period June-July 1957 six physicists met at the Institute for Theoretical Physics of the University of Copenhagen in Denmark to work together on problems connected with the quantization of the gravitational field. A large part of the discussion was devoted to exposition of the individual work of the various participants, but a number of new results were also obtained. The topics investigated by these physicists are outlined in this report and may be grouped under the following main headings: The theory of measurement. Topographical problems in general relativity. Feynman quantization. Canonical quantization. Approximation methods. Special problems.
Bassi, Angelo; Großardt, André; Ulbricht, Hendrik
2017-10-01
We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity (G and g) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems.
Directory of Open Access Journals (Sweden)
Manzano Ana I
2012-03-01
Full Text Available Abstract Background Biological systems respond to changes in both the Earth's magnetic and gravitational fields, but as experiments in space are expensive and infrequent, Earth-based simulation techniques are required. A high gradient magnetic field can be used to levitate biological material, thereby simulating microgravity and can also create environments with a reduced or an enhanced level of gravity (g, although special attention should be paid to the possible effects of the magnetic field (B itself. Results Using diamagnetic levitation, we exposed Arabidopsis thaliana in vitro callus cultures to five environments with different levels of effective gravity and magnetic field strengths. The environments included levitation, i.e. simulated μg* (close to 0 g* at B = 10.1 T, intermediate g* (0.1 g* at B = 14.7 T and enhanced gravity levels (1.9 g* at B = 14.7 T and 2 g* at B = 10.1 T plus an internal 1 g* control (B = 16.5 T. The asterisk denotes the presence of the background magnetic field, as opposed to the effective gravity environments in the absence of an applied magnetic field, created using a Random Position Machine (simulated μg and a Large Diameter Centrifuge (2 g. Microarray analysis indicates that changes in the overall gene expression of cultured cells exposed to these unusual environments barely reach significance using an FDR algorithm. However, it was found that gravitational and magnetic fields produce synergistic variations in the steady state of the transcriptional profile of plants. Transcriptomic results confirm that high gradient magnetic fields (i.e. to create μg* and 2 g* conditions have a significant effect, mainly on structural, abiotic stress genes and secondary metabolism genes, but these subtle gravitational effects are only observable using clustering methodologies. Conclusions A detailed microarray dataset analysis, based on clustering of similarly expressed genes (GEDI software, can detect underlying global
Minimally coupled scalar field cosmology in anisotropic ...
Indian Academy of Sciences (India)
We study a spatially homogeneous and anisotropic cosmological model in the Einstein gravitational theory with a minimally coupled scalar field. We consider a non-interacting combination of scalar field and perfect fluid as the source of matter components which are separately conserved. The dynamics of cosmic scalar ...
Energy Technology Data Exchange (ETDEWEB)
Sanchez, R.; Ragusa, J.; Santandrea, S. [Commissariat a l' Energie Atomique, Direction de l' Energie Nucleaire, Service d' Etudes de Reacteurs et de Modelisation Avancee, CEA de Saclay, DM2S/SERMA 91 191 Gif-sur-Yvette cedex (France)]. e-mail: richard.sanchez@cea.fr
2004-07-01
The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P{sub 0} transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP{sub N} core calculations. (Author)
DEFF Research Database (Denmark)
Korshoej, Anders Rosendal; Hansen, Frederik Lundgaard; Thielscher, Axel
2017-01-01
and in deep tumors embedded in white matter. The field strength was not higher for tumors close to the active electrode. Left/right field directions were generally superior to anterior/posterior directions. Central necrosis focally enhanced the field near tumor boundaries perpendicular to the applied field...
Fermions and gravitational gyrotropy
Helfer, Adam D.
2016-12-01
In conventional general relativity without torsion, high-frequency gravitational waves couple to the chiral number density of spin one-half quanta: the polarization of the waves is rotated by 2 π N5ℓPl2, where N5 is the chiral column density and ℓPl is the Planck length. This means that if a primordial distribution of gravitational waves with E-E or B-B correlations passed through a chiral density of fermions in the very early Universe, an E-B correlation will be generated. This in turn will give rise to E-B and T-B correlations in the cosmic microwave background (CMB). Less obviously but more primitively, the condition Albrecht called "cosmic coherence" would be violated, changing the restrictions on the class of admissible cosmological gravitational waves. This altered class of waves would, generally speaking, probe earlier physics than do the conventional waves; their effects on the CMB would be most pronounced for low (≲100 ) multipoles. Rough estimates indicate that if the tensor-to-scalar ratio is less than about 10-2, it will be hard to constrain a spatially homogeneous primordial N5 by present data.
A new formula of the Gravitational Curvature for the prism
Grazia D'Urso, Maria
2017-04-01
Gravitational Curvatures (GC) are the components of the third-order gravitational tensor and physically represent the rate of change of the gravity gradient. While scalar, vector and second-order tensor quantities of the Earth's gravitational field have extensively been studied and their properties have been well understood [1], the first successful terrestrial measurements of the third-order vertical gravitational gradients have been recently performed in [2] by atom interferometry sensors in laboratory environment. Possible benefits of the airborne third-order gravitational gradients for exploration geophysics are discussed in [3] while Brieden et al. (2010) [4] have proposed a new satellite mission called OPTical Interferometry for global Mass change detection from space (OPTIMA) sensing the third-order gravitational gradients in space. Moreover, exploitation of GC for modelling the Earth's gravitational field has been object of recent studies [5-7]. We extend the approach presented by the author in previous papers [8-10] by evaluating the algebraic expression of the third-order gravitational tensor for a prism. Comparisons with previous results [11-12] are also included. [1] Freeden W, Schreiner M (2009) Spherical functions of mathematical geosciences. A scalar, vectorial, and tensorial setup. In: Advances in geophysical and environmental mechanics and mathematics. Springer, Berlin [2] Rosi G, Cacciapuoti L, Sorrentino F, Menchetti M, Prevedelli M, Tino GM (2015) Measurements of the gravity-field curvature by atom interferometry. Phys Rev Lett 114:013001 [3] Di Francesco D, Meyer T, Christensen A, FitzGerald D (2009) Gravity gradiometry - today and tomorrow. In: 11th SAGA Biennial technical meeting and exhibition, 13-18 September 2009, Switzerland, pp 80-83 [4] Brieden P, Müller J, Flury J, Heinzel G (2010) The mission OPTIMA - novelties and benefit. In: Geotechnologien science report No. 17, Potsdam, pp 134-139 [5] Šprlák M, Novák P (2015) Integral
Schutz, B
1994-01-01
In the last few years there have been a number of significant developments in research towards the detection of gravitational radiation from astronomical objects. The construction of 3 large-scale (3- or 4-km) interferometric detectors has been funded; new high-sensitivity bars are under construction; there is a serious proposal using two interferometers has been used to put the data from the first coincidence observation using two interferometers has been used to put upper limits on gravitat...
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
Gravitational Radiation from Oscillating Gravitational Dipole
De Aquino, Fran
2002-01-01
The concept of Gravitational Dipole is introduced starting from the recent discovery of negative gravitational mass (gr-qc/0005107 and physics/0205089). A simple experiment, a gravitational wave transmitter, to test this new concept of gravitational radiation source is presented.
Directory of Open Access Journals (Sweden)
J. Klokočník
2010-07-01
Full Text Available In 2008 the new Earth Gravitational Model (EGM2008 was released. It contains a complete set of spherical harmonic coefficients of the Earth's gravitational potential (Stokes parameters to degree 2190 and order 2159 and selected orders to degree 2190, that can be used for evaluation of various potential quantities with both the unprecedented accuracy and high spatial resolution. Two such quantities, the gravity anomaly and second-order radial derivative of the disturbing potential, were computed over selected areas with known impact craters. The displays of these derivatives for two such sites clearly show not only the strong circular-like features known to be associated with them but also other symmetrical structures which appear to make them multiple impact sites. At Popigai, Siberia, the series of circular features fall in a line from the "primary crater" in the southeast (SE direction. At Chicxulub, Yucatán, there appears to be one more crater close to the "primary" in the northeast (NE direction, as well as possibly others in the vicinity of the main crater (SW. Gravity information alone is not, however, proof of impact craters but it is useful in identifying candidate sites for further study, for examination by geologists and geophysicists. In the case of Chicxulub, a very recent single seismic profile suggests that a more likely explanation for the observed circular like gravity signal from EGM2008 NE of the "primary" is a pre-impact basin.
On the gravitational potential of an inhomogeneous ellipsoid of revolution (spheroid)
Gvaramadze, V. V.; Lominadze, J. G.
2004-01-01
It is shown that the gravitational potential outside an inhomogeneous ellipsoid of revolution (spheroid) whose isodensity surfaces are confocal spheroids is identical to the gravitational potential of a homogeneous spheroid of the same mass.
Energy Technology Data Exchange (ETDEWEB)
Reynolds, M; Fallone, B; Rathee, S [Cross Cancer Institute, Edmonton, AB (Canada)
2014-06-01
Purpose: Solid state radiation detectors are often used for dose profiles and percent depth dose measurements. The dose response of selected solid state detectors is evaluated in varying transverse and longitudinal magnetic fields for eventual use in MR-Linac devices. Methods: A PTW 60003 and IBA PFD detector were modeled in the Monte Carlo code PENELOPE, incorporating a magnetic field which was varied in strength and oriented both transversely and longitudinally with respect to the incident photon beam. The detectors' long axis was in turn oriented either parallel or perpendicular to the photon beam. Dose to the active volume of each detector was scored, and its ratio to dose with zero magnetic field strength (dose response) was determined. Accuracy of the simulations was evaluated by measurements using both chambers taken at low field with a small electromagnet. Simulations were also performed in a water phantom to compare to the in air results. Results: Significant dose response was found in transverse field geometries, nearing 20% at 1.5T. The response is highly dependent on relative orientations to the magnetic field and photon beam, and on detector composition. Low field measurements confirm these results. In the presence of longitudinal magnetic fields, the detectors exhibit little dose response, reaching 0.5–1% at 1.5T regardless of detector orientation. Water tank simulations compared well to the in air simulations when not at the beam periphery, where in transverse magnetic fields only, the water tank simulations differed from the in air results. Conclusion: Transverse magnetic fields can cause large deviations in dose response, and are highly position orientation dependent. Comparatively, longitudinal magnetic fields exhibit little to no dose response in each detector as a function of magnetic field strength. Water tank simulations show longitudinal fields are generally easier to work with, but each detector must be evaluated separately.
Constructing black hole entropy from gravitational collapse
Acquaviva, Giovanni; Goswami, Rituparno; Hamid, Aymen I M
2016-01-01
Based on a recent proposal for the gravitational entropy of free gravitational fields, we investigate the thermodynamic properties of black hole formation through gravitational collapse in the framework of the semitetrad 1+1+2 covariant formalism. In the simplest case of an Oppenheimer-Snyder-Datt collapse we prove that the change in gravitational entropy outside a collapsing body is related to the variation of the surface area of the body itself, even before the formation of horizons. As a result, we are able to relate the Bekenstein-Hawking entropy of the black hole endstate to the variation of the vacuum gravitational entropy outside the collapsing body.
Constructing black hole entropy from gravitational collapse
Acquaviva, Giovanni; Goswami, Rituparno; Hamid, Aymen I M
2014-01-01
Based on a recent proposal for the gravitational entropy of free gravitational fields, we investigate the thermodynamic properties of black hole formation through gravitational collapse in the framework of the semitetrad 1+1+2 covariant formalism. In the simplest case of an Oppenheimer-Snyder-Datt collapse we prove that the change in gravitational entropy outside a collapsing body is related to the variation of the surface area of the body itself, even before the formation of horizons. As a result, we are able to relate the Bekenstein-Hawking entropy of the black hole endstate to the variation of the vacuum gravitational entropy outside the collapsing body.
Gravitational Waves in Effective Quantum Gravity
Energy Technology Data Exchange (ETDEWEB)
Calmet, Xavier; Kuntz, Ibere; Mohapatra, Sonali [University of Sussex, Physics and Astronomy, Brighton (United Kingdom)
2016-08-15
In this short paper we investigate quantum gravitational effects on Einstein's equations using Effective Field Theory techniques. We consider the leading order quantum gravitational correction to the wave equation. Besides the usual massless mode, we find a pair of modes with complex masses. These massive particles have a width and could thus lead to a damping of gravitational waves if excited in violent astrophysical processes producing gravitational waves such as e.g. black hole mergers. We discuss the consequences for gravitational wave events such as GW 150914 recently observed by the Advanced LIGO collaboration. (orig.)
Directory of Open Access Journals (Sweden)
T. Reubelt
2003-01-01
Full Text Available An algorithm for the (kinematic orbit analysis of a Low Earth Orbiting (LEO GPS tracked satellite to determine the spherical harmonic coefficients of the terrestrial gravitational field is presented. A contribution to existing long wavelength gravity field models is expected since the kinematic orbit of a LEO satellite can nowadays be determined with very high accuracy in the range of a few centimeters. To demonstrate the applicability of the proposed method, first results from the analysis of real CHAMP Rapid Science (dynamic Orbits (RSO and kinematic orbits are illustrated. In particular, we take advantage of Newton’s Law of Motion which balances the acceleration vector and the gradient of the gravitational potential with respect to an Inertial Frame of Reference (IRF. The satellite’s acceleration vector is determined by means of the second order functional of Newton’s Interpolation Formula from relative satellite ephemeris (baselines with respect to the IRF. Therefore the satellite ephemeris, which are normally given in a Body fixed Frame of Reference (BRF have to be transformed into the IRF. Subsequently the Newton interpolated accelerations have to be reduced for disturbing gravitational and non-gravitational accelerations in order to obtain the accelerations caused by the Earth’s gravitational field. For a first insight in real data processing these reductions have been neglected. The gradient of the gravitational potential, conventionally expressed in vector-valued spherical harmonics and given in a Body Fixed Frame of Reference, must be transformed from BRF to IRF by means of the polar motion matrix, the precession-nutation matrices and the Greenwich Siderial Time Angle (GAST. The resulting linear system of equations is solved by means of a least squares adjustment in terms of a Gauss-Markov model in order to estimate the spherical harmonics coefficients of the Earth’s gravitational field.Key words. space gravity spectroscopy
Spacetime, Geometry and Gravitation
Sharan, Pankaj
2009-01-01
This introductory textbook on the general theory of relativity presents a solid foundation for those who want to learn about relativity. The subject is presented in a physically intuitive, but mathematically rigorous style. The topic of relativity is covered in a broad and deep manner. Besides, the aim is that after reading the book a student should not feel discouraged when she opens advanced texts on general relativity for further reading. The book consists of three parts: An introduction to the general theory of relativity. Geometrical mathematical background material. Topics that include the action principle, weak gravitational fields and gravitational waves, Schwarzschild and Kerr solution, and the Friedman equation in cosmology. The book is suitable for advanced graduates and graduates, but also for established researchers wishing to be educated about the field.
Barreto, W.; de Oliveira, H. P.; Rodriguez-Mueller, B.
Frequently in Physics, insights and conclusions can be drawn from simple, idealized models. The discovery of critical behavior in the gravitational collapse of a massless scalar field leads to the simulation of binary black holes, from its coalescence to merging and ringdown. We refined a toy model to explore black hole formation as these events unfold to revisit the instability of a gravitational kink. We confirmed a conjecture related to a mass gap for critical behavior at the threshold of black hole formation. We find a critical exponent twice the standard value. Surprisingly, this larger critical exponent is also present in the multiple critical behavior for the black hole formation from a massless scalar field in asymptotically anti-de Sitter spacetimes. What is the meaning of this mass gap? Does it have physical relevance?
Ren, Weili; Niu, Chunlin; Ding, Biao; Zhong, Yunbo; Yu, Jianbo; Ren, Zhongming; Liu, Wenqing; Ren, Liangpu; Liaw, Peter K
2018-01-23
The improvement of the creep properties of single-crystal superalloys is always strongly motivated by the vast growing demand from the aviation, aerospace, and gas engine. In this study, a static magnetic-field-assisted solidification process significantly improves the creep life of single-crystal superalloys. The mechanism originates from an increase in the composition homogeneity on the multiscales, which further decreases the lattice misfit of γ/γ' phases and affects the phase precipitation. The phase-precipitation change is reflected as the decrease in the γ' size and the contents of carbides and γ/γ' eutectic, which can be further verified by the variation of the cracks number and raft thickness near the fracture surface. The variation of element partition decreases the dislocation quantity within the γ/γ' phases of the samples during the crept deformation. Though the magnetic field in the study destroys the single-crystal integrity, it does not offset the benefits from the compositional homogeneity. The proposed means shows a great potential application in industry owing to its easy implement. The uncovered mechanism provides a guideline for controlling microstructures and mechanical properties of alloys with multiple components and multiple phases using a magnetic field.
Directory of Open Access Journals (Sweden)
Costic˘a Moro¸sanu
2015-07-01
Full Text Available The paper is concerned with the numerical analysis of a scheme of fractional steps type, associated to the nonlinear phase-field (AllenCahn equation, endowed with non-homogeneous dynamic boundary conditions (depending both on the time and space variables. To approximate the solution of the linear parabolic equation, introduced by such approximating schemes, a first-order IMplicit Backward Differentiation Formula (1-IMBDF is considered. A conceptual numerical algorithm and numerical experiments in one dimension are performed too.
Academic Training: Gravitational Waves Astronomy
2006-01-01
2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www...
Fiocchi, Serena; Liorni, Ilaria; Parazzini, Marta; Ravazzani, Paolo
2015-04-01
During the last decades studies addressing the effects of exposure to Extremely Low Frequency Electromagnetic Fields (ELF-EMF) have pointed out a possible link between those fields emitted by power lines and childhood leukaemia. They have also stressed the importance of also including in the assessment the contribution of frequency components, namely harmonics, other than the fundamental one. Based on the spectrum of supply voltage networks allowed by the European standard for electricity quality assessment, in this study the exposure of high-resolution three-dimensional models of foetuses to the whole harmonic content of a uniform magnetic field with a fundamental frequency of 50 Hz, was assessed. The results show that the main contribution in terms of induced electric fields to the foetal exposure is given by the fundamental frequency component. The harmonic components add some contributions to the overall level of electric fields, however, due to the extremely low permitted amplitude of the harmonic components with respect to the fundamental, their amplitudes are low. The level of the induced electric field is also much lower than the limits suggested by the guidelines for general public exposure, when the amplitude of the incident magnetic field is set at the maximum permitted level.
Directory of Open Access Journals (Sweden)
Serena Fiocchi
2015-04-01
Full Text Available During the last decades studies addressing the effects of exposure to Extremely Low Frequency Electromagnetic Fields (ELF-EMF have pointed out a possible link between those fields emitted by power lines and childhood leukaemia. They have also stressed the importance of also including in the assessment the contribution of frequency components, namely harmonics, other than the fundamental one. Based on the spectrum of supply voltage networks allowed by the European standard for electricity quality assessment, in this study the exposure of high-resolution three-dimensional models of foetuses to the whole harmonic content of a uniform magnetic field with a fundamental frequency of 50 Hz, was assessed. The results show that the main contribution in terms of induced electric fields to the foetal exposure is given by the fundamental frequency component. The harmonic components add some contributions to the overall level of electric fields, however, due to the extremely low permitted amplitude of the harmonic components with respect to the fundamental, their amplitudes are low. The level of the induced electric field is also much lower than the limits suggested by the guidelines for general public exposure, when the amplitude of the incident magnetic field is set at the maximum permitted level.
Fukushima, Toshio
2016-03-01
We developed a numerical method to compute the gravitational field of an infinitely thin axisymmetric disc with an arbitrary surface mass density profile. We evaluate the gravitational potential by a split quadrature using the double exponential rule and obtain the acceleration vector by numerically differentiating the potential by Ridder's algorithm. The new method is of around 12 digit accuracy and sufficiently fast because requiring only one-dimensional integration. By using the new method, we show the rotation curves of some non-trivial discs: (i) truncated power-law discs, (ii) discs with a non-negligible centre hole, (iii) truncated Mestel discs with edge softening, (iv) double power-law discs, (v) exponentially damped power-law discs, and (vi) an exponential disc with a sinusoidal modulation of the density profile. Also, we present a couple of model fittings to the observed rotation curve of M33: (i) the standard deconvolution by assuming a spherical distribution of the dark matter and (ii) a direct fit of infinitely thin disc mass with a double power-law distribution of the surface mass density. Although the number of free parameters is a little larger, the latter model provides a significantly better fit. The FORTRAN 90 programs of the new method are electronically available.
Gravitational Potential: Real-life Results
2016-01-01
Newton’s law of universal gravitation are obvious partners, and the respective fields produced by point charges and point masses are similarly related...2016 IOP Publishing Ltd1 In the July 2015 issue of Physics Education, Bill Baird proposes a thought experiment in which the gravitational field... gravitationally attract extra water to its vicinity, creating a ‘hill’ of water above it [2] even if the surface of the earth remains flat
Gravitational Waves in Decaying Vacuum Cosmologies
David Alejandro Tamayo Ramirez
2015-01-01
In the present monograph we study in detail the primordial gravitational waves in cosmologies with a decaying vacuum. The decaying vacuum models are an alternative to solve the cosmological constant problem attributing a dynamic to the vacuum energy. The problem of primordial gravitational waves is discussed in the framework of an expanding, flat, spatially homogeneous and isotropic FLRW Universe described by General Relativity theory with decaying vacuum energy density of the type $\\\\Lambda ...
Directory of Open Access Journals (Sweden)
Metin SALTIK
1996-03-01
Full Text Available According to classical electromagnetic theory, an accelerated charge or system of charges radiates electromagnetic waves. In a radio transmitter antenna charges are accelerated along the antenna and release electromagnetic waves, which is radiated at the velocity of light in the surrounding medium. All of the radio transmitters work on this principle today. In this study an analogy is established between the principles by which accelerated charge systems markes radiation and the accelerated mass system, and the systems cousing gravitational radiation are investigated.
Gravitational Waves, Sources and Detectors
Schutz, B; Ricci, F
2001-01-01
Gravitational waves and their detection are becoming more and more important both for the theoretical physicist and the astrophysicist. In fact, technological developments have enabled the construction such sensitive detectors (bars and interferometers) that the detection of gravitational radiation could become a reality during the next few years. In these lectures we give a brief overview of this interesting and challenging field of modern physics. The topics to be covered are divided into ...
Directory of Open Access Journals (Sweden)
Elżbieta Ciejka
2014-10-01
Full Text Available Background: Free radicals are atoms, molecules or their fragments, whose excess leads to the development of oxidative stress, the cause of many neoplastic, neurodegenerative and inflammatory diseases, as well as aging of organisms. Industrial pollution, tobacco smoke, ionizing radiation, ultrasound and magnetic fields are the major exogenous sources of free radicals. The low frequency magnetic field is commonly applied in physiotherapy. The aim of the present study was to evaluate the effect of extremely low frequency magnetic field (ELF-MF on the concentration of sulfhydryl groups (–SH and proteins in liver tissues of experimental animals depending on the time of exposure to the field. Material and Methods: Twenty one Sprague-Dawley male rats, aged 3–4 months were randomly divided into 3 experimental groups (each containing 7 animals: controls (group I, the rats exposed to ELF-MF of 40 Hz, 7 mT (this kind of the ELF-MF is mostly used in magnetotherapy, 30 min/day for 2 weeks (group II and the rats exposed to 40 Hz, 7 mT for 60 min/day for 2 weeks (group III. The concentrations of proteins and sulfhydryl groups in the liver tissues were determined after exposure to magnetic fields. Results: Exposure to low magnetic field: 40 Hz, 7 mT for 30 min/day and 60 min/day for 2 weeks caused a significant increase in the concentration of –SH groups and total protein levels in the liver tissues. Conclusions: The study results suggest that exposure to magnetic fields leads to the development of adaptive mechanisms to maintain the balance in the body oxidation-reduction and in the case of the studied parameters does not depend on the time of exposure. Med Pr 2014;65(5:639–644
Directory of Open Access Journals (Sweden)
Haihua Liang
2016-11-01
Full Text Available In this paper we study the centers of projective vector fields $\\mathbf{Q}_T$ of three-dimensional quasi-homogeneous differential system $d\\mathbf{x}/dt=\\mathbf{Q}(\\mathbf{x}$ with the weight $(m,m,n$ and degree $2$ on the unit sphere $\\mathbb{S}^2$. We seek the sufficient and necessary conditions under which $\\mathbf{Q}_T$ has at least one center on $\\mathbb{S}^2$. Moreover, we provide the exact number and the positions of the centers of $\\mathbf{Q}_T$. First we give the complete classification of systems $d\\mathbf{x}/dt=\\mathbf{Q}(\\mathbf{x}$ and then, using the induced systems of $\\mathbf{Q}_T$ on the local charts of $\\mathbb{S}^2,$ we determine the conditions for the existence of centers. The results of this paper provide a convenient criterion to find out all the centers of $\\mathbf{Q}_T$ on $\\mathbb{S}^2$ with $\\mathbf{Q}$ being the quasi-homogeneous polynomial vector field of weight $(m,m,n$ and degree $2$.
Liu, Chunwei; Sun, Zhi; Zheng, Lichun; Huang, Shuigen; Blanpain, Bart; Guo, Muxing
2015-09-01
Particle-reinforced metal matrix composites (MMCs) have excellent physicochemical properties as structural materials. The morphology and distribution control of reinforcement particles during the fabrication of MMCs are difficult-but-critical-to-achieve required properties of the materials. This research demonstrates a possibility to quantitatively control the distribution of particles in the metal matrix by applying a magnetic field. A 2D numerical model is developed and applied to evaluate the behaviour of Fe-based metallic particles in aluminum MMCs. By combination of 2D simulation with intersectional directions, this model also provides some hints for 3D practice. The assembled structure is found to be governed by the external magnetic field orientation, magnetic flux density and magnetic susceptibility of the particles. Both behaviours of particle agglomeration and dispersion are quantitatively characterized in different conditions. By using a strong magnetic field, it is found that assembled structures of weakly magnetic particles can be effectively manipulated. Therefore, it can be expected to fabricate particle-enhanced metal matrix composites/ceramics/glass with substantial improvements in physical and chemical properties by using a magnetic field.
Slim, J.; Rathmann, F.; Nass, A.; Soltner, H.; Gebel, R.; Pretz, J.; Heberling, D.
2017-07-01
For the measurement of the electric dipole moment of protons and deuterons, a novel waveguide RF Wien filter has been designed and will soon be integrated at the COoler SYnchrotron at Jülich. The device operates at the harmonic frequencies of the spin motion. It is based on a waveguide structure that is capable of fulfilling the Wien filter condition (E → ⊥ B →) by design. The full-wave calculations demonstrated that the waveguide RF Wien filter is able to generate high-quality RF electric and magnetic fields. In reality, mechanical tolerances and misalignments decrease the simulated field quality, and it is therefore important to consider them in the simulations. In particular, for the electric dipole moment measurement, it is important to quantify the field errors systematically. Since Monte-Carlo simulations are computationally very expensive, we discuss here an efficient surrogate modeling scheme based on the Polynomial Chaos Expansion method to compute the field quality in the presence of tolerances and misalignments and subsequently to perform the sensitivity analysis at zero additional computational cost.
Homogeneous group, research, institution
Directory of Open Access Journals (Sweden)
Francesca Natascia Vasta
2014-09-01
Full Text Available The work outlines the complex connection among empiric research, therapeutic programs and host institution. It is considered the current research state in Italy. Italian research field is analyzed and critic data are outlined: lack of results regarding both the therapeutic processes and the effectiveness of eating disorders group analytic treatment. The work investigates on an eating disorders homogeneous group, led into an eating disorder outpatient service. First we present the methodological steps the research is based on including the strong connection among theory and clinical tools. Secondly clinical tools are described and the results commented. Finally, our results suggest the necessity of validating some more specifical hypothesis: verifying the relationship between clinical improvement (sense of exclusion and painful emotions reduction and specific group therapeutic processes; verifying the relationship between depressive feelings, relapses and transition trough a more differentiated groupal field.Keywords: Homogeneous group; Eating disorders; Institutional field; Therapeutic outcome
Aubert, G; Jacquinot, J-F; Sakellariou, D
2012-10-21
We present a thorough analysis of eddy currents that develop in a rectangular cross section toroid rotating in a uniform magnetic field. The slow rotation regime is assumed. Compact expressions for the current density, the total dissipated power, and the braking torque are given. Examination of the topology of current lines reveals that depending upon the relative dimensions of the side and length of the toroid two different regimes exist. The conditions of existence of the two regimes are analytically established. In view of nuclear magnetic resonance (NMR) applications, we derive the angular variation of the magnetic field created by eddy currents and lay down the formalism necessary for calculating the effect of this field on the NMR spectra of the conductor itself or of a sample co-rotating with the conductor, a situation encountered when dealing with rotating detectors. Examples of calculations for cases of practical interest are presented. The theory is confronted with available data, and we give guidelines for the design of optimized rotating micro-coils.
Barreto, W; Rodriguez-Mueller, B
2016-01-01
Usually in computational physics, conclusions about realistic scenarios can be drawn from {\\it ab initio} idealized models. In some ways, the discovery of critical behavior in the gravitational collapse of a massless scalar field leads to the simulation of binary black holes, from its coalescence, to merging and ringdown. We have been lucky enough to have been working on a toy model to explore our way in as these events unfold. We revisited the gravitational instability of a kink problem. During that study, we confirmed a conjecture related to the mass gap, in the context of critical behavior, at the threshold of black hole formation. What is the meaning of this mass gap? Does it have physical relevance? This essay is about these issues.
Gravitational-wave mediated preheating
Directory of Open Access Journals (Sweden)
Stephon Alexander
2015-04-01
Full Text Available We propose a new preheating mechanism through the coupling of the gravitational field to both the inflaton and matter fields, without direct inflaton–matter couplings. The inflaton transfers power to the matter fields through interactions with gravitational waves, which are exponentially enhanced due to an inflation–graviton coupling. One such coupling is the product of the inflaton to the Pontryagin density, as in dynamical Chern–Simons gravity. The energy scales involved are constrained by requiring that preheating happens fast during matter domination.
Four potential gravitation and its quantization
Energy Technology Data Exchange (ETDEWEB)
Poth, Hartwig
2014-07-01
In the preceding theory of gravitation, the gravitation potential has been considered as a scalar potential having as its source the proper time density from rest mass. In the present amended theory, however, the gravitation potential is considered as a four potential like the electromagnetic four potential. The new source term is the four rest mass current density like the four electrical charge current density in the electromagnetic theory. That new theory yields essentially the same results as the former scalar theory. The Mercury perihelion like some other effects known from general relativity can be calculated likewise. Gravitational radiation can be calculated only up to a constant factor which is to be taken from general relativity. In the preceding theory, there had been a calculation error insofar; in principle, however there is no difference to the result of general relativity. There is still also a gravitational monopole radiation. The spin of the new gravitational field is also zero. Moreover, with the Dirac equation a relativistic quantum mechanical equation of gravitation is obtained, which in the classical limit coincides with the new classical theory. The new gravitational potential obviously can be quantized. In principle, the new gravitational potential can interact with the spin of the electron. However, free gravitational waves can not interact with the spin of the electron, also because free gravitational waves have no spin.
Arefyev, I. M.; Demidenko, O. V.; Saikin, M. S.
2017-06-01
A special experimental stand has been developed and made to test magnetic fluid. It represents a single-tooth magnetic fluid sealer. The type of dependence of the pressure differential on magnetic fluid sealer operation time is used as a criterion to determine magnetic fluid stability and magnetic fluid sealer service life under such conditions. The siloxane-based magnetic fluid was used as the test sample. The colloidal stability as well as stability of the synthesized magnetic fluid in magnetic fields in static mode were determined. It has been found that the obtained magnetic fluid is stable in static mode and, consequently, can be used to conduct necessary tests on stand. Short-term and life tests on stand have shown that MF remains stable and efficient for at least 360 days of continuous utilization.
Directory of Open Access Journals (Sweden)
F. J. Ocampo-Torres
2001-07-01
Full Text Available Spatial variations of the wave field in coastal waters were determined from images obtained by synthetic aperture radar (SAR on board the European satellites ERS-1 and 2. The capabilities of RADARSAT SAR to provide useful information for evaluating the wave field variation in nearshore waters are explored. Besides the different polarization between ERS and RADARSAT SARs, range to velocity ratios, signal to noise ratios and the acquisition swath are important issues to take into consideration in comparing the performance of the radar systems. In situ data from a coastal region in the north-west of Baja California are used to validate some of the remote observations and to provide relevant ground truth. Particular aspects of wave phenomena in finite depth waters such as refraction, diffraction and groupiness are considered. An appropriate method for analysing the radar images is applied to describe wave features as they originate from a non-homogeneous process. Wave field characteristics and their spatial variations as resolved by RADARSAT SAR are relevant variables for applications such as beach erosion and coastal management. Inclusion of specific modules to retrieve this type of information should be considered for operational software packages for the use and application of ocean surface data from SAR images. The differences of the two radar systems did not affect their capabilities to observe the wave field in coastal regions.
Testing Gravitational Physics with Space-based Gravitational-wave Observations
Baker, John G.
2011-01-01
Gravitational wave observations provide exceptional and unique opportunities for precision tests of gravitational physics, as predicted by general relativity (GR). Space-based gravitational wave measurements, with high signal-to-noise ratios and large numbers of observed events may provide the best-suited gravitational-wave observations for testing GR with unprecedented precision. These observations will be especially useful in testing the properties of gravitational waves and strong-field aspects of the theory which are less relevant in other observations. We review the proposed GR test based on observations of massive black hole mergers, extreme mass ratio inspirals, and galactic binary systems.
A report on the gravitational redshift test for non-metric theories of gravitation
1980-01-01
The frequencies of two atomic hydrogen masers and of three superconducting cavity stabilized oscillators were compared as the ensemble of oscillators was moved in the Sun's gravitational field by the rotation and orbital motion of the Earth. Metric gravitation theories predict that the gravitational redshifts of the two types of oscillators are identical, and that there should be no relative frequency shift between the oscillators; nonmetric theories, in contrast, predict a frequency shift between masers and SCSOs that is proportional to the change in solar gravitational potential experienced by the oscillators. The results are consistent with metric theories of gravitation at a level of 2%.
Gravitation. [consideration of black holes in gravity theories
Fennelly, A. J.
1978-01-01
Investigations of several problems of gravitation are discussed. The question of the existence of black holes is considered. While black holes like those in Einstein's theory may not exist in other gravity theories, trapped surfaces implying such black holes certainly do. The theories include those of Brans-Dicke, Lightman-Lee, Rosen, and Yang. A similar two-tensor theory of Yilmaz is investigated and found inconsistent and nonviable. The Newman-Penrose formalism for Riemannian geometries is adapted to general gravity theories and used to implement a search for twisting solutions of the gravity theories for empty and nonempty spaces. The method can be used to find the gravitational fields for all viable gravity theories. The rotating solutions are of particular importance for strong field interpretation of the Stanford/Marshall gyroscope experiment. Inhomogeneous cosmologies are examined in Einstein's theory as generalizations of homogeneous ones by raising the dimension of the invariance groups by one more parameter. The nine Bianchi classifications are extended to Rosen's theory of gravity for homogeneous cosmological models.
Gravitational cubic interactions for a simple mixed-symmetry gauge field in AdS and flat backgrounds
Energy Technology Data Exchange (ETDEWEB)
Boulanger, Nicolas [Service de Mecanique et Gravitation, Universite de Mons-UMONS, 20 Place du Parc, 7000 Mons (Belgium); Skvortsov, E D [P. N. Lebedev Physical Institute, Leninsky Prospect 53, 119991 Moscow (Russian Federation); Zinoviev, Yu M, E-mail: nicolas.boulanger@umons.ac.be, E-mail: skvortsov@lpi.ru, E-mail: Yurii.Zinoviev@ihep.ru [Institute for High Energy Physics Protvino, Moscow Region 142280 (Russian Federation)
2011-10-14
Cubic interactions between the simplest mixed-symmetry gauge field and gravity are constructed in anti-de Sitter (AdS) and flat backgrounds. Non-Abelian cubic interactions are obtained in AdS following various perturbative methods including the Fradkin-Vasiliev construction, with and without Stueckelberg fields. The action that features the maximal number of Stueckelberg fields can be considered in the flat limit without loss of physical degrees of freedom. The resulting interactions in flat space are compared with a classification of vertices obtained via the antifield cohomological perturbative method. It is shown that the gauge algebra becomes Abelian in the flat limit, in contrast to what happens for totally symmetric gauge fields in AdS. (paper)
Voordouw, Gerrit; Menon, Priyesh; Pinnock, Tijan; Sharma, Mohita; Shen, Yin; Venturelli, Amanda; Voordouw, Johanna; Sexton, Aoife
2016-01-01
Microbially-influenced corrosion (MIC) contributes to the general corrosion rate (CR), which is typically measured with carbon steel coupons. Here we explore the use of carbon steel ball bearings, referred to as beads (55.0 ± 0.3 mg; Ø = 0.238 cm), for determining CRs. CRs for samples from an oil field in Oceania incubated with beads were determined by the weight loss method, using acid treatment to remove corrosion products. The release of ferrous and ferric iron was also measured and CRs based on weight loss and iron determination were in good agreement. Average CRs were 0.022 mm/yr for eight produced waters with high numbers (10(5)/ml) of acid-producing bacteria (APB), but no sulfate-reducing bacteria (SRB). Average CRs were 0.009 mm/yr for five central processing facility (CPF) waters, which had no APB or SRB due to weekly biocide treatment and 0.036 mm/yr for 2 CPF tank bottom sludges, which had high numbers of APB (10(6)/ml) and SRB (10(8)/ml). Hence, corrosion monitoring with carbon steel beads indicated that biocide treatment of CPF waters decreased the CR, except where biocide did not penetrate. The CR for incubations with 20 ml of a produced water decreased from 0.061 to 0.007 mm/yr when increasing the number of beads from 1 to 40. CRs determined with beads were higher than those with coupons, possibly also due to a higher weight of iron per unit volume used in incubations with coupons. Use of 1 ml syringe columns, containing carbon steel beads, and injected with 10 ml/day of SRB-containing medium for 256 days gave a CR of 0.11 mm/yr under flow conditions. The standard deviation of the distribution of residual bead weights, a measure for the unevenness of the corrosion, increased with increasing CR. The most heavily corroded beads showed significant pitting. Hence the use of uniformly sized carbon steel beads offers new opportunities for screening and monitoring of corrosion including determination of the distribution of corrosion rates, which allows
Nath, G.
2016-01-01
Self-similar solutions are obtained for one-dimensional unsteady adiabatic flow behind a spherical shock wave propagating in a dusty gas with conductive and radiative heat fluxes under the influence of a gravitational field. The shock is assumed to be driven out by a moving piston and the dusty gas to be a mixture of non-ideal gas and small solid particles, in which solid particles are uniformly distributed. It is assumed that the equilibrium flow-conditions are maintained and variable energy input is continuously supplied by the piston. The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature and density. The medium is assumed to be under the influence of a gravitational field due to central mass ( bar{m} ) at the origin (Roche Model). It is assumed that the gravitational effect of the mixture itself can be neglected compared with the attraction of the central mass. The initial density of the ambient medium is taken to be always constant. The effects of the variation of the gravitational parameter and nonidealness of the gas in the mixture are investigated. Also, the effects of an increase in (i) the mass concentration of solid particles in the mixture and (ii) the ratio of the density of solid particles to the initial density of the gas on the flow variables are investigated. It is shown that due to an increase in the gravitational parameter the compressibility of the medium at any point in the flow-field behind the shock decreases and all other flow variables and the shock strength are increased. Further, it is found that the presence of gravitational field increases the compressibility of the medium, due to which it is compressed and therefore the distance between the piston and the shock surface is reduced. The shock waves in dusty gas under the influence of a
National Research Council Canada - National Science Library
Stuchlík, Zdeněk; Kološ, Martin
2016-01-01
To test the role of large-scale magnetic fields in accretion processes, we study the dynamics of the charged test particles in the vicinity of a black hole immersed into an asymptotically uniform magnetic field...
Interaction of gravitational waves with superconductors
Energy Technology Data Exchange (ETDEWEB)
Inan, N.A.; Thompson, J.J. [University of California, Schools of Natural Sciences, Merced, CA (United States); Chiao, R.Y. [University of California, Schools of Natural Sciences and Engineering, Merced, CA (United States)
2017-06-15
Applying the Helmholtz Decomposition theorem to linearized General Relativity leads to a gauge-invariant formulation where the transverse-traceless part of the metric perturbation describes gravitational waves in matter. Gravitational waves incident on a superconductor can be described by a linear London-like constituent equation characterized by a ''gravitational shear modulus'' and a corresponding plasma frequency and penetration depth. Electric-like and magnetic-like gravitational tensor fields are defined in terms of the strain field of a gravitational wave. It is shown that in the DC limit, the magnetic-like tensor field is expelled from the superconductor in a gravitational Meissner-like effect. The Cooper pair density is described by the Ginzburg-Landau theory embedded in curved space-time. The ionic lattice is modeled by quantum harmonic oscillators coupled to gravitational waves and characterized by quasi-energy eigenvalues for the phonon modes. The formulation predicts the possibility of a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is found to be modulated by the gravitational wave, in a quantum analog of a ''Weber-bar effect.'' Applying periodic thermodynamics and the Debye model in the low-temperature limit leads to a free energy density for the ionic lattice. Lastly, we relate the gravitational strain of space to the strain of matter to show that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a charge separation effect in the superconductor as a result of the gravitational wave. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Counteracting Gravitation In Dielectric Liquids
Israelsson, Ulf E.; Jackson, Henry W.; Strayer, Donald M.
1993-01-01
Force of gravity in variety of dielectric liquids counteracted by imposing suitably contoured electric fields. Technique makes possible to perform, on Earth, variety of experiments previously performed only in outer space and at great cost. Also used similarly in outer space to generate sort of artificial gravitation.
Focus on gravitational quantum physics
Aspelmeyer, Marcus; Brukner, Časlav; Giulini, Domenico; Milburn, Gerard
2017-05-01
The interplay between quantum theory and gravity remains one of the least explored fields of physics. The current ‘focus on’ collection summarises experimental and theoretical results from many of the leading groups around the world on the research of phenomena which cannot be explained without involving both quantum theory and gravitational physics.
Lee, Hyunju; Feldman, Allan
2014-06-01
The LIGO Science Education Center in Livingston, LA, provides K-12 students with 3.5-hour field trip programs that consist of watching a documentary, touring the LIGO facilities, exploring interactive science exhibits, and hands-on classroom activities with the Center’s staff. In our study we administered a pre/post-survey, which consisted of Likert-type and open-ended questions, to approximately 1,000 secondary students who visited LIGO in Spring 2013. In this paper we report on our current findings from a half-way analysis about 1) the students’ attitudes and interests about science; 2) their understanding about basic scientific concepts relevant to LIGO science, gravity, light, and sound; and 3) their understanding about the LIGO project. In comparison between pre and post-responses using a paired-samples t-test, the results showed that the field trip to LIGO had significant (p<0.05) positive impact on increasing the number of students who think that "science is fun" and that they "would want to be a scientist." In addition, they had significant (p<0.05) knowledge gain in understanding that there are frequencies of light that are not visible, and they were able to correctly name the different kinds of electromagnetic waves after the visit. In pre-test 51.5% responded that they did not even hear about LIGO and 17.8% could not explain what it was although they heard about it (as they were from the local schools). On the other hand, 86.6% students were able to explain about LIGO project in post-test. Among them, more than half of the students (59.3%) correctly described the purpose of the LIGO project. Another 9.3% recognized it as a science research center without further information about what specifying the purpose of LIGO. About 8% held misconceptions, and 7% recognized LIGO as a science learning center. The students’ learning in this field trip happened mainly by: encountering the new concept; recalling their prior knowledge and reinforcing it; and being
General Relativity and Gravitation
Ashtekar, Abhay; Berger, Beverly; Isenberg, James; MacCallum, Malcolm
2015-07-01
Part I. Einstein's Triumph: 1. 100 years of general relativity George F. R. Ellis; 2. Was Einstein right? Clifford M. Will; 3. Cosmology David Wands, Misao Sasaki, Eiichiro Komatsu, Roy Maartens and Malcolm A. H. MacCallum; 4. Relativistic astrophysics Peter Schneider, Ramesh Narayan, Jeffrey E. McClintock, Peter Mészáros and Martin J. Rees; Part II. New Window on the Universe: 5. Receiving gravitational waves Beverly K. Berger, Karsten Danzmann, Gabriela Gonzalez, Andrea Lommen, Guido Mueller, Albrecht Rüdiger and William Joseph Weber; 6. Sources of gravitational waves. Theory and observations Alessandra Buonanno and B. S. Sathyaprakash; Part III. Gravity is Geometry, After All: 7. Probing strong field gravity through numerical simulations Frans Pretorius, Matthew W. Choptuik and Luis Lehner; 8. The initial value problem of general relativity and its implications Gregory J. Galloway, Pengzi Miao and Richard Schoen; 9. Global behavior of solutions to Einstein's equations Stefanos Aretakis, James Isenberg, Vincent Moncrief and Igor Rodnianski; Part IV. Beyond Einstein: 10. Quantum fields in curved space-times Stefan Hollands and Robert M. Wald; 11. From general relativity to quantum gravity Abhay Ashtekar, Martin Reuter and Carlo Rovelli; 12. Quantum gravity via unification Henriette Elvang and Gary T. Horowitz.
Kaluzny, J.; Kubiak, M.; Szymanski, M.; Udalski, A.; Krzeminski, W.; Mateo, M.; Stanek, K. Z.
1998-02-01
Five fields located close to the center of the globular cluster NGC 104=47 Tuc were surveyed in a search for variable stars. We present V-band light curves for 42 variables. This sample includes 13 RR Lyr stars - 12 of them belong to the Small Magellanic Cloud (SMC) and 1 is a background object from the galactic halo. Twelve eclipsing binaries were identified - 9 contact systems and 3 detached/semi-detached systems. Seven eclipsing binaries are located in the blue straggler region on the cluster color-magnitude diagram (CMD) and four binaries can be considered main-sequence systems. One binary is probably a member of the SMC. Eight contact binaries are likely members of the cluster and one is most probably a foreground star. We show that for the surveyed region of 47 Tuc, the relative frequency of contact binaries is very low as compared with other recently surveyed globular clusters. The sample of identified variables also includes 15 red variables with periods ranging from about 2 days to several weeks. A large fraction of these 15 variables probably belong to the SMC but a few stars are likely to be red giants in 47 Tuc. VI photometry for about 50 000 stars from the cluster fields was obtained as a by product of our survey The photometric data presented in this paper are available in electronic form at the CDS, via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html}. Based on observations collected at the Las Campanas Observatory of the Carnegie Institution of Washington.
General relativity and gravitational waves
Weber, Johanna
1961-01-01
An internationally famous physicist and electrical engineer, the author of this text was a pioneer in the investigation of gravitational waves. Joseph Weber's General Relativity and Gravitational Waves offers a classic treatment of the subject. Appropriate for upper-level undergraduates and graduate students, this text remains ever relevant. Brief but thorough in its introduction to the foundations of general relativity, it also examines the elements of Riemannian geometry and tensor calculus applicable to this field.Approximately a quarter of the contents explores theoretical and experimenta
Shao, Lijing; Sennett, Noah; Buonanno, Alessandra; Kramer, Michael; Wex, Norbert
2017-10-01
Pulsar timing and laser-interferometer gravitational-wave (GW) detectors are superb laboratories to study gravity theories in the strong-field regime. Here, we combine these tools to test the mono-scalar-tensor theory of Damour and Esposito-Farèse (DEF), which predicts nonperturbative scalarization phenomena for neutron stars (NSs). First, applying Markov-chain Monte Carlo techniques, we use the absence of dipolar radiation in the pulsar-timing observations of five binary systems composed of a NS and a white dwarf, and eleven equations of state (EOSs) for NSs, to derive the most stringent constraints on the two free parameters of the DEF scalar-tensor theory. Since the binary-pulsar bounds depend on the NS mass and the EOS, we find that current pulsar-timing observations leave scalarization windows, i.e., regions of parameter space where scalarization can still be prominent. Then, we investigate if these scalarization windows could be closed and if pulsar-timing constraints could be improved by laser-interferometer GW detectors, when spontaneous (or dynamical) scalarization sets in during the early (or late) stages of a binary NS (BNS) evolution. For the early inspiral of a BNS carrying constant scalar charge, we employ a Fisher-matrix analysis to show that Advanced LIGO can improve pulsar-timing constraints for some EOSs, and next-generation detectors, such as the Cosmic Explorer and Einstein Telescope, will be able to improve those bounds for all eleven EOSs. Using the late inspiral of a BNS, we estimate that for some of the EOSs under consideration, the onset of dynamical scalarization can happen early enough to improve the constraints on the DEF parameters obtained by combining the five binary pulsars. Thus, in the near future, the complementarity of pulsar timing and direct observations of GWs on the ground will be extremely valuable in probing gravity theories in the strong-field regime.
Directory of Open Access Journals (Sweden)
Lijing Shao
2017-10-01
Full Text Available Pulsar timing and laser-interferometer gravitational-wave (GW detectors are superb laboratories to study gravity theories in the strong-field regime. Here, we combine these tools to test the mono-scalar-tensor theory of Damour and Esposito-Farèse (DEF, which predicts nonperturbative scalarization phenomena for neutron stars (NSs. First, applying Markov-chain Monte Carlo techniques, we use the absence of dipolar radiation in the pulsar-timing observations of five binary systems composed of a NS and a white dwarf, and eleven equations of state (EOSs for NSs, to derive the most stringent constraints on the two free parameters of the DEF scalar-tensor theory. Since the binary-pulsar bounds depend on the NS mass and the EOS, we find that current pulsar-timing observations leave scalarization windows, i.e., regions of parameter space where scalarization can still be prominent. Then, we investigate if these scalarization windows could be closed and if pulsar-timing constraints could be improved by laser-interferometer GW detectors, when spontaneous (or dynamical scalarization sets in during the early (or late stages of a binary NS (BNS evolution. For the early inspiral of a BNS carrying constant scalar charge, we employ a Fisher-matrix analysis to show that Advanced LIGO can improve pulsar-timing constraints for some EOSs, and next-generation detectors, such as the Cosmic Explorer and Einstein Telescope, will be able to improve those bounds for all eleven EOSs. Using the late inspiral of a BNS, we estimate that for some of the EOSs under consideration, the onset of dynamical scalarization can happen early enough to improve the constraints on the DEF parameters obtained by combining the five binary pulsars. Thus, in the near future, the complementarity of pulsar timing and direct observations of GWs on the ground will be extremely valuable in probing gravity theories in the strong-field regime.
Kaluzny, J.; Kubiak, M.; Szymanski, M.; Udalski, A.; Krzeminski, W.; Mateo, M.
1996-11-01
Three fields covering the central part of the globular cluster ω Cen were surveyed in a search for variable stars. We present V-band light curves for 39 periodic variables: 24 SX Phe stars, 7 contact binaries, 5 detached or semi-detached binaries, and 3 likely spotted variables (FK Com or RS CVn type stars). Only 2 of these variables were previously known. All SX Phe stars and all contact binaries from our sample belong to blue stragglers. Observed properties of these stars are consistent with their cluster membership. Of particular interest is detection of two well detached binaries with periods P=1.50day and P=2.47day. Further study of these two binaries can provide direct information about properties of turnoff stars in ω Cen. An incomplete light curve of a Mira variable known as V2 was obtained. We present V vs. V-I color-magnitude diagrams for the monitored part of the cluster.
Deng, Shaoqiang
2012-01-01
"Homogeneous Finsler Spaces" is the first book to emphasize the relationship between Lie groups and Finsler geometry, and the first to show the validity in using Lie theory for the study of Finsler geometry problems. This book contains a series of new results obtained by the author and collaborators during the last decade. The topic of Finsler geometry has developed rapidly in recent years. One of the main reasons for its surge in development is its use in many scientific fields, such as general relativity, mathematical biology, and phycology (study of algae). This monograph introduc
Underdevelopment’s gravitation
Directory of Open Access Journals (Sweden)
Marin Dinu
2013-09-01
Full Text Available The energy necessary to escape the gravitational pull of underdevelopment and to enter an evolutional trajectory dependent on the gravitational pull of development is unintelligible in economic terms.
Universal Spin Structure in Gauge Gravitation Theory
Giachetta, G.; Mangiarotti, L.; Sardanashvily, G.
1997-01-01
Building on the universal covering group of the general linear group, we introduce the composite spinor bundle whose subbundles are Lorentz spin structures associated with different gravitational fields. General covariant transformations of this composite spinor bundle are canonically defined.
The interrelationship between magnetic and gravitational interactions
Energy Technology Data Exchange (ETDEWEB)
Nesterov, I.I.; Lunev, V.I.; Shpilman, K.A.
1983-01-01
It is shown that there is a relationship between magnetic and gravitational fields which causes the phenomena of directed action of the magnetic field on matter (a second order magnetomechanical effect). A diagram of the basic trends in studies of phenomena caused by the charge and mass properties of particles is presented. To demonstrate the interrelationship an assumption is advanced that the gravitational mass (the value of the magnetic charge proportional to the gravitational mass) acts in the role of the magnetic charges). This assumption combines Dirac's hypothesis about the magnetic monopole with Einstein's unitary field theory. A conclusion is drawn about the presence of a previously unknown interrelation between magnetic and gravitational fields with consideration of theoretical discussions and a comparison of the average value of the experimental transfer coefficient of proportionality in the magnetomechanical effect of the second order with its theoretical value.
Detection of gravitational radiation
Energy Technology Data Exchange (ETDEWEB)
Holten, J.W. van [ed.
1994-12-31
In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI).
Non-Euclidean Geometry and Gravitation
Directory of Open Access Journals (Sweden)
Stavroulakis N.
2006-04-01
Full Text Available A great deal of misunderstandings and mathematical errors are involved in the currently accepted theory of the gravitational field generated by an isotropic spherical mass. The purpose of the present paper is to provide a short account of the rigorous mathematical theory and exhibit a new formulation of the problem. The solution of the corresponding equations of gravitation points out several new and unusual features of the stationary gravitational field which are related to the non-Euclidean structure of the space. Moreover it precludes the black hole from being a mathematical and physical notion.
Chuluunbaatar, O.; Gusev, A. A.; Gerdt, V. P.; Rostovtsev, V. A.; Vinitsky, S. I.; Abrashkevich, A. G.; Kaschiev, M. S.; Serov, V. V.
2008-02-01
A FORTRAN 77 program is presented which calculates with the relative machine precision potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field. The potential curves are eigenvalues corresponding to the angular oblate spheroidal functions that compose adiabatic basis which depends on the radial variable as a parameter. The matrix elements of radial coupling are integrals in angular variables of the following two types: product of angular functions and the first derivative of angular functions in parameter, and product of the first derivatives of angular functions in parameter, respectively. The program calculates also the angular part of the dipole transition matrix elements (in the length form) expressed as integrals in angular variables involving product of a dipole operator and angular functions. Moreover, the program calculates asymptotic regular and irregular matrix solutions of the coupled adiabatic radial equations at the end of interval in radial variable needed for solving a multi-channel scattering problem by the generalized R-matrix method. Potential curves and radial matrix elements computed by the POTHMF program can be used for solving the bound state and multi-channel scattering problems. As a test desk, the program is applied to the calculation of the energy values, a short-range reaction matrix and corresponding wave functions with the help of the KANTBP program. Benchmark calculations for the known photoionization cross-sections are presented. Program summaryProgram title:POTHMF Catalogue identifier:AEAA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAA_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:8123 No. of bytes in distributed program, including test data
Gravitational Microlensing of Earth-mass Planets
DEFF Research Database (Denmark)
Harpsøe, Kennet Bomann West
common such planets are in our galaxy. There are a few other known methods for detecting exoplanets which have very different bias patterns. This thesis has been divided into two parts, treating two of these other methods. Part I is dedicated to the method of gravitational microlensing, a method...... that utilises the lensing effect of light bend in the gravitational of stars to detect perturbations in said gravitational field, which can be caused by bound planets. So far the discovery of 16 exoplanets detected with gravitational microlensing have been published. The discovery rate with this method is low...... because of the lack of dedicated resources for this method, but this will change in the near future with the completion of several global telescope networks like SONG, Korean Microlensing Telescope Network (KMTNet) and the Las Cumbres Global Telescope network. The gravitational microlensing method is also...
Fundamentals of interferometric gravitational wave detectors
Saulson, Peter R
2017-01-01
LIGO's recent discovery of gravitational waves was headline news around the world. Many people will want to understand more about what a gravitational wave is, how LIGO works, and how LIGO functions as a detector of gravitational waves.This book aims to communicate the basic logic of interferometric gravitational wave detectors to students who are new to the field. It assumes that the reader has a basic knowledge of physics, but no special familiarity with gravitational waves, with general relativity, or with the special techniques of experimental physics. All of the necessary ideas are developed in the book.The first edition was published in 1994. Since the book is aimed at explaining the physical ideas behind the design of LIGO, it stands the test of time. For the second edition, an Epilogue has been added; it brings the treatment of technical details up to date, and provides references that would allow a student to become proficient with today's designs.
Academic Training: Gravitational Waves Astronomy
2006-01-01
2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern...
Time-Independent Gravitational Fields
Beig, Robert; Schmidt, Bernd G.
2000-01-01
This article reviews, from a global point of view, rigorous results on time independent spacetimes. Throughout attention is confined to isolated bodies at rest or in uniform rotation in an otherwise empty universe. The discussion starts from first principles and is, as much as possible, self-contained.
Gravitational waves from cosmological first order phase transitions
Hindmarsh, Mark; Rummukainen, Kari; Weir, David
2015-01-01
First order phase transitions in the early Universe generate gravitational waves, which may be observable in future space-based gravitational wave observatiories, e.g. the European eLISA satellite constellation. The gravitational waves provide an unprecedented direct view of the Universe at the time of their creation. We study the generation of the gravitational waves during a first order phase transition using large-scale simulations of a model consisting of relativistic fluid and an order parameter field. We observe that the dominant source of gravitational waves is the sound generated by the transition, resulting in considerably stronger radiation than earlier calculations have indicated.
Generalized gravitational entropy from total derivative action
Energy Technology Data Exchange (ETDEWEB)
Dong, Xi [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Miao, Rong-Xin [Max Planck Institute for Gravitational Physics (Albert Einstein Institute),Am Mühlenberg 1, 14476 Golm (Germany)
2015-12-16
We investigate the generalized gravitational entropy from total derivative terms in the gravitational action. Following the method of Lewkowycz and Maldacena, we find that the generalized gravitational entropy from total derivatives vanishes. We compare our results with the work of Astaneh, Patrushev, and Solodukhin. We find that if total derivatives produced nonzero entropy, the holographic and the field-theoretic universal terms of entanglement entropy would not match. Furthermore, the second law of thermodynamics could be violated if the entropy of total derivatives did not vanish.
Gravitational Wave & Relativity Impact Electronic Communication & Engineering
Directory of Open Access Journals (Sweden)
Zakaria Shahrudin
2017-01-01
Full Text Available About a few months ago (Feb 11, 2016, the LIGO (Laser Interferometer Gravitational-Wave Observatory scientist team researchers made an announcement that they had confirmed the gravitational wave already detected on Sept 14, 2015 (by LIGO’s twin detectors in Livingston, Louisiana and Hanford, Washington. The wave was predicted by Einstein back in 1916 with his theory of General Relativity. This paper is about gravitational wave and relativity theory that may contribute to the field of Telecommunication and other engineering as well.
Self-gravitating fluid tori with charge
Karas, Vladimir; Trova, Audrey; Kovar, Jiri
2017-08-01
We have been developing an analytical approach to study equilibria of self-gravitating charged fluid embedded in the gravitational and magnetic fields of a central body. Our calculations provide a toy-model scenario for gaseous/dusty tori surrounding supermassive black holes in galactic nuclei. While the central black hole dominates the gravitational field and remains electrically neutral, the surrounding material has a non-negligible self-gravitational effect on the torus structure. Moreover, by charging mechanisms it also acquires non-zero electric charge density. These two influences need to be taken into account to achieve a self-consistent picture (based on Trova et al., ApJSS, 226, id. 12, 2016).
Gravitational Waves from Oscillons after Inflation.
Antusch, Stefan; Cefalà, Francesco; Orani, Stefano
2017-01-06
We investigate the production of gravitational waves during preheating after inflation in the common case of field potentials that are asymmetric around the minimum. In particular, we study the impact of oscillons, comparatively long lived and spatially localized regions where a scalar field (e.g., the inflaton) oscillates with large amplitude. Contrary to a previous study, which considered a symmetric potential, we find that oscillons in asymmetric potentials associated with a phase transition can generate a pronounced peak in the spectrum of gravitational waves that largely exceeds the linear preheating spectrum. We discuss the possible implications of this enhanced amplitude of gravitational waves. For instance, for low scale inflation models, the contribution from the oscillons can strongly enhance the observation prospects at current and future gravitational wave detectors.
CERN. Geneva HR-RFA
2006-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort.
Directory of Open Access Journals (Sweden)
Geijo Marivi
2007-03-01
Full Text Available Abstract Background Mycobacterium avium subsp. paratuberculosis (Map causes paratuberculosis in animals and is suspected of causing Crohn's Disease in humans. Characterization of strains led to classify paratuberculosis isolates in two main types, cattle type strains, found affecting all host species, and sheep type strains, reported affecting mainly sheep. In order to get a better understanding of the epidemiology of paratuberculosis a large set of Map isolates obtained from different species over the last 25 years have been characterized. Five-hundred and twenty isolates from different hosts (cattle, sheep, goats, bison, deer and wild boar and origins had been cultured and typed by IS1311 restriction-endonuclease-analysis. Two-hundred and sixty-nine isolates were further characterized by pulsed-field gel electrophoresis (PFGE using SnaBI and SpeI endonucleases. Differences in strain isolation upon various media conditions were also studied. Results All bovines, 4 and 26% of Spanish sheep and goats, respectively, and the deer and wild boar studied, carried IS1311-Cattle type strains. IS1311-Sheep type encompassed 96% and 74% of Spanish sheep and goats, and all three Portuguese sheep. Thirty-seven distinct multiplex PFGE profiles were found, giving 32 novel profiles. Profiles 2-1 and 1-1 accounted for the 85% of cattle isolates. Ten distinct profiles were detected in Spanish sheep, none of them with an incidence higher than 25%. Profile 16-11 (43% and another three profiles were identified in Spanish caprine cultures. The hierarchical analysis, clustered all profiles found in cattle, "wild" hosts and some small ruminants within the same group. The other group included 11 profiles only found in Spanish sheep and goats, including Spanish pigmented profiles. Differences in growth requirements associated with isolate genotype were observed. Conclusion Cattle in Spain are infected with cattle type strains, while sheep and goats are mainly infected
Accelerating Photons with Gravitational Radiation
Shore, Graham M
2001-01-01
The nature of superluminal photon propagation in the gravitational field describing radiation from a time-dependent, isolated source (the Bondi-Sachs metric) is considered in an effective theory which includes interactions which violate the strong equivalence principle. Such interactions are, for example, generated by vacuum polarisation in conventional QED in curved spacetime. The relation of the resulting light-cone modifications to the Peeling Theorem for the Bondi-Sachs spacetime is explained.
Mansouri-Chang gravitation theory
Pavelle, R.
1978-01-01
The gauge theory of gravitation introduced by Mansouri and Chang (1976) is investigated; a symbolic manipulation computer system generates the Mansouri-Chang field equations in various coordinate systems. It is found that all vacuum Einstein spaces are vacuum Mansouri-Chang spaces in four dimensions, though for higher dimensions an Einstein vacuum space is not generally a Mansouri-Chang solution. The possibility that no solutions of the Mansouri-Chang equations are not Einstein vacuum spaces is discussed.
Hoffmann, William F
1964-01-01
Remarks on the observational basis of general relativity ; Riemannian geometry ; gravitation as geometry ; gravitational waves ; Mach's principle and experiments on mass anisotropy ; the many faces of Mach ; the significance for the solar system of time-varying gravitation ; relativity principles and the role of coordinates in physics ; the superdense star and the critical nucleon number ; gravitation and light ; possible effects on the solar system of φ waves if they exist ; the Lyttleton-Bondi universe and charge equality ; quantization of general relativity ; Mach's principle as boundary condition for Einstein's equations.
Pulsars and Gravitational Waves
Lee, K. J.; Xu, R. X.; Qiao, G. J.
2010-04-01
The relationship between pulsar-like compact stars and gravitational waves is briefly reviewed. Due to regular spins, pulsars could be useful tools for us to detect ~nano-Hz low-frequency gravitational waves by pulsar-timing array technique; besides, they would also be ~kilo-Hz high-frequency gravitational wave radiators because of their compactness. The wave strain of an isolated pulsar depends on the equation state of cold matter at supra-nuclear densities. Therefore, a real detection of gravitational wave should be very meaningful in gravity physics, micro-theory of elementary strong interaction, and astronomy.
Jordan, Pascual; Ehlers, Jürgen; Sachs, Rainer K.
2013-12-01
This is an English translation of a paper by Pascual Jordan, Juergen Ehlers and Rainer Sachs, first published in 1961 in the proceedings of the Academy of Sciences and Literature in Mainz (Germany). The original paper was part 2 of a five-part series of articles containing the first summary of knowledge about exact solutions of Einstein's equations found until then. (Parts 1 and 4 of the series have already been reprinted, parts 3 and 5 will be printed as Golden Oldies in near future.) This second paper discusses the geometry of geodesic null congruences, the algebraic classification of the Weyl tensor by spinor methods, and applies these to a study of the propagation of gravitational and electromagnetic radiation. It has been selected by the Editors of General Relativity and Gravitation for republication in the Golden Oldies series of the journal. The republication is accompanied by an editorial note written by Malcolm A. H. MacCallum and Wolfgang Kundt.
Xu, Peiliang
2016-01-01
The numerical integration method has been routinely used to produce global standard gravitational models from satellite tracking measurements of CHAMP/GRACE types. It is implemented by solving the differential equations of the partial derivatives of a satellite orbit with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical point of view, satellite gravimetry from satellite tracking is the problem of estimating unknown parameters in t...
Those Elusive Gravitational Waves
MOSAIC, 1976
1976-01-01
The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)
Osmaston, Miles F.
2013-09-01
the means for displacing its local density exist; that, we show, is the nature of gravitational action and brings gravitation into the electromagnetic family of forces. Under (B) the particle mass is measured by the aether-sucking capability of its vortex, positiveonly gravitation being because the outward-diminishing force developed by each makes mutual convergence at any given point the statistically prevalent expectation. This activity maintains a radial aether (charge) density gradient - the Gravity-Electric (G-E) Field - around and within any gravitationally retained assemblage. So Newton's is an incomplete description of gravitation; the corresponding G-E field is an inseparable facet of the action. The effect on c of that charge density gradient yields gravitational lensing. We find that G-E field action on plasma is astronomically ubiquitous. This strictly radial outward force on ions has the property of increasing the orbital angular momentum of material, by moving it outwards, but at constant tangential velocity. Spiral galaxies no longer require Cold Dark Matter (CDM) to explain this. The force (maybe 30 V.m-1 at solar surface) has comprehensive relevance to the high orbital a.m. achieved during solar planet formation, to their prograde spins and to exoplanet observations. The growth of high-mass stars is impossible if radiation pressure rules, whereas G-E field repulsion is low during dust-opaque infall, driving their prodigious mass loss rates when infall ceases and the star establishes an ionized environment. Its biggest force-effect (~1012 V.m-1) is developed at neutron stars, where it is likely the force of supernova explosions, and leads to a fertile model for pulsars and the acceleration of 1019 eV extreme-energy cosmic rays. Our only directly observed measure of the G-E field is recorded at about 1 V.m-1 in the ionosphere-to-Earth electric potential. And temporary local changes of ionosphere electron density, monitored by radio and satellite, have
Energy Technology Data Exchange (ETDEWEB)
Cenizo de Castro, E.; Garcia Pareja, S.; Moreno Saiz, C.; Hernandez Rodriguez, R.; Bodineau Gil, C.; Martin-Viera Cueto, J. A.
2011-07-01
Hemi fields treatments are widely used in radiotherapy. Because the tolerance established for the positioning of each jaw is 1 mm, may be cases of overlap or separation of up to 2 mm. This implies heterogeneity of doses up to 40% in the joint area. This paper presents an accurate method of calibration of the jaws so as to obtain homogeneous dose distributions when using this type of treatment. (Author)
Tiec, Alexandre Le
2016-01-01
The existence of gravitational radiation is a natural prediction of any relativistic description of the gravitational interaction. In this chapter, we focus on gravitational waves, as predicted by Einstein's general theory of relativity. First, we introduce those mathematical concepts that are necessary to properly formulate the physical theory, such as the notions of manifold, vector, tensor, metric, connection and curvature. Second, we motivate, formulate and then discuss Einstein's equation, which relates the geometry of spacetime to its matter content. Gravitational waves are later introduced as solutions of the linearized Einstein equation around flat spacetime. These waves are shown to propagate at the speed of light and to possess two polarization states. Gravitational waves can interact with matter, allowing for their direct detection by means of laser interferometers. Finally, Einstein's quadrupole formulas are derived and used to show that nonspherical compact objects moving at relativistic speeds a...
Gravitational Wave Detection with Atom Interferometry
Energy Technology Data Exchange (ETDEWEB)
Dimopoulos, Savas; /Stanford U., Phys. Dept.; Graham, Peter W.; /SLAC /Stanford U., Phys. Dept.; Hogan, Jason M.; Kasevich, Mark A.; /Stanford U., Phys. Dept.; Rajendran, Surjeet; /SLAC /Stanford U., Phys. Dept.
2008-01-23
We propose two distinct atom interferometer gravitational wave detectors, one terrestrial and another satellite-based, utilizing the core technology of the Stanford 10m atom interferometer presently under construction. The terrestrial experiment can operate with strain sensitivity {approx} 10{sup -19}/{radical}Hz in the 1 Hz-10 Hz band, inaccessible to LIGO, and can detect gravitational waves from solar mass binaries out to megaparsec distances. The satellite experiment probes the same frequency spectrum as LISA with better strain sensitivity {approx} 10{sup -20}/{radical}Hz. Each configuration compares two widely separated atom interferometers run using common lasers. The effect of the gravitational waves on the propagating laser field produces the main effect in this configuration and enables a large enhancement in the gravitational wave signal while significantly suppressing many backgrounds. The use of ballistic atoms (instead of mirrors) as inertial test masses improves systematics coming from vibrations and acceleration noise, and reduces spacecraft control requirements.
Li, Bohua; Shapiro, Paul R.; Rindler-Daller, Tanja
2017-09-01
We consider an alternative to weakly interacting massive particle (WIMP) cold dark matter (CDM)—ultralight bosonic dark matter (m ≳10-22 eV /c2) described by a complex scalar field (SFDM) with a global U (1 ) symmetry—for which the comoving particle number density or charge density is conserved after particle production during standard reheating. We allow for a repulsive self-interaction. In a Λ SFDM universe, SFDM starts out relativistic, evolving from stiff (w =1 ) to radiation-like (w =1 /3 ), before becoming nonrelativistic at late times (w =0 ). Thus, before the familiar radiation-dominated era, there is an earlier era of stiff-SFDM domination. During both the stiff-SFDM-dominated and radiation-dominated eras, the expansion rate is higher than in Λ CDM . The SFDM particle mass m and quartic self-interaction coupling strength λ are therefore constrained by cosmological observables, particularly Neff, the effective number of neutrino species during big bang nucleosynthesis, and zeq, the redshift of matter-radiation equality. Furthermore, since the stochastic gravitational-wave background (SGWB) from inflation is amplified during the stiff-SFDM-dominated era, it can contribute a radiation-like component large enough to affect these observables by further boosting the expansion rate after the stiff era ends. Remarkably, this same amplification makes detection of the SGWB possible at high frequencies by current laser interferometer experiments, e.g., aLIGO/Virgo and LISA. For SFDM particle parameters that satisfy these cosmological constraints, the amplified SGWB is detectable by LIGO for a broad range of reheat temperatures Treheat, for values of the tensor-to-scalar ratio r currently allowed by cosmic microwave background polarization measurements. For a given r and λ /(m c2)2, the marginally allowed Λ SFDM model for each Treheat has the smallest m that satisfies the cosmological constraints, and maximizes the present SGWB energy density for that
DEFF Research Database (Denmark)
Sørensen, Jens Christian Hedemann; Oettingen, Gorm von; Korshøj, Anders Rosendal
2017-01-01
and in deep tumors embedded in white matter. The field strength was not higher for tumors close to the active electrode. Left/right field directions were generally superior to anterior/posterior directions. Central necrosis focally enhanced the field near tumor boundaries perpendicular to the applied field...
GRAVITATIONAL LENSES AND UNCONVENTIONAL GRAVITY THEORIES
BEKENSTEIN, JD; SANDERS, RH
1994-01-01
We study gravitational lensing by clusters of galaxies in the context of the generic class of unconventional gravity theories which describe gravity in terms of a metric and one or more scalar fields (called here scalar-tensor theories). We conclude that, if the scalar fields have positive energy,
Gravitational Instability of Cylindrical Viscoelastic Medium ...
Indian Academy of Sciences (India)
field on the gravitational instability of strongly coupled plasma and observed that instability criterion gets modified due to the presence of non uniform magnetic field in transverse mode of wave propagation under both the kinetic and hydrodynamic limits, when the viscoelastic medium is infinitely electrically conducting.
Conklin, John
2016-03-01
With the expected direct detection of gravitational waves by Advanced LIGO and pulsar timing arrays in the near future, and with the recent launch of LISA Pathfinder this can arguably be called the decade of gravitational waves. Low frequency gravitational waves in the mHz range, which can only be observed from space, provide the richest science and complement high frequency observatories on the ground. A space-based observatory will improve our understanding of the formation and growth of massive black holes, create a census of compact binary systems in the Milky Way, test general relativity in extreme conditions, and enable searches for new physics. LISA, by far the most mature concept for detecting gravitational waves from space, has consistently ranked among the nation's top priority large science missions. In 2013, ESA selected the science theme ``The Gravitational Universe'' for its third large mission, L3, under the Cosmic Visions Program, with a planned launch date of 2034. NASA has decided to join with ESA on the L3 mission as a junior partner and has recently assembled a study team to provide advice on how NASA might contribute to the European-led mission. This talk will describe these efforts and the activities of the Gravitational Wave Science Interest Group and the L3 Study Team, which will lead to the first space-based gravitational wave observatory.
Investigations into homogenization of electromagnetic metamaterials
DEFF Research Database (Denmark)
Clausen, Niels Christian Jerichau
This dissertation encompasses homogenization methods, with a special interest into their applications to metamaterial homogenization. The first method studied is the Floquet-Bloch method, that is based on the assumption of a material being infinite periodic. Its field can then be expanded in term...
String pair production in non homogeneous backgrounds
Energy Technology Data Exchange (ETDEWEB)
Bolognesi, S. [Department of Physics “E. Fermi” University of Pisa, and INFN - Sezione di Pisa,Largo Pontecorvo, 3, Ed. C, 56127 Pisa (Italy); Rabinovici, E. [Racah Institute of Physics, The Hebrew University of Jerusalem,91904 Jerusalem (Israel); Tallarita, G. [Departamento de Ciencias, Facultad de Artes Liberales,Universidad Adolfo Ibáñez, Santiago 7941169 (Chile)
2016-04-28
We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.
Influence of Gravitation on Mass-Energy Equivalence Relation
Pandya, R. V. R.
2005-01-01
We study influence of gravitational field on the mass-energy equivalence relation by incorporating gravitation in the physical situation considered by Einstein (Ann. Physik, 17, 1905, English translation in ref. [1]) for his first derivation of mass-energy equivalence. In doing so, we also refine Einstein's expression (Ann. Physik, 35, 1911, English translation in ref. [3]) for increase in gravitational mass of the body when it absorbs E amount of radiation energy.
Inverting Gravitational Lenses
Newbury, P. R.; Spiteri, R. J.
2002-02-01
Gravitational lensing provides a powerful tool to study a number of fundamental questions in astrophysics. Fortuitously, one can begin to explore some non-trivial issues associated with this phenomenon without a lot of very sophisticated mathematics, making an elementary treatment of this topic tractable even to senior undergraduates. In this paper, we give a relatively self-contained outline of the basic concepts and mathematics behind gravitational lensing as a recent and exciting topic for courses in mathematical modeling or scientific computing. To this end, we have designed and made available some interactive software to aid in the simulation and inversion of gravitational lenses in a classroom setting.
Gravitational lensing and microlensing
Mollerach, Silvia
2002-01-01
This book provides a comprehensive and self-contained exposition of gravitational lensing phenomena. It presents the up-to-date status of gravitational lensing and microlensing, covering the cosmological applications of the observed lensing by galaxies, clusters and the large scale structures, as well as the microlensing searches in the Local Group and its applications to unveil the nature of the galactic dark matter, the search for planetary objects and the distribution of faint stars in our galaxy. Gravitational Lensing and Microlensing is pitched at the level of the graduate student interes
Energy Technology Data Exchange (ETDEWEB)
Gudnason, Sven Bjarke [Institute of Modern Physics, Chinese Academy of Sciences,Lanzhou 730000 (China); Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences, Keio University,Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan); Sawado, Nobuyuki [Department of Physics, Tokyo University of Science,Noda, Chiba 278-8510 (Japan)
2015-12-02
The BPS Skyrme model has many exact analytic solutions in flat space. We generalize the model to a curved space or spacetime and find that the solutions can only be BPS for a constant time-time component of the metric tensor. We find exact solutions on the curved spaces: a 3-sphere and a 3-hyperboloid; and we further find an analytic gravitating Skyrmion on the 3-sphere. For the case of a nontrivial time-time component of the metric, we suggest a potential for which we find analytic solutions on anti-de Sitter and de Sitter spacetimes in the limit of no gravitational backreaction. We take the gravitational coupling into account in numerical solutions and show that they are well approximated by the analytic solutions for weak gravitational coupling.
Gravitational lensing of quasars
Eigenbrod, Alexander
2013-01-01
The universe, in all its richness, diversity and complexity, is populated by a myriad of intriguing celestial objects. Among the most exotic of them are gravitationally lensed quasars. A quasar is an extremely bright nucleus of a galaxy, and when such an object is gravitationally lensed, multiple images of the quasar are produced – this phenomenon of cosmic mirage can provide invaluable insights on burning questions, such as the nature of dark matter and dark energy. After presenting the basics of modern cosmology, the book describes active galactic nuclei, the theory of gravitational lensing, and presents a particular numerical technique to improve the resolution of astronomical data. The book then enters the heart of the subject with the description of important applications of gravitational lensing of quasars, such as the measurement of the famous Hubble constant, the determination of the dark matter distribution in galaxies, and the observation of the mysterious inner parts of quasars with much higher r...
Gravitational interaction of antimatter
Villata, Massimo
2010-01-01
Until now, there is no experimental evidence on the gravitational behaviour of antimatter. While we may be confident that antimatter attracts antimatter, we do not know anything on the interaction between matter and antimatter. We investigate this issue on theoretical grounds. Starting from the CPT invariance of physical laws, we transform matter into antimatter in the equations of both electrodynamics and gravitation. In the former case, the result is the well-known change of sign of the ele...
Thaliath, Babu
2012-01-01
As is generally known, Newton’s notion of universal gravitation surpassed various theories of particular gravities in the early modern age, as represented mainly by Kepler and Hooke. In his seminal work “Hooke and the Law of Universal Gravitation: A Reappraisal of a Reappraisal” Richard S. Westfall argues that Hooke could not reach beyond the concept of spatially bounded particular gravities, as he deployed the method of analogy between the material principle of congruity and incongruity and ...
Gravitational energy and radiation of a charged black hole
Combi, Luciano; Romero, Gustavo E.
2017-10-01
We investigate the energy configuration of a charged black hole in the teleparallel framework of general relativity. We obtain the energy-momentum tensor of the gravitational field in a stationary frame, and we calculate its contribution to the total energy of the system. We study the same gravitational field measured by an accelerated frame and we analyze how the energy-momentum tensor is transformed. We found that in the accelerated frame, a Poynting-like flux appears for the gravitational field but not for the electromagnetic field.
Parametric resonance and cosmological gravitational waves
Sá, Paulo M.; Henriques, Alfredo B.
2008-03-01
We investigate the production of gravitational waves due to quantum fluctuations of the vacuum during the transition from the inflationary to the radiation-dominated eras of the universe, assuming this transition to be dominated by the phenomenon of parametric resonance. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients, which avoids the problem of overproduction of gravitons at large frequencies. We found, on the sole basis of the mechanism of quantum fluctuations, that the resonance field leaves no explicit and distinctive imprint on the gravitational-wave energy spectrum, apart from an overall upward or downward translation. Therefore, the main features in the spectrum are due to the inflaton field, which leaves a characteristic imprint at frequencies of the order of MHz/GHz.
Directory of Open Access Journals (Sweden)
Alicia Arjona
2015-11-01
Full Text Available Volcanic areas present a lower effective viscosity than usually in the Earth's crust. It makes necessary to consider inelastic properties in deformation modelling. As a continuation of work done previously by some of the authors, this work is concerned with the proof that the perturbed equations representing the viscoelastic-gravitational displacements resulting from body forces embedded in a layered Earth model leads to a well-posed problem even for any kind of domains, with the natural boundary and transmission conditions. A homogeneous or stratified viscoelastic half-space has often been used as a simple earth model to calculate the displacements and gravity changes. Here we give a constructive proof of the existence of weak solutions and we show the uniqueness and the continuous dependence with respect to the initial data of weak solutions of the dynamic coupled viscoelastic-gravitational field equations.
On the existence of periodic orbits for the fixed homogeneous circle problem
Azevêdo, C.; Ontaneda, P.
2007-01-01
We prove the existence of some types of periodic orbits for a particle moving in Euclidean three-space under the influence of the gravitational force induced by a fixed homogeneous circle. These types include periodic orbits very far and very near the homogeneous circle, as well as eight and spiral periodic orbits.
Longair, Malcolm
2015-04-13
The famous eclipse expedition of 1919 to Sobral, Brazil, and the island of Principe, in the Gulf of Guinea, led by Dyson, Eddington and Davidson was a turning point in the history of relativity, not only because of its importance as a test of Einstein's General Theory of Relativity, but also because of the intense public interest which was aroused by the success of the expedition. The dramatic sequence of events which occurred is reviewed, as well as the long-term impact of its success. The gravitational bending of electromagnetic waves by massive bodies is a subject of the greatest importance for contemporary and future astronomy, astrophysics and cosmology. Examples of the potential impact of this key tool of modern observational astronomy are presented. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
Modern Gravitational Lens Cosmology for Introductory Physics and Astronomy Students
Huwe, Paul; Field, Scott
2015-01-01
Recent and exciting discoveries in astronomy and cosmology have inspired many high school students to learn about these fields. A particularly fascinating consequence of general relativity at the forefront of modern cosmology research is gravitational lensing, the bending of light rays that pass near massive objects. Gravitational lensing enables…
Magnetized cosmological models in bimetric theory of gravitation
Indian Academy of Sciences (India)
Abstract. Bianchi type-III magnetized cosmological model when the field of gravitation is governed by either a perfect fluid or cosmic string is investigated in Rosen's [1] bimetric theory of gravitation. To complete determinate solution, the condition, viz., A = (BC)n, where n is a constant, between the metric potentials is used.
One loop divergencies in the theory of gravitation
Hooft, G. 't; Veltman, M.J.G.
1974-01-01
All one-loop divergencies of pure gravity and all those of gravitation interacting with a scalar particle are calculated. In the case of pure gravity, no physically relevant divergencies remain; they can all be absorbed in a field renormalization. In case of gravitation interacting with scalar
One-loop effective action in quantum gravitation
DEFF Research Database (Denmark)
Rachwal, Leslaw; Codello, Alessandro; Percacci, Roberto
2016-01-01
We present the formalism of computing one-loop effective action for Quantum Gravitation using non-local heat kernel methods. We found agreement with previous old results. In main part of my presentation I considered the system of E-H gravitation and scalar fields. We were able to derive non-local...
Homogeneity of Inorganic Glasses
DEFF Research Database (Denmark)
Jensen, Martin; Zhang, L.; Keding, Ralf
2011-01-01
Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...... the dimension and the intensity is used to quantify and rank the homogeneity of glass products. Compared with the refractive index method, the image processing method has a wider detection range and a lower statistical uncertainty....
Environmental Effects for Gravitational-wave Astrophysics
Barausse, Enrico; Cardoso, Vitor; Pani, Paolo
2015-05-01
The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors - the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals - and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, accretion disks, dark matter, “firewalls” and possible deviations from General Relativity. We discover that the black-hole quasinormal modes are sharply different in the presence of matter, but the ringdown signal observed by interferometers is typically unaffected. The effect of accretion disks and dark matter depends critically on their geometry and density profile, but is negligible for most sources, except for few special extreme mass-ratio inspirals. Electromagnetic fields and cosmological effects are always negligible. We finally explore the implications of our findings for proposed tests of General Relativity with gravitational waves, and conclude that environmental effects will not prevent the development of precision gravitational-wave astronomy.
Raychaudhuri equation in quantum gravitational optics
Indian Academy of Sciences (India)
Raychaudhuri equation in quantum gravitational optics the components of this vector field for a photon with space-like, normalized polar- ization vector i.e, aμaμ ..... Therefore, for abreast rays, optical scalars bear explicit physical interpretations. To simplify the case we consider propagation along k of the area of a small ...
Mass loss due to gravitational waves with Λ > 0
Saw, Vee-Liem
2017-07-01
The theoretical basis for the energy carried away by gravitational waves that an isolated gravitating system emits was first formulated by Hermann Bondi during the ’60s. Recent findings from the observation of distant supernovae revealed that the rate of expansion of our universe is accelerating, which may be well explained by sticking a positive cosmological constant into the Einstein field equations for general relativity. By solving the Newman-Penrose equations (which are equivalent to the Einstein field equations), we generalize this notion of Bondi mass-energy and thereby provide a firm theoretical description of how an isolated gravitating system loses energy as it radiates gravitational waves, in a universe that expands at an accelerated rate. This is in line with the observational front of LIGO’s first announcement in February 2016 that gravitational waves from the merger of a binary black hole system have been detected.
Leading gravitational corrections and a unified universe
DEFF Research Database (Denmark)
Codello, Alessandro; Jain, Rajeev Kumar
2016-01-01
Leading order gravitational corrections to the Einstein-Hilbert action can lead to a consistent picture of the universe by unifying the epochs of inflation and dark energy in a single framework. While the leading local correction induces an inflationary phase in the early universe, the leading...... nonlocal term leads to an accelerated expansion of the universe at the present epoch. We argue that both the leading UV and IR terms can be obtained within the framework of a covariant effective field theory of gravity. The perturbative gravitational corrections therefore provide a fundamental basis...
Gravitation and celestial mechanics investigations with Galileo
Anderson, J. D.; Armstrong, J. W.; Campbell, J. K.; Estabrook, F. B.; Krisher, T. P.; Lau, E. L.
1992-01-01
The gravitation and celestial mechanics investigations that are to be conducted during the cruise and Orbiter phases of the Galileo Mission cover four investigation categories: (1) the gravity fields of Jupiter and its four major satellites; (2) a search for gravitational radiation; (3) mathematical modeling of general relativistic effects on Doppler ranging data; and (4) improvements of the Jupiter ephemeris via Orbiter ranging. Also noted are two secondary objectives, involving a range fix during Venus flyby and the determination of the earth's mass on the bases of the two earth gravity assists used by the mission.
Quantum metrology for gravitational wave astronomy.
Schnabel, Roman; Mavalvala, Nergis; McClelland, David E; Lam, Ping K
2010-11-16
Einstein's general theory of relativity predicts that accelerating mass distributions produce gravitational radiation, analogous to electromagnetic radiation from accelerating charges. These gravitational waves (GWs) have not been directly detected to date, but are expected to open a new window to the Universe once the detectors, kilometre-scale laser interferometers measuring the distance between quasi-free-falling mirrors, have achieved adequate sensitivity. Recent advances in quantum metrology may now contribute to provide the required sensitivity boost. The so-called squeezed light is able to quantum entangle the high-power laser fields in the interferometer arms, and could have a key role in the realization of GW astronomy.
Two-dimensional noncommutative gravitational quantum well
Lawson, Latevi; Gouba, Laure; Avossevou, Gabriel Y.
2017-11-01
In this paper we consider two kinds of noncommutative space-time commutation relations in two-dimensional configuration space and feature the absolute value of the minimal length from the generalized uncertainty relations associated to the particular commutation relations. We study the problem of the two-dimensional gravitational quantum well in new Hermitian variables and confront the experimental results for the first lowest energy state of the neutrons in the Earth’s gravitational field to estimate the upper bounds on the noncommutativity parameters. The absolute value of the minimum length is smaller than a few nanometers.
Kelly, Bernard J.
2010-01-01
Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.
Pioneering in gravitational physiology
Soffen, G. A.
1983-01-01
Gravity affects biology at almost all levels above that of the cell organelle. Attention is presently given to progress made in the understanding of gravitational effects through studies employing centrifuges, clinostats, inverted preparations, linear devices, water immersion, free fall, and short- and long-term spaceflight. The cardiovascular changes which cause malaise and illness during the first few days of extended space missions are the direct result of fluid translocation from the lower extremities. Upon reentry, there is hypovolumnia and a cardiovascular deconditioning that can include tachycardia, changes in arterial blood pressure, narrow pulse pressure, and syncope. Attention is also given to NASA's gravitational physiology reseach program.
Energy Technology Data Exchange (ETDEWEB)
Pasterski, Sabrina; Strominger, Andrew; Zhiboedov, Alexander [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States)
2016-12-14
The conventional gravitational memory effect is a relative displacement in the position of two detectors induced by radiative energy flux. We find a new type of gravitational ‘spin memory’ in which beams on clockwise and counterclockwise orbits acquire a relative delay induced by radiative angular momentum flux. It has recently been shown that the displacement memory formula is a Fourier transform in time of Weinberg’s soft graviton theorem. Here we see that the spin memory formula is a Fourier transform in time of the recently-discovered subleading soft graviton theorem.
Directory of Open Access Journals (Sweden)
Subieta Vasquez M. A.
2014-04-01
Full Text Available The AEg¯ $\\overline {\\rm{g}}$IS experiment [1] aims at directly measuring the gravitational acceleration g on a beam of cold antihydrogen (H¯$\\overline {\\rm{H}}$ to a precision of 1%, performing the first test with antimatter of the (WEP Weak Equivalence Principle. The experimental apparatus is sited at the Antiproton Decelerator (AD at CERN, Geneva, Switzerland. After production by mixing of antiprotons with Rydberg state positronium atoms (Ps, the H¯$\\overline {\\rm{H}}$ atoms will be driven to fly horizontally with a velocity of a few 100 ms−1 for a path length of about 1 meter. The small deflection, few tens of μm, will be measured using two material gratings (of period ∼ 80 μm coupled to a position-sensitive detector working as a moiré deflectometer similarly to what has been done with matter atoms [2]. The shadow pattern produced by the H¯$\\overline {\\rm{H}}$ beam will then be detected by reconstructing the annihilation points with a spatial resolution (∼ 2 μm of each antiatom at the end of the flight path by the sensitive-position detector. During 2012 the experimental apparatus has been commissioned with antiprotons and positrons. Since the AD will not be running during 2013,during the refurbishment of the CERN accelerators, the experiment is currently working with positrons, electrons and protons, in order to prepare the way for the antihydrogen production in late 2014.
The Discovery of Gravitational Repulsion by Johannes Droste
Hosewell McGruder, Charles; Van der meer, Wieb
2018-01-01
In 1687 Newton published his universal law of gravitation, which states that the gravitational force is always attractive. This law is based on our terrestrial experience with slowly moving bodies (v << c). In 1915 Einstein completed his theory of general relativity (also referred to as Einstein’s Theory of Gravitation), which is valid not just for slowly moving bodies but also for those with relativistic velocities. In 1916 Johannes Droste submitted a PhD thesis on general relativity to his advisor, H.A. Lorentz. In it he calculated the motion of a particle in what he called a “single center” and today we call the Schwarzschild field and found that highly relativistic particles experience gravitational repulsion. Thus, his thesis written in Dutch and never before translated contains the discovery of gravitational repulsion. Because of its historical importance we translate the entire section of his thesis containing the discovery of gravitational repulsion. We also translate his thesis in the hope of clearing up a major historical misconception. Namely, that David Hilbert in 1917 discovered gravitational repulsion. In fact, Hilbert rediscovered it, apparently completely independent of Droste’s work. Finally we note that one of the biggest mysteries of astrophysics is the question of how highly energetic particles in relativistic jets and cosmic rays are accelerated. It has been suggested that gravitational repulsion is the mechanism responsible for these phenomena. An historical understanding of gravitational repulsion is therefore pertinent.
Information transfer during the universal gravitational decoherence
Korbicz, J. K.; Tuziemski, J.
2017-12-01
Recently Pikovski et al. (Nat Phys 11:668, 2015) have proposed in an intriguing universal decoherence mechanism, suggesting that gravitation may play a conceptually important role in the quantum-to-classical transition, albeit vanishingly small in everyday situations. Here we analyze information transfer induced by this mechanism. We show that generically on short time-scales, gravitational decoherence leads to a redundant information encoding, which results in a form of objectivization of the center-of-mass position in the gravitational field. We derive the relevant time-scales of this process, given in terms of energy dispersion and quantum Fisher information. As an example we study thermal coherent states and show certain robustness of the effect with the temperature. Finally, we draw an analogy between our objectivization mechanism and the fundamental problem of point individuation in General Relativity as emphasized by the Einstein's Hole argument.
Space Based Gravitational Wave Observatories (SGOs)
Livas, Jeff
2014-01-01
Space-based Gravitational-wave Observatories (SGOs) will enable the systematic study of the frequency band from 0.0001 - 1 Hz of gravitational waves, where a rich array of astrophysical sources is expected. ESA has selected The Gravitational Universe as the science theme for the L3 mission opportunity with a nominal launch date in 2034. This will be at a minimum 15 years after ground-based detectors and pulsar timing arrays announce their first detections and at least 18 years after the LISA Pathfinder Mission will have demonstrated key technologies in a dedicated space mission. It is therefore important to develop mission concepts that can take advantage of the momentum in the field and the investment in both technology development and a precision measurement community on a more near-term timescale than the L3 opportunity. This talk will discuss a mission concept based on the LISA baseline that resulted from a recent mission architecture study.
Gravitational Waves- a new window to Cosmos
Prasanna, A R
2016-01-01
With the detection of Gravitational waves just about an year ago Einstein`s general theory of relativity- a space-time theory of gravity, got established on a firmer footing than any other theory in physics. Gravitational waves are just propagating disturbances in the gravitational field of extremely strong sources caused by some catastrophic event associated with cosmic bodies, like binary black hole coalescence, or neutron star mergers. As these events happen very far away in cosmos, and the signal strength would be extremely weak, it requires extraordinary detection and analysis technology to observe an event on earth. Luckily the joint collaboration LIGO-VIRGO, have so far detected two events in September and December of 2015 during their analysis of observations made with the laser interferometers over the last few observing sessions. The talk will give a brief theoretical sketch of the analysis required for describing the waves resulting from mass motion in the realm of general relativity, and point out...
Relic gravitational waves from quintessential inflation
Ahmad, Safia; Myrzakulov, R.; Sami, M.
2017-09-01
We study relic gravitational waves in the paradigm of quintessential inflation. In this framework, irrespective of the underlying model, inflation is followed by the kinetic regime. Thereafter, the field energy density remains subdominant before the onset of acceleration. We carry out model-independent analysis to obtain the temperature at the end of inflation and the estimate for the upper bound on the Hubble parameter to circumvent the problem due to relic gravitational waves. In this process, we use Planck 2015 data to constrain the inflationary phase. We demonstrate that the required temperature can be produced by the mechanism of instant preheating. The generic feature of the scenario includes the presence of the kinetic regime after inflation, which results in the blue spectrum of gravitational wave background at high frequencies. We discuss the prospects of detection of relic gravitational wave background in the advanced LIGO and LISA space-born gravitational wave missions. Finally, we consider a concrete model to realize the paradigm of quintessential inflation and show that inflationary as well as postinflationary evolution can be successfully described by the inflaton potential, V (ϕ )∝Exp (-λ ϕn/MPln)(n >1 ) , by suitably constraining the parameters of the model.
Breakdown of the Equivalence between Passive Gravitational Mass and Energy for a Quantum Body
Lebed, Andrei G.
2012-01-01
It is shown that passive gravitational mass operator of a hydrogen atom in the post-Newtonian approximation of the general relativity does not commute with its energy operator, taken in the absence of gravitational field. Nevertheless, the equivalence between the expectation values of passive gravitational mass and energy is shown to survive at a macroscopic level for stationary quantum states. Breakdown of the equivalence between passive gravitational mass and energy at a microscopic level f...
Homogeneous Functionalization of Methane.
Gunsalus, Niles Jensen; Koppaka, Anjaneyulu; Park, Sae Hume; Bischof, Steven M; Hashiguchi, Brian G; Periana, Roy A
2017-07-12
One of the remaining "grand challenges" in chemistry is the development of a next generation, less expensive, cleaner process that can allow the vast reserves of methane from natural gas to augment or replace oil as the source of fuels and chemicals. Homogeneous (gas/liquid) systems that convert methane to functionalized products with emphasis on reports after 1995 are reviewed. Gas/solid, bioinorganic, biological, and reaction systems that do not specifically involve methane functionalization are excluded. The various reports are grouped under the main element involved in the direct reactions with methane. Central to the review is classification of the various reports into 12 categories based on both practical considerations and the mechanisms of the elementary reactions with methane. Practical considerations are based on whether or not the system reported can directly or indirectly utilize O2 as the only net coreactant based only on thermodynamic potentials. Mechanistic classifications are based on whether the elementary reactions with methane proceed by chain or nonchain reactions and with stoichiometric reagents or catalytic species. The nonchain reactions are further classified as CH activation (CHA) or CH oxidation (CHO). The bases for these various classifications are defined. In particular, CHA reactions are defined as elementary reactions with methane that result in a discrete methyl intermediate where the formal oxidation state (FOS) on the carbon remains unchanged at -IV relative to that in methane. In contrast, CHO reactions are defined as elementary reactions with methane where the carbon atom of the product is oxidized and has a FOS less negative than -IV. This review reveals that the bulk of the work in the field is relatively evenly distributed across most of the various areas classified. However, a few areas are only marginally examined, or not examined at all. This review also shows that, while significant scientific progress has been made
Gravitational Waves: The Evidence Mounts
Wick, Gerald L.
1970-01-01
Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)
Gravitational Waves from Orphan Memory
McNeill, Lucy O.; Thrane, Eric; Lasky, Paul D.
2017-01-01
Gravitational-wave memory manifests as a permanent distortion of an idealized gravitational-wave detector and arises generically from energetic astrophysical events. For example, binary black hole mergers are expected to emit memory bursts a little more than an order of magnitude smaller in strain than the oscillatory parent waves. We introduce the concept of "orphan memory": gravitational-wave memory for which there is no detectable parent signal. In particular, high-frequency gravitational-...
Research on gravitational physiology
Brown, A. H.; Dahl, A. O.
1974-01-01
The topic of gravitational plant physiology was studied through aspects of plant development (in ARABIDOPSIS) and of behavior (in HELIANTHUS) as these were affected by altered g experience. The effect of increased g levels on stem polarity (in COLEUS) was also examined.
Gravitational constant calculation methodologies
Shakhparonov, V. M.; Karagioz, O. V.; Izmailov, V. P.
2011-01-01
We consider the gravitational constant calculation methodologies for a rectangular block of the torsion balance body presented in the papers Phys. Rev. Lett. 102, 240801 (2009) and Phys.Rev. D. 82, 022001 (2010). We have established the influence of non-equilibrium gas flows on the obtained values of G.
Dirac Equation in Gauge and Affine-Metric Gravitation Theories
Giachetta, G.; Sardanashvily, G.
1995-01-01
We show that the covariant derivative of Dirac fermion fields in the presence of a general linear connection on a world manifold is universal for Einstein's, gauge and affine-metric gravitation theories.
Tignanelli, H. L.; Vazquez, R. A.; Mostaccio, C.; Gordillo, S.; Plastino, A.
1990-11-01
RESUMEN. Presentamos una metodologia de analisis de la homogeneidad a partir de la Teoria de la Informaci6n, aplicable a muestras de datos observacionales. ABSTRACT:Standard concepts that underlie Information Theory are employed in order design a methodology that enables one to analyze the homogeneity of a given data sample. Key : DATA ANALYSIS
Maurya, D. Ch.; Zia, R.; Pradhan, A.
2016-10-01
We discuss a spatially homogeneous and anisotropic string cosmological models in the Brans-Dicke theory of gravitation. For a spatially homogeneous metric, it is assumed that the expansion scalar θ is proportional to the shear scalar σ. This condition leads to A = kB m , where k and m are constants. With these assumptions and also assuming a variable scale factor a = a( t), we find solutions of the Brans-Dicke field equations. Various phenomena like the Big Bang, expanding universe, and shift from anisotropy to isotropy are observed in the model. It can also be seen that in early stage of the evolution of the universe, strings dominate over particles, whereas the universe is dominated by massive strings at the late time. Some physical and geometrical behaviors of the models are also discussed and observed to be in good agreement with the recent observations of SNe la supernovae.
Energy Technology Data Exchange (ETDEWEB)
Maurya, D. Ch., E-mail: dcmaurya563@gmail.com; Zia, R., E-mail: rashidzya@gmail.com; Pradhan, A., E-mail: pradhan.anirudh@gmail.com [GLA University, Department of Mathematics, Institute of Applied Sciences and Humanities (India)
2016-10-15
We discuss a spatially homogeneous and anisotropic string cosmological models in the Brans–Dicke theory of gravitation. For a spatially homogeneous metric, it is assumed that the expansion scalar θ is proportional to the shear scalar σ. This condition leads to A = kB{sup m}, where k and m are constants. With these assumptions and also assuming a variable scale factor a = a(t), we find solutions of the Brans–Dicke field equations. Various phenomena like the Big Bang, expanding universe, and shift from anisotropy to isotropy are observed in the model. It can also be seen that in early stage of the evolution of the universe, strings dominate over particles, whereas the universe is dominated by massive strings at the late time. Some physical and geometrical behaviors of the models are also discussed and observed to be in good agreement with the recent observations of SNe la supernovae.
Gravitational Collapse and Shocks in Two-Phase Celestial Bodies
Greenfield, Michael
2017-06-01
The phenomenon of gravitational collapse (GC) is well-known in theoretical astro- and planetary physics. It occurs when the incompressibility of substances is unable to withstand the pressure due to gravitational forces in celestial bodies of sufficiently large mass. The GC never occurs in incompressible models - homogeneous or layered. This situation changes dramatically when different incompressible layers appear to be different phases of the same chemical substance and the mass exchange between the phases can occur due to phase transformation. The possibility of destabilization in such system becomes realistic, as it was first discovered in the Ramsey static analysis. We will present our generalization of the Ramsey's results using dynamic approach.
Gravitational waves from axion monodromy
Energy Technology Data Exchange (ETDEWEB)
Hebecker, Arthur; Jaeckel, Joerg; Rompineve, Fabrizio; Witkowski, Lukas T. [Institute for Theoretical Physics, University of Heidelberg,Philosophenweg 19, 69120 Heidelberg (Germany)
2016-11-02
Large field inflation is arguably the simplest and most natural variant of slow-roll inflation. Axion monodromy may be the most promising framework for realising this scenario. As one of its defining features, the long-range polynomial potential possesses short-range, instantonic modulations. These can give rise to a series of local minima in the post-inflationary region of the potential. We show that for certain parameter choices the inflaton populates more than one of these vacua inside a single Hubble patch. This corresponds to a dynamical phase decomposition, analogously to what happens in the course of thermal first-order phase transitions. In the subsequent process of bubble wall collisions, the lowest-lying axionic minimum eventually takes over all space. Our main result is that this violent process sources gravitational waves, very much like in the case of a first-order phase transition. We compute the energy density and peak frequency of the signal, which can lie anywhere in the mHz-GHz range, possibly within reach of next-generation interferometers. We also note that this “dynamical phase decomposition' phenomenon and its gravitational wave signal are more general and may apply to other inflationary or reheating scenarios with axions and modulated potentials.
Zalesskiy, Sergey S; Sedykh, Alexander E; Kashin, Alexey S; Ananikov, Valentine P
2013-03-06
Soluble gold precatalysts, aimed for homogeneous catalysis, under certain conditions may form nanoparticles, which dramatically change the mechanism and initiate different chemistry. The present study addresses the question of designing gold catalysts, taking into account possible interconversions and contamination at the homogeneous/heterogeneous system's interface. It was revealed that accurate localization of boundary experimental conditions for formation of molecular gold complexes in solution versus nucleation and growth of gold particles opens new opportunities for well-known gold chemistry. Within the developed concept, a series of practical procedures was created for efficient synthesis of soluble gold complexes with various phosphine ligands (R3P)AuCl (90-99% yield) and for preparation of different types of gold materials. The effect of the ligand on the particles growth in solution has been observed and characterized with high-resolution field-emission scanning electron microscopy (FE-SEM) study. Two unique types of nanostructured gold materials were prepared: hierarchical agglomerates and gold mirror composed of ultrafine smoothly shaped particles.
Self-Gravitating Systems in Extended Gravity
Directory of Open Access Journals (Sweden)
Arturo Stabile
2014-12-01
Full Text Available Starting from the weak field limit, we discuss astrophysical applications of Extended Theories of Gravity where higher order curvature invariants and scalar fields are considered by generalizing the Hilbert-Einstein action linear in the Ricci curvature scalar R. Results are compared to General Relativity in the hypothesis that Dark Matter contributions to the dynamics can be neglected thanks to modified gravity. In particular, we consider stellar hydrostatic equilibrium, galactic rotation curves, and gravitational lensing. Finally, we discuss the weak field limit in the Jordan and Einstein frames pointing out how effective quantities, as gravitational potentials, transform from one frame to the other and the interpretation of results can completely change accordingly.
Homogenous finitary symmetric groups
Directory of Open Access Journals (Sweden)
Otto. H. Kegel
2015-03-01
Full Text Available We characterize strictly diagonal type of embeddings of finitary symmetric groups in terms of cardinality and the characteristic. Namely, we prove the following. Let kappa be an infinite cardinal. If G=underseti=1stackrelinftybigcupG i , where G i =FSym(kappan i , (H=underseti=1stackrelinftybigcupH i , where H i =Alt(kappan i , is a group of strictly diagonal type and xi=(p 1 ,p 2 ,ldots is an infinite sequence of primes, then G is isomorphic to the homogenous finitary symmetric group FSym(kappa(xi (H is isomorphic to the homogenous alternating group Alt(kappa(xi , where n 0 =1,n i =p 1 p 2 ldotsp i .
Projective duality and homogeneous spaces
Tevelev, E A
2006-01-01
Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event. Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and from topology to the theory of algebras. It gives a very readable and thorough account and the presentation of the material is clear and convincing. For the most part of the book the only prerequisites are basic algebra and algebraic geometry. This book will be of great interest to graduate and postgraduate students as well as professional mathematicians working in algebra, geometry and analysis.
Homogeneous bilateral block shifts
Indian Academy of Sciences (India)
Introduction. We write D for the complex unit disc and G for the Möbius group, the group of holo- morphic self-maps of D. A bounded operator T on a Hilbert space H is said to be homogeneous if its spectrum is contained in ¯D and for every g in G there exists a unitary operator U(g) such that g(T ) = U(g). −1. T U (g).
Dynamics of homogeneous nucleation
DEFF Research Database (Denmark)
Toxværd, Søren
2015-01-01
The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...... or shrink by accretion or evaporation of monomers only but also by an exponentially declining change in cluster size per time step equal to the cluster distribution in the supersaturated gas....
Homogenization of dislocation dynamics
Energy Technology Data Exchange (ETDEWEB)
El Hajj, Ahmad; Ibrahim, Hassan; Monneau, Regis, E-mail: elhajj@cermics.enpc.fr, E-mail: ibrahim@cermics.enpc.fr, E-mail: monneau@cermics.enpc.fr [CERMICS, ENPC, 6 and 8 avenue Blaise Pascal, Cite Descartes, Champs sur Marne, 77455 Marne-la-Valle Cedex 2 (France)
2009-07-15
In this paper we consider the dynamics of dislocations with the same Burgers vector, contained in the same glide plane, and moving in a material with periodic obstacles. We study two cases: i) the particular case of parallel straight dislocations and ii) the general case of curved dislocations. In each case, we perform rigorously the homogenization of the dynamics and predict the corresponding effective macroscopic elasto-visco-plastic flow rule.
Homogenization of resonant chiral metamaterials
DEFF Research Database (Denmark)
Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten
2010-01-01
Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....
Energy Technology Data Exchange (ETDEWEB)
Figueroa-O’Farrill, José [School of Mathematics and Maxwell Institute for Mathematical Sciences,The University of Edinburgh,James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road,Edinburgh EH9 3FD, Scotland (United Kingdom); Ungureanu, Mara [Humboldt-Universität zu Berlin, Institut für Mathematik,Unter den Linden 6, 10099 Berlin (Germany)
2016-01-25
Motivated by the search for new gravity duals to M2 branes with N>4 supersymmetry — equivalently, M-theory backgrounds with Killing superalgebra osp(N|4) for N>4 — we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra so(n)⊕so(3,2) for n=5,6,7. We find that there are no new backgrounds with n=6,7 but we do find a number of new (to us) backgrounds with n=5. All backgrounds are metrically products of the form AdS{sub 4}×P{sup 7}, with P riemannian and homogeneous under the action of SO(5), or S{sup 4}×Q{sup 7} with Q lorentzian and homogeneous under the action of SO(3,2). At least one of the new backgrounds is supersymmetric (albeit with only N=2) and we show that it can be constructed from a supersymmetric Freund-Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.
A new theory of gravitation and its quantization
Energy Technology Data Exchange (ETDEWEB)
Poth, Hartwig
2012-07-01
With de Broglie, mass is regarded as an oscillator within a unit volume as a proper time density being a Lorentz scalar. That can be regarded as the source of the gravitational potential being also a Lorentz scalar. In classical physics gravitation thus becomes relativistically velocity dependent. The perihelion movement of Mercury follows from that in line with the results from Einstein's theory of general relativity. The orbital periods of planets and hence spacecraft flybys are shortened by a corresponding extent. The geodesic precision and the frame dragging effect as observed by the Gravity B Probe follow also. There is a gravitational monopole radiation and quasi multipole radiation of the same magnitude as from Einstein's theory of general relativity. The spin of the new gravitational field is zero in that classical theory. The calculation of the absolute Shapiro delay is amended. Moreover, with the Dirac equation a relativistic quantum mechanical equation of gravitation is obtained, which in the classical limit coincides with the new classical theory. Also a quantum mechanical equation of gravitation for the photon is obtained which yields the correct deflection of light under gravitation. The Lorentz scalar gravitational potential can be readily quantized, and its quanta can be called gravons.
The Discovery of Gravitational Repulsion by Johannes Droste
McGruder, Charles Hosewell; VanDerMeer, B. Wieb
2018-01-01
In 1687 Newton published his universal law of gravitation, which states that the gravitational force is always attractive. This law is based on our terrestrial experience with slowly moving bodies (v motion of a particle in what he called a “single center” and today we call the Schwarzschild field and found that highly relativistic particles experience gravitational repulsion. Thus, his thesis written in Dutch and never before translated contains the discovery of gravitational repulsion. Because of its historical importance we translate the entire section of his thesis containing the discovery of gravitational repulsion. We also translate his thesis in the hope of clearing up a major historical misconception. Namely, that David Hilbert in 1917 discovered gravitational repulsion. In fact, Hilbert rediscovered it, apparently completely independent of Droste’s work. Finally we note that one of the biggest mysteries of astrophysics is the question of how highly energetic particles in relativistic jets and cosmic rays are accelerated. It has been suggested that gravitational repulsion is the mechanism responsible for these phenomena. An historical understanding of gravitational repulsion is therefore pertinent.
Clustering by Local Gravitation.
Wang, Zhiqiang; Yu, Zhiwen; Chen, C L Philip; You, Jane; Gu, Tianlong; Wong, Hau-San; Zhang, Jun
2017-05-02
The objective of cluster analysis is to partition a set of data points into several groups based on a suitable distance measure. We first propose a model called local gravitation among data points. In this model, each data point is viewed as an object with mass, and associated with a local resultant force (LRF) generated by its neighbors. The motivation of this paper is that there exist distinct differences between the LRFs (including magnitudes and directions) of the data points close to the cluster centers and at the boundary of the clusters. To capture these differences efficiently, two new local measures named centrality and coordination are further investigated. Based on empirical observations, two new clustering methods called local gravitation clustering and communication with local agents are designed, and several test cases are conducted to verify their effectiveness. The experiments on synthetic data sets and real-world data sets indicate that both clustering approaches achieve good performance on most of the data sets.
Undulator Gravitational Deflection
Energy Technology Data Exchange (ETDEWEB)
Bowden, G.
2005-01-31
This note estimates distortions imposed by gravity on LCLS undulator strong-backs. Because of the strongback's asymmetric cross section, gravitational forces cause both torsion as well as simple bending. The superposition of these two effects yields a 4.4 {micro}m maximum deflection and a 0.16 milli radian rotation of the undulator axis. The choice of titanium is compared to aluminum.
Superluminal Gravitational Waves
Moffat, J. W.
2014-01-01
The quantum gravity effects of vacuum polarization of gravitons propagating in a curved spacetime cause the quantum vacuum to act as a dispersive medium with a refractive index. Due to this dispersive medium gravitons acquire superluminal velocities. The dispersive medium is produced by higher derivative curvature contributions to the effective gravitational action. It is shown that in a Friedmann-Lema\\^{i}tre-Robertson-Walker spacetime in the early universe near the Planck time $t_{\\rm PL}\\g...
Bonnor, W. B.; Piper, M. S.
1997-01-01
Einstein's equations admit solutions corresponding to photon rockets. In these a massive particle recoils because of the anisotropic emission of photons. In this paper we ask whether rocket motion can be powered only by the emission of gravitational waves. We use the double series approximation method and show that this is possible. A loss of mass and gain in momentum arise in the second approximation because of the emission of quadrupole and octupole waves.
Extended Theories of Gravitation
Directory of Open Access Journals (Sweden)
Fatibene Lorenzo
2013-09-01
Full Text Available Within the framework of extended theories of gravitation we shall discuss physical equivalences among different formalisms and classical tests. As suggested by the Ehlers-Pirani-Schild framework, the conformal invariance will be preserved and its effect on observational protocols discussed. Accordingly, we shall review standard tests showing how Palatini f(R-theories naturally passes solar system tests. Observation protocols will be discussed in this wider framework.
Gravitational effects in dendritic growth
Glicksman, M. E.; Singh, N. B.; Chopra, M.
1983-01-01
The theories of diffusion-controlled dendritic crystallization will be reviewed briefly, along with recently published critical experiments on the kinetics and morphology of dendritic growth in pure substances. The influence of the gravitational body force on dendrite growth kinetics will be shown to be highly dependent on the growth orientation with respect to the gravity vector and on the level of the thermal supercooling. In fact, an abrupt transition occurs at a critical supercooling, above which diffusional transport dominates the growth process and below which convective transport dominates. Our most recent work on binary mixtures shows that dilute solute additions influence the crystallization process indirectly, by altering the interfacial stability, rather than by directly affecting the transport mode. Directions for future studies in this field will also be discussed.
Centrifuges in gravitational physiology research
Ballard, Rodney W.; Davies, Phil; Fuller, Charles A.
1993-01-01
Data from space flight and ground based experiments have clearly demonstrated the importance of Earth gravity for normal physiological function in man and animals. Gravitational Physiology is concerned with the role and influence of gravity on physiological systems. Research in this field examines how we perceive and respond to gravity and the mechanisms underlying these responses. Inherent in our search for answers to these questions is the ability to alter gravity, which is not physically possible without leaving Earth. However, useful experimental paradigms have been to modify the perceived force of gravity by changing either the orientation of subjects to the gravity vector (i.e., postural changes) or by applying inertial forces to augment the magnitude of the gravity vector. The later technique has commonly been used by applying centripetal force via centrifugation.
Directory of Open Access Journals (Sweden)
Zaqueu Fernando Montezano
2006-10-01
ídios para a racionalização do uso de insumos.Insights on the variability of soil fertility in cultivated areas can contribute significantly to a rationalized use of fertilizers and soil amendments. The objective of this study was to determine the soil fertility variability through the fractionation of a commercial corn field into small management cells. The study was carried out on the farm Alto Alegre, Planaltina, GO, Brazil, on an Oxisol previously under Cerrado (savannah in an area of 373 ha under corn in the 2003/2004 growing season. A polygon was outlined and divided into 80 management cells of 4 ha each. The soil was sampled at twelve points along the plot diagonal to constitute a representative composite sample within each cell. The coordinates of these points were obtained and recorded. The soil samples were analyzed for texture and soil fertility. The yield for each cell was obtained with a harvester equipped with a Global Positioning System (GPS and grain yield monitor. Descriptive statistics parameters were considered in the analysis of data variability. It was carried out Pearson's simple linear correlation analysis at 5 and 1% significance level for soil fertility versus corn grain yield and altitude data. The variability was considered high for soil available phosphorus, copper and zinc concentrations; medium for soil organic matter, sulphur, calcium, and magnesium concentrations, potential acidity, sum of bases, CEC, base saturation, boron, iron as well as manganese concentration, but low for soil pH and potassium concentration. Linear correlation coefficients (LCC were significant and positive for soil organic matter and boron content versus corn yield. However, the LCC for copper, manganese and zinc content were significant and negative. Although it is normally not possible to isolate or measure all biotic and abiotic factors that affect the yield in field scale studies, knowledge on soil fertility variability and grain yield can contribute to a
Directory of Open Access Journals (Sweden)
Zaqueu Fernando Montezano
2008-12-01
Full Text Available O conhecimento da variabilidade da nutrição de plantas e da produtividade em áreas cultivadas pode fornecer importantes subsídios na racionalização do uso de insumos e auxiliar no manejo da fertilidade do solo. O objetivo deste trabalho foi avaliar a variabilidade da nutrição mineral de plantas de milho por meio do fracionamento de um talhão cultivado comercialmente em células de manejo e verificar as relações com a produtividade. O estudo foi realizado na Fazenda Alto Alegre, em Planaltina (GO, em área de 373 hectares de Latossolo Vermelho-Amarelo Distroférrico, cultivado com milho na safra 2003/04. Traçado um polígono da área, procedeu-se sua divisão em 80 células de manejo de quatro hectares cada uma. A amostragem de folhas em cada célula seguiu uma diagonal com 12 pontos para compor uma amostra composta. Realizou-se a análise dos macro e micronutrientes nas folhas. A produtividade para cada célula foi obtida por meio de colhedora equipada com GPS. Na análise da variabilidade dos resultados foram considerados os parâmetros estatísticos descritivos. O teste ausência de correlação foi realizado com o nível de significância de 5%. A variabilidade da concentração dos nutrientes na folha indicadora do milho foi considerada baixa para N, P, K, S e Mg; e média para Ca, Cu, Fe, Mn e Zn. A variabilidade da produtividade de milho revelou diferenças de produção para cada célula analisada. Os coeficientes de correlação entre os nutrientes e a produtividade foram significativamente diferentes de zero (pThe knowledge of variability of plant nutrition and grain productivity in cultivated areas may provide important information for rational use of fertilizers and soil amendments. The objective of this case study was to determine the corn plant mineral nutrition variability through the fractionation of a commercial grown corn field into small management cells. The study was carried out at the farm Alto Alegre in
Flows and chemical reactions in homogeneous mixtures
Prud'homme, Roger
2013-01-01
Flows with chemical reactions can occur in various fields such as combustion, process engineering, aeronautics, the atmospheric environment and aquatics. The examples of application chosen in this book mainly concern homogeneous reactive mixtures that can occur in propellers within the fields of process engineering and combustion: - propagation of sound and monodimensional flows in nozzles, which may include disequilibria of the internal modes of the energy of molecules; - ideal chemical reactors, stabilization of their steady operation points in the homogeneous case of a perfect mixture and c
LIGO GW150914 and GW151226 gravitational wave detection and generalized gravitation theory (MOG
Directory of Open Access Journals (Sweden)
J.W. Moffat
2016-12-01
Full Text Available The nature of gravitational waves in a generalized gravitation theory is investigated. The linearized field equations and the metric tensor quadrupole moment power and the decrease in radius of an inspiralling binary system of two compact objects are derived. The generalized Kerr metric describing a spinning black hole is determined by its mass M and the spin parameter a=cS/GM2. The LIGO-Virgo collaboration data is fitted with smaller binary black hole masses in agreement with the current electromagnetic, observed X-ray binary upper bound for a black hole mass, M≲10M⊙.
HOMOGENEOUS NUCLEAR POWER REACTOR
King, L.D.P.
1959-09-01
A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.
Gravitational lensing by black holes: The case of Sgr A*
Energy Technology Data Exchange (ETDEWEB)
Bozza, V. [Dipartimento di Fisica E.R. Caianiello, Università di Salerno, Italy. Istituto Nazionale di Fisica Nucleare, Sezione di Napoli (Italy)
2014-01-14
The strong gravitational fields created by black holes dramatically affect the propagation of photons by bending their trajectories. Gravitational lensing thus stands as the main source of information on the space-time structure in such extreme regimes. We will review the theory and phenomenology of gravitational lensing by black holes, with the generation of higher order images and giant caustics by rotating black holes. We will then focus on Sgr A*, the black hole at the center of the Milky Way, for which next-to-come technology will be able to reach resolutions of the order of the Schwarzschild radius and ultimately test the existence of an event horizon.
Gravity, antigravity and gravitational shielding in (2+1) dimensions
Energy Technology Data Exchange (ETDEWEB)
Accioly, Antonio; Helayel-Neto, Jose; Lobo, Matheus, E-mail: accioly@cbpf.b, E-mail: helayel@cbpf.b, E-mail: lobo@ift.unesp.b [Group of Field Theory from First Principles, Centro Brasileiro de Pesquisas FIsicas (CBPF), Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil)
2009-07-07
Higher-derivative terms are introduced into three-dimensional gravity, thereby allowing for a dynamical theory. The resulting system, viewed as a classical field model, is endowed with a novel and peculiar feature: its nonrelativistic potential describes three gravitational regimes. Depending on the choice of the parameters in the action functional, one obtains gravity, antigravity or gravitational shielding. Interesting enough, this potential is very similar, mutatis mutandis, to the potential for the interaction of two superconducting vortices. Furthermore, the gravitational deflection angle of a light ray, unlike that of Einstein gravity in (2+1) dimensions, is dependent on the impact parameter.
Gravity, antigravity and gravitational shielding in (2+1) dimensions
Accioly, Antonio; Helayël-Neto, José; Lobo, Matheus
2009-07-01
Higher-derivative terms are introduced into three-dimensional gravity, thereby allowing for a dynamical theory. The resulting system, viewed as a classical field model, is endowed with a novel and peculiar feature: its nonrelativistic potential describes three gravitational regimes. Depending on the choice of the parameters in the action functional, one obtains gravity, antigravity or gravitational shielding. Interesting enough, this potential is very similar, mutatis mutandis, to the potential for the interaction of two superconducting vortices. Furthermore, the gravitational deflection angle of a light ray, unlike that of Einstein gravity in (2+1) dimensions, is dependent on the impact parameter.
Homogenization scheme for acoustic metamaterials
Yang, Min
2014-02-26
We present a homogenization scheme for acoustic metamaterials that is based on reproducing the lowest orders of scattering amplitudes from a finite volume of metamaterials. This approach is noted to differ significantly from that of coherent potential approximation, which is based on adjusting the effective-medium parameters to minimize scatterings in the long-wavelength limit. With the aid of metamaterials’ eigenstates, the effective parameters, such as mass density and elastic modulus can be obtained by matching the surface responses of a metamaterial\\'s structural unit cell with a piece of homogenized material. From the Green\\'s theorem applied to the exterior domain problem, matching the surface responses is noted to be the same as reproducing the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost exactly with numerical simulations and experiments and the scheme\\'s validity is constrained by the number of dominant surface multipoles instead of the usual long-wavelength assumption. In particular, the validity extends to the full band in one dimension and to regimes near the boundaries of the Brillouin zone in two dimensions.
Gravitational wave experiments in Russia
Rudenko, V. N.
2017-11-01
A brief summary is given of experimental research on the detection of extraterrestrial gravitational radiation performed in Russia since the late 1960s. Various aspects of this topic are reviewed, including experiments with resonant detectors, geophysical methods for detecting low-frequency gravitational waves, and high-frequency versions of the gravitational ‘Hertz experiment’. A description is given of the current situation concerning the unique optoacoustic gravitational detector OGRAN mounted in the underground laboratory of the Baksan neutrino observatory, Institute for Nuclear Research, Russian Academy of Sciences. Prospects are examined for building a long-base gravitational wave interferometer in Russia that would be integrated into a global network of gravitational antennas.
Anisotropic Bulk Viscous String Cosmological Model in a Scalar-Tensor Theory of Gravitation
Directory of Open Access Journals (Sweden)
D. R. K. Reddy
2013-01-01
Full Text Available Spatially homogeneous, anisotropic, and tilted Bianchi type-VI0 model is investigated in a new scalar-tensor theory of gravitation proposed by Saez and Ballester (1986 when the source for energy momentum tensor is a bulk viscous fluid containing one-dimensional cosmic strings. Exact solution of the highly nonlinear field equations is obtained using the following plausible physical conditions: (i scalar expansion of the space-time which is proportional to the shear scalar, (ii the barotropic equations of state for pressure and energy density, and (iii a special law of variation for Hubble’s parameter proposed by Berman (1983. Some physical and kinematical properties of the model are also discussed.
Propagation of gravitational waves in the nonperturbative spinor vacuum
Energy Technology Data Exchange (ETDEWEB)
Dzhunushaliev, Vladimir [Al-Farabi Kazakh National University, Department of Theoretical and Nuclear Physics, Almaty (Kazakhstan); Al-Farabi Kazakh National University, Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Eurasian National University, Institute for Basic Research, Astana (Kazakhstan); Institute of Physicotechnical Problems and Material Science of the NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan); Folomeev, Vladimir [Institute of Physicotechnical Problems and Material Science of the NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan)
2014-09-15
The propagation of gravitational waves on the background of a nonperturbative vacuum of a spinor field is considered. It is shown that there are several distinctive features in comparison with the propagation of plane gravitational waves through empty space: there exists a fixed phase difference between the h{sub yy,zz} and h{sub yz} components of the wave; the phase and group velocities of gravitational waves are not equal to the velocity of light; the group velocity is always less than the velocity of light; under some conditions the gravitational waves are either damped or absent; for given frequency, there exist two waves with different wave vectors. We also discuss the possibility of an experimental verification of the obtained effects as a tool to investigate nonperturbative quantum field theories. (orig.)
The birth of the gravitational-wave astronomy
Coccia, Eugenio
2017-05-01
Last years marked the beginning of a new era of observations of the Universe. Gravitational waves were detected from a binary black-hole merger by the Advanced LIGO detectors. Simultaneously, LISA Pathfinder demonstrated the technology for gravitational-wave observation in space beyond its planned requirements. Many gravitational observations and discoveries are expected in the next years with the Advanced LIGO and Virgo detectors, with strong impact on various astrophysical fields, from the physics governing compact object formation and evolution to the physics of the emission process and to nuclear astrophysics. I summarize here some historical milestones that led to the first detection and report the perspectives of the field. I also discuss the importance of the so-called multimessenger astronomy in which gravitational-wave sources will be observed in all bands of the electromagnetic spectrum with ground and space observatories and with neutrino telescopes.
Quantum Emulation of Gravitational Waves.
Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel
2015-07-14
Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.
Ising Spins on a Gravitating Sphere
Holm, Christian; Janke, Wolfhard
1995-01-01
We investigated numerically an Ising model coupled to two-dimensional Euclidean gravity with spherical topology, using Regge calculus with the $dl/l$ path-integral measure to discretize the gravitational interaction. Previous studies of this system with toroidal topology have shown that the critical behavior of the Ising model remains in the flat-space Onsager universality class, contrary to the predictions of conformal field theory and matrix models. Implementing the spherical topology as tr...
Anti-de Sitter gravitational collapse
Husain, V; Preston, B; Birukou, M
2003-01-01
We describe a formalism for studying spherically symmetric collapse of the massless scalar field in any spacetime dimension, and for any value of the cosmological constant LAMBDA. The formalism is used for numerical simulations of gravitational collapse in four spacetime dimensions with negative LAMBDA. We observe critical behaviour at the onset of black-hole formation, and find that the critical exponent is independent of LAMBDA. (letter to the editor)
UNIVERSAL GRAVITATION AND MAGNETISM OF THE PLANETS
Directory of Open Access Journals (Sweden)
E.V. Savich
2013-10-01
Full Text Available The cores of the Solar System planets and the Sun are magnetized bodies, with the field of S-intensity, molten by the temperature of over million degrees. As similarly charged bodies, they interact with each other via repulsive forces that are considered, in the mechanism of gravitational attraction action, as resultant forces retaining the planets on the orbits at their inertial motion about the Sun.
Outlook for Detecting Gravitational Waves with Pulsars
Kohler, Susanna
2016-04-01
Though the recent discovery of GW150914 is a thrilling success in the field of gravitational-wave astronomy, LIGO is only one tool the scientific community is using to hunt for these elusive signals. After 10 years of unsuccessful searching, how likely is it that pulsar-timing-array projects will make their own first detection soon?Frequency ranges for gravitational waves produced by different astrophysical sources. Pulsar timing arrays such as the EPTA and IPTA are used to detect low-frequency gravitational waves generated by the stochastic background and supermassive black hole binaries. [Christopher Moore, Robert Cole and Christopher Berry]Supermassive BackgroundGround-based laser interferometers like LIGO are ideal for probing ripples in space-time caused by the merger of stellar-mass black holes; these mergers cause chirps in the frequency range of tens to thousands of hertz. But how do we pick up the extremely low-frequency, nanohertz background signal caused by the orbits of pairs of supermassive black holes? For that, we need pulsar timing arrays.Pulsar timing arrays are sets of pulsars whose signals are analyzed to look for correlations in the pulse arrival time. As the space-time between us and a pulsar is stretched and then compressed by a passing gravitational wave, the pulsars pulses should arrive a little late and then a little early. Comparing these timing residuals in an array of pulsars could theoretically allow for the detection of the gravitational waves causing them.Globally, there are currently four pulsar timing array projects actively searching for this signal, with a fifth planned for the future. Now a team of scientists led by Stephen Taylor (NASA-JPL/Caltech) has estimated the likelihood that these projects will successfully detect gravitational waves in the future.Probability for SuccessExpected detection probability of the gravitational-wave background as a function of observing time, for five different pulsar timing arrays. Optimistic
Massive scalar counterpart of gravitational waves in scalarized neutron star binaries
Energy Technology Data Exchange (ETDEWEB)
Wang, Jing [Sun Yat-sen University, School of Physics and Astronomy, Guangzhou (China)
2017-09-15
In analogy with spontaneous magnetization of ferromagnets below the Curie temperature, a neutron star (NS), with a compactness above a certain critical value, may undergo spontaneous scalarization and exhibit an interior nontrivial scalar configuration. Consequently, the exterior spacetime is changed, and an external scalar field appears, which subsequently triggers a scalarization of its companion. The dynamical interplay produces a gravitational scalar counterpart of tensor gravitational waves. In this paper, we resort to scalar-tensor theory and demonstrate that the gravitational scalar counterpart from a double neutron star (DNS) and a neutron star-white dwarf (NS-WD) system become massive. We report that (1) a gravitational scalar background field, arising from convergence of external scalar fields, plays the role of gravitational scalar counterpart in scalarized DNS binary, and the appearance of a mass-dimensional constant in a Higgs-like gravitational scalar potential is responsible for a massive gravitational scalar counterpart with a mass of the order of the Planck scale; (2) a dipolar gravitational scalar radiated field, resulting from differing binding energies of NS and WD, plays the role of a gravitational scalar counterpart in scalarized orbital shrinking NS-WDs, which oscillates around a local and scalar-energy-density-dependent minimum of the gravitational scalar potential and obtains a mass of the order of about 10{sup -21} eV/c{sup 2}. (orig.)
Massive scalar counterpart of gravitational waves in scalarized neutron star binaries
Wang, Jing
2017-09-01
In analogy with spontaneous magnetization of ferromagnets below the Curie temperature, a neutron star (NS), with a compactness above a certain critical value, may undergo spontaneous scalarization and exhibit an interior nontrivial scalar configuration. Consequently, the exterior spacetime is changed, and an external scalar field appears, which subsequently triggers a scalarization of its companion. The dynamical interplay produces a gravitational scalar counterpart of tensor gravitational waves. In this paper, we resort to scalar-tensor theory and demonstrate that the gravitational scalar counterpart from a double neutron star (DNS) and a neutron star-white dwarf (NS-WD) system become massive. We report that (1) a gravitational scalar background field, arising from convergence of external scalar fields, plays the role of gravitational scalar counterpart in scalarized DNS binary, and the appearance of a mass-dimensional constant in a Higgs-like gravitational scalar potential is responsible for a massive gravitational scalar counterpart with a mass of the order of the Planck scale; (2) a dipolar gravitational scalar radiated field, resulting from differing binding energies of NS and WD, plays the role of a gravitational scalar counterpart in scalarized orbital shrinking NS-WDs, which oscillates around a local and scalar-energy-density-dependent minimum of the gravitational scalar potential and obtains a mass of the order of about 10^{-21} { {eV/c}}^2.
Gravitational sedimentation of gold nanoparticles.
Alexander, Colleen M; Dabrowiak, James C; Goodisman, Jerry
2013-04-15
We study the gravitational sedimentation of citrate- or ascorbate-capped spherical gold nanoparticles (AuNP) by measuring the absorption-vs.-time curve produced as the particles sediment through the optical beam of a spectrophotometer, and comparing the results with a calculated sedimentation curve. TEM showed the AuNP had gold-core diameters of 12.1±0.6, 65.0±5.2, 82.5±5.2 or 91.8±6.2 nm, and gave diameter distribution histograms. The Mason-Weaver sedimentation-diffusion equation was solved for various particle diameters and the solutions were weighted with the TEM histogram and the size-dependent extinction coefficient, for comparison with absorbance-vs.-time curve obtained from freshly prepared suspensions of the AuNP. For particles having average gold-core diameters of 12.1±0.6, 65.0±5.2 and 82.5±5.2 nm, very good agreement exists between the theoretical and observed curves, showing that the particles sediment individually and that the diameter of the gold core is the important factor controlling sedimentation. For the largest particles, observed and calculated curves generally agree, but the former shows random effects consistent with non-homogeneous domains in the sample. Unlike TEM, the simple and unambiguous sedimentation experiment detects all the particles in the sample and can in principle be used to derive the true size histogram. It avoids artifacts of TEM sampling and shear forces of ultracentrifugation. We also show how information about the size histogram can be obtained from the sedimentation curve. Copyright © 2013 Elsevier Inc. All rights reserved.
Gravitation as a Plastic Distortion of the Lorentz Vacuum
Fernández, Virginia Velma
2010-01-01
Addressing graduate students and researchers in theoretical physics and mathematics, this book presents a new formulation of the theory of gravity. In the new approach the gravitational field has the same ontology as the electromagnetic, strong, and weak fields. In other words it is a physical field living in Minkowski spacetime. Some necessary new mathematical concepts are introduced and carefully explained. Then they are used to describe the deformation of geometries, the key to describing the gravitational field as a plastic deformation of the Lorentz vacuum. It emerges after further analysis that the theory provides trustworthy energy-momentum and angular momentum conservation laws, a feature that is normally lacking in General Relativity.
Superstatistics and Gravitation
Directory of Open Access Journals (Sweden)
Octavio Obregón
2010-09-01
Full Text Available We suggest to consider the spacetime as a non-equilibrium system with a long-term stationary state that possess as a spatio-temporally fluctuating quantity ß . These systems can be described by a superposition of several statistics, superstatistics. We propose a Gamma distribution for f(ß that depends on a parameter ρ1. By means of it the corresponding entropy is calculated, ρ1 is identified with the probability corresponding to this model. A generalized Newton’s law of gravitation is then obtained following the entropic force formulation. We discuss some of the difficulties to try to get an associated theory of gravity.
Chirped-Frequency Excitation of Gravitationally Bound Ultracold Neutrons
Manfredi, Giovanni; Morandi, Omar; Friedland, Lazar; Jenke, Tobias; Abele, Hartmut
2015-01-01
Ultracold neutrons confined in the Earth's gravitational field display quantized energy levels that have been observed for over a decade. In recent resonance spectroscopy experiments [T. Jenke et al., Nature Phys. 7, 468 (2011)], the transition between two such gravitational quantum states was driven by the mechanical oscillation of the plates that confine the neutrons. Here we show that, by applying a sinusoidal modulation with slowly varying frequency (chirp), the neutrons can be brought to...
Pulsar polarization measurements and the nonsymmetric gravitational theory
Krisher, Timothy P.
1991-01-01
Because of the breakdown of the Einstein equivalence principle in the nonsymmetric gravitational theory (NGT) of Moffat, orthogonally polarized electromagnetic waves can propagate at different velocities in a gravitational field. Moffat has proposed that galactic dark matter, in the form of cosmions, may act as a significant source of gravity in the NGT. We discuss how observations of the highly polarized radiation from distant pulsars could provide significant limits on the strength of the coupling of cosmions in the NGT.
Constraining Relativistic Generalizations of Modified Newtonian Dynamics with Gravitational Waves
Chesler, Paul M.; Loeb, Abraham
2017-07-01
In the weak-field limit of general relativity, gravitational waves obey linear equations and propagate at the speed of light. These properties of general relativity are supported by the observation of ultrahigh-energy cosmic rays as well as by LIGO's recent detection of gravitation waves. We argue that two existing relativistic generalizations of modified Newtonian dynamics, namely, the generalized Einstein-aether theory and bimetric modified Newtonian dynamics, display fatal inconsistencies with these observations.
Constraining Relativistic Generalizations of Modified Newtonian Dynamics with Gravitational Waves.
Chesler, Paul M; Loeb, Abraham
2017-07-21
In the weak-field limit of general relativity, gravitational waves obey linear equations and propagate at the speed of light. These properties of general relativity are supported by the observation of ultrahigh-energy cosmic rays as well as by LIGO's recent detection of gravitation waves. We argue that two existing relativistic generalizations of modified Newtonian dynamics, namely, the generalized Einstein-aether theory and bimetric modified Newtonian dynamics, display fatal inconsistencies with these observations.
Search For Gravitational Waves Through the Electromagnetic Faraday Rotation
Halilsoy, Mustafa; Gürtuğ, Özay
2006-01-01
A method is given which renders indirect detection of strong gravitational waves possible. This is based on the reflection (collision) of a linearly polarized electromagnetic shock wave from (with) a cross polarized impulsive and shock gravitational waves in accordance with the general theory of relativity. This highly non-linear process induces a detectable Faraday rotation in the polarization vector of the electromagnetic field. The file in this item is the publisher version (published v...
Pseudoconvex and Disprisoning Homogeneous Sprays
Riego, L D
1994-01-01
The pseudoconvex and disprisoning conditions for geodesics of linear connections are extended to the solution curves of general homogeneous sprays. The main result is that pseudoconvexity and disprisonment are jointly stable in the fine topology on the space of all homogeneous sprays of any degree of homogeneity.
Invariant Matsumoto metrics on homogeneous spaces
Salimi Moghaddam, H.R.
2014-01-01
In this paper we consider invariant Matsumoto metrics which are induced by invariant Riemannian metrics and invariant vector fields on homogeneous spaces, and then we give the flag curvature formula of them. Also we study the special cases of naturally reductive spaces and bi-invariant metrics. We end the article by giving some examples of geodesically complete Matsumoto spaces.
Inverse acoustic problem of N homogeneous scatterers
DEFF Research Database (Denmark)
Berntsen, Svend
2002-01-01
The three-dimensional inverse acoustic medium problem of N homogeneous objects with known geometry and location is considered. It is proven that one scattering experiment is sufficient for the unique determination of the complex wavenumbers of the objects. The mapping from the scattered fields...
Hammond, R.P.; Busey, H.M.
1959-02-17
Nuclear reactors of the homogeneous liquid fuel type are discussed. The reactor is comprised of an elongated closed vessel, vertically oriented, having a critical region at the bottom, a lower chimney structure extending from the critical region vertically upwardly and surrounded by heat exchanger coils, to a baffle region above which is located an upper chimney structure containing a catalyst functioning to recombine radiolyticallydissociated moderator gages. In operation the liquid fuel circulates solely by convection from the critical region upwardly through the lower chimney and then downwardly through the heat exchanger to return to the critical region. The gases formed by radiolytic- dissociation of the moderator are carried upwardly with the circulating liquid fuel and past the baffle into the region of the upper chimney where they are recombined by the catalyst and condensed, thence returning through the heat exchanger to the critical region.
Gravitational Neurobiology of Fish
Rahmann, H.; Anken, R. H.
In vertebrates (including man), altered gravitational environments such as weightlessness can induce malfunctions of the inner ears, based on irregular movements of the semicircular cristae or on dislocations of the inner ear otoliths from the corresponding sensory epithelia. This will lead to illusionary tilts, since the vestibular inputs are not confirmed by the other sensory organs, which results in an intersensory conflict. Vertebrates in orbit therefore face severe orientation problems. In humans, the intersensory conflict may additionally lead to a malaise, commonly referred to as space motion sickness (SMS), a kinetosis. During the first days at weightlessness, the orientation problems (and SMS) disappear, since the brain develops a new compensatory interpretation of the available sensory data. The present review reports on the neurobiological responses - particularly of fish - observed at altered gravitational states, concerning behaviour and neuroplastic reactivities. Recent investigations employing microgravity (spaceflight, parabolic aircraft flights, clinostat) and hyper-gravity (laboratory centrifuges as ground based research tools) yielded clues and insights into the understanding of the respective basic phenomena
Gravitational Entropy and Inflation
Directory of Open Access Journals (Sweden)
Øystein Elgarøy
2013-09-01
Full Text Available The main topic of this paper is a description of the generation of entropy at the end of the inflationary era. As a generalization of the present standard model of the Universe dominated by pressureless dust and a Lorentz invariant vacuum energy (LIVE, we first present a flat Friedmann universe model, where the dust is replaced with an ideal gas. It is shown that the pressure of the gas is inversely proportional to the fifth power of the scale factor and that the entropy in a comoving volume does not change during the expansion. We then review different measures of gravitational entropy related to the Weyl curvature conjecture and calculate the time evolution of two proposed measures of gravitational entropy in a LIVE-dominated Bianchi type I universe, and a Lemaitre-Bondi-Tolman universe with LIVE. Finally, we elaborate upon a model of energy transition from vacuum energy to radiation energy, that of Bonanno and Reuter, and calculate the time evolution of the entropies of vacuum energy and radiation energy. We also calculate the evolution of the maximal entropy according to some recipes and demonstrate how a gap between the maximal entropy and the actual entropy opens up at the end of the inflationary era.
Vazquez, J. A.
2007-12-01
This research is focus in the integrable approximation of the gravity potencial of a new model that can be interpreted as a new alternative of solution in the problem of the two centers fixed. The solution of the diferential equations that describe the motion of a particle in a specific gravity field was reduced to the form of quadratures by using the Jacobi method in ellipsoidal coordinates. Circular trayectories of the particle were determined and also an investigation was performed based on the particle stability according to Liapunov theory. Bifurcation flows of Poincare-Chetaev and Smale were also constructed (in the plane of the integration constants) concerning different types of possible orbits according to Alekseev´s theory for the case of reduced systems as a function of the constant of areas and in terms of the energy constant. In this matter the following types of trayectories were investigated: 1 Motion among surfaces of an hyperboloid and an ellipsoid; 2 Motion among surfaces of ellipsoids and the interior of a hyperboloid; 3 Motion (not restricted) in the interior of a hyperboloid; 4 Motion (not restricted) in the interior of a hyperboloid and in the exterior of an ellipsoid; 5 Motion (not restricted) in the exterior of an ellipsoid and in the interior o a hyperboloid.
Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors.
Gair, Jonathan R; Vallisneri, Michele; Larson, Shane L; Baker, John G
2013-01-01
We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10-5 - 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.
Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors
Directory of Open Access Journals (Sweden)
John G. Baker
2013-09-01
Full Text Available We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10^{-5} – 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.
Topics in Gravitation and Cosmology
Bahrami Taghanaki, Sina
This thesis is focused on two topics in which relativistic gravitational fields play an important role, namely early Universe cosmology and black hole physics. The theory of cosmic inflation has emerged as the most successful theory of the very early Universe with concrete and verifiable predictions for the properties of anisotropies of the cosmic microwave background radiation and large scale structure. Coalescences of black hole binaries have recently been detected by the Laser Interferometer Gravitational Wave Observatory (LIGO), opening a new arena for observationally testing the dynamics of gravity. In part I of this thesis we explore some modifications to the standard theory of inflation. The main predictions of single field slow-roll inflation have been largely consistent with cosmological observations. However, there remain some aspects of the theory that are not presently well understood. Among these are the somewhat interrelated issues of the choice of initial state for perturbations and the potential imprints of pre-inflationary dynamics. It is well known that a key prediction of the standard theory of inflation, namely the Gaussianity of perturbations, is a consequence of choosing a natural vacuum initial state. In chapter 3, we study the generation and detectability of non-Gaussianities in inflationary scalar perturbations that originate from more general choices of initial state. After that, in chapter 4, we study a simple but predictive model of pre-inflationary dynamics in an attempt to test the robustness of inflationary predictions. We find that significant deviations from the standard predictions are unlikely to result from models in which the inflaton field decouples from the pre-inflationary degrees of freedom prior to freeze-out of the observable modes. In part II we turn to a study of an aspect of the thermodynamics of black holes, a subject which has led to important advances in our understanding of quantum gravity. For objects which
Gravitational Casimir–Polder effect
Directory of Open Access Journals (Sweden)
Jiawei Hu
2017-04-01
Full Text Available The interaction due to quantum gravitational vacuum fluctuations between a gravitationally polarizable object modelled as a two-level system and a gravitational boundary is investigated. This quantum gravitational interaction is found to be position-dependent, which induces a force in close analogy to the Casimir–Polder force in the electromagnetic case. For a Dirichlet boundary, the quantum gravitational potential for the polarizable object in its ground-state is shown to behave like z−5 in the near zone, and z−6 in the far zone, where z is the distance to the boundary. For a concrete example, where a Bose–Einstein condensate is taken as a gravitationally polarizable object, the relative correction to the radius of the BEC caused by fluctuating quantum gravitational waves in vacuum is found to be of order 10−21. Although the correction is far too small to observe in comparison with its electromagnetic counterpart, it is nevertheless of the order of the gravitational strain caused by a recently detected black hole merger on the arms of the LIGO.
Exact piecewise flat gravitational waves
van de Meent, M.|info:eu-repo/dai/nl/314007067
2011-01-01
We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to
The gravitational dynamics of galaxies
Indian Academy of Sciences (India)
The broad area of galactic dynamics is presented for a physics audience, with the requisite astronomy background in outline, and focusing on gravitational effects. The basic underlying model is a large number of particles (which could be stars or dark matter) moving in their self-consistent gravitational potential. The effects ...
Vignettes in Gravitation and Cosmology
Sriramkumar, L
2012-01-01
This book comprises expository articles on different aspects of gravitation and cosmology that are aimed at graduate students. The topics discussed are of contemporary interest assuming only an elementary introduction to gravitation and cosmology. The presentations are to a certain extent pedagogical in nature, and the material developed is not usually found in sufficient detail in recent textbooks in these areas.
The gravitational properties of antimatter
Energy Technology Data Exchange (ETDEWEB)
Goldman, T.; Hughes, R.J.; Nieto, M.M.
1986-09-01
It is argued that a determination of the gravitational acceleration of antimatter towards the earth is capable of imposing powerful constraints on modern quantum gravity theories. Theoretical reasons to expect non-Newtonian non-Einsteinian effects of gravitational strength and experimental suggestions of such effects are reviewed. 41 refs. (LEW)
Inflationary gravitational waves in collapse scheme models
Directory of Open Access Journals (Sweden)
Mauro Mariani
2016-01-01
Full Text Available The inflationary paradigm is an important cornerstone of the concordance cosmological model. However, standard inflation cannot fully address the transition from an early homogeneous and isotropic stage, to another one lacking such symmetries corresponding to our present universe. In previous works, a self-induced collapse of the wave function has been suggested as the missing ingredient of inflation. Most of the analysis regarding the collapse hypothesis has been solely focused on the characteristics of the spectrum associated to scalar perturbations, and within a semiclassical gravity framework. In this Letter, working in terms of a joint metric-matter quantization for inflation, we calculate, for the first time, the tensor power spectrum and the tensor-to-scalar ratio corresponding to the amplitude of primordial gravitational waves resulting from considering a generic self-induced collapse.
Inflationary gravitational waves in collapse scheme models
Energy Technology Data Exchange (ETDEWEB)
Mariani, Mauro, E-mail: mariani@carina.fcaglp.unlp.edu.ar [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina); Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); León, Gabriel, E-mail: gleon@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria – Pab. I, 1428 Buenos Aires (Argentina)
2016-01-10
The inflationary paradigm is an important cornerstone of the concordance cosmological model. However, standard inflation cannot fully address the transition from an early homogeneous and isotropic stage, to another one lacking such symmetries corresponding to our present universe. In previous works, a self-induced collapse of the wave function has been suggested as the missing ingredient of inflation. Most of the analysis regarding the collapse hypothesis has been solely focused on the characteristics of the spectrum associated to scalar perturbations, and within a semiclassical gravity framework. In this Letter, working in terms of a joint metric-matter quantization for inflation, we calculate, for the first time, the tensor power spectrum and the tensor-to-scalar ratio corresponding to the amplitude of primordial gravitational waves resulting from considering a generic self-induced collapse.
Gravitational Wave in Linear General Relativity
Cubillos, D. J.
2017-07-01
General relativity is the best theory currently available to describe the interaction due to gravity. Within Albert Einstein's field equations this interaction is described by means of the spatiotemporal curvature generated by the matter-energy content in the universe. Weyl worked on the existence of perturbations of the curvature of space-time that propagate at the speed of light, which are known as Gravitational Waves, obtained to a first approximation through the linearization of the field equations of Einstein. Weyl's solution consists of taking the field equations in a vacuum and disturbing the metric, using the Minkowski metric slightly perturbed by a factor ɛ greater than zero but much smaller than one. If the feedback effect of the field is neglected, it can be considered as a weak field solution. After introducing the disturbed metric and ignoring ɛ terms of order greater than one, we can find the linearized field equations in terms of the perturbation, which can then be expressed in terms of the Dalambertian operator of the perturbation equalized to zero. This is analogous to the linear wave equation in classical mechanics, which can be interpreted by saying that gravitational effects propagate as waves at the speed of light. In addition to this, by studying the motion of a particle affected by this perturbation through the geodesic equation can show the transversal character of the gravitational wave and its two possible states of polarization. It can be shown that the energy carried by the wave is of the order of 1/c5 where c is the speed of light, which explains that its effects on matter are very small and very difficult to detect.
Gravitational microlensing of gamma-ray blazars
DEFF Research Database (Denmark)
F. Torres, Diego; E. Romero, Gustavo; F. Eiroa, Ernesto
2003-01-01
We present a detailed study of the effects of gravitational microlensing on compact and distant $\\gamma$-ray blazars. These objects have $\\gamma$-ray emitting regions which are small enough as to be affected by microlensing effects produced by stars lying in intermediate galaxies. We analyze...... the temporal evolution of the gamma-ray magnification for sources moving in a caustic pattern field, where the combined effects of thousands of stars are taken into account using a numerical technique. We propose that some of the unidentified $\\gamma$-ray sources (particularly some of those lying at high...... galactic latitude whose gamma-ray statistical properties are very similar to detected $\\gamma$-ray blazars) are indeed the result of gravitational lensing magnification of background undetected Active Galactic Nuclei (AGNs)....
Gravitational waves from Higgs domain walls
Directory of Open Access Journals (Sweden)
Naoya Kitajima
2015-05-01
Full Text Available The effective potential for the Standard Model Higgs field allows two quasi-degenerate vacua; one is our vacuum at the electroweak scale, while the other is at a much higher scale. The latter minimum may be at a scale much smaller than the Planck scale, if the potential is lifted by new physics. This gives rise to a possibility of domain wall formation after inflation. If the high-scale minimum is a local minimum, domain walls are unstable and disappear through violent annihilation processes, producing a significant amount of gravitational waves. We estimate the amount of gravitational waves produced from unstable domain walls in the Higgs potential and discuss detectability with future experiments.
Enabling the Discovery of Gravitational Radiation
Isaacson, Richard
2017-01-01
The discovery of gravitational radiation was announced with the publication of the results of a physics experiment involving over a thousand participants. This was preceded by a century of theoretical work, involving a similarly large group of physicists, mathematicians, and computer scientists. This huge effort was enabled by a substantial commitment of resources, both public and private, to develop the different strands of this complex research enterprise, and to build a community of scientists to carry it out. In the excitement following the discovery, the role of key enablers of this success has not always been adequately recognized in popular accounts. In this talk, I will try to call attention to a few of the key ingredients that proved crucial to enabling the successful discovery of gravitational waves, and the opening of a new field of science.
Black Hole Kicks as New Gravitational Wave Observables.
Gerosa, Davide; Moore, Christopher J
2016-07-01
Generic black hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick, velocity to the merger remnant. If a component of the kick along the line of sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational wave experiments will be able to perform direct measurements, not only of the black hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black hole kick velocities as low as ∼500 km s^{-1}, which are expected to be a common outcome of black hole binary coalescence following galaxy mergers. Black hole kicks thus constitute a promising new observable in the growing field of gravitational wave astronomy.
Gravitational and electric energies in collapse of spherically thin capacitor
Ruffini, Remo
2013-01-01
In our previous article (PHYSICAL REVIEW D 86, 084004 (2012)), we present a study of strong oscillating electric fields and electron-positron pair-production in gravitational collapse of a neutral stellar core at or over nuclear densities. In order to understand the back-reaction of such electric energy building and radiating on collapse, we adopt a simplified model describing the collapse of a spherically thin capacitor to give an analytical description how gravitational energy is converted to both kinetic and electric energies in collapse. It is shown that (i) averaged kinetic and electric energies are the same order, about an half of gravitational energy of spherically thin capacitor in collapse; (ii) caused by radiating and rebuilding electric energy, gravitational collapse undergoes a sequence of "on and off" hopping steps in the microscopic Compton scale. Although such a collapse process is still continuous in terms of macroscopic scales, it is slowed down as kinetic energy is reduced and collapsing tim...
Motion of photons in a gravitational wave background
Chang, Zhe; Huang, Chao-Guang; Zhao, Zhi-Chao
2017-09-01
Photon motion in a Michelson interferometer is re-analyzed in terms of both geometrical optics and wave optics. The classical paths of the photons in the background of a gravitational wave are derived from the Fermat principle, which is the same as the null geodesics in general relativity. The deformed Maxwell equations and the wave equations of electric fields in the background of a gravitational wave are presented in a flat-space approximation. Both methods show that even the envelope of the response of an interferometer depends on the frequency of a gravitational wave, but it is almost independent of the frequency of the mirror’s vibrations. Supported by National Natural Science Foundation of China (11275207, 11375203, 11690022, 11675182) and Strategic Priority Research Program of the Chinese Academy of Sciences “Multi-waveband Gravitational Wave Universe” (XDB23040000)
Black-hole kicks as new gravitational-wave observables
Gerosa, Davide
2016-01-01
Generic black-hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick velocity to the merger remnant. If a component of the kick along the line-of-sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler-shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational-wave experiments will be able to perform direct measurements, not only of the black-hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black-hole kick velocities as low as ~500 km/s, which are expected to be a common outcome of black-hole binary coalescence following galaxy mergers. Black-hole kicks thus constitute a promising new observable in the growing field of gravitational-wave astronomy.
Cosmic matter-antimatter asymmetry and gravitational force
Hsu, J. P.
1980-01-01
Cosmic matter-antimatter asymmetry due to the gravitational interaction alone is discussed, considering the gravitational coupling of fermion matter related to the Yang-Mills (1954) gauge symmetry with the unique generalization of the four-dimensional Poincare group. Attention is given to the case of weak static fields which determines the space-time metric where only large source terms are retained. In addition, considering lowest-order Feynman diagrams, there are presented gravitational potential energies between fermions, between antifermions, and between a fermion and an antifermion. It is concluded that the gravitational force between matter is different from that between antimatter; implications from this concerning the evolution of the universe are discussed.
The Science of Gravitational Waves with Space Observatories
Thorpe, James Ira
2013-01-01
After decades of effort, direct detection of gravitational waves from astrophysical sources is on the horizon. Aside from teaching us about gravity itself, gravitational waves hold immense promise as a tool for general astrophysics. In this talk I will provide an overview of the science enabled by a space-based gravitational wave observatory sensitive in the milli-Hertz frequency band including the nature and evolution of massive black holes and their host galaxies, the demographics of stellar remnant compact objects in the Milky Way, and the behavior of gravity in the strong-field regime. I will also summarize the current status of efforts in the US and Europe to implement a space-based gravitational wave observatory.
Development of Mirror Coatings for Gravitational Wave Detectors
Directory of Open Access Journals (Sweden)
Stuart Reid
2016-11-01
Full Text Available The first detections of gravitational waves, GW150914 and GW151226, were associated with the coalescence of stellar mass black holes, heralding the opening of an entirely new way to observe the Universe. Many decades of development were invested to achieve the sensitivities required to observe gravitational waves, with peak strains associated with GW150914 at the level of 10−21. Gravitational wave detectors currently operate as modified Michelson interferometers, where thermal noise associated with the highly reflective mirror coatings sets a critical limit to the sensitivity of current and future instruments. This article presents an overview of the mirror coating development relevant to gravitational wave detection and the prospective for future developments in the field.
Gravitational wave experiments
Hamilton, W O
1993-01-01
There were three oral sessions and one poster session for Workshop C1 on Gravitational Wave Experiments. There was also an informal experimental roundtable held one after- noon. The ﬁrst two oral sessions were devoted mainly to progress reports from various interferometric and bar detector groups. A total of 15 papers were presented in these two sessions. The third session of Workshop C1 was devoted primarily to theoretical and experimental investigations associated with the proposed interferometric detectors. Ten papers were presented in this session. In addition, there were a total of 13 papers presented in the poster session. There was some overlap between the presentations in the third oral session and the posters since only two of the serious posters were devoted to technology not pertinent to interferometers. In general, the papers showed the increasing maturity of the experimental aspects of the ﬁeld since most presented the results of completed investigations rather than making promises of wonderf...
D'Eliseo, Maurizio M.
2009-02-01
The elliptical orbit of the classical gravitational two-body problem can be determined by studying the free oscillations about a circular motion or the small motions around a fixed point in a rotating reference frame. In this last schematization we approximate the differential equation of motion by a succession of simple equations we solve iteratively, obtaining a piecemeal determination of the position vector r formally expressed in terms of Laurent polynomials, from which we quickly deduce the explicit time-dependent expressions in the form of complex trigonometric polynomials. This approach can also be used in the presence of perturbing forces and, by way of illustration, we study the effects of a small linear repulsive force on the elliptical orbit.