WorldWideScience

Sample records for homogeneous catalytic hydrogenation

  1. Homogeneous catalytic hydrogenation of bio-oil and related model aldehydes with RuCl{sub 2}(PPh{sub 3}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.; Li, W.; Lu, Q.; Zhu, X. [Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei (China)

    2010-12-15

    A homogeneous RuCl{sub 2}(PPh{sub 3}){sub 3} catalyst was prepared for the hydrogenation of bio-oil to improve its stability and fuel quality. Experiments were first performed on three model aldehydes of acetaldehyde, furfural and vanillin selected to represent the linear aldehydes, oxygen heterocyclic aldehydes and aromatic aldehydes in bio-oil. The results demonstrated the high hydrogenation capability of this homogeneous catalyst under mild conditions (55-90 C, 1.3-3.3 MPa). The highest conversion of the three model aldehydes was over 90 %. Furfural and acetaldehyde were singly converted to furfuryl alcohol and ethanol after hydrogenation, while vanillin was mainly converted to vanillin alcohol, together with a small amount of 2-methoxy-4-methylphenol and 2-methoxyphenol. Further experiments were conducted on a bio-oil fraction extracted by ethyl acetate and on the whole bio-oil at 70 C and 3.3 MPa. Most of the aldehydes were transformed to the corresponding alcohols, and some ketones and compounds with C-C double bond were converted to more stable compounds. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions.

    Science.gov (United States)

    Pritchard, James; Filonenko, Georgy A; van Putten, Robbert; Hensen, Emiel J M; Pidko, Evgeny A

    2015-06-07

    The catalytic reduction of carboxylic acid derivatives has witnessed a rapid development in recent years. These reactions, involving molecular hydrogen as the reducing agent, can be promoted by heterogeneous and homogeneous catalysts. The milestone achievements and recent results by both approaches are discussed in this Review. In particular, we focus on the mechanistic aspects of the catalytic hydrogenation and highlight the bifunctional nature of the mechanism that is preferred for supported metal catalysts as well as homogeneous transition metal complexes.

  3. Catalytic hydrogenation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, B.B.

    1992-12-01

    This project is focused on developing strategies to accomplish the reduction and hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. Our approaches to this issue are based on the recognition that rhodium macrocycles have unusually favorable thermodynamic values for producing a series of intermediate implicated in the catalytic hydrogenation of CO. Observations of metalloformyl complexes produced by reactions of H{sub 2} and CO, and reductive coupling of CO to form metallo {alpha}-diketone species have suggested a multiplicity of routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in constructing energy profiles for a variety of potential pathways, and these schemes are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Variation of the electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Emerging knowledge of the factors that contribute to M-H, M-C and M-O bond enthalpies is directing the search for ligand arrays that will expand the range of metal species that have favorable thermodynamic parameters to produce the primary intermediates for CO hydrogenation. Studies of rhodium complexes are being extended to non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics. Multifunctional catalyst systems designed to couple the ability of rhodium complexes to produce formyl and diketone intermediates with a second catalyst that hydrogenates these imtermediates are promising approaches to accomplish CO hydrogenation at mild conditions.

  4. Hydrogenation of carboxylic acids with a homogeneous cobalt catalyst.

    Science.gov (United States)

    Korstanje, Ties J; van der Vlugt, Jarl Ivar; Elsevier, Cornelis J; de Bruin, Bas

    2015-10-16

    The reduction of esters and carboxylic acids to alcohols is a highly relevant conversion for the pharmaceutical and fine-chemical industries and for biomass conversion. It is commonly performed using stoichiometric reagents, and the catalytic hydrogenation of the acids previously required precious metals. Here we report the homogeneously catalyzed hydrogenation of carboxylic acids to alcohols using earth-abundant cobalt. This system, which pairs Co(BF4)2·6H2O with a tridentate phosphine ligand, can reduce a wide range of esters and carboxylic acids under relatively mild conditions (100°C, 80 bar H2) and reaches turnover numbers of up to 8000. Copyright © 2015, American Association for the Advancement of Science.

  5. Advanced Catalytic Hydrogenation Retrofit Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reinaldo M. Machado

    2002-08-15

    Industrial hydrogenation is often performed using a slurry catalyst in large stirred-tank reactors. These systems are inherently problematic in a number of areas, including industrial hygiene, process safety, environmental contamination, waste production, process operability and productivity. This program proposed the development of a practical replacement for the slurry catalysts using a novel fixed-bed monolith catalyst reactor, which could be retrofitted onto an existing stirred-tank reactor and would mitigate many of the minitations and problems associated with slurry catalysts. The full retrofit monolith system, consisting of a recirculation pump, gas/liquid ejector and monolith catalyst, is described as a monolith loop reactor or MLR. The MLR technology can reduce waste and increase raw material efficiency, which reduces the overall energy required to produce specialty and fine chemicals.

  6. Gold colloids: from quasi-homogeneous to heterogeneous catalytic systems.

    Science.gov (United States)

    Prati, Laura; Villa, Alberto

    2014-03-18

    Ruby red colloids of gold have been used for thousands of years and in the past have attracted much attention due to their optical properties. Surface plasmon resonance (SPR) bands are responsible for gold colloid colors and typically appear for nanometer-sized gold nanoparticles (GNPs). These lie in the visible range and their position (and intensity) depends on the size, distribution of size, and shape of GNPs but also on their interaction with other materials (i.e., support). Scientists consider colloids as quasi-homogeneous systems, but because of their intrinsic thermodynamic instability, they need different capping agents providing sufficient stability. The strength and the nature of the interaction between the protective (or functionalizing) molecule and the GNP surface is of utmost importance. It can determine the catalytic properties of the nanoparticles, as they mainly interact with the active sites, thus interfering with reactant. Therefore, the protective layer should contribute to the colloid stability, but at the same time, it should not be irreversibly adsorbed on the active site of the GNP surface providing convenient accessibility to reactant. From a catalytic point of view, the milder the interaction is between the particle surface and the capping agent, the more the activity increases. Unfortunately, the reaction conditions often do not allow the required stability of GNPs, which constitutes a fundamental prerequisite for stable catalytic activity. Anchoring GNPs on suitable supports can circumvent the problem, and this technique is now considered a valuable alternative to classical methods to produce highly dispersed gold catalysts. In this Account, we describe the advantages in using this technique to produce gold heterogeneous catalysts of high metal dispersion on a large variety of supports with the possibility of tuning to a large extent the size and (even partially) the shape of GNPs. We also review our recent progress on the sol

  7. INNOVATIVE CATALYTIC MATERIALS FOR HYDROGEN PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    M.S. El Ouchdi, L. Cherif, R. Bachir, A. Choukchou-Braham, S. Merad-Bedrane [Laboratory of Catalysis and Synthesis in Organic Chemistry, University of Tlemcen, Chemistry Department, Tiemcen (Algeria)

    2008-09-30

    One of the greatest revolutions in the 20th century is that of transport. Inventions of cars, trucks, and airplanes have created a new world that has become increasingly dependent on combustion of hydrocarbon fuels such as gasoline, diesel fuel, and jet fuel. Major environmental global problems are due to emissions of pollutants from fuels combustion, such as NOx, SOx, particulate matter and greenhouse gases (CO2 , CH4 , etc.). The present work is devoted to the study of ethanol catalytic steam reforming. The challenge is a high yield in hydrogen and a high selectivity towards CO2 . The reaction is classically carried out over transition metal catalysts supported on Al2O3, MgO, ZnO and SiO2. Our innovation consists in using mesoporous materials such as SBA-15, Al-SBA-15, CMK3 and mesoporous Alumina known for very interesting and large catalytic properties as supports for our metal catalysts. Cupper and nickel were used as active metal phase. The interest of our work is to obtain high activities under mild conditions. In fact, catalytic tests were carried out in gas phase at 300 C and atmospheric pressure. Ethanol and water were automatically injected with a constant velocity of 0.033 cm3 min-1 and a molar ratio ethanol/water = 1/3. Such operating conditions could be easily reproduced on-board. Catalysts were fully characterized using XRD, EM, TPR and metal loading analysis. Influence of the nature and the structure of the mesoporous support, the nature of the metal, the preparation way, the metal loading and catalysts pre-treatment was checked. A correlation between the materials' properties and catalytic activities will be suggested. All these results will be widely discussed during the presentation.

  8. Catalytic glycerol steam reforming for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Monica, E-mail: monica.dan@itim-cj.ro; Mihet, Maria, E-mail: maria.mihet@itim-cj.ro; Lazar, Mihaela D., E-mail: diana.lazar@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj Napoca (Romania)

    2015-12-23

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterized through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  9. Homogenous asymmetric hydrogenation: Recent trends and industrial applications.

    Science.gov (United States)

    Palmer, Andreas M; Zanotti-Gerosa, Antonio

    2010-01-01

    Recent advances in the field of homogeneous asymmetric hydrogenation are presented in this review. An analysis of academic literature published in the past 2 years highlights significant advances in the asymmetric hydrogenation of functional groups that previously were considered difficult to hydrogenate, as well as the emergence of novel concepts in catalysis, such as the use of non-traditional metals, phosphine-free catalysts and chiral counterions. An analysis of industry publications from 2009 and 2010 highlights more established applications of asymmetric hydrogenation reactions; these are discussed with a particular focus on practical aspects, such as catalyst selection, experimental conditions and the removal of metal residues.

  10. Microchannel Reactor System for Catalytic Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  11. New mechanistic aspects of the asymmetric homogeneous hydrogenation of alkenes.

    Science.gov (United States)

    Brown, J M; Giernoth, R

    2000-11-01

    Progress in homogeneous catalysis depends upon an understanding of the reaction mechanism; in asymmetric catalysis this entails an insight into the origins of enantioselectivity. Significant advances have been made in the area of alkene reduction catalyzed by rhodium or ruthenium complexes, which has been in tandem with the development of new, more effective ligands for the reaction. The combination of quantum chemical calculations and direct spectroscopic observation of catalytic intermediates has proved powerful in this regard.

  12. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols.

    Science.gov (United States)

    Sordakis, Katerina; Tang, Conghui; Vogt, Lydia K; Junge, Henrik; Dyson, Paul J; Beller, Matthias; Laurenczy, Gábor

    2017-10-06

    Hydrogen gas is a storable form of chemical energy that could complement intermittent renewable energy conversion. One of the main disadvantages of hydrogen gas arises from its low density, and therefore, efficient handling and storage methods are key factors that need to be addressed to realize a hydrogen-based economy. Storage systems based on liquids, in particular, formic acid and alcohols, are highly attractive hydrogen carriers as they can be made from CO2 or other renewable materials, they can be used in stationary power storage units such as hydrogen filling stations, and they can be used directly as transportation fuels. However, to bring about a paradigm change in our energy infrastructure, efficient catalytic processes that release the hydrogen from these molecules, as well as catalysts that regenerate these molecules from CO2 and hydrogen, are required. In this review, we describe the considerable progress that has been made in homogeneous catalysis for these critical reactions, namely, the hydrogenation of CO2 to formic acid and methanol and the reverse dehydrogenation reactions. The dehydrogenation of higher alcohols available from renewable feedstocks is also described. Key structural features of the catalysts are analyzed, as is the role of additives, which are required in many systems. Particular attention is paid to advances in sustainable catalytic processes, especially to additive-free processes and catalysts based on Earth-abundant metal ions. Mechanistic information is also presented, and it is hoped that this review not only provides an account of the state of the art in the field but also offers insights into how superior catalytic systems can be obtained in the future.

  13. An investigation of turbulent catalytically stabilized channel flow combustion of lean hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Benz, P.; Schaeren, R.; Bombach, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The catalytically stabilised thermal combustion (CST) of lean hydrogen-air mixtures was investigated numerically in a turbulent channel flow configuration using a two-dimensional elliptic model with detailed heterogeneous and homogeneous chemical reactions. Comparison between turbulent and laminar cases having the same incoming mean properties shows that turbulence inhibits homogeneous ignition due to increased heat transport away from the near-wall layer. The peak root-mean-square temperature and species fluctuations are always located outside the extent of the homogeneous reaction zone indicating that thermochemical fluctuations have no significant influence on gaseous combustion. (author) 4 figs., 6 refs.

  14. Catalytic partial oxidation of methanol and ethanol for hydrogen generation.

    Science.gov (United States)

    Hohn, Keith L; Lin, Yu-Chuan

    2009-01-01

    Hydrogen-powered fuel cell vehicles feature high energy efficiency and minor environmental impact. Liquid fuels are ideal hydrogen carriers, which can catalytically be converted into syngas or hydrogen to power vehicles. Among the potential liquid fuels, alcohols have several advantages. The hydrogen/carbon ratio is higher than that of other liquid hydrocarbons or oxygenates, especially in the case of methanol. In addition, alcohols can be derived from renewable biomass resources. Catalytic partial oxidation of methanol or ethanol offers immense potential for onboard hydrogen generation due to its rapid reaction rate and exothermic nature. These benefits stimulate a burgeoning research community in catalyst design, reaction engineering, and mechanistic investigation. The purpose of this Minireview is to provide insight into syngas and hydrogen production from methanol and ethanol partial oxidation, particularly highlighting catalytic chemistry.

  15. Homogeneous catalytic hydrogenation. 5. Regionselective reductions of mono- and polynuclear heteroaromatic model coal compounds using the (n sup 5 -pentamethylcyclopentadienyl) rhodium tris(acetonitrile) dictation as the catalyst precursor

    Energy Technology Data Exchange (ETDEWEB)

    Fish, R.H.; Baralt, E.; Smith, S.J. (University of California, Berkeley, CA (USA). Lawrence Berkeley Laboratory)

    1991-01-01

    The regioselective hydrogenation of representative mono- and polynuclear heteroaromatic nitrogen and sulfur model coal compounds such as 2-methylpyridine (1), quinoline (2), 2-methylquinoline (3), 5,6- and 7,8-benzoquinolines (4 and 5), acridine (6), and benzothiophene (7) was studied with the dicationic complex ({eta}{sup 5}-pentamethyl cyclopentadienyl) rhodium tris(acetonitrile) (Cp{sup {asterisk}}Rh(CH{sub 3}CN){sub 3}{sup 2+}) as the catalyst precursor. The order of relative rates as a function of structure was found to be 5{lt}{lt}{lt}6{lt}2{lt}4{lt}3{lt}7{lt}{lt}1. Replacement of H{sub 2} with D{sub 2} provided information on several of the mechanistic aspects of these selective hydrogenation reactions with compounds 2 and 7 as examples. 12 refs., 1 fig., 1 tab.

  16. Catalytic transfer-hydrogenations of olefins in glycerol

    Directory of Open Access Journals (Sweden)

    Adi Wolfson

    2010-11-01

    Full Text Available Glycerol has been successfully employed as a green solvent and hydrogen donor in the biphasic catalytic transfer-hydrogenation of olefins over Pd/C to yield the corresponding paraffins and dihydroxyacetone, respectively. The use of glycerol eased product separation and catalyst recycling and allowed for microwave-assisted reactions.

  17. THEORETICAL STUDY OF CATALYTIC HYDROGENATION OF ...

    African Journals Online (AJOL)

    Preferred Customer

    Hydrogen. (H2). Figure 1. Drawings of molecules contained in the chemical systems studied. During the hydrogenation process of each molecule, one atom of the hydrogen molecule is turned to the oxygen atom O of the adsorbed molecule. At the beginning of process, the distance of OH between those both atoms was 10 ...

  18. Short hydrogen bonds in the catalytic mechanism of serine proteases

    Directory of Open Access Journals (Sweden)

    VLADIMIR LESKOVAC

    2008-04-01

    Full Text Available The survey of crystallographic data from the Protein Data Bank for 37 structures of trypsin and other serine proteases at a resolution of 0.78–1.28 Å revealed the presence of hydrogen bonds in the active site of the enzymes, which are formed between the catalytic histidine and aspartate residues and are on average 2.7 Å long. This is the typical bond length for normal hydrogen bonds. The geometric properties of the hydrogen bonds in the active site indicate that the H atom is not centered between the heteroatoms of the catalytic histidine and aspartate residues in the active site. Taken together, these findings exclude the possibility that short “low-barrier” hydrogen bonds are formed in the ground state structure of the active sites examined in this work. Some time ago, it was suggested by Cleland that the “low-barrier hydrogen bond” hypothesis is operative in the catalytic mechanism of serine proteases, and requires the presence of short hydrogen bonds around 2.4 Å long in the active site, with the H atom centered between the catalytic heteroatoms. The conclusions drawn from this work do not exclude the validity of the “low-barrier hydrogen bond” hypothesis at all, but they merely do not support it in this particular case, with this particular class of enzymes.

  19. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation.

    Science.gov (United States)

    Hu, Peng; Fogler, Eran; Diskin-Posner, Yael; Iron, Mark A; Milstein, David

    2015-04-17

    Hydrogen is an efficient green fuel, but its low energy density when stored under high pressure or cryogenically, and safety issues, presents significant disadvantages; hence finding efficient and safe hydrogen carriers is a major challenge. Of special interest are liquid organic hydrogen carriers (LOHCs), which can be readily loaded and unloaded with considerable amounts of hydrogen. However, disadvantages include high hydrogen pressure requirements, high reaction temperatures for both hydrogenation and dehydrogenation steps, which require different catalysts, and high LOHC cost. Here we present a readily reversible LOHC system based on catalytic peptide formation and hydrogenation, using an inexpensive, safe and abundant organic compound with high potential capacity to store and release hydrogen, applying the same catalyst for loading and unloading hydrogen under relatively mild conditions. Mechanistic insight of the catalytic reaction is provided. We believe that these findings may lead to the development of an inexpensive, safe and clean liquid hydrogen carrier system.

  20. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    Science.gov (United States)

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  1. Homogeneous and heterogeneous catalytic oxidation of sulfides by H2O2 over zinc(II) compounds.

    Science.gov (United States)

    Nuzhdin, Alexey L; Dybtsev, Danil N; Fedin, Vladimir P; Bukhtiyarova, Galina A

    2009-12-21

    It has been recently shown that zinc compounds are effective catalysts for the oxidation of alkyl aryl sulfides to the corresponding sulfoxides in the presence of hydrogen peroxide. In this paper, we have investigated homogeneous and heterogeneous catalytic oxidation of sulfides by H(2)O(2) over Zn(NO(3))(2) x 6 H(2)O and the metal-organic porous material [Zn(2)(bdc)(L-lac)(dmf)] x DMF (where H(2)bdc = p-benzenedicarboxylic acid, H(2)lac = lactic acid), respectively. The experimental data can be explained by the proposed catalytic cycle which includes the activation of H(2)O(2) via coordination to Zn(II) ions followed by oxygen transfer step. In homogeneous conditions, the presence of a large amounts of H(2)O(2) results in the coordination of two molecules of hydrogen peroxide to Zn(II), so that sulfone is formed via transfer of two oxygen atoms from Zn(H(2)O)(4)(H(2)O(2))(2)(2+) active species. Contrary to the homogeneous system, the use of [Zn(2)(bdc)(L-lac)(dmf)] x DMF as catalyst does not lead to the formation of sulfone in the initial period of reaction. This is consistent with the proposed catalytic cycle of sulfoxidation as each Zn(II) center in the crystalline framework is able to activate only one H(2)O(2) molecule. Our investigations indicate that the sorption and activation of H(2)O(2) molecules by microporous framework [Zn(2)(bdc)(L-lac)(dmf)] occur faster than sulfide sorption and oxygen transfer.

  2. Numerical analysis of ammonia homogenization for selective catalytic reduction application.

    Science.gov (United States)

    Baleta, Jakov; Martinjak, Matija; Vujanović, Milan; Pachler, Klaus; Wang, Jin; Duić, Neven

    2017-12-01

    Selective catalytic reduction based on urea water solution as ammonia precursor is a promising method for the NOx abatement form exhaust gasses of mobile diesel engine units. It consists of injecting the urea-water solution in the hot flue gas stream and reaction of its products with the NOx over the catalyst surface. During this process flue gas enthalpy is used for the urea-water droplet heating and for the evaporation of water content. After water evaporates, thermolysis of urea occurs, during which ammonia, a known NOx reductant, and isocyanic acid are generated. The uniformity of the ammonia before the catalyst as well as ammonia slip to the environment are important counteracting design requirements, optimization of which is crucial for development of efficient deNOx systems. The aim of this paper is to show capabilities of the developed mathematical framework implemented in the commercial CFD code AVL FIRE®, to simulate physical processes of all relevant phenomena occurring during the SCR process including chemical reactions taking part in the catalyst. First, mathematical models for description of SCR process are presented and afterwards, models are used on the 3D geometry of a real SCR reactor in order to predict ammonia generation, NOx reduction and resulting ammonia slip. Influence of the injection direction and droplet sizes was also investigated on the same geometry. The performed study indicates importance of droplet sizes on the SCR process and shows that counterflow injection is beneficial, especially in terms of minimizing harmful ammonia slip to environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Theoretical study of catalytic hydrogenation of oxirane and its methyl ...

    African Journals Online (AJOL)

    C3H6O) is its methyl derivative. Theoretical studies on catalytic hydrogenation of both compounds, in presence of aluminium chloride (AlCl3) catalyst, are carried out. The products of reactions are ethanol and propan-1-ol from oxirane and ...

  4. High rates of catalytic hydrogen combustion with air over coated ...

    Indian Academy of Sciences (India)

    BHASKAR DEVU MUKRI

    2017-08-02

    Aug 2, 2017 ... High rates of catalytic hydrogen combustion with air over. Ti0.97Pd0.03O2−δ coated cordierite monolith. BHASKAR DEVU MUKRI. ∗ and M S HEGDE. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India. E-mail: bhaskardm@gmail.com. MS received 9 May 2017; ...

  5. THEORETICAL STUDY OF CATALYTIC HYDROGENATION OF ...

    African Journals Online (AJOL)

    Preferred Customer

    methyloxirane, respectively. According to the variations of chemical parameters throughout the processes, the mechanisms of both reactions have been proposed. KEY WORDS: Hydrogenation, Oxirane, Methyloxirane, Aluminium chloride, Propan-1-ol, Ethanol, HF, MP2,. DFT, B3LYP, lanl2dz basis set. INTRODUCTION.

  6. The risk of hydrogen explosion in a submarine p.I Catalytic combustion of hydrogen

    Directory of Open Access Journals (Sweden)

    Kłos Ryszard

    2016-09-01

    Full Text Available The series of articles discuss issues related to conducting high risk projects on the example of modernisation of hydrogen incinerators on a submarine. The article depicts a technical problem situation connected with catalytic hydrogen combustion on a submarine.

  7. Remediation of sulfidic wastewater by catalytic oxidation with hydrogen peroxide.

    Science.gov (United States)

    Ahmad, Naveed; Maitra, Saikat; Dutta, Binay Kanti; Ahmad, Farooq

    2009-01-01

    Oxidation of sulfide in aqueous solution by hydrogen peroxide was investigated in the presence of hydrated ferric oxide catalyst. The ferric oxide catalyst was synthesized by sol gel technique from ferric chloride and ammonia. The synthesized catalyst was characterized by Fourier transform infrared spectroscopy, X-Ray diffraction analysis, scanning electrom microscope and energy dispersive X-ray analysis. The catalyst was quite effective in oxidizing the sulfide by hydrogen peroxide. The effects of sulfide concentration, catalyst loading, H2O2 dosing and temperature on the kinetics of sulfide oxidation were investigated. Kinetic equations and activation energies for the catalytic oxidation reaction were calculated based on the experimental results.

  8. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  9. Development of a Practical Hydrogen Storage System Based on Liquid Organic Hydrogen Carriers and a Homogeneous Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Craig [Hawaii Hydrogen Carriers, LLC, Honolulu, HI (United States); Brayton, Daniel [Hawaii Hydrogen Carriers, LLC, Honolulu, HI (United States); Jorgensen, Scott W. [General Motors, LLC, Warren, MI (United States). Research and Development Center. Chemical and Material Systems Lab.; Hou, Peter [General Motors, LLC, Warren, MI (United States). Research and Development Center. Chemical and Material Systems Lab.

    2017-03-24

    The objectives of this project were: 1) optimize a hydrogen storage media based on LOC/homogeneous pincer catalyst (carried out at Hawaii Hydrogen Carriers, LLC) and 2) develop space, mass and energy efficient tank and reactor system to house and release hydrogen from the media (carried out at General Motor Research Center).

  10. Transfer Hydrogenation: Employing a Simple, In Situ Prepared Catalytic System

    KAUST Repository

    Ang, Eleanor Pei Ling

    2017-04-01

    Transfer hydrogenation has been recognized to be an important synthetic method in both academic and industrial research to obtain valuable products including alcohols. Transition metal catalysts based on precious metals, such as Ru, Rh and Ir, are typically employed for this process. In recent years, iron-based catalysts have attracted considerable attention as a greener and more sustainable alternative since iron is earth abundant, inexpensive and non-toxic. In this work, a combination of iron disulfide with chelating bipyridine ligand was found to be effective for the transfer hydrogenation of a variety of ketones to the corresponding alcohols in the presence of a simple base. It provided a convenient and economical way to conduct transfer hydrogenation. A plausible role of sulfide next to the metal center in facilitating the catalytic reaction is demonstrated.

  11. DWPF CATALYTIC HYDROGEN GENERATION PROGRAM - REVIEW OF CURRENT STATUS

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.

    2009-07-10

    Significant progress has been made in the past two years in improving the understanding of acid consumption and catalytic hydrogen generation during the Defense Waste Processing Facility (DWPF) processing of waste sludges in the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME). This report reviews issues listed in prior internal reviews, describes progress with respect to the recommendations made by the December 2006 external review panel, and presents a summary of the current understanding of catalytic hydrogen generation in the DWPF Chemical Process Cell (CPC). Noble metals, such as Pd, Rh, and Ru, are historically known catalysts for the conversion of formic acid into hydrogen and carbon dioxide. Rh, Ru, and Pd are present in the DWPF SRAT feed as by-products of thermal neutron fission of {sup 235}U in the original waste. Rhodium appears to become most active for hydrogen as the nitrite ion concentration becomes low (within a factor of ten of the Rh concentration). Prior to hydrogen generation, Rh is definitely active for nitrite destruction to N{sub 2}O and potentially active for nitrite to NO formation. These reactions are all consistent with the presence of a nitro-Rh complex catalyst, although definite proof for the existence of this complex during Savannah River Site (SRS) waste processing does not exist. Ruthenium does not appear to become active for hydrogen generation until nitrite destruction is nearly complete (perhaps less nitrite than Ru in the system). Catalytic activity of Ru during nitrite destruction is significantly lower than that of either Rh or Pd. Ru appears to start activating as Rh is deactivating from its maximum catalytic activity for hydrogen generation. The slow activation of the Ru, as inferred from the slow rate of increase in hydrogen generation that occurs after initiation, may imply that some species (perhaps Ru itself) has some bound nitrite on it. Ru, rather than Rh, is primarily responsible for the

  12. Reactivity and Catalytic Activity of Hydrogen Atom Chemisorbed Silver Clusters.

    Science.gov (United States)

    Manzoor, Dar; Pal, Sourav

    2015-06-18

    Metal clusters of silver have attracted recent interest of researchers as a result of their potential in different catalytic applications and low cost. However, due to the completely filled d orbital and very high first ionization potential of the silver atom, the silver-based catalysts interact very weakly with the reacting molecules. In the current work, density functional theory calculations were carried out to investigate the effect of hydrogen atom chemisorption on the reactivity and catalytic properties of inert silver clusters. Our results affirm that the hydrogen atom chemisorption leads to enhancement in the binding energy of the adsorbed O2 molecule on the inert silver clusters. The increase in the binding energy is also characterized by the decrease in the Ag-O and increase in the O-O bond lengths in the case of the AgnH silver clusters. Pertinent to the increase in the O-O bond length, a significant red shift in the O-O stretching frequency is also noted in the case of the AgnH silver clusters. Moreover, the hydrogen atom chemisorbed silver clusters show low reaction barriers and high heat of formation of the final products for the environmentally important CO oxidation reaction as compared to the parent catalytically inactive clusters. The obtained results were compared with those of the corresponding gold and hydrogen atom chemisorbed gold clusters obtained at the same level of theory. It is expected the current computational study will provide key insights for future advances in the design of efficient nanosilver-based catalysts through the adsorption of a small atom or a ligand.

  13. Catalytic decomposition of carbon-based liquid-phase chemical hydrogen storage materials for hydrogen generation under mild conditions

    National Research Council Canada - National Science Library

    Sánchez, Felipe; Motta, Davide; Dimitratos, Nikolaos

    2016-01-01

    ... investment, and low potential risks. In this review, we survey the progress made in hydrogen generation from carbon-based liquid-phase chemical hydrogen storage materials, focusing mainly on the catalytic decomposition of formic acid...

  14. Catalytic hydrogen peroxide decomposition La1-xSrxCoO3-δ perovskite oxides

    NARCIS (Netherlands)

    Dam, T.V.A.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert

    2005-01-01

    Lanthanide perovskite oxides are mentioned as material for hydrogen peroxide sensor because they can catalytically decompose hydrogen peroxide in an aqueous medium. The catalytic properties of these perovskite oxides to hydrogen peroxide are suggested due to their oxygen vacancies influenced by the

  15. Catalytic hydrogenation reactors for the fine chemicals industries. Their design and operation.

    NARCIS (Netherlands)

    Westerterp, K.R.; Molga, E.J.; van Gelder, K.B.

    1997-01-01

    The design and operation of reactors for catalytic, hydrogenation in the fine chemical industries are discussed. The requirements for a good multiproduct catalytic hydrogenation unit as well as the choice of the reactor type are considered. Packed bed bubble column reactors operated without hydrogen

  16. Catalytic steam reforming of ethanol for hydrogen production: Brief status

    Directory of Open Access Journals (Sweden)

    Bineli Aulus R.R.

    2016-01-01

    Full Text Available Hydrogen represents a promising fuel since it is considered as a cleanest energy carrier and also because during its combustion only water is emitted. It can be produced from different kinds of renewable feedstocks, such as ethanol, in this sense hydrogen could be treated as biofuel. Three chemical reactions can be used to achieve this purpose: the steam reforming (SR, the partial oxidation (POX and the autothermal reforming (ATR. In this study, the catalysts implemented in steam reforming of ethanol were reviewed. A wide variety of elements can be used as catalysts for this reaction, such as base metals (Ni, Cu and Co or noble metals (Rh, Pt and Ru usually deposited on a support material that increases surface area and improves catalytic function. The use of Rh, Ni and Pt supported or promoted with CeO2, and/or La2O3 shows excellent performance in ethanol SR catalytic process. The ratio of water to ethanol, reaction temperatures, catalysts loadings, selectivity and activity are also discussed as they are extremely important for high hydrogen yields.

  17. Collecting meaningful early-time kinetic data in homogeneous catalytic water oxidation with a sacrificial oxidant.

    Science.gov (United States)

    Vickers, James W; Sumliner, Jordan M; Lv, Hongjin; Morris, Mike; Geletii, Yurii V; Hill, Craig L

    2014-06-28

    As the field of water oxidation catalysis grows, so does the sophistication of the associated experimental apparatuses. However, problems persist in studying some of the most basic aspects of catalytic water oxidation including acquisition of satisfactory early-reaction-time kinetics and rapid quantification of O2 concentration. We seek to remedy these problems and through better experimental design, elucidate mechanistic aspects of catalytic water oxidation with theory backed by experimental data. Two new methods for evaluating homogeneous water oxidation catalysts by reaction with a stoichiometric oxidant are presented which eliminate problems of incomplete fast mixing and O2 measurement response time. These methods generate early-reaction-time kinetics that have previously been unavailable.

  18. Structured catalysts and reactors for three phase catalytic reactions: manipulating activity and selectivity in nitrite hydrogenation

    NARCIS (Netherlands)

    Brunet Espinosa, Roger

    2016-01-01

    This work aimed at fabricating structured catalytic reactors for fast multiphase reactions, namely, nitrite hydrogenation and H2O2 decomposition. These reactors allowed a better understanding of these reactions and an improvement in terms of catalytic activity and selectivity.

  19. Octadecyltrichlorosilane (OTS-coated ionic liquid drops: Micro-reactors for homogenous catalytic reactions at designated interfaces

    Directory of Open Access Journals (Sweden)

    Xiaoning Zhang

    2012-01-01

    Full Text Available An ionic liquid (IL, 1-butyl-3-methylimidazolium chloride ([Bmim]Cl can assemble on prefabricated carboxylic acid–terminated chemical patterns on octadecyltrichlorosilane (OTS film. The chemical pattern controls the position, shape and size of the IL on the surface. After the IL assembly – by incubating IL drops assembled on sample surface in an OTS silane vapor – an OTS layer was coated on the IL drop surface which encapsulated the IL drop. The OTS-coated capsule can exist stably under aqueous solution. The OTS coating protected the IL drops from being instantaneously dissolved by other solutions. We found that a homogenous catalyst (FeCl3 dissolved in [Bmim]Cl can be assembled together on the chemical patterns and subsequently encapsulated together with [Bmim]Cl by OTS coating. The pinhole defects within the vapor-coated silane layer provide space for the catalyst inside the capsule and reactants outside the capsule to meet and react. When the OTS-coated capsule containing a FeCl3/IL mixture was soaked under H2O2 solution, the Fe3+ ions catalyzed the decomposition reaction of hydrogen peroxide at the vapor-coated OTS-water interface. Since the shape and position of the interface is defined by the underneath chemical pattern, our findings show that the OTS-coated IL drops assembled on chemical patterns can be used as novel micro-reactors. This allows homogenous catalytic reactions to occur at the designated interfaces.

  20. Catalytic polymer membranes for high temperature hydrogenation of viscous liquids

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, D.; Bengtson, G. [GKSS Research Centre Geesthacht GmbH, Institute of Polymer Research, Max-Planck-Str. 1, 21502 Geesthacht (Germany)

    2006-05-15

    Polymeric membranes with high oil fluxes were developed and catalytically activated by a new route of direct calcination of polymeric membranes charged by Pd or Pt catalyst precursors. High concentrations of citric acid mixed with the precursors afforded a decrease of the calcination temperature to 175 C. Membrane reactor tests in the flow through contactor mode displayed high reactivities for sunflower oil hydrogenation. Pt showed a similar activity to Pd catalysts as measured by iodine value and generated about 13% less trans-isomers but 5% more stearic acid at an iodine value of 90. By means of alumina supported catalysts tests of methyl oleate (cis-C18:1) and methyl elaidate (trans-C18:1) hydrogenation exhibited a different pathway of reaction by either isomerization followed by reduction (Pd) or primarily direct reduction to methyl stearate (Pt). (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  1. Catalytic Hydrogenation Reaction of Naringin-Chalcone. Study of the Electrochemical Reaction

    Directory of Open Access Journals (Sweden)

    B. A. López de Mishima

    2000-03-01

    Full Text Available The electrocatalytic hydrogenation reaction of naringin derivated chalcone is studied. The reaction is carried out with different catalysts in order to compare with the classic catalytic hydrogenation.

  2. Catalytic currents of hydrogen in solutions of W(VI) and mandelic acid

    Energy Technology Data Exchange (ETDEWEB)

    Chikryzova, E.G.; Mashinskaya, S.Ya.

    1986-04-10

    An investigation was made of catalytic polarographic currents of hydrogen in acid dilute solutions of W(VI) with excess of mandelic acid. The nature of the current was studied, and a scheme for the catalytic process is proposed. The reduction of hydrogen ions is catalyzed by the complex (W(OH)HM)/sup 2 +/ adsorbed on the dropping mercury electrode.

  3. Noble metal ionic sites for catalytic hydrogen combustion: spectroscopic insights.

    Science.gov (United States)

    Deshpande, Parag A; Madras, Giridhar

    2011-01-14

    A catalytic hydrogen combustion reaction was carried out over noble metal catalysts substituted in ZrO(2) and TiO(2) in ionic form. The catalysts were synthesized by the solution combustion technique. The compounds showed high activity and CO tolerance for the reaction. The activity of Pd and Pt ion substituted TiO(2) was comparable and was higher than Pd and Pt ion substituted ZrO(2). The mechanisms of the reaction over the two supports were proposed by making use of the X-ray photoelectron spectroscopy and FT infrared spectroscopic observations. The reaction over ZrO(2) supported catalysts was proposed to take place by the utilization of the surface hydroxyl groups while the reaction over TiO(2) supported catalysts was hypothesized to be a hybrid mechanism utilizing surface hydroxyl groups and the lattice oxygen.

  4. Novel Applications of the Methyltrioxorhenium/Hydrogen Peroxide Catalytic System

    Energy Technology Data Exchange (ETDEWEB)

    Stankovic, Sasa [Iowa State Univ., Ames, IA (United States)

    2000-09-12

    Methylrhenium trioxide (MTO), CH3Re03, was first prepared in 1979. An improved synthetic route to MTO was devised from dirhenium heptoxide and tetramethyltin in the presence of hexafluoro glutaric anhydride was reported by Herrmann in 1992. During the course of research on this dissertation we uncovered other reactions where the presence or absence of pyridine can, in some cases dramatically, affect the reaction outcome. This dissertation consists of four chapters. The first two chapters deal with the ,oxidation of water sensitive olefinic compounds with the hydrogen perox’ide/MTO system. Chapters 111 and IV focus on the oxidation of hydrazones with the same catalytic system. Chapter I has been published in The Journal of Organic Chemistry and Chapter III in Chemical Communications. Chapters II and IV have been submitted for publication in The Journal of Organic Chemistry. Each section is selfcontained with its own equations, tables, figures and references. All of the work in this dissertation was performed by this author.

  5. Iron Phthalocyanine as New Efficient Catalyst for Catalytic Transfer Hydrogenation of Simple Aldehydes and Ketones

    Czech Academy of Sciences Publication Activity Database

    Bata, P.; Notheisz, F.; Klusoň, Petr; Zsigmond, A.

    2015-01-01

    Roč. 29, JAN 2015 (2015), s. 45-49 ISSN 0268-2605 Institutional support: RVO:67985858 Keywords : heterogenized complexes * catalytic transfer hydrogenation * reusable catalyst Subject RIV: CC - Organic Chemistry Impact factor: 2.452, year: 2015

  6. Tunable preparation of ruthenium nanoparticles with superior size-dependent catalytic hydrogenation properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuan; Luo, Yaodong; Yang, Xuan; Yang, Yaxin; Song, Qijun, E-mail: qsong@jiangnan.edu.cn

    2017-06-15

    Highlights: • A facile and efficient strategy is firstly developed for the synthesis of Ru NPs. • Ru NPs are stable and uniform with the controllable sizes from 2.6 to 51.5 nm. • Ru NPs exhibit size-dependent and superior catalytic hydrogenation activity. - Abstract: Ruthenium (Ru) featured with an unusual catalytic behavior is of great significance in several heterogeneous and electro-catalytic reactions. The preparation of tractable Ru nanocatalysts and the building of highly active catalytic system at ambient temperature remains a grand challenge. Herein, a facile strategy is developed for the controllable preparation of Ru nanoparticles (NPs) with the sizes ranging from 2.6 to 51.5 nm. Ru NPs show superior size-dependent catalytic performance with the best kinetic rate constant as high as −1.52 min{sup −1}, which could far surpass the other traditional noble metals. Ru NPs exert exceedingly efficient low-temperature catalytic activity and good recyclability in the catalytic reduction of nitroaromatic compounds (NACs) and azo dyes. The developed catalytic system provides a distinguishing insight for the artificial preparation of Ru NPs with desired sizes, and allows for the development of rational design rules for exploring catalysts with superior catalytic performances, potentially broadening the applications of metallic NP-enabled catalytic analysis.

  7. Effect of urea deproteinization on catalytic hydrogenation of natural rubber latex

    Science.gov (United States)

    Cifriadi, A.; Chalid, M.; Puspitasari, S.

    2017-07-01

    Natural rubber is unsaturated biopolymer which has low resistance to heat, oxygen, and ozone. Chemical modification of natural rubber by catalytic hydrogenation can improve its oxidative property. In this study, the catalytic hydrogenation of natural rubber was investigated in latex phase after reduction of protein content with urea. Hydrogenation of deproteinized natural rubber latex was performed by using diimide which generated insitu from hydrazine hydrate/hydrogen peroxide and catalyst (boric acid, cupric sulfate and cupric acetate) at 70°C for 5 h. The hydrogenation system was stabilized with sodium dodecyl sulphate. The hydrogenation of deproteinized natural rubber (HDPNR) was confirmed by FTIR analysis. The result indicated that cupric sulphate was extremely active catalyst which was showed by the elimination of C=C transmittance bands at 1660 cm-1 on HDPNR spectra and highest degree of hydrogenation. Furthermore, urea deproteinization increased possibility of side reactions during catalytic hydrogenation as seen on the reduction of gel content compared to undeproteinized natural rubber.

  8. Complex of titanocene with tolan as a catalyst for the homogeneous hydrogenation of unsaturated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shur, V.B.; Burlakov, V.V.; Vol' pin, M.E.

    1986-09-01

    The complex of titanocene with tolan (Cp/sub 2/Ti(C/sub 2/Ph/sub 2/)) (I) synthesized by the reaction of Cp/sub 2/TiCl/sub 2/ with magnesium and tolan in THF was found to be an effective catalyst for the homogeneous hydrogenation of olefins and acetylenes at 20 C atmospheric hydrogen pressure. The reaction was carried out with a substrate. Under the conditions of the experiment, tolan as well as cis- and trans-stilbenes are hydrogenated virtually quantitatively in a few minutes to dibenzyl. Similarly, styrene is converted to ethylbenzene, 3-hexyne is converted to hexane, 1-heptene is converted to heptane, cyclohexene is converted to cyclohexane, and trans, trans-1,4-diphenyl-1,3-butadiene is converted to 1,4-diphenylbutane. The authors' attempts to synthesize (Cp/sub 2/Ti(C/sub 2/Ph/sub 2/)) with tolan were unsucessful.

  9. Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes

    Directory of Open Access Journals (Sweden)

    Carmen Moreno-Marrodan

    2017-04-01

    Full Text Available The catalytic partial hydrogenation of substituted alkynes to alkenes is a process of high importance in the manufacture of several market chemicals. The present paper shortly reviews the heterogeneous catalytic systems engineered for this reaction under continuous flow and in the liquid phase. The main contributions appeared in the literature from 1997 up to August 2016 are discussed in terms of reactor design. A comparison with batch and industrial processes is provided whenever possible.

  10. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Susan K.; Zhang, Guoqi; Vasudevan, Kalyan V.

    2017-02-14

    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions (25-60.degree. C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  11. Homogeneous catalytic ozonation of C.I. Reactive Red 2 by metallic ions in a bubble column reactor.

    Science.gov (United States)

    Wu, Chung-Hsin; Kuo, Chao-Yin; Chang, Chung-Liang

    2008-06-15

    This study elucidates the decolorization of C.I. Reactive Red 2 (RR2) by homogeneous catalytic ozonation. The effects of pH and catalyst dosage were evaluated in O3/Mn(II), O3/Fe(II), O3/Fe(III), O3/Zn(II), O3/Co(II) and O3/Ni(II) systems. In O3/Mn(II), O3/Fe(II) and O3/Fe(III) systems, increasing the catalyst concentration increased the rate of RR2 decolorization; however, further increasing the catalyst concentration caused no further significant increase. When 0.6 mM catalyst was added, the decolorization rates of O3/Mn(II), O3/Fe(II), O3/Fe(III), O3/Zn(II), O3/Co(II) and O3/Ni(II) systems at pH 2 were 3.295, 1.299, 1.278, 1.015, 0.843 and 0.822 min(-1), respectively. Under all of the experimental conditions, the decolorization efficiency of catalytic ozonation exceeded that of ozonation alone. The decolorization rate markedly exceeds the TOC removal rate in all tested systems. The effect of the radical scavenger on the catalytic ozonation processes suggests that the decolorization reaction in catalytic ozonation systems proceeds by mainly radical-type mechanisms, except in the O3/Mn(II) system.

  12. High rates of catalytic hydrogen combustion with air over Ti ₀. ₉₇Pd ...

    Indian Academy of Sciences (India)

    High rates of catalytic hydrogen combustion with air over Ti ₀. ... For 50 mL of H ₂, it showed rates of the reaction around 36.45 μmol/g/s at room temperature and 230 μmol/g/s at 60◦C. It was found that the rate of reaction due ... Finally, we propose a mechanism of hydrogen and oxygen recombination reaction over Ti ₀.

  13. Carboxylated polymers functionalized by cyclodextrins for the stabilization of highly efficient rhodium(0) nanoparticles in aqueous phase catalytic hydrogenation.

    Science.gov (United States)

    Noël, Sébastien; Léger, Bastien; Herbois, Rudy; Ponchel, Anne; Tilloy, Sébastien; Wenz, Gerhard; Monflier, Eric

    2012-11-21

    Rhodium(0) nanoparticles stabilized by a polymer containing carboxylate and β-cyclodextrin moieties have high stability and catalytic activity for aqueous hydrogenation reactions of olefins and aromatic substrates. This catalytic system can be recycled and reused without loss of activity. These high catalytic performances can be attributed to conjugated electrostatic interactions (carboxylate groups) and steric interactions (polymer structure and β-cyclodextrin moiety).

  14. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.

    Science.gov (United States)

    Cortright, R D; Davda, R R; Dumesic, J A

    2002-08-29

    Concerns about the depletion of fossil fuel reserves and the pollution caused by continuously increasing energy demands make hydrogen an attractive alternative energy source. Hydrogen is currently derived from nonrenewable natural gas and petroleum, but could in principle be generated from renewable resources such as biomass or water. However, efficient hydrogen production from water remains difficult and technologies for generating hydrogen from biomass, such as enzymatic decomposition of sugars, steam-reforming of bio-oils and gasification, suffer from low hydrogen production rates and/or complex processing requirements. Here we demonstrate that hydrogen can be produced from sugars and alcohols at temperatures near 500 K in a single-reactor aqueous-phase reforming process using a platinum-based catalyst. We are able to convert glucose -- which makes up the major energy reserves in plants and animals -- to hydrogen and gaseous alkanes, with hydrogen constituting 50% of the products. We find that the selectivity for hydrogen production increases when we use molecules that are more reduced than sugars, with ethylene glycol and methanol being almost completely converted into hydrogen and carbon dioxide. These findings suggest that catalytic aqueous-phase reforming might prove useful for the generation of hydrogen-rich fuel gas from carbohydrates extracted from renewable biomass and biomass waste streams.

  15. Environmental Engineering of Pd Nanoparticle Catalysts for Catalytic Hydrogenation of CO2 and Bicarbonate.

    Science.gov (United States)

    Lee, Li-Chen; Xing, Xiaoyu; Zhao, Yan

    2017-10-24

    The extraordinary catalytic properties of enzymes are derived not only from their catalytic groups but also the unique properties of the active site. Tuning the microenvironment of synthetic catalysts is expected to enhance their performance if effective strategies can be developed. Interfacially cross-linked reverse micelles were prepared from three different cross-linkable surfactants. Pd nanoparticles were deposited in the core of the micelle for the catalytic hydrogenation of bicarbonate and CO2. The catalytic performance was found to depend heavily on the nature of the headgroup of the surfactant. Quaternary ammonium-based surfactants through ion exchange could bring bicarbonate to the catalytic center, whereas tertiary amine-based surfactants worked particularly well in CO2 hydrogenation, with turnover numbers an order of magnitude higher than that of commercially available Pd/C. The amines were proposed to bring CO2 to the proximity of the catalysts through reversible formation of carbamate, in the nanospace of the hydrophilic core of the cross-linked reverse micelle. In the bicarbonate reduction, additional improvement of the catalysts was achieved through localized sol-gel synthesis that introduced metal oxide near the catalytic metal.

  16. Method of generating hydrogen by catalytic decomposition of water

    Science.gov (United States)

    Balachandran, Uthamalingam; Dorris, Stephen E.; Bose, Arun C.; Stiegel, Gary J.; Lee, Tae-Hyun

    2002-01-01

    A method for producing hydrogen includes providing a feed stream comprising water; contacting at least one proton conducting membrane adapted to interact with the feed stream; splitting the water into hydrogen and oxygen at a predetermined temperature; and separating the hydrogen from the oxygen. Preferably the proton conducting membrane comprises a proton conductor and a second phase material. Preferable proton conductors suitable for use in a proton conducting membrane include a lanthanide element, a Group VIA element and a Group IA or Group IIA element such as barium, strontium, or combinations of these elements. More preferred proton conductors include yttrium. Preferable second phase materials include platinum, palladium, nickel, cobalt, chromium, manganese, vanadium, silver, gold, copper, rhodium, ruthenium, niobium, zirconium, tantalum, and combinations of these. More preferably second phase materials suitable for use in a proton conducting membrane include nickel, palladium, and combinations of these. The method for generating hydrogen is preferably preformed in the range between about 600.degree. C. and 1,700.degree. C.

  17. Hydrogen Production From catalytic reforming of greenhouse gases ...

    African Journals Online (AJOL)

    Hydrogen production from CO2 reforming of methane over 20wt%.Co/Nd2O3 has been investigated in a fixed bed stainless steel reactor. The 20wt%.Co/Nd2O3 catalyst was synthesized using wet impregnation method and characterized for thermal stability, textural property, crystallinity, morphology and nature of chemical ...

  18. Catalytic decomposition of methanol for onboard hydrogen generation

    Science.gov (United States)

    Brabbs, T.

    1978-01-01

    The steam reformation of an equimolar mixture of methanol and water on a copper chromite catalyst was studied at three furnace temperatures and at feed space velocities from 800 to 2600 per hour. The hydrogen space velocity could be related to the reactor temperature by the equation Sv = A exp (-omega T), where A and omega are constants determined for each value of alpha and T is temperature. At a methanol conversion of 0.87 and a reactor temperature of 589 K, the extrapolated value of the hydrogen space velocity was 9400 per hour. This velocity was used to estimate the size of an onboard hydrogen reactor for automotive applications. Such a reactor would need only about 0.8 liter of catalyst to produce 7630 STP liters (1.5 lb) of hydrogen per hour. This quantity of catalyst would fit into nine tubes 17.8 centimeters along and 2.54 centimeters in inside diameter, which is smaller than most mufflers. The reactor products would contain 12 to 13 percent more chemical energy than the incoming methanol and water.

  19. Catalytic Metal Free Production of Large Cage Structure Carbon Particles: A Candidate for Hydrogen Storage

    Science.gov (United States)

    Kimura, Yuki; Nuth, Joseph A., III; Ferguson, Frank T.

    2005-01-01

    We will demonstrate that carbon particles consisting of large cages can be produced without catalytic metal. The carbon particles were produced in CO gas as well as by introduction of 5% methane gas into the CO gas. The gas-produced carbon particles were able to absorb approximately 16.2 wt% of hydrogen. This value is 2.5 times higher than the 6.5 wt% goal for the vehicular hydrogen storage proposed by the Department of Energy in the USA. Therefore, we believe that this carbon particle is an excellent candidate for hydrogen storage for fuel cells.

  20. Low temperature catalytic combustion of natural gas - hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E.; Roth, F. von; Hottinger, P.; Truong, T.B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The low temperature catalytic combustion of natural gas - air mixtures would allow the development of no-NO{sub x} burners for heating and power applications. Using commercially available catalysts, the room temperature ignition of methane-propane-air mixtures has been shown in laboratory reactors with combustion efficiencies over 95% and maximum temperatures less than 700{sup o}C. After a 500 hour stability test, severe deactivation of both methane and propane oxidation functions was observed. In cooperation with industrial partners, scaleup to 3 kW is being investigated together with startup dynamics and catalyst stability. (author) 3 figs., 3 refs.

  1. Mitoxantrone removal by electrochemical method: A comparison of homogenous and heterogenous catalytic reactions

    Directory of Open Access Journals (Sweden)

    Abbas Jafarizad

    2017-08-01

    Full Text Available Background: Mitoxantrone (MXT is a drug for cancer therapy and a hazardous pharmaceutical to the environment which must be removed from contaminated waste streams. In this work, the removal of MXT by the electro-Fenton process over heterogeneous and homogenous catalysts is reported. Methods: The effects of the operational conditions (reaction medium pH, catalyst concentration and utilized current intensity were studied. The applied electrodes were carbon cloth (CC without any processing (homogenous process, graphene oxide (GO coated carbon cloth (GO/CC (homogenous process and Fe3O4@GO nanocomposite coated carbon cloth (Fe3O4@GO/CC (heterogeneous process. The characteristic properties of the electrodes were determined by atomic force microscopy (AFM, field emission scanning electron microscopy (FE-SEM and cathode polarization. MXT concentrations were determined by using ultraviolet-visible (UV-Vis spectrophotometer. Results: In a homogenous reaction, the high concentration of Fe catalyst (>0.2 mM decreased the MXT degradation rate. The results showed that the Fe3O4@GO/CC electrode included the most contact surface. The optimum operational conditions were pH 3.0 and current intensity of 450 mA which resulted in the highest removal efficiency (96.9% over Fe3O4@GO/CC electrode in the heterogeneous process compared with the other two electrodes in a homogenous process. The kinetics of the MXT degradation was obtained as a pseudo-first order reaction. Conclusion: The results confirmed the high potential of the developed method to purify contaminated wastewaters by MXT.

  2. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation

    OpenAIRE

    Hu, Peng; Fogler, Eran; Diskin-Posner, Yael; Iron, Mark A.; Milstein, David

    2015-01-01

    Hydrogen is an efficient green fuel, but its low energy density when stored under high pressure or cryogenically, and safety issues, presents significant disadvantages; hence finding efficient and safe hydrogen carriers is a major challenge. Of special interest are liquid organic hydrogen carriers (LOHCs), which can be readily loaded and unloaded with considerable amounts of hydrogen. However, disadvantages include high hydrogen pressure requirements, high reaction temperatures for both hydro...

  3. Catalytic effects of TiF3 on hydrogen spillover on Pt/carbon for hydrogen storage.

    Science.gov (United States)

    Chen, Hao; Yang, Ralph T

    2010-10-05

    Recent studies have shown that using the hydrogen spillover phenomena is a promising approach for developing new materials for hydrogen storage at ambient temperature. However, the rates need to be improved. Significant catalytic effects on both spillover (i.e., adsorption) and reverse spillover (i.e., desorption) on Pt-doped carbon by TiF(3) were found. By doping 2 wt % TiF(3) on the Pt-doped Maxsorb (a superactivated carbon), both adsorption and desorption rates were significantly increased while the storage capacity decreased only slightly due to decreased surface areas. The effect of the heat treatment temperature (473 K vs 673 K) of the doped TiF(3) on its catalytic effects was also studied. XPS analyses showed that C-F bonds were formed upon heat treatment and that the amount of C-F bonds increased with the heat treatment temperature. The catalytic effects also increased with the heat treatment temperature, indicating that the catalytic mechanism possibly involved the formation of C-F bonds on the carbon edge sites. In addition, the issue of proper sample preparation of Pt/carbon was briefly addressed; missteps in metal doping and consequently poor metal dispersion will result in significantly diminished spillover enhancements (Stadie et al.).

  4. Molecular catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiyong; Stock, L.M.

    1996-05-01

    This report presents the results of research on the development of new catalytic pathways for the hydrogenation of multiring aromatic hydrocarbons and the hydrotreating of coal liquids at The University of Chicago under DOE Contract No. DE-AC22-91PC91056. The work, which is described in three parts, is primarily concerned with the research on the development of new catalytic systems for the hydrogenation of aromatic hydrocarbons and for the improvement of the quality of coal liquids by the addition of dihydrogen. Part A discusses the activation of dihydrogen by very basic molecular reagents to form adducts that can facilitate the reduction of multiring aromatic hydrocarbons. Part B examines the hydrotreating of coal liquids catalyzed by the same base-activated dihydrogen complexes. Part C concerns studies of molecular organometallic catalysts for the hydrogenation of monocyclic aromatic hydrocarbons under mild conditions.

  5. Photocatalytic hydrogen evolution by [FeFe] hydrogenase mimics in homogeneous solution.

    Science.gov (United States)

    Wang, Wen-Guang; Wang, Feng; Wang, Hong-Yan; Si, Gang; Tung, Chen-Ho; Wu, Li-Zhu

    2010-08-02

    To mimic [FeFe] hydrogenases (H(2)ases) in nature, molecular photocatalysts 1 a, 1 b, and 1 c anchoring rhenium(I) complex S to one of the iron cores of [FeFe]-H(2)ases model complex C, have been constructed for H(2) generation by visible light in homogeneous solution. The time-dependence of H(2) evolution and a spectroscopic study demonstrate that the orientation of S and the specific bridge in 1 a, 1 b, and 1 c are important both for the electron-transfer step from the excited S* to the catalytic C, and the formation of unprecedented long-lived charge separation for 1 a (780 micros), 1 b, and 1 c (>2 ms) in [FeFe]-H(2)ases mimics. The fast forward electron-transfer step from the excited S* to the catalytic C but the slow back electron-transfer step of the charge-recombination in the designed photocatalysts 1 a, 1 b, and 1 c are reminiscent of the behavior of [FeFe]-H(2)ases in nature.

  6. Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2006-02-14

    The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOP and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.

  7. Hydrogen assisted catalytic biomass pyrolysis for green fuels

    DEFF Research Database (Denmark)

    Stummann, Magnus Zingler; Høj, Martin; Schandel, Christian Bækhøj

    Fast pyrolysis of biomass is a well-known technology for producing bio-oil, however in order to use the oil as transportation fuel the oxygen content must be decreased from approximately 30 wt.% to below 1 wt.%. This can be achieved by catalytic hydrodeoxygenation (HDO). Unfortunately, deactivation...... in a fluid bed reactor with a commercial CoMoS/MgAl2O4 catalyst as bed medium followed by an additional vapor phase, fixed bed HDO reactor using a commercial NiMoS/Al2O3 catalyst .The obtained bio-oil is essentially oxygen free. Oxygen specific GC-AED showed only traces of phenols, benzofurans and napthols...

  8. Hydrogen Recombination Rates of Plate-type Passive Auto-catalytic Recombiner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Hong, Seong-Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Gun Hong [Kyungwon E-C Co., Seongnam (Korea, Republic of)

    2014-10-15

    The hydrogen mitigation system may include igniters, passive autocatalytic recombiner (PAR), and venting or dilution system. Recently PAR is commonly used as a main component of HMS in a NPP containment because of its passive nature. PARs are categorized by the shape and material of catalytic surface. Catalytic surface coated by platinum is mostly used for the hydrogen recombiners. The shapes of the catalytic surface can be grouped into plate type, honeycomb type and porous media type. Among them, the plate-type PAR is well tested by many experiments. PAR performance analysis can be approached by a multi-scale method which is composed of micro, meso and macro scales. The criterion of the scaling is the ratio of thickness of boundary layer developed on a catalytic surface to representative length of a computational domain. Mass diffusion in the boundary layer must be resolved in the micro scale analysis. In a lumped parameter (LP) analysis using a system code such as MAAP or MELCOR, the chamber of the PAR is much smaller than a computational node. The hydrogen depletion by a PAR is modeled as a source of mass and energy conservation equations. Te catalytic surface reaction of hydrogen must be modeled by a volume-averaged correlation. In this study, a micro scale analysis method is developed using libraries in OpenFOAM to evaluate a hydrogen depletion rate depending on parameters such as size and number of plates and plate arrangement. The analysis code is validated by simulating REKO-3 experiment. And hydrogen depletion analysis is conducted by changing the plate arrangement as a trial of the performance enhancement of a PAR. In this study, a numerical code for an analysis of a PAR performance in a micro scale has been developed by using OpenFOAM libraries. The physical and numerical models were validated by simulating the REKO-3 experiment. As a try to enhance the performance of the plate-type PAR, it was proposed to apply a staggered two-layer arrangement of the

  9. Catalytic Asymmetric Transfer Hydrogenation of Imines: Recent Advances.

    Science.gov (United States)

    Foubelo, Francisco; Yus, Miguel

    2015-10-01

    In this review article recent developments in the asymmetric transfer hydrogenation of imines from 2008 up to today are presented. The main methodology involves either metal-catalyzed procedures in the presence of a chiral ligand or organocatalyzed technologies using a Hantzsch ester and a chiral BINOL-derived phosphoric acid. The most important procedures are collected, paying special attention to the application of this methodology in synthetic organic chemistry. Copyright © 2015 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hydrogenation of o-cresol on platinum catalyst: Catalytic experiments and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaping [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104 (United States); Liu, Zhimin [School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019 (United States); Xue, Wenhua [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104 (United States); Crossley, Steven P.; Jentoft, Friederike C. [School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019 (United States); Wang, Sanwu, E-mail: sanwu-wang@utulsa.edu [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104 (United States)

    2017-01-30

    Highlights: • Hydrogenation of o-cresol over Pt results in formation of two products. • Dissociation of hydrogen from the −OH group involves a low activation energy. • Following hydrogenation of the aromatic ring forms 2-methyl-cyclohexanone. • Further hydrogenation produces the final product, 2-methyl-cyclohexanol. - Abstract: Catalytic experiments were performed for the hydrogenation of o-cresol in n-dodecane over a platinum catalyst. Batch reactions analyzed with an in-situ ATR IR probe suggest that the hydrogenation results in the formation of the final product, 2-methyl-cyclohexanol, with 2-methyl-cyclohexanone as the intermediate product. Ab initio density-functional theory was employed to investigate the atomic-scale mechanism of o-cresol hydrogenation on the Pt(111) surface. The formation of 2-methyl-cyclohexanone was found to involve two steps. The first step is a hydrogen abstraction, that is, the H atom in the hydroxyl group migrates to the Pt surface. The second step is hydrogenation, that is, the pre-existing H atoms on Pt react with the carbon atoms in the aromatic ring. On the other hand, 2-methyl-cyclohexanonol may be produced through two paths, with activation energies slightly greater than that for the formation of 2-methyl-cyclohexanone. One path involves direct hydrogenation of the aromatic ring. Another path involves three steps, with the partial hydrogenation of the ring as the first step, hydrogen abstraction of the −OH group as the second, and hydrogenation of remaining C atoms and the O atom the last.

  11. Catalytic wet oxidation of thiocyanate with homogeneous copper(II) sulphate catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Sergio; Laca, Adriana [Department of Chemical Engineering and Environmental Technology, University of Oviedo, c/ Julian Claveria s/n, E-33071, Oviedo (Spain); Diaz, Mario, E-mail: mariodiaz@uniovi.es [Department of Chemical Engineering and Environmental Technology, University of Oviedo, c/ Julian Claveria s/n, E-33071, Oviedo (Spain)

    2010-05-15

    The wet oxidation of thiocyanate has been investigated in a semi-batch reactor at temperatures between 423 and 473 K and pressures between 6.1 x 10{sup 3} and 1.0 x 10{sup 4} kPa in the presence of copper(II) sulphate as catalyst. The effects of copper concentration, initial thiocyanate concentration, pressure and temperature on the reaction rate were analyzed and the main products of reaction were identified. A kinetic model for the Cu-catalyzed reaction is here proposed, including temperature, oxygen concentration, and the reduction of Cu{sup 2+} to Cu{sup +} that gives an accurate prediction of the oxidation process under the assayed conditions. A mechanistic model based on the formation of a transition complex between a copper cation and two thiocyanate anions has been proposed for the catalytic wet oxidation.

  12. Catalytic wet oxidation of thiocyanate with homogeneous copper(II) sulphate catalyst.

    Science.gov (United States)

    Collado, Sergio; Laca, Adriana; Díaz, Mario

    2010-05-15

    The wet oxidation of thiocyanate has been investigated in a semi-batch reactor at temperatures between 423 and 473 K and pressures between 6.1 x 10(3) and 1.0 x 10(4)kPa in the presence of copper(II) sulphate as catalyst. The effects of copper concentration, initial thiocyanate concentration, pressure and temperature on the reaction rate were analyzed and the main products of reaction were identified. A kinetic model for the Cu-catalyzed reaction is here proposed, including temperature, oxygen concentration, and the reduction of Cu(2+) to Cu(+) that gives an accurate prediction of the oxidation process under the assayed conditions. A mechanistic model based on the formation of a transition complex between a copper cation and two thiocyanate anions has been proposed for the catalytic wet oxidation. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  13. Design, fabrication and testing of a catalytic microreactor for hydrogen production

    Science.gov (United States)

    Kim, Taegyu; Kwon, Sejin

    2006-09-01

    A catalytic microreactor for hydrogen production was fabricated by anisotropic wet etching of photosensitive glass, which enables it to be a structure with high tight tolerance and high aspect ratio. As a reactor structure, a microchannel was used for improving heat and mass transfer in the reactor. The primary fuel source is methanol for a mobile device. Endothermic catalytic steam reforming of methanol was chosen for producing gaseous hydrogen. The Cu-based catalyst, Cu/ZnO, was prepared by the co-precipitation method and coated on the surface of the microchannel for methanol steam reforming. An overall microfabrication process was established for a MEMS-based catalytic microreactor. The fabricated reactor has a volume of 1.8 cm3 including the volume of the reaction chamber 0.3 cm3 and produced dry reformate with high hydrogen content, 73%. The hydrogen flow was 4.16 ml min-1, which can generate a power output of 350 mWe for a fuel cell.

  14. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Chornet, E.; Wang, D.; Montane, D. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-09-01

    Fast pyrolysis of biomass results in a pyrolytic oil which is a mixture of (a) carbohydrate-derived acids, aldehydes and polyols, (b) lignin-derived substituted phenolics, and (c) extractives-derived terpenoids and fatty acids. The conversion of this pyrolysis oil into H{sub 2} and CO{sub 2} is thermodynamically favored under appropriate steam reforming conditions. Our efforts have focused in understanding the catalysis of steam reforming which will lead to a successful process at reasonable steam/carbon ratios arid process severities. The experimental work, carried out at the laboratory and bench scale levels, has centered on the performance of Ni-based catalysts using model compounds as prototypes of the oxygenates present in the pyrolysis oil. Steam reforming of acetic acid, hydroxyacetaldehyde, furfural and syringol has been proven to proceed rapidly within a reasonable range of severities. Time-on-stream studies are now underway using a fixed bed barometric pressure reactor to ascertain the durability of the catalysts and thus substantiate the scientific and technical feasibility of the catalytic reforming option. Economic analyses are being carried out in parallel to determine the opportunity zones for the combined fast pyrolysis/steam reforming approach. A discussion on the current state of the project is presented.

  15. Recovery of homogeneous polyoxometallate catalysts from aqueous and organic media by a mesoporous ceramic membrane without loss of catalytic activity.

    Science.gov (United States)

    Roy Chowdhury, Sankhanilay; Witte, Peter T; Blank, Dave H A; Alsters, Paul L; Ten Elshof, Johan E

    2006-04-03

    The recovery of homogeneous polyoxometallate (POM) oxidation catalysts from aqueous and non-aqueous media by a nanofiltration process using mesoporous gamma-alumina membranes is reported. The recovery of Q(12)[WZn(3)(ZnW(9)O(34))(2)] (Q=[MeN(n-C(8)H(17))(3)](+)) from toluene-based media was quantitative within experimental error, while up to 97 % of Na(12)[WZn(3)(ZnW(9)O(34))(2)] could be recovered from water. The toluene-soluble POM catalyst was used repeatedly in the conversion of cyclooctene to cyclooctene oxide and separated from the product mixture after each reaction. The catalytic activity increased steadily with the number of times that the catalyst had been recycled, which was attributed to partial removal of the excess QCl that is known to have a negative influence on the catalytic activity. Differences in the permeability of the membrane for different liquid media can be attributed to viscosity differences and/or capillary condensation effects. The influence of membrane pore radius on permeability and recovery is discussed.

  16. Electrocatalytic CO2 Reduction with a Homogeneous Catalyst in Ionic Liquid: High Catalytic Activity at Low Overpotential.

    Science.gov (United States)

    Grills, David C; Matsubara, Yasuo; Kuwahara, Yutaka; Golisz, Suzanne R; Kurtz, Daniel A; Mello, Barbara A

    2014-06-05

    We describe a new strategy for enhancing the efficiency of electrocatalytic CO2 reduction with a homogeneous catalyst, using a room-temperature ionic liquid as both the solvent and electrolyte. The electrochemical behavior of fac-ReCl(2,2'-bipyridine)(CO)3 in neat 1-ethyl-3-methylimidazolium tetracyanoborate ([emim][TCB]) was compared with that in acetonitrile containing 0.1 M [Bu4N][PF6]. Two separate one-electron reductions occur in acetonitrile (-1.74 and -2.11 V vs Fc(+/0)), with a modest catalytic current appearing at the second reduction wave under CO2. However, in [emim][TCB], a two-electron reduction wave appears at -1.66 V, resulting in a ∼0.45 V lower overpotential for catalytic reduction of CO2 to CO. Furthermore, the apparent CO2 reduction rate constant, kapp, in [emim][TCB] exceeds that in acetonitrile by over one order of magnitude (kapp = 4000 vs 100 M(-1) s(-1)) at 25 ± 3 °C. Supported by time-resolved infrared measurements, a mechanism is proposed in which an interaction between [emim](+) and the two-electron reduced catalyst results in rapid dissociation of chloride and a decrease in the activation energy for CO2 reduction.

  17. Volatility of the catalytic hydrogenation products of 1,4 bis(phenylethynyl)benzene

    Science.gov (United States)

    Sharma, Hom N.; Sangalang, Elizabeth A.; Saw, Cheng K.; Cairns, Gareth A.; McLean, William; Maxwell, Robert S.; Dinh, Long N.

    2017-11-01

    Measurements of equilibrium vapor pressures by effusion thermogravimetry and melting points by differential scanning calorimetry reveal that the melting temperature and equilibrium vapor pressures of 1,4-bis(phenylethynyl)benzene (DEB) do not vary monotonically with the hydrogenation extent. Contrary to intuition which suggests increasing volatility with hydrogenation, results indicate decreasing volatility for the first two hydrogenation steps before a non-monotonic upward trend, in which trans-isomers are less volatile. Insights on structural packing and functional groups were obtained from x-ray diffraction and infrared studies to shed light on the observed variation in the volatility of DEB with hydrogenation. Density functional theory calculations were performed to obtain molecular level information and to establish the thermodynamics of DEB hydrogenation reactions. A major factor influencing the observed melting points and volatility of the hydrogenated intermediate species is identified as the local attractive or repulsive carbon-hydrogen (CH) dipole interactions among the getter molecules in their respective crystal structures. Such collective CH dipole interactions can be used to predict the trends in the volatilities of catalytic hydrogenation processes.

  18. Chemical utilization of hydrogen from fluctuating energy sources – Catalytic transfer hydrogenation from charged Liquid Organic Hydrogen Carrier systems

    OpenAIRE

    Geburtig, Denise; Preuster, Patrick; Bösmann, Andreas; Müller, Karsten; Wasserscheid, Peter

    2016-01-01

    Liquid Organic Hydrogen Carrier (LOHC) systems offer a very attractive way for storing and distributing hydrogen from electrolysis using excess energies from solar or wind power plants. In this contribution, an alternative, high-value utilization of such hydrogen is proposed namely its use in steady-state chemical hydrogenation processes. We here demonstrate that the hydrogen-rich form of the LOHC system dibenzyltoluene/perhydro-dibenzyltoluene can be directly applied as sole source of hydrog...

  19. Isotactic and Syndiotactic Alternating Ethylene/Propylene Copolymers Obtained Through Non-Catalytic Hydrogenation of Highly Stereoregular cis-1,4 Poly(1,3-diene)s.

    Science.gov (United States)

    Ricci, Giovanni; Boccia, Antonella Caterina; Leone, Giuseppe; Pierro, Ivana; Zanchin, Giorgia; Scoti, Miriam; Auriemma, Finizia; De Rosa, Claudio

    2017-05-06

    The homogeneous non-catalytic hydrogenation of cis -1,4 poly(isoprene), isotactic cis -1,4 poly(1,3-pentadiene) and syndiotactic cis -1,4 poly(1,3-pentadiene) with diimide, formed by thermal decomposition of para -toluenesulfonylhydrazide, is examined. Perfectly alternating ethylene/propylene copolymers having different tacticity (i.e., isotactic and syndiotactic), which are difficult to synthesize by stereospecific copolymerization of the corresponding monomers, are obtained. Both isotactic and syndiotactic alternating ethylene/propylene copolymers are amorphous, with very low glass transition temperatures.

  20. Efficient photothermal catalytic hydrogen production over nonplasmonic Pt metal supported on TiO2

    Science.gov (United States)

    Song, Rui; Luo, Bing; Jing, Dengwei

    2016-10-01

    Most of the traditional photocatalytic hydrogen productions were conducted under room temperature. In this work, we selected nonplasmonic Pt metal anchored on TiO2 nanoparticles with photothermal activity to explore more efficient hydrogen production technology over the whole solar spectrum. Photothermal experiments were carried out in a carefully designed top irradiated photocatalytic reactor that can withstand high temperature and relatively higher pressure. Four typical organic materials, i.e., methyl alcohol (MeOH), trielthanolamne (TEOA), formic acid (HCOOH) and glucose, were investigated. Formic acid, a typical hydrogen carrier, was found to show the best activity. In addition, the effects of different basic parameters such as sacrificial agent concentration and the temperature on the activity of hydrogen generation were systematically investigated for understanding the qualitative and quantitative effects of the photothermal catalytic reaction process. The hydrogen yields at 90 °C of the photothermal catalytic reaction with Pt/TiO2 are around 8.1 and 4.2 times higher than those of reactions carried out under photo or thermal conditions alone. We can see that the photothermal hydrogen yield is not the simple sum of the photo and thermal effects. This result indicated that the Pt/TiO2 nanoparticles can efficiently couple photo and thermal energy to more effectively drive hydrogen production. As a result, the excellent ability makes it superior to other conventional semiconductor photocatalysts and thermal catalysts. Future works could concentrate on exploring photothermal catalysis as well as the potential synergism between photo and thermal effects to find more efficient hydrogen production technology using the whole solar spectrum.

  1. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors

    Directory of Open Access Journals (Sweden)

    Rahat Javaid

    2013-06-01

    Full Text Available The inner surface of a metallic tube (i.d. 0.5 mm was coated with a palladium (Pd-based thin metallic layer by flow electroless plating. Simultaneous plating of Pd and silver (Ag from their electroless-plating solution produced a mixed distributed bimetallic layer. Preferential acid leaching of Ag from the Pd–Ag layer produced a porous Pd surface. Hydrogenation of p-nitrophenol was examined in the presence of formic acid simply by passing the reaction solution through the catalytic tubular reactors. p-Aminophenol was the sole product of hydrogenation. No side reaction occurred. Reaction conversion with respect to p-nitrophenol was dependent on the catalyst layer type, the temperature, pH, amount of formic acid, and the residence time. A porous and oxidized Pd (PdO surface gave the best reaction conversion among the catalytic reactors examined. p-Nitrophenol was converted quantitatively to p-aminophenol within 15 s of residence time in the porous PdO reactor at 40 °C. Evolution of carbon dioxide (CO2 was observed during the reaction, although hydrogen (H2 was not found in the gas phase. Dehydrogenation of formic acid did not occur to any practical degree in the absence of p-nitrophenol. Consequently, the nitro group was reduced via hydrogen transfer from formic acid to p-nitrophenol and not by hydrogen generated by dehydrogenation of formic acid.

  2. Research of Hydrogen Preparation with Catalytic Steam-Carbon Reaction Driven by Photo-Thermochemistry Process

    OpenAIRE

    Zhang, Xiaoqing; Xu, Bingqing; Xu, Yan; Shang, Shuyong; Yin, Yongxiang

    2013-01-01

    An experiment of hydrogen preparation from steam-carbon reaction catalyzed by K2CO3 was carried out at 700°C, which was driven by the solar reaction system simulated with Xenon lamp. It can be found that the rate of reaction with catalyst is 10 times more than that without catalyst. However, for the catalytic reaction, there is no obvious change for the rate of hydrogen generation with catalyst content range from 10% to 20%. Besides, the conversion efficiency of solar energy to chemical energ...

  3. Hydrogen-free catalytic fractionation of woody biomass.

    Science.gov (United States)

    Galkin, Maxim V; Smit, Arjan T; Subbotina, Elena; Artemenko, Konstantin A; Bergquist, Jonas; Huijgen, Wouter J J; Samec, Joseph S M

    2016-12-08

    The pulping industry could become a biorefinery if the lignin and hemicellulose components of the lignocellulose are valorized. Conversion of lignin into well-defined aromatic chemicals is still a major challenge. Lignin depolymerization reactions often occur in parallel with irreversible condensation reactions of the formed fragments. Here, we describe a strategy that markedly suppresses the undesired condensation pathways and allows to selectively transform lignin into a few aromatic compounds. Notably, applying this strategy to woody biomass at organosolv pulping conditions, the hemicellulose, cellulose, and lignin were separated and in parallel the lignin was transformed into aromatic monomers. In addition, we were able to utilize a part of the lignocellulose as an internal source of hydrogen for the reductive lignin transformations. We hope that the presented methodology will inspire researchers in the field of lignin valorization as well as pulp producers to develop more efficient biomass fractionation processes in the future. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Catalytic CO hydrogenation on potassic Fe/zeolite LTL

    Energy Technology Data Exchange (ETDEWEB)

    Cagnoli, M.V.; Gallegos, N.G.; Alvarez, A.M.; Bengoa, J.F.; Yeramian, A.A.; Marchetti, S.G. [CINDECA, Fac. Cs. Exactas, Fac. Ing., UNLP, CICBA, CONICET, Calle 47 No. 257, 1900 La Plata (Argentina); Schmal, M. [NUCAT-PEQ-COPPE/UFRJ, CP68502, CEP21945-970, Ilha do Fundao, Rio de Janeiro (Brazil)

    2002-04-30

    Zeolite LTL in the potassic form (K-LTL) was used as support of iron. The precursor was characterized by temperature programmed reduction (TPR) and Moessbauer spectroscopy (MS) at 298 and 15K. The catalyst was obtained reducing the precursor with H{sub 2} and its structural properties were studied by H{sub 2} chemisorption, volumetric oxidation and MS under controlled conditions at 298 and 15K. Measurements of activity and selectivity were carried out at 1 and 20bar in the CO hydrogenation. Two different types of active sites were detected: Fe{sup 0} inside the zeolite channels and carburized iron on its external surface. The solid showed a high activity and selectivity towards light alkenes in comparison with other iron supported systems (Fe/SiO{sub 2}, Fe/Al{sub 2}O{sub 3} and Fe/C). This behavior can be attributed to the high percentage of metallic iron promoted by potassium ions, located inside the zeolite channels. The external carbide crystals generate hydrocarbons in the diesel oil range.

  5. Research of Hydrogen Preparation with Catalytic Steam-Carbon Reaction Driven by Photo-Thermochemistry Process

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2013-01-01

    Full Text Available An experiment of hydrogen preparation from steam-carbon reaction catalyzed by K2CO3 was carried out at 700°C, which was driven by the solar reaction system simulated with Xenon lamp. It can be found that the rate of reaction with catalyst is 10 times more than that without catalyst. However, for the catalytic reaction, there is no obvious change for the rate of hydrogen generation with catalyst content range from 10% to 20%. Besides, the conversion efficiency of solar energy to chemical energy is more than 13.1% over that by photovoltaic-electrolysis route. An analysis to the mechanism of catalytic steam-carbon reaction with K2CO3 is given, and an explanation to the nonbalanced [H2]/[CO + 2CO2] is presented, which is a phenomenon usually observed in experiment.

  6. [Noncompetitive immunochemical determination of ribonuclease using transition metal ions and the effect of catalytic hydrogen release].

    Science.gov (United States)

    Dykhal, Iu I; Mediantseva, E P; Murtazina, N R; Safina, G R; Budnikov, G K; Kalacheva, N V

    2003-01-01

    A noncompetitive variant of immunochemical ribonuclease (RNase) determination has been developed, involving the use of Co(II) as a label. A variety of approaches to labeling the immunological reagent with the metal have been assessed. In the variant proposed, catalytic hydrogen release was used as a means of detecting the label, the amount of which was proportional to RNase concentration. Conditions making it possible to record catalytic hydrogen release fluxes were determined. In the presence of RNase, the electrocatalytic effect was maximum at a concentration of Co(II) in the ammoniac buffer, equal to 2 x 10(-4) M (pH 10.0). The dependence was linear in the range 4-2000 ng/ml RNase concentrations (threshold concentration, 2 ng/ml).

  7. Lithium and boron as interstitial palladium dopants for catalytic partial hydrogenation of acetylene.

    Science.gov (United States)

    Ellis, Ieuan T; Wolf, Elisabeth H; Jones, Glenn; Lo, Ben; Meng-Jung Li, Molly; York, Andrew P E; Edman Tsang, Shik Chi

    2017-01-03

    It is demonstrated that light elements, including lithium and boron atoms, can take residence in the octahedral (interstitial) site of a Pd lattice by modifying the electronic properties of the metal nanoparticles, and hence the adsorptive strength of a reactant. The blocking of the sub-surface sites to H in the modified materials results in significantly higher selectivity for the partial catalytic hydrogenation of acetylene to ethylene.

  8. State of the art on hydrogen passive auto-catalytic recombiner (european union Parsoar project)

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, F.; Bachellerie, E. [Technicatome, 13 - Aix en Provence (France); Auglaire, M. [Tractebel Energy Engineering, Brussels (Belgium); Boeck, B. de [Association Vincotte Nuclear, Brussels (Belgium); Braillard, O. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Eckardt, B. [Siemens AG, Offenbach am Main (Germany); Ferroni, F. [Electrowatt Engineering Limited, Zurich (Switzerland); Moffett, R. [Atomic Energy Canada Limited, Pinawa (Canada); Van Goethem, G. [European Commission, Brussels (Belgium)

    2001-07-01

    This paper presents an overview of the European Union PARSOAR project, which consists in carrying out a state of the art on hydrogen passive auto-catalytic recombiner (PAR) and a handbook guide for implementing these devices in nuclear power plants. This work is performed in the area ''Operational Safety of Existing Installations'' of the key action ''Nuclear Fission'' of the fifth Euratom Framework Programme (1998-2002). (author)

  9. Catalytic Cracking of Heavy Oil with Iron Oxide-based Catalysts Using Hydrogen and Oxygen Species from Steam

    National Research Council Canada - National Science Library

    Eri Fumoto; Yoshikazu Sugimoto; Shinya Sato; Toshimasa Takanohashi

    2015-01-01

      This study investigated the transfer of oxygen and hydrogen species from steam to product during the catalytic cracking of heavy oil with iron oxide-based catalysts containing zirconia and alumina...

  10. Hybrid polyoxotungstates as functional comonomers in new cross-linked catalytic polymers for sustainable oxidation with hydrogen peroxide.

    Science.gov (United States)

    Carraro, Mauro; Fiorani, Giulia; Mognon, Lorenzo; Caneva, Francesca; Gardan, Martino; Maccato, Chiara; Bonchio, Marcella

    2012-10-08

    Anchoring terminal octenyl tails on molecular polyoxotungstates yield polymerizable organic-inorganic monomers with formula [{CH(2)=CH(CH(2))(6)Si}(x)O(y)SiW(w)O(z)](4-) [x = 2, w = 11, y = 1, z = 39 (1); x = 2, w = 10, y = 1, z = 36 (2); and x = 4, w = 9, y = 3, z = 34 (3)]. These molecular hybrids can use aqueous hydrogen peroxide to catalyze the selective oxidation of organic sulfides in CH(3)CN. Copolymerization of 1-3 with methyl methacrylate and ethylene glycol dimethacrylate leads to porous materials with a homogeneous distribution of the functional monomers, as indicated by converging evidence from FTIR spectroscopy and electronic microscopy. The catalytic polymers activate hydrogen peroxide for oxygen transfer, as demonstrated by the quantitative and selective oxidation of methyl p-tolyl sulfide, which was screened as model substrate. The hybrid material containing monomer 2 was also tested in n-octane to evaluate its potential for the oxidation and removal of dibenzothiophene, a well-known gasoline contaminant. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Catalytic heat exchangers for small-scale production of hydrogen - feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, F. [Catator AB, Lund (Sweden)

    2002-02-01

    A feasibility study concerning heat-exchanger reactors in small-scale production of hydrogen has been performed on the request of Svenskt Gastekniskt Center AB and SWEP International AB. The basic idea is to implement different catalysts into brazed plate-type heat exchangers. This can be achieved by installing catalytic cylinders in the inlet-and outlet ports of the heat exchangers or through treatment of the plates to render them catalytically active. It is also possible to sandwich catalytically active wire meshes between the plates. Experiments concerning steam reforming of methanol and methane have been performed in a micro-reactor to gather kinetic data for modelling purposes. Performance calculations concerning heat exchanger reactors have then been conducted with Catator's generic simulation code for catalytic reactors (CatalystExplorer). The simulations clearly demonstrate the technical performance of these reactors. Indeed, the production rate of hydrogen is expected to be about 10 nm{sup 3}/h per litre of heat exchanger. The corresponding value for a conventional steam-reforming unit is about 1 nm{sup 3}/h or less per litre of reactor volume. Also, the compactness and the high degree of integration together with the possibilities of mass production will give an attractive cost for such units. Depending on the demands concerning the purity of the hydrogen it is possible to add secondary catalytic steps like water-gas shifters, methanation and selective oxidation, into a one-train unit, i.e. to design an all-inclusive design. Such reactors can be used for the supply of hydrogen to fuel cells. The production cost for hydrogen can be cut by 60 - 70% through the utilisation of heat exchanger reactors instead of conventional electrolysis. This result is primarily a result of the high price for electricity compared to the feed stock prices in steam reforming. It is important to verify the performance calculations and the simulation results through

  12. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol with Recyclable Al-Zr@Fe Mixed Oxides

    DEFF Research Database (Denmark)

    He, Jian; Li, Hu; Riisager, Anders

    2017-01-01

    A series of magnetic, acid/base bifunctional Al–Zr@Fe3O4 catalysts were successfully prepared by a facile coprecipitation method and utilized in the catalytic transfer hydrogenation (CTH) of furfural to furfuryl alcohol with 2-propanol as hydrogen source. The physicochemical properties and morpho......A series of magnetic, acid/base bifunctional Al–Zr@Fe3O4 catalysts were successfully prepared by a facile coprecipitation method and utilized in the catalytic transfer hydrogenation (CTH) of furfural to furfuryl alcohol with 2-propanol as hydrogen source. The physicochemical properties...... with a Al3+/Zr4+/Fe3O4 molar ratio of 21:9:3 was found to exhibit a high furfuryl alcohol yield of 90.5 % in the CTH from furfural at 180 °C after 4 h with a comparatively low activation energy of 45.3 kJ mol−1, as calculated from the Arrhenius equation. Moreover, leaching and recyclability tests confirmed...

  13. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oil

    Energy Technology Data Exchange (ETDEWEB)

    Czernik, S.; Wang, D.; Chornet, E. [National Renewable Energy Lab., Golden, CO (United States). Center for Renewable Chemical Technologies and Materials

    1998-08-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells and for transportation. The thermochemical conversion of biomass to hydrogen can be carried out through two distinct strategies: (a) gasification followed by water-gas shift conversion, and (b) catalytic steam reforming of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper presents the latter route that begins with fast pyrolysis of biomass to produce bio-oil. This oil (as a whole or its selected fractions) can be converted to hydrogen via catalytic steam reforming followed by a water-gas shift conversion step. Such a process has been demonstrated at the bench scale using model compounds, poplar oil aqueous fraction, and the whole pyrolysis oil with commercial Ni-based steam reforming catalysts. Hydrogen yields as high as 85% have been obtained. Catalyst initial activity can be recovered through regeneration cycles by steam or CO{sub 2} gasification of carbonaceous deposits.

  14. Substrate-mediated enhanced activity of Ru nanoparticles in catalytic hydrogenation of benzene

    KAUST Repository

    Liu, Xin

    2012-01-01

    The impact of carbon substrate-Ru nanoparticle interactions on benzene and hydrogen adsorption that is directly related to the performance in catalytic hydrogenation of benzene has been investigated by first-principles based calculations. The stability of Ru 13 nanoparticles is enhanced by the defective graphene substrate due to the hybridization between the dsp states of the Ru 13 particle with the sp 2 dangling bonds at the defect sites. The local curvature formed at the interface will also raise the Ru atomic diffusion barrier, and prohibit the particle sintering. The strong interfacial interaction results in the shift of averaged d-band center of the deposited Ru nanoparticle, from -1.41 eV for a freestanding Ru 13 particle, to -1.17 eV for the Ru/Graphene composites, and to -1.54 eV on mesocellular foam carbon. Accordingly, the adsorption energies of benzene are increased from -2.53 eV for the Ru/mesocellular foam carbon composites, to -2.62 eV on freestanding Ru 13 particles, to -2.74 eV on Ru/graphene composites. A similar change in hydrogen adsorption is also observed, and all these can be correlated to the shift of the d-band center of the nanoparticle. Thus, Ru nanoparticles graphene composites are expected to exhibit both high stability and superior catalytic performance in hydrogenation of arenes. © 2012 The Royal Society of Chemistry.

  15. Wax: A benign hydrogen-storage material that rapidly releases H2-rich gases through microwave-assisted catalytic decomposition.

    Science.gov (United States)

    Gonzalez-Cortes, S; Slocombe, D R; Xiao, T; Aldawsari, A; Yao, B; Kuznetsov, V L; Liberti, E; Kirkland, A I; Alkinani, M S; Al-Megren, H A; Thomas, J M; Edwards, P P

    2016-10-19

    Hydrogen is often described as the fuel of the future, especially for application in hydrogen powered fuel-cell vehicles (HFCV's). However, its widespread implementation in this role has been thwarted by the lack of a lightweight, safe, on-board hydrogen storage material. Here we show that benign, readily-available hydrocarbon wax is capable of rapidly releasing large amounts of hydrogen through microwave-assisted catalytic decomposition. This discovery offers a new material and system for safe and efficient hydrogen storage and could facilitate its application in a HFCV. Importantly, hydrogen storage materials made of wax can be manufactured through completely sustainable processes utilizing biomass or other renewable feedstocks.

  16. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting.

    Science.gov (United States)

    Rausch, Benjamin; Symes, Mark D; Chisholm, Greig; Cronin, Leroy

    2014-09-12

    The electrolysis of water using renewable energy inputs is being actively pursued as a route to sustainable hydrogen production. Here we introduce a recyclable redox mediator (silicotungstic acid) that enables the coupling of low-pressure production of oxygen via water oxidation to a separate, catalytic hydrogen production step outside the electrolyzer that requires no post-electrolysis energy input. This approach sidesteps the production of high-pressure gases inside the electrolytic cell (a major cause of membrane degradation) and essentially eliminates the hazardous issue of product gas crossover at the low current densities that characterize renewables-driven water-splitting devices. We demonstrated that a platinum-catalyzed system can produce pure hydrogen over 30 times faster than state-of-the-art proton exchange membrane electrolyzers at equivalent platinum loading. Copyright © 2014, American Association for the Advancement of Science.

  17. Role of Hydrogen and Oxygen Activation over Pt and Pd-Doped Composites for Catalytic Hydrogen Combustion.

    Science.gov (United States)

    Singh, Satyapaul A; Vishwanath, Karan; Madras, Giridhar

    2017-06-14

    Removal of excess amount of hydrogen in a catalytic route is a safety measure to be implemented in fuel cell technologies and in nuclear power plants. Hydrogen and oxygen activation are crucial steps for hydrogen combustion that can be achieved by modifying supports with suitable noble metals. In the present study, Pt- and Pd-substituted Co3O4-ZrO2 (CZ) were synthesized using PEG-assisted sonochemical synthesis. Ionic states of Pt and Pd in CZ supports were analyzed by X-ray photoelectron spectroscopy. Pd and Pt improved H2 and O2 activation extensively, which reduced the temperature of 50% conversion (T50%) to 33 °C compared with the support (CZ). The activation energy of PdCZ catalyst was decreased by more than 2 folds (13.4 ± 1.2 kJ mol-1) compared with CZ (34.3 ± 2.3 kJ mol-1). The effect of oxygen vacancies in the reaction mechanism is found to be insignificant with Pt- and Pd-substituted CZ supports. However, oxygen vacancies play an important role when CZ alone was used as catalyst. The importance of hydrogen and oxygen activation as well as the oxygen vacancies in mechanism was studied by H2-TPD, H2-TPR, and in situ FTIR spectroscopy.

  18. Hydrogenation of fast pyrolyis oil and model compounds in a two-phase aqueous organic system using homogeneous ruthenium catalysts

    NARCIS (Netherlands)

    Mahfud, F. H.; Ghijsen, F.; Heeres, H. J.

    2007-01-01

    The use of homogeneous ruthenium catalysts to hydrogenate the water-soluble fraction of pyrolysis oil is reported. Pyrolysis oil, which is obtained by fast pyrolysis of lignocellulosic biomass at 450-600 degrees C, contains significant amounts of aldehydes and ketones (e.g. 1-hydroxy-2-propanone (1)

  19. Influence of Adsorption Geometry in the Heterogeneous Enantioselective Catalytic Hydrogenation of a Prototypical Enone

    OpenAIRE

    Beaumont, SK; Kyriakou, G; Watson, DJ; Vaughan, OPH; Papageorgiou, AC; Lambert, RM

    2010-01-01

    Asymmetric catalysis is of paramount importance in organic synthesis and, in current practice, is achieved by means of homogeneous catalysts. The ability to catalyze such reactions heterogeneously would have a major impact both in the research laboratory and in the production of fine chemicals and pharmaceuticals, yet heterogeneous asymmetric hydrogenation of C═C bonds remains hardly explored. Very recently, we demonstrated how chiral ligands that anchor robustly to the surface of Pd nanopart...

  20. Direct catalytic hydrogenation of CO2 to formate over a Schiff-base-mediated gold nanocatalyst.

    Science.gov (United States)

    Liu, Qinggang; Yang, Xiaofeng; Li, Lin; Miao, Shu; Li, Yong; Li, Yanqin; Wang, Xinkui; Huang, Yanqiang; Zhang, Tao

    2017-11-10

    Catalytic transformation of CO2 to formate is generally realized through bicarbonate hydrogenation in an alkaline environment, while it suffers from a thermodynamic sink due to the considerable thermodynamic stability of the bicarbonate intermediate. Here, we devise a route for the direct catalytic conversion of CO2 over a Schiff-base-modified gold nanocatalyst that is comparable to the fastest known nanocatalysts, with a turnover number (TON) of up to 14,470 over 12 h at 90 °C. Theoretical calculations and spectral analysis results demonstrate that the activation of CO2 can be achieved through a weakly bonded carbamate zwitterion intermediate derived from a simple Lewis base adduct of CO2. However, this can only occur with a hydrogen lacking Lewis base center in a polar solvent. This finding offers a promising avenue for the direct activation of CO2 and is likely to have considerable implications in the fields of CO2 conversion and gold catalytic chemistry.

  1. Excellent catalytic effects of multi-walled carbon nanotube supported titania on hydrogen storage of a Mg-Ni alloy.

    Science.gov (United States)

    Tan, Yajun; Zhu, Yunfeng; Li, Liquan

    2015-02-11

    Superior catalytic effects of multi-walled carbon nanotube supported titania synthesized by the sol-gel method on hydrogen storage of a Mg-Ni alloy were investigated. The excellent hydrogen storage properties were obtained: absorbed 5.60 wt% H2 within 60 s at 373 K and released 6.08 wt% H2 within 600 s at 553 K.

  2. Carbon Dioxide Hydrogenation into Higher Hydrocarbons and Oxygenates: Thermodynamic and Kinetic Bounds and Progress with Heterogeneous and Homogeneous Catalysis.

    Science.gov (United States)

    Prieto, Gonzalo

    2017-03-22

    Under specific scenarios, the catalytic hydrogenation of CO 2 with renewable hydrogen is considered a suitable route for the chemical recycling of this environmentally harmful and chemically refractory molecule into added-value energy carriers and chemicals. The hydrogenation of CO 2 into C 1 products, such as methane and methanol, can be achieved with high selectivities towards the corresponding hydrogenation product. More challenging, however, is the selective production of high (C 2+ ) hydrocarbons and oxygenates. These products are desired as energy vectors, owing to their higher volumetric energy density and compatibility with the current fuel infrastructure than C 1 compounds, and as entry platform chemicals for existing value chains. The major challenge is the optimal integration of catalytic functionalities for both reductive and chain-growth steps. This Minireview summarizes the progress achieved towards the hydrogenation of CO 2 to C 2+ hydrocarbons and oxygenates, covering both solid and molecular catalysts and processes in the gas and liquid phases. Mechanistic aspects are discussed with emphasis on intrinsic kinetic limitations, in some cases inevitably linked to thermodynamic bounds through the concomitant reverse water-gas-shift reaction, which should be considered in the development of advanced catalysts and processes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. PA-Tb-Cu MOF as luminescent nanoenzyme for catalytic assay of hydrogen peroxide.

    Science.gov (United States)

    Qi, Zewan; Wang, Li; You, Qi; Chen, Yang

    2017-10-15

    Metal organic frameworks (MOFs) with flexible structures and components have aroused great interest in designing functional materials. In this work, we designed and made a kind of PA-Tb-Cu MOF nanoenzyme capable of emitting fluorescence for the catalytic reaction of hydrogen peroxide (H 2 O 2 ). Luminescent Tb 3+ , catalytic Cu 2+ and bridging ligand were assembled and integrated into a single material nanoenzyme. This PA-Tb-Cu MOF nanoenzyme not only possessed excellent catalytic activity comparable to horseradish peroxidase but also can real-time fluorescently indicate the concentration of H 2 O 2 as low as 0.2µM during catalysis. Luminescent PA-Tb-Cu MOF nanoenzyme did not need a common combined use of natural/artificial enzymes and chromogenic reactions for the quantification of H 2 O 2 in widely-used enzyme-catalytic reactions. The present strategy assembled directly from functional ions/molecules provides a new way for the design and development of smart, multifunctional artificial enzymes for wide applications in biocatalysis, bioassays and nano-biomedicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Ruthenium–nickel–nickel hydroxide nanoparticles for room temperature catalytic hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lihua; Shan, Shiyao; Petkov, Valeri; Hu, Weiwei; Kroner, Anna; Zheng, Jinbao; Yu, Changlin; Zhang, Nuowei; Li, Yunhua; Luque, Rafael; Zhong, Chuan-Jian; Ye, Hengqiang; Yang, Zhiqing; Chen, Bing H.

    2017-01-01

    Improving the utilization of metals in heterogeneous catalysts with excellent catalytic performance, high selectivity and good stability represents a major challenge. Herein a new strategy is disclosed by enabling a nanoscale synergy between a transition metal and a noble metal. A novel Ru/Ni/Ni(OH)2/C catalyst, which is a hybrid of Ru nanoclusters anchored on Ni/Ni(OH)2 nanoparticles (NPs), was designed, prepared and characterized. The Ru/Ni/Ni(OH)2/C catalyst exhibited a remarkable catalytic activity for naphthalene hydrogenation in comparison with existing Ru/C, Ni/Ni(OH)2/C and Ru–Ni alloy/C catalysts. This is mainly attributed to the interfacial Ru, Ni and Ni(OH)2 sites of Ru/Ni/Ni(OH)2/C, where hydrogen is adsorbed and activated on Ru while Ni transfers the activated hydrogen species (as a “bridge”) to the activated naphthalene on Ni(OH)2 sites, producing decalin through a highly effective pathway.

  5. Production of hydrogen for fuel cells by catalytic partial oxidation of ethanol over structured Ru catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Liguras, D.K.; Goundani, K.; Verykios, X.E. [University of Patras (Greece). Dept. of Chemical Engineering

    2004-03-01

    A series of Ru catalysts supported on cordierite monoliths, ceramic foams and {gamma}-Al{sub 2}O{sub 3} pellets were prepared and tested for the production of hydrogen by catalytic partial oxidation of ethanol. The catalyst supported on a cordierite monolith exhibited excellent catalytic performance for a wide variety of process conditions and excellent long-term stability with low coke formation. The effect of the steam to ethanol molar ratio on conversion and selectivities was relatively small. A more pronounced effect was observed for the oxygen to ethanol ratio. Overall, catalysts on all three supports were able to completely convert ethanol with high selectivities towards the desired products. The Ru supported on a ceramic foam catalyst provided comparatively better performance, probably due to the smaller pore sizes and higher tortuosity of this support. (author)

  6. Catalytic hydrogenation of CO2 over Pt- and Ni-doped graphene: A comparative DFT study.

    Science.gov (United States)

    Esrafili, Mehdi D; Sharifi, Fahimeh; Dinparast, Leila

    2017-10-01

    Today, the global greenhouse effect of carbon dioxide (CO2) is a serious environmental problem. Therefore, developing efficient methods for CO2 capturing and conversion to valuable chemicals is a great challenge. The aim of the present study is to investigate the catalytic activity of Pt- or Ni-doped graphene for the hydrogenation of CO2 by a hydrogen molecule. To gain a deeper insight into the catalytic mechanism of this reaction, the reliable density functional theory calculations are performed. The adsorption energies, geometric parameters, reaction barriers, and thermodynamic properties are calculated using the M06-2X density functional. Two reaction mechanisms are proposed for the hydrogenation of CO2. In the bimolecular mechanism, the reaction proceeds in two steps, initiating by the co-adsorption of CO2 and H2 molecules over the surface, followed by the formation of a OCOH intermediate by the transfer of H atom of H2 toward O atom of CO2. In the next step, formic acid is produced as a favorable product with the formation of CH bond. In our proposed termolecular mechanism, however, H2 molecule is directly activated by the two pre-adsorbed CO2 molecules. The predicted activation energy for the formation of the OCOH intermediate in the bimolecular mechanism is 20.8 and 47.9kcalmol-1 over Pt- and Ni-doped graphene, respectively. On the contrary, the formation of the first formic acid in the termolecular mechanism is found as the rate-determining step over these surfaces, with an activation energy of 28.8 and 45.5kcal/mol. Our findings demonstrate that compared to the Ni-doped graphene, the Pt-doped surface has a relatively higher catalytic activity towards the CO2 reduction. These theoretical results could be useful in practical applications for removal and transformation of CO2 to value-added chemical products. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Mesostructured Cu–Mn–Ce–O composites with homogeneous bulk composition for chlorobenzene removal: Catalytic performance and microactivation course

    Energy Technology Data Exchange (ETDEWEB)

    He, Chi, E-mail: chi_he@mail.xjtu.edu.cn [Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Yu, Yanke [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Shi, Jianwen [Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Shen, Qun [Research Center for Greenhouse Gases and Environmental Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 (China); Chen, Jinsheng [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Liu, Hongxia, E-mail: hxliu72@mail.xjtu.edu.cn [Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-05-01

    Cu–Mn–Ce–O composites with enhanced surface area and developed mesoporosity were synthesized using a homogeneous coprecipitation (hcp) method, and were tested in the catalytic destruction of chlorobenzene (CB). X-ray diffraction (XRD), N{sub 2} adsorption/desorption, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction (H{sub 2}-TPR), temperature programmed desorption of CB/O{sub 2} (CB/O{sub 2}-TPD), and diffuse reflectance ultraviolet visible spectroscopy (DRUV-Vis) were used to characterize the structure and textural properties of catalysts. Mn and Cu enter CeO{sub 2} matrix with a fluorite-like structure, and produce large amounts of oxygen vacancies. Addition of manganese promotes the formation of reduced copper phase, and the presence of large numbers of high valence Mn{sup 4+} ions strongly enhances the redox couple of Cu{sup +}–Cu{sup 2+} in the composites. Both the synthesis protocol and metal doping amount significantly affect the catalyst reducibility, surface state and oxygen density. Cu{sub 0.15}Mn{sub 0.15}Ce{sub 0.85}O{sub x} synthesized via the hcp method exhibits the highest catalytic activity with 90% of chlorobenzene destructed at 255 °C (CO{sub 2} selectivity > 99.5%). Enriched surface oxygen, excellent active oxygen mobility and CB adsorption ability guarantee the superior activity and stability of Cu–Mn–Ce–O composite catalysts. Nucleophilic and electrophilic substitutions happen in sequence during chlorobenzene destruction, and the adsorbed Cl can be finally removed in the form of Cl{sub 2} via the Deacon reaction. Furthermore, the incorporation of CuO and MnO{sub x} phases can inhibit the formation of organic byproducts, such as phenolates, maleates, and o-benzoquinone-type species, especially at elevated reaction temperatures. - Highlights: • Cu–Mn–Ce–O mesoporous oxides possess enhanced surface oxygen

  8. A novel amperometric biosensor based on artichoke (Cynara scolymus L.) tissue homogenate immobilized in gelatin for hydrogen peroxide detection.

    Science.gov (United States)

    Oztürk, G; Ertaş, F N; Akyilmaz, E; Dinçkaya, E; Tural, H

    2004-01-01

    A biosensor for specific determination of hydrogen peroxide was developed by using homogenized artichoke (Cynara scolymus L.) tissue in combination with a dissolved oxygen probe and applied in determination of hydrogen peroxide in milk samples. Artichoke tissue, which has catalase activity, was immobilized with gelatine by means of glutaraldehyde and fixed on a pretreated teflon membrane. The electrode response was maximum when 0.05 M phosphate buffer was used at pH 7.0 and at 30 degrees C. Upon addition of hydrogen peroxide, the electrode gives a linear response in a concentration range of 5.0-50 x 10(-5) M with a response time of 3 min. The method was also applied to the determination of hydrogen peroxide in milk samples.

  9. Dynamic\tmodelling of catalytic three-phase reactors for hydrogenation and oxidation processes

    Directory of Open Access Journals (Sweden)

    Salmi T.

    2000-01-01

    Full Text Available The dynamic modelling principles for typical catalytic three-phase reactors, batch autoclaves and fixed (trickle beds were described. The models consist of balance equations for the catalyst particles as well as for the bulk phases of gas and liquid. Rate equations, transport models and mass balances were coupled to generalized heterogeneous models which were solved with respect to time and space with algorithms suitable for stiff differential equations. The aspects of numerical solution strategies were discussed and the procedure was illustrated with three case studies: hydrogenation of aromatics, hydrogenation of aldehydes and oxidation of ferrosulphate. The case studies revealed the importance of mass transfer resistance inside the catalyst pallets as well as the dynamics of the different phases being present in the reactor. Reliable three-phase reactor simulation and scale-up should be based on dynamic heterogeneous models.

  10. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon.

    Science.gov (United States)

    Upham, D Chester; Agarwal, Vishal; Khechfe, Alexander; Snodgrass, Zachary R; Gordon, Michael J; Metiu, Horia; McFarland, Eric W

    2017-11-17

    Metals that are active catalysts for methane (Ni, Pt, Pd), when dissolved in inactive low-melting temperature metals (In, Ga, Sn, Pb), produce stable molten metal alloy catalysts for pyrolysis of methane into hydrogen and carbon. All solid catalysts previously used for this reaction have been deactivated by carbon deposition. In the molten alloy system, the insoluble carbon floats to the surface where it can be skimmed off. A 27% Ni-73% Bi alloy achieved 95% methane conversion at 1065°C in a 1.1-meter bubble column and produced pure hydrogen without CO 2 or other by-products. Calculations show that the active metals in the molten alloys are atomically dispersed and negatively charged. There is a correlation between the amount of charge on the atoms and their catalytic activity. Copyright © 2017, American Association for the Advancement of Science.

  11. Biomass-to-hydrogen via fast pyrolysis and catalytic steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Chornet, E.; Wang, D.; Czernik, S. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-10-01

    Pyrolysis of lignocellulosic biomass and reforming the pyroligneous oils is being studied as a strategy for producing hydrogen. Novel technologies for the rapid pyrolysis of biomass have been developed in the past decade. They provide compact and efficient systems to transform biomass into vapors that are condensed to oils, with yields as high as 75-80 wt.% of the anhydrous biomass. This {open_quotes}bio-oil{close_quotes} is a mixture of aldehydes, alcohols, acids, oligomers from the constitutive carbohydrates and lignin, and some water derived from the dehydration reactions. Hydrogen can be produced by reforming the bio-oil or its fractions with steam. A process of this nature has the potential to be cost competitive with conventional means of producing hydrogen. The reforming facility can be designed to handle alternate feedstocks, such as natural gas and naphtha, if necessary. Thermodynamic modeling of the major constituents of the bio-oil has shown that reforming is possible within a wide range of temperatures and steam-to-carbon ratios. Existing catalytic data on the reforming of oxygenates have been studied to guide catalyst selection. Tests performed on a microreactor interfaced with a molecular beam mass spectrometer showed that, by proper selection of the process variables: temperature, steam-to-carbon ratio, gas hourly space velocity, and contact time, almost total conversion of carbon in the feed to CO and CO{sub 2} could be obtained. These tests also provided possible reaction mechanisms where thermal cracking competes with catalytic processes. Bench-scale, fixed bed reactor tests demonstrated high hydrogen yields from model compounds and carbohydrate-derived pyrolysis oil fractions. Reforming bio-oil or its fractions required proper dispersion of the liquid to avoid vapor-phase carbonization of the feed in the inlet to the reactor. A special spraying nozzle injector was designed and successfully tested with an aqueous fraction of bio-oil.

  12. Catalytic Transfer Hydrogenation of Biomass-Derived Carbonyls over Hafnium-Based Metal-Organic Frameworks.

    Science.gov (United States)

    Corma, Avelino; García-García, Pilar; Rojas-Buzo, Sergio

    2017-11-15

    A series of highly crystalline, porous, hafnium-based metal-organic frameworks (MOFs) have shown to catalyze the transfer hydrogenation reaction of levulinic ester to produce γ-valerolactone using isopropanol as hydrogen donor and the results are compared with the zirconium-based counterparts. The role of the metal center in Hf-MOFs has been identified and reaction parameters optimized. NMR studies with isotopically labeled isopropanol evidences that the transfer hydrogenation occurs via a direct intermolecular hydrogen transfer route. The catalyst, Hf-MOF-808, can be recycled several times with only a minor decrease in catalytic activity. Generality of the procedure was shown by accomplishing the transformation with aldehydes, ketones and α,β-unsaturated carbonyl compounds. The combination of Hf-MOF-808 with the Brønsted acidic Al-Beta zeolite gives the four-step one-pot transformation of furfural to γ-valerolactone in good yield of 72%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Biomass to hydrogen-rich syngas via catalytic steam gasification of bio-oil/biochar slurry.

    Science.gov (United States)

    Chen, Guanyi; Yao, Jingang; Liu, Jing; Yan, Beibei; Shan, Rui

    2015-12-01

    The catalytic steam gasification of bio-oil/biochar slurry (bioslurry) for hydrogen-rich syngas production was investigated in a fixed-bed reactor using LaXFeO3 (X=Ce, Mg, K) perovskite-type catalysts. The effects of elemental substitution in LaFeO3, temperature, water to carbon molar ratio (WCMR) and bioslurry weight hourly space velocity (WbHSV) were examined. The results showed that La0.8Ce0.2FeO3 gave the best performance among the prepared catalysts and had better catalytic activity and stability than the commercial 14 wt.% Ni/Al2O3. The deactivation caused by carbon deposition and sintering was significantly depressed in the case of La0.8Ce0.2FeO3 catalyst. Both higher temperature and lower WbHSV contributed to more H2 yield. The optimal WCMR was found to be 2, and excessive introducing of steam reduced hydrogen yield. The La0.8Ce0.2FeO3 catalyst gave a maximum H2 yield of 82.01% with carbon conversion of 65.57% under the optimum operating conditions (temperature=800°C, WCMR=2 and WbHSV=15.36h(-1)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Catalytic processing of high-sulfur fuels for distributed hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Ramasamy, Karthik; Huang, Cunping; T-Raissi, Ali [Central Florida Univ., FL (United States)

    2010-07-01

    In this work, the development of a new on-demand hydrogen production technology is reported. In this process, a liquid hydrocarbon fuel (e.g., high-S diesel) is first catalytically pre-reformed to shorter chain gaseous hydrocarbons (predominantly, C{sub 1}-C{sub 3}) before being directed to the steam reformer, where it is converted to syngas and then to high-purity hydrogen. In the pre-reformer, most sulfurous species present in the fuel are catalytically converted to H{sub 2}S. In the desulfurization unit, H{sub 2}S is scrubbed and converted to H{sub 2} and elemental sulfur. Desulfurization of the pre-reformate gas is carried out in a special regenerative redox system, which includes Fe(II)/Fe(III)-containing aqueous phase scrubber coupled with an electrolyzer. The integrated pre-reformer/scrubber/electrolyzer unit operated successfully on high-S diesel fuel for more than 100 hours meeting the required desulfurization target of >95 % sulfur removal. (orig.)

  15. Catalytic steam gasification of pig compost for hydrogen-rich gas production in a fixed bed reactor.

    Science.gov (United States)

    Wang, Jingbo; Xiao, Bo; Liu, Shiming; Hu, Zhiquan; He, Piwen; Guo, Dabin; Hu, Mian; Qi, Fangjie; Luo, Siyi

    2013-04-01

    The catalytic steam gasification of pig compost (PC) for hydrogen-rich gas production was experimentally investigated in a fixed bed reactor using the developed NiO on modified dolomite (NiO/MD) catalyst. A series of experiments have been performed to explore the effects of catalyst, catalytic temperature, steam to PC ratio and PC particle size on the gas quality and yield. The results indicate that the NiO/MD catalyst could significantly eliminate the tar in the gas production and increase the hydrogen yield, and the catalyst lives a long lifetime in the PC steam gasification. Moreover, the higher catalytic temperature and smaller PC particle size can contribute to more hydrogen production and gas yield. Meanwhile, the optimal ratio of steam to PC (S/P) is found to be 1.24. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Life cycle assessment of hydrogenated biodiesel production from waste cooking oil using the catalytic cracking and hydrogenation method.

    Science.gov (United States)

    Yano, Junya; Aoki, Tatsuki; Nakamura, Kazuo; Yamada, Kazuo; Sakai, Shin-ichi

    2015-04-01

    There is a worldwide trend towards stricter control of diesel exhaust emissions, however presently, there are technical impediments to the use of FAME (fatty acid methyl esters)-type biodiesel fuel (BDF). Although hydrogenated biodiesel (HBD) is anticipated as a new diesel fuel, the environmental performance of HBD and its utilization system have not been adequately clarified. Especially when waste cooking oil is used as feedstock, not only biofuel production but also the treatment of waste cooking oil is an important function for society. A life cycle assessment (LCA), including uncertainty analysis, was conducted to determine the environmental benefits (global warming, fossil fuel consumption, urban air pollution, and acidification) of HBD produced from waste cooking oil via catalytic cracking and hydrogenation, compared with fossil-derived diesel fuel or FAME-type BDF. Combined functional unit including "treatment of waste cooking oil" and "running diesel vehicle for household waste collection" was established in the context of Kyoto city, Japan. The calculation utilized characterization, damage, and integration factors identified by LIME2, which was based on an endpoint modeling method. The results show that if diesel vehicles that comply with the new Japanese long-term emissions gas standard are commonly used in the future, the benefit of FAME-type BDF will be relatively limited. Furthermore, the scenario that introduced HBD was most effective in reducing total environmental impact, meaning that a shift from FAME-type BDF to HBD would be more beneficial. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Surface spintronics enhanced photo-catalytic hydrogen evolution: Mechanisms, strategies, challenges and future

    Science.gov (United States)

    Zhang, Wenyan; Gao, Wei; Zhang, Xuqiang; Li, Zhen; Lu, Gongxuan

    2018-03-01

    Hydrogen is a green energy carrier with high enthalpy and zero environmental pollution emission characteristics. Photocatalytic hydrogen evolution (HER) is a sustainable and promising way to generate hydrogen. Despite of great achievements in photocatalytic HER research, its efficiency is still limited due to undesirable electron transfer loss, high HER over-potential and low stability of some photocatalysts, which lead to their unsatisfied performance in HER and anti-photocorrosion properties. In recent years, many spintronics works have shown their enhancing effects on photo-catalytic HER. For example, it was reported that spin polarized photo-electrons could result in higher photocurrents and HER turn-over frequency (up to 200%) in photocatalytic system. Two strategies have been developed for electron spin polarizing, which resort to heavy atom effect and magnetic induction respectively. Both theoretical and experimental studies show that controlling spin state of OHrad radicals in photocatalytic reaction can not only decrease OER over-potential (even to 0 eV) of water splitting, but improve stability and charge lifetime of photocatalysts. A convenient strategy have been developed for aligning spin state of OHrad by utilizing chiral molecules to spin filter photo-electrons. By chiral-induced spin filtering, electron polarization can approach to 74%, which is significantly larger than some traditional transition metal devices. Those achievements demonstrate bright future of spintronics in enhancing photocatalytic HER, nevertheless, there is little work systematically reviewing and analysis this topic. This review focuses on recent achievements of spintronics in photocatalytic HER study, and systematically summarizes the related mechanisms and important strategies proposed. Besides, the challenges and developing trends of spintronics enhanced photo-catalytic HER research are discussed, expecting to comprehend and explore such interdisciplinary research in

  18. Catalytic hydrogenation of carbon monoxide. Progress report, December 15, 1991--December 14, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, B.B.

    1992-12-01

    This project is focused on developing strategies to accomplish the reduction and hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. Our approaches to this issue are based on the recognition that rhodium macrocycles have unusually favorable thermodynamic values for producing a series of intermediate implicated in the catalytic hydrogenation of CO. Observations of metalloformyl complexes produced by reactions of H{sub 2} and CO, and reductive coupling of CO to form metallo {alpha}-diketone species have suggested a multiplicity of routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in constructing energy profiles for a variety of potential pathways, and these schemes are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Variation of the electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Emerging knowledge of the factors that contribute to M-H, M-C and M-O bond enthalpies is directing the search for ligand arrays that will expand the range of metal species that have favorable thermodynamic parameters to produce the primary intermediates for CO hydrogenation. Studies of rhodium complexes are being extended to non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics. Multifunctional catalyst systems designed to couple the ability of rhodium complexes to produce formyl and diketone intermediates with a second catalyst that hydrogenates these imtermediates are promising approaches to accomplish CO hydrogenation at mild conditions.

  19. Catalytic on-board hydrogen production from methanol and ammonia for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Soerijanto, H.

    2008-08-15

    This PhD thesis deals with the catalytic hydrogen production for mobile application, for example for the use in fuel cells for electric cars. Electric powered buses with fuel cells as driving system are well known, but the secure hydrogen storage in adequate amounts for long distance drive is still a topic of discussion. Methanol is an excellent hydrogen carrier. First of all it has a high H:C ratio and therefore a high energy density. Secondly the operating temperature of steam reforming of methanol is comparatively low (250 C) and there is no risk of coking since methanol has no C-C bond. Thirdly methanol is a liquid, which means that the present gasoline infrastructure can be used. For the further development of catalysts and for the construction of a reformer it is very important to characterize the catalysts very well. For the dimensioning and the control of an on-board production of hydrogen it is essential to draw accurately on the thermodynamic, chemical and kinetic data of the reaction. At the first part of this work the mesoporous Cu/ZrO{sub 2}/CeO{sub 2}-catalysts with various copper contents were characterized and their long-term stability and selectivity were investigated, and the kinetic data were determined. Carbon monoxide is generated by reforming of carbon containing material. This process is undesired since CO poisons the Pt electrode of the fuel cell. The separation of hydrogen by metal membranes is technically feasible and a high purity of hydrogen can be obtained. However, due to their high density this procedure is not favourable because of its energy loss. In this study a concept is presented, which enables an autothermal mode by application of ceramic membrane and simultaneously could help to deal with the CO problem. The search for an absolutely selective catalyst is uncertain. The production of CO can be neither chemically nor thermodynamically excluded, if carbon is present in the hydrogen carrier. Since enrichment or separation are

  20. Catalytic

    Directory of Open Access Journals (Sweden)

    S.A. Hanafi

    2014-03-01

    Full Text Available A series of dealuminated Y-zeolites impregnated by 0.5 wt% Pt catalysts promoted by different amounts of Ni, Pd or Cr (0.3 and 0.6 wt% were prepared and characterized as hydrocracking catalysts. The physicochemical and structural characterization of the solid catalysts were investigated and reported through N2 physisorption, XRD, TGA-DSC, FT-IR and TEM techniques. Solid catalysts surface acidities were investigated through FT-IR spectroscopy aided by pyridine adsorption. The solid catalytic activities were evaluated through hydroconversion of n-hexane and n-heptane employing micro-catalytic pulse technique directly connected to a gas chromatograph analyzer. The thermal stability of the solids was also investigated up to 800 °C. Crystallinity studies using the XRD technique of all modified samples proved analogous to the parent Y-zeolite, exhibiting nearly an amorphous and microcrystalline character of the second metal oxides. Disclosure of bimetallic catalysts crystalline characterization, through XRD, was not viable. The nitrogen adsorption–desorption isotherms for all samples concluded type I adsorption isotherms, without any hysteresis loop, indicating that the entire pore system is composed of micropores. TEM micrographs of the solid catalysts demonstrate well-dispersed Pt, Ni and Cr nanoparticles having sizes of 2–4 nm and 7–8 nm, respectively. The catalytic activity results indicate that the bimetallic (0.5Pt–0.3Cr/D18H–Y catalyst is the most active towards n-hexane and n-heptane isomerization while (0.5Pt–0.6Ni/D18H–Y catalyst can be designed as most suitable as a cracking catalyst.

  1. Effect of catalytic cylinders on autothermal reforming of methane for hydrogen production in a microchamber reactor.

    Science.gov (United States)

    Yan, Yunfei; Guo, Hongliang; Zhang, Li; Zhu, Junchen; Yang, Zhongqing; Tang, Qiang; Ji, Xin

    2014-01-01

    A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors.

  2. Study of Catalytic Hydrogenation and Methanol Addition to α-Methylene-γ-Lactone of Eremanthine Derivatives

    Directory of Open Access Journals (Sweden)

    José C. F. Alves

    2010-01-01

    Full Text Available The sesquiterpene lactones guaia-1(10,11(13-dieno-4α-hydroxy,9α-acetyl-15-iodine-12,6α-lactone (2, guaia-1(10,4(15,11(13-trieno-9α-hydroxy-12,6α-lactone (3, (11S-guaia-4(15,10(14-dieno-9α-hydroxy-13-methoxy-12,6α-lactone (4, (11S-guai-1(10-eno-4α,9α-dihydroxy-13-methoxy-12,6α-lactone (5, and guaia-1(10,11(13-dieno-4α,9α-dihydroxy-15-iodine-12,6α-lactone (6 were previously obtained starting from the natural product eremanthine (1. In this paper we report the catalytic hydrogenation reactions of allylic derivatives 2–5 and the methanol addition to α-methylene-γ-lactone of the iodohydrin 6.

  3. Effect of Catalytic Cylinders on Autothermal Reforming of Methane for Hydrogen Production in a Microchamber Reactor

    Directory of Open Access Journals (Sweden)

    Yunfei Yan

    2014-01-01

    Full Text Available A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors.

  4. Methane catalytic decomposition over ordered mesoporous carbons: A promising route for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Botas, J.A.; Serrano, D.P. [Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, c/ Tulipan s/n, 28933 Mostoles, Madrid (Spain); IMDEA Energia, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Guil-Lopez, R.; Pizarro, P.; Gomez, G. [Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, c/ Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2010-09-15

    Methane decomposition offers an interesting route for the CO{sub 2}-free hydrogen production. The use of carbon catalysts, in addition to lowering the reaction temperature, presents a number of advantages, such as low cost, possibility of operating under autocatalytic conditions and feasibility of using the produced carbons in non-energy applications. In this work, a novel class of carbonaceous materials, having an ordered mesoporous structure (CMK-3 and CMK-5), has been checked as catalysts for methane decomposition, the results obtained being compared to those corresponding to a carbon black sample (CB-bp) and two activated carbons, presenting micro- (AC-mic) and mesoporosity (AC-mes), respectively. Ordered mesoporous carbons, and especially CMK-5, possess a remarkable activity and stability for the hydrogen production through that reaction. Under both temperature programmed and isothermal experiments, CMK-5 has shown to be a superior catalyst for methane decomposition than the AC-mic and CB-bp materials. Likewise, the catalytic activity of CMK-5 is superior to that of AC-mes in spite of the presence of mesoporosity and a high surface area in the latter. The remarkable stability of the CMK-5 catalyst is demonstrated by the high amount of carbon deposits that can be formed on this sample. This result has been assigned to the growth of the carbon deposits from methane decomposition towards the outer part of the catalyst particles, avoiding the blockage of the uniform mesopores present in CMK-5. Thus, up to 25 g of carbon deposits have been formed per gram of CMK-5, while the latter still retains a significant catalytic activity. (author)

  5. Preparation of Rh/Ni Bimetallic Nanoparticles and Their Catalytic Activities for Hydrogen Generation from Hydrolysis of KBH4

    Directory of Open Access Journals (Sweden)

    Liqiong Wang

    2017-04-01

    Full Text Available ISOBAM–104 protected Rh/Ni bimetallic nanoparticles (BNPs of 3.1 nm in diameter were synthesized by a co–reduction method with a rapid injection of KBH4 solution. The catalytic activities of as–prepared BNPs for hydrogen generation from hydrolysis of a basic KBH4 solution were evaluated. Ultraviolet–visible spectrophotometry (UV–Vis, transmission electron microscopy (TEM, and high–resolution transmission electron microscopy (HRTEM were employed to characterize the structure, particle size, and chemical composition of the resultant BNPs. Catalytic activities for hydrolysis of KBH4 and catalytic kinetics of prepared BNPs were also investigated. It was shown that Rh/Ni BNPs displayed much higher catalytic activities than that of Rh or Ni monometallic nanoparticles (MNPs, and the prepared Rh10Ni90 BNPs possessed the highest catalytic activities with a value of 11580 mol–H2·h−1·mol–Rh−1. The high catalytic activities of Rh/Ni BNPs could be attributed to the electron transfer effect between Rh and Ni atoms, which was confirmed by a density functional theory (DFT calculation. The apparent activation energy for hydrogen generation of the prepared Rh10Ni90 BNPs was about 47.2 ± 2.1kJ/mol according to a kinetic study.

  6. The role of sulfur trapped in micropores in the catalytic partial oxidation of hydrogen sulfide with oxygen

    NARCIS (Netherlands)

    Steijns, M.; Mars, P.

    1974-01-01

    The catalytic oxidation of hydrogen sulfide into sulfur with molecular oxygen has been studied in the temperature range 130–200 °C. Active carbon, molecular sieve 13X and liquid sulfur were used as catalysts. Sulfur is adsorbed in the micropores (3 < r < 40 Å) of the catalysts. Experiments with a

  7. β-Molybdenum nitride: synthesis mechanism and catalytic response in the gas phase hydrogenation of p-chloronitrobenzene

    NARCIS (Netherlands)

    Cárdenas-Lizana, F.; Gómez-Quero, S.; Perret, N.; Kiwi-Minsker, L.; Keane, M.A.

    2011-01-01

    A temperature programmed treatment of MoO3 in flowing N2 + H2 has been employed to prepare β-phase molybdenum nitride (β-Mo2N) which has been used to promote, for the first time, the catalytic hydrogenation of p-chloronitrobenzene. The reduction/nitridation synthesis steps have been monitored in

  8. In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading

    Science.gov (United States)

    Junfeng Feng; Zhongzhi Yang; Chung-yun Hse; Qiuli Su; Kui Wang; Jianchun Jiang; Junming Xu

    2017-01-01

    The renewable phenolic compounds produced by directional liquefaction of biomass are a mixture of complete fragments decomposed from native lignin. These compounds are unstable and difficult to use directly as biofuel. Here, we report an efficient in situ catalytic hydrogenation method that can convert phenolic compounds into saturated cyclohexanes. The process has...

  9. Experimental and Numerical Evaluation of the By-Pass Flow in a Catalytic Plate Reactor for Hydrogen Production

    DEFF Research Database (Denmark)

    Sigurdsson, Haftor Örn; Kær, Søren Knudsen

    2011-01-01

    Numerical and experimental study is performed to evaluate the reactant by-pass flow in a catalytic plate reactor with a coated wire mesh catalyst for steam reforming of methane for hydrogen generation. By-pass of unconverted methane is evaluated under different wire mesh catalyst width to reactor...

  10. Mechanical bending induced catalytic activity enhancement of monolayer 1 T'-MoS2 for hydrogen evolution reaction

    Science.gov (United States)

    Shi, Wenwu; Wang, Zhiguo; Fu, Yong Qing

    2017-09-01

    In this paper, mechanisms behind enhancement of catalytic activity of MoS2 mono-layer (three atomic layers) for hydrogen evolution reaction (HER) by mechanically applying bending strain were investigated using density functional theory. Results showed that with the increase of bending strains, the Gibbs free energy for hydrogen adsorption on the MoS2 mono-layer was decreased from 0.18 to -0.04 eV and to 0.13 eV for the bend strains applied along the zigzag and armchair directions, respectively. The mechanism for the enhanced catalytic activity comes from the changes of density of electronic states near the Fermi energy level, which are induced by the changes of the Mo-S and Mo-Mo bonds upon bending. This report provides a new design methodology to improve the catalytic activity of catalysts based on two-dimensional transition metal dichalcogenides through a simple mechanical bending.

  11. Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen.

    Science.gov (United States)

    Zakzeski, Joseph; Jongerius, Anna L; Bruijnincx, Pieter C A; Weckhuysen, Bert M

    2012-08-01

    With dwindling reserves of fossil feedstock as a resource for chemicals production, the fraction of chemicals and energy supplied by alternative, renewable resources, such as lignin, can be expected to increase in the foreseeable future. Here, we demonstrate a catalytic process to valorize lignin (exemplified with kraft, organosolv, and sugarcane bagasse lignin) using a mixture of cheap, bio-renewable ethanol and water as solvent. Ethanol/water mixtures readily solubilize lignin under moderate temperatures and pressures with little residual solids. The molecular weight of the dissolved lignins was shown to be reduced by gel permeation chromatography and quantitative HSQC NMR methods. The use of liquid-phase reforming of the solubilized lignin over a Pt/Al(2)O(3) catalyst at 498 K and 58 bar is introduced to yield up to 17 % combined yield of monomeric aromatic oxygenates such as guaiacol and substituted guaiacols generating hydrogen as a useful by-product. Reduction of the lignin dissolved in ethanol/water using a supported transition metal catalyst at 473 K and 30 bar hydrogen yields up to 6 % of cyclic hydrocarbons and aromatics. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Alkaline earth organometallic compounds in homogeneous catalysis : Synthesis, characterization and catalytic activity of calcium and magnesium complexes

    NARCIS (Netherlands)

    Penafiel, Johanne

    2016-01-01

    Homogeneous catalysis has been developed mainly through the use of transition metal complexes. However, transition-metal catalysts, often highly toxic, are becoming increasingly rare and consequently more expensive. Therefore, the search for sustainable alternatives is nowadays of great importance.

  13. Experimental and kinetic modeling studies on the biphasic hydrogenation of levulinic acid to gamma-valerolactone using a homogeneous water-soluble Ru-(TPPTS) catalyst

    NARCIS (Netherlands)

    Chalid, M.; Broekhuis, A. A.; Heeres, H. J.

    2011-01-01

    gamma-Valerolactone (GVL) is considered a very attractive biomass derived platform chemical. This paper describes the application of biphasic homogeneous catalysis for the hydrogenation of levulinic acid (LA) to GVL using molecular hydrogen. A water soluble Ru-catalyst made in situ from RuCl3 center

  14. The role of CFD combustion modelling in hydrogen safety management – VI: Validation for slow deflagration in homogeneous hydrogen-air-steam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cutrono Rakhimov, A., E-mail: cutrono@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Visser, D.C., E-mail: visser@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Holler, T., E-mail: tadej.holler@ijs.si [Jožef Stefan Institute (JSI), Jamova cesta 39, 1000 Ljubljana (Slovenia); Komen, E.M.J., E-mail: komen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2017-01-15

    Highlights: • Deflagration of hydrogen-air-steam homogeneous mixtures is modeled in a medium-scale containment. • Adaptive mesh refinement is applied on flame front positions. • Steam effect influence on combustion modeling capabilities is investigated. • Mean pressure rise is predicted with 18% under-prediction when steam is involved. • Peak pressure is evaluated with 5% accuracy when steam is involved. - Abstract: Large quantities of hydrogen can be generated during a severe accident in a water-cooled nuclear reactor. When released in the containment, the hydrogen can create a potential deflagration risk. The dynamic pressure loads resulting from hydrogen combustion can be detrimental to the structural integrity of the reactor. Therefore, accurate prediction of these pressure loads is an important safety issue. In previous papers, we validated a Computational Fluid Dynamics (CFD) based method to determine the pressure loads from a fast deflagration. The combustion model applied in the CFD method is based on the Turbulent Flame Speed Closure (TFC). In our last paper, we presented the extension of this combustion model, Extended Turbulent Flame Speed Closure (ETFC), and its validation against hydrogen deflagration experiments in the slow deflagration regime. During a severe accident, cooling water will enter the containment as steam. Therefore, the effect of steam on hydrogen deflagration is important to capture in a CFD model. The primary objectives of the present paper are to further validate the TFC and ETFC combustion models, and investigate their capability to predict the effect of steam. The peak pressures, the trends of the flame velocity, and the pressure rise with an increase in the initial steam dilution are captured reasonably well by both combustion models. In addition, the ETFC model appeared to be more robust to mesh resolution changes. The mean pressure rise is evaluated with 18% under-prediction and the peak pressure is evaluated with 5

  15. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    John Pratapas; Daniel Mather; Anton Kozlovsky

    2007-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  16. Catalytic activity of mono and bimetallic Zn/Cu/MWCNTs catalysts for the thermocatalyzed conversion of methane to hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Erdelyi, B. [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelium 9, 040 01 Košice (Slovakia); Oriňak, A., E-mail: andrej.orinak@upjs.sk [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Oriňaková, R. [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Lorinčík, J. [Research Center Rez, Hlavní 130, 250 68 Husinec-Řež (Czech Republic); Jerigová, M. [Department of Physical Chemistry, Comenius University, Mlynská dolina 842 15 Bratislava 4 (Slovakia); Velič, D. [Department of Physical Chemistry, Comenius University, Mlynská dolina 842 15 Bratislava 4 (Slovakia); International Laser Centre, Ilkovičová 3, 841 01 Bratislava (Slovakia); Mičušík, M. [Polymer institute, Slovak Academy of Sciences, Dubravská cesta 9, 84541 Bratislava (Slovakia); and others

    2017-02-28

    Highlights: • Zn/Cu/MWCNTs catalyst with good activity. • Methane conversion to hydrogen with high effectivity. • ZnO/Cu responsible for catalytic activity. - Abstract: Mono and bimetallic multiwalled carbon nanotubes (MWCNTs) fortified with Cu and Zn metal particles were studied to improve the efficiency of the thermocatalytic conversion of methane to hydrogen. The surface of the catalyst and the dispersion of the metal particles were studied by scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS) and with energy-dispersive X-ray spectroscopy (EDS). It was confirmed that the metal particles were successfully dispersed on the MWCNT surface and XPS analysis showed that the Zn was oxidised to ZnO at high temperatures. The conversion of methane to hydrogen during the catalytic pyrolysis was studied by pyrolysis gas chromatography using different amounts of catalyst. The best yields of hydrogen were obtained using pyrolysis conditions of 900 °C and 1.2 mg of Zn/Cu/MWCNT catalyst for 1.5 mL of methane.The initial conversion of methane to hydrogen obtained with Zn/Cu/MWCNTs was 49%, which represent a good conversion rate of methane to hydrogen for a non-noble metal catalyst.

  17. Selective Catalytic Hydrogenation of Arenols by a Well-Defined Complex of Ruthenium and Phosphorus–Nitrogen PN3–Pincer Ligand Containing a Phenanthroline Backbone

    KAUST Repository

    Li, Huaifeng

    2017-05-30

    Selective catalytic hydrogenation of aromatic compounds is extremely challenging using transition-metal catalysts. Hydrogenation of arenols to substituted tetrahydronaphthols or cyclohexanols has been reported only with heterogeneous catalysts. Herein, we demonstrate the selective hydrogenation of arenols to the corresponding tetrahydronaphthols or cyclohexanols catalyzed by a phenanthroline-based PN3-ruthenium pincer catalyst.

  18. Field-controlled electron transfer and reaction kinetics of the biological catalytic system of microperoxidase-11 and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Yongki Choi

    2011-12-01

    Full Text Available Controlled reaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1 the thermodynamics of the system using electrochemical setup and 2 the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed a dependence on the gating voltage in the presence of hydrogen peroxide, indicating a controllable reduction reaction. The measured kinetic parameters of the bio-catalytic reduction showed nonlinear dependences on the gating voltage as the result of modified interfacial electron tunnel due to the field induced at the microperoxidase-11-electrode interface. Our results indicate that the kinetics of the reduction of hydrogen peroxide can be controlled by a gating voltage and illustrate the operation of a field-effect bio-catalytic transistor, whose current-generating mechanism is the conversion of hydrogen peroxide to water with the current being controlled by the gating voltage.

  19. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    Pratapas, John; Mather, Daniel; Kozlovsky, Anton

    2013-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen’s significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  20. Homogeneous reaction rate model for hydrogen production from ion-irradiated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M.B. (Oak Ridge National Lab., TN (United States)); Lee, E.H. (Oak Ridge National Lab., TN (United States)); Mansur, L.K. (Oak Ridge National Lab., TN (United States)); Coghlan, W.A. (Grand Canyon Univ., Phoenix, AZ (United States))

    1994-01-01

    A theoretical model has been constructed to calculate the time or fluence dependence of G-values for H[sub 2] production, G(H[sub 2]), from the ion irradiation of the polymers polyethylene (PE), polypropylene (PP), polystyrene (PS), polycarbonate (PC), and Kapton. Measurements of the G(H[sub 2]) for 1 Mev Ar[sup +] over a fluence range from about 1 x 10[sup 11] to about 5 x 10[sup 13] /mm[sup 2] have been made in order to determine the parameters of the model. The model is based upon rate equations describing the electronic-generation of and the interaction of a uniform distribution of free radicals. Satisfactory fits to the data could be made by adjusting two key parameters - the effective C-H bond energy and the hydrogen-carbon recombination rate constant relative to the hydrogen-hydrogen recombination rate constant. It was found that the effective C-H bond energy varied from the lowest value of [approx]8 eV for PE to the highest value of [approx]100 eV for Kapton. From the effective bond energy, an average value for hydrogen radical production, G(H[sup .]), was deduced. The effects of the parameters on the G-value versus time/fluence curves are shown and the significance of the parameters are discussed. The data was also compared to percolation model predictions, but the deviations between data and this model were seen to be large at high fluence. (orig.)

  1. Recovery of homogeneous polyoxometallate catalysts from aqueous and organic media by a mesoporous ceramic membrane without loss of catalytic activity

    NARCIS (Netherlands)

    Roy Chowdhury, S.; Roy Chowdhury, Sankhanilay; Witte, Peter T.; Blank, David H.A.; Alsters, Paul L.; ten Elshof, Johan E.

    2006-01-01

    The recovery of homogeneous polyoxometallate (POM) oxidation catalysts from aqueous and non-aqueous media by a nanofiltration process using mesoporous γ-alumina membranes is reported. The recovery of Q12[WZn3(ZnW9O34)2] (Q=[MeN(n-C8H17)3]+) from toluene-based media was quantitative within

  2. Synphos modified Pt nanoclusters, their heterogenization by silica sol-gel entrapment, and catalytic activity in hydrogenolysis of bicyclo[2.2.2]oct-7-enes and hydrogenation of ethyl pyruvate

    Energy Technology Data Exchange (ETDEWEB)

    Neatu, F; Parvulescu, V I [Faculty of Chemistry, Department of Chemical Technology and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030018 (Romania); Kraynov, A [Jacobs University Bremen, Campus Ring 8, D-28759 Bremen (Germany); Kranjc, K; Kocevar, M [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, SI-1000 Ljubljana (Slovenia); Ratovelomanana-Vidal, V [Laboratoire de Synthese Selective Organique et Produits Naturels, Ecole Nationale Superieure de Chimie de Paris, UMR 7573 CNRS, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Richards, R [Department of Chemistry and Geochemistry, Colorado School of Mines, 1500 Illiniois, Golden, CO 80401 (United States)], E-mail: v_parvulescu@chem.unibuc.ro, E-mail: virginie-vidal@enscp.fr, E-mail: rrichard@mines.edu

    2008-06-04

    Platinum (Pt) colloids modified by the chiral ligand synphos were prepared with the goal of obtaining a catalytic nanomaterial and were subsequently embedded in silica to form a heterogeneous catalyst. The systems were characterized by {sup 31}P-NMR, x-ray diffraction, molecular modeling and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) measurements. These colloids, both as 'quasi-homogeneous catalysts' (or soluble heterogeneous catalysts) and embedded in silica (heterogeneous catalysts) were employed in the selective hydrogenolysis of highly sterically constrained bicyclo[2.2.2]oct-7-enes and hydrogenation of ethyl pyruvate.

  3. Catalytic dry reforming of natural gas for the production of chemicals and hydrogen

    Directory of Open Access Journals (Sweden)

    Verykios Xenophon E.

    2002-01-01

    Full Text Available Carbon dioxide reforming of methane to synthesis gas was studied over Ni-based catalysts. It is shown that, in contrast to other Ni-based catalysts which exhibit continuous deactivation with time-on-stream, the rate over the Ni/La2O3 catalyst increases during the initial 2-3 h of reaction and then tends to be essentially invariable, displaying very good stability. X-ray diffraction, hydrogen and CO uptake studies, as well as high resolution TEM indicate that, under reaction conditions, the Ni particles are partially covered by La2O2CO3 species which are formed by interaction of La2O2 with CO2. Catalytic activity occurs at the Ni- La2O2CO3 interface, while the oxycarbonate species participate directly by reacting with deposited carbon, thus restoring the activity of the Ni sites at the interface. XPS and FTIR studies provide evidence in support of this mechanistic scheme. It was also found that methane cracking on Ni sites and surface reaction between deposited carbon and oxycarbonate species are the rate determining steps in the reaction sequence. A kinetic model is developed based on this mechanistic scheme, which is found to predict satisfactorily the kinetic measurements.

  4. Catalytic Ammonia Decomposition over High-Performance Ru/Graphene Nanocomposites for Efficient COx-Free Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Gang Li

    2017-01-01

    Full Text Available Highly-dispersed Ru nanoparticles were grown on graphene nanosheets by simultaneously reducing graphene oxide and Ru ions using ethylene glycol (EG, and the resultant Ru/graphene nanocomposites were applied as a catalyst to ammonia decomposition for COx-free hydrogen production. Tuning the microstructures of Ru/graphene nanocomposites was easily accomplished in terms of Ru particle size, morphology, and loading by adjusting the preparation conditions. This was the key to excellent catalytic activity, because ammonia decomposition over Ru catalysts is structure-sensitive. Our results demonstrated that Ru/graphene prepared using water as a co-solvent greatly enhanced the catalytic performance for ammonia decomposition, due to the significantly improved nano architectures of the composites. The long-term stability of Ru/graphene catalysts was evaluated for COx-free hydrogen production from ammonia at high temperatures, and the structural evolution of the catalysts was investigated during the catalytic reactions. Although there were no obvious changes in the catalytic activities at 450 °C over a duration of 80 h, an aggregation of the Ru nanoparticles was still observed in the nanocomposites, which was ascribed mainly to a sintering effect. However, the performance of the Ru/graphene catalyst was decreased gradually at 500 °C within 20 h, which was ascribed mainly to both the effect of the methanation of the graphene nanosheet under a H2 atmosphere and to enhanced sintering under high temperatures.

  5. Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation

    Science.gov (United States)

    Wang, Liangbing; Zhang, Wenbo; Zheng, Xusheng; Chen, Yizhen; Wu, Wenlong; Qiu, Jianxiang; Zhao, Xiangchen; Zhao, Xiao; Dai, Yizhou; Zeng, Jie

    2017-11-01

    Hydrogenation of CO2 into fuels and useful chemicals could help to reduce reliance on fossil fuels. Although great progress has been made over the past decades to improve the activity of catalysts for CO2 hydrogenation, more efficient catalysts, especially those based on non-noble metals, are desired. Here we incorporate N atoms into Co nanosheets to boost the catalytic activity toward CO2 hydrogenation. For the hydrogenation of CO2, Co4N nanosheets exhibited a turnover frequency of 25.6 h-1 in a slurry reactor under 32 bar pressure at 150 °C, which was 64 times that of Co nanosheets. The activation energy for Co4N nanosheets was 43.3 kJ mol-1, less than half of that for Co nanosheets. Mechanistic studies revealed that Co4N nanosheets were reconstructed into Co4NHx, wherein the amido-hydrogen atoms directly interacted with the CO2 to form HCOO* intermediates. In addition, the adsorbed H2O* activated amido-hydrogen atoms via the interaction of hydrogen bonds.

  6. Catalytic steam reforming of volatiles released via pyrolysis of wood sawdust for hydrogen-rich gas production on Fe–Zn/Al2O3 nanocatalysts

    OpenAIRE

    Chen, F; Wu, C; Dong, L; Jin, F; Williams, PT; Huang, J

    2015-01-01

    Thermo-chemical processing of biomass is a promising alternative to produce renewable hydrogen as a clean fuel or renewable syngas for a sustainable chemical industry. However, the fast deactivation of catalysts due to coke formation and sintering limits the application of catalytic thermo-chemical processing in the emerging bio-refining industry. In this research, Fe–Zn/Al2O3 nanocatalysts have been prepared for the production of hydrogen through pyrolysis catalytic reforming of wood sawdust...

  7. Magnetic porous PtNi/SiO2 nanofibers for catalytic hydrogenation of p-nitrophenol

    Science.gov (United States)

    Guan, Huijuan; Chao, Cong; Kong, Weixiao; Hu, Zonggao; Zhao, Yafei; Yuan, Siguo; Zhang, Bing

    2017-06-01

    In this work, the mesoporous SiO2 nanofibers from pyrolyzing precursor of electrospun nanofibers were employed as support to immobilize PtNi nanocatalyst (PtNi/SiO2 nanofibers). AFM, XRD, SEM, TEM, XPS, ICP-AES and N2 adsorption/desorption analysis were applied to systematically investigate the morphology and microstructure of as-prepared products. Results showed that PtNi alloy nanoparticles with average diameter of 18.7 nm were formed and could be homogeneously supported on the surface of porous SiO2 nanofiber, which further indicated that the SiO2 nanofibers with well-developed porous structure, large specific surface area, and roughened surface was a benefit for the support of PtNi alloy nanoparticles. The PtNi/SiO2 nanofibers catalyst exhibited an excellent catalytic activity towards the reduction of p-nitrophenol, and the catalyst's kinetic parameter ( k n = 434 × 10-3 mmol s-1 g-1) was much higher than those of Ni/SiO2 nanofibers (18 × 10-3 mmol s-1 g-1), Pt/SiO2 nanofibers (55 × 10-3 mmol s-1 g-1) and previous reported PtNi catalysts. The catalyst could be easily recycled from heterogeneous reaction system based on its good magnetic properties (the Ms value of 11.48 emu g-1). In addition, PtNi/SiO2 nanofibers also showed an excellent stability and the conversion rate of p-nitrophenol still could maintain 94.2% after the eighth using cycle.

  8. Pt nanoparticles modified by rare earth oxides: Electronic effect and influence to catalytic hydrogenation of 3-phenoxybenzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Mou, Zhigang; Han, Ming; Li, Gang; Du, Yukou [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Yang, Ping, E-mail: pyang@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Zhang, Hailu [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Deng, Zongwu, E-mail: zwdeng2007@sinano.ac.cn [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China)

    2013-11-15

    Graphical abstract: - Highlights: • The rare earths modified Pt/Al{sub 2}O{sub 3} were prepared by colloidal deposition method. • Modification of Pt by the rare earth enhanced catalytic hydrogenation activity. • The activity improvement is due to electron interaction between Pt and rare earth. • The hydrogenation mechanism of rare earth modified Pt catalyst was proposed. - Abstract: The rare earth elements (La, Ce, Nd, Sm, Pr, and Gd) modified Pt/Al{sub 2}O{sub 3} catalysts were prepared by the colloidal deposition and chemical reduction methods, respectively. Pt nanoparticles with average size 3 ± 0.5 nm were uniformly dispersed on the surface of Al{sub 2}O{sub 3} for the samples prepared by the colloidal deposition method, which exhibited higher activities in the hydrogenation of 3-phenoxybenzadehyde than the corresponding samples prepared by chemical reduction method. Moreover, except Gd, the catalysts modified by rare earth elements showed better catalytic performance than unmodified Pt/Al{sub 2}O{sub 3}. For Pt–Ce/Al{sub 2}O{sub 3} catalyst, when the weight percent of Pt and Ce was 0.5 and 0.25, respectively, the hydrogenation conversion of 3-phenoxybenzaldehyde was 97.3% after 6 h reaction. This activity improvement is due to the electronic interaction between Pt and rare earth elements, which was investigated by X-ray photoelectron spectroscopy.

  9. Energy Efficient Catalytic Activation of Hydrogen peroxide for Green Chemical Processes: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Terrence J.; Horwitz, Colin

    2004-11-12

    A new, highly energy efficient approach for using catalytic oxidation chemistry in multiple fields of technology has been pursued. The new catalysts, called TAML® activators, catalyze the reactions of hydrogen peroxide and other oxidants for the exceptionally rapid decontamination of noninfectious simulants (B. atrophaeus) of anthrax spores, for the energy efficient decontamination of thiophosphate pesticides, for the facile, low temperature removal of color and organochlorines from pulp and paper mill effluent, for the bleaching of dyes from textile mill effluents, and for the removal of recalcitrant dibenzothiophene compounds from diesel and gasoline fuels. Highlights include the following: 1) A 7-log kill of Bacillus atrophaeus spores has been achieved unambiguously in water under ambient conditions within 15 minutes. 2) The rapid total degradation under ambient conditions of four thiophosphate pesticides and phosphonate degradation intermediates has been achieved on treatment with TAML/peroxide, opening up potential applications of the decontamination system for phosphonate structured chemical warfare agents, for inexpensive, easy to perform degradation of stored and aged pesticide stocks (especially in Africa and Asia), for remediation of polluted sites and water bodies, and for the destruction of chemical warfare agent stockpiles. 3) A mill trial conducted in a Pennsylvanian bleached kraft pulp mill has established that TAML catalyst injected into an alkaline peroxide bleach tower can significantly lower color from the effluent stream promising a new, more cost effective, energy-saving approach for color remediation adding further evidence of the value and diverse engineering capacity of the approach to other field trials conducted on effluent streams as they exit the bleach plant. 4) Dibenzothiophenes (DBTs), including 4,6-dimethyldibenzothiophene, the most recalcitrant sulfur compounds in diesel and gasoline, can be completely removed from model gasoline

  10. Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils

    Science.gov (United States)

    Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

    2014-06-03

    Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

  11. Effect of Co crystallinity on Co/CNT catalytic activity in CO/CO{sub 2} hydrogenation and CO disproportionation

    Energy Technology Data Exchange (ETDEWEB)

    Chernyak, Sergei A., E-mail: chernyak.msu@gmail.com [Lomonosov Moscow State University, Department of Chemistry, Leninskiye Gory 1-3, Moscow 119991 (Russian Federation); Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Department of Physical Chemistry, Leninsky Avenue 31, Moscow 119991 (Russian Federation); Suslova, Evgeniya V.; Egorov, Alexander V.; Maslakov, Konstantin I. [Lomonosov Moscow State University, Department of Chemistry, Leninskiye Gory 1-3, Moscow 119991 (Russian Federation); Savilov, Serguei V.; Lunin, Valery V. [Lomonosov Moscow State University, Department of Chemistry, Leninskiye Gory 1-3, Moscow 119991 (Russian Federation); Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Department of Physical Chemistry, Leninsky Avenue 31, Moscow 119991 (Russian Federation)

    2016-05-30

    Highlights: • Amorphous and crystalline Co supported on CNTs were obtained by tuning of CNT surface. • CO and CO{sub 2} hydrogenation does not occur on amorphous Co particles. • Thermal activation of amorphous Co led to crystallization of metal. • Amorphous Co promotes CO disproportionation. • Carbon shells around the amorphous metal particles after the CO hydrogenation. - Abstract: Carbon nanotubes (CNTs) with different degree of surface oxidation were used as supports for 5 wt.% Co catalysts. CNTs and Co/CNT catalysts were analyzed by XPS, nitrogen adsorption, TEM and electron diffraction to reveal their structure. High oxidation degree of CNT surface (8.6 at.% of O) and low Co loading led to predominantly amorphous Co species. This resulted in the absence of catalytic activity in both CO and CO{sub 2} hydrogenation in opposite to the catalyst supported on less oxidized CNTs (5.4 at.% of O) where Co species were found to be crystalline. Thermal treatment of inactive catalyst in H{sub 2} and He led to the formation of Co crystal phase which was active in catalysis. Co particle size in catalyst supported on strongly oxidized CNTs was unchanged during CO hydrogenation in opposite to Co supported on less oxidized CNTs. Carbon shell formation on the surface of amorphous Co particles during CO hydrogenation was revealed, which testified CO disproportionation. Qualitative mechanism of CO hydrogenation on small Co particles was proposed.

  12. Experimental and Mechanistic Understanding of Aldehyde Hydrogenation Using Au25 Nanoclusters with Lewis Acids: Unique Sites for Catalytic Reactions.

    Science.gov (United States)

    Li, Gao; Abroshan, Hadi; Chen, Yuxiang; Jin, Rongchao; Kim, Hyung J

    2015-11-18

    The catalytic activity of Au25(SR)18 nanoclusters (R = C2H4Ph) for the aldehyde hydrogenation reaction in the presence of a base, e.g., ammonia or pyridine, and transition-metal ions M(z+), such as Cu(+), Cu(2+), Ni(2+) and Co(2+), as a Lewis acid is studied. The addition of a Lewis acid is found to significantly promote the catalytic activity of Au25(SR)18/CeO2 in the hydrogenation of benzaldehyde and a number of its derivatives. Matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry in conjunction with UV-vis spectroscopy confirm the generation of new species, Au25-n(SR)18-n (n = 1-4), in the presence of a Lewis acid. The pathways for the speciation of Au24(SR)17 from its parent Au25(SR)18 nanocluster as well as its structure are investigated via the density functional theory (DFT) method. The adsorption of M(z+) onto a thiolate ligand "-SR-" of Au25(SR)18, followed by a stepwise detachment of "-SR-" and a gold atom bonded to "-SR-" (thus an "Au-SR" unit) is found to be the most likely mechanism for the Au24(SR)17 generation. This in turn exposes the Au13-core of Au24(SR)17 to reactants, providing an active site for the catalytic hydrogenation. DFT calculations indicate that M(z+) is also capable of adsorbing onto the Au13-core surface, producing a possible active metal site of a different kind to catalyze the aldehyde hydrogenation reaction. This study suggests, for the first time, that species with an open metal site like adducts [nanoparticle-M]((z-1)+) or fragments Au25-n(SR)18-n function as the catalysts rather than the intact Au25(SR)18.

  13. Is it homogeneous or heterogeneous catalysis derived from [RhCp*Cl2]2? In operando XAFS, kinetic, and crucial kinetic poisoning evidence for subnanometer Rh4 cluster-based benzene hydrogenation catalysis.

    Science.gov (United States)

    Bayram, Ercan; Linehan, John C; Fulton, John L; Roberts, John A S; Szymczak, Nathaniel K; Smurthwaite, Tricia D; Özkar, Saim; Balasubramanian, Mahalingam; Finke, Richard G

    2011-11-23

    Determining the true, kinetically dominant catalytically active species, in the classic benzene hydrogenation system pioneered by Maitlis and co-workers 34 years ago starting with [RhCp*Cl(2)](2) (Cp* = [η(5)-C(5)(CH(3))(5)]), has proven to be one of the most challenging case studies in the quest to distinguish single-metal-based "homogeneous" from polymetallic, "heterogeneous" catalysis. The reason, this study will show, is the previous failure to use the proper combination of: (i) in operando spectroscopy to determine the dominant form(s) of the precatalyst's mass under catalysis (i.e., operating) conditions, and then crucially also (ii) the previous lack of the necessary kinetic studies, catalysis being a "wholly kinetic phenomenon" as J. Halpern long ago noted. An important contribution from this study will be to reveal the power of quantitiative kinetic poisoning experiments for distinguishing single-metal, or in the present case subnanometer Rh(4) cluster-based catalysis, from larger, polymetallic Rh(0)(n) nanoparticle catalysis, at least under favorable conditions. The combined in operando X-ray absorption fine structure (XAFS) spectroscopy and kinetic evidence provide a compelling case for Rh(4)-based, with average stoichiometry "Rh(4)Cp*(2.4)Cl(4)H(c)", benzene hydrogenation catalysis in 2-propanol with added Et(3)N and at 100 °C and 50 atm initial H(2) pressure. The results also reveal, however, that if even ca. 1.4% of the total soluble Rh(0)(n) had formed nanoparticles, then those Rh(0)(n) nanoparticles would have been able to account for all the observed benzene hydrogenation catalytic rate (using commercial, ca. 2 nm, polyethyleneglycol-dodecylether hydrosol stabilized Rh(0)(n) nanoparticles as a model system). The results--especially the poisoning methodology developed and employed--are of significant, broader interest since determining the nature of the true catalyst continues to be a central, often vexing issue in any and all catalytic reactions

  14. Catalytic dehydrogenation of isobutane in the presence of hydrogen over Cs-modified Ni2P supported on active carbon

    Science.gov (United States)

    Xu, Yanli; Sang, Huanxin; Wang, Kang; Wang, Xitao

    2014-10-01

    In this article, an environmentally friendly non-noble-metal class of Cs-Ni2P/active carbon (AC) catalyst was prepared and demonstrated to exhibit enhanced catalytic performance in isobutane dehydrogenation. The results of activity tests reveal that Ni/AC catalyst was highly active for isobutane cracking, which led to the formation of abundant methane and coke. After the introduction of phosphorus through impregnation with ammonium di-hydrogen phosphate and H2-temperature programmed reduction, undesired cracking reactions were effectively inhibited, and the selectivity to isobutene and stability of catalyst increased remarkably. The characterization results indicate that, after the addition of phosphorous, the improvement of dehydrogenation selectivity is ascribed to the partial positive charges carried on Ni surface in Ni2P particles, which decreases the strength of Nisbnd C bond between Ni and carbonium-ion intermediates and the possibility of excessive dehydrogenation. In addition, Cs-modified Ni2P/AC catalysts display much higher catalytic performance as compared to Ni2P/AC catalyst. Cs-Ni2P-6.5 catalyst has the highest catalytic performance, and the selectivity to isobutene higher than 93% can be obtained even after 4 h reaction. The enhancement in catalytic performance of the Cs-modified catalysts is mainly attributed to the function of Cs to improve the dispersion of Ni2P particles, transfer electron from Cs to Ni, and decrease acid site number and strength.

  15. Rapid Production of High-Purity Hydrogen Fuel through Microwave-Promoted Deep Catalytic Dehydrogenation of Liquid Alkanes with Abundant Metals.

    Science.gov (United States)

    Jie, Xiangyu; Gonzalez-Cortes, Sergio; Xiao, Tiancun; Wang, Jiale; Yao, Benzhen; Slocombe, Daniel R; Al-Megren, Hamid A; Dilworth, Jonathan R; Thomas, John M; Edwards, Peter P

    2017-08-14

    Hydrogen as an energy carrier promises a sustainable energy revolution. However, one of the greatest challenges for any future hydrogen economy is the necessity for large scale hydrogen production not involving concurrent CO2 production. The high intrinsic hydrogen content of liquid-range alkane hydrocarbons (including diesel) offers a potential route to CO2 -free hydrogen production through their catalytic deep dehydrogenation. We report here a means of rapidly liberating high-purity hydrogen by microwave-promoted catalytic dehydrogenation of liquid alkanes using Fe and Ni particles supported on silicon carbide. A H2 production selectivity from all evolved gases of some 98 %, is achieved with less than a fraction of a percent of adventitious CO and CO2 . The major co-product is solid, elemental carbon. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Catalytic Hydrolysis of Ammonia Borane by Cobalt Nickel Nanoparticles Supported on Reduced Graphene Oxide for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Yuwen Yang

    2014-01-01

    Full Text Available Well dispersed magnetically recyclable bimetallic CoNi nanoparticles (NPs supported on the reduced graphene oxide (RGO were synthesized by one-step in situ coreduction of aqueous solution of cobalt(II chloride, nickel (II chloride, and graphite oxide (GO with ammonia borane (AB as the reducing agent under ambient condition. The CoNi/RGO NPs exhibits excellent catalytic activity with a total turnover frequency (TOF value of 19.54 mol H2 mol catalyst−1 min−1 and a low activation energy value of 39.89 kJ mol−1 at room temperature. Additionally, the RGO supported CoNi NPs exhibit much higher catalytic activity than the monometallic and RGO-free CoNi counterparts. Moreover, the as-prepared catalysts exert satisfying durable stability and magnetically recyclability for the hydrolytic dehydrogenation of AB, which make the practical reusing application of the catalysts more convenient. The usage of the low-cost, easy-getting catalyst to realize the production of hydrogen under mild condition gives more confidence for the application of ammonia borane as a hydrogen storage material. Hence, this general method indicates that AB can be used as both a potential hydrogen storage material and an efficient reducing agent, and can be easily extended to facile preparation of other RGO-based metallic systems.

  17. Preparation of Cu-Fe-Al-O nanosheets and their catalytic application in methanol steam reforming for hydrogen production

    Science.gov (United States)

    Wang, Leilei; Zhang, Fan; Miao, Dinghao; Zhang, Lei; Ren, Tiezhen; Hui, Xidong; He, Zhanbing

    2017-03-01

    Candidates of precious metal catalysts, prepared in a facile and environmental way and showing high catalytic performances at low temperatures, are always highly desired by industry. In this work, large-scale Cu-Fe-Al-O nanosheets were synthesized by facile dealloying of Al-Cu-Fe alloys in NaOH solution. The composition, microscopic morphology, and crystal structure were respectively investigated using wavelength-dispersive x-ray spectroscopy with an electron probe microanalyzer, scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. Furthermore, we found that the 2D Cu-Fe-Al-O nanosheets gave excellent catalytic performances in hydrogen production by methanol steam reforming at relatively low temperatures, e.g. 513 K.

  18. Catalytic activity of mono and bimetallic Zn/Cu/MWCNTs catalysts for the thermocatalyzed conversion of methane to hydrogen

    Science.gov (United States)

    Erdelyi, B.; Oriňak, A.; Oriňaková, R.; Lorinčík, J.; Jerigová, M.; Velič, D.; Mičušík, M.; Omastová, M.; Smith, R. M.; Girman, V.

    2017-02-01

    Mono and bimetallic multiwalled carbon nanotubes (MWCNTs) fortified with Cu and Zn metal particles were studied to improve the efficiency of the thermocatalytic conversion of methane to hydrogen. The surface of the catalyst and the dispersion of the metal particles were studied by scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS) and with energy-dispersive X-ray spectroscopy (EDS). It was confirmed that the metal particles were successfully dispersed on the MWCNT surface and XPS analysis showed that the Zn was oxidised to ZnO at high temperatures. The conversion of methane to hydrogen during the catalytic pyrolysis was studied by pyrolysis gas chromatography using different amounts of catalyst. The best yields of hydrogen were obtained using pyrolysis conditions of 900 °C and 1.2 mg of Zn/Cu/MWCNT catalyst for 1.5 mL of methane.The initial conversion of methane to hydrogen obtained with Zn/Cu/MWCNTs was 49%, which represent a good conversion rate of methane to hydrogen for a non-noble metal catalyst.

  19. Thermo-Catalytic Methane Decomposition for Hydrogen Production: Effect of Palladium Promoter on Ni-based Catalysts

    Directory of Open Access Journals (Sweden)

    Irene Lock Sow Mei

    2016-08-01

    Full Text Available Hydrogen production from the direct thermo-catalytic decomposition of methane is a promising alternative for clean fuel production. However, thermal decomposition of methane can hardly be of any practical and empirical interest in the industry unless highly efficient and effective catalysts, in terms of both catalytic activity and operational lifetime have been developed. In this study, the effect of palladium (Pd as a promoter onto Ni supported on alumina catalyst has been investigated by using co-precipitation technique. The introduction of Pd promotes better catalytic activity, operational lifetime and thermal stability of the catalyst. As expected, highest methane conversion was achieved at reaction temperature of 800 °C while the bimetallic catalyst (1 wt.% Ni -1wt.% Pd/Al2O3 gave the highest methane conversion of 70% over 15 min of time-on-stream (TOS. Interestingly, the introduction of Pd as promoter onto Ni-based catalyst also has a positive effect on the operational lifetime and thermal stability of the catalyst as the methane conversion has improved significantly over 240 min of TOS. Copyright © 2016 BCREC GROUP. All rights reserved Received: 21st January 2016; Revised: 6th February 2016; Accepted: 6th March 2016 How to Cite: Mei, I.L.S., Lock, S.S.M., Vo, D.V.N., Abdullah, B. (2016. Thermo-Catalytic Methane Decomposition for Hydrogen Production: Effect of Palladium Promoter on Ni-based Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 191-199 (doi:10.9767/bcrec.11.2.550.191-199 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.550.191-199

  20. Direct catalytic hydrogenation of CO2 to formate over a Schiff-base-mediated gold nanocatalyst

    National Research Council Canada - National Science Library

    Qinggang Liu; Xiaofeng Yang; Lin Li; Shu Miao; Yong Li; Yanqin Li; Xinkui Wang; Yanqiang Huang; Tao Zhang

    2017-01-01

    ...dynamic stability of the bicarbonate intermediate. Here, we devise a route for the direct catalytic conversion of CO2 over a Schiff-base-modified gold nanocatalyst that is comparable to the fastest known nanocatalysts, with a turnover number (TON...

  1. One-step preparation of biological aviation kerosene by catalytic hydrogenation of waste lard over Pt/SAPO-11

    Science.gov (United States)

    Zhang, X.; Chen, Y. B.; Li, X. Y.; Souliyathai, D.; Zhang, S. P.; Wang, Q.; Liu, Q.; Du, J. C.; Zhang, A. M.

    2017-11-01

    Biological aviation kerosene was produced by one-step catalytic hydrotreatment of waste lard oil over Pt/SAPO-11 in a high-pressure fixed bed micro reactor. The influence of reaction conditions such as temperature, pressure, hydrogen oil ratio, and space velocity on the deoxygenation rate, the selectivity of C8-C16 hydrocarbons and the isomerization rate of C8-C16 hydrocarbons have been investigated. The experimental results showed that the temperature of 400°C, pressure of 5 MPa, hydrogen oil ratio of 1000 and space velocity of 1.2 h-1 were the best experimental reaction conditions. Under these conditions, the conversion rate is 96.62%, the selectivity of C8-C16 hydrocarbons is 50.25%, and the isomerization rate of C8-C16 hydrocarbons is 35.68%.

  2. Catalytic Hydrogen Production by Ruthenium Complexes from the Conversion of Primary Amines to Nitriles: Potential Application as a Liquid Organic Hydrogen Carrier.

    Science.gov (United States)

    Ventura-Espinosa, David; Marzá-Beltrán, Aida; Mata, Jose A

    2016-12-05

    The potential application of the primary amine/nitrile pair as a liquid organic hydrogen carrier (LOHC) has been evaluated. Ruthenium complexes of formula [(p-cym)Ru(NHC)Cl2 ] (NHC=N-heterocyclic carbene) catalyze the acceptorless dehydrogenation of primary amines to nitriles with the formation of molecular hydrogen. Notably, the reaction proceeds without any external additive, under air, and under mild reaction conditions. The catalytic properties of a ruthenium complex supported on the surface of graphene have been explored for reutilization purposes. The ruthenium-supported catalyst is active for at least 10 runs without any apparent loss of activity. The results obtained in terms of catalytic activity, stability, and recyclability are encouraging for the potential application of the amine/nitrile pair as a LOHC. The main challenge in the dehydrogenation of benzylamines is the selectivity control, such as avoiding the formation of imine byproducts due to transamination reactions. Herein, selectivity has been achieved by using long-chain primary amines such as dodecylamine. Mechanistic studies have been performed to rationalize the key factors involved in the activity and selectivity of the catalysts in the dehydrogenation of amines. The experimental results suggest that the catalyst resting state contains a coordinated amine. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mapping the Hydrogen Bond Networks in the Catalytic Subunit of Protein Kinase A Using H/D Fractionation Factors.

    Science.gov (United States)

    Li, Geoffrey C; Srivastava, Atul K; Kim, Jonggul; Taylor, Susan S; Veglia, Gianluigi

    2015-07-07

    Protein kinase A is a prototypical phosphoryl transferase, sharing its catalytic core (PKA-C) with the entire kinase family. PKA-C substrate recognition, active site organization, and product release depend on the enzyme's conformational transitions from the open to the closed state, which regulate its allosteric cooperativity. Here, we used equilibrium nuclear magnetic resonance hydrogen/deuterium (H/D) fractionation factors (φ) to probe the changes in the strength of hydrogen bonds within the kinase upon binding the nucleotide and a pseudosubstrate peptide (PKI5-24). We found that the φ values decrease upon binding both ligands, suggesting that the overall hydrogen bond networks in both the small and large lobes of PKA-C become stronger. However, we observed several important exceptions, with residues displaying higher φ values upon ligand binding. Notably, the changes in φ values are not localized near the ligand binding pockets; rather, they are radiated throughout the entire enzyme. We conclude that, upon ligand and pseudosubstrate binding, the hydrogen bond networks undergo extensive reorganization, revealing that the open-to-closed transitions require global rearrangements of the internal forces that stabilize the enzyme's fold.

  4. A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques

    Energy Technology Data Exchange (ETDEWEB)

    Azabou, Samia [Laboratoire des BioProcedes, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax (Tunisia); Najjar, Wahiba [Laboratoire de Chimie des Materiaux et Catalyse, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis (Tunisia); Bouaziz, Mohamed [Laboratoire des BioProcedes, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax (Tunisia); Ghorbel, Abdelhamid [Laboratoire de Chimie des Materiaux et Catalyse, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis (Tunisia); Sayadi, Sami, E-mail: sami.sayadi@cbs.rnrt.tn [Laboratoire des BioProcedes, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax (Tunisia)

    2010-11-15

    A system based on combined actions of catalytic wet oxidation and microbial technologies for the treatment of highly polluted OMW containing polyphenols was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process has been investigated in the semi-batch mode at atmospheric pressure, using aluminium-iron-pillared inter layer clay ((Al-Fe)PILC), under two different catalytic processes: ((Al-Fe)PILC/H{sub 2}O{sub 2}/ultraviolet radiations) at 25 deg. C and ((Al-Fe)PILC/H{sub 2}O{sub 2}) at 50 deg. C. The results show that raw OMW was resistant to the photocatalytic process. However ((Al-Fe)PILC/H{sub 2}O{sub 2}), system operating at 50 deg. C reduced considerably the COD, colour and total phenolic contents, and thus decreased the inhibition of the marine photobacteria Vibrio fischeri luminescence by 70%. This study also examined the feasibility of coupling WHPCO and anaerobic digestion treatment. Biomethanisation experiments performed with raw OMW or pre-treated OMW proved that pre-treatments with ((Al-Fe)PILC/H{sub 2}O{sub 2}) system, for more than 2 h, resulted in higher methane production. Both untreated OMW as well as 2-h pre-treated OMW revealed as toxic to anaerobic bacteria.

  5. Fuel-rich catalytic combustion: A soot-free technique for in situ hydrogen-like enrichment

    Science.gov (United States)

    Brabbs, T. A.; Olson, S. L.

    1985-01-01

    An experimental program on the catalytic oxidation of iso-octane demonstrated the feasibility of the two-stage combustion system for reducing particulate emissions. With a fuel-rich (phi = 4.8 to 7.8) catalytic combustion preburner as the first stage the combustion process was soot free at reactor outlet temperatures of 1200 K or less. Although soot was not measured directly, its absence was indicated. Reaction products collected at two positions downstream of the catalyst bed were analyzed on a gas chromatograph. Comparison of these products indicated that pyrolysis of the larger molecules continued along the drift tube and that benzene formation was a gas-phase reaction. The effective hydrogen-carbon ratio calculated from the reaction products increased by 20 to 68 percent over the range of equivalence ratios tested. The catalytic partial oxidation process also yielded a large number of smaller-containing molecules. The fraction of fuel carbon in compounds having two or fewer carbon atoms ranged from 30 percent at 1100 K to 80 percent at 1200 K.

  6. Chemistry and catalysis of coal liquefaction: catalytic and thermal upgrading of coal liquid and hydrogenation of CO to produce fuels. Quarterly progress report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W.H.

    1980-08-01

    Analysis of a group of coal liquids produced by catalytic hydrogenation of Utah coals with ZnCl/sub 2/ catalyst was begun. Carbon-13 nuclear magnetic resonance and liquid chromatography techniques will be used to correlate chemical properties with hydrogenation reactivity. Equipment previously used for downflow measurements of heat and momentum transfer in a gas-coal suspension was modified for upflow measurements. The catalytic hydrodeoxygenation of methyl benzoate has been studied to elucidate the reactions of ester during upgrading of coal-derived liquids. The kinetics of hydrogenation of phenanthrene have also been determined. The catalytic cracking mechanism of octahydroanthracene is reported in detail. Studies of the hydrodesulfurization of thiophene indicate that some thiophene is strongly adsorbed as a hydrogen-deficient polymer on cobalt-molybdate catalyst. Part of the polymer can be desorbed as thiophene by hydrogenation. Poisoning of the catalyst inhibits the hydrosulfurization activity to a greater degree than the hydrogenation activity. Iron-manganese catalysts for carbon monoxide hydrogenation is studied to determine the role of iron carbide formation on selectivity. Pure iron catalyst forms a Hagg iron carbide phase under reaction conditions.

  7. Base-free hydrogen generation from methanol using a bi-catalytic system.

    Science.gov (United States)

    Monney, Angèle; Barsch, Enrico; Sponholz, Peter; Junge, Henrik; Ludwig, Ralf; Beller, Matthias

    2014-01-21

    A bi-catalytic system, in which Ru-MACHO-BH and Ru(H)2(dppe)2 interact in a synergistic manner, was developed for the base-free dehydrogenation of methanol. A total TON > 4200 was obtained with only trace amounts of CO contamination (<8 ppm) in the produced gas.

  8. Separating Catalytic Activity at Edges and Terraces on Platinum: Hydrogen Dissociation

    NARCIS (Netherlands)

    Groot, I.M.N.; Kleyn, A.W.; Juurlink, L.B.F.

    2013-01-01

    Heterogeneous catalysis relies to a large extent on the reactivity of metal nanoparticles. The surface of these particles consists of atomically smooth terraces and edges. As local environments of atoms in edges and terraces are different, their catalytic ability varies. This severely complicates

  9. Catalytic Lignin Valorization Process for the Production of Aromatic Chemicals and Hydrogen

    NARCIS (Netherlands)

    Zakzeski, J.; Jongerius, A.L.; Bruijnincx, P.C.A.; Weckhuysen, B.M.

    2012-01-01

    With dwindling reserves of fossil feedstock as a resource for chemicals production, the fraction of chemicals and energy supplied by alternative, renewable resources, such as lignin, can be expected to increase in the foreseeable future. Here, we demonstrate a catalytic process to valorize lignin

  10. Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma

    KAUST Repository

    Cheng, Chia-Chin

    2016-09-10

    Two-dimensional layered transition metal dichalcogenide (TMD) materials such as Molybdenum disufide (MoS2) have been recognized as one of the low-cost and efficient electrocatalysts for hydrogen evolution reaction (HER). The crystal edges that account for a small percentage of the surface area, rather than the basal planes, of MoS2 monolayer have been confirmed as their active catalytic sites. As a result, extensive efforts have been developing in activating the basal planes of MoS2 for enhancing their HER activity. Here, we report a simple and efficient approach-using a remote hydrogen-plasma process-to creating S-vacancies on the basal plane of monolayer crystalline MoS2; this process can generate high density of S-vacancies while mainly maintaining the morphology and structure of MoS2 monolayer. The density of S-vacancies (defects) on MoS2 monolayers resulted from the remote hydrogen-plasma process can be tuned and play a critical role in HER, as evidenced in the results of our spectroscopic and electrical measurements. The H2-plasma treated MoS2 also provides an excellent platform for systematic and fundamental study of defect-property relationships in TMDs, which provides insights for future applications including electrical, optical and magnetic devices. © 2016 Elsevier Ltd.

  11. Catalytic upgrading of refinery cracked products by trans-hydrogenation: a review

    OpenAIRE

    Garba, Mustapha Danlami; Jackson, S. David

    2017-01-01

    The production of high premium fuel is an issue of priority to every refinery. The trans-hydrogenation process is devised to convert two low valued refinery cracked products to premium products; the conversion processes involve the combination of dehydrogenation and hydrogenation reaction as a single step process. The paper reviews the recent literature on the use of catalysts to convert low value refinery products (i.e. alkanes and alkynes or alkadienes) to alkenes (olefins) by trans-hydroge...

  12. Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen

    KAUST Repository

    Shinagawa, Tatsuya

    2015-01-01

    Insufficient hydronium ion activities at near-neutral pH and under unbuffered conditions induce diffusion-limited currents for hydrogen evolution, followed by a reaction with water molecules to generate hydrogen at elevated potentials. The observed constant current behaviors at near neutral pH reflect the intrinsic electrocatalytic reactivity of the metal electrodes for water reduction. This journal is © the Owner Societies.

  13. Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery

    DEFF Research Database (Denmark)

    Westermann, Peter; Jørgensen, Betina; Lange, L.

    2007-01-01

    Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary for photo......Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary...

  14. Effects of acido-basic support properties on the catalytic hydrogenation of acetylene on gold nano-particles

    Science.gov (United States)

    Manda, Abdullah Ahmed

    Metallic gold nanoparticles supported on gamma-Al2O 3 and magnesia-alumina mixed oxide, with different magnesia content have been prepared by sol-gel method and characterized by different techniques (inductive coupled plasma-mass spectroscopy (ICP-MS), XRD, BET surface area analysis, transmission electron microscopy (TEM), CO2 and NH 3 temperature programmed desorption (TPD), H2 temperature programmed reduction (TPR) and FTIR of adsorbed CO2). Such systems were found to produce catalysts with controllable acidity, varying from catalyst possessing large density of acidic and low density of basic sites, others with acidic and basic sites of equal strength and density, and others with large basic and low acid sites densities, respectively. The catalytic assessment of the generated acidity was carried out using 2-propanol decomposition as a test reaction. The results obtained indicate that the presence of magnesia and reduced gold nanopartilces has imparted the catalysts, 1%Au/4%Mg-Al 2O3 and 1%Au/8%Mg-Al2O3, with significant base-catalytic properties. Acetylene hydrogenation and formation of coke deposits were investigated on a gold catalyst supported on gamma-Al2O3 and gold supported on alumina-magnisia mixed oxide with different gold content; 1%Au/gamma-Al 2O3, 1%Au/15%Mg-Al2O3, 2%Au/15%Mg-Al 2O3 and 4%Au/15%Mg-Al2O3. The effect of the H2/C2H2 ratio was studied over a range of values. The catalytic activity and selectivity towards ethylene and other products were investigated at different reaction temperatures. Acetylene hydrogenation was investigated in the presence and absence of ethylene in stream. It is investigated that the adsorption of the triple bond is preferred over the double bond and during selective catalytic (SCR) of C2H2 the two hydrocarbons do not compete for the same adsorption sites. The deactivation of catalysts was studied by temperature programmed oxidation (TPO). Higher content of coke over 1%Au/Al2O3 catalyst was investigated in contrast to

  15. Combining Ru, Ni and Ni(OH){sub 2} active sites for improving catalytic performance in benzene hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lihua, E-mail: lihuazhu@stu.xmu.edu.cn [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Sun, Hanlei; Zheng, Jinbao [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yu, Changlin, E-mail: yuchanglinjx@163.com [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Zhang, Nuowei [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Shu, Qing [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Chen, Bing H., E-mail: chenbh@xmu.edu.cn [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2017-05-01

    In this study, the Ru{sub 0.04}Ni{sub 0.96}/C(T) catalysts were successfully prepared by the simple methods of hydrazine-reduction and galvanic replacement, where 0.04/0.96 and T represented the Ru/Ni atomic ratio and reducing temperature of the catalyst in N{sub 2}+10%H{sub 2}, respectively. The nanostructures of the Ru{sub 0.04}Ni{sub 0.96} nanoparticles in the Ru{sub 0.04}Ni{sub 0.96}/C(T) catalysts were controlled by modulating their annealing temperature in N{sub 2}+10%H{sub 2} and characterized by an array of techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy energy dispersive X-ray spectroscopy (STEM-EDS) mapping and high-sensitivity low-energy ion scattering (HS-LEIS). The Ru{sub 0.04}Ni{sub 0.96}/C(30) catalyst, which was composed of Ru clusters or single atoms supported on Ni/Ni(OH){sub 2} nanoparticles, exhibited much better catalytic performance for benzene hydrogenation than the Ru{sub 0.04}Ni{sub 0.96}/C(T) catalysts reduced at above 30 °C, such as Ru{sub 0.04}Ni{sub 0.96}/C(160) with the nanostructure of partial Ru{sub 0.04}Ni{sub 0.9} alloy and Ru{sub 0.04}Ni{sub 0.96}/C(280) with the nanostructure of complete Ru{sub 0.04}Ni{sub 0.9} alloy. The reason was that the synergistic effect of multiple active sites – Ru, Ni and Ni(OH){sub 2} sites was present in the Ru{sub 0.04}Ni{sub 0.96}/C(30) catalyst, where hydrogen was preferentially activated at Ru sites, benzene was probably activated at Ni(OH){sub 2} surface and Ni acted as a “bridge” for transferring activated H{sup ∗} species to activated benzene by hydrogen spillover effect, hydrogenating and forming product – cyclohexane. This study also provided a typical example to illustrate that the synergy effect of multiple active sites can largely improve the catalytic hydrogenation performance. - Highlights: • The Ru

  16. H2CAP - Hydrogen assisted catalytic biomass pyrolysis for green fuels

    DEFF Research Database (Denmark)

    Arndal, Trine Marie Hartmann; Høj, Martin; Jensen, Peter Arendt

    2014-01-01

    Pyrolysis of biomass produces a high yield of condensable oil at moderate temperature and low pressure.This bio-oil has adverse properties such as high oxygen and water contents, high acidity and immiscibility with fossil hydrocarbons. Catalytic hydrodeoxygenation (HDO) is a promising technology...... that can be used to upgrade the crude bio-oil to fuel-grade oil. The development of the HDO process is challenged by rapid catalyst deactivation, instability of the pyrolysis oil, poorly investigated reaction conditions and a high complexity and variability of the input oil composition. However, continuous...... catalytic hydropyrolysis coupled with downstream HDO of the pyrolysis vapors before condensation shows promise (Figure 1). A bench scale experimental setup will be constructed for the continuous conversion of solid biomass (100g /h) to low oxygen, fuel-grade bio-oil. The aim is to provide a proof...

  17. Thermal balance analysis of a micro-thermoelectric gas sensor using catalytic combustion of hydrogen.

    Science.gov (United States)

    Nagai, Daisuke; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck

    2014-01-21

    A thermoelectric gas sensor (TGS) with a combustion catalyst is a calorimetric sensor that changes the small heat of catalytic combustion into a signal voltage. We analyzed the thermal balance of a TGS to quantitatively estimate the sensor parameters. The voltage signal of a TGS was simulated, and the heat balance was calculated at two sections across the thermoelectric film of a TGS. The thermal resistances in the two sections were estimated from the thermal time constants of the experimental signal curves of the TGS. The catalytic combustion heat Q(catalyst) required for 1 mV of ∆V(gas) was calculated to be 46.1 μW. Using these parameters, we find from simulations for the device performance that the expected Q(catalyst) for 200 and 1,000 ppm H₂ was 3.69 μW and 11.7 μW, respectively.

  18. Thermal Balance Analysis of a Micro-Thermoelectric Gas Sensor Using Catalytic Combustion of Hydrogen

    Directory of Open Access Journals (Sweden)

    Daisuke Nagai

    2014-01-01

    Full Text Available A thermoelectric gas sensor (TGS with a combustion catalyst is a calorimetric sensor that changes the small heat of catalytic combustion into a signal voltage. We analyzed the thermal balance of a TGS to quantitatively estimate the sensor parameters. The voltage signal of a TGS was simulated, and the heat balance was calculated at two sections across the thermoelectric film of a TGS. The thermal resistances in the two sections were estimated from the thermal time constants of the experimental signal curves of the TGS. The catalytic combustion heat Qcatalyst required for 1 mV of ∆Vgas was calculated to be 46.1 μW. Using these parameters, we find from simulations for the device performance that the expected Qcatalyst for 200 and 1,000 ppm H2 was 3.69 μW and 11.7 μW, respectively.

  19. Synergic catalytic effect of Ti hydride and Nb nanoparticles for improving hydrogenation and dehydrogenation kinetics of Mg-based nanocomposite

    Directory of Open Access Journals (Sweden)

    Xiujuan Ma

    2017-02-01

    Full Text Available The Mg-9.3 wt% (TiH1.971-TiH−0.7 wt% Nb nanocomposite has been synthesized by hydrogen plasma-metal reaction (HPMR approach to enhance the hydrogen sorption kinetics of Mg at moderate temperatures by providing nanosizing effect of increasing H “diffusion channels” and adding transition metallic catalysts. The Mg nanoparticles (NPs were in hexagonal shape range from 50 to 350 nm and the average size of the NPs was 177 nm. The small spherical TiH1.971, TiH and Nb NPs of about 25 nm uniformly decorated on the surface of the big Mg NPs. The Mg-TiH1.971-TiH-Nb nanocomposite could quickly absorb 5.6 wt% H2 within 5 min at 573 K and 4.5 wt% H2 within 5 min at 523 K, whereas the pure Mg prepared by HPMR could only absorb 4 and 1.5 wt% H2 at the same temperatures. TiH1.971, TiH and Nb NPs transformed into TiH2 and NbH during hydrogenation and recovered after dehydrogenation process. The apparent activation energies of the nanocomposite for hydrogenation and dehydrogenation were 45.0 and 50.7 kJ mol−1, which are much smaller than those of pure Mg NPs, 123.8 and 127.7 kJ mol−1. The improved sorption kinetics of the Mg-based nanocomposite at moderate temperatures and the small activation energy can be interpreted by the nanostructure of Mg and the synergic catalytic effects of Ti hydrides and Nb NPs.

  20. Ultrasound assisted selective catalytic transfer hydrogenation of soybean oil using 5% Pd/C as catalyst under ambient conditions in water.

    Science.gov (United States)

    Sancheti, Sonam V; Gogate, Parag R

    2017-09-01

    Catalytic transfer hydrogenation (CTH) is an alternative approach that does not require the use of potentially dangerous hydrogen gas. Pd/C is the most favoured catalyst for the selective hydrogenation of soybean oil yielding lower extent of formation of stearic acid and trans-isomer, which have adverse health effects. The present work deals with intensification of catalytic transfer hydrogenation of soybean oil in the presence of 5wt.% Pd/C using ultrasound under ambient reaction conditions. The effect of important operating parameters such as ultrasound power, temperature, type of hydrogen donor, catalyst loading and donor concentration on the progress of reaction has been investigated. It was established that the maximum extent of hydrogenation as indicated by reduction in iodine value from 135 to 95 was observed under optimized conditions of irradiation power as 100W, 22kHz frequency, 90% duty cycle, ammonium formate concentration of 0.32mol/50ml water and 2% (w/w) Pd/C loading at ambient temperature and pressure in the presence of water as solvent. The approach also offered excellent selectivity with much lower trans-isomer formation as compared to the conventional approach of high pressure hydrogenation. Overall, the work has successfully demonstrated process intensification benefits due to the use of ultrasound for the Pd/C catalyzed transfer hydrogenation of soybean oil. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Size Control of Iron Oxide Nanoparticles Using Reverse Microemulsion Method: Morphology, Reduction, and Catalytic Activity in CO Hydrogenation

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Housaindokht

    2013-01-01

    Full Text Available Iron oxide nanoparticles were prepared by microemulsion method and evaluated in Fischer-Tropsch synthesis. The precipitation process was performed in a single-phase microemulsion operating region. Different HLB values of surfactant were prepared by mixing of sodium dodecyl sulfate (SDS and Triton X-100. Transmission electron microscopy (TEM, surface area, pore volume, average pore diameter, pore size distribution, and XRD patterns were used to analyze size distribution, shape, and structure of precipitated hematite nanoparticles. Furthermore, temperature programmed reduction (TPR and catalytic activity in CO hydrogenation were implemented to assess the performance of the samples. It was found that methane and CO2 selectivity and also the syngas conversion increased as the HLB value of surfactant decreased. In addition, the selectivity to heavy hydrocarbons and chain growth probability (α decreased by decreasing the catalyst crystal size.

  2. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.

    Science.gov (United States)

    Cao, Xinrui; Fu, Qiang; Luo, Yi

    2014-05-14

    The single atom alloy of extended surfaces is known to provide remarkably enhanced catalytic performance toward heterogeneous hydrogenation. Here we demonstrate from first principles calculations that this approach can be extended to nanostructures, such as bimetallic nanoparticles. The catalytic properties of the single-Pd-doped Cu55 nanoparticles have been systemically examined for H2 dissociation as well as H atom adsorption and diffusion, following the concept of single atom alloy. It is found that doping a single Pd atom at the edge site of the Cu55 shell can considerably reduce the activation energy of H2 dissociation, while the single Pd atom doped at the top site or in the inner layers is much less effective. The H atom adsorption on Cu55 is slightly stronger than that on the Cu(111) surface; however, a larger nanoparticle that contains 147 atoms could effectively recover the weak binding of the H atoms. We have also investigated the H atom diffusion on the 55-atom nanoparticle and found that spillover of the produced H atoms could be a feasible process due to the low diffusion barriers. Our results have demonstrated that facile H2 dissociation and weak H atom adsorption could be combined at the nanoscale. Moreover, the effects of doping one more Pd atom on the H2 dissociation and H atom adsorption have also been investigated. We have found that both the doping Pd atoms in the most stable configuration could independently exhibit their catalytic activity, behaving as two single-atom-alloy catalysts.

  3. Synthesis of spherical-like Pt-MCM-41 meso-materials with high catalytic performance for hydrogenation of nitrobenzene.

    Science.gov (United States)

    Liu, Huiping; Lu, Guanzhong; Guo, Yun; Wang, Yanqin; Guo, Yanglong

    2010-06-15

    Spherical-like Pt-MCM-41 meso-materials, including Pt-MCM-41, Pt-Al-MCM-41, and Pt-La-MCM-41, as well as MCM-41, were synthesized by a "one-step" approach with orthosilicate (TEOS) as silica source and cetyltrimethylammonium bromide (CTAB) as a template in the presence of suitable H(2)SO(4) (or HCl) at 0 degrees C. The samples were characterized by XRD, N(2) sorption, FTIR, SEM, TEM, ICP-AES, and XPS techniques. The results show that the metallic cations (such as Al(3+) and La(3+)) were hard to be incorporated into the synthesized samples under strong acidic conditions. However, H(2)PtCl(6) can be introduced almost 100% in the as-synthesized Pt-containing meso-materials, and H(2)PtCl(6) in the samples can be decomposed mostly into metallic Pt accompanied by part Pt(2)Si and few Pt oxides during the calcination at 550 degrees C to remove the template. In the catalytic hydrogenation of nitrobenzene, the calcined Pt-MCM-41 meso-materials, like the corresponding reduced samples, exhibit high catalytic activities with an excellent selectivity to aniline, which are much better than those of the reduced Pt/MCM-41 prepared by the incipient wetness method. 2010 Elsevier Inc. All rights reserved.

  4. Molybdatophosphoric acid as an efficient catalyst for the catalytic and chemoselective oxidation of sulfides to sulfoxides using urea hydrogen peroxide as a commercially available oxidant

    Directory of Open Access Journals (Sweden)

    ALIREZA HASANINEJAD

    2010-03-01

    Full Text Available An efficient procedure for the chemoselective oxidation of alkyl (aryl sulfides to the corresponding sulfoxides using urea hydrogen peroxide (UHP in the presence of a catalytic amount of molybdatophosphoric acid at room temperature is described. The advantages of described method are: generality, high yield and chemoselectivity, short reaction time, low cost and compliment with green chemistry protocols.

  5. Synthesis of a Novel ZnMoS4 Photo-catalyst and Its Performance for Photo-catalytic Production of Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Huirong Liang; Guanjie Liu; Yaojun Zhang; Liejin Guo [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xian Jiaotong University, 710049, Xian, (China)

    2006-07-01

    The production of hydrogen by photo-catalytic decomposition of water using zinc tetra-thio-molybdate catalyst was studied. Zinc tetra-thio-molybdate catalyst was prepared by coprecipitation and hydrothermal method based on ZnSO{sub 4} and self-prepared [NH{sub 4}]{sub 2}MoS{sub 4} crystal. It was characterized by XRD, XRF, BET and UV-Vis spectra. The photo-catalytic activities of the catalysts were ascertained by the production of hydrogen in an aqueous Na{sub 2}S-Na{sub 2}SO{sub 3} solution under the ultraviolet and visible light irradiation. It was observed that the photo-catalysts showed the visible-light photo-catalytic activity, and the ZnMoS{sub 4} photo-catalyst prepared under hydrothermal condition for about 24 h had the highest activity. (authors)

  6. Catalytic Ring Hydrogenation of Benzoic Acid with Supported Transition Metal Catalysts in scCO2

    Directory of Open Access Journals (Sweden)

    Fengyu Zhao

    2007-07-01

    Full Text Available The ring hydrogenation of benzoic acid to cyclohexanecarboxylic acid overcharcoal-supported transition metal catalysts in supercritical CO2 medium has been studiedin the present work. The cyclohexanecarboxylic acid can be produced efficiently insupercritical CO2 at the low reaction temperature of 323 K. The presence of CO2 increasesthe reaction rate and several parameters have been discussed.

  7. Sustainable hydrogen from bio-oil - Catalytic steam reforming of acetic acid as a model oxygenate

    NARCIS (Netherlands)

    Takanabe, Kazuhiro; Seshan, K.; Lefferts, Leon; Aika, Ken-ichi

    2004-01-01

    Steam reforming of acetic acid as a model oxygenate present in bio-oil over Pt/ZrO2 catalysts has been studied. Pt/ZrO2 catalysts are very active, completely converting acetic acid and give hydrogen yield close to thermodynamic equilibrium. The catalyst deactivated by formation of oligomers, which

  8. Sub-10 nm Platinum Nanocrystals with Size and Shape Control: Catalytic Study for Ethylene and Pyrrole Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Chia-Kuang; Kuhn, John N.; Huang, Wenyu; Aliaga, Cesar; Hung, Ling-I; Somorjai, Gabor A.; Yang, Peidong

    2009-03-02

    Platinum nanocubes and nanopolyhedra with tunable size from 5 to 9 nm were synthesized by controlling the reducing rate of metal precursor ions in a one-pot polyol synthesis. A two-stage process is proposed for the simultaneous control of size and shape. In the first stage, the oxidation state of the metal ion precursors determined the nucleation rate and consequently the number of nuclei. The reaction temperature controlled the shape in the second stage by regulation of the growth kinetics. These well-defined nanocrystals were loaded into MCF-17 mesoporous silica for examination of catalytic properties. Pt loadings and dispersions of the supported catalysts were determined by elemental analysis (ICP-MS) and H2 chemisorption isotherms, respectively. Ethylene hydrogenation rates over the Pt nanocrystals were independent of both size and shape and comparable to Pt single crystals. For pyrrole hydrogenation, the nanocubes enhanced ring-opening ability and thus showed a higher selectivity to n-butylamine as compared to nanopolyhedra.

  9. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins

    Science.gov (United States)

    Xiang, Yizhi; Kruse, Norbert

    2016-01-01

    The catalytic CO hydrogenation is one of the most versatile large-scale chemical syntheses leading to variable chemical feedstock. While traditionally mainly methanol and long-chain hydrocarbons are produced by CO hydrogenation, here we show that the same reaction can be tuned to produce long-chain n-aldehydes, 1-alcohols and olefins, as well as n-paraffins over potassium-promoted CoMn catalysts. The sum selectivity of aldehydes and alcohols is usually >50 wt% whereof up to ∼97% can be n-aldehydes. While the product slate contains ∼60% n-aldehydes at /pCO=0.5, a 65/35% slate of paraffins/alcohols is obtained at a ratio of 9. A linear Anderson–Schulz–Flory behaviour, independent of the /pCO ratio, is found for the sum of C4+ products. We advocate a synergistic interaction between a Mn5O8 oxide and a bulk Co2C phase, promoted by the presence of potassium, to be responsible for the unique product spectra in our studies. PMID:27708269

  10. Catalytic decomposition of methane to COx-free hydrogen and carbon nanotubes over Co–W/MgO catalysts

    Directory of Open Access Journals (Sweden)

    Ahmed E. Awadallah

    2015-09-01

    Full Text Available Bimetallic catalysts containing a series of Co/W at 40/10, 30/20, 20/30 and 10/40 wt% supported on MgO with a total metal content of 50 wt% were prepared and used for the catalytic decomposition of methane to COx-free hydrogen and multi-walled carbon nanotubes (MWCNTs. The solid fresh and exhausted catalysts were characterized structurally and chemically through XRD, TPR, BET, TGA, TEM and Raman spectroscopy. The 40%Co–10%W/MgO catalyst exhibited the highest activity for the production of both hydrogen and MWCNTs. The formation of a large amount of non-interacted Co3O4 species is considered as the main reason for the catalyst superiority in its activity. On the contrary, catalysts formulations of 20%Co–30%W and 10%Co–40%W demonstrated the formation of a large amount of hardly reducible CoWO4 and MgWO4 particles causing lower activity of these catalysts toward methane decomposition as evidenced through the XRD and TPR results.

  11. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins

    Science.gov (United States)

    Xiang, Yizhi; Kruse, Norbert

    2016-10-01

    The catalytic CO hydrogenation is one of the most versatile large-scale chemical syntheses leading to variable chemical feedstock. While traditionally mainly methanol and long-chain hydrocarbons are produced by CO hydrogenation, here we show that the same reaction can be tuned to produce long-chain n-aldehydes, 1-alcohols and olefins, as well as n-paraffins over potassium-promoted CoMn catalysts. The sum selectivity of aldehydes and alcohols is usually >50 wt% whereof up to ~97% can be n-aldehydes. While the product slate contains ~60% n-aldehydes at /pCO=0.5, a 65/35% slate of paraffins/alcohols is obtained at a ratio of 9. A linear Anderson-Schulz-Flory behaviour, independent of the /pCO ratio, is found for the sum of C4+ products. We advocate a synergistic interaction between a Mn5O8 oxide and a bulk Co2C phase, promoted by the presence of potassium, to be responsible for the unique product spectra in our studies.

  12. Experimental studies on catalytic hydrogen recombiners for light water reactors; Experimentelle Untersuchungen zu katalytischen Wasserstoffkombinatoren fuer Leichtwasserreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Drinovac, P.

    2006-06-19

    In the course of core melt accidents in nuclear power plants a large amount of hydrogen can be produced and form an explosive or even detonative gas mixture with aerial oxygen in the reactor building. In the containment atmosphere of pressurized water reactors hydrogen combines a phlogistically with the oxygen present to form water vapor even at room temperature. In the past, experimental work conducted at various facilities has contributed little or nothing to an understanding of the operating principles of catalytic recombiners. Hence, the purpose of the present study was to conduct detailed investigations on a section of a recombiner essentially in order to deepen the understanding of reaction kinetics and heat transport processes. The results of the experiments presented in this dissertation form a large data base of measurements which provides an insight into the processes taking place in recombiners. The reaction-kinetic interpretation of the measured data confirms and deepens the diffusion theory - proposed in an earlier study. Thus it is now possible to validate detailed numeric models representing the processes in recombiners. Consequently the present study serves to broaden and corroborate competence in this significant area of reactor technology. In addition, the empirical knowledge thus gained may be used for a critical reassessment of previous numeric model calculations. (orig.)

  13. High Intrinsic Catalytic Activity of Two-Dimensional Boron Monolayers for Hydrogen Evolution Reaction

    CERN Document Server

    Shi, Li; Ouyang, Yixin; Wang, Jinlan

    2016-01-01

    Two-dimensional (2D) boron monolayers have been successfully synthesized on silver substrate very recently. Their potential application is thus of great significance. In this work, we explore the possibility of boron monolayers (BMs) as electrocatalysts for hydrogen evolution reaction (HER) by first-principle method. Our calculations show that the BMs are active catalysts for HER with nearly zero free energy of hydrogen adsorption, metallic conductivity and plenty of active sites in the basal plane. The effect of the substrate on the HER activity is further assessed. It is found that the substrate has a positive effect on the HER performance caused by the competitive effect of mismatch strain and charge transfer. The indepth understanding of the structure dependent HER activity is also provided.

  14. Study on the synthesis of dimethyl 1,4-cyclohexanedicarboxylate by catalytic hydrogenation of dimethyl terephthalate

    Directory of Open Access Journals (Sweden)

    LI Yuanhua

    2016-12-01

    Full Text Available In the field of polymer industry,1,4-cyclohexanedimethanol (CHDM occupies an important position especially for the synthesis of highly valued polyester products.In industry,CHDM is prepared from dimethyl terephthalate (DMT through a two-step hydrogenation process Palladium supported on magnesium oxide (Pd/MgO was prepared by animpregnation method and was characterized by x-ray diffraction (XRD,transmission electron microscope (TEM and scan electron microscope (SEM.During the hydrogenation of DMT to synthesize dimethyl 1,4-cyclohexanedicarboxylate (DMCD,the as-prepared Pd/MgO was used as the catalyst with methyl acetate as the solvent.Under optimized reaction conditions (reaction temperature:180 ℃,reaction pressure:4.5 MPa,the conversion of DMT was 100% and the selectivity of DMCD was 99%.Such a catalyst shows a good potential in industrial applications.

  15. Catalytic pressurization of liquid hydrogen fuel tanks for unmanned aerial vehicles

    Science.gov (United States)

    Leachman, Jacob; Street, Melissa Jean; Graham, Teira

    2012-06-01

    As the use and applications of Unmanned Aerial Vehicles (UAV) expand, the need for a lighter weight fuel allowing for longer duration flights has become the primary limiting factor in the advancement of these vehicles. To extend the operational envelope of UAV, onboard condensed hydrogen storage for missions exceeding one week is necessary. Currently, large spherical liquid hydrogen tanks that are pressurized with external helium tanks or electronic heating elements are utilized for this purpose. However, the mass, size, and power consumption of the fuel storage tank and fuel pressurization system significantly limit the flight envelope of UAV. In an effort to alleviate these issues, this paper investigates the technological feasibility of orthohydrogen-parahydrogen catalysis as a method of fuel pressurization. Typical pressurization requirements for takeoff, cruise, and landing are reviewed. Calculations of the catalyst system mass and response time are presented.

  16. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  17. Low-Energy Catalytic Electrolysis for Simultaneous Hydrogen Evolution and Lignin Depolymerization.

    Science.gov (United States)

    Du, Xu; Liu, Wei; Zhang, Zhe; Mulyadi, Arie; Brittain, Alex; Gong, Jian; Deng, Yulin

    2017-03-09

    Here, a new proton-exchange-membrane electrolysis is presented, in which lignin was used as the hydrogen source at the anode for hydrogen production. Either polyoxometalate (POM) or FeCl3 was used as the catalyst and charge-transfer agent at the anode. Over 90 % Faraday efficiency was achieved. In a thermal-insulation reactor, the heat energy could be maintained at a very low level for continuous operation. Compared to the best alkaline-water electrolysis reported in literature, the electrical-energy consumption could be 40 % lower with lignin electrolysis. At the anode, the Kraft lignin (KL) was oxidized to aromatic chemicals by POM or FeCl3 , and reduced POM or Fe ions were regenerated during the electrolysis. Structure analysis of the residual KL indicated a reduction of the amount of hydroxyl groups and the cleavage of ether bonds. The results suggest that POM- or FeCl3 -mediated electrolysis can significantly reduce the electrolysis energy consumption in hydrogen production and, simultaneously, depolymerize lignin to low-molecular-weight value-added aromatic chemicals. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The role of CFD combustion modeling in hydrogen safety management – IV: Validation based on non-homogeneous hydrogen–air experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sathiah, Pratap, E-mail: pratap.sathiah78@gmail.com [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Komen, Ed, E-mail: komen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Roekaerts, Dirk, E-mail: d.j.e.m.roekaerts@tudelft.nl [Delft University of Technology, Department of Process and Energy, Section Fluid Mechanics, Mekelweg 2, 2628 CD Delft (Netherlands)

    2016-12-15

    Highlights: • TFC combustion model is further extended to simulate flame propagation in non-homogeneous hydrogen–air mixtures. • TFC combustion model results are in good agreement with large-scale non-homogeneous hydrogen–air experiments. • The model is further extended to account for the non-uniform hydrogen–air–steam mixture for the presence of PARs on hydrogen deflagration. - Abstract: The control of hydrogen in the containment is an important safety issue in NPPs during a loss of coolant accident, because the dynamic pressure loads from hydrogen combustion can be detrimental to the structural integrity of the reactor safety systems and the reactor containment. In Sathiah et al. (2012b), we presented a computational fluid dynamics based method to assess the consequence of the combustion of uniform hydrogen–air mixtures. In the present article, the extension of this method to and its validation for non-uniform hydrogen–air mixture is described. The method is implemented in the CFD software ANSYS FLUENT using user defined functions. The extended code is validated against non-uniform hydrogen–air experiments in the ENACCEF facility. It is concluded that the maximum pressure and intermediate peak pressure were predicted within 12% and 18% accuracy. The eigen frequencies of the residual pressure wave phenomena were predicted within 4%. It is overall concluded that the current model predicts the considered ENACCEF experiments well.

  19. Catalytic performance and characterization of cobalt-nickel nano catalysts for CO hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Feyzi, Mostafa; Gholivand, Mohammad Bagher [Razi University, Kermanshah (Iran, Islamic Republic of); Babakhanian, Arash [Islamic Azad University, Kermanshah (Iran, Islamic Republic of)

    2014-01-15

    A series of Co-Ni nano catalysts were prepared by co-precipitation method. We investigated the effect of Co/Ni molar ratios precipitate and calcination conditions on the catalytic performance of cobalt nickel catalysts for Fisher-Tropsch synthesis (FTS). The catalyst containing 90%Co/10%Ni was found to be optimal for the conversion of synthesis gas to light olefins. The activity and selectivity of the optimal catalyst were studied in different operational conditions. The results show that the best operational conditions are the H{sub 2}/CO=2/1 molar feed ratio at 310 .deg. C and GHSV=1,200 h{sup -}1 under 5 bar of pressure. The prepared catalysts were characterized by powder X-ray diffraction (XRD), N{sub 2} adsorption-desorption measurements such as BET and BJH methods, transmission electron microscopy (TEM) and thermal gravimetric analysis (TGA)

  20. The role of CFD combustion modeling in hydrogen safety management – V: Validation for slow deflagrations in homogeneous hydrogen-air experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sathiah, Pratap [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Holler, Tadej, E-mail: tadej.holler@ijs.si [Jozef Stefan Institute (JSI), Jamova cesta 39, 1000 Ljubljana (Slovenia); Kljenak, Ivo [Jozef Stefan Institute (JSI), Jamova cesta 39, 1000 Ljubljana (Slovenia); Komen, Ed [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2016-12-15

    Highlights: • Validation of the modeling approach for hydrogen deflagration is presented. • Modeling approach is based on two combustion models implemented in ANSYS Fluent. • Experiments with various initial hydrogen concentrations were used for validation. • The effects of heat transfer mechanisms selection were also investigated. • The grid sensitivity analysis was performed as well. - Abstract: The control of hydrogen in the containment is an important safety issue following rapid oxidation of the uncovered reactor core during a severe accident in a Nuclear Power Plant (NPP), because dynamic pressure loads from eventual hydrogen combustion can be detrimental to the structural integrity of the reactor safety systems and the reactor containment. In the set of our previous papers, a CFD-based method to assess the consequence of fast combustion of uniform hydrogen-air mixtures was presented, followed by its validation for hydrogen-air mixtures with diluents and for non-uniform hydrogen-air mixtures. In the present paper, the extension of this model for the slow deflagration regime is presented and validated using the hydrogen deflagration experiments performed in the medium-scale experimental facility THAI. The proposed method is implemented in the CFD software ANSYS Fluent using user defined functions. The paper describes the combustion model and the main results of code validation. It addresses questions regarding turbulence model selection, effect of heat transfer mechanisms, and grid sensitivity, as well as provides insights into the importance of combustion model choice for the slow deflagration regime of hydrogen combustion in medium-scale and large-scale experimental vessels mimicking the NPP containment.

  1. Heterogeneous catalytic hydrogenation of biobased levulinic and succinic acids in aqueous solutions.

    Science.gov (United States)

    Corbel-Demailly, Louis; Ly, Bao-Khanh; Minh, Doan-Pham; Tapin, Benoit; Especel, Catherine; Epron, Florence; Cabiac, Amandine; Guillon, Emmanuelle; Besson, Michèle; Pinel, Catherine

    2013-12-01

    Supported noble-metal catalysts (Ru, Pd or Pt) and the corresponding Re-promoted catalysts exhibit a high activity for the hydrogenation of biobased carboxylic acids. Levulinic acid and succinic acid are converted into the lactones or the diols depending on the nature of the catalyst and the reaction conditions. The highest selectivity to 1,4-pentanediol of 82 % is achieved at 140 °C in the presence of the 1.9 % Ru-3.6 % Re/C catalyst. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Plasma-catalytic hydrogenation of CO2 for the cogeneration of CO and CH4 in a dielectric barrier discharge reactor: effect of argon addition

    Science.gov (United States)

    Zeng, Yuxuan; Tu, Xin

    2017-05-01

    Plasma-catalytic CO2 hydrogenation over a Ni/Al2O3 catalyst for the cogeneration of CO and CH4 has been carried out in a dielectric barrier discharge (DBD) reactor at 150 °C. The presence of the Ni catalyst in the DBD reactor has clearly demonstrated a plasma-catalytic synergistic effect at low temperatures, as the reaction performance of the plasma-catalytic CO2 hydrogenation is significantly higher than that of the sum of the individual processes (plasma process and thermal catalytic process) at the same temperature. The addition of argon (up to 60%) in the reaction enhances the conversion of CO2, the yield of CO and CH4 and the energy efficiency of the plasma process. The formation of metastable argon (Ar*) in the plasma could create new reaction routes which make a significant contribution to the enhanced CO2 conversion and production of CO and CH4. The introduction of Ar decreases the breakdown voltage of the feed gas and promotes charge transfer through the reactor. In addition, we find that the selectivity of CO is almost independent of the Ar content in the feed gas, while increasing the Ar content from 0 to 60% enhances the CH4 selectivity by 85%. This phenomenon suggests that the presence of Ar* might promote the methanation of CO and CO2 with hydrogen at low temperatures. Moreover, the molar ratio of CO/CH4 in the plasma-catalytic hydrogenation of CO2 can also be controlled by changing the Ar content in the feed gas.

  3. The effects of exfoliation, organic solvents and anodic activation on the catalytic hydrogen evolution reaction of tungsten disulfide.

    Science.gov (United States)

    Liu, Wanglian; Benson, John; Dawson, Craig; Strudwick, Andrew; Raju, Arun Prakash Aranga; Han, Yisong; Li, Meixian; Papakonstantinou, Pagona

    2017-09-21

    The rational design of transition metal dichalcogenide electrocatalysts for efficiently catalyzing the hydrogen evolution reaction (HER) is believed to lead to the generation of a renewable energy carrier. To this end, our work has made three main contributions. At first, we have demonstrated that exfoliation via ionic liquid assisted grinding combined with gradient centrifugation is an efficient method to exfoliate bulk WS2 to nanosheets with a thickness of a few atomic layers and lateral size dimensions in the range of 100 nm to 2 nm. These WS2 nanosheets decorated with scattered nanodots exhibited highly enhanced catalytic performance for HER with an onset potential of -130 mV vs. RHE, an overpotential of 337 mV at 10 mA cm(-2) and a Tafel slope of 80 mV dec(-1) in 0.5 M H2SO4. Secondly, we found a strong aging effect on the electrocatalytic performance of WS2 stored in high boiling point organic solvents such as dimethylformamide (DMF). Importantly, the HER ability could be recovered by removing the organic (DMF) residues, which obstructed the electron transport, with acetone. Thirdly, we established that the HER performance of WS2 nanosheets/nanodots could be significantly enhanced by activating the electrode surface at a positive voltage for a very short time (60 s), decreasing the kinetic overpotential by more than 80 mV at 10 mA cm(-2). The performance enhancement was found to arise primarily from the ability of a formed proton-intercalated amorphous tungsten trioxide (a-WO3) to provide additional active sites and favourably modify the immediate chemical environment of the WS2 catalyst, rendering it more favorable for local proton delivery and/or transport to the active edge site of WS2. Our results provide new insights into the effects of organic solvents and electrochemical activation on the catalytic performance of two-dimensional WS2 for HER.

  4. Much enhanced catalytic reactivity of cobalt chlorin derivatives on two-electron reduction of dioxygen to produce hydrogen peroxide.

    Science.gov (United States)

    Mase, Kentaro; Ohkubo, Kei; Fukuzumi, Shunichi

    2015-02-16

    Effects of changes in the redox potential or configuration of cobalt chlorin derivatives (Co(II)(Chn) (n = 1-3)) on the catalytic mechanism and the activity of two-electron reduction of dioxygen (O2) were investigated based on the detailed kinetic study by spectroscopic and electrochemical measurements. Nonsubstituted cobalt chlorin complex (Co(II)(Ch1)) efficiently and selectively catalyzed two-electron reduction of dioxygen (O2) by a one-electron reductant (1,1'-dimethylferrocene) to produce hydrogen peroxide (H2O2) in the presence of perchloric acid (HClO4) in benzonitrile (PhCN) at 298 K. The detailed kinetic studies have revealed that the rate-determining step in the catalytic cycle is the proton-coupled electron transfer reduction of O2 with the protonated Co(II)(Ch1) complex ([Co(II)(Ch1H)](+)), where one-electron reduction potential of [Co(III)(Ch1)](+) was changed from 0.37 V (vs SCE) to 0.48 V by the addition of HClO4 due to the protonation of [Co(III)(Ch1)](+). The introduction of electron-withdrawing aldehyde group (position C-3) (Co(II)(Ch3)) and both methoxycarbonyl group (position C-13(2)) and aldehyde group (position C-3) (Co(II)(Ch2)) on the chlorin ligand resulted in the positive shifts of redox potential for Co(III/II) from 0.37 V to 0.45 and 0.40 V, respectively, whereas, in the presence of HClO4, no positive shifts of those redox potentials for [Co(III)(Chn)](+)/Co(II)(Chn) (n = 2, 3) were observed due to lower acceptability of protonation. As a result, such a change in redox property resulted in the enhancement of the catalytic reactivity, where the observed rate constant (kobs) value of Co(II)(Ch3) was 36-fold larger than that of Co(II)(Ch1).

  5. CATALYTIC AND ELECTROCATALYTIC ACTIVITY OF Pt-Ru/C ELECTRODE FOR HYDROGEN OXIDATION IN ALKALINE

    Directory of Open Access Journals (Sweden)

    D. LABOU

    2008-07-01

    Full Text Available The kinetics of the oxidation of H2 on PtRu/C gas-diffusion electrode was studied by interfacing the electrode with aqueous electrolytes at different pH values. The conducting electrolytes were KOH and HClO4 aqueous solutions with different concentrations. It is shown that the nature of the aqueous electrolyte plays the role of an active catalyst support for the PtRu/C electrode which drastically affects its catalytic properties. During the aforementioned interaction, termed electrochemical metal support interaction (EMSI, the electrochemical potential of the electrons at the catalyst Fermi level is equalised with the electrochemical potential of the solvated electron in the aqueous electrolyte. The electrochemical experiments carried out at various pH values showed that the electrochemical promotion catalysis (EPOC is more intense when the catalyst-electrode is interfaced with electrolytes with high pH values where the OH– ionic conduction prevails. It was concluded that similar to the solid state electrochemical systems EPOC proceeds through the formation of a polar adsorbed promoting layer of , electrochemically supplied by the OH- species, at the three phase boundaries of the gas exposed gas diffusion catalyst-electrode surface.

  6. Controllable pneumatic generator based on the catalytic decomposition of hydrogen peroxide.

    Science.gov (United States)

    Kim, Kyung-Rok; Kim, Kyung-Soo; Kim, Soohyun

    2014-07-01

    This paper presents a novel compact and controllable pneumatic generator that uses hydrogen peroxide decomposition. A fuel micro-injector using a piston-pump mechanism is devised and tested to control the chemical decomposition rate. By controlling the injection rate, the feedback controller maintains the pressure of the gas reservoir at a desired pressure level. Thermodynamic analysis and experiments are performed to demonstrate the feasibility of the proposed pneumatic generator. Using a prototype of the pneumatic generator, it takes 6 s to reach 3.5 bars with a reservoir volume of 200 ml at the room temperature, which is sufficiently rapid and effective to maintain the repetitive lifting of a 1 kg mass.

  7. Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes

    KAUST Repository

    Sun, Xiaohui

    2017-11-20

    A supported cobalt catalyst with atomically dispersed Co-Nx sites (3.5 wt% Co) in a mesoporous N-doped carbon matrix (named Co@mesoNC) is synthesized by hydrolysis of tetramethyl orthosilicate (TMOS) in a Zn/Co bimetallic zeolitic imidazolate framework (BIMZIF(Co,Zn)), followed by high-temperature pyrolysis and SiO2 leaching. A combination of TEM, XRD XPS and X-ray absorption spectroscopy studies confirm the absence of cobalt nanoparticles and indicate that these highly dispersed cobalt species are present in the form of Co-Nx. The exclusive formation of Co-Nx sites in the carbon matrix is attributed to the presence of a large amount of Zn and N in the BIMZIF precursor together with the presence of SiO2 in the pore space of this framework, extending the initial spatial distance between cobalt atoms and thereby impeding their agglomeration. The presence of SiO2 during high-temperature pyrolysis is proven crucial to create mesoporosity and a high BET area and pore volume in the N-doped carbon support (1780 m2 g−1, 1.54 cm3 g−1). This heterogeneous Co@mesoNC catalyst displays high activity and selectivity (>99%) for the selective hydrogenation of nitrobenzene to aniline at mild conditions (0.5–3 MPa, 343–383 K). When more challenging substrates (functionalized nitroarenes) are hydrogenated, the catalyst Co@mesoNC displays an excellent chemoselectivity to the corresponding substituted anilines.The presence of mesoporosity improves mass transport of reactants and/or products and the accessibility of the active Co-Nx sites, and greatly reduces deactivation due to fouling.

  8. Catalytic Glycerol Hydrodeoxygenation under Inert Atmosphere: Ethanol as a Hydrogen Donor

    Directory of Open Access Journals (Sweden)

    Efterpi S. Vasiliadou

    2014-12-01

    Full Text Available Glycerol hydrodeoxygenation to 1,2-propanediol (1,2-PDO is a reaction of high interest. However, the need for hydrogen supply is a main drawback of the process. According to the concept investigated here, 1,2-propanediol is efficiently formed using bio-glycerol feedstock with H2 formed in situ via ethanol aqueous phase reforming. Ethanol is thought to be a promising H2 source, as it is alcohol that can be used instead of methanol for transesterification of oils and fats. The H2 generated is consumed in the tandem reaction of glycerol hydrodeoxygenation. The reaction cycle proceeds in liquid phase at 220–250 °C and 1.5–3.5 MPa initial N2 pressure for a 2 and 4-h reaction time. Pt-, Ni- and Cu-based catalysts have been synthesized, characterized and evaluated in the reaction. Among the materials tested, Pt/Fe2O3-Al2O3 exhibited the most promising performance in terms of 1,2-propanediol productivity, while reusability tests showed a stable behavior. Structural integrity and no formation of carbonaceous deposits were verified via Temperature Programmed Desorption of hydrogen (TPD-H2 and thermogravimetric analysis of the fresh and used Pt/FeAl catalyst. A study on the effect of various operating conditions (reaction time, temperature and pressure indicated that in order to maximize 1,2-propanediol productivity and yield, milder reaction conditions should be applied. The highest 1,2-propanediol yield, 53% (1.1 g1,2-PDO gcat−1·h−1, was achieved at a lower reaction temperature of 220 °C.

  9. Kinetic spectrophotometric determination of Bi(III based on its catalytic effect on the oxidation of phenylfluorone by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    SOFIJA M. RANČIĆ

    2009-08-01

    Full Text Available A new reaction was suggested and a new kinetic method was elaborated for determination of Bi(III in solution, based on its catalytic effect on the oxidation of phenyl-fluorone (PF by hydrogen peroxide in ammonia buffer. By application of spectrophotometric technique, a limit of quantification (LQ of 128 ng cm-3 was reached, and the limit of detection (LD of 37 ng cm-3 was obtained, where LQ was defined as the ratio signal:noise = 10:1 and LD was defined as signal 3:1 against the blank. The RSD value was found to be in the range 2.8–4.8 % for the investigated concentration range of Bi(III. The influence of some ions upon the reaction rate was tested. The method was confirmed by determining Bi(III in a stomach ulcer drug (“Bicit HP”, Hemofarm A.D.. The obtained results were compared to those obtained by AAS and good agreement of results was obtained.

  10. Rh nanoparticles supported on ultrathin carbon nanosheets for high-performance oxygen reduction reaction and catalytic hydrogenation.

    Science.gov (United States)

    Lin, Chong; Wu, Guanghao; Li, Huiqin; Geng, Yanmin; Xie, Gang; Yang, Jianhui; Liu, Bin; Jin, Jian

    2017-02-02

    We reported a facile and scalable salt-templated approach to produce monodisperse Rh nanoparticles (NPs) on ultrathin carbon nanosheets with the assistance of calcination under inert gas. More importantly, in spite of the essentially poor ORR activity of Rh/C, the acquired Rh/C hybrid nanosheets display a comparable ORR activity to the optimal commercial Pt/C catalyst, which may be due to the extra-small size of Rh NPs and the 2D defect-rich amorphous carbon nanosheets that can facilitate the charge transfer and reactive surface exposure. Moreover, Rh/C nanosheets present the optimal current density and best durability with the minimum decline during the entire test, so that ∼93% activity after 20 000 s is achieved, indicating a good lifetime for ORR. In contrast, commercial Pt/C and commercial Rh/C exhibited worse durability, so that ∼74% and ∼85% activities after 20 000 s are maintained. What's more, in the model system of reduction of 4-nitrophenol (4-NP), the kinetic constant k for Rh/C nanosheets is 3.1 × 10 -3 , which is 4.5 times than that of the commercial Rh/C catalyst, revealing that our Rh/C hybrid nanosheets can be potentially applied in industrial catalytic hydrogenation. This work opens a novel and facile way for the rest of the precious metal NPs to be supported on ultrathin carbon nanosheets for heterogeneous catalysis.

  11. Green synthesis of gold nanoparticles by a newly isolated strain Trichosporon montevideense for catalytic hydrogenation of nitroaromatics.

    Science.gov (United States)

    Shen, Wenli; Qu, Yuanyuan; Pei, Xiaofang; Zhang, Xuwang; Ma, Qiao; Zhang, Zhaojing; Li, Shuzhen; Zhou, Jiti

    2016-09-01

    To investigate green synthesis of gold nanoparticles (AuNPs) by Trichosporon montevideense, and to study their reduction of nitroaromatics. AuNPs had a characteristic absorption maximum at 535 nm. Scanning electron microscopy images revealed that the biosynthesized nanoparticles were attached on the cell surface. X-ray diffraction analysis indicated that the particles formed as face-centered cubic (111)-oriented crystals. The average size of AuNPs decreased from 53 to 12 nm with increasing biomass concentration. The catalytic reduction of 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, o-nitrophenylamine and m-nitrophenylamine (0.1 mM) by NaBH4 had reaction rate constants of 0.32, 0.44, 0.09, 0.24 and 0.39 min(-1) with addition of 1.45 × 10(-2) mM AuNPs. An eco-friendly approach for synthesis of AuNPs by T. montevideense is reported for the first time. The biogenic AuNPs could serve as efficient catalysts for hydrogenation of various nitroaromatics.

  12. Rhenium doping induced structural transformation in mono-layered MoS2 with improved catalytic activity for hydrogen evolution reaction

    Science.gov (United States)

    Shi, Wenwu; Wang, Zhiguo; Qing Fu, Yong

    2017-10-01

    This paper reports a new design methodology to improve catalytic activities of catalysts based on 2D transition metal dichalcogenides through elemental doping which induces structural transformations. Effects of rhenium (Re) doping on structural stability/phase transformation and catalytic activity of mono-layered trigonal prismatic (2H) MoS2 were investigated using density functional theory as one example. Results show that 2H-Mo1-x Re x S2 transforms into 1T‧-Mo1-x Re x S2MoS2 as the value of x is larger than 0.4, and the transfer of the electron from Re to Mo is identified as the main reason for this structural transformation. The 1T‧-Mo1-x Re x S2 shows a good catalytic activity for the hydrogen evolution reaction when 0.75  ⩽  x  ⩽  0.94.

  13. Model Catalytic Studies of Novel Liquid Organic Hydrogen Carriers: Indole, Indoline and Octahydroindole on Pt(111).

    Science.gov (United States)

    Schwarz, Matthias; Bachmann, Philipp; Silva, Thais Nascimento; Mohr, Susanne; Scheuermeyer, Marlene; Späth, Florian; Bauer, Udo; Düll, Fabian; Steinhauer, Johann; Hohner, Chantal; Döpper, Tibor; Noei, Heshmat; Stierle, Andreas; Papp, Christian; Steinrück, H-P; Wasserscheid, Peter; Görling, Andreas; Libuda, Jörg

    2017-10-20

    Indole derivatives were recently proposed as potential liquid organic hydrogen carriers (LOHC) for storage of renewable energies. In this work, we have investigated the adsorption, dehydrogenation and degradation mechanisms in the indole/indoline/octahydroindole system on Pt(111). We have combined infrared reflection absorption spectroscopy (IRAS), X-ray photoelectron spectroscopy (XPS) and DFT calculations. Indole multilayers show a crystallization transition at 200 K, in which the molecules adopt a strongly tilted orientation, before the multilayer desorbs at 220 K. For indoline, a less pronounced restructuring transition occurs at 150 K and multilayer desorption is observed at 200 K. Octahydroindole multilayers desorb already at 185 K, without any indication for restructuring. Adsorbed monolayers of all three compounds are stable up to room temperature and undergo deprotonation at the NH bond above 300 K. For indoline, the reaction is followed by partial dehydrogenation at the 5-membered ring, leading to the formation of a flat-lying di-σ-indolide in the temperature range from 330-390 K. Noteworthy, the same surface intermediate is formed from indole. In contrast, the reaction of octahydroindole with Pt(111) leads to the formation of a different intermediate, which originates from partial dehydrogenation of the 6-membered ring. Above 390 K, all three compounds again form the same strongly dehydrogenated and partially decomposed surface species. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen.

    Science.gov (United States)

    Renny, Andrew; Santhosh, Viswanathan; Somkuwar, Nitin; Gokak, D T; Sharma, Pankaj; Bhargava, Sanjay

    2016-11-01

    The aim of this work was to study the pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen. As per literature, presence of heavy nitrogenous and oxygenated compounds leads to catalyst deactivation. Here, an attempt has been made to tune pyrolytic reactions to optimize the N and O content of the pyrolytic bio-oil. Bio-oil conversion and hydrogen yield decreased as reaction progressed, which attributes to temporary loss of catalytic activity by blockage of catalyst pores by carbon deposition. Further, retention of steam reforming activity after repetitive steam activation suggests long-term catalyst usage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The influence of elongational flow on hydrogen bond formation and stability of the homogeneous phase of binary hydrogen- bonded polymer blends

    NARCIS (Netherlands)

    Dormidontova, Elena E.; Brinke, Gerrit ten

    2000-01-01

    Macrophase separation tendency induced by flow in binary blends of polymers capable of single hydrogen bonding between one of the chain ends is studied analytically. To describe the conformational and orientational properties of a polymer chain a simple dumbbell model is applied. It is demonstrated

  16. Multivariate optimization of differential pulse polarographic–catalytic hydrogen wave technique for the determination of nickel(II) in real samples

    OpenAIRE

    Kanchi, S.; Sabela, M.I.; Singh, P.; Bisetty, K.

    2013-01-01

    Multivariate optimized experimental conditions were established for the determination of nickel(II) in 92 grape samples after complexation with ammonium piperidine dithiocarbamate (APDC) and ammonium morpholine dithiocarbamate (AMDC). Differential pulse polarographic (DPP) studies of the wave characteristics indicated that it is of the catalytic hydrogen wave (CHW) type sensitive to pH, concentration and scan rates. A single, sharp peak obtained at −1.22 V allowed for the trace determination ...

  17. Green diesel production via catalytic hydrogenation/decarboxylation of triglycerides and fatty acids of vegetable oil and brown grease

    Science.gov (United States)

    Sari, Elvan

    than activated carbon itself for both decarboxylation of oleic acid and hydrogenation of alkenes. In an additional effort to reduce Pd amount in the catalyst, Pd2Co/C catalysts with various Pd content were prepared and the catalytic activity study showed that 0.5 wt% Pd2Co/C catalyst performs even better than a 5 wt% Pd/C catalyst. Pd and Co alloys were very well dispersed and formed fine clusters, which led to a higher active metal surface area and hence favored the decarboxylation of oleic acid. This study showed that an alloy of Pd on carbon with a significantly low Pd content is much more active and selective to diesel hydrocarbons production from an unsaturated fatty acid in super-critical water and may be regarded as a prospective feasible decarboxylation catalyst for the removal of oxygen from vegetable oil/animal fat without the need of additional hydrogen.

  18. Cyanogel-derived N-doped C nanosheets immobilizing Pd-P nanoparticles: One-pot synthesis and enhanced hydrogenation catalytic performance

    Science.gov (United States)

    Zhang, Hao; Yan, Xiaohong; Huang, Yundi; Zhang, Mengru; Tang, Yawen; Sun, Dongmei; Xu, Lin; Wei, Shaohua

    2017-02-01

    For Pd-based nanocatalysts, stabilization of Pd nanoparticles on carbon support could not only effectively avoid particle aggregation and maintain catalytic stability during catalytic processes, but also facilitate enhancing the catalytic activity due to the synergy between Pd nanoparticles and carbon support. Furthermore, the incorporation of non-metal of phosphorus (P) into Pd could effectively modulate the electronic structure of Pd and thus help to boost the catalytic properties. However, one-pot synthesis of such nanohybrids remains a great challenge due to the distinct physiochemical properties of Pd, P and C components. Herein, we demonstrate a one-pot and scalable synthesis of highly dispersed PdP alloy nanoparticle-immobilized on N-doped graphitic carbon nanosheets (abbreviated as Pd-P@N-C nanosheets) by using inorganic-organic hybrid cyanogel as a reaction precursor. In virtue of both compositional and structural advantages, the as-synthesized Pd-P@N-C nanosheets manifest a superior catalytic activity and stability toward the hydrogenation of 4-nitrophenol (4-NP). We believe that the present work will provide a feasible and versatile strategy for the development of efficient catalysts for environmental remediation and can also be extendable to other carbon-based nanohybrids with desirable functionalities.

  19. Hydrogen production by steam reforming of bio-alcohols. The use of conventional and membrane-assisted catalytic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Seelam, P. K.

    2013-11-01

    The energy consumption around the globe is on the rise due to the exponential population growth and urbanization. There is a need for alternative and non-conventional energy sources, which are CO{sub 2}-neutral, and a need to produce less or no environmental pollutants and to have high energy efficiency. One of the alternative approaches is hydrogen economy with the fuel cell (FC) technology which is forecasted to lead to a sustainable society. Hydrogen (H{sub 2}) is recognized as a potential fuel and clean energy carrier being at the same time a carbon-free element. Moreover, H{sub 2} is utilized in many processes in chemical, food, metallurgical, and pharmaceutical industry and it is also a valuable chemical in many reactions (e.g. refineries). Non-renewable resources have been the major feedstock for H{sub 2} production for many years. At present, {approx}50% of H{sub 2} is produced via catalytic steam reforming of natural gas followed by various down-stream purification steps to produce {approx}99.99% H{sub 2}, the process being highly energy intensive. Henceforth, bio-fuels like biomass derived alcohols (e.g. bio-ethanol and bio-glycerol), can be viable raw materials for the H{sub 2} production. In a membrane based reactor, the reaction and selective separation of H{sub 2} occur simultaneously in one unit, thus improving the overall reactor efficiency. The main motivation of this work is to produce H{sub 2} more efficiently and in an environmentally friendly way from bio-alcohols with a high H{sub 2} selectivity, purity and yield. In this thesis, the work was divided into two research areas, the first being the catalytic studies using metal decorated carbon nanotube (CNT) based catalysts in steam reforming of ethanol (SRE) at low temperatures (<450 deg C). The second part was the study of steam reforming (SR) and the water-gas-shift (WGS) reactions in a membrane reactor (MR) using dense and composite Pd-based membranes to produce high purity H{sub 2}. CNTs

  20. Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents.

    Science.gov (United States)

    Rogers, Nicola J; Hill-Casey, Fraser; Stupic, Karl F; Six, Joseph S; Lesbats, Clémentine; Rigby, Sean P; Fraissard, Jacques; Pavlovskaya, Galina E; Meersmann, Thomas

    2016-03-22

    Hyperpolarized (hp) (83)Kr is a promising MRI contrast agent for the diagnosis of pulmonary diseases affecting the surface of the respiratory zone. However, the distinct physical properties of (83)Kr that enable unique MRI contrast also complicate the production of hp (83)Kr. This work presents a previously unexplored approach in the generation of hp (83)Kr that can likewise be used for the production of hp (129)Xe. Molecular nitrogen, typically used as buffer gas in spin-exchange optical pumping (SEOP), was replaced by molecular hydrogen without penalty for the achievable hyperpolarization. In this particular study, the highest obtained nuclear spin polarizations were P =29% for(83)Kr and P= 63% for (129)Xe. The results were reproduced over many SEOP cycles despite the laser-induced on-resonance formation of rubidium hydride (RbH). Following SEOP, the H2 was reactively removed via catalytic combustion without measurable losses in hyperpolarized spin state of either (83)Kr or (129)Xe. Highly spin-polarized (83)Kr can now be purified for the first time, to our knowledge, to provide high signal intensity for the advancement of in vivo hp (83)Kr MRI. More generally, a chemical reaction appears as a viable alternative to the cryogenic separation process, the primary purification method of hp(129)Xe for the past 2 1/2 decades. The inherent simplicity of the combustion process will facilitate hp (129)Xe production and should allow for on-demand continuous flow of purified and highly spin-polarized (129)Xe.

  1. Hydrogen production from catalytic decomposition of methane; Produccion de hidrogeno a partir de la descomposicion termica catalitica del biogas de digestion anaerobia

    Energy Technology Data Exchange (ETDEWEB)

    Belsue Echevarria, M.; Etxebeste Juarez, O.; Perez Gil, S.

    2002-07-01

    The need of substitution of part of the energy obtained from fossil fuels instead of energy from renewable sources, together with the minimal emissions of CO{sub ''} and CO that are expected with these technologies, make renewable sources a very attractive predecessor for the production of hydrogen. In this situation, a usable source for hydrogen production is the biogas achieved by means of technologies like the anaerobic digestion of different kinds of biomass (MSW, sewage sludge, stc.). In this article we suggest the Thermal Catalytic Decomposition of the methane contained in this biogas, after separation of pollutants like CO{sub ''}, H{sub 2}S. steam. This technology will give hydrogen, usable in fuel cells, and nanoestructured carbon as products. (Author) 7 refs.

  2. Building robust architectures of carbon-wrapped transition metal nanoparticles for high catalytic enhancement of the 2LiBH4-MgH2 system for hydrogen storage cycling performance.

    Science.gov (United States)

    Huang, Xu; Xiao, Xuezhang; Shao, Jie; Zhai, Bing; Fan, Xiulin; Cheng, Changjun; Li, Shouquan; Ge, Hongwei; Wang, Qidong; Chen, Lixin

    2016-08-21

    Nanoscale catalyst doping is regarded as one of the most effective strategies to improve the kinetics performance of hydrogen storage materials, but the agglomeration of nanoparticles is usually unavoidable during the repeated de/rehydrogenation processes. Herein, hierarchically structured catalysts (Fe/C, Co/C and Ni/C) were designed and fabricated to overcome the agglomeration issue of nanocatalysts applied to the 2LiBH4-MgH2 system for the first time. Uniform transition metal (TM) nanoparticles (∼10 nm) wrapped by few layers of carbon are synthesized by pyrolysis of the corresponding metal-organic frameworks (MOFs), and introduced into the 2LiBH4-MgH2 reactive hydride composites (RHCs) by ball milling. The particular features of the carbon-wrapped architecture effectively avoid the agglomeration of the TM nanoparticles during hydrogen storage cycling, and high catalysis is maintained during the subsequent de/rehydrogenation processes. After de/rehydrogenation cycling, FeB, CoB and MgNi3B2 can be formed as the catalytically active components with a particle size of 5-15 nm, which show a homogeneous distribution in the hydride matrix. Among the three catalysts, in situ-formed MgNi3B2 shows the best catalytic efficiency. The incubation period of the Fe/C, Co/C and Ni/C-doped 2LiBH4-MgH2 system between the two dehydrogenation steps was reduced to about 8 h, 4 h and 2 h, respectively, which is about 8 h, 12 h and 14 h shorter than that of the undoped 2LiBH4-MgH2 sample. In addition, the two-step dehydrogenation peak temperatures of the Ni/C-doped 2LiBH4-MgH2 system drop to 323.4 °C and 410.6 °C, meanwhile, the apparent activation energies of dehydrogenated MgH2 and LiBH4 decrease by 58 kJ mol(-1) and 71 kJ mol(-1), respectively. In particular, the cycling hydrogen desorption of the Ni/C-doped 2LiBH4-MgH2 sample exhibits very good stability compared with the undoped sample. The present approach, which ideally addresses the agglomeration of nanoparticles with

  3. Cyanogel-derived N-doped C nanosheets immobilizing Pd-P nanoparticles: One-pot synthesis and enhanced hydrogenation catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao; Yan, Xiaohong; Huang, Yundi; Zhang, Mengru; Tang, Yawen; Sun, Dongmei; Xu, Lin, E-mail: njuxulin@gmail.com; Wei, Shaohua, E-mail: weishaohua@njnu.edu.cn

    2017-02-28

    Highlights: • Cyanogel-bridged approach was developed for the synthesis of Pd-P@N-Cnanosheets. • Pd-P@N-C nanosheets exhibit high activity and stability for reduction of 4-NP. • Compositional and structural advantages account for the high catalytic activity. • The feasible synthesis could be extendable to other carbon-based nanohybrids. - Abstract: For Pd-based nanocatalysts, stabilization of Pd nanoparticles on carbon support could not only effectively avoid particle aggregation and maintain catalytic stability during catalytic processes, but also facilitate enhancing the catalytic activity due to the synergy between Pd nanoparticles and carbon support. Furthermore, the incorporation of non-metal of phosphorus (P) into Pd could effectively modulate the electronic structure of Pd and thus help to boost the catalytic properties. However, one-pot synthesis of such nanohybrids remains a great challenge due to the distinct physiochemical properties of Pd, P and C components. Herein, we demonstrate a one-pot and scalable synthesis of highly dispersed PdP alloy nanoparticle-immobilized on N-doped graphitic carbon nanosheets (abbreviated as Pd-P@N-C nanosheets) by using inorganic-organic hybrid cyanogel as a reaction precursor. In virtue of both compositional and structural advantages, the as-synthesized Pd-P@N-C nanosheets manifest a superior catalytic activity and stability toward the hydrogenation of 4-nitrophenol (4-NP). We believe that the present work will provide a feasible and versatile strategy for the development of efficient catalysts for environmental remediation and can also be extendable to other carbon-based nanohybrids with desirable functionalities.

  4. Peroxidase/hydrogen peroxide--or bone marrow homogenate/hydrogen peroxide--mediated activation of phenol and binding to protein.

    Science.gov (United States)

    Subrahmanyam, V V; McGirr, L G; O'Brien, P J

    1990-12-01

    1. 14C-Phenol was metabolized by rat bone marrow homogenate and H2O2. The homogenate catalyst, however, was inactivated by preincubation with H2O2, presumably due to inactivation of the enzyme(s) involved in phenol metabolism. 2. The majority of the metabolized 14C-phenol was bound to bone marrow proteins. o,o'-Biphenol and p,p'-biphenol were the principal non-protein-bound products. Ascorbate was unable to remove phenol oxidation products bound to protein, although o,o'-biphenol recovery from the reaction mixture was markedly enhanced. Prior alkylation of protein thiols with N-ethylmaleimide decreased the binding of 14C-phenol oxidation products to bone marrow proteins by only 10-20%. 3. 14C-Phenol (200 microM) metabolism by horseradish peroxidase (10 micrograms) and H2O2 (200 microM) also resulted in extensive binding to externally added bovine serum albumin. The absorption spectrum of 14C-phenol oxidation products bound to bovine serum albumin was similar to that of bound oxidation products of o,o'-biphenol but not of p,p'-biphenol. 4. Protease digestion of bovine serum albumin bound 14C-phenol oxidation products, followed by ethyl acetate extraction, extracted 75% of the 14C, indicating that most of the binding is probably non-covalent. Up to 32% of the 14C-phenol oxidation products binding to bovine serum albumin may be covalent, since derivation with dinitrofluorobenzene and extraction under acid, but not alkaline, conditions extracted the 14C. The percentage of metabolites covalently bound to bovine serum albumin was increased to 59% when horseradish peroxidase concentration was decreased to 0.2 micrograms. 5. The thiol groups of bovine serum albumin were unaffected by o,o'-biphenol oxidation products, slightly decreased by phenol oxidation products, but were completely depleted by p,p'-biphenol oxidation products. 6. These results indicate that o,o'-biphenol oxidation products are responsible for much of the 14C-phenol binding to protein.

  5. pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen.

    Science.gov (United States)

    Liu, Yi; Wu, Haohao; Li, Meng; Yin, Jun-Jie; Nie, Zhihong

    2014-10-21

    Recently, platinum (Pt) nanoparticles (NPs) have received increasing attention in the field of catalysis and medicine due to their excellent catalytic activity. To rationally design Pt NPs for these applications, it is crucial to understand the mechanisms underlying their catalytic and biological activities. This article describes a systematic study on the Pt NP-catalyzed decomposition of hydrogen peroxide (H2O2) and scavenging of superoxide (O2˙(-)) and singlet oxygen ((1)O2) over a physiologically relevant pH range of 1.12-10.96. We demonstrated that the catalytic activities of Pt NPs can be modulated by the pH value of the environment. Our results suggest that Pt NPs possess peroxidase-like activity of decomposing H2O2 into ˙OH under acidic conditions, but catalase-like activity of producing H2O and O2 under neutral and alkaline conditions. In addition, Pt NPs exhibit significant superoxide dismutase-like activity of scavenging O2˙(-) under neutral conditions, but not under acidic conditions. The (1)O2 scavenging ability of Pt NPs increases with the increase in the pH of the environment. The study will provide useful guidance for designing Pt NPs with desired catalytic and biological properties.

  6. A comparative parametric study of a catalytic plate methane reformer coated with segmented and continuous layers of combustion catalyst for hydrogen production

    Science.gov (United States)

    Mundhwa, Mayur; Parmar, Rajesh D.; Thurgood, Christopher P.

    2017-03-01

    A parametric comparison study is carried out between segmented and conventional continuous layer configurations of the coated combustion-catalyst to investigate their influence on the performance of methane steam reforming (MSR) for hydrogen production in a catalytic plate reactor (CPR). MSR is simulated on one side of a thin plate over a continuous layer of nickel-alumina catalyst by implementing an experimentally validated surface microkinetic model. Required thermal energy for the MSR reaction is supplied by simulating catalytic methane combustion (CMC) on the opposite side of the plate over segmented and continuous layer of a platinum-alumina catalyst by implementing power law rate model. The simulation results of both coating configurations of the combustion-catalyst are compared using the following parameters: (1) co-flow and counter-flow modes between CMC and MSR, (2) gas hourly space velocity and (3) reforming-catalyst thickness. The study explains why CPR designed with the segmented combustion-catalyst and co-flow mode shows superior performance not only in terms of high hydrogen production but also in terms of minimizing the maximum reactor plate temperature and thermal hot-spots. The study shows that the segmented coating requires 7% to 8% less combustion-side feed flow and 70% less combustion-catalyst to produce the required flow of hydrogen (29.80 mol/h) on the reforming-side to feed a 1 kW fuel-cell compared to the conventional continuous coating of the combustion-catalyst.

  7. A kinetic and theoretical study of the borate catalysed reactions of hydrogen peroxide: the role of dioxaborirane as the catalytic intermediate for a wide range of substrates.

    Science.gov (United States)

    Deary, Michael E; Durrant, Marcus C; Davies, D Martin

    2013-01-14

    Our recent work has provided new insights into the equilibria and species that exist in aqueous solution at different pHs for the boric acid - hydrogen peroxide system, and the role of these species in oxidation reactions. Most recently, (M. C. Durrant, D. M. Davies and M. E. Deary, Org. Biomol. Chem., 2011, 9, 7249-7254), we have produced strong theoretical and experimental evidence for the existence of a previously unreported monocyclic three membered peroxide species, dioxaborirane, that is the likely catalytic species in borate mediated electrophilic reactions of hydrogen peroxide in alkaline solution. In the present paper, we extend our study of the borate-peroxide system to look at a wide range of substrates that include substituted dimethyl anilines, methyl-p-tolyl sulfoxide, halides, hydrogen sulfide anion, thiosulfate, thiocyanate, and hydrazine. The unusual selectivity-reactivity pattern of borate catalysed reactions compared with hydrogen peroxide and inorganic or organic peracids previously observed for the organic sulfides (D. M. Davies, M. E. Deary, K. Quill and R. A. Smith, Chem.-Eur. J., 2005, 11, 3552-3558) is also seen with substituted dimethyl aniline nucleophiles. This provides evidence that the pattern is not due to any latent electrophilic tendency of the organic sulfides and further supports dioxaborirane being the likely reactive intermediate, thus broadening the applicability of this catalytic system. Moreover, density functional theory calculations on our proposed mechanism involving dioxaborirane are consistent with the experimental results for these substrates. Results obtained at high concentrations of both borate and hydrogen peroxide require the inclusion the diperoxodiborate dianion in the kinetic analysis. A scheme detailing our current understanding of the borate-peroxide system is presented.

  8. Negative catalytic effect of water on the reactivity of hydrogen abstraction from the C-H bond of dimethyl ether by deuterium atoms through tunneling at low temperatures

    Science.gov (United States)

    Oba, Yasuhiro; Watanabe, Naoki; Kouchi, Akira

    2016-10-01

    We report an experimental study on the catalytic effect of solid water on the reactivity of hydrogen abstraction (H-abstraction) from dimethyl ether (DME) in the low-temperature solid DME-H2O complex. When DME reacted with deuterium atoms on a surface at 15-25 K, it was efficiently deuterated via successive tunneling H-abstraction and deuterium (D)-addition reactions. The 'effective' rate constant for DME-H2O + D was found to be about 20 times smaller than that of pure DME + D. This provides the first evidence that the presence of solid water has a negative catalytic effect on tunneling H-abstraction reactions.

  9. Hydrogénations catalytiques. De la recherche de base à l'application industrielle Catalytic Hydrogenation from Basic Research to Industrial Applications

    Directory of Open Access Journals (Sweden)

    Boitiaux J. P.

    2006-11-01

    additifs ou impuretés des charges et de donner des idées claires sur la façon de modifier les supports ou les sites métalliques. Les conséquences ont été tirées de ces études et des applications industrielles ont démontré clairement l'intérêt de ces travaux. Néanmoins certains problèmes sont encore à résoudre qu'il serait nécessaire de considérer d'un point de vue encore plus fondamental en prenant en considération le mécanisme de la réaction d'hydrogénation. Early research on catalytic hydrogenation showed the specificity of different metals for different types of hydrogenation (acetylenes, olefins, aromatics, aldehydes, nitriles, etc. . This observation somewhat vaguely included the concept of the importance of the metal/substrate pair. A contradiction with the insensitive character to the structure of such reactions then appeared. Recent research on palladium catalysts of various dispersions has clearly demonstrated the influence of particle size on the hydrogenation rate of C4 acetylenes and diolefins. Such a behavior has now been confirmed by further research on platinum and rhodium. The phenomenon is due to excessive adsorption of reactants on small particles. These particles are electrodeficient and very strongly adsorb electrodonor compounds such as unsaturated hydrocarbons. The explanation has been confirmed by the additive effect caused by piperidine. Its coadsorption on the catalyst destabilizes the metal/substrate bond and increases the activity. A complete kinetic analysis has refined this interpretation by demonstrating the constancy of intrinsic activity and the relation between sensitivity to metal dispersion and a complexing of the metallic site of the type encountered on homogeneous catalysts. This fundamental research has very important consequences on the development of industrial catalysts. For each process and hence for each hydrogenation, the optimum dispersion of the metal has to be determined to obtain the highest possible

  10. Catalytic Hydrogenation of the Sweet Principles of Stevia rebaudiana, Rebaudioside B, Rebaudioside C, and Rebaudioside D and Sensory Evaluation of Their Reduced Derivatives

    Science.gov (United States)

    Prakash, Indra; Campbell, Mary; Chaturvedula, Venkata Sai Prakash

    2012-01-01

    Catalytic hydrogenation of rebaudioside B, rebaudioside C, and rebaudioside D; the three ent-kaurane diterpene glycosides isolated from Stevia rebaudiana was carried out using Pd(OH)2. Reduction of steviol glycosides was performed using straightforward synthetic chemistry with the catalyst Pd(OH)2 and structures of the corresponding dihydro derivatives were characterized on the basis of 1D and 2D nuclear magnetic resonance (NMR) spectral data indicating that all are novel compounds being reported for the first time. Also, the taste properties of all reduced compounds were evaluated against their corresponding original steviol glycosides and sucrose. PMID:23203115

  11. Catalytic Hydrogenation of the Sweet Principles of Stevia rebaudiana, Rebaudioside B, Rebaudioside C, and Rebaudioside D and Sensory Evaluation of Their Reduced Derivatives

    Directory of Open Access Journals (Sweden)

    Mary Campbell

    2012-11-01

    Full Text Available Catalytic hydrogenation of rebaudioside B, rebaudioside C, and rebaudioside D; the three ent-kaurane diterpene glycosides isolated from Stevia rebaudiana was carried out using Pd(OH2. Reduction of steviol glycosides was performed using straightforward synthetic chemistry with the catalyst Pd(OH2 and structures of the corresponding dihydro derivatives were characterized on the basis of 1D and 2D nuclear magnetic resonance (NMR spectral data indicating that all are novel compounds being reported for the first time. Also, the taste properties of all reduced compounds were evaluated against their corresponding original steviol glycosides and sucrose.

  12. Magnetic Co@g-C3N4 Core-Shells on rGO Sheets for Momentum Transfer with Catalytic Activity toward Continuous-Flow Hydrogen Generation.

    Science.gov (United States)

    Duan, Shasha; Han, Guosheng; Su, Yongheng; Zhang, Xiaoyu; Liu, Yanyan; Wu, Xianli; Li, Baojun

    2016-06-28

    Magnetic core-shell structures provide abundant opportunities for the construction of multifunctional composites. In this article, magnetic core-shells were fabricated with Co nanoparticles (NPs) as cores and g-C3N4 as shells. In the fabrication process, the Co@g-C3N4 core-shells were anchored onto the rGO nanosheets to form a Co@g-C3N4-rGO composite (CNG-I). For hydrogen generation from the hydrolysis of NaBH4 or NH3BH3, the Co NP cores act as catalytic active sites. The g-C3N4 shells protect Co NPs cores from aggregating or growing. The connection between Co NPs and rGO was strengthened by the g-C3N4 shells to prevent them from leaching or flowing away. The g-C3N4 shells also work as a cocatalyst for hydrogen generation. The magnetism of Co NPs and the shape of rGO nanosheets achieve effective momentum transfer in the external magnetic field. In the batch reactor, a higher catalytic activity was obtained for CNG-I in self-stirring mode than in magneton stirring mode. In the continuous-flow process, stable hydrogen generation was carried out with CNG-I being fixed and propelled by the external magnetic field. The separation film is unnecessary because of magnetic momentum transfer. This idea of the composite design and magnetic momentum transfer will be useful for the development of both hydrogen generation and multifunctional composite materials.

  13. Design and assembly of a catalyst bed gas generator for the catalytic decomposition of high concentration hydrogen peroxide propellants and the catalytic combustion of hydrocarbon/air mixtures

    Science.gov (United States)

    Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Sevener, Kathleen M. (Inventor)

    2004-01-01

    A method for designing and assembling a high performance catalyst bed gas generator for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in target, space, and on-orbit propulsion systems and low-emission terrestrial power and gas generation. The gas generator utilizes a sectioned catalyst bed system, and incorporates a robust, high temperature mixed metal oxide catalyst. The gas generator requires no special preheat apparatus or special sequencing to meet start-up requirements, enabling a fast overall response time. The high performance catalyst bed gas generator system has consistently demonstrated high decomposition efficiency, extremely low decomposition roughness, and long operating life on multiple test articles.

  14. Encapsulation of Bimetallic Metal Nanoparticles into Robust Zirconium-Based Metal-Organic Frameworks: Evaluation of the Catalytic Potential for Size-Selective Hydrogenation.

    Science.gov (United States)

    Rösler, Christoph; Dissegna, Stefano; Rechac, Victor L; Kauer, Max; Guo, Penghu; Turner, Stuart; Ollegott, Kevin; Kobayashi, Hirokazu; Yamamoto, Tomokazu; Peeters, Daniel; Wang, Yuemin; Matsumura, Syo; Van Tendeloo, Gustaaf; Kitagawa, Hiroshi; Muhler, Martin; Llabrés I Xamena, Francesc X; Fischer, Roland A

    2017-03-13

    The realization of metal nanoparticles (NPs) with bimetallic character and distinct composition for specific catalytic applications is an intensively studied field. Due to the synergy between metals, most bimetallic particles exhibit unique properties that are hardly provided by the individual monometallic counterparts. However, as small-sized NPs possess high surface energy, agglomeration during catalytic reactions is favored. Sufficient stabilization can be achieved by confinement of NPs in porous support materials. In this sense, metal-organic frameworks (MOFs) in particular have gained a lot of attention during the last years; however, encapsulation of bimetallic species remains challenging. Herein, the exclusive embedding of preformed core-shell PdPt and RuPt NPs into chemically robust Zr-based MOFs is presented. Microstructural characterization manifests partial retention of the core-shell systems after successful encapsulation without harming the crystallinity of the microporous support. The resulting chemically robust NP@UiO-66 materials exhibit enhanced catalytic activity towards the liquid-phase hydrogenation of nitrobenzene, competitive with commercially used Pt on activated carbon, but with superior size-selectivity for sterically varied substrates. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Agro-industrial waste-mediated synthesis and characterization of gold and silver nanoparticles and their catalytic activity for 4-nitroaniline hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Dauthal, Preeti; Mukhopadhyay, Mausumi [S.V. National Institute of Technology, Surat (India)

    2015-05-15

    The biosynthesis of gold (Au-NPs) and silver nanoparticles (Ag-NPs) using agro-industrial waste Citrus aurantifolia peel extract as a bio-reducing agent is reported. Catalytic activity of nanoparticles (NPs) was evaluated for hydrogenation of anthropogenic pollutant 4-nitroaniline (4-NA). Both synthesized NPs were nearly spherical and distributed in size range of 6-46 and 10-32 nm for Au-NPs and Ag-NPs, respectively. XRD analysis revealed face centered cubic (fcc) structure of both NPs. ζ potential value obtained from colloidal solution of Au-NPs and Ag-NPs was −28.0 and −26.1mV, respectively, indicating the stability of the NPs in colloidal solution. FTIR spectra supported the role of citric and ascorbic acids of peel extract for biosynthesis and stabilization of NPs. The biosynthesized NPs exhibited excellent catalytic activity for hydrogenation of 4-NA in the presence of NaBH{sub 4}.

  16. Morpholine-Modified Pd/γ-Al2O3@ASMA Pellet Catalyst with Excellent Catalytic Selectivity in the Hydrogenation of p-Chloronitrobenzene to p-Chloroaniline

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-09-01

    Full Text Available An amino poly (styrene-co-maleic anhydride polymer (ASMA encapsulated γ-Al2O3 pellet material has been synthesized successfully. After loading with Pd species and modified with morpholine, the inorganic-organic hybrid material shows an excellent catalytic property in the selective hydrogenation of p-chloronitrobenzene (p-CNB to p-chloroaniline (p-CAN. In this procedure, morpholine can connect with the polymer layer in a form of amide bond and acts as an unparalleled immobilized dechlorination inhibitor, which can avoid further dechlorination efficiently and keeps stability due to the repulsive effect from the surviving C-O-C bond. The catalyst as prepared was characterized by using XRD, TGA, SEM, TEM, FT-IR, and ICP-OES, and it was further tested in the selective hydrogenation of p-CNB. It shows a supreme catalytic activity (almost 100% and selectivity (up to 99.51% after recycling for even 10 times, much superior to the blank alumina supported palladium (47.09%.

  17. High-Resolution Respirometry for Simultaneous Measurement of Oxygen and Hydrogen Peroxide Fluxes in Permeabilized Cells, Tissue Homogenate and Isolated Mitochondria

    Directory of Open Access Journals (Sweden)

    Marina Makrecka-Kuka

    2015-06-01

    Full Text Available Whereas mitochondria are well established as the source of ATP in oxidative phosphorylation (OXPHOS, it is debated if they are also the major cellular sources of reactive oxygen species (ROS. Here we describe the novel approach of combining high-resolution respirometry and fluorometric measurement of hydrogen peroxide (H2O2 production, applied to mitochondrial preparations (permeabilized cells, tissue homogenate, isolated mitochondria. The widely used H2O2 probe Amplex Red inhibited respiration in intact and permeabilized cells and should not be applied at concentrations above 10 µM. H2O2 fluxes were generally less than 1% of oxygen fluxes in physiological substrate and coupling states, specifically in permeabilized cells. H2O2 flux was consistently highest in the Complex II-linked LEAK state, reduced with CI&II-linked convergent electron flow and in mitochondria respiring at OXPHOS capacity, and were further diminished in uncoupled mitochondria respiring at electron transfer system capacity. Simultaneous measurement of mitochondrial respiration and H2O2 flux requires careful optimization of assay conditions and reveals information on mitochondrial function beyond separate analysis of ROS production.

  18. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Michael; Henderson, Ann

    2012-04-01

    The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in

  19. Catalytic Hydrodehalogenation of Some Organic Halides by Hydrogen Transfer from Lithium Formate in the Presence of Ruthenium and Rhodium Complexes

    OpenAIRE

    Marčec, Radovan

    1990-01-01

    Organic halides react with lithium formate in the presence of ruthenium and rhodium phosphine complexes as homogeneous catalysts in refluxing dioxane producing the corresponding deha- logenated compounds in moderate yields.

  20. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2015-07-01

    Full Text Available A bulk structure of inexpensive intermetallic nickel-tin (Ni-Sn alloys catalysts demonstrated highly selective in the hydrogenation of levulinic acid in water into g-valerolactone. The intermetallic Ni-Sn catalysts were synthesized via a very simple thermochemical method from non-organometallic precursor at low temperature followed by hydrogen treatment at 673 K for 90 min. The molar ratio of nickel salt and tin salt was varied to obtain the corresponding Ni/Sn ratio of 4.0, 3.0, 2.0, 1.5, and 0.75. The formation of Ni-Sn alloy species was mainly depended on the composition and temperature of H2 treatment. Intermetallics Ni-Sn that contain Ni3Sn, Ni3Sn2, and Ni3Sn4 alloy phases are known to be effective heterogeneous catalysts for levulinic acid hydrogenation giving very excellence g-valerolactone yield of >99% at 433 K, initial H2 pressure of 4.0 MPa within 6 h. The effective hydrogenation was obtained in H2O without the formation of by-product. Intermetallic Ni-Sn(1.5 that contains Ni3Sn2 alloy species demonstrated very stable and reusable catalyst without any significant loss of its selectivity. © 2015 BCREC UNDIP. All rights reserved. Received: 26th February 2015; Revised: 16th April 2015; Accepted: 22nd April 2015  How to Cite: Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C. (2015. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 192-200. (doi:10.9767/bcrec.10.2.8284.192-200Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.8284.192-200  

  1. On the role of metal particle size and surface coverage for photo-catalytic hydrogen production; a case study of the Au/CdS system

    KAUST Repository

    Majeed, I.

    2015-09-25

    Photo-catalytic hydrogen production has been studied on Au supported CdS catalysts under visible light irradiation in order to understand the effect of Au particle size as well as the reaction medium properties. Au nanoparticles of size about 2-5 nm were deposited over hexagonal CdS particles using a new simple method involving reduction of Au3+ ions with iodide ions. Within the investigated range of Au (between 1 and 5 wt. %) fresh particles with mean size of 4 nm and XPS Au4f/Cd3d surface ratio of 0.07 showed the highest performance (ca. 1 molecule of H2 / Auatom s−1) under visible light irradiation (>420 nm and a flux of 35 mW/cm2). The highest hydrogen production rate was obtained from water (92%)-ethanol (8%) in an electrolyte medium (Na2S-Na2SO3). TEM studies of fresh and used catalysts showed that Au particle size increases (almost 5 fold) with increasing photo-irradiation time due to photo-agglomeration effect yet no sign of deactivation was observed. A mechanism for hydrogen production from ethanol-water electrolyte mixture is presented and discussed.

  2. A STATISTICAL EVALUATION OF THE EFFECTS OF PROCESS VARIABLES DURING CATALYTIC HYDROGENATION OF PASSION FRUIT (passiflora edulis SEED OIL

    Directory of Open Access Journals (Sweden)

    ANDRADE G.M.S.

    1998-01-01

    Full Text Available Hydrogenation of passion fruit (passiflora edulis seed oil was carried out with a commercial nickel/silica catalyst under different experimental conditions. The influence of reaction parameters (reaction temperature, hydrogen pressure, amount of catalyst, agitation rate and reaction time on the response variable (iodine value was studied using a central composite rotatable design and six center points for replication. Under the experimental conditions used, the model response equations for the iodine value showed good agreement with the experimental results.

  3. POTHMF: A program for computing potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field

    Science.gov (United States)

    Chuluunbaatar, O.; Gusev, A. A.; Gerdt, V. P.; Rostovtsev, V. A.; Vinitsky, S. I.; Abrashkevich, A. G.; Kaschiev, M. S.; Serov, V. V.

    2008-02-01

    A FORTRAN 77 program is presented which calculates with the relative machine precision potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field. The potential curves are eigenvalues corresponding to the angular oblate spheroidal functions that compose adiabatic basis which depends on the radial variable as a parameter. The matrix elements of radial coupling are integrals in angular variables of the following two types: product of angular functions and the first derivative of angular functions in parameter, and product of the first derivatives of angular functions in parameter, respectively. The program calculates also the angular part of the dipole transition matrix elements (in the length form) expressed as integrals in angular variables involving product of a dipole operator and angular functions. Moreover, the program calculates asymptotic regular and irregular matrix solutions of the coupled adiabatic radial equations at the end of interval in radial variable needed for solving a multi-channel scattering problem by the generalized R-matrix method. Potential curves and radial matrix elements computed by the POTHMF program can be used for solving the bound state and multi-channel scattering problems. As a test desk, the program is applied to the calculation of the energy values, a short-range reaction matrix and corresponding wave functions with the help of the KANTBP program. Benchmark calculations for the known photoionization cross-sections are presented. Program summaryProgram title:POTHMF Catalogue identifier:AEAA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAA_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:8123 No. of bytes in distributed program, including test data

  4. Iron piano-stool complexes containing NHC ligands outfitted with pendent arms: synthesis, characterization, and screening for catalytic transfer hydrogenation

    Science.gov (United States)

    Parthapratim Das; Thomas Elder; William W. Brennessel; Stephen C. Chmely

    2016-01-01

    Catalysis is a fundamental technology that is widely used in the food, petrochemical, pharmaceutical, and agricultural sectors to produce chemical products on an industrial scale. Well-defined molecular organometallic species are a cornerstone of catalytic methodology, and the activity and selectivity of these complexes can be modulated by judicious choice of metal and...

  5. The mechanism of the catalytic oxidation of hydrogen sulfide *1: III. An electron spin resonance study of the sulfur catalyzed oxidation of hydrogen sulfide

    NARCIS (Netherlands)

    Steijns, M.; Koopman, P.; Nieuwenhuijse, B.; Mars, P.

    1976-01-01

    ESR experiments on the oxidation of hydrogen sulfide were performed in the temperature range 20–150 °C. Alumina, active carbon and molecular sieve zeolite 13X were investigated as catalysts. For zeolite 13X it was demonstrated that the reaction is autocatalytic and that sulfur radicals are the

  6. Insight into the mechanism revealing the peroxidase mimetic catalytic activity of quaternary CuZnFeS nanocrystals: colorimetric biosensing of hydrogen peroxide and glucose

    Science.gov (United States)

    Dalui, Amit; Pradhan, Bapi; Thupakula, Umamahesh; Khan, Ali Hossain; Kumar, Gundam Sandeep; Ghosh, Tanmay; Satpati, Biswarup; Acharya, Somobrata

    2015-05-01

    Artificial enzyme mimetics have attracted immense interest recently because natural enzymes undergo easy denaturation under environmental conditions restricting practical usefulness. We report for the first time chalcopyrite CuZnFeS (CZIS) alloyed nanocrystals (NCs) as novel biomimetic catalysts with efficient intrinsic peroxidase-like activity. Novel peroxidase activities of CZIS NCs have been evaluated by catalytic oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). CZIS NCs demonstrate the synergistic effect of elemental composition and photoactivity towards peroxidase-like activity. The quaternary CZIS NCs show enhanced intrinsic peroxidase-like activity compared to the binary NCs with the same constituent elements. Intrinsic peroxidase-like activity has been correlated with the energy band position of CZIS NCs extracted using scanning tunneling spectroscopy and ultraviolet photoelectron spectroscopy. Kinetic analyses indicate Michaelis-Menten enzyme kinetic model catalytic behavior describing the rate of the enzymatic reaction by correlating the reaction rate with substrate concentration. Typical color reactions arising from the catalytic oxidation of TMB over CZIS NCs with H2O2 have been utilized to establish a simple and sensitive colorimetric assay for detection of H2O2 and glucose. CZIS NCs are recyclable catalysts showing high efficiency in multiple uses. Our study may open up the possibility of designing new photoactive multi-component alloyed NCs as enzyme mimetics in biotechnology applications.Artificial enzyme mimetics have attracted immense interest recently because natural enzymes undergo easy denaturation under environmental conditions restricting practical usefulness. We report for the first time chalcopyrite CuZnFeS (CZIS) alloyed nanocrystals (NCs) as novel biomimetic catalysts with efficient intrinsic peroxidase-like activity. Novel peroxidase activities of CZIS NCs have been

  7. Effect of Copper Nanoparticles Dispersion on Catalytic Performance of Cu/SiO2 Catalyst for Hydrogenation of Dimethyl Oxalate to Ethylene Glycol

    Directory of Open Access Journals (Sweden)

    Yajing Zhang

    2013-01-01

    Full Text Available Cu/SiO2 catalysts, for the synthesis of ethylene glycol (EG from hydrogenation of dimethyl oxalate (DMO, were prepared by ammonia-evaporation and sol-gel methods, respectively. The structure, size of copper nanoparticles, copper dispersion, and the surface chemical states were investigated by X-ray diffraction (XRD, transmission electron microscopy (TEM, temperature-programmed reduction (TPR, and X-ray photoelectron spectroscopy (XPS and N2 adsorption. It is found the structures and catalytic performances of the catalysts were highly affected by the preparation method. The catalyst prepared by sol-gel method had smaller average size of copper nanoparticles (about 3-4 nm, better copper dispersion, higher Cu+/C0 ratio and larger BET surface area, and higher DMO conversion and EG selectivity under the optimized reaction conditions.

  8. Transition metal (Co, Ni) nanoparticles wrapped with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride.

    Science.gov (United States)

    Huang, Xu; Xiao, Xuezhang; Zhang, Wei; Fan, Xiulin; Zhang, Liuting; Cheng, Changjun; Li, Shouquan; Ge, Hongwei; Wang, Qidong; Chen, Lixin

    2017-02-01

    Magnesium hydride (MgH2) exhibits long-term stability and has recently been developed as a safe alternative to store hydrogen in the solid state, due to its high capacity of 7.6 wt% H2 and low cost compared to other metal hydrides. However, the high activation energy and poor kinetics of MgH2 lead to inadequate hydrogen storage properties, resulting in low energy efficiency. Nano-catalysis is deemed to be the most effective strategy in improving the kinetics performance of hydrogen storage materials. In this work, robust and efficient architectures of carbon-wrapped transition metal (Co/C, Ni/C) nanoparticles (8-16 nm) were prepared and used as catalysts in the MgH2 system via ball milling to improve its de/rehydrogenation kinetics. Between the two kinds of nano-catalysts, the Ni/C nanoparticles exhibit a better catalytic efficiency. MgH2 doped with 6% Ni/C (MgH2-6%Ni/C) exhibits a peak dehydrogenation temperature of 275.7 °C, which is 142.7, 54.2 and 32.5 °C lower than that of commercial MgH2, milled MgH2 and MgH2 doped with 6% Co/C (MgH2-6%Co/C), respectively. MgH2 doped with 6% Ni/C can release about 6.1 wt% H2 at 250 °C. More importantly, the dehydrogenated MgH2-6%Ni/C is even able to uptake 5.0 wt% H2 at 100 °C within 20 s. Moreover, a cycling test of MgH2 doped with 8% Ni/C demonstrates its excellent hydrogen absorption/desorption stability with respect to both capacity (up to 6.5 wt%) and kinetics (within 8 min at 275 °C for dehydrogenation and within 10 s at 200 °C for rehydrogenation). Mechanistic research reveals that the in situ formed Mg2Ni and Mg2NiH4 nanoparticles can be regarded as advanced catalytically active species in the MgH2-Ni/C system. Meanwhile, the carbon attached around the surface of transition metal nanoparticles can successfully inhibit the aggregation of the catalysts and achieve the steadily, prompting de/rehydrogenation during the subsequent cycling process. The intrinsic catalytic effects and the uniform distributions of Mg2Ni

  9. Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M.

    1943-02-19

    A transcript is presented of a speech on the history of the development of hydrogenation of coal and tar. Apparently the talk had been accompanied by the showing of photographic slides, but none of the pictures were included with the report. In giving the history, Dr. Pier mentioned the dependence of much of the development of hydrogenation upon previous development in the related areas of ammonia and methanol syntheses, but he also pointed out several ways in which equipment appropriate for hydrogenation differed considerably from that used for ammonia and methanol. Dr. Pier discussed the difficulties encountered with residue processing, design of the reaction ovens, manufacture of ovens and preheaters, heating of reaction mixtures, development of steels, and development of compressor pumps. He described in some detail his own involvement in the development of the process. In addition, he discussed the development of methods of testing gasolines and other fuels. Also he listed some important byproducts of hydrogenation, such as phenols and polycyclic aromatics, and he discussed the formation of iso-octane fuel from the butanes arising from hydrogenation. In connection with several kinds of equipment used in hydrogenation (whose pictures were being shown), Dr. Pier gave some of the design and operating data.

  10. Synthesis and Catalytic Performance of Graphene Modified CuO-ZnO-Al2O3 for CO2 Hydrogenation to Methanol

    Directory of Open Access Journals (Sweden)

    Zheng-juan Liu

    2014-01-01

    Full Text Available CuO-ZnO-Al2O3 and graphene nanosheet (GNS were synthesized by coprecipitation route and reduction of exfoliated graphite oxides method, respectively. GNS modified CuO-ZnO-Al2O3 nanocomposites were synthesized by high energy ball milling method. The structure, morphology, and character of the synthesized materials were studied by BET, XRD, TEM, and H2-TPR. It was found that by high energy ball milling method the CuO-ZnO-Al2O3 nanoparticles were uniformly dispersed on GNS surfaces. The catalytic performance for the methanol synthesis from CO2 hydrogenation was also tested. It was shown experimentally that appropriate incorporation of GNS into the CuO-ZnO-Al2O3 could significantly increase the catalyst activity for methanol synthesis. The 10 wt.% GNS modified CuO-ZnO-Al2O3 catalyst gave a methanol space time yield (STY of 92.5% higher than that on the CuO-ZnO-Al2O3 catalyst without GNS. The improved catalytic performance was attributed to the excellent promotion of GNS to dispersion of CuO and ZnO particles.

  11. Nickel-based xerogel catalysts: Synthesis via fast sol-gel method and application in catalytic hydrogenation of p-nitrophenol to p-aminophenol

    Science.gov (United States)

    Feng, Jin; Wang, Qiang; Fan, Dongliang; Ma, Lirong; Jiang, Deli; Xie, Jimin; Zhu, Jianjun

    2016-09-01

    In order to investigate the roles of three-dimensional network structure and calcium on Ni catalysts, the Ni, Ni-Al2O3, Ni-Ca-Al2O3 xerogel catalysts were successfully synthesized via the fast sol-gel process and chemical reduction method. The crystal structure of three different catalysts was observed with X-ray powder diffraction (XRD). Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and nitrogen adsorption-desorption were employed to investigate the role of network structure of xerogel catalysts and the size distribution of Ni nanoparticles. The catalyst composition was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) measurement and energy-dispersive X-ray spectroscopy (EDS). Temperature-programmed reduction (TPR) experiments were carried out to investigate the reducibility of nickel species and the interaction between nickel species and alumina. The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over the prepared nickel-based xerogel catalysts. The conversion of p-nitrophenol was monitored by UV spectrophotometry and high performance liquid chromatography (HPLC). The results show that the catalysts are highly selective for the conversion of p-nitrophenol to p-aminophenol and the order of catalytic activities of the catalysts is Ni < Ni-Al2O3 < Ni-Ca-Al2O3. The catalysts were recycled and were used to evaluate the reutilization.

  12. A conserved residue of l-alanine dehydrogenase from Bacillus pseudofirmus, Lys-73, participates in the catalytic reaction through hydrogen bonding.

    Science.gov (United States)

    He, Guangzheng; Xu, Shujing; Wang, Shanshan; Zhang, Qing; Liu, Dong; Chen, Yuling; Ju, Jiansong; Zhao, Baohua

    2018-03-01

    A multiple protein sequence alignment of l-alanine dehydrogenases from different bacterial species revealed that five highly conserved amino acid residues Arg-15, Lys-73, Lys-75, His-96 and Asp-269 are potential catalytic residues of l-alanine dehydrogenase from Bacillus pseudofirmus OF4. In this study, recombinant OF4Ald and its mutants of five conserved residues were constructed, expressed in Escherichia coli, purified by His6-tag affinity column and gel filtration chromatography, structure homology modeling, and characterized. The purified protein OF4Ald displayed high specificity to l-alanine (15Umg-1) with an optimal temperature and pH of 40°C and 10.5, respectively. Enzymatic assay and activity staining in native gels showed that mutations at four conserved residue Arg-15, Lys-75, His-96 and Asp-269 (except residue Lys-73) resulted in a complete loss in enzymatic activity, which signified that these predicted active sites are indispensable for OF4Ald activity. In contrast, the mutant K73A resulted in 6-fold improvement in kcat/Km towards l-alanine as compared to the wild type protein. Further research of the residue Lys-73 substituted by various amino acids and structural modeling revealed that residue Lys-73 might be involved in the catalytic reaction of the enzyme by influencing the enzyme-substrate binding through the hydrogen-bonding interaction with conserved residue Lys-75. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell.

    Science.gov (United States)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D

    2012-11-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O2-reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O2, which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  14. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell

    Science.gov (United States)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D.

    2012-01-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O2-reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O2, which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells. PMID:23457415

  15. New tricks by very old dogs: predicting the catalytic hydrogenation of HMF derivatives using Slater-type orbitals

    NARCIS (Netherlands)

    Ras, E.-J.; Louwerse, M.J.; Rothenberg, G.

    2012-01-01

    We report new experimental results on the hydrogenation of 5-ethoxymethylfurfural, an important intermediate in the conversion of sugars to industrial chemicals, using eight different M/Al2O3 catalysts (M = Au, Cu, Ni, Ir, Pd, Pt, Rh, and Ru) under various conditions. These data are then compared

  16. Ni(0-CMC-Na Nickel Colloids in Sodium Carboxymethyl-Cellulose: Catalytic Evaluation in Hydrogenation Reactions

    Directory of Open Access Journals (Sweden)

    Abdallah Karim

    2011-01-01

    Full Text Available A recyclable catalyst, Ni(0-CMC-Na, composed of nickel colloids dispersed in a water soluble bioorganic polymer, sodium carboxymethylcellulose (CMC-Na, was synthesized by a simple procedure from readily available reagents. The catalyst thus obtained is stable and highly active in alkene hydrogenations.

  17. Efficient and selective sulfoxidation by hydrogen peroxide, using a recyclable flavin--[BMIm]PF6 catalytic system.

    Science.gov (United States)

    Lindén, Auri A; Johansson, Mikael; Hermanns, Nina; Bäckvall, Jan-E

    2006-05-12

    A new flavin catalyst 2 immobilized in an ionic liquid ([BMIm]PF6) was used for the highly selective oxidation of sulfides to sulfoxides by hydrogen peroxide. The sulfoxides were obtained in good to high yields and high selectivity without any detectable overoxidation to sulfone. The catalyst in the ionic liquid was recycled up to seven times without loss of activity or selectivity.

  18. Catalytic Dehydrogenative Coupling of Hydrosilanes with Alcohols for the Production of Hydrogen On-demand: Application of a Silane/Alcohol Pair as a Liquid Organic Hydrogen Carrier.

    Science.gov (United States)

    Ventura-Espinosa, David; Carretero-Cerdán, Alba; Baya, Miguel; García, Hermenegildo; Mata, Jose A

    2017-08-10

    The compound [Ru(p-cym)(Cl)2 (NHC)] is an effective catalyst for the room-temperature coupling of silanes and alcohols with the concomitant formation of molecular hydrogen. High catalyst activity is observed for a variety of substrates affording quantitative yields in minutes at room temperature and with a catalyst loading as low as 0.1 mol %. The coupling reaction is thermodynamically and, in the presence of a Ru complex, kinetically favourable and allows rapid molecular hydrogen generation on-demand at room temperature, under air, and without any additive. The pair silane/alcohol is a potential liquid organic hydrogen carrier (LOHC) for energy storage over long periods in a safe and secure way. Silanes and alcohols are non-toxic compounds and do not require special handling precautions such as high pressure or an inert atmosphere. These properties enhance the practical applications of the pair silane/alcohol as a good LOHC in the automotive industry. The variety and availability of silanes and alcohols permits a pair combination that fulfils the requirements for developing an efficient LOHC. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. APPARATUS FOR CATALYTICALLY COMBINING GASES

    Science.gov (United States)

    Busey, H.M.

    1958-08-12

    A convection type recombiner is described for catalytically recombining hydrogen and oxygen which have been radiolytically decomposed in an aqueous homogeneous nuclear reactor. The device is so designed that the energy of recombination is used to circulate the gas mixture over the catalyst. The device consists of a vertical cylinder having baffles at its lower enda above these coarse screens having platinum and alumina pellets cemented thereon, and an annular passage for the return of recombined, condensed water to the reactor moderator system. This devicea having no moving parts, provides a simple and efficient means of removing the danger of accumulated hot radioactive, explosive gases, and restoring them to the moderator system for reuse.

  20. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  1. Final Technical Report "Catalytic Hydrogenation of Carbon Monoxide and Olefin Oxidation" Grant number : DE-FG02-86ER13615

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, B.B.

    2009-08-31

    Title: Catalytic Hydrogenation of Carbon Monoxide and Olefin Oxidation Grant No. DE-FG02-86ER13615 PI: Wayland, B. B. (wayland@sas.upenn.edu) Abstract Development of new mechanistic strategies and catalyst materials for activation of CO, H2, CH4, C2H4, O2, and related substrates relevant to the conversion of carbon monoxide, alkanes, and alkenes to organic oxygenates are central objectives encompassed by this program. Design and synthesis of metal complexes that manifest reactivity patterns associated with potential pathways for the hydrogenation of carbon monoxide through metallo-formyl (M-CHO), dimetal ketone (M-C(O)-M), and dimetal dionyl (M-C(O)-C(O)-M) species is one major focus. Hydrocarbon oxidation using molecular oxygen is a central goal for methane activation and functionalization as well as regioselective oxidation of olefins. Discovery of new reactivity patterns and control of selectivity are pursued through designing new metal complexes and adjusting reaction conditions. Variation of reaction media promotes distinct reaction pathways that control both reaction rates and selectivities. Dimetalloradical diporphyrin complexes preorganize transition states for substrate reactions that involve two metal centers and manifest large rate increases over mono-metalloradical reactions of hydrogen, methane, and other small molecule substrates. Another broad goal and recurring theme of this program is to contribute to the thermodynamic database for a wide scope of organo-metal transformations in a range of reaction media. One of the most complete descriptions of equilibrium thermodynamics for organometallic reactions in water and methanol is emerging from the study of rhodium porphyrin substrate reactions in aqueous and alcoholic media. Water soluble group nine metalloporphyrins manifest remarkably versatile substrate reactivity in aqueous and alcoholic media which includes producing rhodium formyl (Rh-CHO) and hydroxy methyl (Rh-CH2OH) species. Exploratory

  2. Model Catalytic Studies of Liquid Organic Hydrogen Carriers: Dehydrogenation and Decomposition Mechanisms of Dodecahydro-N-ethylcarbazole on Pt(111).

    Science.gov (United States)

    Amende, Max; Gleichweit, Christoph; Werner, Kristin; Schernich, Stefan; Zhao, Wei; Lorenz, Michael P A; Höfert, Oliver; Papp, Christian; Koch, Marcus; Wasserscheid, Peter; Laurin, Mathias; Steinrück, Hans-Peter; Libuda, Jörg

    2014-02-07

    Liquid organic hydrogen carriers (LOHC) are compounds that enable chemical energy storage through reversible hydrogenation. They are considered a promising technology to decouple energy production and consumption by combining high-energy densities with easy handling. A prominent LOHC is N-ethylcarbazole (NEC), which is reversibly hydrogenated to dodecahydro-N-ethylcarbazole (H12-NEC). We studied the reaction of H12-NEC on Pt(111) under ultrahigh vacuum (UHV) conditions by applying infrared reflection-absorption spectroscopy, synchrotron radiation-based high resolution X-ray photoelectron spectroscopy, and temperature-programmed molecular beam methods. We show that molecular adsorption of H12-NEC on Pt(111) occurs at temperatures between 173 and 223 K, followed by initial C-H bond activation in direct proximity to the N atom. As the first stable dehydrogenation product, we identify octahydro-N-ethylcarbazole (H8-NEC). Dehydrogenation to H8-NEC occurs slowly between 223 and 273 K and much faster above 273 K. Stepwise dehydrogenation to NEC proceeds while heating to 380 K. An undesired side reaction, C-N bond scission, was observed above 390 K. H8-NEC and H8-carbazole are the dominant products desorbing from the surface. Desorption occurs at higher temperatures than H8-NEC formation. We show that desorption and dehydrogenation activity are directly linked to the number of adsorption sites being blocked by reaction intermediates.

  3. Catalytically Enhanced Hydrogen Sorption in Mg-MgH2 by Coupling Vanadium-Based Catalyst and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Atikah Kadri

    2015-06-01

    Full Text Available Mg (MgH2-based composites, using carbon nanotubes (CNTs and pre-synthesized vanadium-based complex (VCat as the catalysts, were prepared by high-energy ball milling technique. The synergistic effect of coupling CNTs and VCat in MgH2 was observed for an ultra-fast absorption rate of 6.50 wt. % of hydrogen per minute and 6.50 wt. % of hydrogen release in 10 min at 200 °C and 300 °C, respectively. The temperature programmed desorption (TPD results reveal that coupling VCat and CNTs reduces both peak and onset temperatures by more than 60 °C and 114 °C, respectively. In addition, the presence of both VCat and CNTs reduces the enthalpy and entropy of desorption of about 7 kJ/mol H2 and 11 J/mol H2·K, respectively, as compared to those of the commercial MgH2, which ascribe to the decrease of desorption temperature. From the study of the effect of CNTs milling time, it is shown that partially destroyed CNTs (shorter milling time are better to enhance the hydrogen sorption performance.

  4. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  5. Ruthenium(0) nanoclusters stabilized by a Nanozeolite framework: isolable, reusable, and green catalyst for the hydrogenation of neat aromatics under mild conditions with the unprecedented catalytic activity and lifetime.

    Science.gov (United States)

    Zahmakiran, Mehmet; Tonbul, Yalçin; Ozkar, Saim

    2010-05-12

    The hydrogenation of aromatics is a ubiquitous chemical transformation used in both the petrochemical and specialty industry and is important for the generation of clean diesel fuels. Reported herein is the discovery of a superior heterogeneous catalyst, superior in terms of catalytic activity, selectivity, and lifetime in the hydrogenation of aromatics in the solvent-free system under mild conditions (at 25 degrees C and 42 +/- 1 psig initial H(2) pressure). Ruthenium(0) nanoclusters stabilized by a nanozeolite framework as a new catalytic material is reproducibly prepared from the borohydride reduction of a colloidal solution of ruthenium(III)-exchanged nanozeolites at room temperature and characterized by using ICP-OES, XRD, XPS, DLS, TEM, HRTEM, TEM/EDX, mid-IR, far-IR, and Raman spectroscopy. The resultant ruthenium(0) nanoclusters hydrogenate neat benzene to cyclohexane with 100% conversion under mild conditions (at 25 degrees C and 42 +/- 1 psig initial H(2) pressure) with record catalytic activity (initial TOF = 5430 h(-1)) and lifetime (TTO = 177 200). They provide exceptional catalytic activity not only in the hydrogenation of neat benzene but also in the solvent-free hydrogenation of methyl substituted aromatics such as toluene, o-xylene, and mesitylene under otherwise identical conditions. Moreover, they are an isolable, bottleable, and reusable catalyst in the hydrogenation of neat aromatics. When the isolated ruthenium(0) nanoclusters are reused, they retain 92% of their initial catalytic activity even for the third run in the hydrogenation of neat benzene under the same conditions as those of the first run. The work reported here also includes (i) far-infrared spectroscopic investigation of nanozeolite, ruthenium(III)-exchanged-nanozeolite, and ruthenium(0) nanoclusters stabilized by a nanozeolite framework, indicating that the host framework remains intact after the formation of a nanozeolite framework stabilized ruthenium(0) nanoclusters; (ii) the

  6. Treatment of printing and dyeing wastewater by catalytic wet hydrogen peroxide oxidation of honeycomb cinder as carrier catalyst

    Science.gov (United States)

    Zhang, D. H.; Yang, H. M.; Ou, Y. J.; Xu, C.; Gu, J. C.

    2017-06-01

    Under the condition of 35 °C, honeycomb cinder was used as the carrier, nickel as the active ingredient, impregnated for 2h, and calcined at 300 °C for 2h. The catalyst was used to Catalytic Wet Peroxide Oxidation of methylene blue simulated printing and dyeing wastewater. The effect of the amount of catalyst, the amount of catalyst, the reaction temperature and the reaction time on the treatment efficiency and the effect of the self-made catalyst on the simulated wastewater with different concentration gradient were studied in the experiment. The results showed that when the reaction conditions were H2O2 8ml/L, catalyst 12g/L and reaction time 1h, the degradation rate of methylene blue reached more than 77% for the wastewater with concentration ranging from 40 mg/L to 200 mg/L. In addition, at a temperature of 30 DEG C, the wastewater, the concentration was 80mg/L, degradation rate was up to 85.70%.

  7. Valorization of Waste Lipids through Hydrothermal Catalytic Conversion to Liquid Hydrocarbon Fuels with in Situ Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwook; Vardon, Derek R.; Murali, Dheeptha; Sharma, Brajendra K.; Strathmann, Timothy J.

    2016-03-07

    We demonstrate hydrothermal (300 degrees C, 10 MPa) catalytic conversion of real waste lipids (e.g., waste vegetable oil, sewer trap grease) to liquid hydrocarbon fuels without net need for external chemical inputs (e.g., H2 gas, methanol). A supported bimetallic catalyst (Pt-Re/C; 5 wt % of each metal) previously shown to catalyze both aqueous phase reforming of glycerol (a triacylglyceride lipid hydrolysis coproduct) to H2 gas and conversion of oleic and stearic acid, model unsaturated and saturated fatty acids, to linear alkanes was applied to process real waste lipid feedstocks in water. For reactions conducted with an initially inert headspace gas (N2), waste vegetable oil (WVO) was fully converted into linear hydrocarbons (C15-C17) and other hydrolyzed byproducts within 4.5 h, and H2 gas production was observed. Addition of H2 to the initial reactor headspace accelerated conversion, but net H2 production was still observed, in agreement with results obtained for aqueous mixtures containing model fatty acids and glycerol. Conversion to liquid hydrocarbons with net H2 production was also observed for a range of other waste lipid feedstocks (animal fat residuals, sewer trap grease, dry distiller's grain oil, coffee oil residual). These findings demonstrate potential for valorization of waste lipids through conversion to hydrocarbons that are more compatible with current petroleum-based liquid fuels than the biodiesel and biogas products of conventional waste lipid processing technologies.

  8. Theoretical studies of homogeneous catalysts mimicking nitrogenase.

    Science.gov (United States)

    Sgrignani, Jacopo; Franco, Duvan; Magistrato, Alessandra

    2011-01-10

    The conversion of molecular nitrogen to ammonia is a key biological and chemical process and represents one of the most challenging topics in chemistry and biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen 'fixation' via an iron molybdenum cofactor (FeMo-co) under ambient conditions. In contrast, industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and pressure. This process accounts for the production of millions of tons of nitrogen compounds used for agricultural and industrial purposes, but the high temperature and pressure required result in a large energy loss, leading to several economic and environmental issues. During the last 40 years many attempts have been made to synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild conditions of the nitrogenase enzymes. Several compounds, almost all containing transition metals, have been shown to bind and activate N₂ to various degrees. However, to date Mo(N₂)(HIPTN)₃N with (HIPTN)₃N= hexaisopropyl-terphenyl-triamidoamine is the only compound performing this process catalytically. In this review we describe how Density Functional Theory calculations have been of help in elucidating the reaction mechanisms of the inorganic compounds that activate or fix N₂. These studies provided important insights that rationalize and complement the experimental findings about the reaction mechanisms of known catalysts, predicting the reactivity of new potential catalysts and helping in tailoring new efficient catalytic compounds.

  9. Theoretical Studies of Homogeneous Catalysts Mimicking Nitrogenase

    Directory of Open Access Journals (Sweden)

    Alessandra Magistrato

    2011-01-01

    Full Text Available The conversion of molecular nitrogen to ammonia is a key biological and chemical process and represents one of the most challenging topics in chemistry and biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen ‘fixation’ via an iron molybdenum cofactor (FeMo-co under ambient conditions. In contrast, industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and pressure. This process accounts for the production of millions of tons of nitrogen compounds used for agricultural and industrial purposes, but the high temperature and pressure required result in a large energy loss, leading to several economic and environmental issues. During the last 40 years many attempts have been made to synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild conditions of the nitrogenase enzymes. Several compounds, almost all containing transition metals, have been shown to bind and activate N2 to various degrees. However, to date Mo(N2(HIPTN3N with (HIPTN3N= hexaisopropyl-terphenyl-triamidoamine is the only compound performing this process catalytically. In this review we describe how Density Functional Theory calculations have been of help in elucidating the reaction mechanisms of the inorganic compounds that activate or fix N2. These studies provided important insights that rationalize and complement the experimental findings about the reaction mechanisms of known catalysts, predicting the reactivity of new potential catalysts and helping in tailoring new efficient catalytic compounds.

  10. Structural insights into the catalytic mechanism of cysteine (hydroxyl) lyase from the hydrogen-sulfide producing oral pathogen, Fusobacterium nucleatum.

    Science.gov (United States)

    Kezuka, Yuichiro; Ishida, Tetsuo; Yoshida, Yasuo; Nonaka, Takamasa

    2018-01-17

    Hydrogen sulfide (H2S) plays important roles in the pathogenesis of periodontitis. Oral pathogens typically produce H2S from L-cysteine in addition to pyruvate and NH4+ However, fn1055 from Fusobacterium nucleatum subsp. nucleatum ATCC 25586 encodes a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the production of H2S and L-serine from L-cysteine and H2O, an unusual cysteine (hydroxyl) lyase reaction (β-replacement reaction). To reveal the reaction mechanism, the crystal structure of substrate-free Fn1055 was determined. Based on this structure, a model of the L-cysteine-PLP Schiff base suggested that the thiol group forms hydrogen bonds with Asp232 and Ser74, and the substrate α-carboxylate interacts with Thr73 and Gln147 Asp232 is a unique residue to Fn1055 and its substitution to asparagine (D232N) resulted in almost complete loss of β-replacement activity. The D232N structure obtained in the presence of L-cysteine contained the α-aminoacrylate-PLP Schiff base in the active site, indicating that Asp232 is essential for the addition of water to the α-aminoacrylate to produce the L-serine-PLP Schiff base. Rapid scan stopped-flow kinetic analyses showed an accumulation of the α-aminoacrylate intermediate during the reaction cycle, suggesting that water addition mediated by Asp232 is the rate-limiting step. In contrast, mutants containing substitutions of other active-site residues (Ser74, Thr73, and Gln147) exhibited reduced β-replacement activity by more than 100-fold. Finally, based on the structural and biochemical analyses, we propose a mechanism of the cysteine (hydroxyl) lyase reaction by Fn1055. This study leads to elucidation of the H2S-producing mechanism in F. nucleatum. ©2018 The Author(s).

  11. Rapid microwaves synthesis of CoSi{sub x}/CNTs as novel catalytic materials for hydrogenation of phthalic anhydride

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liangliang [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China); Chen, Xiao; Jin, Shaohua; Guan, Jingchao [Laboratory of Advanced Materials and Catalytic Engineering, Dalian University of Technology, Dalian 116024 (China); Williams, Christopher T. [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Peng, Zhijian, E-mail: pengzhijian@cugb.edu.cn [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China); Liang, Changhai, E-mail: changhai@dlut.edu.cn [Laboratory of Advanced Materials and Catalytic Engineering, Dalian University of Technology, Dalian 116024 (China)

    2014-09-15

    CoSi{sub x}/CNTs catalysts with different CoSi{sub x} phases (CoSi, CoSi{sub 2}) have been rapidly synthesized via a microwave-assisted route and applied for the liquid phase hydrogenation of phthalic anhydride. The synthesized catalysts were analyzed and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy-energy dispersive X-ray spectroscopy, thermogravimetric/derivative thermogravimetric analysis. The reaction progress of cobalt silicides and the ratio of Co:Si were monitored at different microwave irradiation times by XRD, giving insight into the formation mechanism. Compared to the Co/CNTs catalyst, all the prepared CoSi{sub x}/CNTs catalysts exhibited excellent activity and good selectivity to phthalide under mild reaction conditions (180–220 °C and 4.0 MPa H{sub 2}). This novel methodology can be applied to the synthesis of other transition metal silicides such as FeSi, Ni{sub 2}Si, and Cu{sub 4}Si. - Graphical abstract: CoSi{sub x}/CNTs catalysts with different CoSi{sub x} phases (CoSi{sub 2}, CoSi) have been rapidly synthesized via microwave-assisted route, which involves the vaporization of CoCl{sub 2} and subsequent reaction of CoCl{sub 2} with Si. - Highlights: • CoSi{sub x}/CNTs catalysts have been rapid synthesized via microwave-assisted route. • The phases of CoSi{sub x} were controlled by varying microwave time and Co:Si ratio. • FeSi, Ni{sub 2}Si and Cu{sub 4}Si were also synthesized via microwave-assisted route. • CoSi{sub x}/CNTs catalysts can be applied in hydrogenation of phthalic anhydride.

  12. Hydrogen production with short contact time. Catalytic partial oxidation of hydrocarbons and oxygenated compounds: Recent advances in pilot- and bench-scale testing and process design

    Energy Technology Data Exchange (ETDEWEB)

    Guarinoni, A.; Ponzo, R.; Basini, L. [ENI Refining and Marketing Div., San Donato Milanese (Italy)

    2010-12-30

    ENI R and D has been active for fifteen years in the development of Short Contact Time - Catalytic Partial Oxidation (SCT-CPO) technologies for producing Hydrogen/Synthesis Gas. From the beginning the experimental work addressed either at defining the fundamental principles or the technical and economical potential of the technology. Good experimental responses, technical solutions' simplicity and flexibility, favourable techno-economical evaluations promoted the progressive widening of the field of the investigations. From Natural Gas (NG) the range of ''processable'' Hydrocarbons extended to Liquefied Petroleum Gas (LPG) and Gasoils, including those characterised by high levels of unsaturated and sulphurated molecules and, lately, to other compounds with biological origin. The extensive work led to the definition of different technological solutions, grouped as follows: Technology 1: Air Blown SCT-CPO of Gaseous Hydrocarbons and/or Light Compounds with biological origin Technology 2: Enriched Air/Oxygen Blown SCT-CPO of Gaseous Hydrocarbons and/or Light Compounds with biological origin Technology 3: Enriched Air/Oxygen Blown SCT-CPO of Liquid Hydrocarbons and/or Compounds with biological origin Recently, the licence rights on a non-exclusive basis for the commercialisation of SCT-CPO based processes for H{sub 2}/Synthesis gas production from light hydrocarbons with production capacity lower than 5,000 Nm{sup 3}/h of H{sub 2} or 7,500 Nm3/h of syngas have been assigned to two external companies. In parallel, development of medium- and large-scale plant solutions is progressing within the ENI group framework. These last activities are addressed to the utilisation of SCT-CPO for matching the variable Hydrogen demand in several contexts of oil refining operation. This paper will report on the current status of SCT-CPO with a focus on experimental results obtained, either at pilot- and bench- scale level. (orig.)

  13. Identification by nuclear magnetic resonance spectroscopy of an active-site hydrogen-bond network in human monoacylglycerol lipase (hMGL): implications for hMGL dynamics, pharmacological inhibition, and catalytic mechanism.

    Science.gov (United States)

    Karageorgos, Ioannis; Tyukhtenko, Sergiy; Zvonok, Nikolai; Janero, David R; Sallum, Christine; Makriyannis, Alexandros

    2010-08-01

    Intramolecular hydrogen bonding is an important determinant of enzyme structure, catalysis, and inhibitor action. Monoacylglycerol lipase (MGL) modulates cannabinergic signaling as the main enzyme responsible for deactivating 2-arachidonoylglycerol (2-AG), a primary endocannabinoid lipid messenger. By enhancing tissue-protective 2-AG tone, targeted MGL inhibitors hold therapeutic promise for managing pain and treating inflammatory and neurodegenerative diseases. We report study of purified, solubilized human MGL (hMGL) to explore the details of hMGL catalysis by using two known covalent hMGL inhibitors, the carbamoyl tetrazole AM6701 and N-arachidonoylmaleimide (NAM), that act through distinct mechanisms. Using proton nuclear magnetic resonance spectroscopy (NMR) with purified wild-type and mutant hMGLs, we have directly observed a strong hydrogen-bond network involving Asp239 and His269 of the catalytic triad and neighboring Leu241 and Cys242 residues. hMGL inhibition by AM6701 alters this hydrogen-bonding pattern through subtle active-site structural rearrangements without influencing hydrogen-bond occupancies. Rapid carbamoylation of hMGL Ser122 by AM6701 and elimination of the leaving group is followed by a slow hydrolysis of the carbamate group, ultimately regenerating catalytically competent hMGL. In contrast, hMGL titration with NAM, which leads to cysteine alkylation, stoichiometrically decreases the population of the active-site hydrogen bonds. NAM prevents reformation of this network, and in this manner inhibits hMGL irreversibly. These data provide detailed molecular insight into the distinctive mechanisms of two covalent hMGL inhibitors and implicate a hydrogen-bond network as a structural feature of hMGL catalytic function.

  14. Synthesis of three-dimensional reduced graphene oxide layer supported cobalt nanocrystals and their high catalytic activity in F-T CO2 hydrogenation.

    Science.gov (United States)

    He, Fei; Niu, Na; Qu, Fengyu; Wei, Shuquan; Chen, Yujin; Gai, Shili; Gao, Peng; Wang, Yan; Yang, Piaoping

    2013-09-21

    The reduced graphene oxide (rGO) supported cobalt nanocrystals have been synthesized through an in situ crystal growth method using Co(acac)2 under solvothermal conditions by using DMF as the solvent. By carefully controlling the reaction temperature, the phase transition of the cobalt nanocrystals from the cubic phase to the hexagonal phase has been achieved. Moreover, the microscopic structure and morphology as well as the reduction process of the composite have been investigated in detail. It is found that oxygen-containing functional groups on the graphene oxide (GO) can greatly influence the formation process of the Co nanocrystals by binding the Co(2+) cations dissociated from the Co(acac)2 in the initial reaction solution at 220 °C, leading to the 3D reticular structure of the composite. Furthermore, this is the first attempt to use a Co/rGO composite as the catalyst in the F-T CO2 hydrogenation process. The catalysis testing results reveal that the as-synthesized 3D structured composite exhibits ideal catalytic activity and good stability, which may greatly extend the scope of applications for this kind of graphene-based metal hybrid material.

  15. Reflector homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Ragusa, J.; Santandrea, S. [Commissariat a l' Energie Atomique, Direction de l' Energie Nucleaire, Service d' Etudes de Reacteurs et de Modelisation Avancee, CEA de Saclay, DM2S/SERMA 91 191 Gif-sur-Yvette cedex (France)]. e-mail: richard.sanchez@cea.fr

    2004-07-01

    The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P{sub 0} transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP{sub N} core calculations. (Author)

  16. Ultrasound promoted catalytic liquid-phase dehydrogenation of isopropanol for Isopropanol-Acetone-Hydrogen chemical heat pump.

    Science.gov (United States)

    Xu, Min; Xin, Fang; Li, Xunfeng; Huai, Xiulan; Liu, Hui

    2015-03-01

    The apparent kinetic of the ultrasound assisted liquid-phase dehydrogenation of isopropanol over Raney nickel catalyst was determined in the temperature range of 346-353 K. Comparison of the effects of ultrasound and mechanical agitation on the isopropanol dehydrogenation was investigated. The ultrasound assisted dehydrogenation rate was significantly improved when relatively high power density was used. Moreover, the Isopropanol-Acetone-Hydrogen chemical heat pump (IAH-CHP) with ultrasound irradiation, in which the endothermic reaction is exposure to ultrasound, was proposed. A mathematical model was established to evaluate its energy performance in term of the coefficient of performance (COP) and the exergy efficiency, into which the apparent kinetic obtained in this work was incorporated. The operating performances between IAH-CHP with ultrasound and mechanical agitation were compared. The results indicated that the superiority of the IAH-CHP system with ultrasound was present even if more than 50% of the power of the ultrasound equipment was lost. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Rapid microwaves synthesis of CoSix/CNTs as novel catalytic materials for hydrogenation of phthalic anhydride

    Science.gov (United States)

    Zhang, Liangliang; Chen, Xiao; Jin, Shaohua; Guan, Jingchao; Williams, Christopher T.; Peng, Zhijian; Liang, Changhai

    2014-09-01

    CoSix/CNTs catalysts with different CoSix phases (CoSi, CoSi2) have been rapidly synthesized via a microwave-assisted route and applied for the liquid phase hydrogenation of phthalic anhydride. The synthesized catalysts were analyzed and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy-energy dispersive X-ray spectroscopy, thermogravimetric/derivative thermogravimetric analysis. The reaction progress of cobalt silicides and the ratio of Co:Si were monitored at different microwave irradiation times by XRD, giving insight into the formation mechanism. Compared to the Co/CNTs catalyst, all the prepared CoSix/CNTs catalysts exhibited excellent activity and good selectivity to phthalide under mild reaction conditions (180-220 °C and 4.0 MPa H2). This novel methodology can be applied to the synthesis of other transition metal silicides such as FeSi, Ni2Si, and Cu4Si.

  18. Catalytic combustion over high temperature stable metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M. [TPS Termiska Processer AB, Nykoeping (Sweden)

    1996-12-31

    This thesis presents a study of the catalytic effects of two interesting high temperature stable metal oxides - magnesium oxide and manganese substituted barium hexa-aluminate (BMA) - both of which can be used in the development of new monolithic catalysts for such applications. In the first part of the thesis, the development of catalytic combustion for gas turbine applications is reviewed, with special attention to alternative fuels such as low-BTU gas, e.g. produced in an air blown gasifier. When catalytic combustion is applied for such a fuel, the primary advantage is the possibility of decreasing the conversion of fuel nitrogen to NO{sub x}, and achieving flame stability. In the experimental work, MgO was shown to have a significant activity for the catalytic combustion of methane, lowering the temperature needed to achieve 10 percent conversion by 270 deg C compared with homogeneous combustion.The reaction kinetics for methane combustion over MgO was also studied. It was shown that the heterogeneous catalytic reactions were dominant but that the catalytically initiated homogeneous gas phase reactions were also important, specially at high temperatures. MgO and BMA were compared. The latter showed a higher catalytic activity, even when the differences in activity decreased with increasing calcination temperature. For BMA, CO{sub 2} was the only product detected, but for MgO significant amounts of CO and C{sub 2}-hydrocarbons were formed. BMA needed a much lower temperature to achieve total conversion of other fuels, e.g. CO and hydrogen, compared to the temperature for total conversion of methane. This shows that BMA-like catalysts are interesting for combustion of fuel mixtures with high CO and H{sub 2} content, e.g. gas produced from gasification of biomass. 74 refs

  19. Investigation of the degree of homogeneity and hydrogen bonding in PEG/PVP blends prepared in supercritical CO2: comparison with ethanol-cast blends and physical mixtures

    CSIR Research Space (South Africa)

    Labuschagne, Philip W

    2010-07-01

    Full Text Available The degree of homogeneity and H-bond interaction in blends of low-molecular-mass poly(ethylene glycols) (PEG, Mw = 400, 600, 1000) and poly(vinylpyrrolidone) (PVP, Mw =9×103) prepared in supercritical CO2, ethanol and as physical mixtures were...

  20. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane; Reduction catalytique selective des oxydes d'azote (NO{sub x}) provenant d'effluents gazeux industriels par l'hydrogene ou le methane

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann Pirez, M

    2004-12-15

    This work deals with the selective catalytic reduction of nitrogen oxides (NO{sub x}), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N{sub 2}, in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO{sub 3}, on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  1. Highly reliable switching via phase transition using hydrogen peroxide in homogeneous and multi-layered GaZnO(x)-based resistive random access memory devices.

    Science.gov (United States)

    Park, Sung Pyo; Yoon, Doo Hyun; Tak, Young Jun; Lee, Heesoo; Kim, Hyun Jae

    2015-06-04

    Here, we propose an effective method for improving the resistive switching characteristics of solution-processed gallium-doped zinc oxide (GaZnO(x)) resistive random access memory (RRAM) devices using hydrogen peroxide. Our results imply that solution processed GaZnO(x) RRAM devices could be one of the candidates for the development of low cost RRAM.

  2. Studies of Immobilized Homogeneous Metal Catalysts on Silica Supports

    Energy Technology Data Exchange (ETDEWEB)

    Stanger, Keith James [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    The tethered, chiral, chelating diphosphine rhodium complex, which catalyzes the enantioselective hydrogenation of methyl-α-acetamidocinnamate (MAC), has the illustrated structure as established by 31P NMR and IR studies. Spectral and catalytic investigations also suggest that the mechanism of action of the tethered complex is the same as that of the untethered complex in solution. The rhodium complexes, [Rh(COD)H]4, [Rh(COD)2]+BF4-, [Rh(COD)Cl]2, and RhCl3• 3H2O, adsorbed on SiO2 are optimally activated for toluene hydrogenation by pretreatment with H2 at 200 C. The same complexes on Pd-SiO2 are equally active without pretreatments. The active species in all cases is rhodium metal. The catalysts were characterized by XPS, TEM, DRIFTS, and mercury poisoning experiments. Rhodium on silica catalyzes the hydrogenation of fluorobenzene to produce predominantly fluorocyclohexane in heptane and 1,2-dichloroethane solvents. In heptane/methanol and heptane/water solvents, hydrodefluorination to benzene and subsequent hydrogenation to cyclohexane occurs exclusively. Benzene inhibits the hydrodefluorination of fluorobenzene. In DCE or heptane solvents, fluorocyclohexane reacts with hydrogen fluoride to form cyclohexene. Reaction conditions can be chosen to selectively yield fluorocyclohexane, cyclohexene, benzene, or cyclohexane. The oxorhenium(V) dithiolate catalyst [-S(CH2)3s-]Re(O)(Me)(PPh3) was modified by linking it to a tether that could be attached to a silica support. Spectroscopic investigation and catalytic oxidation reactivity showed the heterogenized catalyst's structure and reactivity to be similar to its homogeneous analog. However, the immobilized catalyst offered additional advantages of recyclability, extended stability, and increased resistance to deactivation.

  3. Catalytic Fast Pyrolysis: A Review

    OpenAIRE

    Theodore Dickerson; Juan Soria

    2013-01-01

    Catalytic pyrolysis is a promising thermochemical conversion route for lignocellulosic biomass that produces chemicals and fuels compatible with current, petrochemical infrastructure. Catalytic modifications to pyrolysis bio-oils are geared towards the elimination and substitution of oxygen and oxygen-containing functionalities in addition to increasing the hydrogen to carbon ratio of the final products. Recent progress has focused on both hydrodeoxygenation and hydrogenation of bio-oil using...

  4. Preparation method of Ni@Pt/C nanocatalyst affects the performance of direct borohydride-hydrogen peroxide fuel cell: Improved power density and increased catalytic oxidation of borohydride.

    Science.gov (United States)

    Hosseini, Mir Ghasem; Mahmoodi, Raana

    2017-08-15

    The Ni@Pt/C electrocatalysts were synthesized using two different methods: with sodium dodecyl sulfate (SDS) and without SDS. The metal loading in synthesized nanocatalysts was 20wt% and the molar ratio of Ni: Pt was 1:1. The structural characterizations of Ni@Pt/C electrocatalysts were investigated by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM). The electrocatalytic activity of Ni@Pt/C electrocatalysts toward BH4- oxidation in alkaline medium was studied by means of cyclic voltammetry (CV), chronopotentiometry (CP), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The results showed that Ni@Pt/C electrocatalyst synthesized without SDS has superior catalytic activity toward borohydride oxidation (22016.92AgPt-1) in comparison with a catalyst prepared in the presence of SDS (17766.15AgPt-1) in NaBH4 0.1M at 25°C. The Membrane Electrode Assembly (MEA) used in fuel cell set-up was fabricated with catalyst-coated membrane (CCM) technique. The effect of Ni@Pt/C catalysts prepared with two methods as anode catalyst on the performance of direct borohydride-hydrogen peroxide fuel cell was studied. The maximum power density was obtained using Ni@Pt/C catalyst synthesized without SDS at 60°C, 1M NaBH4 and 2M H2O2 (133.38mWcm-2). Copyright © 2017 Elsevier Inc. All rights reserved.

  5. "Click" dendrimers: synthesis, redox sensing of Pd(OAc)2, and remarkable catalytic hydrogenation activity of precise Pd nanoparticles stabilized by 1,2,3-triazole-containing dendrimers.

    Science.gov (United States)

    Ornelas, Cátia; Aranzaes, Jaime Ruiz; Salmon, Lionel; Astruc, Didier

    2008-01-01

    "Click" dendrimers containing 1,2,3-triazolyl ligands that coordinate to PdII(OAc)2 have been synthesized in view of catalytic applications. Five of these dendrimers contain ferrocenyl termini directly attached to the triazole ligand in order to monitor the number of PdII that are introduced into the dendrimers by cyclic voltammetry. Reduction of the PdII-triazole dendrimers by using NaBH4 or methanol yields Pd nanoparticles (PdNPs) that are stabilized either by several dendrimers (G0, DSN) or by encapsulation inside a dendrimer (G1 and G2: DEN), as confirmed by TEM. Relative to PAMAM-DENs (PAMAM=poly(amidoamine)), the "click" DSNs and DENs show a remarkable efficiency and stability for olefin hydrogenation under ambient conditions of various substrates. The influence of the reductant of PdII bound to the dendrimers is dramatic, reduction with methanol leading to much higher catalytic activity than reduction with NaBH4. The most active NPs are shown to be those derived from dendrimer G1, and variation of its termini groups (ferrocenyl, alkyl, phenyl) allowed us to clearly delineate, optimize, and rationalize the role of the dendrimer frameworks on the catalytic efficiencies. Finally, hydrogenation of various substrates catalyzed by these PdNPs shows remarkable selectivity features.

  6. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 2 - hydrogenative and hydrothermal pretreatments and spectroscopic characterization using pyrolysis-GC-MS, CPMAS {sup 13}C NMR and FT-IR

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Hatcher, P.G.; Saini, A.K.; Wenzel, K.A.

    1998-01-01

    It has been indicated by DOE COLIRN panel that low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals. As the second volume of the final report, here we summarize our work on spectroscopic characterization of four raw coals including two subbituminous coals and two bituminous coals, tetrahydrofuran (THF)-extracted but unreacted coals, the coals (THF-insoluble parts) that have been thermally pretreated. in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent, and the coals (THF-insoluble parts) that have been catalytically pretreated in the presence of a dispersed Mo sulfide catalyst in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent.

  7. Turning it off! Disfavouring hydrogen evolution to enhance selectivity for CO production during homogeneous CO2 reduction by cobalt-terpyridine complexes.

    Science.gov (United States)

    Elgrishi, Noémie; Chambers, Matthew B; Fontecave, Marc

    2015-04-16

    Understanding the activity and selectivity of molecular catalysts for CO2 reduction to fuels is an important scientific endeavour in addressing the growing global energy demand. Cobalt-terpyridine compounds have been shown to be catalysts for CO2 reduction to CO while simultaneously producing H2 from the requisite proton source. To investigate the parameters governing the competition for H+ reduction versus CO2 reduction, the cobalt bisterpyridine class of compounds is first evaluated as H+ reduction catalysts. We report that electronic tuning of the ancillary ligand sphere can result in a wide range of second-order rate constants for H+ reduction. When this class of compounds is next submitted to CO2 reduction conditions, a trend is found in which the less active catalysts for H+ reduction are the more selective towards CO2 reduction to CO. This represents the first report of the selectivity of a molecular system for CO2 reduction being controlled through turning off one of the competing reactions. The activities of the series of catalysts are evaluated through foot-of-the-wave analysis and a catalytic Tafel plot is provided.

  8. A New Homogeneous Catalyst for the Dehydrogenation of Dimethylamine Borane Starting with Ruthenium(III Acetylacetonate

    Directory of Open Access Journals (Sweden)

    Ebru Ünel Barın

    2015-06-01

    Full Text Available The catalytic activity of ruthenium(III acetylacetonate was investigated for the first time in the dehydrogenation of dimethylamine borane. During catalytic reaction, a new ruthenium(II species is formed in situ from the reduction of ruthenium(III and characterized using UV-Visible, Fourier transform infrared (FTIR, 1H NMR, and mass spectroscopy. The most likely structure suggested for the ruthenium(II species is mer-[Ru(N2Me43(acacH]. Mercury poisoning experiment indicates that the catalytic dehydrogenation of dimethylamine-borane is homogeneous catalysis. The kinetics of the catalytic dehydrogenation of dimethylamine borane starting with Ru(acac3 were studied depending on the catalyst concentration, substrate concentration and temperature. The hydrogen generation was found to be first-order with respect to catalyst concentration and zero-order regarding the substrate concentration. Evaluation of the kinetic data provides the activation parameters for the dehydrogenation reaction: the activation energy Ea = 85 ± 2 kJ·mol−1, the enthalpy of activation ∆H# = 82 ± 2 kJ·mol−1 and the entropy of activation; ∆S# = −85 ± 5 J·mol−1·K−1. The ruthenium(II catalyst formed from the reduction of ruthenium(III acetylacetonate provides 1700 turnovers over 100 hours in hydrogen generation from the dehydrogenation of dimethylamine borane before deactivation at 60 °C.

  9. Nickel-based xerogel catalysts: Synthesis via fast sol-gel method and application in catalytic hydrogenation of p-nitrophenol to p-aminophenol

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jin; Wang, Qiang; Fan, Dongliang; Ma, Lirong; Jiang, Deli; Xie, Jimin, E-mail: xiejm391@sohu.com; Zhu, Jianjun, E-mail: zhjj029@sina.com

    2016-09-30

    out to investigate the reducibility of nickel species and the interaction between nickel species and alumina. The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over the prepared nickel-based xerogel catalysts. The conversion of p-nitrophenol was monitored by UV spectrophotometry and high performance liquid chromatography (HPLC). The results show that the catalysts are highly selective for the conversion of p-nitrophenol to p-aminophenol and the order of catalytic activities of the catalysts is Ni < Ni-Al{sub 2}O{sub 3} < Ni-Ca-Al{sub 2}O{sub 3}. The catalysts were recycled and were used to evaluate the reutilization.

  10. Catalytic Hydrogenation of CO2 to Methanol: Study of Synergistic Effect on Adsorption Properties of CO2 and H2 in CuO/ZnO/ZrO2 System

    Directory of Open Access Journals (Sweden)

    Chunjie Huang

    2015-11-01

    Full Text Available A series of CuO/ZnO/ZrO2 (CZZ catalysts with different CuO/ZnO weight ratios have been synthesized by citrate method and tested in the catalytic hydrogenation of CO2 to methanol. Experimental results showed that the catalyst with the lowest CuO/ZnO weight ratio of 2/7 exhibited the best catalytic performance with a CO2 conversion of 32.9%, 45.8% methanol selectivity, and a process delivery of 193.9 gMeOH·kgcat−1·h−1. A synergetic effect is found by systematic temperature-programmed-desorption (TPD studies. Comparing with single and di-component systems, the interaction via different components in a CZZ system provides additional active sites to adsorb more H2 and CO2 in the low temperature range, resulting in higher weight time yield (WTY of methanol.

  11. Co/ZnO and Ni/ZnO catalysts for hydrogen production by bioethanol steam reforming. Influence of ZnO support morphology on the catalytic properties of Co and Ni active phases

    Energy Technology Data Exchange (ETDEWEB)

    Da Costa-Serra, J.F.; Chica, A. [Instituto de Tecnolgia Quimica (UPV-CSIC), Universidad Politecnica de Valencia, Consejo Superior de Investigaciones Cientificas, Avenida de los naranjos s/n, 46022 Valencia (Spain); Guil-Lopez, R. [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, Cantoblanco, 28049 Madrid (Spain)

    2010-07-15

    Renewable hydrogen production from steam reforming of bioethanol is an interesting approach to produce sustainable hydrogen. However, simultaneous competitive reactions can occur, decreasing the hydrogen production yield. To overcome this problem, modifications in the steam reforming catalysts are being studied. Ni and Co active phases supported over modified ZnO have been widely studied in hydrogen production from steam reforming of bioethanol. However, the influence of the morphology and particle size of ZnO supports on the catalytic behaviour of the supported Ni and Co has not been reported. In the present work, we show how the morphology, shape, and size of ZnO support particles can control the impregnation process of the metal active centres, which manages the properties of active metallic particles. It has been found that nanorod particles of ZnO, obtained by calcination of Zn acetate, favour the metal-support interactions, decreasing the metallic particle sizes and avoiding metal (Co or Ni) sinterization during the calcination of metal precursors. Small metallic particle sizes lead to high values of active metal exposure surface, increasing the bioethanol conversion and hydrogen production. (author)

  12. Some aspects of industrial homogeneous liquid-phase oxidations and emerging oxidation systems; Catalyse homogene d'oxydation. Quelques aspects des reactions industrielles et des nouveaux systemes

    Energy Technology Data Exchange (ETDEWEB)

    Bregeault, J.M.; Launay, F. [Universite Pierre et Marie Curie, 75 - Paris (France)

    2002-06-01

    This brief account considers recent developments of some catalytic systems in selective liquid-phase oxidations. Radical chain auto-oxidations which lead to some large-scale specialities are presented: i) the two-stage processes to Nylone intermediates (cyclohexane to cyclohexanol-cyclohexanone mixtures and nitric acid oxidation to adipic acid); ii) Amoco oxidation based on MC catalysts to prepare terephthalic acid with p-xylene as the raw material. Homogeneous catalytic processes with hetero-lytic reactions are illustrated first by the Arco-Lyndell method, which uses a molybdenum catalyst that epoxidizes propylene by transferring an oxygen atom from tert-butyl hydroperoxide. All new propylene oxide technologies focus on co product-free routes. Novel results with hydrogen peroxide and titanium, rhenium, tungsten and molybdenum oxo-peroxo species are presented with catalytic oxidations of organic substrates under mild conditions. Significant results appear in the modelling enzyme active sites (bio-mimetic oxidations) and on non-metal catalysts for homogeneous oxidations. These new systems could compete with transition-metal-based systems for fine chemicals. (authors)

  13. Production and application of carbon nanotubes, as a co-product of hydrogen from the pyrolysis-catalytic reforming of waste plastic

    OpenAIRE

    Wu, Chunfei; Nahil, Mohamad A.; -->Miskolczi, -->Norbert; Huang, Jun; Williams, Paul T.

    2016-01-01

    Hydrogen production from waste plastics is an important alternative for managing waste plastics. This work addresses a promising technology for co-producing high value carbon nanotubes (CNTs) in addition to the production of hydrogen; thus significantly increasing the economic feasibility of the process. Catalyst design is a critical factor to control the production of hydrogen and CNTs. NiMnAl catalysts, prepared by a co-precipitation method, with different metal molar ratios were developed ...

  14. Catalytic distillation extends its reach

    Energy Technology Data Exchange (ETDEWEB)

    Rock, K.; McGuirk, T. [Catalytic Distillation Technologies, Houston, TX (United States); Gildert, G.R. [Catalytic Distillation Technologies, Pasadena, TX (United States)

    1997-07-01

    Since the early 1980s, catalytic distillation processes have been selected by more than a hundred operators for various applications. Since such a unit performs both reaction and distillation simultaneously, a combined column can replace a separate, fixed-bed reactor and distillation column, thereby eliminating equipment and reducing capital costs. And, compared to the conventional approach, catalytic distillation may also improve other factors, such as reactant conversion, selectivity, mass transfer, operating pressure, oligomer formation and catalyst fouling. The constant washing of the catalyst by liquid flowing down the column and the distillation of high-boiling foulants results in extended catalyst life. Four selective hydrogenation applications of catalytic distillation are discussed: Butadiene selective hydrogenation combined within an MTBE unit; Pentadiene selective hydrogenation; C{sub 4} acetylene conversion; and Benzene saturation.

  15. The 13th International Symposium on Relations between Homogeneous and Heterogeneous Catalysis -- AnIntroduction

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.

    2008-02-06

    Over forty years, there have been major efforts to aim at understanding the properties of surfaces, structure, composition, dynamics on the molecular level and at developing the surface science of heterogeneous and homogeneous catalysis. Since most catalysts (heterogeneous, enzyme and homogeneous) are nanoparticles, colloid synthesis methods were developed to produce monodispersed metal nanoparticles in the 1-10 nm range and controlled shapes to use them as new model catalyst systems in two-dimensional thin film form or deposited in mezoporous three-dimensional oxides. Studies of reaction selectivity in multipath reactions (hydrogenation of benzene, cyclohexene and crotonaldehyde) showed that reaction selectivity depends on both nanoparticle size and shape. The oxide-metal nanoparticle interface was found to be an important catalytic site because of the hot electron flow induced by exothermic reactions like carbon monoxide oxidation.

  16. Bridging heterogeneous and homogeneous catalysis concepts, strategies, and applications

    CERN Document Server

    Li, Can

    2014-01-01

    This unique handbook fills the gap in the market for an up-to-date work that links both homogeneous catalysis applied to organic reactions and catalytic reactions on surfaces of heterogeneous catalysts.

  17. The catalytic hydrogenation of 2,4-dinitrotoluene in a continuous stirred three-phase slurry reactor with an evaporting solvent

    NARCIS (Netherlands)

    Westerterp, K.R.; Janssen, H.J.; van der Kwast, H.J.

    1992-01-01

    An experimental study of the catalytic hydorgenation of 2,4-dinitrotoluene (DNT) in a mini-installation with a continuously operated stirred three-phase slurry reactor and an evaporating solvent is discussed. Some characteristic properties of the reactor system and the influence of the operating

  18. The Role of Homogeneous Chemistry during Ignition of Propane Combustion in Pt-Catalyzed Microburners

    Directory of Open Access Journals (Sweden)

    Venkat Reddy Regatte

    2012-06-01

    Full Text Available The aim of this work is to numerically investigate the ignition behavior of homogeneous-heterogeneous (HH combustion of propane in a Pt-catalyzed microburner to delineate the role of homogeneous chemistry during cold-start ignition. A two dimensional model with one-step homogeneous and catalytic mechanisms in a parallel-plate microburner is considered. The ignition characteristics (ignition temperature and ignition time are explored for catalytic microreactor with and without homogeneous chemistry. We show that the catalytic reaction lights-off first, followed by the homogeneous reaction. Consequently, the homogeneous chemistry does not affect the ignition behavior of the catalytic microburner. The effect of inlet velocity, wall thermal conductivity and gap size on ignition characteristics is explored. The ignition characteristics are not affected by homogeneous chemistry even at larger gap sizes, despite the fact that the homogeneous contribution at steady state increases with increasing gap size of the microburner.

  19. A conceptual translation of homogeneous catalysis into heterogeneous catalysis: homogeneous-like heterogeneous gold nanoparticle catalyst induced by ceria supporter.

    Science.gov (United States)

    Li, Zhen-Xing; Xue, Wei; Guan, Bing-Tao; Shi, Fu-Bo; Shi, Zhang-Jie; Jiang, Hong; Yan, Chun-Hua

    2013-02-07

    Translation of homogeneous catalysis into heterogeneous catalysis is a promising solution to green and sustainable development in chemical industry. For this purpose, noble metal nanoparticles represent a new frontier in catalytic transformations. Many challenges remain for researchers to transform noble metal nanoparticles of heterogeneous catalytic active sites into ionic species of homogeneous catalytic active sites. We report here a successful design on translating homogeneous gold catalysis into a heterogeneous system with a clear understanding of the catalytic pathway. This study initiates a novel concept to immobilize a homogeneous catalyst based on electron transfer between supporting base and supported nanoparticles. Meanwhile, on the basis of theoretical calculation, it has deepened the understanding of the interactions between noble metal nanoparticles and the catalyst support.

  20. Hybrid catalytic-DBD plasma reactor for the production of hydrogen and preferential CO oxidation (CO-PROX) at reduced temperatures.

    Science.gov (United States)

    Rico, Víctor J; Hueso, José L; Cotrino, José; Gallardo, Victoria; Sarmiento, Belén; Brey, Javier J; González-Elipe, Agustín R

    2009-11-07

    Dielectric Barrier Discharges (DBD) operated at atmospheric pressure and working at reduced temperatures (T steam reforming of methanol (SRM) for hydrogen production and for the preferential oxidation of CO (CO-PROX).

  1. Nonaqueous catalytic fluorometric trace determination of vanadium based on the pyronine B-hydrogen peroxide reaction and flow injection after cloud point extraction.

    Science.gov (United States)

    Paleologos, E K; Koupparis, M A; Karayannis, M I; Veltsistas, P G

    2001-09-15

    The catalytic effect of vanadium on the pyronine B-H2O2 system is examined. Enhancement of the catalytic reaction rate along with the efficiency and selectivity against vanadium is achieved in a formic acid environment in the presence of a nonionic surfactant (Triton X-114). Elimination of drastic interference caused by inorganic acids and aqueous matrix along with a 50-fold preconcentration of vanadium are facilitated through cloud point extraction of its neutral complex with 8-quinolinol in an acidic solution. Subsequent flow injection analysis (FIA) with fluorometric detection renders the proposed method ideal for selective and cost-effective determination of as little as 0.020 microng L(-1) vanadium in environmental, biological, and food substrates. The preconcentration step can be applied simultaneously to multiple samples, allowing for massive preparation prior to analysis, compensating, thus, for the time-consuming procedure.

  2. Size- and shape-controlled synthesis and catalytic performance of iron-aluminum mixed oxide nanoparticles for NOX and SO₂ removal with hydrogen peroxide.

    Science.gov (United States)

    Ding, Jie; Zhong, Qin; Zhang, Shule; Cai, Wei

    2015-01-01

    A novel, simple, reproducible and low-cost strategy is introduced for the size- and shape-controlled synthesis of iron-aluminum mixed oxide nanoparticles (NIAO(x/y)). The as-synthesized NIAO(x/y) catalyze decomposition of H2O2 yielding highly reactive hydroxyl radicals (OH) for NOX and SO2 removal. 100% SO2 removal is achieved. NIAO(x/y) with Fe/Al molar ratio of 7/3 (NIAO(7/3)) shows the highest NOX removal of nearly 80% at >170°C, whereas much lower NOX removal (iron oxides, decreasing OH radical production. More importantly, the generation of FeOAl causes the decline of active sites. Finally, the catalytic decomposition of H2O2 on NIAO(x/y) is proposed. And the well catalytic stability of NIAO(7/3) is obtained for evaluation of 30 h. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Preparation and catalytic effect of porous Co3O4 on the hydrogen storage properties of a Li-B-N-H system

    Directory of Open Access Journals (Sweden)

    You Li

    2017-02-01

    Full Text Available A porous Co3O4 with a particle size of 1–3 µm was successfully prepared by heating Co-based metal organic frameworks MOF-74(Co up to 500 °C in air atmospheric conditions. The as-prepared porous Co3O4 significantly reduced the dehydrogenation temperatures of the LiBH4-2LiNH2 system and improved the purity of the released hydrogen. The LiBH4-2LiNH2-0.05/3Co3O4 sample started to release hydrogen at 140 °C and released hydrogen levels of approximately 9.7 wt% at 225 °C. The end temperature for hydrogen release was lowered by 125 °C relative to that of the pristine sample. Structural analyses revealed that the as-prepared porous Co3O4 is in-situ reduced to metallic Co, which functions as an active catalyst, reducing the kinetic barriers and lowering the dehydrogenation temperatures of the LiBH4-2LiNH2 system. More importantly, the porous Co3O4-containing sample exhibited partially improved reversibility for hydrogen storage in the LiBH4-2LiNH2 system.

  4. Structures of yeast peroxisomal Δ(3),Δ(2)-enoyl-CoA isomerase complexed with acyl-CoA substrate analogues: the importance of hydrogen-bond networks for the reactivity of the catalytic base and the oxyanion hole.

    Science.gov (United States)

    Onwukwe, Goodluck U; Koski, M Kristian; Pihko, Petri; Schmitz, Werner; Wierenga, Rik K

    2015-11-01

    Δ(3),Δ(2)-Enoyl-CoA isomerases (ECIs) catalyze the shift of a double bond from 3Z- or 3E-enoyl-CoA to 2E-enoyl-CoA. ECIs are members of the crotonase superfamily. The crotonase framework is used by many enzymes to catalyze a wide range of reactions on acyl-CoA thioesters. The thioester O atom is bound in a conserved oxyanion hole. Here, the mode of binding of acyl-CoA substrate analogues to peroxisomal Saccharomyces cerevisiae ECI (ScECI2) is described. The best defined part of the bound acyl-CoA molecules is the 3',5'-diphosphate-adenosine moiety, which interacts with residues of loop 1 and loop 2, whereas the pantetheine part is the least well defined. The catalytic base, Glu158, is hydrogen-bonded to the Asn101 side chain and is further hydrogen-bonded to the side chain of Arg100 in the apo structure. Arg100 is completely buried in the apo structure and a conformational change of the Arg100 side chain appears to be important for substrate binding and catalysis. The oxyanion hole is formed by the NH groups of Ala70 (loop 2) and Leu126 (helix 3). The O atoms of the corresponding peptide units, Gly69 O and Gly125 O, are both part of extensive hydrogen-bond networks. These hydrogen-bond networks are a conserved feature of the crotonase oxyanion hole and their importance for catalysis is discussed.

  5. Heterogeneous Molecular Catalysis of Electrochemical Reactions: Volcano Plots and Catalytic Tafel Plots.

    Science.gov (United States)

    Costentin, Cyrille; Savéant, Jean-Michel

    2017-06-14

    We analyze here, in the framework of heterogeneous molecular catalysis, the reasons for the occurrence or nonoccurrence of volcanoes upon plotting the kinetics of the catalytic reaction versus the stabilization free energy of the primary intermediate of the catalytic process. As in the case of homogeneous molecular catalysis or catalysis by surface-active metallic sites, a strong motivation of such studies relates to modern energy challenges, particularly those involving small molecules, such as water, hydrogen, oxygen, proton, and carbon dioxide. This motivation is particularly pertinent for what concerns heterogeneous molecular catalysis, since it is commonly preferred to homogeneous molecular catalysis by the same molecules if only for chemical separation purposes and electrolytic cell architecture. As with the two other catalysis modes, the main drawback of the volcano plot approach is the basic assumption that the kinetic responses depend on a single descriptor, viz., the stabilization free energy of the primary intermediate. More comprehensive approaches, investigating the responses to the maximal number of experimental factors, and conveniently expressed as catalytic Tafel plots, should clearly be preferred. This is more so in the case of heterogeneous molecular catalysis in that additional transport factors in the supporting film may additionally affect the current-potential responses. This is attested by the noteworthy presence of maxima in catalytic Tafel plots as well as their dependence upon the cyclic voltammetric scan rate.

  6. Highly efficient hydrogen storage system based on ammonium bicarbonate/formate redox equilibrium over palladium nanocatalysts.

    Science.gov (United States)

    Su, Ji; Yang, Lisha; Lu, Mi; Lin, Hongfei

    2015-03-01

    A highly efficient, reversible hydrogen storage-evolution process has been developed based on the ammonium bicarbonate/formate redox equilibrium over the same carbon-supported palladium nanocatalyst. This heterogeneously catalyzed hydrogen storage system is comparable to the counterpart homogeneous systems and has shown fast reaction kinetics of both the hydrogenation of ammonium bicarbonate and the dehydrogenation of ammonium formate under mild operating conditions. By adjusting temperature and pressure, the extent of hydrogen storage and evolution can be well controlled in the same catalytic system. Moreover, the hydrogen storage system based on aqueous-phase ammonium formate is advantageous owing to its high volumetric energy density. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High Surface Area Tungsten Carbides: Synthesis, Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperatures

    DEFF Research Database (Denmark)

    Tomás García, Antonio Luis; Li, Qingfeng; Jensen, Jens Oluf

    2014-01-01

    Tungsten carbide powders were synthesized as a potential electrocatalyst for the hydrogen evolution reaction in phosphoric acid at elevated temperatures. With ammonium metatungstate as the precursor, two synthetic routes with and without carbon templates were investigated. Through the intermediate...... nitride route and with carbon black as template, the obtained tungsten carbide samples had higher BET area. In 100% H3PO4 at temperatures up to 185°C, the carbide powders showed superior activity towards the hydrogen evolution reaction. A deviation was found in the correlation between the BET area...

  8. Catalytic gasification of dry and wet biomass

    NARCIS (Netherlands)

    van Rossum, G.; Potic, B.; Kersten, Sascha R.A.; van Swaaij, Willibrordus Petrus Maria

    2009-01-01

    Catalytic gasification of dry biomass and of wet biomass streams in hot compressed water are reviewed and discussed as potential technologies for the production of synthesis gas, hydrogen- and methane-rich gas. Next to literature data also new experimental results from our laboratory on catalytic

  9. Understanding catalytic biomass conversion through data mining

    NARCIS (Netherlands)

    Ras, E.J.; McKay, B.; Rothenberg, G.

    2010-01-01

    Catalytic conversion of biomass is a key challenge that we chemists face in the twenty-first century. Worldwide, research is conducted into obtaining bulk chemicals, polymers and fuels. Our project centres on glucose valorisation via furfural derivatives using catalytic hydrogenation. We present

  10. Ruthenium(II) Complexes Containing Lutidine-Derived Pincer CNC Ligands: Synthesis, Structure, and Catalytic Hydrogenation of C-N bonds.

    Science.gov (United States)

    Hernández-Juárez, Martín; López-Serrano, Joaquín; Lara, Patricia; Morales-Cerón, Judith P; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés

    2015-05-11

    A series of Ru complexes containing lutidine-derived pincer CNC ligands have been prepared by transmetalation with the corresponding silver-carbene derivatives. Characterization of these derivatives shows both mer and fac coordination of the CNC ligands depending on the wingtips of the N-heterocyclic carbene fragments. In the presence of tBuOK, the Ru-CNC complexes are active in the hydrogenation of a series of imines. In addition, these complexes catalyze the reversible hydrogenation of phenantridine. Detailed NMR spectroscopic studies have shown the capability of the CNC ligand to be deprotonated and get involved in ligand-assisted activation of dihydrogen. More interestingly, upon deprotonation, the Ru-CNC complex 5 e(BF4 ) is able to add aldimines to the metal-ligand framework to yield an amido complex. Finally, investigation of the mechanism of the hydrogenation of imines has been carried out by means of DFT calculations. The calculated mechanism involves outer-sphere stepwise hydrogen transfer to the C-N bond assisted either by the pincer ligand or a second coordinated H2 molecule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Uncaging a catalytic hydrogen peroxide generator through the photo-induced release of nitric oxide from a {MnNO}(6) complex.

    Science.gov (United States)

    Iwamoto, Yuji; Kodera, Masahito; Hitomi, Yutaka

    2015-06-11

    The photo-initiated cytotoxicity of a newly developed manganese nitrosyl {MnNO}(6) complex (UG1NO) to HeLa cells is described. The complex was found to be strongly cytotoxic after being exposed to light with a wavelength of 650 nm. Cell death was caused by a manganese(II) complex, UG1, generated from UG1NO through the photo-dissociation of NO, rather than by NO directly. Mechanistic studies revealed that UG1 consumes O2 only in the presence of a reducing agent to catalytically produce H2O2.

  12. Catalytic Transfer Hydogenation Reactions for Undergraduate Practical Programs

    Science.gov (United States)

    Hanson, R. W.

    1997-04-01

    A brief review of catalytic transfer hydrogenation (CTH) reactions is given. Attention is drawn, particularly, to the utility of ammonium formate as the hydrogen donor in this type of reaction. The reduction of aryl carbonyl compounds to the corresponding methylene derivatives by ammonium formate in the presence of 10% Pd/C at 110°C is compared to their reductive ammonation which occurs at higher temperatures in the absence of the catalyst (the Leuckart reaction). It is suggested that the low cost and simplicity of CTH reactions using ammonium formate as the hydrogen donor, together with the high yields obtained in many cases, make them excellent candidates for inclusion in undergraduate practical programmes. Laboratory instructions are given for the reduction of nitrobenzene to aniline (isolated as benzanilide), benzophenone to diphenylmethanol and fluorenone to fluorene, in all cases using ammonium formate as the hydrogen donor and 10% Pd/C as the catalyst. Thin layer chromatography shows that in each case the product is homogeneous; the yields are essentially quantitative.

  13. The effect of additives on the reactivity of palladium surfaces for the chemisorption and hydrogenation of carbon monoxide: A surface science and catalytic study. [LaMO/sub 3/(M = Cr, Mn, Fe, Co, Rh)

    Energy Technology Data Exchange (ETDEWEB)

    Rucker, T.G.

    1987-06-01

    This research studied the role of surface additives on the catalytic activity and chemisorptive properties of Pd single crystals and foils. Effects of Na, K, Si, P, S, and Cl on the bonding of CO and H and on the cyclotrimerization of acetylene on the (111), (100) and (110) faces of Pd were investigated in addition to role of TiO/sub 2/ and SiO/sub 2/ overlayers deposited on Pd foils in the CO hydrogenation reaction. On Pd, only in the presence of oxide overlayers, are methane or methanol formed from CO and H/sub 2/. The maximum rate of methane formation is attained on Pd foil where 30% of the surface is covered with titania. Methanol formation can be achieved only if the TiO/sub x//Pd surface is pretreated in 50 psi of oxygen at 550/sup 0/C prior to the reaction. The additives (Na, K, Si, P, S, Cl) affect the bonding of CO and hydrogen and the cyclotrimerization of acetylene to benzene by structural and electronic interactions. In general, the electron donating additives increase the desorption temperature of CO and increase the rate of acetylene cyclotrimerization and the electron withdrawing additives decrease the desorption temperature of CO and decrease the rate of benzene formation from acetylene.

  14. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen.

    Science.gov (United States)

    Jia, Hong-Peng; Quadrelli, Elsje Alessandra

    2014-01-21

    Dinitrogen cleavage and hydrogenation by transition-metal centers to produce ammonia is central in industry and in Nature. After an introductory section on the thermodynamic and kinetic challenges linked to N2 splitting, this tutorial review discusses three major classes of transition-metal systems (homogeneous, heterogeneous and biological) capable of achieving dissociation and hydrogenation of dinitrogen. Molecular complexes, solid-state Haber-Bosch catalytic systems, silica-supported tantalum hydrides and nitrogenase will be discussed. Emphasis is focused on the reaction mechanisms operating in the process of dissociation and hydrogenation of dinitrogen, and in particular on the key role played by metal hydride bonds and by dihydrogen in such reactions.

  15. Partial catalytic oxidation of CH{sub 4} to synthesis gas for power generation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Schneider, A.

    2006-03-15

    The partial oxidation of methane to synthesis gas over rhodium catalysts has been investigated experimentally and numerically in the pressure range of 4 to 10 bar. The methane/oxidizer feed has been diluted with large amounts of H{sub 2}O and CO{sub 2} (up to 70% vol.) in order to simulate new power generation cycles with large exhaust gas recycle. Experiments were carried out in an optically accessible channel-flow reactor that facilitated laser-based in situ measurements, and also in a subscale gas-turbine catalytic reactor. Full-elliptic steady and transient two-dimensional numerical codes were used, which included elementary hetero-/homogeneous chemical reaction schemes. The following are the key conclusions: a) Heterogeneous (catalytic) and homogeneous (gas-phase) schemes have been validated for the partial catalytic oxidation of methane with large exhaust gas recycle. b) The impact of added H{sub 2}O and CO{sub 2} has been elucidated. The added H{sub 2}O increased the methane conversion and hydrogen selectivity, while it decreased the CO selectivity. The chemical impact of CO{sub 2} (dry reforming) was minimal. c) The numerical model reproduced the measured catalytic ignition times. It was further shown that the chemical impact of H{sub 2}O and CO{sub 2} on the catalytic ignition delay times was minimal. d) The noble metal dispersion increased with different support materials, in the order Rh/{alpha}-Al{sub 2}O{sub 3}, Rh/ZrO{sub 2}, and Rh/Ce-ZrO{sub 2}. An evident relationship was established between the noble metal dispersion and the catalytic behavior. (authors)

  16. Comparison of the Effects of Fluidized-Bed and Fixed-Bed Reactors in Microwave-Assisted Catalytic Decomposition of TCE by Hydrogen

    Directory of Open Access Journals (Sweden)

    Lili Ren

    2012-01-01

    Full Text Available Trichloroethylene (TCE decomposition by hydrogen with microwave heating under different reaction systems was investigated. The activities of a series of catalysts for microwave-assisted TCE hydrodechlorination were tested through the fixed-bed and the fluidized-bed reactor systems. This study found that the different reaction system is suitable for different catalyst type. And there is an interactive relationship between the catalyst type and the reaction bed type.

  17. Model arenes hydrogenation with silica-supported rhodium nanoparticles:The role of the silica grains and of the solvent on catalytic activities

    OpenAIRE

    Barthe, Laurie; Denicourt-Nowicki, Audrey; Roucoux, Alain; Philippot, Karine; Chaudret, Bruno; Hemati, Mehrdji

    2009-01-01

    Silica-supported rhodium-based nanoheterogeneous catalysts were easily prepared by impregnation with a pre-stabilized colloidal suspension. The resulting catalysts contain rhodium nanoparticles well-dispersed in the silica pores with a mean size of 5 nm. Influence of the silica grains size and of the solvent was investigated in arenes hydrogenation. It appeared that the size of the silica grains has a minimal influence on the reaction rate but the supported nanocatalysts displayed higher TOFs...

  18. Hydrogen and syngas production by catalytic gasification of algal biomass (Cladophora glomerata L.) using alkali and alkaline-earth metals compounds.

    Science.gov (United States)

    Ebadi, Abdol Ghaffar; Hisoriev, Hikmat; Zarnegar, Mohammad; Ahmadi, Hamed

    2018-01-02

    The steam gasification of algal biomass (Cladophora glomerata L.) in presence of alkali and alkaline-earth metal compounds catalysts was studied to enhance the yield of syngas and reduce its tar content through cracking and reforming of condensable fractions. The commercial catalysts used include NaOH, KHCO 3 , Na 3 PO 4 and MgO. The gasification runs carried out with a research scale, biomass gasification unit, show that the NaOH has a strong potential for production of hydrogen, along with the added advantages of char converting and tar destruction, allowing enhancement of produced syngas caloric value. When the temperature increased from 700°C to 900°C, the tar content in the gas sharply decreased, while the hydrogen yield increased. Increasing steam/biomass ratio significantly increased hydrogen yield and tar destruction; however, the particle size in the range of 0.5-2.5 mm played a minor role in the process.

  19. Quantitative Analysis of Homogeneous Electrocatalytic Reactions at IDA Electrodes: The Example of [Ni(PPh2NBn2)2]2+

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fei; Parkinson, B. A.; Divan, Ralu; Roberts, John; Liang, Yanping

    2016-12-01

    Interdigitated array (IDA) electrodes have been applied to study the EC’ (electron transfer reaction followed by a catalytic reaction) reactions and a new method of quantitative analysis of IDA results was developed. In this new method, currents on IDA generator and collector electrodes for an EC’ mechanism are derived from the number of redox cycles and the contribution of non-catalytic current. And the fractions of bipotential recycling species and catalytic-active species are calculated, which helps understanding the catalytic reaction mechanism. The homogeneous hydrogen evolution reaction catalyzed by [Ni(PPh2NBn2)2]2+ (where PPh2NBn2 is 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) electrocatalyst was examined and analyzed with IDA electrodes. Besides, the existence of reaction intermediates in the catalytic cycle is inferred from the electrochemical behavior of a glassy carbon disk electrodes and carbon IDA electrodes. This quantitative analysis of IDA electrode cyclic voltammetry currents can be used as a simple and straightforward method for determining reaction mechanism in other catalytic systems as well.

  20. Catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Liber, B.

    1991-08-22

    A catalytic converter is provided which is economical to manufacture and is not readily poisoned by contaminants in a gas stream such as would be encountered in the operation of an internal combustion engine, whereby an improved life expectancy of the unit can be achieved. The converter of the invention comprises a sintered porous body including molybdenum or a molybdenum-containing compound or a molybdenum complex. A method of forming a catlytic converter unit comprises forming a slurry including molybdenum or a molybdenum compound, forming the slurry into a sintered body member, and hardening or curing the same to form a self-sustaining body member. A method for treating an exhaust gas using the above catalytic converter is also disclosed. A preferred embodiment for an internal combustion engine is described. Examples of different catalytic compositions are included. 13 figs.

  1. Carbon Sequestration: Hydrogenation of CO2 to Formic Acid

    Directory of Open Access Journals (Sweden)

    Upadhyay Praveenkumar

    2016-10-01

    Full Text Available The concentration CO2 gas has become a great worldwide challenge because CO2 is considered as an important counterpart of greenhouse gases. The tremendous increase in the concentration of CO2 gas, elevated the worldwide temperature as well as it altered the climatic changes. Various physiochemical approached have been reported to trap the CO2 gas and the chemical conversion of CO2 to useful chemicals is one of them. This review covers the conversion of CO2 gas to formic acid. In this CO2 hydrogenation reaction, both the homogeneous as well as heterogeneous catalytic systems were discussed along with the effect of solvent systems on reaction kinetics.

  2. Influences of Different Preparation Conditions on Catalytic Activity of Ag2O-Co3O4/γ-Al2O3 for Hydrogenation of Coal Pyrolysis

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-01-01

    Full Text Available A series of catalysts of Ag2O-Co3O4/γ-Al2O3 was prepared by equivalent volume impregnation method. The effects of the metal loading, calcination time, and calcination temperatures of Ag and Co, respectively, on the catalytic activity were investigated. The optimum preparing condition of Ag2O-Co3O4/γ-Al2O3 was decided, and then the influence of different preparation conditions on catalytic activity of Ag2O-Co3O4/γ-Al2O3 was analyzed. The results showed the following: (1 at the same preparation condition, when silver loading was 8%, the Ag2O-Co3O4/γ-Al2O3 showed higher catalyst activity, (2 the catalyst activity had obviously improved when the cobalt loading was 8%, while it was weaker at loadings 5% and 10%, (3 the catalyst activity was influenced by different calcination temperatures of silver, but the influences were not marked, (4 the catalyst activity can be influenced by calcination time of silver, (5 different calcination times of cobalt can also influence the catalyst activity of Ag2O-Co3O4/γ-Al2O3, and (6 the best preparation conditions of the Ag2O-Co3O4/γ-Al2O3 were silver loading of 8%, calcination temperature of silver of 450°C, and calcinations time of silver of 4 h, while at the same time the cobalt loading was 8%, the calcination temperature of cobalt was 450°C, and calcination time of cobalt was 4 h.

  3. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  4. Iron-doped Pt-TiO2 nanotubes for photo-catalytic water splitting.

    Science.gov (United States)

    Eder, D; Motta, M; Windle, A H

    2009-02-04

    In this work we report on the photo-catalytic performance of phase-pure and iron-doped anatase and rutile nanotubes, produced via a sol-gel process using pristine carbon nanotubes as templates. The encapsulated iron residues can be used to in situ dope the TiO(2) nanotubes without phase separation. The anatase and rutile nanotubes were further impregnated with platinum crystals with a uniform dispersion and an average size of approximately 2 nm. The materials showed dramatically improved activities for the photo-catalytic splitting of water compared to commercial TiO(2) with similar surface area (up to two orders of magnitudes), due to their higher illumination area, extended absorption range and reduced electron-hole recombination rate. The homogeneous dispersion of platinum nanoparticles further increased the hydrogen evolution rate for anatase nanotubes by a factor of seven in comparison to that for the pristine material, thus proving the great potential for commercial applications.

  5. Homogeneous Functionalization of Methane.

    Science.gov (United States)

    Gunsalus, Niles Jensen; Koppaka, Anjaneyulu; Park, Sae Hume; Bischof, Steven M; Hashiguchi, Brian G; Periana, Roy A

    2017-07-12

    One of the remaining "grand challenges" in chemistry is the development of a next generation, less expensive, cleaner process that can allow the vast reserves of methane from natural gas to augment or replace oil as the source of fuels and chemicals. Homogeneous (gas/liquid) systems that convert methane to functionalized products with emphasis on reports after 1995 are reviewed. Gas/solid, bioinorganic, biological, and reaction systems that do not specifically involve methane functionalization are excluded. The various reports are grouped under the main element involved in the direct reactions with methane. Central to the review is classification of the various reports into 12 categories based on both practical considerations and the mechanisms of the elementary reactions with methane. Practical considerations are based on whether or not the system reported can directly or indirectly utilize O2 as the only net coreactant based only on thermodynamic potentials. Mechanistic classifications are based on whether the elementary reactions with methane proceed by chain or nonchain reactions and with stoichiometric reagents or catalytic species. The nonchain reactions are further classified as CH activation (CHA) or CH oxidation (CHO). The bases for these various classifications are defined. In particular, CHA reactions are defined as elementary reactions with methane that result in a discrete methyl intermediate where the formal oxidation state (FOS) on the carbon remains unchanged at -IV relative to that in methane. In contrast, CHO reactions are defined as elementary reactions with methane where the carbon atom of the product is oxidized and has a FOS less negative than -IV. This review reveals that the bulk of the work in the field is relatively evenly distributed across most of the various areas classified. However, a few areas are only marginally examined, or not examined at all. This review also shows that, while significant scientific progress has been made

  6. Low-Temperature Catalytic Performance of Ni-Cu/Al2O3 Catalysts for Gasoline Reforming to Produce Hydrogen Applied in Spark Ignition Engines

    Directory of Open Access Journals (Sweden)

    Le Anh Tuan

    2016-03-01

    Full Text Available The performance of Ni-Cu/Al2O3 catalysts for steam reforming (SR of gasoline to produce a hydrogen-rich gas mixture applied in a spark ignition (SI engine was investigated at relatively low temperature. The structural and morphological features and catalysis activity were observed by X-ray diffractometry (XRD, scanning electron microscopy (SEM, and temperature programmed reduction (TPR. The results showed that the addition of copper improved the dispersion of nickel and therefore facilitated the reduction of Ni at low temperature. The highest hydrogen selectivity of 70.6% is observed over the Ni-Cu/Al2O3 catalysts at a steam/carbon ratio of 0.9. With Cu promotion, a gasoline conversion of 42.6% can be achieved at 550 °C, while with both Mo and Ce promotion, the gasoline conversions were 31.7% and 28.3%, respectively, higher than with the conventional Ni catalyst. On the other hand, initial durability testing showed that the conversion of gasoline over Ni-Cu/Al2O3 catalysts slightly decreased after 30 h reaction time.

  7. Catalytic Combustion of Ethyl Acetate

    OpenAIRE

    ÖZÇELİK, Tuğba GÜRMEN; ATALAY, Süheyda; ALPAY, Erden

    2014-01-01

    The catalytic combustion of ethyl acetate over prepared metal oxide catalysts was investigated. CeO, Co2O3, Mn2O3, Cr2O3, and CeO-Co2O3 catalysts were prepared on monolith supports and they were tested. Before conducting the catalyst experiments, we searched for the homogeneous gas phase combustion reaction of ethyl acetate. According to the homogeneous phase experimental results, 45% of ethyl acetate was converted at the maximum reactor temperature tested (350 °C). All the prepare...

  8. Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Charles P

    2012-11-14

    Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis Charles P. Casey, Principal Investigator Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706 Phone 608-262-0584 FAX: 608-262-7144 Email: casey@chem.wisc.edu http://www.chem.wisc.edu/main/people/faculty/casey.html Executive Summary. Our goal was to learn the intimate mechanistic details of reactions involved in homogeneous catalysis and to use the insight we gain to develop new and improved catalysts. Our work centered on the hydrogenation of polar functional groups such as aldehydes and ketones and on hydroformylation. Specifically, we concentrated on catalysts capable of simultaneously transferring hydride from a metal center and a proton from an acidic oxygen or nitrogen center to an aldehyde or ketone. An economical iron based catalyst was developed and patented. Better understanding of fundamental organometallic reactions and catalytic processes enabled design of energy and material efficient chemical processes. Our work contributed to the development of catalysts for the selective and mild hydrogenation of ketones and aldehydes; this will provide a modern green alternative to reductions by LiAlH4 and NaBH4, which require extensive work-up procedures and produce waste streams. (C5R4OH)Ru(CO)2H Hydrogenation Catalysts. Youval Shvo described a remarkable catalytic system in which the key intermediate (C5R4OH)Ru(CO)2H (1) has an electronically coupled acidic OH unit and a hydridic RuH unit. Our efforts centered on understanding and improving upon this important catalyst for reduction of aldehydes and ketones. Our mechanistic studies established that the reduction of aldehydes by 1 to produce alcohols and a diruthenium bridging hydride species occurs much more rapidly than regeneration of the ruthenium hydride from the diruthenium bridging hydride species. Our mechanistic studies require simultaneous transfer of hydride from ruthenium to

  9. Final Technical Report for DOE Grant, number DE-FG02-05ER15701; Probing Surface Chemistry Under Catalytic Conditions: Olefin Hydrogenation,Cyclization and Functionalization.

    Energy Technology Data Exchange (ETDEWEB)

    Neurock, Matthew

    2011-05-26

    The specific goal of this work was to understanding the catalytic reactions pathways for the synthesis of vinyl acetate over Pd, Au and PdAu alloys. A combination of both experimental methods (X-ray and Auger spectroscopies, low-energy ion scattering (LEIS), low-energy electron diffraction (LEED) and theory (Density Functional Theory (DFT) calculations and Monte Carlo methods under various different reactions) were used to track the surface chemistry and the influence of alloying. The surface intermediates involved in the various reactions were characterized using reflection-absorption infrared spectroscopy and LEED to identify the nature of the surface species and temperature-programmed desorption (TPD) to follow the decomposition pathways and measure heats of adsorption. These results along with those from density functional theoretical calculations were used determine the kinetics for elementary steps. The results from this work showed that the reaction proceeds via the Samanos mechanism over Pd surfaces whereby the ethylene directly couples with acetate to form an acetoxyethyl intermediate that subsequently undergoes a beta-hydride elimination to form the vinyl acetate monomer. The presence of Au was found to modify the adsorption energies and surface coverages of important surface intermediates including acetate, ethylidyne and ethylene which ultimately influences the critical C-H activation and coupling steps. By controlling the surface alloy composition or structure one can begin to control the steps that control the rate and even the mechanism.

  10. Bimetallic promotion of cooperative hydrogen transfer and heteroatom removal in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Eisch, J.J.

    1991-10-01

    The ultimate objective of this research is to uncover new catalytic processes for the liquefaction of coal and for upgrading coal-derived fuels by removing undesirable organosulfur, organonitrogen and organooxygen constituents. Basic to both the liquefaction of coal and the purification of coal liquids is the transfer of hydrogen from such sources as dihydrogen, metal hydrides or partially reduced aromatic hydrocarbons to the extensive aromatic rings in coal itself or to aromatic sulfides, amines or ethers. Accordingly, this study is exploring how such crucial hydrogen-transfer processes might be catalyzed by soluble, low-valent transition metal complexes and/or Lewis acids under moderate conditions of temperature and pressure. By learning the mechanism whereby H{sub 2}, metal hydrides or partially hydrogenated aromatics do transfer hydrogen to model aromatic compounds, with the aid of homogeneous, bimetallic catalysts, we hope to identify new methods for producing superior fuels from coal.

  11. Bimetallic promotion of cooperative hydrogen transfer and heteroatom removal in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Eisch, J.J.

    1991-07-01

    The ultimate objective of this research is to uncover new catalytic processes for the liquefaction of coal and for upgrading coal-derived fuels by removing undesirable organosulfur, organonitrogen and organooxygen constituents. Basic to both the liquefaction of coal and the purification of coal liquids is the transfer of hydrogen from such sources as dihydrogen, metal hydrides or partially reduced aromatic hydrocarbons to the extensive aromatic rings in coal itself or to aromatic sulfides, amines or ethers. Accordingly, this study is exploring how such crucial hydrogen-transfer processes might be catalyzed by soluble, low-valent transition metal complexes and/or Lewis acids under moderate conditions of temperature and pressure. By learning the mechanism whereby H{sub 2}, metal hydrides or partially hydrogenated aromatics do transfer hydrogen to model aromatic compounds, with the aid of homogeneous, bimetallic catalysts, we hope to identify new methods for producing superior fuels from coal.

  12. General Tritium Labelling of Gentamicin C by catalytic hydrogen exchange Reaction with Tritiated Water; Marcado general con tritio de la Gentamicina C por intercambio catalitico con agua triatiada

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, C.; Diaz, D.; Paz, D.

    1991-07-01

    Gentamicin C was labelled with tritium by means of a PtO2 catalyzed hydrogen exchange reaction. Under the conditions of the exchange (100 mg of gentamicin, basic form, 0,3 ml H2O-3H, and 50 mg of prereduced PtO2) the radiochemical yield was 0,24, 0,38 and 0,48 % at 120 degree celsius, for 8, 16 and 24 hours respectively. Chemical yield for purified gentamicin was about 60 %. Purification was accomplished with a cellulose column eluted with the lower phase of chloroform-methanol 17 % ammonium hydroxide (2:1:1, v/v) . Chemical purity, determined by HPLC, was 96,5 % and radiochemical one was 95. Main exchange degradation products show biological activity. (Author) 12 refs.

  13. Development of Pillared Clays for Wet Hydrogen Peroxide Oxidation of Phenol and Its Application in the Posttreatment of Coffee Wastewater

    Directory of Open Access Journals (Sweden)

    Nancy R. Sanabria

    2012-01-01

    Full Text Available This paper focuses on the use of pillared clays as catalysts for the Fenton-like advanced oxidation, specifically wet hydrogen peroxide catalytic oxidation (WHPCO. This paper discusses the limitations on the application of a homogeneous Fenton system, development of solid catalysts for the oxidation of phenol, advances in the synthesis of pillared clays, and their potential application as catalysts for phenol oxidation. Finally, it analyzes the use of pillared clays as heterogeneous Fenton-like catalysts for a real wastewater treatment, emphasizing the oxidation of phenolic compounds present in coffee wastewater. Typically, the wet hydrogen peroxide catalytic oxidation in a real effluent system is used as pretreatment, prior to biological treatment. In the specific case of coffee wet processing wastewater, catalytic oxidation with pillared bentonite with Al-Fe is performed to supplement the biological treatment, that is, as a posttreatment system. According to the results of catalytic activity of pillared bentonite with Al-Fe for oxidation of coffee processing wastewater (56% phenolic compounds conversion, 40% selectivity towards CO2, and high stability of active phase, catalytic wet hydrogen peroxide oxidation emerges as a viable alternative for management of this type of effluent.

  14. A Au/Cu2O-TiO2 system for photo-catalytic hydrogen production. A pn-junction effect or a simple case of in situ reduction?

    KAUST Repository

    Sinatra, Lutfan

    2015-02-01

    Photo-catalytic H2 production from water has been studied over Au-Cu2O nanoparticle deposited on TiO2 (anatase) in order to probe into both the plasmon resonance effect (Au nanoparticles) and the pn-junction at the Cu2O-TiO2 interface. The Au-Cu2O composite is in the form of ∼10 nm Au nanoparticles grown on ∼475 nm Cu2O octahedral nanocrystals with (111) facets by partial galvanic replacement. X-ray Photoelectron Spectroscopy (XPS) Cu2p and Auger L3M4,5M4,5 lines indicate that the surface of Cu2O is mainly composed of Cu+. The rate for H2 production (from 95 water/5 ethylene glycol; vol.%) over 2 wt.% (Au/Cu2O)-TiO2 is found to be ∼10 times faster than that on 2 wt.% Au-TiO2 alone. Raman spectroscopy before and after reaction showed the disappearance of Cu+ lines (2Eu) at 220 cm-1. These observations coupled with the induction time observed for the reaction rate suggest that in situ reduction from Cu+ to Cu0 occurs upon photo-excitation. The reduction requires the presence of TiO2 (electron transfer). The prolonged activity of the reaction (with no signs of deactivation) despite the reduction to Cu0 indicates that the latter takes part in the reaction by providing additional sites for the reaction, most likely as recombination centers for hydrogen atoms to form molecular hydrogen. This phenomenon provides an additional route for enhancing the efficiency and lifetime of Cu2O-TiO2 photocatalytic systems, beyond the usually ascribed pn-junction effect.

  15. EPR Spectroscopy of catalytic systems based on nickel complexes of 1,4-diaza-1,3-butadiene (α-diimine) ligands in hydrogenation and polymerization reactions

    Science.gov (United States)

    Titova, Yu. Yu.; Belykh, L. B.; Schmidt, F. K.

    2015-01-01

    EPR spectroscopy is used to study catalytic hydration and polymerization reaction systems based on α-diimine complexes of Ni(0) and Ni(II) with the general formula NiBr2(DAD-R) (R = -C3H7 or -CH3) or Ni(DAD-CH3)2 (DAD(-C3H7) = 1,4-bis(2,6-diiso-propylphenyl)-2,3-(dimethyl-1,4-diazabuta-1,3-diene, DAD(-CH3) = 1,4-bis(2,6-dimethylphenyl)-2,3-dimethyl-1,4-diazabuta-1,3-diene)), in combination with Lewis acids (AlEt3, AlEt2Cl, AlEtCl2, B(F5C6)3, BF3.OEt2). Ni(I) complexes of the form (DAD-R)NiX2AlX'y(C2H5)3-y composition (an aluminum atom can be replaced by a boron atom) were identified, where R = -CH3 or -C3H7, X = Br, and X' = Cl or -C2H5 and α-diimine anion radicals are included in derivatives of aluminum or boron. Oxidation reactions of the Ni(DAD-CH3)2 complex with aluminum alkyl halides and boron derivatives with formation of paramagnetic nickel complexes are observed. It is found that there is no direct relationship between the polymerization activity of ethylene or hydration of the alkenes and the concentration of paramagnetic particles.

  16. Catalytic devices

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Zhang, Xiang

    2018-01-23

    This disclosure provides systems, methods, and apparatus related to catalytic devices. In one aspect, a device includes a substrate, an electrically insulating layer disposed on the substrate, a layer of material disposed on the electrically insulating layer, and a catalyst disposed on the layer of material. The substrate comprises an electrically conductive material. The substrate and the layer of material are electrically coupled to one another and configured to have a voltage applied across them.

  17. Onboard hydrogen generation for automobiles

    Science.gov (United States)

    Houseman, J.; Cerini, D. J.

    1976-01-01

    Problems concerning the use of hydrogen as a fuel for motor vehicles are related to the storage of the hydrogen onboard a vehicle. The feasibility is investigated to use an approach based on onboard hydrogen generation as a means to avoid these storage difficulties. Two major chemical processes can be used to produce hydrogen from liquid hydrocarbons and methanol. In steam reforming, the fuel reacts with water on a catalytic surface to produce a mixture of hydrogen and carbon monoxide. In partial oxidation, the fuel reacts with air, either on a catalytic surface or in a flame front, to yield a mixture of hydrogen and carbon monoxide. There are many trade-offs in onboard hydrogen generation, both in the choice of fuels as well as in the choice of a chemical process. Attention is given to these alternatives, the results of some experimental work in this area, and the combustion of various hydrogen-rich gases in an internal combustion engine.

  18. The removal of low level in organics via electro generated hydrogen peroxide in the presence of catalytic amounts of Fe{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Marrosu, G.; Petrucci, R.; Trazza, A. [Rome Univ. La Sapienza (Italy). Dipt. di Ingegneria

    2001-04-01

    Low level phosphites and hypophosphites were completely converted into phosphates via hydrogen peroxide generated by cathodic reduction of oxygen in acidic aqueous medium at a reticulated vitreous carbon electrode, in the presence of little amounts of Fe{sup 2+}. The contemporary regeneration of Fe{sup 2+} by cathodic reduction of Fe{sup 3+}, produced by the well known Fenton reaction, furnishes an excellent way to continuously produce little amount of the Fenton reactive and, as a consequence, of the powerful oxidant hydroxyl radical HO. The best conditions for the complete removal of phosphorus as phosphites and hypophosphites are reported. [Italian] Fosfiti ed ipofosfiti in bassa concentrazione sono stati convertiti completamente in fosfati mediante perossido di idrogeno generato per riduzione catodica dell'ossigeno in mezzo acquoso acido su elettrodo di carbone vetroso reticolato, in presenza di piccole quantita' di Fe{sup 2+}. La contemporanea rigenerazione di Fe{sup 2+} per riduzione catodica di Fe{sup 3+}, prodotto secondo la nota reazione di Fenton, fornisce un' eccellente via per produrre in modo continuo quantita' del reattivo di Fenton, e di conseguenza, del potente ossidante radicale idrossile HO. Vengono riportate le migliori condizioni operative per la completa rimozione del fosforo presente sotto forma di fosfiti e ipofosfiti.

  19. Catalytic Fast Pyrolysis: A Review

    Directory of Open Access Journals (Sweden)

    Theodore Dickerson

    2013-01-01

    Full Text Available Catalytic pyrolysis is a promising thermochemical conversion route for lignocellulosic biomass that produces chemicals and fuels compatible with current, petrochemical infrastructure. Catalytic modifications to pyrolysis bio-oils are geared towards the elimination and substitution of oxygen and oxygen-containing functionalities in addition to increasing the hydrogen to carbon ratio of the final products. Recent progress has focused on both hydrodeoxygenation and hydrogenation of bio-oil using a variety of metal catalysts and the production of aromatics from bio-oil using cracking zeolites. Research is currently focused on developing multi-functional catalysts used in situ that benefit from the advantages of both hydrodeoxygenation and zeolite cracking. Development of robust, highly selective catalysts will help achieve the goal of producing drop-in fuels and petrochemical commodities from wood and other lignocellulosic biomass streams. The current paper will examine these developments by means of a review of existing literature.

  20. Biomass transition metal hydrogen-evolution electrocatalysts and electrodes

    Science.gov (United States)

    Chen, Wei-Fu; Iyer, Shweta; Iyer, Shilpa; Sasaki, Kotaro; Muckerman, James T.; Fujita, Etsuko

    2017-02-28

    A catalytic composition from earth-abundant transition metal salts and biomass is disclosed. A calcined catalytic composition formed from soybean powder and ammonium molybdate is specifically exemplified herein. Methods for making the catalytic composition are disclosed as are electrodes for hydrogen evolution reactions comprising the catalytic composition.

  1. Homogeneity of Inorganic Glasses

    DEFF Research Database (Denmark)

    Jensen, Martin; Zhang, L.; Keding, Ralf

    2011-01-01

    Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...... the dimension and the intensity is used to quantify and rank the homogeneity of glass products. Compared with the refractive index method, the image processing method has a wider detection range and a lower statistical uncertainty....

  2. Method of fabricating a catalytic structure

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  3. Bimetallic promotion of cooperative hydrogen transfer and heteroatom removal in coal liquefaction. Quarterly summary, June 1, 1991--August 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Eisch, J.J.

    1991-10-01

    The ultimate objective of this research is to uncover new catalytic processes for the liquefaction of coal and for upgrading coal-derived fuels by removing undesirable organosulfur, organonitrogen and organooxygen constituents. Basic to both the liquefaction of coal and the purification of coal liquids is the transfer of hydrogen from such sources as dihydrogen, metal hydrides or partially reduced aromatic hydrocarbons to the extensive aromatic rings in coal itself or to aromatic sulfides, amines or ethers. Accordingly, this study is exploring how such crucial hydrogen-transfer processes might be catalyzed by soluble, low-valent transition metal complexes and/or Lewis acids under moderate conditions of temperature and pressure. By learning the mechanism whereby H{sub 2}, metal hydrides or partially hydrogenated aromatics do transfer hydrogen to model aromatic compounds, with the aid of homogeneous, bimetallic catalysts, we hope to identify new methods for producing superior fuels from coal.

  4. Fe(III)-functionalized carbon dots—Highly efficient photoluminescence redox catalyst for hydrogenations of olefins and decomposition of hydrogen peroxide

    KAUST Repository

    Bourlinos, Athanasios B.

    2017-03-21

    We present the first bottom-up approach to synthesize Fe(III)-functionalized carbon dots (CDs) from molecular precursors without the need of conventional thermal or microwave treatment and additional reagents. Specifically, sonication of xylene in the presence of anhydrous FeCl3 results in oxidative coupling of the aromatic substrate towards Fe(III)-functionalized CDs. The as-prepared CDs are spherical in shape with a size of 3–8 nm, highly dispersible in organic solvents and display wavelength-dependent photoluminescence (PL). The iron ions attached to the surface endow the CDs with superior catalytic activity for olefin hydrogenation with excellent conversion and selectivity (up to 100%). The Fe(III)-CDs are more effective in the hydrogenation of a series of electron donating or withdrawing olefin substrates compared to conventional homogeneous or heterogeneous Fe(III)-based catalysts. The as-prepared heterogeneous nanocatalyst can be used repeatedly without any loss of catalytic activity. Importantly, the stability of the new catalysts can be easily monitored by PL intensity or quantum yield measurements, which certainly opens the doors for real time monitoring in a range of applications. Additionally, to the best of our knowledge, for the first time, the oxidative property of Fe-CDs was also explored in decomposition of hydrogen peroxide in water with the first order rate constant of 0.7 × 10−2 min−1, proving the versatile catalytic properties of such hybrid systems.

  5. Catalytic Organic Transformations Mediated by Actinide Complexes

    Directory of Open Access Journals (Sweden)

    Isabell S. R. Karmel

    2015-10-01

    Full Text Available This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field.

  6. Catalytic cracking of lignites

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.; Nowak, S.; Naegler, T.; Zimmermann, J. [Hochschule Merseburg (Germany); Welscher, J.; Schwieger, W. [Erlangen-Nuernberg Univ. (Germany); Hahn, T. [Halle-Wittenberg Univ., Halle (Germany)

    2013-11-01

    A most important factor for the chemical industry is the availability of cheap raw materials. As the oil price of crude oil is rising alternative feedstocks like coal are coming into focus. This work, the catalytic cracking of lignite is part of the alliance ibi (innovative Braunkohlenintegration) to use lignite as a raw material to produce chemicals. With this new one step process without an input of external hydrogen, mostly propylene, butenes and aromatics and char are formed. The product yield depends on manifold process parameters. The use of acid catalysts (zeolites like MFI) shows the highest amount of the desired products. Hydrogen rich lignites with a molar H/C ratio of > 1 are to be favoured. Due to primary cracking and secondary reactions the ratio between catalyst and lignite, temperature and residence time are the most important parameter to control the product distribution. Experiments at 500 C in a discontinuous rotary kiln reactor show yields up to 32 wt-% of hydrocarbons per lignite (maf - moisture and ash free) and 43 wt-% char, which can be gasified. Particularly, the yields of propylene and butenes as main products can be enhanced four times to about 8 wt-% by the use of catalysts while the tar yield decreases. In order to develop this innovative process catalyst systems fixed on beads were developed for an easy separation and regeneration of the used catalyst from the formed char. (orig.)

  7. Hydrogen storage properties on mechanically milled graphite

    OpenAIRE

    Ichikawa, Takayuki; Chen, D. M.; Isobe, Shigehito; Gomibuchi, Emi; Fujii, Hironobu

    2004-01-01

    We investigated hydrogen absorption/desorption and structural properties in mechanically milled graphite under hydrogen pressures up to 6 MPa to clarify catalytic and hydrogen pressure effects in the milling. The results indicate that a small amount of iron contamination during milling plays a quite important role as a catalyst for hydrogen absorption/desorption properties in graphite. Two-peak structure for hydrogen desorption in the TDS profile is due to existence of two different occupatio...

  8. Theoretical analysis of hydrogen spillover mechanism on carbon nanotubes

    National Research Council Canada - National Science Library

    Juarez-Mosqueda, Rosalba; Mavrandonakis, Andreas; Kuc, Agnieszka B; Pettersson, Lars G M; Heine, Thomas

    2015-01-01

    The spillover mechanism of molecular hydrogen on carbon nanotubes in the presence of catalytically active platinum clusters was critically and systematically investigated by using density-functional theory...

  9. Homogeneity and Entropy

    Science.gov (United States)

    Tignanelli, H. L.; Vazquez, R. A.; Mostaccio, C.; Gordillo, S.; Plastino, A.

    1990-11-01

    RESUMEN. Presentamos una metodologia de analisis de la homogeneidad a partir de la Teoria de la Informaci6n, aplicable a muestras de datos observacionales. ABSTRACT:Standard concepts that underlie Information Theory are employed in order design a methodology that enables one to analyze the homogeneity of a given data sample. Key : DATA ANALYSIS

  10. FY 1999 R and D project on the global environmental industry technology. Report on the results of the R and D on the catalytic hydrogenation use CO2 fixation/effective utilization technology; 1999 nendo sesshoku suisoka hanno riyo nisanka tanso seika hokokusho. Koteika yuko riyo gijutsu kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing CO2 emitting together with the consumption of fossil fuels, study was conducted on the use of CO2 by converting it to chemical substances such as methanol, etc., and the FY 1999 results were outlined. In the development of the CO2 separation membrane technology, data were obtained on effects of scaling-up by module with a membrane area of 4.9m{sup 2} and on design conditions. Further, in the experiment using mock exhaust gas, it was confirmed that the performance had been kept up for 3,000 hours or more. In the development of catalytic hydrogenation technology, the basic data for enlargement were accumulated. Moreover, the activity stabilized about 18,000 hours was confirmed, and the catalytic life was estimated at more than 3 years. In the development of large quantity hydrogen production/supply technology, assembly/operation of 7,500cm{sup 2} x 6 electrolytic cells were conducted, and it was confirmed that the hydrogen production capacity per cell was 3Nm{sup 3}/h. The final target for enlargement was achieved. In the study of the total system, the conceptual design was made for 'high concentration CO2 containing natural gas use CO2 recovery utilization system,' and 'biomass resource use methanol synthesis system.' (NEDO)

  11. Simple, Chemoselective Hydrogenation with Thermodynamic Stereocontrol

    OpenAIRE

    Iwasaki, Kotaro; Wan, Kanny K.; Oppedisano, Alberto; Crossley, Steven W. M.; Shenvi, Ryan A.

    2014-01-01

    Few methods permit the hydrogenation of alkenes to a thermodynamically favored configuration when steric effects dictate the alternative trajectory of hydrogen delivery. Dissolving metal reduction achieves this control, but with extremely low functional group tolerance. Here we demonstrate a catalytic hydrogenation of alkenes that affords the thermodynamic alkane products with remarkably broad functional group compatibility and rapid reaction rates at standard temperature and pressure.

  12. Simple, chemoselective hydrogenation with thermodynamic stereocontrol.

    Science.gov (United States)

    Iwasaki, Kotaro; Wan, Kanny K; Oppedisano, Alberto; Crossley, Steven W M; Shenvi, Ryan A

    2014-01-29

    Few methods permit the hydrogenation of alkenes to a thermodynamically favored configuration when steric effects dictate the alternative trajectory of hydrogen delivery. Dissolving metal reduction achieves this control, but with extremely low functional group tolerance. Here we demonstrate a catalytic hydrogenation of alkenes that affords the thermodynamic alkane products with remarkably broad functional group compatibility and rapid reaction rates at standard temperature and pressure.

  13. Enhancement of reaction rates for catalytic benzaldehyde ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 2. Enhancement of reaction rates for catalytic benzaldehyde hydrogenation and sorbitol dehydration in water solvent by addition of carbon dioxide. Masayuki Shirai Osamu Sato Norihito Hiyoshi Aritomo Yamaguchi. Volume 126 Issue 2 March 2014 pp 395- ...

  14. Enhancement of reaction rates for catalytic benzaldehyde ...

    Indian Academy of Sciences (India)

    Enhancement of reaction rates for catalytic benzaldehyde hydrogenation and sorbitol dehydration in water solvent by addition of carbon dioxide. MASAYUKI SHIRAIa,b,∗, OSAMU SATOa, NORIHITO HIYOSHIa and. ARITOMO YAMAGUCHIa. aResearch Center for Compact Chemical System, National Institute of Advanced ...

  15. Homogenous finitary symmetric groups

    Directory of Open Access Journals (Sweden)

    Otto‎. ‎H‎. Kegel

    2015-03-01

    Full Text Available We characterize strictly diagonal type of embeddings of finitary symmetric groups in terms of cardinality and the characteristic. Namely, we prove the following. Let kappa be an infinite cardinal. If G=underseti=1stackrelinftybigcupG i , where G i =FSym(kappan i , (H=underseti=1stackrelinftybigcupH i , where H i =Alt(kappan i , is a group of strictly diagonal type and xi=(p 1 ,p 2 ,ldots is an infinite sequence of primes, then G is isomorphic to the homogenous finitary symmetric group FSym(kappa(xi (H is isomorphic to the homogenous alternating group Alt(kappa(xi , where n 0 =1,n i =p 1 p 2 ldotsp i .

  16. Homogeneous group, research, institution

    Directory of Open Access Journals (Sweden)

    Francesca Natascia Vasta

    2014-09-01

    Full Text Available The work outlines the complex connection among empiric research, therapeutic programs and host institution. It is considered the current research state in Italy. Italian research field is analyzed and critic data are outlined: lack of results regarding both the therapeutic processes and the effectiveness of eating disorders group analytic treatment. The work investigates on an eating disorders homogeneous group, led into an eating disorder outpatient service. First we present the methodological steps the research is based on including the strong connection among theory and clinical tools. Secondly clinical tools are described and the results commented. Finally, our results suggest the necessity of validating some more specifical hypothesis: verifying the relationship between clinical improvement (sense of exclusion and painful emotions reduction and specific group therapeutic processes; verifying the relationship between depressive feelings, relapses and transition trough a more differentiated groupal field.Keywords: Homogeneous group; Eating disorders; Institutional field; Therapeutic outcome

  17. Homogeneous bilateral block shifts

    Indian Academy of Sciences (India)

    Introduction. We write D for the complex unit disc and G for the Möbius group, the group of holo- morphic self-maps of D. A bounded operator T on a Hilbert space H is said to be homogeneous if its spectrum is contained in ¯D and for every g in G there exists a unitary operator U(g) such that g(T ) = U(g). −1. T U (g).

  18. Dynamics of homogeneous nucleation

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2015-01-01

    The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...... or shrink by accretion or evaporation of monomers only but also by an exponentially declining change in cluster size per time step equal to the cluster distribution in the supersaturated gas....

  19. Homogenization of dislocation dynamics

    Energy Technology Data Exchange (ETDEWEB)

    El Hajj, Ahmad; Ibrahim, Hassan; Monneau, Regis, E-mail: elhajj@cermics.enpc.fr, E-mail: ibrahim@cermics.enpc.fr, E-mail: monneau@cermics.enpc.fr [CERMICS, ENPC, 6 and 8 avenue Blaise Pascal, Cite Descartes, Champs sur Marne, 77455 Marne-la-Valle Cedex 2 (France)

    2009-07-15

    In this paper we consider the dynamics of dislocations with the same Burgers vector, contained in the same glide plane, and moving in a material with periodic obstacles. We study two cases: i) the particular case of parallel straight dislocations and ii) the general case of curved dislocations. In each case, we perform rigorously the homogenization of the dynamics and predict the corresponding effective macroscopic elasto-visco-plastic flow rule.

  20. Hydrogen production from glucose in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Assenbaum, D.W.; Taccardi, N.; Berger, M.E.M.; Boesmann, A.; Enzenberger, F.; Woelfel, R.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer chemische Reaktionstechnik

    2010-07-01

    technologies suffer from the fact that the overall reaction rates are often restricted by mass and heat transport problems. Lastly, there are severe limitations concerning the feedstock selection as for some important substrates, such as e.g. glucose, the process can only be operated in very diluted systems to avoid rapid tar formation [22,23,24]. In this contribution we describe for the first time a catalytic reaction system producing hydrogen from glucose in astonishingly high selectivities using a single reaction step under very mild conditions. The catalytic reaction system is characterized by its homogeneous nature and comprises a Ru-complex catalyst dissolved and stabilized in an ionic liquid medium. Ionic liquids are salts of melting points below 100 C [25]. These liquid materials have attracted much interest in the last decade as solvents for catalytic reactions [26] and separation technologies (extraction, distillation) [27,28,29,30,31,32]. Besides, these liquids have found industrial applications as process fluids for mechanic [33] and electrochemical applications [34]. Finally, from the pioneering work of Rogers and co-workers, it is known that ionic liquids are able to dissolve significant amounts of water-insoluble biopolymers (such as e.g. cellulose and chitin)[35] and even complex biopolymer mixtures, such as e.g. wood, have been completely dissolved in some ionic liquids [36]. In our specific application, the role of the ionic liquid is threefold: a) the ionic liquid dissolves the carbohydrate starting material thus expanding the range of applicable carbohydrate to water insoluble polymers; b) the ionic liquid provides a medium to dissolve and stabilize the catalyst; c) the ionic liquid dissolves hydrogen at a very low level, so inhibiting any possible collateral hydrogen-consuming process (detailed investigation of the hydrogen solubility in ionic liquids have been reported by e.g. Brennecke and coworkers [37]). (orig.)

  1. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  2. Homogeneous M2 duals

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa-O’Farrill, José [School of Mathematics and Maxwell Institute for Mathematical Sciences,The University of Edinburgh,James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road,Edinburgh EH9 3FD, Scotland (United Kingdom); Ungureanu, Mara [Humboldt-Universität zu Berlin, Institut für Mathematik,Unter den Linden 6, 10099 Berlin (Germany)

    2016-01-25

    Motivated by the search for new gravity duals to M2 branes with N>4 supersymmetry — equivalently, M-theory backgrounds with Killing superalgebra osp(N|4) for N>4 — we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra so(n)⊕so(3,2) for n=5,6,7. We find that there are no new backgrounds with n=6,7 but we do find a number of new (to us) backgrounds with n=5. All backgrounds are metrically products of the form AdS{sub 4}×P{sup 7}, with P riemannian and homogeneous under the action of SO(5), or S{sup 4}×Q{sup 7} with Q lorentzian and homogeneous under the action of SO(3,2). At least one of the new backgrounds is supersymmetric (albeit with only N=2) and we show that it can be constructed from a supersymmetric Freund-Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.

  3. Bimetallic promotion of cooperative hydrogen transfer and heteroatom removal in coal liquefaction. Quarterly technical progress report, March 1, 1991--May 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Eisch, J.J.

    1991-07-01

    The ultimate objective of this research is to uncover new catalytic processes for the liquefaction of coal and for upgrading coal-derived fuels by removing undesirable organosulfur, organonitrogen and organooxygen constituents. Basic to both the liquefaction of coal and the purification of coal liquids is the transfer of hydrogen from such sources as dihydrogen, metal hydrides or partially reduced aromatic hydrocarbons to the extensive aromatic rings in coal itself or to aromatic sulfides, amines or ethers. Accordingly, this study is exploring how such crucial hydrogen-transfer processes might be catalyzed by soluble, low-valent transition metal complexes and/or Lewis acids under moderate conditions of temperature and pressure. By learning the mechanism whereby H{sub 2}, metal hydrides or partially hydrogenated aromatics do transfer hydrogen to model aromatic compounds, with the aid of homogeneous, bimetallic catalysts, we hope to identify new methods for producing superior fuels from coal.

  4. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures.

    Science.gov (United States)

    Hull, Jonathan F; Himeda, Yuichiro; Wang, Wan-Hui; Hashiguchi, Brian; Periana, Roy; Szalda, David J; Muckerman, James T; Fujita, Etsuko

    2012-03-18

    Green plants convert CO(2) to sugar for energy storage via photosynthesis. We report a novel catalyst that uses CO(2) and hydrogen to store energy in formic acid. Using a homogeneous iridium catalyst with a proton-responsive ligand, we show the first reversible and recyclable hydrogen storage system that operates under mild conditions using CO(2), formate and formic acid. This system is energy-efficient and green because it operates near ambient conditions, uses water as a solvent, produces high-pressure CO-free hydrogen, and uses pH to control hydrogen production or consumption. The extraordinary and switchable catalytic activity is attributed to the multifunctional ligand, which acts as a proton-relay and strong π-donor, and is rationalized by theoretical and experimental studies.

  5. Autothermal hydrogen storage and delivery systems

    Science.gov (United States)

    Pez, Guido Peter [Allentown, PA; Cooper, Alan Charles [Macungie, PA; Scott, Aaron Raymond [Allentown, PA

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  6. LDRD final report on new homogeneous catalysts for direct olefin epoxidation (LDRD 52591).

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Karen (University of Washington); Smythe, Nicole A. (University of Washington); Moore, Joshua T.; Stewart, Constantine A.; Kemp, Richard Alan; Miller, James Edward; Kornienko, Alexander (New Mexico Institute of Mining and Technology); Denney, Melanie C. (University of Washington); Cetto, Kara L. (University of Washington)

    2006-02-01

    This report summarizes our findings during the study of a novel homogeneous epoxidation catalyst system that uses molecular oxygen as the oxidant, a ''Holy Grail'' in catalysis. While olefins (alkenes) that do not contain allylic hydrogens can be epoxidized directly using heterogeneous catalysts, most olefins cannot, and so a general, atom-efficient route is desired. While most of the work performed on this LDRD has been on pincer complexes of late transition metals, we also scouted out metal/ligand combinations that were significantly different, and unfortunately, less successful. Most of the work reported here deals with phosphorus-ligated Pd hydrides [(PCP)Pd-H]. We have demonstrated that molecular oxygen gas can insert into the Pd-H bond, giving a structurally characterized Pd-OOH species. This species reacts with oxygen acceptors such as olefins to donate an oxygen atom, although in various levels of selectivity, and to generate a [(PCP)Pd-OH] molecule. We discovered that the active [(PCP)Pd-H] active catalyst can be regenerated by addition of either CO or hydrogen. The demonstration of each step of the catalytic cycle is quite significant. Extensions to the pincer-Pd chemistry by attaching a fluorinated tail to the pincer designed to be used in solvents with higher oxygen solubilities are also presented.

  7. Novel developments in hydrogen storage, hydrogen activation and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Doroodian, Amir

    2010-12-03

    This dissertation is divided into three chapters. Recently, metal-free hydrogen activation using phosphorous compounds has been reported in science magazine. We have investigated the interaction between hydrogen and phosphorous compounds in presence of strong Lewis acids (chapter one). A new generation of metal-free hydrogen activation, using amines and strong Lewis acids with sterically demanding nature, was already developed in our group. Shortage of high storage capacity using large substitution to improve sterical effect led us to explore the amine borane derivatives, which are explained in chapter two. Due to the high storage capacity of hydrogen in aminoborane derivatives, we have explored these materials to extend hydrogen release. These compounds store hydrogen as proton and hydride on adjacent atoms or ions. These investigations resulted in developing hydrogen storage based on ionic liquids containing methyl guanidinium cation. Then we have continued to develop ionic liquids based on methyl guanidinium cation with different anions, such as tetrafluoro borate (chapter three). We have replaced these anions with transition metal anions to investigate hydrogen bonding and catalytic activity of ionic liquids. This chapter illustrates the world of ionic liquid as a green solvent for organic, inorganic and catalytic reactions and combines the concept of catalysts and solvents based on ionic liquids. The catalytic activity is investigated particularly with respect to the interaction with CO{sub 2}. (orig.)

  8. Catalytic characterization of bi-functional catalysts derived from Pd ...

    Indian Academy of Sciences (India)

    Unknown

    (MIBK) from the reaction of acetone and hydrogen, which requires acid-base (for condensation) and metallic. (for hydrogenation) functions. It may be noted that several catalytic systems containing Pd, supported on various acid- base supports (Yang and Wu 2000; Das et al 2001) have also been tested for this reaction, ...

  9. Catalytic wet peroxide oxidation of formic acid in wastewater with ...

    African Journals Online (AJOL)

    2016-07-03

    Jul 3, 2016 ... ABSTRACT. The catalytic wet oxidation of formic acid, using hydrogen peroxide as the oxidizing agent over naturally-occurring iron ore, was explored. Firstly, the decomposition of hydrogen peroxide to its hydroxyl radicals (HO• and HOO•) over naturally-occurring iron ore was investigated. The reaction was ...

  10. Catalytic wet peroxide oxidation of formic acid in wastewater with ...

    African Journals Online (AJOL)

    The catalytic wet oxidation of formic acid, using hydrogen peroxide as the oxidizing agent over naturally-occurring iron ore, was explored. Firstly, the decomposition of hydrogen peroxide to its hydroxyl radicals (HO• and HOO•) over naturally-occurring iron ore was investigated. The reaction was monitored by ATR FTIR by ...

  11. Onboard Plasmatron Hydrogen Production for Improved Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

    2005-12-31

    A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperature electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer

  12. Homogeneous Finsler Spaces

    CERN Document Server

    Deng, Shaoqiang

    2012-01-01

    "Homogeneous Finsler Spaces" is the first book to emphasize the relationship between Lie groups and Finsler geometry, and the first to show the validity in using Lie theory for the study of Finsler geometry problems. This book contains a series of new results obtained by the author and collaborators during the last decade. The topic of Finsler geometry has developed rapidly in recent years. One of the main reasons for its surge in development is its use in many scientific fields, such as general relativity, mathematical biology, and phycology (study of algae). This monograph introduc

  13. HOMOGENEOUS NUCLEAR POWER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  14. Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes

    Science.gov (United States)

    Ahuja, Ritu; Punji, Benudhar; Findlater, Michael; Supplee, Carolyn; Schinski, William; Brookhart, Maurice; Goldman, Alan S.

    2011-02-01

    Aromatic hydrocarbons are among the most important building blocks in the chemical industry. Benzene, toluene and xylenes are obtained from the high temperature thermolysis of alkanes. Higher alkylaromatics are generally derived from arene-olefin coupling, which gives branched products—that is, secondary alkyl arenes—with olefins higher than ethylene. The dehydrogenation of acyclic alkanes to give alkylaromatics can be achieved using heterogeneous catalysts at high temperatures, but with low yields and low selectivity. We present here the first catalytic conversion of n-alkanes to alkylaromatics using homogeneous or molecular catalysts—specifically ‘pincer’-ligated iridium complexes—and olefinic hydrogen acceptors. For example, the reaction of n-octane affords up to 86% yield of aromatic product, primarily o-xylene and secondarily ethylbenzene. In the case of n-decane and n-dodecane, the resulting alkylarenes are exclusively unbranched (that is, n-alkyl-substituted), with selectivity for the corresponding o-(n-alkyl)toluene.

  15. STUDY OF HYDROGEN SULFIDE REMOVAL FROM GROUNDWATER

    OpenAIRE

    T. Lupascu; M. Ciobanu; V. Botan; T. Gromovoy; S. Cibotaru

    2013-01-01

    The process of the hydrogen sulfide removal from the underground water of the Hancesti town has been investigated. By oxygen bubbling through the water containing hydrogen sulfide, from the Hancesti well tube, sulfur is deposited in the porous structure of studied catalysts, which decreases their catalytic activity. Concomitantly, the process of adsorption / oxidation of hydrogen sulfide to sulfate take place. The kinetic research of the hydrogen sulfide removal from the Hancesti underground ...

  16. Converting Homogeneous to Heterogeneous in Electrophilic Catalysis using Monodisperse Metal Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witham, Cole A.; Huang, Wenyu; Tsung, Chia-Kuang; Kuhn, John N.; Somorjai, Gabor A.; Toste, F. Dean

    2009-10-15

    A continuing goal in catalysis is the transformation of processes from homogeneous to heterogeneous. To this end, nanoparticles represent a new frontier in heterogeneous catalysis, where this conversion is supplemented by the ability to obtain new or divergent reactivity and selectivity. We report a novel method for applying heterogeneous catalysts to known homogeneous catalytic reactions through the design and synthesis of electrophilic platinum nanoparticles. These nanoparticles are selectively oxidized by the hypervalent iodine species PhICl{sub 2}, and catalyze a range of {pi}-bond activation reactions previously only homogeneously catalyzed. Multiple experimental methods are utilized to unambiguously verify the heterogeneity of the catalytic process. The discovery of treatments for nanoparticles that induce the desired homogeneous catalytic activity should lead to the further development of reactions previously inaccessible in heterogeneous catalysis. Furthermore, our size and capping agent study revealed that Pt PAMAM dendrimer-capped nanoparticles demonstrate superior activity and recyclability compared to larger, polymer-capped analogues.

  17. Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy.

    Science.gov (United States)

    Preuster, Patrick; Papp, Christian; Wasserscheid, Peter

    2017-01-17

    The need to drastically reduce CO 2 emissions will lead to the transformation of our current, carbon-based energy system to a more sustainable, renewable-based one. In this process, hydrogen will gain increasing importance as secondary energy vector. Energy storage requirements on the TWh scale (to bridge extended times of low wind and sun harvest) and global logistics of renewable energy equivalents will create additional driving forces toward a future hydrogen economy. However, the nature of hydrogen requires dedicated infrastructures, and this has prevented so far the introduction of elemental hydrogen into the energy sector to a large extent. Recent scientific and technological progress in handling hydrogen in chemically bound form as liquid organic hydrogen carrier (LOHC) supports the technological vision that a future hydrogen economy may work without handling large amounts of elemental hydrogen. LOHC systems are composed of pairs of hydrogen-lean and hydrogen-rich organic compounds that store hydrogen by repeated catalytic hydrogenation and dehydrogenation cycles. While hydrogen handling in the form of LOHCs allows for using the existing infrastructure for fuels, it also builds on the existing public confidence in dealing with liquid energy carriers. In contrast to hydrogen storage by hydrogenation of gases, such as CO 2 or N 2 , hydrogen release from LOHC systems produces pure hydrogen after condensation of the high-boiling carrier compounds. This Account highlights the current state-of-the-art in hydrogen storage using LOHC systems. It first introduces fundamental aspects of a future hydrogen economy and derives therefrom requirements for suitable LOHC compounds. Molecular structures that have been successfully applied in the literature are presented, and their property profiles are discussed. Fundamental and applied aspects of the involved hydrogenation and dehydrogenation catalysis are discussed, characteristic differences for the catalytic conversion of

  18. Porous media for catalytic renewable energy conversion

    Science.gov (United States)

    Hotz, Nico

    2012-05-01

    A novel flow-based method is presented to place catalytic nanoparticles into a reactor by sol-gelation of a porous ceramic consisting of copper-based nanoparticles, silica sand, ceramic binder, and a gelation agent. This method allows for the placement of a liquid precursor containing the catalyst into the final reactor geometry without the need of impregnating or coating of a substrate with the catalytic material. The so generated foam-like porous ceramic shows properties highly appropriate for use as catalytic reactor material, e.g., reasonable pressure drop due to its porosity, high thermal and catalytic stability, and excellent catalytic behavior. The catalytic activity of micro-reactors containing this foam-like ceramic is tested in terms of their ability to convert alcoholic biofuel (e.g. methanol) to a hydrogen-rich gas mixture with low concentrations of carbon monoxide (up to 75% hydrogen content and less than 0.2% CO, for the case of methanol). This gas mixture is subsequently used in a low-temperature fuel cell, converting the hydrogen directly to electricity. A low concentration of CO is crucial to avoid poisoning of the fuel cell catalyst. Since conventional Polymer Electrolyte Membrane (PEM) fuel cells require CO concentrations far below 100 ppm and since most methods to reduce the mole fraction of CO (such as Preferential Oxidation or PROX) have CO conversions of up to 99%, the alcohol fuel reformer has to achieve initial CO mole fractions significantly below 1%. The catalyst and the porous ceramic reactor of the present study can successfully fulfill this requirement.

  19. Hydrogen transfer reaction of cyclohexanone with 2-propanol ...

    Indian Academy of Sciences (India)

    Unknown

    Addition of ceria into zinc oxide was found to increase the catalytic activity for hydrogen transfer reaction. The catalytic activity also depended on the method of preparation. Citrate process results in uniformly dispersed mixed oxide with higher catalytic activity. Keywords. Cyclohexanone; ceria; ZnO; diffuse reflectance; EPR.

  20. Homogeneous catalyst formulations for methanol production

    Science.gov (United States)

    Mahajan, Devinder; Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.

    1990-01-01

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.13 ), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  1. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  2. Pseudoconvex and Disprisoning Homogeneous Sprays

    CERN Document Server

    Riego, L D

    1994-01-01

    The pseudoconvex and disprisoning conditions for geodesics of linear connections are extended to the solution curves of general homogeneous sprays. The main result is that pseudoconvexity and disprisonment are jointly stable in the fine topology on the space of all homogeneous sprays of any degree of homogeneity.

  3. HOMOGENEOUS NUCLEAR REACTOR

    Science.gov (United States)

    Hammond, R.P.; Busey, H.M.

    1959-02-17

    Nuclear reactors of the homogeneous liquid fuel type are discussed. The reactor is comprised of an elongated closed vessel, vertically oriented, having a critical region at the bottom, a lower chimney structure extending from the critical region vertically upwardly and surrounded by heat exchanger coils, to a baffle region above which is located an upper chimney structure containing a catalyst functioning to recombine radiolyticallydissociated moderator gages. In operation the liquid fuel circulates solely by convection from the critical region upwardly through the lower chimney and then downwardly through the heat exchanger to return to the critical region. The gases formed by radiolytic- dissociation of the moderator are carried upwardly with the circulating liquid fuel and past the baffle into the region of the upper chimney where they are recombined by the catalyst and condensed, thence returning through the heat exchanger to the critical region.

  4. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  5. STUDY OF HYDROGEN SULFIDE REMOVAL FROM GROUNDWATER

    Directory of Open Access Journals (Sweden)

    T. Lupascu

    2013-06-01

    Full Text Available The process of the hydrogen sulfide removal from the underground water of the Hancesti town has been investigated. By oxygen bubbling through the water containing hydrogen sulfide, from the Hancesti well tube, sulfur is deposited in the porous structure of studied catalysts, which decreases their catalytic activity. Concomitantly, the process of adsorption / oxidation of hydrogen sulfide to sulfate take place. The kinetic research of the hydrogen sulfide removal from the Hancesti underground water, after its treatment by hydrogen peroxide, proves greater efficiency than in the case of modified carbonic adsorbents. As a result of used treatment, hydrogen sulfide is completely oxidized to sulfates

  6. Homogeneous and heterogenized iridium water oxidation catalysts

    Science.gov (United States)

    Macchioni, Alceo

    2014-10-01

    The development of an efficient catalyst for the oxidative splitting of water into molecular oxygen, protons and electrons is of key importance for producing solar fuels through artificial photosynthesis. We are facing the problem by means of a rational approach aimed at understanding how catalytic performance may be optimized by the knowledge of the reaction mechanism of water oxidation and the fate of the catalytic site under the inevitably harsh oxidative conditions. For the purposes of our study we selected iridium water oxidation catalysts, exhibiting remarkable performance (TOF > 5 s-1 and TON > 20000). In particular, we recently focused our attention on [Cp*Ir(N,O)X] (N,O = 2-pyridincarboxylate; X = Cl or NO3) and [IrCl(Hedta)]Na water oxidation catalysts. The former exhibited a remarkable TOF whereas the latter showed a very high TON. Furthermore, [IrCl(Hedta)]Na was heterogenized onto TiO2 taking advantage of the presence of a dandling -COOH functionality. The heterogenized catalyst maintained approximately the same catalytic activity of the homogeneous analogous with the advantage that could be reused many times. Mechanistic studies were performed in order to shed some light on the rate-determining step and the transformation of catalysts when exposed to "oxidative stress". It was found that the last oxidative step, preceding oxygen liberation, is the rate-determining step when a small excess of sacrificial oxidant is used. In addition, several intermediates of the oxidative transformation of the catalyst were intercepted and characterized by NMR, X-Ray diffractometry and ESI-MS.

  7. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.

    Science.gov (United States)

    Chelucci, Giorgio; Baldino, Salvatore; Baratta, Walter

    2015-02-17

    CONSPECTUS: A current issue in metal-catalyzed reactions is the search for highly efficient transition-metal complexes affording high productivity and selectivity in a variety of processes. Moreover, there is also a great interest in multitasking catalysts that are able to efficiently promote different organic transformations by careful switching of the reaction parameters, such as temperature, solvent, and cocatalyst. In this context, osmium complexes have shown the ability to catalyze efficiently different types of reactions involving hydrogen, proving at the same time high thermal stability and simple synthesis. In the catalytic reduction of C═X (X = O, N) bonds by both hydrogenation (HY) and transfer hydrogenation (TH) reactions, the most interest has been focused on homogeneous systems based on rhodium, iridium, and in particular ruthenium catalysts, which have proved to catalyze chemo- and stereoselective hydrogenations with remarkable efficiency. By contrast, osmium catalysts have received much less attention because they are considered less active on account of their slower ligand exchange kinetics. Thus, this area remained almost neglected until recent studies refuted these prejudices. The aim of this Account is to highlight the impressive developments achieved over the past few years by our and other groups on the design of new classes of osmium complexes and their applications in homogeneous catalytic reactions involving the hydrogenation of carbon-oxygen and carbon-nitrogen bonds by both HY and TH reactions as well as in alcohol deydrogenation (DHY) reactions. The work described in this Account demonstrates that osmium complexes are emerging as powerful catalysts for asymmetric and non-asymmetric syntheses, showing a remarkably high catalytic activity in HY and TH reactions of ketones, aldehydes, imines, and esters as well in DHY reactions of alcohols. Thus, for instance, the introduction of ligands with an NH function, possibly in combination with a

  8. Final Report: Investigation of Catalytic Pathways for Lignin Breakdown into Monomers and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gluckstein, Jeffrey A [ORNL; Hu, Michael Z. [ORNL; Kidder, Michelle [ORNL; McFarlane, Joanna [ORNL; Narula, Chaitanya Kumar [ORNL; Sturgeon, Matthew R [ORNL

    2010-12-01

    Lignin is a biopolymer that comprises up to 35% of woody biomass by dry weight. It is currently underutilized compared to cellulose and hemicellulose, the other two primary components of woody biomass. Lignin has an irregular structure of methoxylated aromatic groups linked by a suite of ether and alkyl bonds which makes it difficult to degrade selectively. However, the aromatic components of lignin also make it promising as a base material for the production of aromatic fuel additives and cyclic chemical feed stocks such as styrene, benzene, and cyclohexanol. Our laboratory research focused on three methods to selectively cleave and deoxygenate purified lignin under mild conditions: acidolysis, hydrogenation and electrocatalysis. (1) Acidolysis was undertaken in CH2Cl2 at room temperature. (2) Hydrogenation was carried out by dissolving lignin and a rhodium catalyst in 1:1 water:methoxyethanol under a 1 atm H2 environment. (3) Electrocatalysis of lignin involved reacting electrically generated hydrogen atoms at a catalytic palladium cathode with lignin dissolved in a solution of aqueous methanol. In all of the experiments, the lignin degradation products were identified and quantified by gas chromatography mass spectroscopy and flame ionization detection. Yields were low, but this may have reflected the difficulty in recovering the various fractions after conversion. The homogeneous hydrogenation of lignin showed fragmentation into monomers, while the electrocatalytic hydrogenation showed production of polyaromatic hydrocarbons and substituted benzenes. In addition to the experiments, promising pathways for the conversion of lignin were assessed. Three conversion methods were compared based on their material and energy inputs and proposed improvements using better catalyst and process technology. A variety of areas were noted as needing further experimental and theoretical effort to increase the feasibility of lignin conversion to fuels.

  9. Les procédés ASVAHL thermiques et catalytiques sous pression d'hydrogène pour la conversion des bruts lourds et des résidus de bruts classiques Thermal and Catalytic Asvahl Processes under Hydrogen Pressure for Converting Heavy Crudes and Conventional Residues

    Directory of Open Access Journals (Sweden)

    Peries J. P.

    2006-11-01

    Full Text Available Cet article décrit les performances comparées des procédés ASVAHL thermiques (TERVAHL T, TERVAHL H, TERVAHL HC et catalytiques (HYVAHL F, HYVAHL C dans deux cas de traitement: - brut désessencié Boscan (base des études objectif Transport; - résidu sous vide Safaniya (base des études Raffinage de résidu. A travers ces résultats, l'importance de la quantité d'hydrogène fixée est mise en évidence. Elle joue sur la conversion obtenue et sur la qualité des résidus. L'introduction de catalyseur soluble ou en suspension catalytique TERVAHL HC (hydroviscoréduction catalytique ou l'utilisation d'un catalyseur supporté (hydrotraiternent HYVAHL favorisent l'activation de l'hydrogène. C'est la combinaison des réactions de craquage, de polycondensation et d'hydrogénation, et les conditions opératoires (températures, temps de séjour et pression qui définiront les limites de la conversion pour une stabilité donnée des résidus. This article describes the comparative performances of thermal ASVAHL processes (TERVAHL T, TERVAHL H, TERVAHL HQ and catalytic ASVAHL processes (HYVAHL F, HYVAHL C for two types of processing: (1 degasolined Boscan crude (basis of studies for transportation feasibility, and (2 Safaniya vacuum residue (basis of studies for residue refining. The results reveal the importance of the amount of fixed hydrogen, which affects the conversion obtained and the quality of the residues. The introduction of a TERVAHL HC soluble catalyst or one in catalytic suspension (catalytic hydrovisbreaking or the use of a supported catalyst (HYVAHL hydrotreatment enhances the activation of hydrogen. The combination of cracking, polycondensation and hydrogen reactions together with the operating conditions (temperatures, residence time and pressure are what will define the conversion limits for a given stability of residues.

  10. Rich catalytic injection

    Science.gov (United States)

    Veninger, Albert [Coventry, CT

    2008-12-30

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  11. Engineering and Sizing Nanoreactors To Confine Metal Complexes for Enhanced Catalytic Performance

    NARCIS (Netherlands)

    Shakeri, Mozaffar; Roiban, Lucian; Yazerski, Vital; Prieto Gonzalez, Gonzalo; Klein Gebbink, Bert; de Jongh, Petra E.; de Jong, Krijn P.

    2014-01-01

    Homogeneous metal complexes often display superior activity and selectivity in catalysis of chemical transformations. Heterogenization of these complexes by immobilization on solid supports has been used to facilitate recovery, but this is often associated with a decrease in catalytic performance.

  12. Hydrogenation and hydrogenolysis in synthetic organic chemistry

    NARCIS (Netherlands)

    Van Bekkum, H.; Kieboom, A.P.G.; Van Rantwijk, F.

    1977-01-01

    The major aim of this book is to provide preparative organic chemists with the insight and the know-how necessary to apply catalytic hydrogenation and hydrogenolysis to synthetic problems. Several texts on hydrogenation and hydrogenolysis are available, but the authors feel that many chemists will

  13. Homogeneous crystal nucleation in polymers

    Science.gov (United States)

    Schick, C.; Androsch, R.; Schmelzer, J. W. P.

    2017-11-01

    The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 106 K s-1, allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of the classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation.

  14. Developing catalysts and catalytic processes with industrial relevance.

    Science.gov (United States)

    Blaser, Hans-Ulrich

    2010-01-01

    The catalysis group of Solvias has its roots in the Central Research Laboratories of Ciba-Geigy. Since the early eighties its research has been focused on three areas of catalytic technology: heterogeneous hydrogenation, coupling catalysis, and enantioselective hydrogenation. Today, these are still the catalytic methods with the greatest industrial potential. In this overview a short description will be given how these methods have been developed further since the spin-off of Solvias in 1999. It will be discussed which strategies were successful and what the most important results have been in the first decade of Solvias.

  15. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  16. Catalytic reforming feed characterisation technique

    Energy Technology Data Exchange (ETDEWEB)

    Larraz Mora, R.; Arvelo Alvarez, R. [Univ. of La Laguna, Chemical Engineering Dept., La Laguna (Spain)

    2002-09-01

    The catalytic reforming of naphtha is one of the major refinery processes, designed to increase the octane number of naphtha or to produce aromatics. The naphtha used as catalytic reformer feedstock usually contains a mixture of paraffins, naphthenes, and aromatics in the carbon number range C{sub 6} to C{sub 10}. The detailed chemical composition of the feed is necessary to predict the aromatics and hydrogen production as well as the operation severity. The analysis of feed naphtha is usually reported in terms of its ASTM distillation curve and API or specific gravity. Since reforming reactions are described in terms of lumped chemical species (paraffins, naphthenes and aromatics), a feed characterisation technique should be useful in order to predict reforming operating conditions and detect feed quality changes. Unfortunately online analyzer applications as cromatography or recently introduced naphtha NMR [1] are scarce in most of refineries. This work proposes an algorithmic characterisation method focusing on its main steps description. The method could help on the subjects previously described, finally a calculation example is shown. (orig.)

  17. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  18. Polymer supported nickel complex: Synthesis, structure and catalytic ...

    Indian Academy of Sciences (India)

    PRASANTA RATHc. aCatalysis Research Lab, Department of Chemistry, Ravenshaw University, Cuttack - 3, Odisha, India ... But polymer supported transition metal complexes have shown high catalytic activity7,8 in comparison to homogeneous and unsupported catalysts. Also, polymer-supported cata- lysts are easily ...

  19. Catalytic Synthesis of Ethyl Ester From Some Common Oils ...

    African Journals Online (AJOL)

    Catalytic conversion of ethanol to fatty acid ethyl esters (FAEE) was carried out by homogeneous and heterogeneous transesterification of melon seed, shea butter and neem seed oils using NaOH, KOH and 5wt%CaO/Al2O3 catalyst systems respectively. Oil content of the seeds from n-hexane or hot water extract ranged ...

  20. Hydrogen Production by Homogeneous Catalysis: Alcohol Acceptorless Dehydrogenation

    DEFF Research Database (Denmark)

    Nielsen, Martin

    2015-01-01

    . In particular, only alcohol containing substances are covered. As such, alcohol acceptorless dehydrogenation (AAD) is the main topic of this review. Moreover, it is more easily investigated for eluding mechanistic property.This review is divided up in four main chapters according to substrates. The first...

  1. THE WILKINSON COMPLEX AS A HETEROGENEOUS CATALYST IN THE PARTIAL HYDROGENATION OF 1-HEPTYNE. REGENERATION OF THE COMPLEX

    Directory of Open Access Journals (Sweden)

    Edgardo Cagnola

    2016-06-01

    Full Text Available The Wilkinson complex was tested as a catalyst in the partial hydrogenation of 1-heptyne, a medium chain alkyne, at a temperature of T = 303 K and hydrogen pressure PH2 = 150 kPa. The tests were performed in homogeneous system as well as heterogeneous system, supporting the complex on i γ-Al2O3 and ii a commercial carbonaceous material, RX3. Characterization by means of XPS and FTIR revealed that the anchored complex did not lose its chemical identity, being the catalytically active species. The Wilkinson complex on RX3 showed better conversions and selectivities, higher than the Lindlar catalyst, used as a reference. Additionally, it was proposed a method to recover Rh as a metal from the remaining solutions, and from it regenerate the complex to be reused from it.

  2. Homogeneous Spaces and Equivariant Embeddings

    CERN Document Server

    Timashev, DA

    2011-01-01

    Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space it is natural and helpful to compactify it keeping track of the group action, i.e. to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on classification of equivariant em

  3. Design of a catalyst through Fe doping of the boron cage B10H14 for CO2 hydrogenation and investigation of the catalytic character of iron hydride (Fe-H).

    Science.gov (United States)

    Qian, Lei; Ma, Kai-Yang; Zhou, Zhong-Jun; Ma, Fang

    2017-12-13

    The innovative catalyst Fe@B10H14 is designed through Fe doping of the boron cage B10H14 and is employed to catalyze CO2 hydrogenation using a quantum mechanical method. First, the structure of the Fe@B10H14 complex is characterized through calculated 11B NMR chemical shifts and Raman spectra, and the interactions between Fe and the four H atoms of the opening in the cage are analyzed, which show that various iron hydride (Fe-H) characteristics exist. Subsequently, the potential of Fe@B10H14 as a catalyst for the hydrogenative reduction of CO2 in the gas phase is computationally evaluated. We find that an equivalent of Fe@B10H14 can consecutively reduce double CO2 to obtain the double product HCOOH through a two-step reduction, and Fe@B10H12 and Fe@B10H10 are successively obtained. The Fe presents single-atom character in the reduction of CO2, which is different from the common iron(ii) catalyzed CO2 reduction. The calculated total free energy barrier of the first CO2 reduction is only 8.79 kcal mol-1, and that of the second CO2 reduction is 25.71 kcal mol-1. Every reduction reaction undergoes two key transition states TSC-H and TSO-H. Moreover, the transition state of the C-H bond formation TSC-H is the rate-determining step, where the interaction between πC[double bond, length as m-dash]O* and the weak σFe-H bond plays an important role. Furthermore, the hydrogenations of Fe@B10H12 and Fe@B10H10 are investigated, which aim at determining the ability of Fe-H circulation in the Fe doped decaborane complex. We find that the hydrogenation of Fe@B10H10 undergoes a one-step H2-adsorbed transition state TSH-adsorb with an energy barrier of 6.42 kcal mol-1 from Fe@B10H12. Comparing with the hydrogenation of Fe@B10H10, it is slightly more difficult for the hydrogenation of Fe@B10H12, where the rate-determining step is the H2-cleaved transition state TS2H-H with an energy barrier of 17.38 kcal mol-1.

  4. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  5. Electrokinetic Effects in Catalytic Pt-Insulator Janus Swimmers

    OpenAIRE

    Ebbens, S.; Gregory, D.A; Dunderdale, G.; Howse, J.R.; Ibrahim, Y.; Liverpool, T. B.; R. Golestanian

    2013-01-01

    The effect of added salt on the propulsion of Janus platinum-polystyrene colloids in hydrogen peroxide solution is studied experimentally. It is found that micromolar quantities of potassium and silver nitrate salts reduce the swimming velocity by similar amounts, while leading to significantly different effects on the overall rate of catalytic breakdown of hydrogen peroxide. It is argued that the seemingly paradoxical experimental observations could be theoretically explained by using a gene...

  6. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.

    Science.gov (United States)

    Chirik, Paul J

    2015-06-16

    The hydrogenation of alkenes is one of the most impactful reactions catalyzed by homogeneous transition metal complexes finding application in the pharmaceutical, agrochemical, and commodity chemical industries. For decades, catalyst technology has relied on precious metal catalysts supported by strong field ligands to enable highly predictable two-electron redox chemistry that constitutes key bond breaking and forming steps during turnover. Alternative catalysts based on earth abundant transition metals such as iron and cobalt not only offer potential environmental and economic advantages but also provide an opportunity to explore catalysis in a new chemical space. The kinetically and thermodynamically accessible oxidation and spin states may enable new mechanistic pathways, unique substrate scope, or altogether new reactivity. This Account describes my group's efforts over the past decade to develop iron and cobalt catalysts for alkene hydrogenation. Particular emphasis is devoted to the interplay of the electronic structure of the base metal compounds and their catalytic performance. First generation, aryl-substituted pyridine(diimine) iron dinitrogen catalysts exhibited high turnover frequencies at low catalyst loadings and hydrogen pressures for the hydrogenation of unactivated terminal and disubstituted alkenes. Exploration of structure-reactivity relationships established smaller aryl substituents and more electron donating ligands resulted in improved performance. Second generation iron and cobalt catalysts where the imine donors were replaced by N-heterocyclic carbenes resulted in dramatically improved activity and enabled hydrogenation of more challenging unactivated, tri- and tetrasubstituted alkenes. Optimized cobalt catalysts have been discovered that are among the most active homogeneous hydrogenation catalysts known. Synthesis of enantiopure, C1 symmetric pyridine(diimine) cobalt complexes have enabled rare examples of highly enantioselective

  7. Increasing Octane Value in Catalytic Cracking of n-Hexadecane with Addition of BEA Type Zeolite

    National Research Council Canada - National Science Library

    Iori Shimada; Ryoichi Imai; Yoshinori Hayasaki; Hiroshi Fukunaga; Nobuhide Takahashi; Toru Takatsuka

    2015-01-01

    ...) catalyst and tested in the catalytic cracking of n-hexadecane, which is a heavy crude oil model compound, for the purpose of increasing the octane value of produced gasoline under the strong hydrogen...

  8. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    Science.gov (United States)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Aitken, Brian S. (Inventor)

    2012-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  9. Catalytic asymmetric fluorinations.

    Science.gov (United States)

    Bobbio, Carla; Gouverneur, Véronique

    2006-06-07

    The appearance of structurally diverse fluorinating reagents displaying a large spectrum of reactivity has been critical to the development of the catalytic asymmetric fluorination processes known to date. In this article, we discuss how this area of research emerged and which strategies have allowed for the successful development of both nucleophilic and electrophilic catalytic enantioselective fluorinations. We also present the fundamental understanding of catalytic activity and enantioselectivity for the most efficient processes and highlight the first synthetic application with the preparation of a complex fluorinated target.

  10. Rhodium-Catalyzed Asymmetric Hydrogenation of α,β-Unsaturated Carbonyl Compounds via Thiourea Hydrogen Bonding.

    Science.gov (United States)

    Wen, Jialin; Jiang, Jun; Zhang, Xumu

    2016-09-16

    The strategy of secondary interaction enables enantioselectivity for homogeneous hydrogenation. By introducing hydrogen bonding of substrates with thiourea from the ligand, α,β-unsaturated carbonyl compounds, such as amides and esters, are hydrogenated with high enantiomeric excess. The substrate scope for this chemical transformation is broad with various substituents at the β-position. Control experiments revealed that each unit of the ligand ZhaoPhos is irreplaceable. No nonlinear effect was observed for this Rh/ZhaoPhos-catalyzed asymmetric hydrogenation.

  11. Suitable ligands for homogeneous ruthenium-catalyzed hydrogenolysis of esters

    OpenAIRE

    Engelen, Marcel Chr. van; Teunissen, Herman T.; Vries, Johannes G. de; Elsevier, Cornelis J.

    2003-01-01

    Effective hydrogenolysis of dimethyl oxalate to ethylene glycol has been obtained using a catalyst prepared in situ from Ru(acac)3 with the facially coordinating tridentate phosphine ligand CH3C(CH2PPh2)3. This catalyst enabled full and selective conversion in 16 h at [S]/[Ru] = 500 at 80–100 bar hydrogen pressure at 120 °C. This catalyst is far more active than any known homogeneous catalyst able to hydrogenate dimethyl oxalate to ethylene glycol. Several mono-, di- and tridentate P- and N-l...

  12. G3-homogeneous gravitational instantons

    Energy Technology Data Exchange (ETDEWEB)

    Bourliot, F; Petropoulos, P M [Centre de Physique Theorique, CNRS-UMR 7644, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Estes, J [Laboratoire de Physique Theorique, CNRS-UMR 8549, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris cedex 05 (France); Spindel, Ph, E-mail: bourliot@cpht.polytechnique.f, E-mail: estes@cpht.polytechnique.f, E-mail: marios@cpht.polytechnique.f, E-mail: philippe.spindel@umons.ac.b [Service de Mecanique et Gravitation, Universite de Mons, 20 Place du Parc, 7000 Mons, Belgique (Belgium)

    2010-05-21

    We provide an exhaustive classification of self-dual four-dimensional gravitational instantons foliated with three-dimensional homogeneous spaces, i.e. homogeneous self-dual metrics on four-dimensional Euclidean spaces admitting a Bianchi simply transitive isometry group. The classification pattern is based on the algebra homomorphisms relating the Bianchi group and the duality group SO(3). New and general solutions are found for Bianchi III.

  13. G3-homogeneous gravitational instantons

    CERN Document Server

    Bourliot, F; Petropoulos, P M; Spindel, Ph

    2009-01-01

    We provide an exhaustive classification of self-dual four-dimensional gravitational instantons foliated with three-dimensional homogeneous spaces, i.e. homogeneous self-dual metrics on four-dimensional Euclidean spaces admitting a Bianchi simply transitive isometry group. The classification pattern is based on the algebra homomorphisms relating the Bianchi group and the duality group SO(3). New and general solutions are found for Bianchi III.

  14. Homogeneous nucleation of magnesium hydroxide.

    Science.gov (United States)

    Klein, D H; Smith, M D; Driy, J A

    1967-08-01

    The rate of homogeneous nucleation of magnesium hydroxide has been determined as a function of solution concentration, using a quasi-homogeneous precipitation technique and electronic particle counting. The nucleation rate becomes measurable at super-saturations of about 4, and is dependent on the 33rd power of the product aMgaOH(2). The experimental results are consistent with nucleation theory. The nucleus-solution interfacial energy is calculated to be 115 erg/cm(2).

  15. [Obtaining ribosome crystals in homogenates].

    Science.gov (United States)

    Bersani, F; Longo, I; Fanti, M; Pettazzoni, P

    1979-08-30

    Chick embryos are homogenized in order to analyse ribosome crystallization. Ribosome crystallization has been induced by hypothermic treatment in chick embryos homogenate. Tetramers and crystals were produced by gradually inducing the temperature over a span of 10 h to 4 degrees C. It has been observed that the concentration of KCl in the buffer is a critical point. It is suggested that the nuclear fraction is engaged in ribosome crystallization.

  16. Purdue Hydrogen Systems Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  17. Extremophile mediated hydrogen production for hydrogenation of substrates in aqueous media

    Science.gov (United States)

    Anjom, Mouzhgun

    Catalytic hydrogenation reactions are pervasive throughout our economy, from production of margarine as food, liquid fuels for transportation and chiral drugs such as L-DOPA. H2 production from non-fossil fuel feedstocks is highly desirable for transition to the "Hydrogen Economy". Also, the rates of hydrogenation reactions that involve a substrate, H 2 gas and a catalyst are often limited by the solubility of H2 in solvent. The present research thus envisioned designing water-soluble catalysts that could effectively utilize biologically produced H2 in a coupled system to hydrogenate substrates in homogeneous mode (two-phase system). Biological production of H2 as an end product or byproduct of the metabolism of organisms that operate under strict anaerobic conditions has been proposed. However, contrary to what was previously observed, Thermotoga neapolitana, belonging to the order of Thermotogales efficiently produces H2 gas under microaerobic conditions (Van Ooteghem et al. 2004). For H2 production by T. neapolitana in the bacterial growth medium (DSM 5068) at an optimum temperature of 70 C, our results in batch mode show that: (1) H2 was produced from glucose though with 16% efficiency, the rest goes to biomass production, (2) H2 gas was produced even when the cultures were inoculated under microaerobic conditions (up to 8% (v/v) O2) suggesting a protective mechanism for one or more [Fe-Fe] hydrogenases in T. neapolitana, (3) H2 production was pH dependent but addition of simple, non-toxic physiological buffering additives such as Methylene succinic acid increased H2 production and (4) H2 production rate varied linearly in the 100--6800 kPa pressure range. We then screened various water-soluble metal catalysts in batch mode and selected the RhCl3.3H2O/TPPTS (TPPTS is a water-soluble ligand) system that achieved 86% hydrogenation of Methylene succinic acid (an olefin) in an aqueous medium pressurized with preformed H2. When water was replaced with the DSM 5068

  18. Atomically Precise Metal Nanoclusters for Catalytic Application

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Rongchao [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-11-18

    works include: i) Effects of ligand, cluster charge state, and size on the catalytic reactivity in CO oxidation, semihydrogenation of alkynes; ii) Size-controlled synthesis of Au-n clusters and structural elucidation; iii) Catalytic mechanisms and correlation with structures of cluster catalyst; iv) Catalytic properties of Au nanorods in chemoselective hydrogenation of nitrobenzaldehyde and visible light driven photocatalytic reactions.

  19. A Dynamic Supramolecular System Exhibiting Substrate Selectivity in the Catalytic Epoxidation of Olefins

    DEFF Research Database (Denmark)

    Jonsson, Stefan; Odille, Fabrice G. J.; Norrby, Per-Ola

    2005-01-01

    A dynamic supramolecular system involving hydrogen bonding between a Mn(III) salen catalyst and a Zn(II) porphyrin receptor exhibits selectivity for pyridine appended cis-beta-substituted styrene derivatives over phenyl appended derivatives in a catalytic epoxidation reaction.......A dynamic supramolecular system involving hydrogen bonding between a Mn(III) salen catalyst and a Zn(II) porphyrin receptor exhibits selectivity for pyridine appended cis-beta-substituted styrene derivatives over phenyl appended derivatives in a catalytic epoxidation reaction....

  20. Catalytic distillation process

    Science.gov (United States)

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  1. Modeling the active site of [FeFe]-hydrogenase: Electro-catalytic ...

    Indian Academy of Sciences (India)

    Electro-catalytic hydrogen evaluation studies (from acetic acid) have been performed using com- pounds 1–6 as electro-catalysts. The mechanistic aspects of relevant electro–catalytic proton reductions have been discussed in detail. Keywords. Modeling the active site; [FeFe]-hydrogenase; spectroscopy; electrocatalytic ...

  2. Catalytic distillation structure

    Science.gov (United States)

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  3. Hydrogen production by electrolysis of a phosphate solution on a stainless steel cathode

    Energy Technology Data Exchange (ETDEWEB)

    De Silva Munoz, Leonardo; Bergel, Alain; Basseguy, Regine [Laboratoire de Genie Chimique (CNRS-Universite de Toulouse), 4 allee Emile Monso, 31432 Toulouse cedex 4 (France); Feron, Damien [Service de la Corrosion et du Comportement des Materiaux dans leur Environnement, CEA-Saclay, 91191 GIF-SUR-YVETTE Cedex (France)

    2010-08-15

    The catalytic properties of phosphate species, already shown on the reduction reaction in anaerobic corrosion of steels, are exploited here for hydrogen production. Phosphate species work as a homogeneous catalyst that enhances the cathodic current at mild pH values. A voltammetric study of the hydrogen evolution reaction is performed using phosphate solutions at different concentrations on 316L stainless steel and platinum rotating disk electrodes. Then, hydrogen is produced in an electrolytic cell using a phosphate solution as the catholyte. Results show that 316L stainless steel electrodes have a stable behaviour as cathodes in the electrolysis of phosphate solutions. Phosphate (1 M, pH 4.0/5.0) as the catholyte can equal the performance of a KOH 25%w solution with the advantage of working at mild pH values. The use of phosphate and other weak acids as catalysts of the hydrogen evolution reaction could be a promising technology in the development of electrolysis units that work at mild pH values with low-cost electrodes and construction materials. (author)

  4. Hydrogen storage via polyhydride complexes

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.M. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    Polyhydride metal complexes are being developed for application to hydrogen storage. Complexes have been found which catalyze the reversible hydrogenation of unsaturated hydrocarbons. This catalytic reaction could be the basis for a low temperature, hydrogen storage system with a available hydrogen density greater than 7 weight percent. The P-C-P pincer complexes, RhH{sub 2}(C{sub 6}H{sub 3}-2,6-(CH{sub 2}PBu{sup t}{sub 2}){sub 2}) and IrH{sub 2}(C{sub 6}H{sub 3}-2,6-(CH{sub 2}PBu{sup t}{sub 2}){sub 2}) have unprecedented, long term stability at elevated temperatures. The novel iridium complex catalyzes the transfer dehydrogenation of cycloctane to cyclooctene at the rate of 716 turnovers/h which is 2 orders of magnitude greater than that found for previously reported catalytic systems which do not require the sacrificial hydrogenation of a large excess of hydrogen acceptor.

  5. Catalytically stabilized combustion of lean methane-air-mixtures: a numerical model

    Energy Technology Data Exchange (ETDEWEB)

    Dogwiler, U.; Benz, P.; Mantharas, I. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The catalytically stabilized combustion of lean methane/air mixtures has been studied numerically under conditions closely resembling the ones prevailing in technical devices. A detailed numerical model has been developed for a laminar, stationary, 2-D channel flow with full heterogeneous and homogeneous reaction mechanisms. The computations provide direct information on the coupling between heterogeneous-homogeneous combustion and in particular on the means of homogeneous ignitions and stabilization. (author) 4 figs., 3 refs.

  6. Volatile loss during homogenization of lunar melt inclusions

    Science.gov (United States)

    Ni, Peng; Zhang, Youxue; Guan, Yunbin

    2017-11-01

    Volatile abundances in lunar mantle are critical factors to consider for constraining the model of Moon formation. Recently, the earlier understanding of a ;dry; Moon has shifted to a fairly ;wet; Moon due to the detection of measurable amount of H2O in lunar volcanic glass beads, mineral grains, and olivine-hosted melt inclusions. The ongoing debate on a ;dry; or ;wet; Moon requires further studies on lunar melt inclusions to obtain a broader understanding of volatile abundances in the lunar mantle. One important uncertainty for lunar melt inclusion studies, however, is whether the homogenization of melt inclusions would cause volatile loss. In this study, a series of homogenization experiments were conducted on olivine-hosted melt inclusions from the sample 74220 to evaluate the possible loss of volatiles during homogenization of lunar melt inclusions. Our results suggest that significant loss of H2O could occur even during minutes of homogenization, while F, Cl and S in the inclusions remain unaffected. We model the trend of H2O loss in homogenized melt inclusions by a diffusive hydrogen loss model. The model can reconcile the observed experimental data well, with a best-fit H diffusivity in accordance with diffusion data explained by the ;slow; mechanism for hydrogen diffusion in olivine. Surprisingly, no significant effect for the low oxygen fugacity on the Moon is observed on the diffusive loss of hydrogen during homogenization of lunar melt inclusions under reducing conditions. Our experimental and modeling results show that diffusive H loss is negligible for melt inclusions of >25 μm radius. As our results mitigate the concern of H2O loss during homogenization for crystalline lunar melt inclusions, we found that H2O/Ce ratios in melt inclusions from different lunar samples vary with degree of crystallization. Such a variation is more likely due to H2O loss on the lunar surface, while heterogeneity in their lunar mantle source is also a possibility. A

  7. Appreciating Formal Similarities in the Kinetics of Homogeneous, Heterogeneous, and Enzyme Catalysis

    Science.gov (United States)

    Ashby, Michael T.

    2007-01-01

    Because interest in catalysts is widespread, the kinetics of catalytic reactions have been investigated by widely diverse groups of individuals, including chemists, engineers, and biologists. This has lead to redundancy in theories, particularly with regard to the topics of homogeneous, heterogeneous, and enzyme catalysis. From a pedagogical…

  8. Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles.

    Science.gov (United States)

    Witham, Cole A; Huang, Wenyu; Tsung, Chia-Kuang; Kuhn, John N; Somorjai, Gabor A; Toste, F Dean

    2010-01-01

    A continuing goal in catalysis is to unite the advantages of homogeneous and heterogeneous catalytic processes. To this end, nanoparticles represent a new frontier in heterogeneous catalysis, where this unification can also be supplemented by the ability to obtain new or divergent reactivity and selectivity. We report a novel method for applying heterogeneous catalysts to known homogeneous catalytic reactions through the design and synthesis of electrophilic platinum nanoparticles. These nanoparticles are selectively oxidized by the hypervalent iodine species PhICl(2), and catalyse a range of π-bond activation reactions previously only catalysed through homogeneous processes. Multiple experimental methods are used to unambiguously verify the heterogeneity of the catalytic process. The discovery of treatments for nanoparticles that induce the desired homogeneous catalytic activity should lead to the further development of reactions previously inaccessible in heterogeneous catalysis. Furthermore, a size and capping agent study revealed that Pt PAMAM dendrimer-capped nanoparticles demonstrate superior activity and recyclability compared with larger, polymer-capped analogues.

  9. The Power of High-Throughput Experimentation in Homogeneous Catalysis Research for Fine Chemicals

    NARCIS (Netherlands)

    Vries, Johannes G. de; Vries, André H.M. de

    2003-01-01

    The use of high-throughput experimentation (HTE) in homogeneous catalysis research for the production of fine chemicals is an important breakthrough. Whereas in the past stoichiometric chemistry was often preferred because of time-to-market constraints, HTE allows catalytic solutions to be found

  10. A graphene-based smart catalytic system with superior catalytic performances and temperature responsive catalytic behaviors.

    Science.gov (United States)

    Qi, Junjie; Lv, Weipeng; Zhang, Guanghui; Li, Yang; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2013-07-21

    We have successfully developed a unique graphene-based smart catalytic system which consists of the graphene supported Au-Pt bimetallic nanocatalyst with a well-defined core-shell structure and a dextran-based temperature-responsive polymer. The unique catalytic system possesses excellent catalytic performances and the catalytic activities could be readily switched on or off at different temperature windows.

  11. Genetic Homogenization of Composite Materials

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper is focused on numerical studies of electromagnetic properties of composite materials used for the construction of small airplanes. Discussions concentrate on the genetic homogenization of composite layers and composite layers with a slot. The homogenization is aimed to reduce CPU-time demands of EMC computational models of electrically large airplanes. First, a methodology of creating a 3-dimensional numerical model of a composite material in CST Microwave Studio is proposed focusing on a sufficient accuracy of the model. Second, a proper implementation of a genetic optimization in Matlab is discussed. Third, an association of the optimization script and a simplified 2-dimensional model of the homogeneous equivalent model in Comsol Multiphysics is proposed considering EMC issues. Results of computations are experimentally verified.

  12. Low severity coal conversion by ionic hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J.W.; Maioriello, J.; Cheng, J.C.

    1990-08-17

    The work accomplished in this project will be reported in two parts. Part one will focus on the development of catalytic ionic hydrogenation reactions utilizing a transition metal-H{sub 2} complex as the hydride donor and BF{sub 3}:H{sub 2}O as proton donor. This part reports the results of prelimiary work leading to the development of a new catalytic ionic hydrogenation system (MeCN){sub 2}PtCl{sub 2}/H{sub 2}/BF{sub 3}: H{sub 2}O. The results from some of this work have been published and the paper is included as the appendix. The second part focuses on the newly developed catalytic and other well characterized ionic hydrogenation reactions applied to lignites (Beulah-Zap), sub-bitumiuous (Wyodak), and bituminous coals (Pittsburgh {number sign}8). 19 refs., 10 tabs.

  13. Highly active iridium catalyst for hydrogen production from formic acid

    Institute of Scientific and Technical Information of China (English)

    Ying Du; Yang-Bin Shen; Yu-Lu Zhan; Fan-Di Ning; Liu-Ming Yan; Xiao-Chun Zhou

    2017-01-01

    Formic acid (FA) dehydrogenation has attracted a lot of attentions since it is a convenient method for H2 production.In this work,we designed a self-supporting fuel cell system,in which H2 from FA is supplied into the fuel cell,and the exhaust heat from the fuel cell supported the FA dehydrogenation.In order to realize the system,we synthesized a highly active and selective homogeneous catalyst IrCp*Cl2bpym for FA dehydrogenation.The turnover frequency (TOF) of the catalyst for FA dehydrogenation is as high as 7150 h-1 at 50 ℃,and is up to 144,000 h-1 at 90 ℃.The catalyst also shows excellent catalytic stability for FA dehydrogenation after several cycles of test.The conversion ratio of FA can achieve 93.2%,and no carbon monoxide is detected in the evolved gas.Therefore,the evolved gas could be applied in the proton exchange membrane fuel cell (PEMFC) directly.This is a potential technology for hydrogen storage and generation.The power density of the PEMFC driven by the evolved gas could approximate to that using pure hydrogen.

  14. Recent Advances in the Application of Magnetic Nanoparticles as a Support for Homogeneous Catalysts

    Directory of Open Access Journals (Sweden)

    Joseph Govan

    2014-04-01

    Full Text Available Magnetic nanoparticles are a highly valuable substrate for the attachment of homogeneous inorganic and organic containing catalysts. This review deals with the very recent main advances in the development of various nanocatalytic systems by the immobilisation of homogeneous catalysts onto magnetic nanoparticles. We discuss magnetic core shell nanostructures (e.g., silica or polymer coated magnetic nanoparticles as substrates for catalyst immobilisation. Then we consider magnetic nanoparticles bound to inorganic catalytic mesoporous structures as well as metal organic frameworks. Binding of catalytically active small organic molecules and polymers are also reviewed. After that we briefly deliberate on the binding of enzymes to magnetic nanocomposites and the corresponding enzymatic catalysis. Finally, we draw conclusions and present a future outlook for the further development of new catalytic systems which are immobilised onto magnetic nanoparticles.

  15. Novel relationship between hydroxyl radical initiation and surface group of ceramic honeycomb supported metals for the catalytic ozonation of nitrobenzene in aqueous solution.

    Science.gov (United States)

    Zhao, Lei; Sun, Zhizhong; Ma, Jun

    2009-06-01

    Comparative experiments have been performed to investigate the degradation efficiency of nitrobenzene and the removal efficiency of TOC in aqueous solution bythe processes of ceramic honeycomb supported different metals (Fe, Ni, and Zn) catalytic ozonation, indicating that the modification with metals can enhance the activity of ceramic honeycomb for the catalytic ozonation of nitrobenzene, and the loading percentage of metal and the metallicity respectively presents a positive influence on the degradation of nitrobenzene. The degradation efficiency of nitrobenzene is determined by the initiation of hydroxyl radical (*OH) according to a good linear correlation in all the processes of modified ceramic honeycomb catalytic ozonation at the different loading percentages of metals. The modification of ceramic honeycomb with metals results in the conversion of the pH at the point of zero charge (pHpzc) and the evolution of surface groups. Divergence from the conventional phenomenon, the enhancement mechanism of ozone decomposition on the modified ceramic honeycomb with metals is proposed due to the basic attractive forces of electrostatic forces or/and hydrogen bonding. Consequently, a novel relationship between the initiation of *OH and the surface-OH2+ group on the modified catalyst is established based on the synergetic effect between homogeneous and heterogeneous reaction systems.

  16. Effect of Manganese Additive on the Improvement of Low-Temperature Catalytic Activity of VO(x)-WO(x)/TiO2 Nanoparticles for Chlorobenzene Combustion.

    Science.gov (United States)

    He, Fei; Chen, Chunxiao; Liu, Shantang

    2016-06-01

    In this study, V-W/TiO2, Mn-V-W/TiO2 and Mn-W/TiO2 nanoparticles were prepared by homogeneous precipitation method and investigated for the catalytic combustion of chlorobenzene (CB), which was used as a model compound of chlorinated volatile organic compounds (CVOCs). The samples were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, transmission electron microscope (TEM) and hydrogen temperature-programed reduction (H2-TPR). The average size of the nanoparticles was -20 nm. Manganese species were evenly distributed on the surface of the V-W/TiO2 catalyst, and a small amount of manganese addition did not affect the crystal form, crystallinity and morphology of the V-W/TiO2 catalyst. In addition, low-temperature catalytic activity of V-W/TiO2 catalysts could be effectively improved. When the molar ratio of Mn/(Mn + V) was 0.25 or 0.4, the catalyst displayed the highest low-temperature activity. This was possibly due to Mn (VO3)x formed by the reaction of manganese and vanadium species. Meanwhile, we also found that the addition of oxalic acid was benefit to the improvement of the catalytic activities. When manganese content was high, such as Mn (0.75) VW/Ti, the catalyst activity declined seriously, and the reason was also discussed.

  17. Hydrogen Production by Catalytic Partial Oxidation of Coke Oven Gas in BaCo0.7Fe0.3-xZrxO3-δ Ceramic Membrane Reactors

    Directory of Open Access Journals (Sweden)

    Yao Weilin

    2016-01-01

    Full Text Available The BaCo0.7Fe0.3-xZrxO3-δ (BCFZ, x = 0.04–0.12 mixed ionic–electronic conducting (MIEC membranes were synthesized with a sol–gel method and evaluated as potential membrane reactor materials for the partial oxidation of coke oven gas (COG. The effect of zirconium content on the phase structure, microstructure and performance of the BCFZ membrane under He or COG atmosphere were systemically investigated. The BaCo0.7Fe0.24Zr0.06O3-δ membrane exhibited the best oxygen permeability and good operation stability, which could be a potential candidate of the membrane materials for hydrogen production through the partial oxidation of COG.

  18. Catalytic effect of monoclinic WO{sub 3}, hexagonal WO{sub 3} and H{sub 0.23}WO{sub 3} on the hydrogen sorption properties of Mg

    Energy Technology Data Exchange (ETDEWEB)

    Tonus, Florent; Bobet, Jean-Louis [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac F-33608 (France); Fuster, Valeria; Urretavizcaya, Guillermina; Castro, Facundo J. [Centro Atomico Bariloche (CNEA, CONICET), Instituto Balseiro (UNCUYO), Av. Bustillo 9500, San Carlos de Bariloche (Argentina)

    2009-05-15

    The H sorption properties of mixtures Mg + WO{sub 3} (having various structures) and Mg + H{sub 0.23}WO{sub 3} are reported. First, the higher conversion of Mg into MgH{sub 2} during reactive mechanical grinding (under 1.1 MPa of H{sub 2}) for higher WO{sub 3} content is due to the improvement of the milling efficiency. Then, it is shown that the hydrogen absorption properties are almost independent of the crystal structure of the catalyst and that only the particles' size and the specific surface play a major role. Finally, for the desorption process, it appears that the chemical composition and structure of the catalyst, together with the particle size and specific surface have an effect. (author)

  19. Nanocarbons for Catalytic Desulfurization.

    Science.gov (United States)

    Gu, Qingqing; Lin, Yangming; Heumann, Saskia; Su, Dangsheng

    2017-08-24

    Nanocarbon catalysts are green and sustainable alternatives to metal-based catalysts for numerous catalytic transformations. The application of nanocarbons for environmental catalysis is an emerging research discipline and has undergone rapid development in recent years. In this focus review, we provide a critical analysis of state-of-the-art nanocarbon catalysts for three different catalytic desulfurization processes. In particular, we focus on the advantages and limitations as well as the reaction mechanisms of the nanocarbon catalysts at the molecular level. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hydrophilic pyrazine-based phosphane ligands: synthesis and application in asymmetric hydride transfer and H2-hydrogenation of acetophenone

    NARCIS (Netherlands)

    Nikishkin, N.; Huskens, Jurriaan; Verboom, Willem

    2013-01-01

    Pyrazine-based hydrophilic phosphanes are useful ligands for the ruthenium- and rhodium-catalyzed hydrogenations of acetophenone under hydride transfer and dihydrogen conditions. The effect of alcohol additives on the catalytic, enantioselective aqueous hydrogenation of acetophenone is examined with

  1. The Influence of Palladium on the Structure and Catalytic Activity of ...

    African Journals Online (AJOL)

    NJD

    nations exhausted from motor vehicles, catalytic converters are the industry's standard technology.1 Therefore, the ... two portions, one portion was reduced in 10 % hydrogen balanced with nitrogen gas at 850 °C for 1 h, ... hydrogen were carried out at 400 °C. Energy regions of the photoelectrons were scanned at a pass ...

  2. Hydrogen Generator

    Science.gov (United States)

    1983-01-01

    A unit for producing hydrogen on site is used by a New Jersey Electric Company. The hydrogen is used as a coolant for the station's large generator; on-site production eliminates the need for weekly hydrogen deliveries. High purity hydrogen is generated by water electrolysis. The electrolyte is solid plastic and the control system is electronic. The technology was originally developed for the Gemini spacecraft.

  3. Synthesis of propylene carbonate from urea and propylene glycol over zinc oxide: A homogeneous reaction

    Directory of Open Access Journals (Sweden)

    Dengfeng Wang

    2014-11-01

    Full Text Available In this work, several metal oxides and zinc salts were used to catalyze propylene carbonate (PC synthesis from urea and propylene glycol (PG. According to the results of catalytic test and characterization, the catalytic pattern of ZnO was different from that of other metal oxides such as CaO, MgO and La2O3, but similar to that of zinc salts. In fact, the leaching of Zn species took place during reaction for ZnO. And ZnO was found to be the precursor of homogenous catalyst for reaction of urea and PG. Thus, the relationship between the amount of dissolved zinc species and the catalytic performance of employed ZnO was revealed. In addition, a possible reaction mechanism over ZnO was discussed based on the catalytic runs and the characterization of XRD, FTIR, and element analysis.

  4. Hydrogen Production on Ag-Pd/TiO2 Bimetallic Catalysts: Is there a Combined Effect of Surface Plasmon Resonance with Schottky Mechanism on the Photo-Catalytic Activity?

    KAUST Repository

    Nadeem, Muhammad A.

    2017-03-28

    Despite many observations that plasmonics can enhance photocatalytic reactions, their relative role in the overall reaction rate is not thoroughly investigated. Here we report that silver nanoparticles contribution in the reaction rate by its plasmonic effect is negligible when compared to that of Pd (Schottky effect). To conduct the study a series of Ag−Pd/TiO2 catalysts have been prepared, characterized and tested for H2 production from water in the presence of an organic sacrificial agent. Pd was chosen as a standard high work function metal needed for the Schottky junction to pump away electrons from the conduction band of the semiconductor and Ag (whose work function is ca. 1 eV lower than that of Pd) for its high plasmonic resonance response at the edge of the bandgap of TiO2. While H2 production rates showed linear dependency on plasmonic response of Ag in the Pd−Ag series, the system performed less than that of pure Pd. In other words, the plasmonic contribution of Ag in the Ag−Pd/TiO2 catalyst for hydrogen production, while confirmed using different excitation energies, is small. Therefore, the “possible” synergistic effect of plasmonic (in the case of Ag) and Schottky-mechanism (in the case of Pd) is minor when compared to that of Schottky-effect alone.

  5. CATALYTIC KINETIC SPECTROPHOTOMETRIC DETERMINATION ...

    African Journals Online (AJOL)

    Based on the property that in 0.12 M sulfuric acid medium titanium(IV) catalyzes the discoloring reaction of DBS-arsenazo oxidized by potassium bromate, a new catalytic kinetic spectrophotometric method for the determination of trace titanium (IV) was developed. The linear range of the determination of titanium is

  6. CATALYTIC KINETIC SPECTROPHOTOMETRIC DETERMINATION ...

    African Journals Online (AJOL)

    Preferred Customer

    Research Center for Nanotechnology, Changchun University of Science and Technology,. Changchun 130022 ... Although catalytic kinetic spectrophotometry has been used in the determination of copper, the selectivity ... In this paper CPApA was used as the chromogenic agent, H2O2 as the oxidant, Cu(II) as the catalyst.

  7. Catalytic properties of Caucasian zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Kostandyan, M.N.; Babayan, S.G.; Musaev, M.R.; Mirzoeva, K.G.

    1985-09-01

    Great deposits of natural zeolites have been discovered in the Caucasus which can be used in various fields of the economy. One promising direction of using them may be the field of petrochemistry. The results of research on the conversion of 1-hexanol in natural zeolites in the Caucasus have been reported previously. This work was carried out in order to obtain comparative data on the catalytic activity of zeolites from the following deposits: Novyy Kokhb in Armenia, Ay-Dag in Azerbaijan, and Khekordzula in Georgia. This established that without any preliminary chemical treatment these zeolites are good catalysts for the dehydration of primary hexyl alcohol and the isomerization of the l-hexene obtained into 2-hexene. The activity of all three catalysts is almost identical. Continuing the research in this direction, the conversion of cyclohexanol in the same natural zeolites has been studied. The conditions for carrying out the experiments and methodology of obtaining the reaction products are presented. The data obtained show that the degree of dehydration of cyclohexanol at low temperatures (250-350/sup 0/C) is significantly greater than the degree of dehydration of 1-hexanol. The dehydration is accompanied by skeletal isomerization into 1- and 3-methylcyclopentenes (a total of 3%). At high temperatures (400-450/sup 0/), along with an increased degree of isomerization of cyclohexene into methocyclopentenes, the formation of methylcyclopentane is observed as a result of the redistribution of hydrogen and coke on the catalysts. 1 reference.

  8. Homogeneous and heterogeneous catalysts of Fe3+, Co2+ and Cu2+ for the degradation of methyl parathion in diluted aqueous medium

    Directory of Open Access Journals (Sweden)

    Cindy A. Vela-Monroy

    2016-07-01

    Full Text Available Degradation of pesticides (plaguicides, herbicides, fungicides, among others in aqueous media is a subject of great importance for ensuring the water quality into numerous hydric sources. This work reports the assessment of homogeneous (metal ion solutions and heterogeneous (oxides supported on alumina systems that are based on Fe3+, Co2+ y Cu2+, which were used as catalysts for oxidation (degradation of methyl parathion (a plaguicide in aqueous solution. Hydrogen peroxide was herein used as oxidizing molecule under mild condition of reaction (25 ºC and atmospheric pressure. The solids were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM. Fe3+/H2O2 (Fenton system was the most active homogeneous catalyst compared to Co2+/H2O2 and Cu2+/H2O2 systems. Solids catalysts such as cobalt, copper or iron oxides as well as mixed oxides supported on alumina were active at pH close to neutrality. Fe-Co-Cu/Al2O3, Co-Cu/Al2O3 and FeCo/Al2O3 mixed systems were solids with the highest catalytic activity. In addition, an important effect of the support (-Al2O3 on the reaction pH was observed, allowing to reach values close to that of the neutrality, and thus increasing the catalytic activity of both cobalt oxide and copper oxide species. These results allow advancing on a new pathway for searching catalysts to remove organophosphorous pesticides from residual waters.

  9. Geometry of Homogeneous Bounded Domains

    CERN Document Server

    Vesentini, E

    2011-01-01

    This title includes: S.G. Gindikin, I.I. Pjateckii-Sapiro, E.B. Vinberg: Homogeneous Kahler manifolds; S.G. Greenfield: Extendibility properties of real submanifolds of Cn; W. Kaup: Holomorphische Abbildungen in Hyperbolische Raume; A. Koranyi: Holomorphic and harmonic functions on bounded symmetric domains; J.L. Koszul: Formes harmoniques vectorielles sur les espaces localement symetriques; S. Murakami: Plongements holomorphes de domaines symetriques; and E.M. Stein: The analogues of Fatous' theorem and estimates for maximal functions.

  10. Catalytic oxidation of sulfide ions over nickel hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.; Khristov, P. [Institute of Catalysis, Bulgarian Academy of Sciences, Sofia (Bulgaria); Losev, A. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia (Bulgaria)

    1996-01-18

    The catalytic sulfide ion oxidation by oxygen to elemental sulfur over {beta}-Ni(OH){sub 2} and LiNiO{sub 2} has been studied. As a result of experimental investigation performed, a reaction mechanism is suggested which involves heterogeneous and homogeneous processes. Dioxygen activation in the heterogeneous process proceeds via a redox Ni{sup 2+} <-> Ni{sup 3+} transition and participation of OH{sup -} groups. The active HO{sup -}{sub 2} species thus formed carries on the reaction in homogeneous phase. Nickel hydroxides are promising catalysts for practical application

  11. Thiol accumulation and cysteine desulfhydrase activity in H2S-fumigated leaves and leaf homogenates of cucurbit plants

    NARCIS (Netherlands)

    Schütz, Bärbel; De Kok, Luit J.; Rennenberg, Heinz

    Fumigation of both, cucurbit plants and cucurbit leaf homogenates with hydrogen sulfide (H2S) resulted in an increase in soluble thiol, mainly glutathione and cysteine. In leaf homogenates this increase was counteracted or prevented by the addition at 1 mM of inhibitors of pyridoxalphosphate

  12. Hydrogen Bonds and Life in the Universe.

    Science.gov (United States)

    Vladilo, Giovanni; Hassanali, Ali

    2018-01-03

    The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a "covalent-bond stage" to a "hydrogen-bond stage" in prebiotic chemistry.

  13. Porous protein crystals as catalytic vessels for organometallic complexes.

    Science.gov (United States)

    Tabe, Hiroyasu; Abe, Satoshi; Hikage, Tatsuo; Kitagawa, Susumu; Ueno, Takafumi

    2014-05-01

    Porous protein crystals, which are protein assemblies in the solid state, have been engineered to form catalytic vessels by the incorporation of organometallic complexes. Ruthenium complexes in cross-linked porous hen egg white lysozyme (HEWL) crystals catalyzed the enantioselective hydrogen-transfer reduction of acetophenone derivatives. The crystals accelerated the catalytic reaction and gave different enantiomers based on the crystal form (tetragonal or orthorhombic). This method represents a new approach for the construction of bioinorganic catalysts from protein crystals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Florida Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety

  15. Ammonia for hydrogen storage: challenges and opportunities

    DEFF Research Database (Denmark)

    Klerke, Asbjørn; Christensen, Claus H.; Nørskov, Jens Kehlet

    2008-01-01

    and alcohols, it has the advantage that there is no CO2 emission at the end user. The drawbacks are mainly the toxicity of liquid ammonia and the problems related to trace amounts of ammonia in the hydrogen after decomposition. Storage of ammonia in metal ammine salts is discussed, and it is shown......The possibility of using ammonia as a hydrogen carrier is discussed. Compared to other hydrogen storage materials, ammonia has the advantages of a high hydrogen density, a well-developed technology for synthesis and distribution, and easy catalytic decomposition. Compared to hydrocarbons...... that this maintains the high volumetric hydrogen density while alleviating the problems of handling the ammonia. Some of the remaining challenges for research in ammonia as a hydrogen carrier are outlined....

  16. Tension-Enhanced Hydrogen Evolution Reaction on Vanadium Disulfide Monolayer

    Science.gov (United States)

    Pan, Hui

    2016-02-01

    Water electrolysis is an efficient way for hydrogen production. Finding efficient, cheap, and eco-friendly electrocatalysts is essential to the development of this technology. In the work, we present a first-principles study on the effects of tension on the hydrogen evolution reaction of a novel electrocatalyst, vanadium disulfide (VS2) monolayer. Two electrocatalytic processes, individual and collective processes, are investigated. We show that the catalytic ability of VS2 monolayer at higher hydrogen coverage can be efficiently improved by escalating tension. We find that the individual process is easier to occur in a wide range of hydrogen coverage and the collective process is possible at a certain hydrogen coverage under the same tension. The best hydrogen evolution reaction with near-zero Gibbs free energy can be achieved by tuning tension. We further show that the change of catalytic activity with tension and hydrogen coverage is induced by the change of free carrier density around the Fermi level, that is, higher carrier density, better catalytic performance. It is expected that tension can be a simple way to improve the catalytic activity, leading to the design of novel electrocatalysts for efficient hydrogen production from water electrolysis.

  17. Isotopic exchange between molecular hydrogen and liquid ammonia catalysed by alkali amides; Echange isotopique entre l'hydrogene moleculaire et l'ammoniac liquide catalyse par les amidures alcalins

    Energy Technology Data Exchange (ETDEWEB)

    Delmas, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-06-15

    The catalytic action of alkali amides on the isotopic exchange between hydrogen and liquid ammonia has been reinvestigated. It was clear before this work that the reaction is homogeneous and first order with respect to the concentration of dissolved hydrogen, but the nature of the catalytic species was still subject to discussion. On one hand new precise kinetic measurements have been made with sodium, potassium, rubidium and cesium amide. On the other hand, the dissociation of these salts has been calculated with the help of the FUOSS-ONSAGER equation. If the rate of exchange is plotted as a function of the concentration of the free amide ion, a linear relationship is obtained. In our experimental conditions, primary salt effects are negligible and the concentration has to be used in the rate equations. This shows that only the free amide ion is acting as a catalytic species. Experiments on common ion effects and secondary salt effects support this conclusion. The results are in agreement with an associative mechanism. (author) [French] Une nouvelle etude de l'echange isotopique entre l'hydrogene et l'ammoniac liquide catalyse par les amidures alcalins a ete effectuee. II etait bien etabli avant le present travail que la reaction etait homogene et que sa vitesse etait du premier ordre par rapport a la concentration d'hydrogene dissous, mais la nature de l'espece catalytique etait encore controversee. De nouvelles mesures cinetiques precises ont ete faites avec les amidures de sodium, de potassium, de rubidium et de cesium. D'autre part, la dissociation de ces sels a ete calculee a l'aide de l'equation de FUOSS-ONSAGER. On constate que la vitesse d'echange est proportionnelle a la concentration de l'ion amidure libre. Dans nos conditions experimentales, les effets de sel primaires sont negligeables, l'equation de vitesse doit s'exprimer simplement en fonction des concentrations. Ceci indique que l

  18. Catalytic Desulfurization of Benzothiophene Using Keggin Type Polyoxometalates as Catalyst

    Directory of Open Access Journals (Sweden)

    Aldes Lesbani

    2015-01-01

    Full Text Available Performance of catalytic desulfurization of benzothiophen (BT was studied using polyoxometalates as catalyst. Polyoxometalates H3[a-PW12O40] and H4[a-SiW12O40], have different heteroatom in Keggin structure and catalytic activities. Polyoxometalates H3[a-PW12O40] and H4[a-SiW12O40] have high crystallinity with homogeneous distribution particles. Desulfurization of BT using polyoxometalates H3[a-PW12O40] and H4[a-SiW12O40] resulted % conversion up to 99% for 3 h reaction time and at temperature 40 oC. Application of polyoxometalates H3[a-PW12O40] and H4[a-SiW12O40] for crude oil desulfurization showed % conversion of 4-88%. The main functional groups of polyoxometalates still retained after catalytic desulfurization indicated the stability of polyoxometalate compounds

  19. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  20. Homogenization in chemical reactive flows

    Directory of Open Access Journals (Sweden)

    Carlos Conca

    2004-03-01

    Full Text Available This paper concerns the homogenization of two nonlinear models for chemical reactive flows through the exterior of a domain containing periodically distributed reactive solid grains (or reactive obstacles. In the first model, the chemical reactions take place on the walls of the grains, while in the second one the fluid penetrates the grains and the reactions take place therein. The effective behavior of these reactive flows is described by a new elliptic boundary-value problem containing an extra zero-order term which captures the effect of the chemical reactions.

  1. Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol

    DEFF Research Database (Denmark)

    Alberico, E.; Nielsen, Martin

    2015-01-01

    The possibility to implement both the exhaustive dehydrogenation of aqueous methanol to hydrogen and CO2 and the reverse reaction, the hydrogenation of CO2 to methanol and water, may pave the way to a methanol based economy as part of a promising renewable energy system. Recently, homogeneous...

  2. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  3. Designing supported palladium-on-gold bimetallic nano-catalysts for controlled hydrogenation of acetylene in large excess of ethylene

    Science.gov (United States)

    Malla, Pavani

    Ethylene is used as a starting point for many chemical intermediates in the petrochemical industry. It is predominantly produced through steam cracking of higher hydrocarbons (ethane, propane, butane, naphtha, and gas oil). During the cracking process, a small amount of acetylene is produced as a side product. However, acetylene must be removed since it acts as a poison for ethylene polymerization catalysts at even ppm concentrations (>5 ppm). Thus, the selective hydrogenation of acetylene to ethylene is an important process for the purification of ethylene. Conventional, low weight loading Pd catalysts are used for this selective reaction in high concentration ethylene streams. Gold was initially considered to be catalytically inactive for a long time. This changed when gold was seen in the context of the nanometric scale, which has indeed shown it to have excellent catalytic activity as a homogeneous or a heterogeneous catalyst. Gold is proved to have high selectivity to ethylene but poor at conversion. Bimetallic Au and Pd catalysts have exhibited superior activity as compared to Pd particles in semi-hydrogenation. Hydrogenation of acetylene was tested using this bimetallic combination. The Pd-on-Au bimetallic catalyst structure provides a new synthesis approach in improving the catalytic properties of monometallic Pd materials. TiO 2 as a support material and 0.05%Pd loading on 1%Au on titania support and used different treatment methods like washing plasma and reduction between the two metal loadings and was observed under 2:1 ratio. In my study there were two set of catalysts which were prepared by a modified incipient wetness impregnation technique. Out of all the reaction condition the catalyst which was reduced after impregnating gold and then impregnating palladium which was further treated in non-thermal hydrogen plasma and then pretreated in hydrogen till 250°C for 1 hour produced the best activity of 76% yield at 225°C. Stability tests were conducted

  4. Towards a rational design of ruthenium CO2 hydrogenation catalysts by Ab initio metadynamics.

    Science.gov (United States)

    Urakawa, Atsushi; Iannuzzi, Marcella; Hutter, Jürg; Baiker, Alfons

    2007-01-01

    Complete reaction pathways relevant to CO2 hydrogenation by using a homogeneous ruthenium dihydride catalyst ([Ru(dmpe)2H2], dmpe=Me2PCH2CH2PMe2) have been investigated by ab initio metadynamics. This approach has allowed reaction intermediates to be identified and free-energy profiles to be calculated, which provide new insights into the experimentally observed reaction pathway. Our simulations indicate that CO2 insertion, which leads to the formation of formate complexes, proceeds by a concerted insertion mechanism. It is a rapid and direct process with a relatively low activation barrier, which is in agreement with experimental observations. Subsequent H2 insertion into the formate--Ru complex, which leads to the formation of formic acid, instead occurs via an intermediate [Ru(eta2-H2)] complex in which the molecular hydrogen coordinates to the ruthenium center and interacts weakly with the formate group. This step has been identified as the rate-limiting step. The reaction completes by hydrogen transfer from the [Ru(eta2-H2)] complex to the formate oxygen atom, which forms a dihydrogen-bonded Ru--HHO(CHO) complex. The activation energy for the H2 insertion step is lower for the trans isomer than for the cis isomer. A simple measure of the catalytic activity was proposed based on the structure of the transition state of the identified rate-limiting step. From this measure, the relationship between catalysts with different ligands and their experimental catalytic activities can be explained.

  5. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Zhang, Z. [Univ. of Hawaii, Honolulu, HI (United States)

    1995-09-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. Photoelectrochemical devices-direct photoconversion systems utilizing a photovoltaic-type structure coated with water-splitting catalysts-represent a promising option to meet this goal. Direct solar-to-chemical conversion efficiencies greater than 7% and photoelectrode lifetimes of up to 30 hours in 1 molar KOH have been demonstrated in our laboratory using low-cost, amorphous-silicon-based photoelectrodes. Loss analysis models indicate that the DOE`s goal of 10% solar-to-chemical conversion can be met with amorphous-silicon-based structures optimized for hydrogen production. In this report, we describe recent progress in the development of thin-film catalytic/protective coatings, improvements in photoelectrode efficiency and stability, and designs for higher efficiency and greater stability.

  6. Optimizing homogenization by chaotic unmixing?

    Science.gov (United States)

    Weijs, Joost; Bartolo, Denis

    2016-11-01

    A number of industrial processes rely on the homogeneous dispersion of non-brownian particles in a viscous fluid. An ideal mixing would yield a so-called hyperuniform particle distribution. Such configurations are characterized by density fluctuations that grow slower than the standard √{ N}-fluctuations. Even though such distributions have been found in several natural structures, e.g. retina receptors in birds, they have remained out of experimental reach until very recently. Over the last 5 years independent experiments and numerical simulations have shown that periodically driven suspensions can self-assemble hyperuniformally. Simple as the recipe may be, it has one important disadvantage. The emergence of hyperuniform states co-occurs with a critical phase transition from reversible to non reversible particle dynamics. As a consequence the homogenization dynamics occurs over a time that diverges with the system size (critical slowing down). Here, we discuss how this process can be sped up by exploiting the stirring properties of chaotic advection. Among the questions that we answer are: What are the physical mechanisms in a chaotic flow that are relevant for hyperuniformity? How can we tune the flow parameters such to obtain optimal hyperuniformity in the fastest way? JW acknowledges funding by NWO (Netherlands Organisation for Scientific Research) through a Rubicon Grant.

  7. ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.

    Energy Technology Data Exchange (ETDEWEB)

    BULLOCK,R.M.; BENDER,B.R.

    2000-12-01

    The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.

  8. Homogenization scheme for acoustic metamaterials

    KAUST Repository

    Yang, Min

    2014-02-26

    We present a homogenization scheme for acoustic metamaterials that is based on reproducing the lowest orders of scattering amplitudes from a finite volume of metamaterials. This approach is noted to differ significantly from that of coherent potential approximation, which is based on adjusting the effective-medium parameters to minimize scatterings in the long-wavelength limit. With the aid of metamaterials’ eigenstates, the effective parameters, such as mass density and elastic modulus can be obtained by matching the surface responses of a metamaterial\\'s structural unit cell with a piece of homogenized material. From the Green\\'s theorem applied to the exterior domain problem, matching the surface responses is noted to be the same as reproducing the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost exactly with numerical simulations and experiments and the scheme\\'s validity is constrained by the number of dominant surface multipoles instead of the usual long-wavelength assumption. In particular, the validity extends to the full band in one dimension and to regimes near the boundaries of the Brillouin zone in two dimensions.

  9. Combustion of diesel spray injected into reacting atmosphere of propane-air homogeneous mixture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.-H.; Iida, N. [Keio Univ., Yokohama (Japan)

    2001-03-28

    The effects of each reaction stage (low-temperature reaction, high temperature reaction and post-combustion) of a homogeneous mixture (propane/air) on the ignition and combustion of a diesel spray were investigated using a rapid compression machine (RCM). The concentrations of formaldehyde (HCHO) and hydrogen peroxide (H{sub 2}O{sub 2}) were calculated in the low-temperature reaction using CHEMKIN. The correlation between soot formation and fuel injection timing was investigated in each reaction stage of the homogeneous mixture. When diesel fuel was injected during the low-temperature reactions, soot formation was more restrained than at any other reaction stage of the homogeneous mixture. (Author)

  10. Heterogeneous kinetic modeling of the catalytic conversion of cycloparaffins

    Science.gov (United States)

    Al-Sabawi, Mustafa N.

    The limited availability of high value light hydrocarbon feedstocks along with the rise in crude prices has resulted in the international recognition of the vast potential of Canada's oil sands. With the recent expansion of Canadian bitumen production come, however, many technical challenges, one of which is the significant presence of aromatics and cycloparaffins in bitumen-derived feedstocks. In addition to their negative environmental impact, aromatics limit fluid catalytic cracking (FCC) feedstock conversion, decrease the yield and quality of valuable products such as gasoline and middle distillates, increase levels of polyaromatic hydrocarbons prone to form coke on the catalyst, and ultimately compromise the FCC unit performance. Although cycloparaffins do not have such negative impacts, they are precursors of aromatics as they frequently undergo hydrogen transfer reactions. However, cycloparaffin cracking chemistry involves other competing reactions that are complex and need much investigation. This dissertation provides insights and understanding of the fundamentals of the catalytic cracking of cycloparaffins using carefully selected model compounds such as methylcyclohexane (MCH) and decalin. Thermal and catalytic cracking of these cycloparaffins on FCC-type catalysts are carried out using the CREC Riser Simulator under operating conditions similar to those of the industrial FCC units in terms of temperature, reaction time, reactant partial pressure and catalyst-to-hydrocarbon ratio. The crystallite size of the supported zeolites is varied between 0.4 and 0.9 microns, with both activity and selectivity being monitored. Catalytic conversions ranged between 4 to 16 wt% for MCH and between 8 to 27 wt% for decalin. Reaction pathways of cycloparaffins are determined, and these include ring-opening, protolytic cracking, isomerization, hydrogen transfer and transalkylation. The yields and selectivities of over 60 and 140 products, formed during MCH and decalin

  11. Electrokinetic effects in catalytic platinum-insulator Janus swimmers

    Science.gov (United States)

    Ebbens, S.; Gregory, D. A.; Dunderdale, G.; Howse, J. R.; Ibrahim, Y.; Liverpool, T. B.; Golestanian, R.

    2014-06-01

    The effect of added salt on the propulsion of Janus platinum-polystyrene colloids in hydrogen peroxide solution is studied experimentally. It is found that micromolar quantities of potassium and silver nitrate salts reduce the swimming velocity by similar amounts, while leading to significantly different effects on the overall rate of catalytic breakdown of hydrogen peroxide. It is argued that the seemingly paradoxical experimental observations could be theoretically explained by using a generalised reaction scheme that involves charged intermediates and has the topology of two nested loops.

  12. Hydrocarbon composition products of the catalytic recycling plastics waste

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2013-09-01

    Full Text Available The paper represents the IR spectroscopy results of the hydrocarbon composition of products, which is obtained from catalytic processing of plastic wastes. The optimal conditions for the hydrogenation with to producny liquid of products are identified.  These liquid products are enriched with aromatics, paraffinic- naphthenic and unsaturated hydrocarbons. The main characteristics of the distillates received by hydrogenation of plastics (as density, refractive index, iodine number, pour point, cloud point, filtering, sulfur content,  fractional and composition of the hydrocarbon group.

  13. Traffic planning for non-homogeneous traffic

    Indian Academy of Sciences (India)

    These vehicles have widely different static and dynamic characteristics. The traffic is also very different from homogeneous traffic which primarily consists of motorized vehicles. Homogeneous traffic follows strict lane discipline as compared to non-homogeneous traffic. Western traffic planning methodologies mostly address ...

  14. Hydrogen Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

  15. Projective duality and homogeneous spaces

    CERN Document Server

    Tevelev, E A

    2006-01-01

    Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event. Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and from topology to the theory of algebras. It gives a very readable and thorough account and the presentation of the material is clear and convincing. For the most part of the book the only prerequisites are basic algebra and algebraic geometry. This book will be of great interest to graduate and postgraduate students as well as professional mathematicians working in algebra, geometry and analysis.

  16. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  17. Characterization of Catalytically Active Octahedral Metal Halide Cluster Complexes

    OpenAIRE

    Satoshi Kamiguchi; Sayoko Nagashima; Teiji Chihara

    2014-01-01

    Halide clusters have not been used as catalysts. Hexanuclear molecular halide clusters of niobium, tantalum, molybdenum, and tungsten possessing an octahedral metal framework are chosen as catalyst precursors. The prepared clusters have no metal–metal multiple bonds or coordinatively unsaturated sites and therefore required activation. In a hydrogen or helium stream, the clusters are treated at increasingly higher temperatures. Above 150–250 °C, catalytically active sites develop, and the clu...

  18. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue

    2004-01-01

    technology it is possible to make supported catalysts, composite metal oxides, catalytically active surfaces, and porous ceramic membranes. Membrane layers can be formed by using a porous substrate tube (or surface) as a nano-particle filter. The aerosol gas from the flame is led through a porous substrate......Membranes consisting of one or more metal oxides can be synthesized by flame pyrolysis. The general principle behind flame pyrolysis is the decomposition and oxidation of evaporated organo-metallic precursors in a flame, thereby forming metal oxide monomers. Because of the extreme supersaturation...... created in the flame, the monomers will nucleate homogeneously and agglomerate to form aggregates of large ensembles of monomers. The aggregates will then sinter together to form single particles. If the flame temperature and the residence time are sufficiently high, the formed oxide particles...

  19. Catalytic reforming methods

    Science.gov (United States)

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  20. Influence of physicochemical treatments on iron-based spent catalyst for catalytic oxidation of toluene.

    Science.gov (United States)

    Kim, Sang Chai; Shim, Wang Geun

    2008-06-15

    The catalytic oxidation of toluene was studied over an iron-based spent and regenerated catalysts. Air, hydrogen, or four different acid solutions (oxalic acid (C2H2O4), citric acid (C6H8O7), acetic acid (CH3COOH), and nitric acid (HNO3)) were employed to regenerate the spent catalyst. The properties of pretreated spent catalyst were characterized by the Brunauer Emmett Teller (BET), inductively coupled plasma (ICP), temperature programmed reduction (TPR), and X-ray diffraction (XRD) analyses. The air pretreatment significantly enhanced the catalytic activity of the spent catalyst in the pretreatment temperature range of 200-400 degrees C, but its catalytic activity diminished at the pretreatment temperature of 600 degrees C. The catalytic activity sequence with respect to the air pretreatment temperatures was 400 degrees C>200 degrees C>parent>600 degrees C. The TPR results indicated that the catalytic activity was correlated with both the oxygen mobility and the amount of available oxygen on the catalyst. In contrast, the hydrogen pretreatment had a negative effect on the catalytic activity, and toluene conversion decreased with increasing pretreatment temperatures (200-600 degrees C). The XRD and TPR results confirmed the formation of metallic iron which had a negative effect on the catalytic activity with increasing pretreatment temperature. The acid pretreatment improved the catalytic activity of the spent catalyst. The catalytic activity sequence with respect to different acids pretreatment was found to be oxalic acid>citric acid>acetic acid>or=nitric acid>parent. The TPR results of acid pretreated samples showed an increased amount of available oxygen which gave a positive effect on the catalytic activity. Accordingly, air or acid pretreatments were more promising methods of regenerating the iron-based spent catalyst. In particular, the oxalic acid pretreatment was found to be most effective in the formation of FeC2O4 species which contributed highly to the

  1. Urinary catalytic iron in obesity

    National Research Council Canada - National Science Library

    Thethi, Tina K; Parsha, Kaushik; Rajapurkar, Mohan; Mukhopadhyay, Banibrata; Shah, Sudhir; Yau, C Lillian; Japa, Shanker; Fonseca, Vivian

    2011-01-01

    ...), hypertension, and chronic kidney disease. Catalytic iron, which has been associated with these chronic diseases, may be one of the links between obesity and these multifactorial diverse disorders...

  2. Asymmetric C-C Bond-Formation Reaction with Pd: How to Favor Heterogeneous or Homogeneous Catalysis?

    DEFF Research Database (Denmark)

    Reimann, S.; Grunwaldt, Jan-Dierk; Mallat, T.

    2010-01-01

    The enantioselective allylic alkylation of (E)-1,3-diphenylallyl acetate was studied to clarify the heterogeneous or homogeneous character of the Pd/Al2O3-(R)-BINAP catalyst system. A combined approach was applied: the catalytic tests were completed with in situ XANES measurements to follow...

  3. Computer-aided modeling framework – a generic modeling template for catalytic membrane fixed bed reactors

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    2013-01-01

    and users to generate and test models systematically, efficiently and reliably. In this way, development of products and processes can be faster, cheaper and very efficient. In this contribution, as part of the framework a generic modeling template for the systematic derivation of problem specific catalytic...... membrane fixed bed models is developed. The application of the modeling template is highlighted with a case study related to the modeling of a catalytic membrane reactor coupling dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene....

  4. Non-Aqueous Biocatalysis in Homogeneous Solvent Systems

    Directory of Open Access Journals (Sweden)

    Sebastián Torres

    2004-01-01

    Full Text Available Enzymes are highly specific catalysts that typically function in aqueous solvents. However, many enzymes retain their catalytic activities at high concentrations in non- aqueous environments, including neat hydrophilic organic solvents. In fact, enzymes can be used to carry out reactions in organic solvents that are not possible in aqueous systems. Therefore, biocatalysis in homogenous non-aqueous solvents offers possibilities for producing useful chemicals and several synthetic reactions have already been developed using this type of system. The current review discusses factors that influence enzyme catalysis in non-aqueous solvents such us water content, solvent concentration, interaction of solvent with protein structure, stability and activity. Also, new strategies for non-conventional biocatalysis using extremophiles and ionic solvents are mentioned.

  5. Hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Donath, E.

    1942-10-16

    This report mentioned that not very severe demands for purity were made on the hydrogen used in hydrogenation of coal or similar raw materials, because the catalysts were not very sensitive to poisoning. However, the hydrogenation plants tried to remove most impurities anyway by means of oil washes. The report included a table giving the amount of wash oil used up and the amount of hydrogen lost by dissolving into the wash oil used up and the amount of hydrogen lost by dissolving into the wash oil in order to remove 1% of various impurities from 1000 m/sup 3/ of the circulating gas. The amounts of wash oil used up were 1.1 m/sup 3/ for removing 1% nitrogen, 0.3 m/sup 3/ for 1% carbon monoxide, 0.03 m/sup 3/ for 1% methane. The amount of hydrogen lost was 28 m/sup 3/ for 1% nitrogen, 9 m/sup 3/ for 1% methane and ranged from 9 m/sup 3/ to 39 m/sup 3/ for 1% carbon monoxide and 1 m/sup 3/ to 41 m/sup 3/ for carbon dioxide depending on whether the removal was done in liquid phase or vapor phase and with or without reduction of the oxide to methane. Next the report listed and described the major processes used in German hydrogenation plants to produce hydrogen. Most of them produced water gas, which then had its carbon monoxide changed to carbon dioxide, and the carbon oxides washed out with water under pressure and copper hydroxide solution. The methods included the Winkler, Pintsch-Hillebrand, and Schmalfeldt-Wintershall processes, as well as roasting of coke in a rotating generator, splitting of gases formed during hydrogenation, and separation of cokery gas into its components by the Linde process.

  6. Reverse-flow adsorption for process-integrated recycling of homogeneous transition-metal catalysts

    NARCIS (Netherlands)

    Marras, F.; van Leeuwen, P.W.N.M.; Reek, J.N.H.

    2011-01-01

    Supramolecular strategies, based on hydrogen bonds and ionic interactions, were investigated as tools for the recovery and recycling of homogeneous transition-metal catalysts by using reverse-flow adsorption (RFA) technology. The association (in solution) and adsorption (on support) of new

  7. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Use of Heterogenized Metal Complexes in Hydrogenation Reactions: Comparison of Hydrogenation and CTH Reactions.

    Czech Academy of Sciences Publication Activity Database

    Bata, P.; Zsigmond, A.; Gyémánt, M.; Czeglédi, A.; Klusoň, Petr

    2015-01-01

    Roč. 41, č. 12 (2015), s. 9281-9294 ISSN 0922-6168. [Pannonian Symposium on Catalysis /12./. Castle Trest, 16.09.2014-20.09.2014] Institutional support: RVO:67985858 Keywords : catalytic transfer hydrogenation * iron-phthalocyanine catalyst * chemoselectivity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.833, year: 2015

  9. Catalytic strategies of self-cleaving ribozymes.

    Science.gov (United States)

    Cochrane, Jesse C; Strobel, Scott A

    2008-08-01

    [Structure: see text]. Five naturally occurring nucleolytic ribozymes have been identified: the hammerhead, hairpin, glmS, hepatitis delta virus (HDV), and Varkud satellite (VS) ribozymes. All of these RNA enzymes catalyze self-scission of the RNA backbone using a chemical mechanism equivalent to that of RNase A. RNase A uses four basic strategies to promote this reaction: geometric constraints, activation of the nucleophile, transition-state stabilization, and leaving group protonation. In this Account, we discuss the current thinking on how nucleolytic ribozymes harness RNase A's four sources of catalytic power. The geometry of the phosphodiester cleavage reaction constrains the nucleotides flanking the scissile phosphate so that they are unstacked from a canonical A-form helix and thus require alternative stabilization. Crystal structures and mutational analysis reveal that cross-strand base pairing, along with unconventional stacking and tertiary hydrogen-bonding interactions, work to stabilize the splayed conformation in nucleolytic ribozymes. Deprotonation of the 2'-OH nucleophile greatly increases its nucleophilicity in the strand scission reaction. Crystal structures of the hammerhead, hairpin, and glmS ribozymes reveal the N1 of a G residue within hydrogen-bonding distance of the 2'-OH. In each case, this residue has also been shown to be important for catalysis. In the HDV ribozyme, a hydrated magnesium has been implicated as the general base. Catalysis by the VS ribozyme requires both an A and a G, but the precise role of either has not been elucidated. Enzymes can lower the energy of a chemical reaction by binding more tightly to the transition state than to the ground states. Comparison of the hairpin ground- and transition-state mimic structures reveal greater hydrogen bonding to the transition-state mimic structure, suggesting transition-state stabilization as a possible catalytic strategy. However, the hydrogen-bonding pattern in the glmS ribozyme

  10. Catalytic cartridge SO/sub 3/ decomposer

    Science.gov (United States)

    Galloway, T.R.

    1980-11-18

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO/sub 3/ decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO/sub 3/ gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO/sub 3/ gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety. A fusion reactor may be used as the heat source.

  11. Carbon nanofibers: a versatile catalytic support

    Directory of Open Access Journals (Sweden)

    Nelize Maria de Almeida Coelho

    2008-09-01

    Full Text Available The aim of this article is present an overview of the promising results obtained while using carbon nanofibers based composites as catalyst support for different practical applications: hydrazine decomposition, styrene synthesis, direct oxidation of H2S into elementary sulfur and as fuel-cell electrodes. We have also discussed some prospects of the use of these new materials in total combustion of methane and in ammonia decomposition. The macroscopic carbon nanofibers based composites were prepared by the CVD method (Carbon Vapor Deposition employing a gaseous mixture of hydrogen and ethane. The results showed a high catalytic activity and selectivity in comparison to the traditional catalysts employed in these reactions. The fact was attributed, mainly, to the morphology and the high external surface of the catalyst support.

  12. Noncatalytic and catalytic pyrolysis of toluene

    Energy Technology Data Exchange (ETDEWEB)

    Pant, K. K.; Kunzru, D. [Indian Institute of Technology, Dept. of Chemical Engineering, Kanpur (India)

    1999-02-01

    Investigation of the effects of process variables on conversion and product yields during catalytic and noncatalytic pyrolysis of toluene was described. The catalyst used was potassium carbonate-impregnated calcium aluminate. Kinetics of the pyrolysis of toluene was also studied. Compared to noncatalytic pyrolysis, the conversions were significantly higher in the presence of the catalyst, although product sensitivities were not affected. With nitrogen as a diluent the main products were hydrogen, methane, benzene, bibenzyl and higher hydrocarbons. Using steam as the diluent, significant amounts of carbon monoxide and carbon dioxide were also produced. Based on the result, it was concluded that the overall consumption of toluene can be represented by two parallel reactions. one for the toluene decomposition, the other for the toluene-steam reaction. The activation energy for toluene decomposition was significantly reduced in the presence of the catalyst; only marginal reduction in the activation energy was observed when steam was used as the diluent. 11 refs., 2 tabs., 5 figs.

  13. Ionic Liquids: The Synergistic Catalytic Effect in the Synthesis of Cyclic Carbonates

    Directory of Open Access Journals (Sweden)

    Flora T.T. Ng

    2013-10-01

    Full Text Available This review presents the synergistic effect in the catalytic system of ionic liquids (ILs for the synthesis of cyclic carbonate from carbon dioxide and epoxide. The emphasis of this review is on three aspects: the catalytic system of metal-based ionic liquids, the catalytic system of hydrogen bond-promoted ionic liquids and supported ionic liquids. Metal and ionic liquids show a synergistic effect on the cycloaddition reactions of epoxides. The cations and anions of ionic liquids show a synergistic effect on the cycloaddition reactions. The functional groups in cations or supports combined with the anions have a synergistic effect on the cycloaddition reactions. Synergistic catalytic effects of ILs play an important role of promoting the cycloaddition reactions of epoxides. The design of catalytic system of ionic liquids will be possible if the synergistic effect on a molecular level is understood.

  14. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is ...

  15. Hydrogen Production From catalytic reforming of greenhouse gases ...

    African Journals Online (AJOL)

    ADOWIE PERE

    bDepartment of Chemical and Petroleum Engineering, University of Uyo, Uyo, Nigeria. cFaculty of Chemical ... characterized for thermal stability, textural property, crystallinity, morphology and nature of chemical bonds using techniques such as TGA, XRD, ... Nickel catalysts which is commonly used for the steam methane ...

  16. Production of carbon nanotubes and hydrogen by catalytic ethanol decomposition

    OpenAIRE

    Jaime Gallego; Germán Sierra Gallego; Carlos Daza; Rafael Molina; Joel Barrault; Catherine Batiot-Dupeyat; Fanor Mondragón

    2013-01-01

    En este trabajo se sintetizaron nanotubos de carbono multicapa (MWCNTs) por medio de la reacción de descomposición de etanol usando como precursor del catalizador a la perovskita LaNiO. Los nanotubos de carbono de pared múltiple (MWCNTs) fueron caracterizados por microscopía electrónica de transmisión (TEM) y de barrido (SEM) y análisis termogravimétrico (TGA). Mediante SEM se observó que los MWCNTs poseen diámetros internos entre 3 nm y 12 nm con diámetros externos de hasta 42 nm, igualmente...

  17. Evolution of random catalytic networks

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, S.M. [Santa Fe Inst., NM (United States); Reidys, C.M. [Santa Fe Inst., NM (United States)]|[Los Alamos National Lab., NM (United States)

    1997-06-01

    In this paper the authors investigate the evolution of populations of sequences on a random catalytic network. Sequences are mapped into structures, between which are catalytic interactions that determine their instantaneous fitness. The catalytic network is constructed as a random directed graph. They prove that at certain parameter values, the probability of some relevant subgraphs of this graph, for example cycles without outgoing edges, is maximized. Populations evolving under point mutations realize a comparatively small induced subgraph of the complete catalytic network. They present results which show that populations reliably discover and persist on directed cycles in the catalytic graph, though these may be lost because of stochastic effects, and study the effect of population size on this behavior.

  18. Green technology for conversion of renewable hydrocarbon based on plasma-catalytic approach

    Science.gov (United States)

    Fedirchyk, Igor; Nedybaliuk, Oleg; Chernyak, Valeriy; Demchina, Valentina

    2016-09-01

    The ability to convert renewable biomass into fuels and chemicals is one of the most important steps on our path to green technology and sustainable development. However, the complex composition of biomass poses a major problem for established conversion technologies. The high temperature of thermochemical biomass conversion often leads to the appearance of undesirable byproducts and waste. The catalytic conversion has reduced yield and feedstock range. Plasma-catalytic reforming technology opens a new path for biomass conversion by replacing feedstock-specific catalysts with free radicals generated in the plasma. We studied the plasma-catalytic conversion of several renewable hydrocarbons using the air plasma created by rotating gliding discharge. We found that plasma-catalytic hydrocarbon conversion can be conducted at significantly lower temperatures (500 K) than during the thermochemical ( 1000 K) and catalytic (800 K) conversion. By using gas chromatography, we determined conversion products and found that conversion efficiency of plasma-catalytic conversion reaches over 85%. We used obtained data to determine the energy yield of hydrogen in case of plasma-catalytic reforming of ethanol and compared it with other plasma-based hydrogen-generating systems.

  19. STEAM STIRRED HOMOGENEOUS NUCLEAR REACTOR

    Science.gov (United States)

    Busey, H.M.

    1958-06-01

    A homogeneous nuclear reactor utilizing a selfcirculating liquid fuel is described. The reactor vessel is in the form of a vertically disposed tubular member having the lower end closed by the tube walls and the upper end closed by a removal fianged assembly. A spherical reaction shell is located in the lower end of the vessel and spaced from the inside walls. The reaction shell is perforated on its lower surface and is provided with a bundle of small-diameter tubes extending vertically upward from its top central portion. The reactor vessel is surrounded in the region of the reaction shell by a neutron reflector. The liquid fuel, which may be a solution of enriched uranyl sulfate in ordinary or heavy water, is mainiained at a level within the reactor vessel of approximately the top of the tubes. The heat of the reaction which is created in the critical region within the spherical reaction shell forms steam bubbles which more upwardly through the tubes. The upward movement of these bubbles results in the forcing of the liquid fuel out of the top of these tubes, from where the fuel passes downwardly in the space between the tubes and the vessel wall where it is cooled by heat exchangers. The fuel then re-enters the critical region in the reaction shell through the perforations in the bottom. The upper portion of the reactor vessel is provided with baffles to prevent the liquid fuel from splashing into this region which is also provided with a recombiner apparatus for recombining the radiolytically dissociated moderator vapor and a control means.

  20. AQUEOUS HOMOGENEOUS REACTORTECHNICAL PANEL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D.J.; Bajorek, S.; Bakel, A.; Flanagan, G.; Mubayi, V.; Skarda, R.; Staudenmeier, J.; Taiwo, T.; Tonoike, K.; Tripp, C.; Wei, T.; Yarsky, P.

    2010-12-03

    Considerable interest has been expressed for developing a stable U.S. production capacity for medical isotopes and particularly for molybdenum- 99 (99Mo). This is motivated by recent re-ductions in production and supply worldwide. Consistent with U.S. nonproliferation objectives, any new production capability should not use highly enriched uranium fuel or targets. Conse-quently, Aqueous Homogeneous Reactors (AHRs) are under consideration for potential 99Mo production using low-enriched uranium. Although the Nuclear Regulatory Commission (NRC) has guidance to facilitate the licensing process for non-power reactors, that guidance is focused on reactors with fixed, solid fuel and hence, not applicable to an AHR. A panel was convened to study the technical issues associated with normal operation and potential transients and accidents of an AHR that might be designed for isotope production. The panel has produced the requisite AHR licensing guidance for three chapters that exist now for non-power reactor licensing: Reac-tor Description, Reactor Coolant Systems, and Accident Analysis. The guidance is in two parts for each chapter: 1) standard format and content a licensee would use and 2) the standard review plan the NRC staff would use. This guidance takes into account the unique features of an AHR such as the fuel being in solution; the fission product barriers being the vessel and attached systems; the production and release of radiolytic and fission product gases and their impact on operations and their control by a gas management system; and the movement of fuel into and out of the reactor vessel.