WorldWideScience

Sample records for homogeneous ag-rich solution

  1. Ag-rich precipitates formation in the Cu–11%Al–10%Mn–3%Ag alloy

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.A.G., E-mail: galdino.ricardo@gmail.com [Departamento de Ciências Exatas e da Terra, UNIFESP, 09972-270 Diadema, SP (Brazil); Paganotti, A.; Jabase, L. [Departamento de Ciências Exatas e da Terra, UNIFESP, 09972-270 Diadema, SP (Brazil); Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A. [Departamento de Físico-Química, Instituto de Química, UNESP, 14801-970 Araraquara, SP (Brazil)

    2014-12-05

    Highlights: • Cu-rich nanoprecipitates are formed in the presence of Ag. • Bainite precipitation is shifted to higher temperatures in the Cu–11%Al–10%Mn–3%Ag alloy. • The eutectoid α phase and bainite α{sub 1} phase compete by the Cu atoms during precipitation process. - Abstract: The formation of Ag-rich precipitates in the Cu–11%Al–10%Mn–3%Ag alloy initially quenched from 1123 K was analyzed. The results showed that nanoprecipitates of a Cu-rich phase are produced at about 523 K. In higher temperatures these nanoparticles grow and the relative fraction of Ag dissolved in it is increased, thus forming the Ag-rich phase.

  2. Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jia [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Xu, Shicai [Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University, Dezhou 253023 (China); Liu, Xiaoyun; Li, Zhe; Hu, Litao; Li, Zhen; Chen, Peixi; Ma, Yong [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Jiang, Shouzhen, E-mail: jiang_sz@126.com [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Shandong Provincial Key Laboratory of Optics and Photonic Device, Jinan 250014 (China); Ning, Tingyin [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Shandong Provincial Key Laboratory of Optics and Photonic Device, Jinan 250014 (China)

    2017-02-28

    Highlights: • We directly grown AgNPs on substrate by annealing method in the quartz tube. Compare with spin-coating Ag nanoparticles solution method, we got more uniform distribution of AgNPs and the AgNPs better adsorption on the substrate. • We use a simple and lost-cost method to obtain the pyramidal silicon (PSi). The PSi possessing well-separated pyramid arrays can make contribution to the homogeneity and sensitivity of the substrate. • In our work, graphene oxide (GO) film is uniformly deposited on AgNPs and PSi by using a spin-coating method. The GO films endow the hybrid system a good stability and enhance the homogeneity and sensitivity of the substrate. - Abstract: In our work, few layers graphene oxide (GO) were directly synthesized on Ag nanoparticles (AgNPs) by spin-coating method to fabricate a GO-AgNPs hybrid structure on a pyramidal silicon (PSi) substrate for surface-enhanced Raman scattering (SERS). The GO-AgNPs-PSi substrate showed excellent Raman enhancement effect, the minimum detected concentration for Rhodamine 6G (R6G) can reach 10{sup −12} M, which is one order of magnitude lower than the AgNPs-PSi substrate and two order of magnitude lower than the GO-AgNPs-flat-Si substrate. The linear fit calibration curve with error bars is presented and the value of R{sup 2} of 612 and 773 cm{sup −1} can reach 0.986 and 0.980, respectively. The excellent linear response between the Raman intensity and R6G concentrations prove that the prepared GO-AgNPs-PSi substrates can serve as good SERS substrate for molecule detection. The maximum deviations of SERS intensities from 20 positions of the GO-AgNPs-PSi substrate are less than 8%, revealing the high homogeneity of the SERS substrate. The excellent homogeneity of the enhanced Raman signals can be attributed to well-separated pyramid arrays of PSi, the uniform morphology of AgNPs and multi-functions of GO layer. Besides, the uniform GO film can effectively protect AgNPs from oxidation and endow

  3. Rich Ground State Chemical Ordering in Nanoparticles: Exact Solution of a Model for Ag-Au Clusters

    DEFF Research Database (Denmark)

    Larsen, Peter Mahler; Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2018-01-01

    We show that nanoparticles can have very rich ground state chemical order. This is illustrated by determining the chemical ordering of Ag-Au 309-atom Mackay icosahedral nanoparticles. The energy of the nanoparticles is described using a cluster expansion model, and a Mixed Integer Programming (MIP......) approach is used to find the exact ground state configurations for all stoichiometries. The chemical ordering varies widely between the different stoichiometries, and display a rich zoo of structures with non-trivial ordering....

  4. Thermodynamic properties of solid solutions in the system Ag2S–Ag2Se

    International Nuclear Information System (INIS)

    Pal’yanova, G.A.; Chudnenko, K.V.; Zhuravkova, T.V.

    2014-01-01

    We have summarized experimental data on the phase diagram of the system Ag 2 S–Ag 2 Se. Standard thermodynamic functions of four solid solutions in this system have been calculated using the model of regular and subregular solutions: a restricted fcc solid solution γ-Ag 2 S-Ag 2 S 1−x Se x (x 2 S–Ag 2 Se, monoclinic solid solution (α) from Ag 2 S to Ag 2 S 0.4 Se 0.6 , and orthorhombic solid solution (α) from Ag 2 S 0.3 Se 0.7 to the Ag 2 Se. G mix and S mix have been evaluated using the subregular model for asymmetric solution for the region Ag 2 S 0.4 Se 0.6 –Ag 2 S 0.3 Se 0.7 . The thermodynamic data can be used for modeling in complex natural systems and in matters of semiconductor materials

  5. The stability of high-Tc BSCCO/Ag superconducting microcomposites in water, some inorganic solutions and organic solvents

    International Nuclear Information System (INIS)

    Gao, W.; Chen, J.; Yang, C.O.; McNabb, D.; Sande, J. vander

    1992-01-01

    Bi(Pb)-Sr-Ca-Cu-O/Ag (BSCCO/Ag) superconducting microcomposites with zero-resistance temperatures from 102 to 108 K and critical current densities of ∝600 A/cm 2 at 77 K were produced by oxidation and annealling of metallic precursor alloys. The stabilities and degradation behavior of BSCCO/Ag specimens in various environments were studied by a combination of mass loss measurement, electrical transport measurement and microstructural observation. The environmental conditions used in the present work were moist air, distilled water, aqueous solutions of NaCl, NaOH and acetic acid, and organic solvents methanol and acetone. Although there is a general tendency toward a decrease in critical current density after a long exposure to most of the testing conditions, the specimens containing a high percent of Ag (≥70 wt.%) showed very little decrease in Tc and J c up to 200 days of exposure in moist air and distilled water, and up to 20 days in NaCl solution, methanol and acetone. It was found that the superconducting ''2223'' phase is stable in water, neutral solutions and the organic solvents, reacts very slowly with basic solutions, and dissolves rapidly in acidic solutions. Some non-superconducting Ca-rich oxides dissolve in water and neutral and basic solutions and therefore damage the connection of the superconducting grains in low-Ag containing specimens. The excellent stability of the BSCCO/Ag superconducting microcomposites containing high Ag provides an important advantage for their potential industrial application. (orig.)

  6. Value distribution of meromorphic solutions of homogeneous and non-homogeneous complex linear differential-difference equations

    Directory of Open Access Journals (Sweden)

    Luo Li-Qin

    2016-01-01

    Full Text Available In this paper, we investigate the value distribution of meromorphic solutions of homogeneous and non-homogeneous complex linear differential-difference equations, and obtain the results on the relations between the order of the solutions and the convergence exponents of the zeros, poles, a-points and small function value points of the solutions, which show the relations in the case of non-homogeneous equations are sharper than the ones in the case of homogeneous equations.

  7. Anti-corrosive and anti-microbial properties of nanocrystalline Ni-Ag coatings

    Energy Technology Data Exchange (ETDEWEB)

    Raghupathy, Y.; Natarajan, K.A.; Srivastava, Chandan, E-mail: csrivastava@materials.iisc.ernet.in

    2016-04-15

    Graphical abstract: - Highlights: • Electrodeposition yielded phase-segregated, nanocrystalline Ni-Ag coatings. • Ni-Ag alloys exhibited smaller Ni crystals compared to pure Ni. • Ultra fine Ni grains of size 12–14 nm favoured Ni-Ag solid solution. • Nanocrystalline Ag resisted bio-fouling by Sulphate Reducing bacteria. • Ni-Ag outperformed pure Ni in corrosion and bio-corrosion tests. - Abstract: Anti-corrosive and anti-bacterial properties of electrodeposited nanocrystalline Ni-Ag coatings are illustrated. Pure Ni, Ni-7 at.% Ag, & Ni-14 at.% Ag coatings were electrodeposited on Cu substrate. Coating consisted of Ni-rich and Ag-rich solid solution phases. With increase in the Ag content, the corrosion resistance of the Ni-Ag coating initially increased and then decreased. The initial increase was due to the Ni-Ag solid solution. The subsequent decrease was due to the increased galvanic coupling between the Ag-rich and Ni-rich phases. For all Ag contents, the corrosion resistance of the Ni-Ag coating was higher than the pure Ni coating. Exposure to Sulphate Reducing Bacteria (SRB) revealed that the extent of bio-fouling decreased with increase in the Ag content. After 2 month exposure to SRB, the Ni-Ag coatings demonstrated less loss in corrosion resistance (58% for Ni-7 at.% Ag and 20% for Ni-14 at.% Ag) when compared pure Ni coating (115%).

  8. Analytical solutions of time-fractional models for homogeneous Gardner equation and non-homogeneous differential equations

    Directory of Open Access Journals (Sweden)

    Olaniyi Samuel Iyiola

    2014-09-01

    Full Text Available In this paper, we obtain analytical solutions of homogeneous time-fractional Gardner equation and non-homogeneous time-fractional models (including Buck-master equation using q-Homotopy Analysis Method (q-HAM. Our work displays the elegant nature of the application of q-HAM not only to solve homogeneous non-linear fractional differential equations but also to solve the non-homogeneous fractional differential equations. The presence of the auxiliary parameter h helps in an effective way to obtain better approximation comparable to exact solutions. The fraction-factor in this method gives it an edge over other existing analytical methods for non-linear differential equations. Comparisons are made upon the existence of exact solutions to these models. The analysis shows that our analytical solutions converge very rapidly to the exact solutions.

  9. Proton emission from high spin states of proton rich excited 94Ag

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2008-01-01

    Recent observation of direct 1P and 2P decay of 21 + isomer in proton rich 94 Ag has led to the present theoretical investigation of proton radioactivity from 94 Ag in ground state and excited state and it's dependence on the structural transitions

  10. Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances

    KAUST Repository

    Huang, Jianfeng

    2015-08-13

    Colloidal metal nanocrystals with strong, stable, and tunable localized surface plasmon resonances (SPRs) can be useful in a corrosive environment for many applications including field-enhanced spectroscopies, plasmon-mediated catalysis, etc. Here, a new synthetic strategy is reported that enables the epitaxial growth of a homogeneously alloyed AuAg shell on Au nanorod seeds, circumventing the phase segregation of Au and Ag encountered in conventional synthesis. The resulting core–shell structured bimetallic nanorods (AuNR@AuAg) have well-mixed Au and Ag atoms in their shell without discernible domains. This degree of mixing allows AuNR@AuAg to combine the high stability of Au with the superior plasmonic activity of Ag, thus outperforming seemingly similar nanostructures with monometallic shells (e.g., Ag-coated Au NRs (AuNR@Ag) and Au-coated Au NRs (AuNR@Au)). AuNR@AuAg is comparable to AuNR@Ag in plasmonic activity, but that it is markedly more stable toward oxidative treatment. Specifically, AuNR@AuAg and AuNR@Ag exhibit similarly strong signals in surface-enhanced Raman spectroscopy that are some 30-fold higher than that of AuNR@Au. When incubated with a H2O2 solution (0.5 m), the plasmonic activity of AuNR@Ag immediately and severely decayed, whereas AuNR@AuAg retained its activity intact. Moreover, the longitudinal SPR frequency of AuNR@AuAg can be tuned throughout the red wavelengths (≈620–690 nm) by controlling the thickness of the AuAg alloy shell. The synthetic strategy is versatile to fabricate AuAg alloyed shells on different shaped Au, with prospects for new possibilities in the synthesis and application of plasmonic nanocrystals.

  11. Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions.

    Science.gov (United States)

    Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova

    2016-01-01

    The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter.

  12. Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions.

    Directory of Open Access Journals (Sweden)

    Preston Donovan

    Full Text Available The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter.

  13. Temperature stability of AgCu nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sopoušek, Jiří, E-mail: sopousek@mail.muni.cz; Zobač, Ondřej; Vykoukal, Vít [Masaryk University, Department of Chemistry, Faculty of Science (Czech Republic); Buršík, Jiří; Roupcová, Pavla [Institute of Physics of Materials ASCR (Czech Republic); Brož, Pavel; Pinkas, Jiří [Masaryk University, Department of Chemistry, Faculty of Science (Czech Republic); Vřešťál, Jan [Masaryk University, Central European Institute of Technology, CEITEC (Czech Republic)

    2015-12-15

    The colloidal solutions of the Ag–Cu nanoparticles (NPs, 10–32 nm) were prepared by solvothermal reactions. The samples of dried AgCu NPs and the resulting microstructures after heat treatment in air were investigated by various methods including electron microscopy (TEM, SEM) and high-temperature X-ray powder diffraction (HTXRD). The AgCu randomly mixed, Cu-rich, and Ag-rich face centred cubic crystal lattices were detected during the experiments. The temperature induced sintering was observed experimentally by HTXRD at 250 °C. The phase transformations at high temperatures were monitored by differential scanning calorimetry. The formation of the Ag-rich grains during heating in air and evolution of copper oxide microstructure were detected.Graphical abstract.

  14. A simple solution-phase approach to synthesize high quality ternary AgInSe2 and band gap tunable quaternary AgIn(S1-xSe x)2 nanocrystals

    KAUST Repository

    Bai, Tianyu

    2014-01-01

    A facile solution-phase route for the preparation of AgInSe2 nanocrystals was developed by using silver nitrate, indium stearate, and oleylamine-selenium (OAm-Se) as precursors. The evolution process of the AgInSe2 nanocrystals is discussed in detail and different reaction conditions all have a great impact on the growth and morphology of the nanocrystals. Alloyed AgIn(S1-xSex)2 nanocrystals with controlled composition across the entire range (0 ≤ x ≤ 1) was also successfully prepared by modulating the S/Se reactant mole ratio. X-ray diffraction (XRD), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) were used to confirm that the alloyed AgIn(S1-xSex)2 nanocrystals are homogeneous. The UV-vis absorption spectra revealed that the band gap energies of the alloyed AgIn(S1-xSex)2 nanocrystals could be continuously tuned by increasing the Se content. © The Royal Society of Chemistry 2014.

  15. Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity

    Science.gov (United States)

    Guo, Jia; Xu, Shicai; Liu, Xiaoyun; Li, Zhe; Hu, Litao; Li, Zhen; Chen, Peixi; Ma, Yong; Jiang, Shouzhen; Ning, Tingyin

    2017-02-01

    In our work, few layers graphene oxide (GO) were directly synthesized on Ag nanoparticles (AgNPs) by spin-coating method to fabricate a GO-AgNPs hybrid structure on a pyramidal silicon (PSi) substrate for surface-enhanced Raman scattering (SERS). The GO-AgNPs-PSi substrate showed excellent Raman enhancement effect, the minimum detected concentration for Rhodamine 6G (R6G) can reach 10-12 M, which is one order of magnitude lower than the AgNPs-PSi substrate and two order of magnitude lower than the GO-AgNPs-flat-Si substrate. The linear fit calibration curve with error bars is presented and the value of R2 of 612 and 773 cm-1 can reach 0.986 and 0.980, respectively. The excellent linear response between the Raman intensity and R6G concentrations prove that the prepared GO-AgNPs-PSi substrates can serve as good SERS substrate for molecule detection. The maximum deviations of SERS intensities from 20 positions of the GO-AgNPs-PSi substrate are less than 8%, revealing the high homogeneity of the SERS substrate. The excellent homogeneity of the enhanced Raman signals can be attributed to well-separated pyramid arrays of PSi, the uniform morphology of AgNPs and multi-functions of GO layer. Besides, the uniform GO film can effectively protect AgNPs from oxidation and endow the hybrid system a good stability and long lifetime. This GO-AgNPs-PSi substrate may provide a new way toward practical applications for the ultrasensitive and label-free SERS detection in areas of medicine, food safety and biotechnology.

  16. Measurements of the mirror surface homogeneity in the CBM-RICH

    Energy Technology Data Exchange (ETDEWEB)

    Lebedeva, Elena; Hoehne, Claudia [II. Physikalisches Institut, JLU Giessen (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR (Facility for Antiproton and Ion Research) complex will investigate the phase diagram of strongly interacting matter at high baryon densities and moderate temperatures in A+A collisions from 2-11 AGeV (SIS100) beam energy. One of the key detector components required for the CBM physics program is the RICH (Ring Imaging CHerenkov) detector, which is developed for efficient and clean electron identification and pion suppression. The CBM-RICH detector is being planned with gaseous radiator and in a standard projective geometry with focusing mirror elements and photon detector planes. One of the important criteria for the selection of appropriate mirrors is their optical surface quality (surface homogeneity). It defines the imaging quality of projected Cherenkov rings, and directly effects the ring finding and fitting performance. The global homogeneity has been tested with the D0 measurement. Local deformations e.g. by the mirror holding structure can be investigated with the Ronchi test and Shack-Hartmann method from which first results are discussed in this contribution.

  17. Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization.

    Science.gov (United States)

    Peng, Jun; Ling, Jian; Zhang, Xiu-Qing; Bai, Hui-Ping; Zheng, Liyan; Cao, Qiu-E; Ding, Zhong-Tao

    2015-02-25

    In this work, we designed a new fluorescent oligonucleotides-stabilized silver nanoclusters (DNA/AgNCs) probe for sensitive detection of mercury and copper ions. This probe contains two tailored DNA sequence. One is a signal probe contains a cytosine-rich sequence template for AgNCs synthesis and link sequence at both ends. The other is a guanine-rich sequence for signal enhancement and link sequence complementary to the link sequence of the signal probe. After hybridization, the fluorescence of hybridized double-strand DNA/AgNCs is 200-fold enhanced based on the fluorescence enhancement effect of DNA/AgNCs in proximity of guanine-rich DNA sequence. The double-strand DNA/AgNCs probe is brighter and stable than that of single-strand DNA/AgNCs, and more importantly, can be used as novel fluorescent probes for detecting mercury and copper ions. Mercury and copper ions in the range of 6.0-160.0 and 6-240 nM, can be linearly detected with the detection limits of 2.1 and 3.4 nM, respectively. Our results indicated that the analytical parameters of the method for mercury and copper ions detection are much better than which using a single-strand DNA/AgNCs. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Homogeneous synthesis of Ag nanoparticles-doped water-soluble cellulose acetate for versatile applications.

    Science.gov (United States)

    Cao, Jie; Sun, Xunwen; Zhang, Xinxing; Lu, Canhui

    2016-11-01

    We report a facile and efficient approach for synthesis of well-dispersed and stable silver nanoparticles (Ag NPs) using water-soluble cellulose acetate (CA) as both reductant and stabilizer. Partially substituted CA with highly active hydroxyl groups and excellent water-solubility is able to reduce silver ions in homogeneous aqueous medium effectively. The synthesized Ag NPs were characterized by UV-vis spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscope analysis. The as-prepared Ag NPs were well-dispersed, showing a surface plasmon resonance peak at 426nm. The resulted Ag NPs@CA nanohybrids exhibit high catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH 4 . Meanwhile, the nanohybrids are also effective in inhibiting the growth of bacterial. This environmentally friendly method promotes the use of renewable natural resources to prepare a variety of inorganic-organic materials for catalysis, antibacterial, sensors and other applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys.

    Science.gov (United States)

    Chen, Mian; Yang, Lei; Zhang, Lan; Han, Yong; Lu, Zheng; Qin, Gaowu; Zhang, Erlin

    2017-06-01

    In this research, Ti-Ag alloys were prepared by powder metallurgy, casting and heat treatment method in order to investigate the effect of Ag compound particles on the bio-corrosion, the antibacterial property and the cell biocompatibility. Ti-Ag alloys with different sizes of Ag or Ag-compounds particles were successfully prepared: small amount of submicro-scale (100nm) Ti 2 Ag precipitates with solid solution state of Ag, large amount of nano-scale (20-30nm) Ti 2 Ag precipitates with small amount of solid solution state of Ag and micro-scale lamellar Ti 2 Ag phases, and complete solid solution state of Ag. The mechanical tests indicated that both nano/micro-scale Ti 2 Ag phases had a strong dispersion strengthening ability and Ag had a high solid solution strengthening ability. Electrochemical results shown the Ag content and the size of Ag particles had a limited influence on the bio-corrosion resistance although nano-scale Ti 2 Ag precipitates slightly improved corrosion resistance. It was demonstrated that the nano Ag compounds precipitates have a significant influence on the antibacterial properties of Ti-Ag alloys but no effect on the cell biocompatibility. It was thought that both Ag ions release and Ti 2 Ag precipitates contributed to the antibacterial ability, in which nano-scale and homogeneously distributed Ti 2 Ag phases would play a key role in antibacterial process. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Homogeneous anisotropic solutions of topologically massive gravity with a cosmological constant and their homogeneous deformations

    International Nuclear Information System (INIS)

    Moutsopoulos, George

    2013-01-01

    We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre–Petrov types and discuss the warped de Sitter spacetime. (paper)

  1. Homogeneous anisotropic solutions of topologically massive gravity with a cosmological constant and their homogeneous deformations

    Science.gov (United States)

    Moutsopoulos, George

    2013-06-01

    We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre-Petrov types and discuss the warped de Sitter spacetime.

  2. Ionic Exchange Study of Ternary Glass Membrane (AgI-PbS-As2S3)System in Solution Using Radioisotope Tracers

    International Nuclear Information System (INIS)

    Dawed, E. M.

    2004-01-01

    Glass-formation region was determined for the system AgI-PbS-As 2 S 3 in a large range of composition (from 12-64 mol. % AgI). The homogeneous glasses of AgI-PbS-As 2 S 3 system were chosen for the study. The electrical conductivity of the glasses was measured as a function of temperature and composition by the complex impedance diagram method. At 298 K, the conductivity reached a maximum value of 3.388 x 10 -3 Ω -1 cm -1 for glass containing the highest mole % of AgI. According to the ion conductivity parameters, two glass groups were observed and classified as: ionic conductors (12-50 mol. %, AgI) and super-ionic conductors (50-64 mol. % AgI). Conductivity measurements led to a decrease in the resistivity by eight orders of magnitude on increasing the concentration of AgI. Such a result made the ternary glass AgI-PbS-As 2 S 3 system a proper model to study the ionic processes of membrane surfaces. Ionic exchange processes between the glass membranes and the solutions were studied by the incorporation of radioactive indicators: silver-110 m ( 110m Ag) and cadmium- 115 m (115 mCd) radioisotopes in the form of silver and cadmium nitrate solutions respectively. In the present paper, data on the density, conductivity, and ionic exchange processes of the studied system are given. The conductivity and ionic exchange parameters are also graphically illustrated. (author)

  3. Synthesis and characterization of Ag-containing calcium phosphates with various Ca/P ratios

    International Nuclear Information System (INIS)

    Gokcekaya, Ozkan; Ueda, Kyosuke; Narushima, Takayuki; Ergun, Celaletdin

    2015-01-01

    Ag-containing calcium phosphate (CaP) powders were synthesized by a precipitation method using aqueous solutions of calcium nitrate, silver nitrate, and ammonium phosphate. The powders were sintered at temperatures ranging from 1173 to 1473 K. The charged atomic ratios of (Ca + Ag)/P and Ag/(Ca + Ag) in solution were varied from 1.33 to 1.67 and from 0 to 0.30, respectively. The Ag content in the as-precipitated CaP powders increased with the charged Ag/(Ca + Ag) atomic ratio in solution and was lower than the charged Ag/(Ca + Ag) value. The as-precipitated CaP powders consisted of hydroxyapatite (HA) as the main phase. Ag nanoparticles were observed on the as-precipitated HA particles under all conditions of Ag addition. After the sintering, HA, β-TCP (tricalcium phosphate), α-TCP, and β-CPP (calcium pyrophosphate) were mainly detected as CaPs on the basis of the Ca/P atomic ratio of the as-precipitated powders. The addition of Ag stabilized the β-TCP phase, and the distribution of Ag in β-TCP was homogeneous. A metallic Ag phase coexisted with HA. The solubility of Ag in HA was estimated to be 0.0019–0.0061 (Ag/(Ca + Ag)) atomic ratio, which was lower than that in β-TCP (higher than 0.0536) and higher than that of β-CPP (below the detection limit of analyses). - Highlights: • The HA powders with Ag nanoparticles were synthesized by a precipitation method. • Metallic Ag particles were detected with the HA phase after sintering. • The distribution of Ag in β-TCP was homogeneous after sintering. • The addition of Ag stabilized the β-ΤCP phase. • β-TCP exhibited higher solubility of Ag than HA and β-CPP

  4. Synthesis and characterization of Ag-containing calcium phosphates with various Ca/P ratios

    Energy Technology Data Exchange (ETDEWEB)

    Gokcekaya, Ozkan, E-mail: gokcekaya@dc.tohoku.ac.jp [Department of Materials Processing, Tohoku University, 6-6-02 Aza Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Ueda, Kyosuke; Narushima, Takayuki [Department of Materials Processing, Tohoku University, 6-6-02 Aza Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Ergun, Celaletdin [Faculty of Mechanical Engineering, Istanbul Technical University, 65 Inonu Street, Gumussuyu, Istanbul 34437 (Turkey)

    2015-08-01

    Ag-containing calcium phosphate (CaP) powders were synthesized by a precipitation method using aqueous solutions of calcium nitrate, silver nitrate, and ammonium phosphate. The powders were sintered at temperatures ranging from 1173 to 1473 K. The charged atomic ratios of (Ca + Ag)/P and Ag/(Ca + Ag) in solution were varied from 1.33 to 1.67 and from 0 to 0.30, respectively. The Ag content in the as-precipitated CaP powders increased with the charged Ag/(Ca + Ag) atomic ratio in solution and was lower than the charged Ag/(Ca + Ag) value. The as-precipitated CaP powders consisted of hydroxyapatite (HA) as the main phase. Ag nanoparticles were observed on the as-precipitated HA particles under all conditions of Ag addition. After the sintering, HA, β-TCP (tricalcium phosphate), α-TCP, and β-CPP (calcium pyrophosphate) were mainly detected as CaPs on the basis of the Ca/P atomic ratio of the as-precipitated powders. The addition of Ag stabilized the β-TCP phase, and the distribution of Ag in β-TCP was homogeneous. A metallic Ag phase coexisted with HA. The solubility of Ag in HA was estimated to be 0.0019–0.0061 (Ag/(Ca + Ag)) atomic ratio, which was lower than that in β-TCP (higher than 0.0536) and higher than that of β-CPP (below the detection limit of analyses). - Highlights: • The HA powders with Ag nanoparticles were synthesized by a precipitation method. • Metallic Ag particles were detected with the HA phase after sintering. • The distribution of Ag in β-TCP was homogeneous after sintering. • The addition of Ag stabilized the β-ΤCP phase. • β-TCP exhibited higher solubility of Ag than HA and β-CPP.

  5. Single crystalline LuAG fibers for homogeneous dual-readout calorimeters

    International Nuclear Information System (INIS)

    Pauwels, K; Gundacker, S; Lecoq, P; Lucchini, M; Auffray, E; Dujardin, C; Lebbou, K; Moretti, F; Xu, X; Petrosyan, A G

    2013-01-01

    For the next generation of calorimeters, designed to improve the energy resolution of hadrons and jets measurements, there is a need for highly granular detectors requiring peculiar geometries. Heavy inorganic scintillators allow compact homogeneous calorimeter designs with excellent energy resolution and dual-readout abilities. These scintillators are however not usually suited for geometries with a high aspect ratio because of the important losses observed during the light propagation. Elongated single crystals (fibers) of Lutetium Aluminium garnet (LuAG, Lu 3 Al 5 O 12 ) were successfully grown with the micropulling-down technique. We present here the results obtained with the recent fiber production and we discuss how the light propagation could be enhanced to reach attenuation lengths in the fibers better than 0.5 m

  6. Age-hardening and related phase transformation in an experimental Ag-Cu-Pd-Au alloy

    International Nuclear Information System (INIS)

    Seol, Hyo-Joung; Lee, Doung-Hun; Lee, Hee-Kyung; Takada, Yukyo; Okuno, Osamu; Kwon, Yong Hoon; Kim, Hyung-Il

    2006-01-01

    The age-hardening behaviour, phase transformation and related microstructural changes of an experimental Ag-Cu-Pd-Au alloy were examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The specimen alloy showed apparent age-hardenability at the aging temperatures of 350 deg. C and 400 deg. C. By aging the solution-treated specimen at 400 deg. C, two phases of the Ag-rich α 1 phase and the Pd-containing Cu-rich α 2 phase were transformed into four phases of the Ag-rich α 1 ' phase, the Cu-rich α 2 ' phase, the CsCl-type CuPd phase and the AuCu(I) ordered phase. Microstructure of the solution-treated specimen consisted of the Ag-rich α 1 matrix, Cu-rich α 2 particle-like structures of various sizes and the lamellar structure of the α 1 and α 2 phases. When the peak hardness was obtained, the very fine lamellar structure consisting of the Ag-rich α 1 ' and Cu-rich α 2 ' phases was newly formed in the matrix. By further aging, the very fine lamellar structure grew and coarsened apparently, and the matrix was covered with the coarsened lamellar structure. The hardness increase was considered to be caused mainly by the diffusion and precipitation of Cu from the Ag-rich α 1 matrix, and the hardness decrease in the latter stage of age-hardening process was caused by the coarsening of the very fine lamellar structure. The CsCl-type CuPd phase and the AuCu(I) ordered phase did not contribute to the hardness increase

  7. Age-hardening and related phase transformation in an experimental Ag-Cu-Pd-Au alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Hyo-Joung [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Lee, Doung-Hun [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Lee, Hee-Kyung [Department of Dental Technology, Daegu Health College, San 7 Taejeon-dong, Buk-gu, Daegu 702-722 (Korea, Republic of); Takada, Yukyo [Division of Dental Biomaterials, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Okuno, Osamu [Division of Dental Biomaterials, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Kwon, Yong Hoon [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kim, Hyung-Il [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of)]. E-mail: hilkim@pusan.ac.kr

    2006-01-05

    The age-hardening behaviour, phase transformation and related microstructural changes of an experimental Ag-Cu-Pd-Au alloy were examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The specimen alloy showed apparent age-hardenability at the aging temperatures of 350 deg. C and 400 deg. C. By aging the solution-treated specimen at 400 deg. C, two phases of the Ag-rich {alpha}{sub 1} phase and the Pd-containing Cu-rich {alpha}{sub 2} phase were transformed into four phases of the Ag-rich {alpha}{sub 1}{sup '} phase, the Cu-rich {alpha}{sub 2}{sup '} phase, the CsCl-type CuPd phase and the AuCu(I) ordered phase. Microstructure of the solution-treated specimen consisted of the Ag-rich {alpha}{sub 1} matrix, Cu-rich {alpha}{sub 2} particle-like structures of various sizes and the lamellar structure of the {alpha}{sub 1} and {alpha}{sub 2} phases. When the peak hardness was obtained, the very fine lamellar structure consisting of the Ag-rich {alpha}{sub 1}{sup '} and Cu-rich {alpha}{sub 2}{sup '} phases was newly formed in the matrix. By further aging, the very fine lamellar structure grew and coarsened apparently, and the matrix was covered with the coarsened lamellar structure. The hardness increase was considered to be caused mainly by the diffusion and precipitation of Cu from the Ag-rich {alpha}{sub 1} matrix, and the hardness decrease in the latter stage of age-hardening process was caused by the coarsening of the very fine lamellar structure. The CsCl-type CuPd phase and the AuCu(I) ordered phase did not contribute to the hardness increase.

  8. Homogenization of compacted blends of Ni and Mo powders

    International Nuclear Information System (INIS)

    Lanam, R.D.; Yeh, F.C.H.; Rovsek, J.E.; Smith, D.W.; Heckel, R.W.

    1975-01-01

    The homogenization behavior of compacted blends of Ni and Mo powders was studied primarily as a function of temperature, mean compact composition, and Mo powder particle size. All compact compositions were in the Ni-rich terminal solid-solution range; temperatures were between 950 and 1200 0 C (in the region of the phase diagram where only the Mo--Ni intermediate phase forms); average Mo particle sizes ranged from 8.4 mu m to 48 mu m. Homogenization was characterized in terms of the rate of decrease of the amounts of the Mo-rich terminal solid-solution phase and the Mo--Ni intermediate phase. The experimental results were compared to predictions based upon the three-phase, concentric-sphere homogenization model. In general, agreement between experimental data and model predictions was fairly good for high-temperature treatments and for compact compositions which were not close to the solubility limit of Mo in Ni. Departures from the model are discussed in terms of surface diffusion contributions to homogenization and non-uniform mixing effects. (U.S.)

  9. Homogeneous-inhomogeneous models of Ag x (Ge0.25Se0.75)100-x bulk glasses

    International Nuclear Information System (INIS)

    Arcondo, B.; Urena, M.A.; Piarristeguy, A.; Pradel, A.; Fontana, M.

    2007-01-01

    Ge-Se system presents an extensive glass forming composition range even when different metals (Ag, Sb, Bi) are added. In spite that the addition of Ag (up to 30 at%) to Ge-Se does not affect substantially the glass forming tendency, it impacts significantly on the transport properties. (Ge 0.25 Se 0.75 ) 100- x Ag x is a fast ionic conductor with x≥8 at% whereas it is a semiconductor for x 0.25 Se 0.75 ) 100- x Ag x bulk samples. These results appear to sustain this model. However previous structural and thermal studies oppose it. Moessbauer spectrometry on samples (0≤x≤25) containing 0.5 at% of 57 Fe is performed at T≤300 K. The main contribution to the glasses spectra correspond to low spin Fe 2+ in octahedral coordination and high spin Fe 2+ in distorted octahedral environments. The relative population of both sites changes continuously as Ag concentration varies denoting that the change in the transport behavior obeys to a percolation phenomenon. The low temperature results are discussed with the aim to throw light on the controversy about the homogeneity-inhomogeneity of the studied bulk glasses

  10. Radiation induced homogeneous precipitation in undersaturated solid-solutions

    International Nuclear Information System (INIS)

    Cauvin, Richard; Martin, Georges.

    1978-01-01

    The stability of various types of solid solutions under irradiation is studied. In this paper, observations made on AlZn solid solutions under 1 MeV electron irradiation are reported. Al-Zn was chosen as a prototype of solid solutions with a simple miscibility gap. It is shown that under appropriate irradiation conditions undersaturated AnZn solid solutions give rise to a homogeneous precipitation of coherent G.P. zones and of incoherent Zn precipitates the atomic volume of which is smaller than that of the matrix. We propose a more general treatment of solute concentration heterogeneities in solid solutions under irradiation and suggest how it might account for the nucleation of the observed phases. The growth of the observed precipitates is studied

  11. Phase transformation and microstructural changes during ageing process of an Ag-Pd-Cu-Au alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chin-Ho; Park, Mi-Gyoung; Kwon, Yong Hoon; Seol, Hyo-Joung [Department of Dental Materials, School of Dentistry and Medical Research Institute, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kim, Hyung-Il [Department of Dental Materials, School of Dentistry and Medical Research Institute, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of)], E-mail: hilkim@pusan.ac.kr

    2008-07-28

    Age-hardening behaviour and the related phase transformation and microstructural changes during isothermal ageing process were studied to elucidate the age-hardening mechanism of an Ag-based dental casting alloy composed of Ag-Pd-Cu-Au-Zn, Ir and In by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and energy dispersive spectroscopic microanalysis (EDS). In the hardness test at 350 and 400 deg. C, the hardness of the solution-treated specimen began to increase and reached a maximum value with increasing ageing time, and subsequently the hardness decreased gradually. By considering XRD results and SEM observations together, the solution-treated specimen consisted of three phases, the Ag-rich {alpha}{sub 1} phase as a matrix, the Cu-Pd {alpha}{sub 2} phase and the CuPd {beta} phase with a CsCl-type as particle-like structures. By ageing the solution-treated specimen, the Ag-rich {alpha}{sub 1} and Cu-Pd {alpha}{sub 2} phases were transformed into the Ag-rich {alpha}{sup '}{sub 1} and Cu{sub 3}Pd {alpha}{sup '}{sub 2} phases, respectively. The CuPd {beta} phase with a CsCl-type was not changed apparently during the ageing process. From the results of the hardness test, XRD study, SEM observations and EDS analysis, it could be derived that the hardness increased by the diffusion and precipitation of the Cu-rich phase from the Ag-rich matrix during the early stage of phase transformation of {alpha}{sub 1} into {alpha}{sup '}{sub 1} and that the progress of coarsening of the Cu-rich precipitates with an entanglement structure caused the hardness decrease during the later stage of phase transformation of {alpha}{sub 1} into {alpha}{sup '}{sub 1}. The particle-like structures composed of the Cu-Pd {alpha}{sub 2} and the CuPd {beta} phase with a CsCl-type contributed little to the hardness increase which occurred in the early stage of aging process.

  12. Measuring the homogeneity of Bi(2223)/Ag tapes by four-probe method and a Hall probe array

    International Nuclear Information System (INIS)

    Kovac, P.

    1999-01-01

    The nature of the BSCCO compound and application of the powder-in-tube technique usually lead to non-uniform quality across and/or along the ceramic fibres and finally to variations in the critical current and its irregular distribution in the Bi(2223)/Ag tape. Therefore, the gliding four-probe method and contactless field monitoring measurements have been used for homogeneity studies. The gliding potential contacts moved along the tape surface and a sensitive system based on an integrated Hall probe array containing 16 or 19 in-line probes supported by PC-compatible electronics with software allowed us to make a comparison of contact and contactless measurements at any elements of Bi(2223)/Ag sample. The results of both methods show very good correlation and the possibility of using a sensitive Hall probe array for monitoring the final quality of Bi(2223)/Ag tapes. (author)

  13. Precipitation hardening of a Cu-free Au-Ag-Pd-In dental alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Hyo-Joung [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Son, Kuk-Hyeon [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Yu, Chin-Ho [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kwon, Yong Hoon [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kim, Hyung-Il [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of)]. E-mail: hilkim@pusan.ac.kr

    2005-10-27

    The hardening mechanism and related microstructural changes of the Cu-free dental casting alloy composed of Au-Ag-Pd-In was examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The Au-Ag-Pd-In alloy showed apparent age-hardenability. In the SEM photograph, three phases were observed in the solution-treated specimen, that is, the Au-Ag based phase with small amounts of In and Pd as matrix, the InPd phase as particle-like structures, and the Pd-rich phase as lamellar precipitates. By aging the specimen, the very fine Pd-rich inter-granular precipitates grew toward the grain interior as lamellar structure, and finally the coarsened Pd-rich precipitates covered a large part of the Au-Ag based matrix. The hardness increase in the early stage of the age-hardening process was assumed to be caused by the diffusion and aggregation of Pd atoms from the Au-Ag based matrix. The hardness decrease in the later stage of age-hardening process was caused by coarsening of the lamellar precipitates composed of the Pd-rich phase.

  14. Precipitation hardening of a Cu-free Au-Ag-Pd-In dental alloy

    International Nuclear Information System (INIS)

    Seol, Hyo-Joung; Son, Kuk-Hyeon; Yu, Chin-Ho; Kwon, Yong Hoon; Kim, Hyung-Il

    2005-01-01

    The hardening mechanism and related microstructural changes of the Cu-free dental casting alloy composed of Au-Ag-Pd-In was examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The Au-Ag-Pd-In alloy showed apparent age-hardenability. In the SEM photograph, three phases were observed in the solution-treated specimen, that is, the Au-Ag based phase with small amounts of In and Pd as matrix, the InPd phase as particle-like structures, and the Pd-rich phase as lamellar precipitates. By aging the specimen, the very fine Pd-rich inter-granular precipitates grew toward the grain interior as lamellar structure, and finally the coarsened Pd-rich precipitates covered a large part of the Au-Ag based matrix. The hardness increase in the early stage of the age-hardening process was assumed to be caused by the diffusion and aggregation of Pd atoms from the Au-Ag based matrix. The hardness decrease in the later stage of age-hardening process was caused by coarsening of the lamellar precipitates composed of the Pd-rich phase

  15. Homogenized blocked arcs for multicriteria optimization of radiotherapy: Analytical and numerical solutions

    International Nuclear Information System (INIS)

    Fenwick, John D.; Pardo-Montero, Juan

    2010-01-01

    Purpose: Homogenized blocked arcs are intuitively appealing as basis functions for multicriteria optimization of rotational radiotherapy. Such arcs avoid an organ-at-risk (OAR), spread dose out well over the rest-of-body (ROB), and deliver homogeneous doses to a planning target volume (PTV) using intensity modulated fluence profiles, obtainable either from closed-form solutions or iterative numerical calculations. Here, the analytic and iterative arcs are compared. Methods: Dose-distributions have been calculated for nondivergent beams, both including and excluding scatter, beam penumbra, and attenuation effects, which are left out of the derivation of the analytic arcs. The most straightforward analytic arc is created by truncating the well-known Brahme, Roos, and Lax (BRL) solution, cutting its uniform dose region down from an annulus to a smaller nonconcave region lying beyond the OAR. However, the truncation leaves behind high dose hot-spots immediately on either side of the OAR, generated by very high BRL fluence levels just beyond the OAR. These hot-spots can be eliminated using alternative analytical solutions ''C'' and ''L,'' which, respectively, deliver constant and linearly rising fluences in the gap region between the OAR and PTV (before truncation). Results: Measured in terms of PTV dose homogeneity, ROB dose-spread, and OAR avoidance, C solutions generate better arc dose-distributions than L when scatter, penumbra, and attenuation are left out of the dose modeling. Including these factors, L becomes the best analytical solution. However, the iterative approach generates better dose-distributions than any of the analytical solutions because it can account and compensate for penumbra and scatter effects. Using the analytical solutions as starting points for the iterative methodology, dose-distributions almost as good as those obtained using the conventional iterative approach can be calculated very rapidly. Conclusions: The iterative methodology is

  16. Giant asymmetry of separation and homogenization processes in solid 3He-4He solutions

    International Nuclear Information System (INIS)

    Grigor'ev, V.N.; Majdanov, V.A.; Penzev, A.A.; Polev, A.V.; Rubets, S.P.; Rudavskij, Eh.Ya.; Rybalko, A.S.; Syrnikov, E.V.

    2005-01-01

    The kinetics of the processes of separation and homogenization of solid 3 He- 4 He solutions is compared by using the precision barometry. The experiments were made with the initial specimens of three types: weak 3 He- 4 He and 4 He- 3 He solutions and concentrated 3 He- 4 He ones. It is found that the homogenization rate at the initial stage may be more than 500 times higher that the rate of separation. This is the case for all types of the solutions studied. The appreciable rate of phase separation in the concentrated solutions where, according to the modern concepts, impurity atoms in quantum crystals should be localized, suggests that in such conditions there is a new unknown mechanism of mass-transfer, while the fast homogenization points to a nondiffusion nature of the process

  17. Fabrication and characterization of WO3/Ag/WO3 multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes.

    Science.gov (United States)

    Jeon, Kangmin; Youn, Hongseok; Kim, Seongbeom; Shin, Seongbeom; Yang, Minyang

    2012-05-15

    The dielectric/metal/dielectric multilayer is suitable for a transparent electrode because of its high-optical and high-electrical properties; however, it is fabricated by an expensive and inefficient multistep vacuum process. We present a WO3/Ag/WO3 (WAW) multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes (PLEDs). This WAW multilayer not only has high transmittance and low resistance but also can be easily and rapidly fabricated. We devised a novel method to deposit a thin WO3 layer by a solution process in an air environment. A tungstic acid solution was prepared from an aqueous solution of Na2WO4 and then converted to WO3 nanoparticles (NPs) by a thermal treatment. Thin WO3 NP layers form WAW multilayer with a thermal-evaporated Ag layer, and they improve the transmittance of the WAW multilayer because of its high transmittance and refractive index. Moreover, the surface of the WO3 layer is homogeneous and flat with low roughness because of the WO3 NP generation from the tungstic acid solution without aggregation. We performed optical simulation and experiments, and the optimized WAW multilayer had a high transmittance of 85% with a sheet resistance of 4 Ω/sq. Finally, PLEDs based on the WAW multilayer anode achieved a maximum luminance of 35,550 cd/m2 at 8 V, and this result implies that the solution-processed WAW multilayer is appropriate for use as a transparent anode in PLEDs.

  18. Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. II. Classification of axisymmetric no-swirl solutions

    Science.gov (United States)

    Li, Li; Li, YanYan; Yan, Xukai

    2018-05-01

    We classify all (- 1)-homogeneous axisymmetric no-swirl solutions of incompressible stationary Navier-Stokes equations in three dimension which are smooth on the unit sphere minus the south and north poles, parameterizing them as a four dimensional surface with boundary in appropriate function spaces. Then we establish smoothness properties of the solution surface in the four parameters. The smoothness properties will be used in a subsequent paper where we study the existence of (- 1)-homogeneous axisymmetric solutions with non-zero swirl on S2 ∖ { S , N }, emanating from the four dimensional solution surface.

  19. Electrically conductive nanostructured silver doped zinc oxide (Ag:ZnO) prepared by solution-immersion technique

    International Nuclear Information System (INIS)

    Afaah, A. N.; Asib, N. A. M.; Aadila, A.; Khusaimi, Z.; Mohamed, R.; Rusop, M.

    2016-01-01

    p-type ZnO films have been fabricated on ZnO-seeded glass substrate, using AgNO_3 as a source of silver dopant by facile solution-immersion. Cleaned glass substrate were seeded with ZnO by mist-atomisation, and next the seeded substrates were immersed in Ag:ZnO solution. The effects of Ag doping concentration on the Ag-doped ZnO have been investigated. The substrates were immersed in different concentrations of Ag dopant with variation of 0, 1, 3, 5 and 7 at. %. The surface morphology of the films was characterized by field emission scanning electron microscope (FESEM). In order to investigate the electrical properties, the films were characterized by Current-Voltage (I-V) measurement. FESEM micrographs showed uniform distribution of nanostructured ZnO and Ag:ZnO. Besides, the electrical properties of Ag-doped ZnO were also dependent on the doping concentration. The I-V measurement result indicated the electrical properties of 1 at. % Ag:ZnO thin film owned highest electrical conductivity.

  20. Synthesis and characteristics of Ag/Pt bimetallic nanocomposites by arc-discharge solution plasma processing.

    Science.gov (United States)

    Pootawang, Panuphong; Saito, Nagahiro; Takai, Osamu; Lee, Sang-Yul

    2012-10-05

    Arc discharge in solution, generated by applying a high voltage of unipolar pulsed dc to electrodes of Ag and Pt, was used as a method to form Ag/Pt bimetallic nanocomposites via electrode erosion by the effects of the electric arc at the cathode (Ag rod) and the sputtering at the anode (Pt rod). Ag/Pt bimetallic nanocomposites were formed as colloidal particles dispersed in solution via the reduction of hydrogen radicals generated during discharge without the addition of chemical precursor or reducing agent. At a discharge time of 30 s, the fine bimetallic nanoparticles with a mean particle size of approximately 5 nm were observed by transmission electron microscopy (TEM). With increasing discharge time, the bimetallic nanoparticle size tended to increase by forming an agglomeration. The presence of the relatively small amount of Pt dispersed in the Ag matrix could be observed by the analytical mapping mode of energy-dispersive x-ray spectroscopy and high-resolution TEM. This demonstrated that the synthesized particle was in the form of a nanocomposite. No contamination of other chemical substances was detected by x-ray photoelectron spectroscopy. Hence, solution plasma could be a clean and simple process to effectively synthesize Ag/Pt bimetallic nanocomposites and it is expected to be widely applicable in the preparation of several types of nanoparticle.

  1. Coprecipitation of cadmium with copper 8-hydroxyquinolate from homogeneous solution

    International Nuclear Information System (INIS)

    Takiyama, Kazuyoshi; Kozen, Terumi; Ueki, Yasuyo; Ishida, Hiromi

    1976-01-01

    The coprecipitation of copper and cadmium 8-hydroxyquinolates from homogeneous solution was conducted from the viewpoint of crystal and analytical chemistry. To the mixed solution containing copper and cadmium ions an 8-acetoxyquinoline solution was added by keeping the pH of the solution at 9 and the resulted solution was stirred at 25 0 C. The precipitate formed at each stage of the reaction was analyzed. The precipitates in an initial stage were composed of needle crystals which characterizes copper 8-hydroxyquinolate, and were associated with a slight amount of cadmium. The first half of the coprecipitation curve for the needle crystal formation resembles the logarithmic distribution curve of lambda equal to about 0.01. The precipitation of most of the copper ions was followed by the precipitation of cadmium 8-hydroxyquinolate crystal in the plate form. The needle crystals of copper 8-hydroxyquinolate started to dissolve and transformed to plate crystals. In the second half of the coprecipitation, both crystals, owing to the identical crystal structure, precipitated simultaneously and form a solid solution. When cadmium 8-hydroxyquinolate was precipitated by the PFHS method (precipitation from homogeneous solution) in the presence of the needle crystals of copper 8-hydroxyquinolate, the above mentioned phenomenon was observed. The precipitation of cadmium 8-hydroxyquinolate in the plate form is due to the seeding effect of the plate crystals of copper 8-hydroxyquinolate, which were scantily transformed from the needle crystals. The plate crystals of cadmium compound acts as a seed to transform the needle crystals of copper compound to plate crystals. (auth.)

  2. Homogeneity of Ge-rich nanostructures as characterized by chemical etching and transmission electron microscopy

    International Nuclear Information System (INIS)

    Bollani, Monica; Chrastina, Daniel; Montuori, Valeria; Vanacore, Giovanni M; Tagliaferri, Alberto; Sordan, Roman; Terziotti, Daniela; Bonera, Emiliano; Spinella, Corrado; Nicotra, Giuseppe

    2012-01-01

    The extension of SiGe technology towards new electronic and optoelectronic applications on the Si platform requires that Ge-rich nanostructures be obtained in a well-controlled manner. Ge deposition on Si substrates usually creates SiGe nanostructures with relatively low and inhomogeneous Ge content. We have realized SiGe nanostructures with a very high (up to 90%) Ge content. Using substrate patterning, a regular array of nanostructures is obtained. We report that electron microscopy reveals an abrupt change in Ge content of about 20% between the filled pit and the island, which has not been observed in other Ge island systems. Dislocations are mainly found within the filled pit and only rarely in the island. Selective chemical etching and electron energy-loss spectroscopy reveal that the island itself is homogeneous. These Ge-rich islands are possible candidates for electronic applications requiring locally induced stress, and optoelectronic applications which exploit the Ge-like band structure of Ge-rich SiGe. (paper)

  3. Homogeneity of Ge-rich nanostructures as characterized by chemical etching and transmission electron microscopy.

    Science.gov (United States)

    Bollani, Monica; Chrastina, Daniel; Montuori, Valeria; Terziotti, Daniela; Bonera, Emiliano; Vanacore, Giovanni M; Tagliaferri, Alberto; Sordan, Roman; Spinella, Corrado; Nicotra, Giuseppe

    2012-02-03

    The extension of SiGe technology towards new electronic and optoelectronic applications on the Si platform requires that Ge-rich nanostructures be obtained in a well-controlled manner. Ge deposition on Si substrates usually creates SiGe nanostructures with relatively low and inhomogeneous Ge content. We have realized SiGe nanostructures with a very high (up to 90%) Ge content. Using substrate patterning, a regular array of nanostructures is obtained. We report that electron microscopy reveals an abrupt change in Ge content of about 20% between the filled pit and the island, which has not been observed in other Ge island systems. Dislocations are mainly found within the filled pit and only rarely in the island. Selective chemical etching and electron energy-loss spectroscopy reveal that the island itself is homogeneous. These Ge-rich islands are possible candidates for electronic applications requiring locally induced stress, and optoelectronic applications which exploit the Ge-like band structure of Ge-rich SiGe.

  4. Solute-solute interactions in intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Debashis; Murray, Ryan; Collins, Gary S., E-mail: collins@wsu.edu [Washington State University, Department of Physics and Astronomy (United States); Zacate, Matthew O. [Northern Kentucky University, Department of Physics and Geology (United States)

    2017-11-15

    Experiments were carried out on highly ordered GdAl{sub 2} samples containing extremely dilute mole fractions of{sup 111}In/Cd probe-atom solutes (about 10{sup −11}), intrinsic antisite atoms Al{sub Gd} having mole fractions of order 0-10{sup −2}, and doped with Ag solutes at mole fractions of order 10{sup −2}. Three types of defect interactions were investigated. (1) Quadrupole interactions caused by Ag-solute atoms neighboring{sup 111}In/Cd solute probe atoms were detected using the method of perturbed angular correlation of gamma rays (PAC). Three complexes of pairs of In-probes and Ag-solutes occupying neighboring positions on Gd- and Al-sublattices were identified by comparing site fractions in Gd-poor and Gd-rich GdAl{sub 2}(Ag) samples and from the symmetry of the quadrupole interactions. Interaction enthalpies between solute-atom pairs were determined from temperature dependences of observed site fractions. Repulsive interactions were observed for close-neighbor complexes In{sub Gd}+Ag{sub Gd} and In{sub Gd}+Ag{sub Al} pairs, whereas a slightly attractive interaction was observed for In{sub Al}+Ag{sub Al}. Interaction enthalpies were all small, in the range ±0.15 eV. (2) Quadrupole interactions caused by intrinsic antisite atoms Al{sub Gd} neighboring In{sub Gd} probes were also detected and site fractions measured as a function of temperature, as in previous work on samples not doped with Ag-solutes [Temperature- and composition-driven changes in site occupation of solutes in Gd{sub 1+3x}Al{sub 2−3x}, Zacate and Collins (Phys. Rev. B69, 174202 (1))]. However, the effective binding enthalpy between In{sub Gd} probe and Al{sub Gd} antisite was found to change sign from -0.12 eV (attractive interaction) in undoped samples to + 0.24 eV (repulsive) in Ag-doped samples. This may be attributed to an attractive interaction between Al{sub Gd} antisite atoms and Ag-dopants that competes with the attractive interaction between In{sub Gd} and Al{sub Gd

  5. Interpretation of criticality experiments on homogeneous solutions of plutonium and uranium; Interpretation des experiences de criticite sur des solutions homogenes de plutonium et d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Ithurralde, M F; Kremser, J; Leclerc, J; Lombard, Ch; Moreau, J; Robin, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Criticality experiments on solutions of fissionable materials have been carried out in tanks of various geometries (cylinder, isolated annular cylinder, interacting annular cylinders); the reflexion conditions have also been varied (without reflection, semi-reflection and total reflexion by water). The range of the studied concentrations is rather large (18,8 to 104 gms/liter). The interpretation of these experiments has been undertaken in order to resolve the problems of the industrial use of homogeneous plutonium and uranium solutions. Several methods the fields of application of which are different have been used: diffusion method, transport method and Monte-Carlo method. (authors) [French] Des experiences critiques sur des solutions de matieres fissiles ont ete faites dans des cuves de diverses geometries (cylindre, cylindre annulaire isole, cylindre annulaire en interaction), les conditions de reflexion ont ete egalement variees (sans reflexion, semi reflexion et reflexion totale par l'eau). La gamme des concentrations etudiees est assez etendue (18,8 a 104 g/l ). L'interpretation de ces experiences a ete entreprise dans le but de pouvoir resoudre les problemes poses par l'emploi industriel de solutions homogenes de plutonium et d'uranium, plusieurs methodes dont les domaines d'application sont differents ont ete employees: methode de diffusion, methode de transport, methode de Monte-Carlo. (auteurs)

  6. Enhanced photocatalytic performance of BiVO_4 in aqueous AgNO_3 solution under visible light irradiation

    International Nuclear Information System (INIS)

    Huang, Chien-Kai; Wu, Tsunghsueh; Huang, Chang-Wei; Lai, Chi-Yung; Wu, Mei-Yao; Lin, Yang-Wei

    2017-01-01

    Graphical abstract: Ag"+ ions enhanced photocatalytic activity of BiVO_4 under visible light irradiation. - Highlights: • The presence of Ag"+ ions enhanced the photodegradation activity of BiVO_4. • Photoreduction of Ag deposited on the BiVO_4 surface was obtained. • Luminescence and electrochemical results elucidated the photocatalytic mechanism. • Holes and oxygen radicals were the main reactive species generated by BiVO_4/Ag"+. • Used BiVO_4/Ag"+ exhibited photocatalytic antibacterial activity toward E. coli. - Abstract: Monoclinic-phase bismuth vanadate (BiVO_4) with a 2.468 eV band gap exhibited enhanced synergic photodegradation activity toward methylene blue (MB) when combined with silver ions (Ag"+) in an aqueous solution under visible light irradiation. The mass ratio of AgNO_3 to BiVO_4 and the calcination temperature were discovered to considerably affect the degradation activity of BiVO_4/Ag"+. Superior photocatalytic performance was obtained when BiVO_4 was mixed with 0.01%(w/v) AgNO_3 solution, and complete degradation of MB was achieved after 25 min visible light irradiation, outperforming BiVO_4 or AgNO_3 solution alone. The enhanced photodegradation was investigated using systematic luminescence measurements, electrochemical impedance spectroscopy, and scavenger addition, after which a photocatalytic mechanism for MB degradation under visible light irradiation was identified that involved oxygen radicals and holes. This study also discovered the two dominating processes involved in enhancing the electron–hole separation efficiency and reducing their recombination rate, namely photoreduction of Ag"+ and the formation of a BiVO_4/Ag heterojunction. The synergic effect between BiVO_4 and Ag"+ was discovered to be unique. BiVO_4/Ag"+ was successfully used to degrade two other dyes and disinfect Escherichia Coli. A unique fluorescent technique using BiVO_4 and a R6G solution to detect Ag"+ ions in water was discovered.

  7. Synthesis of Ag{sub 2}S nanorods by biomimetic method in the lysozyme matrix

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Dezhi, E-mail: dezhiqin@163.com; Zhang, Li; He, Guoxu; Zhang, Qiuxia

    2013-09-01

    Graphical abstract: - Highlights: • Firstly, Ag{sub 2}S nanorods were synthesized by biomimetic method in the lysozyme solutions. • The study of the interaction between Ag{sup +} and the lysozyme. • Discussion of possible formation mechanism of Ag{sub 2}S nanorods. • The synthesis process of lyso-conjugated Ag{sub 2}S nanocrystals is facile, effective and environment friendly. - Abstract: Ag{sub 2}S nanorods were successfully synthesized by biomimetic route in the lysozyme solution at physiological temperature and atmospheric pressure. The transmission electron microscopy (TEM) images revealed that the prepared nanorods are uniform and monodisperse with homogeneous size about 50 nm in diameter and 150 nm in length. The optical property of Ag{sub 2}S nanocrystals was studied by the ultraviolet–visible (UV–vis) and photoluminescence (PL) spectroscopy, the results show that the products exhibit well-defined emission at 471 nm and 496 nm excited by 292 nm. The interaction of Ag{sup +}/Ag{sub 2}S with the lysozyme was investigated through Fourier transform infrared (FT-IR) spectroscopy, which shows that the cooperation effect of the lysozyme and Ag{sup +} could be responsible for the formation of as obtained Ag{sub 2}S nanorods.

  8. Fluidic delivery of homogeneous solutions through carbon tube bundles

    International Nuclear Information System (INIS)

    Srikar, R; Yarin, A L; Megaridis, C M

    2009-01-01

    A wide array of technological applications requires localized high-rate delivery of dissolved compounds (in particular, biological ones), which can be achieved by forcing the solutions or suspensions of such compounds through nano or microtubes and their bundled assemblies. Using a water-soluble compound, the fluorescent dye Rhodamine 610 chloride, frequently used as a model drug release compound, it is shown that deposit buildup on the inner walls of the delivery channels and its adverse consequences pose a severe challenge to implementing pressure-driven long-term fluidic delivery through nano and microcapillaries, even in the case of such homogeneous solutions. Pressure-driven delivery (3-6 bar) of homogeneous dye solutions through macroscopically-long (∼1 cm) carbon nano and microtubes with inner diameters in the range 100 nm-1 μm and their bundled parallel assemblies is studied experimentally and theoretically. It is shown that the flow delivery gradually shifts from fast convection-dominated (unobstructed) to slow jammed convection, and ultimately to diffusion-limited transport through a porous deposit. The jamming/clogging phenomena appear to be rather generic: they were observed in a wide concentration range for two fluorescent dyes in carbon nano and microtubes, as well as in comparable transparent glass microcapillaries. The aim of the present work is to study the physics of jamming, rather than the chemical reasons for the affinity of dye molecules to the tube walls.

  9. A facile method for electrospinning of Ag nanoparticles/poly (vinyl alcohol)/carboxymethyl-chitosan nanofibers

    International Nuclear Information System (INIS)

    Zhao, Yinghui; Zhou, Ying; Wu, Xiaomian; Wang, Lu; Xu, Ling; Wei, Shicheng

    2012-01-01

    Highlights: ► AgNPs/PVA/CM-chitosan nanofibers were prepared via electrospinning method. ► AgNPs were in situ synthesized in electrospinning solution via a facile method. ► AgNPs distributed homogeneously on the surface of nanofibers. ► The prepared nanofibers possessed certain antibacterial ability against Escherichia coli. ► The AgNPs containing nanofibers had potential as antibacterial biomaterial. - Abstract: A facile method to prepare silver nanoparticles (AgNPs) containing nanofibers via electrospinning has been demonstrated. AgNPs were in situ synthesized in poly (vinyl alcohol) (PVA)/carboxymethyl-chitosan (CM-chitosan) blend aqueous solution before electrospinning. UV–vis spectra, viscosity and conductivity of the electrospinning solution were measured to investigate their effects on the electrospinning procedure. The morphology of AgNPs/PVA/CM-chitosan nanofibers was observed by Field Emission Scanning Electron Microscopy. The formation and morphology of AgNPs were investigated by Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy. The resulted nanofibers have smooth surface and uniform diameters ranging from 295 to 343 nm. The diameters of AgNPs mainly distributed in the range of 4–14 nm, and the electrostatic interaction between AgNPs and fibers was observed. Finally, in vitro Ag release from the nanofibers was measured and the antibacterial behavior of the nanofibers against Escherichia coli was studied by bacterial growth inhibition halos and bactericidal kinetic testing. The AgNPs/PVA/CM-chitosan nanofibers possessed certain antibacterial ability, which makes them capable for antibacterial biomaterials.

  10. Generation of exact solutions to the Einstein field equations for homogeneous space--time

    International Nuclear Information System (INIS)

    Hiromoto, R.E.

    1978-01-01

    A formalism is presented capable of finding all homogeneous solutions of the Einstein field equations with an arbitrary energy-stress tensor. Briefly the method involves the classification of the four-dimensional Lie algebra over the reals into nine different broad classes, using only the Lorentz group. Normally the classification of Lie algebras means that one finds all essentially different solutions of the Jacobi identities, i.e., there exists no nonsingular linear transformation which transforms two sets of structure constants into the other. This approach is to utilize the geometrical considerations of the homogeneous spacetime and field equations to be solved. Since the set of orthonormal basis vectors is not only endowed with a Minkowskian metric, but also constitutes the vector space of our four-dimensional Lie algebras, the Lie algebras are classified against the Lorentz group restricts the linear group of transformations, denoting the essentially different Lie algebras, into nine different broad classes. The classification of the four-dimensional Lie algebras represents the unification of various methods previously introduced by others. Where their methods found only specific solutions to the Einstein field equations, systematic application of the nine different classes of Lie algebras guarantees the extraction of all solutions. Therefore, the methods of others were extended, and their foundations of formalism which goes beyond the present literature of exact homogeneous solutions to the Einstein field equations is built upon

  11. Therapeutic Effects of Hydrogen-Rich Solution on Aplastic Anemia in Vivo

    Directory of Open Access Journals (Sweden)

    Sanhu Zhao

    2013-08-01

    Full Text Available Background: Aplasitc anemia (AA is a bone marrow failure syndrome characterized by an immune-mediated destruction of hematopoietic stem cells. Though clinical symptoms could be ameliorated by bone marrow transplantation and/or immunosuppressive therapy, frequent recurrence and especially evolution of clonal hematologic diseases remains problematic clinically. Cytokines such as interferon-γ (INF-γ, tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6 secreted by autologous T cells are closely related with the development of AA. Hydrogen-rich solution was reported to inhibit the levels of cytokines including INF-γ, TNF-α and IL-6 in vivo in recent studies. This study was to investigate the potential therapeutic effects of hydrogen-rich solution on AA in vivo. Methods: AA model was determined in vivo by mice and body weights of the mice were used as the basic physiological index. Peripheral blood cells were calculated to evaluate the hematologic recovery degree. Bone marrow nucleated cells (BMNCs, tissue histology, as well as CFU-S and CFU-GM forming units were used to evaluate the recovery of bone marrow microenvironment. The ratio of CD4+ and CD8+ cells were examined along with cytokine levels in serum to determine the efficacy of H2-rich solution on the affected immunological functions. Results: Body weight and number of peripheral blood cells were significantly improved for mice in the H2-rich solution treated groups as compared with those with AA. The number of BMNCs and CFUs increased markedly and the bone marrow microenvironment was also improved significantly. The experimental group restrained the cell apoptosis, relieved hyperemia and accelerated tissue repair. The number of CD4+ and CD8+ cells as well as the ratio of CD4/CD8 increased to normal gradually, while the levels of TNF-α, IFN-γ, and IL-6 in serum decreased after H2-rich solution treatment. Conclusion: Our study firstly showed that hydrogen-rich solution accelerated the

  12. Formation of nanoparticles and nanorods via UV irradiation of AgNO3 solutions

    International Nuclear Information System (INIS)

    Szymanska-Chargot, M.; Gruszecka, A.; Smolira, A.; Bederski, K.; Gluch, K.; Cytawa, J.; Michalak, L.

    2009-01-01

    The synthesis of silver nanoparticles via UV irradiation of AgNO 3 solutions was controlled by using UV-vis absorption spectra and TEM (transmission electron microscope) images. The UV-vis absorption method is good enough for the general control of synthesis process, and TEM images give us information about size of formed species. For investigated solutions of silver nitrate in ethanol and water, we observed formation of large nanoparticles (size about 100 nm) and nanorods (100 nm in length). Moreover, there was effort to confirm evidence of formation of these particles by using TOF mass spectrometer. Due to laser desorption/ionization process there is only evidence of small silver nanoparticles Ag x , x ≤ 4 (clusters), and variety of silver compounds Ag x N y O z (x ≤ 5, y ≤ 2, z ≤ 3).

  13. Single-particle levitation system for automated study of homogeneous solute nucleation

    OpenAIRE

    Olsen, Adam P.; Flagan, Richard C.; Kornfield, Julia A.

    2006-01-01

    We present an instrument that addresses two critical requirements for quantitative measurements of the homogeneous crystal nucleation rate in supersaturated aqueous solution. First, the need to perform repeated measurements of nucleation incubation times is met by automating experiments to enable programmable cycling of thermodynamic conditions. Second, the need for precise and robust control of the chemical potential in supersaturated aqueous solution is met by implementing a novel technique...

  14. Homogenization Experiments of Crystal-Rich Inclusions in Spodumene from Jiajika Lithium Deposit, China, under Elevated External Pressures in a Hydrothermal Diamond-Anvil Cell

    Directory of Open Access Journals (Sweden)

    Jiankang Li

    2017-01-01

    Full Text Available Extensive studies of the crystal-rich inclusions (CIs hosted in minerals in pegmatite have resulted in substantially different models for the formation mechanism of the pegmatite. In order to evaluate these previously proposed formation mechanisms, the total homogenization processes of CIs hosted in spodumene from the Jiajika pegmatite deposit in Sichuan, China, were observed in situ under external H2O pressures in a new type of hydrothermal diamond-anvil cell (HDAC. The CIs in a spodumene chip were loaded in the sample chamber of HDAC with water, such that the CIs were under preset external H2O pressures during heating to avoid possible decrepitation. Our in situ observations showed that the crystals within the CIs were dissolved in carbonic-rich aqueous fluid during heating and that cristobalite was usually the first mineral being dissolved, followed by zabuyelite and silicate minerals until their total dissolution at temperatures between 500 and 720°C. These observations indicated that the minerals within the CIs were daughter minerals crystallized from an entrapped carbonate- and silica-rich aqueous solution and therefore provided useful information for evaluating the formation models of granitic pegmatites.

  15. Fabrication of In-rich AgInS{sub 2} nanoplates and nanotubes by a facile low-temperature co-precipitation strategy and their excellent visible-light photocatalytic mineralization performance

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Fang; Zhong, Fei [Nanchang Hangkong University, Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, College of Environmental and Chemical Engineering (China); Hu, Peng [Jiaozuo University, College of Chemical Industry and Environment Engineering (China); Pei, Xule; Luo, Xubiao, E-mail: luoxubiao@126.com; Luo, Shenglian, E-mail: sllou@hnu.edu.cn [Nanchang Hangkong University, Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, College of Environmental and Chemical Engineering (China)

    2017-01-15

    Visible-light-driven In-rich AgInS{sub 2} nanoplates and nanotubes were successfully prepared by a convenient co-precipitation strategy at low temperature. The effect of different In/Ag molar ratio in the raw materials on the physicochemical properties and photocatalytic activity of AgInS{sub 2} was investigated. The In/Ag molar ratio has an obvious effect on the morphology of AgInS{sub 2}, and the physicochemical properties and photocatalytic activity of AgInS{sub 2} are also dependent on the In/Ag molar ratio. When the molar ratio of In/Ag is 9, the photoluminescence intensity of AgInS{sub 2} reaches a minimum value, while its photocurrent density is maximum (0.011 mA/cm{sup 2}), indicating the most efficient separation of electron-hole pairs. The AgInS{sub 2} with the In/Ag molar ratio of 9 exhibits the highest visible-light photocatalytic activities with almost complete degradation of 2-nitrophenol, which is attributed to the narrowest band gap and the most efficient separation of electron-hole pairs. Moreover, In-rich AgInS{sub 2} exhibits excellent regeneration ability.

  16. Homogeneous Solutions of Stationary Navier-Stokes Equations with Isolated Singularities on the Unit Sphere. I. One Singularity

    Science.gov (United States)

    Li, Li; Li, YanYan; Yan, Xukai

    2018-03-01

    We classify all (-1)-homogeneous axisymmetric no-swirl solutions of incompressible stationary Navier-Stokes equations in three dimension which are smooth on the unit sphere minus the south pole, parameterize them as a two dimensional surface with boundary, and analyze their pressure profiles near the north pole. Then we prove that there is a curve of (-1)-homogeneous axisymmetric solutions with nonzero swirl, having the same smoothness property, emanating from every point of the interior and one part of the boundary of the solution surface. Moreover we prove that there is no such curve of solutions for any point on the other part of the boundary. We also establish asymptotic expansions for every (-1)-homogeneous axisymmetric solutions in a neighborhood of the singular point on the unit sphere.

  17. Effects of solution treatment on the microstructure and mechanical properties of Al-Cu-Mg-Ag alloy

    International Nuclear Information System (INIS)

    Liu, Xiao Yan; Pan, Qing Lin; Lu, Zhi Lun; Cao, Su Fang; He, Yun Bin; Li, Wen Bin

    2010-01-01

    The effects of solution treatment on the microstructure and mechanical properties of Al-Cu-Mg-Ag alloy were studied by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), differential scanning calorimeter (DSC), transmission electron microscopy (TEM) and tensile test, respectively. The results show that the mechanical property increases and then decreases with increasing the solution temperature. And the residual phases are dissolved into the matrix gradually, the number fraction of the precipitation and the size of recrystallized grains increase. Compared to the solution temperature, the solution holding time has less effect on the microstructure and the mechanical properties of Al-Cu-Mg-Ag alloy. The overburnt temperature of Al-Cu-Mg-Ag alloy is 525 o C. The yield strength and the elongation get the best when the alloy is solution treated at 515 o C for 1.5 h, is 504 MPa and 12.2% respectively. The fracture mechanism of the samples is ductile fracture.

  18. A facile method for electrospinning of Ag nanoparticles/poly (vinyl alcohol)/carboxymethyl-chitosan nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yinghui; Zhou, Ying [Beijing Key Laboratory for Solid Waste Utilization and Management, College of Engineering, Peking University, Beijing 100871 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Wu, Xiaomian [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Orthodontics College of Stomatology, Chongqing Medical University, Chongqing 401147 (China); Wang, Lu [Beijing Key Laboratory for Solid Waste Utilization and Management, College of Engineering, Peking University, Beijing 100871 (China); Xu, Ling, E-mail: lingxu@pku.edu.cn [Beijing Key Laboratory for Solid Waste Utilization and Management, College of Engineering, Peking University, Beijing 100871 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); PKU-HKUST ShenZhen-HongKong Institution, Shenzhen 518057 (China); Wei, Shicheng, E-mail: sc-wei@pku.edu.cn [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081 (China)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer AgNPs/PVA/CM-chitosan nanofibers were prepared via electrospinning method. Black-Right-Pointing-Pointer AgNPs were in situ synthesized in electrospinning solution via a facile method. Black-Right-Pointing-Pointer AgNPs distributed homogeneously on the surface of nanofibers. Black-Right-Pointing-Pointer The prepared nanofibers possessed certain antibacterial ability against Escherichia coli. Black-Right-Pointing-Pointer The AgNPs containing nanofibers had potential as antibacterial biomaterial. - Abstract: A facile method to prepare silver nanoparticles (AgNPs) containing nanofibers via electrospinning has been demonstrated. AgNPs were in situ synthesized in poly (vinyl alcohol) (PVA)/carboxymethyl-chitosan (CM-chitosan) blend aqueous solution before electrospinning. UV-vis spectra, viscosity and conductivity of the electrospinning solution were measured to investigate their effects on the electrospinning procedure. The morphology of AgNPs/PVA/CM-chitosan nanofibers was observed by Field Emission Scanning Electron Microscopy. The formation and morphology of AgNPs were investigated by Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy. The resulted nanofibers have smooth surface and uniform diameters ranging from 295 to 343 nm. The diameters of AgNPs mainly distributed in the range of 4-14 nm, and the electrostatic interaction between AgNPs and fibers was observed. Finally, in vitro Ag release from the nanofibers was measured and the antibacterial behavior of the nanofibers against Escherichia coli was studied by bacterial growth inhibition halos and bactericidal kinetic testing. The AgNPs/PVA/CM-chitosan nanofibers possessed certain antibacterial ability, which makes them capable for antibacterial biomaterials.

  19. Enhanced photocatalytic performance of BiVO{sub 4} in aqueous AgNO{sub 3} solution under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chien-Kai [Department of Chemistry, National Changhua University of Education, Changhua City, Taiwan (China); Wu, Tsunghsueh [Department of Chemistry, University of Wisconsin-Platteville, Platteville (United States); Huang, Chang-Wei [Department of Chemistry, National Changhua University of Education, Changhua City, Taiwan (China); Lai, Chi-Yung [Department of Biology, National Changhua University of Education, Changhua, Taiwan (China); Wu, Mei-Yao, E-mail: meiyaowu0919@gmail.com [Research Centre for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung City, Taiwan (China); Lin, Yang-Wei, E-mail: linywjerry@cc.ncue.edu.tw [Department of Chemistry, National Changhua University of Education, Changhua City, Taiwan (China)

    2017-03-31

    Graphical abstract: Ag{sup +} ions enhanced photocatalytic activity of BiVO{sub 4} under visible light irradiation. - Highlights: • The presence of Ag{sup +} ions enhanced the photodegradation activity of BiVO{sub 4}. • Photoreduction of Ag deposited on the BiVO{sub 4} surface was obtained. • Luminescence and electrochemical results elucidated the photocatalytic mechanism. • Holes and oxygen radicals were the main reactive species generated by BiVO{sub 4}/Ag{sup +}. • Used BiVO{sub 4}/Ag{sup +} exhibited photocatalytic antibacterial activity toward E. coli. - Abstract: Monoclinic-phase bismuth vanadate (BiVO{sub 4}) with a 2.468 eV band gap exhibited enhanced synergic photodegradation activity toward methylene blue (MB) when combined with silver ions (Ag{sup +}) in an aqueous solution under visible light irradiation. The mass ratio of AgNO{sub 3} to BiVO{sub 4} and the calcination temperature were discovered to considerably affect the degradation activity of BiVO{sub 4}/Ag{sup +}. Superior photocatalytic performance was obtained when BiVO{sub 4} was mixed with 0.01%(w/v) AgNO{sub 3} solution, and complete degradation of MB was achieved after 25 min visible light irradiation, outperforming BiVO{sub 4} or AgNO{sub 3} solution alone. The enhanced photodegradation was investigated using systematic luminescence measurements, electrochemical impedance spectroscopy, and scavenger addition, after which a photocatalytic mechanism for MB degradation under visible light irradiation was identified that involved oxygen radicals and holes. This study also discovered the two dominating processes involved in enhancing the electron–hole separation efficiency and reducing their recombination rate, namely photoreduction of Ag{sup +} and the formation of a BiVO{sub 4}/Ag heterojunction. The synergic effect between BiVO{sub 4} and Ag{sup +} was discovered to be unique. BiVO{sub 4}/Ag{sup +} was successfully used to degrade two other dyes and disinfect Escherichia Coli. A

  20. Energy conversion from aluminium and phosphate rich solution via ZnO activation of aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Slaughter, Gymama, E-mail: gslaught@umbc.edu; Sunday, Joshua; Stevens, Brian

    2015-08-01

    Electrochemical power sources have motivated intense research efforts in the development of alternative ‘green’ power sources for ultra-low powered bioelectronic devices. Biofuel cells employ immobilized enzymes to convert the available chemical energy of organic fuels directly into electricity. However, biofuel cells are limited by short lifetime due to enzyme inactivation and frequent need to incorporate mediators to shuttle electrons to the final electron acceptor. In this context, other electrochemical power sources are necessary in energy conversion and storage device applications. Here we report on the fabrication and characterization of a membrane-free aluminium/phosphate cell based on the activation of aluminium (Al) using ZnO nanocrystal in an Al/phosphate cell as a ‘green’ alternative to the traditional enzymatic biofuel cells. The hybrid cell operates in neutral phosphate buffer solution and physiological saline buffer. The ZnO modifier in the phosphate rich electrolyte activated the pitting of Al resulting in the production of hydrogen, as the reducing agent for the reduction of H{sub 2}PO{sub 4}{sup −} ions to HPO{sub 3}{sup 2−} ions at a formal potential of −0.250 V vs. Ag/AgCl. Specifically, the fabricated cell operating in phosphate buffer and physiological saline buffer exhibit an open-circuit voltage of 0.810 V and 0.751 V and delivered a maximum power density of 0.225 mW cm{sup −2} and 1.77 mW cm{sup −2}, respectively. Our results demonstrate the feasibility of generating electricity by activating Al as anodic material in a hybrid cell supplied with phosphate rich electrolyte. Our approach simplifies the construction and operation of the electrochemical power source as a novel “green” alternative to the current anodic substrates used in enzymatic biofuel cells for low power bioelectronics applications. - Graphical abstract: Display Omitted - Highlights: • ZnO activation of metallic Al for generating electricity for

  1. Alloying of Yb-Cu and Yb-Ag utilizing liquid ammonia metal solutions of ytterbium

    International Nuclear Information System (INIS)

    Imamura, H.; Yoshimura, T.; Sakata, Y.

    2003-01-01

    In the course of the studies on preparation of novel compounds using the dissolution of Eu or Yb metals in liquid ammonia, the formation of Yb-Cu and Yb-Ag intermetallic films has been found. When Cu or Ag metal powders were placed in a reactor containing a solution of Yb metal in liquid ammonia, the dissolved Yb readily react with the Cu or Ag metal particles to form surface alloy compounds. X-ray diffraction of Yb-Cu showed that upon thermal treatment above 673 K, the Yb metal deposited on the Cu particles reacted together to be transformed into the YbCu 6.5 intermetallic compound. A characteristic endothermic peak at 749 K, due to alloying of Yb-Cu, was observed by the differential scanning calorimeter measurements. By use of the high reactivity of liquid ammonia metal solutions of ytterbium, it was found that the ytterbium intermetallic films were readily formed under mild conditions. Yb-Cu and Yb-Ag exhibited enhanced catalytic activity for the hydrogenation of ethene as a result of alloying

  2. Effect of microstructure on corrosion behavior of Ag-30Cu-27Sn alloy in vitro media

    International Nuclear Information System (INIS)

    Salehisaki, Mehdi; Aryana, Maryam

    2014-01-01

    Highlights: • High cooling rates decrease the number of Ag intermetallic particles in Cu-rich phase. • Increasing cooling rate improves corrosion behavior of Ag-30Cu-27Sn dental alloy. • Cathode/anode ratio in Cu-rich phases determines the corrosion behavior of alloy. - Abstract: In the present work, three simple heat treatment cycles were used to study the effects of microstructure on electrochemical corrosion behavior of Ag-30Cu-27Sn dental alloy. The electrochemical impedance spectroscopy (EIS) measurements and potentiodynamic polarization tests were carried out to investigate the corrosion behavior of as-cast and heat treated samples in synthetic saliva solution. The presence of intermetallic compounds were studied by X-ray diffraction method (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray detector (EDAX). The microstructural observations and electrochemical corrosion results revealed that, increasing the cooling rate improves the corrosion behavior of under investigation samples. Improvement of the corrosion behavior is attributed to reducing the area of fine distributed Ag 3 Sn islands in the Cu-rich matrix which decrease the cathode/anode ratio of microgalvanic cells

  3. Formation of Ag nanoparticles in percolative Ag–PbTiO3 composite thin films through lead-rich Ag–Pb alloy particles formed as transitional phase

    International Nuclear Information System (INIS)

    Hu, Tao; Wang, Zongrong; Su, Yanbo; Tang, Liwen; Shen, Ge; Song, Chenlu; Han, Gaorong; Weng, Wenjian; Ma, Ning; Du, Piyi

    2012-01-01

    The Ag nanoparticle dispersed percolative PbTiO 3 ceramic thin film was prepared in situ by sol–gel method with excess lead introduced into a sol precursor. The influence of excess lead and the heat treatment time on the formation of Ag nanoparticles was investigated by energy dispersive X-ray spectra, scanning electron microscopy, X-ray diffraction, and ultraviolet–visible absorption spectra. Results showed that the excess lead introduced into the sol precursor was in favor of the crystallization of the thin film and in favor of formation of the perovskite phase without the pyrochlore phase. Lead-rich Ag–Pb alloy particles first formed in the thin films and then decomposed to become large numbers of Ag nanoparticles of about 3 nm in size in the thin films when the heat treatment time was longer than 2 min. The content of the Ag nanoparticles increased with increasing the heat treatment time. The percolative behavior appears typically in the Ag nanoparticle dispersed thin films. The dielectric constant of the thin film was about 3 times of that without Ag nanoparticles. - Highlights: ► The Ag nanoparticles formed in the PbTiO 3 percolative ceramic thin film. ► The Ag–Pb alloy particles formed as transitional phase during thin film preparation. ► The lead-rich Ag–Pb alloy particles decomposed to form Ag nanoparticles in the film. ► Permittivity of the thin film is 3 times higher than that without Ag nanoparticles.

  4. Fluxless Sn-Ag bonding in vacuum using electroplated layers

    International Nuclear Information System (INIS)

    Kim, Jongsung; Lee, Chin C.

    2007-01-01

    A fluxless bonding process in vacuum environment using newly developed electroplated Sn-Ag multilayer structure at eutectic composition is presented. The new bonding process is entirely fluxless, or flux-free. It is performed in vacuum (100 mTorr), in which the oxygen content is reduced by a factor of 7600 comparing to air, to inhibit solder oxidation. In the design, Cr/Au dual layer is employed as the UBM as well as the plating seed layer. This UBM design, seldom used in the electronic industry, is explained in some details. To realize the fluxless possibility, a proper layer design of the solder structure is needed. In this connection, we wish to point out that it is hard to achieve fluxless bonding using Sn-rich alloys because these alloys have numerous Sn atoms on the surface that are easily oxidized. To prevent Sn oxidation, a thin Ag layer is plated immediately over Sn layer. XRD results confirm that this thin Ag layer does act as a barrier to prevent oxidation of the inner Sn layer. The resulting solder joints are void free as examined by a scanning acoustic microscope (SAM). SEM and EDX studies on the cross section of the joint indicate a homogeneous Sn-rich phase. The melting temperature is measured to be between 219 and 226 deg. C. This new fluxless bonding process is valuable in many applications where the use of flux is prohibited

  5. Bimetallic AgCu/Cu2O hybrid for the synergetic adsorption of iodide from solution.

    Science.gov (United States)

    Mao, Ping; Liu, Ying; Liu, Xiaodong; Wang, Yuechan; Liang, Jie; Zhou, Qihang; Dai, Yuexuan; Jiao, Yan; Chen, Shouwen; Yang, Yi

    2017-08-01

    To further improve the capacity of Cu 2 O to absorb I - anions from solution, and to understand the difference between the adsorption mechanisms of Ag/Cu 2 O and Cu/Cu 2 O adsorbents, bimetallic AgCu was doped into Cu 2 O through a facile solvothermal route. Samples were characterized and employed to adsorb I - anions under different experimental conditions. The results show that the Cu content can be tuned by adding different volumes of Ag sols. After doping bimetallic AgCu, the adsorption capacity of the samples can be increased from 0.02 mmol g -1 to 0.52 mmol g -1 . Moreover, the optimal adsorption is reached within only 240 min. Meanwhile, the difference between the adsorption mechanisms of Ag/Cu 2 O and Cu/Cu 2 O adsorbents was verified, and the cooperative adsorption mechanism of the AgCu/Cu 2 O hybrid was proposed and verified. In addition, the AgCu/Cu 2 O hybrid showed excellent selectivity, e.g., its adsorption efficiencies are 85.1%, 81.9%, 85.9% and 85.7% in the presence of the Cl - , CO 3 2- , SO 4 2- and NO 3 - competitive anions, respectively. Furthermore, the AgCu/Cu 2 O hybrid can worked well in other harsh environments (e.g., acidic, alkaline and seawater environments). Therefore, this study is expected to promote the development of Cu 2 O into a highly efficient adsorbent for the removal of iodide from solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Work function tuning and fluorescence enhancement of hydrogen annealed Ag-doped Al-rich zinc oxide nanostructures using a sol–gel process

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Firoz; Baek, Seong-Ho [Energy Research Division, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 50-1 Sang-Ri, Hyeonpung-Myeon, Dalseong-Gun, Daegu 711-873 (Korea, Republic of); Lee, Jae Young [School of Mechanical and Control Engineering, Handong Global University, 558 Handong-Ro, Heunghae-Eub, Buk-Ku, Pohang, Gyung-Buk 791-708 (Korea, Republic of); Kim, Jae Hyun, E-mail: jaehyun@dgist.ac.kr [Energy Research Division, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 50-1 Sang-Ri, Hyeonpung-Myeon, Dalseong-Gun, Daegu 711-873 (Korea, Republic of)

    2015-10-25

    Effect of incorporation of Ag on the structural, optical, electrical, and fluorescence properties of sol–gel derived Al-rich zinc oxide (ZnO:Al:Ag) nanostructured films was studied. The E{sub g} of the film slightly decreased to a minimal value with Ag doping, and was found to be about 3.65 eV for R{sub Ag/Zn} = 1% from its initial value of 3.72 eV (R{sub Ag/Zn} = 0%). The WF sudden increased to a maximal value of 5.12 eV with Ag doping (for R{sub Ag/Zn} = 1%) from its initial value of 4.73 eV for R{sub Ag/Zn} = 0% due to substitution of Ag into Zn sites until saturation was achieved (R{sub Ag/Zn} = 1%). After more Ag doping, WF started to decrease and finally, reached a value of 4.81 eV for R{sub Ag/Zn} = 3% because of the formation of an impurity-defect energy level below the intrinsic Fermi level of ZnO. With Ag-doping, the current increased up to R{sub Ag/Zn} = 1% due to the increase in carrier density. For R{sub Ag/Zn} = 3% doping, the current density started to increase due to the influence of metallic Ag. The defective peak position was blue shifted, with increased Ag-doping, from 536 nm (R{sub Ag/Zn} = 1%) to 527 nm for R{sub Ag/Zn} = 2% due to the sizes of the Ag{sup +} and Zn{sup 2+} ions. The FL defective peak intensity (I{sub D}) in the green region increased with the concentration of Ag used for doping, up to R{sub Ag/Zn} = 2%. The enhancement in the I{sub D} may be due to charge difference between the Zn{sup 2+} ions, caused by Ag{sup +} ions. - Graphical abstract: The effect of incorporation of Ag doping on the structural, optical, electrical, and fluorescence properties of sol–gel derived Al-rich zinc oxide (ZnO:Al:Ag) nanostructured films was studied. By Ag-doping, the lowest R{sub λ} is blue shifted to R{sub Ag/Zn} = 2% and finally red shifted for R{sub Ag/Zn} = 3% due to variation of optical thickness of the film. The E{sub g} of the film slightly decreased to a minimal value with Ag doping, and was found to be about 3.65 eV for R{sub Ag

  7. Antibacterial ethylene propylene rubber impregnated with silver nanopowder: AgNP@EPR

    Directory of Open Access Journals (Sweden)

    Marzieh Miranzadeh

    2016-01-01

    Full Text Available Following our interest in reaching for a molded rubber article with possible detergent contact applications, durable silver nanopowder (AgNP is synthesized by arc discharge, then mixed with varying ratios of ethylene propylene rubber (EPR, affording novel AgNP@EPR nanocomposites. X-ray diffraction (XRD patterns of AgNP as well as AgNP@EPR show no trace of impurity, while scanning electron microscopy (SEM indicates an average diameter of 50 nm for the former. Transmission electron microscopy (TEM images while confirm the SEM results, show quite a few 5 nm AgNP particles lying beside some micro crumbs. Our DC arc discharge technique involves explosion of movable silver anode and static cathode by a current pulse between 5 to 10 A cm-2. A solution blending method is employed for preparation of AgNP@EPR nanocomposites. The AgNP is first dispersed in toluene using an ultrasonic homogenizer, and then thoroughly mixed with EPR in the same solvent whose removal gives nanocomposites of 2, 4, 6 and 8 vol% AgNP in EPR,  showing strong antibacterial activity against both Escherichia coli and Staphylococcus aureus.

  8. On the modeling of irradiation-induced homogeneous precipitation in proton-bombarded Ni-Si solid solutions

    Science.gov (United States)

    Lam, Nghi Q.; Janghorban, K.; Ardell, A. J.

    1981-10-01

    Irradiation-induced solute redistribution leading to precipitation of coherent γ' particles in undersaturated Ni-based solid solutions containing 6 and 8 at.% Si during 400-keV proton bombardment was modeled, based on the concept of solute segregation in concentrated alloys under spatially-dependent defect production conditions. The combined effects of (i) an extremely large difference between the defect production rates in the peak-damage and mid-range regions during irradiation and (ii) a preferential coupling between the interstitial and solute fluxes generate a net transient flux of Si atoms into the mid-range region, which is much larger than the solute flux out of this location. As a result, the Si concentration exceeds the solubility limit and homogeneous precipitation of the γ' phase occurs in this particular region of the irradiated samples. The spatial, compositional and temperature dependences of irradiation-induced homogeneous precipitation derived from the present theoretical calculations are in good qualitative agreement with experimental observations

  9. Precipitation of plutonium oxalate from homogeneous solutions

    International Nuclear Information System (INIS)

    Rao, V.K.; Pius, I.C.; Subbarao, M.; Chinnusamy, A.; Natarajan, P.R.

    1986-01-01

    A method for the precipitation of plutonium(IV) oxalate from homogeneous solutions using diethyl oxalate is reported. The precipitate obtained is crystalline and easily filterable with yields in the range of 92-98% for precipitations involving a few mg to g quantities of plutonium. Decontamination factors for common impurities such as U(VI), Am(III) and Fe(III) were determined. TGA and chemical analysis of the compound indicate its composition as Pu(Csub(2)Osub(4))sub(2).6Hsub(2)O. Data are obtained on the solubility of the oxalate in nitric acid and in mixtures of nitric acid and oxalic acid of varying concentrations. Green PuOsub(2) obtained by calcination of the oxalate has specifications within the recommended values for trace foreign substances such as chlorine, fluorine, carbon and nitrogen. (author)

  10. Ag(I)-bovine serum albumin hydrosol-mediated formation of Ag3PO4/reduced graphene oxide composites for visible-light degradation of Rhodamine B solution.

    Science.gov (United States)

    Ma, Peiyan; Chen, Anliang; Wu, Yan; Fu, Zhengyi; Kong, Wei; Che, Liyuan; Ma, Ruifang

    2014-03-01

    A cost-effective Ag(I)-bovine serum albumin (BSA) supramolecular hydrosol strategy was utilized to assemble Ag3PO4 nanospheres onto reduced graphene oxide (rGO) sheets. The obtained composites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy and Fourier transform infrared spectroscopy. Compared with the pure Ag3PO4 crystals and Ag3PO4 particles prepared with Ag(I)-BSA hydrosol as precursor, the Ag3PO4/rGO composites obtained with different content of graphene oxide indicated improved visible-light-driven photocatalysis activity for the decomposition of Rhodamine B aqueous solution. The results pointed to the possibility of synthesizing graphene-based photocatalysts by metal ion-BSA hydrosol. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Simultaneous microwave-assisted synthesis, characterization, thermal stability, and antimicrobial activity of cellulose/AgCl nanocomposites

    International Nuclear Information System (INIS)

    Li, Shu-Ming; Fu, Lian-Hua; Ma, Ming-Guo; Zhu, Jie-Fang; Sun, Run-Cang; Xu, Feng

    2012-01-01

    By means of a simultaneous microwave-assisted method and a simple chemical reaction, cellulose/AgCl nanocomposites have been successfully synthesized using cellulose solution and AgNO 3 in N,N-dimethylacetamide (DMAc) solvent. The cellulose solution was firstly prepared by the dissolution of the microcrystalline cellulose and lithium chloride (LiCl) in DMAc. DMAc acts as both a solvent and a microwave absorber. LiCl was used as the reactant to fabricate AgCl crystals. The effects of the heating time and heating temperature on the products were studied. This method is based on the simultaneous formation of AgCl nanoparticles and precipitation of the cellulose, leading to a homogeneous distribution of AgCl nanoparticles in the cellulose matrix. The experimental results confirmed the formation of cellulose/AgCl nanocomposites with high-purity, good thermal stability and antimicrobial activity. This rapid, green and environmentally friendly microwave-assisted method opens a new window to the high value-added applications of biomass. -- Highlights: ► Cellulose/AgCl nanocomposites have been synthesized by microwave method. ► Effect of heating temperature on the nanocomposites was researched. ► Thermal stability of the nanocomposites was investigated. ► Cellulose/AgCl nanocomposites had good antimicrobial activity. ► This method is based on the simultaneous formation of AgCl and cellulose.

  12. Experimental study of the phase equilibria in the Mg–Zn–Ag ternary system at 300 °C

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian, E-mail: jian.wang@polymtl.ca [Center for Research in Computational Thermochemistry (CRCT), Department of Chemical Engineering, École Polytechnique, Montréal, Québec H3C 3A7 (Canada); Zhang, Yi-Nan [Department of Mechanical Engineering, Concordia University, 1455 De Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8 (Canada); Hudon, Pierre; Jung, In-Ho [Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5 (Canada); Medraj, Mamoun [Department of Mechanical Engineering, Concordia University, 1455 De Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8 (Canada); Department of Mechanical and Materials Engineering, Masdar Institute, Masdar City, P.O. Box 54224, Abu Dhabi (United Arab Emirates); Chartrand, Patrice [Center for Research in Computational Thermochemistry (CRCT), Department of Chemical Engineering, École Polytechnique, Montréal, Québec H3C 3A7 (Canada)

    2015-08-05

    Highlights: • The phase equilibria of Mg–Zn–Ag system at 300 °C were determined. • A bcc continuous ternary solid solution forms between MgAg (bcc-B2) and AgZn (bcc-A2) was determined. • The extended solid solubilities of the sub-binary compounds were also determined. - Abstract: The phase equilibria in the Mg–Zn–Ag ternary system at 300 °C were investigated using three diffusion couples and 35 key samples. Scanning electron microscopy (SEM) equipped with energy-dispersive spectroscope (EDS) and X-ray diffraction (XRD) techniques were used for homogeneity ranges and crystal structure determination. Large solid solubility limits, due to substitution among Mg, Zn and Ag atoms in Mg{sub 3}Ag and MgZn{sub 2} phases, were observed in the present work. Solid solubility limits of Ag and Zn in the hcp (Mg) phase were found to be less than 1 at.%. The extended solid solubilities of the Mg{sub 12}Zn{sub 13}, Mg{sub 2}Zn{sub 3}, MgZn{sub 2} (C14), Mg{sub 2}Zn{sub 11}, Ag{sub 5}Zn{sub 8} and hcp (AgZn{sub 3}) sub-binary compounds were also determined in the Mg–Zn–Ag ternary system. In addition, a bcc continuous ternary solid solution forms between MgAg (bcc-B2) and AgZn (bcc-A2) at 300 °C.

  13. Travelling wave solutions of the homogeneous one-dimensional FREFLO model

    Science.gov (United States)

    Huang, B.; Hong, J. Y.; Jing, G. Q.; Niu, W.; Fang, L.

    2018-01-01

    Presently there is quite few analytical studies in traffic flows due to the non-linearity of the governing equations. In the present paper we introduce travelling wave solutions for the homogeneous one-dimensional FREFLO model, which are expressed in the form of series and describe the procedure that vehicles/pedestrians move with a negative velocity and decelerate until rest, then accelerate inversely to positive velocities. This method is expect to be extended to more complex situations in the future.

  14. Hyperoxygenated hydrogen-rich solution suppresses shock- and resuscitation-induced liver injury.

    Science.gov (United States)

    Dang, Yangjie; Liu, Ting; Mei, Xiaopeng; Meng, Xiangzhong; Gou, Xingchun; Deng, Bin; Xu, Hao; Xu, Lixian

    2017-12-01

    It is not known whether simultaneous delivery of hydrogen and oxygen can reduce injury caused by hemorrhagic shock and resuscitation (HSR). This study investigated the therapeutic potential of hyperoxygenated hydrogen-rich solution (HHOS), a combined hydrogen/oxygen carrier, in a rat model of HSR-induced liver injury. Rats (n = 60) were randomly divided into 5 groups (n = 6 per group at each time point). One group underwent sham operation, and the others were subjected to severe hemorrhagic shock and then treated with lactated Ringer's solution (LRS), hydrogen-rich solution, hyperoxygenated solution, or HHOS. At 2 and 6 h after resuscitation, blood samples (n = 6) were collected from the femoral artery and serum concentrations of alanine aminotransferase and aspartate aminotransferase (AST) were measured. Rats were then sacrificed, and histopathological changes in the liver were evaluated by quantifying the percentage of apoptotic cells by caspase-3 immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick-end labeling. Inflammation was assessed by assessing malondialdehyde content and tumor necrosis factor-α, and interleukin (IL)-6 expression. Compared to lactated Ringer's solution, hydrogen-rich solution, or hyperoxygenated solution groups, serum AST and alanine aminotransferase levels and IL-6, tumor necrosis factor-α, and malondialdehyde expression in liver tissue were decreased by HHOS treatment. The number of caspase-3- and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells was decreased (P < 0.05) by HHOS treatment, 2 and 6 h after resuscitation. HHOS has protective effects against liver injury in a rat model of HSR. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The analytical benchmark solution of spatial diffusion kinetics in source driven systems for homogeneous media

    International Nuclear Information System (INIS)

    Oliveira, F.L. de; Maiorino, J.R.; Santos, R.S.

    2007-01-01

    This paper describes a closed form solution obtained by the expansion method for the general time dependent diffusion model with delayed emission for source transients in homogeneous media. In particular, starting from simple models, and increasing the complexity, numerical results were obtained for different types of source transients. Thus, first an analytical solution of the one group without precursors was solved, followed by considering one precursors family. The general case of G-groups with R families of precursor although having a closed form solution, cannot be solved analytically, since there are no explicit formulae for the eigenvalues, and numerical methods must be used to solve such problem. To illustrate the general solution, the multi-group (three groups) time-dependent without precursors was also solved and the results inter compared with results obtained by the previous one group models for a given fast homogeneous media, and different types of source transients. The results are being compared with the obtained by numerical methods. (author)

  16. Investigation on the Effect of Addition of Fe3+ Ion into the Colloidal AgNPs in PVA Solution and Understanding Its Reaction Mechanism

    Directory of Open Access Journals (Sweden)

    Roto Roto

    2017-11-01

    Full Text Available Analysis of Fe3+ ion present in aqueous solutions is always of interests. Recently, this ion has been analyzed by colorimetric methods using colloid of silver nanoparticles (AgNPs in capping agents of polymers. The reaction mechanism between AgNPs and Fe3+ is still subject to the further investigation. In this work, 1,10-phenanthroline was used to probe the reaction mechanism between AgNPs and Fe3+ ion in the solution. The colloids of AgNPs were prepared in the polyvinyl alcohol (PVA solution and reacted with Fe3+. The colloid surface plasmon absorbance decreases linearly along with the increase in Fe3+ concentration. The addition of 1,10-phenanthroline to mixture changes the solution to red, indicating that the reaction produces Fe2+. This suggests that the reduction of the AgNPs absorbance is the result of oxidation of the Ag nanoparticles along with the reduction of Fe3+.

  17. Facile synthesis, structure, and properties of Ag{sub 2}S/Ag heteronanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Sadovnikov, S. I., E-mail: sadovnikov@ihim.uran.ru; Gusev, A. I. [Ural Branch of the Russian Academy of Sciences, Institute of Solid State Chemistry (Russian Federation)

    2016-09-15

    Ag{sub 2}S/Ag heteronanostructure has been produced by a simple one-stage chemical deposition from aqueous solutions of silver nitrate, sodium sulfide, and sodium citrate with the use of monochromatic light irradiation. For simultaneous synthesis of Ag{sub 2}S and Ag nanoparticles, deposition has been performed from reaction mixtures with reduced sodium sulfide concentration. The size of Ag{sub 2}S and Ag nanoparticles is 45–50 and 15–20 nm, respectively. It is established that in the contact layer between silver sulfide and silver, nonconducting α-Ag{sub 2}S acanthite transforms into superionic β-Ag{sub 2}S argentite under the action of external electric field. The scheme of the operation of a resistive switch based on an Ag{sub 2}S/Ag heteronanostructure is proposed. The UV–Vis optical absorption spectra of colloidal solutions of Ag{sub 2}S/Ag heteronanostructures have been studied.Graphical Abstract.

  18. Murmanite and lomonosovite as Ag-selective ionites: kinetics and products of ion exchange in aqueous AgNO3 solutions

    Science.gov (United States)

    Lykova, Inna S.; Chukanov, Nikita V.; Kazakov, Anatoliy I.; Tarasov, Viktor P.; Pekov, Igor V.; Yapaskurt, Vasiliy O.; Chervonnaya, Nadezhda A.

    2013-09-01

    Products and kinetics of ion exchange of heterophyllosilicate minerals lomonosovite and murmanite with aqueous AgNO3 solutions under low-temperature conditions have been studied using scanning electron microscopy, electron microprobe analysis, single-crystal X-ray diffraction, infrared spectroscopy, 23Na nuclear magnetic resonance spectroscopy and dynamic calorimetry. Both minerals show strong affinity for silver in cation exchange. Simplified formulae of Ag-exchanged forms of murmanite and lomonosovite are (Ag3.0Ca0.5Na0.5) (Ti,Nb,Mn,Fe)3.7-4 (Si2O7)2O4·4(H2O,OH) and (Ag8.2Na1.2Ca0.3) (Ti,Nb,Mn,Fe)3.9-4 (Si2O7)2 (PO4)1.9O4· xH2O, respectively. The reaction of ion exchange for murmanite follows the first-order kinetic model up to ca. 70-80 % conversion. The rate of the process is described by the equation k(h-1) = 107.64±0.60 exp[-(12.2 ± 0.9)·103/RT]. The average heat release value in the temperature range 39.4-72 °C is 230 J g-1. The cation exchange is limited by processes in solid state, most probably binding of silver.

  19. Photoinduced absorption of Ag nanoparticles deposited on ITO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ozga, K., E-mail: cate.ozga@wp.pl [Chair of Public Health, Czestochowa University of Technology, Al. Armii Krajowej 36B, 42-200 Czestochowa (Poland); Oyama, M. [Department of Material Chemisrty, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan); Szota, M. [Institute of Materials Science and Engineering, Technical University of Czestochowa, al. Armii Krajowej 19, 42-200 Czestochowa (Poland); Nabialek, M. [Institute of Physics, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Czestochowa (Poland); Kityk, I.V. [Electrical Engineering Department, Czestochowa University of Technology, Al. Armii Krajowej 17/19, 42-200 Czestochowa (Poland); Slezak, A. [Chair of Public Health, Czestochowa University of Technology, Al. Armii Krajowej 36B, 42-200 Czestochowa (Poland); Umar, A.A. [Institute of Micronegineering and Nanoelectronics Universiti Kebangsaan Malaysia 43600 UKM bangi, Selangor D.E. (Malaysia); Nouneh, K. [INANOTECH, Institute of Nanomaterials and Nanotechnology, MAScIR (Moroccan Advanced Science, Innovation and Research Foundation), ENSET, Av. Armee Royale, 10100, Rabat (Morocco)

    2011-06-15

    Research highlights: > We study photoinduced absorption for two Ag NP deposited on the ITO. > The higher resistance eof the NP favors larger photoinduced changes. > Principal role is played by nanointerfaces. - Abstract: Substantial changes of absorption after illumination by 300 mW continuous wave green laser at 532 nm were observed. The effect of indium tin oxide (ITO) substrate was explored versus Ag nanoparticles (AgNPs) size, their regularity and surface plasmon resonance. The ITO substrate features play a crucial role for the formation of homogenous AgNPs. The attachments of AgNPs on ITO surface as well as their homogeneity are significantly changed under the influence of the laser treatment. We study the Ag NP deposited on the two different substrates which play a crucial role in the photoinduced absorption. The dependence of the photoinduced absorption versus the time of optical treatment is explained within a framework of the photopolarization of the particular trapping levels on the borders between the ITO substrate and the Ag NP.

  20. One-pot synthesis of Ag-SiO2-Ag sandwich nanostructures

    International Nuclear Information System (INIS)

    Li Chaorong; Mei Jie; Li Shuwen; Lu Nianpeng; Wang Lina; Chen Benyong; Dong Wenjun

    2010-01-01

    Ag-SiO 2 -Ag sandwich nanostructures were prepared by a facile one-pot synthesis method. The Ag core, SiO 2 shell and Ag nanoparticle shell were all synthesized with polyvinylpyrrolidone, catalysed by ammonia, in the one-pot reaction. The polyvinylpyrrolidone, acting as a smart reducing agent, reduced the Ag + to Ag cores and Ag shells separately. Furthermore, the polyvinylpyrrolidone served as a protective agent to prevent the silver cores from aggregating. The SiO 2 shell and outer layer Ag nanoparticles were obtained when tetraethyl orthosilicate and ammonia were added to the silver core solution. Ammonia, acting as the catalyst, accelerated the hydrolysis of the tetraethyl orthosilicate to SiO 2 , which coated the silver cores. Furthermore, Ag(NH 3 ) 2 + ions were formed when aqueous ammonia was added to the solution, which increased the reduction capability. Then the polyvinylpyrrolidone reduced the Ag(NH 3 ) 2 + ions to small Ag nanoparticles on the surface of the Ag-SiO 2 and formed Ag-SiO 2 -Ag sandwich structures with a standard deviation of less than 4%. This structure effectively prevented the Ag nanoparticles on the silica surface from aggregating. Furthermore, the Ag-SiO 2 -Ag sandwich structures showed good catalysis properties due to the large surface area/volume value and activity of surface atoms of Ag particles.

  1. Effect of laser irradiation on Ag4In12Sb56Te28

    Science.gov (United States)

    Chinnusamy, Rangasami

    2018-04-01

    Ag4In12Sb56Te28 has been synthesized by melt-quench method. Phase homogeneity, crystal structure and effect of laser irradiation have been investigated using X-ray diffraction (XRD) and Raman spectroscopy. Rietveld refinement of crystal structure revealed that Ag4In12Sb56Te28 is a multiphase system with AgIn3Te5, Sb8Te3 and Sb phases. Combined optical microscopy and Raman spectroscopy have been used to understand the distribution of different phases on the surface of the samples, which substantiated the results of Rietveld analysis. Interaction of 20 mW laser beam with samples has been investigated using Raman measurements. The results have shown that regions with large phase fraction of AgIn3Te5 become amorphous during laser-sample interaction, but the starting phase remains nearly same after the interaction. Regions with AgIn3Te5 and nearly equal or larger amount of Sb8Te3 have shown significant growth of α-Sb2O3 during and after laser-sample interaction. Regions rich in Sb have shown formation of AgIn3Te5 and growth of α-Sb2O3 during and after interaction. These observations have been explained based on the maximum temperature rise at different regions during laser-sample interaction.

  2. Drastic nickel ion removal from aqueous solution by curcumin-capped Ag nanoparticles

    Science.gov (United States)

    Bettini, S.; Pagano, R.; Valli, L.; Giancane, G.

    2014-08-01

    A completely green synthesis protocol has been adopted to obtain silver nanoaggregates capped by the natural compound (1E, 6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-diene), also known as curcumin. The synthesis has been monitored by infrared, Raman, visible and fluorescence spectroscopies. Characterization confirms that curcumin reduces and caps the nanoparticles, and such a procedure allows its solubility in water and drastically increases curcumin stability. Silver nanoparticles (AgNPs)/curcumin complex has been dispersed in a water solution containing a known nickel ion concentration. After three days, a grey precipitate is observed and nickel concentration in the solution is reduced by about 70%.A completely green synthesis protocol has been adopted to obtain silver nanoaggregates capped by the natural compound (1E, 6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-diene), also known as curcumin. The synthesis has been monitored by infrared, Raman, visible and fluorescence spectroscopies. Characterization confirms that curcumin reduces and caps the nanoparticles, and such a procedure allows its solubility in water and drastically increases curcumin stability. Silver nanoparticles (AgNPs)/curcumin complex has been dispersed in a water solution containing a known nickel ion concentration. After three days, a grey precipitate is observed and nickel concentration in the solution is reduced by about 70%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02583k

  3. Adsorption of Ag (I) from aqueous solution by waste yeast: kinetic, equilibrium and mechanism studies.

    Science.gov (United States)

    Zhao, Yufeng; Wang, Dongfang; Xie, Hezhen; Won, Sung Wook; Cui, Longzhe; Wu, Guiping

    2015-01-01

    One type of biosorbents, brewer fermentation industry waste yeast, was developed to adsorb the Ag (I) in aqueous solution. The result of FTIR analysis of waste yeast indicated that the ion exchange, chelating and reduction were the main binding mechanisms between the silver ions and the binding sites on the surface of the biomass. Furthermore, TEM, XRD and XPS results suggested that Ag(0) nanoparticles were deposited on the surface of yeast. The kinetic experiments revealed that sorption equilibrium could reach within 60 min, and the removal efficiency of Ag (I) could be still over 93 % when the initial concentration of Ag (I) was below 100 mg/L. Thermodynamic parameters of the adsorption process (ΔG, ΔH and ΔS) identified that the adsorption was a spontaneous and exothermic process. The waste yeast, playing a significant role in the adsorption of the silver ions, is useful to fast adsorb Ag (I) from low concentration.

  4. An SFG and DFG investigation of polycrystalline Au, Au-Cu and Au-Ag-Cu electrodes in contact with aqueous solutions containing KCN

    International Nuclear Information System (INIS)

    Bozzini, Benedetto; Busson, Bertrand; De Gaudenzi, Gian Pietro; Mele, Claudio; Tadjeddine, Abderrahmane

    2007-01-01

    In this paper, the behaviour of polycrystalline Au, Au-Cu (Cu 25%) and Au-Ag-Cu (Ag 10%, Cu 15%) electrodes in contact with neutral aqueous solutions of KCN has been studied as a function of potential by means of in situ sum frequency generation (SFG) and difference frequency generation (DFG) spectroscopies. The potential-dependent spectra have been analysed quantitatively with a model for the second-order non-linear susceptibility accounting for vibrational and electronic effects. The potential-dependence of the CN - stretching band position and of the free-electron contribution to the real part of the non-resonant component of the second-order susceptibility have been accounted for. Spectroelectrochemical results were complemented by cyclic voltammetric measurements. The chief stress in this work has been placed on systematising and quantifying the interaction between the vibrational and electronic structures of the electrodic interfaces studied. The effects of adsorbates on the electronic structure of the adsorbing electrode, as a function of electrode alloy composition and applied potential are particularly critical for the understanding of Au-alloy electrochemistry in the presence of cyanide and cyanocomplexes. The systematic comparison of SFG and DFG spectra measured under the same electrochemical conditions for Au, Au-Cu and Au-Ag-Cu electrodes discloses a rich phenomenology related to the electronic structure of the interface

  5. An SFG and DFG investigation of polycrystalline Au, Au-Cu and Au-Ag-Cu electrodes in contact with aqueous solutions containing KCN

    Energy Technology Data Exchange (ETDEWEB)

    Bozzini, Benedetto [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, v. Monteroni, I-73100 Lecce (Italy)]. E-mail: benedetto.bozzini@unile.it; Busson, Bertrand [CLIO-LCP, Universite Paris-Sud, 91405 Orsay Cedex (France); De Gaudenzi, Gian Pietro [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, v. Monteroni, I-73100 Lecce (Italy); Mele, Claudio [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, v. Monteroni, I-73100 Lecce (Italy); Tadjeddine, Abderrahmane [UDIL-CNRS, Bat. 201, Centre Universitaire Paris-Sud, BP 34, 91898 Orsay Cedex (France)

    2007-01-16

    In this paper, the behaviour of polycrystalline Au, Au-Cu (Cu 25%) and Au-Ag-Cu (Ag 10%, Cu 15%) electrodes in contact with neutral aqueous solutions of KCN has been studied as a function of potential by means of in situ sum frequency generation (SFG) and difference frequency generation (DFG) spectroscopies. The potential-dependent spectra have been analysed quantitatively with a model for the second-order non-linear susceptibility accounting for vibrational and electronic effects. The potential-dependence of the CN{sup -} stretching band position and of the free-electron contribution to the real part of the non-resonant component of the second-order susceptibility have been accounted for. Spectroelectrochemical results were complemented by cyclic voltammetric measurements. The chief stress in this work has been placed on systematising and quantifying the interaction between the vibrational and electronic structures of the electrodic interfaces studied. The effects of adsorbates on the electronic structure of the adsorbing electrode, as a function of electrode alloy composition and applied potential are particularly critical for the understanding of Au-alloy electrochemistry in the presence of cyanide and cyanocomplexes. The systematic comparison of SFG and DFG spectra measured under the same electrochemical conditions for Au, Au-Cu and Au-Ag-Cu electrodes discloses a rich phenomenology related to the electronic structure of the interface.

  6. Application of Direct Current Atmospheric Pressure Glow Microdischarge Generated in Contact with a Flowing Liquid Solution for Synthesis of Au-Ag Core-Shell Nanoparticles.

    Science.gov (United States)

    Dzimitrowicz, Anna; Jamroz, Piotr; Nyk, Marcin; Pohl, Pawel

    2016-04-06

    A direct current atmospheric pressure glow microdischarge (dc-μAPGD) generated between an Ar nozzle microjet and a flowing liquid was applied to produce Au-Ag core-shell nanoparticles (Au@AgCSNPs) in a continuous flow system. Firstly, operating dc-μAPGD with the flowing solution of the Au(III) ions as the cathode, the Au nanoparticles (AuNPs) core was produced. Next, to produce the core-shell nanostructures, the collected AuNPs solution was immediately mixed with an AgNO₃ solution and passed through the system with the reversed polarity to fabricate the Ag nanoshell on the AuNPs core. The formation of Au@AgCSNPs was confirmed using ultraviolet-visible (UV-Vis) absorbance spectrophotometry, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Three localized surface plasmon resonance absorption bands with wavelengths centered at 372, 546, and 675 nm were observed in the UV-Vis spectrum of Au@AgCSNPs, confirming the reduction of both the Au(III) and Ag(I) ions. The right configuration of metals in Au@AgCSNPs was evidenced by TEM. The Au core diameter was 10.2 ± 2.0 nm, while the thickness of the Ag nanoshell was 5.8 ± 1.8 nm. The elemental composition of the bimetallic nanoparticles was also confirmed by EDS. It is possible to obtain 90 mL of a solution containing Au@AgCSNPs per hour using the applied microdischarge system.

  7. Homogeneous Charge Compression Ignition Combustion: Challenges and Proposed Solutions

    Directory of Open Access Journals (Sweden)

    Mohammad Izadi Najafabadi

    2013-01-01

    Full Text Available Engine and car manufacturers are experiencing the demand concerning fuel efficiency and low emissions from both consumers and governments. Homogeneous charge compression ignition (HCCI is an alternative combustion technology that is cleaner and more efficient than the other types of combustion. Although the thermal efficiency and NOx emission of HCCI engine are greater in comparison with traditional engines, HCCI combustion has several main difficulties such as controlling of ignition timing, limited power output, and weak cold-start capability. In this study a literature review on HCCI engine has been performed and HCCI challenges and proposed solutions have been investigated from the point view of Ignition Timing that is the main problem of this engine. HCCI challenges are investigated by many IC engine researchers during the last decade, but practical solutions have not been presented for a fully HCCI engine. Some of the solutions are slow response time and some of them are technically difficult to implement. So it seems that fully HCCI engine needs more investigation to meet its mass-production and the future research and application should be considered as part of an effort to achieve low-temperature combustion in a wide range of operating conditions in an IC engine.

  8. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications.

    Science.gov (United States)

    Dong, Wenjun; Huang, Huandi; Zhu, Yanjun; Li, Xiaoyun; Wang, Xuebin; Li, Chaorong; Chen, Benyong; Wang, Ge; Shi, Zhan

    2012-10-26

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide-amine intermediate and Ag(+) at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO(3) nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag-MoO(3) nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature.

  9. Experimental and theoretical study of solid solution stability under irradiation

    International Nuclear Information System (INIS)

    Cauvin, Richard.

    1981-08-01

    The behavior of dilute alloys (Al-Zn, Al-Ag, Al-Si, Al-Ge and Al-Mg) under 1 MeV electron irradiation has been studied in a high voltage electron microscope. A phenomenon of homogeneous precipitation induced by irradiation in undersaturated solid solutions (Al-Zn, Al-Ag and Al-Si) has been discovered; the observed precipitates are either coherent or incoherent, but never associated with point defect sinks. The solubility limit is a function of irradiation temperature and flux; but, under irradiation, it does not behave as a true thermal solubility limit (without irradiation). The existing theories (kinetic or strictly thermodynamic) do not account for this phenomenon. It is shown that the irreversibility of the mutual recombination between trapped vacancies and mixed interstitials is the driving force of this homogeneous precipitation. Using a dilute solid solution model, we show that, under irradiation, the homogeneous stationary state, stable from a strictly thermodynamic point of view, can be unstable when the recombination reaction is taken into account. The solubility limit under irradiation is calculated with a nucleation-growth model taking account for this effect; it is proportional to the thermal solubility limit without irradiation. This model explains all the experimental observations [fr

  10. Photoinduced absorption of Ag nanoparticles deposited on ITO substrate

    International Nuclear Information System (INIS)

    Ozga, K.; Oyama, M.; Szota, M.; Nabialek, M.; Kityk, I.V.; Slezak, A.; Umar, A.A.; Nouneh, K.

    2011-01-01

    Research highlights: → We study photoinduced absorption for two Ag NP deposited on the ITO. → The higher resistance eof the NP favors larger photoinduced changes. → Principal role is played by nanointerfaces. - Abstract: Substantial changes of absorption after illumination by 300 mW continuous wave green laser at 532 nm were observed. The effect of indium tin oxide (ITO) substrate was explored versus Ag nanoparticles (AgNPs) size, their regularity and surface plasmon resonance. The ITO substrate features play a crucial role for the formation of homogenous AgNPs. The attachments of AgNPs on ITO surface as well as their homogeneity are significantly changed under the influence of the laser treatment. We study the Ag NP deposited on the two different substrates which play a crucial role in the photoinduced absorption. The dependence of the photoinduced absorption versus the time of optical treatment is explained within a framework of the photopolarization of the particular trapping levels on the borders between the ITO substrate and the Ag NP.

  11. Femtosecond Laser-Induced Formation of Gold-Rich Nanoalloys from the Aqueous Mixture of Gold-Silver Ions

    Directory of Open Access Journals (Sweden)

    Yuliati Herbani

    2010-01-01

    Full Text Available The synthesis of gold-silver (AuAg nanoalloys of various compositions has been performed by direct irradiation of highly intense femtosecond laser pulse in the presence of polyvinylpyrrolidone (PVP. The mixture of Au and Ag ions of low concentration was simply introduced into a glass vial and subjected to femtosecond laser pulses for several minutes. The AuAg nanoalloys of 2-3 nm with reasonably narrow size distribution were formed, and the position of the surface plasmon resonance (SPR increased monotonically with an increase in the gold molar fraction in the ion solutions. The high resolution transmission electron microscope (HRTEM images exhibited the absence of core-shell structures, and the energy dispersive X-ray spectroscopy (EDX analysis confirmed that the particles were Au-rich alloys even for the samples with large fraction of Ag+ ions fed in the solution mixture. The formation mechanism of the alloy nanoparticles in the high intensity optical field was also discussed.

  12. A new Schiff base based on vanillin and naphthalimide as a fluorescent probe for Ag+ in aqueous solution

    Science.gov (United States)

    Zhou, Yanmei; Zhou, Hua; Ma, Tongsen; Zhang, Junli; Niu, Jingyang

    2012-03-01

    A new Schiff base based on vanillin and naphthalimide was designed and synthesized as fluorescent probe. The probe showed high selectivity for Ag+ over other metal ions such as Pb2+, Na+, K+, Cd2+, Ba2+, Cr3+, Zn2+, Cu2+, Ni2+, Ca2+, Al3+ and Mg2+ in aqueous solution. A new fluorescence emission was observed at 682 nm in the presence of Ag+ ion. The fluorescence intensity quenched with increasing the concentration of Ag+ at 682 nm. The method of job's plot confirmed the 1:2 complex between Ag+ and probe, and the mechanism was proposed.

  13. Reflection principle for classical solutions of the homogeneous real Monge–Ampère equation

    Directory of Open Access Journals (Sweden)

    Mika Koskenoja

    2015-12-01

    Full Text Available We consider reflection principle for classical solutions of the homogeneous real Monge–Ampère equation. We show that both the odd and the even reflected functions satisfy the Monge–Ampère equation if the second-order partial derivatives have continuous limits on the reflection boundary. In addition to sufficient conditions, we give some necessary conditions. Before stating the main results, we present elementary formulas for the reflected functions and study their differentiability properties across the reflection boundary. As an important special case, we finally consider extension of polynomials satisfying the homogeneous Monge–Ampère equation.

  14. Flower-like Ag/AgCl microcrystals: Synthesis and photocatalytic activity

    International Nuclear Information System (INIS)

    Daupor, Hasan; Wongnawa, Sumpun

    2015-01-01

    Silver/silver chloride (Ag/AgCl) composites with a novel flower-like morphology were prepared via a hot precipitation assisted by the vinyl acetate monomer (VAM) route. An aqueous solution of AlCl 3 was mixed with the vinyl acetate monomer and acetic acid before adding a AgNO 3 solution at a temperature of 100 °C. The octapod shaped flower-like Ag/AgCl particles (or “flower-like Ag/AgCl” hereinafter) has eight petals each of which was about 7–11 μm in length. The flower-like octapods were formed by preferential overgrowth along the <111> directions of the cubic seeds. Detailed studies of the growth process at different AlCl 3 concentrations revealed that the concave cube developed into a Rubik's cube where eight corners grew further into the flower-like structures. The VAM and acetic acid concentration strongly affected the growth of the Ag/AgCl to the flower-like structure and their optimum concentrations were determined. The morphologies of these particles were carefully examined by scanning electron microscopy (SEM). The crystal structures and orientation relationship were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV–visible diffused reflectance spectroscopy (DRS). The flower-like Ag/AgCl microcrystals were tested for their photocatalytic degradation of orange G dye (OG) catalyzed by visible light. From comparative test runs, the flower-like Ag/AgCl exhibited better photocatalytic activity than simple and commercial Ag/AgCl particles. - Highlights: • Interesting transformation of microcrystals Ag/AgCl from concave cube via Rubik's cube to flower-like shape. • The first to use VAM as morphology control reagent. • High photocatalytic activity under visible light irradiation

  15. Neutron diffraction radiation of solid solution of carbon and hydrogen in the α-titanium in the homogeneity domain

    International Nuclear Information System (INIS)

    Mirzaev, B.B.; Khidirov, I.; Mukhtarova, N.N.

    2005-01-01

    In the work by the neutron-graph the homogeneity domain of the introduction solid solution TiC x H y is determined. The sample neutron grams have been taken on the neutron diffractometer (λ=.1085 nm) installed at the thermal column of the WWR-SM reactor (INF AN RUz). For the phase analysis and estimation of solid solutions homogeneity the X-ray graph was used. X-ray grams were taken on the X-ray diffractometer DRON-3M with use of CuK α radiation (λ=0.015418 nm)

  16. Chemical state analysis of iron(III) compounds precipitated homogeneously from solutions containing urea by means of Moessbauer spectrometry and x-ray diffractometry

    International Nuclear Information System (INIS)

    Ujihira, Yusuke; Ohyabu, Matashige; Murakami, Tetsuro; Horie, Tsuyoshi.

    1978-01-01

    Chemical states of iron(III) compounds, precipitated homogeneously by heating the iron(III) salt solution at 363 K in the presence of urea, was studied by means of Moessbauer spectrometry and X-ray diffractometry. The pH-time relation of urea hydrolysis revealed that the precipitation process from homogeneous solution is identical to the hydrolysis of iron(III) ion at pH around 2 under the homogeneous supply of OH - ion, which is generated by hydrolysis of urea. Accordingly, iron(III) oxide hydroxide or similar compounds to the hydrolysis products of iron(III) ion was precipitated by the precipitation from homogeneous solution methods. Akaganeite (β-FeOOH) was crystallized from 0.1 M iron(III) chloride solution. Goethite(α-FeOOH) and hematite(α-Fe 2 O 3 ) was precipitated from 0.1 M iron(III) nitrate solution, vigorous liberation of OH - ion favoring the crystallization of hematite. The addition of chloride ion to the solution resulted in the formation of akaganeite. Basic salt of iron sulfate[NH 4 Fe 3 (OH) 6 (SO 4 ) 2 ] and goethite were formed from 0.1 M iron(III) sulfate solution, the former being obtained in the more moderate condition of the urea hydrolysis ( 363 K). (author)

  17. Assessment of assembly homogenized two-steps core dynamic calculations using direct whole core transport solutions

    International Nuclear Information System (INIS)

    Hursin, Mathieu; Downar, Thomas J.; Yoon, Joo Il; Joo, Han Gyu

    2016-01-01

    Highlights: • Reactivity initiated accident analysis with direct whole core transient transport code. • Comparison with usual “two steps” procedure. • Effect of effective delayed neutron fraction definition on energy deposition in the fuel. • Effect of homogenized few-group cross sections generation at the assembly level on energy deposition in the fuel. • Effect of effective fuel temperature definition on energy deposition in the fuel. - Abstract: The impact of the approximations in the “two-steps” procedure used in the current generation of nodal simulators for core transient calculations is assessed by using a higher order solution obtained from a direct, whole core, transient transport calculation. A control rod ejection accident in an idealized minicore is analyzed with PARCS, which uses the two-steps procedure and DeCART which provides the higher order solution. DeCART is used as lattice code to provide the homogenized cross sections and kinetics parameters to PARCS. The approximations made by using (1) the homogenized few-group cross sections and kinetic parameters generated at the assembly level, (2) an effective delayed neutrons fraction, (3) an effective fuel temperature and (4) the few-group formulation are investigated in terms of global and local core power behavior. The results presented in the paper show that the current two-steps procedure produces sufficiently accurate transient results with respect to the direct whole core calculation solution, provided that its parameters are carefully generated using the prescriptions described in the present article.

  18. Explicit finite-difference solution of two-dimensional solute transport with periodic flow in homogenous porous media

    Directory of Open Access Journals (Sweden)

    Djordjevich Alexandar

    2017-12-01

    Full Text Available The two-dimensional advection-diffusion equation with variable coefficients is solved by the explicit finitedifference method for the transport of solutes through a homogenous two-dimensional domain that is finite and porous. Retardation by adsorption, periodic seepage velocity, and a dispersion coefficient proportional to this velocity are permitted. The transport is from a pulse-type point source (that ceases after a period of activity. Included are the firstorder decay and zero-order production parameters proportional to the seepage velocity, and periodic boundary conditions at the origin and at the end of the domain. Results agree well with analytical solutions that were reported in the literature for special cases. It is shown that the solute concentration profile is influenced strongly by periodic velocity fluctuations. Solutions for a variety of combinations of unsteadiness of the coefficients in the advection-diffusion equation are obtainable as particular cases of the one demonstrated here. This further attests to the effectiveness of the explicit finite difference method for solving two-dimensional advection-diffusion equation with variable coefficients in finite media, which is especially important when arbitrary initial and boundary conditions are required.

  19. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications

    International Nuclear Information System (INIS)

    Dong Wenjun; Huang Huandi; Zhu Yanjun; Li Xiaoyun; Wang Xuebin; Li Chaorong; Chen Benyong; Wang Ge; Shi Zhan

    2012-01-01

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide–amine intermediate and Ag + at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO 3 nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag–MoO 3 nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature. (paper)

  20. Synthesis and characterization of homogeneous interstitial solutions of nitrogen and carbon in iron-based lattices

    DEFF Research Database (Denmark)

    Brink, Bastian Klüge

    work in synthesis and characterization of interstitial solutions ofnitrogen and carbon in iron-based lattices. In order to avoid the influences of gradients incomposition and residual stresses, which are typically found in treated surface layers,homogenous samples are needed. These were prepared from...

  1. Conductometric Studies Of Kinetics Of Ionic Reaction Between Ag And Cl- In Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Md. Rezwan Miah

    2017-01-01

    Full Text Available In the present report conductometric studies on the kinetic of formation of AgCl by ionic reaction between Ag and Clamp61485 in aqueous solution have been presented. The order of the mentioned reaction was determined by a new conductometric approach using half-life method. The obtained result showed that the reaction follows a second-order kinetics. The second-order rate constant of the reaction was obtained conductometrically using different initial concentrations of the reactants in the range of 2.5-5.0 mM. The average value of the rate constant was obtained as 20.648 L molamp614851 samp614851 at 25 amp61616C.

  2. A homogeneous assay for highly sensitive detection of CaMV35S promoter in transgenic soybean by förster resonance energy transfer between nitrogen-doped graphene quantum dots and Ag nanoparticles

    International Nuclear Information System (INIS)

    Li, Yaqi; Sun, Li; Qian, Jing; Wang, Chengke; Liu, Qian; Han, En; Hao, Nan; Zhang, Liuping; Cai, Jianrong; Wang, Kun

    2016-01-01

    In this work, a novel homogeneous assay for DNA quantitative analysis based on förster resonance energy transfer (FRET) was developed for cauliflwer mosaic virus 35s (CaMV35S) promoter of transgenic soybean detection. The homogenous FRET of fluorescence signal was fabricated by DNA hybridization with probe modified nitrogen-doped graphene quantum dots (NGQDs) and silver nanoparticles (AgNPs), which acted the donor-acceptor pairs for the first time. The highly efficient FRET and unique properties of the NGQDs made the proposed FRET system as a functionalized detection platform for labelling of DNA. Upon the recognition of specific target DNA (tDNA), the FRET between NGQDs and AgNPs was triggered to produce fluorescence quenching, which could be used for tDNA detection. The fabricated homogeneous FRET assay displayed a wide linear range of 0.1–500.0 nM and a low limit of detection 0.03 nM for the detection of CaMV35S (S/N = 3). This proposed biosensor revealed high specificity to detect tDNA, with acceptable intra-assay precision and excellent stability. This method was successfully applied to identify the real sample of 0.5% containing transgenic soybean, which achieved the most of national law regulations. This assay was further validated by polymerase chain reaction as the genetically modified organisms, suggesting that the proposed FRET system is a feasible tool for the further daily genetically modified organism detection. - Highlights: • Both NGQDs and AgNPs were selected as the novel FRET donor-acceptor pairs. • The proposed homogeneous FRET assay was developed for CaMV35S detection. • The resulting method could identify 0.5% containing transgenic soybean sample. • This assay was inexpensive, simple and highly sensitive.

  3. A homogeneous assay for highly sensitive detection of CaMV35S promoter in transgenic soybean by förster resonance energy transfer between nitrogen-doped graphene quantum dots and Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaqi; Sun, Li [School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 (China); Qian, Jing [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Wang, Chengke [School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 (China); Liu, Qian [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Han, En [School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 (China); Hao, Nan [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Zhang, Liuping [Sinograin Zhenjiang Grains & Oils Quality Testing Center Co., Ltd., Zhenjiang, 212013 (China); Cai, Jianrong, E-mail: jrcai@ujs.edu.cn [School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 (China); Wang, Kun, E-mail: wangkun@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 (China)

    2016-12-15

    In this work, a novel homogeneous assay for DNA quantitative analysis based on förster resonance energy transfer (FRET) was developed for cauliflwer mosaic virus 35s (CaMV35S) promoter of transgenic soybean detection. The homogenous FRET of fluorescence signal was fabricated by DNA hybridization with probe modified nitrogen-doped graphene quantum dots (NGQDs) and silver nanoparticles (AgNPs), which acted the donor-acceptor pairs for the first time. The highly efficient FRET and unique properties of the NGQDs made the proposed FRET system as a functionalized detection platform for labelling of DNA. Upon the recognition of specific target DNA (tDNA), the FRET between NGQDs and AgNPs was triggered to produce fluorescence quenching, which could be used for tDNA detection. The fabricated homogeneous FRET assay displayed a wide linear range of 0.1–500.0 nM and a low limit of detection 0.03 nM for the detection of CaMV35S (S/N = 3). This proposed biosensor revealed high specificity to detect tDNA, with acceptable intra-assay precision and excellent stability. This method was successfully applied to identify the real sample of 0.5% containing transgenic soybean, which achieved the most of national law regulations. This assay was further validated by polymerase chain reaction as the genetically modified organisms, suggesting that the proposed FRET system is a feasible tool for the further daily genetically modified organism detection. - Highlights: • Both NGQDs and AgNPs were selected as the novel FRET donor-acceptor pairs. • The proposed homogeneous FRET assay was developed for CaMV35S detection. • The resulting method could identify 0.5% containing transgenic soybean sample. • This assay was inexpensive, simple and highly sensitive.

  4. Thermodynamic assessments of the Ag-Gd and Ag-Nd systems

    International Nuclear Information System (INIS)

    Wang, S.L.; Wang, C.P.; Liu, X.J.; Ishida, K.

    2009-01-01

    The phase diagrams and thermodynamic properties in the Ag-Re (Re: Gd, Nd) binary systems have been assessed by using the CALPHAD (Calculation of Phase Diagrams) method on the basis of the experimental data including the thermodynamic properties and phase equilibria. The Gibbs free energies of the liquid, bcc, fcc, dhcp and hcp phases were described by the subregular solution model with the Redlich-Kister equation, and those of the intermetallic compounds (Ag 51 Gd 14 , Ag 2 Gd, AgGd, Ag 51 Nd 14 , αAg 2 Nd, βAg 2 Nd and AgNd phases) in these two binary systems were described by the sublattice model. The thermodynamic parameters of each phase in the Ag-Re (Re: Gd, Nd) binary systems were obtained, and an agreement between the calculated results and experimental data was obtained in each binary system.

  5. Surface structural, morphological, and catalytic studies of homogeneously dispersed anisotropic Ag nanostructures within mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Sareen, Shweta [Thapar University, School of Chemistry and Biochemistry (India); Mutreja, Vishal [Maharishi Markandeshwar University, Department of Chemistry (India); Pal, Bonamali; Singh, Satnam, E-mail: ssingh@thapar.edu [Thapar University, School of Chemistry and Biochemistry (India)

    2016-11-15

    Highly dispersed anisotropic Ag nanostructures were synthesized within the channels of 3-aminopropyltrimethoxysilane (APTMS)-modified mesoporous SBA-15 for catalyzing the reduction of p-dinitrobenzene, p-nitrophenol, and p-nitroacetophenone, respectively. A green templating process without involving any reducing agent, by varying the amount (1–10 wt.%) of Ag loading followed by calcination at 350 °C under H{sub 2} led to change in the morphology of Ag nanoparticles from nanospheres (~7–8 nm) to nanorods (aspect ratio ~12–30 nm) without any deformation in mesoporous sieves. In comparison to white bare SBA-15, gray-colored samples were formed with Ag impregnation exhibiting absorption bands at 484 and 840 nm indicating the formation of anisotropic Ag nanostructures within mesoporous matrix. TEM and FE-SEM micrographs confirmed the presence of evenly dispersed Ag nanostructures within as well as on the surface of mesoporous matrix. AFM studies indicated a small decrease in the average roughness of SBA-15 from 20.59 to 19.21 nm for 4 wt.% Ag/m-SBA-15, illustrating the encapsulation of majority of Ag nanoparticles in the siliceous matrix and presence of small amount of Ag nanoparticles on the mesoporous support. Moreover, due to plugging of mesopores with Ag, a significant decrease in surface area from 680 m{sup 2}/g of SBA-15 to 385 m{sup 2}/g was observed. The Ag-impregnated SBA-15 catalyst displayed superior catalytic activity than did bare SBA-15 with 4 wt.% Ag-loaded catalyst exhibiting optimum activity for selective reduction of p-nitrophenol to p-aminophenol (100 %), p-nitroacetophenone to p-aminoacetophenone (100 %), and p-dinitrobenzene to p-nitroaniline (87 %), with a small amount of p-phenylenediamine formation.

  6. Pulse and gamma radiolytic studies of Ag, Cd and mixed clusters in aqueous solutions of carboxymethyl cellulose and gelatin

    International Nuclear Information System (INIS)

    Kapoor, Sudhir; Gopinathan, C.

    1996-01-01

    Pulse and gamma radiolytic studies in aqueous solutions of Ag, Cd and mixed clusters were carried out in carboxymethylcellulose (CMC) or gelatin. The reaction rate of e aq - with Ag + is lower in the presence of CMC or gelatin and oligomeric clusters of silver, Cd and mixed clusters get stabilized in their presence. (author). 2 refs., 2 figs

  7. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution

    International Nuclear Information System (INIS)

    Sivashanmugan, Kundan; Liao, Jiunn-Der; Liu, Bernard Haochih; Yao, Chih-Kai

    2013-01-01

    Graphical abstract: -- Highlights: •Well-ordered Au-nanorod array with a controlled tip ring diameter (Au N Rs d ) is made by focused ion beam. •Au N Rs d coupled with Ag nanoparticles (Ag NPs/Au N Rs d ) is competent to sense target molecules in a solution. •Ag NPs/Au N Rs d SERS active substrate can detect a single molecule of crystal violet. •Ag NPs/Au N Rs d as a SERS-active substrate can distinguish melamine contaminants at low concentrations (e.g., 10 −12 M). -- Abstract: A well-ordered Au-nanorod array with a controlled tip ring diameter (Au N Rs d ) was fabricated using the focused ion beam method. Au N Rs d was then coupled with Ag nanoparticles (Ag NPs) to bridge the gaps among Au nanorods. The effect of surface-enhanced Raman scattering (SERS) on Au N Rs d and Ag NPs/Au N Rs d was particularly verified using crystal violet (CV) as the molecular probe. Raman intensity obtained from a characteristic peak of CV on Au N Rs d was estimated by an enhancement factor of ≈10 7 in magnitude, which increased ≈10 12 in magnitude for that on Ag NPs/Au N Rs d . A highly SERS-active Ag NPs/Au N Rs d was furthermore applied for the detection of melamine (MEL) at very low concentrations. Raman-active peaks of MEL (10 −3 to 10 −12 M) in water or milk solution upon Au N Rs d or Ag NPs/Au N Rs d were well distinguished. The peaks at 680 and 702 cm −1 for MEL molecules were found suitable to be used as the index for sensing low-concentration MEL in a varied solution, while that at 1051 cm −1 was practical to interpret MEL molecules in water or milk solution bonded with Au (i.e., Au N Rs d ) or Ag (i.e., Ag NPs/Au N Rs d ) surface. At the interface of Ag NPs/Au N Rs d and MEL molecules in milk solution, a laser-induced electromagnetic field or hotspot effect was produced and competent to sense low-concentration MEL molecules interacting with Ag and Au surfaces. Accordingly, Ag NPs/Au N Rs d is very promising to be used as a fast and sensitive tool for

  8. Pattern and process of biotic homogenization in the New Pangaea.

    Science.gov (United States)

    Baiser, Benjamin; Olden, Julian D; Record, Sydne; Lockwood, Julie L; McKinney, Michael L

    2012-12-07

    Human activities have reorganized the earth's biota resulting in spatially disparate locales becoming more or less similar in species composition over time through the processes of biotic homogenization and biotic differentiation, respectively. Despite mounting evidence suggesting that this process may be widespread in both aquatic and terrestrial systems, past studies have predominantly focused on single taxonomic groups at a single spatial scale. Furthermore, change in pairwise similarity is itself dependent on two distinct processes, spatial turnover in species composition and changes in gradients of species richness. Most past research has failed to disentangle the effect of these two mechanisms on homogenization patterns. Here, we use recent statistical advances and collate a global database of homogenization studies (20 studies, 50 datasets) to provide the first global investigation of the homogenization process across major faunal and floral groups and elucidate the relative role of changes in species richness and turnover. We found evidence of homogenization (change in similarity ranging from -0.02 to 0.09) across nearly all taxonomic groups, spatial extent and grain sizes. Partitioning of change in pairwise similarity shows that overall change in community similarity is driven by changes in species richness. Our results show that biotic homogenization is truly a global phenomenon and put into question many of the ecological mechanisms invoked in previous studies to explain patterns of homogenization.

  9. Electrochemical Noise Chaotic Analysis of NiCoAg Alloy in Hank Solution

    Directory of Open Access Journals (Sweden)

    D. Bahena

    2011-01-01

    Full Text Available The potential and current oscillations during corrosion of NiCoAg alloy in Hank solution were studied. Detailed nonlinear fractal analyses were used to characterize complex time series clearly showing that the irregularity in these time series corresponds to deterministic chaos rather than to random noise. The chaotic oscillations were characterized by power spectral densities, phase space, and Lyapunov exponents. Electrochemical impedance was also applied the fractal dimensions for the corroded surface was obtained, and a corrosion mechanism was proposed.

  10. Magnetic and photocatalytic response of Ag-doped ZnFeO nano-composites for photocatalytic degradation of reactive dyes in aqueous solution

    International Nuclear Information System (INIS)

    Mahmood, Asif; Ramay, Shahid Mahmood; Al-Zaghayer, Yousef S.; Imran, Muhammad; Atiq, Shahid; Al-Johani, Meshal S.

    2014-01-01

    Highlights: • Self-consistent sol–gel based auto-combustion route was used. • Photocatalytic degradation of reactive dyes in aqueous solution was investigated. • Due to Ag doping, band gap reduced. • Activity of Ag-doped samples was higher than that of un-doped ones. - Abstract: To investigate the photocatalytic degradation of reactive dyes in aqueous solution, pure ZnO and Fe/Ag-doped magnetic photocatalysts having nominal compositions of Zn 0.95−x Fe 0.05 Ag x O (x = 0.0, 0.05 and 0.1) have been synthesized via self-consistent sol–gel based auto-combustion route. Thermally stable samples were subsequently confirmed to exhibit wurtzite type hexagonal structure, characteristic of ZnO. The nature of chemical bonding was elaborated by Fourier transform analysis. Electron microscopic techniques were employed to investigate the structural morphology and to evaluate the particle size. Ferromagnetic nature of the Fe/Ag doped samples was revealed by vibrating sample magnetometry, enabling the photocatalytic samples to be re-collected magnetically for repeated usage. The enhanced photocatalytic activity in the degradation of methylene blue under UV light irradiation with 5 and 10 wt.% Ag/ZnFeO has been observed validating the potential applications of these materials in the field of photo-degradation of organic pollutants

  11. Analytical representation of the solution of the space kinetic diffusion equation in a one-dimensional and homogeneous domain

    Energy Technology Data Exchange (ETDEWEB)

    Tumelero, Fernanda; Bodmann, Bardo E. J.; Vilhena, Marco T. [Universidade Federal do Rio Grande do Sul (PROMEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos Graduacao em Engenharia Mecanica; Lapa, Celso M.F., E-mail: fernanda.tumelero@yahoo.com.br, E-mail: bardo.bodmann@ufrgs.br, E-mail: mtmbvilhena@gmail.com, E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    In this work we solve the space kinetic diffusion equation in a one-dimensional geometry considering a homogeneous domain, for two energy groups and six groups of delayed neutron precursors. The proposed methodology makes use of a Taylor expansion in the space variable of the scalar neutron flux (fast and thermal) and the concentration of delayed neutron precursors, allocating the time dependence to the coefficients. Upon truncating the Taylor series at quadratic order, one obtains a set of recursive systems of ordinary differential equations, where a modified decomposition method is applied. The coefficient matrix is split into two, one constant diagonal matrix and the second one with the remaining time dependent and off-diagonal terms. Moreover, the equation system is reorganized such that the terms containing the latter matrix are treated as source terms. Note, that the homogeneous equation system has a well known solution, since the matrix is diagonal and constant. This solution plays the role of the recursion initialization of the decomposition method. The recursion scheme is set up in a fashion where the solutions of the previous recursion steps determine the source terms of the subsequent steps. A second feature of the method is the choice of the initial and boundary conditions, which are satisfied by the recursion initialization, while from the rst recursion step onward the initial and boundary conditions are homogeneous. The recursion depth is then governed by a prescribed accuracy for the solution. (author)

  12. Removal of I by adsorption with AgX (Ag-impregnated X Zeolite) from high-radioactive seawater waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eil Hee; Lee, Keun Young; Kim, Kwang Wook; Kim, Hyung Ju; Kim, Ik Soo; Chung, Dong Yong; Moon, Jei Kwon; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    This study aimed to the adsorption-removal of high- radioactive iodide (I) contained in the initially generated high-radioactive seawater waste (HSW), with the use of AgX (Ag-impregnated X zeolite). Adsorption of I by AgX (hereafter denoted as AgX-I adsorption) was increased by increasing the Ag-impregnated concentration in AgX, and its concentration was suitable at about 30 wt%. Because of AgCl precipitation by chloride ions contained in seawater waste, the leaching yields of Ag from AgX (Ag-impregnated concentration : about 30-35 wt%) was less than those in distilled water (< 1 mg/L). AgX-I adsorption was above 99% in the initial iodide concentration (Ci) of 0.01-10 mg/L at m/V (ratio of weight of adsorbent to solution volume)=2.5 g/L. This shows that efficient removal of I is possible. AgX-I adsorption was found to be more effective in distilled water than in seawater waste, and the influence of solution temperature was insignificant. Ag-I adsorption was better described by a Freundlich isotherm rather than a Langmuir isotherm. AgX-I adsorption kinetics can be expressed by a pseudo-second order rate equation. The adsorption rate constants (k2) decreased by increasing Ci, and conversely increased by increasing the ratio of m/V and the solution temperature. This time, the activation energy of AgX-I adsorption was about 6.3 kJ/mol. This suggests that AgX-I adsorption is dominated by physical adsorption with weaker bonds. The evaluation of thermodynamic parameters (a negative Gibbs free energy and a positive Enthalpy) indicates that AgX-I adsorption is a spontaneous reaction (forward reaction), and an endothermic reaction indicating that higher temperatures are favored.

  13. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract

    Science.gov (United States)

    Yang, Hui; Ren, Yan-yu; Wang, Tao; Wang, Chuang

    Nano-silver and its composite materials are widely used in medicine, food and other industries due to their strong conductivity, size effect and other special performances. So far, more microbial researches have been applied, but a plant method is rarely reported. In order to open up a new way to prepare AgNP composites, pomegranate peel extract was used in this work to reduce Ag+ to prepare Ag/Ag+/Ag3+ nanoparticle composites. UV-Vis was employed to detect and track the reduction of Ag+ and the forming process of AgNPs. The composition, structure and size of the crystal were analyzed by XRD and TEM. Results showed that, under mild conditions, pomegranate peel extract reacted with dilute AgNO3 solution to produce Ag/Ag+/Ag3+ nanoparticle composites. At pH = 8 and 10 mmol/L of AgNO3 concentration, the size of the achieved composites ranged between 15 and 35 nm with spherical shapes and good crystallinity. The bactericidal experiment indicated that the prepared Ag/Ag+/Ag3+ nanoparticles had strong antibacterial activity against gram positive bacteria and gram negative bacteria. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the newly synthesized Ag/Ag+/Ag3+ nanoparticles. This provided a useful clue to further study the AgNP biosynthesis mechanism.

  14. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution

    Energy Technology Data Exchange (ETDEWEB)

    Sivashanmugan, Kundan [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liao, Jiunn-Der, E-mail: jdliao@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liu, Bernard Haochih; Yao, Chih-Kai [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2013-10-24

    Graphical abstract: -- Highlights: •Well-ordered Au-nanorod array with a controlled tip ring diameter (Au{sub N}Rs{sub d}) is made by focused ion beam. •Au{sub N}Rs{sub d} coupled with Ag nanoparticles (Ag NPs/Au{sub N}Rs{sub d}) is competent to sense target molecules in a solution. •Ag NPs/Au{sub N}Rs{sub d} SERS active substrate can detect a single molecule of crystal violet. •Ag NPs/Au{sub N}Rs{sub d} as a SERS-active substrate can distinguish melamine contaminants at low concentrations (e.g., 10{sup −12} M). -- Abstract: A well-ordered Au-nanorod array with a controlled tip ring diameter (Au{sub N}Rs{sub d}) was fabricated using the focused ion beam method. Au{sub N}Rs{sub d} was then coupled with Ag nanoparticles (Ag NPs) to bridge the gaps among Au nanorods. The effect of surface-enhanced Raman scattering (SERS) on Au{sub N}Rs{sub d} and Ag NPs/Au{sub N}Rs{sub d} was particularly verified using crystal violet (CV) as the molecular probe. Raman intensity obtained from a characteristic peak of CV on Au{sub N}Rs{sub d} was estimated by an enhancement factor of ≈10{sup 7} in magnitude, which increased ≈10{sup 12} in magnitude for that on Ag NPs/Au{sub N}Rs{sub d}. A highly SERS-active Ag NPs/Au{sub N}Rs{sub d} was furthermore applied for the detection of melamine (MEL) at very low concentrations. Raman-active peaks of MEL (10{sup −3} to 10{sup −12} M) in water or milk solution upon Au{sub N}Rs{sub d} or Ag NPs/Au{sub N}Rs{sub d} were well distinguished. The peaks at 680 and 702 cm{sup −1} for MEL molecules were found suitable to be used as the index for sensing low-concentration MEL in a varied solution, while that at 1051 cm{sup −1} was practical to interpret MEL molecules in water or milk solution bonded with Au (i.e., Au{sub N}Rs{sub d}) or Ag (i.e., Ag NPs/Au{sub N}Rs{sub d}) surface. At the interface of Ag NPs/Au{sub N}Rs{sub d} and MEL molecules in milk solution, a laser-induced electromagnetic field or hotspot effect was produced and

  15. Synthesize, characterization, and anti-Parkinson activity of silver-Indonesian velvet beans (Mucuna pruriens) seed extract nanoparticles (AgMPn)

    Science.gov (United States)

    Sardjono, R. E.; Khoerunnisa, F.; Musthopa, I.; Akasum, N. S. M. M.; Rachmawati, R.

    2018-05-01

    Parkinson is one of the progressive neurodegenerative diseases. Various efforts are made in handling this disease, one of them is the utilization of plant extracts that have anti-Parkinson activity, for example, velvet bean (Mucuna pruriens L.). Changing the particle size of the extract into nanoscale particle is expected to increase its anti-parkinson activity. The research was conducted to synthesize silver-velvet bean (Mucuna pruriens L.) seed extract nanoparticles (AgMPn) and to evaluate its antiparkinson activity through the catalepsy test in mice. The research consisted of several stages i.e. extraction of velvet bean seed powder, synthesis and characterization of AgMPn, and catalepsy test of AgMPn. Velvet bean seed powder was extracted by maceration method using ethanol-water (1:1) at pH 3 adjusted with citric acid. AgMPn was synthesized by reacting the silver nitrate (AgNO3) solution with the extract of velvet bean seed for 40 min, dispersibility of solution during the reaction was controlled by using sonication and ultrasonic processor homogenizer. Characterization of AgMPn was done by using Fourier transform infrared (FT-IR), scanning electron microscopy-energy dispersive X-ray (SEM-EDX), and transmission electron microscopy (TEM). Catalepsy test was conducted on AgMpn at the doses of 5, 10, 15, 20 and 25 mg/kg body weight. The results of SEM-EDX and TEM showed that AgMPn formed aggregates with several shapes such as rectangle, oval, and spherical, with the average particle diameter was 36.5 nm. FT-IR spectra showed a band at 464.8 cm-1 absorbance area which is typical band indicated the interaction of Ag-O of AgMPn. Catalepsy test demonstrated that AgMPn at the doses of 5, 15, and 20 mg/kg body weight lowered the catalepsy symptoms in mice significantly, with the best dose was 5 mg/kg body weight.

  16. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum rind extract

    Directory of Open Access Journals (Sweden)

    Hui Yang

    Full Text Available Nano-silver and its composite materials are widely used in medicine, food and other industries due to their strong conductivity, size effect and other special performances. So far, more microbial researches have been applied, but a plant method is rarely reported. In order to open up a new way to prepare AgNP composites, pomegranate peel extract was used in this work to reduce Ag+ to prepare Ag/Ag+/Ag3+ nanoparticle composites. UV–Vis was employed to detect and track the reduction of Ag+ and the forming process of AgNPs. The composition, structure and size of the crystal were analyzed by XRD and TEM. Results showed that, under mild conditions, pomegranate peel extract reacted with dilute AgNO3 solution to produce Ag/Ag+/Ag3+ nanoparticle composites. At pH = 8 and 10 mmol/L of AgNO3 concentration, the size of the achieved composites ranged between 15 and 35 nm with spherical shapes and good crystallinity. The bactericidal experiment indicated that the prepared Ag/Ag+/Ag3+ nanoparticles had strong antibacterial activity against gram positive bacteria and gram negative bacteria. FTIR analysis revealed that biological macromolecules with groups of NH2, OH, and others were distributed on the surface of the newly synthesized Ag/Ag+/Ag3+ nanoparticles. This provided a useful clue to further study the AgNP biosynthesis mechanism. Keywords: Pomegranate rind, Biosynthesis, Ag/Ag+/Ag3+ nanoparticle composites, Antibacterial activity

  17. Homogeneous aqueous solution nuclear reactors for the production of Mo-99 and other short lived radioisotopes

    International Nuclear Information System (INIS)

    2008-09-01

    Technetium-99m ( 99m Tc), the daughter of Molybdenum-99 ( 99 Mo), is the most commonly used medical radioisotope in the world. It accounts for over twenty-five million medical procedures each year worldwide, comprising about 80% of all radiopharmaceutical procedures. 99 Mo is mostly prepared by the fission of uranium-235 targets in a nuclear reactor with a fission yield of about 6.1%. Currently over 95% of the fission product 99 Mo is obtained using highly enriched uranium (HEU) targets. Smaller scale producers use low enriched uranium (LEU) targets. Small quantities of 99 Mo are also produced by neutron activation through the use of the (n, γ) reaction. The concept of a compact homogeneous aqueous reactor fuelled by a uranium salt solution with off-line separation of radioisotopes of interest ( 99 Mo, 131 I) from aliquots of irradiated fuel solution has been cited in a few presentations in the series of International Conference on Isotopes (ICI) held in Vancouver (2000), Cape Town (2003) and Brussels (2005) and recently some corporate interest has also been noticeable. Calculations and some experimental research have shown that the use of aqueous homogeneous reactors (AHRs) could be an efficient technology for fission radioisotope production, having some prospective advantages compared with traditional technology based on the use of solid uranium targets irradiated in research reactors. This review of AHR status and prospects by a team of experts engaged in the field of homogeneous reactors and radioisotope producers yields an objective evaluation of the technological challenges and other relevant implications. The meeting to develop this report facilitated the exchange of information on the 'state of the art' of the technology related to homogeneous aqueous solution nuclear reactors, especially in connection with the production of radioisotopes. This publication presents a summary of discussions of a consultants meeting which is followed by the technical

  18. Speciation of silver nanoparticles and Ag(I) species using cloud point extraction followed by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    López-García, Ignacio; Vicente-Martínez, Yesica; Hernández-Córdoba, Manuel

    2014-01-01

    Silver nanoparticles in the presence of Triton-X114 were extracted into a micellar phase obtained after incubation at 40 °C for 10 min followed by centrifugation. After injection of an aliquot (30 μL) of the surfactant-rich phase into the electrothermal atomizer, the enrichment effect due to cloud point extraction allowed a detection limit of 2 ng L −1 silver to be achieved. The preconcentration factor was 242, and the repeatability for ten measurements at a 50 ng L −1 silver level was 4.6%. Ag(I) species were adsorbed onto the silver nanoparticles and were also extracted in the micellar phase. The incorporation of 0.01 mol L −1 ammonium thiocyanate to the sample solution prevented the extraction of Ag(I) species. Speciation was carried out using two extractions, one in the absence and the other in the presence of thiocyanate, the concentration of Ag(I) species being obtained by difference. The procedure was applied to the determination of silver nanoparticles and Ag(I) species in waters and in lixiviates obtained from sticking plasters and cleaning cloths. - Highlights: • Silver nanoparticles and Ag(I) species are separated into a surfactant-rich phase. • The Ag(I) species are not extracted in the presence of thiocyanate. • The cloud point extraction of two aliquots allows speciation to be carried out. • Extreme sensitivity (detection limit 2 ng L −1 ) is achieved

  19. Speciation of silver nanoparticles and Ag(I) species using cloud point extraction followed by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    López-García, Ignacio; Vicente-Martínez, Yesica; Hernández-Córdoba, Manuel, E-mail: hcordoba@um.es

    2014-11-01

    Silver nanoparticles in the presence of Triton-X114 were extracted into a micellar phase obtained after incubation at 40 °C for 10 min followed by centrifugation. After injection of an aliquot (30 μL) of the surfactant-rich phase into the electrothermal atomizer, the enrichment effect due to cloud point extraction allowed a detection limit of 2 ng L{sup −1} silver to be achieved. The preconcentration factor was 242, and the repeatability for ten measurements at a 50 ng L{sup −1} silver level was 4.6%. Ag(I) species were adsorbed onto the silver nanoparticles and were also extracted in the micellar phase. The incorporation of 0.01 mol L{sup −1} ammonium thiocyanate to the sample solution prevented the extraction of Ag(I) species. Speciation was carried out using two extractions, one in the absence and the other in the presence of thiocyanate, the concentration of Ag(I) species being obtained by difference. The procedure was applied to the determination of silver nanoparticles and Ag(I) species in waters and in lixiviates obtained from sticking plasters and cleaning cloths. - Highlights: • Silver nanoparticles and Ag(I) species are separated into a surfactant-rich phase. • The Ag(I) species are not extracted in the presence of thiocyanate. • The cloud point extraction of two aliquots allows speciation to be carried out. • Extreme sensitivity (detection limit 2 ng L{sup −1}) is achieved.

  20. Facile fabrication of homogeneous 3D silver nanostructures on gold-supported polyaniline membranes as promising SERS substrates.

    Science.gov (United States)

    Xu, Ping; Mack, Nathan H; Jeon, Sea-Ho; Doorn, Stephen K; Han, Xijiang; Wang, Hsing-Lin

    2010-06-01

    We report a facile synthesis of large-area homogeneous three-dimensional (3D) Ag nanostructures on Au-supported polyaniline (PANI) membranes through a direct chemical reduction of metal ions by PANI. The citric acid absorbed on the Au nuclei that are prefabricated on PANI membranes directs Ag nanoaprticles (AgNPs) to self-assemble into 3D Ag nanosheet structures. The fabricated hybrid metal nanostructures display uniform surface-enhanced Raman scattering (SERS) responses throughout the whole surface area, with an average enhancement factor of 10(6)-10(7). The nanocavities formed by the stereotypical stacking of these Ag nanosheets and the junctions and gaps between two neighboring AgNPs are believed to be responsible for the strong SERS response upon plasmon absorption. These homogeneous metal nanostructure decorated PANI membranes can be used as highly efficient SERS substrates for sensitive detection of chemical and biological analytes.

  1. Phase equilibria, crystal chemistry, electronic structure and physical properties of Ag-Ba-Ge clathrates

    Energy Technology Data Exchange (ETDEWEB)

    Zeiringer, I.; Chen Mingxing [Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42, 1090 Wien (Austria); Bednar, I.; Royanian, E.; Bauer, E. [Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Wien (Austria); Podloucky, R.; Grytsiv, A. [Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42, 1090 Wien (Austria); Rogl, P., E-mail: peter.franz.rogl@univie.ac.at [Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42, 1090 Wien (Austria); Effenberger, H. [Institute of Mineralogy and Crystallography, University of Vienna, A-1090 Wien (Austria)

    2011-04-15

    In the Ag-Ba-Ge system the clathrate type-{Iota} solid solution, Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y}, extends at 800 deg. C from binary Ba{sub 8}Ge{sub 43{open_square}3} ({open_square} is a vacancy) to Ba{sub 8}Ag{sub 5.3}Ge{sub 40.7}. For the clathrate phase (1 {<=} x {<=} 5.3) the cubic space group Pm3-bar n was established by X-ray powder diffraction and confirmed by X-ray single-crystal analyses of the samples Ba{sub 8}Ag{sub 2.3}Ge{sub 41.9{open_square}1.8} and Ba{sub 8}Ag{sub 4.4}Ge{sub 41.3{open_square}0.3}. Increasing the concentration of Ag causes the lattice parameters of the solid solution to increase linearly from a value of a = 1.0656 (x = 0, y = 3) to a = 1.0842 (x = 4.8, y = 0) nm. Site preference determination using X-ray refinement reveals that Ag atoms preferentially occupy the 6d site randomly mixed with Ge and vacancies, which become filled in the compound Ba{sub 8}Ag{sub 4.8}Ge{sub 41.2} when the Ag content increases. At 600 {sup o}C the phase region of the clathrate solution Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y} becomes separated from the Ba-Ge boundary and extends from 6.6 to 9.8 at.% Ag. The compound Ba{sub 6}Ge{sub 25} (clathrate type-{Iota}X) dissolves at 800 {sup o}C a maximum of 1.5 at.% Ag. The homogeneity regions of the two ternary compounds BaAg{sub 2-x}Ge{sub 2+x} (ThCr{sub 2}Si{sub 2}-type, 0.2 {<=} x {<=} 0.7) and Ba(Ag{sub 1-x}Ge{sub x}){sub 2} (AlB{sub 2}-type, 0.65 {<=} x {<=} 0.75) were established at 800 deg. C. Studies of transport properties for the series of Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y} compounds evidenced that electrons are the predominant charge carriers with the Fermi energy close to a gap. Its position can be fine-tuned by the substitution of Ge by Ag atoms and by mechanical processing of the starting material, Ba{sub 8}Ge{sub 43}. The proximity of the electronic structure at Fermi energy of Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y} to a gap is also corroborated by density

  2. Electronic transport behavior of diameter-graded Ag nanowires

    International Nuclear Information System (INIS)

    Wang Xuewei; Yuan Zhihao

    2010-01-01

    Ag nanowires with a graded diameter in anodic aluminum oxide (AAO) membranes were fabricated by the direct-current electrodeposition. The Ag nanowires have a graded-change in diameter from 8 to 32 nm, which is matched with the graded-change of the AAO pore diameter. Electronic transport measurements show that there is a transport behavior similar to that of a metal-semiconductor junction along the axial direction in the diameter-graded Ag nanowires. Such a novel homogeneous nanojunction will be of great fundamental and practical significance.

  3. Electronic transport behavior of diameter-graded Ag nanowires

    Science.gov (United States)

    Wang, Xue Wei; Yuan, Zhi Hao

    2010-05-01

    Ag nanowires with a graded diameter in anodic aluminum oxide (AAO) membranes were fabricated by the direct-current electrodeposition. The Ag nanowires have a graded-change in diameter from 8 to 32 nm, which is matched with the graded-change of the AAO pore diameter. Electronic transport measurements show that there is a transport behavior similar to that of a metal-semiconductor junction along the axial direction in the diameter-graded Ag nanowires. Such a novel homogeneous nanojunction will be of great fundamental and practical significance.

  4. A Spectral Active Material Interference in the Electrical Conductivity of the Internal Electrolyte and the Potential Shift of the Ag/AgCl Electrode

    International Nuclear Information System (INIS)

    Yun, Myung Hee; Yeon, Jei Won; Hwang, Jae Sik; Song, Kyu Seok

    2009-01-01

    The Ag/AgCl electrode is a type of reference electrode, commonly used in electrochemical measurements, because it is simple and stable. For these reasons, the Ag/AgCl electrode has long been used to provide a reliable potential monitoring of ions in a solution. However, when a reference electrode is used in an aqueous solution containing a very low electrolyte for a long period of time, this could cause a considerable potential shift of the reference electrode due to a dilution of the internal electrolyte. If the potential of the reference electrode shifts, undesirable conditions may occur. Therefore, many studies have been applied to improve the long-term performance of the reference electrode. However, these attempts have not completely resolved the problem of an electrolyte dilution by the test solution. In the present study, we developed a creative technique to correct the concentration change of the internal electrolyte by a long-term exposure of the Ag/AgCl electrode in very dilute solutions. We measured the electrical conductivity and UV/VIS absorbance of the internal electrolyte. From these measurements, we observed the linear relationship between KCl concentration and the potential of the Ag/AgCl electrode. In order to accelerate the diffusion of the internal electrolyte into the test solution, an Ag/AgCl electrode with a tiny perforation was used. We confirmed the feasibility of the creative calibration technique

  5. Ultrafast excited-state relaxation of a binuclear Ag(i) phosphine complex in gas phase and solution.

    Science.gov (United States)

    Kruppa, S V; Bäppler, F; Klopper, W; Walg, S P; Thiel, W R; Diller, R; Riehn, C

    2017-08-30

    The binuclear complex [Ag 2 (dcpm) 2 ](PF 6 ) 2 (dcpm = bis(dicyclohexylphosphino)methane) exhibits a structure with a close silver-silver contact mediated by the bridging ligand and thus a weak argentophilic interaction. Upon electronic excitation this cooperative effect is strongly increased and determines the optical and luminescence properties of the compound. We have studied here the ultrafast electronic dynamics in parallel in gas phase by transient photodissociation and in solution by transient absorption. In particular, we report the diverse photofragmentation pathways of isolated [Ag 2 (dcpm) 2 ] 2+ in an ion trap and its gas phase UV photodissociation spectrum. By pump-probe fragmentation action spectroscopy (λ ex = 260 nm) in the gas phase, we have obtained fragment-specific transients which exhibit a common ultrafast multiexponential decay. This is fitted to four time constants (0.6/5.8/100/>1000 ps), highlighting complex intrinsic photophysical processes. Remarkably, multiexponential dynamics (0.9/8.5/73/604 ps) are as well found for the relaxation dynamics in acetonitrile solution. Ab initio calculations at the level of approximate coupled-cluster singles-doubles (CC2) theory of ground and electronically excited states of the reduced model system [Ag 2 (dmpm) 2 ] 2+ (dmpm = bis(dimethylphosphino)methane) indicate a shortening of the Ag-Ag distance upon excitation by 0.3-0.4 Å. In C 2 geometry two close-lying singlet states S 1 ( 1 MC(dσ*-pπ), 1 B, 4.13 eV) and S 2 ( 1 MC(dσ*-pσ), 1 A, 4.45 eV) are found. The nearly dark S 1 state has not been reported so far. The excitation of the S 2 state carries a large oscillator strength for the calculated vertical transition (266 nm). Two related triplets are calculated at T 1 (3.87 eV) and T 2 (3.90 eV). From these findings we suggest possible relaxation pathways with the two short time constants ascribed to ISC/IVR and propose from the obtained similar values in gas phase that the fast solution dynamics

  6. The Effect of Cu:Ag Atomic Ratio on the Properties of Sputtered Cu–Ag Alloy Thin Films

    Directory of Open Access Journals (Sweden)

    Janghsing Hsieh

    2016-11-01

    Full Text Available Cu–Ag thin films with various atomic ratios were prepared using a co-sputtering technique, followed by rapid thermal annealing at various temperatures. The films’ structural, mechanical, and electrical properties were then characterized using X-ray diffractometry (XRD, atomic force microscopy (AFM, FESEM, nano-indentation, and TEM as functions of compositions and annealing conditions. In the as-deposited condition, the structure of these films transformed from a one-phase to a dual-phase state, and the resistivity shows a twin-peak pattern, which can be explained in part by Nordheim’s Rule and the miscibility gap of Cu–Ag alloy. After being annealed, the films’ resistivity followed the mixture rule in general, mainly due to the formation of a dual-phase structure containing Ag-rich and Cu-rich phases. The surface morphology and structure also varied as compositions and annealing conditions changed. The recrystallization of these films varied depending on Ag–Cu compositions. The annealed films composed of 40 at % to 60 at % Cu had higher hardness and lower roughness than those with other compositions. Particularly, the Cu50Ag50 film had the highest hardness after being annealed. From the dissolution testing, it was found that the Cu-ion concentration was about 40 times higher than that of Ag. The galvanic effect and over-saturated state could be the cause of the accelerated Cu dissolution and the reduced dissolution of the Ag.

  7. Photocatalytic deposition of Ag nanoparticles on TiO2: Metal precursor effect on the structural and photoactivity properties

    Directory of Open Access Journals (Sweden)

    E. Albiter

    2015-09-01

    Full Text Available A series of 1 wt.% Ag–TiO2 photocatalysts were obtained by photodeposition using different organic (acetylacetonate, Ag-A and inorganic (nitrate, Ag-N, and perchlorate, Ag-C silver precursors in order to determinate the influence of the silver precursor on final properties of the photocatalysts. The resulting photocatalytic materials were characterized by different techniques (UV–Vis DRS, TEM/HRTEM and XPS and their photocatalytic activity was evaluated in the degradation of rhodamine B (used as model pollutant in aqueous solution under simulated solar light. The photocatalytic reduction of Ag species to Ag0 on TiO2 was higher with silver nitrate as precursor compared to acetylacetonate or perchlorate. All the Ag-modified TiO2 photocatalysts exhibited a surface plasmon resonance effect in the visible region (400–530 nm indicating different metal particle sizes depending on the Ag precursor used in their synthesis. A higher photocatalytic activity was obtained with all the Ag/TiO2 samples compared with non-modified TiO2. The descending order of photocatalytic activity was as follows: Ag-A/TiO2 ≈ Ag-N/TiO2 > Ag-C/TiO2 > TiO2-P25. The enhanced photoactivity was attributed to the presence of different amounts Ag0 nanoparticles homogeneously distributed on Ag2O and TiO2, trapping the photogenerated electrons and avoiding charge recombination.

  8. Solutions to second order non-homogeneous multi-point BVPs using a fixed-point theorem

    Directory of Open Access Journals (Sweden)

    Yuji Liu

    2008-07-01

    Full Text Available In this article, we study five non-homogeneous multi-point boundary-value problems (BVPs of second order differential equations with the one-dimensional p-Laplacian. These problems have a common equation (in different function domains and different boundary conditions. We find conditions that guarantee the existence of at least three positive solutions. The results obtained generalize several known ones and are illustrated by examples. It is also shown that the approach for getting three positive solutions by using multi-fixed-point theorems can be extended to nonhomogeneous BVPs. The emphasis is on the nonhomogeneous boundary conditions and the nonlinear term involving first order derivative of the unknown. Some open problems are also proposed.

  9. Investigation of surface homogeneity of mirrors for the CBM-RICH detector and low-mass di-electron feasibility studies

    International Nuclear Information System (INIS)

    Lebedeva, E; Hoehne, C

    2014-01-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility will investigate high net-baryon density matter at moderate temperatures in A+A collisions from 4-45 AGeV. One of the key observables of the CBM physics program is electromagnetic radiation as a probe of strongly interacting matter in heavy-ion collisions, carrying undistorted information on its conditions to the detector. This includes detailed investigations of low-mass vector mesons in their di-electron channel. A clean and efficient identification of electrons is required for such measurements. In CBM the electron identification will be performed by a Ring Imaging Cherenkov detector and several layers of Transition Radiation Detectors. The RICH detector will be operated with CO 2 radiator gas, MAPMTs as photodetector and spherical glass mirrors as focusing elements. A high quality of the mirrors in terms of reflectivity and surface homogeneity is required. In the first part of the contribution results on measurements of the mirror surface homogeneity are presented. Results on the feasibility studies of low-mass di-electron measurements with realistic detector response are discussed in the second part of the contribution.

  10. Rapid biotic homogenization of marine fish assemblages

    Science.gov (United States)

    Magurran, Anne E.; Dornelas, Maria; Moyes, Faye; Gotelli, Nicholas J.; McGill, Brian

    2015-01-01

    The role human activities play in reshaping biodiversity is increasingly apparent in terrestrial ecosystems. However, the responses of entire marine assemblages are not well-understood, in part, because few monitoring programs incorporate both spatial and temporal replication. Here, we analyse an exceptionally comprehensive 29-year time series of North Atlantic groundfish assemblages monitored over 5° latitude to the west of Scotland. These fish assemblages show no systematic change in species richness through time, but steady change in species composition, leading to an increase in spatial homogenization: the species identity of colder northern localities increasingly resembles that of warmer southern localities. This biotic homogenization mirrors the spatial pattern of unevenly rising ocean temperatures over the same time period suggesting that climate change is primarily responsible for the spatial homogenization we observe. In this and other ecosystems, apparent constancy in species richness may mask major changes in species composition driven by anthropogenic change. PMID:26400102

  11. Photoactive TiO2 prepared by homogenous precipitation of aqueos solution of Ti4+ salt with urea

    Czech Academy of Sciences Publication Activity Database

    Šubrt, Jan; Bakardjieva, Snejana; Hostomský, Jiří; Jirkovský, Jaromír; Maguela, L. A. P.; Hálová, Jaroslava

    2003-01-01

    Roč. 12, č. 3 (2003), s. 423-428 ISSN 1453-7672 R&D Projects: GA ČR GA203/02/0983 Institutional research plan: CEZ:AV0Z4040901; CEZ:AV0Z4032918 Keywords : homogenous precipitation * aqueous solutions Subject RIV: CA - Inorganic Chemistry

  12. Safe disposal of radioactive iodide ions from solutions by Ag2O grafted sodium niobate nanofibers.

    Science.gov (United States)

    Mu, Wanjun; Li, Xingliang; Liu, Guoping; Yu, Qianhong; Xie, Xiang; Wei, Hongyuan; Jian, Yuan

    2016-01-14

    Radioactive iodine isotopes are released into the environment by the nuclear industry and medical research institutions using radioactive materials, and have negative effects on organisms living within the ecosystem. Thus, safe disposal of radioactive iodine is necessary and crucial. For this reason, the uptake of iodide ions was investigated in Ag2O nanocrystal grafted sodium niobate nanofibers, which were prepared by forming a well-matched phase coherent interface between them. The resulting composite was applied as an efficient adsorbent for I(-) anions by forming an AgI precipitate, which also remained firmly attached to the substrates. Due to their one-dimensional morphology, the new adsorbents can be easily dispersed in liquids and readily separated after purification. This significantly enhances the adsorption efficiency and reduces the separation costs. The change in structure from the pristine sodium niobate to Ag2O anchored sodium niobate and to the used adsorbent was examined by using various characterization techniques. The effects of Ag(+) concentration, pH, equilibration time, ionic strength and competing ions on the iodide ion removal ability of the composite were studied. The Ag2O nanocrystal grafted sodium niobate adsorbent showed a high adsorption capacity and excellent selectivity for I(-) anions in basic solutions. Our results are useful for the further development of improved adsorbents for removing I(-) anions from basic wastewater.

  13. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution

    Science.gov (United States)

    Salem, Mohamed A.; Bakr, Eman A.; El-Attar, Heba G.

    2018-01-01

    Platinum/silver (Pt@Ag) and palladium/silver (Pd@Ag) core/shell NPs have been synthesized in two steps reaction using the citrate method. The progress of nanoparticle formation was followed by the UV/Vis spectroscopy. Transmission electron microscopy revealed spherical shaped core/shell nanoparticles with average particle diameter 32.17 nm for Pt@Ag and 8.8 nm for Pd@Ag. The core/shell NPs were further characterized by FT-IR and XRD. Reductive degradation of the Congo red dye was chosen to demonstrate the excellent catalytic activity of these core/shell nanostructures. The nanocatalysts act as electron mediators for the transfer of electrons from the reducing agent (NaBH4) to the dye molecules. Effect of reaction parameters such as nanocatalyst dose, dye and NaBH4 concentrations on the dye degradation was investigated. A comparison between the catalytic activities of both nanocatalysts was made to realize which of them the best in catalytic performance. Pd@Ag was the higher in catalytic activity over Pt@Ag. Such greater activity is originated from the smaller particle size and larger surface area. Pd@Ag nanocatalyst was catalytically stable through four subsequent reaction runs under the utilized reaction conditions. These findings can thus be considered as possible economical alternative for environmental safety against water pollution by dyes.

  14. Bottom-up processing of thermoelectric nanocomposites from colloidal nanocrystal building blocks: the case of Ag2Te–PbTe

    International Nuclear Information System (INIS)

    Cadavid, Doris; Ibáñez, Maria; Gorsse, Stéphane; López, Antonio M.; Cirera, Albert; Morante, Joan Ramon; Cabot, Andreu

    2012-01-01

    Nanocomposites are highly promising materials to enhance the efficiency of current thermoelectric devices. A straightforward and at the same time highly versatile and controllable approach to produce nanocomposites is the assembly of solution-processed nanocrystal building blocks. The convenience of this bottom-up approach to produce nanocomposites with homogeneous phase distributions and adjustable composition is demonstrated here by blending Ag 2 Te and PbTe colloidal nanocrystals to form Ag 2 Te–PbTe bulk nanocomposites. The thermoelectric properties of these nanocomposites are analyzed in the temperature range from 300 to 700 K. The evolution of their electrical conductivity and Seebeck coefficient is discussed in terms of the blend composition and the characteristics of the constituent materials.

  15. Electro-magnetostatic homogenization of bianisotropic metamaterials

    OpenAIRE

    Fietz, Chris

    2012-01-01

    We apply the method of asymptotic homogenization to metamaterials with microscopically bianisotropic inclusions to calculate a full set of constitutive parameters in the long wavelength limit. Two different implementations of electromagnetic asymptotic homogenization are presented. We test the homogenization procedure on two different metamaterial examples. Finally, the analytical solution for long wavelength homogenization of a one dimensional metamaterial with microscopically bi-isotropic i...

  16. Sonochemical synthesis of Ag/AgCl nanocubes and their efficient visible-light-driven photocatalytic performance.

    Science.gov (United States)

    Chen, Deliang; Yoo, Seung Hwa; Huang, Qingsong; Ali, Ghafar; Cho, Sung Oh

    2012-04-23

    A novel one-step sonochemical approach to synthesize a plasmonic photocatalyst of AgCl nanocubes (ca. 115 nm in edge length) with a small amount of Ag metal species is presented. The nanoscale Ag/AgCl hybrid photocatalysts with cubic morphology are readily formed under ambient ultrasonic conditions and neither external heat treatment nor reducing agents are required. The size of the Ag/AgCl photocatalysts could be controlled by changing the concentrations of Ag(+) ions and polyvinylpyrrolidone molecules in precursor solutions. The compositions, microstructures, influencing factors, and possible growth mechanism of the Ag/AgCl hybrid nanocubes were systematically investigated. The Ag/AgCl photocatalysts show excellent photocatalytic performance for degradation of various dye molecules under visible light. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Feasibility Study of Aseptic Homogenization: Affecting Homogenization Steps on Quality of Sterilized Coconut Milk

    Directory of Open Access Journals (Sweden)

    Phungamngoen Chanthima

    2016-01-01

    Full Text Available Coconut milk is one of the most important protein-rich food sources available today. Separation of an emulsion into an aqueous phase and cream phase is commonly occurred and this leads an unacceptably physical defect of either fresh or processed coconut milk. Since homogenization steps are known to affect the stability of coconut milk. This work was aimed to study the effect of homogenization steps on quality of coconut milk. The samples were subject to high speed homogenization in the range of 5000-15000 rpm under sterilize temperatures at 120-140 °C for 15 min. The result showed that emulsion stability increase with increasing speed of homogenization. The lower fat particles were generated and easy to disperse in continuous phase lead to high stability. On the other hand, the stability of coconut milk decreased, fat globule increased, L value decreased and b value increased when the high sterilization temperature was applied. Homogenization after heating led to higher stability than homogenization before heating due to the reduced particle size of coconut milk after aggregation during sterilization process. The results implied that homogenization after sterilization process might play an important role on the quality of the sterilized coconut milk.

  18. Study of Ag+/PAA (polyacrylic acid) and Ag0/PAA aqueous system at equilibrium

    International Nuclear Information System (INIS)

    Keghouche, N.; Mostafavi, M.; Delcourt, M.O.

    1991-01-01

    When submitted to gamma radiation the system Ag + -PAA-water leads to clusters Ag 0 n /PAA (3 420 nm) interacting with the clusters. Potentiometric measurements carried out on Ag + solutions in the presence of PAA at various pH show that the deprotonated form (polyacrylate anion) is strongly bonded to Ag + , on the opposite of the protonated form of PAA. One of the oligomer clusters can be stabilized for more than one year. Studying it by infra-red spectrometry reveals important modifications in the vibration bands of the COO - group circa 1400 and 1600 cm -1 according to the bonding of PAA with Ag + or Ag 0 [fr

  19. Analysis of an homogeneous solution reactor for 99 Mo production

    International Nuclear Information System (INIS)

    Weir, A.; Lopasso, E.; Gho, C.

    2007-01-01

    The 99m Tc is the more used radioisotope in nuclear medicine, used in 80% of procedures of nuclear medicine in the world. This is due to their characteristics practically ideal for the diagnostic. The 99m Tc is obtained by decay of the 99 Mo, which can produce it by irradiating enriched targets in 98 Mo, or as fission product, irradiating uranium targets or by means of homogeneous solution reactors. The pattern of the used reactor in the neutron analysis possesses a liquid fuel composed of uranyl nitrate dissolved in water with the attach of nitric acid. This solution is contained in a cylindrical recipient of stainless steel reflected with light water. The reactor is refrigerated by means of an helicoidal heat exchanger immersed in the fuel solution. The heat of the fuel is removed by natural convection while the circulation of the water inside the exchanger is forced. The control system of the reactor consists on 6 independent cadmium bars, with followers of water. An auxiliary control system can be the level of the fuel solution inside container tank, but it was not included in the pattern in study. One studies the variations of the reactivity of the system due to different phenomena. An important factor during the normal operation of the reactor is the variation of temperature taking to a volumetric expansion of the fuel and ghastly effects in the same one. Another causing phenomenon of changes in the reactivity is the variation of the concentration of uranium in the combustible solution. An important phenomenon in this type of reactors is the hole fraction in the nucleus I liquidate due to the radiolysis and the possible boil of the water of the combustible solution. Some of the possible cases of abnormal operation were studied as the lost one of coolant in the secondary circuit of the heat exchanger, the introduction and evaporation of water in the nucleus. The reactivity variations were studied using the codes of I calculate MCNP, WIMS and TORT. All the

  20. Numerical method for solution of transient, homogeneous, equilibrium, two-phase flows in one space dimension

    International Nuclear Information System (INIS)

    Shin, Y.W.; Wiedermann, A.H.

    1979-10-01

    A solution method is presented for transient, homogeneous, equilibrium, two-phase flows of a single-component fluid in one space dimension. The method combines a direct finite-difference procedure and the method of characteristics. The finite-difference procedure solves the interior points of the computing domain; the boundary information is provided by a separate procedure based on the characteristics theory. The solution procedure for boundary points requires information in addition to the physical boundary conditions. This additional information is obtained by a new procedure involving integration of characteristics in the hodograph plane. Sample problems involving various combinations of basic boundary types are calculated for two-phase water/steam mixtures and single-phase nitrogen gas, and compared with independent method-of-characteristics solutions using very fine characteristic mesh. In all cases, excellent agreement is demonstrated

  1. Solution XAS Analysis for Exploring the Active Species in Homogeneous Vanadium Complex Catalysis

    Science.gov (United States)

    Nomura, Kotohiro; Mitsudome, Takato; Tsutsumi, Ken; Yamazoe, Seiji

    2018-06-01

    Selected examples in V K-edge X-ray Absorption Near Edge Structure (XANES) analysis of a series of vanadium complexes containing imido ligands (possessing metal-nitrogen double bond) in toluene solution have been introduced, and their pre-edge and the edge were affected by their structures and nature of ligands. Selected results in exploring the oxidation states of the active species in ethylene dimerization/polymerization using homogeneous vanadium catalysts [consisting of (imido)vanadium(V) complexes and Al cocatalysts] by X-ray absorption spectroscopy (XAS) analyses have been introduced. It has been demonstrated that the method should provide more clear information concerning the active species in situ, especially by combination with the other methods (NMR and ESR spectra, X-ray crystallographic analysis, and reaction chemistry), and should be powerful tool for study of catalysis mechanism as well as for the structural analysis in solution.

  2. Corrosion of Dental Au-Ag-Cu-Pd Alloys in 0.9 % Sodium Chloride Solution

    International Nuclear Information System (INIS)

    Chiba, Atsushi; Kusayanagi, Yukiharu

    2005-01-01

    Two Au-Ag-Cu-Pd dental casting alloys (Au:12% and 20%) used. The test solutions used 0.9 % NaCl solution (isotonic sodium chloride solution), 0.9 % NaCl solution containing 1 % lactic acid, and 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol dm -3 Na 2 S. The surface of two samples in three sample solutions was not natural discoloration during one year. The alloy containing 12 % gold was easily alloyed and the composition was uniform comparing with the alloy containing 20 % gold. The rest potentials have not a little effect after three months. The kinds of metals could not definitely from the oxidation and reduction waves of metal on the cyclic voltammograms. The dissolutions of gold and palladium were 12 % Au sample in the 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol dm -3 Na 2 S. The pH of solution had an affect on dissolution of copper, and sulfur ion had an affect on dissolution of silver. The copper dissolved amount from 20 % gold sample was about 26 times comparing with that of 12 % gold sample in the 0.9 % solution containing 1 % lactic acid. Corrosion products were silver chloride and copper chloride in NaCl solution, and silver sulfide and copper sulfide in NaCl solution containing Na 2 S

  3. Reducing strength prevailing at root surface of plants promotes reduction of Ag+ and generation of Ag(0/Ag2O nanoparticles exogenously in aqueous phase.

    Directory of Open Access Journals (Sweden)

    Peddisetty Pardha-Saradhi

    Full Text Available Potential of root system of plants from wide range of families to effectively reduce membrane impermeable ferricyanide to ferrocyanide and blue coloured 2,6-dichlorophenol indophenol (DCPIP to colourless DCPIPH2 both under non-sterile and sterile conditions, revealed prevalence of immense reducing strength at root surface. As generation of silver nanoparticles (NPs from Ag+ involves reduction, present investigations were carried to evaluate if reducing strength prevailing at surface of root system can be exploited for reduction of Ag+ and exogenous generation of silver-NPs. Root system of intact plants of 16 species from 11 diverse families of angiosperms turned clear colorless AgNO3 solutions, turbid brown. Absorption spectra of these turbid brown solutions showed silver-NPs specific surface plasmon resonance peak. Transmission electron microscope coupled with energy dispersive X-ray confirmed the presence of distinct NPs in the range of 5-50 nm containing Ag. Selected area electron diffraction and powder X-ray diffraction patterns of the silver NPs showed Bragg reflections, characteristic of crystalline face-centered cubic structure of Ag(0 and cubic structure of Ag2O. Root system of intact plants raised under sterile conditions also generated Ag(0/Ag2O-NPs under strict sterile conditions in a manner similar to that recorded under non-sterile conditions. This revealed the inbuilt potential of root system to generate Ag(0/Ag2O-NPs independent of any microorganism. Roots of intact plants reduced triphenyltetrazolium to triphenylformazon and impermeable ferricyanide to ferrocyanide, suggesting involvement of plasma membrane bound dehydrogenases in reduction of Ag+ and formation of Ag(0/Ag2O-NPs. Root enzyme extract reduced triphenyltetrazolium to triphenylformazon and Ag+ to Ag(0 in presence of NADH, clearly establishing potential of dehydrogenases to reduce Ag+ to Ag(0, which generate Ag(0/Ag2O-NPs. Findings presented in this manuscript put

  4. Bottom-up processing of thermoelectric nanocomposites from colloidal nanocrystal building blocks: the case of Ag{sub 2}Te-PbTe

    Energy Technology Data Exchange (ETDEWEB)

    Cadavid, Doris [Catalonia Institute for Energy Research, IREC (Spain); Ibanez, Maria [Universitat de Barcelona, Departament d' Electronica (Spain); Gorsse, Stephane [Universite de Bordeaux, ICMCB, CNRS (France); Lopez, Antonio M. [Universitat Politecnica de Catalunya, Departament d' Enginyeria Electronica (Spain); Cirera, Albert [Universitat de Barcelona, Departament d' Electronica (Spain); Morante, Joan Ramon; Cabot, Andreu, E-mail: acabot@irec.cat [Catalonia Institute for Energy Research, IREC (Spain)

    2012-12-15

    Nanocomposites are highly promising materials to enhance the efficiency of current thermoelectric devices. A straightforward and at the same time highly versatile and controllable approach to produce nanocomposites is the assembly of solution-processed nanocrystal building blocks. The convenience of this bottom-up approach to produce nanocomposites with homogeneous phase distributions and adjustable composition is demonstrated here by blending Ag{sub 2}Te and PbTe colloidal nanocrystals to form Ag{sub 2}Te-PbTe bulk nanocomposites. The thermoelectric properties of these nanocomposites are analyzed in the temperature range from 300 to 700 K. The evolution of their electrical conductivity and Seebeck coefficient is discussed in terms of the blend composition and the characteristics of the constituent materials.

  5. Temperature and coverage effects on the stability of epitaxial silicene on Ag(111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongsheng; Han, Nannan; Zhao, Jijun, E-mail: zhao_jijun@hotmail.com

    2017-07-01

    Highlights: • Chemical potential phase diagrams of silicene/Ag(111) at varied temperatures. • The priorities of various silicene phases in experiments are explained. • A proper experimental condition to obtain homogeneous 4 × 4 silicene is recommended. - Abstract: Silicene, the single layer of silicon atoms arranged in a honeycomb lattice, has been synthesized in recent experiments and attracted significant attentions. Silicene is promising in future nanoelectronic devices due to its outstanding electronic properties. In experiments, however, different silicene superstructures coexist on Ag(111) substrate. For the device applications, homogenous silicene sheet with large scale and high quality is highly desired. Here, for the first time, we investigate both the temperature and the coverage effects on the thermal stability of epitaxial silicene on Ag(111) surface by ab initio molecular dynamics simulations. The relationship between the stability of various silicene superstructures and the growth conditions, including temperature and coverage of silicon atoms, is revealed by plotting the chemical potential phase diagram of silicene on Ag(111) surfaces at different temperatures. Our results are helpful for understanding the observed diversity of silicene phases on Ag(111) surfaces and provide some useful guidance for the synthesis of homogenous silicene phase in experiments.

  6. Transformation of Ag nanocubes into Ag-Au hollow nanostructures with enriched Ag contents to improve SERS activity and chemical stability.

    Science.gov (United States)

    Yang, Yin; Zhang, Qiang; Fu, Zheng-Wen; Qin, Dong

    2014-03-12

    We report a strategy to complement the galvanic replacement reaction between Ag nanocubes and HAuCl4 with co-reduction by ascorbic acid (AA) for the formation of Ag-Au hollow nanostructures with greatly enhanced SERS activity. Specifically, in the early stage of synthesis, the Ag nanocubes are sharpened at corners and edges because of the selective deposition of Au and Ag atoms at these sites. In the following steps, the pure Ag in the nanocubes is constantly converted into Ag(+) ions to generate voids owing to the galvanic reaction with HAuCl4, but these released Ag(+) ions are immediately reduced back to Ag atoms and are co-deposited with Au atoms onto the nanocube templates. We observe distinctive SERS properties for the Ag-Au hollow nanostructures at visible and near-infrared excitation wavelengths. When plasmon damping is eliminated by using an excitation wavelength of 785 nm, the SERS activity of the Ag-Au hollow nanostructures is 15- and 33-fold stronger than those of the original Ag nanocubes and the Ag-Au nanocages prepared by galvanic replacement without co-reduction, respectively. Additionally, Ag-Au hollow nanostructures embrace considerably improved stability in an oxidizing environment such as aqueous H2O2 solution. Collectively, our work suggests that the Ag-Au hollow nanostructures will find applications in SERS detection and imaging.

  7. Thermoelectric transport of Se-rich Ag2Se in normal phases and phase transitions

    International Nuclear Information System (INIS)

    Mi, Wenlong; Lv, Yanhong; Qiu, Pengfei; Shi, Xun; Chen, Lidong; Zhang, Tiansong

    2014-01-01

    Small amount of Se atoms are used to tune the carrier concentrations (n H ) and electrical transport in Ag 2 Se. Significant enhancements in power factor and thermoelectric figure of merit (zT) are observed in the compositions of Ag 2 Se 1.06 and Ag 2 Se 1.08 . The excessive Se atoms do not change the intrinsically electron-conducting character in Ag 2 Se. The detailed analysis reveals the experiment optimum carrier concentration in Ag 2 Se is around 5 × 10 18  cm −3 . We also investigate the temperature of maximum zT and the thermoelectric transport during the first order phase transitions using the recently developed measurement system

  8. Characterization of Ag-porous silicon nanostructured layer formed by an electrochemical etching of p-type silicon surface for bio-application

    Science.gov (United States)

    Naddaf, M.; Al-Mariri, A.; Haj-Mhmoud, N.

    2017-06-01

    Nanostructured layers composed of silver-porous silicon (Ag-PS) have been formed by an electrochemical etching of p-type (1 1 1) silicon substrate in a AgNO3:HF:C2H5OH solution at different etching times (10 min-30 min). Scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) results reveal that the produced layers consist of Ag dendrites and a silicon-rich porous structure. The nanostructuring nature of the layer has been confirmed by spatial micro-Raman scattering and x-ray diffraction techniques. The Ag dendrites exhibit a surface-enhanced Raman scattering (SERS) spectrum, while the porous structure shows a typical PS Raman spectrum. Upon increasing the etching time, the average size of silicon nanocrystallite in the PS network decreases, while the average size of Ag nanocrystals is slightly affected. In addition, the immobilization of prokaryote Salmonella typhimurium DNA via physical adsorption onto the Ag-PS layer has been performed to demonstrate its efficiency as a platform for detection of biological molecules using SERS.

  9. A second stage homogenization method

    International Nuclear Information System (INIS)

    Makai, M.

    1981-01-01

    A second homogenization is needed before the diffusion calculation of the core of large reactors. Such a second stage homogenization is outlined here. Our starting point is the Floquet theorem for it states that the diffusion equation for a periodic core always has a particular solution of the form esup(j)sup(B)sup(x) u (x). It is pointed out that the perturbation series expansion of function u can be derived by solving eigenvalue problems and the eigenvalues serve to define homogenized cross sections. With the help of these eigenvalues a homogenized diffusion equation can be derived the solution of which is cos Bx, the macroflux. It is shown that the flux can be expressed as a series of buckling. The leading term in this series is the well known Wigner-Seitz formula. Finally three examples are given: periodic absorption, a cell with an absorber pin in the cell centre, and a cell of three regions. (orig.)

  10. Removal of Ag+ from water environment using a novel magnetic thiourea-chitosan imprinted Ag+

    International Nuclear Information System (INIS)

    Fan, Lulu; Luo, Chuannan; Lv, Zhen; Lu, Fuguang; Qiu, Huamin

    2011-01-01

    Highlights: → Coating modified chitosan on magnetic fluids, which were using Ag(I) as imprinted ions, is a new method to expand function of the chitosan. → The method can improve the surface area for adsorption of Ag + and reduce the required dosage for the adsorption of Ag(I). → The imprinted magnetic chitosan can be used effectively and selectively to remove Ag(I) ions from aqueous solutions. → It shows the facile, fast separation process of magnetic chitosan during the experiments. The absorbent has a good application prospect. - Abstract: A novel, thiourea-chitosan coating on the surface of magnetite (Fe 3 O 4 ) (Ag-TCM) was successfully synthesized using Ag(I) as imprinted ions for adsorption and removal of Ag(I) ions from aqueous solutions. The thermal stability, chemical structure and magnetic property of the Ag-TCM were characterized by the scanning electron microscope (SEM), Fourier transform infrared spectrometer (FT-IR) and vibrating sample magnetometer (VSM), respectively. Batch adsorption experiments were performed to evaluate the adsorption conditions, selectivity and reusability. The results showed that the maximum adsorption capacity was 4.93 mmol/g, observed at pH 5 and temperature 30 o C. Equilibrium adsorption was achieved within 50 min. The kinetic data, obtained at the optimum pH 5, could be fitted with a pseudo-second order equation. Adsorption process could be well described by Langmuir adsorption isotherms and the maximum adsorption capacity calculated from Langmuir equation was 5.29 mmol/g. The selectivity coefficient of Ag(I) ions and other metal cations onto Ag-TCM indicated an overall preference for Ag(I) ions, which was much higher than non-imprinted thiourea-chitosan beads. Moreover, the sorbent was stable and easily recovered, the adsorption capacity was about 90% of the initial saturation adsorption capacity after being used five times.

  11. AgSbSe2 and AgSb(S,Se)2 thin films for photovoltaic applications

    International Nuclear Information System (INIS)

    Garza, J.G.; Shaji, S.; Rodriguez, A.C.; Das Roy, T.K.; Krishnan, B.

    2011-01-01

    Silver antimony selenide (AgSbSe 2 ) thin films were prepared by heating sequentially deposited multilayers of antimony sulphide (Sb 2 S 3 ), silver selenide (Ag 2 Se), selenium (Se) and silver (Ag). Sb 2 S 3 thin film was prepared from a chemical bath containing SbCl 3 and Na 2 S 2 O 3 , Ag 2 Se from a solution containing AgNO 3 and Na 2 SeSO 3 and Se thin films from an acidified solution of Na 2 SeSO 3 , at room temperature on glass substrates. Ag thin film was deposited by thermal evaporation. The annealing temperature was 350 deg. C in vacuum (10 -3 Torr) for 1 h. X-ray diffraction analysis showed that the thin films formed were polycrystalline AgSbSe 2 or AgSb(S,Se) 2 depending on selenium content in the precursor films. Morphology and elemental analysis of these films were done using scanning electron microscopy and energy dispersive X-ray spectroscopy. Optical band gap was evaluated from the UV-visible absorption spectra of these films. Electrical characterizations were done using Hall effect and photocurrent measurements. A photovoltaic structure: glass/ITO/CdS/AgSbSe 2 /Al was formed, in which CdS was deposited by chemical bath deposition. J-V characteristics of this structure showed V oc = 435 mV and J sc = 0.08 mA/cm 2 under illumination using a tungsten halogen lamp. Preparation of a photovoltaic structure using AgSbSe 2 as an absorber material by a non-toxic selenization process is achieved.

  12. Analytical Solution for Time-drawdown Response to Constant Pumping from a Homogeneous, Confined Horizontal Aquifer with Unidirectional Flow

    Science.gov (United States)

    Parrish, K. E.; Zhang, J.; Teasdale, E.

    2007-12-01

    An exact analytical solution to the ordinary one-dimensional partial differential equation is derived for transient groundwater flow in a homogeneous, confined, horizontal aquifer using Laplace transformation. The theoretical analysis is based on the assumption that the aquifer is homogeneous and one-dimensional (horizontal); confined between impermeable formations on top and bottom; and of infinite horizontal extent and constant thickness. It is also assumed that there is only a single pumping well penetrating the entire aquifer; flow is everywhere horizontal within the aquifer to the well; the well is pumping with a constant discharge rate; the well diameter is infinitesimally small; and the hydraulic head is uniform throughout the aquifer before pumping. Similar to the Theis solution, this solution is suited to determine transmissivity and storativity for a two- dimensional, vertically confined aquifer, such as a long vertically fractured zone of high permeability within low permeable rocks or a long, high-permeability trench inside a low-permeability porous media. In addition, it can be used to analyze time-drawdown responses to pumping and injection in similar settings. The solution can also be used to approximate the groundwater flow for unconfined conditions if (1) the variation of transmissivity is negligible (groundwater table variation is small in comparison to the saturated thickness); and (2) the unsaturated flow is negligible. The errors associated with the use of the solution to unconfined conditions depend on the accuracies of the above two assumptions. The solution can also be used to assess the impacts of recharge from a seasonal river or irrigation canal on the groundwater system by assuming uniform, time- constant recharge along the river or canal. This paper presents the details for derivation of the analytical solution. The analytical solution is compared to numerical simulation results with example cases. Its accuracy is also assessed and

  13. Highly Dispersed Pseudo-Homogeneous and Heterogeneous Catalysts Synthesized via Inverse Micelle Solutions for the Liquefaction of Coal

    Energy Technology Data Exchange (ETDEWEB)

    Hampden-Smith, M.; Kawola, J.S.; Martino, A.; Sault, A.G.; Yamanaka, S.A.

    1999-01-05

    The mission of this project was to use inverse micelle solutions to synthesize nanometer sized metal particles and test the particles as catalysts in the liquefaction of coal and other related reactions. The initial focus of the project was the synthesis of iron based materials in pseudo-homogeneous form. The frost three chapters discuss the synthesis, characterization, and catalyst testing in coal liquefaction and model coal liquefaction reactions of iron based pseudo-homogeneous materials. Later, we became interested in highly dispersed catalysts for coprocessing of coal and plastic waste. Bifunctional catalysts . to hydrogenate the coal and depolymerize the plastic waste are ideal. We began studying, based on our previously devised synthesis strategies, the synthesis of heterogeneous catalysts with a bifunctional nature. In chapter 4, we discuss the fundamental principles in heterogeneous catalysis synthesis with inverse micelle solutions. In chapter 5, we extend the synthesis of chapter 4 to practical systems and use the materials in catalyst testing. Finally in chapter 6, we return to iron and coal liquefaction now studied with the heterogeneous catalysts.

  14. Formation and evolution of nanoporous bimetallic Ag-Cu alloy by electrochemically dealloying Mg-(Ag-Cu)-Y metallic glass

    International Nuclear Information System (INIS)

    Li, Ran; Wu, Na; Liu, Jijuan; Jin, Yu; Chen, Xiao-Bo; Zhang, Tao

    2017-01-01

    Highlights: • Uniform nanoporous Ag-Cu alloy was fabricated by dealloying Mg-based metallic glass. • The nanoporous structure was built up with numerous Ag-Cu ligaments. • The nanoporous ligaments show two-stage coarsening behavior with dealloying time. • The formation and evolution mechanisms of the nanoporous structure were clarified. • It could provide new guidance to the synthesis of nanoporous multi-component alloys. - Abstract: A three-dimensional nanoporous bimetallic Ag-Cu alloy with uniform chemical composition has been fabricated by dealloying Mg_6_5Ag_1_2_._5Cu_1_2_._5Y_1_0 metallic glass in dilute (0.04 M) H_2SO_4 aqueous solution under free-corrosion conditions. The nanoporous Ag-Cu evolves through two distinct stages. First, ligaments of the nanoporous structure, consisting of supersaturated Ag(Cu) solid solution with a constant Ag/Cu mole ratio of 1:1, are yielded. Second, with excessive immersion, some Cu atoms separate from the metastable nanoporous matrix and form spherical Cu particles on the sample surface. Formation and evolution mechanisms of the nanoporous structure are proposed.

  15. Novel biosynthesis of Ag-hydroxyapatite: Structural and spectroscopic characterization

    Science.gov (United States)

    Ruíz-Baltazar, Álvaro de Jesús; Reyes-López, Simón Yobanny; Silva-Holguin, Pamela Nair; Larrañaga, Daniel; Estévez, Miriam; Pérez, Ramiro

    2018-06-01

    Silver-doped hydroxyapatite (Ag-HAP) was obtained by green synthesis route. The dopant silver nanoparticles (AgNPs) were obtained by biosynthesis based on Melissa officinalis extract. This research is focused on the characterization and the use of the nontoxic and environment-friendly Ag-HAP nanocomposite. The structural and morphological characterization of Ag-HAP nanocomposite was carried out by scanning electron microscopy (SEM), X-ray diffraction, Fourier-transform infrared (FT-IR) and Raman spectroscopy. The obtained nanoparticles exhibited a great interaction with the HAP matrix, performing an Ag-HAP nanocomposite. Changes in the structure of the Ag-HAP nanocomposite were corroborated by the different characterization techniques. Additionally, a homogeneous distribution of the AgNPs on the HAP structure was observed. The heterogeneous nucleation process employed to doping the HAP, offer a functional route to obtain a green composite with potentials applications in multiple fields, such as tissue engineering, bone repair as well as protein. These properties can be evaluated in subsequent studies.

  16. Multilevel Monte Carlo Approaches for Numerical Homogenization

    KAUST Repository

    Efendiev, Yalchin R.

    2015-10-01

    In this article, we study the application of multilevel Monte Carlo (MLMC) approaches to numerical random homogenization. Our objective is to compute the expectation of some functionals of the homogenized coefficients, or of the homogenized solutions. This is accomplished within MLMC by considering different sizes of representative volumes (RVEs). Many inexpensive computations with the smallest RVE size are combined with fewer expensive computations performed on larger RVEs. Likewise, when it comes to homogenized solutions, different levels of coarse-grid meshes are used to solve the homogenized equation. We show that, by carefully selecting the number of realizations at each level, we can achieve a speed-up in the computations in comparison to a standard Monte Carlo method. Numerical results are presented for both one-dimensional and two-dimensional test-cases that illustrate the efficiency of the approach.

  17. Inorganic-organic Ag-rhodamine 6G hybrid nanorods: "turn on" fluorescent sensors for highly selective detection of Pb2+ ions in aqueous solution.

    Science.gov (United States)

    Tyagi, A K; Ramkumar, Jayshree; Jayakumar, O D

    2012-02-07

    Lead metal ions are of great concern and the monitoring of their concentration in the environment has become extremely important. In the present study, a new inorganic-organic hybrid assay of Ag nanorods (AgNR)-Rhodamine 6G (R6G) was developed for the sensitive and selective determination of Pb(2+) ions in aqueous solutions. To the best of our knowledge there is almost no literature on the use of silver nanorod sensors for determination of lead ions in aqueous solutions. The sensor is developed by the coating of R6G on the surface of AgNRs. The sensing is based on the photoluminescence of R6G. The sensor was rapid as the measurements were carried out within 3 min of addition of the test solution to the AgNR-R6G hybrid. Moreover, the system showed excellent stability at tested concentration levels of Pb(2+) ions. The naked eye detection of the colour was possible with 1 mg L(-1) of Pb(2+) ions. The present method has a detection limit of 50 μg L(-1) of Pb(2+) (for a signal/noise (S/N) ratio > 3). The selectivity toward Pb(2+) ions against other metal ions was improved using chelating agents. The proposed method was validated by analysis using different techniques.

  18. Homogeneous solutions of hydrophilic enzymes in nonpolar organic solvents. New systems for fundamental studies and biocatalytic transformations.

    Science.gov (United States)

    Mozhaev, V V; Poltevsky, K G; Slepnev, V I; Badun, G A; Levashov, A V

    1991-11-04

    A typical hydrophilic enzyme, CT, can be dissolved in nonpolar organic solvents (n-octane, cyclohexane and toluene) up to microM concentrations. In the homogeneous solution obtained, the enzyme possesses catalytic activity and enormously high thermostability. It does not lose this activity even after several hours refluxing in octane (126 degrees C) or cyclohexane (81 degrees C).

  19. The fate of silver nanoparticles in soil solution--Sorption of solutes and aggregation.

    Science.gov (United States)

    Klitzke, Sondra; Metreveli, George; Peters, Andre; Schaumann, Gabriele E; Lang, Friederike

    2015-12-01

    Nanoparticles enter soils through various pathways. In the soil, they undergo various interactions with the solution and the solid phase. We tested the following hypotheses using batch experiments: i) the colloidal stability of Ag NP increases through sorption of soil-borne dissolved organic matter (DOM) and thus inhibits aggregation; ii) the presence of DOM suppresses Ag oxidation; iii) the surface charge of Ag NP governs sorption onto soil particles. Citrate-stabilized and bare Ag NPs were equilibrated with (colloid-free) soil solution extracted from a floodplain soil for 24h. Nanoparticles were removed through centrifugation. Concentrations of free Ag ions and DOC, the specific UV absorbance at a wavelength of 254 nm, and the absorption ratio α254/α410 were determined in the supernatant. Nanoparticle aggregation was studied using time-resolved dynamic light scattering (DLS) measurement following the addition of soil solution and 1.5mM Ca(2+) solution. To study the effect of surface charge on the adsorption of Ag NP onto soil particles, bare and citrate-stabilized Ag NP, differing in the zeta potential, were equilibrated with silt at a solid-to-solution ratio of 1:10 and an initial Ag concentration range of 30 to 320 μg/L. Results showed that bare Ag NPs sorb organic matter, with short-chained organic matter being preferentially adsorbed over long-chained, aromatic organic matter. Stabilizing effects of organic matter only come into play at higher Ag NP concentrations. Soil solution inhibits the release of Ag(+) ions, presumably due to organic matter coatings. Sorption to silt particles was very similar for the two particle types, suggesting that the surface charge does not control Ag NP sorption. Besides, sorption was much lower than in comparable studies with sand and glass surfaces. Copyright © 2014. Published by Elsevier B.V.

  20. Effect of cysteine and humic acids on bioavailability of Ag from Ag nanoparticles to a freshwater snail

    Science.gov (United States)

    Luoma, Samuel N.; Tasha Stoiber,; Croteau, Marie-Noele; Isabelle Romer,; Ruth Merrifeild,; Lead, Jamie

    2016-01-01

    Metal-based engineered nanoparticles (NPs) will undergo transformations that will affect their bioavailability, toxicity and ecological risk when released to the environment, including interactions with dissolved organic material. The purpose of this paper is to determine how interactions with two different types of organic material affect the bioavailability of silver nanoparticles (AgNPs). Silver uptake rates by the pond snail Lymnaea stagnalis were determined after exposure to 25 nmol l-1 of Ag as PVP AgNPs, PEG AgNPs or AgNO3, in the presence of either Suwannee River humic acid or cysteine, a high-affinity thiol-rich organic ligand. Total uptake rate of Ag from the two NPs was either increased or not strongly affected in the presence of 1 – 10 mg 1-1 humic acid. Humic substances contain relatively few strong ligands for Ag explaining their limited effects on Ag uptake rate. In contrast, Ag uptake rate was substantially reduced by cysteine. Three components of uptake from the AgNPs were quantified in the presence of cysteine using a biodynamic modeling approach: uptake of dissolved Ag released by the AgNPs, uptake of a polymer or large (>3kD) Ag-cysteine complex and uptake of the nanoparticle itself. Addition of 1:1 Ag:cysteine reduced concentrations of dissolved Ag, which contributed to, but did not fully explain the reductions in uptake. A bioavailable Ag-cysteine complex (> 3kD) appeared to be the dominant avenue of uptake from both PVP AgNPs and PEG AgNPs in the presence of cysteine. Quantifying the different avenues of uptake sets the stage for studies to assess toxicity unique to NPs.

  1. Metal Fe3+ ions assisted synthesis of highly monodisperse Ag/SiO2 nanohybrids and their antibacterial activity

    International Nuclear Information System (INIS)

    Zhang, Nianchun; Xue, Feng; Yu, Xiang; Zhou, Huihua; Ding, Enyong

    2013-01-01

    Graphical abstract: TEM images of the Ag/SiO 2 -2 nanohybrids. The homogeneous and more mono-disperse Ag nanoparticles deposit on SiO 2 spheres. Through this method, Ag nanoparticles are easily formed on the surface of SiO 2 compared to other methods. Highlights: ► We prepared homogeneous and mono-dispersed Ag/SiO 2 -2 nanohybrids by adding Fe 3+ ions. ► The Ag/SiO 2 -2 nanohybrids had core(SiO 2 )-shell(Ag) structure. ► The Ag/SiO 2 -2 nanohybrids exhibited excellent antibacterial activity against bacteria. ► The reaction temperature was lower and the yield of Ag/SiO 2 -2 nanohybrids were higher. - Abstract: Highly monodispersed Ag/SiO 2 nanohybrids with excellent antibacterial property were synthesized by using DMF as a reducing agent and employing an additional redox potential of metal Fe 3+ ion as a catalytic agent. The obtained Ag/SiO 2 -2 nanohybrids of about 240 nm were highly monodispersity and uniformity by adding trace Fe 3+ ions into the reaction which Ag + reacted with N,N-dimethyl formamide (DMF) at 70 °C. Compared to the conventional techniques, which need long time and high temperature for silica coating of Ag nanoparticles, this new method was capable of synthesizing monodispersed, uniform, high yield Ag/SiO 2 nanohybrids. The electron was transferred from the Fe 2+ ion to the Ag + ion to accelerate the nucleation of silver nanoparticles. The chemical structures, morphologies and properties of the Ag/SiO 2 nanohybrids were characterized by X-ray diffraction (XRD), (High-resolution, Scanning transmission) transmission electron microscopy (TEM, HRTEM and STEM), and X-ray photoelectron spectroscopy (XPS), and UV–vis spectroscopy (UV–vis) and test of antibacterial. The results demonstrated that the silver nanoparticles supported on the surface of SiO 2 spheres in Ag/SiO 2 -2 nanohybrids structure, the Ag nanoparticles were homogeneous and monodispersed. The results also indicated that the Ag/SiO 2 -2 nanohybrid had excellent antibacterial.

  2. Site-Selective Carving and Co-Deposition: Transformation of Ag Nanocubes into Concave Nanocrystals Encased by Au-Ag Alloy Frames.

    Science.gov (United States)

    Ahn, Jaewan; Wang, Daniel; Ding, Yong; Zhang, Jiawei; Qin, Dong

    2018-01-23

    We report a facile synthesis of Ag nanocubes with concave side faces and Au-Ag alloy frames, namely Ag@Au-Ag concave nanocrystals, by titrating HAuCl 4 solution into an aqueous mixture of Ag nanocubes, ascorbic acid (H 2 Asc), NaOH, and cetyltrimethylammonium chloride (CTAC) at an initial pH of 11.6 under ambient conditions. Different from all previous studies involving poly(vinylpyrrolidine), the use of CTAC at a sufficiently high concentration plays an essential role in carving away Ag atoms from the side faces through galvanic replacement. Concurrent co-deposition of Au and Ag atoms via chemical reduction at orthogonal sites on the surface of Ag nanocubes leads to the generation of Ag@Au-Ag concave nanocrystals with well-defined and controllable structures. Specifically, in the presence of CTAC-derived Cl - ions, the titrated HAuCl 4 is maintained in the AuCl 4 - species, enabling its galvanic replacement with the Ag atoms located on the side faces of nanocubes. The released Ag + ions can be retained in the soluble form of AgCl 2 - by complexing with the Cl - ions. Both the AuCl 4 - and AgCl 2 - in the solution are then reduced by ascorbate monoanion, a product of the neutralization reaction between H 2 Asc and NaOH, to Au and Ag atoms for their preferential co-deposition onto the edges and corners of the Ag nanocubes. Compared with Ag nanocubes, the Ag@Au-Ag concave nanocrystals exhibit much stronger SERS activity at an excitation of 785 nm, making it feasible to monitor the Au-catalyzed reduction of 4-nitrothiophenol by NaBH 4 in situ. When the Ag cores are removed, the concave nanocrystals evolve into Au-Ag nanoframes with controllable ridge thicknesses.

  3. Novel biosynthesis of Ag-hydroxyapatite: Structural and spectroscopic characterization

    Directory of Open Access Journals (Sweden)

    Álvaro de Jesús Ruíz-Baltazar

    2018-06-01

    Full Text Available Silver-doped hydroxyapatite (Ag-HAP was obtained by green synthesis route. The dopant silver nanoparticles (AgNPs were obtained by biosynthesis based on Melissa officinalis extract. This research is focused on the characterization and the use of the nontoxic and environment-friendly Ag-HAP nanocomposite. The structural and morphological characterization of Ag-HAP nanocomposite was carried out by scanning electron microscopy (SEM, X-ray diffraction, Fourier-transform infrared (FT-IR and Raman spectroscopy. The obtained nanoparticles exhibited a great interaction with the HAP matrix, performing an Ag-HAP nanocomposite. Changes in the structure of the Ag-HAP nanocomposite were corroborated by the different characterization techniques. Additionally, a homogeneous distribution of the AgNPs on the HAP structure was observed. The heterogeneous nucleation process employed to doping the HAP, offer a functional route to obtain a green composite with potentials applications in multiple fields, such as tissue engineering, bone repair as well as protein. These properties can be evaluated in subsequent studies. Keywords: Green synthesis, Ag nanoparticles, Hydroxyapatite, Structural characterization, Spectroscopy

  4. Core/shell AgNi/PtAgNi nanoparticles as methanol-tolerant oxygen reduction electrocatalysts

    International Nuclear Information System (INIS)

    Wu, Dengfeng; Cheng, Daojian

    2015-01-01

    A core/shell AgNi/PtAgNi nanoparticle (NP) was synthesized via a new seed-mediated growth method in organic solvent medium. The as-synthesized AgNi/PtAgNiNP exhibits an AgNi core coated with PtAgNi shell, which was confirmed by transmission electron microscopy (TEM), ultraviolet–visible absorption spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The AgNi/PtAgNiNPs/C catalyst possesses higher oxygen reduction reaction (ORR) activity and better durability compared with the commercial Pt/C catalyst. It is found that the ORR polarization curve of the AgNi/PtAgNiNPs/C catalyst shows an onset potential of 0.91 V vs. RHE, which is superior to the commercial Pt/C (0.88 V vs. RHE). In addition, the AgNi/PtAgNiNPs/C catalyst shows much better durability than the commercial Pt/C catalyst. More interestingly, the AgNi/PtAgNiNPs/C catalyst displays much higher methanol tolerance than the commercial Pt/C catalyst in 0.1 M KOH solution in the presence of 0.5 M methanol. Our results show that core/shell AgNi/PtAgNiNPs possess selective activity for ORR even in the presence of methanol, showing potential application as methanol-tolerant cathode catalysts in direct methanol fuel cells.

  5. The irradiation influence on the properties of silver sulfide (Ag2S) colloidal nanoparticles

    Science.gov (United States)

    Rempel, S. V.; Kuznetsova, Yu. V.; Gerasimov, E. Yu.; Rempel', A. A.

    2017-08-01

    The aqueous solutions of different stability containing silver sulfide (Ag2S) nanoparticles are studied. The stable, transparent, and turbid solutions have been subjected to daylight for 7 months, to ultraviolet and laser irradiation, as well as to an electron beam. Solar radiation is found to favor the Ag2S reduction to Ag and/or the formation of Ag2S/Ag hybrid nanoparticles in the solution. At a high amount of hybrid nanoparticles, the exciton-plasmon interaction causes asymmetry in the absorption spectra. The exposure of Ag2S particles precipitated from the solution with the electron beam leads to the reversible growth of Ag threads. The possible exciton-plasmon interplay mechanisms in Ag2S/Ag hybrid nanoparticles are considered. The physical mechanisms of the changing Ag2S stoichiometry, the formation of metallic Ag and Ag2S/Ag hybrid nanoparticles are the generation of hot carriers and the energy transfer (exciton-plasmon interaction) in a metal-semiconductor hybrid nanosystem are elucidated, as well.

  6. Analytical solution of spatial kinetics of the diffusion model for subcritical homogeneous systems driven by external source

    International Nuclear Information System (INIS)

    Oliveira, Fernando Luiz de

    2008-01-01

    This work describes an analytical solution obtained by the expansion method for the spatial kinetics using the diffusion model with delayed emission for source transients in homogeneous media. In particular, starting from simple models, and increasing the complexity, numerical results were obtained for different types of source transients. An analytical solution of the one group without precursors was solved, followed by considering one precursors family. The general case of G-groups with R families of precursor although having a closed form solution, cannot be solved analytically, since there are no explicit formulae for the eigenvalues, and numerical methods must be used to solve such problem. To illustrate the general solution, the multi-group (three groups) time-dependent problem without precursors was solved and the numerical results of a finite difference code were compared with the exact results for different transients. (author)

  7. A homogeneous assay for highly sensitive detection of CaMV35S promoter in transgenic soybean by förster resonance energy transfer between nitrogen-doped graphene quantum dots and Ag nanoparticles.

    Science.gov (United States)

    Li, Yaqi; Sun, Li; Qian, Jing; Wang, Chengke; Liu, Qian; Han, En; Hao, Nan; Zhang, Liuping; Cai, Jianrong; Wang, Kun

    2016-12-15

    In this work, a novel homogeneous assay for DNA quantitative analysis based on förster resonance energy transfer (FRET) was developed for cauliflwer mosaic virus 35s (CaMV35S) promoter of transgenic soybean detection. The homogenous FRET of fluorescence signal was fabricated by DNA hybridization with probe modified nitrogen-doped graphene quantum dots (NGQDs) and silver nanoparticles (AgNPs), which acted the donor-acceptor pairs for the first time. The highly efficient FRET and unique properties of the NGQDs made the proposed FRET system as a functionalized detection platform for labelling of DNA. Upon the recognition of specific target DNA (tDNA), the FRET between NGQDs and AgNPs was triggered to produce fluorescence quenching, which could be used for tDNA detection. The fabricated homogeneous FRET assay displayed a wide linear range of 0.1-500.0 nM and a low limit of detection 0.03 nM for the detection of CaMV35S (S/N = 3). This proposed biosensor revealed high specificity to detect tDNA, with acceptable intra-assay precision and excellent stability. This method was successfully applied to identify the real sample of 0.5% containing transgenic soybean, which achieved the most of national law regulations. This assay was further validated by polymerase chain reaction as the genetically modified organisms, suggesting that the proposed FRET system is a feasible tool for the further daily genetically modified organism detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Solution-Processed rGO/AgNPs/rGO Sandwich Structure as a Hole Extraction Layer for Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Quang Trung Tran

    2015-01-01

    Full Text Available We found that inserting silver nanoparticles (AgNPs between two layers of reduced grapheme oxide (rGO has an effect on tailoring the work function of rGO. The utilization of rGO/AgNPs/rGO sandwich structure as the hole extraction layer in polymer solar cells is demonstrated. Solution-processable fabrication of this sandwich structure at the ITO/active layer interface facilitates the extraction of hole from active layer into ITO anode because of lowering the barrier level alignment at the interface. It results in an improvement of the short circuit current density and the overall photovoltaic performance.

  9. A homogeneous, high-throughput assay for phosphatidylinositol 5-phosphate 4-kinase with a novel, rapid substrate preparation.

    Directory of Open Access Journals (Sweden)

    Mindy I Davis

    Full Text Available Phosphoinositide kinases regulate diverse cellular functions and are important targets for therapeutic development for diseases, such as diabetes and cancer. Preparation of the lipid substrate is crucial for the development of a robust and miniaturizable lipid kinase assay. Enzymatic assays for phosphoinositide kinases often use lipid substrates prepared from lyophilized lipid preparations by sonication, which result in variability in the liposome size from preparation to preparation. Herein, we report a homogeneous 1536-well luciferase-coupled bioluminescence assay for PI5P4Kα. The substrate preparation is novel and allows the rapid production of a DMSO-containing substrate solution without the need for lengthy liposome preparation protocols, thus enabling the scale-up of this traditionally difficult type of assay. The Z'-factor value was greater than 0.7 for the PI5P4Kα assay, indicating its suitability for high-throughput screening applications. Tyrphostin AG-82 had been identified as an inhibitor of PI5P4Kα by assessing the degree of phospho transfer of γ-(32P-ATP to PI5P; its inhibitory activity against PI5P4Kα was confirmed in the present miniaturized assay. From a pilot screen of a library of bioactive compounds, another tyrphostin, I-OMe tyrphostin AG-538 (I-OMe-AG-538, was identified as an ATP-competitive inhibitor of PI5P4Kα with an IC(50 of 1 µM, affirming the suitability of the assay for inhibitor discovery campaigns. This homogeneous assay may apply to other lipid kinases and should help in the identification of leads for this class of enzymes by enabling high-throughput screening efforts.

  10. Synthesis, structural characterisation and antibacterial activity of Ag{sup +}-doped fluorapatite nanomaterials prepared by neutralization method

    Energy Technology Data Exchange (ETDEWEB)

    Stanić, Vojislav, E-mail: voyo@vinca.rs [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Radosavljević-Mihajlović, Ana S. [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Živković-Radovanović, Vukosava [University of Belgrade, Faculty of Chemistry, P.O. Box 51, 11158 Belgrade (Serbia); Nastasijević, Branislav; Marinović-Cincović, Milena; Marković, Jelena P.; Budimir, Milica D. [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia)

    2015-05-15

    Graphical abstract: - Highlights: • The neutralization method has been used for synthesis of silver-doped fluorapatite powders. • Particles of silver-doped fluorapatite samples are of nano size and homogenous in composition. • The Ag{sup +}-doped fluorapatite samples showed antibacterial effect against Kllebsiela pneumoniae, Staphylococcus aureus and Micrococcus luteus. • AFM studies showed that silver-doped sample causes considerable morphological changes of tested bacterial cells. - Abstract: Silver doped fluorapatite nanopowders were synthesised by neutralization method, which consists of dissolving Ag{sub 2}O in solution of HF and H{sub 3}PO{sub 4} and addition to suspension of Ca(OH){sub 2}. The powder XRD, SEM and FTIR studies indicated the formation of a fluorapatite nanomaterials with average length of the particles is about 80 nm and a width of about 15 nm. The FTIR studies show that carbonate content in samples is very small and carbonte ions substitute both phosphate and hydroxyl groups in the crystal structure of samples, forming AB-type fluorapatite. Antibacterial studies have demonstrated that all Ag{sup +}-doped fluorapatite samples exhibit bactericidal effect against pathogens: Staphylococcus aureus, Micrococcus luteus and Kllebsiela pneumoniae. Antibacterial activity increased with the increase of Ag{sup +} in the samples. The atomic force microscopy studies revealed extensive damage to the bacterial cell envelops in the presence of Ag{sup +}-doped fluorapatite particles which may lead to their death. The synthesized Ag{sup +}-doped fluorapatite nanomaterials are promising as antibacterial biomaterials in orthopedics and dentistry.

  11. Ag/Pd core-shell nanoparticles by a successive method: Pulsed laser ablation of Ag in water and reduction reaction of PdCl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mottaghi, N. [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Ranjbar, M., E-mail: ranjbar@cc.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Farrokhpour, H. [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Khoshouei, M. [Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, Martinsried 82152 (Germany); Khoshouei, A.; Kameli, P.; Salamati, H. [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Tabrizchi, M. [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Jalilian-Nosrati, M. [Physics department, Central Azad University, Tehran 14676-86831 (Iran, Islamic Republic of)

    2014-02-15

    In this study Ag/Pd nanoparticles (NPs) have been fabricated by a successive method; first, colloids of Ag nanoparticles (NPs) have been prepared in water by pulsed laser ablation in liquid (PLAL) method. Then PdCl{sub 2} solution (up to 0.2 g/l) were added to the as-prepared or aged colloidal Ag NPs. Characterizations were done using UV–vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmissions electron microscopy (TEM) techniques. Spectroscopy data showed that surface plasmon resonance (SPR) peaks of as-prepared Ag NPs at about λ = 400 nm were completely extinguished after addition of PdCl{sub 2} solution while this effect was not observed when aged Ag NPs are used. XRD and XPS results revealed that by addition of the PdCl{sub 2} solution into the as-prepared Ag NPs, metallic palladium, and silver chloride composition products are generated. TEM images revealed that as a result of this reaction, single and core-shell nanoparticles are obtained and their average sizes are 2.4 nm (Ag) and 3.2 nm (Ag/Pd). The calculated d-spacing values form XRD data with observations on high magnification TEM images were able to explain the chemical nature of different parts of Ag/Pd NPs.

  12. Solution-Processed Environmentally Friendly Ag2S Colloidal Quantum Dot Solar Cells with Broad Spectral Absorption

    Directory of Open Access Journals (Sweden)

    Viktor A. Öberg

    2017-10-01

    Full Text Available A facile heat-up synthesis route is used to synthesize environmentally friendly Ag2S colloidal quantum dots (CQDs that are applied as light absorbing material in solid state p-i-n junction solar cell devices. The as-synthesized Ag2S CQDs have an average size of around 3.5 nm and exhibit broad light absorption covering ultraviolet, visible, and near infrared wavelength regions. The solar cell devices are constructed with a device architecture of FTO/TiO2/Ag2S CQDs/hole transport material (HTM /Au using a solution-processed approach. Different HTMs, N2,N2,N2′,N2′,N7,N7,N7′,N7′-octakis(4-methoxyphenyl-9,9′-spirobi(9H-fluorene-2,2′,7,7′ tetramine (spiro-OMeTAD, poly(3-hexylthiophene-2,5-diyl (P3HT, and poly((2,3-bis(3-octyloxyphenyl-5,8-quinoxalinediyl-2,5-thiophenediyl TQ1 are studied for maximizing the device photovoltaic performance. The solar cell device with P3HT as a hole transport material gives the highest performance and the solar cell exhibit broad spectral absorption. These results indicate that Ag2S CQD have high potential for utilization as environmentally friendly light absorbing materials for solar cell application and that the hole transport material is critical to maximize the solar cell photovoltaic performance.

  13. All-proportional solid-solution Rh–Pd–Pt alloy nanoparticles by femtosecond laser irradiation of aqueous solution with surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Md. Samiul Islam, E-mail: samiul-phy@ru.ac.bd; Nakamura, Takahiro; Sato, Shunichi [Tohoku University, Institute of Multidisciplinary Research for Advanced Materials (Japan)

    2015-06-15

    Formation of Rh–Pd–Pt solid-solution alloy nanoparticles (NPs) by femtosecond laser irradiation of aqueous solution in the presence of polyvinylpyrrolidone (PVP) or citrate as a stabilizer was studied. It was found that the addition of surfactant (PVP or citrate) significantly contributed to reduce the mean size of the particles to 3 nm for PVP and 10 nm for citrate, which was much smaller than that of the particles fabricated without any surfactants (20 nm), and improved the dispersion state as well as the colloidal stability. The solid-solution formation of the Rh–Pd–Pt alloy NPs was confirmed by the XRD results that the diffraction pattern was a single peak, which was found between the positions corresponding to each pure Rh, Pd, and Pt NPs. Moreover, all the elements were homogeneously distributed in every particle by STEM-EDS elemental mapping, strongly indicating the formation of homogeneous solid-solution alloy. Although the Rh–Pd–Pt alloy NPs fabricated with PVP was found to be Pt rich by EDS observation, the composition of NPs fabricated with citrate almost exactly preserved the feeding ratio of ions in the mixed solution. To our best knowledge, these results demonstrated for the first time, the formation of all-proportional solid-solution Rh–Pd–Pt alloy NPs with well size control.

  14. Formation and properties of hyaluronan/nano Ag and hyaluronan-lecithin/nano Ag films.

    Science.gov (United States)

    Khachatryan, Gohar; Khachatryan, Karen; Grzyb, Jacek; Fiedorowicz, Maciej

    2016-10-20

    A facile and environmentally friendly method of the preparation of silver nanoparticles embedded in hyaluronan (Hyal/Ag) and hyaluronan-lecithin (Hyal-L/Ag) matrix was developed. Thin, elastic foils were prepared from gels by an in situ synthesis of Ag in an aqueous solution of sodium hyaluronate (Hyal), using aq. d-(+)-xylose solution as a reducing agent. The gels were applied to a clean, smooth, defatted Teflon surface and left for drying in the air. The dry foils were stored in a closed container. UV-vis spectroscopy, transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectra confirmed formation of about 10nm ball-shaped Ag nanoparticles situated within the polysaccharide template. Thermal properties of the composites were characterized involving differential scanning calorimetry (DSC) and thermogravimetric (TGA) analyses, whereas molecular weights of polysaccharide chains of the matrix were estimated with the size exclusion chromatography coupled with multiangle laser light scattering and refractometric detectors (HPSEC-MALLS-RI). An increase in the molecular weight of the hyaluronate after generation of Ag nanoparticles was observed. The foils showed specific properties. The study confirmed that silver nanoparticles can be successfully prepared with environmentally friendly method, using hyaluronan as a stabilizing template. Hyaluronan and hyaluronan-lecithin matrices provide nanocrystals uniform in size and shape. The composites demonstrated a bacteriostatic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Development of heat resistant Pb-free joints by TLPS process of Ag and Sn-Bi-Ag alloy powders

    Directory of Open Access Journals (Sweden)

    Ohnuma I.

    2012-01-01

    Full Text Available TLPS (Transient Liquid Phase Sintering process is a candidate method of heat-resistant bonding, which makes use of the reaction between low-melting temperature powder of Sn-Bi base alloys and reactive powder of Ag. During heat treatment above the melting temperature of a Sn-Bi base alloy, the molten Sn-Bi reacts rapidly with solid Ag particles, which results in the formation of heat-resistant intermetallic compound (IMC. In this study, the TLPS properties between Sn-17Bi-1Ag (at.% powder with its liquidus temperature of 200°C and pure Ag powder were investigated. During differential scanning calorimetry (DSC measurement, an exothermic reaction and an endothermic reaction occurred, which correspond to the formation of the e-Ag3Sn IMC phase and the melting of the Sn-17Bi-1Ag alloy, respectively. After the overall measurement, the obtained reactant consists of the Ag3Sn-IMC and Bi-rich phases, both of which start melting above 250°C, with a small amount of the residual Sn-Bi eutectic phase. These results suggest that the TLPS process can be applied for Pb-free heatresistant bonding.

  16. Solutes transport in unsaturated double-porosity medium. Modelling by homogenization and applications

    International Nuclear Information System (INIS)

    Tran Ngoc, T.D.

    2008-07-01

    This Ph.D thesis presents the development of the solute transport models in unsaturated double-porosity medium, by using the asymptotic homogenization method. The obtained macroscopic models concern diffusion, diffusion-convection and dispersion-convection, according to the transport regime which is characterized by the non-dimensional numbers. The models consist of two coupled equations that show the local non-equilibrium of concentrations. The double-porosity transport models were numerically implemented using the code COMSOL Multiphysics (finite elements method), and compared with the solution of the same problem at the fine scale. The implementation allows solving the coupled equations in the macro- and micro-porosity domains (two-scale computations). The calculations of the dispersion tensor as a solution of the local boundary value problems, were also conducted. It was shown that the dispersivity depends on the saturation, the physical properties of the macro-porosity domain and the internal structure of the double-porosity medium. Finally, two series of experiments were performed on a physical model of double-porosity that is composed of a periodic assemblage of sintered clay spheres in Hostun sand HN38. The first experiment was a drainage experiment, which was conducted in order to validate the unsaturated flow model. The second series was a dispersion experiment in permanent unsaturated water flow condition (water content measured by gamma ray attenuation technique). A good agreement between the numerical simulations and the experimental observations allows the validation of the developed models. (author)

  17. Synthesis and characterization of Ag/AgBrO{sub 3} photocatalyst with high photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Song, Limin, E-mail: songlmnk@sohu.com [College of Environment and Chemical Engineering & State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387 (China); Li, Tongtong [College of Environment and Chemical Engineering & State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387 (China); Zhang, Shujuan [College of Science, Tianjin University of Science & Technology, Tianjin, 300457 (China)

    2016-10-01

    A new Ag/AgBrO{sub 3} photocatalyst was prepared by mixing aqueous solutions of AgNO{sub 3} and NaBrO{sub 3}. The catalyst’s structure and performance were investigated with X-ray powder diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The UV–vis absorption spectrum of Ag/AgBrO{sub 3} exhibits a band gap of 3.97 eV. The results show that the Ag/AgBrO{sub 3} semiconductor can be excited by ultraviolet–visible light. The photodegradation of Rhodamine B displayed much higher photocatalytic activity than that of N-doped TiO{sub 2} under the same experimental conditions. Moreover, ·OH and ·O{sub 2}{sup −} generated in the photocatalysis played a key role of the photodegradation of Rhodamine B. - Highlights: • Ag/AgBrO{sub 3} with higher photodegradation ability was synthesized. • ·OH and ·O{sub 2}{sup −} radicals were the main active species in the oxidation of RhB. • The possible reaction mechanism was discussed in details.

  18. [Ag(NH3)2]Ag(OsO3N)2: a new nitridoosmate(VIII)

    International Nuclear Information System (INIS)

    Wickleder, M.S.; Pley, Martin

    2004-01-01

    Dark brown single crystals of [Ag(NH 3 ) 2 ]Ag(OsO 3 N) 2 were obtained from the reaction of Ag 2 CO 3 , OsO 4 , and NH 3 in aqueous solution. The crystal structure was solved in the monoclinic space group C2/m, with the following unit-cell dimensions: a=1962.5(3), b=633.1(1), c=812.6(1) pm, β=96.71(1) deg. The final reliability factor was R=0.0256 for 1034 reflections with I>2σ(I). Linear [Ag(NH 3 ) 2 ] + ions are present oriented perpendicular to the [010] direction, leading to short Ag + -Ag + distances of 316 pm. A second type of Ag + ions in the crystal structure present coordination number '6+1' and are surrounded by oxygen and nitrogen atoms of the nitridoosmate groups. Within the first of the two crystallographically distinguishable anions one can clearly differentiate between oxygen and nitrogen atoms while the second one exhibits a N/O disorder over two positions. The infrared spectrum of [Ag(NH 3 ) 2 ]Ag(OsO 3 N) 2 shows the typical absorptions which can be attributed to the complex anions and the NH 3 ligands

  19. Hypersonic vibrations of Ag@SiO2 (cubic core)-shell nanospheres.

    Science.gov (United States)

    Sun, Jing Ya; Wang, Zhi Kui; Lim, Hock Siah; Ng, Ser Choon; Kuok, Meng Hau; Tran, Toan Trong; Lu, Xianmao

    2010-12-28

    The intriguing optical and catalytic properties of metal-silica core-shell nanoparticles, inherited from their plasmonic metallic cores together with the rich surface chemistry and increased stability offered by their silica shells, have enabled a wide variety of applications. In this work, we investigate the confined vibrational modes of a series of monodisperse Ag@SiO(2) (cubic core)-shell nanospheres synthesized using a modified Stöber sol-gel method. The particle-size dependence of their mode frequencies has been mapped by Brillouin light scattering, a powerful tool for probing hypersonic vibrations. Unlike the larger particles, the observed spheroidal-like mode frequencies of the smaller ones do not scale with inverse diameter. Interestingly, the onset of the deviation from this linearity occurs at a smaller particle size for higher-energy modes than for lower-energy ones. Finite element simulations show that the mode displacement profiles of the Ag@SiO(2) core-shells closely resemble those of a homogeneous SiO(2) sphere. Simulations have also been performed to ascertain the effects that the core shape and the relative hardness of the core and shell materials have on the vibrations of the core-shell as a whole. As the vibrational modes of a particle have a bearing on its thermal and mechanical properties, the findings would be of value in designing core-shell nanostructures with customized thermal and mechanical characteristics.

  20. Salty popcorn in a homogeneous low-dimensional toy model of holographic QCD

    International Nuclear Information System (INIS)

    Elliot-Ripley, Matthew

    2017-01-01

    Recently, a homogeneous ansatz has been used to study cold dense nuclear matter in the Sakai–Sugimoto model of holographic QCD. To justify this homogeneous approximation we here investigate a homogeneous ansatz within a low-dimensional toy version of Sakai–Sugimoto to study finite baryon density configurations and compare it to full numerical solutions. We find the ansatz corresponds to enforcing a dyon salt arrangement in which the soliton solutions are split into half-soliton layers. Within this ansatz we find analogues of the proposed baryonic popcorn transitions, in which solutions split into multiple layers in the holographic direction. The homogeneous results are found to qualitatively match the full numerical solutions, lending confidence to the homogeneous approximations of the full Sakai–Sugimoto model. In addition, we find exact compact solutions in the high density, flat space limit which demonstrate the existence of further popcorn transitions to three layers and beyond. (paper)

  1. Moessbauer investigation of gold-bearing pyrite-rich concentrates

    International Nuclear Information System (INIS)

    Wagner, F.E.; Harris, D.C.

    1994-01-01

    A gold-bearing pyrite-rich concentrate of a refractory ore from the Golden Bear mine, northwestern British Columbia, and a pyrite-rich concentrate from Newhawk's west zone, Brucejack Lake area, northern British Columbia, containing 38 and 316 ppm Au and 0.57% and 0.19% As, respectively, have been investigated using 197 Au and 57 Fe Moessbauer spectroscopy. In the Golden Bear sample, the gold is mainly chemically bound in the pyrite with minor amounts present as an Au-Ag alloy, whereas in the Newhawk sample, the gold occurs mainly as an Au-Ag alloy with a composition close to Au 0.5 Ag 0.5 and is only partly bound in the pyrite. Having mean isomer shifts of +3.2 and +4.0 mm/s with respect to a Pt metal source, the gold in pyrite exhibits shifts similar to those observed for gold in arsenopyrite. The nature of the lattice sites occupied by the gold in pyrite is discussed. (orig.)

  2. Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers

    KAUST Repository

    Pang, Maolin

    2010-08-11

    Ag2S and Ag are important functional materials that have received considerable research interest in recent years. In this work, we develop a solution-based synthetic method to combine these two materials into hollow/solid Ag2S/Ag heterodimers at room temperature. Starting from monodisperse Cu2O solid spheres, CuS hollow spheres can be converted from Cu2O through a modified Kirkendall process, and the obtained CuS can then be used as a solid precursor for preparation of the Ag2S/Ag heterodimers through ion exchange and photo-assisted reduction. We have found that formation of the Ag2S/Ag heterodimers is instantaneous, and the size of Ag nanocrystals on the hollow spheres of Ag2S can be controlled by changing the concentration and power of reducing agents in the synthesis. The growth of Ag nanoparticles on hollow spheres of Ag2S in the dimers is along the [111] direction of the silver crystal; the light absorption properties have also been investigated. Furthermore, coupling or tripling of Ag2S/Ag heterodimers into dumbbell-like trimers ((Ag 2S)2/Ag, linear) and triangular tetramers ((Ag 2S)3/Ag, coplanar) can also be attained at 60°C by adding the bidentate ligand ethylenediamine as a cross-linking agent. To test the applicability of this highly asymmetric dipolar composite, photocatalytic inactivation of Escherichia coli K-12 in the presence of the as-prepared Ag 2S/Ag heterodimers has been carried out under UV irradiation. The added Ag2S/Ag heterodimers show good chemical stability under prolonged UV irradiation, and no appreciable solid dissolution is found. Possible mechanisms regarding the enhanced antibacterial activity have also been addressed. © 2010 American Chemical Society.

  3. Diffusion piecewise homogenization via flux discontinuity ratios

    International Nuclear Information System (INIS)

    Sanchez, Richard; Dante, Giorgio; Zmijarevic, Igor

    2013-01-01

    We analyze piecewise homogenization with flux-weighted cross sections and preservation of averaged currents at the boundary of the homogenized domain. Introduction of a set of flux discontinuity ratios (FDR) that preserve reference interface currents leads to preservation of averaged region reaction rates and fluxes. We consider the class of numerical discretizations with one degree of freedom per volume and per surface and prove that when the homogenization and computing meshes are equal there is a unique solution for the FDRs which exactly preserve interface currents. For diffusion sub-meshing we introduce a Jacobian-Free Newton-Krylov method and for all cases considered obtain an 'exact' numerical solution (eight digits for the interface currents). The homogenization is completed by extending the familiar full assembly homogenization via flux discontinuity factors to the sides of regions laying on the boundary of the piecewise homogenized domain. Finally, for the familiar nodal discretization we numerically find that the FDRs obtained with no sub-mesh (nearly at no cost) can be effectively used for whole-core diffusion calculations with sub-mesh. This is not the case, however, for cell-centered finite differences. (authors)

  4. Study on Synthesis and Antibacterial Properties of Ag NPs/GO Nanocomposites

    Directory of Open Access Journals (Sweden)

    Lei Huang

    2016-01-01

    Full Text Available Using graphene oxide as substrate and stabilizer for the silver nanoparticles, silver nanoparticles-graphene oxide (Ag NPs/GO composites with different Ag loading were synthesized through a facile solution-phase method. During the synthesis process, AgNO3 on GO matrix was directly reduced by NaBH4. The structure characterization was studied through X-ray diffraction (XRD, atomic force microscopy (AFM, high-resolution transmission electron microscope (HRTEM, ultraviolet-visible spectroscopy (UV-Vis, and selected area electron diffraction (SAED. The results show that Ag nanoparticles (Ag NPs with the sizes ranging from 5 to 20 nm are highly dispersed on the surfaces of GO sheets. The shape and size of the Ag NPs are decided by the volume of initial AgNO3 solution added in the GO. The antibacterial activities of Ag NPs/GO nanocomposites were investigated and the result shows that all the produced composites exhibit good antibacterial activities against Gram-negative (G− bacterial strain Escherichia coli (E. coli and Gram-positive (G+ strain Staphylococcus aureus (S. aureus. Moreover, the antibacterial activities of Ag NPs/GO nanocomposites gradually increased with the increasing of volume of initial AgNO3 solution added in the GO and this improvement of the antibacterial activities results from the combined action of size effect and concentration effect of Ag NPs in Ag NPs/GO nanocomposites.

  5. Fabrication of graphene oxide enwrapped Z-scheme Ag{sub 2}SO{sub 3}/AgBr nanoparticles with enhanced visible-light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Yujuan; Liang, Chunyan; Xia, Yue, E-mail: xiayue_chem@126.com; Huang, Wei; Li, Zelin

    2017-02-28

    Highlights: • A novel GO/Ag{sub 2}SO{sub 3}/AgBr composite was prepared via a solution method. • It showed enhanced photocatalytic performance to degrade dyes under visible light irradiation. • Its photocatalytic ability was effectively maintained for 4 cycles without sacrificial reagents. - Abstract: A novel graphene oxide (GO) enwrapped Ag{sub 2}SO{sub 3}/AgBr (GO/Ag{sub 2}SO{sub 3}/AgBr) composite was fabricated through a facile solution approach via electrostatic interaction and precipitation transformation reaction for the first time. The results of XRD, Raman, SEM, TEM and XPS confirmed the structure, morphology and composition of the GO/Ag{sub 2}SO{sub 3}/AgBr composite very well. The Ag{sub 2}SO{sub 3}/AgBr nanoparticles were found to be encapsulated by GO sheets. The photocatalytic activity of the composite was investigated by the degradation of methyl orange (MO), rhodamine B (RhB) and methylene blue (MB) in water under visible light. The incorporation of GO sheets not only significantly enhanced the photocatalytic activity but also improved the reusability of Ag{sub 2}SO{sub 3}/AgBr nanoparticles. The photocatalytic ability of GO/Ag{sub 2}SO{sub 3}/AgBr can be maintained at a high level for 4 times cycle experiments. The trapping experiments confirmed that holes and superoxide ion radicals were the main active species responsible for the degradation reaction. A plasmonic Z-scheme photocatalytic mechanism was proposed to illustrate the possible transferred and separated behavior of electron-hole pairs among Ag, Ag{sub 2}SO{sub 3}, AgBr and GO quaternary system under visible light irradiation.

  6. Solution structure of the twelfth cysteine-rich ligand-binding repeat in rat megalin

    International Nuclear Information System (INIS)

    Wolf, Christian A.; Dancea, Felician; Shi Meichen; Bade-Noskova, Veronika; Rueterjans, Heinz; Kerjaschki, Dontscho; Luecke, Christian

    2007-01-01

    Megalin, an approx. 600 kDa transmembrane glycoprotein that acts as multi-ligand transporter, is a member of the low density lipoprotein receptor gene family. Several cysteine-rich repeats, each consisting of about 40 residues, are responsible for the multispecific binding of ligands. The solution structure of the twelfth cysteine-rich ligand-binding repeat with class A motif found in megalin features two short β-strands and two helical turns, yielding the typical fold with a I-III, II-V and IV-VI disulfide bridge connectivity pattern and a calcium coordination site at the C-terminal end. The resulting differences in electrostatic surface potential compared to other ligand-binding modules of this gene family, however, may be responsible for the functional divergence

  7. Studies on electronic structure of interfaces between Ag and gelatin for stabilization of Ag nanoparticles

    International Nuclear Information System (INIS)

    Tani, Tadaaki; Uchida, Takayuki

    2015-01-01

    Extremely high stability of Ag nanoparticles in photographic materials has forced us to study the electronic structures of the interfaces between thin layers of Ag, Au, and Pt and their surface membranes in ambient atmosphere by photoelectron yield spectroscopy in air and Kelvin probe method. Owing to the Fermi level equalization between a metal layer and a membrane coming from air, the electron transfer took place from the membrane to Pt and Au layers and from an Ag layer to the membrane, giving the reason for poor stability of Ag nanoparticles in air. The control of the Fermi level of an Ag layer with respect to that of a gelatin membrane in air could be widely made according to Nernst's equation by changing the pH and pAg values of an aqueous gelatin solution used to form the membrane, and thus available to stabilize Ag nanoparticles in a gelatin matrix. (author)

  8. Bending strain study of Bi-2223/Ag tapes using Hall sensor magnetometry

    International Nuclear Information System (INIS)

    Lahtinen, M.; Paasi, J.; Sarkaniemi, J.; Han, Z.; Freltoft, T.

    1996-01-01

    The influence of room temperature bending on critical current (I c ) of Bi-2223/Ag tapes is studied by Hall sensor magnetometry, four-point method and scanning electron microscopy. Hall sensor magnetometry allows one to assess tape homogeneity and the amount of mechanical damage caused by bending. The microstructure of the Bi-2223 ceramic is found to strongly affect the tape behavior under bending strain. In a tape with moderate I c = 6.1 A at 77 K and a porous ceramic core, crack propagation took place normal to the Ag-ceramic interface, whereas in tapes with dense core, I c above 10 A at 77 K, cracks propagated in the tape plane. In monofilamentary tapes core homogeneity correlated with good bending strain performance. In multifilamentary tapes crack propagation between filaments was prohibited by the Ag matrix, thus leading to enhanced strain tolerance. In the high I c tapes studied, bending to 25 mm radius resulted in 1%--2% I c degradation

  9. Mechanical alloying of the FeNi-Ag system

    International Nuclear Information System (INIS)

    Gonzalez, G.; Ibarra, D.; Ochoa, J.; Villalba, R.; Sagarzazu, A.

    2007-01-01

    The Fe-Ni-Ag system is of particular interest for its potential applications as soft magnetic granular material with small magnetic grains embedded in a non-magnetic metal matrix. Under equilibrium conditions: Fe-Ag and Ni-Ag are immiscible and Fe-Ni shows complete solubility. These materials are particularly important for magnetoresistivity properties. The properties of these alloys are closely related to their microstructure; therefore, a detailed study of the transformations occurring during milling was undertaken using pre-alloyed Fe x Ni 100-x (x = 30, 50 and 70) further milled with different Ag content to give the following alloys compositions (Fe x -Ni 100-x ) 100-y Ag y (y = 5, 20, 60). Consolidation of the mechanically alloyed powders by sintering at 950 o C was performed. Morphological and structural characterization of the sintered powders was carried out by scanning and transmission electron microscopy and X-ray diffraction. Fe 30 Ni 70 and Fe 50 Ni 50 formed ordered FeNi 3 compound. Fe 70 Ni 30 showed the formation of a mixture of γ-(Fe,Ni) and α-Fe(Ni) solid solutions. The mixture of these systems with Ag showed the metal solid solutions surrounded by Ag islands of Fe x Ni y -Ag, There was also evidence of Ag diffusing into the γ-(Fe,Ni). High Ag content (60%) shows formation of islands of FeNi surrounded by Ag. Sintering is always improved with the Ag content

  10. Multilevel Monte Carlo Approaches for Numerical Homogenization

    KAUST Repository

    Efendiev, Yalchin R.; Kronsbein, Cornelia; Legoll, Fré dé ric

    2015-01-01

    it comes to homogenized solutions, different levels of coarse-grid meshes are used to solve the homogenized equation. We show that, by carefully selecting the number of realizations at each level, we can achieve a speed-up in the computations in comparison

  11. Coating of hydroxyapatite doped Ag on commercially pure titanium surface; Recobrimento de hidroxiapatita dopada com Ag sobre superficie de titanio comercialmente puro

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Jonas de Oliveira; Vercik, Luci Cristina de Oliveira; Rigo, Eliana Cristina da Silva, E-mail: jonasvieira@usp.br [Universidade de Sao Paulo (USP), SP (Brazil)

    2012-07-01

    This paper presents results of bioactive coating on commercially pure titanium surface (CpTi) doped with Ag ions. The coating consists of 3 steps, in step 1- surface chemical treatment of the samples with NaOH, step 2 - immersing the substrate in question in a sodium silicate solution (SS) to the nucleation and step 3 - reimmersion these substrates in synthetic solution that simulates the blood serum for precipitation and growth of apatite layer. After the coating step the AgNO{sub 3} substrates were immersed in solutions with concentrations of 20 ppm and 100 ppm at 37 ° C for 48h. The substrates were characterized by scanning electron microscopy (SEM), infrared spectroscopy (IR) and X-ray diffraction (XRD). By the results verified the formation of an apatite layer with aspects of cells, on the surface of CpTi. The increase in Ag concentration causes an increase in Ag amount doped in apatite layer. With the results we concluded that it is possible to obtain an apatite layer on a metal surface as the CpTi doped with Ag ions.

  12. Electron-rich anthracene semiconductors containing triarylamine for solution-processed small-molecule organic solar cells.

    Science.gov (United States)

    Choi, Hyeju; Ko, Haye Min; Cho, Nara; Song, Kihyung; Lee, Jae Kwan; Ko, Jaejung

    2012-10-01

    New electron-rich anthracene derivatives containing triarylamine hole stabilizers, 2,6-bis[5,5'-bis(N,N'-diphenylaniline)-2,2'-bithiophen-5-yl]-9,10-bis-[(triisopropylsilyl)ethynyl]anthracene (TIPSAntBT-TPA) and 2,6-bis(5,5'-bis{4-[bis(9,9-dimethyl-9H-fluoren-2-yl)amino]phenyl}-2,2'-bithiophen-5-yl)-9,10-bis-[(triisopropylsilyl)ethynyl]anthracene (TIPSAntBT-bisDMFA), linked with π-conjugated bithiophene bridges, were synthesized and their photovoltaic characteristics were investigated in solution-processed small-molecule organic solar cells (SMOSCs). These new materials exhibited superior intramolecular charge transfer from triarylamine to anthracene, leading to a more electron-rich anthracene core that facilitated electron transfer into phenyl-C(61)-butyric acid methyl ester. Compared with TIPSAntBT and triarylamine, these materials show a threefold improvement in hole-transporting properties and better photovoltaic performance in solution-processed SMOSCs, with the best power conversion efficiency being 2.96 % at a high open-circuit voltage of 0.85 V. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. RRR and thermal conductivity of Ag and Ag0.2wt%Mg alloy in Ag/Bi-2212 wires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pei [Fermilab; Ye, L. [North Carolina State U.; Jiang. J., Jiang. J. [Natl. High Mag. Field Lab.; Shen, T. [Fermilab

    2015-08-19

    The residual resistivity ratio (RRR) and thermal conductivity of metal matrix in metal/superconductor composite wires are important parameters for designing superconducting magnets. However, the resistivity of silver in reacted Ag/Bi-2212 wires has yet to be determined over temperature range from 4.2 K to 80 K because Bi-2212 filaments have a critical transition temperature Tc of ~ 80 K, and because it is unknown whether the RRR of Ag/Bi-2212 degrades with Cu diffusing from Bi-2212 filaments into silver sheathes at elevated temperatures and to what degree it varies with heat treatment. We measured the resistivity of stand-alone Ag and AgMg (Ag-0.2wt%Mg) wires as well as the resistivity of Ag and Ag- 0.2wt%Mg in the state-of-the-art Ag/Bi-2212 round wires reacted in 1 bar oxygen at 890 °C for 1, 8, 24 and 48 hours and quickly cooled to room temperature. The heat treatment was designed to reduce the critical current Ic of Bi-2212 wires to nearly zero while allowing Cu loss to fully manifest itself. We determined that pure silver exhibits a RRR of ~ 220 while the oxide-dispersion strengthened AgMg exhibits a RRR of ~ 5 in stand-alone samples. A surprising result is that the RRR of silver in the composite round wires doesn’t degrade with extended time at 890 °C for up to 48 hours. This surprising result may be explained by our observation that the Cu that diffuses into the silver tends to form Cu2O precipitates in oxidizing atmosphere, instead of forming Ag-Cu solution alloy. We also measured the thermal conductivity and the magneto-resistivity of pure Ag and Ag-0.2 wt%Mg from 4.2 K to 300 K in magnetic fields up to 14.8 T and summarized them using a Kohler plot.

  14. Removal of Copper(II) Ions in Aqueous Solutions Using Tannin-Rich Plants as Natural Bio-Adsorbents

    Science.gov (United States)

    Paksamut, J.; Boonsong, P.

    2018-03-01

    In this study, the purpose of our interest is to investigatethe adsorption behavior of copper (II) ions in aqueous solution using some tannin-rich plants as natural bio-adsorbents such as mangosteen peels (Garciniamangostana L.), cassava leaves (Manihotesculenta Crantz) and Thai copper pod leaves (Sennasiamea (Lam.)) as powder form in different dosage of adsorbent plant materials.The adsorption capacities at different pH of solution and contact time were performed.All the experiments in this studywere chosen at room temperature by batch technique. From the experimental results showed that cassava leaves gave better adsorbent properties than mangosteen peels and Thai copper pod leaves. The increasing dosage of all adsorbents and contact time have been found to increase adsorption capacities. In this respect, the adsorption capacities depend crucially on the adsorbents and contact time. The optimum pH of copper (II) ions adsorption was pH4. According to this work, it was observed that bioadsorbent materials from tannin-rich plants could be used to remove copper (II) ions from aqueous solutions.

  15. AgSbSe{sub 2} and AgSb(S,Se){sub 2} thin films for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Garza, J.G. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Shaji, S. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Facultad de Ingenieria Mecanica y Electrica, CIIDIT - Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Rodriguez, A.C.; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Krishnan, B., E-mail: kbindu_k@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Facultad de Ingenieria Mecanica y Electrica, CIIDIT - Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2011-10-01

    Silver antimony selenide (AgSbSe{sub 2}) thin films were prepared by heating sequentially deposited multilayers of antimony sulphide (Sb{sub 2}S{sub 3}), silver selenide (Ag{sub 2}Se), selenium (Se) and silver (Ag). Sb{sub 2}S{sub 3} thin film was prepared from a chemical bath containing SbCl{sub 3} and Na{sub 2}S{sub 2}O{sub 3}, Ag{sub 2}Se from a solution containing AgNO{sub 3} and Na{sub 2}SeSO{sub 3} and Se thin films from an acidified solution of Na{sub 2}SeSO{sub 3}, at room temperature on glass substrates. Ag thin film was deposited by thermal evaporation. The annealing temperature was 350 deg. C in vacuum (10{sup -3} Torr) for 1 h. X-ray diffraction analysis showed that the thin films formed were polycrystalline AgSbSe{sub 2} or AgSb(S,Se){sub 2} depending on selenium content in the precursor films. Morphology and elemental analysis of these films were done using scanning electron microscopy and energy dispersive X-ray spectroscopy. Optical band gap was evaluated from the UV-visible absorption spectra of these films. Electrical characterizations were done using Hall effect and photocurrent measurements. A photovoltaic structure: glass/ITO/CdS/AgSbSe{sub 2}/Al was formed, in which CdS was deposited by chemical bath deposition. J-V characteristics of this structure showed V{sub oc} = 435 mV and J{sub sc} = 0.08 mA/cm{sup 2} under illumination using a tungsten halogen lamp. Preparation of a photovoltaic structure using AgSbSe{sub 2} as an absorber material by a non-toxic selenization process is achieved.

  16. Crystal and electronic structure study of AgAu and AgCu bimetallic alloy thin films by X-ray techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ozkendir, O. Murat, E-mail: ozkendir@gmail.com [Mersin University, Faculty of Technology, Energy Systems Engineering, Tarsus (Turkey); Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Cengiz, E. [Karadeniz Technical University, Faculty of Science, Department of Physics, Trabzon (Turkey); Yalaz, E. [Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Söğüt, Ö.; Ayas, D.H. [Kahramanmaraş Sütçü İmam Üniversitesi, Faculty of Science and Letters, Department of Physics, Kahramanmaraş (Turkey); Thammajak, B. Nirawat [Synchrotron Light Research Institute (Public Organisation), 111 University Avenue, T. Suranaree, A. Muang, Nakhon Ratchasima 30000 (Thailand)

    2016-05-15

    Highlights: • Crystal and electronic properties of bimetallic AgCu and AgAu alloy thin films were studied. • Both AgCu and AgAu bimetallic samples were determined to have cubic crystal geometry. • Strong influence of Cu and Au atoms on the electronic structure of the Ag atoms were determined. - Abstract: Crystal and electronic structure properties of bimetallic AgAu and AgCu alloy thin films were investigated by X-ray spectroscopic techniques. The aim of this study is to probe the influence of Au or Cu atoms on the electronic behaviors of Ag ions in bimetallic alloy materials that yields different crystal properties. To identify the mechanisms causing crystal phase transitions, study were supported by the collected EXAFS (Extended X-ray Absorption Fine Structure) data. Crystal structures of both Cu and Au doped bimetallic Ag samples were determined mainly in cubic geometry with “Fm3m” space group. Through the Ag–Au and Ag–Cu molecular interactions during bimetallic alloy formations, highly overlapped electronic levels that supports large molecular band formations were observed with different ionization states. Besides, traces of the d–d interactions in Au rich samples were determined as the main interplay in the broad molecular bond formations. The exact atomic locations and types in the samples were determined by EXAFS studies and supported by the performed calculations with FEFF scientific code.

  17. Highly sensitive colorimetric detection of glucose in a serum based on DNA-embeded Au@Ag core–shell nanoparticles

    International Nuclear Information System (INIS)

    Kang, Fei; Xu, Kun; Hou, Xiangshu

    2015-01-01

    Glucose is a key energy substance in diverse biology and closely related to the life activities of the organism. To develop a simple and sensitive method for glucose detection is extremely urgent but still remains a key challenge. Herein, we report a colorimetric glucose sensor in a homogeneous system based on DNA-embedded core–shell Au@Ag nanoparticles. In this assay, a glucose substrate was first catalytically oxidized by glucose oxidase to produce H 2 O 2 which would further oxidize and gradually etch the outer silver shell of Au@Ag nanoparticles. Afterwards, the solution color changed from yellow to red and the surface plasmon resonance (SPR) band of Au@Ag nanoparticles declined and red-shifted from 430 to 516 nm. Compared with previous silver-based glucose colorimetric detection strategies, the distinctive SPR band change is superior to the color variation, which is critical to the high sensitivity of this assay. Benefiting from the outstanding optical property, robust stability and well-dispersion of the core–shell Au@AgNPs hybrid, this colorimetric assay obtained a detection limit of glucose as low as 10 nM, which is at least a 10-fold improvement over other AgNPs-based procedures. Moreover, this optical biosensor was successfully employed to the determination of glucose in fetal bovine serum. (paper)

  18. An iterative homogenization technique that preserves assembly core exchanges

    International Nuclear Information System (INIS)

    Mondot, Ph.; Sanchez, R.

    2003-01-01

    A new interactive homogenization procedure for reactor core calculations is proposed that requires iterative transport assembly and diffusion core calculations. At each iteration the transport solution of every assembly type is used to produce homogenized cross sections for the core calculation. The converged solution gives assembly fine multigroup transport fluxes that preserve macro-group assembly exchanges in the core. This homogenization avoids the periodic lattice-leakage model approximation and gives detailed assembly transport fluxes without need of an approximated flux reconstruction. Preliminary results are given for a one-dimensional core model. (authors)

  19. Roles of Ag in fabricating Si nanowires by the electroless chemical etching technique

    International Nuclear Information System (INIS)

    Wan, X.; Wang, Q. K.; Wangyang, P. H.; Tao, H.

    2012-01-01

    Silicon wafers coated with a film of Ag pattern are used for investigating roles of Ag in the fabrication of silicon nanowire arrays (SiNWs) by the electroless chemical etching technique. The diameter of SiNWs grown in the mixed AgNO 3 /HF solution ranges from 20 to 250 nm. A growth mechanism for such obtained SiNWs is proposed and further experimentally verified. As a comparison as well as to better understand this chemical process, another popular topic on growing SiNWs in the H 2 O 2 /HF solution is also studied. Originating from different chemical reaction mechanisms, Ag film could protect the underneath Si in the AgNO 3 /HF solution and it could, on the contrary, accelerate etching of the underneath Si in the H 2 O 2 /HF solution.

  20. Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells.

    Science.gov (United States)

    Xu, Qiaojing; Song, Tao; Cui, Wei; Liu, Yuqiang; Xu, Weidong; Lee, Shuit-Tong; Sun, Baoquan

    2015-02-11

    Hybrid solar cells based on n-Si/poly(3,4-ethylenedioxythiophene):poly(styrene- sulfonate) (PEDOT:PSS) heterojunction promise to be a low cost photovoltaic technology by using simple device structure and easy fabrication process. However, due to the low conductivity of PEDOT:PSS, a metal grid deposited by vacuum evaporation method is still required to enhance the charge collection efficiency, which complicates the device fabrication process. Here, a solution-processed graphene oxide (GO)-welded silver nanowires (AgNWs) transparent conductive electrode (TCE) was employed to replace the vacuum deposited metal grid. A unique "sandwich" structure was developed by embedding an AgNW network between PEDOT:PSS and GO with a figure-of-merit of 8.6×10(-3) Ω(-1), which was even higher than that of sputtered indium tin oxide electrode (6.6×10(-3) Ω(-1)). A champion power conversion efficiency of 13.3% was achieved, because of the decreased series resistance of the TCEs as well as the enhanced built-in potential (Vbi) in the hybrid solar cells. The TCEs were obtained by facile low-temperature solution process method, which was compatible with cost-effective mass production technology.

  1. Introduction to the determination of the Ag(NO3)+ complex

    International Nuclear Information System (INIS)

    Petitfour, B.; Rahier, A.

    1996-08-01

    The Ag(NO 3 ) + species is particularly useful to mineralize organic nuclear wastes at room temperature. The process produces no ashes and allows to confine the contaminants in a nitric acid solution. A successful analytical method for the determination of the speciation of silver in nitric acid solutions was studied. Since no suitable analytical standard for Ag 2+ is available, an indirect method was used. First, Ag(NO 3 ) + was reduced by an excess of Ce 3+ . Next, the resulting Ce 4+ was measured spectrophotometricaly at 343 nm. Finally, Ag(NO 3 ) + was determined directly by spectrophotometry by measuring the absorbance at 390 nm and by associating the latter to the concentrations obtained by the cerium method. The stability of the Ce 4+ solutions in nitric acid has also been studied as a function of time. It was observed that the absorbance measured for these solutions decrease with time when the solutions are exposed to light. Conserving the standards in a dark environment allows to maintain a long term reproducibility

  2. Electrowinning Of Tellurium From Acidic Solutions

    Directory of Open Access Journals (Sweden)

    Kowalik R.

    2015-06-01

    Full Text Available The process of electrochemical deposition of tellurium was studied. Preliminary researches embrace the voltammetry and microgravimetric measurements. According to the results the electrolysis of tellurium was conducted under potentiostatic conditions. There was no deposition of tellurium above potential −0.1 vs. Ag/AgCl electrode in 25°C. The process of deposition is observed in the range of potentials −0.1 to −0.3 V vs. Ag/AgCl. The presence of tellurium was confirmed by XRF and XRD. The obtained deposits were homogenous and compact. Below potential −0.3 V vs. Ag/AgCl the Faradaic efficiency of the tellurium deposition decreased due to reduction of Te to H2Te and hydrogen evolution.

  3. Effect of Pu-rich agglomerate in MOX fuel on a lattice calculation

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Yamamoto, Toru; Namekawa, Masakazu

    2007-01-01

    The effect of Pu-rich agglomerates in U-Pu mixed oxide (MOX) fuel on a lattice calculation has been demonstrated. The Pu-rich agglomerate parameters are defined based on the measurement data of MIMAS-MOX and the focus is on the highly enriched MOX fuel in accordance with increased burnup resulting in a higher volume fraction of the Pu-rich agglomerates. The lattice calculations with a heterogeneous fuel model and a homogeneous fuel model are performed simulating the PWR 17x17 fuel assembly. The heterogeneous model individually treats the Pu-rich agglomerate and U-Pu matrix, whereas the homogeneous model homogenizes the compositions within the fuel pellet. A continuous-energy Monte Carlo burnup code, MVP-BURN, is used for burnup calculations up to 70 GWd/t. A statistical geometry model is applied in modeling a large number of Pu-rich agglomerates assuming that they are distributed randomly within the MOX fuel pellet. The calculated nuclear characteristics include k-inf, Pu isotopic compositions, power density and burnup of the Pu-rich agglomerates, as well as the pellet-averaged Pu compositions as a function of burnup. It is shown that the effect of Pu-rich agglomerates on the lattice calculation is negligibly small. (author)

  4. Characterisation, degradation and regeneration of luminescent Ag29 clusters in solution

    NARCIS (Netherlands)

    van der Linden, Marte; Barendregt, Arjan; van Bunningen, Arnoldus J; Chin, Patrick T K; Thies-Weesie, Dominique; de Groot, Frank M F; Meijerink, A

    2016-01-01

    Luminescent Ag clusters are prepared with lipoic acid (LA) as the ligand. Using a combination of mass spectrometry, optical spectroscopy and analytical ultracentrifugation, the clusters are found to be highly monodisperse with mass 5.6 kDa. We assign the chemical composition [Ag29(LA)12](3-) to the

  5. Preparation of Ag/HBP/PAN Nanofiber Web and Its Antimicrobial and Filtration Property

    Directory of Open Access Journals (Sweden)

    Li-Rong Yao

    2016-01-01

    Full Text Available To widen the application of nanofibers web in the field of medical health materials, a new Ag/amino-terminated hyperbranched polymer (HBP/polyacrylonitrile (PAN nanofiber web with excellent antimicrobial activity and filtration property was produced with Ag/HBP dispersion solution and PAN nanofiber. Ag/HBP dispersion solution was prepared with HBP as reducer and stabilizer, and Ag/HBP/PAN nanofiber was prepared by modifying electrospun PAN nanofiber with Ag/HBP aqueous solution. The characterization results showed that spherical Ag nanoparticles were prepared and they had a narrow distribution in HBP aqueous solution. The results of Ag/HBP/PAN nanofiber characterized with SEM and EDS showed that the content of silver nanoparticles on the surface of PAN nanofiber was on the increase when the treating temperature rose. The bacterial reduction rates of HBP-treated PAN nanofiber against S. aureus and E. coli were about 89%, while those of the Ag/HBP/PAN nanofiber against S. aureus and E. coli were 99.9% and 99.96%, respectively, due to the cooperative effects from the amino groups in HBP and Ag nanoparticles. Moreover, the small pores and high porosity in Ag/HBP/PAN nanofiber web resulted in high filtration efficiency (99.9% for removing smaller particles (0.1 μm~0.7 μm, which was much higher than that of the gauze mask.

  6. Using Ag/Ag2O/SnO2 Nanocomposites to Remove Malachite Green by a Photocatalytic Process

    Science.gov (United States)

    Taufik, A.; Paramarta, V.; Prakoso, S. P.; Saleh, R.

    2017-03-01

    Silver/silver oxide/tin oxide nanocomposites of various weight ratios were synthesized using a microwave-assisted method. The Ag/Ag2O:SnO2 nanoparticle weight ratios used were 25:75, 50:50, and 75:25. All samples were characterized using X-ray diffraction, UV-Vis spectroscopy, Differential Scanning Calorimetry and Thermogravimetric Analysis (TGA). The Ag/Ag2O/SnO2 nanocomposites contained cubic structures provided by the Ag and Ag2O and tetragonal structures provided by the SnO2. The silver resulted in surface plasmon resonance (SPR) at a wavelength of about 435 nm. The silver oxide material was transformed into pure Ag at a temperature of about 370 °C The photocatalytic activity was tested on the degradation of malachite green (MG) from an aqueous solution. The results showed that Ag/Ag2O/SnO2 at a ratio of 50:50 exhibited the best photocatalytic performance for degrading MG under visible-light irradiation. The degradation of MG using Ag/Ag2O/SnO2 nanocomposites followed pseudo first-order kinetic reactions, and electron holes were found to be the main species acting on the degradation process.

  7. Nanocrystals of the quaternary thermoelectric materials: AgPb{sub m}SbTe{sub m+2}(m=1-18): Phase-segregated or solid solutions?

    Energy Technology Data Exchange (ETDEWEB)

    Arachchige, Indika U [Department of Chemistry, Northwestern University Evanston, IL (United States); Wu, Jinsong; Dravid, Vinayak P [Department of Materials Science and Engineering, Northwestern University Evanston, IL (United States); Kanatzidis, Mercouri G [Department of Chemistry, Northwestern University Evanston, IL (United States); Material Science Division, Argonne National Laboratory Argonne, IL (United States)

    2008-10-02

    Facile synthesis of a series of thermoelectrically relevant AgPb{sub m}SbTe{sub m+2}(m=1-18) nanoparticles is carried out by using a colloidal synthetic route. As-synthesized nanocrystals are spherical in geometry and adopt a cubic NaCl-type structure. These quaternary nanocrystals behave as solid solutions at room temperature and tend to phase separate into AgSbTe{sub 2} and PbTe upon annealing at moderately high temperature. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  8. 109Ag nuclear magnetic resonance studies of organic and inorganic silver complexes

    International Nuclear Information System (INIS)

    Jucker, K.; Sahm, W.; Schwenk, A.

    1976-01-01

    The NMR lines of 109 Ag have been investigated in solutions of several silver salts in acetonitrile, propionitrile, pyridine, and ethylenediamine, and also in aqueous solutions of Na 2 S 2 O 3 and ethylamine. In these solvents the Ag + -ions form one or several complexes. In any case a single NMR line was to be detected, i.e.a. rapid chemical exchange between different complexes in a sample may be assumed. In two samples of AgNO 3 dissolved in organic solvents, the ratio ν ( 109 Ag)/ν ( 107 Ag) = 1.149640 (1) was measured in good agreement with the value from silver salts in aqueous solutions; i.e. no primary isotopic effect was to be detected within these limits of error (0.9 ppm). (orig./WBU) [de

  9. Microgalvanic Corrosion Behavior of Cu-Ag Active Braze Alloys Investigated with SKPFM

    Directory of Open Access Journals (Sweden)

    Armen Kvryan

    2016-04-01

    Full Text Available The nature of microgalvanic couple driven corrosion of brazed joints was investigated. 316L stainless steel samples were joined using Cu-Ag-Ti and Cu-Ag-In-Ti braze alloys. Phase and elemental composition across each braze and parent metal interface was characterized and scanning Kelvin probe force microscopy (SKPFM was used to map the Volta potential differences. Co-localization of SKPFM with Energy Dispersive Spectroscopy (EDS measurements enabled spatially resolved correlation of potential differences with composition and subsequent galvanic corrosion behavior. Following exposure to the aggressive solution, corrosion damage morphology was characterized to determine the mode of attack and likely initiation areas. When exposed to 0.6 M NaCl, corrosion occurred at the braze-316L interface preceded by preferential dissolution of the Cu-rich phase within the braze alloy. Braze corrosion was driven by galvanic couples between the braze alloys and stainless steel as well as between different phases within the braze microstructure. Microgalvanic corrosion between phases of the braze alloys was investigated via SKPFM to determine how corrosion of the brazed joints developed.

  10. A personal view on homogenization

    International Nuclear Information System (INIS)

    Tartar, L.

    1987-02-01

    The evolution of some ideas is first described. Under the name homogenization are collected all the mathematical results who help understanding the relations between the microstructure of a material and its macroscopic properties. Homogenization results are given through a critically detailed bibliography. The mathematical models given are systems of partial differential equations, supposed to describe some properties at a scale ε and we want to understand what will happen to the solutions if ε tends to 0

  11. Ultra-fine structures of Pd-Ag-HAp nanoparticle deposition on protruded TiO2 barrier layer for dental implant

    Science.gov (United States)

    Jang, Jae-Myung; Kim, Seung-Dai; Park, Tae-Eon; Choe, Han-Cheol

    2018-02-01

    The biocompatibility structure of an implant surface is of great importance to the formation of new bone tissue around the dental implant and also has a significant chemical reaction in the osseointegration process. Thus, ultra-fine Pd-Ag-HAp nanoparticles have been electrodeposited on protruded TiO2 barrier layer in mixed electrolyte solutions. Unusual protrusions patterns, which are assigned to Pd-Ag-HAp nanoparticles, can be clearly differentiated from a TiO2 nanotube oxide layer formed by an anodizing process. In the chemical bonding state, the surface characteristics of Pd/Ag/HAp compounds have been investigated by FE-SEM, EDS mapping analysis, and XPS analysis. The mapping dots of the elements including Ti, Ca, Pd, Ag, and P showed a homogeneous distribution throughout the entire surface when deposited onto the protruded TiO2 barrier layer. The XPS spectra of Ti-2p, O-1S, Pd-3d, and Ag-3d have been investigated, with the major XPS peak indicating Pd-3d. The Ag-3d level was clearly observed with further scanning of the Ca-2p region. Based on the results of the chemical states, the structural properties of the protrusion patterns were also examined after being deposited onto the barrier oxide film, resulting in the representative protrusion patterns being mainly composed of Pd-Ag-HAp compounds. The results of the soaking evaluation showed that the protrusion patterns and the protruded TiO2 barrier layer were all effective in regards to biocompatibility.

  12. The extraction characteristic of Au-Ag from Au concentrate by thiourea solution

    Science.gov (United States)

    Kim, Bongju; Cho, Kanghee; On, Hyunsung; Choi, Nagchoul; Park, Cheonyoung

    2013-04-01

    The cyanidation process has been used commercially for the past 100 years, there are ores that are not amenable to treatment by cyanide. Interest in alternative lixiviants, such as thiourea, halogens, thiosulfate and malononitrile, has been revived as a result of a major increase in gold price, which has stimulated new developments in extraction technology, combined with environmental concern. The Au extraction process using the thiourea solvent has many advantages over the cyanidation process, including higher leaching rates, faster extraction time and less than toxicity. The purpose of this study was investigated to the extraction characteristic of Au-Ag from two different Au concentrate (sulfuric acid washing and roasting) under various experiment conditions (thiourea concentration, pH of solvent, temperature) by thiourea solvent. The result of extraction experiment showed that the Au-Ag extraction was a fast extraction process, reaching equilibrium (maximum extraction rate) within 30 min. The Au-Ag extraction rate was higher in the roasted concentrate than in the sulfuric acid washing. The higher the Au-Ag extraction rate (Au - 70.87%, Ag - 98.12%) from roasted concentrate was found when the more concentration of thiourea increased, pH decreased and extraction temperature increased. This study informs extraction method basic knowledge when thiourea was a possibility to eco-/economic resources of Au-Ag utilization studies including the hydrometallurgy.

  13. Plasma-induced formation of flower-like Ag2O nanostructures

    International Nuclear Information System (INIS)

    Yang, Zen-Hung; Ho, Chun-Hsien; Lee, Szetsen

    2015-01-01

    Graphical abstract: Flower-like Ag 2 O nanostructures. - Highlights: • Flower-like Ag 2 O nanostructures were synthesized from Ag colloids using plasma. • XPS was used to monitor plasma treatment effect on Ag colloids. • SERS of methyl orange was used to monitor the plasma oxidation–reduction processes. • Photocatalytic degradation of methylene blue was performed using Ag 2 O. • Ag 2 O is a more efficient visible light photocatalyst than Ag colloids. - Abstract: Plasma treatment effect on Ag colloids was investigated using X-ray photoelectron spectroscopy (XPS) and surface-enhanced Raman scattering (SERS) techniques. XPS showed that O 2 plasma was critical in removing organic residues in Ag colloids synthesized using citric acid as a reducing agent. With O 2 plasma treatment, Ag colloids were also oxidized to form flower-like Ag 2 O nanostructures. The formation mechanism is proposed. The SERS spectral intensity of methyl orange (MO) adsorbed on Ag surface became deteriorated with O 2 plasma treatment. Followed by H 2 plasma treatment, the SERS intensity of MO on Ag regained, which indicated that Ag 2 O has been reduced to Ag. Nonetheless, the reduction by H 2 plasma could not bring Ag back to the original as-synthesized nanoparticle morphology. The flower-like nanostructure morphology still remained. The photocatalytic degradation reactions of methylene blue (MB) aqueous solutions were carried out using Ag colloids and Ag 2 O nanostructures. The results show that Ag 2 O is more efficient than Ag colloids and many other metal oxides for the photocatalytic degradation of MB in solution when utilizing visible light

  14. Localized surface plasmon behavior of Ag-Cu alloy nanoparticles stabilized by rice-starch and gelatin

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Manish Kumar; Mandal, R. K., E-mail: rkmandal.met@itbhu.ac.in [Department of Metallurgical Engineering, IIT (BHU), Varanasi and DST Unit on Nanoscience and Technology, BHU, Varanasi-221 005 (India); Manda, Premkumar; Singh, A. K. [DefenceMetallurgical Research Laboratory, KanchanBagh, Hyderabad-500058 (India)

    2015-10-15

    The purpose of this communication was to understand localized surface plasmon behavior of a series of Ag-Cu alloy nanoparticles capped by rice-starch and gelatin. The structures of dried powders were investigated with the help of X-ray diffraction. The analysis revealed Ag-rich and Cu-rich phases with maximum solid solubility of Cu ∼9 atom per cent; 8 atom per cent and Ag ∼ 16 atom per cent; 14 atom per cent in rice-starch and gelatin capped samples respectively. Transmission electron microscope was used for knowing the particle size as well as to supplement FCC phase formations of Ag-rich and Cu-rich solid phases arrived at based on X-ray diffraction studies. The UV-Vis spectra of sols were examined for the formation and stability of alloy nanoparticles. The temporal evolution of LSPR curves gave us to assert that the sol is stable for more than two months. Small angle X-ray scattering in the sol state was extensively utilized to understand nature of suspensions in terms of fractals. Such a study is important for having a correlation between LSPR behaviors with those of nanoparticle dispersion in aqueous media. It is believed that this work will be a contribution to the emerging field of plasmonics that include applications in the area of photophysical processes and photochemical reactions.

  15. Irradiation-induced displacement of Ag atoms from lattice sites in an Al-0.2% Mg-0.1% Ag crystal

    International Nuclear Information System (INIS)

    Swanson, M.L.; Howe, L.M.; Quenneville, A.F.

    1976-01-01

    In irradiated alloys of Al containing approximately 0.1 at% Ag, the backscattering - channelling method shows that Al-Ag dumbells are created by the trapping of Al interstitial atoms at Ag solute atoms. The present results demonstrate that the addition of 0.2 at% Mg to such irradiated alloys retards not only the formation of Al-Ag dumbells during annealing from 30 to 100 K but also their annihilation during annealing from 180 to 240 K. Al interstitials are released from Mg traps at 100 to 160 K, causing further trapping at Ag atoms. Approximately 70% of the Ag atoms return to lattice sites at approximately 200 K (stage III) (compared with 100% in the Al-0.1% Ag alloys) and the remainder return to lattice sites at approximately 260 K. These results favour migration of Al-Ag dumbells rather than vacancies during stage III annealing. (author)

  16. Coating of hydroxyapatite doped Ag on commercially pure titanium surface

    International Nuclear Information System (INIS)

    Vieira, Jonas de Oliveira; Vercik, Luci Cristina de Oliveira; Rigo, Eliana Cristina da Silva

    2012-01-01

    This paper presents results of bioactive coating on commercially pure titanium surface (CpTi) doped with Ag ions. The coating consists of 3 steps, in step 1- surface chemical treatment of the samples with NaOH, step 2 - immersing the substrate in question in a sodium silicate solution (SS) to the nucleation and step 3 - reimmersion these substrates in synthetic solution that simulates the blood serum for precipitation and growth of apatite layer. After the coating step the AgNO 3 substrates were immersed in solutions with concentrations of 20 ppm and 100 ppm at 37 ° C for 48h. The substrates were characterized by scanning electron microscopy (SEM), infrared spectroscopy (IR) and X-ray diffraction (XRD). By the results verified the formation of an apatite layer with aspects of cells, on the surface of CpTi. The increase in Ag concentration causes an increase in Ag amount doped in apatite layer. With the results we concluded that it is possible to obtain an apatite layer on a metal surface as the CpTi doped with Ag ions

  17. The Kongsberg silver deposits, Norway: Ag-Hg-Sb mineralization and constraints for the formation of the deposits

    Science.gov (United States)

    Kotková, Jana; Kullerud, Kåre; Šrein, Vladimír; Drábek, Milan; Škoda, Radek

    2018-04-01

    The Kongsberg silver district has been investigated by microscopy and electron microprobe analysis, focusing primarily on the Ag-Hg-Sb mineralization within the context of the updated mineral paragenesis. The earliest mineralization stage is represented by sulfides, including acanthite, and sulfosalts. Native silver formed initially through breakdown of early Ag-bearing phases and later through influx of additional Ag-bearing fluids and silver remobilization. The first two generations of native silver were separated in time by the formation of Ni-Co-Fe sulfarsenides and the monoarsenide niccolite along rims of silver crystals. The presence of As-free sulfosalts and the absence of di- and tri-arsenides suggest a lower arsenic/sulfur activity ratio for the Kongsberg deposits compared to other five-element deposits. Native silver shows binary Ag-Hg and Ag-Sb solid solutions, in contrast to the ternary Ag-Hg-Sb compositions typical for other deposits of similar type. Antimonial silver together with allargentum, dyscrasite, and pyrargyrite was documented exclusively from the northern area of the district. Elsewhere, the only Sb-bearing minerals are polybasite and tetrahedrite/freibergite. Hg-rich silver (up to 21 wt% Hg) has been documented only in the central-western area. Myrmekite of freibergite and chalcopyrite reflects exsolution from an original Ag-poor tetrahedrite upon cooling, while myrmekite of pyrite and silver, forming through breakdown of low-temperature phases (argentopyrite or lenaite) upon heating, characterizes the Kongsberg silver district. Based on the stabilities of minerals and mineral assemblages, the formation of the silver mineralization can be constrained to temperatures between 180 and 250 °C.

  18. Thermomechanical behavior of tin-rich (lead-free) solders

    Science.gov (United States)

    Sidhu, Rajen Singh

    In order to adequately characterize the behavior of ball-grid-array (BGA) Pb-free solder spheres in electronic devices, the microstructure and thermomechanical behavior need to be studied. Microstructure characterization of pure Sn, Sn-0.7Cu, Sn-3.5Ag, and Sn-3.9Ag-0.7Cu alloys was conducted using optical microscopy, scanning electron microscopy, transmission electron microscopy, image analysis, and a novel serial sectioning 3D reconstruction process. Microstructure-based finite-element method (FEM) modeling of deformation in Sn-3.5Ag alloy was conducted, and it will be shown that this technique is more accurate when compared to traditional unit cell models for simulating and understanding material behavior. The effect of cooling rate on microstructure and creep behavior of bulk Sn-rich solders was studied. The creep behavior was evaluated at 25, 95, and 120°C. Faster cooling rates were found to increase the creep strength of the solders due to refinement of the solder microstructure. The creep behavior of Sn-rich single solder spheres reflowed on Cu substrates was studied at 25, 60, 95, and 130°C. Testing was conducted using a microforce testing system, with lap-shear geometry samples. The solder joints displayed two distinct creep behaviors: (a) precipitation-strengthening (Sn-3.5Ag and Sn-3.9Ag-0.7Cu) and (b) power law creep accommodated by grain boundary sliding (GBS) (Sn and Sn-0.7Cu). The relationship between microstructural features (i.e. intermetallic particle size and spacing), stress exponents, threshold stress, and activation energies are discussed. The relationship between small-length scale creep behavior and bulk behavior is also addressed. To better understand the damage evolution in Sn-rich solder joints during thermal fatigue, the local damage will be correlated to the cyclic hysteresis behavior and crystal orientations present in the Sn phase of solder joints. FEM modeling will also be utilized to better understand the macroscopic and local

  19. Texturization of diamond-wire-sawn multicrystalline silicon wafer using Cu, Ag, or Ag/Cu as a metal catalyst

    Science.gov (United States)

    Wang, Shing-Dar; Chen, Ting-Wei

    2018-06-01

    In this work, Cu, Ag, or Ag/Cu was used as a metal catalyst to study the surface texturization of diamond-wire-sawn (DWS) multi-crystalline silicon (mc-Si) wafer by a metal-assisted chemical etching (MACE) method. The DWS wafer was first etched by standard HF-HNO3 acidic etching, and it was labeled as AE-DWS wafer. The effects of ratios of Cu(NO3)2:HF, AgNO3:HF, and AgNO3:Cu(NO3)2 on the morphology of AE-DWS wafer were investigated. After the process of MACE, the wafer was treated with a NaF/H2O2 solution. In this process, H2O2 etched the nanostructure, and NaF removed the oxidation layer. The Si {1 1 1} plane was revealed by etching the wafer in a mixture of 0.03 M Cu(NO3)2 and 1 M HF at 55 °C for 2.5 min. These parallel Si {1 1 1} planes replaced some parallel saw marks on the surface of AE-DWS wafers without forming a positive pyramid or an inverted pyramid structure. The main topography of the wafer is comprised of silicon nanowires grown in direction when Ag or Ag/Cu was used as a metal catalyst. When silicon is etched in a mixed solution of Cu(NO3)2, AgNO3, HF and H2O2 at 55 °C with a concentration ratio of [Cu2+]/[Ag+] of 50 or at 65 °C with a concentration ratio of [Cu2+]/[Ag+] of 33, a quasi-inverted pyramid structure can be obtained. The reflectivity of the AE-DWS wafers treated with MACE is lower than that of the multiwire-slurry-sawn (MWSS) mc-Si wafers treated with traditional HF + HNO3 etching.

  20. Limitations and possibilities of green synthesis and long-term stability of colloidal Ag nanoparticles

    Science.gov (United States)

    Velgosová, Oksana; Mražíková, Anna

    2017-12-01

    In this paper the influence of algae life cycle and the solutions pH on the green synthesis of colloidal Ag nanoparticles (AgNPs) as well as effect of different storage conditions on AgNPs long-term stability was investigated. Silver nanoparticles were biologically synthesized using extracts of Parachlorella kessleri algae cultivated 1, 2, 3 and 4 weeks. The formation of AgNPs was monitored using a UV-vis spectrophotometer and verified by TEM observation. The results confirmed formation of polyhedron and/or near polyhedron AgNPs, ranging between 5 and 60 nm in diameter. The age of algae influenced the synthesis rate and an amount of AgNPs in solution. The best results were obtained using tree weeks old algae. UV-vis analysis and TEM observation also revealed that the size and the stability of AgNPs depend on the pH of solution. AgNPs formed in solutions of higher pH (8 and 10) are polyhedron, fine, with narrow size interval and stabile. Nanoparticles formed in solutions of low pH (2, 4 and 6) started to lose their stability on 10th day of experiment, and the particle size interval was wide. The long-term stability of AgNPs can be influenced by light and temperature conditions. The most significant stability loss was observed at day light and room temperature (21°C). After 200-days significant amount of agglomerated particles settled on the bottom of the Erlenmeyer flask. AgNPs stored at dark and room temperature showed better long-term stability, weak particles agglomeration was observed. AgNPs stored at dark and at temperature 5°C showed the best long-term stability. Such AgNPs remained spherical, fine (5-20 nm), with narrow size interval and stable (no agglomeration) even after more than six months.

  1. Design of Stirrer Impeller with Variable Operational Speed for a Food Waste Homogenizer

    Directory of Open Access Journals (Sweden)

    Idris A. Kayode

    2016-05-01

    Full Text Available A conceptualized impeller called KIA is designed for impact agitation of food waste in a homogenizer. A comparative analysis of the performance of KIA is made with three conventional impeller types, Rushton, Anchor, and Pitched Blade. Solid–liquid mixing of a moisture-rich food waste is simulated under various operational speeds, in order to compare the dispersions and thermal distributions at homogenous slurry conditions. Using SolidWorks, the design of the impellers employs an Application Programming Interface (API which acts as the canvas for creating a graphical user interface (GUI for automation of its assembly. A parametric analysis of the homogenizer, at varying operational speeds, enables the estimation of the critical speed of the mixing shaft diameter and the deflection under numerous mixing conditions and impeller configurations. The numerical simulation of the moisture-rich food waste (approximated as a Newtonian carrot–orange soup is performed with ANSYS CFX v.15.0. The velocity and temperature field distribution of the homogenizer for various impeller rotational speeds are analyzed. It is anticipated that the developed model will help in the selection of a suitable impeller for efficient mixing of food waste in the homogenizer.

  2. Géochimie et métallogénie des veines à Ag-Pb-Zn du bassin de Purcell, Colombie-Britannique

    OpenAIRE

    Paiement, Jean-Philippe

    2010-01-01

    Le bassin du Belt-Purcell est connu pour le gîte de type SEDEX de Sullivan et ses veines à Ag-Pb-Zn. Les veines du bassin de Purcell sont classées en trois types : 1) riches en Pb-Zn composées de sphalérite, galène, pyrrhotite, freibergite et pyrite; 2) riches en Pb-Ag-Cu-Au et composées de galène, pyrite, freibergite et d’or et; 3) veines et remplacements riches en Ag-Pb-Zn et composées de sphalérite, galène, pyrite et freibergite. La datation Ar/Ar de séricite hydrothermale du gîte de Type ...

  3. Hardening mechanism of an Ag-Pd-Cu-Au dental casting alloy

    International Nuclear Information System (INIS)

    Seol, Hyo-Joung; Kim, Gi-Chul; Son, Kuk-Hyeon; Kwon, Yong Hoon; Kim, Hyung-Il

    2005-01-01

    Age-hardening behaviour and the related microstructural changes were studied to elucidate the hardening mechanism of an Ag-Pd-Cu-Au dental casting alloy by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). By considering hardness test and XRD results together, it was revealed that the hardness increased during the early stage of phase transformation of α into α 1 . In the SEM photographs, two phases of matrix and particle-like structures were observed, and the precipitation of element from the matrix progressed during isothermal aging. By SEM observations and EPMA analysis, it could be supposed that the increase in hardness was caused by the diffusion and aggregation of Cu atoms from the Ag-rich α matrix containing Au and Cu in the early stage of age-hardening process, and that the decrease in hardness was caused by the progress of coarsening of Cu-rich lamellar precipitates in the later stage of the age-hardening process. The changes in the Ag-rich matrix caused both the increase and decrease in hardness, and the CuPd phase containing small amounts of Zn and Sn did not contribute to the hardness changes

  4. Hybrid diffusion–transport spatial homogenization method

    International Nuclear Information System (INIS)

    Kooreman, Gabriel; Rahnema, Farzad

    2014-01-01

    Highlights: • A new hybrid diffusion–transport homogenization method. • An extension of the consistent spatial homogenization (CSH) transport method. • Auxiliary cross section makes homogenized diffusion consistent with heterogeneous diffusion. • An on-the-fly re-homogenization in transport. • The method is faster than fine-mesh transport by 6–8 times. - Abstract: A new hybrid diffusion–transport homogenization method has been developed by extending the consistent spatial homogenization (CSH) transport method to include diffusion theory. As in the CSH method, an “auxiliary cross section” term is introduced into the source term, making the resulting homogenized diffusion equation consistent with its heterogeneous counterpart. The method then utilizes an on-the-fly re-homogenization in transport theory at the assembly level in order to correct for core environment effects on the homogenized cross sections and the auxiliary cross section. The method has been derived in general geometry and tested in a 1-D boiling water reactor (BWR) core benchmark problem for both controlled and uncontrolled configurations. The method has been shown to converge to the reference solution with less than 1.7% average flux error in less than one third the computational time as the CSH method – 6 to 8 times faster than fine-mesh transport

  5. Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs

    Science.gov (United States)

    Song, Yuanyuan; Jiang, Yaoquan; Shi, Liyi; Cao, Shaomei; Feng, Xin; Miao, Miao; Fang, Jianhui

    2015-08-01

    Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq-1, equal to the electronic conductivity, which is about 500 S cm-1. The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products.Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The

  6. Sulfonated poly(ether ether ketone)/poly(vinyl alcohol) sensitizing system for solution photogeneration of small Ag, Au, and Cu crystallites.

    Science.gov (United States)

    Korchev, A S; Shulyak, T S; Slaten, B L; Gale, W F; Mills, G

    2005-04-28

    Illumination of air-free aqueous solutions containing sulfonated poly(ether ether ketone) and poly(vinyl alcohol) with 350 nm light results in benzophenone ketyl radicals of the polyketone. The polymer radicals form with a quantum yield 0.02 and decay with a second-order rate constant 6 orders of magnitude lower than that of typical alpha-hydroxy radicals. Evidence is presented that the polymeric benzophenone ketyl radicals reduce Ag+, Cu2+, and AuCl4- to metal particles of nanometer dimensions. Decreases in the reduction rates with increasing Ag(I), Cu(II), and Au(III) concentrations are explained using a kinetic model in which the metal ions quench the excited state of the polymeric benzophenone groups, which forms the macromolecular radicals. Quenching is fastest for Ag+, whereas Cu2+ and AuCl4- exhibit similar rate constants. Particle formation becomes more complex as the number of equivalents needed to reduce the metal ions increases; the Au(III) system is an extreme case where the radical reactions operate in parallel with secondary light-initiated and thermal reduction channels. For each metal ion, the polymer-initiated photoreactions produce crystallites possessing distinct properties, such as a very strong plasmon in the Ag case or the narrow size distribution exhibited by Au particles.

  7. Complete set of homogeneous isotropic analytic solutions in scalar-tensor cosmology with radiation and curvature

    Science.gov (United States)

    Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil

    2012-10-01

    We study a model of a scalar field minimally coupled to gravity, with a specific potential energy for the scalar field, and include curvature and radiation as two additional parameters. Our goal is to obtain analytically the complete set of configurations of a homogeneous and isotropic universe as a function of time. This leads to a geodesically complete description of the Universe, including the passage through the cosmological singularities, at the classical level. We give all the solutions analytically without any restrictions on the parameter space of the model or initial values of the fields. We find that for generic solutions the Universe goes through a singular (zero-size) bounce by entering a period of antigravity at each big crunch and exiting from it at the following big bang. This happens cyclically again and again without violating the null-energy condition. There is a special subset of geodesically complete nongeneric solutions which perform zero-size bounces without ever entering the antigravity regime in all cycles. For these, initial values of the fields are synchronized and quantized but the parameters of the model are not restricted. There is also a subset of spatial curvature-induced solutions that have finite-size bounces in the gravity regime and never enter the antigravity phase. These exist only within a small continuous domain of parameter space without fine-tuning the initial conditions. To obtain these results, we identified 25 regions of a 6-parameter space in which the complete set of analytic solutions are explicitly obtained.

  8. Assembly homogenization techniques for light water reactor analysis

    International Nuclear Information System (INIS)

    Smith, K.S.

    1986-01-01

    Recent progress in development and application of advanced assembly homogenization methods for light water reactor analysis is reviewed. Practical difficulties arising from conventional flux-weighting approximations are discussed and numerical examples given. The mathematical foundations for homogenization methods are outlined. Two methods, Equivalence Theory and Generalized Equivalence Theory which are theoretically capable of eliminating homogenization error are reviewed. Practical means of obtaining approximate homogenized parameters are presented and numerical examples are used to contrast the two methods. Applications of these techniques to PWR baffle/reflector homogenization and BWR bundle homogenization are discussed. Nodal solutions to realistic reactor problems are compared to fine-mesh PDQ calculations, and the accuracy of the advanced homogenization methods is established. Remaining problem areas are investigated, and directions for future research are suggested. (author)

  9. Influence of particle coating and matrix constituents on the cloud point extraction efficiency of silver nanoparticles (Ag-NPs) and application for monitoring the formation of Ag-NPs from Ag(+).

    Science.gov (United States)

    Hartmann, Georg; Baumgartner, Tanja; Schuster, Michael

    2014-01-07

    For the quantification of silver nanoparticles (Ag-NPs) in environmental samples using cloud point extraction (CPE) for selective enrichment, surface modification of the Ag-NPs and matrix effects can play a key role. In this work we validate CPE with respect to the influence of different coatings and naturally occurring matrix components. The Ag-NPs tested were functionalized with inorganic and organic compounds as well as with biomolecules. Commercially available NPs and NPs synthesized according to methods published in the literature were used. We found that CPE can extract almost all Ag-NPs tested with very good efficiencies (82-105%). Only Ag-NPs functionalized with BSA (bovine serum albumin), which is a protein with the function to keep colloids in solution, cannot be extracted. No or little effect of environmentally relevant salts, organic matter, and inorganic colloids on the CPE of AgNPs was found. Additionally we used CPE to observe the in situ formation of Ag-NPs produced by the reduction of Ag(+) with natural organic matter (NOM).

  10. Biocorrosion Evaluation on a Zr-Cu-Ag-Ti Metallic Glass

    Science.gov (United States)

    Kumar, Shresh; Anwar, Rebin; Ryu, Wookha; Park, E. S.; Vincent, S.

    2018-04-01

    Metallic glasses are in high demand for fabrication of variety of innovative products, in particular surgical and biomedical tools and devices owing to its excellent biocompatible properties. In the present investigation, a novel Zr39.5Cu50.5Ag4Ti6 metallic glass composition was synthesized using melt spinning technique. Potentiodynamic polarization studies were conducted to investigate bio-corrosion behaviour of Zr39.5Cu50.5Ag4Ti6 metallic glass. The test were conducted in various simulated artificial body conditions such as artificial saliva solution, phosphate-buffered saline solution, artificial blood plasma solution, and Hank’s balanced saline solution. The bio-corrosion results of metallic glass were compared with traditional biomaterials. The study aims to provide bio-compatible properties of Zr39.5Cu50.5Ag4Ti6 metallic glass.

  11. Mach's principle in spatially homogeneous spacetimes

    International Nuclear Information System (INIS)

    Tipler, F.J.

    1978-01-01

    On the basis of Mach's Principle it is concluded that the only singularity-free solution to the empty space Einstein equations is flat space. It is shown that the only singularity-free solution to the empty space Einstein equations which is spatially homogeneous and globally hyperbolic is in fact suitably identified Minkowski space. (Auth.)

  12. Growth and morphological analysis of segmented AuAg alloy nanowires created by pulsed electrodeposition in ion-track etched membranes

    Directory of Open Access Journals (Sweden)

    Ina Schubert

    2015-06-01

    Full Text Available Background: Multicomponent heterostructure nanowires and nanogaps are of great interest for applications in sensorics. Pulsed electrodeposition in ion-track etched polymer templates is a suitable method to synthesise segmented nanowires with segments consisting of two different types of materials. For a well-controlled synthesis process, detailed analysis of the deposition parameters and the size-distribution of the segmented wires is crucial.Results: The fabrication of electrodeposited AuAg alloy nanowires and segmented Au-rich/Ag-rich/Au-rich nanowires with controlled composition and segment length in ion-track etched polymer templates was developed. Detailed analysis by cyclic voltammetry in ion-track membranes, energy-dispersive X-ray spectroscopy and scanning electron microscopy was performed to determine the dependency between the chosen potential and the segment composition. Additionally, we have dissolved the middle Ag-rich segments in order to create small nanogaps with controlled gap sizes. Annealing of the created structures allows us to influence their morphology.Conclusion: AuAg alloy nanowires, segmented wires and nanogaps with controlled composition and size can be synthesised by electrodeposition in membranes, and are ideal model systems for investigation of surface plasmons.

  13. Computation of the homogeneous and forced solutions of a finite length, line-driven, submerged plate.

    Science.gov (United States)

    DiPerna, Daniel T; Blake, William K; DiPerna, Xingguang Z

    2006-12-01

    A formulation is developed to predict the vibration response of a finite length, submerged plate due to a line drive. The formulation starts by describing the fluid in terms of elliptic cylinder coordinates, which allows the fluid loading term to be expressed in terms of Mathieu functions. By moving the fluid loading term to the right-hand side of the equation, it is considered to be a force. The operator that remains on the left-hand side is the same as that of the in vacuo plate: a fourth-order, constant coefficient, ordinary differential equation. Therefore, the problem appears to be an inhomogeneous ordinary differential equation. The solution that results has the same form as that of the in vacuo plate: the sum of a forced solution, and four homogeneous solutions, each of which is multiplied by an arbitrary constant. These constants are then chosen to satisfy the structural boundary conditions on the two ends of the plate. Results for the finite plate are compared to the infinite plate in both the wave number and spatial domains. The theoretical predictions of the plate velocity response are also compared to results from finite element analysis and show reasonable agreement over a large frequency range.

  14. Preparation and characterization of visible light-driven AgCl/PPy photocatalyst

    International Nuclear Information System (INIS)

    Gu Shuna; Li Bing; Zhao Chongjun; Xu Yunlong; Qian Xiuzhen; Chen, Guorong

    2011-01-01

    Graphical abstract: AgCl/PPy composite exhibits improved photocatalytic performance and high stability under visible light. Display Omitted Highlights: → AgCl/(PPy) nanocomposites as visible light driven photocatalyst. → Composites exhibited high visible light-driven photocatalytic activity and stability. → Photocatalytic process on MO followed photoreduction mechanisms. → Used photocatalyst can be regenerated in aqueous FeCl 3 solution. - Abstract: Visible light photoactive AgCl/polypyrrole (PPy) composites were prepared via the reaction between excessive Ag + and Cl - ions in the presence of PPy . The AgCl/PPy composites were systematically characterized using Fourier transform infrared (FTIR) spectroscopy, Raman spectra, X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM) and Thermal gravity analysis (TGA). It was found that face-centered cubic AgCl nanocrystallite and 0.2 wt% PPy component existed in the composite and spherical AgCl/PPy nanoparticles were in the range of 200-600 nm. The AgCl/PPy composites showed higher visible light-driven photocatalytic activity and stability than that of AgCl. A photoreduction mechanism was postulated for AgCl/PPy photocatalyst on dye methyl orange (MO). The used AgCl/PPy photocatalyst was facilely regenerated by an oxidation process in aqueous FeCl 3 solution.

  15. Preparation and characterization of visible light-driven AgCl/PPy photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Gu Shuna; Li Bing [Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao Chongjun, E-mail: chongjunzhao@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xu Yunlong; Qian Xiuzhen; Chen, Guorong [Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2011-05-05

    Graphical abstract: AgCl/PPy composite exhibits improved photocatalytic performance and high stability under visible light. Display Omitted Highlights: > AgCl/(PPy) nanocomposites as visible light driven photocatalyst. > Composites exhibited high visible light-driven photocatalytic activity and stability. > Photocatalytic process on MO followed photoreduction mechanisms. > Used photocatalyst can be regenerated in aqueous FeCl{sub 3} solution. - Abstract: Visible light photoactive AgCl/polypyrrole (PPy) composites were prepared via the reaction between excessive Ag{sup +} and Cl{sup -} ions in the presence of PPy{sub .} The AgCl/PPy composites were systematically characterized using Fourier transform infrared (FTIR) spectroscopy, Raman spectra, X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM) and Thermal gravity analysis (TGA). It was found that face-centered cubic AgCl nanocrystallite and 0.2 wt% PPy component existed in the composite and spherical AgCl/PPy nanoparticles were in the range of 200-600 nm. The AgCl/PPy composites showed higher visible light-driven photocatalytic activity and stability than that of AgCl. A photoreduction mechanism was postulated for AgCl/PPy photocatalyst on dye methyl orange (MO). The used AgCl/PPy photocatalyst was facilely regenerated by an oxidation process in aqueous FeCl{sub 3} solution.

  16. Kinetics, equilibrium and thermodynamic studies on biosorption of Ag(I) from aqueous solution by macrofungus Pleurotus platypus.

    Science.gov (United States)

    Das, Devlina; Das, Nilanjana; Mathew, Lazar

    2010-12-15

    Reports are available on silver binding capacity of some microorganisms. However, reports on the equilibrium studies on biosorption of silver by macrofungi are seldom known. The present study was carried out in a batch system using dead biomass of macrofungus Pleurotus platypus for the sorption of Ag(I). P. platypus exhibited the highest silver uptake of 46.7 mg g(-1) of biomass at pH 6.0 in the presence of 200 mg L(-1) Ag(I) at 20°C. Kinetic studies based on fractional power, zero order, first order, pseudo-first order, Elovich, second order and pseudo-second order rate expressions have been carried out. The results showed a very good compliance with the pseudo-first order model. The experimental data were analyzed using two parameter isotherms (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Halsey), three parameter isotherms (Redlich-Peterson, Sips, Khan, Koble-Corrigan, Hill, Toth, Radke-Prausmitz, Jossens, Langmuir-Freundlich), four parameter isotherms (Weber-van Vliet, Fritz-Schlunder, Baudu) and five parameter isotherm (Fritz-Schlunder). Thermodynamic parameters of the biosorption (ΔG, ΔH and ΔS) were also determined. The present study confirmed that macrofungus P. platypus may be used as a cost effective efficient biosorbent for the removal of Ag(I) ions from aqueous solution. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Plasma-induced formation of flower-like Ag{sub 2}O nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zen-Hung; Ho, Chun-Hsien; Lee, Szetsen, E-mail: slee@cycu.edu.tw

    2015-09-15

    Graphical abstract: Flower-like Ag{sub 2}O nanostructures. - Highlights: • Flower-like Ag{sub 2}O nanostructures were synthesized from Ag colloids using plasma. • XPS was used to monitor plasma treatment effect on Ag colloids. • SERS of methyl orange was used to monitor the plasma oxidation–reduction processes. • Photocatalytic degradation of methylene blue was performed using Ag{sub 2}O. • Ag{sub 2}O is a more efficient visible light photocatalyst than Ag colloids. - Abstract: Plasma treatment effect on Ag colloids was investigated using X-ray photoelectron spectroscopy (XPS) and surface-enhanced Raman scattering (SERS) techniques. XPS showed that O{sub 2} plasma was critical in removing organic residues in Ag colloids synthesized using citric acid as a reducing agent. With O{sub 2} plasma treatment, Ag colloids were also oxidized to form flower-like Ag{sub 2}O nanostructures. The formation mechanism is proposed. The SERS spectral intensity of methyl orange (MO) adsorbed on Ag surface became deteriorated with O{sub 2} plasma treatment. Followed by H{sub 2} plasma treatment, the SERS intensity of MO on Ag regained, which indicated that Ag{sub 2}O has been reduced to Ag. Nonetheless, the reduction by H{sub 2} plasma could not bring Ag back to the original as-synthesized nanoparticle morphology. The flower-like nanostructure morphology still remained. The photocatalytic degradation reactions of methylene blue (MB) aqueous solutions were carried out using Ag colloids and Ag{sub 2}O nanostructures. The results show that Ag{sub 2}O is more efficient than Ag colloids and many other metal oxides for the photocatalytic degradation of MB in solution when utilizing visible light.

  18. Probing structural homogeneity of La{sub 1-x}Gd{sub x}PO{sub 4} monazite-type solid solutions by combined spectroscopic and computational studies

    Energy Technology Data Exchange (ETDEWEB)

    Huittinen, N., E-mail: n.huittinen@hzdr.de [Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden (Germany); Arinicheva, Y. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany); Kowalski, P.M.; Vinograd, V.L. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany); JARA High-Performance Computing, Schinkelstraße 2, 52062 Aachen (Germany); Neumeier, S. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany); Bosbach, D. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany); JARA High-Performance Computing, Schinkelstraße 2, 52062 Aachen (Germany)

    2017-04-01

    Here we study the homogeneity of Eu{sup 3+}-doped La{sub 1-x}Gd{sub x}PO{sub 4} (x = 0, 0.11, 0.33, 0.55, 0.75, 0.92, 1) monazite-type solid solutions by a combination of Raman and time-resolved laser fluorescence spectroscopies (TRLFS) with complementary quasi-random structure-based atomistic modeling studies. For the intermediate La{sub 0.45}Gd{sub 0.55}PO{sub 4} composition we detected a significant broadening of the Raman bands corresponding to the lattice vibrations of the LnO{sub 9} polyhedron, indicating much stronger distortion of the lanthanide cation site than the PO{sub 4} tetrahedron. A distortion of the crystal lattice around the dopant site was also confirmed in our TRLFS measurements of Eu{sup 3+} doped samples, where both the half width (FWHM) of the excitation peaks and the {sup 7}F{sub 2}/{sup 7}F{sub 1} ratio derived from the emission spectra increase for intermediate solid-solution compositions. The observed variation in FWHM correlates well with the simulated distribution of Eu···O bond distances within the investigated monazites. The combined results imply that homogenous Eu{sup 3+}-doped La{sub 1-x}Gd{sub x}PO{sub 4} monazite-type solid solutions are formed over the entire composition range, which is of importance in the context of using these ceramics for immobilization of radionuclides. - Highlights: •Homogenous Eu{sup 3+}-doped La{sub 1-x}Gd{sub x}PO{sub 4} monazite-type solid solutions have been synthesized. •Solid solution formation is accompanied by slight distortion of the LnO{sub 9} polyhedron. •Raman and laser spectroscopic trends are observed within the monazite series. •Results are explained with atomistic simulations of Eu-O bond distance distribution.

  19. Note on integrability of certain homogeneous Hamiltonian systems

    Energy Technology Data Exchange (ETDEWEB)

    Szumiński, Wojciech [Institute of Physics, University of Zielona Góra, Licealna 9, PL-65-407, Zielona Góra (Poland); Maciejewski, Andrzej J. [Institute of Astronomy, University of Zielona Góra, Licealna 9, PL-65-407, Zielona Góra (Poland); Przybylska, Maria, E-mail: M.Przybylska@if.uz.zgora.pl [Institute of Physics, University of Zielona Góra, Licealna 9, PL-65-407, Zielona Góra (Poland)

    2015-12-04

    In this paper we investigate a class of natural Hamiltonian systems with two degrees of freedom. The kinetic energy depends on coordinates but the system is homogeneous. Thanks to this property it admits, in a general case, a particular solution. Using this solution we derive necessary conditions for the integrability of such systems investigating differential Galois group of variational equations. - Highlights: • Necessary integrability conditions for some 2D homogeneous Hamilton systems are given. • Conditions are obtained analysing differential Galois group of variational equations. • New integrable and superintegrable systems are identified.

  20. Structure and photoelectrochemistry of silver-copper-indium-diselenide ((AgCu)InSe2) thin film

    Science.gov (United States)

    Zhang, Lin Rui; Li, Tong; Wang, Hao; Pang, Wei; Chen, Yi Chuan; Song, Xue Mei; Zhang, Yong Zhe; Yan, Hui

    2018-02-01

    In this work, silver (Ag) precursors with different thicknesses were sputtered on the surfaces of CuIn alloys, and (AgCu)InSe2 (ACIS) films were formed after selenization at 550 °C under nitrogen condition using a rapid thermal process furnace. The structure and electrical properties of the ACIS films were investigated. The result showed that the distribution of Ag+ ion was more uniform with increasing the thickness of Ag precursor, and the surface of the thin-film became more homogeneous and denser. When Ag/Cu ratio ≥0.249, the small grain particles disappeared. The band gap can be rationally controlled by adjusting Ag content. When (Ag + Cu)/In ratio ≥ 1.15, the surface of the ACIS thin-film mainly exhibited n-type semiconductor. Through the photoelectrochemistry measurement, it was observed that the incorporation of Ag+ ions could improve photocurrent by adjusting the band gap. With the Ag precursor thickness increased, the dark current decreased at the more negative potential.

  1. Characterization of electrochemiluminescence of tris(2,2'-bipyridine)ruthenium(II) with glyphosate as coreactant in aqueous solution

    International Nuclear Information System (INIS)

    Jin, Jiye; Takahashi, Fumiki; Kaneko, Tsutomu; Nakamura, Toshio

    2010-01-01

    Glyphosate, a phosphorus-containing amino acid type herbicide was used as a coreactant for studying of electrochemiluminescence (ECL) reaction of tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy) 3 2+ ] in an aqueous solution. In a phosphate buffer solution of pH 8, glyphosate itself was known to be electrochemically inactive at glassy carbon electrode, however, it participated in a homogeneous chemical reaction with the electrogenerated Ru(bpy) 3 3+ , and resulted in producing Ru(bpy) 3 2+ species at the electrode surface. Kinetic and mechanistic information for the catalysis of glyphosate oxidation were evaluated by the steady-state voltammetric measurement with an ultramicroelectrode. The simulated cyclic voltammogram based on this mechanism was in good agreement with that obtained experimentally. ECL reaction of Ru(bpy) 3 2+ /glyphosate system was found to be strongly dependent on the media pH. In a pH region of 5-9, an ECL wave appeared at ca. +1.1 V vs. Ag/AgCl, which was caused by the generation of *Ru(bpy) 3 2+ via a Ru(bpy) 3 3+ -mediated oxidation of glyphosate. When pH >10, a second ECL wave was observed at ca. +1.35 V vs. Ag/AgCl, which was believed to be associated with a reaction between Ru(bpy) 3 3+ and the species from direct oxidation of GLYP at a GC electrode surface.

  2. Improvement of photocatalytic activities of Ag/P25 hybrid systems by controlled morphology of Ag nanoprisms

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ti, E-mail: r01527017@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chao, Bo-Kai, E-mail: d98527007@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Kuo, Yu-Lin, E-mail: ylkuo@mail.ntust.edu.tw [Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Hsueh, Chun-Hway, E-mail: hsuehc@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2017-05-01

    Constructing hybrid systems with noble metal nanostructures is one known way to improve the poor photocatalysis efficiency of TiO{sub 2} under visible light. In our study, two different Ag nanostructures were prepared: (1) Ag nanospheres synthesized by chemical reduction method, and (2) Ag nanoprisms transformed from nanospheres with an additional photo-conversion process. Both Ag-TiO{sub 2} hybrid systems were prepared by mixing various concentrations of Ag solutions with commercial TiO{sub 2} powder (P25), and they were then utilized as photocatalysts for the photodecolorization test of methyl blue under various light sources (fluorescent, UV light and red LED lamps) irradiations. Results of the photodecolorization tests showed that Ag nanostructures could evidently enhance the photocatalytic activity of TiO{sub 2} under different light sources, while an optimal composition of 0.432 wt% Ag nanoprisms/TiO{sub 2} displayed superior photocatalytic properties under visible light irradiations (fluorescent and red LED lamps). The enhanced photocatalytic activities could be mainly attributed to the mechanisms of hot electrons injection and resonant energy transfer by the localized surface plasmon resonance of Ag nanostructures and the electronic states favorable of charge separation at the interface between metals and semiconductors. - Highlights: • We used Ag nanostructures to improve photocatalysis efficiency of TiO{sub 2}. • Ag nanoprisms were more efficient than Ag nanospheres under visible light. • Ag nanoprisms/P25 is about 7 times more efficient than P25 under fluorescent lamp. • Mechanisms rely on hot electrons injection and resonant energy transfer by LSPR.

  3. Improvement of photocatalytic activities of Ag/P25 hybrid systems by controlled morphology of Ag nanoprisms

    International Nuclear Information System (INIS)

    Lee, Ti; Chao, Bo-Kai; Kuo, Yu-Lin; Hsueh, Chun-Hway

    2017-01-01

    Constructing hybrid systems with noble metal nanostructures is one known way to improve the poor photocatalysis efficiency of TiO_2 under visible light. In our study, two different Ag nanostructures were prepared: (1) Ag nanospheres synthesized by chemical reduction method, and (2) Ag nanoprisms transformed from nanospheres with an additional photo-conversion process. Both Ag-TiO_2 hybrid systems were prepared by mixing various concentrations of Ag solutions with commercial TiO_2 powder (P25), and they were then utilized as photocatalysts for the photodecolorization test of methyl blue under various light sources (fluorescent, UV light and red LED lamps) irradiations. Results of the photodecolorization tests showed that Ag nanostructures could evidently enhance the photocatalytic activity of TiO_2 under different light sources, while an optimal composition of 0.432 wt% Ag nanoprisms/TiO_2 displayed superior photocatalytic properties under visible light irradiations (fluorescent and red LED lamps). The enhanced photocatalytic activities could be mainly attributed to the mechanisms of hot electrons injection and resonant energy transfer by the localized surface plasmon resonance of Ag nanostructures and the electronic states favorable of charge separation at the interface between metals and semiconductors. - Highlights: • We used Ag nanostructures to improve photocatalysis efficiency of TiO_2. • Ag nanoprisms were more efficient than Ag nanospheres under visible light. • Ag nanoprisms/P25 is about 7 times more efficient than P25 under fluorescent lamp. • Mechanisms rely on hot electrons injection and resonant energy transfer by LSPR.

  4. Benchmarking homogenization algorithms for monthly data

    Science.gov (United States)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M. J.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratiannil, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.; Willett, K.

    2013-09-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies. The algorithms were validated against a realistic benchmark dataset. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including i) the centered root mean square error relative to the true homogeneous values at various averaging scales, ii) the error in linear trend estimates and iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data. Moreover, state-of-the-art relative homogenization algorithms developed to work with an inhomogeneous reference are shown to perform best. The study showed that currently automatic algorithms can perform as well as manual ones.

  5. Spontaneous compactification to homogeneous spaces

    International Nuclear Information System (INIS)

    Mourao, J.M.

    1988-01-01

    The spontaneous compactification of extra dimensions to compact homogeneous spaces is studied. The methods developed within the framework of coset space dimensional reduction scheme and the most general form of invariant metrics are used to find solutions of spontaneous compactification equations

  6. [Computer modeling the hydrostatic pressure characteristics of the membrane potential for polymeric membrane, separated non-homogeneous electrolyte solutions].

    Science.gov (United States)

    Slezak, Izabella H; Jasik-Slezak, Jolanta; Rogal, Mirosława; Slezak, Andrzej

    2006-01-01

    On the basis of model equation depending the membrane potential deltapsis, on mechanical pressure difference (deltaP), concentration polarization coefficient (zetas), concentration Rayleigh number (RC) and ratio concentration of solutions separated by membrane (Ch/Cl), the characteristics deltapsis = f(deltaP)zetas,RC,Ch/Cl for steady values of zetas, RC and Ch/Cl in single-membrane system were calculated. In this system neutral and isotropic polymeric membrane oriented in horizontal plane, the non-homogeneous binary electrolytic solutions of various concentrations were separated. Nonhomogeneity of solutions is results from creations of the concentration boundary layers on both sides of the membrane. Calculations were made for the case where on a one side of the membrane aqueous solution of NaCl at steady concentration 10(-3) mol x l(-1) (Cl) was placed and on the other aqueous solutions of NaCl at concentrations from 10(-3) mol x l(-1) to 2 x 10(-2) mol x l(-1) (Ch). Their densities were greater than NaCl solution's at 10(-3) mol x l(-1). It was shown that membrane potential depends on hydrodynamic state of a complex concentration boundary layer-membrane-concentration boundary layer, what is controlled by deltaP, Ch/Cl, RC and zetas.

  7. Some properties of spatially homogeneous spacetimes

    International Nuclear Information System (INIS)

    Coomer, G.C.

    1979-01-01

    This paper discusses two features of the universe which are influenced in a fundamental way by the spacetime geometry of the universe. The first is the growth of density fluctuations in the early stages of the evolution of the universe. The second is the propagation of electromagnetic radiation in the universe. A spatially homogeneous universe is assumed in both discussions. The gravitational instability theory of galaxy formation is investigated for a viscous fluid and for a charged, conducting fluid with a magnetic field added as a perturbation. It is found that the growth rate of density perturbations in both cases is lower than in the perfect fluid case. Spatially homogeneous but nonisotropic spacetimes are investigated next. Two perfect fluid solutions of Einstein's field equations are found which have spacelike hypersurfaces with Bianchi type II geometry. An expression for the spectrum of the cosmic microwave background radiation in a spatially homogeneous but nonisotropic universe is found. The expression is then used to determine the angular distribution of the intensity of the radiation in the simpler of the two solutions. When accepted values of the matter density and decoupling temperature are inserted into this solution, values for the age of the universe and the time of decoupling are obtained which agree reasonably well with the values of the standard model of the universe

  8. Homogenization for rigid suspensions with random velocity-dependent interfacial forces

    KAUST Repository

    Gorb, Yuliya

    2014-12-01

    We study suspensions of solid particles in a viscous incompressible fluid in the presence of random velocity-dependent interfacial forces. The flow at a small Reynolds number is modeled by the Stokes equations, coupled with the motion of rigid particles arranged in a periodic array. The objective is to perform homogenization for the given suspension and obtain an equivalent description of a homogeneous (effective) medium, the macroscopic effect of the interfacial forces and the effective viscosity are determined using the analysis on a periodicity cell. In particular, the solutions uωε to a family of problems corresponding to the size of microstructure ε and describing suspensions of rigid particles with random surface forces imposed on the interface, converge H1-weakly as ε→0 a.s. to a solution of a Stokes homogenized problem, with velocity dependent body forces. A corrector to a homogenized solution that yields a strong H1-convergence is also determined. The main technical construction is built upon the Γ-convergence theory. © 2014 Elsevier Inc.

  9. An analytic solution to the homogeneous EIT problem on the 2D disk and its application to estimation of electrode contact impedances

    International Nuclear Information System (INIS)

    Demidenko, Eugene

    2011-01-01

    An analytic solution of the potential distribution on a 2D homogeneous disk for electrical impedance tomography under the complete electrode model is expressed via an infinite system of linear equations. For the shunt electrode model with two electrodes, our solution coincides with the previously derived solution expressed via elliptic integral (Pidcock et al 1995 Physiol. Meas. 16 77–90). The Dirichlet-to-Neumann map is derived for statistical estimation via nonlinear least squares. The solution is validated in phantom experiments and applied for breast contact impedance estimation in vivo. Statistical hypothesis testing is used to test whether the contact impedances are the same across electrodes or all equal zero. Our solution can be especially useful for a rapid real-time test for bad surface contact in clinical setting

  10. Alloy development for the enhanced stability of Ω precipitates in Al-Cu-Mg-Ag alloys

    Science.gov (United States)

    Gable, B. M.; Shiflet, G. J.; Starke, E. A.

    2006-04-01

    The coarsening resistance and thermal stability of several Ω plate-dominated microstructures were controlled through altering the chemistry and thermomechanical processing of various Al-Cu-Mg-Ag alloys. Quantitative comparisons of Ω nucleation density, particle size, and thermal stability were used to illustrate the effects of alloy composition and processing conditions. The long-term stability of Ω plates was found to coincide with relatively high levels of silver and moderate magnesium additions, with the latter limiting the competition for solute with S-phase precipitation. This analysis revealed that certain microstructures initially dominated by Ω precipitation were found to remain stable through long-term isothermal and double-aging heat treatments, which represents significant improvement over the previous generation of Al-Cu-Mg-Ag alloys, in which Ω plates dissolved sacrificially after long aging times. The quantitative precipitate data, in conjunction with a thermodynamic database for the aluminum-rich corner of the Al-Cu-Mg-Ag quaternary system, were used to estimate the chemistry of the α/Ω-interphase boundary. These calculations suggest that silver is the limiting species at the α/Ω interfacial layer and that Ω plates form with varying interfacial chemistries during the early stages of artificial aging, which is directly related to the overall stability of certain plates.

  11. Room temperature synthesis and photocatalytic property of AgO/Ag2Mo2O7 heterojunction nanowires

    International Nuclear Information System (INIS)

    Hashim, Muhammad; Hu, Chenguo; Wang, Xue; Wan, Buyong; Xu, Jing

    2012-01-01

    Graphical abstract: The AgO nanoparticles are attached on the surface of the Ag 2 Mo 2 O 7 nanowires to form a heterojunction structure. The AgO nanoparticles start embedding into the nanowires with increasing reaction temperature or time. Highlights: ► AgO/Ag 2 Mo 2 O 7 heterojunction NWs were synthesized at room temperature for the first time. ► AgO particles embed into the Ag 2 Mo 2 O 7 NWs with increase in reaction time and temperature. ► The heterojunction NWs display much better photocatalytic activity than the none-heterojunction NWs. ► The catalytic mechanism was proposed. -- Abstract: AgO/Ag 2 Mo 2 O 7 heterojunction nanowires were synthesized at temperatures of 25 °C, 50 °C, 80 °C, and 110 °C, under magnetic stirring in solution reaction. The catalytic activity of AgO/Ag 2 Mo 2 O 7 nanowires was evaluated by the degradation of Rhodmine B dye under the irradiation of the simulated sunlight. The synthesized samples were characterized by X-ray diffractometer, energy dispersive spectrometry, X-ray photoelectron spectrometer, scanning electron microscopy, and transmission electron microscopy. The results show that the AgO nanoparticles are attached on the surface of the Ag 2 Mo 2 O 7 nanowires to form a heterojunction structure. The length of the nanowires is up to 10 μm and the size of the AgO nanoparticles is 10–20 nm. The length of nanowires increases with increasing reaction time and temperature while the AgO particles are gradually embedded into the nanowires. The photocatalytic activity is greatly improved for the AgO/Ag 2 Mo 2 O 7 heterojunction nanowires compared with that of the pure Ag 2 Mo 2 O 7 nanowires, indicating a remarkable role of AgO particles on the Ag 2 Mo 2 O 7 nanowires in the photodegradation.

  12. Fabrication of Cu-Ag core-shell bimetallic superfine powders by eco-friendly reagents and structures characterization

    Science.gov (United States)

    Zhao, Jun; Zhang, Dongming; Zhao, Jie

    2011-09-01

    Superfine bimetallic Cu-Ag core-shell powders were synthesized by reduction of copper sulfate pentahydrate and silver nitrate with eco-friendly ascorbic acid as a reducing agent and cyclodextrins as a protective agent in an aqueous system. The influence of Ag/Cu ratio on coatings was investigated. Ag was homogeneously distributed on the surface of Cu particles at a mole ratio of Ag/Cu=1. FE-SEM showed an uniformity of Ag coatings on Cu particles. Antioxidation of Cu particles was improved by increasing Ag/Cu ratio. TEM-EDX and UV-vis spectra also revealed that Cu cores were covered by Ag nanoshells on the whole. The surface composition analysis by XPS indicated that only small parts of Cu atoms in the surface were oxidized. It was noted that the hindrance of cyclodextrins chemisorbed on particles plays an important role in forming high quality and good dispersity Cu-Ag (Cu@Ag) core-shell powders.

  13. Layout optimization using the homogenization method

    Science.gov (United States)

    Suzuki, Katsuyuki; Kikuchi, Noboru

    1993-01-01

    A generalized layout problem involving sizing, shape, and topology optimization is solved by using the homogenization method for three-dimensional linearly elastic shell structures in order to seek a possibility of establishment of an integrated design system of automotive car bodies, as an extension of the previous work by Bendsoe and Kikuchi. A formulation of a three-dimensional homogenized shell, a solution algorithm, and several examples of computing the optimum layout are presented in this first part of the two articles.

  14. One-pot solvothermal synthesis of highly efficient, daylight active and recyclable Ag/AgBr coupled photocatalysts with synergistic dual photoexcitation

    International Nuclear Information System (INIS)

    Zhang, Caihong; Ai, Lunhong; Li, Lili; Jiang, Jing

    2014-01-01

    Highlights: • Ag/AgBr photocatalysts were controllably synthesized by solvothermal process. • Ag/AgBr composites showed excellent daylight driven photocatalytic activity. • The remarkable activity is attributed to the synergistic dual photoexcitation. -- Abstract: Efficient light harvesting has been considered to be critical for manipulating the photocatalytic behavior of photocatalysts, because it directly determines the generation of reactive redox charge carriers involved in photoreaction process. In this study, we present a successful example on efficient conversion of solar energy by Ag/AgBr coupled photocatalysts that hold unique synergistic dual photoexcitation. A series of Ag/AgBr coupled photocatalysts were controllably synthesized by an easily manipulated mild solvothermal process. The physicochemical properties of the as-prepared Ag/AgBr coupled photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS) and UV–vis diffuse reflectance spectroscopy (DRS). The results showed the solvothermal reaction time played key role for control of crystalline structure, morphology, composition, and visible light absorption ability of the resulting photocatalysts. The as-prepared Ag/AgBr coupled photocatalysts exhibited remarkable photocatalytic performance and good reusability for decomposing organic dyes in aqueous solution under the irradiation of commercial 20 W cool daylight fluorescent lamp, owing to the synergistic dual photoexcitation cooperating between plasmonic Ag nanoparticles and narrow-band-gap AgBr

  15. Thermo-mechanical processing of a Ti 49.5Al 1.25Ag alloy

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, A.; Viana, F.; Vieira, M.F.; Santos, H.M.C. [GMM/IMAT, Dept. de Engenharia Metalurgica e de Materiais, FEUP, Porto (Portugal)

    2002-07-01

    Gamma titanium aluminide is an important candidate to several applications in the aerospace and automotive industries. The great drawback of these alloys is its low ductility at room temperature. This work is part of a study that intends to increase the ductility of gamma titanium aluminide through the addition of alloying elements. In this paper the effects of the heat treatment and the deformation processing on the microstructure of a Ti 49.5Al 1.25Ag are described. The alloy was produced by arc melting, under an argon atmosphere, using a water-cooled copper crucible. The as-cast samples were heat treated at 1300 and 1400 C. Encapsulated samples were deformed by double forging and multiple step rolling. The as-cast {gamma}-TiAl alloy presented an extended degree of segregation, have been detected three microconstituents: lamellar dendrites, interdendritic Al enriched {gamma}-phase and a number of Ag rich particles located at the dendritic/interdendritic interface. The heat treatment at 1400 C for 6 hours allowed the elimination of the as-cast microstructure and its replacement by a fully lamellar one. The thermomechanical processing produced non-homogenous microstructures of deformed lamellar grains and recrystallized gamma grains. The microstructure changes occurring during the several stages of the processing were characterized using optical and scanning electron microscopy. The modification of the chemical composition of the phases was determined using SEM-EDS facilities. (orig.)

  16. Intracortical stiffness of mid-diaphysis femur bovine bone: lacunar-canalicular based homogenization numerical solutions and microhardness measurements.

    Science.gov (United States)

    Hage, Ilige S; Hamade, Ramsey F

    2017-09-01

    solution are corroborated experimentally using microhardness indentation measurements taken at the same points that the digital images were taken along a radial distance emanating from the interior (endosteum) surface toward the bone's exterior (periosteum) surface. Good agreement was found between numerically calculated and indentation measured stiffness of Intracortical lamellae. Both indentation measurements and numerical solutions of matrix stiffness showed increasing linear trend of compressive longitudinal modulus (E11) values vs. radial position for both interior and exterior regions. In the interior (exterior) region of cortical bone, stiffness modulus values were found to range from 18.5 to 23.4 GPa (23 to 26.0 GPa) with the aggregate stiffness of the cortical lamella in the exterior region being 12% stiffer than that in the interior region. In order to further validate these findings, experimental and FEM simulation of a mid-diaphysis bone ring under compression is employed. The FEM numerical deflections employed nine concentric regions across the thickness with graded stiffness values based on the digital segmentation and homogenization scheme. Bone ring deflections are found to agree well with measured deformations of the compression bone ring.

  17. On one possibility for application of new thermoelectric materials based on Ag2Te

    International Nuclear Information System (INIS)

    Vassilev, Venceslav; Parvanov, Svetlin; Vachkov, Valeri

    2011-01-01

    The thermoelectric characteristics of Ag 2 Te and Ag 1,84 Cd 0,08 Te (solid solution based on Ag 2 Te) are investigated and analyzed. The main thermoelectric characteristics of the solid solution: α=118 μV/K; σ = 2230 S/cm and = 2,45.10 -2 W/(cm.K) ensure coefficient of thermoelectric efficiency z = 1,27. 10-3 K -1 (at 300 ), which increases this of the Ag 2 Te. A composition for commutation material is developed, which connects the N- and the P-branches of a single thermo element (52 wt. % In + 48 wt. % Sn) with melting temperature of 390 K. The possibility for application of the Ag 1,84 Cd 0,08 Te solid solution as N-branch of a thermo element in combination with the solid solution Bi 0,5 Sb 1,5 Te 3 (P-branch) is investigated. The thermo element guarantees values of z from 0,71.10 -3 to 1,27.10 -3 K -1 in the temperature interval 250 - 350 . The maximum z value is registered at 300 K (z = 1,27.10 -3 K -1 ). Keywords: Silver telluride, Solid solutions, Thermoelectric properties, Thermo element

  18. Studies on Al-Cu-Li-Mg-Ag-Zr alloy processed through vacuum induction melting (VIM) technique

    International Nuclear Information System (INIS)

    Nayan, Niraj; Govind; Nair, K. Suseelan; Mittal, M.C.; Sudhakaran, K.N.

    2007-01-01

    A new technique of lithium addition has been adapted for the processing of Al-Cu-Li-Ag-Mg-Zr alloy, which gives more than 90% recovery of lithium throughout the billet. Processing studies on this alloy include casting, three step homogenization, to avoid incipient melting, and mechanical working particularly forging and rolling. The products in the form of sheets were subjected to various T6 (solution treatment + water quenching + aging) tempers. Mechanical properties were evaluated at room temperature and correlated with microstructure. Characterizations using optical microscope and post-fracture analysis have been carried out using Scanning electron microscope (SEM). Experimental investigation shows highest mechanical properties for the Al-1.3%Li alloy in T6 (500 deg. C/1 h + WQ + 190 deg. C/24 h) condition

  19. Plasmon-Enhanced Photoluminescence of an Amorphous Silicon Quantum Dot Light-Emitting Device by Localized Surface Plasmon Polaritons in Ag/SiOx:a-Si QDs/Ag Sandwich Nanostructures

    Directory of Open Access Journals (Sweden)

    Tsung-Han Tsai

    2015-01-01

    Full Text Available We investigated experimentally the plasmon-enhanced photoluminescence of the amorphous silicon quantum dots (a-Si QDs light-emitting devices (LEDs with the Ag/SiOx:a-Si QDs/Ag sandwich nanostructures, through the coupling between the a-Si QDs and localized surface plasmons polaritons (LSPPs mode, by tuning a one-dimensional (1D Ag grating on the top. The coupling of surface plasmons at the top and bottom Ag/SiOx:a-Si QDs interfaces resulted in the localized surface plasmon polaritons (LSPPs confined underneath the Ag lines, which exhibit the Fabry-Pérot resonance. From the Raman spectrum, it proves the existence of a-Si QDs embedded in Si-rich SiOx film (SiOx:a-Si QDs at a low annealing temperature (300°C to prevent the possible diffusion of Ag atoms from Ag film. The photoluminescence (PL spectra of a-Si QDs can be precisely tuned by a 1D Ag grating with different pitches and Ag line widths were investigated. An optimized Ag grating structure, with 500 nm pitch and 125 nm Ag line width, was found to achieve up to 4.8-fold PL enhancement at 526 nm and 2.46-fold PL integrated intensity compared to the a-Si QDs LEDs without Ag grating structure, due to the strong a-Si QDs-LSPPs coupling.

  20. Increase of the radiochemical purity of aqueous solutions of compounds labelled with 131I using a ClAg sterile column

    International Nuclear Information System (INIS)

    Pliego, O.H.; Mitta, A.E.A.

    1980-01-01

    The use of a C1Ag sterile column that may be easily assembled at any nuclear medical center is proposed. The column is easy to handle and allows to obtain aqueous solutions of compounds labelled with radioactive iodine, with a radiochemical purity greater than 99%, conserving pH values, activity concentration, apyretogenia and sterility, the controls of toxicity and presence of heavy metals being negative. (C.A.K) [es

  1. Facile biosynthesis of Ag-NPs using Otostegia limbata plant extract: Physical characterization and auspicious biological activities

    Directory of Open Access Journals (Sweden)

    Rizwan Kausar

    2016-09-01

    Full Text Available Silver nanoparticles (Ag-NPs synthesized through reduction by Otostegia limbata green extract are, hereby, reported for the first time. It is very interesting to observe that in this case, O. limbata plant extract acts as a strong chelating agent in Ag-NPs formation through AgNO3. Scanning electron microscope (SEM studies expose that Ag-NPs formation is highly homogenous and spherical with mean particle size of 32±0.8 nm. A typical Ag absorption peak has been observed at 419 nm by ultra violet (UV-visible spectroscopy which have endorsed the successful formation of single phase Ag-NPs. X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FTIR examination further validates the crystalline pure phase structure of Ag-NPs. Promising results have been recorded against protein kinase inhibition assay and antibacterial assay having prominent pathogenic strains. Our present study explores that biosynthesized eco-friendly Ag-NPs have great potential, in the future, for anticancer drug development with wide range pharmaceutical applications.

  2. Antibacterial biodegradable Mg-Ag alloys

    Directory of Open Access Journals (Sweden)

    D Tie

    2013-06-01

    Full Text Available The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solution (T4 and aging (T6 heat treatment.The metallurgical analysis and phase identification showed that all alloys contained Mg4Ag as the dominant β phase. After heat treatment, the mechanical properties of all Mg-Ag alloys were significantly improved and the corrosion rate was also significantly reduced, due to presence of silver. Mg(OH2 and MgO present the main magnesium corrosion products, while AgCl was found as the corresponding primary silver corrosion product. Immersion tests, under cell culture conditions, demonstrated that the silver content did not significantly shift the pH and magnesium ion release. In vitro tests, with both primary osteoblasts and cell lines (MG63, RAW 264.7, revealed that Mg-Ag alloys show negligible cytotoxicity and sound cytocompatibility. Antibacterial assays, performed in a dynamic bioreactor system, proved that the alloys reduce the viability of two common pathogenic bacteria, Staphylococcus aureus (DSMZ 20231 and Staphylococcus epidermidis (DSMZ 3269, and the results showed that the killing rate of the alloys against tested bacteria exceeded 90%. In summary, biodegradable Mg-Ag alloys are cytocompatible materials with adjustable mechanical and corrosion properties and show promising antibacterial activity, which indicates their potential as antibacterial biodegradable implant materials.

  3. Transparent Conducting Film Fabricated by Metal Mesh Method with Ag and Cu@Ag Mixture Nanoparticle Pastes

    Directory of Open Access Journals (Sweden)

    Hyun Min Nam

    2017-05-01

    Full Text Available Transparent conducting electrode film is highly desirable for application in touch screen panels (TSPs, flexible and wearable displays, sensors, and actuators. A sputtered film of indium tin oxide (ITO shows high transmittance (90% at low sheet resistance (50 Ω/cm2. However, ITO films lack mechanical flexibility, especially under bending stress, and have limitation in application to large-area TSPs (over 15 inches due to the trade-off in high transmittance and low sheet resistance properties. One promising solution is to use metal mesh-type transparent conducting film, especially for touch panel application. In this work, we investigated such inter-related issues as UV imprinting process to make a trench layer pattern, the synthesis of core-shell-type Ag and Cu@Ag composite nanoparticles and their paste formulation, the filling of Ag and Cu@Ag mixture nanoparticle paste to the trench layer, and touch panel fabrication processes.

  4. Modification of a Turbulent Boundary Layer within a Homogeneous Concentration of Drag reducing Polymer Solution

    Science.gov (United States)

    Farsiani, Yasaman; Elbing, Brian

    2017-11-01

    High molecular weight polymer solutions in wall-bounded flows can reduce the local skin friction by as much as 80%. External flow studies have typical focused on injection of polymer within a developing turbulent boundary layer (TBL), allowing the concentration and drag reduction level to evolve with downstream distance. Modification of the log-law region of the TBL is directly related to drag reduction, but recent results suggest that the exact behavior is dependent on flow and polymer properties. Weissenberg number and the viscosity ratio (ratio of solvent viscosity to the zero-shear viscosity) are concentration dependent, thus the current study uses a polymer ocean (i.e. a homogenous concentration of polymer solution) with a developing TBL to eliminate uncertainty related to polymer properties. The near-wall modified TBL velocity profiles are acquired with particle image velocimetry. In the current presentation the mean velocity profiles and the corresponding flow (Reynolds number) and polymer (Weissenberg number, viscosity ratio, and length ratio) properties are reported. Note that the impact of polymer degradation on molecular weight will also be quantified and accounted for when estimating polymer properties This work was supported by NSF Grant 1604978.

  5. Efecto de la adición de Ag en Bi-2212 texturado mediante laser

    Directory of Open Access Journals (Sweden)

    Mora, M.

    2005-08-01

    Full Text Available The addition of Ag into Bi-2212 compounds has demonstrated to be a suitable method to improve both, the thermal and mechanical properties as well as the electrical ones. The final properties have been found to be in strong dependence of Ag content and the processing technique. In the present work the influence of Ag addition on Bi-2212 bulk materials grown from the melt, using a laser floating zone melting technique, has been studied. Samples with different Ag contents (0 to 40 wt.% were prepared for this work. The Bi-2212 + x wt.% Ag powders have been prepared by a sol-gel method via nitrates to assure total cation solution, small particle size and good homogeneity in the mixture. Cylindrical precursors, fabricated from these powders, were used as feed in a LFZ melting installation to obtain textured Bi-2212/Ag composites. The effect of the Ag addition on the microstructure is analysed as a function of Ag content. The changes on the microstructure are also correlated with the mechanical and superconducting properties.

    La incorporación de Ag en los compuestos de Bi-2212 ha demostrado ser un método adecuado para mejorar tanto las propiedades mecánicas, térmicas como eléctricas de estos materiales. Las propiedades finales dependen fuertemente de la cantidad de Ag añadida al sistema pero también del tipo de procesado que sufre. En el presente trabajo se realiza un estudio del efecto de la adición de Ag en materiales masivos Bi-2212 texturados mediante fusión zonal inducida por láser, con el objetivo de comprender el efecto de la adición de Ag en sistemas Bi-2212 que pasan totalmente por un fundido. Para ello se preparon muestras con diferentes contenidos en Ag (hasta el 40% en peso. Debido a la inmiscibilidad en estado sólido de la Ag y del Bi-2212, se ha utilizado un método de síntesis de estos materiales por medio de técnicas sol-gel para asegurar una buena homogeneidad y un tamaño de partícula reducido en la cerámica de

  6. Benchmarking monthly homogenization algorithms

    Science.gov (United States)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.

    2011-08-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative). The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide) trend was added. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i) the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii) the error in linear trend estimates and (iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data

  7. Size and composition tunable Ag-Au alloy nanoparticles by replacement reactions

    International Nuclear Information System (INIS)

    Zhang Qingbo; Lee, J Y; Yang Jun; Boothroyd, Chris; Zhang Jixuan

    2007-01-01

    Ag-Au alloy nanoparticles with tunable size and composition were prepared by a replacement reaction between Ag nanoparticles and HAuCl 4 at elevated temperatures. The formation of homogeneous alloy nanoparticles was confirmed by selected-area energy-dispersive x-ray spectroscopy (SAEDX), UV-visible absorption spectroscopy, high resolution transmission electron microscopy (HRTEM) and electron diffraction. This method leverages upon the rapid interdiffusion of Ag and Au atoms in the reduced dimension of a nanoparticle, elevated temperatures and the large number of vacancy defects created in the replacement reaction. This method of preparation has several notable advantages: (1) independent tuning of the size and composition of alloy nanoparticles; (2) production of alloy nanoparticles in high concentrations; (3) general utility in the synthesis of alloy nanoparticles that cannot be obtained by the co-reduction method

  8. The preparation and antibacterial effects of dopa-cotton/AgNPs

    International Nuclear Information System (INIS)

    Xu Hong; Shi Xue; Ma Hui; Lv Yihang; Zhang Linping; Mao Zhiping

    2011-01-01

    Silver nanoparticles (AgNPs) have been known to have powerful antibacterial activity. In this paper, in situ generation of AgNPs on the surface of dopamine modified cotton fabrics (dopa-cotton/AgNPs) in aqueous solution under room temperature is presented. X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM) were used to analyze the surface chemical composition and the morphology of the modified cotton fabrics, respectively. The results indicated that the surface of cotton fabrics was successfully coated with polydopamine and AgNPs. The cotton fabrics with AgNPs showed durable antibacterial activity.

  9. Equilibrium, kinetics and mechanism of Au3+, Pd2+ and Ag+ ions adsorption from aqueous solutions by graphene oxide functionalized persimmon tannin.

    Science.gov (United States)

    Wang, Zhongmin; Li, Xiaojuan; Liang, Haijun; Ning, Jingliang; Zhou, Zhide; Li, Guiyin

    2017-10-01

    In this study, a novel bio-adsorbent (PT-GO) was prepared by functionalization persimmon tannin (PT) with graphene oxide (GO) and the effective adsorption behaviors of Au 3+ , Pd 2+ and Ag + ions from aqueous solution was investigated. The PT-GO was characterized by Fourier transform infrared spectrometer (FTIR), scanning electronic microscope (SEM), thermogravimetric analysis (TGA) and Zeta potential. Many influence factors such as pH value, bio-adsorbent dosage, initial concentration of metal ions and contact time were optimized. The maximum adsorption capacity for Au 3+ , Pd 2+ and Ag + was 1325.09mg/g, 797.66mg/g and 421.01mg/g, respectively. The equilibrium isotherm for the adsorption of Au 3+ and Ag + on PT-GO were found to obey the Langmuir model, while the Freundlich model fitted better for Pd 2+ . The adsorption process of Au 3+ , Pd 2+ presented relatively fast adsorption kinetics with pseudo-second-order equation as the best fitting model, while the pseudo-first-order kinetic model was suitable for describing the adsorption of Ag + . Combination of ion exchange, electrostatic interaction and physical adsorption was the mechanism for adsorption of Au 3+ , Pd 2+ and Ag + onto PT-GO bio-adsorbent. Therefore, the PT-GO bio-adsorbent would be an ideal adsorbent for removal of precious metal ions and broaden the potential applications of persimmon tannin in environmental research. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mg-controlled formation of Mg–Ag co-clusters in initial aged Al–Cu–Mg–Ag alloys

    International Nuclear Information System (INIS)

    Bai, Song; Liu, Zhiyi; Zhou, Xuanwei; Xia, Peng; Zeng, Sumin

    2014-01-01

    Highlights: • The strongest age-hardening response was found in 0.81Mg alloy. • Quantitative APT study showed strong dependence of Mg–Ag co-clustering on Mg content. • A critical Mg content related to the greatest Mg–Ag co-clustering was revealed. • The evolution from Mg–Ag co-clusters to Ω phase was accelerated in 1.18Mg alloy. - Abstract: The effect of Mg variations on the number density, solute concentrations and sizes of Mg–Ag co-clusters at the early aging stage, as well as the age-hardening response of different Al–Cu–Mg–Ag alloys, was well investigated by a combination of Vickers hardness measurement, transmission electron microscopy (TEM) and atom probe tomography (APT). The strongest age-hardening response at 165 °C was found in 0.81Mg alloy, accompanied by the highest nucleation rate of Mg–Ag co-clusters after aging for 0.5 h. However, the least response was revealed in 0.39Mg alloy. By quantitative APT analysis, the observed trend in the total number density of Mg–Ag co-clusters suggested the following order: 0.81Mg alloy > 0.39Mg alloy > 1.18Mg alloy. This parabolic change in the total number density of Mg–Ag co-clusters with increasing Mg highlighted the existence of a critical Mg content, which contributed to the greatest nucleation kinetics of Mg–Ag co-clusters. As Mg increased from 0.39 to 0.81, the formation of small Mg–Ag co-clusters was significantly promoted, whereas the number density of large Mg–Ag co-clusters almost remained constant. Moreover, the remarkable enrichment of Cu within Mg–Ag co-clusters indicated that the accelerated evolution from Mg–Ag co-clusters to Ω phase was responsible for the lowest number density of Mg–Ag co-clusters in 1.18Mg alloy after aging at 165 °C for 0.5 h

  11. Solution of the spatial neutral model yields new bounds on the Amazonian species richness

    Science.gov (United States)

    Shem-Tov, Yahav; Danino, Matan; Shnerb, Nadav M.

    2017-02-01

    Neutral models, in which individual agents with equal fitness undergo a birth-death-mutation process, are very popular in population genetics and community ecology. Usually these models are applied to populations and communities with spatial structure, but the analytic results presented so far are limited to well-mixed or mainland-island scenarios. Here we combine analytic results and numerics to obtain an approximate solution for the species abundance distribution and the species richness for the neutral model on continuous landscape. We show how the regional diversity increases when the recruitment length decreases and the spatial segregation of species grows. Our results are supported by extensive numerical simulations and allow one to probe the numerically inaccessible regime of large-scale systems with extremely small mutation/speciation rates. Model predictions are compared with the findings of recent large-scale surveys of tropical trees across the Amazon basin, yielding new bounds for the species richness (between 13100 and 15000) and the number of singleton species (between 455 and 690).

  12. Nonlinear-Optical and Fluorescent Properties of Ag Aqueous Colloid Prepared by Silver Nitrate Reduction

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Zhang

    2010-01-01

    Full Text Available The nonlinear-optical properties of metal Ag colloidal solutions, which were prepared by the reduction of silver nitrate, were investigated using Z-scan method. Under picosecond 532 nm excitation, the Ag colloidal solution exhibited negative nonlinear refractive index (n2=−5.17×10−4 cm2/W and reverse saturable absorption coefficient (β=4.32 cm/GW. The data fitting result of optical limiting (OL response of metal Ag colloidal solution indicated that the nonlinear absorption was attributed to two-photon absorption effect at 532 nm. Moreover, the fluorescence emission spectra of Ag colloidal solution were recorded under excitations at both 280 nm and 350 nm. Two fluorescence peaks, 336 nm and 543 nm for 280 nm excitation, while 544 nm and 694 nm for 350 nm excitation, were observed.

  13. A review of silver-rich mineral deposits and their metallogeny

    Science.gov (United States)

    Graybeal, Frederick T.; Vikre, Peter

    2010-01-01

    Mineral deposits with large inventories or high grades of silver are found in four genetic groups: (1) volcanogenic massive sulfide (VMS), (2) sedimentary exhalative (SEDEX), (3) lithogene, and, (4) magmatichydrothermal. Principal differences between the four groups relate to source rocks and regions, metal associations, process and timing of mineralization, and tectonic setting. These four groups may be subdivided into specific metal associations on ternary diagrams based on relative metal contents. The VMS deposits rarely contain more than 15,600 t Ag (500 Moz). Grades average 33 g/t Ag. Variable Ag- Pb-Zn-Cu-Au ± Sn concentrations are interpreted as having been derived both from shallow plutons and by leaching of the volcanic rock pile in regions of thin or no continental crust and the mineralization is syngenetic. Higher silver grades are associated with areas of abundant felsic volcanic rocks. The SEDEX deposits rarely contain more than 15,600 t Ag (500 Moz). Grades average 46 g/t Ag. Silver, lead, and zinc in relatively consistent proportions are leached from sedimentary rocks filling rift-related basins, where the continental crust is thin, and deposited as syngenetic to diagenetic massive sulfides. Pre-mineral volcanic rocks and their detritus may occur deep within the basin and gold is typically absent. Lithogene silver-rich deposits are epigenetic products of varying combinations of compaction, dewatering, meteoric water recharge, and metamorphism of rift basin-related clastic sedimentary and interbedded volcanic rocks. Individual deposits may contain more than 15,600 t Ag (500 Moz) at high grades. Ores are characterized by four well-defined metal associations, including Ag, Ag-Pb-Zn, Ag-Cu, and Ag-Co-Ni-U. Leaching, transport, and deposition of metals may occur both in specific sedimentary strata and other rock types adjacent to the rift. Multiple mineralizing events lasting 10 to 15 m.y., separated by as much as 1 b.y., may occur in a single basin

  14. Cathodic electrodeposition of mixed molybdenum tungsten oxides from peroxo-polymolybdotungstate solutions.

    Science.gov (United States)

    Kondrachova, Lilia; Hahn, Benjamin P; Vijayaraghavan, Ganesh; Williams, Ryan D; Stevenson, Keith J

    2006-12-05

    Mixed molybdenum tungsten trioxide films of varying stoichiometry (MoxW1 - xO3, 0 cathodic electrodeposition on indium tin oxide (ITO)-coated glass substrates from aqueous peroxo-polymolybdotungstate solutions. Electrochemical quartz crystal microbalance (EQCM), cyclic voltammetry, and chronocoulometry were used to gain insight into the electrodeposition mechanism. The compositional and structural properties were characterized for MoxW1 - xO3 films deposited at intermediate potentials (-0.35 V vs Ag/AgCl) and sintered at 250 degrees C using energy-dispersive spectroscopy, X-ray diffraction, and Raman spectroscopy. These studies reveal that films consist of homogeneously mixed MoxW1 - xO3, with an enriched Mo content ranging in composition from 0.4 < x < 0.7 depending upon the mol % Mo present in the deposition solution. Chronoamperometry and spectroelectrochemical measurements were conducted to estimate lithium ion diffusion coefficients and coloration efficiencies for the mixed metal oxide films in 1 M LiClO4/propylene carbonate. The subtle interplay between structural and compositional properties due to the uniform mixing of Mo and W oxide components shows that electrochromic and lithium ion transport properties are moderately enhanced relative to those of single-component WO3 and MoO3 and demonstrate improved structural stability over pure MoO3 polymorphs during electrochemical cycling.

  15. Sn-In-Ag phase equilibria and Sn-In-(Ag)/Ag interfacial reactions

    International Nuclear Information System (INIS)

    Chen Sinnwen; Lee Wanyu; Hsu Chiaming; Yang Chingfeng; Hsu Hsinyun; Wu Hsinjay

    2011-01-01

    Research highlights: → Thermodynamic models of Sn-In and Sn-In-Ag are developed using the CALPHAD approach. → Reaction layer in the Sn-In-(Ag)/Ag couples at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. → Reactions in the Sn-20 wt%In-2.8 wt%Ag/Ag couples are faster than those in the Sn-20 wt%In/Ag couples. - Abstract: Experimental verifications of the Sn-In and Sn-In-Ag phase equilibria have been conducted. The experimental measurements of phase equilibria and thermodynamic properties are used for thermodynamic modeling by the CALPHAD approach. The calculated results are in good agreement with experimental results. Interfacial reactions in the Sn-In-(Ag)/Ag couples have been examined. Both Ag 2 In and AgIn 2 phases are formed in the Sn-51.0 wt%In/Ag couples reacted at 100 and 150 deg. C, and only the Ag 2 In phase is formed when reacted at 25, 50 and 75 deg. C. Due to the different growth rates of different reaction phases, the reaction layer at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. In the Sn-20.0 wt%In/Ag couples, the ζ phase is formed at 250 deg. C and ζ/AgIn 2 phases are formed at 125 deg. C. Compared with the Sn-20 wt%In/Ag couples, faster interfacial reactions are observed in the Sn-20.0 wt%In-2.8 wt%Ag/Ag couples, and minor Ag addition to Sn-20 wt%In solder increases the growth rates of the reaction phases.

  16. Experimental study of the Ag-Sn-In phase diagram

    International Nuclear Information System (INIS)

    Vassilev, Gueorgui P.; Dobrev, Evgueni S.; Tedenac, Jean-Claude

    2005-01-01

    Combined metallographic, differential scanning calorimetry, X-ray and scanning electron microscopy studies have been performed using 27 ternary alloys. The microhardness of the α(Ag), ε(Ag 3 Sn) and ζ(Ag 4 Sn,Ag 3 In) phases has been measured. The ternary extension of the phase φ(Ag x In y Sn z , where x ∼ 0.36, y ∼ 0.61, z ∼ 0.03) has been revealed in some specimens, although the binary compound (AgIn 2 ) melts at 166 deg. C. This finding is attributed to the limited cooling rate. The solubility ranges of the solid solution and the intermetallic phases have been determined. The tin and the indium show approximately equal mutual solubility (around 2 at.%) in the ternary extensions of their Ag-Sn or Ag-In phases. The experimental data have been compared with a calculated isothermal section at 280 deg. C and with a vertical section at 2.5 at.% Ag. The thermal analyses have confirmed, in general, the temperatures of the invariant reactions in the Ag-Sn-In system as calculated by literature data

  17. Preparation of AgBr Nanoparticles in Microemulsions Via Reaction of AgNO3 with CTAB Counterion

    International Nuclear Information System (INIS)

    Husein, Maen M.; Rodil, Eva; Vera, Juan H.

    2007-01-01

    Nanoparticles of AgBr were prepared by precipitating AgBr in the water pools of microemulsions consisting of CTAB, n-butanol, isooctane and water. An aqueous solution of AgNO 3 added to the microemulsion was the source of Ag + ions. The formation of AgBr nanoparticles in microemulsions through direct reaction with the surfactant counterion is a novel approach aimed at decreasing the role of intermicellar nucleation on nanoparticle formation for rapid reactions. The availability of the surfactant counterion in every reverse micelle and the rapidity of the reaction with the counterion trigger nucleation within individual reverse micelles. The effect of the following variables on the particle size and size distribution was investigated: the surfactant and cosurfactant concentrations, moles of AgNO 3 added, and water to surfactant mole ratio, R. High concentration of the surfactant or cosurfactant, or high water content of the microemulsion favored intermicellar nucleation and resulted in the formation of large particles with broad size distribution, while high amounts of AgNO 3 favored nucleation within individual micelles and resulted in small nanoparticles with narrow size distribution. A blue shift in the UV absorption threshold corresponding to a decrease in the particle size was generally observed. Notably, the variation of the absorption peak size with the nanoparticle size was opposite to those reported by us in previous studies using different surfactants

  18. A novel Ag catalyzation process using swelling impregnation method for electroless Ni deposition on Kevlar® fiber

    Science.gov (United States)

    Pang, Hongwei; Bai, Ruicheng; Shao, Qinsi; Gao, Yufang; Li, Aijun; Tang, Zhiyong

    2015-12-01

    A novel Ag catalyzation process using swelling impregnation pretreatment method was developed for electroless nickel (EN) deposition on Kevlar fiber. Firstly, the fiber was immersed into an aqueous dimethylsulfoxide (DMSO) solution of silver nitrate to impart silver nitrate into the inner part of the fiber near the surface. Subsequently silver nitrate was reduced to metal silver nanoparticles on the fiber surface by treatment with aqueous solution of sodium borohydride. After electroless plating, a dense and homogeneous nickel coating was obtained on the fiber surface. The silver nanoparticles formed at the fiber surface functioned as a catalyst for electroless deposition as well as an anchor for the plated layer. The study also revealed that the incorporation of surfactant sodium dodecyl sulfate (SDS) in electroless nickel plating bath can enhance the adhesion strength of EN layer with the fiber surface and minimize the surface roughness of the EN coating. The Ni plated Kevlar fiber possessed excellent corrosion resistance and high tensile strength.

  19. Highly luminescent material based on Alq3:Ag nanoparticles.

    Science.gov (United States)

    Salah, Numan; Habib, Sami S; Khan, Zishan H

    2013-09-01

    Tris (8-hydroxyquinoline) aluminum (Alq3) is an organic semiconductor molecule, widely used as an electron transport layer, light emitting layer in organic light-emitting diodes and a host for fluorescent and phosphorescent dyes. In this work thin films of pure and silver (Ag), cupper (Cu), terbium (Tb) doped Alq3 nanoparticles were synthesized using the physical vapor condensation method. They were fabricated on glass substrates and characterized by X-ray diffraction, scanning electron microscope (SEM), energy dispersive spectroscopy, atomic force microscope (AFM), UV-visible absorption spectra and studied for their photoluminescence (PL) properties. SEM and AFM results show spherical nanoparticles with size around 70-80 nm. These nanoparticles have almost equal sizes and a homogeneous size distribution. The maximum absorption of Alq3 nanoparticles is observed at 300 nm, while the surface plasmon resonant band of Ag doped sample appears at 450 nm. The PL emission spectra of Tb, Cu and Ag doped Alq3 nanoparticles show a single broad band at around 515 nm, which is similar to that of the pure one, but with enhanced PL intensity. The sample doped with Ag at a concentration ratio of Alq3:Ag = 1:0.8 is found to have the highest PL intensity, which is around 2 times stronger than that of the pure one. This enhancement could be attributed to the surface plasmon resonance of Ag ions that might have increased the absorption and then the quantum yield. These remarkable result suggest that Alq3 nanoparticles incorporated with Ag ions might be quite useful for future nano-optoelectronic devices.

  20. Influence of aging treatment on deformation behavior of 96.5Sn3.5Ag lead-free solder alloy during in situ tensile tests

    International Nuclear Information System (INIS)

    Ding, Ying; Wang, Chunqing; Tian, Yanhong; Li, Mingyu

    2007-01-01

    This study investigates the influence of aging treatment on deformation behavior of 96.5Sn3.5Ag eutectic solder alloys with lower strain rate ( -3 s -1 ) during tensile tests under the scanning electron microscope. Results showed that because of the existence of Ag 3 Sn intermetallic particles and the special microstructure of β-Sn phases in Sn3.5Ag solder, grain boundary sliding was not the dominant mechanism any longer for this Pb-free solder. While the interaction of dislocations with the relatively rigid Ag 3 Sn particles began to dominate. For the as-cast specimen, accompanied by partial intragranular cracks, intergranular fracture along the grain boundaries in Sn-Ag eutectic structure or the interphase boundaries between Sn-rich dendrites and Sn-Ag eutectic phases occurred primarily in early tensile stage. However, the boundary behavior was limited by the large Ag 3 Sn particles presented along the Sn-rich dendrites boundaries after aging. Plastic flow was observed in large area, and cracks propagated in a transgranular manner across the Sn-dendrites and Sn-Ag eutectic structure

  1. Feasibility of the development of reference materials for the detection of Ag nanoparticles in food: neat dispersions and spiked chicken meat

    DEFF Research Database (Denmark)

    Grombe, Ringo; Allmaier, Günter; Charoud-Got, Jean

    2015-01-01

    as reference materials. Stability studies at 4 °C, 18 °C and 60 °C demonstrated sufficient short- and long-term stability, although particle size decreases in a linear fashion at 60 °C. The AgNP dispersions were characterized for total Ag mass fraction by ICP-OES, dissolved Ag content by ultrafiltration...... in homogeneous and stable materials. The spiked chicken materials were characterized for their total Ag mass fraction by neutron activation analysis and for the AgNP particle size by TEM and single-particle inductively coupled plasma mass spectrometry. The observed differences in particle sizes between...

  2. Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions.

    Science.gov (United States)

    Jiang, Hao; Haji-Akbari, Amir; Debenedetti, Pablo G; Panagiotopoulos, Athanassios Z

    2018-01-28

    We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald's step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.

  3. Synthesis and Characterization of Ag-Ag2O/TiO2@polypyrrole Heterojunction for Enhanced Photocatalytic Degradation of Methylene Blue

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-05-01

    Full Text Available Hybrid multi-functional nanomaterials comprising two or more disparate materials have become a powerful approach to obtain advanced materials for environmental remediation applications. In this work, an Ag-Ag2O/TiO2@polypyrrole (Ag/TiO2@PPy heterojunction has been synthesized by assembling a self-stabilized Ag-Ag2O (p type semiconductor (denoted as Ag and polypyrrole (π-conjugated polymer on the surface of rutile TiO2 (n type. Ag/TiO2@PPy was synthesized through simultaneous oxidation of pyrrole monomers and reduction of AgNO3 in an aqueous solution containing well-dispersed TiO2 particles. Thus synthesized Ag/TiO2@PPy was characterized using X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, field emission scanning electron microscopy (FE-SEM, transmission electron microscopy (TEM, and UV-Vis diffuse reflectance spectroscopy (UV-vis DSR. The photocatalytic activity of synthesized heterojunction was investigated for the decomposition of methylene blue (MB dye under UV and visible light irradiation. The results revealed that π-conjugated p-n heterojunction formed in the case of Ag/TiO2@PPy significantly enhanced the photodecomposition of MB compared to the p-n type Ag/TiO2 and TiO2@PPy (n-π heterojunctions. A synergistic effect between Ag-Ag2O and PPy leads to higher photostability and a better electron/hole separation leads to an enhanced photocatalytic activity of Ag/TiO2@PPy under both UV and visible light irradiations.

  4. Characterization of electrochemiluminescence of tris(2,2'-bipyridine)ruthenium(II) with glyphosate as coreactant in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jiye, E-mail: jin@shinshu-u.ac.j [Department of Chemistry, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Takahashi, Fumiki; Kaneko, Tsutomu; Nakamura, Toshio [Department of Chemistry, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2010-08-01

    Glyphosate, a phosphorus-containing amino acid type herbicide was used as a coreactant for studying of electrochemiluminescence (ECL) reaction of tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy){sub 3}{sup 2+}] in an aqueous solution. In a phosphate buffer solution of pH 8, glyphosate itself was known to be electrochemically inactive at glassy carbon electrode, however, it participated in a homogeneous chemical reaction with the electrogenerated Ru(bpy){sub 3}{sup 3+}, and resulted in producing Ru(bpy){sub 3}{sup 2+} species at the electrode surface. Kinetic and mechanistic information for the catalysis of glyphosate oxidation were evaluated by the steady-state voltammetric measurement with an ultramicroelectrode. The simulated cyclic voltammogram based on this mechanism was in good agreement with that obtained experimentally. ECL reaction of Ru(bpy){sub 3}{sup 2+}/glyphosate system was found to be strongly dependent on the media pH. In a pH region of 5-9, an ECL wave appeared at ca. +1.1 V vs. Ag/AgCl, which was caused by the generation of *Ru(bpy){sub 3}{sup 2+} via a Ru(bpy){sub 3}{sup 3+}-mediated oxidation of glyphosate. When pH >10, a second ECL wave was observed at ca. +1.35 V vs. Ag/AgCl, which was believed to be associated with a reaction between Ru(bpy){sub 3}{sup 3+} and the species from direct oxidation of GLYP at a GC electrode surface.

  5. Cross section homogenization analysis for a simplified Candu reactor

    International Nuclear Information System (INIS)

    Pounders, Justin; Rahnema, Farzad; Mosher, Scott; Serghiuta, Dumitru; Turinsky, Paul; Sarsour, Hisham

    2008-01-01

    The effect of using zero current (infinite medium) boundary conditions to generate bundle homogenized cross sections for a stylized half-core Candu reactor problem is examined. Homogenized cross section from infinite medium lattice calculations are compared with cross sections homogenized using the exact flux from the reference core environment. The impact of these cross section differences is quantified by generating nodal diffusion theory solutions with both sets of cross sections. It is shown that the infinite medium spatial approximation is not negligible, and that ignoring the impact of the heterogeneous core environment on cross section homogenization leads to increased errors, particularly near control elements and the core periphery. (authors)

  6. Homogenization of neutronic diffusion models

    International Nuclear Information System (INIS)

    Capdebosq, Y.

    1999-09-01

    In order to study and simulate nuclear reactor cores, one needs to access the neutron distribution in the core. In practice, the description of this density of neutrons is given by a system of diffusion equations, coupled by non differential exchange terms. The strong heterogeneity of the medium constitutes a major obstacle to the numerical computation of this models at reasonable cost. Homogenization appears as compulsory. Heuristic methods have been developed since the origin by nuclear physicists, under a periodicity assumption on the coefficients. They consist in doing a fine computation one a single periodicity cell, to solve the system on the whole domain with homogeneous coefficients, and to reconstruct the neutron density by multiplying the solutions of the two computations. The objectives of this work are to provide mathematically rigorous basis to this factorization method, to obtain the exact formulas of the homogenized coefficients, and to start on geometries where two periodical medium are placed side by side. The first result of this thesis concerns eigenvalue problem models which are used to characterize the state of criticality of the reactor, under a symmetry assumption on the coefficients. The convergence of the homogenization process is proved, and formulas of the homogenized coefficients are given. We then show that without symmetry assumptions, a drift phenomenon appears. It is characterized by the mean of a real Bloch wave method, which gives the homogenized limit in the general case. These results for the critical problem are then adapted to the evolution model. Finally, the homogenization of the critical problem in the case of two side by side periodic medium is studied on a one dimensional on equation model. (authors)

  7. Fabrication and size control of Ag nano particles

    International Nuclear Information System (INIS)

    Farbod, M.; Batvandi, M. R.

    2012-01-01

    The objective of this research was to fabricate Ag nanoparticles and control their sizes. Colloidal Ag nanoparticles with particle size of 30 nm were prepared by dissolving AgNO 3 in ethanol and through the chemical reduction of Ag + in alcohol solution. To control the nanoparticle size, different samples were fabricated by changing the AgNO 3 and stabilizer concentrations and the effects of different factors on the shape and size of nanoparticles were investigated. The samples were characterized using Scanning Electron Microscopy and EDX analysis. The results showed that by increasing the AgNO 3 concentration, the average size of nanoparticles increases and nanoparticles lose their spherical shape. Also, we found that by using the stabilizer, it is possible to produce stable nanoparticles but increasing the stabilizer concentration caused an increase in size of nanoparticles. Fabrication of nanoparticles without using stabilizer was achieved but the results showed the nanoparticles size had a growth of 125 nm/h in the alcoholic media.

  8. Fabrication of Ti–Nb–Ag alloy via powder metallurgy for biomedical applications

    International Nuclear Information System (INIS)

    Wen, Ming; Wen, Cuie; Hodgson, Peter; Li, Yuncang

    2014-01-01

    Highlights: • The Ti–26Nb–5Ag alloy sintered by SPS showed a dense structure without any pores. • Nanostructure Ag was distributed in the Ti–26Nb–5Ag alloy sintered by SPS. • The SPS sample displayed higher strength than that of traditional sintered sample. - Abstract: Ti and some of its alloys are widely used as orthopedic implants. In the present study, Ti–26Nb–5Ag alloys were prepared by mechanical alloying followed by vacuum furnace sintering or spark plasma sintering (SPS). The microstructure and mechanical properties of the Ti–Nb–Ag alloys were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX), compressive and micro-hardness tests. The effect of different sintering methods on the microstructure and properties of Ti–Nb–Ag alloy was discussed. The results showed that the titanium alloy sintered by vacuum furnace exhibited a microstructure consisting of α, β and a small amount of α″ martensite phase; whilst the SPS sintered alloy exhibited a microstructure consisting of α, β and a small amount of α″ martensite phase, as well as a nanostructured Ag homogeneously distributed at the boundaries of the β phases. The Ti–Nb–Ag alloy sintered by SPS possessed fracture strength nearly 3 times of the alloy sintered by vacuum furnace

  9. Thermoluminescence study of Cu and Ag doped lithium tetraborate samples synthesized by water/solution assisted method

    Energy Technology Data Exchange (ETDEWEB)

    Thiyagarajan, S.; Kumar, S.; Vallejo, M.; Sosa, M. [Universidad de Guanajuato, Departamento de Ingenieria Fisica, 37150 Leon, Guanajuato (Mexico); Velusamy, J., E-mail: thiya93@gmail.com [Centro de Investigaciones en Optica, Apdo. Postal 1-948, Leon, Guanajuato (Mexico)

    2016-10-15

    In this paper lithium tetraborate (Li{sub 2}B{sub 4}O{sub 7}) was produced by water/solution assisted synthesis method. Transition metals, such as Cu and Ag were used to dope Li{sub 2}B{sub 4}O{sub 7} in order to enhance its thermoluminescent properties. The heating temperature parameters for synthesis were 750 degrees Celsius for 2 hours and 150 degrees Celsius for another 2 hours. The samples produced by water assisted method were doped at different doping percentage (0.08, 0.12, 0.5, 0.1 and 1%) of Cu and Ag. Pellets of samples were prepared and there were irradiated with different doses (58, 100, 500 and 945 mGy) by using and X-ray source. The characteristics of undoped and doped Li{sub 2}B-4O{sub 7} were determined by X-ray diffraction (XRD), scanning electron microscopy (Sem), photoluminescence and ultraviolet-visible spectroscopy. The chemical composition and their morphologies of the obtained Li{sub 2}B{sub 4}O{sub 7} and Li{sub 2}B{sub 4}O{sub 7}:Cu, Ag was confirmed by XRD and Sem results. The most intense peak of the XRD pattern of the lithium tetraborate sample was determined by comparing to the reference data and was found to have a tetragonal structure. The thermoluminescent glow curves of the pellets exposed to different doses exhibited a clear response to X-ray irradiation. Especially Li{sub 2}B{sub 4}O{sub 7}:Cu presented a good glow curve in all kind of doses. The experimental results showed that this could have good potential applications in radiation dosimetry. The order of kinetics (b), frequency factor (s) and activation energy (E) or the trapping parameters were calculated using peak shape method. (Author)

  10. The creep behavior of In-Ag eutectic solder joints

    International Nuclear Information System (INIS)

    Reynolds, H.L.; Kang, S.H.; Morris, J.W. Jr.; Univ. of California, Berkeley, CA

    1999-01-01

    The addition of 3 wt.% Ag to In results in a eutectic composition with improved mechanical properties while only slightly lowering the melting temperature. Steady-state creep properties of In-Ag eutectic solder joints have been measured using constant load tests at 0, 30, 60, and 90 C. Constitutive equations are derived to describe the creep behavior. The data are well represented by an equation of the form proposed by Dorn: a power-law equation applies to each independent creep mechanism. Two parallel mechanisms were observed for the In-Ag eutectic joints. The high-stress mechanism is a bulk mechanism with a thermal dependence dominated by the thermal dependence of creep in the In-rich matrix. The low-stress mechanism is a grain boundary mechanism. Results of this work are discussed with regard to creep behavior of typical eutectic systems

  11. Ag/α-Fe2O3 hollow microspheres: Preparation and application for hydrogen peroxide detection

    International Nuclear Information System (INIS)

    Kang, Xinyuan; Wu, Zhiping; Liao, Fang; Zhang, Tingting; Guo, Tingting

    2015-01-01

    In this paper, we demonstrated a simple approach for preparing α-Fe 2 O 3 hollow spheres by mixing ferric nitrate aqueous and glucose in 180 °C. The glucose was found to act as a soft template in the process of α-Fe 2 O 3 hollow spheres formation. Ag/α-Fe 2 O 3 hollow nanocomposite was obtained under UV irradiation without additional reducing agents or initiators. Synthesized Ag/α-Fe 2 O 3 hollow composites exhibited remarkable catalytic performance toward H 2 O 2 reduction. The electrocatalytic activity mechanism of Ag/α-Fe 2 O 3 /GCE were discussed toward the reduction of H 2 O 2 in this paper. - Graphical abstract: Glucose is carbonized as carbon balls in the 180 °C hydrothermal carbonization process, which plays a role of a soft template. Carbon spherical shell is rich in many hydroxyls, which have good hydrophilicity and surface reactivity. When Fe(NO 3 ) 3 is added to the aqueous solution of Glucose, the hydrophilic -OH will adsorb Fe 3+ to form coordination compound by coordination bond. α-FeOOH is formed on the surface of carbon balls by hydrothermal reaction. After calcination at 500 °C, carbon spheres react with oxygen to form carbon dioxide, which disappears in the air. Meanwhile α-FeOOH is calcined to form α-Fe 2 O 3 hollow spheres.

  12. Methods to homogenize electrochemical concentration cell (ECC ozonesonde measurements across changes in sensing solution concentration or ozonesonde manufacturer

    Directory of Open Access Journals (Sweden)

    T. Deshler

    2017-06-01

    Full Text Available Ozone plays a significant role in the chemical and radiative state of the atmosphere. For this reason there are many instruments used to measure ozone from the ground, from space, and from balloons. Balloon-borne electrochemical cell ozonesondes provide some of the best measurements of the ozone profile up to the mid-stratosphere, providing high vertical resolution, high precision, and a wide geographic distribution. From the mid-1990s to the late 2000s the consistency of long-term records from balloon-borne ozonesondes has been compromised by differences in manufacturers, Science Pump (SP and ENSCI (EN, and differences in recommended sensor solution concentrations, 1.0 % potassium iodide (KI and the one-half dilution: 0.5 %. To investigate these differences, a number of organizations have independently undertaken comparisons of the various ozonesonde types and solution concentrations, resulting in 197 ozonesonde comparison profiles. The goal of this study is to derive transfer functions to allow measurements outside of standard recommendations, for sensor composition and ozonesonde type, to be converted to a standard measurement and thus homogenize the data to the expected accuracy of 5 % (10 % in the stratosphere (troposphere. Subsets of these data have been analyzed previously and intermediate transfer functions derived. Here all the comparison data are analyzed to compare (1 differences in sensor solution composition for a single ozonesonde type, (2 differences in ozonesonde type for a single sensor solution composition, and (3 the World Meteorological Organization's (WMO and manufacturers' recommendations of 1.0 % KI solution for Science Pump and 0.5 % KI for ENSCI. From the recommendations it is clear that ENSCI ozonesondes and 1.0 % KI solution result in higher amounts of ozone sensed. The results indicate that differences in solution composition and in ozonesonde type display little pressure dependence at pressures

  13. Synthesis and Characterization of Ag(I) and Pd(II) Complexes with a Pyridine Substituted N-Heterocyclic Carbene Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ga Young; Jung, Hyun Jin; Lee, Dong Heon [Chonbuk National Univ., Jeonju (Korea, Republic of); Park, Gyung Se [Kunsan National Univ., Kunsan (Korea, Republic of)

    2010-06-15

    We have used our new tridentate pyridine substituted N-heterocyclic carbene to generate an interesting trinuclear [((MepyCH{sub 2}){sub 2}-Im){sub 3}Ag{sub 3}]{sup 3+} complex, displaying very short Ag-Ag separations. A Pd(II)-NHC complex was prepared from [((MepyCH{sub 2}){sub 2}-Im){sub 3}Ag{sub 3}]{sup 3+} via a facile transmetallation, leading to a dimeric [(MepyCH{sub 2}){sub 2}-ImPdCl]{sub 2}{sup 2+} complex. Future plans are underway for the survey of the potential applications of these new NHC complexes as luminesent materials or homogeneous catalysts. Since Arduengo's discovery of the first isolable free carbene in 1991, N-heterocyclic carbenes (NHC) have been extensively utilized as ligands for transition metals. NHC are generally more stable than two extreme types of carbenes, the Fischer and the Schrock carbenes. They are good σ donors like most tertiary phosphins, PR{sub 3}, but the π-bonding with the metal is rather weak. The thriving studies of NHC-coordinated metal complexes produced a wide range of applications from homogeneous catalysts to materials science.

  14. Two-dimensional Haar wavelet Collocation Method for the solution of Stationary Neutron Transport Equation in a homogeneous isotropic medium

    International Nuclear Information System (INIS)

    Patra, A.; Saha Ray, S.

    2014-01-01

    Highlights: • A stationary transport equation has been solved using the technique of Haar wavelet Collocation Method. • This paper intends to provide the great utility of Haar wavelets to nuclear science problem. • In the present paper, two-dimensional Haar wavelets are applied. • The proposed method is mathematically very simple, easy and fast. - Abstract: This paper emphasizes on finding the solution for a stationary transport equation using the technique of Haar wavelet Collocation Method (HWCM). Haar wavelet Collocation Method is efficient and powerful in solving wide class of linear and nonlinear differential equations. Recently Haar wavelet transform has gained the reputation of being a very effective tool for many practical applications. This paper intends to provide the great utility of Haar wavelets to nuclear science problem. In the present paper, two-dimensional Haar wavelets are applied for solution of the stationary Neutron Transport Equation in homogeneous isotropic medium. The proposed method is mathematically very simple, easy and fast. To demonstrate about the efficiency of the method, one test problem is discussed. It can be observed from the computational simulation that the numerical approximate solution is much closer to the exact solution

  15. Facile preparation of Ag-Cu bifunctional electrocatalysts for zinc-air batteries

    International Nuclear Information System (INIS)

    Jin, Yachao; Chen, Fuyi

    2015-01-01

    Highlights: • Ag-Cu dendrites are observed for the first time to exhibit high catalytic activity for oxygen reduction reaction. • Ag-Cu dendrites are directly synthesized through galvanic displacement on the current collector layer made of Ni foams. • A bifunctional air cathode is fabricated using Ag-Cu dendrites as a carbon-free, binder-free catalyst layer. • Both the primary and rechargeable zinc–air batteries fabricated by Ag-Cu catalysts exhibit excellent performance. - ABSTRACT: An inexpensive, facile galvanic displacement reaction for the direct growth of silver–copper (Ag-Cu) catalysts on nickel foams is developed for the first time. The resulting Ag-Cu catalysts exhibit dendritic morphologies. Ag and Cu atoms are in their metallic state while the presence of CuO and Cu 2 O are limited on the surface of catalyst. The catalysts demonstrate high catalytic activity for oxygen reduction reaction (ORR) in alkaline solution, as evaluated by both linear scanning voltammetry and rotating disk electrode polarization measurements. The ORR catalysed by Ag-Cu catalyst in alkaline solution proceeds through a four-electron pathway. An air cathode is fabricated using Ag-Cu catalyst as a carbon-free, binder-free catalyst layer. Using this Ag-Cu catalyst based air cathode, both the primary and rechargeable zinc-air batteries show excellent battery performance. The specific capacity of the primary zinc-air battery is 572 mAh g −1 . Especially, the rechargeable zinc-air battery shows high round-trip efficiency, appealing stability at a long charge-discharge cycle period

  16. Bacterial adhesion forces to Ag-impregnated contact lens cases and transmission to contact lenses.

    Science.gov (United States)

    Qu, Wenwen; Busscher, Henk J; van der Mei, Henny C; Hooymans, Johanna M M

    2013-03-01

    To measure adhesion forces of Pseudomonas aeruginosa, Staphylococcus aureus, and Serratia marcescens to a rigid contact lens (CL), standard polypropylene, and Ag-impregnated lens cases using atomic force microscopy and determine bacterial transmission from lens case to CL. Adhesion forces of bacterial strains to Ag-impregnated and polypropylene lens cases and a rigid CL were measured using atomic force microscopy. Adhesion forces were used to calculate Weibull distributions, from which transmission probabilities from lens case to CL were derived. Transmission probabilities were compared with actual transmission of viable bacteria from a lens case to the CL in 0.9% NaCl and in an antimicrobial lens care solution. Bacterial transmission probabilities from polypropylene lens cases based on force analysis coincided well for all strains with actual transmission in 0.9% NaCl. Bacterial adhesion forces on Ag-impregnated lens cases were much smaller than that on polypropylene and CLs, yielding a high probability of transmission. Comparison with actual bacterial transmission indicated bacterial killing due to Ag ions during colony-forming unit transmission from an Ag-impregnated lens case, especially for P. aeruginosa. Transmission of viable bacteria from Ag-impregnated lens cases could be further decreased by use of an antimicrobial lens care solution instead of 0.9% NaCl. Bacterial transmission probabilities are higher from Ag-impregnated lens cases than from polypropylene lens cases because of small adhesion forces, but this is compensated for by enhanced bacterial killing due to Ag impregnation, especially when in combination with an antimicrobial lens care solution. This calls for a balanced combination of antimicrobial lens care solutions and surface properties of a lens case and CL.

  17. Tunneling-recombination luminescence between Ag0 and Ag2+ in KCl:AgCl

    International Nuclear Information System (INIS)

    Delbecq, C.J.; Dexter, D.L.; Yuster, P.H.

    1978-01-01

    Appropriate treatment of a KCl:AgCl crystal results in the trapping of electrons as silver atoms, Ag 0 , and positive holes as AgCl 4 2- , Ag 2+ , centers. Optical excitation of Ag 0 in such a crystal at T 0 and Ag 2+ pairs, similar to the Ag 0 -Cl 2 - tunneling-recombination studies we previously reported. We have shown that Ag 2+ centers are involved in the emission process by preferentially orienting the anisotropic Ag 2+ at 6 K by excitation with polarized light and observing that the afterglow is polarized. Upon warming to 50 K, where the preferentially oriented Ag 2+ can change orientation, a strong reversal in the degree of polarization occurs which finally decays to zero. The characteristics of this luminescence can be understood if we assume: (i) a tunneling-recombination mechanism in which the orientation of the electric vector of the emitted radiation depends on the position of the Ag 0 relative to the Ag 2+ and (ii) the tunneling is anisotropic and depends on the location of the Ag 0 relative to the anisotropic Ag 2+ . The latter assumption is based on the tetragonal (d-like) symmetry of the Ag 2+ complex. Good quantitative agreement between theory and experiment has been obtained on the decay kinetics, the degree of polarization, and the polarization reversal

  18. Fourier-Accelerated Nodal Solvers (FANS) for homogenization problems

    Science.gov (United States)

    Leuschner, Matthias; Fritzen, Felix

    2017-11-01

    Fourier-based homogenization schemes are useful to analyze heterogeneous microstructures represented by 2D or 3D image data. These iterative schemes involve discrete periodic convolutions with global ansatz functions (mostly fundamental solutions). The convolutions are efficiently computed using the fast Fourier transform. FANS operates on nodal variables on regular grids and converges to finite element solutions. Compared to established Fourier-based methods, the number of convolutions is reduced by FANS. Additionally, fast iterations are possible by assembling the stiffness matrix. Due to the related memory requirement, the method is best suited for medium-sized problems. A comparative study involving established Fourier-based homogenization schemes is conducted for a thermal benchmark problem with a closed-form solution. Detailed technical and algorithmic descriptions are given for all methods considered in the comparison. Furthermore, many numerical examples focusing on convergence properties for both thermal and mechanical problems, including also plasticity, are presented.

  19. Verification of homogenization in fast critical assembly analyses

    International Nuclear Information System (INIS)

    Chiba, Go

    2006-01-01

    In the present paper, homogenization procedures for fast critical assembly analyses are investigated. Errors caused by homogenizations are evaluated by the exact perturbation theory. In order to obtain reference solutions, three-dimensional plate-wise transport calculations are performed. It is found that the angular neutron flux along plate boundaries has a significant peak in the fission source energy range. To treat this angular dependence accurately, the double-Gaussian Chebyshev angular quadrature set with S 24 is applied. It is shown that the difference between the heterogeneous leakage theory and the homogeneous theory is negligible, and that transport cross sections homogenized with neutron flux significantly underestimate neutron leakage. The error in criticality caused by a homogenization is estimated at about 0.1%Δk/kk' in a small fast critical assembly. In addition, the neutron leakage is overestimated by both leakage theories when sodium plates in fuel lattices are voided. (author)

  20. Kinetic and analytical study on precipitation reactions with 110AgNO3 of some di(β-chloroethyl)amine derivatives and hydrochlorides with esters of N-(p-aminobenzoyl)-L-aspartic acid as carriers from dimethylformamide - water solution

    International Nuclear Information System (INIS)

    Cecal, Al.; Sunel, V.; Ghimiciu, L.

    1983-01-01

    The kinetics of precipitation reactions with 110 AgNO 3 of some di(β-chloroethyl) amine derivates and hydrochlorides with esters of N-(p-aminobenzoyl)-L-aspartic acid as carriers in dimethylformamide-water mixture, were studied. The rate constants of these reactions were of the order of 10 -4 lxmol -1 xmin -1 . The concentrations of the corresponding hydrochloride solutions were measured by radiometric titration with 110 AgNO 3 solution of given concentration. (author)

  1. Preparation and self-sterilizing properties of Ag@TiO2-styrene-acrylic complex coatings.

    Science.gov (United States)

    Zhou, Xiang-dong; Chen, Feng; Yang, Jin-tao; Yan, Xiao-hui; Zhong, Ming-qiang

    2013-04-01

    In this study, we report a simple and cost-effective method for self-sterilized complex coatings obtained by Ag@TiO2 particle incorporation into styrene-acrylic latex. The Ag@TiO2 particles were prepared via a coupling agent modification process. The composite latices characterized by transmission electron microscopy (TEM) study were highly homogeneous at the nanometric scale, and the Ag@TiO2 particles were well dispersed and exhibited an intimate contact between both the organic and inorganic components. The Ag@TiO2 nanoparticles significantly enhanced the absorption in the visible region and engendered a good heat-insulating effect of the complex coatings. Moreover, the Ag@TiO2 nanoparticle incorporation into this polymer matrix renders self-sterilized nanocomposite materials upon light excitation, which are tested against Escherichia coli and Staphylococcus aureus. The complex coatings display an impressive performance in the killing of all micro-organisms with a maximum for a Ag@TiO2 loading concentration of 2-5 wt.%. The weathering endurance of the complex coating was also measured. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Tunable fluorescence emission of ternary nonstoichiometric Ag-In-S alloyed nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jian, E-mail: dhjfeng@ciac.jl.cn; Yang Xiurong, E-mail: xryang@ciac.jl.cn [Chinese Academy of Sciences, State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry (China)

    2012-08-15

    Low toxic, nonstoichiometric colloidal Ag-In-S ternary quantum dots with different Ag content were synthesized by a one-pot hot-injection method based on the reaction of metal acetylacetonates with sulfur dissolved in octadecene. X-ray diffraction (XRD), transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to characterize the size, structure, and morphology of these samples. ICP-MS was employed to analyze the compositions of Ag-In-S nanocrystals. The optical properties were characterized by UV-Vis absorption, photoluminescence (PL) spectroscopy, and time-resolved photoluminescence. Varying the fraction of cationic and capping agents, the compositions of Ag-In-S nanocrystals were precisely controlled. XRD and HRTEM results indicate the compositional homogeneity of Ag-In-S. The emission spectra across the different compositions exhibiting a single bandgap feature further confirm the formation of Ag-In-S alloy NCs, rather than phase separated Ag{sub 2}S and In{sub 2}S{sub 3}. Composition-dependent tunable PL emissions have been observed. The relative PL quantum yield is up to 16 %, which exhibited substantially enhanced comparing with the stoichiometric AgInS{sub 2} semiconductor core QDs reported in previous literature. The PL decay curve of Ag-In-S has a biexponential characteristic, which indicates that the recombination of an electron and a hole is dominated by the surface defect and the recombination process associated with internal traps is reduced significantly. The large Stokes shift between the absorption peaks and their emissions should inhibit the reabsorption and Foerster energy transfer between Ag-In-S nanocrystals, which provides the alternative in the further applications where high-concentrations of nanocrystals are needed.

  3. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.

    Science.gov (United States)

    Chen, Mian; Zhang, Erlin; Zhang, Lan

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Construction of Ag/AgCl nanostructures from Ag nanoparticles as high-performance visible-light photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan; Liu, Dongzhi; Wang, Tianyang; Li, Wei [Tianjin University, School of Chemical Engineering and Technology (China); Hu, Wenping [Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (China); Zhou, Xueqin, E-mail: zhouxueqin@tju.edu.cn [Tianjin University, School of Chemical Engineering and Technology (China)

    2016-11-15

    A combined strategy of in situ oxidation and assembly is developed to prepare Ag/AgCl nanospheres and nanocubes from Ag nanoparticles under room temperature. It is a new facile way to fabricate Ag/AgCl with small sizes and defined morphologies. Ag/AgCl nanospheres with an average size of 80 nm were achieved without any surfactants, while Ag/AgCl nanocubes with a mean edge length of 150 nm were obtained by introduction of N-dodecyl-N,N-dimethyl-2-ammonio-acetate. The possible formation mechanism involves the self-assembly of AgCl nanoparticles, Ostwald ripening and photoreduction of Ag{sup +} into Ag{sup 0} by the room light. The as-prepared Ag/AgCl nanospheres and nanocubes exhibit excellent photocatalytic activity and stability toward degradation of organic pollutants under visible-light irradiation. It is demonstrated that Ag/AgCl nanocubes display enhanced photocatalytic activity in comparison with Ag/AgCl nanospheres due to the more efficient charge transfer. This work may pave an avenue to construct various functional materials via the assembly strategy using nanoparticles as versatile building blocks.

  5. Design of Stirrer Impeller with Variable Operational Speed for a Food Waste Homogenizer

    OpenAIRE

    Idris A. Kayode; Emmanuel O. B. Ogedengbe; Marc A. Rosen

    2016-01-01

    A conceptualized impeller called KIA is designed for impact agitation of food waste in a homogenizer. A comparative analysis of the performance of KIA is made with three conventional impeller types, Rushton, Anchor, and Pitched Blade. Solid–liquid mixing of a moisture-rich food waste is simulated under various operational speeds, in order to compare the dispersions and thermal distributions at homogenous slurry conditions. Using SolidWorks, the design of the impellers employs an Application P...

  6. In situ fabrication of AgI films on various substrates

    International Nuclear Information System (INIS)

    Zheng, Z.; Liu, A.R.; Wang, S.M.; Huang, B.J.; Ma, X.M.; Zhao, H.X.; Li, D.P.; Zhang, L.Z.

    2008-01-01

    A facile solution-phase chemical route is developed to directly construct silver iodide (AgI) films/crystals on various substrates including silver foil, silicon wafer and glass, etc. The resulting AgI films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The AgI films with different morphologies can be obtained by controlling the reaction parameters. This method is a simple and fast way for in situ deposition of AgI crystals/films on different substrates. These films may be applied in chemical sensing systems and solid-state batteries as solid electrolytes

  7. Thermodynamic assessments of the Ag-Er and Er-Y systems

    International Nuclear Information System (INIS)

    Wang, S.L.; Wang, C.P.; Liu, X.J.; Tang, A.T.; Pan, F.S.; Ishida, K.

    2010-01-01

    The phase diagrams and thermodynamic properties in the Ag-Er and Er-Y binary systems have been assessed by using the CALPHAD (Calculation of Phase Diagrams) method on the basis of the experimental data including the thermodynamic properties and phase equilibria. The Gibbs free energies of the liquid, bcc, fcc, and hcp phases were described by the subregular solution model with the Redlich-Kister equation, and those of intermetallic compounds (Ag 2 Er and AgEr phases) were treated as stoichiometric compounds, and Ag 51 Er 14 phase was modeled by the sublattice model in the Ag-Er binary system. The thermodynamic parameters of the Ag-Er and Er-Y binary systems were obtained, and an agreement between the calculated results and experimental data was obtained for each binary system.

  8. Characterization of rich in calcium materials using X-ray selective absorbers

    International Nuclear Information System (INIS)

    Guereca, G.; Ruvalcaba, J.L.

    2004-01-01

    For Particle Induced X-ray Emission Spectroscopy (PIXE) and X-ray Fluorescence Technique (FRX), the analysis of materials rich in one or two elements may present some difficulties due to high counting rates and saturation effects in X-ray detectors. In this case, it is possible to use selective absorbers in order to reduce the intensity of the major elements with low attenuation for the X-rays of other elements of the material. Using selective absorbers, the detection limits and the sensitivity are increased. For rich Ca materials (shells, bone, teeth and stucco, for instance), the high intensity of Ca X-rays interferes with the detection of lighter and heavier elements. Cl, Ar and Ag compounds are good candidates for Ca selective absorbers, but only Ag and Ar may have a practical absorber thickness. A selective absorber for Ca X-rays using a combination of thin Ag films and a flux of Ar and He was tested at the external beam setup of the Tandem Pelletron Accelerator for PIXE measurements. The improvement on elements detection on bone and colored stucco is shown. (Author) 8 refs., 2 tabs., 8 figs

  9. Determining the effects of green chemistry synthesized Ag-nisin nanoparticle on macrophage cells.

    Science.gov (United States)

    Moein, Masood; Imani Fooladi, Abbas Ali; Mahmoodzadeh Hosseini, Hamideh

    2018-01-01

    Bacteriocins are low molecular weight substances produced through post transcriptional changes. These molecules are easily degraded in mammalian gut by proteolytic enzymes especially protease. Nisin is a peptide with 34 aa and its structure contains a pentacyclic lanthionine and 4 beta metyllanthionine residues. Different formulations have been designed for nisin. Since "green synthesis" is a progressive method to prepare anti-microbial and anti-cancer compounds, this study aimed at green synthesis of nisin metal compounds to be used lower concentration still exerting nisin effects. For this purpose, a 1 mg/ml nisin solution was added to a 1 mM silver nitrate solution and incubated to synthesis nano Ag-nisin, then the optical density of new solution was detected using UV spectroscopy. To determine biomolecules in the Ag-nisin solution, the FTIR method was employed. The size and morphology of Ag-nisin was measured by TEM. The toxicity, inflammatory cytokines production, and intracellular ROS quantity was evaluated using MTT, ELISA and flow-cytometry. XRD pattern indicated the silver crystals in Ag-nisin solution. In addition, FTRI findings showed that the carbonyl groups of amino acid are potently able to bind to metal nanoparticles, cover, and prevent them from particle agglomeration. Treating macrophage cells with 10, 25, 50 and 100 μg/ml of Ag-nisin had no significant effect on the cell viability and intracellular ROS quantity compared to the control group. In addition, different concentrations of Ag-nisin had no effect on the IL-10 and TNF-α levels but caused an increased level of IL-12 in comparison with the control group. In the current study, for the first time, green synthesize was used to prepare Ag-nisin particles. The synthesized nanoparticle is able to induce inflammatory activity via increasing IL-12 without any change in the TNF-α level in macrophage cells. Copyright © 2017. Published by Elsevier Ltd.

  10. Electrocatalytic activity and stability of Ag-MnOx/C composites toward oxygen reduction reaction in alkaline solution

    International Nuclear Information System (INIS)

    Wu, Qiumei; Jiang, Luhua; Qi, Luting; Yuan, Lizhi; Wang, Erdong; Sun, Gongquan

    2014-01-01

    Ag-MnO x /C composites were prepared using AgNO 3 and KMnO 4 as the precursors and Vulcan XC-72 as the support. The physical properties of the Ag-MnO x /C composites were investigated via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The activity and the stability of the series of Ag-MnO x /C composites toward the oxygen reduction reaction (ORR) in alkaline media were investigated through the electrochemical techniques. The results show that the main species MnO 2 and Ag 2 O in the fresh sample convert into Mn 3 O 4 and Ag(0), respectively, after the heat treatment in N 2 at 300 °C (Ag-MnO x /C-300). The Ag-MnO x /C-300 sample shows the highest activity toward the ORR, with the half-wave potential of the ORR shifting negatively only 0.035 V compared to that on the commercial 40 wt. % Pt/C (JM). The electron transfer number during the ORR on the Ag-MnO x /C composite increases with the value close to four after the heat treatment at 300 °C, which is mainly attributed to the formation of Ag(0), rather than Mn 3 O 4 . The heat treatment brings about a better catalytic stability of the composite, and no obviously negative shift takes place for the half-wave potential of the ORR on the Ag-MnO x /C-300 composite after 1000 cycles accelerated aging test. The maximum power density of the zinc-air battery with the Ag-MnO x /C-300 air electrode reaches up to 130 mW cm −2 , higher than those based on the Pd/C and Pt/C cathode catalysts, which shows that the Ag-MnO x /C-300 composite is a promising candidate as the catalyst for the air electrode

  11. Electrochemical behaviour of silver in borate buffer solutions

    International Nuclear Information System (INIS)

    Zaky, Ayman M.; Assaf, Fawzi H.; Abd El Rehim, Sayed S.; Mohamed, Basheer

    2004-01-01

    The electrochemical behaviour of Ag in aqueous 0.15 M borax and 0.15 M boric acid buffer solution was studied under various conditions using cyclic voltammetry and potentiostatic techniques. It was found that the anodic polarization curve of Ag in borate buffer solution was characterized by the appearance of two potential regions, active and passive, prior to the oxygen evolution reaction. The active potential region was characterized by the appearance of three anodic peaks, the first two peaks A 1 and A 2 correspond to the oxidation of Ag and formation of [Ag(OH) 2 ] - soluble compound and a passive film of Ag 2 O on the electrode surface. The third anodic peak corresponds to the conversion of both [Ag(OH) 2 ] - and Ag 2 O to Ag 2 O 2 . X-ray diffraction patterns confirmed the existence of Ag 2 O and Ag 2 O 2 passive layers on the electrode surface potentiodynamically polarized up to 800 mV. Potentiostatic current transient measurements showed that the formation of Ag 2 O and Ag 2 O 2 involves a nucleation and growth mechanism under diffusion control

  12. Homogeneous SLOWPOKE reactor for the production of radio-isotope. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Busatta, P.; Bonin, H.W. [Royal Military College of Canada, Kingston, Ontario (Canada)]. E-mail: paul.busatta@rmc.ca; bonin-h@rmc.ca

    2006-07-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP Monte Carlo reactor calculation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether natural convection can still effectively cool the reactor using the modeling software FEMLAB. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  13. Homogeneous SLOWPOKE reactor for the production of radio-isotope. A feasibility study

    International Nuclear Information System (INIS)

    Busatta, P.; Bonin, H.W.

    2006-01-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP Monte Carlo reactor calculation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether natural convection can still effectively cool the reactor using the modeling software FEMLAB. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  14. Commensurability effects in holographic homogeneous lattices

    International Nuclear Information System (INIS)

    Andrade, Tomas; Krikun, Alexander

    2016-01-01

    An interesting application of the gauge/gravity duality to condensed matter physics is the description of a lattice via breaking translational invariance on the gravity side. By making use of global symmetries, it is possible to do so without scarifying homogeneity of the pertinent bulk solutions, which we thus term as “homogeneous holographic lattices.' Due to their technical simplicity, these configurations have received a great deal of attention in the last few years and have been shown to correctly describe momentum relaxation and hence (finite) DC conductivities. However, it is not clear whether they are able to capture other lattice effects which are of interest in condensed matter. In this paper we investigate this question focusing our attention on the phenomenon of commensurability, which arises when the lattice scale is tuned to be equal to (an integer multiple of) another momentum scale in the system. We do so by studying the formation of spatially modulated phases in various models of homogeneous holographic lattices. Our results indicate that the onset of the instability is controlled by the near horizon geometry, which for insulating solutions does carry information about the lattice. However, we observe no sharp connection between the characteristic momentum of the broken phase and the lattice pitch, which calls into question the applicability of these models to the physics of commensurability.

  15. Study on synthesis of ultrafine Cu–Ag core–shell powders with high electrical conductivity

    International Nuclear Information System (INIS)

    Peng Yuhsien; Yang Chihhao; Chen Kuanting; Popuri, Srinivasa R.; Lee, Ching-Hwa; Tang, Bo-Shin

    2012-01-01

    Highlights: ► This synthesis method is relatively facile, novel and eco-friendly. ► Toxic agents were not used for chelating agent, reductant or dispersant in our method. ► The reaction can under room temperature for energy saving purpose. ► Cu–Ag core–shell powders with homogeneous cover-silver layer. ► The resistivity of Cu–Ag core–shell powders has the same value as the pure silver. - Abstract: Cu–Ag composite powders with high electrical conductivity were synthesized by electroless plating of silver sulfate, copper powders with eco-friendly sodium citrate as reducing agent, dispersant and chelating agent in an aqueous system. The influences of sodium citrate/Ag ratio on Ag coatings of Cu powders were investigated. Ag was formed a dense coating on the surface of Cu powders at a molar ratio of sodium citrate/Ag = 0.07/1. SEM showed an uniformity of Ag coatings on Cu powders. SEM-EDX also revealed that Cu cores were covered by Ag shells on the whole. The surface composition analysis by XPS indicated that without Cu or Ag atoms in the surface were oxidized. The resistivity measurements of Cu–Ag paste shows that they have closer resistivity as the pure silver paste's after 250 °C for 30 min heat-treatment (2.55 × 10 −4 Ω cm) and 350 °C for 30 min heat-treatment (1.425 × 10 −4 Ω cm).

  16. Phase formation in the Ag2O - MgO - MoO3 system and the crystal structure of new double molybdate Ag2Mg2(MoO4)3

    International Nuclear Information System (INIS)

    Tsyrenova, G.D.; Khajkina, E.G.; Khobrakova, Eh.T.; Solodovnikov, S.F.

    2001-01-01

    The phase correlations in subsolidus area of the Ag 2 O - MgO - MoO 3 system were studied, the Ag 2 MoO 4 - MgMoO 4 polythermal cross-section was investigated and its T-x diagram was constructed. X-ray diffraction and thermal analytic researches were conducted. The formation of the new double Ag 2 Mg 2 (MoO 4 ) 3 molybdates relating to the structural group Na 2 Mg 5 (MoO 4 ) 6 was established, and its structure (a=6.978(1), b=8.715(2), c=10.294(2) A, α=107.56(3) Deg, β=105.11(3) Deg, γ=103.68(3) Deg, Z=2, sp. gr. P 1-bar, R=0.038) was determined. The mixed carcass from the twin MgO 6 -octahedrons and MoO 4 -tetrahedrons, in which blankness the Ag atoms are arranged, stand out in the structure.The character of disordering in the part of Ag + is analogous to previously found one in the Ag 2 Zn 2 (MoO 4 ) 3 structure. The possible limits in the fields of homogeneity of silver-magnesium molybdate and its analogs, as well as the differences their structure from the structure of isotopic sodium-containing phases, are discussed [ru

  17. Structural mechanical and antibacterial properties of HPMC/SF-AgNPs nanocomposite films

    Science.gov (United States)

    Harish, K. V.; Rao, B. Lakshmeesha; Asha, S.; Vipin, C.; Sangappa, Y.

    2018-04-01

    In the present study, Hydroxypropyl Methylcellulose (HPMC) pure and HPMC/SF-AgNPs biopolymer nanocomposite films were prepared by simple solution casting method. The prepared nanocomposite films were characterized using UV-Visible spectroscopy(UV-Vis), X-ray diffraction (XRD) measurements. The mechanical properties of HPMC/SF-AgNPs nanocomposites were found to be decrease with increase in the AgNP's concentrations. The HPMC/SF-AgNPs nanocomposites showed very good antibacterial activity against human pathogens P. aeruginosa, E.coli, and S.aureus.

  18. [Computer modeling the dependences of the membrane potential for polymeric membrane separated non-homogeneous electrolyte solutions on concentration Rayleigh number].

    Science.gov (United States)

    Slezak, Izabella H; Jasik-Slezak, Jolanta; Bilewicz-Wyrozumska, Teresa; Slezak, Andrzej

    2006-01-01

    On the basis of model equation describing the membrane potential delta psi(s) on concentration Rayleigh number (R(C)), mechanical pressure difference (deltaP), concentration polarization coefficient (zeta s) and ratio concentration of solutions separated by membrane (Ch/Cl), the characteristics delta psi(s) = f(Rc)(delta P, zeta s, Ch/Cl) for steady values of zeta s, R(C) and Ch/Cl in single-membrane system were calculated. In this system neutral and isotropic polymeric membrane oriented in horizontal plane, the non-homogeneous binary electrolytic solutions of various concentrations were separated. Nonhomogeneity of solutions is results from creations of the concentration boundary layers on both sides of the membrane. Calculations were made for the case where on a one side of the membrane aqueous solution of NaCl at steady concentration 10(-3) mol x l(-1) (Cl) was placed and on the other aqueous solutions of NaCl at concentrations from 10(-3) mol x l(-1) to 2 x 10(-2) mol x l(-1) (Ch). Their densities were greater than NaCl solution's at 10(-3) mol x l(-1). It was shown that membrane potential depends on hydrodynamic state of a complex concentration boundary layer-membrane-concentration boundary layer, what is controlled by deltaP, Ch/Cl, Rc and Zeta(s).

  19. Study of energy transfer between riboflavin (vitamin B2) and AgNPs

    Science.gov (United States)

    Mokashi, Vidya V.; Walekar, Laxman S.; Anbhule, Prashant V.; Lee, Sang Hak; Patil, Shivajirao R.; Kolekar, Govind B.

    2014-03-01

    Here, we report the studies on the interaction and formation of nanobiocomplex between silver nanoparticle (AgNPs) and vitamin B2, i.e., riboflavin (RF). The binding study of AgNP to RF was studied by fluorescence, UV-Vis, and TEM techniques. AgNPs were prepared by reducing AgNO3 with trisodium citrate. Prepared nanoparticles size obtained at 20 nm having surface Plasmon resonance band at 426 nm. The absorbance band of RF at 264, 374, and 444 nm changes significantly in the presence of AgNPs suggests that there is change in the chemical environment surrounding AgNPs. A fluorescence spectral change for a solution of RF upon the addition of AgNPs and rapid quenching is suggestive of a rapid adsorption of RF on AgNPs.

  20. Mechanism of nitric acid generation on Ag-X Zeolite

    International Nuclear Information System (INIS)

    Kanazawa, T.; Kishimoto, T.; Haseba, S.; Mitoh, Y.; Itoh, S.; Nakai, I.

    1983-01-01

    When Ag-X Zeolite is used for the removal of iodine from the off gas streams of nuclear facilities, it is possible that nitric acid is formed on Ag-X Zeolite from co-existing nitrogen dioxide and water vapor. If nitric acid is formed on the surface of Ag-X zeolite, Ag-X zeolite is damaged and is not able to operate for a long time. When Ag-X zeolite is used in NO 2 -O 2 -H 2 O mixture, the nitric acid generation reaction is varied, depending upon the reaction temperature, and concentration of NO 2 and H 2 O. At a temperature of more than 40 deg. C, however, only the surface reaction will be progressed on the zeolite surface. The generation of nitric acid solution on the zeolite can be forecasted through the relationship between the concentration of nitric acid solution, equilibrium vapor pressure of H 2 O, and equilibrium vapor pressure of HNO 3 . Concerning the surface reaction caused on the zeolite, the adsorption water reacts on NO 2 , and the resulting HNO 3 is adsorbed firmly by the zeolite, which is thought to interfere with the surface reaction for generation of the HNO 3 . When the adsorption bed is long, the time required for adsorbed HNO 3 to saturate is increased in proportion to the bed length

  1. Measurement and regulation of the level of a homogeneous plutonium reactor; Mesure et regulation du niveau d'un reacteur homogene au plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Berger, F; Bertrand, J

    1958-12-01

    Reactivity depends strongly on disturbances of the level of the plutonium solution In the homogeneous reactor. Proserpine has a small cylindrical core, 250 mm diameter, and 10 liters volume. With a view to reducing the dangers due to corrosion and contamination, the solution level in the core is raised by pneumatic pressure. The level is stabilized by means of a regulating system. During critical experiments the variations of the level are less than one hundredth part of a millimeter. (author) [French] Les variations du niveau de la solution de plutonium dans le reacteur homogene Proserpine ont une grosse influence sur la reactivite, car le coeur est petit (10 litres de solution dans un cylindre de diametre 250 mm). En vue de reduire les dangers dus a la corrosion et a la contamination, la commande du volume liquide est pneumatique. Nous avons realise la stabilite du niveau par une regulation qui, dans les essais en regime critique, limite les variations du plan liquide a une fraction de centieme de millimetre. (auteur)

  2. Homogeneous axisymmetric model with a limitting stiff equation of state

    International Nuclear Information System (INIS)

    Korkina, M.P.; Martynenko, V.G.

    1976-01-01

    A solution is obtained for Einstein's equations in which all metric coefficients are time functions for a limiting stiff equation of the substance state. Thr solution describes a homogeneous cosmological model with cylindrical symmetry. It is shown that the same metrics can be induced by a massless scalar only time-dependent field. Analysis of this solution is presented

  3. Effect of the Heusler phase formation on the magnetic behavior of the Cu–10 wt.%Mn alloy with Al and Ag additions

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, T.M., E-mail: thaisa.mary@gmail.com [Instituto de Química – UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Adorno, A.T.; Santos, C.M.A. [Instituto de Química – UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Silva, R.A.G. [Departamento de Ciências Exatas e da Terra – UNIFESP, 09972-270 Diadema, SP (Brazil); Magnani, M. [Instituto de Química – UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil)

    2015-09-15

    Highlights: • The presence of the Cu{sub 2}MnAl phase was observed in annealed alloys. • Al and Ag additions shift the equilibrium concentration to higher Al values. • There is a correlation between the Ag-rich phase and the Cu{sub 2}MnAl phase. - Abstract: In this work, the formation of the Cu{sub 2}AlMn Heusler phase and its influence on the magnetic behavior of the Cu–Mn–Al–Ag alloys in the range of 8–10 wt.% of aluminum and 2–4 wt.% of silver were studied using differential scanning calorimetry (DSC), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and saturation magnetization measurements at 4 K. The results showed that there is a correlation between the presence of the Ag-rich phase and the formation of the Cu{sub 2}MnAl phase.

  4. Effect of thermal annealing on the microstructures and photocatalytic performance of silver orthophosphate: The synergistic mechanism of Ag vacancies and metallic Ag

    International Nuclear Information System (INIS)

    Yan, Tingjiang; Guan, Wenfei; Xiao, Ying; Tian, Jun; Qiao, Zheng; Zhai, Huishan; Li, Wenjuan; You, Jinmao

    2017-01-01

    Highlights: • Ag_3PO_4 was initially prepared via ion-exchange reaction and then annealed in air. • Thermal annealing also resulted in the formation of metallic Ag and Ag vacancies. • The annealed samples exhibited superior activity to the pristine sample. • Both Ag vacancies and metallic Ag contributed to the high activity. - Abstract: In this work, a simple thermal annealing route has been developed to improve the photocatalytic performance of silver orthophosphate (Ag_3PO_4) photocatalyst toward organic pollutants degradation under visible light irradiation. The experimental results indicated that thermal treatment of Ag_3PO_4 led to an obvious lattice shift towards right and significantly narrowed band gap energies due to the formation of Ag vacancies and metallic Ag during Ag_3PO_4 decomposition. These structural variations notably affected the photocatalytic performance of Ag_3PO_4 photocatalysts. The activity of the annealed samples was found to be significantly enhanced toward the degradation of MO dye. The highest activity was observed over the sample annealed at 400 °C, which exceeded that of pristine Ag_3PO_4 by a factor of about 21 times. By means of photoluminescence spectroscopy and photoelectrochemical measurements, we propose that the enormous enhancement in activity was mainly attributed to the efficient separation of photogenerated electrons and holes driven by the synergistic effect of Ag vacancies and metallic Ag. The strong interaction between annealed particles also inhibited the dissolution of Ag"+ from Ag_3PO_4 into aqueous solution, contributing to an improved photocatalytic stability. The strategy presented here provides an ideal platform for the design of other highly efficient and stable Ag-based photocatalysts for broad applications in the field of photocatalysis.

  5. How Structure-Directing Agents Control Nanocrystal Shape: Polyvinylpyrrolidone-Mediated Growth of Ag Nanocubes.

    Science.gov (United States)

    Qi, Xin; Balankura, Tonnam; Zhou, Ya; Fichthorn, Kristen A

    2015-11-11

    The importance of structure-directing agents (SDAs) in the shape-selective synthesis of colloidal nanostructures has been well documented. However, the mechanisms by which SDAs actuate shape control are poorly understood. In the polyvinylpyrrolidone (PVP)-mediated growth of {100}-faceted Ag nanocrystals, this capability has been attributed to preferential binding of PVP to Ag(100). We use molecular dynamics simulations to probe the mechanisms by which Ag atoms add to Ag(100) and Ag(111) in ethylene glycol solution with PVP. We find that PVP induces kinetic Ag nanocrystal shapes by regulating the relative Ag fluxes to these facets. Stronger PVP binding to Ag(100) leads to a larger Ag flux to Ag(111) and cubic nanostructures through two mechanisms: enhanced Ag trapping by more extended PVP films on Ag(111) and a reduced free-energy barrier for Ag to cross lower-density films on Ag(111). These flux-regulating capabilities depend on PVP concentration and chain length, consistent with experiment.

  6. Building novel Ag/CeO2 heterostructure for enhancing photocatalytic activity

    International Nuclear Information System (INIS)

    Leng, Qiang; Yang, Dezhi; Yang, Qi; Hu, Chenguo; Kang, Yue; Wang, Mingjun; Hashim, Muhammad

    2015-01-01

    Highlights: • Ag nanoparticle is designed to building Schottky heterojunction on CeO 2 nanocube. • The photocatalytic activity of Ag/CeO 2 heterostructure is much enhanced. • 95.33% of MB can be effectively degraded within half an hour. • Ag as acceptor of photoelectrons blocks the recombination of electron–hole pairs. - Abstract: Stable and recyclable photocatalysts with high efficiency to degrade organic contamination are important and widely demanded under the threat of the environment pollution. Ag/CeO 2 heterostructure is designed as a photocatalyst to degrade organic dye under the simulated sunlight. The catalytic activity of CeO 2 nanocubes (NCs) to degrade methylene blue (MB) is obviously enhanced when Ag nanoparticles (NPs) are deposited on the surface of them. The weight ratio of Ag and CeO 2 in forming high efficiency catalyst, the amount of Ag/CeO 2 catalyst used in degradation process, and the dye concentration and pH value of the initial MB solution are examined systematically. 95.33% of MB can be effectively degraded within half an hour when 50 mg of Ag/CeO 2 catalyst in an optimal weight ratio of 1:3, is added to the 100 mL of MB solution (c 0 = 1 × 10 −5 mol L −1 , pH 6.2). The mechanism of the enhanced catalytic activity of Ag/CeO 2 heterostructure is discussed. The photocatalytic degradation rate is found to obey pseudo-first-order kinetics equations according to Langmuir–Hinshelwood model. The intermediate products in different stages during the degradation of MB are analyzed

  7. Homogeneous Slowpoke reactor for the production of radio-isotope: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Busetta, P.; Bonin, H.W. [Royal Military College of Canada, Kingston, Ontario (Canada)

    2006-09-15

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP Monte Carlo reactor calculation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous react will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether natural convection can still effectively cool the reactor using the modeling software FEMLAB(r). It was found that it is needed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  8. The effect of dielectric constants on noble metal/semiconductor SERS enhancement: FDTD simulation and experiment validation of Ag/Ge and Ag/Si substrates.

    Science.gov (United States)

    Wang, Tao; Zhang, Zhaoshun; Liao, Fan; Cai, Qian; Li, Yanqing; Lee, Shuit-Tong; Shao, Mingwang

    2014-02-11

    The finite-difference time-domain (FDTD) method was employed to simulate the electric field distribution for noble metal (Au or Ag)/semiconductor (Ge or Si) substrates. The simulation showed that noble metal/Ge had stronger SERS enhancement than noble metal/Si, which was mainly attributed to the different dielectric constants of semiconductors. In order to verify the simulation, Ag nanoparticles with the diameter of ca. 40 nm were grown on Ge or Si wafer (Ag/Ge or Ag/Si) and employed as surface-enhanced Raman scattering substrates to detect analytes in solution. The experiment demonstrated that both the two substrates exhibited excellent performance in the low concentration detection of Rhodamine 6G. Besides, the enhancement factor (1.3 × 10(9)) and relative standard deviation values (less than 11%) of Ag/Ge substrate were both better than those of Ag/Si (2.9 × 10(7) and less than 15%, respectively), which was consistent with the FDTD simulation. Moreover, Ag nanoparticles were grown in-situ on Ge substrate, which kept the nanoparticles from aggregation in the detection. To data, Ag/Ge substrates showed the best performance for their sensitivity and uniformity among the noble metal/semiconductor ones.

  9. Desertification, salinization, and biotic homogenization in a dryland river ecosystem

    Science.gov (United States)

    Miyazono, S.; Patino, Reynaldo; Taylor, C.M.

    2015-01-01

    This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamfiow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was > 2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and

  10. Fabrication of Cu-Ag core-shell bimetallic superfine powders by eco-friendly reagents and structures characterization

    International Nuclear Information System (INIS)

    Zhao Jun; Zhang Dongming; Zhao Jie

    2011-01-01

    Superfine bimetallic Cu-Ag core-shell powders were synthesized by reduction of copper sulfate pentahydrate and silver nitrate with eco-friendly ascorbic acid as a reducing agent and cyclodextrins as a protective agent in an aqueous system. The influence of Ag/Cu ratio on coatings was investigated. Ag was homogeneously distributed on the surface of Cu particles at a mole ratio of Ag/Cu=1. FE-SEM showed an uniformity of Ag coatings on Cu particles. Antioxidation of Cu particles was improved by increasing Ag/Cu ratio. TEM-EDX and UV-vis spectra also revealed that Cu cores were covered by Ag nanoshells on the whole. The surface composition analysis by XPS indicated that only small parts of Cu atoms in the surface were oxidized. It was noted that the hindrance of cyclodextrins chemisorbed on particles plays an important role in forming high quality and good dispersity Cu-Ag (Cu-Ag) core-shell powders. - Graphical abstract: Mechanism of fabricating Cu-Ag particles with good dispersibility using β-CDs as a protective agent was studied because of its special structure. Highlights: → Green supramolecular β-CD used as a protective agent and ascorbic acid(Vc) as a reducing agent to fabricate Cu-Ag powders. → Particles are monodisperse and the diameter is close to nanoscale(100-150 nm). → Resistance of Cu particles to oxidation was higher. → Formation mechanism explained.

  11. Thiacalix[4]arene derivatives as extractants for metal ions in aqueous solutions: Application to the selective facilitated transport of Ag(I)

    Energy Technology Data Exchange (ETDEWEB)

    Zaghbani, Asma [Laboratoire Eau et Technologies Membranaires, CERTE, BP 273, 8020 Soliman (Tunisia); Fontas, Claudia [Department of Chemistry, University of Girona, 17071 Girona (Spain)], E-mail: claudia.fontas@udg.edu; Hidalgo, Manuela [Department of Chemistry, University of Girona, 17071 Girona (Spain); Tayeb, Rafik; Dhahbi, Mahmoud [Laboratoire Eau et Technologies Membranaires, CERTE, BP 273, 8020 Soliman (Tunisia); Vocanson, Francis; Lamartine, Roger [Universite de Lyon, Lyon, F-69003 (France); Universite Lyon 1, Villeurbanne, F-69622 (France); CNRS, UMR 5246, ICBMS, equipe CSAp, 43 boulevard du 11 novembre 1918, Villeurbanne, F-69622 (France); Seta, Patrick [Institut Europeen des Membranes, UMR CNRS 5635, 1919 route de Mende, 34293 Montpellier (France)

    2008-07-01

    The complexation abilities of different thiacalix[4]arene derivatives towards some rare earth metal ions, metallic pollutants, and noble metals have been investigated in liquid-liquid experiments. Thiacalix[4]arene dissolved in chloroform effectively extracts Pd(II) (in acidic chloride media) and also Ag(I), Cd(II), Sm(III) and Ce(III), all buffered at pH 6 or 8. The modification of this compound to form an amide derivative results in an effective extraction of noble metals, ranked according to Au(III) > Pd(II) > Pt(IV) > Ag(I). Moreover, a supported liquid membrane system for silver transport has been developed based on thiacalix[4]arene dissolved in NPOE, and parameters affecting its efficiency have been investigated, such as the stripping composition and the pH of the feed solution. Finally, the selectivity of the membrane system has been evaluated by using as feed sources mixtures of silver and other metal ion000.

  12. Modeling the homogenization kinetics of as-cast U-10wt% Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhijie, E-mail: zhijie.xu@pnnl.gov [Computational Mathematics Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Joshi, Vineet [Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Hu, Shenyang [Reactor Materials & Mechanical Design, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Paxton, Dean [Nuclear Engineering and Analysis Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Lavender, Curt [Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Burkes, Douglas [Nuclear Engineering and Analysis Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2016-04-01

    Low-enriched U-22at% Mo (U–10Mo) alloy has been considered as an alternative material to replace the highly enriched fuels in research reactors. For the U–10Mo to work effectively and replace the existing fuel material, a thorough understanding of the microstructure development from as-cast to the final formed structure is required. The as-cast microstructure typically resembles an inhomogeneous microstructure with regions containing molybdenum-rich and -lean regions, which may affect the processing and possibly the in-reactor performance. This as-cast structure must be homogenized by thermal treatment to produce a uniform Mo distribution. The development of a modeling capability will improve the understanding of the effect of initial microstructures on the Mo homogenization kinetics. In the current work, we investigated the effect of as-cast microstructure on the homogenization kinetics. The kinetics of the homogenization was modeled based on a rigorous algorithm that relates the line scan data of Mo concentration to the gray scale in energy dispersive spectroscopy images, which was used to generate a reconstructed Mo concentration map. The map was then used as realistic microstructure input for physics-based homogenization models, where the entire homogenization kinetics can be simulated and validated against the available experiment data at different homogenization times and temperatures.

  13. Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100°C

    Science.gov (United States)

    Ciobanu, Carmen Steluta; Massuyeau, Florian; Constantin, Liliana Violeta; Predoi, Daniela

    2011-12-01

    Synthesis of nanosized particle of Ag-doped hydroxyapatite with antibacterial properties is in the great interest in the development of new biomedical applications. In this article, we propose a method for synthesized the Ag-doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionized water. Other phase or impurities were not observed. Silver-doped hydroxyapatite nanoparticles (Ag:HAp) were performed by setting the atomic ratio of Ag/[Ag + Ca] at 20% and [Ca + Ag]/P as 1.67. The X-ray diffraction studies demonstrate that powders made by co-precipitation at 100°C exhibit the apatite characteristics with good crystal structure and no new phase or impurity is found. The scanning electron microscopy (SEM) observations suggest that these materials present a little different morphology, which reveals a homogeneous aspect of the synthesized particles for all samples. The presence of calcium (Ca), phosphor (P), oxygen (O), and silver (Ag) in the Ag:HAp is confirmed by energy dispersive X-ray (EDAX) analysis. FT-IR and FT-Raman spectroscopies revealed that the presence of the various vibrational modes corresponds to phosphates and hydroxyl groups. The strain of Staphylococcus aureus was used to evaluate the antibacterial activity of the Ca10- x Ag x (PO4)6(OH)2 ( x = 0 and 0.2). In vitro bacterial adhesion study indicated a significant difference between HAp ( x = 0) and Ag:HAp ( x = 0.2). The Ag:Hap nanopowder showed higher inhibition.

  14. Benchmarking homogenization algorithms for monthly data

    Directory of Open Access Journals (Sweden)

    V. K. C. Venema

    2012-01-01

    Full Text Available The COST (European Cooperation in Science and Technology Action ES0601: advances in homogenization methods of climate series: an integrated approach (HOME has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative. The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random independent break-type inhomogeneities with normally distributed breakpoint sizes were added to the simulated datasets. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide trend was added.

    Participants provided 25 separate homogenized contributions as part of the blind study. After the deadline at which details of the imposed inhomogeneities were revealed, 22 additional solutions were submitted. These homogenized datasets were assessed by a number of performance metrics including (i the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii the error in linear trend estimates and (iii traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve

  15. Homogenization of Large-Scale Movement Models in Ecology

    Science.gov (United States)

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  16. A sensitive glucose biosensor based on Ag@C core–shell matrix

    International Nuclear Information System (INIS)

    Zhou, Xuan; Dai, Xingxin; Li, Jianguo; Long, Yumei; Li, Weifeng; Tu, Yifeng

    2015-01-01

    Nano-Ag particles were coated with colloidal carbon (Ag@C) to improve its biocompatibility and chemical stability for the preparation of biosensor. The core–shell structure was evidenced by transmission electron microscope (TEM) and the Fourier transfer infrared (FTIR) spectra revealed that the carbon shell is rich of function groups such as − OH and − COOH. The as-prepared Ag@C core–shell structure can offer favorable microenvironment for immobilizing glucose oxidase and the direct electrochemistry process of glucose oxidase (GOD) at Ag@C modified glassy carbon electrode (GCE) was realized. The modified electrode exhibited good response to glucose. Under optimum experimental conditions the biosensor linearly responded to glucose concentration in the range of 0.05–2.5 mM, with a detection limit of 0.02 mM (S/N = 3). The apparent Michaelis–Menten constant (K M app ) of the biosensor is calculated to be 1.7 mM, suggesting high enzymatic activity and affinity toward glucose. In addition, the GOD-Ag@C/Nafion/GCE shows good reproducibility and long-term stability. These results suggested that core–shell structured Ag@C is an ideal matrix for the immobilization of the redox enzymes and further the construction of the sensitive enzyme biosensor. - Highlights: • Enhanced direct electrochemistry of GOD was achieved at Ag@C modified electrode. • A novel glucose biosensor based on Ag@C core–shell structure was developed. • The designed GOD-Ag@C/Nafion/GCE biosensor showed favorable analysis properties. • The biosensor is easy to prepare and can be applied for real sample assay

  17. A sensitive glucose biosensor based on Ag@C core–shell matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan; Dai, Xingxin; Li, Jianguo [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); Long, Yumei, E-mail: yumeilong@suda.edu.cn [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou (China); Li, Weifeng, E-mail: liweifeng@suda.edu.cn [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); Tu, Yifeng [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou (China)

    2015-04-01

    Nano-Ag particles were coated with colloidal carbon (Ag@C) to improve its biocompatibility and chemical stability for the preparation of biosensor. The core–shell structure was evidenced by transmission electron microscope (TEM) and the Fourier transfer infrared (FTIR) spectra revealed that the carbon shell is rich of function groups such as − OH and − COOH. The as-prepared Ag@C core–shell structure can offer favorable microenvironment for immobilizing glucose oxidase and the direct electrochemistry process of glucose oxidase (GOD) at Ag@C modified glassy carbon electrode (GCE) was realized. The modified electrode exhibited good response to glucose. Under optimum experimental conditions the biosensor linearly responded to glucose concentration in the range of 0.05–2.5 mM, with a detection limit of 0.02 mM (S/N = 3). The apparent Michaelis–Menten constant (K{sub M}{sup app}) of the biosensor is calculated to be 1.7 mM, suggesting high enzymatic activity and affinity toward glucose. In addition, the GOD-Ag@C/Nafion/GCE shows good reproducibility and long-term stability. These results suggested that core–shell structured Ag@C is an ideal matrix for the immobilization of the redox enzymes and further the construction of the sensitive enzyme biosensor. - Highlights: • Enhanced direct electrochemistry of GOD was achieved at Ag@C modified electrode. • A novel glucose biosensor based on Ag@C core–shell structure was developed. • The designed GOD-Ag@C/Nafion/GCE biosensor showed favorable analysis properties. • The biosensor is easy to prepare and can be applied for real sample assay.

  18. Visible light driven photocatalysis and antibacterial activity of AgVO3 and Ag/AgVO3 nanowires

    International Nuclear Information System (INIS)

    Singh, Anamika; Dutta, Dimple P.; Ballal, A.; Tyagi, A.K.; Fulekar, M.H.

    2014-01-01

    Graphical abstract: - Highlights: • Ag/AgVO 3 and pure AgVO 3 nanowires synthesized by sonochemical process. • Characterization done using XRD, SEM, TEM, EDX and BET analysis. • Visible light degradation of RhB by Ag/AgVO 3 within 45 min. • Antibacterial activity of Ag/AgVO 3 demonstrated. - Abstract: Ag/AgVO 3 nanowires and AgVO 3 nanorods were synthesized in aqueous media via a facile sonochemical route. The as-synthesized products were characterized by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The results revealed that inert atmosphere promotes the formation of Ag/AgVO 3 nanowires. The photocatalytic studies revealed that the Ag/AgVO 3 nanowires exhibited complete photocatalytic degradation of Rhodamine B within 45 min under visible light irradiation. The antibacterial activity of Ag/AgVO 3 nanowires was tested against Escherechia coli and Bacillus subtilis. The minimum growth inhibitory concentration value was found to be 50 and 10 folds lower than for the antibiotic ciprofloxacin for E. coli and B. subtilis, respectively. The antibacterial properties of the β-AgVO 3 nanorods prove that in case of the Ag dispersed Ag/AgVO 3 nanowires, the enhanced antibacterial action is also due to contribution from the AgVO 3 support

  19. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti–Ag sintered alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mian [Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University, Shenyang 110819 (China); Zhang, Erlin, E-mail: zhangel@atm.neu.edu.cn [Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University, Shenyang 110819 (China); Zhang, Lan [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti–Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti–Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti–Ag phase, residual pure Ag and Ti were the mainly phases in Ti–Ag(S75) sintered alloy while Ti{sub 2}Ag was synthesized in Ti–Ag(S10) sintered alloy. The mechanical test indicated that Ti–Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti–Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti–Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3 wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti{sub 2}Ag and its distribution. - Highlights: • Ti–Ag alloy with up to 99% antibacterial rate was developed by powder metallurgy. • The effects of the Ag powder size and the Ag content on the

  20. Electrochemical corrosion behaviour of lead-free Sn-8.5 Zn-X Ag-0.1 Al-0.5 Ga solder in 3.5% NaCl solution

    International Nuclear Information System (INIS)

    Mohanty, Udit Surya; Lin, K.-L.

    2005-01-01

    The electrochemical corrosion behaviour of Pb-free Sn-8.5 Zn-X Ag-0.1 Al-0.5 Ga solder in 3.5% NaCl solution was investigated by using potentiodynamic polarization methods, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) analysis. The results obtained from polarization studies showed that an increase in the Ag content from 0.1 to 1.5 wt% decreased the corrosion current density (I corr ) and shifted the corrosion potential (E corr ) towards more noble values. These changes were also reflected in the linear polarization resistance (LPR), corrosion rate, anodic Tafel slope (b A ) and the cathodic Tafel slope (b c ) values, respectively. Passivation behaviour was noted in the Sn-Zn-X Ag-Al-Ga solders with Ag content > 0.1 wt%. The oxides and hydroxides of zinc were responsible for the formation of passive film. Presence of Ag atoms in the oxide layer also improved the passivation behaviour of solders to a certain extent. X-ray photoelectron spectroscopy revealed that two different oxygen species were formed on the surface films, one was assigned to OH - in Zn(OH) 2 and the other to O 2 - in ZnO. XPS depth profile results revealed that the two species had different depth distribution in the films. SEM and EDX analyses confirmed SnCl 2 as the major corrosion product formed after the electrochemical experiments

  1. Homogeneous slowpoke reactor for the production of radio-isotope. A feasibility study

    International Nuclear Information System (INIS)

    Busatta, P.; Bonin, H.

    2005-01-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP 5 simulation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether the natural convection will still effectively cool the reactor using the modeling software FEMLAB. The MCNP 5 simulation code was validated by using a simulation with WIMS-AECL code. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  2. Homogeneous slowpoke reactor for the production of radio-isotope. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Busatta, P.; Bonin, H. [Royal Military College of Canada, Kingston, Ontario (Canada)]. E-mail: paul.busatta@rmc.ca; bonin-h@rmc.ca

    2005-07-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP 5 simulation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether the natural convection will still effectively cool the reactor using the modeling software FEMLAB. The MCNP 5 simulation code was validated by using a simulation with WIMS-AECL code. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  3. Solid-state transformation of Fe-rich intermetallic phases in Al–5.0Cu–0.6Mn squeeze cast alloy with variable Fe contents during solution heat treatment

    International Nuclear Information System (INIS)

    Lin, Bo; Zhang, Weiwen; Zhao, Yuliang; Li, Yuanyuan

    2015-01-01

    The Al–5.0 wt.% Cu–0.6 wt.% Mn alloys with a variable Fe content were prepared by squeeze casting. Optical microscopy (OM), Deep etching technique, scanning electron microscopy(SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to examine the solid-state transformation of Fe-rich intermetallics during the solution heat treatment. The results showed that the Chinese script-like α-Fe, Al 6 (FeMn) and needle-like Al 3 (FeMn) phases transform to a new Cu-rich β-Fe (Al 7 Cu 2 (FeMn)) phase during solution heat treatment. The possible reaction and overall transformation kinetics of the solid-state phase transformation for the Fe-rich intermetallics were investigated. - Graphical abstract: Display Omitted - Highlights: • The α-Fe, Al 6 (FeMn) and Al 3 (FeMn) phases change to the β-Fe phases. • Possible reactions of Fe phases during solution heat treatment are discussed. • The overall fractional transformation rate follows an Avrami curve

  4. Reduction of silver nanoparticles onto graphene oxide nanosheets with N,N-dimethylformamide and SERS activities of GO/Ag composites

    International Nuclear Information System (INIS)

    Yang Yingkui; He Chengen; He Wenjie; Yu Linjuan; Peng Rengui; Xie Xiaolin; Wang Xianbao; Mai Yiuwing

    2011-01-01

    Silver nanoparticles (Ag NPs) have been homogeneously deposited onto graphene oxide (GO) nanosheets by an optimal method, in which N,N-dimethylformamide (DMF) as a co-dispersant of GO and reductant of sliver ions is added to an aqueous suspension of GO and AgNO 3 . GO nanosheets are uniformly covered by Ag NPs with a narrow size distribution and inter-particle gap. Raman signals of GO are greatly enhanced after deposition owing to the charge transfer interaction of GO with Ag NPs. The GO/Ag composite can be further utilized as an effective surface-enhanced Raman scattering (SERS) active substrate. Several new Raman bands and frequency shifts are clearly observed in using 4-aminothiophenol (4-ATP) as a Raman probe on GO/Ag compared to the normal Raman spectrum of solid 4-ATP. The Raman enhancement arises from a major electromagnetic effect and a minor chemical effect.

  5. Synthesis of Ag2O nanocrystals with systematic shape evolution from cubic to hexapod structures and their surface properties.

    Science.gov (United States)

    Lyu, Lian-Ming; Wang, Wei-Ching; Huang, Michael H

    2010-12-17

    We report the development of a facile method for the synthesis of Ag(2)O crystals with systematic shape evolution from cubic to edge- and corner-truncated cubic, rhombicuboctahedral, edge- and corner-truncated octahedral, octahedral, and hexapod structures by mixing AgNO(3), NH(4)NO(3), and NaOH at molar ratios of 1:2:11.8. A sufficient volume of NaOH solution was first added to a mixture of AgNO(3) and NH(4)NO(3) solution to promote the formation of Ag(NH(3))(2)(+) complex ions and the growth of Ag(2)O nanocrystals with good morphological control. The crystals are mostly submicrometer-sized. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy characterization has been performed to determine the crystalline surface facets. A band gap value of approximately 1.45 eV has been found for the octahedral Ag(2)O crystals. By changing the molar ratios of AgNO(3)/NH(4)NO(3)/NaOH to 1:2:41.8, corner-depressed rhombicuboctahedra and elongated hexapods were obtained as a result of enhanced crystal growth along the [100] directions. Smaller nanocubes with average sizes of approximately 200 and 300 nm and octapods can also be prepared by adjusting the reagent molar ratios and their added volumes. Both the octahedra and hexapods with largely silver atom-terminated {111} surface facets responded repulsively and moved to the surface of the solution when dispersing in a solution of positively charged methylene blue, but can be suspended in a negatively charged methyl orange solution. The cubes and octapods, bounded by the {100} faces, were insensitive to the molecular charges in solution. The dramatic facet-dependent surface properties of Ag(2)O crystals have been demonstrated.

  6. A safeguards verification technique for solution homogeneity and volume measurements in process tanks

    International Nuclear Information System (INIS)

    Suda, S.; Franssen, F.

    1987-01-01

    A safeguards verification technique is being developed for determining whether process-liquid homogeneity has been achieved in process tanks and for authenticating volume-measurement algorithms involving temperature corrections. It is proposed that, in new designs for bulk-handling plants employing automated process lines, bubbler probes and thermocouples be installed at several heights in key accountability tanks. High-accuracy measurements of density using an electromanometer can now be made which match or even exceed analytical-laboratory accuracies. Together with regional determination of tank temperatures, these measurements provide density, liquid-column weight and temperature gradients over the fill range of the tank that can be used to ascertain when the tank solution has reached equilibrium. Temperature-correction algorithms can be authenticated by comparing the volumes obtained from the several bubbler-probe liquid-height measurements, each based on different amounts of liquid above and below the probe. The verification technique is based on the automated electromanometer system developed by Brookhaven National Laboratory (BNL). The IAEA has recently approved the purchase of a stainless-steel tank equipped with multiple bubbler and thermocouple probes for installation in its Bulk Calibration Laboratory at IAEA Headquarters, Vienna. The verification technique is scheduled for preliminary trials in late 1987

  7. Investigation on the phase transformation of Bi-2223/Ag superconducting tapes during heating

    International Nuclear Information System (INIS)

    Huang, K.-T.; Qu, T.-M.; Xie, P.; Han, Z.

    2013-01-01

    Highlights: • In situ resistance measurement was carried out on Bi-2223/Ag superconducting tapes. • The oxygen partial pressure of the outlet gas in the heating process was monitored continuously. • The samples quenched in the heating process were studied by XRD and T c measurements. • The heating process contains three procedures: oxygen diffusion, Pb-rich phase evolution and liquid phase formation. -- Abstract: The phase transformation of Bi-2223/Ag superconducting tapes during heating was investigated. The resistance of the ceramic core as a function of the heating temperature was measured in situ. The pO 2 of the outlet gas in the heating process was also monitored continuously. By comparing the heating process with the X-ray diffraction and T c measurements taken from samples quenched at different temperatures, we have identified that the heating process could be divided into the following regions: (1) the oxygen diffusion (OD) region, which is mainly influenced by OD; (2) the Pb-rich phase evolution (PbE) region, in which the formation and decomposition of the Pb-rich phases occur; (3) the liquid phase formation (LF) region, in which resistance increased rapidly with increasing temperature

  8. Enhanced photocatalytic performance of sandwiched ZnO@Ag@Cu2O nanorod films: the distinct role of Ag NPs in the visible light and UV region

    International Nuclear Information System (INIS)

    Ren, Shoutian; Wang, Yingying; Wang, Benyang; Wang, Qiang; Zhao, Guoliang

    2015-01-01

    Sandwiched ZnO@Ag@Cu 2 O nanorod films were synthesized by successive electrodeposition, magnetron sputtering and the second electrodeposition. The as-synthesized composites were characterized by x-ray diffraction patterns, field emission scanning electron microscopy, low- and high-resolution transmission electron microscopy and a UV–vis spectrophotometer. Their photocatalytic performance was estimated by the degradation of a methyl orange solution under UV or visible-light irradiation, respectively. In the visible region, due to localized surface plasmon resonance absorption of Ag NPs, ZnO@Ag@Cu 2 O showed a significantly enhanced photocatalytic performance. The enhancement factor of Ag NPs on the catalytic performance of ZnO@Ag@Cu 2 O was estimated as a function of the Cu 2 O deposition time, and the corresponding enhancement mechanism was also evaluated by the monochromatic photocatalytic experiment and discrete dipole approximation simulation. In the UV region, due to the formation of a Schottky junction (e.g. Ag/ZnO, Ag/Cu 2 O), a limited enhanced photocatalytic performance was also realized for ZnO@Ag@Cu 2 O photocatalysts. (paper)

  9. Facile synthesis of PdAgTe nanowires with superior electrocatalytic activity

    Science.gov (United States)

    Hong, Wei; Wang, Jin; Wang, Erkang

    2014-12-01

    In this work, ultrathin Te nanowires (NWs) with high-aspect-ratio are prepared by a simple hydrothermal method. By using Te NWs as the sacrificial template, we demonstrate a facile and efficient method for the synthesis of PdAgTe NWs with high-quality through the partly galvanic replacement between Te NWs and the corresponding noble metal salts precursors in an aqueous solution. The compositions of PdAgTe NWs can be tuned by simply altering the concentration of the precursors. After cyclic voltammetry treatment, multi-component PdAgTe NW with a highly active and stable surface can be obtained. The structure and composition of the as-prepared nanomaterials are analyzed by transmission electron microscope, X-ray diffraction, energy dispersive X-ray spectroscopy, inductively coupled plasma-mass spectroscopy and X-ray photoelectron spectroscopy. Electrochemical catalytic measurement results prove that the as synthesized PdAgTe NWs present superior catalytic activity toward ethanol electrooxidation in alkaline solution than the commercial Pd/C catalyst, which making them can be used as effective catalysts for the direct ethanol fuel cells.

  10. A scheme to calculate higher-order homogenization as applied to micro-acoustic boundary value problems

    Science.gov (United States)

    Vagh, Hardik A.; Baghai-Wadji, Alireza

    2008-12-01

    Current technological challenges in materials science and high-tech device industry require the solution of boundary value problems (BVPs) involving regions of various scales, e.g. multiple thin layers, fibre-reinforced composites, and nano/micro pores. In most cases straightforward application of standard variational techniques to BVPs of practical relevance necessarily leads to unsatisfactorily ill-conditioned analytical and/or numerical results. To remedy the computational challenges associated with sub-sectional heterogeneities various sophisticated homogenization techniques need to be employed. Homogenization refers to the systematic process of smoothing out the sub-structural heterogeneities, leading to the determination of effective constitutive coefficients. Ordinarily, homogenization involves a sophisticated averaging and asymptotic order analysis to obtain solutions. In the majority of the cases only zero-order terms are constructed due to the complexity of the processes involved. In this paper we propose a constructive scheme for obtaining homogenized solutions involving higher order terms, and thus, guaranteeing higher accuracy and greater robustness of the numerical results. We present

  11. X-ray spectroscopy results for the pristine nanosilver solution and solution after undergoing the specific usage scenario

    Data.gov (United States)

    U.S. Environmental Protection Agency — The results demonstrate the Ag 3d5/2-3/2 spectrum of the pristine AgNPs. Furthermore, the XAS spectra from the analysis of the nanosilver solution (ASAP-AGX-32)...

  12. Intense and stable surface-enhanced Raman scattering from Ag@mesoporous SiO{sub 2} film

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yongjin; Wang, Xiaolong; Chen, Dong; Jiang, Tao, E-mail: jiangtao@nbu.edu.cn; Zhao, Ziqi; Zhou, Jun, E-mail: zhoujun@nbu.edu.cn

    2016-09-15

    A surface-enhanced Raman scattering (SERS) film consisting of mesoporous silica (MSiO{sub 2}) coated Ag nanoparticles (NPs) was achieved. The as-prepared hybrid NPs were uniform in size and formed large amount of aggregates in the film. “Hot spots” were supposed to appear in the MSiO{sub 2} shells with an average size as small as 15 nm. Such a novel core–shell structure therefore induced the enhancement of SERS intensity compared to the film of bare Ag NPs and polymer film of Ag-CMC. The homogeneity and stability of SERS signals from the Ag@MSiO{sub 2} film were also tested. A relative standard deviation of SERS intensity lower than 20% from Raman mapping and a stable SERS signal with excitation power of 100 mW were observed, which were both better than the other two films. Moreover, the obtained Ag@MSiO{sub 2} film was applied to detect thiram pesticides and a detection limit as low as 1×10{sup −8} M was reached, which indicates the advantages of the Ag@MSiO{sub 2} film in biosensor.

  13. Building novel Ag/CeO{sub 2} heterostructure for enhancing photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Qiang; Yang, Dezhi; Yang, Qi [Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Hu, Chenguo, E-mail: hucg@cqu.edu.cn [Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Kang, Yue; Wang, Mingjun [Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Hashim, Muhammad [Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Applied Physics Department, Federal Urdu University of Arts Science and Technology, Islamabad (Pakistan)

    2015-05-15

    Highlights: • Ag nanoparticle is designed to building Schottky heterojunction on CeO{sub 2} nanocube. • The photocatalytic activity of Ag/CeO{sub 2} heterostructure is much enhanced. • 95.33% of MB can be effectively degraded within half an hour. • Ag as acceptor of photoelectrons blocks the recombination of electron–hole pairs. - Abstract: Stable and recyclable photocatalysts with high efficiency to degrade organic contamination are important and widely demanded under the threat of the environment pollution. Ag/CeO{sub 2} heterostructure is designed as a photocatalyst to degrade organic dye under the simulated sunlight. The catalytic activity of CeO{sub 2} nanocubes (NCs) to degrade methylene blue (MB) is obviously enhanced when Ag nanoparticles (NPs) are deposited on the surface of them. The weight ratio of Ag and CeO{sub 2} in forming high efficiency catalyst, the amount of Ag/CeO{sub 2} catalyst used in degradation process, and the dye concentration and pH value of the initial MB solution are examined systematically. 95.33% of MB can be effectively degraded within half an hour when 50 mg of Ag/CeO{sub 2} catalyst in an optimal weight ratio of 1:3, is added to the 100 mL of MB solution (c{sub 0} = 1 × 10{sup −5} mol L{sup −1}, pH 6.2). The mechanism of the enhanced catalytic activity of Ag/CeO{sub 2} heterostructure is discussed. The photocatalytic degradation rate is found to obey pseudo-first-order kinetics equations according to Langmuir–Hinshelwood model. The intermediate products in different stages during the degradation of MB are analyzed.

  14. HOMOGENEOUS NUCLEAR POWER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  15. The role of Ag precipitates in Cu-12 wt% Ag

    Energy Technology Data Exchange (ETDEWEB)

    Yao, D.W.; Song, L.N. [Department of Materials Science and Engineering, Zhejiang University, Zheda Road No.38, Hangzhou, Zhejiang 310027 (China); Dong, A.P.; Wang, L.T. [China Railway Construction Electrification Bureau Group Co.,Ltd., Beijing 100036 (China); Zhang, L. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Meng, L., E-mail: mengliang@zju.edu.cn [Department of Materials Science and Engineering, Zhejiang University, Zheda Road No.38, Hangzhou, Zhejiang 310027 (China)

    2012-12-15

    The Cu-12 wt% Ag was prepared to investigate the role of Ag precipitates on the properties of the alloy. Two kinds of heat treatment procedures were adopted to produce different amount of Ag precipitates in the Cu-12 wt% Ag. The microstructure of Ag precipitates was systematically observed by optical microscopy and electron microscopy. The Cu-12 wt% Ag with more Ag precipitates exhibits higher strength and lower electrical conductivity. More Ag precipitates results in more phase interface and less Ag atoms dissolved in Cu matrix. By comparing the strengthening effect and electron scattering effect of phase interface and dissolved Ag atoms, it is conclude that the interface between Cu matrix and Ag precipitates could significantly block dislocation movement and enhance electron scattering in Cu-Ag alloys.

  16. High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@pyramid Si

    Science.gov (United States)

    Li, Zhe; Xu, Shi Cai; Zhang, Chao; Liu, Xiao Yun; Gao, Sai Sai; Hu, Li Tao; Guo, Jia; Ma, Yong; Jiang, Shou Zhen; Si, Hai Peng

    2016-12-01

    We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/copper film covered silicon pyramid arrays (GO/AgNPs/PCu@Si) by a low-cost and simple method. The GO/AgNPs/PCu@Si substrate presents high sensitivity, good homogeneity and well stability with R6G molecules as a probe. The detected concentration of Rhodamine 6 G (R6G) is as low as 10-15 M. These sensitive SERS behaviors are also confirmed in theory via a commercial COMSOL software, the electric field enhancement is not only formed between the AgNPs, but also formed between the AgNPs and Cu film. And the GO/AgNPs/PCu@Si substrates also present good property on practical application for the detection of methylene blue (MB) and crystal violet (CV). This work may offer a novel and practical method to facilitate the SERS applications in areas of medicine, food safety and biotechnology.

  17. The Synthesis of Silver Nanoparticles Produced by Chemical Reduction of Silver Salt Solution

    International Nuclear Information System (INIS)

    Sri Budi Harmani; Dewi Sondari; Agus Haryono

    2008-01-01

    Described in this research are the synthesis of silver nanoparticle produced by chemical reduction of silver salt (silver nitrate AgNO 3 ) solution. As a reducer, sodium citrate (C 6 H 5 O 7 Na 3 ) was used. Preparation of silver colloid is done by using chemical reduction method. In typical experiment 150 ml of 1.10 -3 M AgNO 3 solution was heated with temperature variation such as 90, 100, 110 degree of Celsius. To this solution 15 ml of 1 % trisodium citrate was added into solution drop by drop during heating. During the process, solution was mixed vigorously. Solution was heated until colour's change is evident (pale yellow solution is formed). Then it was removed from the heating element and stirred until cooled to room temperature. Experimental result showed that diameter of silver nanoparticles in colloid solution is about 28.3 nm (Ag colloid, 90 o C); 19.9 nm (Ag colloid, 100 o C)and 26.4 nm (Ag colloid, 110 o C). Characterization of the silver nanoparticle colloid conducted by using UV-Vis Spectroscopy, Particles Size Analyzer (PSA) and Scanning Electron Microscope (SEM) indicate the produced structures of silver nanoparticles. (author)

  18. The lunar crust - A product of heterogeneous accretion or differentiation of a homogeneous moon

    Science.gov (United States)

    Brett, R.

    1973-01-01

    The outer portion of the moon (including the aluminum-rich crust and the source regions of mare basalts) was either accreted heterogeneously or was the product of widespread differentiation of an originally homogeneous source. Existing evidence for and against each of these two models is reviewed. It is concluded that the accretionary model presents more problems than it solves, and the model involving differentiation of an originally homogeneous moon is considered to be more plausible. A hypothesis for the formation of mare basalts is advanced.

  19. Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni4Ti3 precipitates

    International Nuclear Information System (INIS)

    Michutta, J.; Somsen, Ch.; Yawny, A.; Dlouhy, A.; Eggeler, G.

    2006-01-01

    The present study shows that multiple-step martensitic transformations can be observed in aged Ni-rich NiTi single crystals. Ageing of solution-annealed and water-quenched Ni-rich NiTi single crystals results in a homogeneous precipitation of coherent Ni 4 Ti 3 particles. When the interparticle spacing reaches a critical value (order of magnitude: 200 nm), three distinct transformation processes are observed on cooling from the high-temperature phase using differential scanning calorimetry and in situ transmission electron microscopy. The transformation sequence begins with the formation of R-phase starting from all precipitate/matrix interfaces (first step). The transformation continues with the formation of B19' and its subsequent growth along all precipitate/matrix interfaces (second step). Finally, the matrix in between the precipitates transforms to B19' (third step). Elementary transformation mechanisms which account for two- and three-step transformations in a system with small-scale microstructural heterogeneities were identified

  20. Facile Synthesis of Mono-Dispersed Polystyrene (PS/Ag Composite Microspheres via Modified Chemical Reduction

    Directory of Open Access Journals (Sweden)

    Wen Zhu

    2013-12-01

    Full Text Available A modified method based on in situ chemical reduction was developed to prepare mono-dispersed polystyrene/silver (PS/Ag composite microspheres. In this approach; mono-dispersed PS microspheres were synthesized through dispersion polymerization using poly-vinylpyrrolidone (PVP as a dispersant at first. Then, poly-dopamine (PDA was fabricated to functionally modify the surfaces of PS microspheres. With the addition of [Ag(NH32]+ to the PS dispersion, [Ag(NH32]+ complex ions were absorbed and reduced to silver nanoparticles on the surfaces of PS-PDA microspheres to form PS/Ag composite microspheres. PVP acted both as a solvent of the metallic precursor and as a reducing agent. PDA also acted both as a chemical protocol to immobilize the silver nanoparticles at the PS surface and as a reducing agent. Therefore, no additional reducing agents were needed. The resulting composite microspheres were characterized by TEM, field emission scanning electron microscopy (FESEM, energy-dispersive X-ray spectroscopy (EDS, XRD, UV-Vis and surface-enhanced Raman spectroscopy (SERS. The results showed that Ag nanoparticles (NPs were homogeneously immobilized onto the PS microspheres’ surface in the presence of PDA and PVP. PS/Ag composite microspheres were well formed with a uniform and compact shell layer and were adjustable in terms of their optical property.

  1. Plasmonic Ag{sub 2}MoO{sub 4}/AgBr/Ag composite: Excellent photocatalytic performance and possible photocatalytic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongliao [College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei, 235000 (China); Zhang, Jinfeng, E-mail: zjf_y2004@126.com [College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei, 235000 (China); Lv, Jiali [College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei, 235000 (China); Dai, Kai, E-mail: daikai940@chnu.edu.cn [College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei, 235000 (China); Liang, Changhao [College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei, 235000 (China); Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031 (China)

    2017-02-28

    Highlights: • Novel Ag{sub 2}MoO{sub 4}/AgBr/Ag photocatalyst was prepared. • Ag{sub 2}MoO{sub 4}/AgBr/Ag showed high photocatalytic activity. • Ag{sub 2}MoO{sub 4}/AgBr/Ag showed long reusable life. - Abstract: Plasmonic Ag{sub 2}MoO{sub 4}/AgBr/Ag composite is fabricated by in-situ ion exchange and reduction methods at room temperature. The samples are characterized by X-ray diffraction (XRD), UV–vis diffuse reflectance (DRS), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscope (SEM) and photoluminescence (PL) measurements. The results show that butterfly-like Ag{sub 2}MoO{sub 4} nanosheets served as the precursor, and Ag{sub 2}MoO{sub 4}/AgBr/Ag is formed in phase transformation with MoO{sub 4}{sup 2−} displaced by Br{sup −}. The ternary Ag{sub 2}MoO{sub 4}/AgBr/Ag composite photocatalysts show greatly enhanced photocatalytic activity in photodegrading methylene blue (MB) under visible light irradiation compared with AgBr and Ag{sub 2}MoO{sub 4}. The pseudo-first-order rate constant k{sub app} of Ag{sub 2}MoO{sub 4}/AgBr/Ag is 0.602 min{sup −1}, which is 11.6 and 18.3 times as high as that of AgBr and Ag{sub 2}MoO{sub 4}, respectively. Meanwhile, the efficiency of degradation still kept 90% after ten times cyclic experiments. Eventually, possible photocatalytic mechanism was proposed.

  2. Optical and electrical characterization of AgInS2 thin films deposited by spray pyrolysis

    International Nuclear Information System (INIS)

    Calixto-Rodriguez, M.; Martinez, H.; Calixto, M.E.; Pena, Y.; Martinez-Escobar, Dalia; Tiburcio-Silver, A.; Sanchez-Juarez, A.

    2010-01-01

    Silver indium sulfide (AgInS 2 ) thin films have been prepared by spray pyrolysis (SP) technique using silver acetate, indium acetate, and N, N-dimethylthiourea as precursor compounds. Films were deposited onto glass substrates at different substrate temperatures (T s ) and Ag:In:S ratios in the starting solutions. Optical transmission and reflection as well as electrical measurements were performed in order to study the effect of deposition parameters on the optical and electrical properties of AgInS 2 thin films. X-ray diffraction measurements were used to identify the deposited compounds. It was found that different compounds such as AgInS 2 , Ag 2 S, In 2 O 3 , and In 2 S 3 can be grown only by changing the Ag:In:S ratio in the starting solution and T s . So that, by carefully selecting the deposition parameters, single phase AgInS 2 thin films can be easily grown. Thin films obtained using a molar ratio of Ag:In:S = 1:1:2 and T s = 400 o C, have an optical band gap of 1.9 eV and n-type electrical conductivity with a value of 0.3 Ω -1 cm -1 in the dark.

  3. Ag K- and L3-edge XAFS study on Ag species in Ag/Ga2O3 photocatalysts

    International Nuclear Information System (INIS)

    Yamamoto, M; Yamamoto, N; Yoshida, T; Nomoto, T; Yamamoto, A; Yoshida, H; Yagi, S

    2016-01-01

    Ag loaded Ga 2 O 3 (Ag/Ga 2 O 3 ) shows photocatalytic activity for reduction of CO 2 with water. Ag L 3 -edge XANES and K-edge EXAFS spectra were measured for various Ag/Ga 2 O 3 samples, which suggested that structural and chemical states of Ag species varied with the loading amount of Ag and the preparation method. The Ag species were metallic Ag particles with an AgGaO 2 -like interface structure in the sample with high loading amount of Ag while predominantly Ag metal clusters in the sample with low loading amount of Ag. The XANES feature just above the edge represented the interaction between the Ag species and the Ga 2 O 3 surface, showing that the Ag metal clusters had more electrons in the d -orbitals by interacting with the Ga 2 O 3 surface, which would contribute the high photocatalytic activity. (paper)

  4. Ag/C:F Antibacterial and hydrophobic nanocomposite coatings

    Science.gov (United States)

    Kylián, Ondřej; Kratochvíl, Jiří; Petr, Martin; Kuzminova, Anna; Slavínská, Danka; Biederman, Hynek; Beranová, Jana

    Silver-based nanomaterials that exhibit antibacterial character are intensively studied as they represent promising weapon against multi-drug resistant bacteria. Equally important class of materials represent coatings that have highly water repellent nature. Such materials may be used for fabrication of anti-fogging or self-cleaning surfaces. The aim of this study is to combine both of these valuable material characteristics. Antibacterial and highly hydrophobic Ag/C:F nanocomposite films were fabricated by means of gas aggregation source of Ag nanoparticles and sputter deposition of C:F matrix. The nanocomposite coatings had three-layer structure C:F base layer/Ag nanoparticles/C:F top layer. It is shown that the increasing number of Ag nanoparticles in produced coatings leads not only in enhancement of their antibacterial activity, but also causes substantial increase of their hydrophobicity. Under optimized conditions, the coatings are super-hydrophobic with water contact angle equal to 165∘ and are capable to induce 6-log reduction of bacteria presented in solution within 4h.

  5. Collision-free gases in spatially homogeneous space-times

    International Nuclear Information System (INIS)

    Maartens, R.; Maharaj, S.D.

    1985-01-01

    The kinematical and dynamical properties of one-component collision-free gases in spatially homogeneous, locally rotationally symmetric (LRS) space-times are analyzed. Following Ray and Zimmerman [Nuovo Cimento B 42, 183 (1977)], it is assumed that the distribution function f of the gas inherits the symmetry of space-time, in order to construct solutions of Liouville's equation. The redundancy of their further assumption that f be based on Killing vector constants of the motion is shown. The Ray and Zimmerman results for Kantowski--Sachs space-time are extended to all spatially homogeneous LRS space-times. It is shown that in all these space-times the kinematic average four-velocity u/sup i/ can be tilted relative to the homogeneous hypersurfaces. This differs from the perfect fluid case, in which only one space-time admits tilted u/sup i/, as shown by King and Ellis [Commun. Math. Phys. 31, 209 (1973)]. As a consequence, it is shown that all space-times admit nonzero acceleration and heat flow, while a subclass admits nonzero vorticity. The stress π/sub i/j is proportional to the shear sigma/sub i/j by virtue of the invariance of the distribution function. The evolution of tilt and the existence of perfect fluid solutions is also discussed

  6. Radiation induced homogeneous precipitation in undersaturated solid-solutions

    International Nuclear Information System (INIS)

    Cauvin, R.; Martin, G.

    1979-01-01

    A TEM study of 1 MeV electron irradiated Al 1.9 at% Zn solid solution shows that Zn precipitates form, under irradiation at temperatures well above the Zn solvus temperature outside irradiation. The corresponding upward shift of this temperature is dose rate dependent. This new example of radiation-induced precipitation exhibits unexpected features, which are not accounted for by the available models: (1) no correlation exists between the location of the precipitates and that of the point defects sinks; (2) the precipitation of incoherent β-phase with atomic volume smaller than that of the matrix, and of coherent G.P. zones both occurs; (3) the size of the coherent β precipitates saturates at large dose. A general mechanism for solute concentration fluctuations under irradiation is proposed which qualitatively accounts for the formation of coherent G.P. zones and for the nucleation of solute clusters with more complex structures. A reanalysis of Russell's model (1977) for the growth of incoherent precipitates shows that it may qualitatively account for the observed behavior of the β phase precipitates. (Auth.)

  7. Experimental study on the phase equilibria of the Ag-Ti system

    International Nuclear Information System (INIS)

    Fu Xiaoliang; Li Changrong; Wang Fuming; Li Mei; Zhang Weijing

    2005-01-01

    The Ag-Ti diffusion couples were prepared by small pure silver plates closely packed in pure titanium powder, sealed in quartz tube, and annealed at 750 deg. C, 980 deg. C, 1100 deg. C and 1200 deg. C, respectively. The phase equilibrium relationship and the conjugate phase compositions in the Ag-Ti system were determined by means of the metallographic microscope and the electron probe microanalysis. Partial liquidus and solidus for the two-phase equilibrium, liquid + (βTi), were obtained. The narrow solution range for the intermediate phase (TiAg) was determined

  8. Microstructure and Mechanical Properties of Mg-11Li-6Zn-0.6Zr-0.4Ag-0.2Ca-x Y Alloys.

    Science.gov (United States)

    Kim, Yong-Ho; Yoo, Hyo-Sang; Son, Hyeon-Taek

    2018-09-01

    Magnesium and its alloys are potential candidates for many automotive and aerospace applications due to their low density and high specific strength. However, the use of magnesium as wrought products is limited because of its poor workability at ambient temperatures. Mg-Li alloys containing 5-11 wt.% Li exhibit a two-phase structure consisting of a α (hcp) Mg-rich phase and a β (bcc) Li-rich phase. Mg-Li alloys with Li content greater than 11 wt.% exhibit a single-phase structure consisting of only the β phase. In the present study, we studied the effects of Y addition on the microstructure and mechanical properties of Mg-11Li-6Zn-0.6Zr-0.4Ag-0.2Ca based alloys. The melt was maintained at 720 °C for 20 min and poured into a mold. Then, the as-cast Mg alloys were homogenized at 350 °C for 4 h and were hot-extruded onto a 4-mm-thick plate with a reduction ratio of 14:1. The as-cast Mg-11Li-6Zn-0.6Zr-0.4Ag-0.2Ca-xY (x 0, 1, 3, and 5 wt.%) alloys were composed of α-Mg, β-Li, γ-Mg2Zn3Li, I-Mg3YZn6, W-Mg3Y2Zn3, and X-Mg12YZn phases. By increasing the Y content from 0 to 5 wt.%, the composition of the W-Mg3Y2Zn3 phase increased. With increasing Y content, from 0 to 1, 3, and 5 wt.%, the average grain size and ultimate tensile of the as-extruded Mg alloys decreased slightly, from 8.4, to 3.62, 3.56, and 3.44 μm and from 228.92 to 215.57, 187.47, and 161.04 MPa, respectively, at room temperature.

  9. Preparation of Ag4Bi2O5/MnO2 Corn/Cob Like Nano Material as a Superior Catalyst for Oxygen Reduction Reaction in Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Xun Zeng

    2017-12-01

    Full Text Available Ag4Bi2O5/MnO2 nano-sized material was synthesized by a co-precipitation method in concentrated KOH solution. The morphology characterization indicates that MnO2 nanoparticles with a size of 20 nm are precipitated on the surface of nano Ag4Bi2O5, forming a structure like corn on the cob. The obtained material with 60% Mn offers slightly higher initial potential (0.098 V vs. Hg/HgO and limiting current density (−5.67 mA cm−2 at a rotating speed of 1600 rpm compared to commercial Pt/C (−0.047 V and −5.35 mA cm−2, respectively. Furthermore, the obtained material exhibits superior long-term durability and stronger methanol tolerance than commercial Pt/C. The remarkable features suggest that the Ag4Bi2O5/MnO2 nano-material is a very promising oxygen reduction reaction catalyst.

  10. Preparation and Use of Photocatalytically Active Segmented Ag|ZnO and Coaxial TiO2-Ag Nanowires Made by Templated Electrodeposition

    Science.gov (United States)

    Maijenburg, A. Wouter; Rodijk, Eddy J.B.; Maas, Michiel G.; ten Elshof, Johan E.

    2014-01-01

    Photocatalytically active nanostructures require a large specific surface area with the presence of many catalytically active sites for the oxidation and reduction half reactions, and fast electron (hole) diffusion and charge separation. Nanowires present suitable architectures to meet these requirements. Axially segmented Ag|ZnO and radially segmented (coaxial) TiO2-Ag nanowires with a diameter of 200 nm and a length of 6-20 µm were made by templated electrodeposition within the pores of polycarbonate track-etched (PCTE) or anodized aluminum oxide (AAO) membranes, respectively. In the photocatalytic experiments, the ZnO and TiO2 phases acted as photoanodes, and Ag as cathode. No external circuit is needed to connect both electrodes, which is a key advantage over conventional photo-electrochemical cells. For making segmented Ag|ZnO nanowires, the Ag salt electrolyte was replaced after formation of the Ag segment to form a ZnO segment attached to the Ag segment. For making coaxial TiO2-Ag nanowires, a TiO2 gel was first formed by the electrochemically induced sol-gel method. Drying and thermal annealing of the as-formed TiO2 gel resulted in the formation of crystalline TiO2 nanotubes. A subsequent Ag electrodeposition step inside the TiO2 nanotubes resulted in formation of coaxial TiO2-Ag nanowires. Due to the combination of an n-type semiconductor (ZnO or TiO2) and a metal (Ag) within the same nanowire, a Schottky barrier was created at the interface between the phases. To demonstrate the photocatalytic activity of these nanowires, the Ag|ZnO nanowires were used in a photocatalytic experiment in which H2 gas was detected upon UV illumination of the nanowires dispersed in a methanol/water mixture. After 17 min of illumination, approximately 0.2 vol% H2 gas was detected from a suspension of ~0.1 g of Ag|ZnO nanowires in a 50 ml 80 vol% aqueous methanol solution. PMID:24837535

  11. Distinct metal-exchange pathways of doped Ag25 nanoclusters

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2016-09-09

    Atomically precise metal nanoclusters (NCs) containing more than one type of metal atom (i.e., doped or alloyed), due to synergistic effects, open new avenues for engineering the catalytic and optical properties of NCs in a manner that homometal NCs cannot. Unfortunately, it is still a major challenge to controllably introduce multimetallic dopants in NCs, understanding the dopants\\' positions, mechanism, and synergistic effects. To overcome these challenges, we designed a metal-exchange approach involving NCs as molecular templates and metal ions as the source of the incoming dopant. In particular, two structurally similar monodoped silver-rich NCs, [MAg24(SR)(18)](2-) (M = Pd/Pt and SR: thiolate), were synthesized as templates to study their mechanistic transformation in response to the introduction of gold atoms. The controllable incorporation of Au atoms into the MAg24 framework facilitated the elucidation of distinct doping pathways through high-resolution mass spectrometry, optical spectroscopy and elemental analysis. Interestingly, gold replaced the central Pd atom of [PdAg24(SR)(18)](2-) clusters to produce predominantly bimetallic [AuAg24(SR)(18)](-) clusters along with a minor product of an [Au2Ag23(SR)(18)](-) cluster. In contrast, the central Pt atom remained intact in [PtAg24(SR)(18)](2-) clusters, and gold replaced the noncentral Ag atoms to form trimetallic [AuxPtAg24-x(SR)(18)](2-) NCs, where x = 1-2, with a portion of the starting [PtAg24(SR)(18)](2-) NCs remaining. This study reveals some of the unusual metal-exchange pathways of doped NCs and the important role played by the initial metal dopant in directing the position of a second dopant in the final product.

  12. AgPi: Agents on Raspberry Pi

    Directory of Open Access Journals (Sweden)

    Tushar Semwal

    2016-10-01

    Full Text Available The Raspberry Pi and its variants have brought with them an aura of change in the world of embedded systems. With their impressive computation and communication capabilities and low footprint, these devices have thrown open the possibility of realizing a network of things in a very cost-effective manner. While such networks offer good solutions to prominent issues, they are indeed a long way from being smart or intelligent. Most of the currently available implementations of such a network of devices involve a centralized cloud-based server that contributes to making the necessary intelligent decisions, leaving these devices fairly underutilized. Though this paradigm provides for an easy and rapid solution, they have limited scalability, are less robust and at times prove to be expensive. In this paper, we introduce the concept of Agents on Raspberry Pi (AgPi as a cyber solution to enhance the smartness and flexibility of such embedded networks of physical devices in a decentralized manner. The use of a Multi-Agent System (MAS running on Raspberry Pis aids agents, both static and mobile, to govern the various activities within the network. Agents can act autonomously or on behalf of a human user and can collaborate, learn, adapt and act, thus contributing to embedded intelligence. This paper describes how Tartarus, a multi-agent platform, embedded on Raspberry Pis that constitute a network, can bring the best out of the system. To reveal the versatility of the concept of AgPi, an application for a Location-Aware and Tracking Service (LATS is presented. The results obtained from a comparison of data transfer cost between the conventional cloud-based approach with AgPi have also been included.

  13. Recursive solutions for multi-group neutron kinetics diffusion equations in homogeneous three-dimensional rectangular domains with time dependent perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Claudio Z. [Universidade Federal de Pelotas, Capao do Leao (Brazil). Programa de Pos Graduacao em Modelagem Matematica; Bodmann, Bardo E.J.; Vilhena, Marco T. [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Mecanica; Barros, Ricardo C. [Universidade do Estado do Rio de Janeiro, Nova Friburgo, RJ (Brazil). Inst. Politecnico

    2014-12-15

    In the present work we solve in analytical representation the three dimensional neutron kinetic diffusion problem in rectangular Cartesian geometry for homogeneous and bounded domains for any number of energy groups and precursor concentrations. The solution in analytical representation is constructed using a hierarchical procedure, i.e. the original problem is reduced to a problem previously solved by the authors making use of a combination of the spectral method and a recursive decomposition approach. Time dependent absorption cross sections of the thermal energy group are considered with step, ramp and Chebyshev polynomial variations. For these three cases, we present numerical results and discuss convergence properties and compare our results to those available in the literature.

  14. Solid-state transformation of Fe-rich intermetallic phases in Al–5.0Cu–0.6Mn squeeze cast alloy with variable Fe contents during solution heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Bo [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); School of Mechanical Engineering, Gui Zhou University, Guiyang 550000 (China); Zhang, Weiwen, E-mail: mewzhang@scut.edu.cn [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Zhao, Yuliang; Li, Yuanyuan [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China)

    2015-06-15

    The Al–5.0 wt.% Cu–0.6 wt.% Mn alloys with a variable Fe content were prepared by squeeze casting. Optical microscopy (OM), Deep etching technique, scanning electron microscopy(SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to examine the solid-state transformation of Fe-rich intermetallics during the solution heat treatment. The results showed that the Chinese script-like α-Fe, Al{sub 6}(FeMn) and needle-like Al{sub 3}(FeMn) phases transform to a new Cu-rich β-Fe (Al{sub 7}Cu{sub 2}(FeMn)) phase during solution heat treatment. The possible reaction and overall transformation kinetics of the solid-state phase transformation for the Fe-rich intermetallics were investigated. - Graphical abstract: Display Omitted - Highlights: • The α-Fe, Al{sub 6}(FeMn) and Al{sub 3}(FeMn) phases change to the β-Fe phases. • Possible reactions of Fe phases during solution heat treatment are discussed. • The overall fractional transformation rate follows an Avrami curve.

  15. Ag/α-Fe{sub 2}O{sub 3} hollow microspheres: Preparation and application for hydrogen peroxide detection

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Xinyuan; Wu, Zhiping; Liao, Fang, E-mail: liaozhang2003@163.com; Zhang, Tingting; Guo, Tingting

    2015-09-15

    In this paper, we demonstrated a simple approach for preparing α-Fe{sub 2}O{sub 3} hollow spheres by mixing ferric nitrate aqueous and glucose in 180 °C. The glucose was found to act as a soft template in the process of α-Fe{sub 2}O{sub 3} hollow spheres formation. Ag/α-Fe{sub 2}O{sub 3} hollow nanocomposite was obtained under UV irradiation without additional reducing agents or initiators. Synthesized Ag/α-Fe{sub 2}O{sub 3} hollow composites exhibited remarkable catalytic performance toward H{sub 2}O{sub 2} reduction. The electrocatalytic activity mechanism of Ag/α-Fe{sub 2}O{sub 3}/GCE were discussed toward the reduction of H{sub 2}O{sub 2} in this paper. - Graphical abstract: Glucose is carbonized as carbon balls in the 180 °C hydrothermal carbonization process, which plays a role of a soft template. Carbon spherical shell is rich in many hydroxyls, which have good hydrophilicity and surface reactivity. When Fe(NO{sub 3}){sub 3} is added to the aqueous solution of Glucose, the hydrophilic -OH will adsorb Fe{sup 3+} to form coordination compound by coordination bond. α-FeOOH is formed on the surface of carbon balls by hydrothermal reaction. After calcination at 500 °C, carbon spheres react with oxygen to form carbon dioxide, which disappears in the air. Meanwhile α-FeOOH is calcined to form α-Fe{sub 2}O{sub 3} hollow spheres.

  16. Photoelectrochemical Performances and Potential Applications of TiO2 Nanotube Arrays Modified with Ag and Pt Nanoparticles

    International Nuclear Information System (INIS)

    Xu, Guangqing; Liu, Haipeng; Wang, Jinwen; Lv, Jun; Zheng, Zhixiang; Wu, Yucheng

    2014-01-01

    TiO 2 nanotube arrays (NTAs) modified with Ag (Ag/TiO 2 ) and Pt (Pt/TiO 2 ) nanoparticles were fabricated by anodic oxidation combined with photoreduction and hydrothermal methods, respectively. Structures, element components and morphologies of TiO 2 , Ag/TiO 2 and Pt/TiO 2 NTAs were measured by X-ray diffraction diffractometer, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope. The photoeletrochemical performances of TiO 2 , Pt/TiO 2 and Ag/TiO 2 NTAs were characterized by cyclic voltammetry and amperometry in phosphate buffer solution in absence and presence of glucose. Modifications of Ag and Pt nanoparticles play different roles in the photoelectrochemical process and have different potential applications. Ag nanoparticles decrease the photocurrent in buffer solution but increase the photocurrent response to organic compounds, which is fit for electrochemical detection of organic compounds due to the low background photocurrent and high photocurrent response. Ag/TiO 2 NTAs achieve the best detection performance with sensitivity of 0.152 μA/μM and detection limit of 0.53 μM. On the contrary, Pt nanoparticles can enhance the photocurrent of TiO 2 NTAs in buffer solution but decrease the photocurrent response to organic compounds, which are benefit for photocatalytic water splitting but not for photoelectrochemical detection

  17. Synthesis, characterization and antibacterial study on the chitosan-functionalized Ag nanoparticles.

    Science.gov (United States)

    Biao, Linhai; Tan, Shengnan; Wang, Yuanlin; Guo, Ximin; Fu, Yujie; Xu, Fengjie; Zu, Yuangang; Liu, Zhiguo

    2017-07-01

    This study provided a facile, one-step hydrothermal method to synthesize stable Ag colloid in aqueous solution by utilizing chitosan as both reductant and stabilizer. The formation of chitosan-functionalized Ag nanoparticles was verified by UV-Vis, FTIR, TEM, AFM and XRD measurements. FTIR results revealed that the primary amine groups and amide groups of chitosan have specific interactions with the surface of Ag nanoparticles. The average diameter of the Ag nanoparticles is 10.0±5.4nm as determined by TEM. Ag nanoparticles are highly crystalline as revealed by HR-TEM and XRD measurements. The size and shape of Ag nanoparticles are also found to depend on the pH condition in the synthesis. Ag nanoparticles were the main products at pH5.0 whereas large Ag nanotriangle and truncated triangular nanoplate were dominant at pH4.0 in the synthesis. Due to its monodispersity and good stability, the chitosan-functionalized Ag colloid synthesized at pH5.0 was further tested for its antibacterial activities against gram-positive bacteria, gram-negative bacteria and fungus. The results of zone of inhibition, inhibition ratio and SEM characterization revealed that chitosan-functionalized Ag nanoparticles have great bactericidal efficiency against both bacteria and fungus. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Visible light driven photocatalysis and antibacterial activity of AgVO{sub 3} and Ag/AgVO{sub 3} nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anamika [Department of Life Sciences, University of Mumbai, Santacruz (E), Mumbai 400 098 (India); Dutta, Dimple P., E-mail: dimpled@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Ballal, A. [Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Tyagi, A.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Fulekar, M.H. [School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar 382 030, Gujarat (India)

    2014-03-01

    Graphical abstract: - Highlights: • Ag/AgVO{sub 3} and pure AgVO{sub 3} nanowires synthesized by sonochemical process. • Characterization done using XRD, SEM, TEM, EDX and BET analysis. • Visible light degradation of RhB by Ag/AgVO{sub 3} within 45 min. • Antibacterial activity of Ag/AgVO{sub 3} demonstrated. - Abstract: Ag/AgVO{sub 3} nanowires and AgVO{sub 3} nanorods were synthesized in aqueous media via a facile sonochemical route. The as-synthesized products were characterized by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The results revealed that inert atmosphere promotes the formation of Ag/AgVO{sub 3} nanowires. The photocatalytic studies revealed that the Ag/AgVO{sub 3} nanowires exhibited complete photocatalytic degradation of Rhodamine B within 45 min under visible light irradiation. The antibacterial activity of Ag/AgVO{sub 3} nanowires was tested against Escherechia coli and Bacillus subtilis. The minimum growth inhibitory concentration value was found to be 50 and 10 folds lower than for the antibiotic ciprofloxacin for E. coli and B. subtilis, respectively. The antibacterial properties of the β-AgVO{sub 3} nanorods prove that in case of the Ag dispersed Ag/AgVO{sub 3} nanowires, the enhanced antibacterial action is also due to contribution from the AgVO{sub 3} support.

  19. Ag-to-urban water transfer in California: Win-win solutions

    International Nuclear Information System (INIS)

    Jacobi, L.A.; Carley, R.L.

    1993-01-01

    The current long-term drought in California has generated interest in water transfers. Water transfers from farms to the cities are widely viewed as the next major source of supply to urban California. Ag-to-Urban permanent water transfers may have negative consequences to the agricultural sector and to the environment. This paper presents agricultural water use statistics, discusses sources of water for transfer, and suggests sources of water for win-win transfers

  20. Gamma-irradiation assisted seeded growth of Ag nanoparticles within PVA matrix

    International Nuclear Information System (INIS)

    Eisa, Wael H.; Abdel-Moneam, Yasser K.; Shaaban, Yasser; Abdel-Fattah, Atef A.; Abou Zeid, Amira M.

    2011-01-01

    Highlights: → Nucleation and growth must be two completely separated steps. → The amount of zerovalent nuclei can be controlled by varying the irradiation dose. → PVA act as physical barrier to inhibit aggregation or the growth of Ag nanoparticles. - Abstract: Polyvinyl alcohol (PVA)/Ag hybrid nanocomposites have been prepared from polymeric film of PVA and silver nitrate (AgNO 3 ). The silver nanoparticles were generated in PVA matrix by the reduction of silver ions with gamma-irradiation. UV-visible spectra showed a single peak at 422 nm, arising from the surface plasmon absorption of silver nanoparticles. The shifting of surface plasmon resonance peak after irradiation reveals that the gamma irradiation can be used as a size controlling agent for the preparation of silver nanoparticles embedded in PVA film. This result was in good agreement with the result obtained from TEM images. The TEM images showed the narrow size distribution of the obtained Ag nanoparticles with average particle size of 30 nm, which decreased to 17 nm with increasing irradiation dose. The X-ray diffraction analysis revealed that silver metal was present in face centered cubic (fcc) crystal structure. These results clearly indicate that monodispersed silver nanoparticles are embedded homogenously in PVA matrix.

  1. Precipitation in an Al–Mg–Cu alloy and the effect of a low amount of Ag

    Energy Technology Data Exchange (ETDEWEB)

    Mihara, Mami, E-mail: mihara.m.aa@m.titech.ac.jp [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo 152-8552 (Japan); Marioara, Calin D., E-mail: Calin.D.Marioara@sintef.no [SINTEF Materials and Chemistry, N-7465 Trondheim (Norway); Andersen, Sigmund J., E-mail: Sigmund.J.Andersen@sintef.no [SINTEF Materials and Chemistry, N-7465 Trondheim (Norway); Holmestad, Randi, E-mail: randi.holmestad@ntnu.no [Faculty of Physics, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Kobayashi, Equo, E-mail: equo@mtl.titech.ac.jp [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo 152-8552 (Japan); Sato, Tatsuo, E-mail: sato.tatsuo8@gmail.com [Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)

    2016-03-21

    Two high-purity aluminium alloys based on composition Al–3.0Mg–1.0Cu (wt%), one with added 0.4 wt% Ag, were compared up to 11 days ageing at 443 K by means of transmission electron microscopy and hardness measurements. The base alloy exhibits an inhomogeneous precipitate microstructure with a high density of fine needle-shaped Guinier-Preston-Bagaryatsky (GPB) zones together with coarser precipitates of S′-Al{sub 2}CuMg and rods of the structurally unknown Z-phase. The S′ phase is preferably formed on dislocations. The addition of Ag has a strong effect, leading to a homogeneous distribution with fine Ag-containing icosahedral quasi-crystalline precipitates (iQC). Both the GPB zones in the base alloy and the iQC phase in the Ag added alloy survive even after long term ageing. Ag is found to suppress the formation of the S′ phase. It is suggested that the Z phase is an approximation phase to the quasi-crystalline phase as is the case for the T-phase, implying they are based on similar (Bergman) clusters.

  2. Citrate-coated silver nanoparticles interactions with effluent organic matter: influence of capping agent and solution conditions

    KAUST Repository

    Gutierrez, Leonardo

    2015-07-31

    Fate and transport studies of silver nanoparticles (AgNPs) discharged from urban wastewaters containing effluent organic matter (EfOM) into natural waters represent a key knowledge gap. In this study, EfOM interfacial interactions with AgNPs and their aggregation kinetics were investigated by atomic force microscopy (AFM) and time-resolved dynamic light scattering (TR-DLS), respectively. Two well-characterized EfOM isolates, i.e., wastewater humic (WW humic) and wastewater colloids (WW colloids, a complex mixture of polysaccharides-proteins-lipids), and a River humic isolate of different characteristics were selected. Citrate-coated AgNPs were selected as representative capped-AgNPs. Citrate-coated AgNPs showed a considerable stability in Na+ solutions. However, Ca2+ ions induced aggregation by cation bridging between carboxyl groups on citrate. Although the presence of River humic increased the stability of citrate-coated AgNPs in Na+ solutions due to electrosteric effects, they aggregated in WW humic-containing solutions, indicating the importance of humics characteristics during interactions. Ca2+ ions increased citrate-coated AgNPs aggregation rates in both humic solutions, suggesting cation bridging between carboxyl groups on their structures as a dominant interacting mechanism. Aggregation of citrate-coated AgNPs in WW colloids solutions was significantly faster than those in both humic solutions. Control experiments in urea solution indicated hydrogen bonding as the main interacting mechanism. During AFM experiments, citrate-coated AgNPs showed higher adhesion to WW humic than to River humic, evidencing a consistency between TR-DLS and AFM results. Ca2+ ions increased citrate-coated AgNPs adhesion to both humic isolates. Interestingly, strong WW colloids interactions with citrate caused AFM probe contamination (nanoparticles adsorption) even at low Na+ concentrations, indicating the impact of hydrogen bonding on adhesion. These results suggest the importance

  3. Green Synthesis of AgNPs Stabilized with biowaste and their antimicrobial activities

    Directory of Open Access Journals (Sweden)

    Nakuleshwar Dut Jasuja

    2014-12-01

    Full Text Available In the present study, rapid reduction and stabilization of Ag+ ions with different NaOH molar concentration (0.5 mM, 1.0 mM and 1.5 mM has been carried out in the aqueous solution of silver nitrate by the bio waste peel extract of P.granatum. Generally, chemical methods used for the synthesis of AgNPs are quite toxic, flammable and have adverse effect in medical application but green synthesis is a better option due to eco-friendliness, non-toxicity and safe for human. Stable AgNPs were synthesized by treating 90 mL aqueous solution of 2 mM AgNO3 with the 5 mL plant peels extract (0.4% w/v at different NaOH concentration (5 mL. The synthesized AgNPs were characterized by UV-Vis spectroscopy, TEM and SEM. Further, antimicrobial activities of AgNPs were performed on Gram positive i.e. Staphylococcus aureus, Bacillus subtilius and Gram negative i.e. E. coli, Pseudomonas aeruginosa bacteria. The AgNPs synthesized at 1.5 mM NaOH concentration had shown maximum zone of inhibition (ZOI i.e. 49 ± 0.64 in E. coli, whereas Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilius had shown 40 ± 0.29 mm, 28 ± 0.13 and 42 ± 0.49 mm ZOI respectively. The MIC value of 30 g/mL observed for E. coli Whereas, Staphylococcus aureus, Bacillus subtilius and Pseudomonas aeruginosa had shown 45 µg/mL, 38 µg/mL, 35 µg/mL respectively. The study revealed that AgNPs had shown significant antimicrobial activity as compared to Streptomycin.

  4. Equilibrium sampling of environmental pollutants in fish: Comparison with lipid- normalized concentrations and homogenization effects on chemical activity

    DEFF Research Database (Denmark)

    Jahnke, Annika; Mayer, Philipp; Adolfsson-Erici, Margaretha

    2011-01-01

    of the equilibrium sampling technique, while at the same time confirming that the fugacity capacity of these lipid-rich tissues for PCBs was dominated by the lipid fraction. Equilibrium sampling was also applied to homogenates of the same fish tissues. The PCB concentrations in the PDMS were 1.2 to 2.0 times higher...... in the homogenates (statistically significant in 18 of 21 cases, phomogenization increased the chemical activity of the PCBs and decreased the fugacity capacity of the tissue. This observation has implications for equilibrium sampling and partition coefficients determined using tissue...... homogenates....

  5. Thermochemical properties of silver tellurides including empressite (AgTe) and phase diagrams for Ag-Te and Ag-Te-O

    Science.gov (United States)

    Voronin, Mikhail V.; Osadchii, Evgeniy G.; Brichkina, Ekaterina A.

    2017-10-01

    This study compiles original experimental and literature data on the thermodynamic properties (ΔfG°, S°, ΔfH°) of silver tellurides (α-Ag2Te, β-Ag2Te, Ag1.9Te, Ag5Te3, AgTe) obtained by the method of solid-state galvanic cell with the RbAg4I5 and AgI solid electrolytes. The thermodynamic data for empressite (AgTe, pure fraction from Empress Josephine Mine, Colorado USA) have been obtained for the first time by the electrochemical experiment with the virtual reaction Ag + Te = AgTe. The Ag-Te phase diagrams in the T - x and log fTe2 (gas) - 1/ T coordinates have been refined, and the ternary Ag-Te-O diagrams with Ag-Te-TeO2 (paratellurite) composition range have been calculated.

  6. Effects of annealing on the microstructure and magnetic property of the mechanically alloyed FeSiBAlNiM (M=Co, Cu, Ag) amorphous high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoxia; Zhou, Xuan; Yu, Shuaishuai; Wei, Congcong; Xu, Jing; Wang, Yan, E-mail: mse_wangy@ujn.edu.cn

    2017-05-15

    The effects of annealing treatment on the microstructure, thermal stability, and magnetic properties of the mechanical alloyed FeSiBAlNiM (M=Co, Cu, Ag) amorphous high entropy alloys (HEAs) have been investigated in this project. The simple crystallization products in FeSiBAlNi amorphous HEAs with Co and Ag addition reveal the high phase stability during heating process. At high annealing treatment, the crystallized HEAs possess the good semi-hard magnetic property. It can conclude that crystallization products containing proper FeSi-rich and FeB-rich phases are beneficial to improve the magnetic property. Annealing near the exothermic peak temperature presents the best enhancing effect on the semi-hard magnetic property of FeSiBAlNiCo. It performs both large saturated magnetization and remanence ratio of 13.0 emu/g and near 45%, which exhibit 465% and 105% enhancement compared with as-milled state, respectively. - Highlights: • Co, Cu, Ag additions affect crystallization behavior of FeSiBAlNi amorphous HEAs. • Crystallization products in FeSiBAlNi Co/Ag reveal high phase stability. • Proper FeSi-rich and FeB-rich phases are beneficial to improve magnetic property. • Annealing treatment improves semi-hard magnetic property compared to as-milled state. • Annealing near exothermic peak temperature shows best enhancing effect on magnetism.

  7. Magnified fluorescence detection of silver(I) ion in aqueous solutions by using nano-graphite-DNA hybrid and DNase I.

    Science.gov (United States)

    Wei, Yin; Li, Bianmiao; Wang, Xu; Duan, Yixiang

    2014-08-15

    This paper describes a novel approach utilizing nano-graphite-DNA hybrid and DNase I for the amplified detection of silver(I) ion in aqueous solutions for the first time. Nano-graphite can effectively quench the fluorescence of dye-labeled cytosine-rich single-stranded DNA due to its strong π-π stacking interactions; however, in the presence of Ag(+), C-Ag(+)-C coordination induces the probe to fold into a hairpin structure, which does not adsorb on the surface of nano-graphite and thus retains the dye fluorescence. Meanwhile, the hairpin structure can be cleaved by DNase I, and in such case Ag(+) is delivered from the complex. The released Ag(+) then binds other dye-labeled single-stranded DNA on the nano-graphite surface, and touches off another target recycling, resulting in the successive release of dye-labeled single-stranded DNA from the nano-graphite, which leads to significant amplification of the signal. The present magnification sensing system exhibits high sensitivity toward Ag(+) with a limit of detection of 0.3nM (S/N=3), which is much lower than the standard for Ag(+) in drinking water recommended by the Environmental Protection Agency (EPA). The selectivity of the sensor for Ag(+) against other biologically and environmentally related metal ions is outstanding due to the high specificity of C-Ag(+)-C formation. Moreover, the sensing system is used for the determination of Ag(+) in river water samples with satisfying results. The proposed assay is simple, cost-effective, and might open the door for the development of new assays for other metal ions or biomolecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Determination of the compositions of the DIGM zone in nanocrystalline Ag/Au and Ag/Pd thin films by secondary neutral mass spectrometry

    Directory of Open Access Journals (Sweden)

    Gábor Y. Molnár

    2016-03-01

    Full Text Available Alloying by grain boundary diffusion-induced grain boundary migration is investigated by secondary neutral mass spectrometry depth profiling in Ag/Au and Ag/Pd nanocrystalline thin film systems. It is shown that the compositions in zones left behind the moving boundaries can be determined by this technique if the process takes place at low temperatures where solely the grain boundary transport is the contributing mechanism and the gain size is less than the half of the grain boundary migration distance. The results in Ag/Au system are in good accordance with the predictions given by the step mechanism of grain boundary migration, i.e., the saturation compositions are higher in the slower component (i.e., in Au or Pd. It is shown that the homogenization process stops after reaching the saturation values and further intermixing can take place only if fresh samples with initial compositions, according to the saturation values, are produced and heat treated at the same temperature. The reversal of the film sequence resulted in the reversal of the inequality of the compositions in the alloyed zones, which is in contrast to the above theoretical model, and explained by possible effects of the stress gradients developed by the diffusion processes itself.

  9. Desertification, salinization, and biotic homogenization in a dryland river ecosystem.

    Science.gov (United States)

    Miyazono, Seiji; Patiño, Reynaldo; Taylor, Christopher M

    2015-04-01

    This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamflow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was>2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and

  10. Application of INAA complementary gamma ray photopeaks to homogeneity study of candidate reference materials

    International Nuclear Information System (INIS)

    Moreira, Edson G.; Vasconcellos, Marina B.A.; Lima, Ana P.S.; Catharino, Marilia G.M.; Maihara, Vera A.; Saiki, Mitiko

    2009-01-01

    Characterization and certification of reference materials, RMs, is a complex task involving many steps. One of them is the homogeneity testing to assure that key property values will not present variation among RM bottles. Good precision is the most important figure of merit of an analytical technique to allow it to be used in the homogeneity testing of candidate RMs. Due to its inherent characteristics, Instrumental Neutron Activation Analysis, INAA, is an analytical technique of choice for homogeneity testing. Problems with sample digestion and contamination from reagents are not an issue in INAA, as solid samples are analyzed directly. For element determination via INAA, the activity of a suitable gamma ray decay photopeak for an element is chosen and it is compared to the activity of a standard of the element. An interesting possibility is the use of complementary gamma ray photopeaks (for the elements that present them) to confirm the homogeneity test results for an element. In this study, an investigation of the use of the complementary gamma ray photopeaks of 110 mAg, 82 Br, 60 Co, 134 Cs, 152 Eu, 59 Fe, 140 La, 233 Pa (for Th determination), 46 Sc and 75 Se radionuclides was undertaken in the between bottle homogeneity study of a mussel candidate RM under preparation at IPEN - CNEN/SP. Although some photopeaks led to biased element content results, the use of complementary gamma ray photopeaks proved to be helpful in supporting homogeneity study conclusions of new RMs. (author)

  11. Homogeneity of nuclear fuel containing burnable poison; Homogenost jedrskega goriva z gorljivim strupom

    Energy Technology Data Exchange (ETDEWEB)

    Loose, A; Susnik, D; Ilic, R [Institut Jozef Stefan, Ljubljana (Yugoslavia)

    1988-07-01

    In this work the results of the microstructural investigations of the influence of the Gd{sub 2}O{sub 3} contents and the sintering conditions on the formation of the homogeneous (U,Gd)O{sub 2} solid solution, are presented. For this purpose sintering conditions, microstructure and diffusivity in UO{sub 2} -Gd{sub 2}O{sub 3} , were studied. It was found that, with a suitable preparation of powders and longer sintering times in dry hydrogen atmosphere above 1700 deg C, a homogeneous (U,Gd)O{sub 2} solid solution can be obtained. (author)

  12. In-situ electrochemical coating of Ag nanoparticles onto graphite electrode with enhanced performance for Li-ion batteries

    International Nuclear Information System (INIS)

    Yun, Jiaojiao; Wang, Yan; Gao, Tian; Zheng, Huiyuan; Shen, Ming; Qu, Qunting; Zheng, Honghe

    2015-01-01

    The effects of silver hexafluorophosphate (AgPF 6 ) as an electrolyte additive on the electrochemical behaviors of graphite anode are systematically studied by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The surface structure and composition of graphite electrode after electrochemical cycles are investigated through scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. It is found that Ag nanoparticles derived from electrochemical reduction of Ag + are homogenously distributed on the graphite surface. Significant improvements on the discharge capacity, rate behavior, and low-temperature performance of graphite electrode are obtained. The reasons are associated with the decreased resistances of solid-electrolyte interface and charge-transfer process, which improve the electrode kinetics for Li + intercalation/deintercalation

  13. Ternary Ag-In-S polycrystalline films deposited using chemical bath deposition for photoelectrochemical applications

    International Nuclear Information System (INIS)

    Chang, Wen-Sheng; Wu, Ching-Chen; Jeng, Ming-Shan; Cheng, Kong-Wei; Huang, Chao-Ming; Lee, Tai-Chou

    2010-01-01

    This paper describes the preparation and characterization of ternary Ag-In-S thin films deposited on indium tin oxide (ITO)-coated glass substrates using chemical bath deposition (CBD). The composition of the thin films was varied by changing the concentration ratio of [Ag]/[In] in the precursor solutions. The crystal structure, optical properties, and surface morphology of the thin films were analyzed by grazing incidence X-ray diffraction (GIXRD), UV-vis spectroscopy, and field-emission scanning electron microscopy (FE-SEM). GIXRD results indicate that the samples consisted of AgInS 2 and/or AgIn 5 S 8 crystal phases, depending on the composition of the precursor solutions. The film thicknesses, electrical resistivity, flat band potentials, and band gaps of the samples were between 1.12 and 1.37 μm, 3.73 x 10 -3 and 4.98 x 10 4 Ω cm, -0.67 and -0.90 V vs. NHE, and 1.83 and 1.92 eV, respectively. The highest photocurrent density was observed in the sample with [Ag]/[In] = 4. A photocurrent density of 9.7 mA cm -2 was obtained with an applied potential of 0.25 V vs. SCE in the three-electrode system. The photoresponse experiments were conducted in 0.25 M K 2 SO 3 and 0.35 M Na 2 S aqueous electrolyte solutions under irradiation by a 300 W Xe light (100 mW cm -2 ). The results show that ternary Ag-In-S thin film electrodes have potential in water splitting applications.

  14. Polypropylene fibers modified by plasma treatment for preparation of Ag nanoparticles.

    Science.gov (United States)

    Tseng, Chun-Hao; Wang, Cheng-Chien; Chen, Chuh-Yung

    2006-03-09

    A novel method for preparing poly(propylene-graft-2-methacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester)-silver fibers (PPG-IAg fibers) by plasma-induced grafting polymerization is presented in this study. The chelating groups, -N(CH2COO-)2 (GMA-IDA), on the surface of the PPG-I fibers are the coordination sites for chelating silver ions. At these sites, Ag nanoparticles were grown first by reduction with UV light with a wavelength of 366 nm, and second, through immersion in a 24% formaldehyde solution with pH values set variously at 2, 5, 8, and 11. The characteristics of the PPG-I fibers with differing durations of plasma treatment were monitored by using a Fourier transform infrared (FT-IR) spectroscope. Scanning electronic microscopy (SEM) and elemental analysis show that the percentage of GMA-IDA grafted onto PP fiber reaches a maximum when the plasma treatment time is 3 min. Plasma treatment time beyond a certain length of time results in an abundance of free radicals and causes considerable cross-linking on the fiber surface which thus decreases the extent of grafting. Moreover, the crystalline phase of Ag nanoparticles is identified by using X-ray diffraction (XRD). When the PPG-I fibers are reduced by the UV light method, SEM and TEM microscopes reveal that the size of the Ag nanoparticles on the fiber surface decreases significantly with the increase of pH values in aqueous solutions. Notably, in the reduction of formaldehyde solution, the particle size of Ag nanoparticles reaches a minimum at the lowest pH value. The TEM observations show that Ag nanoparticles are distributed both in the exterior and interior of the grafting layer. In addition, under high pH values the distribution of the Ag nanoparticles permeate more deeply in the GMA-IDA grafting layer due to the swelling effect of the GMA-IDA polymer.

  15. Chitosan/Carboxymethylcellulose/Ionic Liquid/Ag(0) Nanoparticles Form a Membrane with Antimicrobial Activity

    International Nuclear Information System (INIS)

    Quadros, C.; Faria, V.W.; Scheeren, C.W.; Klein, M.P.; Hertz, P.F.

    2013-01-01

    Silver metal nanoparticles were immobilized in chitosan/carboxymethylcellulose/BMI.BF4(1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid) (CS/CMC/IL) to form polymeric membrane with 20 μm thickness. The CS/CMC/IL polymeric membrane was prepared using a simple solution blending method. Irregularly shaped Ag(0) nanoparticles with monomodal size distributions of nm Ag(0) were immobilized in the membrane. The presence of small Ag(0) nanoparticles induced an augmentation in the CS/CMC/IL film surface areas. The CS/CMC/IL membrane containing Ag(0) showed increase antimicrobial activity the Ag(0) concentration increased up to saturation at 10 mg. CS/CMC/IL membrane that contains Ag(0) nanoparticles has enhanced durability of the membrane and exhibited stronger antimicrobial activity against Escherichia coli and Staphylococcus aureus.

  16. Intercalation of gaseous thiols and sulfides into Ag+ ion-exchanged aluminum dihydrogen triphosphate.

    Science.gov (United States)

    Hayashi, Aki; Saimen, Hiroki; Watanabe, Nobuaki; Kimura, Hitomi; Kobayashi, Ayumi; Nakayama, Hirokazu; Tsuhako, Mitsutomo

    2005-08-02

    Ag(+) ion-exchanged layered aluminum dihydrogen triphosphate (AlP) with the interlayer distance of 0.85 nm was synthesized by the ion-exchange of proton in triphosphate with Ag(+) ion. The amount of exchanged Ag(+) ion depended on the concentration of AgNO(3) aqueous solution. Ag(+) ion-exchanged AlP adsorbed gaseous thiols and sulfides into the interlayer region. The adsorption amounts of thiols were more than those of sulfides, thiols with one mercapto group > thiol with two mercapto groups > sulfides, and depended on the amount of exchanged Ag(+) ion in the interlayer region. The thiols with one mercapto group were intercalated to expand the interlayer distance of Ag(+) ion-exchanged AlP, whereas there was no expansion in the adsorption of sulfide. In the case of thiol with two mercapto groups, there was observed contraction of the interlayer distance through the bridging with Ag(+) ions of the upper and lower sides of the interlayer region.

  17. Long-term species loss and homogenization of moth communities in Central Europe.

    Science.gov (United States)

    Valtonen, Anu; Hirka, Anikó; Szőcs, Levente; Ayres, Matthew P; Roininen, Heikki; Csóka, György

    2017-07-01

    As global biodiversity continues to decline steeply, it is becoming increasingly important to understand diversity patterns at local and regional scales. Changes in land use and climate, nitrogen deposition and invasive species are the most important threats to global biodiversity. Because land use changes tend to benefit a few species but impede many, the expected outcome is generally decreasing population sizes, decreasing species richness at local and regional scales, and increasing similarity of species compositions across sites (biotic homogenization). Homogenization can be also driven by invasive species or effects of soil eutrophication propagating to higher trophic levels. In contrast, in the absence of increasing aridity, climate warming is predicted to generally increase abundances and species richness of poikilotherms at local and regional scales. We tested these predictions with data from one of the few existing monitoring programmes on biodiversity in the world dating to the 1960s, where the abundance of 878 species of macro-moths have been measured daily at seven sites across Hungary. Our analyses revealed a dramatic rate of regional species loss and homogenization of community compositions across sites. Species with restricted distribution range, specialized diet or dry grassland habitat were more likely than others to disappear from the community. In global context, the contrasting effects of climate change and land use changes could explain why the predicted enriching effects from climate warming are not always realized. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  18. Separation and Recycling for Rare Earth Elements by Homogeneous Liquid-Liquid Extraction (HoLLE Using a pH-Responsive Fluorine-Based Surfactant

    Directory of Open Access Journals (Sweden)

    Shotaro Saito

    2015-08-01

    Full Text Available A selective separation and recycling system for metal ions was developed by homogeneous liquid-liquid extraction (HoLLE using a fluorosurfactant. Sixty-two different elemental ions (e.g., Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, In, Ir, La, Lu, Mg, Mn, Mo, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Re, Rh, Ru, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tl, Tm, V, W, Y, Yb, Zn, and Zr were examined. By changing pH from a neutral or alkaline solution (pH ≥ 6.5 to that of an acidic solution (pH < 4.0, gallium, zirconium, palladium, silver, platinum, and rare earth elements were extracted at >90% efficiency into a sedimented Zonyl FSA® (CF3(CF2n(CH22S(CH22COOH, n = 6–8 liquid phase. Moreover, all rare earth elements were obtained with superior extraction and stripping percentages. In the recycling of rare earth elements, the sedimented phase was maintained using a filter along with a mixed solution of THF and 1 M sodium hydroxide aqueous solution. The Zonyl FSA® was filtrated and the rare earth elements were recovered on the filter as a hydroxide. Furthermore, the filtrated Zonyl FSA was reusable by conditioning the subject pH.

  19. Microstructure and adhesion strength of Sn-9Zn-1.5Ag-xBi (x = 0 wt% and 2 wt%)/Cu after electrochemical polarization in a 3.5 wt% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.-L. [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Chen, Y.-R.; Chang, K.-M. [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Liu, C.-Y.; Hon, M.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shihchuan 1st Road, Kaohsiung 80728, Taiwan (China)], E-mail: mcwang@kmu.edu.tw

    2008-08-11

    The microstructure and adhesion strength of the Sn-9Zn-1.5Ag-xBi (x = 0 wt% and 2 wt%)/Cu interface after electrochemical polarization have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and pull-off testing. The equilibrium potentials of Sn-9Zn-1.5Ag/Cu and Sn-9Zn-1.5Ag-2Bi/Cu are -1.31 V{sub sce} and -1.22 V{sub sce}, respectively, indicating that Sn-9Zn-1.5Ag-2Bi/Cu has a better corrosion resistance than that of Sn-9Zn-1.5Ag/Cu. The intermetallic compounds of Cu{sub 6}Sn{sub 5}, Cu{sub 5}Zn{sub 8} and Ag{sub 3}Sn are formed at the soldered interface between the Sn-9Zn-1.5Ag-xBi solder alloy and the Cu substrate. The scallop-shaped Cu{sub 6}Sn{sub 5} is close to the Cu substrate and the scallop-shaped Cu{sub 5}Zn{sub 8} is found at the interface in the solder matrix after soldering at 250 deg. C for 10 s. The corrosion products are ZnCl{sub 2}, SnCl{sub 2} and ZnO. On the other hand, pits are also formed on the surface of both solder alloys. The interfacial adhesion strength of the Sn-9Zn-1.5Ag/Cu and Sn-9Zn-1.5Ag-2Bi/Cu decreases from 8.27 {+-} 0.56 MPa and 12.67 {+-} 0.45 MPa to 4.78 {+-} 0.45 MPa and 8.14 {+-} 0.38 MPa, respectively, after electrochemical polarization in a 3.5 wt% NaCl solution. The fracture path of the Sn-9Zn-1.5Ag-2Bi/Cu is along the solder alloy/ZnO and solder/Cu{sub 6}Sn{sub 5} interfaces.

  20. Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30–200 nm and Comparison of Their Optical Properties

    OpenAIRE

    Zhang, Qiang; Li, Weiyang; Moran, Christine; Zeng, Jie; Chen, Jingyi; Wen, Long-Ping; Xia, Younan

    2010-01-01

    Silver nanocubes with edge lengths controllable in the range of 30–200 nm were synthesized using an approach based on seeded growth. The key to the success of this synthesis is the use of single-crystal Ag seeds to direct the growth and the use of AgNO3 as a precursor to elemental Ag where the by-product HNO3 can block both the homogeneous nucleation and evolution of single-crystal seeds into twinned nanoparticles. Either spherical (in the shape of cubooctahedron) or cubic seeds could be empl...

  1. Ice nucleation efficiency of AgI: review and new insights

    Directory of Open Access Journals (Sweden)

    C. Marcolli

    2016-07-01

    Full Text Available AgI is one of the best-investigated ice-nucleating substances. It has relevance for the atmosphere since it is used for glaciogenic cloud seeding. Theoretical and experimental studies over the last 60 years provide a complex picture of silver iodide as an ice-nucleating agent with conflicting and inconsistent results. This review compares experimental ice nucleation studies in order to analyze the factors that influence the ice nucleation ability of AgI. The following picture emerges from this analysis: the ice nucleation ability of AgI seems to be enhanced when the AgI particle is on the surface of a droplet, which is indeed the position that a particle takes when it can freely move in a droplet. The ice nucleation by particles with surfaces exposed to air depends on water adsorption. AgI surfaces seem to be most efficient at nucleating ice when they are exposed to relative humidity at or even above water saturation. For AgI particles that are completely immersed in water, the freezing temperature increases with increasing AgI surface area. Higher threshold freezing temperatures seem to correlate with improved lattice matches as can be seen for AgI–AgCl solid solutions and 3AgI·NH4I·6H2O, which have slightly better lattice matches with ice than AgI and also higher threshold freezing temperatures. However, the effect of a good lattice match is annihilated when the surfaces have charges. Also, the ice nucleation ability seems to decrease during dissolution of AgI particles. This introduces an additional history and time dependence for ice nucleation in cloud chambers with short residence times.

  2. Determination of the structure and composition of Au-Ag bimetallic spherical nanoparticles using single particle ICP-MS measurements performed with normal and high temporal resolution.

    Science.gov (United States)

    Kéri, Albert; Kálomista, Ildikó; Ungor, Ditta; Bélteki, Ádám; Csapó, Edit; Dékány, Imre; Prohaska, Thomas; Galbács, Gábor

    2018-03-01

    In this study, the information that can be obtained by combining normal and high resolution single particle ICP-MS (spICP-MS) measurements for spherical bimetallic nanoparticles (BNPs) was assessed. One commercial certified core-shell Au-Ag nanoparticle and three newly synthesized and fully characterized homogenous alloy Au-Ag nanoparticle batches of different composition were used in the experiments as BNP samples. By scrutinizing the high resolution spICP-MS signal time profiles, it was revealed that the width of the signal peak linearly correlates with the diameter of nanoparticles. It was also observed that the width of the peak for same-size nanoparticles is always significantly larger for Au than for Ag. It was also found that it can be reliably determined whether a BNP is of homogeneus alloy or core-shell structure and that, in the case of the latter, the core comprises of which element. We also assessed the performance of several ICP-MS based analytical methods in the analysis of the quantitative composition of bimetallic nanoparticles. Out of the three methods (normal resolution spICP-MS, direct NP nebulization with solution-mode ICP-MS, and solution-mode ICP-MS after the acid dissolution of the nanoparticles), the best accuracy and precision was achieved by spICP-MS. This method allows the determination of the composition with less than 10% relative inaccuracy and better than 3% precision. The analysis is fast and only requires the usual standard colloids for size calibration. Combining the results from both quantitative and structural analyses, the core diameter and shell thickness of core-shell particles can also be calculated. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Limited impacts of extensive human land use on dominance, specialization, and biotic homogenization in boreal plant communities.

    Science.gov (United States)

    Mayor, Stephen J; Boutin, Stan; He, Fangliang; Cahill, James F

    2015-02-13

    Niche theory predicts that human disturbance should influence the assembly of communities, favouring functionally homogeneous communities dominated by few but widespread generalists. The decline and loss of specialists leaves communities with species that are functionally more similar. Evenness of species occupancy declines, such that species become either widespread of rare. These patterns have often been observed, but it is unclear if they are a general result of human disturbance or specific to communities that are rich in species, in complex, spatially heterogeneous environments where the problem has often been investigated. We therefore tested whether human disturbance impacts dominance/evenness of species occupancy in communities, specialism/generalism of species, and functional biotic homogenization in the spatially relatively homogeneous, species poor boreal forest region of Alberta, Canada. We investigated 371 boreal vascular plant communities varying 0 - 100% in proportion of human land use. Rank species occupancy curves revealed high species dominance regardless of disturbance: within any disturbance class a few species occupied nearly every site and most species were found in a low proportion of sites. However, species were more widespread and displayed more even occupancy in intermediately disturbed communities than among communities of either low or high disturbance. We defined specialists and generalists based on turnover in co-occupants and thereby assessed impacts of human disturbance on specialization of species and community homogenization. Generalists were not disproportionately found at higher disturbance sites, and did not occupy more sites. Communities with greater human disturbance were not more functionally homogeneous; they did not harbor communities with more generalists. We unexpectedly did not observe strong linkages between species specialism/generalism and disturbance, nor between community homogenization and disturbance. These

  4. Curative effect of spleen homogenate against radiation injury to serum glucose, liver glycogen and plasma protein fractions in rats

    International Nuclear Information System (INIS)

    Roushdy, H.M.; Ibrahim, H.A.; Edrees, G.M.F.

    1984-01-01

    The influence of the spleen homogenate injection as a curative substance against gamma irradiation effects has been investigated in male albino rats. The parameters tested were, life span, serum glucose level, liver glycogen content, serum protein fractions and A/G ratio. The results obtained are as follows: Irradiated group showed 100% mortality over 22 days, this percentage dropped to 60% over 30 days for irradiated group received spleen homogenate treatment. Irradiated animals, recorded initial hyperglycaemia which diminished by time, whereas the liver glycogen concentration showed first to initially increase then to decrease abruptly. Treatment with spleen homogenate after irradiation ameliorated the magnitude of radiation induced hyperglycaemia and liver glycogen depletion. The serum Albumin/Globulin ratio decreased by irradiation due to the decrease in the serum albumin accompanied by an increase in the serum globulin content. This ratio could be restored towards its normal level in irradiated animals received spleen homogenate treatment. The data obtained suggests the possibility of using spleen homogenate for the treatment of accidental radiation syndrome

  5. The RAG AG. The company in the course of energy supply; Die RAG AG. Konzern im Wandel der Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Peter; Dyga, Ricarda [RAG Aktiengesellschaft, Herne (Germany)

    2013-02-15

    The RAG AG (Herne, Federal Republic of Germany) as a company in the energy supply sector unifies the RAG Deutsche Steinkohle AG (Herne, Federal Republic of Germany), The RAG Anthrazit Ibbenbueren (Ibbenbueren, Federal Republic of Germany), the RAG Montan Immobilien GmbH (Essen, Federal Republic of Germany) and the RAG Mining Solutions GmbH (Herne, Federal Republic of Germany) under the same. The group of companies with the headquarters in Herne (Federal Republic of Germany) consists of branch offices in North Rhine-Westphalia and Saarland. Until the end of the year 2012, only three mines in the Ruhr district and one mine in the county Steinfurt were in operation. Still it is said that the withdrawal of the mining industry is beginning. With the political decision to cancel the revision clause in the Hard Coal Mining Financing Law, it was determined to cease the subsidised hard coal mining in Germany up to the end of the year 2018. This implies for the concern, that RAG AG will discontinue the promotion of coal as its core business. Following the year 2018, RAG AG will apply oneself to their technical staffs: Old shafts / near-surface mining, eternity tasks, mining damages, permissions / water rights / geodata management and real estates. Moreover, RAG AG already today uses mining establishments in order to implement projects and ideas for renewable energies.

  6. The high-temperature modification of LuAgSn and high-pressure high-temperature experiments on DyAgSn, HoAgSn, and YbAgSn

    Energy Technology Data Exchange (ETDEWEB)

    Heying, B.; Rodewald, U.C.; Hermes, W.; Schappacher, F.M.; Riecken, J.F.; Poettgen, R. [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Heymann, G.; Huppertz, H. [Muenchen Univ. (Germany). Dept. fuer Chemie und Biochemie; Sebastian, C.P. [Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany)

    2008-02-15

    The high-temperature modification of LuAgSn was obtained by arc-melting an equiatomic mixture of the elements followed by quenching the melt on a water-cooled copper crucible. HT-LuAgSn crystallizes with the NdPtSb-type structure, space group P6{sub 3}mc: a = 463.5(1), c = 723.2(1) pm, wR2 = 0.0270, 151 F{sup 2}, and 11 variables. The silver and tin atoms build up two-dimensional, puckered [Ag{sub 3}Sn{sub 3}] networks (276 pm Ag-Sn) that are charge-balanced and separated by the lutetium atoms. The Ag-Sn distances between the [Ag{sub 3}Sn{sub 3}] layers of 294 pm are much longer. Single crystals of isotypic DyAgSn (a = 468.3(1), c = 734.4(1) pm, wR2 = 0.0343, 411 F{sup 2}, and 11 variables) and HoAgSn (a = 467.2(1), c = 731.7(2) pm, wR2 = 0.0318, 330 F{sup 2}, and 11 variables) were obtained from arc-melted samples. Under high-pressure (up to 12.2 GPa) and high-temperature (up to 1470 K) conditions, no transitions to a ZrNiAl-related phase have been observed for DyAgSn, HoAgSn, and YbAgSn. HT-TmAgSn shows Curie-Weiss paramagnetism with {mu}{sub eff} = 7.53(1) {mu}{sub B}/Tm atom and {theta}P = -15.0(5) K. No magnetic ordering was evident down to 3 K. HT-LuAgSn is a Pauli paramagnet. Room-temperature {sup 119}Sn Moessbauer spectra of HT-TmAgSn and HT-LuAgSn show singlet resonances with isomer shifts of 1.78(1) and 1.72(1) mm/s, respectively. (orig.)

  7. Different growth regimes in InP nanowire growth mediated by Ag nanoparticles.

    Science.gov (United States)

    Oliveira, D S; Zavarize, M; Tizei, L H G; Walls, M; Ospina, C A; Iikawa, F; Ugarte, D; Cotta, M A

    2017-12-15

    We report on the existence of two different regimes in one-step Ag-seeded InP nanowire growth. The vapor-liquid-solid-mechanism is present at larger In precursor flows and temperatures, ∼500 °C, yielding high aspect ratio and pure wurtzite InP nanowires with a semi-spherical metal particle at the thin apex. Periodic diameter oscillations can be achieved under extreme In supersaturations at this temperature range, showing the presence of a liquid catalyst. However, under lower temperatures and In precursor flows, large diameter InP nanowires with mixed wurtzite/zincblende segments are obtained, similarly to In-assisted growth. Chemical composition analysis suggest that In-rich droplet formation is catalyzed at the substrate surface via Ag nanoparticles; this process might be facilitated by the sulfur contamination detected in these nanoparticles. Furthermore, part of the original Ag nanoparticle remains solid and is embedded inside the actual catalyst, providing an in situ method to switch growth mechanisms upon changing In precursor flow. Nevertheless, our Ag-seeded InP nanowires exhibit overall optical emission spectra consistent with the observed structural properties and similar to Au-catalyzed InP nanowires. We thus show that Ag nanoparticles may be a suitable replacement for Au in InP nanowire growth.

  8. Gravitational influences on the liquid-state homogenization and solidification of aluminum antimonide. [space processing of solar cell material

    Science.gov (United States)

    Ang, C.-Y.; Lacy, L. L.

    1979-01-01

    Typical commercial or laboratory-prepared samples of polycrystalline AlSb contain microstructural inhomogeneities of Al- or Sb-rich phases in addition to the primary AlSb grains. The paper reports on gravitational influences, such as density-driven convection or sedimentation, that cause microscopic phase separation and nonequilibrium conditions to exist in earth-based melts of AlSb. A triple-cavity electric furnace is used to homogenize the multiphase AlSb samples in space and on earth. A comparative characterization of identically processed low- and one-gravity samples of commercial AlSb reveals major improvements in the homogeneity of the low-gravity homogenized material.

  9. Improved galvanic replacement growth of Ag microstructures on Cu micro-grid for enhanced SERS detection of organic molecules.

    Science.gov (United States)

    Guo, Tian-Long; Li, Ji-Guang; Sun, Xudong; Sakka, Yoshio

    2016-04-01

    Galvanic growth of Ag nano/micro-structures on Cu micro-grid was systematically studied for surface-enhanced Raman scattering (SERS) applications. Detailed characterizations via FE-SEM and HR-TEM showed that processing parameters, (reaction time, Ag(+) concentration, and PVP addition) all substantially affect thermodynamics/kinetics of the replacement reaction to yield substrates of significantly different microstructures/homogeneities and thus varied SERS performances (sensitivity, enhancement factor, and reproducibility) of the Ag substrates in the detection of R6G analyte. PVP as an additive was shown to notably alter nucleation/growth behaviors of the Ag crystals and promote the deposition of dense and uniform Ag films of nearly monodisperse polyhedrons/nanoplates through suppressing dendrites crystallization. Under optimized synthesis (50mM of Ag(+), 30s of reaction, and 700 wt.% of PVP), Ag substrates exhibiting a high Raman signal enhancement factor of ~1.1 × 10(6) and a low relative standard deviation of ~0.13 in the repeated detection of 10 μM R6G were obtained. The facile deposition and excellent performance reported in this work may allow the Ag microstructures to find wider SERS applications. Moreover, growth mechanisms of the different Ag nano/micro-structures were discussed based on extensive FE-SEM and HR-TEM analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties.

    Science.gov (United States)

    Zhang, Qiang; Li, Weiyang; Moran, Christine; Zeng, Jie; Chen, Jingyi; Wen, Long-Ping; Xia, Younan

    2010-08-18

    Silver nanocubes with edge lengths controllable in the range of 30-200 nm were synthesized using an approach based on seeded growth. The keys to the success of this synthesis are the use of single-crystal Ag seeds to direct the growth and the use of AgNO(3) as a precursor to elemental Ag, where the byproduct HNO(3) can block both the homogeneous nucleation and evolution of single-crystal seeds into twinned nanoparticles. Either spherical (in the shape of a cuboctahedron) or cubic seeds could be employed for this growth process. The edge length of the resultant Ag nanocubes can be readily controlled by varying the amount of Ag seeds used, the amount of AgNO(3) added, or both. For the first time, we could obtain Ag nanocubes with uniform edge lengths controllable in the range of 30-200 nm and then compare their localized surface plasmon resonance and surface-enhanced Raman scattering properties.

  11. In situ solid-state fabrication of hybrid AgCl/AgI/AgIO3 with improved UV-to-visible photocatalytic performance.

    Science.gov (United States)

    Xie, Jing; Cao, Yali; Jia, Dianzeng; Li, Yizhao; Wang, Kun; Xu, Hui

    2017-09-28

    The AgCl/AgI/AgIO 3 composites were synthesized through a one-pot room-temperature in situ solid-state approach with the feature of convenient and eco-friendly. The as-prepared composites exhibit superior photocatalytic performance than pure AgIO 3 for the degradation of methyl orange (MO) under both UV and visible light irradiation. The photodegradation rate toward MO of the AgCl/AgI/AgIO 3 photocatalyst can reach 100% after 12 min irradiation under UV light, or 85.4% after 50 min irradiation under visible light, being significantly higher than AgCl, AgI, AgIO 3 and AgI/AgIO 3 . In addition, the AgCl/AgI/AgIO 3 photocatalyst possesses strong photooxidation ability for the degradation of rhodamine B (RhB), methylene blue (MB), phenol, bisphenol A (BPA) and tetracycline hydrochloride under visible light irradiation. The reactive species capture experiments confirmed that the h + and •O 2- play an essential role during the photocatalytic process under UV light or visible light irradiation. The enhanced effect may be beneficial from the enhanced light adsorption in full spectrum and increased separation efficiency of photogenerated hole-electron pairs, which can be ascribed to the synergistic effect among AgCl, AgI and AgIO 3 nanoplates in AgCl/AgI/AgIO 3 composites.

  12. One-step synthesis of lightly doped porous silicon nanowires in HF/AgNO3/H2O2 solution at room temperature

    International Nuclear Information System (INIS)

    Bai, Fan; Li, Meicheng; Song, Dandan; Yu, Hang; Jiang, Bing; Li, Yingfeng

    2012-01-01

    One-step synthesis of lightly doped porous silicon nanowire arrays was achieved by etching the silicon wafer in HF/AgNO 3 /H 2 O 2 solution at room temperature. The lightly doped porous silicon nanowires (pNWs) have circular nanopores on the sidewall, which can emit strong green fluorescence. The surface morphologies of these nanowires could be controlled by simply adjusting the concentration of H 2 O 2 , which influences the distribution of silver nanoparticles (Ag NPs) along the nanowire axis. A mechanism based on Ag NPs-induced lateral etching of nanowires was proposed to explain the formation of pNWs. The controllable and widely applicable synthesis of pNWs will open their potential application to nanoscale photoluminescence devices. - Graphical abstract: The one-step synthesis of porous silicon nanowire arrays is achieved by chemical etching of the lightly doped p-type Si (100) wafer at room temperature. These nanowires exhibit strong green photoluminescence. SEM, TEM, HRTEM and photoluminescence images of pNWs. The scale bars of SEM, TEM HRTEM and photoluminescence are 10 μm, 20 nm, 10 nm, and 1 μm, respectively. Highlights: ► Simple one-step synthesis of lightly doped porous silicon nanowire arrays is achieved at RT. ► Etching process and mechanism are illustrated with etching model from a novel standpoint. ► As-prepared porous silicon nanowire emits strong green fluorescence, proving unique property.

  13. Mineralogical, textural, sulfur and lead isotope constraints on the origin of Ag-Pb-Zn mineralization at Bianjiadayuan, Inner Mongolia, NE China

    Science.gov (United States)

    Zhai, Degao; Liu, Jiajun; Cook, Nigel J.; Wang, Xilong; Yang, Yongqiang; Zhang, Anli; Jiao, Yingchun

    2018-04-01

    The Bianjiadayuan Ag-Pb-Zn deposit (4.81 Mt. @157.4 g/t Ag and 3.94% Pb + Zn) is located in the Great Hinggan Range Pb-Zn-Ag-Cu-Mo-Sn-Fe polymetallic metallogenic belt, NE China. Vein type Pb-Zn-Ag ore bodies are primarily hosted by slate, adjacent to a Sn ± Cu ± Mo mineralized porphyry intrusion. The deposit is characterized by silver-rich ores with Ag grades up to 3000 g/t. Four primary paragenetic sequences are recognized: (I) arsenopyrite + pyrite + quartz, (II) main sulfide + quartz, (III) silver-bearing sulfosalt + quartz, and (IV) boulangerite + calcite. A subsequent supergene oxidation stage has also been identified. Hydrothermal alteration consists of an early episode of silicification, two intermediate episodes (propylitic and phyllic), and a late argillic episode. Silver mineralization primarily belongs to the late paragenetic sequence III. Freibergite is the dominant and most important Ag-mineral in the deposit. Detailed ore mineralogy of Bianjiadayuan freibergite reveals evidence of chemical heterogeneity down to the microscale. Silver-rich sulfosalts in the late paragenetic sequence III are largely derived from a series of retrograde and solid-state reactions that redistribute Ag via decomposition and exsolution during cooling, illustrating that documentation of post-mineralization processes is essential for understanding silver ore formation. Sulfur and lead isotope compositions of sulfides, and comparison with those of local various geological units, indicate that the ore-forming fluids, lead, and other metals have a magmatic origin, suggesting a close genetic association between the studied Ag-Pb-Zn veins and the local granitic intrusion. Fluid cooling coupled with decreases in fO2 and fS2 are the factors inferred to have led to a decrease of silver solubility in the hydrothermal fluid, and successively promoted extensive Ag deposition.

  14. The synthesis of Ag/polypyrrole coaxial nanocables via ion adsorption method using different oxidants

    Science.gov (United States)

    Qiu, Teng; Xie, Huxiao; Zhang, Jiangru; Zahoor, Amad; Li, Xiaoyu

    2011-03-01

    Ag/polypyrrole (PPy) coaxial nanocables (NCs) were synthesized by an ion adsorption method. In this method, the pre-made Ag nanowires (NWs) were dispersed in the aqueous solution of copper acetate (Cu(Ac)2), and the Cu2+ ions adsorbed onto the surface of Ag NWs can oxidize pyrrole monomers to polymerize into uniform PPy sheath outside Ag NWs after the Cu(Ac)2-treated Ag NWs were re-dispersed in the aqueous solution of pyrrole. The morphology of NCs was characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The relationship between the thickness of polymer sheath and the concentration of Cu(Ac)2 was established. As Cu(Ac)2 which served as the oxidant can also be replaced by AgNO3 in this synthesis, the differences on the structure of polymer sheath caused by different oxidants were studied by surface-enhanced Raman scattering (SERS), high-resolution transmission electron microscope (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Comparing with the characterization results of Ag/PPy NCs synthesized using AgNO3 as the oxidant which indicates the random arrangement of PPy chains at the interface between polymer sheath and Ag NWs, PPy chain oxidized by Cu2+ tends to show a relatively ordered conformation at the interface with the pyrrole rings identically taking the plane vertical to the surface of Ag NWs. In addition, although the main part of the polymer sheath was composed of PPy whatever kind of oxidant was used, the sheath of the NCs oxidized by Cu2+ is typical for the existence of Cu(I)-pyrrole coordinate structures with strong Cu(I)-N bond signal shown in XPS characterization.

  15. The synthesis of Ag/polypyrrole coaxial nanocables via ion adsorption method using different oxidants

    International Nuclear Information System (INIS)

    Qiu Teng; Xie Huxiao; Zhang Jiangru; Zahoor, Amad; Li Xiaoyu

    2011-01-01

    Ag/polypyrrole (PPy) coaxial nanocables (NCs) were synthesized by an ion adsorption method. In this method, the pre-made Ag nanowires (NWs) were dispersed in the aqueous solution of copper acetate (Cu(Ac) 2 ), and the Cu 2+ ions adsorbed onto the surface of Ag NWs can oxidize pyrrole monomers to polymerize into uniform PPy sheath outside Ag NWs after the Cu(Ac) 2 -treated Ag NWs were re-dispersed in the aqueous solution of pyrrole. The morphology of NCs was characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The relationship between the thickness of polymer sheath and the concentration of Cu(Ac) 2 was established. As Cu(Ac) 2 which served as the oxidant can also be replaced by AgNO 3 in this synthesis, the differences on the structure of polymer sheath caused by different oxidants were studied by surface-enhanced Raman scattering (SERS), high-resolution transmission electron microscope (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Comparing with the characterization results of Ag/PPy NCs synthesized using AgNO 3 as the oxidant which indicates the random arrangement of PPy chains at the interface between polymer sheath and Ag NWs, PPy chain oxidized by Cu 2+ tends to show a relatively ordered conformation at the interface with the pyrrole rings identically taking the plane vertical to the surface of Ag NWs. In addition, although the main part of the polymer sheath was composed of PPy whatever kind of oxidant was used, the sheath of the NCs oxidized by Cu 2+ is typical for the existence of Cu(I)–pyrrole coordinate structures with strong Cu(I)–N bond signal shown in XPS characterization.

  16. Ternary Ag-In-S polycrystalline films deposited using chemical bath deposition for photoelectrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Wen-Sheng [Energy and Environmental Laboratories, Industrial Technology Research Institute, 195 Sec. 4, Chung-Hsing Road, Hsin-Chu 310, Taiwan (China); Wu, Ching-Chen [Department of Chemical Engineering, National Chung Cheng University, 168 University Road, Min-Hsiung, Chia-Yi 621, Taiwan (China); Jeng, Ming-Shan [Energy and Environmental Laboratories, Industrial Technology Research Institute, 195 Sec. 4, Chung-Hsing Road, Hsin-Chu 310, Taiwan (China); Cheng, Kong-Wei [Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Huang, Chao-Ming [Department of Environmental Engineering, Kun Shan University, 949 Da Wan Road, Yung-Kang City, Tainan Hsien 710, Taiwan (China); Lee, Tai-Chou, E-mail: chmtcl@ccu.edu.tw [Department of Chemical Engineering, National Chung Cheng University, 168 University Road, Min-Hsiung, Chia-Yi 621, Taiwan (China)

    2010-04-15

    This paper describes the preparation and characterization of ternary Ag-In-S thin films deposited on indium tin oxide (ITO)-coated glass substrates using chemical bath deposition (CBD). The composition of the thin films was varied by changing the concentration ratio of [Ag]/[In] in the precursor solutions. The crystal structure, optical properties, and surface morphology of the thin films were analyzed by grazing incidence X-ray diffraction (GIXRD), UV-vis spectroscopy, and field-emission scanning electron microscopy (FE-SEM). GIXRD results indicate that the samples consisted of AgInS{sub 2} and/or AgIn{sub 5}S{sub 8} crystal phases, depending on the composition of the precursor solutions. The film thicknesses, electrical resistivity, flat band potentials, and band gaps of the samples were between 1.12 and 1.37 {mu}m, 3.73 x 10{sup -3} and 4.98 x 10{sup 4} {Omega} cm, -0.67 and -0.90 V vs. NHE, and 1.83 and 1.92 eV, respectively. The highest photocurrent density was observed in the sample with [Ag]/[In] = 4. A photocurrent density of 9.7 mA cm{sup -2} was obtained with an applied potential of 0.25 V vs. SCE in the three-electrode system. The photoresponse experiments were conducted in 0.25 M K{sub 2}SO{sub 3} and 0.35 M Na{sub 2}S aqueous electrolyte solutions under irradiation by a 300 W Xe light (100 mW cm{sup -2}). The results show that ternary Ag-In-S thin film electrodes have potential in water splitting applications.

  17. Preparation and self-sterilizing properties of Ag@TiO{sub 2}–styrene–acrylic complex coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiang-dong; Chen, Feng; Yang, Jin-tao, E-mail: yangjt@zjut.edu.cn; Yan, Xiao-hui; Zhong, Ming-qiang, E-mail: zhongmingqiang@hotmail.com

    2013-04-01

    In this study, we report a simple and cost-effective method for self-sterilized complex coatings obtained by Ag@TiO{sub 2} particle incorporation into styrene–acrylic latex. The Ag@TiO{sub 2} particles were prepared via a coupling agent modification process. The composite latices characterized by transmission electron microscopy (TEM) study were highly homogeneous at the nanometric scale, and the Ag@TiO{sub 2} particles were well dispersed and exhibited an intimate contact between both the organic and inorganic components. The Ag@TiO{sub 2} nanoparticles significantly enhanced the absorption in the visible region and engendered a good heat-insulating effect of the complex coatings. Moreover, the Ag@TiO{sub 2} nanoparticle incorporation into this polymer matrix renders self-sterilized nanocomposite materials upon light excitation, which are tested against Escherichia coli and Staphylococcus aureus. The complex coatings display an impressive performance in the killing of all micro-organisms with a maximum for a Ag@TiO{sub 2} loading concentration of 2–5 wt.%. The weathering endurance of the complex coating was also measured. - Highlights: ► We prepared Ag@TiO{sub 2}–styrene–acrylic complex latex in one pot. ► Good antibacterial performances of complex coatings were observed. ► The complex coating was resistant to weathering after 48 h. ► The complex coating exhibits good heat-insulating effect.

  18. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves

    Directory of Open Access Journals (Sweden)

    Patil Shriniwas P.

    2017-07-01

    Full Text Available Several attempts have been made for green synthesis of silver nanoparticles (AgNPs using different plant extracts. Present study revealed that, antioxidant, antibacterial and cytotoxic AgNPs were synthesized using terpenes-rich extract (TRE of environmentally notorious Lantana camara L. leaves. AgNPs were characterized by advanced techniques like UV–Visible and Infra red spectroscopy; XRD, SEM techniques as terpenes coated sphere shaped NPs with average diameter 425 nm. Further, on evaluation, AgNPs were found to exhibit dose – dependent antioxidant potential, good to moderate antibacterial activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa; and toxicity on Brine shrimp (A. salinanauplii with LD50 value 514.50 µg/ml.

  19. The relationship between continuum homogeneity and statistical homogeneity in cosmology

    International Nuclear Information System (INIS)

    Stoeger, W.R.; Ellis, G.F.R.; Hellaby, C.

    1987-01-01

    Although the standard Friedmann-Lemaitre-Robertson-Walker (FLRW) Universe models are based on the concept that the Universe is spatially homogeneous, up to the present time no definition of this concept has been proposed that could in principle be tested by observation. Such a definition is here proposed, based on a simple spatial averaging procedure, which relates observable properties of the Universe to the continuum homogeneity idea that underlies the FLRW models. It turns out that the statistical homogeneity often used to describe the distribution of matter on a large scale does not imply spatial homogeneity according to this definition, and so cannot be simply related to a FLRW Universe model. Values are proposed for the homogeneity parameter and length scale of homogeneity of the Universe. (author)

  20. Experimental evidence for non-redox transformations between magnetite and hematite under H 2-rich hydrothermal conditions

    Science.gov (United States)

    Otake, Tsubasa; Wesolowski, David J.; Anovitz, Lawrence M.; Allard, Lawrence F.; Ohmoto, Hiroshi

    2007-05-01

    Transformations of magnetite (Fe IIFe 2IIIO 4) to hematite (Fe 2IIIO 3) (and vice versa) have been thought by many scientists and engineers to require molecular O 2 and/or H 2. Thus, the presence of magnetite and/or hematite in rocks has been linked to a specific oxidation environment. However, the availability of reductants or oxidants in many geologic and industrial environments appears to have been too low to account for the transformations of iron oxides through redox reactions. Here, we report the results of hydrothermal experiments in mildly acidic and H 2-rich aqueous solutions at 150 °C, which demonstrate that transformations of magnetite to hematite, and hematite to magnetite, occur rapidly without involving molecular O 2 or H 2: Fe3O 4(Mt) + 2H (aq)+ ↔ Fe 2O 3(Hm) + Fe (aq)2+ + H 2O. The transformation products are chemically and structurally homogeneous, and typically occur as euhedral single crystals much larger than the precursor minerals. This suggests that, in addition to the expected release of aqueous ferrous species to solution, the transformations involve release of aqueous ferric species from the precursor oxides to the solution, which reprecipitate without being reduced by H 2. These redox-independent transformations may have been responsible for the formation of some iron oxides in natural systems, such as high-grade hematite ores that developed from Banded Iron Formations (BIFs), hematite-rich deposits formed on Mars, corrosion products in power plants and other industrial systems.

  1. Optical and electrical characterization of AgInS{sub 2} thin films deposited by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Calixto-Rodriguez, M., E-mail: manuela@fis.unam.mx [Instituto de Ciencias Fisicas-Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62210, Cuernavaca, Morelos (Mexico); Martinez, H. [Instituto de Ciencias Fisicas-Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62210, Cuernavaca, Morelos (Mexico); Calixto, M.E. [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apartado Postal J-48, 72570, Puebla, Puebla (Mexico); Pena, Y. [Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Pedro de Alba s/n, Ciudad Universitaria, 66451, San Nicolas de los Garza, Nuevo Leon (Mexico); Martinez-Escobar, Dalia [Centro de Investigacion en Energia-Universidad Nacional Autonoma de Mexico, 62580, Temixco, Morelos (Mexico); Tiburcio-Silver, A. [Instituto Tecnologico de Toluca-SEP, Apartado Postal 20, 52176, Metepec 3, Estado de Mexico (Mexico); Sanchez-Juarez, A. [Centro de Investigacion en Energia-Universidad Nacional Autonoma de Mexico, 62580, Temixco, Morelos (Mexico)

    2010-10-25

    Silver indium sulfide (AgInS{sub 2}) thin films have been prepared by spray pyrolysis (SP) technique using silver acetate, indium acetate, and N, N-dimethylthiourea as precursor compounds. Films were deposited onto glass substrates at different substrate temperatures (T{sub s}) and Ag:In:S ratios in the starting solutions. Optical transmission and reflection as well as electrical measurements were performed in order to study the effect of deposition parameters on the optical and electrical properties of AgInS{sub 2} thin films. X-ray diffraction measurements were used to identify the deposited compounds. It was found that different compounds such as AgInS{sub 2}, Ag{sub 2}S, In{sub 2}O{sub 3}, and In{sub 2}S{sub 3} can be grown only by changing the Ag:In:S ratio in the starting solution and T{sub s}. So that, by carefully selecting the deposition parameters, single phase AgInS{sub 2} thin films can be easily grown. Thin films obtained using a molar ratio of Ag:In:S = 1:1:2 and T{sub s} = 400 {sup o}C, have an optical band gap of 1.9 eV and n-type electrical conductivity with a value of 0.3 {Omega}{sup -1} cm{sup -1} in the dark.

  2. Crystal structure and thermal stability of AgIn(MoO4)2

    International Nuclear Information System (INIS)

    Klevtsov, P.V.; Solodovnikov, S.F.; Perepelitsa, A.P.; Klevtsova, R.F.

    1984-01-01

    Tetragonal crystals of double molybdate AgIn(MoO 4 ) 2 are prepared bi crystallization from solution in Ag 2 Mo 2 O 7 melt (a=4.998, c=36.725 A, space group I4 1 , Z=6). Its crystal structure is determined (autodaffractometer ''Syntex P2 1 '', MoKsub(α)-radiation, 876 reflections, R=0.054) in which along with Mo-tetrahedrons Mo-octahedrons are present. By mutual edges latter are united into bands forming fragments of wolframite structure alonside with (In, Ag) octahedrons. In the direction of c axis wolframite fragments alternate with scheelite fragments consisting of Mo-tetrahedrons and Ag-octavertices. The crystallochemical formula of the compound is Ag(Insub(0.75)Agsub(0.25))sub(2)Mosub(2)Osub(8) [MoO 4 ]. At a temperature of about 600 deq C AgIn-molybdate transforms into modification with NaIn(MoO 4 ) 2 structure NaIn(MoO 4 ) 2 and melts at 650 deg C decomposing into In 2 (MoO 4 ) 3 solid phase and Ag 2 MoO 4 melt

  3. Tailoring the surface chemical bond states of the NbN films by doping Ag: Achieving hard hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ping; Zhang, Kan; Du, Suxuan [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Meng, Qingnan [College of Construction Engineering, Jilin University, Changchun, 130026 (China); He, Xin [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Wang, Shuo [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Wen, Mao, E-mail: wenmao225@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Zheng, Weitao, E-mail: WTZheng@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China)

    2017-06-15

    Highlights: • Intrinsically hydrophilic NbN films can transfer to hydrophobic Nb-Ag-N films by doping Ag atoms into NbN sublattice. • Solute Ag can promote that the hydrophobic Ag{sub 2}O groups formed on the Nb-Ag-N film surface through self-oxidation. • The present work may provide a straightforward approach for the production of robust hydrophobic ceramic surfaces. - Abstract: Robust hydrophobic surfaces based on ceramics capable of withstanding harsh conditions such as abrasion, erosion and high temperature, are required in a broad range of applications. The metal cations with coordinative saturation or low electronegativity are commonly chosen to achieve the intrinsically hydrophobic ceramic by reducing Lewis acidity, and thus the ceramic systems are limited. In this work, we present a different picture that robust hydrophobic surface with high hardness (≥20 GPa) can be fabricated through doping Ag atoms into intrinsically hydrophilic ceramic film NbN by reactive co-sputtering. The transition of wettability from hydrophilic to hydrophobic of Nb-Ag-N films induced by Ag doping results from the appearance of Ag{sub 2}O groups on the films surfaces through self-oxidation, because Ag cations (Ag{sup +}) in Ag{sub 2}O are the filled-shell (4d{sup 10}5S{sup 0}) electronic structure with coordinative saturation that have no tendency to interact with water. The results show that surface Ag{sub 2}O benefited for hydrophobicity comes from the solute Ag atoms rather than precipitate metal Ag, in which the more Ag atoms incorporated into Nb-sublattice are able to further improve the hydrophobicity, whereas the precipitation of Ag nanoclusters would worsen it. The present work opens a window for fabricating robust hydrophobic surface through tailoring surface chemical bond states by doping Ag into transition metal nitrides.

  4. Testing Homogeneity with the Galaxy Fossil Record

    CERN Document Server

    Hoyle, Ben; Jimenez, Raul; Heavens, Alan; Clarkson, Chris; Maartens, Roy

    2013-01-01

    Observationally confirming spatial homogeneity on sufficiently large cosmological scales is of importance to test one of the underpinning assumptions of cosmology, and is also imperative for correctly interpreting dark energy. A challenging aspect of this is that homogeneity must be probed inside our past lightcone, while observations take place on the lightcone. The history of star formation rates (SFH) in the galaxy fossil record provides a novel way to do this. We calculate the SFH of stacked Luminous Red Galaxy (LRG) spectra obtained from the Sloan Digital Sky Survey. We divide the LRG sample into 12 equal area contiguous sky patches and 10 redshift slices (0.2homogeneity, we calculate the posterior distribution for the excess large-scale variance due to inhomogeneity, and find that the most likely solution is n...

  5. Progress report on the analytical determination of Ag2+

    International Nuclear Information System (INIS)

    Van Alsenoy, V.

    1997-01-01

    The strong oxidising properties of Ag 2+ have been used in the chemical and nuclear industry to destroy organic waste. We aim to apply the process on radioactive graphite, organic resins and effluents. The reaction mechanisms have been studied, taking into account the thermodynamic and kinetic properties of the different reactions involved. For the experimental analysis of these reactions, the accurate analytical determination of all species involved, including Ag 2+ , is needed. The results of a systematic study of the volumetric quantification of Ag 2+ using Tl + and BrO 3 - , and of the spectrophotometric and polarographic quantification of Ag + and Ag 2+ are described. The influence of the nitric acid during the quantification of Tl + by titration with KBrO 3 is investigated and the optimal analytical conditions for our purposes were determined. The best analytical results were obtained when the titration was carried out with maximum 3 M HNO 3 and 0.5 M NaCl. When those conditions are used, the determination is accurate and reproducible. The prepared Ag 2+ solutions were analysed for Ag + using polarography with a platinum electrode. The benefits and the limitation of the polarographic measurement of Ag + using a platinum electrode are described. An indirect measurement was performed by the determination of Ce 4+ after reaction with Ce 3+ . The produced Ce 4+ was measured by direct spectrophotometry. In the future, the quantification of Ag 2+ by measuring the Ce 4+ concentration produced by the reaction with Ce 3+ , will also be verified using potentiometric titration with Fe 2+ . Ag 2+ can also be determined by the direct spectrophotometry. There is a region in which the absorbance of Ag 2+ changes linearly with the concentration. Further evaluation of the titrimetric, spectrophotometric and polarographic methods will continue, until two methods give comparable Ag 2+ concentrations, beginning with the potentiometric titration of Ce 4+ with Fe 2+

  6. Photoreduction of Ag{sup +} in Ag/Ag{sub 2}S/Au memristor

    Energy Technology Data Exchange (ETDEWEB)

    Mou, N.I.; Tabib-Azar, M., E-mail: azar.m@utah.edu

    2015-06-15

    Highlights: • The effect of illumination on the operating voltages and switching speed of Ag/Ag{sub 2}S/Au memristors is studied • Illumination decreased the average switching time from high to low resistance states by ∼19% and decreased the turn-off voltages dramatically from −0.8 V to −0.25 V. • Photo-induced reduction of silver in Ag{sub 2}S may be used in three dimensional optical memories that can be electronically read and reset. • Illumination changed sulfur's valency and modified its oxidation/reduction potential. - Abstract: Silver halides and chalcogenides are excellent memristor materials that have been extensively used in the past as photosensitive layers in photography. Here we examine the effect of illumination on the operating voltages and switching speed of Ag/Ag{sub 2}S/Au memristors using a green laser (473–523 nm). Our results indicate that illumination decreases the average switching time from high to low resistance states by ∼19% and decreases the turn-off voltages dramatically from −0.8 V to −0.25 V that we attribute to the change in sulfur valency and a photo-induced change in its oxidation/reduction potential. Photo-induced reduction of silver in Ag{sub 2}S may be used in three dimensional optical memories that can be electronically read and reset.

  7. One-pot Sonochemical Synthesis of Hg-Ag Alloy Microspheres from Liquid Mercury.

    Science.gov (United States)

    Harika, Villa Krishna; Kumar, Vijay Bhooshan; Gedanken, Aharon

    2018-01-01

    Metallic mercury has always attracted much attention in various fields because of its unique characteristic of forming amalgams. Here, different phases of pure crystalline Hg-Ag amalgam microspheres are synthesized by ultrasonically reacting liquid mercury with an aqueous solution of silver nitrate. Sonicating different molar ratios of liquid metallic Hg with AgNO 3 results in the formation of pure crystalline phases of solid silver amalgams with uniform morphology. The resulting Hg-Ag amalgams from various compositions after sonication are physically characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and Differential Scanning Calorimetry (DSC). The XRD of the amalgams obtained from the molar ratios of Hg:Ag (1:1.5) and Hg:Ag (1.5:1 and 2:1) match the Schachnerite and Moschellandbergite phases, respectively, whereas the Hg-Ag amalgam prepared from a 1:1Hg:Ag molar ratio results in a mixture of the Schachnerite and Moschellandbergite phases. The obtained amalgam microspheres are between 6 and 10µm in size. The detailed thermal and chemical behaviour of the Ag-Hg systems is also investigated. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mechanical Homogenization Increases Bacterial Homogeneity in Sputum

    Science.gov (United States)

    Stokell, Joshua R.; Khan, Ammad

    2014-01-01

    Sputum obtained from patients with cystic fibrosis (CF) is highly viscous and often heterogeneous in bacterial distribution. Adding dithiothreitol (DTT) is the standard method for liquefaction prior to processing sputum for molecular detection assays. To determine if DTT treatment homogenizes the bacterial distribution within sputum, we measured the difference in mean total bacterial abundance and abundance of Burkholderia multivorans between aliquots of DTT-treated sputum samples with and without a mechanical homogenization (MH) step using a high-speed dispersing element. Additionally, we measured the effect of MH on bacterial abundance. We found a significant difference between the mean bacterial abundances in aliquots that were subjected to only DTT treatment and those of the aliquots which included an MH step (all bacteria, P = 0.04; B. multivorans, P = 0.05). There was no significant effect of MH on bacterial abundance in sputum. Although our results are from a single CF patient, they indicate that mechanical homogenization increases the homogeneity of bacteria in sputum. PMID:24759710

  9. CsAg{sub 5}Te{sub 3}: a new metal-rich telluride with a unique tunnel structure

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Li [Rutgers Univ., Camden, NJ (United States). Dept. of Chem.; Hongyou, Guo [Rutgers Univ., Camden, NJ (United States). Dept. of Chem.; Xiang, Zhang [Michigan State Univ., East Lansing, MI (United States). Dept. of Chemistry; Kanatzidis, M G [Michigan State Univ., East Lansing, MI (United States). Dept. of Chemistry

    1995-02-15

    The synthesis and structure of a new ternary silver telluride, CsAg{sub 5}Te{sub 3}, is described. The compound was prepared from a Cs{sub 2}Te-CaTe-Te flux but it can also be prepared from a direct combination of Cs{sub 2}Te and Ag{sub 2}Te under vacuum at 600 C. The crystal data for CsAg{sub 5}Te{sub 3} at 20 C (Mo K{alpha} radiation) are as follows: a=14.672(2) A and c=4.601(3) A; V=990.5(8) A{sup 3}; Z=4; D{sub calc}=7.075 g cm{sup -3}; space group, P4{sub 2} /mnm (No. 136); 2{theta}{sub max}=50 ; number of independent data collected, 572; number of data observed with I>3{sigma}(I), 267; number of variables, 32; {mu}=218.51 cm{sup -1}; extinction coefficient, 0.585x10{sup -7}; final R=0.040; R{sub w}=0.046; goodness of fit, 1.42. The compound features a new structure type with Cs{sup +}-filled, relatively large tunnels running through the lattice. The material is a semiconductor with a band gap of about 0.65 eV. ((orig.))

  10. Biogenic synthesis of Ag-Au-In decorated on rGO nanosheet and its antioxidant and biological activities

    Science.gov (United States)

    Hazarika, Moushumi; Sonowal, Shashanka; Saikia, Indranirekha; Boruah, Purna K.; Das, Manash R.; Tamuly, Chandan

    2017-09-01

    Au-Ag-In-rGO nanocomposite was synthesized using fruit extract of Zanthoxylum rhetsa which is an eco-friendly, simple and green method. It was characterized by UV-visible, FT-IR, XRD, XPS, EDX, TEM technique. The antioxidant capacity of the nanocomposite was evaluated in presence of AgNO3, HAuCl4 and InCl3 solution respectively at 25 °C. The results showed significant antioxidant activity in presence of 1  ×  10-5 mM AgNO3 solution. The antibacterial activity of Au-Ag-In-rGO nanoparticles was carried out against the gram  -ve bacteria Pseudomonas aeruginosa, Escherichia coli and gram  +ve bacteria Staphylococcus aureus and Bacillus cereus. The bacterial growth kinetics was studied. The bacterial strain E. coli and S. aureus showed complete inhibition at concentration 100 µg ml-1. The activity is more effective in case of Au-Ag-In-rGO compared to GO.

  11. A novel solution-phase route for the synthesis of crystalline silver nanowires

    International Nuclear Information System (INIS)

    Liu Yang; Chu Ying; Yang Likun; Han Dongxue; Lue Zhongxian

    2005-01-01

    A unique solution-phase route was devised to synthesize crystal Ag nanowires with high aspect-ratio (8-10 nm in diameter and length up to 10 μm) by the reduction of AgNO 3 with Vitamin C in SDS/ethanol solution. The resultant nanoproducts were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD) and electron diffraction (ED). A soft template mechanism was put forward to interpret the formation of metal Ag nanowires

  12. Bag3-induced autophagy is associated with degradation of JCV oncoprotein, T-Ag.

    Directory of Open Access Journals (Sweden)

    Ilker Kudret Sariyer

    Full Text Available JC virus, JCV, is a human neurotropic polyomavirus whose replication in glial cells causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML. In addition, JCV possesses oncogenic activity and expression of its transforming protein, large T-antigen (T-Ag, in several experimental animals induces tumors of neural origin. Further, the presence of JCV DNA and T-Ag have been repeatedly observed in several human malignant tissues including primitive neuroectodermal tumors and glioblastomas. Earlier studies have demonstrated that Bag3, a member of the Bcl-2-associated athanogene (Bag family of proteins, which is implicated in autophagy and apoptosis, is downregulated upon JCV infection of glial cells and that JCV T-Ag is responsible for suppressing the activity of the BAG3 promoter. Here, we investigated the possible impact of Bag3 on T-Ag expression in JCV-infected human primary glial cells as well as in cells derived from T-Ag-induced medulloblastoma in transgenic animals. Results from these studies revealed that overexpression of Bag3 drastically decreases the level of T-Ag expression by inducing the autophagic degradation of the viral protein. Interestingly, this event leads to the inhibition of JCV infection of glial cells, suggesting that the reduced levels of T-antigen seen upon the overexpression of Bag3 has a biological impact on the viral lytic cycle. Results from protein-protein interaction studies showed that T-Ag and Bag3 physically interact with each other through the zinc-finger of T-Ag and the proline rich domains of Bag3, and this interaction is important for the autophagic degradation of T-Ag. Our observations open a new avenue of research for better understanding of virus-host interaction by investigating the interplay between T-Ag and Bag3, and their impact on the development of JCV-associated diseases.

  13. Bag3-induced autophagy is associated with degradation of JCV oncoprotein, T-Ag.

    Science.gov (United States)

    Sariyer, Ilker Kudret; Merabova, Nana; Patel, Prem Kumer; Knezevic, Tijana; Rosati, Alessandra; Turco, Maria C; Khalili, Kamel

    2012-01-01

    JC virus, JCV, is a human neurotropic polyomavirus whose replication in glial cells causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). In addition, JCV possesses oncogenic activity and expression of its transforming protein, large T-antigen (T-Ag), in several experimental animals induces tumors of neural origin. Further, the presence of JCV DNA and T-Ag have been repeatedly observed in several human malignant tissues including primitive neuroectodermal tumors and glioblastomas. Earlier studies have demonstrated that Bag3, a member of the Bcl-2-associated athanogene (Bag) family of proteins, which is implicated in autophagy and apoptosis, is downregulated upon JCV infection of glial cells and that JCV T-Ag is responsible for suppressing the activity of the BAG3 promoter. Here, we investigated the possible impact of Bag3 on T-Ag expression in JCV-infected human primary glial cells as well as in cells derived from T-Ag-induced medulloblastoma in transgenic animals. Results from these studies revealed that overexpression of Bag3 drastically decreases the level of T-Ag expression by inducing the autophagic degradation of the viral protein. Interestingly, this event leads to the inhibition of JCV infection of glial cells, suggesting that the reduced levels of T-antigen seen upon the overexpression of Bag3 has a biological impact on the viral lytic cycle. Results from protein-protein interaction studies showed that T-Ag and Bag3 physically interact with each other through the zinc-finger of T-Ag and the proline rich domains of Bag3, and this interaction is important for the autophagic degradation of T-Ag. Our observations open a new avenue of research for better understanding of virus-host interaction by investigating the interplay between T-Ag and Bag3, and their impact on the development of JCV-associated diseases.

  14. Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30–200 nm and Comparison of Their Optical Properties

    Science.gov (United States)

    Zhang, Qiang; Li, Weiyang; Moran, Christine; Zeng, Jie; Chen, Jingyi; Wen, Long-Ping; Xia, Younan

    2010-01-01

    Silver nanocubes with edge lengths controllable in the range of 30–200 nm were synthesized using an approach based on seeded growth. The key to the success of this synthesis is the use of single-crystal Ag seeds to direct the growth and the use of AgNO3 as a precursor to elemental Ag where the by-product HNO3 can block both the homogeneous nucleation and evolution of single-crystal seeds into twinned nanoparticles. Either spherical (in the shape of cubooctahedron) or cubic seeds could be employed for this growth process. The edge length of resultant Ag nanocubes can be readily controlled by varying the amount of Ag seeds used, the amount of AgNO3 added, or both. For the first time, we could obtain Ag nanocubes with uniform edge lengths controllable in the range of 30–200 nm and then compare their localized surface plasmon resonance and surface-enhanced Raman scattering properties. PMID:20698704

  15. XPS and Ag L3-edge XANES characterization of silver and silver-gold sulfoselenides

    Science.gov (United States)

    Mikhlin, Yuri L.; Pal'yanova, Galina A.; Tomashevich, Yevgeny V.; Vishnyakova, Elena A.; Vorobyev, Sergey A.; Kokh, Konstantin A.

    2018-05-01

    Gold and silver sulfoselenides are of interest as materials with high ionic conductivity and promising magnetoresistive, thermoelectric, optical, and other physico-chemical properties, which are strongly dependent on composition and structure. Here, we applied X-ray photoelectron spectroscopy and Ag L3 X-ray absorption near-edge structure (XANES) to study the electronic structures of low-temperature compounds and solid solutions Ag2SxSe1-x (0 compounds; in particular, the Ag L3-edge peak is about 35% lower for AgAuS relative to Ag2S. At the same time, the Au 4f binding energy and, therefore, charge at Au(I) sites increase with increasing S content due to the transfer of electron density from Au to Ag atoms. It was concluded that the effects mainly originate from shortening of the metal-chalcogen and especially the Ausbnd Ag interatomic distances in substances having similar coordination geometry.

  16. Effect of structure transformation on transient creep behavior of Al-Ag system

    Energy Technology Data Exchange (ETDEWEB)

    Deaf, G.H.; Yossef, S.B.; Mahmoud, M.A.; Graiss, G. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Kenawy, M.A. [Ain Shams Univ., Cairo (Egypt). Womens Coll.

    1996-12-16

    The transient creep of Al-16 wt% Ag and Al-16 wt% Ag-0.1 wt% Zr solid solution alloys is investigated in the temperature range 428 to 673 K for various ageing times under constant load. The subsequent decrease and increase in the values of creep parameters n and {beta} with increasing ageing times and ageing temperatures has been explained on the basis of structure transformations occuring in Al-Ag alloys. It was found that the addition of Zr to Al-16 wt% Ag alloy accelerates the precipitation of GP zones, {gamma}`-phase, and {gamma}-phase. TEM investigations confirmed the above effects. The mean values of the activation energy of both alloys were found to be equal to that quoted for dislocation intersection. (orig.) 21 refs.

  17. Efficient one-pot synthesis of Ag nanoparticles loaded on N-doped multiphase TiO2 hollow nanorod arrays with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Wu Min; Yang Beifang; Lv Yan; Fu Zhengping; Xu Jiao; Guo Ting; Zhao Yongxun

    2010-01-01

    The simultaneous Ag loaded and N-doped TiO 2 hollow nanorod arrays with various contents of silver (Ag/N-THNAs) were successfully synthesized on glass substrates by one-pot liquid phase deposition (LPD) method using ZnO nanorod arrays as template. The catalysts were characterized by Raman spectrum, field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscope (HRTEM), ultraviolet-vis (UV-vis) absorption spectrum and X-ray photoelectron spectroscopy (XPS). The results suggest that AgNO 3 additive in the precursor solutions not only can promote the anatase-to-rutile phase transition, but also influence the amount of N doping in the samples. The photocatalytic activity of all the samples was evaluated by photodegradation of methylene blue (MB) in aqueous solution. The sample exhibited the highest photocatalytic activity under UV light illumination when the AgNO 3 concentration in the precursor solution was 0.03 M, due to Ag nanoparticles acting as electron sinks; When the AgNO 3 concentration was 0.07 M, the sample performed best under visible light illumination, attributed to the synergetic effects of Ag loading, N doping, and the multiphase structure (anatase/rutile).

  18. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings

    Directory of Open Access Journals (Sweden)

    Yuxin Wang

    2017-08-01

    Full Text Available In this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM. The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomic percent (at% Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.

  19. Strong enhancement of the electrochemiluminescence of luminol by AuAg and PtAg alloy nanoclusters, and its sensitization by phenolic artificial oestrogens

    International Nuclear Information System (INIS)

    Wang, Ke; Tu, Yifeng; Wei, Xiuhua

    2014-01-01

    This paper reports on the synthesis of AuAg and PtAg alloy nanoclusters (NCs) and their enhancement effect on the electrochemiluminescence (ECL) of luminol. The conditions of synthesis were optimized, and the structure and properties of the NCs were characterized by X-ray diffraction, transmission electron microscopy, electrochemistry, and optical spectroscopy. The NCs are found to intensify (by up to 20 times) the ECL of luminol in solution of pH 8.5. This finding can largely extend the useful pH range of the ECL of luminol. The enhanced ECL is strongly affected by oxygen and hydrogen peroxide, and the mechanism of enhancement is attributed to the accelerated production of reactive oxygen species. The enhanced ECL is also affected by phenolic artificial estrogens, and this was used for their determination with detection limits as low as 700 pg L −1 (with AuAg) and 1.6 ng L −1 (with PtAg). The method was applied to the determination of such estrogens in egg samples using diethylstilbestrol as a reference substance. (author)

  20. Biosynthesis and Characterization of AgNPs–Silk/PVA Film for Potential Packaging Application

    Directory of Open Access Journals (Sweden)

    Gang Tao

    2017-06-01

    Full Text Available Bionanocomposite packaging materials have a bright future for a broad range of applications in the food and biomedical industries. Antimicrobial packaging is one of the bionanocomposite packaging materials. Silver nanoparticle (AgNP is one of the most attractive antimicrobial agents for its broad spectrum of antimicrobial activity against microorganisms. However, the traditional method of preparing AgNPs-functionalized packaging material is cumbersome and not environmentally friendly. To develop an efficient and convenient biosynthesis method to prepare AgNPs-modified bionanocomposite material for packaging applications, we synthesized AgNPs in situ in a silk fibroin solution via the reduction of Ag+ by the tyrosine residue of fibroin, and then prepared AgNPs–silk/poly(vinyl alcohol (PVA composite film by blending with PVA. AgNPs were synthesized evenly on the surface or embedded in the interior of silk/PVA film. The prepared AgNPs–silk/PVA film exhibited excellent mechanical performance and stability, as well as good antibacterial activity against both Gram-negative and Gram-positive bacteria. AgNPs–silk/PVA film offers more choices to be potentially applied in the active packaging field.

  1. Synthesis of Au@Ag core-shell nanocubes containing varying shaped cores and their localized surface plasmon resonances.

    Science.gov (United States)

    Gong, Jianxiao; Zhou, Fei; Li, Zhiyuan; Tang, Zhiyong

    2012-06-19

    We have synthesized Au@Ag core-shell nanocubes containing Au cores with varying shapes and sizes through modified seed-mediated methods. Bromide ions are found to be crucial in the epitaxial growth of Ag atoms onto Au cores and in the formation of the shell's cubic shape. The Au@Ag core-shell nanocubes exhibit very abundant and distinct localized surface plasmon resonance (LSPR) properties, which are core-shape and size-dependent. With the help of theoretical calculation, the physical origin and the resonance mode profile of each LSPR peak are identified and studied. The core-shell nanocrystals with varying shaped cores offer a new rich category for LSPR control through the plasmonic coupling effect between core and shell materials.

  2. Antibacterial Ag/a-C nanocomposite coatings: The influence of nano-galvanic a-C and Ag couples on Ag ionization rates

    Energy Technology Data Exchange (ETDEWEB)

    Manninen, N.K., E-mail: nora.sousa@dem.uc.pt [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); Calderon, S. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); Carvalho, I. [GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); CEB—Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga (Portugal); Henriques, M. [CEB—Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Carvalho, S. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal)

    2016-07-30

    Highlights: • Amorphous carbon (a-C), Ag/a-C and Ag coatings were deposited by magnetron sputtering. • a-C/Ag coating shows antibacterial activity against S. epidermidis. • The formation of nano-galvanic couples in a-C/Ag enhances the Ag{sup +} ionization rate. • The Ag{sup +} ionization occurs along with Ag nanoparticles agglomeration in 0.9% NaCl. - Abstract: Biofilm formation has been pointed as a major concern in different industrial applications, namely on biomedical implants and surgical instruments, which has prompted the development of new strategies for production of efficient antimicrobial surfaces. In this work, nano-galvanic couples were created to enhance the antibacterial properties of silver, by embedding it into amorphous carbon (a-C) matrix. The developed Ag/a-C nanocomposite coatings, deposited by magnetron sputtering, revealed an outstanding antibacterial activity against Staphylococcus epidermidis, promoting a total reduction in biofilm formation with no bacteria counts in all dilution. The open circuit potential (OCP) tests in 0.9% NaCl confirmed that a-C shows a positive OCP value, in contrast to Ag coating, thus enhancing the ionization of biocidal Ag{sup +} due to the nano-galvanic couple activation. This result was confirmed by the inductively coupled plasma-optical emission spectroscopy (ICP-OES), which revealed a higher Ag ionization rate in the nanocomposite coating in comparison with the Ag coating. The surface of Ag/a-C and Ag coatings immersed in 0.9% NaCl were monitored by scanning electron microscopy (SEM) over a period of 24 h, being found that the Ag ionization determined by ICP-OES was accompanied by an Ag nanoparticles coalescence and agglomeration in Ag/a-C coating.

  3. Ag-Cu nanoalloyed film as a high-performance cathode electrocatalytic material for zinc-air battery

    OpenAIRE

    Lei, Yimin; Chen, Fuyi; Jin, Yachao; Liu, Zongwen

    2015-01-01

    A novel Ag50Cu50 film electrocatalyst for oxygen reduction reaction (ORR) was prepared by pulsed laser deposition (PLD) method. The electrocatalyst actually is Ag-Cu alloyed nanoparticles embedded in amorphous Cu film, based on transmission electron microscopy (TEM) characterization. The rotating disk electrode (RDE) measurements provide evidence that the ORR proceed via a four-electron pathway on the electrocatalysts in alkaline solution. And it is much more efficient than pure Ag catalyst. ...

  4. Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation of endocrine disturbing compounds

    International Nuclear Information System (INIS)

    Leong, Kah Hon; Gan, Bee Ling; Ibrahim, Shaliza; Saravanan, Pichiah

    2014-01-01

    Graphical abstract: - Highlights: • Ag/TiO 2 was synthesized with aid of natural photon stimulated photoreduction. • Deposited Ag prompted well the LSPRs, Schottky barrier for visible light utilization. • Photocatalytic activity was evaluated by degrading EDCs under visible light. • 3.0 wt% Ag/TiO 2 resulted with good photocatalytic efficiency over others. - Abstract: Surface deposition of silver nanoparticles (Ag NPs) onto the 100% anatase titania (Ag/TiO 2 ) for evolution of surface plasmon resonance (SPR) was achieved sustainably with the assistance of solar energy. The preparation resulted in Ag/TiO 2 photocatalyst with varied Ag depositions (0.5 wt%, 1.0 wt%, 3.0 wt% and 5.0 wt%). All obtained photocatalysts were characterized for the evolution of SPR via crystalline phase analysis, morphology, lattice fringes, surface area and pore size characteristics, chemical composition with chemical and electronic state, Raman scattering, optical and photoluminescence properties. The deposition of synthesized Ag NPs exhibited high uniformity and homogeneity and laid pathway for effective utilization of the visible region of electromagnetic spectrum through SPR. The depositions also lead for suppressing recombination rates of electron–hole. The photocatalytic evaluation was carried out by adopting two different class of endocrine disturbing compound (EDC) i.e., amoxicillin (pharmaceutical) and 2,4-dichlorophenol (pesticide) excited with artificial visible light source. Ag/TiO 2 with Ag > 0.5 wt% exhibited significant degradation efficiency for both amoxicillin and 2,4-dichlorophenol. Thus synthesized Ag/TiO 2 revealed the implication of plasmonics on TiO 2 for the enhanced visible light photocatalytic activity

  5. Exact traveling wave solutions of the Boussinesq equation

    International Nuclear Information System (INIS)

    Ding Shuangshuang; Zhao Xiqiang

    2006-01-01

    The repeated homogeneous balance method is used to construct exact traveling wave solutions of the Boussinesq equation, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation, respectively. Many new exact traveling wave solutions of the Boussinesq equation are successfully obtained

  6. The negative temperature coefficient resistivities of Ag2S-Ag core–shell structures

    International Nuclear Information System (INIS)

    Yu, Mingming; Liu, Dongzhi; Li, Wei; Zhou, Xueqin

    2014-01-01

    In this paper, the conductivity of silver nanoparticle films protected by 3-mercaptopropionic acid (Ag/MPA) has been investigated. When the nanoparticles were annealed in air at 200 °C, they converted to stable Ag 2 S-Ag core–shell structures. The mechanism for the formation of the Ag 2 S-Ag core–shell structures along with the compositional changes and the microstructural evolution of the Ag/MPA nanoparticles during the annealing process are discussed. It is proposed that the Ag 2 S-Ag core–shell structure was formed through a solid-state reduction reaction, in which the Ag + ions coming from Ag 2 S were reduced by sulfonate species and sulfur ions. The final Ag 2 S-Ag films display an exponentially decreased resistivity with increasing temperature from 25 to 170 °C. The negative temperature coefficient resistivity of Ag 2 S-Ag films can be adjusted by changing the S/Ag molar ratio used for the synthesis of the Ag/MPA nanoparticles, paving the way for the preparation of negative temperature-coefficient thermistors via printing technology for use in the electronics.

  7. Antibacterial properties of Ag-exchanged Philippine natural zeolite-chitosan composites

    Science.gov (United States)

    Taaca, Kathrina Lois M.; Olegario, Eleanor M.; Vasquez, Magdaleno R.

    2017-12-01

    Zeolites are microporous minerals composed of silicon, aluminum and oxygen. These aluminosilicates consist of tetrahedral units which produce open framework structures to generate a system of pores and cavities of molecular dimensions. Zeolites are naturally abundant and can be mined in most parts of the world. In this study, natural zeolites (NaZ) which are locally-sourced here in the Philippines were investigated to determine its properties. An ion-exchange process was utilized, using the zeolite to silver (Ag) solution ratio of 1:20 (w/v), to incorporate Ag into the zeolite framework. Characterizations such as XRD, AAS, and Agar diffusion assay were used to evaluate the properties of the synthesized Ag-exchanged zeolites (AgZ). X-ray diffraction revealed that both NaZ and AgZ have peaks mostly corresponding to the clinoptilolite structure, with some trace peaks of the mordenite and quartz. Absorption spectroscopy revealed that the ion exchange process added about 0.61188g of silver into the zeolite structure. This Ag content was seen to be enough to make the AgZ sample exhibit an antibacterial effect where clearing zones against E. coli and S. aureus were observed in the agar diffusion assay, respectively. The AgZ sample was also tested as ceramic filler to a polymer matrix-chitosan. The diffusion assay revealed presence of antibacterial activity to the polymer composite with AgZ fillers. These results indicate that the Philippine natural zeolite, incorporated with metals such as Ag, can be used as an antibacterial agent and can be developed as a ceramic filler to improve the antibacterial property of composite materials for biomedical application.

  8. Solidification Segregation and Homogenization Behavior of 1Cr-1.25Mo-0.25V Steel Ingot

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Bae [Dae-gu Mechatronics and Materials Institute, Daegu (Korea, Republic of); Na, Young-Sang; Seo, Seong-Moon [Korea Institute of Materials Science, Changwon (Korea, Republic of); Lee, Je-Hyun [Changwon National University, Changwon (Korea, Republic of)

    2016-09-15

    As a first step to optimizing the homogenization heat treatment following high temperature upset forging, the solidification segregation and the homogenization behaviors of solute elements were quantitatively analyzed for 1Cr-1.25Mo-0.25V steel ingot by electron probe micro-analysis (EPMA). The random sampling approach, which was designed to generate continuous compositional profiles of each solute element, was employed to clarify the segregation and homogenization behaviors. In addition, ingot castings of lab-scale and a 16-ton-sized 1Cr-1.25Mo-0.25V steel were simulated using the finite element method in three dimensions to understand the size effect of the ingot on the microsegregation and its reduction during the homogenization heat treatment. It was found that the microsegregation in a large-sized ingot was significantly reduced by the promotion of solid state diffusion due to the extremely low cooling rate. On the other hand, from the homogenization point of view, increasing the ingot size causes a dramatic increase in the dendrite arm spacing, and hence the homogenization of microsegregation in a large-sized ingot appears to be practically difficult.

  9. Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi.

    Science.gov (United States)

    Kim, Sang Woo; Jung, Jin Hee; Lamsal, Kabir; Kim, Yun Seok; Min, Ji Seon; Lee, Youn Su

    2012-03-01

    This research is concerned with the fungicidal properties of nano-size silver colloidal solution used as an agent for antifungal treatment of various plant pathogens. We used WA-CV-WA13B, WA-AT-WB13R, and WA-PR-WB13R silver nanoparticles (AgNPs) at concentrations of 10, 25, 50, and 100 ppm. Eighteen different plant pathogenic fungi were treated with these AgNPs on potato dextrose agar (PDA), malt extract agar, and corn meal agar plates. We calculated fungal inhibition in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. The results indicated that AgNPs possess antifungal properties against these plant pathogens at various levels. Treatment with WA-CV-WB13R AgNPs resulted in maximum inhibition of most fungi. Results also showed that the most significant inhibition of plant pathogenic fungi was observed on PDA and 100 ppm of AgNPs.

  10. Diffusion piecewise homogenization via flux discontinuity factors

    International Nuclear Information System (INIS)

    Sanchez, Richard; Zmijarevic, Igor

    2011-01-01

    We analyze the calculation of flux discontinuity factors (FDFs) for use with piecewise subdomain assembly homogenization. These coefficients depend on the numerical mesh used to compute the diffusion problem. When the mesh has a single degree of freedom on subdomain interfaces the solution is unique and can be computed independently per subdomain. For all other cases we have implemented an iterative calculation for the FDFs. Our numerical results show that there is no solution to this nonlinear problem but that the iterative algorithm converges towards FDFs values that reproduce subdomains reaction rates with a relatively high precision. In our test we have included both the GET and black-box FDFs. (author)

  11. Homogenization of variational inequalities and equations defined by pseudomonotone operators

    International Nuclear Information System (INIS)

    Sandrakov, G V

    2008-01-01

    Results on the convergence of sequences of solutions of non-linear equations and variational inequalities for obstacle problems are proved. The variational inequalities and equations are defined by a non-linear, pseudomonotone operator of the second order with periodic, rapidly oscillating coefficients and by sequences of functions characterizing the obstacles and the boundary conditions. Two-scale and macroscale (homogenized) limiting problems for such variational inequalities and equations are obtained. Results on the relationship between solutions of these limiting problems are established and sufficient conditions for the uniqueness of solutions are presented. Bibliography: 25 titles

  12. Size-dependent homogenized diffusion parameters for a finite lattice

    International Nuclear Information System (INIS)

    Premuda, F.

    1980-01-01

    A numerical technique is reported for solving the transcendental equation for unknown Ysub(n+1). The solution is expressed in terms of quantities related to Ysub(n). This is an iterative reversion technique which has already been proven to converge rapidly in the homogeneous slab problem considered herein. (author)

  13. Analysis of the residual strain change of Bi2212, Ag alloy and Ag during the heating and cooling process in Bi2212/Ag/Ag alloy composite wire

    International Nuclear Information System (INIS)

    Shin, J K; Ochiai, S; Okuda, H; Mukai, Y; Sugano, M; Sato, M; Oh, S S; Ha, D W; Kim, S C

    2008-01-01

    The residual strain change of Bi2212 and Ag during the cooling and heating process in the Bi2212/Ag/Ag alloy composite superconductor was studied. First, the residual strain of Bi2212 filaments at room temperature was measured by the x-ray diffraction method. Then, the Young's moduli of the constituents (Bi2212 filaments, Ag and Ag alloy) and yield strains of Ag and Ag alloy were estimated from the analysis of the measured stress-strain curve, based on the rule of mixtures. Also, the coefficient of thermal expansion of the Bi2212 filaments was estimated from the analysis of the measured thermal expansion curve of the composite wire. From the modeling analysis using the estimated property values and the residual strain of Bi2212 filaments, the changes of residual strain of Bi2212, Ag alloy and Ag with temperature during the cooling and heating process were revealed

  14. TiO2/Ag modified penta-bismuth hepta-oxide nitrate and its adsorption performance for azo dye removal

    Institute of Scientific and Technical Information of China (English)

    Eshraq Ahmed Abdullah; Abdul Halim Abdullah; Zulkarnain Zainal; Mohd Zobir Hussein; Tan Kar Ban

    2012-01-01

    A modified hydrophilic penta-bismuth hepta-oxide nitrate (Bi5O7NO3) surface was synthesized via a precipitation method using TiO2 and Ag as modified agents.The synthesized product was characterized by different analytical techniques.The removal efficiency was evaluated using mono- and di-sulphonated azo dyes as model pollutants.Different kinetic,isotherm and diffusion models were chosen to describe the adsorption process.X-ray photoelectron spectroscopy (XPS) results revealed no noticeable differences in the chemical states of modified adsorbent when compared to pure Bi5O7NO3; however,the presence of hydrophilic centres such as TiO2 and Ag developed positively charged surface groups and improved its adsorption performance to a wide range of azo dyes.Dyes removal was found to be a function of adsorbent dosage,initial dye concentration,solution pH and temperature.The reduction of Langrnuir 1,2-mixed order kinetics to the second or first-order kinetics could be successfully used to describe the adsorption of dyes onto the modified adsorbent.Mass transfer can be described by intra-particle diffusion at a certain stage,but it was not the rate limiting step that controlled the adsorption process.Homogenous behavior of adsorbent surface can be explored by applying Langmuir isotherm to fit the adsorption data.

  15. Does prescribed burning result in biotic homogenization of coastal heathlands?

    Science.gov (United States)

    Velle, Liv Guri; Nilsen, Liv Sigrid; Norderhaug, Ann; Vandvik, Vigdis

    2014-05-01

    Biotic homogenization due to replacement of native biodiversity by widespread generalist species has been demonstrated in a number of ecosystems and taxonomic groups worldwide, causing growing conservation concern. Human disturbance is a key driver of biotic homogenization, suggesting potential conservation challenges in seminatural ecosystems, where anthropogenic disturbances such as grazing and burning are necessary for maintaining ecological dynamics and functioning. We test whether prescribed burning results in biotic homogenization in the coastal heathlands of north-western Europe, a seminatural landscape where extensive grazing and burning has constituted the traditional land-use practice over the past 6000 years. We compare the beta-diversity before and after fire at three ecological scales: within local vegetation patches, between wet and dry heathland patches within landscapes, and along a 470 km bioclimatic gradient. Within local patches, we found no evidence of homogenization after fire; species richness increased, and the species that entered the burnt Calluna stands were not widespread specialists but native grasses and herbs characteristic of the heathland system. At the landscapes scale, we saw a weak homogenization as wet and dry heathland patches become more compositionally similar after fire. This was because of a decrease in habitat-specific species unique to either wet or dry habitats and postfire colonization by a set of heathland specialists that established in both habitat types. Along the bioclimatic gradient, species that increased after fire generally had more specific environmental requirements and narrower geographical distributions than the prefire flora, resulting in a biotic 'heterogenisation' after fire. Our study demonstrates that human disturbance does not necessarily cause biotic homogenization, but that continuation of traditional land-use practices can instead be crucial for the maintenance of the diversity and ecological

  16. The Electrochemical Stability in NaCl Solution of Nanotubes and Nanochannels Elaborated on a New Ti-20Zr-5Ta-2Ag Alloy

    Directory of Open Access Journals (Sweden)

    Claudiu Constantin Manole

    2015-01-01

    Full Text Available Nanotubular and nanochannels structures were fabricated via anodizing on a new alloy Ti-20Zr-8Ta-2Ag. A continuous coating of connected tubes/channels can be observed in the SEM micrographs forming tubular structures with diameters in hundreds of nm, as well as smaller tubes, with diameters in tens of nm. In the case of nanochannels structure, the diameters are smaller and wall thicknesses significantly thinner than in nanotubes. Wettability measurements indicate a decrease of contact angles in both cases of nanotubes and nanochannels, but the increase of hydrophilic character is more significant in the case of nanochannels. The Tafel procedure and electrochemical impedance spectroscopy tests performed in NaCl 0.9% solution indicate a better stability for the nanostructured surfaces compared to untreated alloy, the surface with nanochannels offering higher corrosion resistance. Spectral UV-VIS determination has confirmed Ag metallic presence, opening the door for applications not only in tissue engineering but for water splitting and the photoreduction of CO2 as well.

  17. Efficient photocatalytic degradation of ibuprofen in aqueous solution using novel visible-light responsive graphene quantum dot/AgVO{sub 3} nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Zhen-dong [Department of Physics, Tsinghua University, Beijing 100084 (China); Wang, Jia-jun [Shanghai Institute of Applied Radiation, Shanghai University, Shanghai 200444 (China); Wang, Liang, E-mail: wangl@shu.edu.cn [Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444 (China); Yang, Xiong-yu; Xu, Gang [Shanghai Institute of Applied Radiation, Shanghai University, Shanghai 200444 (China); Tang, Liang, E-mail: tang1liang@shu.edu.cn [Shanghai Institute of Applied Radiation, Shanghai University, Shanghai 200444 (China)

    2016-07-15

    Highlights: • A novel heterojunction photocatalyst, GQD/AgVO{sub 3} was prepared. • The morphology of GQD/AgVO{sub 3} was well characterized. • Ibuprofen was easily decomposed using GQD/AgVO{sub 3} under visible-light irradiation. • The degradation pathway of ibuprofen was also suggested. - Abstract: Single crystalline, non-toxicity, and long-term stability graphene quantum dots (GQDs) were modified onto the AgVO{sub 3} nanoribbons by a facile hydrothermal and sintering technique which constructs a unique heterojunction photocatalyst. Characterization results indicate that GQDs are well dispersed on the surface of AgVO{sub 3} nanoribbons and GQD/AgVO{sub 3} heterojunctions are formed, which can greatly promote the separation efficiency of photogenerated electron-hole pairs under visible light irradiation. By taking advantage of this feature, the GQD/AgVO{sub 3} heterojunctions exhibit considerable improvement on the photocatalytic activities for the degradation of ibuprofen (IBP) under visible light irradiation as compared to pure AgVO{sub 3}. The photocatalytic activity of GQD/AgVO{sub 3} heterojunctions is relevant with GQD ratio and the optimal activity is obtained at 3 wt% with the highest separation efficiency of photogenerated electron-hole pairs. Integrating the physicochemical and photocatalytic properties, the factors controlling the photocatalytic activity of GQD/AgVO{sub 3} heterojunctions are discussed in detail. Moreover, potential photocatalytic degradation mechanisms of IBP via GQD/AgVO{sub 3} heterojunctions under visible light are proposed.

  18. Comparative Study of Antimicrobial Activity of AgBr and Ag Nanoparticles (NPs)

    Science.gov (United States)

    Suchomel, Petr; Kvitek, Libor; Panacek, Ales; Prucek, Robert; Hrbac, Jan; Vecerova, Renata; Zboril, Radek

    2015-01-01

    The diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs) were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC) influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions. Small NPs (diameter of about 60–70 nm) were formed in the presence of the polymer with low interaction as are PEG and HEC, the polymers which interact with Ag+ strongly produce nearly two times bigger NPs (120–130 nm). The prepared AgBr NPs were transformed to Ag NPs by the reduction using NaBH4. The sizes of the produced Ag NPs followed the same trends – the smallest NPs were produced in the presence of PEG and HEC polymers. Prepared AgBr and Ag NPs dispersions were tested for their biological activity. The obtained results of antimicrobial activity of AgBr and Ag NPs are discussed in terms of possible mechanism of the action of these NPs against tested microbial strains. The AgBr NPs are more effective against gram-negative bacteria and tested yeast strains while Ag NPs show the best antibacterial action against gram-positive bacteria strains. PMID:25781988

  19. The bactericidal mechanism of action against Staphylococcus aureus for AgO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenning, E-mail: shenwenning@qq.com [School of Materials Science and Engineering, Xi' an University of Technology, No. 5 South Jinhua Road, Xi' an 710048 (China); Li, Pin [School of Materials Science and Engineering, Xi' an University of Technology, No. 5 South Jinhua Road, Xi' an 710048 (China); Feng, Hui [Shaanxi Institute of Zoology, Xi' an 710032 (China); Ge, Yanfeng; Liu, Zheng; Feng, Lajun [School of Materials Science and Engineering, Xi' an University of Technology, No. 5 South Jinhua Road, Xi' an 710048 (China)

    2017-06-01

    To identify the mechanistic effects of AgO nanoparticles on Gram-positive bacteria, S. aureus cells suspended in phosphate buffer solution (PBS) and deionized water were separately treated using AgO nanoparticles at different concentrations. The phase composition changes of the bactericide after killing S. aureus and the cellular responses of S. aureus to AgO were characterized by X-ray diffraction, atomic absorption spectrophotometer, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy. The results show that AgO nanoparticles could kill S. aureus suspended in PBS and deionized water. The bactericidal effect of AgO bactericide against S. aureus in water was better than that in PBS, due to the formation of Ag{sub 3}PO{sub 4} from the reaction between AgO and PBS. AgO nanoparticles exerted their bactericidal activity by multiple processes. AgO nanoparticles adhered to the surface of S. aureus cells firstly, then induced physical alterations in cell morphology and released silver ions, leading to initial injuries of cell membrane. Once membrane damage occurred, they entered the cells, and damaged the intracellular materials, eventually causing severe morphological and structural injuries to the cells and leakage of cytoplasm. - Highlights: • S. aureus in water was more sensitive to AgO than in PBS, since AgO reacted with PBS and formed Ag{sub 3}PO{sub 4}. • After killing S. aureus in water, AgO did not changed. • AgO particles attached to cell surface then interacted with the cells, resulting in the increase of released silver contents. • Cell membrane damages by AgO nanoparticles were supported by the leakages of K{sup +}, proteins and DNA. • Serious cell morphological and structural changes were caused by AgO nanoparticles.

  20. The bactericidal mechanism of action against Staphylococcus aureus for AgO nanoparticles

    International Nuclear Information System (INIS)

    Shen, Wenning; Li, Pin; Feng, Hui; Ge, Yanfeng; Liu, Zheng; Feng, Lajun

    2017-01-01

    To identify the mechanistic effects of AgO nanoparticles on Gram-positive bacteria, S. aureus cells suspended in phosphate buffer solution (PBS) and deionized water were separately treated using AgO nanoparticles at different concentrations. The phase composition changes of the bactericide after killing S. aureus and the cellular responses of S. aureus to AgO were characterized by X-ray diffraction, atomic absorption spectrophotometer, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy. The results show that AgO nanoparticles could kill S. aureus suspended in PBS and deionized water. The bactericidal effect of AgO bactericide against S. aureus in water was better than that in PBS, due to the formation of Ag 3 PO 4 from the reaction between AgO and PBS. AgO nanoparticles exerted their bactericidal activity by multiple processes. AgO nanoparticles adhered to the surface of S. aureus cells firstly, then induced physical alterations in cell morphology and released silver ions, leading to initial injuries of cell membrane. Once membrane damage occurred, they entered the cells, and damaged the intracellular materials, eventually causing severe morphological and structural injuries to the cells and leakage of cytoplasm. - Highlights: • S. aureus in water was more sensitive to AgO than in PBS, since AgO reacted with PBS and formed Ag 3 PO 4 . • After killing S. aureus in water, AgO did not changed. • AgO particles attached to cell surface then interacted with the cells, resulting in the increase of released silver contents. • Cell membrane damages by AgO nanoparticles were supported by the leakages of K + , proteins and DNA. • Serious cell morphological and structural changes were caused by AgO nanoparticles.

  1. Ultraviolet photosensors fabricated with Ag nanowires coated with ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guan-Hung [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Hong, Franklin Chau-Nan, E-mail: hong@mail.ncku.edu.tw [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan (China); NCKU Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-11-03

    We have developed a simple low temperature process to coat zinc oxide (ZnO) nanoparticles (NPs) on Ag nanowires (NWs) with well-controlled morphology. Triethanolamine (TEA) was employed to react with zinc acetate (Zn(CH{sub 3}COO){sub 2}) forming ZnO NPs. TEA was also found to enhance the nucleation and binding of ZnO NPs on the Ag nanowire surfaces facilitating a complete coverage of Ag nanowire surfaces with ZnO NPs. The effects of the process parameters including reaction time and reaction temperature were studied. The surfaces of 60 nm diameter Ag NWs could be completely covered with ZnO NPs with the final diameters of Ag-NWs@ZnO (core–shell NWs) turning into the range from 100 nm to 450 nm. The Ag-NWs@ZnO was characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray mapping analysis, X-ray diffraction, and photoluminescence spectra. Finally, ultraviolet (UV) photosensors were fabricated using Ag-NWs@ZnO. They were found to improve photosensitivity with greatly enhanced fast response by reducing the recovery time by 2 orders, in comparison with the UV-sensors using single-crystalline ZnO NWs. - Highlights: • Solution process to coat ZnO nanoparticles on Ag nanowires has been developed. • Ultraviolet photosensing of ZnO nanoparticles coated on the Ag nanowires was found. • High defect concentration of ZnO nanoparticles enhanced the photosensing properties.

  2. Deposition and Characterization of Silver Oxide from Solution of Silver, Cassava and Sugarcane Juice Effects

    Directory of Open Access Journals (Sweden)

    Uche E. Ekpunobi

    2013-06-01

    Full Text Available Silver oxide was deposited on metallic substrates (zinc and lead from silver solution with different additives at a pH of 5, dc current of 0.2A, 4V for 20seconds at 25°C. The additives were cassava solution and sugarcane juice. The metallic substrates served as cathode while a copper electrode serves as the anode. Compositions of the electrolytes were 50ml AgNO3, 50ml AgNO3 and 50ml of cassava solution or 50ml of sugarcane juice. Structural and textural characterizations were carried out on the deposits. The result showed that deposition using zinc substrate gave a better result than that of lead in that the deposits were pure without impurities. Using cassava solution as additive, a pure Ag2O3 deposit was obtained while sugarcane juice gave a pure intergrowth of Ag2O3 and Ag3O4 deposits both on zinc substrates.

  3. Enhanced photocathodic protection performance of Ag/graphene/TiO2 composite for 304SS under visible light

    Science.gov (United States)

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Liu, Xueqing; Qian, Zhouhai; Hou, Baorong

    2017-06-01

    Ag and graphene co-sensitized TiO2 composites were successfully fabricated and used as photoanodes for photogenerated cathodic protection of 304 stainless steel (304SS) under visible light. Graphene films was firstly deposited onto the TiO2 nanotube (NT) films via cyclic voltammetric electrodeposition. Ag/graphene/TiO2 films were then fabricated via dipping and photoreduction method. The morphology, composition and optical response of the Ag/graphene/TiO2 NT composites were characterized by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, UV-vis diffusion reflectance spectroscopy, respectively. The photocathodic protection performance of the Ag/graphene/TiO2 composites were systematically studied through open-circuit potential and potentiodynamic polarization measurements in 3.5 wt% NaCl solution under visible light (λ > 400 nm). The composites exhibited enhanced photogenerated cathodic protection performance for 304SS under visible light irradiation compared to pure TiO2. Graphene and Ag have a synergistic effect on the enhancement of photocathodic protection performance of TiO2. The composites prepared with 30-cycle graphene film and 15 mM AgNO3 solution showed the optimal corrosion protection performance.

  4. Dynamics of perturbed wavetrain solutions to the Ginzburg-Landau equation

    International Nuclear Information System (INIS)

    Keefe, L.R.

    1984-01-01

    The bifurcation structure of even, spatially periodic solutions to the time-dependent Ginzburg-Landau equation is investigated analytically and numerically. A rich variety of behavior, including limit cycles, two-tori, period-doubling sequences, and strange attractors are found to exist in the phase space of the solutions constructed from spatial Fourier modes. Beginning with unstable perturbations to the spatially homogeneous Stokes solution, changes in solution behavior are examined as the perturbing wavenumber q is varied in the range 0.6 to 1.3. Solution bifurcations as q changes are often found to be associated with symmetry making or breaking changes in the structure of attractors in phase space. Two distinct mirror image attractors are found to coexist for many values of q. Chaotic motion is found for two ranges of q Lyapunov exponents of the solutions and the Lyapunov dimension of the corresponding attractors are calculated for the larger of these regions. Poincare sections of the attractors within this chaotic range are consistent with the dimension calculation and also reveal a bifurcation structure within the chaos which broadly resembles that found in one-dimensional quadratic maps. The integrability of the Ginzburg-Landau equation is also examined. It is demonstrated that the equation does not possess the Painleve property, except for a special case of the coefficients which corresponds to the integrable non-linear Schroedinger (NLS) equation

  5. A New Class of Atomically Precise, Hydride-Rich Silver Nanoclusters Co-Protected by Phosphines

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2016-10-10

    Thiols and phosphines are the most widely used organic ligands to attain atomically precise metal nanoclusters (NCs). Here, we used simple hydrides (e.g., H–) as ligands along with phosphines, such as triphenylphosphine (TPP), 1,2-bis(diphenylphosphino)ethane [DPPE], and tris(4-fluorophenyl)phosphine [TFPP] to design and synthesize a new class of hydride-rich silver NCs. This class includes [Ag18H16(TPP)10]2+, [Ag25H22(DPPE)8]3+, and [Ag26H22(TFPP)13]2+. Our work reveals a new family of atomically precise NCs protected by H– ligands and labile phosphines, with potentially more accessible active metal sites for functionalization and provides a new set of stable NC sizes with simpler ligand–metal bonding for researchers to explore both experimentally and computationally.

  6. A liquid-liquid transition in supercooled aqueous solution related to the HDA-LDA transition

    Science.gov (United States)

    Woutersen, Sander; Ensing, Bernd; Hilbers, Michiel; Zhao, Zuofeng; Angell, C. Austen

    2018-03-01

    Simulations and theory suggest that the thermodynamic anomalies of water may be related to a phase transition between two supercooled liquid states, but so far this phase transition has not been observed experimentally because of preemptive ice crystallization. We used calorimetry, infrared spectroscopy, and molecular dynamics simulations to investigate a water-rich hydrazinium trifluoroacetate solution in which the local hydrogen bond structure surrounding a water molecule resembles that in neat water at elevated pressure, but which does not crystallize upon cooling. Instead, this solution underwent a sharp, reversible phase transition between two homogeneous liquid states. The hydrogen-bond structures of these two states are similar to those established for high- and low-density amorphous (HDA and LDA) water. Such structural similarity supports theories that predict a similar sharp transition in pure water under pressure if ice crystallization could be suppressed.

  7. Analysis of a metal filling and liner formation mechanism of the blind via with nano-Ag particles for TSV (through silicon via) interconnection

    International Nuclear Information System (INIS)

    Ham, Y-H; Kim, D-P; Baek, K-H; Park, K-S; Do, L-M; Kwon, K-H

    2012-01-01

    We investigated a metal filling and liner formation mechanism with a nano-Ag particle for the blind Si via, which is used in the via first process of through silicon via (TSV) interconnection. Using the deep reactive ion etching process, we produced the blind Si via (which is called the blind via hole or via) with a nearly vertical profile. The diameter and depth of the blind Si via were about 10 and 71 µm, respectively. The blind via holes were filled with a nano-Ag particle solution to form a metal plug or a metal liner. At this time, the Ag filling properties were monitored as a function of the volatilization rate of the Ag particle solution in the evacuating chamber. In the fast volatilization of the nano-Ag particle solution, an Ag liner formed on the inner wall of via holes. Meanwhile, both an Ag liner at the sidewall and the Ag plug at the bottom were obtained by the slow volatilization process. Finally, blind via holes fully filled with nano-Ag particles were obtained using four repetitions of the slow volatilization filling process. The proposed TSV filling process can fill large-diameter via holes over 100 µm without a seed layer and chemical mechanical planarization for TSV interconnection at low temperature. This is a simple and cost-effective TSV filling process. (paper)

  8. An elastoplastic homogenization procedure for predicting the settlement of a foundation on a soil reinforced by columns

    OpenAIRE

    ABDELKRIM, Malek; DE BUHAN, Patrick

    2007-01-01

    This paper presents an elastoplastic homogenization method applied to a soil reinforced by regularly distributed columns. According to this method, the composite reinforced soil is regarded, from a macroscopic point of view, as a homogeneous anisotropic continuous medium, the elastic as well as plastic properties of which can be obtained from the solution to an auxiliary problem attached to the reinforced soil representative cell. Based upon an approximate solution to this problem, in which p...

  9. Simultaneous determination of Hg(II)-Ag(I)-Cd(II) by conductometric titration using the formation of ternary complex

    International Nuclear Information System (INIS)

    Hayashida, Ichiro; Yoshida, Hitoshi; Taga, Mitsuhiko; Hikime, Seiichiro

    1979-01-01

    A conductometric determination of Hg(II), Ag(I) and Cd(II) was carried out by using the insoluble ternary complex formation of the metal ions with iodide ion in the presence of 1,10-phenanthroline (phen). Recommended procedure is as follows; An aliquot of sample solution containing (14 -- 29) mg of Hg(II), (8 -- 16) mg of Ag(I), and (9 -- 17) mg of Cd(II) transfered into a 100 ml beaker. Add to acetate buffer and stoichiometric amounts of phen (40% ethanol-water solution). Amounts of nitrate ion which was estimated separately by other titration with 0.1 M Ag(phen) 2 complex (40% ethanol-water solution) are adjusted in the range of (4.0 -- 6.0) mM. The sample solution is titrated with 0.1 M KI standard solution at the rate of 0.20 ml/min or less. The titration curve showed three end-points corresponding to the formation of (1) Hg(phen) 2 I 2 , (2) Ag(phen)I, and (3) Cd(phen) 2 I 2 . The relative standard deviation was less than 0.8%, when the pH value was controlled at 4.0 -- 4.5 (acetate buffer) and the nitrate concentration was adjusted in the range of (4.0 -- 6.0)mM. The effect of diverse ions on the determination was also investigated in detail. (author)

  10. The abstract geometry modeling language (AgML): experience and road map toward eRHIC

    International Nuclear Information System (INIS)

    Webb, Jason; Lauret, Jerome; Perevoztchikov, Victor

    2014-01-01

    The STAR experiment has adopted an Abstract Geometry Modeling Language (AgML) as the primary description of our geometry model. AgML establishes a level of abstraction, decoupling the definition of the detector from the software libraries used to create the concrete geometry model. Thus, AgML allows us to support both our legacy GEANT 3 simulation application and our ROOT/TGeo based reconstruction software from a single source, which is demonstrably self- consistent. While AgML was developed primarily as a tool to migrate away from our legacy FORTRAN-era geometry codes, it also provides a rich syntax geared towards the rapid development of detector models. AgML has been successfully employed by users to quickly develop and integrate the descriptions of several new detectors in the RHIC/STAR experiment including the Forward GEM Tracker (FGT) and Heavy Flavor Tracker (HFT) upgrades installed in STAR for the 2012 and 2013 runs. AgML has furthermore been heavily utilized to study future upgrades to the STAR detector as it prepares for the eRHIC era. With its track record of practical use in a live experiment in mind, we present the status, lessons learned and future of the AgML language as well as our experience in bringing the code into our production and development environments. We will discuss the path toward eRHIC and pushing the current model to accommodate for detector miss-alignment and high precision physics.

  11. Biosynthesis and Characterization of AgNPs-Silk/PVA Film for Potential Packaging Application.

    Science.gov (United States)

    Tao, Gang; Cai, Rui; Wang, Yejing; Song, Kai; Guo, Pengchao; Zhao, Ping; Zuo, Hua; He, Huawei

    2017-06-17

    Bionanocomposite packaging materials have a bright future for a broad range of applications in the food and biomedical industries. Antimicrobial packaging is one of the bionanocomposite packaging materials. Silver nanoparticle (AgNP) is one of the most attractive antimicrobial agents for its broad spectrum of antimicrobial activity against microorganisms. However, the traditional method of preparing AgNPs-functionalized packaging material is cumbersome and not environmentally friendly. To develop an efficient and convenient biosynthesis method to prepare AgNPs-modified bionanocomposite material for packaging applications, we synthesized AgNPs in situ in a silk fibroin solution via the reduction of Ag⁺ by the tyrosine residue of fibroin, and then prepared AgNPs-silk/poly(vinyl alcohol) (PVA) composite film by blending with PVA. AgNPs were synthesized evenly on the surface or embedded in the interior of silk/PVA film. The prepared AgNPs-silk/PVA film exhibited excellent mechanical performance and stability, as well as good antibacterial activity against both Gram-negative and Gram-positive bacteria. AgNPs-silk/PVA film offers more choices to be potentially applied in the active packaging field.

  12. LHCb RICH1 Engineering Design Review Report

    CERN Document Server

    Brook, N; Metlica, F; Muir, A; Phillips, A; Buckley, A; Gibson, V; Harrison, K; Jones, C R; Katvars, S G; Lazzeroni, C; Storey, J; Ward, CP; Wotton, S; Alemi, M; Arnabaldi, C; Bellunato, T F; Calvi, M; Matteuzzi, C; Musy, M; Negri, P; Perego, D L; Pessina, G; Chamonal, R; Eisenhardt, S; Lawrence, J; McCarron, J; Muheim, F; Playfer, S; Walker, A; Cuneo, S; Fontanelli, F; Gracco, Valerio; Mini, G; Musico, P; Petrolini, A; Sannino, M; Bates, A; MacGregor, A; O'Shea, V; Parkes, C; Paterson, S; Petrie, D; Pickford, A; Rahman, M; Soler, F; Allebone, L; Barber, J H; Cameron, W; Clark, D; Dornan, Peter John; Duane, A; Egede, U; Hallam, R; Howard, A; Plackett, R; Price, D; Savidge, T; Vidal-Sitjes, G; Websdale, D M; Adinolfi, M; Bibby, J H; Cioffi, C; Gligorov, Vladimir V; Harnew, N; Harris, F; McArthur, I A; Newby, C; Ottewell, B; Rademacker, J; Senanayake, R; Somerville, L P; Soroko, A; Smale, N J; Topp-Jørgensen, S; Wilkinson, G; Yang, S; Benayoun, M; Khmelnikov, V A; Obraztsov, V F; Densham, C J; Easo, S; Franek, B; Kuznetsov, G; Loveridge, P W; Morrow, D; Morris, JV; Papanestis, A; Patrick, G N; Woodward, M L; Aglieri-Rinella, G; Albrecht, A; Braem, André; Campbell, M; D'Ambrosio, C; Forty, R W; Frei, C; Gys, Thierry; Jamet, O; Kanaya, N; Losasso, M; Moritz, M; Patel, M; Piedigrossi, D; Snoeys, W; Ullaland, O; Van Lysebetten, A; Wyllie, K

    2005-01-01

    This document describes the concepts of the engineering design to be adopted for the upstream Ring Imaging Cherenkov detector (RICH1) of the reoptimized LHCb detector. Our aim is to ensure that coherent solutions for the engineering design and integration for all components of RICH1 are available, before proceeding with the detailed design of these components.

  13. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    International Nuclear Information System (INIS)

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-01

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: ► The microstructure of Cu-Al alloy is modified in the Ag presence. ► (α + γ) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. ► Ag-rich phase modifies the magnetic characteristics of Cu–Al–Mn alloy.

  14. Thermodynamic calculations of AuxAg1−x – Fluid equilibria and their applications for ore-forming conditions

    International Nuclear Information System (INIS)

    Liang, Y.; Hoshino, K.

    2015-01-01

    Highlights: • Solubilities of Au–Ag solid solutions are calculated at wide conditions. • Ratios of dissolved Au and Ag depend only on pH at intermediate pH. • Fluid conditions for high gold finenesses have been examined. - Abstract: Concentrations of dissolved gold and silver species in hydrothermal fluids equilibrated with Au–Ag solid solutions have been calculated at wide conditions on the well known fO 2 –pH spaces. Ratios of the total concentrations of dissolved gold and silver species (∑Au/∑Ag) are higher as pH higher and fO 2 lower. The ratios are constant at very low and high pH conditions where major dissolved species of both gold and silver are chloride complexes and thio complexes, respectively, while the ratios practically depend only on pH at intermediate pH conditions where Au(HS) 2 − and AgCl 2 − are major. The calculated results indicate that the solid solutions of high gold finenesses may precipitate from the fluids of low ratios of the total concentrations of dissolved gold and silver species when the conditions are (1) low pH’s and/or (2) high concentration ratios of dissolved chlorine and sulfur and/or (3) high temperatures

  15. Microstructure analyses and thermoelectric properties of Ag1−xPb18Sb1+yTe20

    International Nuclear Information System (INIS)

    Perlt, S.; Höche, Th.; Dadda, J.; Müller, E.; Bauer Pereira, P.; Hermann, R.; Sarahan, M.; Pippel, E.; Brydson, R.

    2012-01-01

    This study reports microstructural investigations of long-term annealed Ag 1−x Pb m Sb 1+y Te 2+m (m=18, x=y=0, hereinafter referred to as AgPb 18 SbTe 20 ) (Lead–Antimony–Silver–Tellurium, LAST-18) as well as of Ag 1−x Pb 18 Sb 1+y Te 20 , i.e. Ag-deficient and Sb-excess LAST-18 (x≠0,y≠0), respectively. Two different length scales are explored. The micrometer scale was evaluated by SEM to analyze the volume fraction and the number of secondary phases as well as the impact of processing parameters on the homogeneity of bulk samples. For AgPb 18 SbTe 20 , site-specific FIB liftout of TEM lamellae from thermoelectrically characterized samples was accomplished to investigate the structure on the nanometer scale. High-resolution TEM and energy-filtered TEM were performed to reveal shape and size distribution of nanoprecipitates, respectively. A hypothesis concerning the structure–property relationship is set out within the frame of a gradient annealing experiment. This study is completed by results dealing with inhomogeneities on the micrometer scale of Ag 1−x Pb 18 Sb 1+y Te 20 and its electronic properties. Highlights: ► SEM and TEM microstructure investigation of long-term annealed AgPb 18 SbTe 20 . ► SEM and thermoelectric studies on Ag 1−x Pb 18 Sb 1+y Te 20 . ► Discussion concerning structure–property relationship in long-term annealed AgPb 18 SbTe 20 . ► Correlation between Ag 1−x Pb 18 Sb 1+y Te 20 microscale structure and electronic properties.

  16. Development of a novel device to trap heavy metal cations: application of the specific interaction between heavy metal cation and mismatch DNA base pair.

    Science.gov (United States)

    Torigoe, Hidetaka; Miyakawa, Yukako; Fukushi, Miyako; Ono, Akira; Kozasa, Tetsuo

    2009-01-01

    We have already found that Hg(II) cation specifically binds to T:T mismatch base pair in heteroduplex DNA, which increases the melting temperature of heteroduplex DNA involving T:T mismatch base pair by about 4 degrees C. We have also found that Ag(I) cation specifically binds to C:C mismatch base pair in heteroduplex DNA, which increases the melting temperature of heteroduplex DNA involving C:C mismatch base pair by about 4 degrees C. Using the specific interaction, we developed a novel device to trap each of Hg(II) and Ag(I) cation. The device is composed of 5'-biotinylated T-rich or C-rich DNA oligonucleotides, BIO-T20: 5'-Bio-T(20)-3' or BIO-C20: 5'-Bio-C(20)-3' (Bio is a biotin), immobilized on streptavidin-coated polystylene beads. When the BIO-T20-immobilized beads were added to a solution containing Hg(II) cation, and the beads trapping Hg(II) cation were collected by centrifugation, almost all of Hg(II) cation were removed from the solution. Also, when the BIO-C20-immobilized beads were added to a solution containing Ag(I) cation, and the beads trapping Ag(I) cation were collected by centrifugation, almost all of Ag(I) cation were removed from the solution. We conclude that, using the novel device developed in this study, Hg(II) and Ag(I) cation can be effectively removed from the solution.

  17. The role of Pd in the transport of Ag in SiC

    International Nuclear Information System (INIS)

    Olivier, E.J.; Neethling, J.H.

    2013-01-01

    This paper presents results in support of a newly proposed transport mechanism to account for the release of Ag from intact TRISO particles during HTR reactor operation. The study reveals that the migration of Ag in polycrystalline SiC can occur in association with Pd, a relatively high yield metallic fission product. The migration takes place primarily along grain boundary routes, seen in the form of distinct Pd, Ag and Si containing nodules. Pd is known to rapidly migrate to the SiC and iPyC interface within TRISO particles during operation. It has been shown to chemically corrode the SiC to form palladium silicides. These palladium silicides are found present along SiC grain boundaries in nodule like form. It is suggested that Ag penetrates these nodules together with the palladium silicide, to form a Pd, Ag and Si solution capable of migrating along SiC grain boundaries over time.

  18. The role of Pd in the transport of Ag in SiC

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, E.J., E-mail: jolivier@nmmu.ac.za [Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Neethling, J.H. [Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2013-01-15

    This paper presents results in support of a newly proposed transport mechanism to account for the release of Ag from intact TRISO particles during HTR reactor operation. The study reveals that the migration of Ag in polycrystalline SiC can occur in association with Pd, a relatively high yield metallic fission product. The migration takes place primarily along grain boundary routes, seen in the form of distinct Pd, Ag and Si containing nodules. Pd is known to rapidly migrate to the SiC and iPyC interface within TRISO particles during operation. It has been shown to chemically corrode the SiC to form palladium silicides. These palladium silicides are found present along SiC grain boundaries in nodule like form. It is suggested that Ag penetrates these nodules together with the palladium silicide, to form a Pd, Ag and Si solution capable of migrating along SiC grain boundaries over time.

  19. Geology, S-Pb isotopes, and 40Ar/39Ar geochronology of the Zhaxikang Sb-Pb-Zn-Ag deposit in Southern Tibet: implications for multiple mineralization events at Zhaxikang

    Science.gov (United States)

    Sun, Xiang; Zheng, Youye; Pirajno, Franco; McCuaig, T. Campbell; Yu, Miao; Xia, Shenlan; Song, Qingjie; Chang, Huifang

    2018-03-01

    the early Pb-Zn veins were overprinted by later Sb-rich fluids. Stage 2 fluids were likely acidic and oxidized and leached lead from high-grade metamorphic rocks of the Greater Himalayan crystalline complex (GHC) and sulfur from reduced rocks, such as slate of the Ridang Formation, along N-S trending faults, leading to precipitation of Pb-Zn sulfides and Mn-Fe carbonate and formation of solution collapse breccias. Later Sb-rich fluids leached Pb from the GHC and the pre-existing sulfides and deposited Fe-poor sphalerite, Ag-rich galena, tetrahedrite, Sb-Pb sulfosalts, and stibnite in quartz veins that cut pre-existing Pb-Zn-bearing Mn-Fe carbonate veins. The Sb-rich fluids also likely leached Pb from Early Cretaceous gabbro and formed stibnite at shallow levels where early Pb-Zn-bearing Mn-Fe carbonate veins are absent. A sericite 40Ar-39Ar plateau age of 17.9 ± 0.5 Ma from stage 3 veins represents the timing of the onset of stage 3 mineralization.

  20. Improved galvanic replacement growth of Ag microstructures on Cu micro-grid for enhanced SERS detection of organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Tian-Long [Key Laboratory for Anisotropy and Texture of Materials, School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Advanced Materials Processing Unit, National Institute for Materials Science, Namiki 1–1, Tsukuba, Ibaraki 305-0044 (Japan); Li, Ji-Guang, E-mail: LI.Jiguang@nims.go.jp [Key Laboratory for Anisotropy and Texture of Materials, School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Advanced Materials Processing Unit, National Institute for Materials Science, Namiki 1–1, Tsukuba, Ibaraki 305-0044 (Japan); Sun, Xudong, E-mail: xdsun@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Sakka, Yoshio [Advanced Materials Processing Unit, National Institute for Materials Science, Namiki 1–1, Tsukuba, Ibaraki 305-0044 (Japan)

    2016-04-01

    Galvanic growth of Ag nano/micro-structures on Cu micro-grid was systematically studied for surface-enhanced Raman scattering (SERS) applications. Detailed characterizations via FE-SEM and HR-TEM showed that processing parameters, (reaction time, Ag{sup +} concentration, and PVP addition) all substantially affect thermodynamics/kinetics of the replacement reaction to yield substrates of significantly different microstructures/homogeneities and thus varied SERS performances (sensitivity, enhancement factor, and reproducibility) of the Ag substrates in the detection of R6G analyte. PVP as an additive was shown to notably alter nucleation/growth behaviors of the Ag crystals and promote the deposition of dense and uniform Ag films of nearly monodisperse polyhedrons/nanoplates through suppressing dendrites crystallization. Under optimized synthesis (50 mM of Ag{sup +}, 30 s of reaction, and 700 wt.% of PVP), Ag substrates exhibiting a high Raman signal enhancement factor of ~ 1.1 × 10{sup 6} and a low relative standard deviation of ~ 0.13 in the repeated detection of 10 μM R6G were obtained. The facile deposition and excellent performance reported in this work may allow the Ag microstructures to find wider SERS applications. Moreover, growth mechanisms of the different Ag nano/micro-structures were discussed based on extensive FE-SEM and HR-TEM analysis. - Highlights: • A facile synthetic technique of growing SERS active Ag substrates onto Cu micro-grid has been systematically studied. • Changing processing parameters has yielded Ag crystals of various morphologies and SERS performances. • PVP additive was observed to suppress Ag dendrite crystallization for nearly monodispersed Ag polyhedrons/nanoplates. • PVP modified SERS substrate exhibits excellent EF and RSD values in the repeated detection of 10 μM R6G analyte.

  1. AgI/Ag3PO4 hybrids with highly efficient visible-light driven photocatalytic activity

    International Nuclear Information System (INIS)

    Katsumata, Hideyuki; Hayashi, Takahiro; Taniguchi, Masanao; Suzuki, Tohru; Kaneco, Satoshi

    2015-01-01

    Highlights: • AgI/Ag 3 PO 4 hybrid was prepared via an in situ anion-exchange method. • AgI/Ag 3 PO 4 displays the excellent photocatalytic activity under visible light. • AgI/Ag 3 PO 4 readily transforms to be Ag@AgI/Ag 3 PO 4 system. • h + and O 2 ·− play the major role in the AO 7 decolorization over AgI/Ag 3 PO 4 . • The activity enhancement is ascribed to a Z-scheme system composed of Ag 3 PO 4 , Ag and AgI. - Abstract: Highly efficient visible-light-driven AgI/Ag 3 PO 4 hybrid photocatalysts with different mole ratios of AgI were prepared via an in situ anion-exchange method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) technique. Under visible light irradiation (>420 nm), the AgI/Ag 3 PO 4 photocatalysts displayed the higher photocatalytic activity than pure Ag 3 PO 4 and AgI for the decolorization of acid orange 7 (AO 7). Among the hybrid photocatalysts, AgI/Ag 3 PO 4 with 80% of AgI exhibited the highest photocatalytic activity for the decolorization of AO 7. X-ray photoelectron spectroscopy (XPS) results revealed that AgI/Ag 3 PO 4 readily transformed to be Ag@AgI/Ag 3 PO 4 system while the photocatalytic activity of AgI/Ag 3 PO 4 remained after 5 recycling runs. In addition, the quenching effects of different scavengers displayed that the reactive h + and O 2 ·− play the major role in the AO 7 decolorization. The photocatalytic activity enhancement of AgI/Ag 3 PO 4 hybrids can be ascribed to the efficient separation of electron–hole pairs through a Z-scheme system composed of Ag 3 PO 4 , Ag and AgI, in which Ag nanoparticles act as the charge separation center

  2. Photocatalytic properties of porous TiO2/Ag thin films

    International Nuclear Information System (INIS)

    Chang, C.-C.; Chen, J.-Y.; Hsu, T.-L.; Lin, C.-K.; Chan, C.-C.

    2008-01-01

    In this study, nanocrystalline TiO 2 /Ag composite thin films were prepared by a sol-gel spin-coating technique. By introducing polystyrene (PS) spheres into the precursor solution, porous TiO 2 /Ag thin films were prepared after calcination at a temperature of 500 deg. C for 4 h. Three different sizes (50, 200, and 400 nm) of PS spheres were used to prepare porous TiO 2 films. The as-prepared TiO 2 and TiO 2 /Ag thin films were characterized by X-ray diffractometry (XRD) and by scanning electron microscopy to reveal structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation. When PS spheres of different sizes were introduced after calcination, the as-prepared TiO 2 films exhibited different porous structures. XRD results showed that all TiO 2 /Ag films exhibited a major anatase phase. The photodegradation of porous TiO 2 thin films prepared with 200 nm PS spheres and doped with 1 mol% Ag exhibited the best photocatalytic efficiency where ∼ 100% methylene blue was decomposed within 8 h under UV exposure

  3. Visible-light photocatalytic degradation of methylene blue with laser-induced Ag/ZnO nanoparticles

    International Nuclear Information System (INIS)

    Whang, Thou-Jen; Hsieh, Mu-Tao; Chen, Huang-Han

    2012-01-01

    The preparation of Ag doped ZnO nanoparticles conducted through the method of laser-induction is presented in this work. The Ag/ZnO nanoparticles attained from various weight percentages of added AgNO 3 relative to ZnO were applied under visible-light irradiation for evaluating the heterogeneous photocatalytic degradations of methylene blue (MB) solutions. It was shown that the catalytic behavior of Ag/ZnO nanoparticles in the visible-light range is notably improved through the Ag deposition onto ZnO nanoparticles by the method of laser-induction with a maximum effectiveness of 92% degradation. The properties of the nanoparticles were characterized by the employments of UV-vis spectroscopy (UV-vis), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and selected-area electron diffraction (SAED).

  4. Preparation and Characterization of γ-AgI in Superionic Composite Glasses (AgIx(AgPO31-x

    Directory of Open Access Journals (Sweden)

    S. Suminta

    2007-07-01

    Full Text Available The γ-AgI phase was stabilized at room temperature in the composites glasses (AgIx(AgPO31-x with x = 0.6 and 0.7 via rapid quenching of their molten mixture. The measurement of the crystal structure has been carried out using an X-ray Difractometer at the Physics Departement of Ibaraki University, Japan. The micro strain and crystal size are derived from Hall’s equation. The X-ray diffraction pattern shows some Bragg peaks that correspond to the crystalline γ-AgI. By increasing the concentration of AgI, the peak width becomes more narrow and the position shifts to the higher angle. This indicates that the crystalline size and microstrain are increasing. The increase of micro strain (η, and particle size (D will increase the ionic mobility, thus increasing the ionic conductivity. It is concluded that solidification process on melt AgI into glass matrix AgPO3 not only decreases the micro strain and the particle size, but it also increases the ionic conductivity.

  5. Synthesis and Complete Antimicrobial Characterization of CEOBACTER, an Ag-Based Nanocomposite.

    Directory of Open Access Journals (Sweden)

    O E Jaime-Acuña

    Full Text Available The antimicrobial activity of silver nanoparticles (AgNPs is currently used as an alternative disinfectant with diverse applications, ranging from decontamination of aquatic environments to disinfection of medical devices and instrumentation. However, incorporation of AgNPs to the environment causes collateral damage that should be avoided. In this work, a novel Ag-based nanocomposite (CEOBACTER was successfully synthetized. It showed excellent antimicrobial properties without the spread of AgNPs into the environment. The complete CEOBACTER antimicrobial characterization protocol is presented herein. It is straightforward and reproducible and could be considered for the systematic characterization of antimicrobial nanomaterials. CEOBACTER showed minimal bactericidal concentration of 3 μg/ml, bactericidal action time of 2 hours and re-use capacity of at least five times against E. coli cultures. The bactericidal mechanism is the release of Ag ions. CEOBACTER displays potent bactericidal properties, long lifetime, high stability and re-use capacity, and it does not dissolve in the solution. These characteristics point to its potential use as a bactericidal agent for decontamination of aqueous environments.

  6. Synthesis and Complete Antimicrobial Characterization of CEOBACTER, an Ag-Based Nanocomposite

    Science.gov (United States)

    Vasquez-Peña, M.; Raymond-Herrera, O.; Villavicencio-García, H.; Petranovskii, V.; Vazquez-Duhalt, R.; Huerta-Saquero, A.

    2016-01-01

    The antimicrobial activity of silver nanoparticles (AgNPs) is currently used as an alternative disinfectant with diverse applications, ranging from decontamination of aquatic environments to disinfection of medical devices and instrumentation. However, incorporation of AgNPs to the environment causes collateral damage that should be avoided. In this work, a novel Ag-based nanocomposite (CEOBACTER) was successfully synthetized. It showed excellent antimicrobial properties without the spread of AgNPs into the environment. The complete CEOBACTER antimicrobial characterization protocol is presented herein. It is straightforward and reproducible and could be considered for the systematic characterization of antimicrobial nanomaterials. CEOBACTER showed minimal bactericidal concentration of 3 μg/ml, bactericidal action time of 2 hours and re-use capacity of at least five times against E. coli cultures. The bactericidal mechanism is the release of Ag ions. CEOBACTER displays potent bactericidal properties, long lifetime, high stability and re-use capacity, and it does not dissolve in the solution. These characteristics point to its potential use as a bactericidal agent for decontamination of aqueous environments. PMID:27824932

  7. A rapid mechanism to remobilize and homogenize highly crystalline magma bodies.

    Science.gov (United States)

    Burgisser, Alain; Bergantz, George W

    2011-03-10

    The largest products of magmatic activity on Earth, the great bodies of granite and their corresponding large eruptions, have a dual nature: homogeneity at the large scale and spatial and temporal heterogeneity at the small scale. This duality calls for a mechanism that selectively removes the large-scale heterogeneities associated with the incremental assembly of these magmatic systems and yet occurs rapidly despite crystal-rich, viscous conditions seemingly resistant to mixing. Here we show that a simple dynamic template can unify a wide range of apparently contradictory observations from both large plutonic bodies and volcanic systems by a mechanism of rapid remobilization (unzipping) of highly viscous crystal-rich mushes. We demonstrate that this remobilization can lead to rapid overturn and produce the observed juxtaposition of magmatic materials with very disparate ages and complex chemical zoning. What distinguishes our model is the recognition that the process has two stages. Initially, a stiff mushy magma is reheated from below, producing a reduction in crystallinity that leads to the growth of a subjacent buoyant mobile layer. When the thickening mobile layer becomes sufficiently buoyant, it penetrates the overlying viscous mushy magma. This second stage rapidly exports homogenized material from the lower mobile layer to the top of the system, and leads to partial overturn within the viscous mush itself as an additional mechanism of mixing. Model outputs illustrate that unzipping can rapidly produce large amounts of mobile magma available for eruption. The agreement between calculated and observed unzipping rates for historical eruptions at Pinatubo and at Montserrat demonstrates the general applicability of the model. This mechanism furthers our understanding of both the formation of periodically homogenized plutons (crust building) and of ignimbrites by large eruptions.

  8. Comparison of the associative structure of two different types of rich coals and their coking properties

    Energy Technology Data Exchange (ETDEWEB)

    Hengfu Shui; Changhui Lin; Meng Zhang; Zhicai Wang; Mingdong Zheng [Anhui University of Technology, Maanshan (China). School of Chemistry and Chemical Engineering

    2010-07-15

    Solvent extractions of two different types of Chinese rich coals i.e. Aiweiergou coal (AG) and Zaozhuang coal (ZZ) using the mixed solvent of carbon disulfide/N-methyl-2-pyrrolidinone (CS{sub 2}/NMP) with different mixing ratios were carried out and the caking indexes of the extracted residues were measured. It was found that the extracted residues from the two types of coals showed different changing tendencies of the caking indexes with the extraction yield. When the extraction yield attained about 50% for ZZ coal, the extracted residue had no caking property. However for AG coal, when the extraction yield reached the maximum of 63.5%, the corresponding extracted residue still had considerable caking property with the caking index of 25. This difference indicated the different associative structure of the two coals although they are of the same coalification. Hydro-thermal treatment of the two rich coals gave different extract fractionation distributions for the treated coals compared to those of raw coals respectively. The coking property evaluations of the two coals and their hydro-thermally treated ones were carried out in a crucible coking determination. The results showed that the hydro-thermal treatment could greatly improve the micro-strengths of the resulting coke from the two coals, and the improvement was more significant for the more aggregated AG coal. The reactivities of hydro-thermally treated AG coal blends were almost the same as those of raw coal blends. The higher coke reactivities of AG raw coal and its hydro-thermally treated ones than those of ZZ coal might be attributed to its special ash composition. 20 refs.,4 figs., 5 tabs.

  9. FEMB, 2-D Homogeneous Neutron Diffusion in X-Y Geometry with Keff Calculation, Dyadic Fission Matrix

    International Nuclear Information System (INIS)

    Misfeldt, I.B.

    1987-01-01

    1 - Nature of physical problem solved: The two-dimensional neutron diffusion equation (xy geometry) is solved in the homogeneous form (K eff calculation). The boundary conditions specify each group current as a linear homogeneous function of the group fluxes (gamma matrix concept). For each material, the fission matrix is assumed to be dyadic. 2 - Method of solution: Finite element formulation with Lagrange type elements. Solution technique: SOR with extrapolation. 3 - Restrictions on the complexity of the problem: Maximum order of the Lagrange elements is 6

  10. Photocatalytic oxidation removal of Hg"0 using ternary Ag/AgI-Ag_2CO_3 hybrids in wet scrubbing process under fluorescent light

    International Nuclear Information System (INIS)

    Zhang, Anchao; Zhang, Lixiang; Chen, Xiaozhuan; Zhu, Qifeng; Liu, Zhichao; Xiang, Jun

    2017-01-01

    Highlights: • Ag/AgI-Ag_2CO_3 hybrids were employed for Hg"0 removal under fluorescent light. • Superoxide radical (·O_2"−) played a key role in Hg"0 removal. • NO exhibited a significant effect on Hg"0 removal in comparison to SO_2. • The mechanism for enhanced Hg"0 removal over Ag/AgI-Ag_2CO_3 was proposed. - Abstract: A series of ternary Ag/AgI-Ag_2CO_3 photocatalysts synthesized using a facile coprecipitation method were employed to investigate their performances of Hg"0 removal in a wet scrubbing reactor. The hybrids were characterized by N_2 adsorption-desorption, XRD, SEM-EDS, HRTEM, XPS, DRS and ESR. The photocatalytic activities of Hg"0 removal were evaluated under fluorescent light. The results showed that AgI content, fluorescent light irradiation, reaction temperature all showed significant influences on Hg"0 removal. NO exhibited significant effect on Hg"0 removal in comparison to SO_2. Among these ternary Ag/AgI-Ag_2CO_3 hybrids, Ag/AgI(0.1)-Ag_2CO_3 showed the highest Hg"0 removal efficiency, which could be ascribed to the effective separation of photogenerated electron-hole pairs between AgI and Ag_2CO_3 and the surface plasmon resonance (SPR) effect in the visible region by metallic silver nanoparticles (Ag"0 NPs). The trapping studies of reactive radicals showed that the superoxide radicals (·O_2"−) may play a key role in Hg"0 removal under fluorescent light. According to the experimental and characterization results, a possible photocatalytic oxidation mechanism for enhanced Hg"0 removal over Ag/AgI(0.1)-Ag_2CO_3 hybrid under fluorescent light was proposed.

  11. Origin of Activity and Stability Enhancement for Ag3PO4 Photocatalyst after Calcination

    Directory of Open Access Journals (Sweden)

    Pengyu Dong

    2016-11-01

    Full Text Available Pristine Ag3PO4 microspheres were synthesized by a co-precipitation method, followed by being calcined at different temperatures to obtain a series of calcined Ag3PO4 photocatalysts. This work aims to investigate the origin of activity and stability enhancement for Ag3PO4 photocatalyst after calcination based on the systematical analyses of the structures, morphologies, chemical states of elements, oxygen defects, optical absorption properties, separation and transfer of photogenerated electron-hole pairs, and active species. The results indicate that oxygen vacancies (VO˙˙ are created and metallic silver nanoparticles (Ag NPs are formed by the reaction of partial Ag+ in Ag3PO4 semiconductor with the thermally excited electrons from Ag3PO4 and then deposited on the surface of Ag3PO4 microspheres during the calcination process. Among the calcined Ag3PO4 samples, the Ag3PO4-200 sample exhibits the best photocatalytic activity and greatly enhanced photocatalytic stability for photodegradation of methylene blue (MB solution under visible light irradiation. Oxygen vacancies play a significantly positive role in the enhancement of photocatalytic activity, while metallic Ag has a very important effect on improving the photocatalytic stability. Overall, the present work provides some powerful evidences and a deep understanding on the origin of activity and stability enhancement for the Ag3PO4 photocatalyst after calcination.

  12. Transformation from Ag@Ag{sub 3}PO{sub 4} to Ag@Ag{sub 2}SO{sub 4} hybrid at room temperature: preparation and its visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ting; Gao, Shanmin, E-mail: gaosm@ustc.edu; Wang, Qingyao; Xu, Hui [Ludong University, College of Chemistry and Materials Science (China); Wang, Zeyan; Huang, Baibiao, E-mail: bbhuang@sdu.edu.cn; Dai, Ying [Shandong University, State Key Laboratory of Crystal Materials (China)

    2017-02-15

    In the present study, Ag/Ag{sub 2}SO{sub 4} hybrid photocatalysts were obtained via a facile redox–precipitation reaction approach by using Ag@Ag{sub 3}PO{sub 4} nanocomposite as the precursor and KMnO{sub 4} as the oxidant. Multiple techniques, such as X-ray diffraction pattern (XRD), transmission electron microscope (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS) and Brunauer–Emmett–Teller (BET), photocurrent and electrochemical impedance spectroscopy (EIS), were applied to investigate the structures, morphologies, optical, and electronic properties of as-prepared samples. The photocatalytic activities were evaluated by photodegradation of organic rhodamine B (RhB) and methyl orange (MO) under visible light irradiation. It was found that pure Ag{sub 2}SO{sub 4} can partially transform into metallic Ag during the photocatalytic degradation of organic pollutants, but the Ag/Ag{sub 2}SO{sub 4} hybrids can maintain its structure stability and show enhanced visible light photocatalytic activity because of the surface plasma resonance effect of the metallic Ag.

  13. Green tea induced gold nanostar synthesis mediated by Ag(I) ions

    OpenAIRE

    Chen, Qiang; Kaneko, Toshiro; Hatakeyama, Rikizo

    2014-01-01

    We report a synthesis of tea components conjugated gold nanostars (AuNSs) with strong near infrared absorption by reducing an aqueous solution of chloroauric acid trihydrate via green tea in association with Ag(I) ions. Green tea acts as a reducing agent by providing electrons for the gold (III) reduction as well as a stabilizing agent by conjugating some of its components on the surfaces of AuNSs. Moreover, the Ag(I) ions play an important role in mediating the branched growth of the resulta...

  14. Structure and properties of nanostructured ZnO arrays and ZnO/Ag nanocomposites fabricated by pulsed electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Kopach, V. R.; Klepikova, K. S.; Klochko, N. P., E-mail: klochko-np@mail.ru; Khrypunov, G. S.; Korsun, V. E.; Lyubov, V. M.; Kirichenko, M. V.; Kopach, A. V. [National Technical University “Kharkiv Polytechnic Institute” (Ukraine)

    2017-03-15

    We investigate the structure, surface morphology, and optical properties of nanostructured ZnO arrays fabricated by pulsed electrodeposition, Ag nanoparticles precipitated from colloidal solutions, and a ZnO/Ag nanocomposite based on them. The electronic and electrical parameters of the ZnO arrays and ZnO/Ag nanocomposites are analyzed by studying the I–V and C–V characteristics. Optimal modes for fabricating the ZnO/Ag heterostructures with the high stability and sensitivity to ultraviolet radiation as promising materials for use in photodetectors, gas sensors, and photocatalysts are determined.

  15. Study on the nano-composite electroless coating of Ni-P/Ag

    International Nuclear Information System (INIS)

    Ma Hongfang; Tian Fang; Li Dan; Guo Qiang

    2009-01-01

    The nano-composite coating of Ni-P/Ag was obtained by adding silver nanoparticles to the Ni-P electroless plating solutions. The properties of the coating were tested by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), differential scanning calorimeter (DSC), X-ray diffraction (XRD) and microsclerometer. Silver nanoparticles changed the properties of the composite coating. The Ni-P electroless coating contains 12.23 wt.% P while the composite coating of Ni-P/Ag contains 11.17 wt.% P and 0.24 wt.% Ag. The hardness of the composite coating is bigger than that of Ni-P alloy coating. Differential scanning calorimeter studies showed the amorphous to crystalline transition with precipitation of Ni 3 P and Ni around 335 deg. C

  16. A computational analysis on homogeneous-heterogeneous mechanism in Carreau fluid flow

    Science.gov (United States)

    Khan, Imad; Rehman, Khalil Ur; Malik, M. Y.; Shafquatullah

    2018-03-01

    In this article magnetohydrodynamic Carreau fluid flow towards stretching cylinder is considered in the presence of homogeneous-heterogeneous reactions effect. The flow model is structured by utilizing theoretical grounds. For the numerical solution a shooting method along with Runge-Kutta algorithm is executed. The outcomes are provided through graphs. It is observed that the Carreau fluid concentration shows decline values via positive iterations of homogeneous-heterogeneous reaction parameters towards both shear thinning and thickening case. The present work is certified through comparison with already existing literature in a limiting sense.

  17. Optimal truss and frame design from projected homogenization-based topology optimization

    DEFF Research Database (Denmark)

    Larsen, S. D.; Sigmund, O.; Groen, J. P.

    2018-01-01

    In this article, we propose a novel method to obtain a near-optimal frame structure, based on the solution of a homogenization-based topology optimization model. The presented approach exploits the equivalence between Michell’s problem of least-weight trusses and a compliance minimization problem...... using optimal rank-2 laminates in the low volume fraction limit. In a fully automated procedure, a discrete structure is extracted from the homogenization-based continuum model. This near-optimal structure is post-optimized as a frame, where the bending stiffness is continuously decreased, to allow...

  18. Ag supported on carbon fiber cloth as the catalyst for hydrazine oxidation in alkaline medium

    International Nuclear Information System (INIS)

    Liu, Ran; Ye, Ke; Gao, Yinyi; Zhang, Wenping; Wang, Guiling; Cao, Dianxue

    2015-01-01

    Highlights: • CFC supported microspherical Ag is obtained by square-wave potential method. • Ag/CFC electrode has high catalytic activity toward hydrazine oxidation. • Hydrazine oxidation on the electrode proceeds by a near 4-electron pathway. - Abstract: Silver particles with microspheric structure are directly electrodeposited on carbon fiber cloth (CFC) substrate by square-wave potential electrodeposition method. The electrocatalytic behaviors of the Ag/CFC electrode toward hydrazine oxidation in alkaline solution are examined by cyclic voltammetry and chronoamperometry. An onset oxidation potential of -0.5 V and a peak current density of 30 mA cm −2 are achieved in the solution containing 1.0 mol L −1 KOH and 20.0 mmol L −1 hydrazine. The microspheric structure of the Ag/CFC electrode provides large electroactive surface area, hence, abundant active sites are vacant for hydrazine oxidation. The calculated apparent activation energies at different potentials show that hydrazine electro-oxidation at higher potential has faster kinetics than that at lower potential. In addition, the transfer electron number of hydrazine oxidation reaction on the Ag/CFC electrode is close to four, suggesting hydrazine is almost completely electrooxidized on the electrode and the full use of hydrazine fuel is basically achieved.

  19. Oscillation estimates relative to p-homogeneous forms and Kato measures data

    Directory of Open Access Journals (Sweden)

    Marco Biroli

    2006-11-01

    Full Text Available We state pointwise estimate for the positive subsolutions associated to a p-homogeneous form and nonnegative Radon measures data. As a by-product we establish an oscillation’s estimate for the solutions relative to Kato measures data.

  20. A Widely Applicable Silver Sol for TLC Detection with Rich and Stable SERS Features

    Science.gov (United States)

    Zhu, Qingxia; Li, Hao; Lu, Feng; Chai, Yifeng; Yuan, Yongfang

    2016-04-01

    Thin-layer chromatography (TLC) coupled with surface-enhanced Raman spectroscopy (SERS) has gained tremendous popularity in the study of various complex systems. However, the detection of hydrophobic analytes is difficult, and the specificity still needs to be improved. In this study, a SERS-active non-aqueous silver sol which could activate the analytes to produce rich and stable spectral features was rapidly synthesized. Then, the optimized silver nanoparticles (AgNPs)-DMF sol was employed for TLC-SERS detection of hydrophobic (and also hydrophilic) analytes. SERS performance of this sol was superior to that of traditional Lee-Meisel AgNPs due to its high specificity, acceptable stability, and wide applicability. The non-aqueous AgNPs would be suitable for the TLC-SERS method, which shows great promise for applications in food safety assurance, environmental monitoring, medical diagnoses, and many other fields.